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Electrical characteristics of silicon Schottky diodes containing Ge quantum dot (QD) arrays are investigated. It
has been found that the potential barrier height at the metal—semiconductor contact can be controlled by intro-
ducing dense QD layers, which is a consequence of the formation of a planar el ectrostatic potential of charged
QDs. When the applied voltage is varied, the ideality factors of Schottky barriers exhibit oscillations due to the
tunneling of holes through discrete levelsin quantum dots. © 2002 MAIK “ Nauka/Interperiodica” .
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The last decade has been marked by great progress
in nanoelectronics. Its advances are largely associated
with the introduction of nanostructures with quantum
dots (QDs). QDs represent the limiting case of systems
with a reduced dimensionality, because the motion of
charge carriersin these systemsis spatially confined to
sizes smaller than the electron wavelength in al three
dimensions. The dimensionality of the electron statesin
QDs is considered equal to zero, and quantum dots in
this sense are artificial analogues of atoms|[1]. The dis-
crete energy spectrum of electron states localized in
QDs serves as the characteristic feature of zero-dimen-
sional systems that determines the particularity of
physical phenomenain nanostructures with QDs[2]. A
particular region of physical phenomena associated
with the discreteness of the charge transfer by one elec-
tron and called single-electron phenomenais typical of
electron transport processes in structures with QDs [3].
The attractive fact is that the characteristics of single-
electron devices are universal in the sensethat these are
determined by only the mutual QD—drain, QD—source,
and QD—gate capacitances and do not depend on the
particular implementation of the diode or transistor.

Because of small sizes (~10 nm) and the high uni-
formity of their sizes and shape, self-organized QDs
that form in the heteroepitaxy of elastically strained
systems are most attractive from the practical point of
view [4, 5]. Successful attempts have aready been
made at developing efficient heterolasers [4], photode-
tectorsin the IR region [6], tunnel diodes [7], quantum
transistors [8], and single-electron memory elements
[9] based on arrays of such QDs. A broad range of fun-
damental physical problems associated with revealing
the mechanisms and regularities of charge transfer in
device structures with embedded QD layersarisein this
connection.

Thiswork is devoted to studying the potential distri-
bution and electron transport processes in silicon
Schottky diodes containing an array of germanium nan-
oclusters. Geidandsin Si represent potential wells for
holes and can be charged with a positive charge, captur-
ing holes from the surrounding volume and thus chang-
ing the potential in the vicinity of the Schottky barrier.
In addition, the occurrence of discrete energy states in
Ge QDs can enhance processes of the tunneling leakage
of holesthrough the barrier. A knowledge of fundamen-
tal physical phenomena in such systems alows semi-
conductor diodes with required electrical characteris-
tics to be developed purposefully.

The aim of this work was to find the regularities of
the formation of the potential barrier and the variation
of the ideality factor upon introducing QD layers into
the region of the metal—semiconductor contact.

Formation of Schottky diodes with QDs. A sche-
matic representation of a structure cross-section is
shown in Fig. 1. Samples were grown by molecular
beam epitaxy on phosphorus-doped Si(001) substrates
with aresistivity of 7.5 Q cm. The growth temperature
of Si layers was 800 and 500°C before and after the
deposition of the Ge layer, respectively. After cleaning
the substrate, a Si buffer layer 50 nm thick was grown,
onwhich ap*-Si layer delta-doped with boron was sub-
sequently deposited (the layer concentration of boron
was 5 x 10'3 cm). Next, a p-Si layer was grown with
the boron concentration at the level Ng ~ 5 x 10> cm™3
and thethicknessL =40 nm. A Gelayer wasintroduced
at the center of thislayer at atemperature of 300°C with
a varying equivalent thickness dg. To improve the
properties of the resulting metal—semiconductor inter-
face, samples were passed through a lock into another
chamber and were held in an O, atmosphere at a pres-
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sure of 10~ Paand atemperature of 500°C for 15 min.
As a result of this procedure, a surface SiO, layer
formed with a thickness of about 1 nm. Itsrole wasin
suppressing the formation of a static dipole layer at the
interface, thus decreasing the reverse current of the
diodes [10]. The ohmic contact to the buried delta-
doped p*-Si layer was formed by depositing Au fol-
lowed by heating the structure at a temperature of
400°C for 10 min. The Schottky barrier was created by
sputtering aTi/Al contact onthe epitaxial structure. The
contact areawas A = 1.5 x 10~ cm?. The samples were
madein the variant of Schottky diodeswith ashort base
in order to decrease the barrier height at the metal—
semiconductor contact through the Schottky effect and,
hence, to observe experimentally the change in the
effective barrier height due to the el ectrostatic charging
of QDs.

Four sets of sampleswere investigated. The samples
of the first set did not contain Ge (dy = 0) and repre-
sented conventional silicon Schottky diodes. The
equivalent thickness of Gein the second set of samples
comprised 5 monolayers (ML) (1 monolayer = 1.4 A);
inthethird, dg = 8 ML; andin the fourth, dg = 10 ML.
Under the growth conditions used in this work, a con-
tinuous Gefilm grows at d4 < 5 ML, and pyramidal Ge
nanoclusters (QDs) faceted by { 105} planes appear on
the continuousfilm (wetting layer) at larger thicknesses
[5]. For dy = 8 ML, the average size of the pyramid
bases equals agp = 10 nm, the pyramid height is h ~
1 nm, and the island density is4 x 10™ cm. For dg =
10 ML, these parameters are agp = 15 nm, h ~ 1.5 nm,
and 3 x 10 cm2, respectively.

Barrier height. One of the main characteristics of a
Schottky diode is the potential barrier height at the
metal—semiconductor interface. The potential barrier
height can befound from an analysis of the temperature
dependence of the 1/T? ratio, where |4 is the diode sat-
uration current and T istemperature[10]. Initsturn, the
saturation current can be found from alinear extrapola-
tion of current—voltage characteristics at V > 3 kT/e to
V =0 (kisthe Boltzmann constant; e = |e| is the abso-
lute value of the electron charge) [10].

Figure 2 shows experimental curves of 1J/T(T2)
and the barrier height ¢ determined in thisway. It was
found that ¢g = 0.33 eV for dgs = 0 and 5 ML, ¢g =
0.34 eV for d4 = 8 ML, and ¢ increases up to 0.42 eV
in a sample whose equivalent thickness of Ge is equal
to 10 ML.

The observed growth of the barrier height can be
explained based on the following model. Consider the
energy diagram of a metal—p-type silicon contact
(Fig. 3). The distribution of the potential dueto the for-
mation of a space-charge region (SCR) in Si along the
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Fig. 1. Schematic representation of a cross-section of asil-
icon Schottky diode with Ge quantum dots.
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Fig. 2. Temperature dependence of the saturation current on
coordinates used for determining the barrier height [10].
Theinset shows the barrier height ¢g for various equival ent

Ge thicknesses obtained from an analysis of 1JTX(T™Y)
curves.

z axis perpendicular to the growth planeis given by the
equation

0(2) = ¢Bs—i—':':[w(V)z—z2/2], )

where ¢ gsisthe height of the Schottky barrier, Ng isthe
impurity concentration, € is the relative dielectric con-
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Fig. 3. Equilibrium valence band profile for a metal—p-type
silicon contact along the growth direction. (a) The Ge layer
is absent; (b) the Ge layer is neutral; and (c) the layer of Ge
nanoclustersis charged by a positive charge of holes. Eg is

the equilibrium Fermi level, ¢gg is the Schottky barrier
height, g is the effective barrier height in the presence of
charged quantum dots, ¢qp is the change in the potential
dueto charged QDs, E, isthe depth of the hole energy level.
The potential corresponding to the intermediate SiO, layer

at the metal—semiconductor interface and to the buffer layer
of i-Si isnot shown in the figure.

stant of Si, ¢, isthe electric constant, and w is the SCR
width. The length of the diode base (L = 40 nm) issig-
nificantly smaller than the value of w required for the
formation of a depletion layer in Si with the impurity
concentration Ng = 5 x 10 cm® (w(V = 0) =

J(2eeg/eNg) (dgs—KT) = 300 nm); therefore, firgt,
the boundary of the depletion layer lies in the vicinity
of the delta-doped p*-Si layer aIready at azero biasand
hardly shifts at the reverse bias,! and, second, (@ isa
nearly linear function (Fig. 3a). The key issue in the
understanding of the effect of Ge quantum dots on the
electrostatic potential in the system isthe possibility of
QDs accepting holes from the metal and surrounding
silicon. If the thickness of the wetting germanium layer
(for samplesof the second set) or the sizesof Geislands
(for samples of the third and fourth sets) are so small
that the size quantization levels of holesin Gelie below
the Fermi level Eg, then the Ge layer is electrically neu-

1 Measurements of capacitance-voltage characteristics showed that
the barrier capacitance of the diodes at the reverse bias in the
voltagerange 0 < V < 1V is actually independent of the applied
voltage and equals eegA/L.
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tral and does not affect the barrier height (Fig. 3b). As
the QD size increases, the hole energy level can rise
above E; and become filled with holes. In this case, the
valence band edge in the plane z = L/2 will drop by the
value §qp.

It is evident in Fig. 3c that the maximum height of
the potential barrier ¢gis

b, = EFI)BS: if dgp<dpd/? @
EFI)QD+¢BS/2 if dop>dsd/2.

Inits turn, ¢op + $pd2 = E, — Erp, Where E, is the
energy of the shallowest level of the hole-filled levelsin
QDs reckoned from the Si valence band edge (QD ion-
ization energy ) Erp isthe posm on of the Fermi level
with respect to the hole level in QDs (Fig. 3¢). For QDs
inwhich the height hismuch smaller than itssizeinthe
growth plane agp, Epp = THAINIM* aéD [11], where
(NLi s the average number of holes in each QD, and m*
is the effective mass of charge carriers. Assuming that
agp = 15 nm and m* = 0.34m, for heavy holes, we
obtain Erp = 2.6NLmeV. In QDs of such a small size,
the maximum number of holes on size quantization lev-
els =10 and the “ionization” energy we on the order of
hundreds of meV [12]; therefore, E, — Ep = E, and
dop + $sd2 = E,. Inthis case, Egs. (2) can be rewritten
in amore demonstrative form:

s if E,S 0
M o

The energy spectrum of holesin analogous layers of
Ge/Si quantum dots was studied previously by photo-
conductivity spectroscopy [13], field-effect measure-
ments [14], and deep level transient spectroscopy
(DLTS) [15]. It was found that the ground-state energy
of holesis E, = 0.34 eV for Ge QDs forming at de; =
8 ML and E, = 0.40-0.42 eV for dg; = 10 ML. It isevi-
dent that both these values are, within good accuracy,
equal to the effective barrier heights ¢ determined
from an analysis of the temperature dependence of the
saturation current in Fig. 2.

I deality factor. The current—voltage characteristics
of metal—-semiconductor barriers are often written in
theform | = | Jexp(eV/nkT) — 1], where nisthe ideality
factor. At alow doping level and relatively high temper-
atures, nisclose to unity. The deviation of n from unity
in Schottky diodes is mainly associated with the occur-
rence of the tunneling current component [10]; there-

2|n fact, the term “ionization energy” is appropriate in full mea-
sure only for atoms, because the removal of an electron from an
atom gives rise to an ion. As a rule, the situation is opposite in
QDs: QDs are neutral when they contain no conduction electrons,
and QDs acquire an excess charge only when they capture elec-
trons or holes.
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fore, an analysis of n providesinformation on tunneling
processes in structures with QDs [16].

