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We study the Toda field theory with finite Lie algebras using an extension of the Goulian–Li technique. In this
way, we show that, after integrating over the zero mode in the correlation functions of the exponential fields,
the resulting correlation function resembles that of a free theory. Furthermore, it is shown that for some ratios
of the charges of the exponential fields the four-point correlation functions which contain a degenerate field sat-
isfy the Riemann ordinary differential equation. Using this fact and the crossing symmetry, we derive a set of
functional equations for the structure constants of the A2 Toda field theory. © 2001 MAIK “Nauka/Interperiod-
ica”.

PACS numbers: 11.10.Kk
1 1. The Toda field theory (TFT) provides an
extremely useful description of a large class of two-
dimensional integrable quantum field theories. For this
reason, these models have attracted considerable inter-
est in recent years and many outstanding results in var-
ious directions have been established.

TFTs are divided into three broad categories: finite
Toda theories (FTFTs), for which the underlying Kac–
Moody algebra [1, 2] is a finite Lie algebra; affine Toda
theories (ATFTs), for which the underlying Kac–
Moody algebra is an affine algebra; and indefinite Toda
theories (TTFTs), for which the underlying Kac–
Moody algebra is an indefinite Kac–Moody algebra.
The classes of FTFTs and ATFTs are well-studied and
known to be integrable. In addition, the FTFTs enjoy
conformal invariance. A review of the most interesting
developments in ATFTs is presented in [3], where there
is also a list of references to the original papers. The
class of ITFTs is the least studied, as there are still
many open questions regarding the indefinite Kac–
Moody algebras. A special class of the ITFTs, namely
the hyperbolic Toda theories (HTFTs), for which the
underlying Kac–Moody algebra is a hyperbolic Kac–
Moody algebra, were studied in [4], and it was shown
that they are conformal but not integrable.

However, despite all progress in TFTs, there still
remain many unresolved questions and problems. For
example, one may ask what the structure constants of
the conformally invariant TFTs are. In this paper, we
address this question. We focus on FTFs and, in partic-
ular, on the A2 FTT.

In section 2, the A2 FTFT is introduced, some nota-
tions are fixed, and then we continue to show how the

1 This work was submitted by the authors in English.
0021-3640/01/7412- $21.00 © 20569
correlation function of exponential fields in the FTFT
reduces to correlation functions of a free field theory
with conformal W symmetry [5–8]. In section 3, we
prove that, for some special cases of the exponential
fields, the four-point correlation functions which con-
tain a “degenerate” primary field satisfy the Riemann
ordinary differential equation. Then, in section 4, the
conformal bootstrap technique is applied to derive a set
of functional equations for the structure constants of the
A2 FTFT.

2. A2 Finite Toda field theory. We consider the
finite conformal Toda field theory associated with the
simply-laced Lie algebra A2 described by the action

(1)

In this equation, ei (i = 1, 2) are the simple roots of Lie
algebra A2. These define the fundamental weights wi of
the Lie algebra by the equation

The background charge Q is proportional to the Weyl
vector r:

The local conformal invariance of the FTFT with
central charge

S x2 1
8π
------ ∂j( )2 µ e

bei j⋅

i 1=

2

∑ R
4π
------Q j⋅+ + .d∫=

ei w j⋅ δij.=

Q b 1/b+( )r, r wi.
i 1=

2

∑= =

c 2 12Q2+=
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is ensured by the existence of the holomorphic and anti-
holomorphic energy–momentum tensors

It is well known that the FTFTs possess, besides the
standart conformal symmetry, an additional W symme-
try. In particular, the A2 FTFT we are studying in this
paper contains the additional holomorphic and antiho-
lomorphic currents W(z) and  with spin 3, which
generate the W3 algebra.

The vertex operators

are spinless primary fields of the W algebra. Let Ln and
Wn be the Fourier modes of the holomorphic fields T(z)
and W(z). Then

where the conformal dimension ∆(a) is given by

The correlation function of N vertex operators is for-
mally defined by the functional integral

(2)

We introduce the following orthogonal decomposi-
tion of the field ϕ

where j0 is the zero mode and  denotes the part of the
field that is orthogonal to the zero mode:

Now, the integration of the functional integral in Eq. (2)
over zero mode j0 can be done in a fashion similar to
the Liouville case [9] to find

(3)

where S0 is the action of the free field theory,

T z( )
1
2
--- ∂j( )2– Q ∂2j,⋅+=

T z( )
1
2
--- ∂j( )2

– Q ∂2j.⋅+=

W z( )

Va x( ) e2a j x( )⋅=

L0Va ∆ a( )Va, W0Va w a( )Va,= =

LnVa 0, WnVa 0, n 0,>= =

∆ a( ) 2a Q a–( ).⋅=

Ga1 … an, , x1 … xn, ,( ) Dj e
2ai j xi( )⋅

e S j[ ]– .
i 1=

N

∏∫=

j x( ) j0 j̃ x( ),+=

j̃

x2 j̃ x( )d∫ 0.=

Ga1 … an, , x1 … xn, ,( )
µ

8π
------ 

 
s1 s2+ 1

b2 dete
------------------Γ s1–( )Γ s2–( )=

× Dj̃ e
2aij̃ xi( )

x2 e
be1 j̃⋅

d∫ 
 

s1

x2 e
be2 j̃⋅

d∫ 
 

s2

e
S0 j̃[ ]–

,
i 1=

N

∏∫

S0 x2 1
8π
------ ∂j̃( )

2 R
4π
------Q j̃⋅+ 

  ,d∫=
and

Assuming that s1 and s2 both are positive integers,
the remaining functional integral in Eq. (3) can be
reduced to the correlation function of the W3 minimal
model [7, 8]. Unfortunately, the situation is much more
complicated; i.e., in general, s1 and s2 are not positive
integers. However, the solution to the problem is hidden
in the previous observation; supposing that we know
the exact expressions of the structure constants for the
W3 minimal model, we can recover the expressions for
the structure constants of the A2 FTFT by analytic con-
tinuation (similarly to the Liouville case) [10, 11].

3. Four-point correlation functions. Now, let us
concentrate on the following four-point correlation
function:

(4)

where the special vertex operator

satisfies the null-vector equation

(5)

Taking into account the last equation and the explicit
representation of the current W in terms of the field ∂j
(see [8]), we find that the selected four-point correlation
function satisfies the differential equation

(6)

s1 bdeteij( ) 1– –Qe22 k1e22 k2e21–+[ ] ,=

s1 bdeteij( ) 1– –Qe12 k2e11 k1e12–+[ ] ,=

k 2 ai, Q
i 1=

N

∑ Q 0,( ).= =

Va+
z( )Va1

z1( )Va2
z2( )Va3

z3( )〈 〉 Ga+a1a2a3
z z1 z2 z3, , ,( ),=

Va+
z( ) e

2a+ j⋅
, a+ b b/ 3,–( )= =

∆+ 5∆+ 1+( )W 2–[

– 12w+L 1–
2 6w+ ∆+ 1+( )L 2–+ ]Va+

0.=

∆+ 1+( ) ∂2

∂z2
------- Va+

z( )Va1
z1( )Va2

z2( )Va3
z3( )〈 〉

– 2
∆i δi+

z zi–( )2
------------------

1
z zi–
----------- ∂

∂zi

------+
i 1=

3

∑
× Va+

z( )Va1
z1( )Va2

z2( )Va3
z3( )〈 〉

+ 4
Ai

z zi–
----------- Va+

…∂ϕ1Vai
…〈 〉

i 1=

3

∑

+ 4
Bi

z zi–
----------- Va+

…∂ϕ2Vai
…〈 〉

i 1=

3

∑ 0,=
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where

Moreover, for the special ratios

(7)

of the charges ai , Eq. (6) can be further reduced to the
equation

(8)

where A = ±2 i . It is well known that, in
the case of four-point functions, the partial differential
Eq. (8) can be reduced, using the projective Ward iden-
tities [12], to the Riemann ordinary differential equa-
tion

(9)

where ∆ij = ∆i + ∆j – ∆k, (k ≠ i, j), (i, j, k = 1, 2, 3).
4. Functional equations for structure constants.

Now, any four-point function can be explicitly decom-
posed in terms of the three-point function

(10)

Conformal invariance allows us to set z1 = 0, z2 = z, z3 = 1,
and z4 = ∞. As a consequence, the crossing symmetry
condition is written as

δi 2 2i 2a+2 ai2
2 ai1

2–( ) 2ai2 a+1
2 a+2

2–( )+[–=

+ a+2ai1 4a+1 Q–( ) a+1ai2 4ai1 Q–( )– ] ,

Ai 2 2i a+2ai1 a+1ai2+( ),=

Bi 2 2i a+1ai1 a+2ai2–( ).=

ai2

ai1
------ –

a+2

a+1
------- 1

a+2

a+1
------- 

 
2

+±=

∆+ 1+( ) ∂2

∂z2
------- Va+

z( )Va1
z1( )Va2

z2( )Va3
z3( )〈 〉

– 2
∆i δi+

z zi–( )2
------------------

1 A+
z zi–( )

----------------
zi∂
∂

+
i 1=

3

∑
× Va+

z( )Va1
z1( )Va2

z2( )Va3
z3( )〈 〉 0,=

2 a+1
2 a+2

2+

1
2
--- ∆+ 1+( ) d2

dz2
------- 1 A+

z zi–
-------------

zd
d ∆i δi+

z zi–( )2
------------------–

i 1=

3

∑+




+ 1 A+( )
∆+ ∆ij+

z zi–( ) z z j–( )
----------------------------------

i j<

3

∑




× Va+
z( )Va1

z1( )Va2
z2( )Va3

z3( )〈 〉 0,=

Ga1a2a3a4
z z,( )

=  Va1
z1 z1,( )Va2

z2 z2,( )Va3
z3 z3,( )Va4

z4 z4,( )〈 〉

=  C a1 a2 Q a–, ,( )C a a3 a4, ,( )
a

∑

× Fa
a1 a2

a3 a4 
 
 

z z,( )
2

.
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To gain additional information about the structure
constants of the FTFT, we will use the technique sug-
gested in [13]. So, let us assume that a2 = a+; i.e., corre-
lation function (10) includes the degenerate field .
Then the charges of the intermediate channel will take
the following values [7]

(11)

This implies the following “fusion rules”:

It is more convenient to introduce the following
“parametrization” of the intermediate charge (11):

Using this parametrization, we can rewrite Eq. (10) as
follows:

(12)

In this notation, the crossing symmetry relation for
 is

(13)

where we have denoted

and

Ga1a2a3a4
z z,( ) Ga1a2a3a4

1 z– 1 z–,( )=

=  z
2– ∆2z

2∆2–
Ga1a3a2a4

1/z 1/z,( ).

Va+

a11 a+1+ a12 a+2+,( ),

a11 a+1– a12 a+2+,( ), a11 a12 2a+2–,( ).

Va+
Va Va1 a+1+ a2 a+2+,[ ]=

+ Va1 a+1– a2 a+2+,[ ] Va1 a2 2a+2–,[ ] .+

a s( ) a11 sa+1+ a12 3s2 2–( )a+2+,( ),=

s 0 1.±,=

Ga1a+a3a4
z z,( ) C a1 a+ Q a s( )–, ,( )

s 0 1±,=

∑=

× C a s( ) a3 a4, ,( ) Fs
a1 a+

a3 a4 
 
 

z z,( )
2

.

Ga1a+a3a4
z z,( )

Cs a1( )C a s( ) a3 a4, ,( ) Fs
a1 a+

a3 a4 
 
 

z z,( )
2

s 0 1±,=

∑

=  z
4∆2–

Cp a4( )C a p( ) a3 a1, ,( )
p 0 1±,=

∑

× Fp
a4 a+

a3 a1 
 
 

1/z 1/z,( )
2

,

C a1 a+ Q a s( )–, ,( ) Cs a1( )=

C a4 a+ Q a p( )–, ,( ) Cp a4( ).=
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It follows from Eq. (9) that the conformal block must
satisfy the following relation:

(14)

where Mps is a matrix that is determined by the mono-
dromy properties of the differential Eq. (9) or, alterna-
tively, can be determined by the method developed in
[14]. The exact analytic expression of the matrix Mps

can be found in a number of papers [8, 15, 14]. We will
not write down these expressions for the reason of the
limited frame of the paper.

