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We calculate an angular correlation function between ultrahigh energy cosmic rays (UHECR), observed by
Yakutsk and AGASA experiments, and the most powerful BL Lacertae objects. We find significant correlations
with the probability of statistical fluctuation less than 10–4, including penalty for selecting the subset of the
brightest BL Lacs. We conclude that some of the BL Lacs are sources of the observed UHECR and present a
list of the most probable candidates. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 98.70.Sa
1 Introduction. The identification of sources of ultra-
high energy cosmic rays (UHECR) is extremely impor-
tant. Knowing the production sites of UHECR will be
helpful in explaining the apparent absence of the Gre-
isen–Zatsepin–Kuzmin (GZK) cutoff [1] by selecting a
particular class of models. In the case of astrophysical
origin, it will give invaluable information on physical
conditions and mechanisms that may lead to the accel-
eration of particles to energies on the order of 1020 eV.
In the case of extragalactic origin, it will provide direct
information about the poorly known parameters that
influence propagation of UHECR, such as extragalactic
magnetic fields and universal radio background.

There are observational reasons to believe that
UHECR are produced by compact sources. It has been
known, for quite a while, that the observed highest
energy cosmic rays contain doublets and triplets of
events coming from close directions [2–4]. Our recent
analysis [5] based on the calculation of the angular cor-
relation function has shown that explanation of clusters
by chance coincidence is highly improbable: the correla-
tion function for Yakutsk events [6] with energies E >
2.4 × 1019 eV has an excess at 4° which would occur with
a probability of 2 × 10–3 for the uniform distribution,
while the correlation function for AGASA events [3, 7]
with energies E > 4.8 × 101 eV has an excess at 2.5° cor-
responding to a chance probability of 3 × 10–4. The
combined probability of the fluctuation in both sets is
4 × 10–6. The autocorrelations as large as those should
also imply a large correlation of these events with their
actual sources. It is the purpose of this paper to identify
these sources.

1 This article was submitted by the author in English.
0021-3640/01/7409- $21.00 © 20445
The clustering of UHECR by itself imposes certain
constraints on the possible source candidates. With the
observed fraction of events in clusters, the total number
of sources can be estimated, along the lines of [8], to be
on the order of several hundred. If the GZK cutoff is
absent (or at energies below the cutoff), this estimate
gives the number of sources in the entire Universe.
Thus, to produce observed clustering, the extragalactic
sources have to be extremely rare, as compared to ordi-
nary galaxies. Taking 103 uniformly distributed sources
for an estimate, the closest one is at the redshift z ~ 0.1.

Various astrophysical candidates such as neutron
stars, supernovae, gamma-ray bursts, colliding galax-
ies, active galactic nuclei (AGN), lobes of radio galax-
ies, dead quasars, and others (for a review see [9] and
references therein) have been proposed as sources of
UHECR. A possible connection of highest energy cos-
mic rays with these objects was considered in [3, 4, 10].
In this paper, we study correlations of UHECR with BL
Lacertae (BL Lac) objects, which comprise a subclass
of AGN. Our motivations for selecting BL Lacs are as
follows. If AGNs are sources, only those which have
jets directed along the line of sight, or blazars, can cor-
relate with observed UHECR events (regardless of the
distance to a blazar in a world without GZK cutoff),
since particles accelerated in a relativistic jet are
strongly beamed. Blazars include BL Lacs and vio-
lently variable quasars with flat and highly polarized
spectra. These spectral features give direct indication of
a relativistically beamed jet very close to the line of
sight. BL Lacs are a subclass of blazars characterized,
in addition to the above spectral features which they
share, by the (near) absence of emission lines in the
spectra. This very important distinction indicates low
density of ambient matter and radiation and, therefore,
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more favorable conditions for the acceleration to the
highest energies.

The most recent catalog of AGNs and quasars con-
tains 306 confirmed BL Lacs [11]. While this is the
richest catalog we are aware of, it still may be incom-
plete. However, this is not crucial for establishing cor-
relations between BL Lacs and UHECR events. Corre-
lations of BL Lacs with UHECR were not studied
before. We show that these correlations do exist and are
statistically significant.

Method and results. Our method is based on calcu-
lation of the angular correlation function and is similar
to the one we used in [5]. For each BL Lac, we divide
the sphere into concentric rings (bins) with a fixed
angular size. We count the number of events falling into
each bin and then sum over all BL Lacs, thus obtaining
the numbers Ni (data counts). We repeat the same pro-
cedure for a large number (typically 106) of randomly
generated sets of UHECR events. This gives the mean

Monte-Carlo counts , the variance , and the
probability p(δ) to match or exceed the data count
observed in the first bin. This probability is a function

of the bin size δ. Peaks of (Ni – )/σi or minima of
p(δ) with respect to δ show angular scales on which the
correlations are most significant.

The Monte-Carlo events are generated in the hori-
zon reference frame with the geometrical acceptance

Ni
MC σi

MC

Ni
MC

dn θz sθz,sincos∝

Fig. 1. The sky map (in Galactic coordinates) with 65
UHECR events (circles) and BL Lacertae objects with cuts (1).

Names and coordinates (Galactic longitude, latitude, and
redshift) of BL Lacs plotted in Fig. 1, which fall within 3°
from some UHECR event (their energies are listed in the last
column)

Name l b z E/1019 eV

1ES 0806 + 524 166.25 32.91 0.138 3.4; 2.8; 2.5

RX J10586 + 5628 149.59 54.42 0.144 7.76; 5.35

2EG J0432 + 2910 170.52 –12.6 – 5.47; 4.89

OT 465 74.22 31.4 – 4.88

TEX 1428 + 370 63.95 66.92 0.564 4.97
where θz is the zenith angle. Coordinates of the events
are then transformed into the equatorial frame assum-
ing random arrival time. This transformation depends
on the latitude of the experiment, so that events simu-
lating different experiments are generated separately.
The distribution of the generated Monte-Carlo events in
declination and right ascension reproduces well the dis-
tribution of experimental data.

We have shown in [5] that autocorrelations are most
significant for the two sets of UHECR events:
26 Yakutsk events with energy E > 2.4 × 1019 eV and
39 AGASA events with energy E > 4.8 × 1019 eV. If BL
Lacs are sources of UHECR, their correlations with
UHECR should be particularly large for these two sets.
Assuming that energies of the events are not important
for correlations at small angles, we combine them
together in one set of 65 events.

Since acceleration of particles to energies of order
1020 eV typically requires extreme values of parame-
ters, probably, not all BL Lacs emit UHECR of the
required energy. We assume that this ability is corre-
lated with optical and radio emissions and select the
most powerful BL Lacs by imposing cuts on redshift,
apparent magnitude, and 6-cm radio flux. For more
than a half of BL Lacs, the redshift is not known. It is
generally expected that these BL Lacs are at z > 0.2. We
include them in the set. The cuts

(1)

leave 22 BL Lacs, which are shown in Fig. 1 together
with 65 cosmic rays from the combined set. The depen-
dence on cuts is discussed below.

As one can see from Fig. 1, 2 of the 22 BL Lacs
coincide with the 2 triplets of UHECR events, 1 coin-
ciding with a doublet and 2 BL Lacs lying close to sin-
gle events. This is reflected in the correlation function,
which is plotted in Fig. 2 for the bin size 2.5°. It has 8
events in the first bin, while 1.25 is expected for the uni-
form distribution. The probability of such an excess is
2 × 10–5. BL Lacs and UHECR events contributing to
this correlation are listed in the table. Note that at large
angles the correlation function fluctuates around zero,
which shows that the acceptance in the Monte-Carlo
simulation is chosen correctly.

The probability p(δ) as a function of angular separa-
tion δ is shown in Fig. 3. It has a minimum at 2.5°. For
comparison, the smooth curve shows the behavior
expected in the case if 9 events out of 65 come from BL
Lacs (assuming that accuracy of angle determination is
1.8° and distribution of errors is Gaussian).

The small angular size of the peak in the correlation
function, compatible with the experimental angular res-
olution, suggests that UHECR events responsible for
these correlations are produced by neutral primary par-
ticles. Indeed, if the primaries were charged, they

z 0.1 or unknown; mag <18;>
energy flux at 6-cm wavelenght F6 0.17 Jy>
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would have been deflected in the Galactic magnetic
field by 3°–7°, depending on the arrival direction, par-
ticle energy, and the model of magnetic field, so that
correlations at 2.5° would be destroyed.

Discussion. We have seen that 22 bright BL Lacs
and 65 cosmic rays from the combined set are strongly
correlated; the probability of finding 8 or more out of
65 randomly generated cosmic rays within 2.5° of any
of the BL Lacs is 2 × 10–5. Should one conclude that BL
Lacs are sources of UHECR? Or is it possible that the
above correlation may be an artifact of our selection
procedure? Let us discuss possible loopholes.

The first potential problem source is the incomplete-
ness of the BL Lac catalog and nonuniform coverage of
the sky. Indeed, 22 BL Lacs selected by cuts (1) almost
all lie in the Northen hemisphere due to observational
bias. However, it is easy to understand that, unlike
many other astrophysical problems, the incompleteness
of the BL Lac catalog is not essential for establishing
the fact of correlations with UHECR. The method we
use is suited for any set of potential sources, regardless
of their distribution over the sky (including extreme
cases such as only one source, or a compact group of
several sources). This is guaranteed by using the same
set of sources with real data and with each Monte-Carlo
configuration.

The second potential problem is related to the fact that
there exist strong autocorrelations in the UHECR set,
while Monte-Carlo events are not correlated. One may
wonder if the observed correlation with BL Lacs is (par-
tially) due to autocorrelations of UHECR. To see whether
this effect is negligible in our case, we performed test
Monte-Carlo simulations with configurations containing
the same number of doublets and triplets as the real data
and being random in other respects. We found practically
no difference between the two methods.

Finally, there is the issue of cuts and the related issue
of the selection of catalogs. It is cause for concern that,
by adjusting several cuts and searching in several cata-
logs, a probability as small as pmin ~ 10–5 can be found

Fig. 2. The angular correlation function between the com-
bined set of UHECR and BL Lac set (1).
JETP LETTERS      Vol. 74      No. 9      2001
with any set of astrophysical objects, even with those
which have nothing to do with UHECR. So, the ques-
tion is how easily can the low values of pmin, be
obtained within the adopted procedure of cuts? This
question can be studied quantitatively by assigning a
proper penalty to each try in such a way that the result-
ing probability gives a true measure for the correlations
in question to be a statistical fluctuation. For the case at
hand, we have found that, when proper penalties are
assigned, the resulting probability is larger than pmin by
about an order of magnitude. In other words, one would
have to try thousands of catalogs to find a correlation as
significant as the one we have found for BL Lacs. The
procedure of penalty calculation and the resulting sig-
nificance of correlations are presented below.

In fact, we did not search for correlations with other
catalogs of astrophysical objects. Thus, no penalty is
associated with that. Similarly, we did not adjust the set
of cosmic rays (as explained before, it was selected in
[5] on the basis of the most significant autocorrela-
tions). But we do adjust cuts in the BL Lac catalog.
Therefore, we should assign a penalty factor to this
adjustment.

It is clear that some cuts have to be made because
65 events may have at most 65 sources among 306 BL
Lacs in the catalog (probably, much less). In our calcu-
lations, we imposed cuts on redshift, magnitude, and 6-
cm radio flux. The cut on redshift is motivated by the
expected total number of sources; we did not adjust this
cut to minimize the probability. Cuts on magnitude and
radio flux were adjusted. The corresponding penalty
can be calculated in the following way (cf. [5]). A ran-
dom set of cosmic rays should be generated and treated
as real data; i.e., minimum probability pmin is searched
for by adjusting the cuts in the BL Lac catalog in
exactly the same way as it was done for the real data.
This should be repeated many times, giving different
pmin each time. The number of occurrences of a given
value of pmin is then calculated as a function of pmin.
This gives the probability (we call it pcor) that the

Fig. 3. The dependence of the probability p(δ) on the bin
size δ for the combined set of UHECR and BL Lac set (1).
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adjustment of the cuts in BL Lac catalog produces p ≤
pmin with a random set of cosmic rays. The probability
pcor is a correct measure of the significance of correla-
tions. We define pcor/pmin > 1 as the penalty factor.

We calculated pcor with 105 random sets of cosmic
rays. We have found that the penalty grows at small pmin
and approaches a constant value in the limit pmin  0
(for this reason, it is more convenient to define the pen-
alty factor than to work in terms of pcor). For the real set
of UHECR, pmin = 4 × 10–6 and is reached with the cuts

(2)

They leave 5 BL Lacs, 2 of which coincide with triplets.
(In the previous section, different cuts are presented,
because, with similar significance, they include more
potential sources.) This probability should be multi-
plied by the penalty factor. We found that the penalty
factor is .15 at pmin . 10–6.2 This gives pcor = 6 × 10–5,
which is the probability that the correlation we have
found is a statistical fluctuation.

Conclusions. The significant correlations between
UHECR and BL Lacs imply that at least some of the BL
Lacs are sources of UHECR. The most probable candi-
dates can be seen in Fig. 1 and are listed in the table.
Two BL Lacs, 1ES 0806+524 and RX J10586+5628,
coincide with triplets of UHECR events (in the second
case, the third event of a triplet is at 4.5° and is not listed
in the table). Both of them are at a distance of
~600 Mpc from the Earth. The next probable candidate
2EG J0432+2910 has unknown redshift.