The ideality factor in the case of a reverse bias is
determined by the equation [17]

| exp(eV/KT) }

exp(eV/kT)—-1]

£

M) = 7

6V/6In[ 4)

Figure 4 displays experimental curves of n versus the
reverse bias for various samples. As the equivaent Ge
thicknessincreases, theideality factor grows, and peaks
appear in curves n(V) at dg = 5 ML, which pointsto a
resonance character of the tunneling current. Reso-
nance tunneling processes are a characteristic feature of
charge carrier transport in double-barrier structures of
reduced dimensionality and are due to the quantization
of the energy spectrum of electrons or holes in the
region confined between the barriers. As the reverse
bias increases, the energy levels of holes in the QD
layer, in turn, reach a resonance with the quasi-Fermi
level inthe metal. In this case, the probability of tunnel-
ing through the Schottky barrier and, hence, theideality
factor must increase, which is actually observed in our
experiments.

A peak in curves n(V) at voltages V = 1.1V is
observed for all samples containing a Ge layer; there-
fore, we associate this peak with the penetration of
holes through the energy level of a two-dimensional
state in the wetting Ge layer (Fig. 3b), because this
layer has the same thickness of 5 ML in all the samples
containing Ge. The peaks at lower voltages in samples
with dg = 8 and 10 ML are dueto the tunneling of holes
through discrete levels in QDs lying above the energy
level in the wetting Ge layer.

The period of oscillations in curves n(V) is repro-
duced sufficiently well at various temperatures
(Fig. 4b). The average period at dy = 10 ML iSAV =
160 mV. Assuming that the QD layer is introduced
exactly in the middle of the diode base and neglecting
the band bending due to the potential of the ionized
impurity in the diode base, one can estimate the energy
gap between the hole levelsin Ge nanoclusters at AE =
eAV/2 = 80 meV. This value is in a reasonable agree-
ment with the value of the energy gap between size
quantization levels of holesin analogous Ge QDs (70—
75 meV) determined by IR absorption [18] and reso-
nance tunneling in p*——p* structures [2].

In summary, it isimportant to note that the potential
barrier height in structures with QDs can be increased
only in the case of sufficiently dense packing of QDsin
the layer. Otherwise, the array of charged QDswill not
form a uniform planar barrier, which could efficiently
control the transport of holes through the structure. Ina
sense, the phenomenon of a change in the height of the
Schottky barrier upon introducing QD layers into the
system is close in mechanism to the phenomenon that
takes place in the case when surface states exist at the
metal—semiconductor interface. However, if the density
No. 2

JETP LETTERS Vol. 75 2002

105

a
T=300K @
13F
10 ML Ge
12F
i ~~~ 8 ML Ge
1.1
ft \\
£ 0 ML Ge
Lﬁ ! | 1 | 1 |
z 0 0.5 1.0 1.5
=
3 10 ML Ge (b)

300K

1. 1 1 I 1 1
00.3 0.5 0.7 1.0 1.1 1.3

Voltage (V)

Fig. 4. Dependence of theideality factor on thereversebias.
(a) Curvesfor various equival ent thicknesses of the Gelayer
dess (T =300 K). (b) Curves for various temperatures for a

sample with dgs = 10 ML.

of local levels and their energy spectrum are deter-
mined in the last case by the quality of theinterface and
are not controlled in practice, the parameters of QDs
(their density, sizes, and energy spectrum of charge car-
rier states) are easily controllable given the level of
modern technology. This allows effective control of the
electrical characteristics of devices. The phenomenon
of oscillations of the ideality factor in the case of a
reverse biasin Schottky diodes with QDs may serve as
abasisfor the devel opment of anew method of electron
spectroscopy of energy levelsin systems with reduced
dimensionality.

The authors are grateful to V.1. Ryzhii for useful dis-
cussions. This work was supported by the Russian
Foundation for Basic Research (project no. 00-02-
17885) and the Ministry of Education of the Russian
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We set forth basic theoretical ideas concerning the spin-polaron scenario for charge excitationsin atwo-dimen-
sional antiferromagnet. A distinctive feature of the approach being developed consists in considering a local
polaron (rather than a bare hole) as a zero approximation for the quasiparticle. At the next step, this excitation
is dressed in antiferromagnetic spin waves to form a polaron of intermediate (or infinite) radius. The method
allows usto continuously describe the transition from zero to finite temperatures and to consider awide doping
range. Our approach accounts for the main results of ARPES experiments in a CuO, plane.© 2002 MAIK

“ Nauka/Interperiodica” .
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1. INTRODUCTION

Many strongly correlated two-dimensional (2D)
systems that exhibit a non-Fermi liquid behavior of the
carriers are known to exist. Here, the principal diffi-
culty of the theory lies in the fact that the operators of
low-lying elementary excitations in such systems sat-
isfy neither Bose nor Fermi commutation relations.
One of the most glaring examples of such asituationis
adoped 2D antiferromagnet (AFM), which reflects the
salient features of the CuO, plane in high-temperature
superconductors (HTSCs). This system has been best
studied experimentally. In particular, angle-resolved
photoemission spectroscopy (ARPES) shows a number
of unusual properties; in particular, it allowsthe single-
particle spectral function of the carries to be measured.

One approach to describing elementary excitations
in a2D AFM involves the concept of a spin magnetic
polaron [1], whose consideration is the goal of this
review.

The original idea behind this concept is that an ele-
mentary excitation in a 2D AFM can be represented as
a bare particle (an electron or a hole) surrounded by a
deformed spin insulating substrate. The simplest real-
ization of such a quasiparticle, a local spin polaron
(LSP), must be given by the solution of the cluster
problem. Choosing energetically low states of a small
cluster, we can then describe the LSP motion against
the AFM background.

The LSP motion strongly depends on the magnetic
substrate state and the spin—spin correlation functions.
Below, our consideration of the magnetic subsystem is
based on the spherically symmetric description of an
S=1/2 Heisenberg AFM on asquarelattice[2, 3]. Note
that the spherically symmetric state at any finite tem-

perature and for sufficient frustration in the spin sub-
system is known to be most realistic.

It is intuitively clear that the motion of a small
polaron at T = 0 must depend on whether (or not) there
is a long-range order in the spin subsystem. This
impliesthat the second important step in developing the
concept of a spin polaron is allowance for the LSP
interaction with spin waves with quasi-momentum Q =
(T, m); i.e., the need for introducing complex spin
polaron (CSP) operators arises. The CSP is a local
polaron dressed in spin waves with a quasi-momentum
g closeto Q. The structure of the low-lying CSP spec-
trum is determined by the lower L SP band splitting. As
aresult, aswill be seen below, the effective Fermi sur-
face exhibits alarge deviation from the L uttinger theo-
rem. In addition, the following interesting ARPES
experimental results are reproduced: asharp drop inthe
intensity of the ARPES peaks when the quasi-momen-
tum changes from (172, Tv2)to (11, ) or (0, 0), the pos-
sible existence of a shadow band (shadow band effect),
and the so-called pseudogap on the Fermi surface.

The spin-polaron approach works in any strongly
correlated model. In this review, we demonstrate its
basic ideas with a Kondo lattice, which is the simplest
model used to describe the CuO, plane. An effective
spin—fermion model with realistic features of the CuO,
plane is used to describe the experimental results in
detail.

2. A LOCAL SPIN POLARON
ON A KONDO LATTICE

In this section, we consider a Kondo lattice with a
vanishingly small exchange interaction between local-
ized spins [4, 5]. The kinetic energy, which is much
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lower than the Kondo exchange (J > t), is assumed to
be the only small parameter of the problem.

A similar situation is observed in the CuO, planesin
superconducting cuprates. Here, the Kondo exchange
corresponds to the production energy of a Zhang—Rice
singlet on asingle CuQ, plaquette [6]; it is of the order
of 2-3 eV. The singlet kinetic energy t is about 0.5 eV
and significantly exceeds the exchange between neigh-
boring spins, which is about 0.15 eV.

Below, using a simple model as an example, we
demonstrate the deviation from Fermi statistics (in the
spin-polaron approach). A similar effect is also known
as the spectral weight transfer [7], where bands with
spectral weights that depend on filling and that are less
than those for Fermi statistics are observed experimen-
tally. Thisimpliesthat fewer electronsthan in the Fermi
case are needed to fill the entire band.

2.1. The Spectral Weights of Bare Carriers

If we completely ignore the electron motion and the
exchange interaction between neighboring localized
spins, the model Hamiltonian takes the simplest form

H, = 2JS, 5, (1)

= ‘](g(nrr _nri) +S:a:rxam +Sr_a:rar1)v

where S, is the operator of the localized spin S= 1/2 at
lattice sites 1, a,, [0 = 1(+), L (-)] is the annihilation
operator of an electron with spin projection s/ = 0/2,
and M= a:rc &g

The on-site Hamiltonian has eight eigenstates: two
states without electrons that correspond to two local-
ized spin directions, two states with two electrons (all
these four states have zero energy, E, = E, = 0), and four
states with one electron per site: the lower singlet state
and thethreetriplet stateswith energies B,y = £, =—3J/2
and E;; =&, = J/2, respectively. For thismodel, the ther-
modynamic potentia is given by

Q = -TN,InZ,

7 =92+ e—B(go_H) + 3e—|3(51_|J)

(N_ is the number of lattice sites, p is the chemical

potential, and B is the inverse temperature). Hence, we

can easily obtain the mean number of particles (deter-

mined by p) and the mean energy for agivenlattice site:
10Q _

1, Be-w —B(e,—1) 2Bu
S ——— = - + +
N N op Z(e 3e 4e™),

+ 2P @

©)

~

A0 = %(soe—s(eo—u) + Ssle—s(sl—u))_
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At high temperatures (T > J), the one-electron states
are uniformly filled and then N = 2/(e®* + 1). At low
temperatures (T < J) and 1 < O (the energy scale zero
isdefined as E, = E, = 0), the two-electron states are not

occupied. Moreover, since e’ s gt , the one-elec-
tron triplet states are also empty and, in thislimit,

N = + [H,O = g,N. (4)

At 1 > 0, the two-€electron states are filled. However,
this case requires no special treatment, because Hamil-
tonian (1) is symmetric relative to the electron—hole

transformation a, = 0, .

For comparison, let us consider free fermions at the
level €, with a two-fold spin degeneracy. Instead of

Eqg. (4), wethen have Nfree = 2/(eB(€°_“) +1). Therefore,

we find from (4) that

N O(12)e "™ = N4 (5)
for u <gy—T and exp(B(gy— 1)) > 1 and
NO1 = N"™/2 (6)

for u>¢ey—T and exp(B(e, — W) < 1.

Clearly, the filling will also differ from the Fermi
type when the singlet states are smeared into a singlet
zone due to electron hopping.

In order to subsequently generalize the above results
to a more redigtic situation, with allowance for the
kinetic energy, let us now solve problem (1) using two-
time Green's functions. Using the operators

b=Sa, +Sa,,

d = §I”l”a” +Sn,a,,

we can easily derive the closed system of equations of
motion:

wTajam= 1+J0bjaT © = w+y,

a = a,
(7)

Cc= nrlaI’T’

(w+J)Ibla'm = %J [Ta|am+ 2J (Td|a"]
. N . )
wllcjall= c,+ JId|al]
(0-J)Td|a'm = d,+ i—i.] (Te|a'm
Here, we introduce the means
¢, = Qc,a}0= [h,0= N/2,
1 9)

dy = §d,aY0= —=—MH,0= -@&bd

2J
The last correlator can be easily derived from the
Green's function [bja’ Below, we restrict our analy-
sisto thelimit of low temperaturesT < Jand L < 0. In
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this limit, we can guess a self-consistent value of d, by
taking it from the above thermodynamic analysis,
which gives d, = 3N/4 [see Eq. (4)].