Substituting Eq. (14) into Eq. (13), we find the fol-
lowing functional equations for the A2 FTFT structure
constants:

(15)

provided that a1, a3, and a4 satisfy the constraint (7).
It is important to notice that Eq. (5) admits addi-

tional solutions besides a+. In particular, a+ = (–b,

−b ), a– = (–1/b, 1/b ), and a– = (–1/b, –1/b )
are all solutions to Eq. (5). Therefore, the set of Eqs.
(15) should be complemented by a similar set of equa-
tions obtained for the special case a+ and then added for
each “dual equation” using the substitutions b  1/b
and µ  . The parameter  is defined by the duality
relations [16]

Fs
a1 a+

a3 a4 
 
 

z z,( ) z
2∆+–

=

× MpsFp
a4 a+

a3 a1 
 
 

1/z 1/z,( ),
p 0 1±,=

∑

Cs a1( )C a s( ) a3 a4, ,( )Ms 0, Ms 1,

s 0 1±,=

∑ 0,=

Cs a1( )C a s( ) a3 a4, ,( )Ms 0, Ms 1–,

s 0 1±,=

∑ 0,=

Cs a1( )C a s( ) a3 a4, ,( )Ms 1, Ms 1–,

s 0 1±,=

∑ 0,=

3 3 3

µ̃ µ̃

πµγ
ei

2b2

2
---------- 

  πµ̃γ 2

ei
2b2

---------- 
  ei

2
b

2/2

,=
where γ(x) = Γ(x)/Γ(1 – x).

In principle, in terms of the special function “Upsi-
lon” [10, 11], the complete set of the algebraic equa-
tions derived above for the special cases a+, a+, a–, and
a– allows the computation of all structure constants for
the A2 FTFT. We postpone the difficult problems of the
exact determination of the structure constants and proof
of the uniqueness of the solution for future studies.
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The conditions for the existence of a Lax pair were determined and exact analytic solutions to the nonlinear
evolution equations of the Schrödinger type with complex and nonuniform potentials were found. In particular,
these solutions provide a basis for the soliton management concept in applied problems and solve the problems
of optimal energy accumulation by a Schrödinger soliton in an active medium and soliton amplification in opti-
cal fiber communication lines and soliton lasers. © 2001 MAIK “Nauka/Interperiodica”.
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Optical solitons described by the nonlinear
Schrödinger equation (NSE) are ideal carriers of an
information bit [1–3]. Japanese firm NTT has already
conducted pioneering experiments on information
transmission by optical solitons in the Tokyo Metropol-
itan Network commercial optical fiber net operating in
an ordinary (linear) mode with a rate of 2.4 Gbit/s. In
the soliton mode, the rate of information transmission
through this net was as high as 40 Gbit/s. Even more
impressive results were achieved in laboratory condi-
tions, where one succeeded in transmitting information
with a rate very close to a terabit per second [2, 3].

The optimal amplification of optical solitons, i.e., an
increase in the soliton energy with complete conserva-
tion of information bit and elastic character of their
interaction, is one of the basic problems of fully optical
soliton communication lines (where laser, rather than
electronic, amplifiers are used as retransmitters).

It should be emphasized that, besides the applied
importance in optical solitonics, the search for new
integrable models and their soliton solutions is of gen-
eral physical interest, because the soliton approach is
universal in different fields of modern physics [4].

The problem of soliton amplification has a rather
long history. After Zakharov and Shabat had proved in
their pioneering works [5, 6] that the NSE is completely
integrable and found canonical soliton solutions to this
equation, Karpman et al. [7, 8] developed the adiabatic
perturbation theory for solitons and demonstrated that
the adiabatic amplification (or absorption) of solitons in
the almost integrable systems is always accompanied
by tail growing, which results in the loss of the elastic
character of interaction between solitons in actual opti-
cal experiments [9]. The use of the inverse scattering
method for the adequate analysis of nonlinear wave
fields created during the amplification of optical soli-
0021-3640/01/7412- $21.00 © 20573
tons showed [10] that energy increase in a soliton pulse
is accompanied by an increase in the fraction of a non-
soliton radiation component. Moreover, in the nonadia-
batic amplification regime, new extra solitons are cre-
ated (see also experimental works cited in [9]). A solu-
tion to the problem of optimal soliton amplification has
come to a deadlock; indeed, experiments on the gener-
ation of high-energy solitons are being conducted in
homogeneous nonconservative systems, which are
described by nonintegrable models. This fact basically
rules out the possibility of amplifying a soliton as a
whole with the conservation of its unique properties.

New solutions found in this work to the problem of
amplifying optical solitons demonstrate that the “ideal”
(both adiabatic and nonadiabatic) amplification of a
soliton is really possible if the dispersion and nonlinear
properties of a nonconservative system are specially
controlled in an experiment.

Let us demonstrate that the problem of amplifying
Schrödinger solitons in inhomogeneous and noncon-
servative systems is integrable (has the Lax representa-
tion) and find the conditions for the existence of its
exact analytic solutions.

The method of the search for and solution to integra-
ble nonlinear differential equations, named, after its
authors, the Zakharov–Shabat [5, 6] and Ablowitz–
Kaup–Newell–Segur [11] method of spectral problem,
has become one of the important achievements in math-
ematical physics. Let us represent the desired nonlinear
evolution equation as the condition for integrability of
a pair of linear differential equations, to which the
inverse scattering method can apply:

(1)∂ L̂
∂t
------ ∂ Â

∂x
------- L̂ Â,[ ]+– 0.=
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This equation must be valid for all values of spectral
parameter Λ and is known as the generalization of Lax
representation (Lax pairs [12]) defining the set of equa-
tions for the scattering potential q(x, t). Considering the
general case of the time-dependent spectral parameter

and taking matrices  and  in the form

(2)

where

(3)

(4)

(5)

one can easily verify that Eq. (1) generates the nonlin-
ear evolution equation for the potential q(x, t) of the
form

(6)

This equation has Lax representation (1)–(5) and dif-
fers from the canonical NSE [5, 6] by the presence, in
addition to the spatiotemporal nonuniform potentials
α(t)x, D(t), and R(t), of the complex potential (gain
coefficient)

(7)

which is determined by the Wronskian W[R(t), D(t)] =
R  – D  of two arbitrary functions: dispersion D(t)
and nonlinearity R(t).

Finally, the set of linear equations to be solved by
the Zakharov–Shabat inverse scattering method has the
form

(8)

L̂ Â

L̂ iΛ t( )– R t( )/D t( )q x t,( )

β R t( )/D t( )q∗ x t,( )– iΛ t( )
,=

Â A B

C A–
= ,

A i=

× α t( )x
β
2
---R t( ) q x t,( ) 2– Γ t( ) V t( )Λ D t( )Λ2+ + + ,

B
R t( )
D t( )
----------

i
2
---D t( )

x∂
∂

V t( )– D t( )Λ–– q x t,( ),=

C β R t( )
D t( )
----------

i
2
---D t( )

x∂
∂

V t( ) D t( )Λ+ +– q∗ x t,( ),=

i
∂q
∂t
------ 1

2
---D t( )

∂2q

∂x2
-------- βR t( ) q 2q 2α t( )xq–+=

+
i
2
---W R t( ) D t( ),[ ]

R t( )D t( )
---------------------------------q iV t( )

∂q
∂t
------ 2Γ t( )q.––

iG t( )
i
2
---W R t( ) D t( ),[ ]

R t( )D t( )
---------------------------------,=

Dt' Rt'

∂ψ1 x t,( )
∂x

--------------------- –iΛψ1
R t( )
D t( )
----------q x t,( )ψ2,+=

∂ψ2 x t,( )
∂x

--------------------- –β R t( )
D t( )
----------q∗ x t,( )ψ1 iΛψ2,+=
(9)

For the canonical case of constant coefficients
D(t) = R(t) = 1 and spectral parameter ∂Λ/∂t = α(t) =
α0 = const, Eq. (6) is greatly simplified and takes the
form of the NSE for an Alfvén wave in an inhomoge-
neous plasma [13]:

(10)

Historically, particle-like solutions to Eq. (10) were
first obtained by Chen and Liu [13] and were the first
example of the generalization of the Zakharov–Shabat
problem to the case of a time-dependent spectral
parameter. The solutions found to Eq. (10) substantially
extended the notion of a soliton and generalized it to the
accelerated motion of a soliton in an external potential
and its reflection from the potential.

In our case of variable and linearly independent
coefficients (7), the solution to Eq. (6) displays one
more new property of a soliton: solitons not only can be
accelerated but they can also be amplified, remaining
“true” solitons (conserving the elastic character of
interaction upon energy accumulation).

We illustrate new possibilities by an example of the
amplification of optical solitons. The transition to the
problems of optical solitonics is accomplished in
Eqs. (1)–(10) by the substitution [9]

where τ0 is the initial pulse duration; Z is the spatial
coordinate normalized to the characteristic length of
dispersive pulse smearing; and X is the dimensionless
time in the frame of reference moving with the group

∂ψ1 x t,( )
∂x
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velocity for pulse solitons, or it is the transverse coor-

dinate for spatial beam solitons. The function 
is the dimensionless complex wave-packet envelope.

In practical applications, the following completely
integrable models are of primary interest for the ampli-
fication of optical solitons in inhomogeneous systems.

(i) The basic equation

(11)

(ii) The equations derived from Eq. (11) and
describing the energy accumulation by a soliton at an
arbitrary gain G(Z):

(12)

(13)

where the functions G(Z), R(Z), D(Z), Φ(Z), and F(Z)
are arbitrary once integrable and differentiable real
functions.

Analytic solutions to Eq. (11) for so-called funda-
mental bright and dark (at rest) solitons have the form

(14)

Let us consider some particular examples.
(i) Nonlinear tunneling of a Schrödinger soliton

through a solitary amplification (absorption) line. We
represent complex potential iG(Z) (7) in Eq. (11) in the
form of a solitary amplification line, e.g., as

(15)

where the parameter g accounts for linear losses in the
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system. This model is completely integrable if the func-
tion D(Z) (referred below to as the dispersion control
function) has the form

(16)

The dynamics of soliton amplification in the para-
metric region (15) and (16) is shown in Fig. 1. The pro-
cess of soliton amplification is nontrivial, because the
potential jump G(Z) (15) necessitates the correspond-
ing jump in D(Z) (16) even in the absence of linear radi-
ation losses in the system.

The soliton amplification process becomes even
more interesting in the presence of nonzero linear
losses in the system. It follows from Eq. (16) that there
is a g value for which a soliton initially damped in the
line completely recovers its parameters (see Fig. 1).

(ii) Nonlinear tunneling of a Schrödinger soliton
through dispersion (or nonlinear) wells and barriers.
Let us represent the real function D(Z) [or R(Z)] in the
form of a solitary potential barrier, e.g.,

(17)

In this case, model (11) is completely integrable if the
complex potential iG(Z) has the form of Eq. (7), where

(18)

The dynamics of soliton tunneling through dispersion
barrier (17) is shown in Fig. 2.

Thus, there are completely integrable generalized
NSE models for the amplification of Schrödinger soli-
tons (11)–(18). Computer simulation with a great vari-
ety of functions satisfying the condition for complete
integrability of model (11) corroborates the conclusion
that interaction between the resulting solutions is elas-
tic. Figure 3 presents a typical example of elastic inter-
action between Schrödinger solitons during the ampli-
fication.