The correlations at small angles are difficult to
explain by charged primary particles. Within the Stan-
dard Model, the only two neutral candidates are photon
and neutrino. Photon attenuation length at E < 1020 eV
is much smaller (see, e.g., [9]) than the distance to even
the closest BL Lac. However, photons cannot be ruled
out yet if one assumes the presence of sources at d ~
600 Mpc and the “extreme” astrophysical conditions:
primary particles accelerated to E > 1023 eV with
“hard” spectrum ~E–α and α < 2 and extragalactic mag-
netic fields B < 10–11 G [12]. Neutrino models [13]
require similar assumptions, except that constraints on
the magnetic field are relaxed for “pure” neutrino
sources and there is no constraint on the distance to the
sources. However, if pure neutrino sources cannot be
arranged, the model effectively becomes “photonic”
[12]. If astrophysical difficulties can be overcome,
these models will be appealing candidates for the solu-
tion of the UHECR puzzle. Alternatively, one may
resort to a new physics, e.g., violation of the Lorentz
invariance [14].

Independent cross-checks are necessary to deter-
mine whether particular objects are sources of UHECR.

2 This number does not include penalty for the adjustment of the
bin size, because minimum of p(δ) is consistent with the angular
resolution. Corresponding factor is ≈4.

z 0.1 or  unknown; mag 16; F6 0.17 Jy.><>
One of these cross-checks could be a coincidence of the
arrival time of events contributing to small angle corre-
lations with periods of activity of candidate BL Lacs.
Dedicated monitoring of these BL Lac may be sug-
gested. It is also important to analyze possible specific
properties of air showers initiated by these events.
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M.E. Shaposhnikov, and D.V. Semikoz for valuable
comments and discussions. This work was supported by
the Swiss Science Foundation (grant no. 21-58947.99)
and the INTAS (grant no. 99-1065).
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Results of a kinematically complete experiment on backward π–d quasielastic scattering by 6Li are presented.
The experiment was carried out at the ITEP 3-m magnetic spectrometer with pion beams of momenta 0.72,
0.88, and 1.28 GeV/c. The Fermi-motion parameters of a quasideuteron cluster and the effective number of
quasideuterons in 6Li are determined for the 6Li(π–, π–d)4He reaction. These values agree well with the proton-
and electron-beam measurements. The possibility of observation of the effects of deuteron wave-function mod-
ification in nuclear matter is discussed for this reaction. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 25.70.Bc; 25.80.Hp
The mechanism of pion–deuteron elastic scattering
with high momentum transfer is one of the as yet
unsolved problems of relativistic nuclear physics. One
such attempt at describing experimental data for –t = 3–
7 (GeV/c)2 (c is the speed of light) consists in the inclu-
sion of the 6-quark component of deuteron wave func-
tion (see [1] and references therein). Although other
approaches to the πd-scattering problem are known [2],
the introduction of a 6-quark component seems to be
quite attractive, because it provides a unified approach
to the description of other deuteron reactions with high
momentum transfer. Chiral soliton models also point to
the important role of the dibaryon (or 6-quark) config-
urations [3]. According to Battye and Sutcliffe’s calcu-
lations [4], the lowest-energy configurations of chiral
fields with small baryon numbers, including B = 6, can
be formed from several deformed configurations with
B = 2. With this approach, it is natural to assume that
the admixture of a 6-quark component is a function
(possibly, rapidly increasing) of the deuteron nuclear
density. The deuteron density may change in nuclei
with a deuteron-cluster structure. In this respect, the 6Li
nucleus with the pronounced d–α cluster structure is
most appropriate. Therefore, a comparison of the cross
sections for πd elastic scattering by free deuteron and
πd quasielastic scattering by deuteron cluster (quasi-
deuteron) in 6Li with large momentum transfer can pro-
vide new information about both backward πd scatter-
ing and the modification of the deuteron wave function
in nuclear matter. Single-energy measurements can
hardly be interpreted unambiguously because absorp-
tion effects introduce considerable uncertainties. As for
the comparison of energy dependences of elastic and
quasielastic scattering over a wide energy range, it is, to
0021-3640/01/7409- $21.00 © 20449
a great extent, free from these uncertainties. We under-
took the first step in this direction, because kinemati-
cally complete experiments on quasielastic deuteron
knock-out from nuclei by pions have not been per-
formed to date (only one experiment on measuring
inclusive spectra [5] and several proton- and electron-
beam experiments with smaller momentum transfers
are available [6–8]). We were the first to measured the
quasielastic deuteron knock-out by pions in the reac-
tion

π– + 6Li  d + π– + X (1)

in the angular range from 145° to 180° in the c.m.s. of
pion–deuteron elastic scattering for three beam
momenta, 0.72, 0.88, and 1.28 GeV/c [the maximal
momentum transfers to deuteron were 1.2, 1.8, and
2.6 (GeV/c)2, respectively].

The experiment was carried out using a 3-m mag-
netic spectrometer (see, e.g., [1]) with a pion beam
from the ITEP 10-GeV proton synchrotron. Nuclear
targets were placed near the center of a 3 × 1 × 0.5-m
dipole magnet. One half of the magnet was used as a
spectrometer for the forward-emitted deuterons. The
other half was used as a spectrometer for the backward-
scattered and beam pions. A 6Li-enriched target (90.4%
6Li and 9.6% 7Li) was placed in a thin-walled ∅ 8 ×
9.5-cm container. The time-of-flight identification of
deuterons was carried out using a hodoscope system of
scintillation counters with an area of 1.5 m2 placed at
6 m from the target. All three above-mentioned parti-
cles (deuteron and pions) were detected in spark cham-
bers, and their vector momenta were determined from
the geometrically reconstructing tracks in a magnetic
field of the spectrometer. An important point was that the
001 MAIK “Nauka/Interperiodica”
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experiment simultaneously provided data on pion–deu-
teron elastic scattering by free deuterons in the differ-
ence experiment with heavy-water (D2O) and water
(H2O) targets. The data obtained for the elastic pion–
deuteron scattering cross section agreed well with the
available data [1, 9, 10]. Measurements with the heavy-
water target were used to check the simulation of the
experiment for correctness and to determine the exper-
imental Fermi-momentum resolution for quasideuter-
ons (17 MeV/c) and the excitation-energy resolution
(9.5 MeV) for the residual nucleus.

For the events of reaction (1), we calculated the
Fermi momentum of the deuteron cluster

(2)

and the missing energy (or the excitation energy of the
residual nucleus X)

(3)

Here, T is the kinetic energy; the subscripts 0, π, d, and
X denote the initial and final pions, the deuteron, and
the residual nucleus, respectively; and TX = (pF)2/2M,
where M is the mass of 4He nucleus.

Figure 1 shows the missing-energy (Emiss) distribu-
tion of the detected events of reaction (1) for
0.72 GeV/c. The shape of this spectrum is well known

pF p0 pd– pπ–=

Emiss T0 Tπ– Td– T X.–=

Fig. 1. Distribution of the events of reaction (1) in Emiss for
p0 = 0.72 GeV/c. The solid line is the approximation by the
sum of two processes. The dashed line is for a peak at Emiss =
1.5 MeV corresponding to reaction (4). Fitting is carried out
using a Gaussian function with a resolution of 9.5 MeV. The
dash–dotted line is a continuous spectrum of exponentially
decreasing shape at Emiss > 22 MeV corresponding to the
4He disintegration. Fitting is performed with allowance for
experimental resolution.
[8]. It consists of a line at Emiss = 1.5 MeV correspond-
ing to the knock-out of the deuteron cluster

π– + 6Li  d + π– + 4He, (4)

and a continuous spectrum at Emiss ≥ 22 MeV corre-
sponding to the deuteron knock-out from an α cluster
and the disintegration of the residual nucleus. With
allowance made for experimental resolution, this shape,
with an exponentially decreasing continuous spectrum,
closely reproduces our data.

Figure 2 shows the Fermi-momentum distribution
of events at –0.020 GeV ≤ Emiss ≤ 0.015 GeV for
0.72 GeV/c. The plane-wave impulse approximation
(PWIA) and the Monte Carlo method were used to
approximate it by a Gaussian distribution

 in the spherical coordinate system.
The fitted Gaussian distribution parameter was found to
be κ = 64 ± 4 MeV. Using this parametrization of
Fermi-momentum distribution, we calculated the
expected number of events for reaction (4) in the PWIA
and, after comparing with the observed number of
events, determined the product nd(dσ/dΩ), where nd is
the effective number of 6Li deuterons involved in reac-
tion (4) and dσ/dΩ is the c.m.s. differential cross sec-
tion for backward pion–deuteron elastic scattering by a
quasideuteron in 6Li. The nd values calculated with

p– F
2 /κ2( )pF

2exp

Fig. 2. Fermi-momentum (pF) distribution of a quasideu-

teron in 6Li in reaction (4) for p0 = 0.72 GeV/c (–0.020 ≤
Emiss ≤ 0.015 GeV). The solid line is the approximation of

the spectrum by the Gaussian function 

with allowance for the instrumental efficiency. The fitting
parameter was found to be κ = 64 ± 4 MeV/c.

p– F
2

/κ2( )pF
2

exp
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dσ/dΩ taken equal to the known free-deuteron cross
sections are given in the table. The data of other proton-
and electron-beam experiments are also presented in
the table. All data on nd agree well with each other and
with the theoretical calculations [6–8] for nd with inclu-
sion of the absorption effects in the initial and final

Fig. 3. Energy dependence of the cross section for back-
ward pion–deuteron elastic scattering. The black stars are
our data obtained from the product nd(dσ/dΩ) (see text).

Table

T0, GeV Beam κ, MeV/c nd (PWIA) Reference

0.59 p 73 ± 1.6 0.78 ± 0.10 [7]

0.67 p 51.5 ± 2.5 0.83 ± 0.08 [6]

0.48 e 45* 0.73 ± 0.07 [8]

0.59 π 64 ± 4 0.74 ± 0.07 **

0.75 π 0.77 ± 0.15 **

1.15 π 1.26 ± 0.44 **

  * In this work, the shapes of Fermi-momentum distribution were
more complex; for this reason, we present our estimate of the
Gaussian distribution parameter.

** This experiment.

B.M. Abramov et al. (ITEP) [1]
M. Akemoto et al. (KEK) [10]
R. Keller et al. (LBL) [9]
JETP LETTERS      Vol. 74      No. 9      2001
states. Unfortunately, such calculations are lacking for
the conditions of our experiment. The energy depen-
dence of nd was measured only in our experiment;
according to our measurements, nd is constant within
experimental error. Therefore, in the energy and
momentum-transfer ranges studied, we do not observe
nuclear-matter effects on the pion–deuteron elastic
scattering cross section. This is illustrated in Fig. 3,
where our data on the product nd(dσ/dΩ) are presented
together with the energy dependence of backward
pion–deuteron elastic scattering by a free deuteron [1,
9, 10]. It is seen that the cross sections for pion–deu-
teron elastic and quasielastic scattering agree well with
each other. The parameters κ of quasideuteron Fermi
motion in 6Li (see table) are in poorer agreement with
each other than are the nd values. This is possibly due to
the distortion effects, which were taken into account in
none of the experiments, except for [8]. It is quite pos-
sible that a considerably more complicated analysis of
the data in the distorted-wave impulse approximation
would reduce these discrepancies between the experi-
ments.

Let us summarize the conclusions of the experi-
ment.

(i) The quasielastic deuteron knock-out from nuclei
was studied in a kinematically complete experiment
with a pion beam.

(ii) The Fermi-motion parameters determined for a
quasideuteron cluster in the 6Li nucleus are in reason-
able agreement with the data obtained with proton and
electron beams.

(iii) The energy dependence of quasielastic deuteron
knock-out from 6Li in the beam-momentum range from
0.72 to 1.28 GeV/c and momentum-transfer range –t =
1.2–2.6 (GeV/c)2 coincides, within experimental error,
with the energy dependence of backward pion–deu-
teron elastic scattering.

(iv) The smallness of the cross section did not allow us
to extend our measurements to the range –t > 3 (GeV/c)2,
which is the most interesting for studying the effects of
deuteron wave-function modification in nuclear matter.

We are grateful to the staffs of the 3-m spectrometer,
the ITEP accelerator, and the PSP-2 group for assis-
tance in conducting the experiment, as well as to
L.A. Kondratyuk for stimulating discussions. This
work was supported in part by the Russian Foundation
for Basic Research, project nos. 00-02-17163 and
00-15-96545.
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We study the structure of isolated static monopoles in the maximal Abelian projection of SU(2) lattice gluody-
namics. Our estimation of the monopole radius is: Rmon ≈ 0.06 fm. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 11.15.-q; 12.38.-t
1 1. The monopole confinement mechanism in SU(2)
lattice gauge theory is confirmed by many numerical
calculations (see, e.g., reviews [1]). In the maximal
Abelian projection, monopole currents form one big
cluster and several small clusters. The big cluster—
infrared (IR) cluster—percolates and has a nontrivial
fractal dimension, Df > 1 [2]. The properties of small—
ultraviolet (UV)—clusters differ much from those of
the IR cluster; it can be shown that the IR monopole
cluster is responsible for the confinement of quarks [3].
As was shown in a recent publication [4], the structures
of IR and UV monopoles are completely different, and
monopoles in IR clusters are condensed due to their
special anatomy. In this publication, we study the struc-
ture of Abelian monopoles in SU(2) lattice gauge the-
ory in a different way than was done in [4]. We study
the structure of isolated monopoles; the results show
that the nontrivial monopole anatomy plays a crucial
role in the confinement phenomenon.

