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Experiments with coherent excitation of relativistic nuclei in a crystal are proposed to investigate Lorentz time
retardation. At present, these experiments provide the possibility of precisely (10–4–10–5) verifying time retar-
dation for clock velocities corresponding to the Lorentz factor γ ~ 100–200 and larger. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 24.30.Gd; 03.30.+p
A nucleus (or atom) moving in a spatially periodic
crystal field is exposed to time-periodic perturbation,
whose frequency depends on the nucleus velocity ν as

,

where a is the interatomic spacing in the crystal.
Because the electric field of the crystal is not purely
sinusoidal, the electromagnetic perturbation acting on
the moving nucleus includes, along with the fundamen-
tal frequency ν, many harmonics:

,

where k = 1, 2, 3, ... . If one of these frequencies coin-
cides with the transition frequency to the excited state
of a moving nucleus, the probability of exciting this
nucleus sharply increases:

(1)

where ∆E = Eexc – Egr is the nuclear excitation energy.
Such a transformation of the spatially periodic crystal
field (in general, it need not necessarily be a crystal)
into a time-periodic electromagnetic perturbation act-
ing on a nucleus moving through the crystal and the
simultaneous use of this periodic perturbation for the
excitation of internal degrees of freedom of the moving
nucleus was called coherent excitation [1, 2].1 This
excitation is virtually similar to nuclear excitation by
the periodic field of a monochromatic electromagnetic
wave, whose frequency coincides with the transition
frequency between nuclear levels. Although the coher-
ent excitation (CE) was recently extensively studied
both experimentally [3–10] and theoretically [11–22], I
think that the direction of these works falls far short of
providing complete use of the scientific potentials of

1 After work [5], the less appropriate (in my opinion) term “reso-
nant coherent excitation” was also used.)

ν v /a=

kv /a

νexc ∆E/h kv /a= =
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CE for fundamental studies. In particular, the experi-
mental observation of the CE of relativistic nuclei in a
crystal (the existence of this effect has never been
doubted theoretically) will mean the discovery of a
nuclear reaction of a new type occurring not in single
collisions of two particles but by virtue of the collective
interaction between a nucleus moving through crystal
and the crystal atoms. The probability of this reaction
should be appreciably higher (by a factor of 104–105)
than the probability of an ordinary Coulomb excitation
of a nuclei moving through an isotropic target [2], and
it should exhibit resonance dependence on the nuclear
energy (the relative half width ∆E/Eof the resonance
can be as small as 10–5). These features provide numer-
ous and promising possibilities of employing this phe-
nomenon in fundamental studies on special and general
relativity, as well as on relativistic nuclear physics.

One of these interesting and as yet unrealized possi-
bilities of using CE in fundamental research was
pointed out in my recent work [21].

The purpose of this work was to adduce additional
arguments in favor of the assumption that an experi-
ment (as yet unrealized) on the CE of nuclear levels
may provide quite precise verification of time retarda-
tion for relativistic,

and ultrarelativistic cases. It is the nuclear CE that can
yield the most attractive and interesting results.

For the relativistic energies of a nucleus moving
through a crystal, Eq. (1) should be written as

(2)
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where

is the Lorentz factor of the particle moving through the
crystal.

The γ factor appears because of the relativistic con-
traction of crystal atoms and interatomic spacings in the
frame of reference associated with the moving nucleus.
In the crystal frame of reference, the γ factor appears
due to the relativistic increase, by a factor of γ, in time
intervals in the nuclear frame of reference (i.e., to the
decrease, by a factor of γ, in the transition frequency
between the levels of moving nucleus).

Therefore, the experimental verification of Eq. (2)
provides information about a change in time in the
frame of reference moving with a relativistic velocity,
which is necessary for the CE of nuclear levels.

In this experiment, a nucleus moving through a crys-
tal and having the hνexc = Eexc – Egr level represents a
moving clock, whose time is checked by a series of
sequential interactions of the nucleus with the electric
field of atoms located in the sites of a spatially periodic
crystal structure.

The probability of coherent Coulomb excitation is
noticeable in very narrow mutually well-separated
intervals of nuclear velocity (energy) [2]. The positions
of these intervals are determined by the nuclear excita-
tion energy and can easily be calculated.

γ 1

1 v 2/c2–
--------------------------=

The fraction R of F8+ ions passing through a 1600-Å thick
Au crystal in the [100] direction vs. the ratio of the F8+

velocity to the velocity corresponding to the resonance exci-
tation of the unperturbed 1s–1p transition. The resonance
energy is Er = 163.57 MeV.
The nuclear energy necessary for the coincidence of
one of the collision-frequency harmonics with the tran-
sition frequency between the levels of a nucleus collid-
ing with crystal atoms (i.e., for the CE kinematic con-
dition to be fulfilled) can be obtained from Eq. (2):

(3)

where Mnuclc2 is the nuclear mass measured in MeV’s.
A quantitative difference between the calculated value
of Ekin and its experimental value, which may and must
be observed in nuclear CE, solves the problem of preci-
sion experimental verification of time retardation for
the Lorentz factors used in experiments with nuclear
beams (e.g., γ ~ 150–200 at CERN [23]). The accuracy
of verification of Eq. (2) for various Lorentz factors γ is
determined only by the relative energy spread in a
nuclear beam from an accelerator. The latter can likely
be made as small as ~10–5 and even smaller by special
procedures.

Recall that the natural resolution of the CE of rela-
tivistic nuclei in a crystal can easily be made smaller
than this value by a mere increase in the number of lay-
ers in crystal [1, 2].

A Lorentz factor larger than 200 has long been
achieved in the 32S and 16O beams at the CERN accel-
erator [23]. It may appear, in principle, that the experi-
ments on the CE of atomic levels (see, e.g., [5, 6]) can
be used to determine the dependence of the rate of
“atomic clock” on the Lorentz factor of the atomic
beam. Unfortunately, the numerical factors in Eqs. (2)
and (3) are such that the atomic-beam velocities neces-
sary for an experiment on the CE of atomic levels with
energies 100–1000 eV correspond to a weakly relativ-
istic case γ ~ 1 and, hence, to an unattractive weak
change in the rate of atomic clock.

However, of even greater importance is the unavoid-
able fact that the resonance observed in experiments on
the CE of atomic levels is systematically shifted from
its calculated value by several fractions of a percent to
lower energies (see figure in [20]). This shift is due to
the constant component of the crystal electric field,
which shifts electronic levels of an atom moving
through a medium (Stark effect) [22] and, therefore,
impedes precision checking of Eq. (3).

Thus, the precision verification of a relativistic
change in time rate (particularly for large Lorentz fac-
tor) is possible, in my opinion, only in the experiments
with the CE of relativistic nuclei in a crystal (Stark
effect is absent for nuclear levels). Such an experiment
has, as yet, not been carried out, although it is simple
[23, 24] and does not require the fabrication of enor-
mous setups, which are typical for some experiments in
high energy physics.

Finally, in light of the positive results obtained in the
studies of the atomic CE [3–10], the absence of a simi-

Ekin Mnuclc
2 ∆Ea

hck
----------- 

 
2

1+ 1– 
  ,=
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lar CE phenomenon for the relativistic nuclei moving
through a crystal is highly improbable.
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Experimental results on a search for the sp interference in the angular distribution of prompt neutrons from 235U
fission induced by polarized thermal neutrons are presented. The experiment was carried out with the polarized
neutron beam from the reactor of the Moscow Engineering Physics Institute. © 2001 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 24.80.+y; 25.85.Ec; 24.70.+s
In 1998–1999, the collaboration of the ITEP, Uni-
versität Tübingen, PNPI, ILL, and Kurchatov Institute
culminated in the discovery of the formally T-odd cor-
relation that manifests itself in the left–right asymmetry
of emitting long-range α particles about the plane spec-
ified by the vectors of neutron polarization and light-
fragment momentum in ternary fission induced
by  polarized neutrons [1, 2]. This asymmetry is
expressed as

(1)

where Dα is the correlation coefficient, sn is the unit
vector along the neutron beam polarization, and nlf and
nα are unit vectors along the momenta of the light frag-
ment and α particle, respectively. The asymmetry coef-
ficients not normalized to 100% polarization of fission-
ing nuclei were found to be on the order of 10–3 for
233, 235U.

There are several possible origins of this correlation.
Of course, this may be the manifestation of T-nonin-
variant forces similar to those occurring in the
K0-meson decay. But it is much more probable that this
is due merely to the effect of final-state interaction.
However, even in this case, the question of which inter-
action—strong or electromagnetic—is responsible for
this effect and why the correlation “survives” after
summation over great many final states remains open.

To answer these questions, one should find a process
for which one of these interactions is minimal. Mea-
surement of an analogous correlation for the direction
of the momentum of a fission neutron rather than of an
α particle seems to be most promising. In this case, the
process is, likely, similar to ternary fission, but with the
emission of an electrically neutral particle, i.e., a neu-
tron. In this process, the electromagnetic interaction in

W 1 Dαsn nlf nα,[ ]+( ),∼
0021-3640/01/7408- $21.00 © 20408
the final state is strongly suppressed, as compared to the
ternary fission.

The experimental investigation of this process is
complicated because most fission neutrons are emitted
from fragments and, therefore, their emission mecha-
nism differs from that for α particles, which are pre-
dominantly emitted from the neck region approxi-
mately at the scission time, as follows from their angu-
lar distribution. In view of this fact, we are interested
only in the prescission neutrons, i.e., neutrons emitted
through the analogous mechanism rather than from the
fragments. Fission neutrons emitted from the fragments
form a background, which is very strong in this process
and suppresses the desired asymmetry

(2)

where Dn is the correlation coefficient, sin is the unit
vector along the neutron-beam polarization, and nlf and
nsn are unit vectors along the momenta of the light frag-
ment and prescission neutron, respectively.

Information about the fraction of prescission neu-
trons among the prompt fission neutrons is very contra-
dictory. Estimates vary from 3 to 35% [3]. At present,
not only reliable data on their energy and angular distri-
bution are lacking, but even direct evidence of their
existence is not available.

If the prescission neutrons exist, then one may
observe triple correlation of a different form

(3)

where B is the correlation coefficient, sin is the unit vec-
tor along the neutron-beam polarization, and nin and nfn
are unit vectors along the momenta of the initial and
final neutrons, respectively. This correlation is caused

W 1 Dnsin nlf nsn,[ ]+( ).∼

W 1 Bsn nin nfn,[ ]+( ).∼
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by the interference of s and p waves in the entrance
reaction channel. A similar correlation was observed
for the fission fragments and gamma-ray quanta, with
the correlation coefficient for the fission induced by
thermal neutrons being on the order of 10–4. Therefore,
the presence of this correlation may indicate the possi-
bility of existing correlation (2) for the prescission fis-
sion neutrons, provided that correlation (1) is not dom-
inated by the electromagnetic interaction in the final
state.

Figure 1 shows the scheme of the experiment. The
basic unit of the setup is a low-pressure chamber filled
with hexane to a pressure of 3 torr. A two-sided target
U containing 1.3 g of 235U on a thick substrate is placed
at the chamber center. The target is irradiated by a beam
of polarized neutrons perpendicularly to the figure
plane. The neutron polarization s is perpendicular to the
target plane and changes its direction every second.

Multiwire avalanche detectors, used as fission-frag-
ment detectors f, are placed on each side of the target at
2 cm from it.

Neutron detectors n1 and n2 are placed on each side
of the chamber at a distance of 25 cm from the target in
the direction perpendicular to the beam axis and spin of
incident neutron. Each detector consists of a plastic
scintillator and a photomultiplier. Neutrons and
gamma-ray quanta detected by neutron detectors are
discriminated by the time-of-flight method.

A fission signal arrives from one of the fragment
detectors. The same signal triggers time-to-code con-
verters. A signal from the neutron detector is the shut-
off signal for the converters. Therefore, the method of
delayed coincidences of the fragment signal and the
signal from the neutron detectors makes it possible to
separate neutrons from gamma-ray quanta.

A typical spectrum of the delay time between the
signal from the neutron detector and the signal from the
fragment detector is shown in Fig. 2, where two max-
ima are seen. The left and right maxima are due to
gamma-ray quanta and neutrons, respectively.

For analysis, this spectrum is divided into three
parts. The first part is the gamma-peak region, the sec-
ond is the region of neutrons with energies above
0.7 MeV, and the third is for low-energy neutrons. The
asymmetry a is separately calculated for each part by
the formula

(4)

where N+ and N– are the numbers of events for different
polarization signs of the neutrons incident on the target.

The coefficient B in Eq. (3) is determined as

(5)

where P is the degree of polarization of the fissioning
nuclei, C is the mean value of the triple scalar product
sn[nin, nfn] in the geometry of the experiment, and ns is

a N+ N––( )/ N+ N–+( ),=

B a/ PCns( ),=
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the ratio of the number of prescission neutrons to the
total number of prompt fission neutrons.

The results are as follows.

Group of events: asymmetry a, 105

Gamma-ray quanta: +0.8 ± 2.2

High-energy neutrons: –9.4 ± 3.0

Low-energy neutrons: –6.8 ± 2.9

Fig. 1. The scheme of the set.

Fig. 2. Time-of-flight spectrum.
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The result obtained for neutrons with energies above
0.7 MeV exceeds three errors, which is surprising for us
because prescission neutrons should be softer than neu-
trons emitted from the fragments. However, if this
asymmetry was instrumental, it would be manifested in
the photon asymmetry as well. It is worthwhile carrying
out similar measurements in the resonance region of
neutron energy because the sp-interference effects for
the fission fragments are considerably larger in reso-
nances.
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Fission decay of highly excited periodically driven compound nuclei is considered in the framework of the Lan-
gevin approach. We used residual-time distribution (RTD) as a tool for studying dynamic features in the pres-
ence of periodic perturbation. The structure of RTD essentially depends on the relation between Kramers’ decay
rate and the frequency ω of periodic perturbation. In particular, the intensity of the first peak in RTD has a sharp
maximum at certain nuclear temperature depending on ω. This maximum should be considered as first-hand
manifestation of stochastic resonance in nuclear dynamics. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 25.85.-w; 05.45.Xt
1 Since its discovery, the atomic nucleus has been
constantly used for verifying new physical ideas such
as tunneling [1], superfluids [2], superconductivity [3],
supersymmetry [4], and dynamical chaos [5]. Thus, it
seems unnatural that one of the most recent and intrigu-
ing discoveries in nonlinear physics—stochastic reso-
nance (SR) (see [6] for a recent review)—has still not
found response of the nuclear community. This is par-
ticularly strange because there is no doubt that the the-
ory in collective nuclear motion claiming to be a con-
sistent description of nuclear dynamics must essentially
be a nonlinear theory. The aim of this work is to dem-
onstrate the possibility of the observation of SR in
nuclear dynamics. As a specific example, we consider
the process of induced nuclear fission in the presence of
weak periodic perturbation.