Solving the system of Egs. (8) yields expressionsfor
the electron Green's function [laja*[Mand the Green's
function [bla*l] Using (9), we obtain

(Thja'D= 1ZN81>+§’%_1

3(1— -1 3 1
SN L 3

(Th|a'T= _3_(1§ NI+ gjgl

(10)

. . (11)
AN Lt SN 347
8 2 4 2

These three poles correspond to the transitions E;, —~
Eip, Eg — Ei;, and E;g — E,. At low temperatures
T < Jand i <0, thetriplet states are unoccupied, which
accounts for the absence of the corresponding pole in
(20). The mean number of electrons at site r with the
spin s¢ = +1/2 can be determined from (10) using the
fluctuati on—di ssipation theorem:

1+N

- (eB(So—u) + 1)—1

[h,,0=

N 3(1; N)(eﬁ(sl—m AT g(ss(—so—u) it (12

pu<0.
For T < Jand u <0, only thefirst term

1+N 1
4 eB(So—u)+1’

N _
5= (13

must be retained on the right-hand side. Solving the last
equation yields Eq. (4).

Thus, we have shown that only the lower pole of the
Green'sfunction (10) issignificantfor T< Jand u < 0.
In what follows, it is convenient to determine the sin-
glet operator and the corresponding Green's function,
which has only one pole corresponding to the transition
to asinglet state. Choosing the combination

_lmogc
a =205+ (14)

we may note that the equations of motion (8) [using (9)]
lead to the simple relation

gb+g%m|a*m= Ho,a 0= 1;'\'

(15
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for the singlet Green’s function. Using Eq. (7), we may
write the singlet operator (14) in a different form:

=41

2

where 2°° =12+05, 7' =S, and X =a,4(1—
n, _,) are the so-called Hubbard projection operators.
Operator (16) is aso a projection operator between the
states without electrons and the exact local singlet
polaron state. Using Eg. (13), it may be noted that the
mean value of a*a gives the mean number N of elec-
trons.

a (Z/' X" =z X, (16)

2.2. The Lower Polaron Band

Let us now add the kinetic energy operator to
Hamiltonian (1):

n
- _tzar +g, o&rgs
go

where g denotes the nearest neighbors and z is their
number. Inthelimitt < J, T < J, and u < 0, we may
restrict our analysis to the broadening of the singlet
band alone and substitute Eq. (17) with the expression

(17)

T = +y X79 X0 (18)
go

This substitution implies the exclusion of the transi-

tions to (or from) two-electron states. Passing in

Eqg. (15) to momentum space and adding the contribu-
tion from the kinetic energy, we derive the equation

o+ 2oy = 23N+ ra,, Tljaym (19)

Consider the last term of this equation in terms of the
projection technique. See the next sectionsfor detail on
this technique. In the case under consideration, how-
ever, thismerely impliesthat we project the result of the
singlet operator commutation onto the singlet itself to
give

H[a, T],a30
Hop o0

Thelast expression is calculated to the lower order inft;
i.e., the correlation functions are uncoupled from dif-
ferent lattice sites. Using the results of the preceding
section, we can then easily calculate al means:

Iz, X0 = z;' x®0 = (1-N)/2,
(z,"X,'0= [, X/'0= N/2,
[z, X,'0= [, X'0= -N/2,
X'0= N2, X®=1-N.

[(xp,T]DEpap, E, =

o (20

(21)
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Thus, we obtain

1+N 1 i
Ep = —(tzyp)T, yp = Ezepg. (22)
[¢]

An essential feature of our solution is the dependence
of the band width on filling. When the number N of
electrons changes from 0 to 1, the band width changes
from /4 to 1/2 of the free fermion band width. We
emphasize that the spin—spin correlations at neighbor-
ing lattice sites were disregarded ((3,S; , {[I= 0) when
deriving Eq. (22). This, in particular, implies that we
ignored the superexchange between neighboring local-
ized spins through conduction electrons, which is on
the order of t2/J. Apart from the superexchange, there
are also other magnetic ordering processes, in particu-
lar, the processes that lead to ferromagnetic coupling.
An analysis of the competition between the different
magnetic ground states is beyond the scope of this sec-
tion. Therefore, having determined the magnetic order-
ing temperature, T, ~ t%/J, we may only assert that
result (22) holds for temperatures T,, < T.

Att <T, the singlet band width is insignificant and
the problem reducesto that considered in the preceding
section. Inthetemperaturerange T,, < T < t, thesinglet
zone filling is similar to but does not match the Fermi
distribution. Let us cal it a quasi-Fermi distribution.
We find from Egs. (19) and (20) that

1+N 1

N = lad= ,

i 0 e g (23)
€, = &+ E,.

For very small filling, N < 1, we obtain a distribution
from Eq. (23) which is analogues to the Fermi one with
aweight of 1/4:

N (24)

Sl 1
P28
similar to result (5) of the preceding section. This dis-
tribution is valid for sufficiently small chemical poten-
tials, p < ming, + O(tN/N,), N < 1.

For large chemical potentials, the number N(u) of
electrons must be determined from Eg. (23), which
yields

N = N[lz N, = F/(2-F),
P (25)
F = Nllz(eﬁ(sp_u) + 1)_1.
p
Using this relation, we can aso determine the quasi-
Fermi surface (FS) as a region where the quasi-Fermi
distribution (23) falls from (1 + N)/2 to zero. Because

of the weighting factor, which takes on values between
1/4 and 1/2 (depending on N), the quasi-FS for a given

BARABANOV et al.

number of electronsis larger than the ordinary FS. We
see from Eq. (25) that the number of electrons changes
from zero to unity as the chemical potential increases.
For gy + tz< i < |&| —tz thefilling N = 1 issimilar to
the situation in the Hubbard model when the chemical
potential lies between two Hubbard subbands.

Thus, even for the simple model considered here, a
large deviation from the Fermi distribution is observed
when the singlet band is filled with electrons. The car-
rier spectral weight in the band ranges from a mere one
fourth to one half of the free-fermion spectral weight.
Both the spectral weight and the band width depend on
filling (spectral weight transfer [7]). This effect should
be observed experimentally, for example, as a decrease
of the spectral weight in photoemission experiments.
One might also expect the spectral weight to decrease
at temperatures lower than the magnetic ordering tem-
perature. However, the dispersion relation (22) may
change in this case.

3. A LOCAL POLARON DRESSED
IN SPIN WAVES

In this section, we demonstrate the need to make the
spin polaron structure more complex to adequately
describe the low-energy spectrum of the carriers. First,
wewill dwell on the zero-temperature limit [4] and then
show how we can continuously pass to finite tempera-
tures[§].

3.1. Zero Temperature

Naturally, the Hamiltonian of a Kondo lattice for a
realistic model should include not only the Kondo
exchange and kinetic energy, as in the preceding sec-
tion, but also the AFM interaction between neighboring
localized spins. This corresponds to adding the term

(26)

Ha = 31 S

Let usfirst write out the first two equations from an
infinite chain of equations for the retarded Green's
functions that describe the LSP motion against the
AFM spin background. In this section, we analyze only
the quasiparticle spectrum. Therefore, to simplify the
notation, we write the operatorsainstead of the Green's
functions [[i4|b*[Mand omit the nonhomogeneous terms
Ja, b*],.[0 The above equations then take the form

(w—ep)a, = Jby,
1
1 ) . 27)
_ 2 —ipr _ (
b, = N Zbre , b, =Sa,
r
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(A)~S'+Rar = [é’fRar! HO+ H1+ H2]

= Ztgéf+Rar+g+ Jé{+Rérar
(28)

i Y
+ IleaByzoasrB+R+gSr+Rar-
9

Here, the summation is performed over the sitesr of a
sguare lattice and over their nearest neighbors |g| = 1
For brevity, we omitted the spin subscripts on the cre-

ation (a;,) and annihilation (a,,) operators for Fermi
particles (let these be electrons) and designated S =

S'6”. In what follows, we assume the electron spec-
trum to be

€ =

D (29)

Considering the motion of alocal magnetic polaron
inthelimit N < 1, we can seethat terms proportional to
the spin—spin correlation functions C = [§S ., at
neighboring lattice sites, i.e., those determined by the
short-range magnetic order, emerge in the kinetic
energy. However, it is clear that in the presence of a
long-range order, the polaron motion must also depend
on the parameter that corresponds to this long-range
AFM order. In a magnetic substrate with a long-range
order for the spherically symmetric state under consid-
eration, (50=0, C¥ = [§'S’, {= M3™eR |R|> 1,
and Q = (1, ); i.e, in this state, the mean [5,&,lis a
macroscopic quantity. The latter implies that the cou-
pling of alocal polaron with &, [Q = (1T, )] corre-
sponds to a new polaron state of infinite radius. In this
case, it is important to take into account the quantum
nature of the spin Q wave, because the transitions
between local and depolarized polaron states essen-
tialy determine the polaron bands.

Itisnatural to introduce the following operators that
describe the polaron states of an infinite radius:

—€,.q = —2t(cosp, + cosp,).

C = érar, Cp = éoap+Q, (30)

ér = N_lz eiQRér+R = eiQréo, (31)
R

d = QSa, d,= Qib,,o. (32)

The operators ¢, and d, alow for the long-range spin—
electron correlations (|R| > 1). Note that our set of
states is closed relative to the Kondo interaction. We
can easily see from Egs. (27), (30), and (32) that

(@=€peg)e, = Id. (33)

We use the standard Zwanzig—Mori projection tech-
nique [9] to close the system of equations for the
Green's functions. Let us project the corresponding
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commutators onto the following orthonormalized set of
basis operators:

By = a,

B, = f;'°b,, b = b —c,

34
B, = f3'°c,, (39

B4 f:l:uzdry d:f = dr_Mar"'Mf%(br_Cr)’

where f, are the corresponding normalization factors.
The coefficients in the projection relations [B;, H] =

Z a;;B; aredefined as

alj = E[[Biri H]1 B}rr]+|:|- (35)

Using Egs. (27), (33), and (35), we derive thefollowing
simple system of four equations in momentum repre-
sentation:
B, = Zaij(p)Bj'p. (36)
i
We do not give any matrix elements of the spectral
matrix a;(p) (see [4]), which depend essentially on the

parameters of long-range magnetic order M and corre-
lator C.

Thus, in our approximation, the electron motion
against the AFM background is described by the qua-
siparticle that is a coherent superposition of four Fermi
fields: the bare electron field a,; the del ocalized polaron
field c,, and the two localized polaron fields b, and dj,
which are mainly hybridized through the Kondo inter-
action. System (36) may be considered as the system of
Schrodinger equationsin which the matrix elements a;;
are the amplitudes of the transitions from statej to state
i. The presence of nondiagonal matrix elements reflects
the quantum nature of the spin S and Q waves. The
eigenfunctions and eigenvalues of Eqgs. (36) describe
the elementary excitations that form the four bands.
The band structure depends on the magnetic subsystem
state (on M and C) and on the relations between the
energy parameterst, J, and |. Below, we use the follow-
ing typical valuesfor M and C: M = 0.1 and C =-0.335.

In our model, all spectra depend on the momentum
only via e,. Note that we used the approximation of a

low Fermi-particle density, i.e, &,a] — 0, when
calculating the matrix elements (35).