2. The plaquette action of compact electrodynamics
(cQED),

(1)

is close to the action of SU(2) lattice gauge theory in the
maximal Abelian projection at small values of bare
charge g (in the continuum limit of gluodynamics). The
proof is as follows. By definition, the maximal Abelian
projection corresponds to the maximization of the func-
tional R with respect to all gauge transformations Ω:

(2)

1 This article was submitted by the authors in English.

ScQED
P βU 1( ) θP,cos=

max
Ω

R Ul
Ω[ ] , Ul

Ω Ω+UlΩ,=

R Ul[ ] Tr σ3Ul
+σ3Ul[ ]

l

∑ 2ϕ l.cos
l

∑= =
0021-3640/01/7409- $21.00 © 20453
Here we use the standard parametrization for the link

matrix, Ul, 11 =  = cosϕl , Ul, 12 =  =

sinϕl . Thus, the maximization of R in Eq. (2) cor-
responds to the maximization of the moduli of the diag-
onal elements Ul, 11, Ul, 12. The SU(2) plaquette action is

 = β × TrUp = βcosθl, and, at large values of β,

in the maximal Abelian projection cosϕl is close to
unity [due to Eq. (2)], ϕl is small, and SU(2) plaquette
action has the form

(3)

3. The larger the value of β the smaller is sinϕl, and

 (3) coincides with  (1) in the limit β  ∞.
On the one hand, at small values of the bare charge [at
large values of βU(1)] the compact electrodynamics is in
the deconfinement phase and the gluodynamics is in the
confinement phase; on the other hand, the actions of
both theories are close to each other. The explanation of
this paradox was given in [5, 4], where it was shown
that the action of the off-diagonal gluons Soff on the
plaquettes near the monopole from IR clusters is nega-
tive and the full non-Abelian action SSU(2) = Soff + SAbel

is smaller than the Abelian part of the action. The stan-
dard qualitative proof of the existence of the deconfine-
ment phase transition in cQED is the representation of
the partition function as the sum over the monopole tra-
jectories of length L:

(4)

Here, c is the action of the unit length of monopole tra-
jectory and 7L is the entropy of the line of length L
drawn on 4D hypercubic lattice. It is clear that at β =

Ul 22,* e
iθl Ul 21,*

e
iχ l–

SSU 2( )
P 1

2
---

SSU 2( )
P

=  β θP ϕ1 ϕ2 ϕ3 ϕ4coscoscoscoscos O ϕ lsin( )+[ ] .

SSU 2( )
P ScQED

P

] βLc–{ } 7( )L.exp
L

∑=
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βc ≡ ln7/c the phase transition exists in the sum (4).
This phase transition is absent in lattice gluodynamics,
since in this case the monopoles have nontrivial struc-
ture and the action of the unit of monopole trajectory in
lattice units depends on β: c = c(β); the sum (4) is
always divergent; and the monopoles are condensed
and form the percolating cluster. The monopole con-
densation was proven in gluodynamics by several inde-
pendent calculations [6].

4. In [4], the average nonabelian action on the
plaquettes near the monopole trajectory in IR clusters
was measured. Since the lattice spacing a depends on β,
the calculations at various β correspond to the measure-
ment of field strength at various distances, a(β)/2 from
the monopole center. Below, we present the results of
different measurements; we calculate the average field
strength on the plaquettes closest to the monopole cen-
ter for the monopoles satisfying the following two con-
ditions:

(i) the link with the monopole current has the same
direction as the previous and subsequent monopole cur-
rent links;

(ii) there are no other monopoles at a distance less
than 2a from the considered monopole, except for the
monopoles discussed in item (i).

Thus, we study “static” and “standing-alone” mono-
poles; we call such monopoles isolated monopoles. The
results of calculations are shown in the figure, where we

plot the dependence of  = 6β × (  –

) on a/2;  are the plaquette matrices cor-
responding to the plaquettes closest to the isolated

monopole, the normalization of  is such that it
exactly corresponds to the action of the unit length of

monopole trajectory. If  < ln 7, the isolated mono-
poles are condensed [see discussion of the partition
function (4)]. In the figure, we also show the quantity

SSU 2( )
i 1

2
--- TrUP

imon〈 〉

TrUP〈 〉 UP
imon

SSU 2( )
i

SSU 2( )
i

The dependence of (stars)  and (squares)  on

a/2. The dashed line corresponds to S = ln7.

SSU 2( )
i

SSU 2( )
all
 = 6β × (  – ), where 

is the matrix corresponding to the plaquettes closest to
all monopoles (isolated and not isolated).

The main conclusion from the figure is that the
action of isolated monopoles decreases when the
monopole center is approached and that these mono-
poles are condensed. Our numerical results also show
that the Abelian part of the action of isolated monopoles
increases when the monopole center is approached.
Thus, the contribution of the off-diagonal gluons to the
non-Abelian action of monopole is negative, and, for
this reason, these monopoles differ from the monopoles
in cQED and are condensed at any value of β.

5. Following [4], we can estimate the radius Rm of an
isolated monopole as a point where the derivative of

function (a/2) is maximal. We thus get Rm ≈
0.065 fm. Note that other dimensional numbers charac-
terizing the gluodynamic vacuum are an order of mag-
nitude larger. For example, the average intermonopole
distance [4], which can be estimated from the results of
[3], is Rm ≈ 0.5 fm; the width of the Abelian confining
flux tube is Rt ≈ 0.3 fm [7]; and the average instanton
radius is RI ≈ 0.3 fm (see [8] and references therein).
Thus, we see that in the QCD vacuum there exists a
rather small scale of 0.065 fm; such a small scale was
already discussed in the studies of QCD vacuum [9, 4].

6. M.I.P. and A.I.V. are grateful to the staff of the
Institute for Theoretical Physics of Kanazawa Univer-
sity, where the work was initiated, for their hospitality.
This work was supported in part by the Russian Foun-
dation for Basic Research (project nos. 01-02-17456
and 00-15-96786), the INTAS (grant no. 00-00111), the
JSPS Grant in Aid for Scientific Research (B) (Grant
nos. 10440073 and 11695029), and the CRDF award
no. RP1-2103.
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The interaction of a laser pulse with resonant Bragg lattice is studied theoretically for arbitrary initial conditions
on the field, inverse population, and polarization of a medium. It is shown that the oscillating 2π self-induced
transparency Bragg pulse can form if the Bragg conditions are exactly met. Various regimes are described for
the oscillation dynamics of the gap 2π pulse. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.25.Fx; 42.50.Md; 42.65.Tg; 42.70.Qs
Over the past decade, the propagation dynamics of
laser pulses in the photonic band gap structures, or pho-
tonic crystals [1], has been the subject of active studies,
both theoretical [2–6] and experimental [7]. Because of
the nonlinear interaction of radiation with such struc-
tures, the standard linear dispersion relations change
qualitatively. As a result, Bragg solitons (BSs) [2–4],
i.e., optical pulses with Bragg frequencies, can propa-
gate in the linearly forbidden photonic gaps of the
structures with different types of nonlinearity. Contrary
to the solitons in continuous medium, the BSs are char-
acterized by two propagation regimes: a regime with a
constant velocity and an oscillating regime [5, 6] for
which the pulse amplitude and the velocity magnitude
and direction change periodically. A resonant oscillat-
ing 2π pulse was obtained earlier in [5] by solving
numerically the problem on BS in a weakly distorted
Bragg lattice. However, the physical nature of BS oscil-
lations has not been revealed because of the lack of ana-
lytic solutions. It is shown in this work that the oscillat-
ing 2π pulse can arise when the Bragg conditions are
exactly met. For the appropriate two-wave Maxwell–
Bloch equations, the initial value problem reduces to a
modified sine-Gordon equation (SGE). An analytic
expression is obtained for the BS oscillation frequency,
and the BS propagation regimes are described for dif-
ferent initial conditions.

Let us consider the coherent interaction of an
intense laser radiation with a one-dimensional resonant
Bragg lattice, whose structure consists of a set of peri-
odically arranged thin layers containing two-level
oscillators [2, 5]. This model closely corresponds to a
real structure of periodically arranged quantum wells
with resonance excitons in semiconductors [7]. The fre-
quency of incident radiation coincides with the fre-
quency of the two-level transition, and, for the Bragg
condition to be met exactly, the structure period should
be a multiple of the radiation half-wavelength. Under
0021-3640/01/7409- $21.00 © 20456
these conditions, the interaction of radiation with the
structure is described by the two-wave Maxwell–Bloch
equations [2] for real functions in the dimensionless
variables x = x '/cτc and t = t '/τc

(1)

where Ω± = (2τcµ/")E±; E± are the smooth field-ampli-
tude envelopes of the forward and backward Bloch
waves; τc is the cooperative time; µ is the matrix ele-
ment of the dipole transition moment; P and n are the
polarization and density of inverse population, respec-
tively; c is the speed of light; t' and x' are, respectively,
the time and spatial coordinate along the normal to the
resonance planes in the structure; and the subscripts x
and t imply partial derivatives.

By using the solution P = –sinθ to the Bloch equa-
tions, where the Bloch angle θ is determined from the
condition θt = Ω+ + Ω–, Eq. (1) can be rewritten as

(2)

where Ω ≡ Ω+ + Ω– and  ≡ Ω+ – Ω–. From the second
equation in Eqs. (2) it follows that

(3)

Then the following equations are obtained for the
Bloch angle from Eqs. (2):

(4)

This equation is a modified sine-Gordon equation, with
the function f(x) being determined by the initial condi-
tion in Eq. (3):

(5)

Ωt
+ Ωx

++ P, Ωt
– Ωx

–– P,= =

Pt n Ω+ Ω–+( ), nt P Ω+ Ω–+( ),–= =

Ω̃x Ωt+ 2 θ, Ωx Ω̃t+sin– 0,= =

Ω̃

Ω̃ x t,( ) θx x t,( ) f x( ).+–=

θxx θtt– 2 θ f x x( ).+sin=

f x( ) Ω̃ x 0,( )= θx x 0,( ).+
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Therefore, if the fields and inverse population are

absent in a medium at t = 0, i.e., if (x, 0) = 0 and
θ(x, 0) = 0, or if the stationary BS propagates in the

structure and (x, t) = –θx(x, t) [2], then f(x) = 0 and
Eq. (4) transforms into the exact SGE describing a
nonoscillating gap 2π pulse. In the general case of
f(x) ≠ 0, the BS dynamics differs substantially from that
described in [2]. The second term on the right-hand side
of Eq. (4) corresponds to the interaction between a
kink-solution of the exact SGE and a localized pertur-
bation and gives rise to the oscillating regime of the 2π
pulse.

The results of numerical integration of the original
set of Eqs. (1) are presented in Fig. 1 for the nonzero

initial conditions (5) f(x) = f(0) . For
the low initial BS velocities and f(0) < 0 (Fig. 1, curve a),
the oscillations of the BS amplitude and velocity are
harmonic, the soliton shape is virtually identical with
that of the solution to the exact SGE, and the oscillating
BS is localized near the f(x) function. The oscillation
frequency depends on the f(0) value. An increase in the
initial velocity leads to a change in the form of oscilla-
tions (Fig. 1, curve b). It is demonstrated below that
these oscillations obey the law of motion in the form of
an elliptic sine. Finally, if the initial velocities are high,
the soliton escapes from the f(x) localization region and
propagates as a free BS with a constant velocity and
without oscillations (Fig. 1, curve c). As the amplitude
of the function in initial condition (5) changes sign, i.e.,
if f(0) > 0, then the BS is repelled from the interaction
region and also propagates with a constant velocity and
without oscillations (Fig. 1, curve d).

To analyze this BS dynamics, we use a simple
“energetic” method [8], which allows the law of motion
to be determined for the soliton of modified SGE (4) in
the case where its shape differs only slightly from the
shape of the exact solution to the SGE. Let us substitute

η = x, τ = t, and f ' = f/  and rewrite Eq. (4) in
the standard form:

(6)

The Lagrangian density function for Eq. (6) is

the corresponding Hamiltonian density is

(7)

Ω̃

Ω̃

2x x0–( )sech

2 2 2

θηη θττ– θ f η' η( ).+sin=

L
1
2
---θτ

2 1
2
--- θη f '–( )2–= 1 θcos–( );–

H
1
2
---θτ

2 1
2
---θη

2+= f 'θη
1
2
--- f '2 1 θcos–( ).+ +–
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Note that the first four terms on the right-hand side of
Eq. (7) are equal to the energy density [(Ω+)2 + (Ω–)2]/2
of the forward and backward waves in the structure.

Since the system is conservative, the total energy of
the localized solutions is the integral of motion,

 = 0, so that from Eq. (7) it follows that

(8)

d
dτ
----- H ηd

∞–

∞∫

d
dτ
----- η 1

2
---θτ

2 1
2
---θη

2 1 θcos–( )+ + 
 d

∞–

∞

∫ d
dτ
----- η f 'θη .d

∞–

∞

∫=
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Fig. 1. Equivalue lines for the density n(x, t) of on inverse
population in a medium with the Bragg soliton propagating
with different initial conditions. The black lines correspond
to n = 1 and the white background corresponds to n = –1. At
t = 0, the inversion and polarization are given by n = –cos(θ)
and P = –sin(θ), respectively, where θ =

4  and x0/  is the initial coordi-

nate of the soliton center; the fields are Ω± =

, where  = 1.41 and  = 0.85 for

curve a corresponding to the soliton velocity u = 0.2;  =

2.12,  = 0.14, and u = 0.7 for curve b; and  = 2.21,

 = 0.06, and u = 0.76 for curve c. In all cases, f0 < 0 and

 = 0.75. For curve d, f0 > 0 and  are the same as

for curve a.
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Making use of the fact that the shape of the oscillating
soliton given by Eq. (6) differs only slightly from the
solution to the exact SGE, one can write the desired
solution for a 2π pulse propagating in the positive
direction of the η axis as

(9)

where u(τ) is the time-dependent soliton velocity and

ξ(τ) = (τ')dτ' is the coordinate of the soliton center.