SR was introduced nearly 20 years ago to explain
the periodicity of the Earth’s ice ages [7, 8] and found
numerous applications in such diverse fields as physics,
chemistry, and biology (see [6]).

The mechanism of SR can be explained in terms of
the motion of a particle in a symmetric double-well
potential subjected to noise and time periodic forcing.
The noise causes incoherent transitions between two
wells with a well-known Kramers’ rate [9] rk. If we
apply a weak periodic forcing, noise-induced hopping
between the potential wells can become synchronized
with the periodic signal. This statistical synchroniza-
tion takes place under the condition

, (1)

where ω is the frequency of periodic forcing. Two
prominent feature of SR arises from synchronization
condition (1):

1 This work was submitted by the authors in English.

rk
1– π/ω≈
0021-3640/01/7408- $21.00 © 20411
(i) the signal-to-noise ratio does not decrease mono-
tonically with increasing noise amplitude (as it happens
in linear system), but attains a maximum at a certain
noise strength [optimal noise amplitude can be found
from Eq. (1), because rk is simply connected with it];

(ii) the residence-time distribution (RTD) demon-
strates a series of peaks, centered at odd multiples of

half driving period Tn = 2  with exponentially

decreasing amplitude. Notice that if a single escape
from a local potential well is the event of interest, then
RTD reveals the dynamics of the considered system
more transparently than the signal-to-noise ratio. These
signatures of SR are not confined to the special models
but occur in general bi- and monostable systems and for
different types of noise [6].

Kramers [9] was the first to consider nuclear fission
as a process of overcoming the potential barrier by a
Brownian particle. A slow fission degree of freedom
(with large collective mass) is considered as the Brown-
ian particle, and fast nucleon degrees of freedom are
considered as a heat bath. The adequacy of such a
description is based on the assumption that the time of
equilibrium achievement in the system of nucleon
degrees of freedom is much less than the characteristic
time scale of collective motion. The most general way
of describing dissipative nuclear dynamics is through
the Fokker–Planck equation [10]. However, for the
demonstration of qualitative effects, it is convenient to
use the Langevin equation [11], which is equivalent to
the Fokker–Planck equation but is more transparent. As
has been shown, the description based on the Langevin
equation adequately represents nuclear dissipative phe-
nomena such as heavy-ion reactions and fission decay
[12–14] and possesses a number of advantages over the
Fokker–Planck description.

n
1
2
---– 

  π
ω
----
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Since we only intend to qualitatively demonstrate
SR in a nucleus, let us consider the simplest type of
Langevin equation: one-dimensional problem with
inertial M and friction γ parameters independent of
coordinates. The fission coordinate R is considered as a
coordinate of the Brownian particle. The remaining
degrees of freedom act as the heat bath. The interaction
of the fission coordinate with this heat bath causes a
friction γP and a random force ξ(t).

The particle motion in the presence of an external
periodic force Acosωt is described by the Langevin
equation for canonically conjugate variables {P, R}

(2)

ξ(t) is stochastic force possessing statistical properties
of white noise:

(3)

The nuclear temperature T(MeV) = , where E*
is an excitation energy and the level-density parameter

a = /10 (  is a mass number). The deformation
potential V is given as [12]

(4)

(these are the parameters of 205At nucleus [12]).

Plausible sources of periodic perturbation are con-
sidered below.

The discretized form of the Langevin equation is
given by [13, 14]

(5)

Here, tn = nτ and η(tn) is the normalized Gaussian-dis-
tributed random variable which satisfies

(6)

The efficiency of numerical algorithm (5) was checked
for the following cases:

(i) V = 0, A = 0, where numerical and analytical
results for 〈P2〉  and 〈R2〉  can be compared [12];

R/ tdd P/M,=

P/ tdd –βP V / R A t( ) ξ t( );+cos+dd= =

β γ/M,=

ξ t( )〈 〉 0, ξ t( )ξ t'( )〈 〉 2Dδ t t'–( ),= =

D γT .=

E∗ /a

Ã Ã

V R( )
37.46 R 1–( )2 MeV( ), 0 R 1.27< <

8.0 18.37 R 1.8–( )2 MeV( ), R 1.27>–



=

Rn 1+ Rn τ
Pn

M
-----,+=

Pn 1+ Pn 1 βτ–( )=

–
V R( )d

Rd
---------------- 

 
n

A tncos+ τ 2βMTτ
N

------------------η tn( ).+

η t( )〈 〉 0, η tn( )η tn'( )〈 〉 Nδnn' .= =
(ii) V ≠ 0, A = 0, where numerical and analytical val-
ues for Kramers’ decay rate rk can be compared.
According to [9],

(7)

Here, ωmin and ωmax are the angular frequencies of
potential (4) at the potential minimum and at the top of
barrier, respectively, and ∆V is the height of the poten-
tial barrier. Numerical values of Kramers’ decay rates

 for the time bin i are calculated by sampling the
number of fission events (Nf)i in the ith time-bin width
∆t and normalizing to the number of nuclei Ntotal –

 which have not fissioned,

(8)

The comparison of Eq. (7) with the asymptotic value
of Eq. (8) was used for the determination of the time
interval τ, which provides saturation for numerical inte-
gration (5). From the results, one could see that 20 steps
per nuclear time "/MeV provides a good saturation.

Now let us proceed to the description of the
expected effect—the manifestation of SR in nuclear fis-
sion. For the usually considered case of a symmetric
double well in the absence of periodic forcing, RTD
N(t) has the exponential form (see [6]) N(t) ~ exp(–rkt).
In the presence of the periodic forcing, one observes a
series of peaks centered at odd multiples of the half
driving period Tω = 2π/ω. The heights of these peaks
decrease exponentially with their order number.

These peaks can be simply explained [15]. The best
time for the particle to escape the potential well is when
the potential barrier becomes minimum. Thus, t = 1/2Tω
is a preferred residence time interval. The next “good
opportunity” to escape occurs after a full period, when
the potential barrier achieves its minimum again. The
second peak in the RTD is therefore located at 3/2Tω.
The location of the other peaks is evident. The peak
heights decay exponentially, because the probabilities
of a particle jumping over a potential barrier are statis-
tically independent. As shown for a symmetric double-
well potential [16], the strength P1 of the first peak at
1/2Tω (the area under peak) is a measure of the synchro-
nization between the periodic forcing and the switching
between the wells. So, if the mean residence time
(MRT) of the particle in one potential well is much
larger than the period of driving, the particle is not
likely to jump at the first time the relevant potential bar-
rier becomes minimum. In such a case, the RTD exhib-
its a larger number of peaks, where P1 is small. If the

rk = 
ωmin

2π
---------- β̃

2
1+ β̃–[ ] –∆V /T( ) W –∆V /T( )exp ,≡exp

β̃ β
2ωmax
--------------.=
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∑–
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MRT is much shorter than the period during which the
driving RTD decays practically to zero before the time
1/2Tω is reached, the weight P1 is again small. Optimal
synchronization, i.e., maximum P1, is reached when the
MRT matches the half driving period, i.e., condition
(1). This resonance condition can be achieved by vary-
ing the noise intensity D (or ω).

For constructing RTD (and following P1 calcula-
tion), we use the numerical solutions of Langevin
Eq. (5). We studied the evolution of P1 within the tem-
perature interval 1 MeV ≤ T ≤ 6 MeV. Let us fix the fre-
quency of periodic perturbation ω = 0.0267 MeV/"
(Tω/2 ≈ 117.7 "/MeV), which is the resonant frequency
at T = 3 MeV [following Eq. (1)]. The results of numer-
ical procedure for RTD under fixed parameters of peri-
odic perturbation [A = 3, ω = 0.0267; determined from
resonance condition (1)] are presented in Fig. 1.
Nuclear friction β in all numerical calculation is chosen
to be 1 MeV/".

In accordance with the expected behavior at T =
1 MeV (for low rk), one can distinctly see three peaks
located near t = Tω/2(~117.7), 3/2Tω(~353), and
5/2Tω(~588); and at T = 4 MeV almost all RTD is con-
centrated near t = 0 (with width less than Tω/2). The
corresponding variations of P1 (which represents the
measure of synchronization between the periodic forc-
ing and Kramers’ transitions and, hence, the measure of
SR) are depicted in Fig. 2 for two frequencies of peri-
odic perturbation [corresponding to temperatures 2 and
3 MeV from Eq. (1)]. Maxima of intensities P1 are
close to the predicted values of temperature.

The above-calculated P1 can be estimated theoreti-
cally for a single-well situation using a model similar to
the two-states model [6].

Let us evaluate RTD for the single-well case. The
rate equation for the number of fissile nuclei should be
written as

, (9)

where e = A/T. At low temperature, Eq. (9) properly
describes the process modeled below (though it is inap-
propriate at T comparable with ∆V, when rk is not much
smaller than the relaxation time within the well). The
solution to Eq. (9) is

(10)

where r0 = rkI0(e) > rk; In(e) are the modified Bessel
functions. RTD in this model is given by N(t) = –dn/dt,
so that

(11)

nd
td

------ –nrke
–e ωtcos=

n t( )
n0

--------ln rk –e ωtcos( )exp td

0

t

∫–=

=  r0t– 1–( )nIn e( )
2rk

nω
------- nωt,sin
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∞

∑+

N π/ω( ) rk –r0π/ω e+( ).exp=
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Using Eqs. (9)–(11), we obtain the new condition for
resonant temperature TRES(ω), which provides the max-
imal value for N(π/ω)/ω, whose dependence on ω and T
properly represents P1(ω, T) calculated above:

, (12)

instead of Eq. (1); λ = ∆V/A. The numerical solution to
Eq. (12) for TRES(ω) is presented in Fig. 3 [together
with a solution to

, (13)

which approximates curve (12) much better than 1].
P1(T) [obtained from Eq. (11)] depicted in Fig. 2 is

to be compared with numerical results; the scale of

rk
1– π

ω
----

λ I0 e( ) I1 e( )–
λ 1–

--------------------------------=

rk
1– 2π/ω=

Fig. 1. RTD for T = 1 and T = 4.

Fig. 2. P1(T) at ω = 0.0267 (crosses) and ω = 0.007 (solid);
1 corresponds to Eq. (12) and 2 is for the numerical calcu-
lation.
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P1(T) is chosen in such a way that the height of (12) in
its maximum for ω = 0.0267 coincides with the numer-
ical data. Higher resonant T in the latter case is con-
nected with nonequilibrium distribution within a long
interval near t = 0 (which can be easily seen in Fig. 1).

The first maximum in RTD is shifted from π/ω, so it
may seem more reasonable to evaluate the height in
true maximum. The calculation shows that this height
dependence on ω resembles that presented in Fig. 3,
with the exception of the region of high T, where the
curve N(t) does not possess any maxima. Nevertheless,
N(π/ω) is easily defined and observable, and studying
its dependence on T allows one to determine the neces-
sary characteristics of the nucleus.

In conclusion, let us briefly consider the possible
sources of periodic perturbation. The first possibility is
the fissile nucleus as a component of the double nuclear
system formed, for example, in heavy-ion collisions
[17]. In this case, the deformation potential will experi-
ence periodic perturbation similar to tide waves on the
Earth caused by the Moon’s rotation. In the case of
asymmetric fission, an alternating electric field may be
the source of periodic perturbation. The problem of the

Fig. 3. Resonant conditions (12) and (13) for TRES(ω).

T
R

E
S(

ω
)

choice of periodic perturbation should be discussed
separately.

We thank A.Yu. Korchin for valuable discussions.

REFERENCES
1. G. Gamow, Z. Phys. 51, 204 (1928).
2. A. Bohr, B. Mottelson, and D. Pines, Phys. Rev. 110, 936

(1958).
3. S. T. Belyaev, K. Dan. Videns. Selsk. Mat. Fys. Medd.

31, 11 (1959).
4. F. Iachello, Phys. Rev. Lett. 44, 772 (1980).
5. Yu. L. Bolotin and I. V. Krivoshey, Yad. Fiz. 42, 53

(1985) [Sov. J. Nucl. Phys. 42, 32 (1985)].
6. L. Gammaitoni, P. Hänggi, P. Jung, and F. Marchesoni,

Rev. Mod. Phys. 70, 223 (1998).
7. R. Benzi, A. Sutera, and A. Vulpiani, J. Phys. A 14, L453

(1981).
8. C. Nicolis, Tellus 34, 1 (1982).
9. H. A. Kramers, Physica (Amsterdam) 7, 284 (1940).

10. H. Risken, The Fokker-Planck Equation (Springer-Ver-
lag, Berlin, 1982).

11. P. Langevin and C. R. Hebd, Seances Acad. Sci. 146, 530
(1908).

12. Y. Abe, C. Gregoire, and H. Delagrange, J. Phys. (Paris)
47, 329 (1986).

13. Y. Abe, S. Ajik, P.-G. Reinhard, and E. Suraud, Phys.
Rep. 275, 49 (1986).

14. P. Frobrich and I. I. Gontchar, Phys. Rep. 292, 131
(1998).

15. T. Zhou, F. Moss, and P. Jung, Phys. Rev. A 42, 3161
(1990).

16. L. Gammaitoni, F. Marchesoni, and S. Santucci, Phys.
Rev. Lett. 74, 1052 (1995).

17. V. V. Volkov, Nuclear Reactions of Deep Inelastic Trans-
fers (Énergoizdat, Moscow, 1982).
JETP LETTERS      Vol. 74      No. 8      2001



  

JETP Letters, Vol. 74, No. 8, 2001, pp. 415–417. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 74, No. 8, 2001, pp. 455–457.
Original Russian Text Copyright © 2001 by Glazkov, Kozlenko, Savenko, Somenkov, Telepnev.