Figure 1a shows four branches of the quasiparticle
spectrum EO(p), i = 1-4, for J> t and | (in the limit of
strong correlation). Figure 1b shows the residues ZS)
of the electron Green’s functions that correspond to the
poles EO(p):

4

Z(')
Tay,|an = OB, ,|B; /= z

E‘”(p) 57
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E(p) OF———__

—————
-
-

Fig. 1. (a) The quasiparticle spectrum E®(p) for 3= 5> t
and I, t =1, and | = 0.1 along the symmetric direction p =

Px = Py (b) the residues ZS) of the electron Green's func-

tion [T, lap 0 at poles EO(p). Different lines corre-
spond to four bands.

In the low-density limit, the residues Z{’ are deter-
mined by the solution of the equations of motion for the
Green's functions [IB, ,|B; /1 with the nonhomoge-
neous terms W, = [B; |, BL ol 0 =8 1. ZS) deter-
mines the single-particle spectral function A(p, w) =
208 w—E"(p)] . Since Z§ characterizes the
contribution (weight) of the bare particle state a, to the
quasiparticle state with energy EO(p), zV =1.

InFig. 1a, the lower bands (centered at E® [1-3J/2)
correspond to the motion of alocal polaron in the sin-
glet state b® = b —a/2 and to the motion of this polaron
coupled to a Q wave. The upper bands (centered at
E® [JJ/2) describe the motion of alocal polaron in the
triplet state b® = b + 3a/2 and its coupling to aQ wave.
The terms “singlet” and “triplet” mean that, when act-

ing on the spin subsystem state, the operators b™®* and

bft)+ produce, respectively, singlet or triplet spin—elec-
tron pairs at siter.

It isimportant to note that the above four bands are
only roughly symmetric about the boundary of the Bril-
louin magnetic zone. In momentum space, the separa-
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tion between two quasiparticle states with the same
energy can differ from the AFM vector Q; i.e., the
shadow band effect attributable to these bands can dif-
fer from the standard effect governed by the vector Q in
atwo-sublattice Néel AFM [10].

The lower part of the elementary-excitation spec-
trumislargely determined by the states b, and d,,. At the
same time, as we see from Fig. 1b (solid curve), the
possiblefilling of each p state with a particle of agiven
spin for the lower band is not that small, being close to
0.1. Note that, because of such alarge deviation of the
filling from unity, the FSislarge even at small filling.

If the three energy parameterst, I, and J are of the
same order of magnitude, then the elementary excita-
tionin any of the four bandsis a coherent superposition
of the states a, b, ¢, and d; these states enter into this
superposition with comparabl e weights. We emphasize
that disregarding the Q polarons, i.e., the statesc and d,
results in the disappearance of two bands and can sig-
nificantly change the remaining bands.

3.2. The Polaron Sructure at Finite Temperatures

In the preceding section, we described the band
splitting of alocal polaron through its dressing in an
AFM spinwave &, at T = 0. Our description was based
on the fact that the nonzero quantity [5,S,Llis macro-
scopic. However, it is clear that the spectrum must
change continuously with increasing temperature and
the above splitting cannot disappear suddenly, although
[$oSoMis no longer a macroscopic quantity at finite
temperatures.

We now present the method of describing the spec-
trum at finite temperatures [8]. In this method, the spin
polaron structure is assumed to be more complex: the
polaron is a superposition of a local spin polaron, a
local spin polaron dressed in acontinuum of spin waves
§, withqg closeto Q, and, at T=0, alocal spin polaron
dressed in &,. As previously, we use a Kondo lattice as
an example to demonstrate the approach. Here, how-
ever, we take into account the hoppings not only to the
first nearest neighbors but also to the second and third
ones. This model is more redlistic, because it gives a
minimum for the lower band close to k = (172, 172).

Thus, the Hamiltonian takes the form

A=J+T+1, 3=3S4a'Sa,
2

A + + +
T= ngaf+gal’ +szar+dar +TZgzar+ZQara (38)
rg r,d rg

| — ~ ~
z z S’ S' +g-

g
Here, g = +g, * g, are the vectors of the nearest neigh-
bors; d and 2g are the vectors of the second and third
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E(K) 8

Z(k) 1

Fig. 2. The spectrum E/(K) at T = 0 along the direction k = ky = Ky E(i)(k) isthe same in the local polaron approximation. (b) The
residues Z(li’)l(k) of the Green’s function D}kc‘aEODD at poles EN(K). (a) The quasiparticle excitation spectrum EM(k) at T = 0.1I

along k = kg = ky. EO(K) is the same in the local polaron approximation. (b) The residues Z(Ll)l(k) of the Green's function

D}ko‘a;c,[ﬂ] at poles E(i)(k). Z(lyl)l(k) corresponds to E(l)(k) in the local polaron approximation.

nearest neighbors, respectively. The Fermi operator
a:, ¢ creates ahole with the spin S= 1/2 and projection
0/2 (o = +1). As previously, the designation S = S'¢°
is used in the Kondo term J.

To analyze the excitation spectrum, we introduce
the basis of on-site operators

Air=a, A,=3a. (39)

To allow for the spin polaron of infinite radiusat T =0,
we also add the operators

Ar,j = érAr,h ér = N—lzeiQpé+p, (40)
p

j=i+2, 0= (1-2),
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which describe the local polaron coupling to spin exci-
tations (with the long-range order). Note that the con-
tribution from these operators vanishes at M = [5,S,[F
0. Finally, let us introduce the operators

N_1 Z eiqpé'+p,
p,qUQ

i = (1-2).

Here, Q isasmall region of the Brillouin zone near the
point (1, ) (see Fig. 3). The summation does not
includeq = Q.

The operators A, s and A, 4 describe the polaron of
intermediate radius, i.e., the local polaron coupling

with the spin waves whose quasimomentum lies in a
square region around Q with linear sizesL.

~ (1) ~ (1)
Ar,j = Q" Ar,i1 roo= (41)

j=i+4,
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X=(0,n) M= (n, )

Q=L*L

X=(r,0)

Fig. 3. Surfaces of constant energy for the lower band
EDK) at T=0.1I.

The spin-polaron spectrum g;(k) (wherei isthe band
number) can be determined by using the matrix of two-
time retarded Green’s functions G, (t, k) for the opera-
tors A ;. We solved the system of equations of motion
for G (t, k) in terms of the standard Zwanzig-Mori
projection technique, where we restricted ourselves to
the above basis of operators { A 5 i} .

Here, we do not give the corresponding matrix ele-
ments, because these are cumbersome.

At T = 0 (case 1), we use a basis of six operators,
i = 1-6. At finite temperatures, there are no operators
A 5 3and A ; 4, because these describe the polaron of
infinite radius, which can exist only in the presence of
along-range order.

Thus, the Green’s functions take the form

12 Z(!)- (k)
G, (k) = S
j |Z

rar) (42)

The quantity Z{7 1,(k) is the number of bare holeswith

agiven spin ¢ and momentum k in the state |k, oCof the
quasiparticle band g,(k). Note that the spectral weights

(residues) Z, (k) satisfy thesumrule z8 K =1.
The dependence of the spin-polaron excitation spec-
trum g on the correlation function M = [5,S,shows
up only when the Q-polaron states A, ; and A, , are
taken into account. To calculate the spectrum g(k)
requires knowledge of the spin correlation functions
[Bg, Sg . The method of their calculationisoutlinedin
[3, 11]. In particular, the following numerical values

were obtained for the spin correlation functionsat T =
0: B8+ gH0= -0.332, [B:Sy.40= -0.145 + M, and
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(SR + 2= —0.144 + M, where M = 0.0577. The fol-
lowing mode! parameters were used: T = 1, T,4 = 0.51,
Tq = Tpg, Tg = —Tpq J = 5Ty, and | = 0.57,,; these were
chosen in such away so that the minimum of the lower
zone did not lie far from the point (172, 1W2). The
parameter L, which specifies the region Q for the oper-
ators A, 5, Was calculated for each k in the Brillouin
zone by the variational method. The size of the region
Q strongly depends on k. For example, L(0O, 0) = 0.051t
but L(mt, ) = 0.3511 The calculationswere performedin
the limit of small filling, n < 1, where n is the total
number of carriers per cell.

Case 2 corresponds to the temperature T = 0.4,
which corresponds to the correlation length & = 40 lat-
tice constants.

Our results for the most interesting lower bands
€ (k) for k along the symmetric direction from I = (O,
0)toM = (11, 1) (in cases 1 and 2) are shown in Figs. 2A
and 2B, respectively. Figure 3 shows surfaces of con-
stant energy for the first band. As we see from
Figs. 2A(a) and 2B(a), the minimum of the lower band
lies near the point (172, 172) in both cases, which is
characteristic of the Emery model and corresponds to
the experimentally observed spectrum [12]. We also see
from the figures that thecases T=0and T # 0 are sim-
ilar, except that the second band vanishes at nonzero
temperature, when there is no long-range order.

In Figs. 2a(b) and 2B(b), the bare-carrier weights
Z, ; are plotted against k for T=0and T # O, respec-
tively. At zero temperature, the residue of the second
band is negligible; otherwise, the figures are identical.
Thus, the set of operatorsrequired at T = 0 may be ade-
quately replaced by the set of operators A, , 5 ¢ When
the long-range order disappears.

We emphasize that the results obtained in this sec-
tion, as in the case of zero temperature, describe the
shadow-band effect and the strong violation of the L at-
tinger theorem.

Interestingly, as the temperature rises (i.e., as the
correlation length & decreases), the band shape does not
change qualitatively up to the temperatures that corre-
spond to a correlation length of 36 lattice constants.

4. A SPIN POLARON
FOR A REALISTIC MODEL

The most recent ARPES studies indicate that the
spectraof optimally doped cuprates differ from those of
insulating cuprates. Experimental data for undoped
compounds [12, 13] suggest an isotropic band bottom
near the point (172, 1/2) in momentum space, a large
energy difference between N = (172, 172) and X = (11, 0),
and the so-called remnant FS [14] (the surface on which
the single-particle spectral weight decreases sharply).
A flat-band region, alarge FS centered at the point M =
(11, ™), and the so-called shadow FS, which resultsfrom
AFM spin correlations [10], were found in optimally
doped cuprates [15-21]. The flat-band region has the
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shape of an extended saddle point in the direction
(172, 0)—11, 0). The shadow FS resembles the main FS
displaced by the AFM vector Q = (1, 7). In addition, a
high-energy pseudogap is observed near the point X
with an energy on the order of 0.1-0.2 eV for interme-
diate doping [13, 22—-24]. In the rigid-band model, the
isotropic minimum of the spectrum for undoped com-
pounds must result in small hole pockets near the point
N as the doping increases. However, experimental data
reveal no such pockets [24], and the FSfor optimal and
intermediate dopings appears to be arc-shaped [25].
This obvious contradiction can be resolved only by
considering the evolution of the spectral density during
doping.

So far we have used only particular modifications of
the Kondo lattice model. However, this modd (just as,
e.g., thet—=J model) does not contain any important real-
istic features of the CuO, plane, in particular, the spe-
cific lattice form and direct oxygen—oxygen hoppings.
The effective spin-fermion model [26, 27] (obtained by
reducing the even more complex and complete Emery
model) may be assumed to be sufficiently realistic for
the CuO, plane.