The overlap integral on the right-hand side of Eq. (8) is
the potential energy of interaction between kink (9) and
the perturbation. Substituting Eq. (9) into Eq. (8) and
taking into account that u2 and uτ ! 1, one obtains the
following equation of motion for the coordinate of
pulse center:

(10)

Let f '(η) = f0 . The results of numerical integra-
tion of the original set of Eqs. (1) with the correspond-
ing initial conditions are shown in Fig. 1. Then it fol-
lows from Eq. (10) that

This equation can be recast as

(11)

θ 4
–η ξ τ( )+

1 u2 τ( )–
-------------------------- 

 exp ,arctan=

u
0

τ∫

ξττ
1
4
--- η ξ–( ) η ξ–( ) f ' η( )tanhsech η .d

∞–

∞

∫–=

η( )sech

ξττ
f 0

2
----- ξsinh ξ ξcosh–

ξ2sinh
--------------------------------------.–=

ξττ Uξ , U–
f 0

2
----- ξ

ξsinh
-------------.= =

Fig. 2. The square ω2 of the frequency of harmonic oscilla-
tions of the Bragg soliton (ω is in units of τc/c) vs. f0; (m) are
obtained by numerical integration of the set of Eqs. (1) and
(d) are calculated using analytic expression (13).
Equation (11) describes the quasiparticle motion in the
potential U in the field of potential force –Uξ. Since the
total “energy” of the particle u2/2 + U = const, a finite
motion is possible only in the attractive potential, i.e.,
only if f0 < 0, and for a sufficiently low velocity |u(ξ =

0)| < , i.e., at the bottom of the potential well. This
agrees well with the results of numerical calculations
(Fig. 1, curve a). An increase in the soliton velocity
leads to its escape from the potential well (Fig. 1, curve
c). If the initial conditions (5) are such that f0 > 0, the
interaction potential U is positive and the BS is repelled
from the perturbation (Fig. 1, curve d).

The solution to Eq. (11) gives the law of BS motion
ξ(τ) in the following integral form:

(12)

where α = (ξ = 0) + f0. By expanding the integrand
in Eq. (12) in powers of ξ, one obtains, to second order
in ξ, the following expression for the harmonic oscilla-
tions of BS with small deviations of the pulse center
from equilibrium, ξ ! 1, and f0 < 0:

(13)

To the next order in ξ, the law of motion takes the form
of an elliptic sine. The oscillation frequency of a gap 2π
pulse, as obtained by the numerical integration of
Eqs. (1) and calculated using Eq. (13), is shown in
Fig. 2 as a function of f0. One can see that the analytic
formula agrees well with the numerically calculated
dynamics of an oscillating 2π pulse.

Note in conclusion that the BS propagation dynam-
ics is more complicated than the dynamics of optical
solitons in continuum. This is caused by the interaction
of BS with weak fields and medium excitation, which
are localized within the Bragg band gap. The oscillating
BS is a stable bound state of a high-energy pulse, close
to the stationary soliton, and a low-energy perturbation.
The latter needs not be necessarily static. The results
obtained in this work can easily be extended to the
“traveling” initial conditions through the transition to
the moving frame of reference. In this case, the mean
velocity of the oscillating BS will be nonzero. The
oscillating 2π pulse can be observed experimentally,
e.g., in the periodic structure of In0.04Ga0.96As/GaAs
quantum wells [7, 9], where the density of resonance
excitons is 1.7 × 1012 cm–3, the dipole transition
moment µ = 9 × 10–29 C m, the wavelength λ = 830 nm,
and τc = 0.3 ps. The corresponding pulse energy per unit
area is equal to 1.3 µJ/cm2 for the oscillating BS at a
pulse duration of 0.34 ps.

This work was supported by the Russian Foundation
for Basic Research, project no. 01-02-17314.
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Abstract—Spectral superbroadening of subnanojoule femtosecond Cr:forsterite laser pulses is demonstrated
for the first time in experiments with a tapered fiber. Coupling 40-fs 0.6-nJ pulses of 1.25-µm Cr:forsterite laser
radiation into a tapered fiber with a taper waist diameter of about 2 µm and a taper waist length of 90 mm, we
observed the spectra spanning more than two octaves at the output of the fiber. These experimental results open
new horizons for the creation of compact femtosecond systems based on Cr:forsterite lasers and tapered fibers
for optical metrology and biomedical applications. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Wi; 42.81.Qb
Optical fibers of new types—microstructure (holey)
[1–6] and tapered [7] fibers—allow the efficiency of
spectral broadening of femtosecond pulses [4, 8] and
supercontinuum generation [7, 9] to be substantially
increased, providing new unique opportunities for opti-
cal metrology [10–15], laser biomedicine [16, 17], and
spectroscopy. The high degree of light localization in
holey and tapered fibers leads to the enhancement of
nonlinear-optical interactions, permitting pulses with a
spectral width exceeding an octave to be produced at
the output of the fiber by coupling unamplified femto-
second pulses with subnanojoule energies into the fiber.
This ability of holey and tapered fibers to enhance spec-
tral broadening and supercontinuum generation has
recently resulted in a major breakthrough in optical
metrology and high-precision optical measurements
[10–15] based on the use of frequency combs produced
by stabilized mode-locked femtosecond lasers. The
idea of applying mode-locked lasers for high-precision
frequency measurements has been proposed more than
20 years ago [18, 19]. However, it was not until recently
that the practical implementation of this approach
became possible due to the rapid progress of femtosec-
ond lasers and the advent of optical fibers of new types,
leading to a radical conceptual and technical simplifica-
tion of high-precision optical frequency measurements.

All the experiments on supercontinuum generation
by unamplified femtosecond pulses in microstructure
and tapered fibers have been performed so far with
Ti:sapphire laser radiation. It is of considerable interest,
0021-3640/01/7409- $21.00 © 20460
at the same time, to adapt this technique, allowing the
spectral superbroadening of unamplified femtosecond
pulses to be achieved, to femtosecond lasers generating
radiation with longer wavelengths. In particular, the use
of holey and tapered fibers to spectrally broaden and
frequency-convert 1.2–1.3-µm femtosecond Cr:forster-
ite laser pulses is of special interest. Femtosecond
Cr:forsterite lasers are as compact and convenient as
Ti:sapphire systems, offering, at the same time, several
important advantages for establishing a link with meth-
ane-stabilized 3.39-µm He–Ne lasers in femtosecond
optical metrological systems, as well as for achieving
larger penetration depths in optical coherence tomogra-
phy and biomedical imaging [16, 17]. Investigation of
the possibilities to achieve spectral superbroadening of
unamplified femtosecond Cr:forsterite laser pulses is
the main purpose of this paper.

Our experiments were performed with an all-solid-
state self-starting Cr4+:forsterite (Cr4+:Mg2SiO4) laser
[16, 17], allowing the generation of pulses with a dura-
tion of 30–100 fs and the wavelength tunable within the
range from 1.21 up to 1.29 µm. A DCDA crystal was
used to double the frequency of these pulses [17]. The
master oscillator of this laser system (Fig. 1) was based
on a Nd:YAG-laser-pumped 19-mm Cr4+:forsterite
crystal. The master oscillator also included focusing
mirrors with a radius of curvature equal to 100 mm and
a 4.5% output coupler. As an option, a semiconductor-
saturable-absorber reflector could be used as a rear cav-
ity mirror. Self-starting mode locking in this laser was
001 MAIK “Nauka/Interperiodica”
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P2

PD

M2
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Cr:F
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Fig. 1. Diagram of the femtosecond Cr:forsterite laser: Nd:YAG, Spectra Physics Millennia Nd:YAG pump laser; MP1, MP2, pump
mirrors; L1, L2, lenses; M3–M5, cavity mirrors; P1, P2, intracavity prisms; Cr:F, Cr4+:Mg2SiO4 crystal; M6, output coupler; MBR,
multilayer Bragg reflector; and PD, photodetector. The inset shows an autocorrelation trace of a Cr:forsterite laser pulse with a dura-
tion of approximately 30 fs.
achieved both with and without semiconductor satura-
ble-absorber mirrors. A typical autocorrelation trace of
a 30-fs output pulse of the Cr:forsterite laser is shown
in the inset in Fig. 1. With 6–9-W pump; our Cr:forster-
ite laser generated femtosecond pulses with an average
output power of 450 mW.

Unamplified radiation produced by the Cr:forsterite
laser was coupled into a tapered fiber, manufactured by
tapering Corning SMF-28 standard telecommunica-
tions fibers with a core diameter of about 9 µm, a cutoff
wavelength of 1250 nm, and a numerical aperture of
0.1. The fiber-tapering procedure was described in
detail in [7]. This process involved fiber tapering by
means of heating and stretching in a flame, which
reduced the fiber cross section. Due to the small fiber
diameter in the taper waist region (Fig. 2) and the large
refractive index step between silica and air, the light
was strongly confined within the fiber, which enhanced
the efficiency of nonlinear optical processes. Earlier
experiments [20] have demonstrated the enhancement
of self-phase modulation in such fibers.

The spectra of 70-fs pulses of different energies
coming out of a tapered fiber with a 90-mm waist of a
uniform diameter of about 2 m are shown in Fig. 3. The
lengths of transition regions of this fiber (Fig. 2) were
approximately equal to 35 mm. Tapered fibers with
such a waist diameter provide an anomalous dispersion
for the fundamental radiation of the Cr:forsterite laser,
with a zero group-velocity dispersion being achieved
JETP LETTERS      Vol. 74      No. 9      2001
around 700 nm. This situation is favorable for the non-
linear propagation of ultrashort Cr:forsterite laser
pulses and for supercontinuum generation in the visible
range. We were able to achieve a considerable spectral
broadening even with 0.1-nJ light pulses coupled into
the fiber. Increasing the energy of laser pulses, we
observed the growth in the bandwidth of pulses coming
out of the fiber (Fig. 3). To get an order-of-magnitude
estimate on the characteristic parameters of the self-
phase modulation process, we approximate the depen-
dence of the spectral broadening (on the energy of laser
pulses coupled into the fiber with a linear function (see
the inset in Fig. 3)). This approximation is based on the
elementary theory of self-phase modulation, which
gives the following expression for the relative spectral
broadening: ∆ω ≈ γPL/τ, where γ is the nonlinear coef-
ficient, P is the laser pulse power, L is the length of the

Fig. 2. Diagram of Cr:forsterite pulse propagation through
a tapered fiber.

Cr:forsterite femtosecond
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working area of the fiber, and τ is the pulse duration.
The nonlinear coefficient estimated in this approxima-
tion from our experimental data (Fig. 3) with n2 ≈ 2.5 ×
10–16 cm2/W indicates a very high efficiency of nonlin-
ear optical processes in the tapered fiber.

In contrast to the regime of supercontinuum genera-
tion, the initial stage of spectral broadening considered
above does not lead to very large spectral widths. How-

Fig. 3. Spectral broadening ∆λ of subnanojoule 70-fs
Cr:forsterite laser pulses in a tapered fiber with ~35-mm
transitions and a 90-mm waist of a uniform diameter of
about 2 µm. Solid line 1 shows the spectrum of the input
pulse. Lines 2–4 display the spectra of the pulses at the out-
put of the fiber with (2) 0.09, (3) 0.13, and (4) 0.16 nJ of
pulse energy coupled into the fiber. The inset shows the
spectral broadening as a function of the pulse energy cou-
pled into the fiber approximated with a linear dependence.

1 2 3

Fig. 4. Digital-camera images of a laser pulse coming out of
the tapered fiber dispersed with a prism. A 40-fs 0.6-nJ
pulse of 1.25-µm Cr:forsterite laser radiation was coupled
into the fiber. The digital camera is located at a distance of
40 cm (the upper image) and 10 cm (the lower image) from
the screen. Region 1 corresponds to the visible red, region 2
is the third-harmonic area around 417 nm, and the area of
screen luminescence (3) corresponds to radiation wave-
lengths less than 400 nm.
ever, this stage is very useful for many applications due
to the fact that the spectral width of unamplified femto-
second pulses can be easily and reproducibly controlled
by changing the energy of input pulses in this case.
Femtosecond Cr:forsterite laser pulses with a controlla-
ble spectral width seem to offer much promise, in par-
ticular, for optical coherence tomography with tunable
resolution, as well as for numerous spectroscopic appli-
cations.

Starting with a pulse energy of 0.6 nJ, a broad con-
tinuum emission was observed in our experiments
when 40-fs pulses of Cr:forsterite laser radiation were
coupled into a tapered fiber with the above-specified
parameters. The Cr:forsterite laser generated 40-fs
pulses of an average power of 250 mW at a repetition
rate of 120 MHz in these experiments, with approxi-
mately 70–75 mW of average power being coupled into
the tapered fiber. Figure 4 shows digital-camera images
of the output light beam dispersed with a prism (Fig. 2)
and visualized on a white screen. The upper image is
taken with a camera located at a distance of 40 cm from
the screen. The image is, therefore, well focused, but
the sensitivity of the camera is not sufficient enough to
reproduce the red light (around 700 nm, the area 1 in
Fig. 4). The lower image is taken with a camera located
at a distance of 10 cm from the screen. The red part of
the spectrum is clearly seen in this case, but the image
is unfocused.

The spectrum shown in Fig. 4 spans more than two
octaves, stretching beyond the spectral area around
417 nm (region 2 in Fig. 4). The latter wavelength is
characteristic of the third harmonic of input radiation
and is easily identifiable with the third harmonic of our
Cr:forsterite laser radiation produced in a nonlinear
crystal. Luminescence of the screen in region 3 in
Fig. 4 is indicative of the presence of radiation with
wavelengths roughly less than 400 nm. No supercontin-
uum generation was observed when 30–40-fs subnano-
joule Cr:forsterite laser pulses were propagated through
standard untapered fibers.

Thus, for the first time, we detected supercontinuum
generation with subnanojoule femtosecond Cr:forster-
ite laser pulses propagating in a tapered fiber. Coupling
40-fs 0.6-nJ pulses of 1.25-µm Cr:forsterite laser radi-
ation into a tapered fiber with a taper waist diameter of
about 2 µm and a taper waist length of 90 mm, we
ended up with the spectra spanning more than two
octaves at the output of the fiber. The table puts the
results of our experiments in the context of other works
on supercontinuum generation using unamplified fem-
tosecond pulses. The possibility of supercontinuum
generation by propagating subnanojoule femtosecond
Ti:sapphire laser pulses through microstructure fibers
was demonstrated by Ranka et al. [9]. This finding has
opened new avenues in many areas of ultrafast optics
and spectroscopy, leading also to revolutionary changes
in optical frequency metrology. The search for a sim-
pler design of a fiber capable of generating a supercon-
JETP LETTERS      Vol. 74      No. 9      2001
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Spectral superbroadening of unamplified femtosecond laser pulses

Holey fibers Tapered fibers

τ, fs W, nJ L, cm Ref. τ, fs W, nJ L, cm Ref.