                                                                                                      
Hybridization of Libron and Phonon Modes in NH4I: 
Neutron Spectroscopy Studies at Pressures up to 10 GPa

V. P. Glazkov1, D. P. Kozlenko2, B. N. Savenko2, V. A. Somenkov1, and A. S. Telepnev2, 3

1Kurchatov Institute Russian Research Centre, pl. Kurchatova 1, Moscow, 123182 Russia
2Joint Institute for Nuclear Research, Dubna, Moscow region, 141980 Russia

3Institute of High-Pressure Physics, Russian Academy of Sciences, Troitsk, Moscow region, 142092 Russia
Received September 7, 2001

Vibrational spectra of ammonium iodide NH4I were studied at pressures up to 10 GPa by incoherent inelastic
neutron scattering. The pressure dependences of the frequencies of librational and transverse optical modes sug-
gest that they are hybridized upon pressure buildup. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 33.20.Tp; 33.20.Fb; 61.12.Ex; 62.50.+p; 63.20.Dj
High-pressure studies of ammonium halides are of
interest for the elucidation of interplay between the
structural and dynamical changes and phase transitions
occurring upon a decrease in volume [1]. The influence
of high pressure on the librational mode of ammonium
ions and the phase-transition-induced changes in its
behavior are among the most intriguing aspects of the
dynamics of ammonium halides [2].

The vibrational spectra of NH4I have been studied
by neutron spectroscopy at pressures below 4.5 GPa [3]
and by Raman spectroscopy at pressures up to 40 GPa
[4, 5]. The methods of optical spectroscopy are weakly
sensitive to the librational mode because only its over-
tones and combination frequencies are optically active.
By contrast, neutron spectroscopy allows the direct
experimental determination of the positions of libra-
tional and phonon peaks, though with lower resolution
and in a more restricted pressure range. At pressure P ~
5.5 GPa, the frequencies in the Raman spectra of NH4I
and ND4I change substantially, suggesting the appear-
ance of a new high-pressure phase [4]. Considering that
the structure of NH4I at room temperature and pres-
sures above 0.05 GPa is of the CsCl type, where the
ammonium ions are orientationally disordered over two
equivalent positions [6], it is natural to assume that this
new phase is orientationally ordered, as in other ammo-
nium halides. Indeed, the transition to phase V was
observed in the neutron diffraction study of ND4I at
substantially higher pressures P ~ 8 GPa [7]. It was
shown that phase V has the trigonal structure, where the
ammonium ions are oriented antiparallel to each other.
It was pointed out in [3] that the transition to phase V
may be due to the coupling between the transverse opti-
cal and librational modes in NH4I (ND4I), because the
difference between their frequencies decreases with
pressure buildup and becomes ∆ ≈ 11 meV at P ~ 4 GPa.
To verify this assumption and elucidate the nature of
0021-3640/01/7408- $21.00 © 20415
anomalies in the optical spectra, it is necessary to carry
out neutron spectroscopic studies of the vibrational
spectra of NH4I above and below the transition pres-
sure, i.e., in the pressure range where the experiments
have not been carried out before. In this work, we have
attempted to fill this gap using a small-sized autono-
mous large-aperture press devised for the neutron dif-
fraction experiments by S.M. Stishov and Yu.A. Sadkov
at the Institute of High-Pressure Physics, Russian
Academy of Sciences.

Experiments were performed at room temperature
on a DN-12 spectrometer [8] and pulsed IBR-2 high-
flow reactor at the Laboratory of Neutron Physics of the
Joint Institute for Nuclear Research (Dubna). Pressure
was produced in a high-pressure chamber with double-
torus tungsten carbide anvils [9]. The sample volume
was 100 mm3 in the chamber and 60 mm3 in the zone of
neutron beam. The pressure in the chamber was deter-
mined from the well-known equation of state for NH4I
[10] and a change in the unit cell parameter, which was
measured in the additional diffraction experiments. The
energy transfer was analyzed using a beryllium filter set
at a scattering angle 2θ = 90°. The final energy of
detected neutrons was E = 4 meV. The measurement
time for one spectrum was typically 50 h.

A typical spectrum of the generalized density G(E)
of vibrational states of NH4I at high pressures shows
two peaks corresponding to the transverse optical (TO)
and librational (L) modes (inset in Fig. 1). The pressure
buildup in the range 0–4 GPa brings about almost linear
increase in the TO and L frequencies with simultaneous
decrease in the difference between them. On further
pressure increase, the slopes of the corresponding
curves change and the difference between the frequen-
cies reaches a minimum ∆ ≈ 9.6 meV at P ~ 6 GPa, after
which it again starts to increase (Fig. 2). The Grüneisen
parameters γi = –d(lnνi/dlnV)T for the TO and L modes
001 MAIK “Nauka/Interperiodica”
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Fig. 1. Pressure dependence of the L and TO modes of
NH4I. Solid lines are the linear interpolations of experimen-
tal data in the ranges 0–4 and 6–10 GPa, respectively; dotted
lines are the interpolation in the range 4–6 GPa; and dashed
lines are the linear interpolation to the II–V phase-transition
point in ND4I. Black circles and squares are the data of this
work; white circles and squares are the neutron data [3].
Inset: generalized density of vibrational states in NH4I at
10 GPa. The peaks are approximated by Gaussians, and the
background, by linear polynomials.

Fig. 2. Pressure dependence of the difference between the
frequencies of the L and TO modes. White circles are the
data of this work, and black squares are the data from [3]. In
the ranges 0–4 and 7–10 GPa, the experimental data are
interpolated by linear functions.
in different pressure ranges are given in the table. The
calculations were carried out with the following values
of bulk modulus:

B(P = 0.5 GPa) = 16.8 GPa,

B(P = 6.1 GPa) = 33.3 GPa [4].

It follows from the table and Fig. 2 that the cross-
over at P = 6 GPa corresponds not to the phase transi-
tion but to the point where the frequencies of the optical
and librational modes “exchange” their derivatives with
respect to pressure.

The behavior of the L and TO frequencies is evi-
dence for the appearance of interaction between them,
i.e., for the libron–phonon hybridization. This effect
results in the successive attraction and repulsion of the
vibrational branches and, respectively, in sizable
changes of the Grüneisen parameters: increase in γL

from 0.4 to 1.2 and decrease in γTO from 1.7 to 1.0
(table). The nature of this phenomenon is, likely, simi-
lar to the hybridization of other types of excitations, in
particular, magnons and phonons in magnetic crystals
[11]. To every ammonium ion there can be related an

orientation vector directed from the center of the 
tetrahedron to one of its vertices. The librations are
caused by the oscillations of the orientation vectors
about their equilibrium positions, much as the atomic
magnetic moments oscillate in magnons. However,
there are no spatial correlations between the librations

of neighboring  ions, so that this branch is virtu-
ally dispersionless. In addition, in the disordered phase
II, the ammonium ions can execute reorientational
jumps between the equivalent positions in the structure
[12]. Taking into account that the librational branch is
dispersionless and that the dispersion of the optical
branch is small, one may assume that the interaction of
these branches occurs over a wide range of wave vec-
tors in the Brillouin zone (including its boundaries),
and, as a result, it manifests itself in the vibrational den-
sity of states. It is conceivable that this is precisely the
reason why a superstructure with antiparallel orienta-
tions of ND4I (phase V) appears, in contrast to the par-
allel superstructures in other ammonium halides. Note
that the libron–phonon hybridization is accompanied
by the “exchange” not between the positions of inter-
acting branches but between their derivatives with
respect to pressure.

The pressure P ~ 6 GPa at which the L and TO
modes interact is close to the value P ~ 5.5 GPa at
which the Raman spectra of NH4I show appreciable
changes [5]. It is not improbable, hence, that the analo-
gous changes in other ammonium halides are also asso-
ciated with the mode coupling and may precede phase
transitions in these systems at higher pressures. To elu-
cidate the role of these interactions in the phase transi-
tions and the hybridization mechanism, it is necessary
to experimentally study the dispersion curves at high

NH4
+

NH4
+
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pressures and carry out particular calculations by
invoking symmetry analysis.

We are grateful to V.L. Aksenov and S.M. Stishov
for helpful discussions and assistance in the work. This
work was supported by the program “Neutron Studies
of Condensed Media” and the Russian Foundation for
Basic Research, project no. 00-02-17199.
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The experimental investigation of lithium compressed by multiple shock waves to a pressure of 210 GPa dem-
onstrates the abnormal dependence of electrical resistivity. Contrary to normal metal behavior, the resistivity
monotonically increases in the pressure range 30–150 GPa by more than 15 times from a typical metallic value
at ambient conditions and reverts to a metallic value at a pressure higher than 160–210 GPa. The obtained
results demonstrate the anomalous resistivity of lithium both in solid and in liquid states. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.20.Dg; 62.50.+p
1 High-pressure studies play an important role in
understanding fundamental physical properties of con-
densed matter. The conventional point of view in con-
densed-matter physics [1] predicts that, as density and
pressure increase, structural phase transitions occur in
a solid, a closest-packed phase with the maximal coor-
dination number appears, insulators become conduc-
tors, and pressure-induced ionization effect takes place
under extreme conditions. Numerous experiments and
theoretical models seem to support this general picture.
Lithium, like other alkali metals, has long been consid-
ered as a prototype “simple” metal with metallic bond-
ing. At ambient conditions, alkali metals occur in sim-
ple body-centered-cubic or close-packed lattices. But
modern sophisticated quantum mechanical calculations
by Neaton and Ashcroft [2] predict much more reach
and interesting behavior of matter at high pressure. The
theory [2] shows that lithium under pressure transforms
from a typical metal at ambient pressure to an orthor-
hombic phase at 50 GPa. At higher pressure, lithium
nuclei form pairs, producing a molecular semimetallic
structure near 100 GPa, and finally revert to a mono-
atomic metal at very high pressures. Preliminary exper-
iments carried out in diamond anvil cells [3, 4] to a
pressure of 60 GPa have demonstrated a number of
interesting optical anomalies, but they did not deal with
measurements of electrical resistivity—the main indi-
cator of metal–insulator transitions. Recent X-ray dif-
fraction studies carried out at pressures up to 50 GPa
[5] and at a temperature reduced to 200 K to overcome
the undesirable reaction of lithium with the diamond
anvils under pressure have revealed a sequence of phase

1 This article was submitted by the authors in English.
0021-3640/01/7408- $21.00 © 20418
transitions. According to these measurements, near
39 GPa lithium transforms from high-pressure face-
centered-cubic (f.c.c.) phase through an intermediate
rhombohedral phase to a cubic body-centered unit cell
with 16 atoms (Pearson symbol cI16). The total energy
calculations [5] performed by means of the linear muf-
fin-tin orbital method predicted that this phase,
observed in elements for the first time, is stable to a
pressure of 165 GPa. In our previous work [6], we
reported direct measurements of electrical resistivity ρ
of lithium compressed by the dynamic methods to
60 GPa, which revealed its anomalous increase by
more than an order of magnitude. In this paper, we
report new results obtained for lithium quasi-isentropi-
cally compressed in multistep shock experiments up to
a pressure of 210 GPa and a density of 2.3 g/cm3. This
significantly extends the region of densities studied in
previous investigations [3–6].

High pressures and densities in a substance can be
generated by isothermal isentropic or dynamic (shock
wave) compression techniques. The maximum pressure
achieved in static compression experiments is limited
by the strength in the diamond anvil, while the pressure
limits for the shock-wave method depend only on the
driver’s power. So, the shock-wave experiments pro-
vide for simple and effective means in the investigation
of electrical properties and phase transitions in matter
at high pressure and temperature. Since the characteris-
tic time of shock-wave experiments is on the order of
10–6 s or less, the diffusion processes and chemical
interaction between the compressed material and sur-
rounding media play much less destructive roles than in
static experiments [3–5], in which the characteristic
time is equal to hours or more.
001 MAIK “Nauka/Interperiodica”
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The method of multiple shock compression [7] is
used in this work to reduce the effects of irreversible
heating in the shock-wave front. It allows one to gener-
ate the thermodynamic states that can be considered as
quasi-isentropical. A lithium sample was placed in an
insulator between steel baseplates. The impact of a
striker, accelerated to 5 km/s by the detonation products
of high explosive, produced an intense shock wave ini-
tiating the compression process. Due to the higher
dynamic impedance of steel, the shock wave in lithium
was progressively reflected from the baseplate reshock-
ing the sample. The sequence of reverberating shocks
between baseplates resulted in some final state with
higher pressure and lower temperature, in comparison
with the case of single shock [7]. Note that the partition
of a single shock into successive small shocks substan-
tially decreased the final temperature and increased the
final density, making the process more “isentropic.”
Such a specially designed process of multistep shock
compression can be treated as quasi-isentropic. For
example, the estimated temperature of a lithium com-
pressed multistep to 100 GPa between stainless steel
anvils is ~10 times lower than that which would be
achieved by a single shock with the same pressure.

The multiple shock compression of lithium to
megabar pressures was performed by special high
explosive generators (see Fig. 1 illustrating the experi-
mental setup for the regime of multistep shock com-
pression). The impact of a plane steel projectile initi-
ated a sequence of shock waves in the baseplate–
insulator–lithium–insulator–baseplate system. The
stainless steel impactor of 3–4 mm thickness was accel-
erated to 5 km/s by the detonation products of high
explosives. The impactor struck the stainless steel base-
plate (2–4-mm thick) to initiate a shock wave. Lithium
foil (0.07–0.15-mm thick) was placed between polyeth-
ylene or teflon insulating plates (0.8–1.0 mm).

The shock in the sample then reverberated back and
forth between the base plate and the reflector through
insulating plates and the lithium specimen until pres-
sure reached a value equal to the pressure incident ini-
tially from the steel. The pulsed generator produced
square pulses of magnitude 8.5 A in low-resistance
loads. Electric signals from lithium and piezoresistive
manganin gauge were recorded with a Tektronix
TDS744A digital oscilloscope in the frequency range
0–1 GHz with a 2 ns sampling time. Pressure was mea-
sured by a four-point manganin gauge made from
35-µm thick manganin foil and electrodeposited with
5-µm copper layer, excepting its bridge. The use of a
four-point scheme excluded any influence due to the
resistance of contacts and input leads. The cell was
designed in such a way that the lithium specimen and
the bridge of the pressure gauge were in the region free
from edge effects induced by hydrodynamic distur-
bances. The cell was assembled in an argon dry box. All
gaps were filled with a vacuum lubricant. The pressure
range to 100 GPa was investigated at liquid nitrogen
(77 K) and room (293 K) initial temperatures. In the
JETP LETTERS      Vol. 74      No. 8      2001
second series of measurements, the symmetrical
(“front-collision”) scheme of compression was used
with two high-velocity impactors striking baseplates
synchronically on opposite sides. This made it possible
to achieve much higher pressures, up to 210 GPa.