All of the above ARPES results in a wide doping
range can be explained in terms of the spin-polaron
approach for the spin-fermion model [28] when the
complex spin-polaron structure (the superposition of
polaron states with different radii [29]) and frustration
in the spin subsystem are taken into account. To this
end, we must include both the Kondo hoppings of oxy-
gen holes attended by the copper spin flip with ampli-
tude 1 and the direct oxygen—oxygen hoppings with
amplitude h in the spin-fermion model Hamiltonian.
For the spin subsystem, we must take into account the
AFM interaction between the first (J;) and second (J,)
nearest neighbors of a square copper lattice. The con-
stants J; and J, can be expressed in terms of the frustra-
tion parameter p as follows: J; = (1 —p)J and J, = pJ,
0<p<1,J>0. Thefrustration parameter p increases
with hole concentration x.

As previoudly, we solve the problem in terms of the
projection technique with allowance for the spherically
symmetric state of the spin subsystem. The spin-
polaron basis operators at finite temperatures are con-
structed in away similar to that used in the preceding
section (given the two possible oxygen-hole positions
in an elementary cell).

We present our results only for weak doping, X =
0.02 (p=0.1), and for thetemperature T = 0.2] (the typ-
ical parametersT ~ 0.4 eV, J = 0.41, and h = 0.41 were
chosen).

Figure 4 shows the spectrum ¢,(k) and the spectral
weight n{;(k) of a bare hole in the lower band with
g,(k) = const and n{;(k) = const isolines for the frus-

tration parameter p = 0.1. The circles are plotted on the
contours of constant energy that correspond to a FS
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Fig. 4. (8) The hole spectrum g4(k) and (b) the spectral
(1)

weight n

(k) of abare holefor the lower band are repre-

sented by &4(k) = const (in units of T = 1) and n{ (k) =

const isolines. The circlesin (a) are plotted on the contour
of constant energy that corresponds to the FS calculated for
the hole doping x = 0.02 (the frustration parameter p = 0.1).

The circle diameter is proportional to the spectral weight
nfhl)o(k) on the FS. The results are presented in the first

quadrant of the Brillouin zone. For the symmetry points, we
use the notation I = (0, 0), X = {(1t, 0), (0, M}, and
M = (1T, 0).

with x =0.02. The circle diameter is proportional to the
spectral weight ni(k) on the FS.

As can be seen from Fig. 4a, the minimum of g,(k)
is close to the point N and the spectrum isfairly isotro-
pic near the band bottom. The spectrum along the F'—M
and M—X—M directions reproduces the ARPES results
(cf., eg., Fig. 3in [13]). The width of the lower hole
(upper electron) band, W; = (4.4—-3.3)1=0.44 eV, ds0
corresponds to the ARPES results: W, = 0.2 eV for
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Bi,Sr,CaCuOg, o5 [13], W; = 0.3 eV for Ca,CuO,Cl,
[14], and W, = 0.35 eV for La,CuQ, [12]. Some uncer-
tainty in these experimental data is attributable to the
drop in spectral weight near the point I.

The most important result for very small dopingisa
sharp decrease in the spectral weight of the lower band
when moving along k from point N to point M (see
Fig. 4b). We see that the k line of this sharp decreasein
spectral weight is close to the line that gives the rem-
nant FS in the ARPES experiments [12, 14]. The spin-
polaron spectrumin Fig. 4aexhibitsasymmetry similar
to the symmetry of the Brillouin magnetic zone, but the

spectral weight n(l) 5(k) has the symmetry of the true
Brillouin zone (see Fig. 4b).

A detailed analysis [28] indicates that taking into
account the complex spin-polaron structure and the
actual features of the CuO, plane makes it possible to
describe the main ARPES experimental resultsin terms
of the same approach and in awide hole-doping range.
In particular, these results include the existence of a
pseudogap for intermediate doping and a large FS, as
well as the displacement of the band bottom to point
M = (11, 1) when passing to optimal doping.

5. SUPERCONDUCTIVITY
IN THE SPIN-POLARON APPROACH

So far we have considered only the normal proper-
ties of strongly correlated systems. Let us now turn to
superconductivity. In this section, we show that it
would be not suffice to consider the pairing of bare

holes a,, when studying the superconducting proper-
ties [30]. A more complex excitation is required, i.e., a
spin polaron that is generally described by the operator

Peo = ko + bio, (43)

where by isthe sum of termsin the following symbolic
form: ag ik, Sa S-S, S (see eg., [31]).

Let usreturn to asimple Kondo lattice, asin subsec-
tion 3.1. Below, we show that for thismodel it isimpor-
tant to take into account anomalous Green's functions

of theform [Tb, 4,| a, o1 Moreover, we show that no

superconductivity is possible in the approach under
consideration without allowance for such Green’sfunc-
tions. In fact, thisimplies that the strong interaction of
electrons with excitations of the antiferromagnetically
ordered spin subsystem is the superconducting cou-
pling mechanism in this model.

BARABANOV et al.

Recall that the Hamiltonian of a(square) Kondo lat-
ticeis
H= z ted + g 0. o
f (44)

+‘]z rosxaclozro

1

QI Z §+ g§-
r,04,0, r,g
All of the designations have been explained above.

L et usnow write thefirst two equations from an infi-
nite chain of equations for the Green’s functions
describing the hole motion against the AFM back-
ground [cf. (27) and (28)]:

+ _ +
(*)D]a'ro|arl, GDD - 6r,rl + Ztg |:Ba-r+g,cs|ar1,cs|:ﬂ:’

(45)
+J [0, o|ar, o1
(-")D:brc|a:1, O‘DD = Ztg EESxé-g, clar+g, 0, a;rl, GDD
9,0,
+ ileorBy Z 6-; (IIDZSr[3+gS\r/ar,c1 a:rl, ODD
9,04 (46)
3
4D]3-r0| r,,0 _‘JD:bro|":l-r'-l,om]:|

< —cz (Glar 01 —01) ar1 0>>

Here, by = 65 0, & o, - AS previously, we take a
sphericaly symmetric singlet state with a zero mean
spin projection at any lattice site (50 = 0) and non-

zero AFM spin correlations (5, S/ as the ground state

of the spin subsystem. The last term in Eq. (46) is pro-
portional to the carrier concentration x, which isasmall
parameter of the problem (x < 0.2 in the region impor-
tant for HTSC).

Let usfirst consider the systemin anormal state. To
closethe chain of equations, we make use of the repeat-
edly mentioned Zwanzig—Mori projection technique
[9]. For the system of Egs. (45) and (46), this implies
that the first two terms on the right-hand side of
Eqg. (46) must be approximated by their projections
onto some chosen operator basis. When describing the
system in anormal state, the simplest operator basisis
formed by the two operators that emerge in the first
Eq. (45). These are the annihilation operators for abare
electron, a,4, and the on-site spin-polaron operator b, .
The choice of such abasisimpliesthat the spin polaron
is constructed as a coherent superposition of the bare-
hole operator a,; and the operator by, for the hole asso-
ciated with the local spin. Thislocal polaron is acoun-
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terpart of the Zhang—Rice singlet in the Hubbard three-
band model. In the limit of strong Kondo interaction J,
such local polarons best describe the true lower quasi-
particle band.

To describe superconductivity, we must expand the
operator basisa, and b, to include the operators a; and
b, when projecting. The only term with anonzero pro-
jection onto this additional subspace isthe last term on
theright-hand side of Eq. (46). Itsprojectiononto a; is

zero, while its projection onto b, takes the following
form (note that in this case, the projection technique
yields exactly the same result as does the simplest

uncoupling):
a,
-

Jo-<< 2br+ o z (Gla,, glar,—al)
ﬂD = < z (Glar,clarv—01)>'

0,
As a result, the anomalous Green's function F2 =
o (Ib!, _|ay 400 and the anomalous mean n* emerge
on the right-hand side of Eq. (46). Performing further
standard calculations, we can derive a closed system of
equations for the superconducting case [30] by using
the projection technique described above. Determining
the anomalous Green's functions from this system
allows us to derive the standard equation for a super-
conducting gap with inclusion of the upper (w,) and
lower (w,) polaron band spectra. Omitting the corre-
sponding intermediate calculations, we give an esti-
mate for thegap A at T = 0 in the simplest logarithmic
approximation by disregarding the dependence of A, on
k. The equation for the gap has the standard form for
the BKS theory, but with the effective coupling con-

stant g ~ J¥/(w5 — w?) ~ J rather than J2, as would be
the case for aweak Kondo interaction.

We assume that the chemical potential lies near the
center of thelower band. In that case, we can easily ver-
ify that w, ~ J for the typical parameterst, = —t, J = 3t,
| =04t t=1 and ¢y = [§S , 0= -0.33. The cutoff
energy isdetermined either by the lower-band width W,
or by the characteristic spin-excitation energy 1. In our
case, these two quantities are on the order of t. As a
result, the following estimate holds for A:

0 0
0 1w, w320

A = W, exp B2 Dtexp(t/J)
0,87 ;0
Oy v o

= JnUdob,

.
a, [l

(48)

(49)

JETP LETTERS Vol. 75 No.2 2002

117

For HTSC, W, is typicaly 0.3-0.5 eV, which gives a
reasonable estimate A = 100 K for the gap.

The model under consideration isthe most dramatic
demonstration of a situation where only the term (47),
which results from the projection onto the purely
polaron operator b*, leads to superconducting coupling
(both of spin polarons and bare holes).

6. CONCLUSION

We have demonstrated the basic ideas behind the
spin-polaron approach for strongly correlated 2D sys-
tems. The method of constructing complex polaron
states (only such states can adequately describe ele-
mentary excitations), is common to al strongly corre-
lated models. This method is much simpler and more
transparent than, for example, the self-consistent Born
approximation. In our view, it may aso proveto be effi-
cient in the subsequent development of the theory for
strongly correlated systems, in particular, in studying
their kinetic properties [32].
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We discuss fermion zero modes within the 3 + 1 brane, i.e., the domain wall between the two vacuain 4 + 1
spacetime. We do not assume relativistic invariancein 4 + 1 spacetime or any special form of the 4 + 1 action.
The only input isthat the fermionsin bulk are fully gapped and are described by a nontrivial momentum-space
topology. Then the 3 + 1 wall between such vacua contains chiral 3 + 1 fermions. The bosonic collective modes
in the wall form the gauge and gravitational fields. In principle, this universality class of fermionic vacua can
contain all the ingredients of the Standard Model and gravity. © 2002 MAIK “ Nauka/Interperiodica” .

PACS numbers: 04.50.+h; 11.25.Mj; 11.27.+d; 73.43.-f

INTRODUCTION

The idea that our Universe lives on a brane embed-
ded in higher dimensional space [1] is popular at the
moment. It is the further development of old ideas of
extra compact dimensions introduced by Kauza [2]
and Klein [3]. In a new approach, compactification
occurs because the low-energy physicsis concentrated
within the brane, for example, in a flat 4-dimensional
brane embedded in a 5-dimensional anti-de Sitter space
with a negative cosmological constant [4]. Branes can
be represented by topological defects, such as domain
walls (membranes) and strings. It is supposed that we
live inside the core of such a defect. This new twist in
the idea of extra dimensionsis fashionable, because by
accommodation of the core size one can bring the grav-
itational Planck energy scale close to the TeV range.
That iswhy thereis hope that the deviations from New-
ton’s law may become observable even at a distance on
the order of 1 mm. At the moment, the Newton’s law
has been tested for distances >0.2 mm [5].