Ti:sapphire laser 100 0.8 75 [9] 200 3.9 9 [8]

Cr:forsterite laser No superbroadening has been reported so far;
efficient spectral broadening was observed in [21]

40 0.6 9 This work

Note: τ is the pulse duration, W is the laser pulse energy, and L is the length of nonlinear-optical interaction.
tinuum with low-power femtosecond pulses has given
Birks et al. [7] the idea of using tapered fibers for this
purpose. This concept was successfully demonstrated
by supercontinuum generation with unamplified
Ti:sapphire laser pulses [7]. In the present paper, we
reported for the first time the spectral superbroadening
of unamplified femtosecond Cr:forsterite laser pulses
propagating through a tapered fiber and demonstrated
that subnanojoule energies of femtosecond Cr:forster-
ite laser pulses may be sufficient, with an appropriate
choice of pulse durations and fiber dispersion, to gener-
ate light with a spectrum spanning more than two
octaves. The results of our experiments allow a system
including a femtosecond Cr:forsterite laser and a
tapered fiber to be proposed as a convenient and com-
pact tool for optical metrology and biomedical applica-
tions, as well as an efficient broadband source for vari-
ous spectroscopic applications.

This work was supported in part by the President of
Russian Federation grant no. 00-15-99304; the Russian
Foundation for Basic Research project no. 00-02-
17567; Volkswagen Foundation project I/76 869;
CRDF grants RP2-2266 and RP2-2275; and the “Fun-
damental Metrology” Federal Program of the Ministry
of Industry, Science, and Technology of the Russian
Federation.
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The Possibility of ESCA Microscopy with Laser Femtosecond 
EUV X-Ray Pulses1 

V. S. Letokhov
Institute of Spectroscopy, Russian Academy of Sciences, Troitsk, Moscow region, 142190 Russia
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This letter proposes photoelectron spectroscopy (ESCA) for the observation of a 2D molecular structure with
nanometer spatial resolution and chemical selectivity using EUV X-ray femtosecond laser pulses. © 2001
MAIK “Nauka/Interperiodica”.

PACS numbers: 33.60.Fy; 42.50.Vk; 82.80.Pv
1 Femtosecond pulses amplified to ultrahigh intensi-
ties [l] enable one to obtain high-order femtosecond
harmonics in the EUV and soft X-ray regions [2, 3].
This is of principal importance, for this method makes
it possible to transfer coherence from the optical to the
X-ray region of the spectrum. In this case, there is no
need to make radiation coherent by means of positive
feedback, this being very difficult to implement in the
X-ray region on a femtosecond time scale. This letter
proposes the method for studying the structure of indi-
vidual biomolecules on the basis of the joint use of opti-
cal and EUV X-ray femtosecond laser pulses. Gaining
direct information on the molecular structure of indi-
vidual biomolecules, especially such as DNA and pro-
teins, is a very important problem facing physicists
developing new techniques and instruments for other
domains of science (one can cite, as an example, X-ray
crystallography, electron microscopy, etc.). The
requirements on the potential method are exceptionally
stringent: (l) atomic specificity, (2) ultrahigh sensitiv-
ity, and (3) nm–Å spatial (lateral, longitudinal) resolu-
tion. Combining all the above characteristics in one
method would make it possible to determine the 3D
molecular structure of individual biomolecules.

The following methods can be regarded as promis-
ing. First, these include femtosecond versions of the
well-known classical X-ray diffraction and electron dif-
fraction techniques, because each is capable of being
extended to atomic-resolution holography. These tech-
niques, however, require that the specimens be either
crystals or ensembles of oriented molecules. Moreover,
for these techniques to be implemented, it is necessary
that many X-ray photons or electrons be coherent in
individual shots. The latter requires intense X-ray radi-
ation, which can cause damage to the structure of spec-
imens on a femtosecond time scale [4].

An alternative is to extend the well-known ESCA
technique [5]. This technique is incoherent and can be

1 This article was submitted by the author in English.
0021-3640/01/7409- $21.00 © 20464
used with individual biomolecules, while the informa-
tion can be accumulated in the course of many irradia-
tion pulses of not-too-high intensity. Besides, the pho-
toionization cross section of atoms exposed to X-rays is
much larger than the scattering cross section.

To obtain a 2D image of a surface under study, one
has to discard the traditional electron spectroscopy
techniques; i.e., one should use the time-of-flight
method for selecting photoelectrons. It is precisely for
this purpose that the possibilities of jointly using fem-
tosecond optical and X-ray pulses prove to be very suit-
able.

Figure 1 is a simplified illustration of the idea of
ESCA microscopy where atoms of the desired element
in an individual molecule are ionized by focused X-ray
pulses having an energy of hνX. The focal spot diameter
dfoc is much greater than the wavelength λX of the X-ray
radiation and the size a of an individual molecule con-
taining N ionizable atoms. The ionization probability of
one such atom Yph.ion, which depends on the X-ray pulse
fluence ΦX/hνX and the photoionization cross section
σph.ion (Yph.ion . σph.ionΦX), is taken to be low (<1/N). In
this case, one X-ray pulse gives birth to no more than
one photoelectron (NYph.ion & 1). This excludes the Cou-
lomb repulsion of the photoelectrons produced with a
low kinetic energy Eph.el. An electron-optical system
directs these photoelectrons on the surface of a posi-
tion-sensitive time-resolved (time-of-flight) electron-
detection system.

By appropriately selecting the X-ray quantum
energy hνX, one can ensure the necessary atomic spec-
ificity of photoionization [5].

Ultrahigh sensitivity can be attained without damag-
ing the biomolecule by the focused X-ray pulses, if
their energy fluence is taken to be adequately low. Con-
sider, as an example, the case where the photoioniza-
tion cross section σph.ion . 10–20 cm2 (hνX . 1 keV). If
an X-ray pulse with energy E . 1 nJ in the spectral
range ∆E . 1 eV is focused onto the area of size a .
001 MAIK “Nauka/Interperiodica”
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10 µm [this corresponds to hνXΦX . 1 mJ/(cm2 pulse eV)],
the ionization probability of a single desired atom may
be as high as 10–7 photoelectron/(atom pulse), so that
for a molecule with N ≈ 105 atoms it will be Yph.ion ≈
10−2 photoelectron/(molecule pulse). The energy of the
X-ray pulse can probably be increased by a factor of
102 [up to 0.1 J/(cm2 pulse eV)] in order to produce
approximately one photoelectron per pulse in the bio-
molecule.

Photoelectrons are produced at the X-ray penetra-
tion depth, which is much larger than the monolayer
thickness. To achieve surface (monolayer) selectivity, it
is necessary to eliminate the background noise caused
by the photoelectrons formed in the bulk of a specimen.
To this end, use can be made of the effect of photoelec-

tron escape depth minimum  . 30 eV [6]. Selec-
tive detection of surface photoelectrons can be accom-
plished by at least two methods. First, one can use

X-ray radiation with energy hνX = I + . This may
be a monochromatized radiation of higher harmonics of
laser pulses within a broad X-ray spectral range. Sec-
ond, one can perform selective detection of photoelec-
trons with kinetic energy Eph.el ≈ 30 eV. In our case of
constructing a photoelectron image, this can be attained
by means of time-of-flight (TOF) photoelectron detec-
tion. The selection of photoelectrons having the
required energy Eph.el ≈ 30 eV (velocity v e ≈ 3 ×
108 cm/s) in the energy range ∆Eresol on the photoelec-
tron flight path of length Lel.fl ≈ 1 mm requires that the
TOF system used have a very high time resolution at a
level of τresol ≈ 10–12 s. In principle, this is quite possible
if a portion of energy of the initial high-intensity optical
femtosecond pulses generating the X-ray pulses is
used. This possibility is based, in particular, on the elec-
tron reflection from the strong light field of femtosec-
ond optical pulses [7].

Figure 2 schematically illustrates the idea of elec-
tron reflection from the strong field of an evanescent
light wave, as suggested in [7]. The intense evanescent
wave formed upon the total internal reflection of a fem-
tosecond light pulse penetrates into a vacuum at a depth
on the order of wavelength λ. A change in the electron
velocity can be described in terms of the effective index
of refraction nel < 1[7]:

(1)

where β = v e/c, µ2 = λ2I, v e is the electron velocity,

re is the classical electron radius, I is intensity, and λ is
wavelength. At the intensity in the range 1013–
1014 W/cm2, nel drops noticeably for Eel . 10–100 eV.

Part of the intense femtosecond pulse generating
higher harmonics in the X-ray region is also capable of

Eph.el
min

Eph.el
min

nel 1
µ2

β2
----- 

  1 β2––
1/2

,=

re

mc
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effectively reflecting electrons with specified velocity
v0, whose time of flight ∆T from the surface is con-
trolled by the time interval between the X-ray and the
optical pulses. The reflected photoelectrons with a nar-
row velocity distribution Prefl.(v e) should be directed to
the imaging system used for 2D visualization purposes.

Naturally, the photoreflection concept presented
here has a rather qualitative character because this

Fig. 1. The simplified general idea of femtosecond ESCA
2D microscopy.

Fig. 2. Idea of time-of-flight photoelectron photoreflection
from high-intense femtosecond evanescent light wave.

—plate

e–—single photoelectron
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effect has not yet been observed experimentally. How-
ever, it is of certain interest within the framework of
“laser-induced electron optics” [7, 8]. Besides being
capable of velocity selection, as discussed above, it pro-
vides for the compensation of velocity dispersion for
the reflected electrons. Indeed, the slower electrons [at
the red edge of the distribution peak Prefl.(v el.)] must
suffer reflection in a less intense light field of the mol-
ecules and cover a shorter distance. The opposite is true
for the faster electrons. By using a curved evanescent
wave, one can, in principle, attain electron-beam focus-
ing simultaneously with reflection. Of course, all these
potentialities of “laser-induced” reflective electron
optics should be the subject of future theoretical and
experimental studies.

The concept of TOF selection of ejected photoelec-
trons through femtosecond photoreflection allows one,
in principle, to solve the problem of detection of the
photoelectrons emerging from a thin surface layer. The
problem of attaining high longitudinal resolution nec-
essary for the implementation of 3D microscopy with
an atomic-scale resolution still remains to be solved. It
is possible that one will have to use an approach based
on the consecutive observation of thin surface layers, as
demonstrated in [9].

As for the lateral spatial resolution in our experi-
ments with one-photon ionization using laser photo-
electron microscopy [10, 11], we achieved a resolution
of about 30 nm [12], and the use of a sharp tip and two-
photon femtosecond-pulse excitation made it possible
to attain a resolution of several 5 nm [13]. Progress in
the development of photoelectron microscopy allows
one to hope that a resolution on the order of 2 nm will
be attained [14]. Therefore, the method proposed in this
work is potentially suitable for the table-top sequencing
of DNA-like chain molecules with irregularly recurrent
molecular blocks spaced at ~1 nm. To solve the entire
problem, it is probably necessary to combine several
methods in a unified setup.
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Molecular dynamic calculations are carried out for the (P, T) phase diagram of a covalent compound of cross-
linked carbon single-wall nanotubes (SWNT) and for the structures and electronic spectra of the novel crystals
of polymerized carbon nanotubes. It is shown that the transformation of covalently bonded nanotubes in a close-
packed conducting structure cardinally modifies their electronic properties. The P-SWNT crystal becomes
semiconducting and, upon complete transformation of sp2-hybridized carbon atoms into sp3-hybridized ones,
it becomes an insulator. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.46.+w; 61.48.+c; 73.22.-f
The discovery of a large-scale synthesis of single-
wall carbon nanotubes [1, 2] and the fabrication of
crystals of identical single-wall nanotubes (SWNTs)
[3] have generated interest among researches in model-
ing [4, 5] and synthesizing the SWNT polymeric struc-
tures [6] under conditions of high pressures and tem-
peratures, similar to the polymeric structures based on
fullerenes C60 [7–10]. In recent work [6], a novel super-
hard material was obtained from the polymerized nan-
otubes (P-SWNT) under high pressure in a diamond
chamber by applying shear strain to a “mat” of bundles
of carbon tubes of a nanometer diameter (material from
Rice University, Houston, TX, USA [1]). In this work,
new structures of covalently bonded carbon SWNTs are
modeled together with their electronic properties.

Cross-linking of SWNTs. It is known that the tran-
sitions of a C60 molecular crystal to layered polymer-
ized phases through [2 + 2] cycloaddition of the C60
molecules occur at temperatures T ≈ 700–1000 K and
pressures P ≥ 4 GPa [8]. It is natural to expect that the
phase transitions with the formation of the [2 + 2] rings
will occur in the SWNT molecular crystal in the same
(T, P) range (see below structures 1 and 3). For this rea-
son, we first examined the cross-linking process for
nanotubes by the molecular dynamic method using the
nonlocal Brenner potential [11], which showed itself
good in describing carbon clusters. The forces were cal-
culated analytically as the derivatives of this potential
with respect to the radius vector, and the structure tem-
perature was specified by the particle mean velocity.
Integration with respect to time was carried out by the
Verlet–Birman method. The addition reaction between
the (5, 5) and (9, 0) tubes of diameter 0.7 nm intersect-
ing at a right angle was calculated in the temperature
range 2100–1100 K for different pressures (1–15 GPa)
0021-3640/01/7409- $21.00 © 20467
applied to the intersection region with an area of
≈10−15 cm2. The process was considered in the regime
of constant forces applied to the ends of the nanotube
sections of length ≈50 Å comprising 806 carbon atoms
(inset in Fig. 1). The evolution time was limited by
~1000 of 0.0003-ps steps. The “phase”-separation
curve is shown in Fig. 1, where the temperatures are
shown at which the thermalization occurred within the
picosecond interval chosen and the tubes were linked
together by two to four sp3 bonds at the intersection site
(inset A in Fig. 1). One can see that the reaction temper-
ature decreases dramatically with pressure buildup to
1 GPa and shows quasi-linear behavior above 4 GPa.
The approximation to room temperatures, T ≈ 300 K,
gives P ≈ 35 GPa, which coincides by an order of mag-
nitude with the experimental value of 24 GPa [6]. This
curve is qualitatively similar to the (P, T) diagram for
the transition of molecular fullerite C60 into polymeric
phases [9].