The time-resolved characteristics in the experiments
were pressure, measured by the manganin gauge, and
voltage (and, therefore, resistance), measured with the
use of four-point contact probes. The average errors for
pressure and resistance were on the order of 5%. 1D
numerical modeling was performed to obtain density d
and temperature T of lithium under conditions of
dynamic experiment. It was carried out using the
semiempirical multiphase equation of state [8] (EOS).
The EOS model was modified to the full Debye model
of crystal [9], to adequately account for the low-tem-
perature states; the obtained EOS of lithium describes
the thermodynamic properties of solid, liquid, and
plasma states, as well as high-pressure melting, evapo-
ration, and ionization. We used the resistance data,
direct measurements of pressure to 100 GPa, and the
results of computer simulation to obtain d, ρ and T,
while at higher pressures, which were beyond the
region of applicability of the manganin gauge, these
values were obtained by computer simulation. A

Fig. 1. Experimental setup. (a) Traditional scheme and
(b) symmetrical scheme.
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change in the thickness of lithium samples under pres-
sure, resulting in corresponding correction of the resis-
tivity ratio ρ/rho0 (where ρ0 is the resistivity at ambient
conditions), was also taken into account in analyzing
the experimental data. The estimated errors of pressure,
density, resistivity, and temperature were about 5%.

In agreement with the general theory of solid state
[1], the lithium resistivity at moderate dynamic pres-
sures P < 10 GPa slightly increases as pressure and
temperature grow. The anomalous region occurs at a
dynamic pressure of 40 GPa and higher at normal and
low (77 K) initial temperatures. Two experimental
resistivity histories of lithium and the corresponding
pressure profiles obtained by the manganin gauge are
plotted in Fig. 2. Analysis shows that 4–5 steps of sam-
ple-resistance and associated pressure steps can be
resolved in the experimental recordings. Typically, in
other experiments we also could resolve 4–5 individual
pressure steps and measure lithium resistivity for each
of them. It is evident that pressure grows in steps corre-
sponding to the reflections of the shock wave from steel
baseplates. It is important that the resistivity of lithium
grows synchronously with pressure in both experi-
ments. Finally, lithium resistivity decreases when the
compressed sample starts to expand in the release wave.

The front-collision experiments with two impactors
(Fig. 1b) allows one to achieve very high pressure. The
maximum pressure in the lithium sample placed
between the polyethylene and teflon plates was 160 and
212 GPa, respectively. These experiments were carried
out at ambient conditions. The original resistance
recordings R(t)/R0 and the corresponding pressure pro-
file from the manganin gauge, obtained in the 212-GPa
experiment, are plotted in Fig. 3. Teflon becomes a con-
ductor at such a high pressure, which results in the
appearance of an additional load in the experimental

Fig. 2. Relative resistance (left axis) and pressure (right
axis) profiles as functions of time in the multishock-com-
pression experiments.
circuit. It influences the resistivity of both manganin
gauge and lithium sample. The known pressure depen-
dence of manganin resistance allows one to account for
the influence of surrounding media on the resistances of
the gauge and the sample. The corrected resistance of
the lithium sample and the pressure obtained by com-
puter simulation are also plotted in Fig. 3. The experi-
mental recordings demonstrate that the lithium resis-
tance grows as pressure increases to 195 GPa, and then
it decreases when pressure reaches its maximum value
of 212 GPa. An analogous result was obtained in the
160-GPa multistep-compression experiment. As is seen
from Figs. 2 and 3, lithium demonstrates anomalous
behavior under high compression. Its resistance
changes weakly at pressures lower than 40 GPa, rises
anomalously by several orders in the pressure range
40–120 GPa, and becomes again metallic at 160–
190 GPa.

The summary of data obtained is given in Fig. 4 in
the form of lithium resistivity ρ/ρ293 as a function of
density. As one can see, the resistivity increases mono-
tonically with density for all experiments correspond-
ing to a maximum pressure of 100 GPa at initial tem-
peratures of 77 K and 293 K. The data obtained at
higher pressures (160-GPa and 212-GPa experiments)
also agree with these measurements in the investigated
density range up to 1.75 g/cm3. At higher densities on
the order of 2.0–2.3 g/cm3, the specific resistivity
decreases dramatically. Lithium melts under conditions
of dynamic experiment in the first or second shock
waves in the pressure region <7.3 GPa and temperature
<530 K, depending on the intensity of the incident
shock wave. The final states of dynamically com-
pressed lithium, according to the results of 1D numeri-
cal modeling with real EOS, correspond to the liquid
state at temperatures from 955 to 2833 K. The esti-

Fig. 3. Relative resistance (left axis) and pressure (right
axis) profiles as functions of time in the 212-GPa experi-
ment. Numbers near arrows correspond to the corrected val-
ues (see text).
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mated thermal component of lithium resistivity ρ/ρ293

is on the order of 20–25% of the total value at the max-
imum density. So, the main reason for the change in
lithium resistivity is a decrease in the interatomic dis-
tances. Apparently, the anomalous region occurring at
40 GPa and 1.1–1.2 g/cm3 corresponds to the f.c.c.–cI
16 transition, in accordance with recent results [5]. The
high-pressure phase with low conductivity can be either
cI 16 or oC 8 (Cmca “paired-atom{predicted by Neaton
and Ashcroft [2]) phase. One should note that the
dependence of resistivity on density is similar in both
solid (quasi-isentropic s = const compression data from
previous work [6] are given in Fig. 4) and liquid states.
Another interesting and unusual fact is that, under con-
ditions of dynamic experiments, liquid lithium is a poor
conductor up to 160 GPa (for example, crystal germa-
nium and silica are typical semiconductors, whereas
these materials have good conductivity in liquid state).
It seems that compressed liquid lithium has an ordered

Fig. 4. Resistivity of lithium as a function of density in the
multishock-compression experiment. The legend of points
includes the initial temperature and the maximum pressure,
and numbers near the points show the calculated tempera-
ture.

s = const

60 GPa
JETP LETTERS      Vol. 74      No. 8      2001
structure which is broken at 160 GPa, and lithium again
becomes a “good” metal (Fig. 4).

Thus, the electrical conductivity of lithium at
megabar dynamic pressure demonstrates its anomalous
behavior. It changes from typical metallic values to
semiconductor ones and then back to metallic. The
analysis of experimental data proves that lithium, the
first metal in the periodic system of elements having
one valence electron, cannot be considered as a “sim-
ple” metal at high pressure. We plan to continue the
experimental investigation of these exotic effects by
performing similar experiments at lower temperatures
and high pressures, and also by exploring other alkali
metals. First experiments carried out for sodium proved
the existence of this effect.

We thank N.W. Ashcroft and E.G. Maksimov for
fruitful discussions and for kindly providing lithium
samples (NWA).
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The EPR and static magnetic susceptibility of the crystalline molecular complex between fullerene C60 and an
organic donor 9,9'-trans-bis(telluraxanthenyl) (BTX) have been measured as functions of temperature. At tem-
peratures T above 130 K, the samples exhibit anomalously high magnetic susceptibility exceeding the values
calculated under the assumption that each molecule bears one paramagnetic spin 1/2. A very intense magnetic
resonance signal is also observed in the samples in the region of high g factors (g > 4.5). This allows the sug-
gestion that the samples under study possess ferromagnetism (or superparamagnetism). The EPR signal and
magnetic susceptibility sharply decay almost to zero as the temperature decreases below 100–120 K. It is sup-
posed that electron transfer from donor molecules BTX to C60 molecules takes place at temperatures above
110 K. This electron transfer generates electron spins in the system, whereas the anomalously high magnetism
is due to ferromagnetic correlations in the system of these spins. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 76.30.-V; 75.30.Cr; 75.50.-y
The discovery of “soft” ferromagnetism at tempera-
tures below 17 K in the crystalline complex of fullerene
C60 with tetrakis(dimethylamino)ethylene (TDAE),
one of the strongest organic donors, aroused very
strong interest in such complexes [1–4]. Note that fer-
romagnetism is commonly exhibited by crystals con-
taining ions with unfilled 3d or 4f shells (Fe, Ni, and so
forth), and ferromagnetism in the absence of such ions
is a very rare phenomenon.

In C60–TDAE crystals, the TDAE donor level lies
higher than the LUMOs of C60 molecules, and elec-
trons transfer from TDAE to C60 molecules. This leads
to the appearance of unpaired electron spins and, corre-
spondingly, to paramagnetism. However, the mecha-
nisms of exchange interaction leading to the ferromag-
netism of these crystals at T < 17 K have not been fully
understood so far. It is interesting to note that no devia-
tion from the paramagnetic Curie law is observed in the
C70–TDAE complex, in which electron transfer from
TDAE to C70 also occurs, giving rise to paramagnetic
spins.

The discovery of ferromagnetism in C60–TDAE
stimulated works on the synthesis and study of C60
complexes with other organic donors. A great number
0021-3640/01/7408- $21.00 © 20422
of such complexes were synthesized (see, for example,
[5–10]). In some of these complexes, the donor level
lies below the conduction band, which is formed by
LUMOs of C60 molecules, and these complexes
exhibit no ferromagnetism. In some complexes, the
opposite situation occurs, and electron transfer from
donors to C60 takes place, which gives rise to paramag-
netism and an intense EPR signal with the g factor close
to 2 (as well as in C60–TDAE). However, no evidence
of ferromagnetic correlations was found in these com-
plexes.

In this work, we report the discovery of unusual
magnetic properties in a crystalline molecular complex
of C60 and an organic donor 9,9'-trans-bis(telluraxan-
thenyl) (BTX). The crystal structure of C60–BTX stud-
ied in [11] is characterized by the P-1 (Z = 1) space
group and the occurrence of chains of C60 molecules
along the “a” direction, where the parameter a = 1.03 nm
somewhat exceeds the distance 1.002 nm between the
centers of the C60 molecules in the C60 crystal. At low
temperatures (T < 20 K), the C60–BTX crystals exhibit
intense photoluminescence [11] in the region
1.1−1.5 eV associated with excited states of C60 mole-
cules. The photoluminescence spectrum (PL) of the
complex is shifted by approximately 0.16 eV toward
001 MAIK “Nauka/Interperiodica”
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low energies as compared with the PL of C60 crystals.
The photoluminescence decay time in C60–BTX crys-
tals equals 1 ms [12], which exceeds the lifetime of sin-
glet excitons in C60 crystals by several orders of mag-
nitude. The occurrence of intense PL of molecules in
C60 complexes commonly points to the absence of a
charge on C60. As distinct from C60 crystals, PL in
C60–BTX decays rapidly as the temperature increases,
and it becomes hardly evident at T > 60 K.

Samples and experimental techniques. C60–BTX
samples were synthesized by slow (12 days) evapora-
tion of an equimolar solution of C60 and BTX in CS2 in
an argon atmosphere. The synthesis products were
small (about 0.1–0.2 mm in size) black-colored crys-
tals. The samples after the synthesis were stored in air
without special precautions. The EPR absorption spec-
tra dχ''/dH were measured at a frequency of 9560 MHz
using a low-frequency (127 Hz) modulation of the mag-
netic field. The sensitivity was calibrated by a paramag-
netic standard CuSO4 · 5H2O. Magnetic susceptibility
in low fields was measured from a change in the emf
induced in the receiving coil by the external low-fre-
quency magnetic field with a frequency of 830 Hz on
introducing the sample into the coil. The system was
calibrated by measuring a sample of CuSO4 · 5H2O of
the same volume.

Results and discussion. EPR spectra observed in
C60–BTX powder at various temperatures are dis-
played in Fig. 1. For convenience of comparison, the
amplitude of the EPR signal was normalized to the EPR
line of Cu2+ ions in the paramagnetic standard (a narrow
line on the right-hand side with g = 2.17). Two impor-
tant features engage our attention. First, as distinct from
the other charge-transfer complexes of C60 (for exam-
ple, C60–TDAE), in which an intense signal is
observed in the region g ≈ 2, C60–BTX exhibits a very
strong EPR signal in the region of anomalously high g
factors, g > 4.5. Second, the EPR signal, which only
slightly varies at T > 130 K, decays suddenly and rap-
idly almost to zero as the temperature decreases from
120 to 100 K. Such features have been observed in none
of the C60 complexes studied previously.

Unfortunately, an analysis of the EPR line shape
cannot give much information, because the measure-
ments were performed on powdered samples, and the
large width of the EPR spectrum is evidently due to the
anisotropy of the g factor. By virtue of the absence of
sufficiently large single crystals, we have not managed
to investigate the line shape and anisotropy so far.

Curve 1 in Fig. 2 shows the temperature dependence
of the magnetic susceptibility of a sample calculated
from the intensity of EPR spectra in the range 0.5–
3 kOe by integrating them over the magnetic field.
Curve 2 in Fig. 2 shows the temperature dependence of
the static magnetic susceptibility of a sample in a field
of 0–3 Oe measured by the induction method. For com-
parison, curve 3 in Fig. 2 shows the magnetic suscepti-
bility of the paramagnetic standard (CuSO4 · 5H2O
JETP LETTERS      Vol. 74      No. 8      2001
sample). Note that the bulk concentration of paramag-
netic copper ions (g ≈ 2, S ≈ 1/2) in the reference stan-
dard sample is approximately 5 times higher than the
concentration of C60 molecules in a C60–BTX sample;
however, the magnetic susceptibility of a C60–BTX
sample at T > 120 K is 4–5 times higher than the mag-
netic susceptibility of the standard.

Thus, we found the following new and unusual
facts:

Fig. 1. EPR spectra of C60–BTX powder at various temper-
atures: (1) T = 189 K, (2) T = 133 K, (3) T = 115 K, (4) T =
111 K, and (5) T = 90 K. The amplitudes of EPR are nor-
malized to the EPR of Cu2+ ions in a paramagnetic stan-
dard.

Fig. 2. Temperature dependence of the magnetic suscepti-
bility of a C60–BTX sample: (1) calculated from the inte-
gral intensity of EPR spectra in the range 0.5–3 kOe,
(2) measured by the induction method in a field of 0–3 Oe,
and (3) measured for CuSO4 · 5H2O.

g value



 

424

        

KVEDER 

 

et al

 

.