The particular mechanism us to why the matter is
localized on the brane is that the low-energy fermionic
matter isrepresented by the fermion zero modes, whose
wave function is concentrated in the core region. Out-
side the core, the fermions are massive and thus are fro-
zen out at a low temperature T. An example of such
topologicaly induced Kauza—-Klein compactification
of the multidimensional space is provided by the con-
densed-matter analogs of branes, i.e., domain walls and
vortices. These topological defects do contain fermion
zero modes which can live only within the core of
defects. Thesefermionsform the 2 + 1 world within the
domain wall and 1 + 1 world within the domain wall in

L Thiswork was submitted by the author in English.

guasi-two-dimensional thin films or in the core of the
linear defects—quantized vortices.

Recently, an attempt was made to “construct” the
4 + 1 condensed-matter system with gapped fermions
in bulk and gapless excitations on the 3 + 1 boundary,
which include gauge bosons and gravitons [6]. Thisis
the 4 + 1-dimensional generalization of the 2 + 1 quan-
tum Hall effect (QHE) in the presence of the external
U(2) gauge field, where the low-energy fermions are
the analogs of the so-called edge states [7] on the
boundary of the system.

Here we show that there is a natural scenario in
which the chiral fermions emergently appear in the
brane together with gauge and gravitational field.
Instead of the QHE system, we consider the system in
which the quantization of Hall conductivity occurs
without external magnetic field. In this scenario, the
topology of momentum space [8, 9] plays the central
role determining the universality classes. We consider
the domain wall which separates two 4 + 1 quantum
vacuawith nontrivial topology in the momentum space.
If the momentum-space topological invariants are dif-
ferent on the two sides of the wall, such a3 + 1 brane
contains fermion zero modes, that is, the gapless 3 + 1
fermions. Close to the nodes in the energy spectrum,
(Fermi points) these fermions are chiral. The collective
bosonic modes within the brane correspond to gauge
and gravitational fields acting on fermion modes.

As distinct from the relativistic theories [4], in this
scenario the existence of gauge and gravitational fields
in the brane does not require the existence of the corre-
sponding 4 + 1 fieldsinthe bulk. The 3 + 1 fieldsin the
brane emergently arise as collective modes of fermi-
onic vacuum, much as they arise in quantum liquids
belonging to the universality class of Fermi points [8].
Thus, the brane separating the 4 + 1 vacua with differ-

0021-3640/02/7502-0055%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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ent momentum-space topologies is one more universal -
ity class of the quantum vacua, whose properties are
dictated by the momentum-space topol ogy.

WALLSIN 2 + 1 SYSTEMS

Let usfirst consider how all thisoccursin 2 + 1 sys-
tems, after which it can be easily generalized to the 4 +
1 case. For the 2 + 1 systems, it is known that the quan-
tization of Hall or spin-Hall conductivity can occur
even without an external magnetic field. This quantiza-
tion is provided by the integer-valued momentum-
space topological invariant [10]:

N, = ie
: 2477 A (1)

xtr[dp,dp,d P99, 960,470, G .

Here, %4 isthe fermionic propagator expressed in terms
of the momentum p,, = (p, pg), where p = (p,, py) and po
isthe frequency on theimaginary axis. Inthe most sim-
ple examples, which occur, for example, in thin films of
3He and probably in the atomic layers of some super-
conductors, one has G = z— #(p), where z=ip,, and
the 2 x 2 Hamiltonian 7(p) = T'gi(p,, p,) isexpressedin
terms of Pauli matricesT'. Inthiscase, Eq. (1) issimpli-
dp,d dpdpy

fied:
N 4fJ Ek %x

The invariant exists only if the fermions are gapped,
i.e., if their energy E(p,, py) = |g| # 0. The value of Hall
or spin-Hall conductivity depends on thisinvariant, and
that is why the quantization of conductivities occurs
without external field. Theinvariant N5 can be varied by
varying the film thickness, instead of varying the mag-
neticfield in conventional QHE. Similar invariants have
been used in conventional QHE too, see [11, 12].

Another important property of the conventional
QHE, which isreproduced by the system under discus-
sion, isthe existence of the edge states on the boundary
of the system, or on the boundary separating vacuawith
different values of quantized conductivity. Let us con-
sider thedomainwall (the 1 + 1 brane) separating vacua
with different topological invariants on the left and on
the right side of the wall: Ny(right) and Nj(left). If
Na(right) # Ns(left), one finds that there are fermion
zero modes. These are the gapless branches E(p)),
where p; isthe linear momentum along the wall. These
branches cross zero energy when p varies. Close to
zero energy, the spectrum of the ath fermion zero mode
islinear:

990
3o )

Ea(p||) = Ca(p”_pa)- (3)

These fermion zero modes correspond to the chira
(left-moving and right-moving) gapless edge states in
QHE. Thereis an index theorem which determines the
algebraic number v of the fermion zero modes, i.e., the
number of modes crossing zero with positive slope
(right-moving) minus the number of modes with nega-
tive dope (left-moving):

= Y sgnc,. (4
a
According to this theorem, which is similar to the
Atiyah—-Singer index theorem [13] relating the number
of fermion zero modes to the topological charge of the
gauge field configuration, one has [14]

v = Na(right) — Ny(l€ft). (5)

The crossing point p, on each branch is nothing more
than the Fermi surface in 1D momentum space p;. In
general, the Fermi surfaces can be described by the
topological invariant N, expressed in terms of Green's
function [8§]

N, = THfe (o PYOE (P Py = V. (6)
C

Here, ¢ is the propagator for the 1 + 1 fermion zero
modes and the contour C embraces all the points (p, =
0, p; = p.) where Green's function is singular. In the
simplest case, the propagator for the 1 + 1 fermion zero
modes has the form

6™ = ipo—Eup), @)

and the contour C embraces the point (p, = 0, p; = p,)
in momentum space. The equation N; = Nj(right) —
Ns(left) illustrates the topology of the dimensional
reduction in the momentum space: the momentum-
space topological invariant N5 of the bulk 2 + 1 system
givesriseto the 1 + 1 fermion zero modes described by
the momentum-space topological invariant N;.

BRANES IN 4 + 1 SYSTEMS

Now we can movefromthe 2 + 1 tothe4 + 1 dimen-
sion. Let us suppose that we have a quantum liquid in
4 + 1 spacetime which contains a 3 + 1 domain wall
separating two domains, each with fully gapped fermi-
ons. Then, everything can be obtained from the case of
the quantum liquid in 2 + 1 spacetime just by increasing
the dimension.

According to the analogy with 2 + 1 systems, the
4 + 1 gapped fermions must have nontrivial momen-
tum-space topology. Such topology is described by the
invariant N instead of Nj:

Ns = Co€unaptr Idf’p%p“@‘l%pfg‘lcgam

-1 -1 -1 (8)
xG7Ga, 490, G
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Here, p, = (Po, P), Where p = (py, P2 Ps, Ps) is the
momentum in 4D space; p, is the energy considered at
imaginary axis z = ipy; and Cs is proper normalization.
It is the difference Ng(right) — Ng(left) of invariants on
both sides of the domain wall [extension of Nj(right) —
N5(left)] which must give riseto the 3 + 1 fermion zero
modes within the brane.

Therelativistic example of the propagator with non-
trival invariant N is provided by 9 = ip, — ¥, where
the Hamiltonian in the 4D space is # = MI® +

i“: 1Fi p;, and -5 are 4 x 4 Dirac matrices satisfying

the Clifford algebra{I2, 3 = 25%®. Inthisexample, the
proper domain wall containing the fermion zero modes
separates the domains with opposite signs of mass
parameter M, sincefor such awall Ns(right) = —Ns(left).
The existence of fermion zero modes in such adomain
wall is a well-known fact in relativistic theories. We
would like to stress, however, that the existence of fer-
mion zero modes does not require the rel ativistic theory
inthebulk. It will sufficeto havethe nontrivial invariant
Ns, which determines the universality class of afermi-
onic vacuum.

Inthe 1 + 1 wall, the energy spectrum of fermion
zero modes in the wall crosses zero at points in 1D
momentum space. Thus, the energy spectrum of fer-
mion zero modes in the 3 + 1 brane must be zero at
points in 3D momentum space. This means that the
spectrum has Fermi points. Fermi points are described
by the momentum-space topological invariant Ns,
which is now the difference between the number of
right-handed and left-handed fermions [8]:

1
N, = ——e,,
T o MY
9
y -1 -1 -1 ®)
xir [d5/60,, 4760, G 60, 6™

Here, the integral is over the 3-dimensional surface o,
embracing the singular points (p, = 0, p = p,) of the
spectrum. Thisis the analog of invariant N, in Eg. (6).
Close to the ath Fermi point, the fermion zero modes
represent 3 + 1 chiral fermions, whose propagator has
the general form expressed in terms of the tetrad field:

G = 0"eha(Pu— Pua)- (10)

Here, 0¥ = (1, 0) and o are Pauli matrices.

In the same manner as in Egs. (5) and (6), which
relate the number of fermion zero modesto the topolog-
ical invariantsin bulk 2 + 1 domains, the total topolog-
ical charge of the Fermi points within the domain wall
is expressed through the difference of the topological
invariantsin bulk 4 + 1 domains:

N; = Ng(right) — N(left). (12)
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The quantities €}, and p,,, which enter the fermi-

onic spectrum, are dynamical variables. These are the
low-energy collective bosonic modes which play the
part of the effective gravitational and gauge fields, cor-
respondingly, acting on chiral fermion [8]. Thesefields
emergently arisein the fermionic vacuum with nontriv-
ial momentum-space topology. The brane between the
topologically different vacua thus represents one more
universality class of the “emergent behavior” [15].

In a similar manner, the gauge and gravity fields
arise as collective modes on the boundary of the4 + 1
system exhibiting the quantum Hall effect [6]. Both
systems have similar topology: in [6], the nontrivia
topology is provided by the external field, while in our
caseit isassumed that the vacuum itself hasanontrivial
topology, Ng # 0, even without the gauge field.

CONCLUSION

We showed that, if the momentum-space topology
of the fermionic vacuum in 4 + 1 spacetime is nontriv-
ial, the 3 + 1 domain wall between the two such vacua
contains chiral fermions, while bosonic collective
modesin thewall arethe gauge and gravitational fields.
This emergent behavior does not depend on the details
of action in the bulk 4 + 1 systems, or on the details of
the brane structure. Neither Lorentz invariance nor the
gravity in 4 + 1 bulk system are required for the emer-
gency of chiral fermions and collective fields in the
brane. However, the nontrivial topology alone does not
guarantee that the gravitational field will obey Einstein
equations: the proper (maybe discrete) symmetry and
the proper relations between different “Planck” scales
in the underlying fermionic system are required [8].
The energy scale which marks the cutoff for the inte-
gras over fermions must be much smaller than the
energy scale at which the Lorentz invariance is vio-
lated. We hope that within this universality class one
can obtain all theingredients of the Standard Model and
gravity.

| thank V.A. Rubakov and S. Zhang for fruitful dis-
cussions. This work was supported by the ESF
COSLAB Programme and the Russian Foundation for
Fundamental Research.
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Thermal pion fluctuations, in principle, can completely disorder the phase of quark condensate and thus restore
chiral symmetry. If this happens before the quark condensate melts, strongly interacting matter will be in the
pseudogap state just above the chiral phasetransition. The quark condensate does not vanish locally, and quarks
acquire constituent masses in the pseudogap phase, despite the fact that chiral symmetry is restored. © 2002

MAIK “ Nauka/lInterperiodica” .
PACS numbers: 12.38.Mh; 12.39.Fe

The physics of light hadronsisto alarge extent con-
trolled by the approximate chiral symmetry of QCD.
The order parameter of the chiral symmetry, the quark
condensate [IPYl], acquires a nonzero expectation
value in the QCD vacuum and chiral symmetry proves
to be spontaneously broken. Chiral symmetry breaking
yields quark constituent masses of order 350-400 Mev
and thus sets the scale of hadron masses. Pions arise as
low-energy pseudo-Goldstone excitations of the chiral
condensate. If strongly interacting matter is heated to
the temperature that exceeds a critical value of 150-
200 Mev, chiral symmetry isrestored. Usualy, theres-
toration of chiral symmetry is associated with melting
of quark condensate. | will discussalessfamiliar mech-
anism of symmetry restoration by phase decoherence,
which, if realized, implies the existence of an interme-
diate phase, similar to the pseudogap phase of high-T,
superconductors, the analogy with which | will exten-
sively use. In the pseudogap phase, quarks still con-
dense and acquire constituent masses, but chiral sym-
metry is not broken because the condensate phase is
completely disordered. The potential relevance of the
pseudogap phenomenon to QCD was pointed out by
Babaev and Kleinert [1, 2], who examined |ow-dimen-
sional toy models of chiral symmetry breaking [1-3]
and the Nambu—Jona—L asinio model [2, 4].