The found Lax representation and the exact analytic
solutions for model (11) provide a theoretical basis for
the idea of soliton management [14, 15]. Indeed, as fol-
lows from Eqs. (11)–(13), any change in some parame-
ter of a soliton system (this may be a soliton communi-
cation line or a soliton laser) requires the appropriate
correction of the other parameters. A change in only
one parameter, e.g., the periodic sign alternation for the
dispersion parameter D(Z) in a system with so-called
fiber dispersion management [2, 3], leads to the loss of
complete integrability by a soliton system. In this con-
nection, the recommendations justified in [16] for the
designers of soliton communication lines are of funda-
mental importance. The solutions found in this work
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differ cardinally from [14, 15] in that their experimental
implementation does not require any initial frequency
modulation for a soliton pulse, whereas the solutions
obtained in [14, 15] exist only in the presence of this

Fig. 1. Nonlinear tunneling of a Schrödinger soliton
through potential barrier (15) (solitary amplification line):
(a)–(c) the gain G(Z) and the corresponding dispersion
parameter D(Z) as functions of length Z for R(Z) = 1, Z0 =
50, δ = 1.0, and g = 0 and –0.038; (d) and (e) demonstrate
the formation of a high-energy soliton in parametric region
(15) and (16) for R(Z) = 1, Z0 = 50, δ = 1.0, and g = –0.038;
and (e) logarithmic contour map for soliton intensity l = 0.1,
0.01, ∞.
modulation, the latter being uniquely related to the
duration and amplitude of the soliton pulse, which vary
following the spatial variations of phase modulation of
the channeled radiation.

In addition, the specificity of the aforementioned
phenomena of Schrödinger soliton nonlinear tunneling
through the complex (amplifying) potentials and gener-
ation of high-energy solitons is that the soliton duration
remains constant in the course of energy accumulation.
This fact is highly important for soliton communication
lines [2, 3].

Fig. 2. Nonlinear tunneling of a Schrödinger soliton
through the solitary dispersion barrier (17): (a) the potential
barrier shape D(Z) and the corresponding potential G(Z) as
functions of length Z for ε = 2.0, δ = 1.0, Z0 = 5, and R(Z) =
1; and (b) spatiotemporal dynamics of a soliton pulse.
Lower panel: equipotential curves for D = 1, 0.1, ∞.
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Fig. 3. Nonlinear interaction dynamics between (a) in-phase

and (b) antiphase high-energy solitons  =

exp(G0Z)η  for

the model i  =  +  + iG0

with G0 = 1.0, η = 1.0, and group velocity detuning ∆V =
2.0 (V1 = –V2 = –1.0). The logarithmic contour map for soli-
ton intensity l = 10, 1, 0.1, ∞ are shown.
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2
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A solution to the problem of optimal amplification of
optical solitons is presented in this work in a very gen-
eral form and enables one to easily choose the optimal
relations between the functions D(Z), R(Z), and G(Z) for
each particular experiment. The determination of funda-
mental parameters, such as the limiting energy and dura-
tion of a soliton in active laser systems, requires addi-
tional investigations based, e.g., on the direct methods
of solving the set of nonlinear Maxwell equations [17].
In conclusion, we emphasize that Lax representation
(1)–(5) and model (6) are not uniquely possible. More
complicated completely integrable models of soliton
amplification will be discussed elsewhere.

We are grateful to Academicians A.M. Prokhorov
and E.M. Dianov for support and discussions. It was the
“old” problem they posed of how solitons can be rap-
idly (nonadiabatically) amplified in a communication
system and in a soliton laser amplifier which stimulated
us to continue our investigations that began as early as
[10]. This work was supported in part by the Benemer-
ita Universidad Autonoma de Puebla.
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We calculated theoretically the properties of the nonlinear crystal CsLiB6O10 (CLBO) in third-harmonic gen-
eration (THG). These are the phase matching angle, the effective nonlinear coefficient, the walk-off angle, the
permitted angle, and the permitted wavelength, and we found that CLBO has a small walk-off angle and large
permitted parameters, as compared with BBO. The numerical simulation curves of the conversion efficiency
were obtained for the case where CLBO was used in THG of a Q-switched Nd:YAG laser with a wavelength of
1064 nm and different pump powers and the optimized efficiency was as high as 22%. All this suggests that the
CLBO crystal is more suitable for generating intense higher order harmonic radiation. © 2001 MAIK
“Nauka/Interperiodica”.

PACS numbers: 42.65.Ky
11. INTRODUCTION

The exploration of a solid ultraviolet (UV) laser is
important because of its high power and small volume;
it was the pioneer of UV lasers on the latest nonlinear
crystal CsLiB6O10 (CLBO) [1, 2]. However, their short-
est transparent band is always very broad; for example,
the shortest transparent band of BBO is 190 nm and
175 nm in CLBO [3, 4] and also has high damage
threshold and many other beneficial optical properties.
This work on CLBO concerns its SHG and third-har-
monic generation (THG) in a picosecond (ps) or nano-
second (ns) Nd:YAG laser with a fundamental wave-
length of 1064 nm in experiment; there is no report on
its properties in the theory, especially on its THG. In
this paper, we calculated and numerically simulated
theoretical curves for its phase-matching (PM) angle,
effective nonlinear coefficient, walk-off angle, permit-
ted angle and wavelength, and conversion efficiency of
CLBO in THG and determined where it has a smaller
walk-off angle, broader permitted parameters, and high
conversion efficiency on UV; all this proved that CLBO
is more suitable to produce higher-order radiation of
high power, and we present its prospect as a high-power
UV solid laser.

2. COMPUTER SIMULATION OF PERMITTED 
PARAMETERS FOR CLBO

Taking the collinear interaction into consideration,
we supposed that ω1 (λ1) and ω2 (λ2) were the frequen-
cies (wavelengths) of incident radiation, ω3 (λ3)

1 This work was submitted by the authors in English.
0021-3640/01/7412- $21.00 © 20578
denoted frequency (wavelength) of the third-harmonic
wave, and ω1 was lower than ω2, both of which were
lower than ω3.

2.1. PM angle (θ):

(A) PM angle of type I (o + o  e). According to
the momentum and energy conservation laws, we can
obtain

(1)

(2)

Where n1, n2, and n3 are the reflection indices of the
three waves. From Eqs. (1) and (2), the PM angle (θ) of
THG in type I could be derived:

(3)

(B) PM angle of type II (e + o  e). We define the
type-II(l) PM in THG as follows: o + e  e means
that the radiation with frequencies ω1 and ω2 have e and
o polarizations, respectively; and the other was type
II(2), o + e  e, where the waves ω1 and ω2 were o-
and e-polarized lights, respectively. The θ of type II(l)
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ω1 ω2/2 ω3/3.= =

θ I( )

9n0
2 ω3( )ne

2 ω3( )

n1 ω1( ) 2n2 ω2( )+[ ] 2
----------------------------------------------- ne

2 ω3( )–

no
2 ω3( ) ne

2 ω3( )–
--------------------------------------------------------------------

 
 
 
 
 
 

1/2

.arcsin=
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and type II(2) in THG were written as

(4)

(5)

From Eqs. (3), (4), (5), and the sellimier equations of
CLBO [1]

(6)

3 θ II 1( )( )cos
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------------------------------ 0.01413λ2,–+=

Fig. 1. Curves of the phase-matching angle versus wave-
length of the third harmonic radiation of different-type THG
for the CLBO crystal.

Fig. 3. THG walk-off angle curves of type-I phase matching
for CLBO and BBO.
JETP LETTERS      Vol. 74      No. 12      2001
(7)

We were able to get the θ of CLBO in THG. The curves
of CLBO’s θ versus the THG wavelength are shown in
Fig. 1, where we can see that the shortest wavelength of
the CLBO’s THG is 277 nm if CLBO is used as the
type-I PM, and θ is 85°. The range of the λ3 wave is the
broadest in the type-I THG, where θ varies from about
25° to 85°, and the range is the shortest in the type-II(2)
PM, where θ varies from 55° to 85°. It is also seen in
Fig. 1 that there is no PM angle in type-II THG of
CLBO if the wavelength λ1 lies between 680 and
800 nm, and the type-I PM must be utilized. It is neces-
sary that the crystal has a large birefringence in the type-
II(2) THG, otherwise it is seldom used in practice [5].

2.2. Effective nonlinear coefficient (deff)

CLBO is a negative uniaxial crystal with space

group , and we can derive its deff by considering

ne λ( )
2 2.0588 000866

λ2 0.01202–
------------------------------ 0.006073λ2.–+=

42m

Fig. 2. Curves of the effective nonlinear coefficient versus
the wavelength of the third-harmonic wave for THG of the
CLBO crystal.

Fig. 4. THG walk-off angle curves of type-II(1) phase
matching for CLBO and BBO.
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the Kleinman equation [6]:

(8)

(9)

where θ and ϕ are the orientation angle of CLBO. It is
supposed that ϕ is 45° and 0° in type-I and type-II
THG, respectively, and θ is inserted in Eqs. (8) and (9)
using Fig. 1; at the same time, d36 is taken to be
0.95 pm/V [1]. Then, we can obtain the deff curves ver-
sus the wavelength ω3 of CLBO in THG, as was shown
in Fig. 2. In Fig. 2, the optimized deff is 0.95 pm/V when
the wavelength ω3 is 227 and 377 nm in type-I and
type-II(l), respectively.

2.3. Walk-off angle (α)

The formula for the walk-off angle [7] is

deff I( ) d36 θ 2φ( ),sinsin=

deff II( ) d36 2θ 2φ( ),cossin=
(10)

where θ is the angle in Fig. 1. Considering Eqs. (6) and
(7), we insert θ of the corresponding PM in Fig. 1 into
Eq. (10) and then get the curves for the walk-off angle
of CLBO in type-I, type-II(l), and type-II(2) THG.
They are shown in Figs. 3–5, where BBO’s walk-off
angles are obtained in the same way, and the x axis is
the wavelength ω3 between 227 and 933 nm. From
Figs. 3–5, we can find that the walk-off angles of CLBO
are all much smaller than the ones of BBO under the
same conditions.

2.4. Permitted parameters

(A) Permitted angle (∆θ). The permitted angle ∆θ of
CLBO in THG of different PM state is as follows:
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As long as θ is inserted from Fig. 1 into Eqs. (11), (12),
and (13), the curves for the permitted angles are
obtained versus the wavelength ω3 ranging from 227 to
933 nm in type-I, type-II(l), and type-II(2) of CLBO in
BM THG, as shown in Fig. 6; also, the corresponding
BBO’s permitted angles are presented, where we sup-
pose that the crystal length of I is 10 mm. In Fig. 6, we
find that the permitted angles of CLBO for any kind of
PM are broader than the ones in BBO in the corre-
sponding state in THG; especially, when type II(2) is
taken, the permitted angle ∆θ of CLBO is as large as
65.6 mrad mm and that of BBO is only 4.42 mrad mm.

(B) Permitted wavelength (∆λ). The permitted
wavelength ∆λ of CLBO in THG of each kind of PM
should be written as
(14)

(15)

(16)
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The crystal length l is also taken to be 10 mm, and we
can obtain the curves for the CLBO’s and BBO’s per-
mitted wavelengths according to Eqs. (14), (15), and
(16) in a similar way of working out ∆θ as shown in
Fig. 7, where the x axis is the wavelength ω3 ranging
from 227 to 933 nm in the THG. From Fig. 7, we find
that, when the wavelength ω3 was between 330 and
933 nm, the CLBO’s permitted wavelength of type-I
and type-II(2) THG is larger than those of BBO.

It is shown in the curves from Fig. 3 to Fig. 7 that, in
the THG of CLBO, the walk-off angle is smaller and
the permitted parameters such as permitted angles and
permitted wavelength are larger; this helps the CLBO
in generating a high-order high-quality harmonic.

2.5. Conversion efficiency 

When the incident wave is of the shape of a plane
and the walk-off effect is ignored, the THG efficiency
in CLBO is

Fig. 5. THG walk-off angle curves of type-II(2) phase-
matching THG for CLBO and BBO.

Fig. 7. Permitted wavelength curves for CLBO and BBO
crystals in THG.
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(17)

(18)

(19)

If it is defined that E20 and E10 are the original electric
vectors, we can obtain

t ' = I/t; at the same time, sn(x, y) is the first kind Jacobi
elliptic function; Is is the incident intensity; and n1, n2,
and n3 are the refractive indices of the waves with fre-
quencies of ω1, ω2, and ω3, respectively.
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Fig. 6. THG permitted angle curves for CLBO and BBO
versus the wavelength of third-harmonic generation.