                                                       
(1) the anomalously high magnetic susceptibility of
C60–BTX crystals at temperatures higher than 120 K
and the anomalously high g factor of the EPR signal in
these samples;

(2) a sharp drop of the magnetic susceptibility and
the disappearance of the EPR signal as the temperature
T decreases below 110 K.

There are two possible reasons for the sharp drop of
the magnetic susceptibility at T < 110 K: switching on
of antiferromagnetic interaction in the system of spins
or a decrease in the number of spins. In our view, a
decrease in the number of spins is a simpler and more
credible explanation. Assume that the donor level of
BTX at low temperatures lies somewhat lower than the
bottom of the conduction band, which is formed of the
LUMOs of C60 molecules. Then, the concentrations of
free electrons on C60 and of paramagnetic holes on
BTX molecules at low temperatures are small, and both
the magnetic susceptibility and the EPR signal are vir-
tually absent. It may be supposed that, as the tempera-
ture increases, the conduction band edge shifts down in
energy with respect to the donor level of BTX. At some
instance, the donor level of BTX can cross the conduc-
tion band edge, which will lead to the appearance of
free electrons in the conduction band (on C60) and
unpaired paramagnetic spins (holes) on BTX mole-
cules. The occurrence of paramagnetism at elevated
temperatures can be explained within the framework of
this model. However, in order to explain the anoma-
lously high g factor and anomalously high magnetic
susceptibility, it is necessary to suggest the occurrence
of ferromagnetic interaction between electron spins.

It should be noted that measurements performed on
C60–BTX samples of different lots give qualitatively
similar results, though the absolute values of the EPR
signal and the magnetic susceptibility in different sam-
ples strongly differ (several times). This suggests that
the samples are not uniform in magnetic properties and
that only part of the crystals possess ferromagnetic
properties. A similar wide scatter of magnetic proper-
ties is also observed in the case of C60–TDAE (see [1–
4]). The reasons for the wide scatter of the magnetic
properties of C60–TDAE crystals were recently studied
in [13]. According to [13], the mutual orientation of
C60 molecules in the crystal is a very important param-
eter determining the occurrence of ferromagnetism.
The orientational ordering of C60 molecules strongly
depends on the synthesis conditions and thermal pre-
history of the samples, which explains the strong differ-
ence in the observed magnetic properties of C60–
TDAE crystals. Thus, the C60–TDAE samples synthe-
sized at a low temperature (8°C) exhibit no traces of
ferromagnetism down to 2 K, but they exhibit a ferro-
magnetic transition at 16 K after annealing for 6 h at
70°C. It is possible that the scatter of magnetic proper-
ties in samples of different lots observed in our experi-
ments is due to similar reasons.

The elucidation of the nature of the unusual proper-
ties of C60–BTX crystals needs further investigation.
In particular, it will be interesting to investigate the
anisotropy of the magnetic susceptibility and the g fac-
tor, the dependence of the magnetic moment on the
magnetic field in high fields, and the temperature
dependence of optical absorption spectra. In order to
perform these investigations, it is desirable to have suf-
ficiently large single crystals, which, unfortunately,
have not been obtained so far.
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The problem of conductivity of a multilayer sample (alternating magnetic and nonmagnetic metal layers) with
a current parallel to its surfaces is solved using a set of kinetic equations. Conditions at which the conductivity
variations associated with changes in the type of magnetization alignment in adjacent layers reach the values
on the order of initial conductivity are considered. Parameters governing the giant magnetoresistance effect and
the relations between them are determined. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Pa; 73.40.-c
1. The giant magnetoresistance (GMR) effect is
observed in layered systems consisting of alternating
ferromagnetic (m) and nonmagnetic (n) metal layers.
Sequential m layers change from the initial antiparallel
(AP) alignment of their magnetizations to the parallel
(P) one under the effect of a relatively weak magnetic
field (much weaker than the fields producing noticeable
magnetoresistance in massive samples of the same met-
als). This is accompanied by a considerable change in
the resistance of the multilayer structure (relative
changes reach several tens of percent). The first exper-
imental studies of the GMR are described in [1, 2], and
the reviews can be found in [3–6]. In the first experi-
ments, a decrease in the resistance, i.e., a negative effect
(GNMR), was observed. Later, a change from the AP
orientation to the P one was found to be accompanied
by an increase in the resistance, i.e., by a positive (or
inverse) effect. The possible mechanisms underlying
the GMR effect were discussed in many theoretical
publications. In some papers, the analysis was per-
formed starting from the first principles (according to
the authors’ terminology) [7–11]: the electronic struc-
ture was modeled for specific variants of monatomic
plane packing in the layers, and, then, specific electron
modes localized near the surfaces were determined and
their contributions to the conductivity changes were
found. These studies were based on the models and
numerical estimates and hardly revealed the general
physical pattern of the effect. Another approach uses a
semiclassical description with allowance for the spec-
tral characteristics of electrons in the “parent” n and m
metals, and the conductivity of the system is calculated
using either a Greens’ function formalism [12–15] or
kinetic equations [16–20] (in the semiclassical approx-
imation, these methods are equivalent). However, the
theoretical analysis performed in the cited publications
is, in our opinion, somewhat incomplete and, in certain
cases, even incorrect. For example, questions arise as to
0021-3640/01/7408- $21.00 © 20425
the boundary conditions, which involve not only the
usual Fuchs parameters [21, 22], but also the transmis-
sion coefficients (for transmissions between the m and
n layers). In some publications, these coefficients were
assumed to be coincident over the whole domain of
momentum variations [17, 20], whereas in other publi-
cations, the diffuse components were assumed to be
equal and the specular components were treated using
simplified optical analogues [18, 23]. As a result,
important contributions to the spin dependence of
transmission parameters were omitted. In addition, the
relative contributions of the n and m electrons to the
alignment-dependent conductivity were not estimated.
No answer was given to the questions of what should be
the ratio between the specular and diffuse scattering
components at the layer boundaries for the giant effect
to be realized and what are the factors that determine
the sign of this effect.

This study is devoted to the theoretical analysis of
the problem of longitudinal current in a multilayer sys-
tem (the so-called CIP geometry) on the basis of a set
of kinetic equations. The boundary conditions for the
distribution functions at the interlayer boundaries are
formulated using the generalized Fuchs parameters.
The dependence of the conductivity variation on the
parameters of the n- and m-electron energy spectra is
investigated, and the factors that govern the magnitude
and the sign of the GMR effect are determined.

2. Equations of the problem. For the distribution

function of electrons with momentum p, energy ,
and spin projection s (s = ±1 is the sign of spin projec-
tion on the quantization axis) in an arbitrary layer i =
(nj, mj), we use the expression

(1)
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where  = f0(  – µ) is the equilibrium Fermi func-
tion. We limit our consideration to a simple parabolic
spectrum of the carriers:

(2)

In Eqs. (2), the reference points of the n and m spectra
are specified; the presence of magnetization is
expressed in the form of Zeeman spin energy Ωjs; in the
case of P packing, all Ωj are identical, and, in the case
of AP packing, they change sign each time as the index
j changes by unity. In the equation for the nonequilib-

rium component , we express the collision inte-
gral through the relaxation times:

(3)

where Ex is the electric field strength, 1/τsi is the fre-
quency of scattering from the state s, and the z axis is
directed normally to the layers. Let us introduce the
notation for the Fermi momenta:

(4)

The parameter Γsj characterizes the differences in the
energy shifts of the s groups; these shifts occur only for
m electrons (for n electrons, Γsn = 1). Using Eqs. (4), we
write the following expressions for the momenta from

Eqs. (2) at  and for the partial densities of states:

, (5)

where p|| is the electron-momentum component parallel
to the layer surfaces.

We limit our consideration to the case of a dominant
elastic scattering and to the case when the spin-depen-
dent components of the potentials can be neglected.
Then, we can ignore the contribution of the transitions
with spin projection reversal s  –s. Taking into
account that the scattering frequency is proportional to
the density of final states at the chemical potential level

, it is convenient to recast the relaxation times
according to the formula

(6)

where the “nominal” times τi do not depend on s. For
definiteness, we assume that the outer surfaces of the
sample are n layers. We also assume that the layer
thickness is the same for the same type of layers; i.e.,
we have two thicknesses dn and dm, so that the total

f 0i
s εip

s

εn j p
s εnp p2/2mn εn,+= =

εm j p
s p2/2mm εm Ω js.–+=

χ i
s p( )

v z

∂χ i
s

∂z
--------

χ i
s

τ si

-----+ ev xEx,–=

psi pi Γ si, pi 2mi µ εi–( ),= =

Γ si 1 s
Ωi

µ εm–
---------------.+=

εi
s µ=

p2 pz
2 p||

2+ pi
2Γ si, ν iF

s pimi

2π2
"

3
-------------- Γ si= = =

ν i
s

1/τ si Γ si/τ i,=
thickness of the sample is D = Dm + Dn, where Dm = Kdm

and Dn = (K + 1)dn. The boundary conditions at the sur-
faces between the layers j and j' have the form

(7)

Here, tc and rc are the coefficients of a specular trans-
mission through the boundaries and reflection from
them, respectively. The subscripts r(l) correspond to the
right (left) boundary of the jth or j'th layer; the sub-
scripts marking the quantities  indicate the initial
momenta for the transmission and reflection, respec-
tively; and the signs > (<) correspond to the positive
(negative) values of the velocity v z. The conditions for

 (on the other side of the boundary z = zjj') have a

similar form. The parameters  depend on the momen-
tum:

(8)

where Θ is Heaviside unit step function determining the
region of the coincidence of longitudinal momenta, and

the coefficients  =  are assumed to be constant.
The normalization conditions, which relate the specular
and diffuse parameters for the transitions from the (jsp)
states to all possible states (with the same value of s),
are as follows:

(9)

Here, we introduced the total diffusivity parameter ,
which is assumed below to be independent of p. The
details of the derivation of the boundary conditions and
relations between the parameters can be found in [24].

We represent the solution to Eq. (3) within the layer
mj in the form

(10)

Similar expressions can be written for . To deter-
mine the values of parameters α(β), through which the
effect of the specular component of scattering from the
left (right) layer boundary on the electron distribution is

χ j'l
s> r( ) tc j's

jsp χ jr
s> p̃t s( )( ) rcs

j'spχ j'l
s< p̃r s( )( )+[ ] ,=

p̃t s( ) p|| p js
2 p||

2–,( ),=

p̃r s( ) p|| p j's
2 p||

2–,( ).=

p̃

χ jrp
s<
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tc j's
jsp tcjs

j'sp tc j's
js Θ min p js p j's,( ) p||–[ ] ,= =
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js tcjs

j's

tc j's
jsp rcs

jsp ζ j's
j+ + 1.=

ζ j's
js

χm j

s> eExv xτ sm j
1 1 αm j

s–( )
z zm j
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v zτ sm j

--------------–
 
 
 
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1 1 βm j
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s
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expressed, it is necessary to solve the set of equations
following from boundary conditions (7).

Let us assume that all boundaries between n and m
layers have the same structure, so that the difference in
their scattering properties for n electrons is exclusively
determined by different orientations of the magnetiza-
tions of the m layers adjacent to the n-layer boundaries.
Therefore, the transmission t and reflection r parame-
ters corresponding to different boundaries are related to
each other in a certain way. In the case of P orientation,
the following evident equalities must be satisfied:

(11)

The exceptions are outer surfaces of the n0th and nKth
layers, where the equality t = 0 must be valid. By virtue
of Eqs. (11), the set of equations for α and β is reduced
to equivalent pairs of equations for two adjacent layers,
with the exception of the equations that involve the
parameters of outer surfaces. Were it not for this excep-
tion, the following simple relationships would be valid:

(12)

The deviations from these equalities depend on the spe-
cific number of a layer, and (as can easily be shown
[24]) the greater the total number of layers, the smaller
these deviations (∝ 1/K). Neglecting the aforemen-
tioned corrections, we obtain the following equations
for the quantities A:

(13)

Here,

(14)
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s–( ),= =

Tsm j

sn j' p( ) tsm jc
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and Mn and  are the electron mobilities in the n and
m layers.

Using similar considerations, it is easy to establish
the correspondence between the parameters for the case
of AP packing and to determine the relations between
the quantities α and β:

(15)

The equations for A1 are obtained from Eqs. (13) by
replacing A with A1 in such a way that, in the terms with

the coefficients T and R,  should be replaced by ,
whereas, for other replacements, the spin indices
should be retained. The conductivity variation for the
AP  P reorientation is determined by the parame-
ters

(16)

which are obtained from the following equations:

(17)

Here,

(18)

Calculating the current density in the layers and passing
to its value averaged over the sample thickness, we
obtain the mean conductivity of a multilayer sample σ,
which can be represented as the sum of two compo-
nents:

(19)

The component σbd corresponds to the conductivity of
a multilayer sample in the case of a perfectly diffuse
scattering at the surfaces:

(20)

where σb is a combination of the bulk conductivities of
the materials:

(21)

and σd describes the “diffuse” reduction of bulk con-
ductivity:
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(22)

Here,

(23)

l represents the mean free paths that are independent of
s in the adopted approximation, and σ0i are the bulk
conductivities. The sums over s, which are involved in
Eqs. (21) and (22), contain only the terms depending on
the local properties of a given (nth or mth) layer. This
fact indicates the absence of correlations between the
layers and, hence, the absence of the effect of magnetic-
order changes in the sample on the conductivity com-
ponent σbd.

The second component σc of mean conductivity
given by Eq. (19) is related to the GMR effect. This
component is determined by the “specular” transitions
at the layer boundaries. The corresponding expression
for the case of P configuration has the form

(24)

A similar expression can be written for . The con-
ductivity variation that is of most interest has the form

(25)

where the expressions for δσ differ from Eqs. (24) by
the substitution of δA for A in the arguments of the inte-
grals Yn and Ym determined by Eqs. (23).

3. Results and discussion. To determine the condi-
tions that are necessary for the giant variations of the
conductivity to occur, we first consider the situations in
which this effect is impossible. Primarily, it is the case
of thick layers with di @ li, where i = n, m. In this case,
both the diffuse σd and the specular σc corrections are
negligibly small: the variations of σ due to the surface
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scattering do not exceed the values ≤σ(l/d). The effect
of interest is also impossible in the case of thick n layers
and thin m layers with dm ! lm. In this case, noticeable
specular contributions to the conductivity of the m lay-
ers are possible (with insignificant variations of the n
components), but almost no difference is observed
between them for the cases of P and AP packings:

according to Eqs. (17), the quantities  are propor-
tional to the specular parameters T n from Eqs. (14), and
these parameters are exponentially small when dn @ ln.