A continuous symmetry associated with the com-
plex order parameter W = pe? is usualy restored when
the free energy of the symmetry-breaking state with
nonvanishing condensate p # O starts to exceed the free
energy of the symmetric state with p = 0. However,
phase decoherence can restore the symmetry even if
p # 0. When the phase of the condensate is completely

L This article was submitted by the author in English.

disordered, 0= 0, the expectation val ue of the order
parameter, apparently, vanishes. 0= 0. There is
growing evidence that such a mechanismisrealized in
some high-T, superconductors [5, 6], whose normal
nonsuperconducting state possesses many features
characteristic of superconductivity. Most notably, the
energy gap does not close above the point at which
superconductivity is destroyed and gradually disap-
pears only at much higher temperature. A theoretical
explanation of the pseudogap phenomenon [5] relieson
the essentialy two-dimensional nature of high-T,
superconductivity. In two dimensions, topological
phase fluctuations of the superconducting condensate
(vortices) are extremely important. Depending on the
temperature and on the phase stiffness (the energy cost
of phase fluctuations), vortices either are bound in pairs
or form a plasma. These two phases are separated by
the Berezinsky—Kosterlitz—Thouless (BKT) transition
[7]. In high-T, superconductors, the temperature of a
BKT transition is lower than the temperature at which
the condensate of Cooper pairs melts and the supercon-
ducting gap, accordingly, shrinks. The superconductiv-
ity isthen destroyed by vortices that unbind at the BKT
transition and completely disorder the condensate
phase.

In QCD, the chiral order parameter is an N; x N;
matrix (N; is the number of light quark species): . =
P:P;. Its vacuum expectation value is diagonal,

because light quarks have small current masses, which
align the condensate in a particular direction. Through-
out this paper, | will discussthe chiral limit and neglect
guark masses. The coherent fluctuations of the conden-
sate phase cost no energy in this approximation and
correspond to the Gol dstone modes of the broken chiral

0021-3640/02/7502-0059%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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symmetry. The chiral phase of the quark condensate is
aunitary N; x N; matrix:

eiy5)\ana - 1—Ty5U +1+_2y5UT,

where A2 are SU(N;) generators and 1@ are the Gold-
stone fields associated with pions.

The low-energy dynamics of pions is described by
the chiral Lagrangian:

2

P, = %‘trauu*a“u, (1)

where F,;= 93 Mev isthe pion decay constant. The clas-
sical thermodynamics of the nonlinear sigma model
was extensively studied by Monte Carlo simulations |8,
9], and, indeed, the phase transition associated with the
disordering of the chiral field was found in numerical
simulations: rUO# 0 below the critical point, and
[{@rUCE= 0 above it. The large-N analysis [10] suggests
that the phase transition does not disappear if one goes
from classical to quantum thermodynamics. Since

[pyo = E|(tru +truf)d )

the chiral condensate turns to zero when [frU= 0 and
chiral symmetry is restored. The question is whether
the temperature of pion disordering is lower or higher
than the temperature at which the quark condensate
melts. If itislower, as suggested by the smallness of the
pion decay constant (the analog of phase stiffness in
QCD), then the pseudogap phase exists in the interme-
diate range of temperatures. The results of [11, 10]
seem to support the hypothesis that the chiral phase
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Il color superconducting phases, and 1V quark—gluon
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transition is essentially driven by the angular fluctua-
tions of quark condensate.

If the chiral transition is caused by pion decoher-
ence, the phase diagram of QCD will look as shown in
the figure, with the pseudogap phase sandwiched
between the hadron and the quark—gluon plasma
phases. It should be mentioned that no symmetry and
no order parameter can distinguish the pseudogap
phase from the quark—gluon plasma, since the separa-
tion of the quark condensate in phase and modulus only
makes sense within the low-energy approximation,
when phase fluctuations are sufficiently light compared
to all other modes. The pseudogap phase cannot be sep-
arated from quark—gluon plasma by a phase transition,
inasmuch as there is no phase transition between the
pseudogap state and the normal state in high-T, super-
conductors. The dashed line in the figure thus denotes a
smooth crossover, which can be rather broad. The dis-
tinctive feature of the pseudogap phenomenon is that
the symmetry restoration affects only the Goldstone
modes, while parameters associated with other excita-
tions are continuous or amost continuous across the
phase transition. In particular, masses of al excitations
in the pseudogap phase, except for pions, will be deter-
mined by constituent quark mass and thuswill be rather
large. If thereis no pseudogap phase and the constituent
quark mass disappears above the chira transition,
masses of non-Goldstone modes are expected to
decrease at the critical temperature.

A particular mechanism that can lead to pion deco-
herence is the disordering of the chiral condensate by
baryons [9, 12]. The idea behind this mechanism
closely follows the analogy with high-T. superconduc-
tivity. In the scenario proposed in [9, 12], baryons dis-
order the chiral condensate in the same way as vortices
disorder the phase of a superconducting gap in two
dimensions. The key point is that baryons can be asso-
ciated with topological excitations of the chiral field
[13]. Inside the baryon, U(X) winds around an SU(2)
subgroup of SU(N;). Therefore, in a sufficiently dense
random ensemble of baryons and antibaryons, the
chiral field is randomly distributed over SU(N;), which
resultsin frUC= 0. Numerical simulations of 3D sigma
model [9] indicate that this picture is probably correct.
In particular, baryon susceptibility undergoes a dra-
matic rise in the vicinity of phase transition [9]. It was
independently observed in [12] that the thermal density
of an ideal baryon gasis comparatively large already at
T ~150-200 MeV, despite a small Boltzmann factor
associated with large baryon masses. The latter is com-
pensated by a large entropy due to a large number of
baryon resonances. From this point of view, the phase
transition in the nonlinear sigma model resembles the
BKT transition [12]. The pseudogap phase is then anal-
ogous to the high-temperature plasma phase of the 2D
XY model, in which vortices are liberated and all cor-
relations are screened. Similarly, there are no pionsin
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the pseudogap phase and all excitations of the chiral
field must be massive.

The whole idea of the pseudogap mechanism relies
on the assumption that the low-energy approximationis
still accurate near the chiral phasetransition. Therefore,
the effective chiral Lagrangian (1) should still make
sense in pseudogap phase, though the chiral perturba-
tion theory, at least in its straightforward implementa-
tion, should break down. Since the linear and the non-
linear sigma models share the same symmetries and
belong to the same universality class, the order of the
transition is determined by universality arguments and
depends on N; [14]. For redlistic quark masses, Monte-
Carlo simulations indicate [15] that the transition
becomes a sharp but smooth crossover.

The phase transition in the nonlinear sigmamodel is
a nonperturbative phenomenon which is very hard to
describe analytically. Nevertheless, some information
can be deduced from simple dimensional arguments.
The only dimensional parameter of the nonlinear sigma
model is the pion-decay constant. Consequently, the
critical temperature should be proportional to the pion-
decay constant with some numerical coefficient:

T.OF. (3)

Here, F, standsfor the “bare”’ pion-decay constant, that
is, the coefficient of the kinetic term in the chira
Lagrangian obtained after integrating over all heavy
degrees of freedom. Taking into account the thermal
pion loops, which effectively reduce F,, [16], would be
a double counting. Once the dependence of the decay
constant on the temperature and the chemical potential
isknown, condition (3) can be used to locate the critical
linein the T-u plane:

Fa(ToW), 1) _ FH(TL0),0)
o) TH0)

| will calculate F,, as a function of temperature and
chemical potential within the framework of the semi-
phenomenological constituent quark model of [17, 18],
which was rather successful in describing chiral
dynamics and the nucleon propertiesin [19, 18]. Pions
arise in this model as chiral phases of the constituent
guark mass:

(4)

¢ = g(io-Me" )y

5 5 5)
= glio-mFZru+ Uy,

o2 2

This form of constituent quark Lagrangian was moti-
vated by the instanton liquid model [17]. In fact, such
an interaction of constituent quarks with pions will
arise, after a Hubbard—Stratonovich transformation,
from any four-quark interaction, local or nonlocal,
which retains the symmetries of QCD. The chira
Lagrangian in this moddl is obtained after integration
over quark fields and subsequent derivative expansion
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of the fermion determinant. The pion-decay constant is
the coefficient of thefirst term with the smallest number
of derivatives. The expression for the pion-decay con-
stant obtained in thisway [19, 18] can easily be gener-
alized to the case of nonzero temperature and chemical
potential:

FXT, 1) = 4N_,M°T
d* 1
" Zﬂznlgs{[(:Zn—l)rrT—iu]Z+ o+ M3

(6)

:F]Z_[

CNM® L dw
21-[2{ /wz_Mz

x[ 1,1 }
e(oo— w/T +1 e(oo+ w/T +1

where N, = 3 isthe number of colors. Both the temper-
ature and the chemical potential tend to decrease F, sO
that alarger chemical potential requires alower critical
temperature to satisfy Eq. (4), as expected.

Lattice smulations give T(0) = 150 MeV at N; = 3
and T,(0) = 170 Mev at N; = 2 in the chiral limit [15].
The boundary of the hadron phase in the figure is
obtained by solving Eq. (4) with T,(0) = 160 MeV, M =
350 MeV, and F,;=93 MeV. Other linesinthefigure are
drawn somewhat arbitrarily. Since the critical tempera-
ture changes slowly in arather wide range of chemical
potentials and is aways smaller than the constituent
guark mass, Boltzmann statistics should be a good
approximation unless L iscloseto M. The expansion in
T/M then yields the following analytic expression for
the critical line at AT = T(u) — T.(0) < T0):

AT NCM2 o -mT, U 0

-~ | = _ 7

T, 5 FTZT /2 Me B:osh_l_0 11] @)
where T = T(0)

When T issmall and [ is sufficiently large, the tran-
sition to the color superconducting state is expected to
occur [20]. Thistransition cannot be driven by piondis-
ordering, so that condition (4) is expected to work only
for 4 < M. Nevertheless, the equation F, (0, p.) = 0, to
which Eq. (4) reduces at zero temperature, gives area-
sonable value of |, which is roughly consistent with
various estimates of acritical chemical potential for the
color superconducting phase transition [21].