Fig. 8. THG conversion efficiency of type II(l) for different
intensities pumped in PM.
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We have simulated the conversion efficiency for
CLBO’s type-II(l) PM in THG, when the pumping light
is a fundamental wave of 1064 nm in a Q-switched
Nd:YAG laser. The first CLBO crystal was for SHG of
type I with a length of 0.7 cm, and it was tuned to ϕ =
45° and θ = 28.7°; the second CLBO crystal was for
THG of type II(l), and its θ and ϕ were 48.3° and 0°,
respectively. Then, we find from [7] and in Fig. 2 that
deff of the two crystals should be 0.46 and 0.94 pm/v,
respectively. It is supposed for the second crystal that
one of the pumping waves, E1(z), has a wavelength of
1064 nm, its refractive index n1 is 1.4568, and its walk-
off angle is 0.03 rad; the other, E2(z), has a wavelength
of 532 nm, and it is o light with the refractive index n2
equal to 1.4981. So we calculated that the THG, E3(z)
has the refractive index n3 of 1.4844, and its walk-off
angle is 0.028 rad. From above, it is obvious that the
walk-off effect in the CLBO is much smaller and we
can take it for granted that Eqs. (17), (18), and (19) are
suitable for THG of CLBO.

We obtained D = 1.745 × 104  according to
Eq. (19); it was supposed that the beam diameter is that
of the incident wave, and we simulated the curves for
conversion efficiency versus length of the second crystal
for a total pumping power P of 1 × 108 W, 0.7 × 108 W,
and 0.5 × 108 W as is shown in Fig. 8. From Fig. 8, we
can see that for P of 1 × 108 W, the optimized efficiency
is as high as 22% in THG of CLBO, and when the inci-
dent intensity increases, the THG efficiency is
enhanced, provided the crystal has the appropriate
length. The damage threshold of CLBO is as high as

Is
26 GW/cm2 at 1064 nm, and its volume can be very
large, which can provide an effective way to enhance
the THG efficiency in CLBO.

As for the CLBO crystal, the walk-off angle is
smaller and the permitted parameter is larger, which
makes it possible to produce high-quality radiation of
the third- or even a higher-order harmonic radiation in
CLBO. The CLBO delivered higher THG conversion
efficiency and better output stability than BBO at opti-
mized crystal lengths. If CLBO is pumped by a
Q-switched Nd:YAG laser with a beam diameter of
8 amm and a power of 1 × 108 W, the THG efficiency in
CLBO can be 22%. At the same time, its damage
threshold is high, from which we may speculate that, in
the future, it will be used intensively in high-power
solid UV lasers very.
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The boundary frequency was experimentally measured for the upper edge of an inertial interval corresponding
to the Kolmogorov spectrum for energy distribution over the oscillation frequencies at the surface of liquid
hydrogen. It is shown that the dependence of boundary frequency ωb on the wave amplitude ηp at the pump

frequency ωp is well described by the power law ωb ~ . © 2001 MAIK “Nauka/Interperiodica”.
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η p
4/3ωp

23/9
It was shown, within the framework of the wave tur-
bulence theory, that a system of nonlinear interacting
waves at the surface of a fluid can be described by the
kinetic equation analogous to the Boltzmann equation
in gas dynamics [1]. In a system of capillary waves,
there is a frequency interval (inertial interval) which is
bounded from below by the pump frequency ωp and
from above by the frequency at which the viscous
damping time τv is comparable, by an order of magni-
tude, to the nonlinear interaction time τn: 1/τv ~ 1/τn.

The dispersion law for capillary waves ω =
(σ/ρ)1/2k3/2 (ω is frequency, k is the wave vector, σ is
the surface tension, and ρ is density) is of the decay
type, and, hence, the main contribution to the wave
interaction comes from the three-wave processes of
wave decay into two waves with the conservation of the
total wave vector and frequency, as well as from the
reverse processes of two-wave confluence into a single
wave. Therefore, a constant energy flux to higher fre-
quencies is established in the capillary-wave turbulence
regime; hence, it occurs at frequencies higher than the
pump frequency (direct cascade).

It is known [2] that the viscous damping time of cap-
illary waves decreases with an increasing wave vector as

(1)

where ν is the kinematic viscosity of the fluid.

The nonlinear interaction characteristic time τn is
determined by the fluid parameters and the capillary-
wave distribution n(k) over the wave vector. It is writ-
ten as

(2)

1/τv 2νk2,=

1/τn Vkkk
2n k( )k2/ωk,∼
0021-3640/01/7412- $21.00 © 20583
where Vkkk ≈ (σ/ρ3)1/4k9/4 is the three-wave nonlinear
interaction constant and ωk is the frequency of the wave
with vector k.

The steady-state distribution of surface waves in the
inertial interval can be described by the Fourier trans-

form of the pair correlation function Ik =  for the
surface deviations η(r, t) from the flat state. The corre-
lation function is related to the distribution function
n(k) by the expression

(3)

Equations (1)–(3) can be used to find the wave fre-
quency ωb, at which the viscous damping time and the
nonlinear interaction time become comparable with
each other by an order of magnitude, as a function of
the wave amplitude ηp at pump frequency (boundary
frequency at the upper edge of inertial interval)

(4)

The exponents β and γ are determined by the distribu-
tion function n(k) ~ (k/kp)α, where kp is the wave vec-
tor of the wave at pump frequency ωp. For the excitation
of surface oscillations in a broad frequency range, the
exponent α of the distribution function is –19/4 [3], β =
2.4, and γ = 19/5. For the excitation of surface oscilla-
tions by a spectrally narrow pumping, α = –23/4 [4], β
decreases to 4/3, and γ = 23/9.

The purpose of this work was to experimentally
observe the boundary frequency at the upper edge of
the inertial interval and study it as a function of the
wave amplitude at pump frequency, as well as to com-
pare the results with theoretical predictions.

ηk
2〈 〉

Ik n k( )/σ1/4k1/2.=

ωb η p
βωp

γ .∼
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EXPERIMENTAL

Experiments were carried out in an optical cell
placed in a helium cryostat. A flat capacitor, with a
radioactive platelet on its lower plate, was mounted
horizontally inside the cell. Hydrogen was condensed
into a container formed by the lower plate and a guard
ring 25 mm in diameter and 3 mm in height. The liquid
layer was 3 mm thick. The upper capacitor plate (col-
lector with a diameter of 25 mm) was situated at a dis-
tance of 4 mm above the liquid surface. The liquid tem-
perature in the experiments was maintained at 15 K.

The free fluid surface was charged by β electrons
emitted from the radioactive platelet. Electrons ionized
a thin liquid layer near the platelet. A dc voltage was
applied to the capacitor plates. The sign of charges
forming a quasi-two-dimensional layer underneath the
liquid surface was controlled by the voltage polarity. In
the experiments, the oscillations of a positively charged
surface were studied. The metallic guard ring installed
around the radioactive platelet prevented escape of
charges from under the surface to the container walls.
The surface oscillations of liquid hydrogen (standing
waves) were excited at one of the resonance frequen-

Fig. 1. The  distribution for two wave amplitudes at a

pump frequency of 135 Hz. Wave amplitudes: (a) 0.0045
and (b) 0.016 mm.

Pω
2

cies using an ac voltage applied to the guard ring addi-
tionally to the dc voltage.

Surface oscillations of liquid hydrogen were
detected from the variations in the power of a laser
beam reflected from the surface. The reflected beam
was focused by a lens onto a photodetector. The voltage
at the photodetector was directly proportional to the
beam power P(t) and recorded during several seconds
on a computer interfaced to a high-speed 12- or 16-bit
analog-to-digital converter. The frequency spectrum Pω
of the total reflected power was obtained by the tempo-
ral Fourier transform of the recorded P(t) dependence.

In the experiments, a broad laser beam with a diam-
eter of 0.5 mm was incident on the surface at a glancing
angle of approximately 0.2 rad. The elliptic axes of the
light spot at the surface were equal to 2.5 and 0.5 mm.
It was pointed out in [5] that the squared amplitude of

Fourier transform  of the measured signal is directly
proportional to the correlation function in the frequency

representation; i.e., Iω ∝  .

The methods of exciting surface oscillations, their
recording, and experimental data processing are
described in more detail in [6].

It was shown in the preliminary experiments that the
wave amplitude at pump frequency depends linearly on
the applied ac voltage. Because of this, after the cell
was filled with hydrogen at a constant voltage between
the capacitor plates, measurements were carried out on
the maximal ac voltage at which the angle of beam
deviation was equal to the known maximal value (until
the upper capacitor plate was touched). At smaller
amplitudes of ac voltage, the angle of deviation and the
wave amplitude η were calculated from the experimen-
tal data.

RESULTS AND DISCUSSION 

Figure 1 demonstrates two types of frequency
dependences for the squared amplitude of Fourier

transform  of the signal P(t) measured at the surface
excitation frequency ωp = 135 Hz. In Fig. 1a, the wave
amplitude at the pump frequency is 0.0045 ±
0.0006 mm, and in Fig. 1b it is equal to 0.016 ±
0.009 mm. The frequencies at which the  function
sharply changes (inertial interval) are indicated by the
arrows. In Fig. 1a, the boundary frequency of the iner-
tial interval edge is ωb = 900 ± 200 Hz, and, in Fig. 1b,
ωb = 4500 ± 400 Hz. One can see that this frequency
undergoes a high-frequency shift as the wave amplitude
increases.

It follows from Fig. 1 that, at small wave ampli-
tudes, the inertial interval is not too broad and involves
a cascade consisting only of a few high-frequency har-
monics of the pump frequency ωp. At larger amplitudes,
the inertial interval broadens and the cascade involves

Pω
2

Pω
2

Pω
2

Pω
2
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tens and hundreds of harmonics. Over a wide frequency

range, the  dependence shows a power-law behavior
with exponent m = –3.7 ± 0.3. To illustrate this fact, a
power function ωm with exponent m = –3.7 is shown in
Fig. 1b by the dotted line. This exponent is close to the
estimate obtained in the theoretical work [4] for the
case of spectrally narrow pumping. Numerical calcula-
tions show that the cascade Iω represents a sequence of
equidistant peaks at frequencies multiple of the pump
frequency. The peak heights are described by the power
function with an exponent of –21/6. This value differs
by 4/6 from the exponent found in [3] for the broadband
pumping.

The boundary frequency of the inertial interval edge
is shown in Fig. 2a as a function of wave amplitude for
two pump frequencies, 83 and 135 Hz. The abscissas
(frequencies) of the points in this figure were estimated
from the experimental graphs analogous to those shown
in Fig. 1. The point ordinates (pumping wave ampli-
tudes) were calculated from the known amplitudes of
the ac voltage applied to the guard ring. The solid lines
in Fig. 2 correspond to the power-law dependence of
the boundary frequency ωb of the inertial interval on the
amplitude η with an exponent of 4/3. For better fit of
the theoretical curve to the experimental data, Eq. (4)
was supplemented by the constant term Ω which was
independent of the wave amplitude at pump frequency.
It is clear from simple physical considerations that the
boundary frequency ωb cannot be lower than the pump
frequency ωp. The results of the curve-fitting procedure
is demonstrated in Fig. 2a. One can see that the agree-
ment between the experimental points and the theoreti-
cal dependence is quite satisfactory. The constant term
proved to be larger than the pump frequency ωp by a
factor of 2 or 3.

The dependence of the boundary frequency ωb on
the amplitude in Eq. (4) implies the presence of a scal-
ing law with respect to the pump frequency. One can
readily see that, irrespective of the pump frequency ωp,
all experimental points ωb fall on a single straight line

in the ωb/ , η4/3 coordinates. The experimental data
constructed with these coordinates are shown in
Fig. 2b. One can state that the experimental points fall
on a straight line for both pump frequencies. This con-
firms the validity of Eq. (4) as well as the results of cal-
culating the capillary-wave distribution function for
narrow-band pumping.

In summary, it is demonstrated experimentally that
the inertial interval corresponding to the power-law fre-
quency dependence of a correlation function is
extended to higher frequencies as the wave amplitude at
pump frequency rises. This dependence is well
described by the power-law behavior with an exponent
of 4/3. The experimental results are in qualitative agree-
ment with the conclusions of work [4].