Thus, a giant effect can be expected in the following
cases: (i) only n layers are thin,

(26)

(ii) layers of both types are thin,

(27)

and (iii) the set of surface-scattering parameters neces-
sarily contains specular components.

Results demonstrating the most favorable condi-
tions for the realization of giant conductivity variations
are presented below (simple calculations are omitted).
Considerable difference in such realizations are associ-
ated with different possible variants of the relative val-
ues of Fermi momenta pn and pms.

Variant 1: pms > pn. We begin with the situation when
the specular component dominates, and the diffuse sur-
face scattering is less significant than the volume scat-
tering (characterized by the functions g from Eqs. (14),
which depend on d/l):

(28)

If conditions (28) are satisfied, the specular compo-
nents make a dominant contribution to the total conduc-
tivity. In the case determined by inequalities (26), all
giant variations of σ occur in the n layers:

(29)

In the case corresponding to inequalities (27), both
types of layers contribute to the conductivity variations:

(30)

The contribution made by the m layers to the conductiv-
ity variation is sensitive to the parameter qs given by
Eqs. (30). When qs @ 1, the resulting conductivity vari-
ation reduces to that determined by Eq. (30); i.e., in
contrast to Eq. (29), it corresponds to the so-called

δAm
s
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inverse effect. A different situation takes place for q+ @ 1
and q– . 1. In this case, a considerable contribution to
δσc comes from the m-electron branch with s = –1:

(31)

which can considerably (up to a change of sign) affect
the final result.

Now we consider the case where the specular coef-
ficients dominate, but the diffuse surface scattering pre-
vails over the volume scattering:

(32)

Here, λ is a known dimensional factor [21, 22]. In the
case determined by inequalities (26), conditions (32)
yield a result coinciding with Eq. (29). If inequalities
(27) are valid, conditions (32) lead to a dimensional
dependence of conductivities. For the limiting situation
qs @ 1, we obtain

(33)

Finally, we consider the case where the diffuse surface
coefficients also exceed the specular parameters:

(34)

The conductivity variation occurs only if conditions
(27) are satisfied, and it is reduced only to δσc(n):

(35)

According to Eq. (9), the difference parameter is  =

–  – , and, therefore, in view of Eq. (33), the scale
of the conductivity variations should be smaller than in
the previous cases.

For two other possible relations between the Fermi
momenta, we consider only the limiting situations,
which occur for the limiting asymmetry of the s
branches of the m-electron spectrum, when the m-elec-
tron states with projection s = –1 can be neglected (e.g.,
the density of states of such carriers at the Fermi level

is  ~ p–m  0); in the nonmagnetic layers, electrons
with both projections are significant.

Variant 2: p+m > pn(>p–m);

Variant 3: pn > p+m.
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Calculations show that, under conditions (26) and
(28) or (32), we have

(36)

(for variant 3, only the case of close Fermi momenta
q+ . 1 is significant, for which the result coincides with
Eq. (36); if q+ ! 1, the quantity δσc is negligibly small).

If the layers of both types are “thin” (27), condition
(28) is valid, and the Fermi momenta pn and p+m(q+ . 1)
are close to each other, the total value of δσc is positive:

(37)

In the limiting cases q+ @ 1 (variant 2) and q+ ! 1 (vari-
ant 3), the n and m contributions, respectively, dominate
and determine the final result:

(38)

If conditions (32) are satisfied, for the same limiting
relations between the Fermi momenta, we obtain

(39)

for variant 2, while for variant 3 the conductivity varies
for both n electrons [the corresponding expression
coincides with Eq. (38)] and m+ electrons,

(40)

The result obtained for relations (33) coincides with
Eq. (34).

The set of expressions presented above for δσc dem-
onstrates a variety of possibilities for obtaining giant
variations of conductivity. The following important
result should be noted: conductivity variations of both
signs are possible; i.e., both direct and inverse GMR
effects may occur. The scope of this paper does not
include a quantitative comparison with experiments.
Such a comparison requires the data on the ratio
between l and d and on the surface scattering; it is also
necessary to use the actual energy spectra of layered
metals (note that a Fe/Cr system can be associated with
variant 1 introduced above for the relation between the
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Fermi momenta, and a Co/Cu system can be treated
using variant 2 or variant 3, depending on whether pCu
is close to one or another Fermi momentum of Co—
see, e.g., [25]). Some general consequences of the anal-
ysis described above can be compared with the experi-
ments from the viewpoint of qualitative agreement. For
example, in some experiments, it was found that special
treatment of the interlayer boundary surfaces, which
enhanced (reduced) their specular properties, resulted
in a considerable increase (decrease) in the magnitude
of the GMR [26–28]; the studies of the dependence of
the GMR effect on the layer thickness showed that the
effect became smaller when the thickness dm increased
[29, 30]; it was also found that the GMR effect
increased and then reached saturation with increasing
number of m/n pairs of layers [29]. One of the results
presented above is the existence of a difference
between the values characterizing the GMR effect in a
multilayer structure satisfying conditions (26) and a
sample of the same composition but with a set of layer
thicknesses satisfying conditions (27). The experimen-
tal verification of this result, which predicts consider-
able and even qualitative changes (up to a change of
sign), seems to be possible and desirable.
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So far, magnetic polarons in antiferromagnetic semiconductors (ferrons) were assumed to arise due to the
charge carrier self-trapping by a ferromagnetic or canted antiferromagnetic region. If the ferron size is not very
large, they should have much more complicated structure: the magnetically deformed region consists not only
of a magnetized core, which traps the electron, but also of its surrounding with the oppositely directed total
moment, which repulses the trapped electron. The compensating moment of the surrounding oscillates with a
period of the doubled lattice constant and with the amplitude diminishing very smoothly on an increase in the
distance from the core. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.-m; 75.50.Pp
1 The energy of a charge carrier in a magnetic semi-
conductor depends strongly on the type of magnetic
ordering, being minimal for the ferromagnetic order-
ing. For this reason the carriers tend to establish the lat-
ter. In nondegenerate antiferromagnetic semiconduc-
tors, they can do this only inside a small region, since a
single electron cannot establish a ferromagnetic order-
ing in a crystal of macroscopic size. The idea that a
mobile electron or hole creates a magnetized region
inside of an antiferromagnetic semiconductor, which
traps it, was advanced more than 30 years ago [1–4],
and later was used by many other authors (see, e.g., the
review article [5]). In its simplest version, a conduction
electron creates a ferromagnetic region and stabilizes it
by its localization inside this region.

Certainly, this state belongs to the self-trapped ones
and, in this respect, resembles the well-known lattice
polaron. This justifies, to some extent, the use of the
name “magnetic polaron,” which it adopted in the pio-
neering papers [1, 2]. But, in reality, this name is inac-
curate, as the creation of this quasiparticle means a
change of the crystal magnetization. Meanwhile, the
term “magnetic polarization” is never used for the crys-
tal magnetization. For this reason, I later proposed the
name “ferron” for the quasiparticle invented by me in
[1, 2]. The ferrons were observed experimentally in
EuSe and EuTe [6].

In addition to the free ferrons, the bound ferrons
were considered in [2, 7, 8]. They correspond to the
electrons (holes) captured by the donor (acceptor)
impurities in antiferromagnetic semiconductors. These
electrons (holes) produce magnetized regions in the
vicinity of the donors, which attract the electrons to
donors, jointly with the Coulomb potential of the donor
atom. The central portion of the magnetized region may

1 This work was submitted by the author in English.
0021-3640/01/7408- $21.00 © 20431
be completely ferromagnetic, and the rest may be
canted antiferromagnetic. Perhaps, the former may be
absent. The bound ferrons strongly influence the elec-
trical and magnetic properties of the crystals. In partic-
ular, due to their large magnetic moments, bound fer-
rons can change the sign of the paramagnetic Curie
temperature from negative to positive. They also lead to
a jump in the crystal magnetization in weak magnetic
fields [9].

These results were obtained for the ferron sizes
larger than the lattice constant. In this paper, the ferrons
whose size is comparable with that of the lattice con-
stant will be considered. It will be shown that, in some
cases, its structure may be considerably more compli-
cated than that of the large ferrons. Especially nontriv-
ial is the fact that the local magnetization can have
alternating signs. This means that the core of the mag-
netically deformed region attracts the electron, and the
region outside the core repulses it. The coordinate
dependence of the compensating moment of the sur-
rounding should be rather complicated for small mag-
netic anisotropy: it should oscillate with a period of
doubled lattice constant and with the amplitude dimin-
ishing very smoothly upon an increase in the distance
from the core.

Such a complex ferron can be considered the mani-
festation of a real magnetic polaron. In fact, the mag-
netic polarization corresponds to the appearance of a
magnetic moment inside a certain region of the crystal
and of a compensating moment with the opposite direc-
tion elsewhere. A close analogy with the lattice polar-
ization is obvious. The latter leads to the appearance of
the local charge density, but the total crystal charge
remains zero. One should point out, however, that the
total magnetization remains nonzero in the case consid-
ered, since the magnetic compensation is incomplete.
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Hence, the quasiparticle discussed is intermediate
between the ferron and the true magnetic polaron.

A simple model will be used to corroborate the idea
of true magnetopolaronic effect. The self-trapped state,
which is found in this model, corresponds to a state
intermediate between the bound ferron and the bound
true magnetic polaron. Due to an impurity potential, the
electron is located at magnetic atoms closest to the
impurity. The localization region acquires a core mag-
netic moment, becoming ferromagnetic or canted anti-
ferromagnetic.

It will be shown that the region surrounding the
localization region also acquires a magnetic moment.
Its total value is opposite to the direction of the ferron
moment and compensates the former by more than 70%
in the one-dimensional case and by 40% in the three-
dimensional case. The compensating moment displays
oscillations with a period equal to the doubled lattice
constant. If the magnetic anisotropy is small, the oscil-
lation amplitude tends toward zero very smoothly. For
larger anisotropy, the tendency toward the oscillation
attenuation increases strongly. The magnetization com-
pensation decreases the energy of the self-trapped state
very strongly, e.g., more than twice in the one-dimen-
sional case.

First, a one-dimensional chain of magnetic atoms
will be considered within the framework of the s–d
model, to which the uniaxial magnetic anisotropy term
is added, since it determines the direction of magnetic
moments.

The atomic chain is directed along the y axis, and
the magnetic easy axis is x. The undisturbed magnetic
structure is represented by two sublattices with the
spins up (Sx = S) for the even atomic numbers g = 2n
and spins down (Sx = –S) for the odd atomic numbers
g = 2n + 1. Under the influence of the trapped electron,
the d spins can be deviated from the x axis. The donor
impurity is assumed to be located symmetrically about
these two atoms belonging to different magnetic sublat-
tices. Then the Hamiltonian of the system can be repre-
sented in the form

(1)

where , ag, σ are the s-electron operators corre-
sponding to the conduction electrons or holes at atom g
with the spin projection σ; s is the s-electron spin oper-
ator; and Sg is that of the d-spin of atom g, the d spin
magnitude being S. The form (1) assumes that the d–d-
exchange integral I corresponding to the antiferromag-
netic ordering is negative. The constant K of the uniax-
ial anisotropy is positive. The energy of the Coulomb
interaction between the impurity and the electron is an
additive constant and, for this reason, is omitted here.

Hsd –t a 1– σ,* a0 σ, a0 σ,* a 1– σ,+[ ]=

– A sSg( )σσ'ag σ,* ag σ',

g 1 0,–=

∑ I SgSg 1+∑ K Sg
x( )2

,∑––

ag σ,*
Only the lowest bound state of the conduction elec-
tron will be considered. It corresponds to the s electron
shared with equal probabilities between atoms with the
numbers g = –1 and g = 0. Perhaps, such a situation is
possible also for the self-trapped electron in a perfect
crystal but for very special parameter values.

We begin with the case of the magnetic anisotropy
tending toward zero. The electron effect on the d spins
is tantamount to an effective magnetic field directed
along the z axis. Hence, in the vicinity of the impurity,
the d spins lie inside the z–x plane. By the symmetry of

the system with K  0,  =  with the mag-
netized core formed by atoms –1 and 0, and the Sx com-
ponents are of the opposite signs for the two sublattices.

In what follows, the inequality AS ! W will be used
first, where W is the charge-carrier bandwidth. In this
case, it is convenient to carry out the canonical transfor-
mation of the s-electron operators, which diagonalizes
the first term in Eq. (1):

(2)

Then the standard procedure of constructing the mag-
netic Hamiltonian from the s–d Hamiltonian (1) can be
used: the latter is averaged over the s electronic state.
Taking its spin to be aligned with the z-axis, one puts

 = 1 for g = 0 or –1 and all other averaged
pairs of operators equal to zero.

Introducing the polar angles for the d spins, one can
represent the magnetic energy in the form

(3)

where E0 is the energy of the antiferromagnetic order-
ing. Minimizing Eq. (3) with respect to the polar angles
of the spins θg, one obtains the following set of nonlin-
ear equations:

(4)

Obviously,

(5)

This boundary condition remains in force if KS2N @ L,
where N is the number of atoms in the chain.

Further, the solution should satisfy the equality

(6)

with g ≥ 0. Hence, it is sufficient to consider nonnega-
tive g.

S2n
z S–2n 1–

z

a± σ, 2 1/2– a–1 σ, a0 σ,±[ ] .=

ag 1/2,* ag 1/2,〈 〉

E J θg θg 1++( )cos
g

∑=

– L θ 1–cos θ0cos+[ ] K /2 θgsin
2

E0,+
g

∑+

J IS2, L– AS/4,= =

J θg θg 1++( )sin J θg θg 1–+( )sin+

– L θg δg 1–, δg 0,+[ ]sin K 2θg( )sin+ 0.=

θ ∞± π/2.=

θ– g 1+( ) θg=
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The corresponding treatment for the double
exchange case W ! AS can be carried out using the de
Gennes [10] expression for the effective hopping inte-
gral between atoms 0 and (–1)

(7)

This equation ensures a high accuracy if the total angle
between the spins is not very large [9]. Using Eqs. (1),
(6), and (7), one again arrives at the set of Eqs. (4), but
with L = t in this case.

To solve the set of Eqs. (4), one should make it
finite, putting

(5a)

for some value f of the number of the atom. The cutoff
of the set of Eqs. (4) at a finite f is equivalent to using a
variational procedure. Hence, it exaggerates the energy,
the smaller f  the stronger exaggeration.