P-SWNT Crystals. Six types of cycloadditions
between polyhedral carbon clusters are known: [2 + 2],
[2 + 4], [4 + 4] [7–9], [3 + 3] and the formation of a gen-
eralized four-membered Osawa ring [10], and the addi-
tion of six hexagon atoms to the neighboring hexagon
[15]. Among them, the [2 + 2] cycloaddition yields the
most energetically stable structures, which form at the
initial polymerization step of cluster dimerization. We
primarily chose examples with the polymerization of
nanotubes in conducting molecular crystals, i.e., the
armchair (n, n) and zigzag (n, 0) nanotubes with n = 3q
[2] and diameter close to 1 nm, in order to demonstrate
the most significant transformations of electronic prop-
erties upon the formation of polymeric phases in such
crystals. The (6, 6) SWNT crystals were chosen
because the electronic structure of the molecular phase
001 MAIK “Nauka/Interperiodica”



 

468

        

CHERNOZATONSKIŒ 

 

et al

 

.

                                                           
of SWNT crystal had been calculated only for the (6, 6)
nanotubes, and it was found to be semimetal, like
graphite [12]. By the hexagonal symmetry and tube
diameter, the structure formed by zigzag (12, 0) nano-
tubes is most suitable for this crystal. The theoretical
study of these P-SWNT crystals was carried out using
the molecular mechanic MM+ method [4] (for the pre-
liminary structural calculations) and the generalized
tight-binding molecular dynamic GTBMD scheme [13]
(for the final calculations of structures and electronic
spectra), which were previously used for calculating
the equilibrium geometries and electronic spectra of
fullerenes and nanotubes and showed a good agreement
with the experimental data and calculations by other
methods [4, 14]. The GTBMD method allows the inter-
atomic interactions in covalent systems and their full
relaxation to be taken into account without any symme-
try constraints. This fast and efficient molecular
dynamic method for the calculation of polyatomic
structures is based on the use of analytic expressions for
the forces as derivatives of the off-diagonal part of the
Hamiltonian in the tight-binding approximation
[13, 14].

(6, 6) P-SWNT. Let us consider structure A, which
is formed by the polymerization of the (6, 6) tubes, sim-
ilar to the well-known [2 + 2] cycloaddition reaction in
crystals of two- dimensionally polymerized C60 [8]. Of
24 atoms in the unit cell of this crystal, 12 (6 × 2) are in
the tetrahedral environment. As is seen in Fig. 2 (inset),
each tube is joined by “diamond ladders” to six neigh-
boring tubes. The resulting hexagonal crystal of sym-
metry C6v with lattice parameters a = 9.918 Å and c =
2.593 Å has two inequivalent atoms, C(1) (0.378,
0.088, 0.0) and C(2) (0.297, 0.158, 0.5). The inter-
atomic bond lengths (in Å) are d11' = 1.526, d12 = 1.500,
and d22' = 1.358 within the tube and d11'' = 1.520

Fig. 1. Phase T–P diagram for the polymerization of (5, 5)
and (9, 0) nanotubes intersecting at a right angle. The nano-
tube structures (A) before and (B) after the [2 + 2] cycload-
dition are shown schematically in the inset.
between the atoms of neighboring tubes. The density of
the P-SWNT crystal under study is 1.22 times higher
than the density ρ0 = 1.79 g/cm3 of a molecular crystal
of the same tubes (ρ0 was calculated using an estimate
of 0.32 nm derived for the intertube distance from the
X-ray structural data [1]). The calculated cohesive
energy E = –6.85 eV/atom is close to the graphite value
of 7.37 eV/atom calculated by the same method [13]. It
is seen from the calculated band structure (Fig. 2) that
the (6, 6) SWNT crystal has a gap, ∆ = 1.3 eV, and
should exhibit properties of a direct-gap semiconduc-
tor. The valence band is narrow (3.0 eV) and separated
from the lower-lying band by a gap of 2.3 eV, giving

Fig. 2. (top) Perspective drawing of crystal A formed by the
carbon (6, 6) nanotubes linked together through four-mem-
bered [2 + 2] rings, and (bottom) its band structure (the
point A corresponds to half of the reciprocal lattice basis
vector along the z axis coinciding with the nanotube axis).
The scheme of hexagonal Brillouin zone in the (ky, kz) plane
is shown in the middle. The energy gap at the Γ point is
equal to 1.3 eV.
JETP LETTERS      Vol. 74      No. 9      2001
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evidence for the insulating effect of the diamond-like
interlayers in the carbon superlattice. Thus, the poly-
merization of (6, 6) nanotubes with sp3 hybridization of
one-half of their atoms results in the transition of the
carbon SWNT material from metallic to semiconduct-
ing state.

We next consider structure B, which is formed by
the polymerization of (6, 6) tubes through the hexagon–
hexagon linkage [15], i.e., through the formation of six
rows of hexagonal prisms formed by the sp3 atoms
along the nanotube axis (Fig. 3). The parameters of a
hexagonal unit cell of this P-SWNT crystal are a =
9.883 Å and c = 2.634 Å [inequivalent atoms C(1)
0.377, 0.089, 0 and C(2) 0.330, 0.182, 0.5]. Within the
tube, the interatomic bond lengths (in Å) are d11' =
1.522, d12 = 1.539, and d22' = 1.476, and the bond
lengths between the tubes are d11'' = 1.557 and d22'' =
1.561. The crystal band structure (Fig. 3) has a gap ∆ =
5.8 eV, which is close to the diamond energy gap. The
calculated cohesive energy E = –6.11 eV/atom indi-
cates that this compound is less stable than structure A,
in the same way as the diamond structure relates to the

Fig. 3. (top) Perspective drawing and (bottom) band struc-
ture of crystal B formed by the (6, 6) carbon nanotubes with
hexagon–hexagon links. The energy gap at the Γ point is
equal to 5.8 eV.
JETP LETTERS      Vol. 74      No. 9      2001
graphite structure. However, a value of 2.16 g/cm3

found for the density of structure B is only 1.21 times
larger than the corresponding value in the molecular
crystal and, hence, is slightly smaller than for A. This
fact can be explained by the properties of the structure
framework of A, where the graphite strip of a nanotube
is bent and its curvature changes upon the [2 + 2]
cycloaddition [4]. For this reason, structure A may be
better defined as a hexagonal “pseudographite” struc-
ture formed by polymerized (3, 3) nanotubes (its frame-
work is schematically shown in the inset in Fig. 2).
Therefore, structure B proves to be the lightest among
the diamond-like structures whose density is typically
3 g/cm3 [9].

(12, 0) P-SWNT. Let us now consider structure C,
which is formed by the polymerization through the [2 +
2] cycloaddition between semimetallic zigzag (12, 0)
tubes in the close-packed molecular SWNT structure
with density ρ0 = 1.67 g/cm3. Of 48 atoms in the unit
cell of this crystal, 12 atoms are sp3-hybridized (Fig. 4).
The value of E = –7.19 eV/atom found for it virtually
coincides with the graphite cohesive energy. The result-

Fig. 4. (top) Perspective drawing of crystal C formed by the
carbon (12, 0) nanotubes joined together by [2 + 2] rings
and (bottom) its band structure. The energy gap at the Γ
point is equal to 1.6 eV.
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ing hexagonal crystal of symmetry D6h has lattice
parameters a = 11.53 Å and c = 4.30 Å and a density of
1.94 g/cm3, which is higher than the density of the
molecular crystal by a factor of 1.16. Three equivalent
atoms C(1) (0.434, 0, 0.177), C(2) (0.331, 0.121,
0.349), and C(3) (0.226, 0.226, 0.169) are linked
together by six bonds: d11' = 1.524, d12 = 1.487, d22' =
1.401, d23 = 1.402, and d33' = 1.450 (Å) within the tube
and d11'' = 1.522 Å between the tubes. Due to the
polygonization of the cylindrical nanotube surface as a
result of breaking it down into strips by the sp3 atomic
chains, electrons cannot freely transfer through the
“insulating interlayers” between the strips, giving rise
to the gap ∆ = 1.6 eV in the electronic spectrum of
structure C (Fig. 4). Note that a similar effect occurs
upon the polygonization of SWNT under a pressure of
3 GPa [16]; for instance, the (12, 0)6 nanotube with a
hexagonal cross section has a band gap of 0.5 eV [17].

It should be noted that, due to the intertube covalent
sp3 bonding, the hardness of P-SWNT crystals consid-
ered above should be high and comparable with the dia-
mond hardness, as in the structures formed from poly-
merized 3D C60 fullerenes [9, 10]. This fact is con-
firmed by the synthesis, from the polymerized SWNT,
of a material whose hardness (62–85 GPa) is compara-
ble to that of cubic boron nitride [6]. The authors of [6]
were of the opinion that they obtained an estimate for
the bulk modulus of this material on the basis of an
analysis of the behavior of its Raman shift. The corre-
sponding value of 460–540 GPa was higher than the
single-crystal diamond value 420 GPa. It is well known
that high-hardness materials are characterized by a high
bulk modulus B. Because of this, we will estimate its
value for a polycrystalline P-SWNT structure assuming

that it is quasi-isotropic, i.e., that B = ρ(  – 4/3 ).
For structure C with the nanotube channels, whose
sizes coincide with those of C60 fullerenes and the “dia-
mond” bridges between them (the ratio sp2/sp3 = 3), one
can assume that the longitudinal velocity v l ≈ 21 cm/s
is close to the value of v l for a graphite sheet (the main
contribution comes from the rigid sp2 bonds) and the
transverse velocity v t ≈ 12 cm/s is close to the value of
v t in diamond (the main contribution comes from the
sp3 bonds), similar to [10]. The estimate gives for the
bulk modulus B ≈ 420 GPa, which is close to the results
obtained in [6]. The detailed calculations of phonon
spectra of the structures considered will be published
elsewhere.

In summary, the polymerization of single-wall car-
bon tubes with a nanometer diameter has been modeled
in this work, and the geometrical arrangement of atoms
in the polymeric SWNT structures is calculated. In par-
ticular, a novel tetrahedral (diamond-like) carbon struc-
ture B with nanotube pores has been considered. It is

v l
2 v t

2

shown that the electronic spectrum of a crystal formed
by carbon nanotubes undergoes substantial modifica-
tion upon the transition from the molecular phase to the
polymerized phase, namely, the metallic state should
change to a semiconducting state.
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The concept of the theory of measurement and choice of quantum alternative is considered, according to which
the outcome of a particular measurement is determined by the reservoir (detector) state. The way of deducing
standard (probabilistic) quantum-mechanical interpretation rules is discussed, with special emphasis on the the-
oretical demonstration of the wave-function reduction phenomenon. The method of resolving the “Schrodinger
cat” paradox is suggested. The interrelation between the mechanisms of formation of shot and flicker noises
and the role of reservoir in the formation of quantum-mechanical probability is discussed. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 03.65.Ta; 72.70.+m
The long-standing problem of interpretation of
quantum mechanics (QM) has not yet been completely
resolved [1]. The proof of wave-function reduction is
the key issue in the justification of the standard proba-
bilistic interpretation. However, at present, no theoreti-
cal calculation exists1 that could clearly demonstrate
wave-packet reduction (WPR).2 

In this work, the problem of QM interpretation on
the conceptual level and the possible theoretical dem-
onstration of WPR are discussed.

In the standard interpretation, either the WPR prob-
lem is considered in isolation from theory or the reduc-
tion phenomenon is, in fact, postulated. Let us, for
example, cite the textbook of quantum mechanics writ-
ten by Landau and Lifshitz [2]. In the description of the
measurement process (as a unitary evolution of a sys-
tem), we are led to the point where a wave function
appears as a superposition of states corresponding to
different readings n of a classical instrument {i.e., as a
state of the type of “Schrodinger cat” (SC), which
occurs in the superposition of the living and dead states;
see [3]}:

where x and X are the variables describing, respectively,
the particle and the instrument. The authors of the book
proceed, “Now, the classical nature of an instrument
and the dual role of classical mechanics as a limiting
case and, simultaneously, foundation of quantum
mechanics come into play … Due to the classical nature
of an instrument, its reading at each instant of time …
has a certain definite value. One can thus argue that the

1 To my knowledge.
2 Some data concerning the decoherence are often regarded as evi-

dence of this phenomenon; one such example with the decay of
the off-diagonal part of density matrix is considered in the text.

ψ An x( )Φn X( ),
n

∑=
0021-3640/01/7409- $21.00 © 20471
post-measurement state of a system “instrument + elec-
tron” is, in fact, described … only by a single term that
corresponds to [a particular] reading of the instrument.”

I would also like to add that the instrument, gener-
ally, shows a new value in every next measurement, so
that one is forced to use the probabilistic description in
QM.

Therein lies the central point of the problem. This
phenomenon is usually referred to as wave-packet
reduction (or wave-function collapse), and the chal-
lenge is that nobody knows how to describe this process
theoretically. The way of demonstrating technically the
WPR will be discussed at the end of this article; never-
theless, the following important conclusions can be
drawn from the very assumption that the WPR exists.