Pω
2

ωp
23/9
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Two-dimensional “particle-in-cell” modeling was carried out to determine the laser intensity threshold for pion
production by protons accelerated by the relativistically strong short laser pulses acting on a solid target. The
pion production yield was determined as a function of laser intensity. © 2001 MAIK “Nauka/Interperiodica”.
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Generation of energetic ions by ultrashort laser
pulses interacting with plasma has been the object of
active studies over recent years [1–9]. This is primarily
dictated by the necessity of understanding the mecha-
nisms of ion acceleration as a result of the interaction of
laser radiation with plasma, including the quantitative
description of the characteristics of these mechanisms.
The problem of ion acceleration is among the key prob-
lems in various applications of high-power lasers such
as fast ignition for laser fusion, injection of fast parti-
cles, and fabrication of radioactive sources in medicine
and nuclear physics. Due to the effective acceleration of
ions in a laser field, they can initiate nuclear reactions.

At the present level of energies, ultrashort pulsed
lasers are capable of initiating various nuclear reac-
tions, such as nuclear fusion, fission, pickup, stripping,
charge-transfer, and radiative capture [1]. Nuclear reac-
tions in the collisions of laser-accelerated ions with a
nuclear target were observed experimentally at energies
from several MeV to tens of MeV [5– 7]. The detection
of protons with an energy of 60 MeV at a laser intensity
of 3 × 1020 W/cm2 [5] and the progress in laser energy
buildup allow one to assume that the pion-production
threshold of 140 MeV will be surmounted in the near
future. The generation of such energies in the labora-
tory, rather than on accelerators, may have a profound
effect on the priorities in laser technology and nuclear
research techniques. With these prospects in mind, it is
profitable to estimate quantitatively the pion yield as a
function of laser parameters and determine the corre-
sponding laser intensity threshold. In this communica-
tion, the results of relativistic two-dimensional particle-
in-cell (PIC) modeling are presented.
0021-3640/01/7412- $21.00 © 20586
Note that the pion production by a short laser pulse
and the pion yield have already been discussed in [10].
This process was associated with the formation of
gamma-ray quanta, which initiated pion photoproduc-
tion. The formation of gamma-ray quanta is caused by
the bremsstrahlung of laser-accelerated electrons, after
which gamma-ray quanta interact with nuclei to pro-
duce ∆ isobars that decay with pion emission. This
transformation chain is highly inefficient because of its
electromagnetic nature, as contrasted to the strong
interactions of protons and nuclei discussed below.

In our computations, we modeled the interaction of
a short 300-fs linearly polarized pulse with a solid
5-µm-thick foil representing a uniform plasma layer
with a density forty times higher than its critical value.
Laser radiation with a wavelength of 1 µm was incident
normally to the foil surface and propagated along the X
direction of the modeling plane XY of size 50 × 10 µm.
The focusing spot size was 3 µm, and the computations
were carried out for several values of laser intensity I in
the range from 2 × 1020 to 5 × 1021 W/cm2, which cor-
responded to a relativistically strong laser field a @ 1,
where a = eA/mc2 is the amplitude of the normalized
vector potential A, and c, e, and m are the light velocity,
the electron charge, and the electron mass, respectively.
For definiteness, a two-component plasma composed of
50% H and 50% D was considered. To make the model
as realistic as possible, a 30-µm-thick layer of rarefied
plasma was placed ahead of the foil, and its density was
taken to be constant and equal to 1021 cm–3. The point
is that the laser pulse is nonideal and preceded by a
prepulse at experimental power levels much higher than
1 TW, leading to the appearance of a rather extended
001 MAIK “Nauka/Interperiodica”
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40-µm-thick “preplasma” layer at the target surface
before the pulse peak reaches it [5]. Such a underdense
plasma strongly affects the character of interaction
between the pulse and the target. The plasma proved to
be nontransparent for intensities I & 5 × 1021 W/cm2.
We also carried out the computations for an intensity of
1.2 × 1022 W/cm2, for which the relativistic transpar-
ency effect arose and a substantial fraction of laser radi-
ation passed through the target.

The preplasma electrons with relativistic energies
are accelerated in the forward direction, pass through
the thin foil, and create a strong ion-accelerating elec-
trostatic field. The formation of the ion-accelerating
electric field is a rather complicated process, because
the generation of quasi-static magnetic fields and the
formation of a region with an excess of positive electric
charge may play an important role in this case [11].
Without going into details (see [11]), note that it is the
generation of hot electrons which is at the origin of the
ion acceleration. For the relativistic intensities, the
main part of the laser energy transforms into the energy
of hot electrons [5, 12]. Then the kinetic energy Th of
hot electrons transforms into the energy of electrostatic
field accelerating ions. Accordingly, one should expect
that the energy ei of the latter is on the order of the
energy of hot electrons; i.e., ei ~ ZTh. Our computations
suggest that, indeed, the characteristic proton energy
varies in proportion to the temperature of hot electrons
with changing laser intensity. The deuteron accelera-
tion is suppressed appreciably, as compared to the pro-
ton acceleration. Due to higher mobility, protons are
accelerated first, as a result of which the electric field
behind them decreases and less efficiently accelerates
deuterons following them. As a result, the calculated
deuteron energy did not exceed one-fourth of the proton
energy. This effect was observed experimentally in [7],
where the proton and deuteron energies were equal to 9
and 2 MeV, respectively.

When passing through the preplasma, laser radia-
tion was canalized, due to the relativistic self-focusing
effect, to efficiently accelerate electrons. Qualitatively,
their energy distribution corresponded to the Maxwell
distribution with temperature Th satisfying approxi-

mately a root law Th ∝   with respect to the laser
intensity. At the same time, the electron motion proves
to be highly complicated (stochastic) because of the
complex structure of the fields, including the reflected
laser wave and the fields generated in plasma. The

behavior ∝  of the hot electron temperature corre-
sponds qualitatively to the scaling law for the electron
energy accumulation in a relativistically strong electro-
magnetic wave propagating in plasma with the phase
velocity ω/k higher than the light velocity ck & ω. The
dependence of the dimensionless electron kinetic
energy γ on the laser intensity in the ultrarelativistic
limit a @ 1 can be estimated using the well-known inte-

I

I
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grals of motion [13] for an electron in an electromag-
netic field, 

(1)

which are written for an initially quiescent electron.

According to Eq. (1), γ = aω/  ∝  . This
scaling law is similar to the one obtained from the pon-

deromotive potential [14] Th = mc2(  – 1) .
mc2a. However, contrary to the latter, it includes a con-
tribution from the longitudinal electron momentum,
which is not smaller than the transverse momentum
and, hence, adds to the energy. This is confirmed by our
computations showing that the formula for Th from [14]
underestimates the temperature of hot electrons.

We studied the ion energy as a function of laser
intensity in the absence of preplasma and established
that this dependence was also close to the root law, as
in the case with preplasma, but the energy was slightly
lower. Therefore, the presence of preplasma is quite
important, because it enhances the generation effi-
ciency of both fast electrons and ions. In Fig. 1, the
energy spectra of the forward accelerated protons are
shown for three values of laser intensity I ≤ 5 ×
1021 W/cm2. As the energy increases, the high-energy
tail shown in this figure transforms into a plateaulike
distribution with an abrupt cutoff. Such a plateaulike
distribution with energy cutoff was observed experi-
mentally in [4–7, 15], and it is typical of the electro-
static ion-acceleration mechanism. The cutoff corre-
sponds to the maximal potential difference created by
hot electrons. At a higher intensity of 1.2 × 1022 W/cm2,
plasma becomes relativistically transparent, and the
inductive electric field arising on the rear side of the tar-
get due to the generated magnetic field plays a substan-
tial part in the ion acceleration [16].

Evidently, once the cutoff in the proton spectrum
exceeds 140 MeV, protons can produce π+ in a sub-
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Fig. 1. Energy distribution of the number of forward accel-
erated protons at different laser intensities I. The values of I
in 1021 W/cm2 are indicated near the corresponding curves.
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stance behind the foil. The number Np of accelerated
protons with energy higher than 140 MeV is shown in
Fig. 2 as a function of laser intensity. The accelerated
protons will react with the nuclei of the substance in a
layer of thickness on the order of proton stopping
range, which is mainly determined by the ionization
loss. The number of produced pions is lesser than the
number of accelerated protons in a ratio equal to the
ratio of proton stopping range to the proton path asso-
ciated with π+-production reaction. Quantitatively, this
number,

(2)

is determined by the cross section σ for reaction p +
A  π+ …, where A is a nucleus with mass Ma, the
stopping loss W (MeV cm2/g) of protons in the sub-
stance a, and the pion number distribution in energy
dN/de.

We considered carbon and germanium targets as
examples of light and heavy nuclear targets, respec-
tively. Pion yield (2) per one proton is presented for the
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Fig. 2. The number of forward accelerated protons with
energy exceeding 140 MeV vs. laser intensity.

Fig. 3. Pion yield (per a proton) as a function of pulse inten-
sity. The curve corresponds to the π+ production in the pro-
ton collisions with the C nuclei.
carbon nuclei in Fig. 3, where the data for σ and W are
taken from [17]. Despite the fact that the reaction cross
section for pion production far above the threshold
behaves as A2/3 (A is the nucleus atomic number), the
overlap integral in Eq. (2) shows little dependence on
the atomic number. Our calculations showed that the
pion yield in germanium differs from its value in car-
bon by only 9–15%.

Our calculations can be used to predict the laser-
intensity threshold for pion production. This threshold
is clearly seen in Fig. 3 at Ith ~ 1021 W/cm2. At I = 5 ×
1021 W/cm2, the pion production yield is 10–3. For
4 × 1011 accelerated protons, this provides a value of
4 × 108 particles per shot for the total π+ yield, which is
five orders of magnitude higher than the photopion
yield obtained under similar conditions in [10]. Pions
can be most simply identified by the standard method
from the πµ decay, because the lifetime of π+ is short,
τπ . 26 ns. At a pulse repetition rate of 1 kHz, the laser
muon production will offer advantages over the conven-
tional accelerator methods and provide a muon flux of
1014–1015 s–1.

At first glance, the value of ~1021 W/cm2 found
above for the pion production threshold can be attained
using low-energy lasers, provided that the pulse dura-
tion equals several femtoseconds. This is quite possible
in current laser techniques. However, there is a funda-
mental limitation that requires a considerably longer
pulse duration. The reason is that, due to a large mass
M of ions (protons), they are accelerated in a certain
finite time τi , which is determined by the condition τi ~

d/v, where v  is the ion velocity, v  ~ , and d is
the length of accelerating interval d ~ λD, where λD ~
(Th/e2nh)1/2 is the Debye radius of hot electrons with

density nh; i.e., τi ~ . Taking a value on the
order of critical density in estimating the density nh of
hot electrons, one obtains τi ~ 100 fs. Since the charge-
separation field is sustained by the laser, its duration
must exceed τi, in order that the protons have time to
accelerate to the maximal energy determined by the
charge-separation field. On the other hand, the smallest
attainable focal spot size is equal to several microns for
high-power lasers. Hence, it follows that, to produce
pions, the laser output should be as high as several tens
of joules.

In the above examples of pion production in the pro-
ton collisions with nuclei, the pion distribution is virtu-
ally isotropic. At the same time, for the hydrogen-con-
taining nuclear targets, where pions may be produced in
the p–p collisions, one can expect the generation of
directed pion and neutrino fluxes, provided that the pro-
ton energy far exceeds 1 GeV, i.e., at I > 1023 W/cm2

according to the scaling law discussed above. The life-
time of pions with energies up to several GeV is consid-
erably larger than τπ. This opens the way to their subse-

Th/M

M/e2nh
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quent acceleration by the laser plasma method of parti-
cle acceleration in a underdense plasma [18] to produce
ultrahigh-energy pions, which are, as yet, present only
in cosmic rays. However, contrary to the latter, the laser
generation of ultrahigh-energy pions is predictable.

In summary, numerical modeling of the interaction
of a short relativistically strong laser pulse with plasma
produced by the irradiation of a foil has been carried
out in this work to investigate the generation of protons
with energies of hundreds of MeV and pion production
in proton collisions with light and heavy nuclei. The
laser intensity threshold is determined at which pion
production should be expected, and the pion yield is
obtained as a function of laser intensity. This effect cor-
responds to the nuclear regime of interaction between
the radiation of a high-power laser and a substance. The
mastering of this effect will allow the development of a
new exploratory base for high-energy physics.