The case of f = 1 corresponds to the purely ferron
state, where the magnetized region coincides with the
core region, inside which the electron is localized
(atoms 0 and –1). But already allowing for the deviation
of the next spin (f = 2) will lead to the appearance of the
magnetic polarization.

For f = 2, one can obtain solutions analytically if
L ! 1 or L @ 1 (L in J units). In the former case, putting
θ0 = π/2 – α and θ1 = π/2 – β, one finds for KS2 ! L, J:
α = 2L/5 and β = –α/2. As the angles α and β are pro-
portional to the core moment and to the compensating
moment, respectively, one sees that the latter amounts
to one half of the former. In the limiting case of large L,
where θ0 ! 1, one finds θ1 to be 3π/4. Hence, the com-
pensating moment depends on L very weakly and
amounts to 71% of the core moment.

Now let us discuss the intermediate L values.
Results for them are obtained by numerical calculations
based on the set of Eqs. (4). For example, for L = 3 the
ground-state energies of the system in J units are –2.72
for f = 1, –4.78 for f = 2, and –5.846 for f = 16. Hence,
even the simplest version of allowing for the compen-
sating moment f = 2 decreases the bound ferron energy
by a factor of 1.76, and for f = 16 by a factor of 2.15.

For f = 1, the ferron magnetic moment coinciding
with that of the core (0 and –1 atoms) is 1.62S. For f =
2, the core moment is 1.796S, i.e., higher than for f = 1.
But, instead, the compensating magnetic moment
appears at atoms g = 1 and –2. Its total value is −1.058S,
which amounts to 59% of the core moment. Hence, the
total magnetic moment of the system is 0.738S, which
amounts only to 41% of the core magnetic moment.

But a more detailed investigation with f = 16 shows
that the compensating magnetization is not concen-
trated in the closest vicinity to the core. It is long-range
and has a rather complicated structure. To begin with,
the total core moment is 1.992S for L = 3. Moreover, the
same sublattice, to which the atom g = 0 belongs, is

teff t
θ 1– θ0+

2
------------------ 

  .cos=

θ f π/2=
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magnetized in the same direction as this atom, and the
magnetization of the lattice decreases very smoothly, so
that the magnetization of the atom g = 14 amounts to
18% of that of atom g = 0. But the other sublattice is
magnetized still more strongly in the opposite direc-
tion, and this magnetization drops also very smoothly.
Hence, the magnetization outside the ferron oscillates
with a period of the doubled lattice constant and with
the amplitude decreasing with increasing distance from
the ferron (figure). The total compensating moment
outside the electron localization region up to atom g =
15 is –1.044S.

The oscillation length decreases with increasing
magnetic anisotropy. The fact that the anisotropy sup-
presses the magnetization oscillations is obvious from
the limiting case of the Ising model K  ∞. Then, the
magnetization is aligned not with the z axis but with the
x axis. This problem is solved exactly: for L < 2J, the
ferron does not exist, and for L > 2J it corresponds to
the spins of atoms 0 and (–1) parallel to each other. Out-
side this core the d spins form the ideal antiferromag-
netic ordering, with the spins of atoms bordering the
core being antiparallel to the core spin. Thus, the oscil-
lations of the magnetic moment outside the core are
really absent in the limit of a giant magnetic anisotropy.

The lower bound for the compensating moment
amounts to 52% of the core moment. It should be noted
that, though the energies for f = 2 and f = 16 differ only
by 22%, qualitatively, the behaviors of the magnetic
polarizations in these cases differ drastically.

Nevertheless, in both these cases the real contribu-
tion of such bound ferrons to the magnetization of the
crystal in a magnetic field is considerably less than it
was assumed initially. Hence, allowing for the mag-
netic polarization is necessary for the accurate calcula-
tion of the magnetic properties of the ferron-containing
crystals.

The ferron contribution will be evaluated in the
three-dimensional case. It will be assumed that the
crystal structure is simple cubic, and that the antiferro-

Dependence of the moment Mi on the number i of the mag-
netic atom (one-dimensional system).
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magnetic ordering is staggered. The donor atom is
located at the center of a unit cell, and the donor elec-
tron is spread over eight atoms located at the corners of
the unit cell. Only the magnetic moments of these
atoms and of 24 atoms adjacent to them will be taken
into account. The former atoms form the moment of the
ferron core MC , and the latter, the compensating
moment of the surrounding MS.

Using the three-dimensional analogue of the Hamil-
tonian (1) and again introducing the angles θ0 and θ1 for
the moments of the former and of the latter atoms,
respectively, after minimizing the total energy with
respect to the angles, one arrives at the following equa-
tions:

(8)

The solution to Eqs. (8) shows that the ratio MS/MC

depends on L very weakly and is close to 40%. For the
same reasons as in the one-dimensional case, the oscil-
lations of the magnetic moment should also exist in the
three-dimensional case. Again, the bound ferron-mag-
netic polaron energy is, by the order of magnitude, one-
hundred percent lower than the ferron energy. This
energy lowering is very large and points to a consider-
ably smaller density of the thermally delocalized
charge carriers than in the usual ferron scenario.

The energy of the ready-made noninteracting mag-
netic moments directed normally to the sublattice does
not change upon their reversal. Hence, these moments
can lead to a very rapid growth of the magnetization of
the crystal in very small magnetic fields, with which
they are aligned. It dominates for noticeable impurity
densities, because the magnetization of the antiferro-
magnetic portion of the crystal is still very small in such
fields. In the limiting case T  0, an arbitrarily small
field should cause a complete ordering of the bound fer-
ron moments, which manifests itself as a steep jump in
the magnetization of the crystal. As follows from the
results presented above, this jump may turn out to be
considerably less than it was assumed previously. At
finite temperatures, if the field is too small to change the
magnetic moments of the bound ferrons, the ferron
contribution to the crystal magnetization is described
by the Langevin function. Accordingly, the growth of
this contribution with field turns out to be considerably
more smooth.

It should be specially noted that the present investi-
gation refutes the point of view expressed by some
physicists, according to which the bound electrons can
produce the canted antiferromagnetic ordering in anti-
ferromagnetic semiconductors.

Concerning the actuality of the present investiga-
tion, it should be noted that the problem of magnetic
polarons (ferrons) has remained actual for more than 30
years, beginning from their theoretical prediction [1].
This is related to the fact that ferrons determine the

–3J 2θ0( )sin 3J θ0 θ1+( )sin L θ0sin+– 0,=

θ0 θ1+( )sin 2θ1( )sin 3 θ1cos+ + 0.=
electrical and magnetic properties of many magnetic
materials, including manganites, which attract much
attention due to their giant magnetoresistance. At
present, the existence of bound ferrons is beyond any
doubt. Experimental data on them are presented in
review article [11]. A refined theory of the ferron states
developed in this work, which is based on the partial
compensation of the magnetic moment of the ferro-
magnetic region by its surrounding, will make it possi-
ble to treat phenomena in these materials more consis-
tently.

The theoretical prediction about the magnetization
oscillations made above has not yet been confirmed by
experiment, but this theoretical result is quite new and,
possibly, will stimulate new experimental investiga-
tions. At least, this effect seems to be interesting from
the physical point of view.

The small magnetic polarons investigated in this
work are typical of weakly doped manganites, but they
differ drastically from the small lattice polarons. The
latter are characterized by the fact that, in the zeroth
approximation, the electrons are localized at certain
sites and, due to this, cannot establish the ferromagnetic
ordering even in very small crystal regions (to do this,
electron transitions between the magnetic atoms are
necessary). The small magnetic polarons considered in
this work allow the electron transitions between the
magnetic atoms and, hence, the local ferromagnetic
ordering.

It should be stressed that the small lattice polarons
are hypothetical quasiparticles, and their existence has
not seen proved yet. According to my estimates, the
standard polarization small polarons are impossible in
magnetic semiconductors and manganites, because
they are only partially polar crystals [11, 12]. On the
other hand, in the Jahn–Teller materials, such as man-
ganites, the coupling strength between the holes and
Jahn–Teller phonons is unknown. Meanwhile, this cou-
pling should be very strong for the formation of small
Jahn–Teller polarons, the reasons for which are not
obvious.

The most decisive argument against small lattice
polarons of both types in manganites is their metallic
state at sufficiently high doping levels. Actually, in
materials where they exist, Mott delocalization of the
donor electrons or acceptor holes, i.e. the metallic state,
is impossible because of giant effective masses of the
charge carriers in the small-polaron states [11]. Again,
the similarity of the basic properties of manganites with
the properties of the standard non-Jahn–Teller and only
partially polar magnetic semiconductors makes it pos-
sible to conclude that the small lattice polarons do not
exist in manganites.

This work was supported in part by the Russian
Foundation for Basic Research (project no. 01-02-
97010), INTAS (grant no. 97-open-30253), and the
Russian Ministry of Science and Industry.
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The time–energy uncertainty relation is discussed for a relativistic massless particle. The Lorentz-invariant
uncertainty relation is obtained between the root-mean-square energy deviation and the scatter of registration
time. The interconnection between this uncertainty relation and its classical analogue is established. © 2001
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The notion of time–energy uncertainty relation

(1)

in nonrelativistic quantum mechanics is not so well-
defined as the other relations of this type, e.g., the coor-
dinate–momentum uncertainty relation [1–4]. This is
primarily caused by the fact that time is not a dynamical
variable corresponding to a certain Hermitian operator,
but is a parameter. Because of the presence of a lower
bound in the spectrum of the Hamiltonian, one gener-
ally cannot introduce the Hermitian time operator [5].
The time–energy uncertainty relation was discussed in
many works for a great variety of situations. For
instance, in [6] the time–energy relation was derived for
the internal evolution of a quantum system, but it did
not describe the measurement process. A Hamiltonian
allowing the instantaneous (in a time as short as one
likes), exact, and reproducible energy measurement for
a quantum system was written in [7]. True enough, no
example of a physical system is known so far to which
this Hamiltonian could be applied. In [7], the fact was
used that external classical fields of a duration as short
as one likes and an intensity as high as one likes are
allowed by the formal apparatus of nonrelativistic
quantum mechanics. This approach has come under
criticism in [8]. For the relativistic case, the restrictions
placed by special relativity on the measurability of
quantum states were first discussed in [9]. Further
inquiry was undertaken in [10]. It turned out that,
strictly speaking, only the classical fields (potentials)
can be treated classically in the Hamiltonian. The time-
dependent fields require the quantum approach. Hence,
the question of exact and reproducible energy measure-
ment in a time as short as one likes was, in fact, merely
reformulated in different terms.

Although time is not a dynamical variable, the mea-
surement of event time is a rather routine experimental
situation [11]. Let the event time be fixed experimen-
tally; in this case, the registration time is a space of

∆ε( )2 ∆t( )2 1/4≥
0021-3640/01/7408- $21.00 © 20436
results. The interrelation between the probability distri-
bution on the space of results (registration time) and the
state of the quantum system is specified by a positive
operator-valued measure. More precisely, to every sub-
set ∆t ∈  (–∞, ∞) of the space of results, there is a posi-
tive operator }(∆t) such that

(2)

The normalization condition is that the total probability
of events occurring over all space of results is unity:

(3)

In addition, the operator-valued measure in the expan-
sion of unity (2) must satisfy the covariance condition.
In the preparation of quantum state, the shifts in time
origin must lead to corresponding shifts in the probabil-
ity distribution; one has

(4)

where  is the evolution (time shift) operator.

One can introduce the most symmetric time opera-
tor

(5)

The mean registration time is given by the standard
expression

(6)

where ρ is the density matrix of a quantum system sub-
jected to measurement.

} ∪∆ it( ) } ∆it( )
i

∑ , ∆it ∆ jt∩ ∅ .= =

} ∆ ∞– ∞,( )( ) I , ∆ ∞– ∞,( ) ∞ ∞,–( ).≡=

Ût0
} ∆t( )Ût0

1–
} ∆t t0–( ),=

Ût

t̂ t} t td,( ).

∞–

∞

∫=

t tTr } t td,( )ρ{ } ,

∞–

∞

∫=
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Accordingly, the root-mean-square deviation of reg-
istration time is defined as

(7)

If H is the Hamiltonian of the system, then its spectral
representation is

(8)

where %(ε, dε) is the spectral family of orthogonal pro-
jectors. Note that the operator-valued measures }(t, dt)
in Eq. (2) are not orthogonal.

The mean energy and the root-mean-square devia-
tion are defined for the system in quantum state ρ as

(9)

(10)

Next, one may raise the question as to the attainable
lower bound of the time–energy uncertainty relation,
i.e., what are the quantum states for which the func-
tional

(11)

reaches its minimum?
Below, the time–energy relation in the sense given

by Eqs. (2)–(11) is considered for a one-dimensional
massless relativistic particle (photon). Although being a
model, this example, nevertheless, encompasses all
main features of the problem. Moreover, experiments
with photons, as a rule, are carried out in one-dimen-
sional optofiber systems.

Inasmuch as time is not an absolute category in the
relativistic case, the notion of the time–energy uncer-
tainty relation, at first glance, is defined even worse
than in the nonrelativistic case. However, the distinctive
feature of a photon is that its momentum and energy are
linearly related to each other. Moreover, since the mass
surface of a massless field coincides with the leading
part of the light cone in momentum representation, all
events for the states propagating in one direction occur
at the light cone in the Minkowski space–time. As a
result, the time–energy uncertainty relation becomes
Lorentz-invariant (independent of the inertial coordi-
nate system where the measurement is carried out). The
lower bound in inequality (1) becomes slightly higher
than 1/4.

Despite the fact that time is not an absolute category
in the relativistic case and that, in contrast to the non-

∆t( )2 t t–( )2Tr } t td,( )ρ{ } .

∞–

∞

∫=

Ĥ ε% ε εd,( ),

0

∞

∫=

ε εTr % ε εd,( )ρ{ } ,

0

∞

∫=

∆ε( )2 ε ε–( )2Tr % ε εd,( )ρ{ } .

0

∞

∫=

Ω min ∆ε( )2 ∆t( )2{ }=
{ρ}
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relativistic case, the notion of the state (wave function)
at a given instant of time (i.e., strictly speaking, the
Schrödinger representation) does not exist, the time–
energy uncertainty relation in the sense of Eqs. (2)–(11)
is well defined.