If the WPR results from the unitary evolution of the
“particle + reservoir” system, then, for a given state of
the system, the result may only be unique; i.e., which
alternative is precisely realized should become clear
from the final wave function. Accordingly, the outcome
of “measurement” should be determined by the initial
conditions.

Inasmuch as it is assumed that the particle wave
function is identical in different measurements, one
should naturally arrive at the conclusion that it is the
reservoir state which determines the outcome of mea-
surement.

As to the wave function, it specifies the frequency
(probability measure) of a respective outcome. We can
say that the degrees of freedom of a reservoir play the
role of nonlocal hidden Bohm variables in our
approach, but the classical reservoir is described not by
the “hidden” but by the explicit variables. A one-to-one
correspondence between the initial state of the system,
“reservoir + particle,” and the outcome of measurement
is provided by the unitary quantum dynamics of the
001 MAIK “Nauka/Interperiodica”
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system. A similar concept has already been proposed
by Zurek (see review [4]).

I state, in effect, that the nature of quantum proba-
bility is the same as that of classical probability in, e.g.,
flipping a coin. Whereas the measure of the subspace of
initial states for which the coin falls exactly on its edge
is vanishingly small in the classical case, in the quan-
tum case this should correspond to the smallness of the
measure of initial states evolving into the SC-type state,
i.e., into the superposition of macroscopically distin-
guishable states. Note that quite the reverse is assumed
in the many-world interpretation of Everett III [5],
according to which the initial states evolving into the
superpositions of distinguishable macroscopic states
are typical.

Flicker noise. We now present a qualitative argu-
ment in favor of the fact that it is the reservoir which is
responsible for the outcome of measurement. If the lat-
ter was influenced not only by the particle wave func-
tion but also by the reservoir state, it would be natural
to assume that this influence reduces the accuracy of the
“wave function squared” rule and renders it regular
only in the idealized situations. Such is indeed the case,
and this phenomenon is known as flicker (or 1/f) noise
(hereinafter FN). This noise appears in all nonequilib-
rium processes, and the preparation and subsequent
detection of a large number of particles in one of the
states can be regarded as an example of such a process.
In the presence of FN, the error rapidly increases with
time t, δN ∝  t (the power of time changes if the spectral
density deviates from 1/f), thereby limiting the highest
attainable measurement accuracy. The FN mechanisms
in the vast majority of “reasonable” theories amount to
the interaction of the detected particles (e.g., electrons
in a conductor) with a large number of other degrees of
freedom (phonons, photons, impurities, etc.). These
degrees of freedom provide for a “flicker” in time,
including that on very large time scales. A demonstra-
tive example is provided by the theory of FN in an elec-
tronic system interacting only with photons [6]. In this
case, there is only one reservoir whose interaction with
electrons gives rise to both FN and WPR.3 

Shot noise. It is customary to assume that, at low
temperatures, shot noise appears due to the “quantum-
mechanical probability” [7]. Inasmuch as this probabil-
ity is assumed to be caused by the reservoir, one can
state that the interaction with the reservoir is decisive in
the appearance of shot noise.

We now discuss the problem of the theoretical dem-
onstration of WPR in more detail. The use of a particu-
lar model with the aim of tracing the evolution of the
total wave function in an explicit form and demonstrat-
ing the WPR and the fact that the outcome (e.g., particle
location) depends on a particular reservoir state would

3 More precisely, we assert that the degrees of freedom localizing a
particle give rise to flicker noise, whereas the reverse is not neces-
sarily true: the degrees of freedom relevant to FN may not be cru-
cial to the WPR.
be the most direct way in this respect. A more standard
way consists in the calculation of some quantities aver-
aged over the reservoir state and unambiguously point-
ing to the WPR. We explore this issue by the example
of a particle in a double-well potential (DWP) embed-
ded into a reservoir. This problem was investigated by
many authors [8]. In principle, it may serve as a model
tool for the description of the measurement process (in
the limit of “strong” reservoir) and the demonstration
of the transition from quantum to classical behavior.

In the DWP problem, one is usually interested not in
the exact coordinate of a particle but in its presence in
either of the wells, and the difference P(t) = PL(t) –
PR(t) in the probabilities (averaged over the reservoir
states) of finding the particle in each of the wells is cal-
culated. The fact that, at zero temperature, this differ-
ence becomes zero at t = ∞ (in a “weak” reservoir,
according to [8]) means that PL(t) = PR(t) = 1/2, and,
hence, no localization occurs. At a nonzero tempera-
ture, the study of P(t) (averaged over the initial reser-
voir states) is insufficient for our purpose. For instance,
it can turn to zero at large times by different ways. One
may imagine that, depending on the reservoir state,
either PL(∞) = 1 and P(∞) = 1 or PR(∞) = 1 and P(∞) =
–1 (as we assume for the “strong” reservoir), so that one
obtains P(∞) = 0 only after averaging over all possible
reservoir states. However, PL(R)(∞) = 1/2 is also not
improbable, or there is a certain distribution function
for the probabilities, while the final states are of the SC
type, i.e., are coherent superpositions of the left and
right states. Note also that the decay of the off-diagonal
elements of density matrix

(ρβ, β are its diagonal matrix elements in a certain basis
set β) also does not rule out the delocalized states of the
SC type. Indeed, if the wave function has the form

with

and

then one can verify that ρ(xL, xR) = 0 for any coefficients
aL(R).

ρ xL xR,( ) ρβ β, Ψβ xL X,( )Ψβ* xR X,( )
X β,
∑ 0= =

Ψ x X,( ) aLΨL x X,( ) aRΨR x X,( ),+=

XΨL xL X,( )ΨR xR X,( )d∫ 0,=

XΨL R( )* xL R( ) X,( )ΨL R( ) xL R( ) X,( )d∫ 1,=

XΨL R( )* xL R( ) X,( )ΨR L( ) xL R( ) X,( )d∫ 0,=
JETP LETTERS      Vol. 74      No. 9      2001



RESERVOIR AS A SOURCE OF PROBABILITY IN QUANTUM MECHANICS 473
The localization (WPR) phenomenon can be dem-
onstrated after proving the equality

(1)

The quantity L may serve as an indicator, because it
becomes zero only when the SC-type states are
excluded (or the measure of such states becomes zero).
In the more general case, where the particle coordinate
can take many values (as in quantum diffusion [9]), the
decay of the quantity

(2)

where x1 ≠ x2, may serve as a WPR indicator.

Let us now take the DWP phenomenon as an exam-
ple to discuss the problem analogous to the SC paradox.
Assume that, for a certain reservoir state and fixed par-
ticle position at x = xL or x = xR, the localization (WPR)
occurs in the final state. To deduce the “psi squared”
rule, one must consider the states for which the particle
is initially in the superposition state. Assume that the
initial density matrix can be represented as a direct
product of the density matrix of the particle in a pure
state (a certain superposition of the left and right states)
and a certain density matrix of the reservoir. Then it is
clear, even without calculations, that, due to linearity,
the final state will also be a superposition and will not
be localized. In actuality, this is just the SC problem. It
is worthy of note that the argument appealing only to
the linearity of quantum mechanics is a strong one, so
that Schrödinger’s mental construction cannot be
“bypassed” with ease. To do this, we propose the fol-
lowing variant. I suggest that the state of a system in
which a linear superposition is prepared includes, in
actuality, a new preparation-reservoir state, which is
not a linear superposition of the “typical” reservoir
states responsible for the preparation of a particle either
on the left or on the right. In other words, to every initial
superposition (spin polarization angle, etc.) there is a
unique state of the macroscopic preparation reservoir,
whose effect cannot be ignored. This can be understood
from the mere fact that the experimental check of a
change in the probabilities of a particle being detected
is meaningful only if the possibility exists of comparing
with different readings of the instruments controlling
the process of superposition preparation; i.e., the states
of preparation reservoirs (associated with the instru-
ments) must be macroscopically distinguishable. This
simple, although very important fact must be taken into
account when describing the measurement technique.
As applied to the DWP problem, one should explicitly
consider the way of preparing a superposition of the left
and right states (or, at least, introduce different “replicas”

L PLPR〈 〉=

=  ρβ β, Ψβ xL X,( ) 2 Ψβ* xR X ',( ) 2

X X ' β, ,
∑ 0.=

L x1 x2,( )

=  ρβ β, Ψβ x1 X,( ) 2 Ψβ* x2 X ',( ) 2

X X ' β, ,
∑ 0,=
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of the Hamiltonian or of the space of states). Of course,
it seems somewhat strange that the state of preparation
reservoir must be taken into account for the description
of measurement, which, possibly, is made far from the
preparation site. This question concerning the quantum-
mechanical nonlocality will be discussed elsewhere.

It follows from the above arguments that, when pre-
paring the SC, it would be well to start with a linear
superposition of macroscopically distinguishable states
of the preparation reservoir. However, this is impossible.
For the same reasons, one cannot use the results (I am
aware of) obtained for the DWP in [8], where a particle
was located in one of the wells for an infinitely long time
(and, hence, “polarized” the reservoir), to draw any con-
clusions about the behavior of a particle which was ini-
tially in the practically attainable delocalized state.

Note in conclusion that the detailed discussion of
the nonstandard interpretations (hidden parameters or
many-world interpretation [5]) and philosophical
aspects associated with the interpretation of QM were
avoided in this letter owing to space restrictions. Some
of these issues are discussed in [3, 10].

I am grateful to Vik. Dotsenko, A. Ioselevich,
M. Feœgel’man, and O. Generozova for helpful discus-
sions, which helped me more clearly formulate the con-
cept of the theory of measurement. This work was sup-
ported by the Russian Foundation for Basic Research
(project no. 00-02-16617), the Ministry of Science
(project “Physical Foundations of Quantum Calcula-
tions”), the Scientific Foundation of the Netherlands
(grant for the collaboration with Russia), and the Swiss
Scientific Foundation.
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1. Introduction. Investigation of electron–phonon
interaction is one of the central problems in studying
two-dimensional (2D) electron systems. The data on
this interaction are of great importance in the develop-
ment and use of a large group of semiconductor
devices, for example, detectors based on the electron
heating effect [1, 2], and also allow one to considerably
extend the understanding of relaxation processes in
such systems. Numerous investigations demonstrate
that the electron–phonon interaction and the energy
relaxation rate in low-dimensional semiconductors dif-
fer essentially from those in the case of bulk materials.
Basically, the modification of electron–phonon interac-
tion is associated with a change in the electron energy
spectrum, because the quantization of the electron
energy in the direction perpendicular to the heter-
oboundary plane becomes important. The phonon
energy spectrum in structures with a 2D gas does not
change to a first approximation, and the phonons them-
selves remain three-dimensional, because there is no
boundary for phonons between the 2D layer and the
bulk material in this approximation. However, as a
result of the change in the electron energy spectrum, the
conservation laws for energy and momentum impose
certain restrictions on the spectrum of phonons inter-
acting with electrons; this fact must be taken into
account in studying electron–phonon interaction.
Investigations of a 2D layer at the boundary of an
AlGaAs/GaAs heterojunction are of most interest
among experimental works. This material is character-
ized by the highest possible mobility of electrons at low
temperatures as compared to other materials, which
allows electron–phonon interaction in the case of the
0021-3640/01/7409- $21.00 © 20474
energy relaxation of 2D carriers to be investigated with
great accuracy.

2. Electron–phonon interaction in a 2D gas under
equilibrium conditions and strong heating. Theoret-
ical investigations into electron–phonon interaction in
two-dimensional structures have long been carried out.
Either the temperature dependence of the mobility or
the dependence of the energy loss power per electron
Qe on the effective temperature of electrons is com-
monly considered in these works (see, for example, [3–
7]). A typical plot of mobility as a function of tempera-
ture is shown in Fig. 1 [8]. Both theoretical curves of
the contribution to the mobility due to scattering by
phonons and experimental data for an AlGaAs/GaAs
heterostructure are presented here. It is evident in the
figure that the mobility at low temperatures (T < 10 K)
is not determined by electron–phonon interaction. The
decisive factor in restricting the mobility of carriers is
electron–impurity scattering. As the temperature
increases, scattering by acoustic phonons becomes
more and more prominent. In the cleanest structures,
the characteristic temperature separating the tempera-
ture region of scattering by impurities from the region
in which acoustic electron–phonon interaction domi-
nates shifts toward lower temperatures. It is electron–
phonon interaction that determines theoretically the
highest possible mobility of the 2D electron gas in
AlGaAs/GaAs heterostructures. It was shown in [9, 10]
that this value comprises µ = 3 × 107 cm2 B–1 s–1 at T =
4.2 K for the 2D concentration of electrons nS = 4.2 ×
1011 cm2. In the region of high temperatures, the mobil-
ity of the 2D electron gas rapidly drops as the tempera-
ture increases. Scattering by polar optical phonons is
001 MAIK “Nauka/Interperiodica”
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the predominant scattering process at high tempera-
tures.

A detailed theoretical analysis of the dependence of
the energy loss power per electron on the electron tem-
perature is given by Karpus [11–14]. Considering vari-
ous temperature regions for the 2D electron gas of an
AlGaAs/GaAs heterojunction under conditions where
the first subband of size quantization is almost fully
filled (that is, εF ≤ W), Karpus obtained the energy loss
power per electron as a function of the electron temper-
ature Te. In the region of low-angle scattering (kBT !

), the energy loss power turns out to be pro-
portional to the third degree of the electron temperature

Qe ~ . The main mechanism of energy relaxation in
this region is piezoacoustic (PA) interaction. As the
temperature increases, a transition to a linear depen-
dence Qe ~ Te occurs. This dependence is determined by
the coexistence of two mechanisms of scattering,
namely, scattering by the deformation (DA) and PA
potentials.