This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-16063.
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Results of measuring small-angle neutron scattering and neutron depolarization in a Ni49.1Mn29.4Ga21.5 single
crystal in the temperature range 15 < T < 400 K and in the range of magnetic fields 0 < H < 4.5 kOe are pre-
sented. The characteristic temperatures of the alloy were found to be as follows: TC = 373.7 K and the martensite
transition temperature Tm = 301–310 K. The magnetic critical scattering at TC and the scattering at T < TC were
adequately described by the relationship Im = A(q2 + κ2)–2 (q is the transferred wave vector and Rc = 1/κ is the
correlation radius), and the temperature dependences of the A and Rc scattering parameters were determined.
Left–right asymmetry was observed at 150 < T < Tm in the scattering of neutrons polarized along or opposite
to the applied field. This asymmetry was due to the inelastic magnetic interaction of neutrons in the sample. The
magnetization of the alloy at Tm, critical scattering at T . TC, anomalies in scattering, and the softening of mag-
netic excitations at 150 < T < Tm are discussed. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.25.+z; 72.15.Qm; 61.12.Ex; 81.30.Kf
The ternary intermetallic Ni2MnGa Heusler alloy
undergoes a martensite transition from the cubic phase
of the L21 type to the tetragonal phase with the axis
ratio c/a = 0.94 [1]. The uniqueness of this alloy is in
the fact that martensite transformations occur in the fer-
romagnetic state; therefore, it is one of the materials in
which the magnetic shape memory effect (MSME),
magnetoelastic properties, and the domain structure of
the ferromagnetic phase are widely investigated [1–7].
Characteristic temperatures and the structure of the
martensite phase are extremely sensitive to the devia-
tion of the alloy composition from the stoichiometric
one; for example, the martensite transition temperature
may vary over several hundreds of degrees [4–8],
which is promising for possible technical applications.
Apart from MSME and the complex structure in the
martensite phase, a number of other interesting physi-
cal phenomena are observed in the alloy, such as a soft-
ening of the phonon mode [9–11] and a change in the
spin density distribution at the martensite transition
[12].

This work is devoted to measuring small-angle
polarized-neutron scattering (SAPNS) by a nonstoichi-
ometric Ni–Mn–Ga sample with the aim of studying
mesoscale magnetic nonuniformities over a wide range
of temperatures and magnetic fields. Mesoscale defects
in these materials are considered along with the atomic
structure to explain premartensitic phenomena
observed in the system (see, for example, [13, 14]). As
to spin correlations and spin dynamics, these phenom-
ena, of course, are interrelated with the atomic struc-
0021-3640/01/7412- $21.00 © 20590
ture; however, as far as we know, this question has not
been investigated in the literature.

1. Samples and experimental procedures. Single-
crystal samples of the nonstoichiometric
Ni49.1Mn29.4Ga21.5 alloy were investigated. According to
[7], the composition has the following characteristic
temperatures as determined by measuring its magnetic
susceptibility: the Curie temperature TC ≈ 375 K and
the martensite transition temperature is in the range Tm

≈ 302–314 K. It was shown in the same work that a
reversible 5.3% MSME is accomplished in samples of
this composition after a certain magnetic and mechani-
cal treatment.

Experiments were carried out on a VEKTOR small-
angle polarized-neutron scattering setup [15] (WWR-M
reactor, Gatchina) at the wavelength λ = 9.2 Å (∆λ/λ =
0.25). A setup equipped with a 20-counter (3He)
detector and a multichannel analyzer works in the slit
geometry in the range of scattering vectors 0 < q <
3 × 10–1 Å–1 (q = k – k', where k and k' are the wave
vectors of the incident and scattered neutrons, respec-
tively). The neutron beam polarization was determined
as P = (I+ – I–)/(I+ – I–), where I± is the intensity of
neutrons with the corresponding spin state with respect
to the magnetic field. The initial polarization of the neu-
tron beam incident on the sample was P0 ≅  0.94. The
samples for SAPNS measurements were shaped as
rectangular plates, 10 × 30 mm in size with the thick-
ness L = 1 and 2 mm, cut from a single-crystal ingot so
that the faces of the samples coincided with {100}
planes with an accuracy of several degrees. Neutron
001 MAIK “Nauka/Interperiodica”
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diffraction measurements confirmed the occurrence of
a structural transition from the cubic to tetragonal phase
in the temperature range 301–315 K (a = 6.018, c =
5.67 Å, c/a = 0.94).

Experiments in a magnetic field were carried out in
the “inclined” geometry, when a sample is magnetized
at an angle ϕ to the direction of the incident neutron
beam. It was shown in [16, 17] that the left–right asym-
metry of scattering in the scattering plane can be
observed in this geometry for neutrons initially polar-
ized along and opposite to the direction of the applied
magnetic field. This asymmetry is due to the inelastic
magnetic interaction of neutrons in the sample. In this
experiment, the magnetic field in the horizontal plane
was applied along the face 10 mm in width, that is, H ||
[100], at the angle ϕ . 55° to the direction of the inci-
dent neutron beam. The measurements were performed
in magnetic fields 0 < H < 4500 Oe. The low-tempera-
ture measurements in the temperature range 15 ≤ T ≤
320 K were carried out in an RNK10-300 cryorefriger-
ator, and the high-temperature measurements were per-
formed in a vacuum furnace. The long-term tempera-
ture stabilization of the samples was better than .0.1 K.

2. Results of measurements. Variations of the
polarization of neutrons, passed through a sample in
various fields, with temperature are presented in Fig. 1.
A sample preheated up to T > TC was mounted in the
cryorefrigerator and was placed in a magnetic field at
room temperature (TR . 295 K) in the inclined geome-
try mentioned above. It is evident in Fig. 1a, curve 1,
that the polarization of the transmitted neutrons at TR

detected by the central detector P ~ 0; that is, the sam-
ple is not magnetized uniformly in this field but consists
of magnetic domains magnetized in different direc-
tions. It should be noted that a weak rearrangement of
the magnetic structure proceeds in the field even at TR.
For example, a sample 1-mm thick, which is easier
magnetized in a field of 4.2 kOe, exhibited a linear rise
in polarization at TR from 13 to 15% for 5 h. Variations
of the same scale were also exhibited in the intensity of
the scattered neutrons. A sharp increase in the uniform
magnetization of the sample accompanied with a rise in
polarization up to P ~ 90% was observed at Tm, Fig. 1a,
curve 1. Upon further cooling the sample in the field
down to TR, a temperature hysteresis was observed. In
this case, the polarization of neutrons did not drop to
zero but only decreased down to ~ 60%. Moreover,
upon switching the magnetic field off at TR followed by
switching it on, the sample was uniformly magnetized
after several days up to the level P ~ 60% in a field of
4.2 Oe, and the heating–cooling cycle in the vicinity of
the structural transition ran along curve 2 in Fig. 1a.
Typical heating–cooling cycles for samples differing in
thickness in fields of 4.2 and 1 kOe are shown in
Fig. 1a, curve 3, and Fig. 1b in the range T = 18–300 K.

As was mentioned above, a slow rearrangement of
the magnetic mesostructure in a field proceeds even at
TR; however, the rate of variations sharply increases at
JETP LETTERS      Vol. 74      No. 12      2001
a temperature close to Tm. The phase transition kinetics
in a field observed both by the variation of the polariza-
tion and by the variation of the scattering intensity in
the vicinity of Tm is shown in Fig. 2. This figure demon-
strates that the transition under these conditions is com-
pleted in ~ 30 min. Even though P(t) in this case attains
saturation at the given temperature, it does not reach its
maximum value in the measurement time, as distinct
from P(T > Tm) in the same field, Fig. 1, curve 1. The
difference comprises ~2%.

The temperature dependence of the small-angle
neutron scattering intensity (I = I+ + I–) in various mag-
netic fields for one of the scattering vectors is shown in
Fig. 3. Note the occurrence of two temperature ranges
in which strong variations of the scattering intensity are
observed in fields H < 4 kOe: (1) the range Tm < T < TC,
in which the scattering intensity virtually linearly
grows at T < TC and sharply drops at the martensite

Fig. 1. Temperature dependence of the polarization of neu-
trons detected by the central detector normalized to P0: (a)
a sample with the thickness L = 2 mm (1 (h), the first heat-
ing–cooling cycle in the vicinity of Tm after overheating the
sample above TC; 2 (d), one of the repeated heating–cool-
ing cycles in the vicinity of Tm; 3 (n), a cooling–heating
cycle in the temperature range 300–18 K); (b) a sample with
L = 1 mm in various fields.

Ni–Mn–Ga
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transition temperature, Fig. 3, curve 1; and (2) the range
100 < T < 250 K, in which rather strong variations of
scattering and polarization with a temperature hystere-
sis occur, Figs. 1 and 3, curves 1–4. A small variation of
polarization in the vicinity of Tm is also observed in the
field H & 2 Oe, in which measurements were carried
out, Fig. 3, curve 5. The scattering intensities in weak
fields, Fig. 3, curves 1 and 2, rather strongly differ;
however, this difference is most likely associated with
the magnetic prehistory of the sample. Curve 1 corre-
sponds to measurements carried out in the magnetic
field H & 2Oe with the sample preheated up to T > TC,
whereas curve 2 corresponds to measurements in the
field H . 10 Oe after magnetizing the sample in the
field H = 4.2 kOe by the procedure described above.

Figure 4 presents a characteristic temperature
dependence (statistically significant for q = kΘ &

0.015 Å–1, where Θ is the scattering angle in the hori-
zontal plane) of the difference in the scattering of neu-
trons ∆(T) = I+ – I– polarized along and opposite to the
applied field H = 4.2 kOe for counters symmetrical with
respect to q = 0. The pulse dependence ∆(q) at T .
200 K is given in the same figure (see inset). It is evi-
dent in Fig. 4 that the neutron scattering in the temper-
ature range 300–150 K depends on the direction of the

Fig. 2. Time dependence of the intensity of small-angle
scattering and the polarization normalized to P0 on magne-
tization of a sample with L = 2 mm in the vicinity of Tm.

Ni–Mn–Ga
initial neutron polarization (∆ ≠ 0, ∆/I & 20%), and
well-defined left–right asymmetry is observed.

3. Analysis of measurements and discussion. Let
us first discuss the process of magnetization of samples
monitored by the variation of the polarization and
small-angle scattering of neutrons. It is known that
(see, for example, [18–20]) the change in polarization
detected by the central counter is determined by the
integral magnetic neutron scattering Σ by large-scale
magnetic fluctuations with the characteristic size R >
1/qmin (qmin is the counter resolution)

(1)

where g < 2 is the coefficient depending on the polar-
ization orientation of neutrons incident on the sample
with respect to k. Hence, the variations of polarization
in Figs. 1–3 basically characterize the rearrangement of
the large-scale magnetic structure (qmin * 10–3 Å–1),

P P0 gΣL–( ),exp=

Fig. 3. Temperature dependence of (1–4) the intensity of
small-angle neutron scattering for a sample with L = 2 mm
with the transferred momentum q . 0.01 Å–1 and (5) the
polarization: (1) H . 0, (&2 Oe); (2) H = 10 Oe; (3) H =
1 kOe; (4) H = 4.2 kOe. In measurements of 1 and 5, the
sample was preheated above TC in H . 0; measurements of
2–4 were carried out after heating above Tm in a field of
≈4.2 kOe; TC = 373.7 K; Tm = 301–310 K.

Ni–Mn–Ga
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whereas the variations of small-angle scattering charac-
terize the evolution of magnetic nonuniformities of
scale R < 1/qmin.