The states of a free quantized field (more precisely,
the generalized eigenvectors) are generated by the
action of field operators (generalized functions with
operator values)

(12)

on the vacuum vector [12]. The creation and annihila-
tion operators satisfy relations

(13)

The field physical states |ψ〉 ∈  * belonging to the Hil-
bert space of states are obtained by integrating the gen-
eralized operator functions together with basic func-
tions  ∈   {the generalized eigenvectors

ϕ+( )|0〉 ∈   are continuous linear functionals on

, where  ⊂  * ⊂   is the equipped Hil-
bert space [13]}. One has

(14)

where dk/k0 is the Lorentz-invariant integration vol-
ume.

The contribution to the physical state |ψ〉 comes
from the amplitude ψ(k, k0 = |k |) at the mass surface
(leading part of the light cone in momentum represen-
tation).

We consider the states propagating in one direction.
For the states propagating in both directions, the notion
of event time has no sense. For the states propagating in
one direction (for definiteness, k > 0), energy and
momentum are one and the same, because of the linear
relationship between them, k0 = |k| = k. For these states,
only the vectors with k > 0 make a contribution to
Eq. (14), and the amplitude ψ(k, k) is nonzero at k > 0.

ϕ+ x̂( )
1

2π
---------- k̂δ k̂

2
( )θ k0( )eik̂ x̂a+ k̂( ),d∫=

k̂ k k0,( ), x̂ x t,( ),= =

k̂ dkdk0, k̂ x̂ kx k0t–= =

a– k̂( ) a+ k'ˆ( ),[ ] k0δ k k'–( ).=

ψ x̂( ) Ω x̂( )

x̂ Ω∗ x̂( )

Ω x̂( ) Ω x̂( ) Ω∗ x̂( )

ψ| 〉 x̂ψ x̂( )ϕ+ x̂( ) 0| 〉d∫=

=  k̂ψ k̂( )δ k̂
2

( )θ k0( )a+ k̂( ) 0| 〉d∫ kd
k0
-----ψ k k0 k=,( ) k̂| 〉 ,

∞–

∞

∫=

k̂| 〉 a+ k̂( ) 0| 〉 , k̂ k'ˆ,〈 〉 k0δ k k'–( ),= =

ψ k̂( ) x̂ψ x̂( )e ik̂ x̂– ,d∫=
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The energy (momentum) measurement is given by
the expansion of unity in the subspace of one-particle
states:

(15)

In actuality, it will suffice to restrict oneself to the sub-

space of states projected onto the vectors  with k >
0; I+ is unity in this subspace. The probability of mea-
suring energy (momentum) in the interval (k, k + dk) is
given by

(16)

The mean energy (momentum) in the state |ψ〉 is

(17)

and the root-mean-square deviation is

(18)

Let us now consider the measurement of particle
position; for the states propagating in one direction
(k > 0), this position can be represented by the expan-
sion of unity:

(19)

where τ = x – t. The measurement of the coordinate x is,
in fact, the measurement of response time t. More pre-
cisely, the space of results is formed not by x and t sep-
arately, but by their difference τ. The expansion of unity
in Eq. (19) formally describes an instrument; it can be
interpreted as follows. If the space of results is formed
by x, then the measurement should be understood as an
x-distributed instrument generating a random result at
point (x, x + dx) and time t. If x is fixed, then the mea-
surement describes an x-localized instrument operating

I
kd

k0
----- k̂| 〉 k̂〈 |

∞–

∞

∫ } k kd,( ),

∞–

∞

∫= =

} k dk,( ) k̂| 〉 k̂〈 |dk
k0
------, I+ } k kd,( ).

0

∞

∫= =

k̂| 〉

Pr dk{ } Tr } k dk,( ) ψ| 〉 ψ〈 |{ }=

=  ψ k k,( ) 2dk
k

------ f k( ) 2dk, f k( )
ψ k k,( )

k
----------------.= =

k kPr kd{ }
0

∞

∫ k f k( ) 2 k,d

0

∞

∫= =

∆k( )2 k k–( )2
Pr kd{ }

0

∞

∫ k2 k( )2
,–= =

k2 k2Pr kd{ } .

0

∞

∫=

I+
xd

2π
------ kd

k
------e ik̂ x̂– k̂| 〉

0

∞

∫ 
 
  k'd

k'
-------- k'ˆ〈 |eik'ˆ x̂

0

∞

∫ 
 
 

∞–

∞

∫=

=  
τd

2π
------ kd

k
------e ikτ– k̂| 〉

0

∞

∫ 
 
  k'd

k'
-------- k'ˆ〈 |eik'τ

0

∞

∫ 
 
 

∞–

∞

∫ } τ τd,( ),

∞–

∞

∫=
in a trigger mode and generating a result at a random
instant of time (t, t + dt). The fact that the operator-val-
ued measure }(τ, dτ) in Eq. (19) depends only on the
difference τ = x – t means that, if the result can be
obtained at the point x at the time instant t with a certain
probability, then the same result can be obtained at a
different point x' with the same probability, but at the
instant of time t' = x' – x + t.

Accordingly, the probability of obtaining the result
at time interval (τ, τ + τ) is, by definition,

(20)

(21)

It is notable that f(τ) coincides with the Landau–Peierls
wave function in coordinate representation [14]. Con-
trary to , the mean value of can be chosen to be zero
upon the appropriate choice of time origin. The root-
mean-square deviation of registration time is

(22)

The further goal consists of finding the state |ψ〉, for
which the functional (11)

(23)

is minimum under the additional normalization condi-
tion

(24)

It turns out that the problem

(25)

of minimizing functional (23) was solved for classical
signals in an elegant though little-known work [15] as
early as 1934 (see also [16, 17]). It was shown that, for
the time–frequency uncertainty relation as defined in
Eq. (23), the functional reaches its minimum on even
time functions f(τ) [accordingly, df(k)/dk|k = 0 = 0]. The

Pr τd{ } Tr } τ τd,( ) ψ| 〉 ψ〈 |{ } f τ( ) 2 τ ,d= =

f τ( )
kd

k
------ψ k k,( )e ikτ– .

0

∞

∫=

k τ

∆τ( )2 τPr τd{ }d

∞–

∞

∫ τ2 f τ( ) 2 τd

∞–

∞

∫= =

=  k k' f k( ) f ∗ k'( ) τ2ei k k'–( )τ τd

∞–

∞

∫dd

0

∞

∫
0

∞

∫

=  k k' f k( ) f ∗ k'( )
∂2

∂k∂k'
-------------δ k k'–( )dd

0

∞

∫
0

∞

∫ f k( )d
kd

-------------
2

k.d

0

∞

∫=

Ω f( ) f k( )d
kd

-------------
2

kd

0

∞

∫ 
 
 

k2 k
2

–( ) f k( ) 2 kd

0

∞

∫ 
 
 

=

ψ ψ〈 〉 kd
k
-----

0

∞

∫ ψ k k,( ) 2 f k( ) 2 kd

0

∞

∫ 1.= = =

δΩ f( )/δf 0=
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corresponding variational problem reduces to the sec-
ond-order differential equation for f(k) of the form

(26)

where

(27)

Here, the integrals a, b, and c are taken along the extre-
mum. Taking into account that df(k)/dk|k = 0 = 0 and that
b = 3c2/2 for the extremum, the solution is given by the
parabolic cylinder function (Weber function) Dν(x)
[18]. The value of ν is determined from the condition

 = dDν(x)/dx = 0 at k = 0. Taking into account
that

, (28)

this is equivalent to the solution of the transcendental
equation

(29)

where µ = ν + 1/2. The numerical value is given in [17]:
µ2 = 0.2951…. The functional in its extremum equals

(30)

Let us now show that these time–energy uncertainty
relations are Lorentz-invariant, i.e., remain unchanged
upon measuring quantum state in any inertial frame of
reference. The measurements in the observer’s frame of
reference are also formulated as in Eqs. (15) and (19);
in doing so, by all quantities in Eqs. (15) and (19)
should be meant their values in the observer’s frame of
reference, while the state obtained by the action of the
respective unitary operator of the Poincaré group repre-
sentation should be taken as a quantum state “seen” by
the observer in the moving coordinate system. The gen-
eral coordinate transformation in the Poincaré group

d2 f x( )

dx2
--------------- ν 1

2
--- x2

4
-----–+ 

  f x( )+ 0,=

x
4a

b c2–
------------- 

  1/4

k c–( ), ν 1
2
---+ a b c2–( ),= =

a
f k( )2d

kd
--------------- 

 
2

k, bd

0

∞

∫ k2 f k( )2 k,d

0

∞

∫= =

c k f k( )2 kd

0

∞

∫= , f 2 k( ) kd

0

∞

∫ 1.=

Dν' x( )

Dν x( )
e x

2/4–

Γ ν–( )
-------------- e–xξ ξ 2/2– ξ–ν 1– ξd

0

∞

∫=

D
µ 1

2
---–

' 2 µ–( ) 0,=

e2 µξ ξ 2/2– ξ–µ 1/2– ξ µ–( ) ξd

0

∞

∫ 0,=

Ωmin f( ) ab
3

------ µ2 0.2951.= = =
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consists of the translation in the Minkowski space–time
and the Lorentzian rotation; one has

(31)

where  is the operator of translation by  = (a, a0)

and  is the operator of Lorentzian rotation describing
the transition to a different inertial system. These trans-
formations induce operator transformations

(32)

where  is the unitary operator acting in *.

The transformed state effectively seen by the
observer is

(33)

where dk/k0 is the Lorentz-invariant volume of integra-
tion. In Eq. (33), the invariance of the vacuum vector,

 = |0〉 , is also taken into account. Recall that
only those states are considered which propagate in one
direction along the x axis. The final state seen by the
observer is written as

(34)

The mean energy (momentum) measured by the
observer is defined as (the quantities in the moving
coordinate system are labeled m)

(35)

x'ˆ P̂ â( ) L̂ x̂ L̂ x̂ â,+= =

P̂ â( ) â

L̂

Û L̂ â,( )a+ k̂( )Û
1–

L̂ â,( ) eiL̂k̂ âa+ L̂k̂( ),=

Û L̂ â,( )

ψ L̂ â,( )| 〉 Û L̂ â,( ) ψ̂| 〉=

=  x̂ψ x̂( )Û L̂ â,( )ϕ+ x̂( )Û L̂ â,( )
1–
Û L̂ â,( ) 0| 〉d∫

=  x̂ψ x̂( )ϕ L̂ x̂ â+( ) 0| 〉d∫ x̂ψ L̂
1–

x̂ â–( )( )ϕ+ x̂( ) 0| 〉d∫=

=  k̂ψ k̂( )eik̂âδ k̂
2( )θ k0( )a+ L̂k̂( ) 0| 〉d∫

=  k̂ψ L̂
1–
k̂( )eik̂â k̂| 〉d∫ kd

k
-----ψ L̂

1–
k̂( )eik̂â k̂| 〉

0

∞

∫=

=  
kd
k
-----ψ

k βk0–

1 β2
–

------------------
k0 βk–

1 β2–
------------------,

 
 
 

e
i ka k0a0–( )

k̂| 〉 ,
0

∞

∫

Û L̂ â,( ) 0| 〉

ψ L̂ â,( )| 〉 kd
k
-----ψ k

1 β–
1 β+
------------ k

1 β–
1 β+
------------, 

  k̂| 〉 .
0

∞

∫=

km kPr kd{ }
0

∞

∫=

=  kTr } k kd,( ) ψ L̂ â,( )| 〉 ψ L̂ â,( )〈 |{ }
0

∞

∫

=  
kd
k
-----k ψ k

1 β–
1 β+
------------ k

1 β–
1 β+
------------, 

 
2

0

∞

∫ k
1 β+
1 β–
------------.=
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At small β ! 1, the mean momentum (energy) in the
moving system is related to its value in the fixed coor-
dinate system by the expression

(36)

which, in fact, is a formulation of the Doppler effect.
The respective energy (momentum) root-mean-

square deviation in the moving coordinate system is

(37)

The root-mean square deviation of registration time
in the moving system is defined as (for the sake of con-
venience, the coordinate systems in this formula have
the common origin, i.e.,  = 0, and only the Lorentzian

rotation  is retained)

(38)

It follows from Eqs. (37) and (38) that the resulting
time–energy uncertainty relation in the observer’s mov-
ing coordinate system is related to the uncertainty rela-
tion in the initial system as

(39)

i.e., it is Lorentz-invariant.

km k 1 β+( ) k 1 v /c–( ),= =

∆k( )m
2 k km–( )2

Pr kd{ }
0

∞

∫=

=  k km–( )2
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0

∞

∫

=  
kd
k
----- k km–( )2 ψ k

1 β–
1 β+
------------ k

1 β–
1 β+
------------, 

 
2

0

∞

∫

=  
1 β+
1 β–
------------ 

  ∆k( )2.

â

L̂

∆τ( )m
2 τ2Pr τd{ }

∞–

∞

∫=

=  τ2Tr } τ τd,( ) ψ L̂ 0̂,( )| 〉 ψ L̂ 0̂,( )〈 |{ }
∞–

∞

∫

=  τ2 kd

k
------e ikτ– ψ k

1 β–
1 β+
------------ k

1 β–
1 β+
------------, 

 

0

∞

∫
2

τd
2π
------

∞–

∞

∫

=  τ2 kd

k
------ ik τ 1 β+

1 β–
------------ 

 –
 
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 

ψ k k,( )exp

0

∞

∫
2

∞–

∞

∫

× d
τ

2π
------ 1 β+

1 β–
------------ 

  ∆τ( )2 1 β–
1 β+
------------ 

  .=

∆k( )m
2 ∆τ( )m

2 ∆k( )2 ∆τ( )2 0.2951… 1/4,>= =
The fact that the time–energy uncertainty relation is
Lorentz-invariant is due, in fact, to the covariance of the
energy (momentum) and event-time measurements.
Indeed, the operator-valued measure in Eq. (19) is
covariant about the Poincaré group transformations:

(40)

The momentum measurement and the orthogonal oper-
ator measure in Eq. (15) also satisfy the covariance con-
dition

(41)

If the measurement occurs in the same inertial coordi-

nate system,  = , then the covariance condition (41)
is analogous to the nonrelativistic case (4), being the
only difference the that the covariance is understood in
the sense of translations in Minkowski space–time (in
our case, shifts along the light cone branch).

I am grateful to S.S. Nazin for discussions and crit-
ical remarks. This work was supported by the projects
“Physical Foundations of the Quantum Computer” and
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