However, other theoretical estimates also exist for
the temperature dependence of the energy loss power in

the region in which kBT @ , , where
scattering by the deformation potentials becomes more
and more significant. Thus, it was shown in [15, 16] that
scattering by the deformation potential becomes domi-
nant in this region (the contribution of the processes of
PA interaction decreases), and the dependence of the
total energy loss power per electron can be represented

in the form Qe ~ (  – Tγ), where γ = 2.

The process of scattering by polar optical phonons
becomes the predominant process of scattering in
AlGaAs/GaAs heterojunctions at high temperatures.
For example, this process was studied theoretically in
[17–22]. However, only estimates of the temperature
region in which relaxation processes with the participa-
tion of optical phonons dominate are given in these
works. Thus, it was shown in [22] that the dependence
of the energy loss power on the electron temperature in
the region of temperatures lower than 40 K is deter-
mined by the scattering of electrons by the deformation
potential. Scattering by polar optical phonons is the
mechanism that determines the temperature depen-
dence of Qe in the temperature region T > 50 K.

A great many experimental studies have been
devoted to measuring the energy relaxation rate of 2D
electron gas in AlGaAs/GaAs heterostructures. How-
ever, measurements of energy losses Qe under strong
heating conditions as a function of the electron temper-
ature Te have long remained a unique way of determin-
ing the energy relaxation rate. As an illustration of this

8msλ
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2εF 8msλ
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method, Fig. 2 displays curves τe(Te) obtained using the
known relationships

τe Te( )
dε

dQe Te( )
-------------------, dε

π2kB
2 TedTe

3εF
--------------------------= =

Fig. 1. Temperature dependence of the mobility: theoretical
curves and experimental data for two samples of
AlGaAs/GaAs heterostructures (from [8]).

Fig. 2. Temperature dependence of the energy relaxation time.
Data from s [23], n [15, 16], e [26], and j [9, 10, 28–30].
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from the results of measuring Qe(Te) in [15, 16, 23].
This figure demonstrates that the error arising in the
determination of the energy relaxation time is rather
large (~20%). Therefore, based on the data obtained, it
is difficult to separate temperature regions in which var-
ious mechanisms of electron–phonon interaction dom-
inate. Moreover, the accuracy of the results reported in
[15, 16, 23] is limited by the method of determining the
electron temperature in heterostructures by the damp-
ing of Shubnikov–de Haas oscillations, which is hardly
operative at Te > 15–20 K, that is, under conditions
where oscillations are essentially suppressed.

Experiments on determining the characteristic life-
time of an optical phonon τLO from the luminescence
due to the cooling of carriers under pulse interband
excitation are close to these works [24–26]. These
experiments can give quantitative data on the energy
relaxation time only in the region where processes with
the participation of optical phonons are pronounced
rather well, that is, in the temperature range Te > 20 K.
The interpretation of data in this case is also compli-
cated by the fact that the measured values of τLO for het-
erostructures depend significantly on the exciting quan-
tum energy, namely, on its closeness to the band gap
energy of the semiconductors that compose the hetero-
junction. The values of τe obtained from [26] are pre-
sented in Fig. 2. It is evident that relaxation processes
with the participation of optical phonons dominate at
temperatures above 40 K. However, in the region of
temperatures Te < 40 K, the Raman lines are only
slightly pronounced in the case of the pulse interband
excitation of carriers, and experiments on determining
the effect of optical phonons on the scattering of hot
carriers turn out to be impossible.

Fig. 3. Typical frequency dependence of the photoconduc-
tivity signal from [10]. The arrow indicates the value of f at

which ∆U = ∆U0/ .2
A more direct method for determining τe based on
measuring the time dependence of resistance relaxation
in the region of developed Shubnikov–de Haas oscilla-
tions upon passing short electric pulses through the
sample was used for determining the energy relaxation
time of electrons in the 2D gas of AlGaAs/GaAs hetero-
junctions in [27]. The energy relaxation of 2D carriers
was studied in the region in which acoustic scattering
dominated (the temperature range T = 4.2–14 K), and
the estimate τe = 0.5 ns was made. Unfortunately, the
effect of a rather strong magnetic field (2–3 T) on relax-
ation processes was not taken into account in this case.
The upper bound on the temperature arose because the
method used for determining the energy relaxation time
did not work at temperatures at which Shubnikov–de
Haas oscillations are essentially suppressed.

Direct measurements of photoresponse relaxation in
the millimeter wavelength range allowed the authors [9,
10, 28–30] to determine the inelastic relaxation times
of 2D carriers in AlGaAs/GaAs heterostructures under
quasi-equilibrium conditions. The essence of the
method employed is as follows. The absorption of elec-
tromagnetic radiation from two sources of coherent
radiation displaced with respect to each other in fre-
quency by ∆f leads to electron heating, a change in the
mobility, and a change in the dc resistance of the sam-
ple. A photoconductivity signal ∆U arises at a fre-
quency of ∆f. The photoresponse relaxation time and,
hence, the energy relaxation time of carriers are deter-
mined by the frequency dependence of ∆U.

A typical amplitude–frequency characteristic of the
photoconductivity signal is presented in Fig. 3. The
energy relaxation time is determined from the fre-
quency dependence

as τe = (2π∆f0)–1, where ∆f0 is the frequency at which

∆U(∆f0) = ∆U(0)/ . This frequency is shown by the
arrow in Fig. 3.

The sensitivity of the apparatus employed allowed
measurements to be performed when an increase in the
temperature of 2D carriers was only ∆Te ≈ 0.1 K at T =
4.2 K.

The dependence τe(T) obtained experimentally for
AlGaAs/GaAs heterostructures with the concentration
of 2D carriers ns = 4.2 × 1011 cm–2 and the electron
mobility µ = 7.5 × 105 cm2 V–1 s–1 at T = 4.2 K is pre-
sented in Fig. 2. According to this dependence, the
entire temperature range may be divided into four
regions. The first region T < 3 K is the region of
decreasing energy relaxation time as τe ~ (Te)–1. As was
shown by Karpus [11], PA scattering predominates in
this region. As follows from the theoretical consider-
ation [11, 31], the second temperature region 3 < T <
10 K corresponds to the coexistence of scattering pro-

∆U f( ) ∆U 0( )

1 2π∆f τe( )2+
--------------------------------------=

2
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cesses determined by the PA potential and DA phonons.
As the temperature increases, scattering by the DA
potential, which is not revealed at low temperatures,
becomes more and more significant, leading to a decel-
eration of the drop in τe as the temperature increases.
According to [15, 16], the constancy of the energy
relaxation time observed in the temperature range 10 <
T < 21 K (the third region) corresponds to the domi-
nance of DA scattering processes [energy losses of the

form Qe ~ (  – T 2)]. The value of the relaxation time
obtained in [10, 28–30] in this region, τDA = 0.6 ns, is
lower than the value predicted in [16] (~0.9 ns) but is
very close to the estimate τe = 0.5 ns obtained from the
first direct measurements [27].

The authors of [28–30] associate the high-tempera-
ture range of the curve τe(T), where a sharp drop in the
energy relaxation time is observed (T > 21 K), with the
effect of optical phonons. Actually, the data obtained on
τe are close to the theoretical temperature dependence
[22]. The characteristic lifetime of an optical phonon
determined at T > 35 K was found to be τLO ~ 4.5 ps.
This value is 30 times greater than the spontaneous
emission time of an optical phonon (equal to 0.15 ps
according to an estimate made by the authors of [17]),
which is due to processes of phonon reabsorption by
electrons.

The dependence of the energy loss rate on the elec-
tron temperature can be calculated from the results
obtained by the authors of [9, 10, 28–30] (Fig. 4).
Experimental data for samples with close concentra-
tions taken from [16, 23, 36] are also plotted in Fig. 4.
The values of Qe obtained under strong dc heating are
in a good agreement with the values calculated from the
values of τe obtained under quasi-equilibrium condi-
tions. This agreement indicates that τe is actually a
function of only the electron temperature in the entire
temperature range.

Note that the contribution of optical phonons to the
temperature dependence of the energy relaxation time
manifests itself as a sharp drop in τe at T > 25 K (Fig. 2).
In the case of measuring the energy loss power per elec-
tron, the effect of optical phonons must be revealed as

a deviation from the relationship Qe ~  [11–14],
which is characteristic of the region of scattering by the
deformation potential. However, it is evident in Fig. 4
that the deviations indicated above are hardly detect-
able within the experimental error even at T ~ 40 K.
Thus, the method used by the authors of [9, 10, 28–30]
for measuring the energy relaxation time provides more
accurate data on the mechanisms of electron–phonon
interaction in 2D systems.

3. Electron–phonon interaction in a 2D gas in a
magnetic field. Because the density of electron states
depends on the magnetic field, the energy relaxation
rate must also undergo oscillations similar to Shubni-
kov–de Haas oscillations. In a real situation, where a

Te
2

Te
2
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system is characterized by disorder, energy relaxation
may proceed through both transitions between Landau
levels and intralevel transitions. Which of these pro-
cesses is determining depends on the experimental con-
ditions [32]. It follows from [33] that the energy relax-
ation rate in the case of intralevel relaxation depends
essentially on the density of states and increases for
electron–phonon transitions occurring in a region of
energies corresponding to a high density of states; that
is, the energy relaxation rate is a maximum when the
Fermi level coincides with a Landau level, and it is a
minimum when εF falls in the region of localized states.

It is shown in [34–37] that the change in the electron
energy spectrum is accompanied by a change in the
spectrum of phonons participating in electron–phonon
interaction in the magnetic field. In the absence of a
magnetic field, electron–phonon interaction involves
phonons whose wave vector is restricted in the direc-
tion perpendicular to the 2D layer by the transverse
layer dimensions q⊥  < 1/d, and q|| < 2kF in the layer
plane, in accordance with the conservation laws for
energy and momentum. In a magnetic field, q|| is also
restricted by the magnetic length q|| < 1/lB, and q||B ≠ 0 !
q||B = 0 for magnetic fields B ≤ 8 T at the typical concen-
tration of carriers nS ≅  5 × 1011 cm–2 in GaAs/AlGaAs
2D structures. Thus, whereas the energy relaxation rate
in the absence of a magnetic field is determined by the
isotropic emission of high-energy phonons, such
phonons can be emitted only at small angles to the mag-
netic field direction in a strong magnetic field. This sig-
nificantly decreases the energy relaxation rate of elec-
trons.

Fig. 4. Dependence of the energy loss power on the electron
temperature. The solid curve corresponds to the calculation
with τe from [9, 10, 28–30]; h data from [23], s data from
[16], and n data from [26].
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Experimental works devoted to studying the energy
relaxation rate of 2D carriers in a magnetic field per-
pendicular to the 2D plane are mainly concerned with
the change in the spectrum of phonons interacting with
electrons in the magnetic field and with their angular
distribution [33–37]. The energy relaxation time τe in
the case of interlevel electron transitions was estimated
in [38] from the results of measuring the occupation of
the Landau levels by magnetotunneling spectroscopy. It
was found equal to ~100 ns in the field B = 4 T, which
is significantly larger than the values of τe correspond-
ing to a zero-field case. Direct measurements of the
energy relaxation time of 2D electrons τe at an
AlGaAs/GaAs heteroboundary at 4.2 K under quasi-
equilibrium conditions in a magnetic field perpendicu-
lar to the 2D plane were performed by the authors of
[39, 40], who used the millimeter spectroscopy tech-
nique discussed above in detail.

The experimental dependence of the energy relax-
ation time on the magnetic field B is displayed in Fig. 5.
It is evident that, even in low magnetic fields, electron–
phonon interaction becomes less efficient as B grows

(  decreases), and the energy relaxation rate at B ≈
1.2 T drops by an order of magnitude compared to its
value at B = 0. This fact is explained by the change in
the spectrum of phonons participating in electron–
phonon interaction, as discussed above.

Oscillations are observed in the (B) dependence
in the region of high magnetic fields (B > 1 T, filling
factor ν < 8). The oscillation depth increases with
increasing B. The values of B corresponding to minima
in the oscillations of the Shubnikov–de Haas resistance
are marked with arrows in the same figure. It is evident

that a minimum in  is observed at values of B corre-
sponding to a minimum of R at B > 2.5 T and to a max-
imum of R at B < 2 T. An analysis of experimental con-

τe
1–

τe
1–

τe
1–

Fig. 5. Dependence of the energy relaxation rate on the
magnetic field B (from [39, 40]). Arrows indicate the values
of the magnetic field corresponding to a minimum in the
oscillation of the Shubnikov-de Haas resistance.
ditions (cyclotron energy, millimeter radiation quantum
energy, and kT) indicates that the energy relaxation of
carriers in magnetic fields B > 2.5 T is accomplished
through electronic transitions inside a Landau level. It
follows from [33] that the energy relaxation rate in the
case of intralevel transitions is minimal when εF falls in
the region of localized states, that is, in the region of a
minimum of R. Interlevel transitions can participate
only in the region of low magnetic fields in the transi-
tion region 1 < B < 2.5 T. These interlevel transitions
are associated with the fact that several Landau levels
become partially filled. In this case, according to [33],
the energy relaxation rate is maximal when the Fermi
level falls in the region of localized states between Lan-
dau levels.

The results of [39, 40] are in accordance with the
results of experiments on heating 2D electron gas by an
electric field in the presence of a magnetic field [32].

The relationship Q ~ (  – T3) is observed in a wide
temperature range. However, starting at a certain value
of Te (which increases with increasing B), the energy
relaxation rate significantly increases. The authors
associate this observation with the emission of phonons
with the cyclotron energy by electrons. They also indi-
cate that transitions of this type are also observed at
αkTe ≈ "ωc, where α assumes values from 2 to 4. This
corresponds to magnetic fields B ~ 1–1.5 T at a temper-
ature of 4.2 K. It follows from [39, 40] that interlevel
electron–phonon transitions start to play the determin-
ing role in the same region of magnetic fields.
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