Changes in the magnetization of Ni–Mn–Ga alloys
in the vicinity of Tm were observed in all the studies in
which magnetic measurements were performed. We
note some features observed in this work on measuring
the neutron polarization. Firstly, the P(T, H) depen-
dence in Fig. 1 can be explained by the fact that the
magnetic structure formed in the process of transition
to the high-symmetry cubic phase upon heating in a
field is also predominantly retained on cooling, that is,
on returning to the low-symmetry tetragonal phase.
Evidently, the sample undergoes peculiar magnetic tex-
turing, which is one of the methods for magnetic treat-
ment of the given alloy. Secondly, a temperature hyster-
esis occurs in the variation of the magnetic mesostruc-
ture in the range 150 < T < 300 K, that is, in the
martensite phase. It is apparent in Figs. 1, 3, and 4 that
abrupt changes in depolarization and changes in scat-
tering intensity are observed both in a magnetic field
and at H . 0. Changes are also observed in the mag-
netic dynamics in the sample, which will be discussed
below. It may be suggested that a structural rearrange-
ment proceeds in the sample at these temperatures.
Finally, relaxation changes in the magnetic mesostruc-
ture occur at T < Tm in a magnetic field, which terminate
in an avalanche-type transition to the cubic phase at T
& Tm (Fig. 2). Considering the long-term relaxation
observed experimentally and the wide range of mag-
netic nonuniformities, one may expect that relaxation
processes occur in the given material analogous to
those observed in spin glasses.

Let us start the discussion of small-angle scattering
from the critical scattering in the vicinity of TC (Fig. 3).
The first questions that should be solved in studying
critical scattering are the determination of the phase
transition temperature TC and the determination of the
Rc(τ) dependence (τ = T/TC – 1). It was shown theoret-
ically in [18] and experimentally in studying critical
scattering in Fe [21] that, in the case of a second-kind
phase transition, TC in the P(T) dependence of polariza-
tion must be located at a level of thermal-neutron depo-
larization. This level does not exceed several percent
for classical ferromagnets because of the smallness of
the depolarization, due to the neutron scattering by crit-
ical magnetic fluctuations. Its intensity Im(q, T) is
described by the Ornstein–Zernicke (O–Z) equation
Im ∝  [q2 + κ2]–1 (where κ = 1/Rc), under the assumption
that Rc  ∞ at T = TC. The subsequent and main depo-
larization at T < TC proceeds on magnetic domains.
Therefore, SAPNS experiments primarily provide
information on a narrow region of temperatures Tbeg &
TC, where Tbeg is the beginning temperature of depolar-
ization. The subsequent refinement of TC and the Rc(τ)
dependence can be obtained from an analysis of small-
angle scattering using the O–Z equation. It was found
JETP LETTERS      Vol. 74      No. 12      2001
that the intensity of magnetic small-angle scattering
Im(q, T) = I(q, T) – I(q, ~395 K) at T * Tbeg . 373.7 K
(at a level of depolarization &0.5%) is described in this
work not by the O–Z equation but by the equation

(2)

where A is a parameter. The results of fitting the small-
angle scattering by Eq. (2), with allowance made for the
resolution function of the instrument, are shown in
Fig. 5c. It is known that Eq. (2) describes scattering
with the spin correlator 〈Si Sj〉 ∝  exp(–r/Rc), which
decreases with increasing distance r much less sharply
than that for the O–Z function. The fact that the critical
scattering described by the O–Z equation is not
observed in the given system means that either this scat-
tering is small and requires a setup with a larger effi-
ciency for its detection or the phase transition is not,
strictly speaking, a second-kind transition. The ques-
tion still remains open. We assume that the transition
temperature in the given system TC . Tbeg, because

Im q( ) A/ q2 κ2+( )2
,=

Fig. 4. Temperature and pulse (inset) dependences of the
difference of neutron scattering ∆ = I+ – I– by a sample with
L = 2 mm in a field of 4.2 kOe: (1) q = kΘ . 0.01 Å–1;
(2) q = kΘ . –0.01 Å–1. The curve in the inset was obtained
at T = 200 K.

Ni–Mn–Ga
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there is simply no other distinguished temperature in
this region.

The parameters obtained by fitting the scattering
intensity using Eq. (2) are shown in Fig. 5. Equation (2)
also adequately describes small-angle scattering below
TC in the entire region of measured temperatures (see
Fig. 5c), except for the range of the martensite transi-
tion itself. The small-angle scattering observed at T <
TC can be caused by both nuclear and magnetic nonuni-
formities. However, considering that it depends essen-
tially on the magnetic field (see Fig. 3), there is reason
to believe that the magnetic scattering is the determin-
ing factor. The reason for the magnetic scattering in this
region can be both the domain structure of the sample
in the austenite phase and nucleation centers of the new
martensite phase of scale ~Rc. These formations of the
new phase differ from the cubic phase in the moment
and spin density distribution [12] and must contribute
to the intensity of magnetic small-angle scattering. It is
evident in Fig. 5 that both Rc and the parameter A0 =
ARc, which is proportional to the amplitude of scatter-

Fig. 5. (a) and (b) Temperature dependence of the fitting
parameters for the intensity of neutron scattering by a sam-
ple with L = 2 mm at H ≈ 0 by Eq. (2) and (c) pulse depen-
dence of scattering Im at (1) 373.9 K; (2) 359 K; and
(3) 92.6 K; solid lines in the inset correspond to the calcu-
lation by Eq. (2); TC = 373.7 K; Tm = 301–310 K.

Ni–Mn–Ga
ing by magnetic nonuniformities and to their concen-
tration, grow virtually linearly with decreasing temper-
ature in the range Tm < T < TC at H ≈ 0. A sharp break-
down of the growth of these parameters comes at T ≅
Tm. Assuming that the intensity of scattering by the
regions with the martensite phase is the determining
factor, one may infer that a percolation-type phase tran-
sition is evidently observed at Tm. In this case, the sys-
tem at T . Tm is homogenized on the magnetic mesos-
cale to such a degree that the magnetization in the guid-
ing field H & 2 Oe becomes evident: the polarization in
this temperature region differs markedly from zero, see
Fig. 3, curve 5. On further cooling, a less pronounced
rise in the parameters is observed at T ~ 150 K.

The spin-wave stiffness D can be calculated from
measurements of the left–right asymmetry of polar-
ized-neutron scattering (see Fig. 4) by measuring the
cutoff angle Θ0 such that the intensity of the asymmet-
ric part sharply decreases when it is exceeded [16, 17].
It is known that, in the spin-wave approximation, i.e.,
under the assumption that the energy of spin waves ω =
Dq2, the spin-wave stiffness is related to Θ0 by the
equation D = E/Θ0k2, where E is the energy of neutrons.
Because the angular resolution of the instrument was
insufficient, it was not possible to determine Θ0 to a suf-
ficient accuracy in the given experiment; therefore, the
spin-wave stiffness can only be estimated in the range
150 < T < Tm at a level of D & 140 meV Å2. It may be
suggested that the spin-wave stiffness significantly
exceeds this value outside this temperature range in the
ferromagnetic region; therefore, Θ0 & (λ/2π)qmin, and
the left–right asymmetry of scattering is not observed at
the available resolution of the instrument. Apparently, a
softening of the magnetic mode occurs in the sample in
the range 150 < T < Tm. Apart from the asymmetric part,
the part symmetrical with respect to q = kΘ was
observed in the experimental dependence ∆(T) = I+ – I–

in the same temperature range. This part reaches a max-
imum at q . 0. This means (see, for example, [16, 17,
20, 22]) that magnetic–nuclear interference on mesos-
cale nonuniformities occurs in neutron scattering at
150 < T < Tm. As a whole, there is reason to suggest that
structural changes, which are accompanied by changes
in the magnetic mesostructure and in spin dynamics,
proceed in the sample in this temperature range.

The measurements of small-angle polarized-neu-
tron scattering performed on Ni49.1Mn29.4Ga21.5 samples
demonstrated the informativeness of the method. Tem-
perature dependences of scattering parameters were
obtained. Changes in the magnetic mesostructure and a
softening of the spin dynamics in the martensite phase
were found at 150 < T < Tm. These effects evidently
originate from structural changes. The critical scatter-
ing at TC was measured, which has not been interpreted
so far. The experiment showed the necessity of subse-
quent neutron investigations of both the structure and
JETP LETTERS      Vol. 74      No. 12      2001
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spin dynamics in these alloys, which are commonly
classified as “smart materials.”
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The problem of the Berezinskii–Kosterlitz–Thouless transition in the highly frustrated XY kagomé antiferro-
magnet is solved. The transition temperature is found. It is shown that the spin correlation function exponen-
tially decays with distance even in the low-temperature phase, in contrast to the order parameter correlation
function, which decays algebraically with distance. © 2001 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.Hk; 75.50.Ee
1 Generally, XY spins on two-dimensional lattices
undergo a Berezinskii–Kosterlitz–Thouless (BKT)
transition [1, 2]. If there is no frustration, the physics of
this transition does not depend on the specifics of the
lattice structure. At finite temperatures, the behavior of
a system is governed by spin waves and vortices. They
are well defined in continuum limit of the theory. In the
low-temperature phase, the spin vortices are bound in
pairs with zero topological charge, and spin correlators
decay with distance algebraically. One can also define
the vorticity field demonstrating nontrivial dynamical
correlations [3]. In the BKT transition point, the vor-
tex–antivortex interaction becomes screened, pairs dis-
integrate, and the spin correlation length becomes
finite. By contrast, the XY antiferromagnet on the two-
dimensional kagomé lattice (see figure) has infinitely
many ground states, and its description in terms of con-
tinuous field theory is not justified.

In this paper, we compute the BKT transition tem-
perature in such systems. In [4], it was suggested that
the true order parameter here is η = e3iθ, where θ is the
angle of a spin. It is invariant with respect to any arbi-
trary choice of ground states, which are a subset of local
2π/3 spin rotations. Therefore, this order parameter can
change smoothly in the plane. The phase transition con-
sists in the emergence of a finite correlation length of
the variable η. Indirect evidence of this was obtained by
Monte-Carlo simulations in [5, 6]. As for the correla-
tion length of spins itself, we show here that it is finite
starting at an arbitrary low temperature. This is the
inevitable consequence of finite values of energy barri-
ers separating different vacua.

In order to take into account the special structure of
the kagomé lattice, we start with the approach devel-
oped in [7] (see also [8]). The kagomé lattice consists

1 This work was submitted by the authors in English.
0021-3640/01/7412- $21.00 © 20596
of triangles and hexagons (figure). The Hamiltonian of
the kagomé antiferromagnet can be represented as a
sum of squares of the total spins St in triangles {t} of the
nearest neighbors:

(1)

Each spin participates in two triangles. The ground-
state energy is equal to zero, and there are infinitely
many ground states with St = 0. In any ground state, the
angles between neighboring spins are equal to ±2π/3.

The partition function of the XY kagomé antiferro-
magnet can be represented as an integral of a function
defined on the lattice bonds:

(2)

where r denotes positions on the kagomé lattice, a are
three lattice vectors directed along the antiferromag-

H
κ
2
--- St( )2.

t

∑=

Z β( ) β Θr a,cos
r a,
∑–

 
 
 

θ r( ),d
r

∏exp∫=

Θr a, θ r a+( ) θ r( ),–≡

The kagomé lattice (filled dots) with antiferromagnetic
bonds (continuous lines), and the dual lattice (circles) and
its bonds (dashed lines). 
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netic bonds between nearest neighbors, θr are the spin
angles, and β = κS2/2T is the dimensionless inverse
temperature.

The 2π periodicity of the angular variables allows
one to expand the statistical weight in Eq. (2) in Fourier
series with the coefficients In(r, a)(–β):

(3)

Here, In(x) is the modified Bessel function, and integer
numbers n(r, a) are located on bonds connecting near-
est neighbors r and r + a. Then we integrate over the
angles θ(r) and arrive at the following representation
for the partition function:

(4)

where n(r + a, –a) = –n(r, a). Here, {n(r, a)} denotes
the set of all configurations of integers n(r, a). The ∆
function (∆(0) = 1, ∆(n ≠ 0) = 0) expresses the conser-
vation condition at each site of the lattice:

(5)

As in the case of perturbation theory graphs [9], this
means that the summation in Eq. (4) runs effectively
over integer-valued currents J(R) circulated in closed
loops. The latter are numbered by dual lattice sites Rt

and Rh, which are located in centers of triangles and
hexagons, correspondingly (figure). A current n(r, a)
along the a bond is equal to the sum of currents in one
triangle and in one hexagon that share the bond (r, a).
This allows us to represent the partition function as fol-
lows:

(6)

Here, we separate sums over triangle and hexagon cur-
rents, J(Rt) and J(Rh), with centers Rt and Rh = Rt + Ah,
and h numbers of three hexagons surrounding each tri-
angle Rt. Further, we consider e–β as a small parameter
of the theory. We will see that the inequality e–β ! 1
holds even in the BKT transition point, as it does for the
square lattice [1, 2, 7]. However, the Bessel functions in
Eq. (6) cannot be substituted by their asymptotic forms
at β @ 1, because the summation over J(Rt) results in a
relatively small contribution to Z(β). This asymptotic
form corresponds to the saturation of a maximal num-
ber of nearest-neighbor bonds, which is far away from
the true ground state, due to frustrations. Consequently,

β Θr a,cos
r a,
∑–

 
 
 

exp

=  In r a,( ) β–( ) in r a,( )Θr a,( ).exp
n r a,( )

∑
r a,( )
∏

Z β( ) ∆ n r a,( )
a

∑ 
 
 

In r a,( ) β–( ),
a

∏
r

∏
n r a,( ){ }
∑=

n r a,( )
a

∑ 0.=

Z β( ) IJ Rt Ah+( ) J Rt( )+ β–( ).
h 1=

3

∏
J Rt( )

∑
Rt

∏
J Rh( ){ }
∑=
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the summation over the triangle currents J(Rt) must be
performed first. To do this, we represent triple products
of the Bessel functions in (6) in the integral form, which
allows us to take the sum over J(Rt) exactly:

(7)

Here, Rh = Rt + Ah for a given t. The last asymptotic
relation in Eq. (7) follows from the fact that the integra-
tion over dφ1dφ2dφ3 at large β is saturated by the vicin-
ity of two saddle points φh = 2πσ(Rt)/3, where σ(Rt) =
±1 (h = 1, 2, 3). Thus, hexagon currents and chiralities
σ = ±1 residing in triangles are retained. These vari-
ables include the multiple ground states. Substituting
the asymptotic formula for the triple products of Bessel
functions (7) into Eq. (6) and using the Poisson summa-
tion formula, we arrive at the following expression for
the partition function:

(8)

(9)

Here, At runs over all six triangles surrounding each
hexagon, with the centers Rh, Rt = Rh + At and Bh being
the six vectors that connect the centers of nearest hexa-
gons. Note that centers of hexagons form a triangular
lattice which is dual to the hexagonal lattice.

Now, one can integrate the partition function (8)
over the currents in hexagons J(Rh). This results in the
expression for the partition function of the 2D Coulomb
gas with charges Q(Rh) positioned at sites of the trian-
gular lattice Rh . Charges are 1/3-multiple; this corre-
sponds to the 2π/3-multiplicity of vortex rotations. At
zero temperature, the integration over J(Rh) in Eq. (8)

IJ Rt Ah+( ) J Rt( )+ β–( )
h 1=

3

∏
J Rt( )

∑ φ1 φ2 φ3ddd
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yields conservation conditions ; i.e., in

any ground state, the sum of chiralities of triangles sur-
rounding each hexagon is a multiple of 3. The problem
of counting ground states is mapped onto that of color-
ing the hexagonal lattice [4], which was solved exactly
[10]. The exact number of ground states, ZN, is equal to
1.460099N/3, where N is the number of spins. A naive
approximation assuming that chiralities of triangles
surrounding each hexagon are independent and equally
probable gives a good estimate of ZN ≈ (11/8)N/3 =
1.375N/3 for the number of the ground states. In this esti-
mate, we neglect correlations between chiralities of tri-
angles surrounding neighboring hexagons. Their effect
can be estimated as the inverse number of the nearest
neighbors on the triangular lattice, 1/6. At finite temper-
atures, we divide J(R) into slowly varying and short-
wavelength fields and integrate the first over the latter.
This gives the product of local statistical weights

, which substitutes the product
of δ functions at β  ∞. The BKT transition point is
determined by the excitations with most probable
charges: Qn = 0, ±1/3. States with the sum of chiralities
of triangles surrounding a certain hexagon equal to ±2
and ±4 contribute to the formation of such Q = ±1/3
configurations. For a given Qn = ±1/3, the number of
configurations Z1, N differs from the number of ground
states ZN by some numerical factor w1. We estimate the
factor w1 in the same naive way as we estimated the
number of ground states; i.e., we assume that chiralities
±1 have equal and independent probabilities. This
yields w1 ≈ 21/22. The precision of this estimate is
again of the order of 1/6, and we set in the following
w1 = 1. Denoting the long-wavelength part of J(R) as
3KΨ(R), where K = β/12, we arrive at the long-distance
effective action in the standard form:

(10)

where h = 2  = 2  and a = |a |. At the BKT
transition temperature, this is a small field, which
allows one to use the perturbative renormalization
group approach [7]. The BKT transition occurs at the
temperature where the field h becomes relevant. For the

hexagonal lattice, we get /2Kc = π/2; i.e.,

(11)

We neglected nonlinear terms which can slightly renor-
malize the stiffness constant. This effect on Tc is small
because of the smallness of Tc/κS2 (see also [8]).

The existence of a new set of variables (chiralities)
qualitatively changes the spin correlation function

δ Q Rh( )( )Rh∏

3βπ2Qn
2– /8( )exp

n∏

Z DΨ r( )∫=

× r2 3K
2

----------- ∇Ψ( )2 ha 2– 2πKΨ( )cos–d∫–
 
 
 

,exp

e Kπ2/2– e βπ2/24–

3

Tc/κS2 3π/72 0.0756.= =
compared to that in unfrustrated XY magnets. Returning
to the initial formulation of the problem (2), we con-
sider the correlation functions _j(r0) = 〈exp(i[θ(0) –
θ(r0)] · j)〉 . In terms of the integer-valued variables, n(r,
a), we arrive at an expression that differs from Eq. (4)
only by arguments of the δ functions. Namely, for sites
0 and r0 we get

(12)

instead of the conservation condition (5). This condi-
tion is equivalent to the pattern of currents which is a
superposition of currents J(Rh) flowing in the kagomé
lattice and obeying the condition (5) and a current j,
which takes a whole number value and which is created
at the point 0 and annihilated at the point r0. Thus, the
correlation function _j(r0) has the form

(13)

Here, (R*, A*) are sites and vectors of the dual lattice
such that A* crosses the path (0, r0) on the initial kag-
omé lattice. Integrating over currents in the triangles in
Eq. (13), we get _j(r0) = Zj(β, r0)/Z(β), where Z(β) is
given by Eq. (8) and Zj(β, r0) differs from Z(β) by the
additional contribution from the current j running along
the path (0, r0).

The contribution of Q ≠ 0 configurations (vortex) to
the large-r0 asymptotic form of the spin correlation
function _j(r0) below the BKT transition point is neg-
ligible, because the renormalization-group flow at T <
Tc makes the effective constant h in Eq. (10) equal to
zero. The main difference between our _j(r0) and the
usual (unfrustrated) case is in the factor

(14)

averaged over chiralities. For simplicity, we consider
the case where the shortest walk on lattice sites between
points 0 and r0 goes over a straight line. In this case, r0/a
is the number of bonds along this walk, where a is the
kagomé lattice constant. Neglecting constraints on
chiralities of triangles, as we did before, we immedi-

ately get a factor of (cos2π/3  =  in the
correlation function if j is not a multiple of 3. Integra-
tion over J(Rh) in the r0  ∞ limit can be done in the
spin-wave approximation, yielding the well-known

n 0 a,( )
a

∑ n r0 a,( )
a

∑– j,= =

_ j r0( )
1

Z β( )
----------=

× IJ R A+( ) J R( )+ β–( )
R R∗≠ A A∗≠,( )

∏
J R( ){ }
∑

× IJ R∗ A∗+( ) J R∗( ) j+ + β–( ).
R∗ A∗,( )
∏

2πi
σ Rt*( )

3
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Rt
*
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2
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result [1]. Thus, in the low-temperature phase T ≤ Tc in
the long-distance limit r0/a @ 1, and the spin correla-
tion function reads

(15)

It decays exponentially with distance. Note that the
statement about exponential decay of the spin–spin cor-
relators does not depend on the approximations made
here. This follows from the finiteness of the correlation
length of the chirality field. The true order parameter of
the BKT transition is the cubed spin [4] η(r) =
exp(3iθ(r)). The correlation function of this order
parameter at T < Tc decays as a power of distance

(16)

The result for Tc is in agreement with Monte-Carlo
simulations of the BKT transition in the kagomé anti-
ferromagnet [6] and with recent independent calcula-
tions [11] (note that the preprint version of this paper
was published before [12]). In [11], it is shown that the
next-to-nearest-neighbor exchange interaction on the
kagomé lattice can remove the ground-state degener-
acy. However, the spin–spin interaction induced by
thermal spin waves cannot play the same role. Indeed,
in the case of the nearest-neighbor interaction consid-
ered here, spots of σ(R) with changed signs have finite
entropy at T  0. Their contribution to the free
energy and correlators dominates, and the effect of
interaction induced by spin waves considered in [11] is
negligible at low temperatures.

_ j r0( ) 1–( )
r0/a

2
r0/a–

r0/a( )
– j

2
T /36Tc,∝

j 3 6 9 …  . , , ,≠

_3 r0( ) η 0( )η∗ r( )〈 〉 r0/a( )
T /4Tc–
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Prof. Viktor Iosifovich Belinicher, an outstanding theoretical physicist, Doctor of Physics and Mathematics,
a Leading Research Scientist at the Institute of Semiconductors SD RAS, Professor at Novosibirsk State Uni-
versity, perished at the age of 56 in the fatal Tel Aviv–Novosibirsk airplane accident that occurred on October
4, 2001.

V.I. Belinicher was a multiskilled theorist and made tangible contributions to various fields of physics. Elab-
oration of the theory of bulk photovoltaic effect has become his major achievement. V.I. Belinicher initiated
experimental observation of the polarization-dependent effects in semiconducting crystals without an inversion
center. This activity culminated in the discovery of a surface analogue of the bulk photovoltaic effect (surface
photocurrent) and in the development of the theory of this effect. The resonant light drag effect is one of the
more unusual phenomenon that was discovered and explained by V.I.B. and co-workers.

A sizable contribution was made by V.I.B. to the theory of hydrodynamic turbulence. In collaboration with
V.S. L’vov, he formulated the scale-invariant form of this theory. The substitution of variables, found by them
(currently known as the Belinicher–L’vov transformation), allowed the divergence to be eliminated in all orders
of perturbation theory.

From the late 1980s and up to the last time, V.I. Belinicher was active in the problems of strongly correlated
electronic systems, in particular, high-Tc superconductors. V.I.B. developed three major directions in this field:
construction of a realistic electronic model for the copper oxide plane and use of this model for the calculation
of the observed properties of high-Tc superconductors; spin-polaron aspect of high-Ts superconductivity and the
nature of superconducting state; and the microscopic theory of two-dimensional antiferromagnetism. In partic-
ular, V.I.B., together with his collaborators, solved the problem of low-energy properties of the three-band Hub-
bard model, which is ordinarily used in the description of a system of copper oxide planes.

V.I. Belinicher was a brilliant theorist and mastered the most sophisticated methods of theoretical physics.
He was highly self-exacting. V.I. did not accept double standards and evaluated his own works and the works
of other authors only on the “Hamburg scale.” He always endeavored to elevate the level of his work and,
although was led to solve various problems in his life, he endeavored (especially in the last years) to concentrate
on the most complex and fundamental physical problems. Viktor Iosifovich was highly active and had many
projects. The tragedy over the Black Sea abruptly ended his activity which was in full swing.

L.I. Leonyuk et al., New Scenario for the Decay of Spin-Peierls State in CuGeO3 : Fe. Onset of a Quan-
tum Critical Point. JETP Lett. 73, 31 (2001).

Lidiya Ivanovna Leonyuk died on September 23, 2000 during her 50th year after serious illness. The scien-
tific community lost an outstanding specialist in solid-state physics, crystallography, and crystal growth. Her
last works were devoted to superconducting cuprates, compounds with ladder structure, and low-dimensional
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on current studies in these fields. L.I. Leonyuk, Doctor of Physics and Mathematics, the Director of the Labo-
ratory of Crystal Growth at the Geological Department of Moscow State University, the author of more than
200 publications and two books, will be forever kept in the memory of her collaborators, who knew her as a
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scientific discourse with whom will now be sadly missed.
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