The chiral symmetry is broken in a color supercon-
ductor by the diquark condensate, whose phase excita-
tionsare similar to ordinary pions[22] and are massless
in the chiral limit. However, the pion-decay constant in
acolor superconductor israther large[23], and itisvery
unlikely that pion decoherence can emerge in the color
superconducting phase.
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Finaly, I should mention that the pseudogap phase2
if it exists at N, = 3, disappears in the large-N. limit.
The pion-decay constant (chiral phase stiffness) grows

as Ff[ = O(N, at large N, and suppresses fluctuations
of the chiral field that could drive pion decoherence.
Condition (3) then gives T, = O(Jﬁc), which issmaller
than the estimate based on the ideal gas approximation
for baryons [12], T, = O(NJ/InN,), but still grows with
N, unlike the temperature at which the chiral conden-
sate completely melts, which is supposed to be finite at

N, — oo.

| am grateful to M. Franz for very helpful discus-
sions of the pseudogap phase in high-T, superconduc-
tors, and to E. Babaev and A. Zhitnitsky for their inter-
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NSERC of Canada, the Pacific Ingtitute for the Mathe-
matical Sciences, and, in part, by the Russian Founda-
tion for Basic Recearch (project no. 01-01-00549 and
no. 00-15-96557 for the promotion of scientific
schools).

REFERENCES

1. H. Kleinert and E. Babaev, Phys. Lett. B 438, 311
(1998); hep-th/9809112; E. Babaev, Phys. Lett. B 497,
323 (2001); hep-th/9907089.

2. E. Babaev, Int. J. Mod. Phys. A 16, 1175 (2001); hep-
th/9909052.

3. R.MacKenzie, PK. Panigrahi, and S. Sakhi, Int. J. Mod.
Phys. A 9, 3603 (1994); hep-th/9309047.

4. E. Babaev, Phys. Rev. D 62, 074020 (2000); hep-
ph/0006087.

5. V. J. Emery and S. A. Kivelson, Nature 374, 434 (1995).

6. J. Corson, R. Mdllozzi, J. Orenstein, et al., Nature 398,
221 (1999); Z. A. Xu, N. P. Ong, Y. Wang, et al., Nature
406, 486 (2000).

2[1, 2] contain a detailed discussion of what happens to the
pseudogap phase in the large-N limit of (2 + €)-dimensional
Gross-Neveu model.)

7.

8.

10.

11
12.

13.

14.

15.

16.

17.

18.
19.

20.
21.

22.

23.

V. L. Berezinsky, Zh. Eksp. Teor. Fiz. 59, 907 (1970)
[Sov. Phys. JETP 32, 493 (1971)]; J. M. Kosterlitz and
D. J. Thouless, J. Phys. C 6, 1181 (1973).

J. B. Kogut, M. Snow, and M. Stone, Nucl. Phys. B 200,
211 (1982); P. Dreher, Phys. Lett. B 281, 127 (1992);
Nucl. Phys. B 389, 265 (1993).

C. DeTar, Phys. Rev. D 42, 224 (1990).

A. Bochkarev and J. Kapusta, Phys. Rev. D 54, 4066
(1996); hep-ph/9602405.

C. DeTar and S. Dong, Phys. Rev. D 45, 4681 (1992).

I. I. Kogan, A. Kovner, and B. Tekin, Phys. Rev. D 63,
116007 (2001); hep-ph/0101040.

T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962); E. Witten,
Nucl. Phys. B 223, 433 (1983).

R. D. Pisarski and F. Wilczek, Phys. Rev. D 29, 338
(1984); F. Wilczek, Int. J. Mod. Phys. A 7, 3911 (1992);
Erratum: 7, 6951 (1992).

F. Karsch, E. Laermann, and A. Peikert,
1at/0012023; F. Karsch, hep-ph/0103314.

J. Gasser and H. Leutwyler, Phys. Lett. B 184, 83 (1987);
S. Jeon and J. Kapusta, Phys. Rev. D 54, 6475 (1996);
hep-ph/9602400.

D. Diakonov and V. Y. Petrov, Nucl. Phys. B 272, 457
(1986).

D. Diakonov, hep-ph/9802298.

D. Diakonov, V. Y. Petrov, and P. V. Pobylitsa, Nucl.
Phys. B 306, 809 (1988).

K. Rajagopal and F. Wilczek, hep-ph/0011333.

J. Berges and K. Rajagopal, Nucl. Phys. B 538, 215
(1999); hep-ph/9804233; G. W. Carter and D. Diakonov,
Phys. Rev. D 60, 016004 (1999); hep-ph/9812445;
R. Rapp, T. Schafer, E. V. Shuryak, and M. Velkovsky,
Ann. Phys. 280, 35 (2000); hep-ph/9904353.

M. Alford, K. Rajagopal, and F. Wilczek, Nucl. Phys. B
537, 443 (1999); hep-ph/9804403; T. Schafer and F. Wil-
czek, Phys. Rev. Lett. 82, 3956 (1999); hep-ph/9811473.

D.T. Sonand M. A. Stephanov, Phys. Rev. D 61, 074012
(2000); hep-ph/9910491; Erratum: 62, 059902 (2000);
hep-ph/0004095; K. Zarembo, Phys. Rev. D 62, 054003
(2000); hep-ph/0002123; S. R. Beane, P. F. Bedaque, and
M. J. Savage, Phys. Lett. B 483, 131 (2000); hep-
ph/0002209; V. A. Miransky, I. A. Shovkovy, and
L. C. Wijewardhana, Phys. Rev. D 62, 085025 (2000);
hep-ph/0009129; 63, 056005 (2001); hep-ph/0009173.

hep-

JETP LETTERS Vol. 75 No.2 2002



JETP Letters, Vol. 75, No. 2, 2002, pp. 63-65. Translated from Pis' ma v Zhurnal Eksperimental’ nor i Teoreticheskor Fiziki, Vol. 75, No. 2, 2002, pp. 71-73.

Original Russian Text Copyright © 2002 by Prants.

Interaction of Nonlinear Resonancesin Cavity QED

S. V. Prants

II"ichev Pacific Oceanological Institute, Far East Division, Russian Academy of Sciences,
ul. Baltiiskaya 43, Vladivostok, 690041 Russia
Received December 13, 2001

Strong coupling of theinternal and external degrees of freedom of a cold atom to each other and to the spatially
periodic field of the standing light wave in a high-finesse cavity isresponsible for the dynamic instability of the
atomic center-of-mass motion. Due to a weak interaction of the internal nonlinear resonances in the standard
model of cavity QED, a stochastic layer appears, whose width in the semiclassical approximation is estimated
interms of the main parameters of the system: atomic recoil frequency, mean number of excitations, and detun-
ing from the resonance. As aresult, the atomic motion in the absolutely regular potential has the fractal char-
acter, with long Lévy flights alternating with small chaotic oscillations in potential wells. © 2002 MAIK

“ Nauka/lInterperiodica” .
PACS numbers: 05.45.Mt; 42.50.Vk; 12.20.Ds

Experiments with individual atoms and photons in
high-finesse Fabry—Perot cavities [1, 2] provide new
possibilities for controlling the internal and external
guantum states of atoms, their cooling, and for process-
ing quantum information. Modern cavity QED iswell-
developed for the verification of the main postulates of
guantum mechanics (entangled quantum states, nonlo-
cality of interaction, etc.) and for the study of the fun-
damental problem of quantum-—classical correspon-
dence—quantum chaos. Along with the theoretical and
numerical studies of the strongly coupled atomic—field
systems with Hamiltonians generating classical chaos
[3-6], the QED variant was experimentaly imple-
mented in[7, 8] for the theoretically well-studied quan-
tum rotator model, i.e., acold atom periodically excited
by standing-wave pulses with a frequency detuned far
from the atomic transition frequency. For large detun-
ings (compared to the natural linewidth), the atomic
center-of-mass dynamics in the field of a modulated
standing wave is described by the Hamiltonian with 3/2
degrees of freedom [9]. Generally speaking, the inter-
action of atoms with photonsin a high-finesse cavity is
the interaction of three degrees of freedom—field,
intracatomic, and translational—even in the simplest
one-dimensional case. Thismodel was proposed in[10]
for the Hamiltonian chaos.

The purpose of this study isto reveal and analyze a
mechanism responsible for the appearance of the
Hamiltonian chaosin theinteraction of cold atomswith
the standing-wave field in a high-finesse cavity. It is
shown in the semiclassical approximation that chaos
arises due to the modulation of the slow atomic transla-
tional motion by fast Rabi oscillations, resulting in the
formation of anarrow stochastic layer in the vicinity of
the separatrix of unperturbed motion even in the
absence of any standing-wave modulation. Onthe basis

of the reduced equations of mation, the width of the sto-
chastic layer is analytically found in terms of the main
parameters of the system: detuning, atomic recoil fre-
guency, and mean number of excitations.

In the rotating-wave approximation, the interaction
of acold two-level atom with a certain harmonic mode
of quantized electromagnetic field of a perfect cavity
with allowance for the atomic recoil is described by the
Hamiltonian

a2

~ 1 A A
H = —2%]+ 5710,G, + 1103 %Ta+ %

—hQ,(a'6_+ ad,) cos(kX),

(1)

where Xand pare the operators of the atomic coordi-
nate and momentum, respectively; ¢ are the Pauli
matrices; and & and &' are the field-mode operators.
Taking the quantum averages § = k; (X0, p = [pI/%k,
u=[A'6_+ a6, , v=i[A'6_-4ad.] and zasdynamic
variables, one can easily demonstrate that the Heisen-
berg equations generate the following closed nonlinear
set of five semiclassical equations of motion:
§ = ap, p = -using, u = dv,
v = —6u+[(2N—1)z+§zz+%}cosE, @)
7 = —2V COSE,

where the dot means the differentiation with respect to
the dimensionlesstime T = Qgt and the control parame-

trs o = Ak /MQ & = (6 — w)/Q, and N =

[A'a+(6,+1)/20 are the normalized atomic recoil
frequency, the normalized resonance detuning, and the

0021-3640/02/7502-0063%$22.00 © 2002 MAIK “Nauka/Interperiodica’
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mean number of excitations, respectively. The set of
Egs. (2) generalizes corresponding equations discussed
in[10] to the case of arbitrary N. Theintegral of motion

2
= o _0
W > ucos¢ 22 (©)]

corresponds to the energy conservation in the problem.

It follows from Egs. (2) that, at the exact resonance,
the slow trandlational variables & and p are separated
from the fast intra-atomic and field variables u, v, and
z In the spatially periodic optica potentiad U =
—Ugcosg, the motion of the atomic center of mass is

described by the ssimple equation & + au,sing =0 of a
free nonlinear pendulum and, depending on energy W,
is either regular oscillationsin a potential well or regu-
lar flights over the peaks of U. The variations in the
internal energy z of atom and in the energy of itsinter-
action with the mode u for & = O are the Rabi oscilla-
tions modulated by the standing wave and having peri-
odically varying frequency [10].

To revea the mechanism of Hamiltonian chaos for
0 # 0, let usanalyze Eq. (2) in the limit of large photon
number, N > 1, and moderate detuning, |3|> 1. The nor-

malized Rabi frequency isavalueon theorder of /N >

1 and is much higher than the frequency ./au, < 1 of
small-amplitude tranglational oscillations (the estimate
of the dimensionless recoil frequency of an atom
strongly coupled to the field mode of a high-finesse
cavity gives a value on the order of a < 1079). As a
result, the equations for fast variables can be repre-
sented as the Bloch-type equations

u=29v, v =-38u+2Nzcos¢,

4

z = -2V Cos¢, )

where the function cosé can be taken to be a constant ¢

inthetime interval covering many Rabi oscillations. In

this approximation, one can easily find the general

solution to Egs. (4). We are only interested in the solu-

tion for the interaction energy between the internal

degrees of freedom and the mode

_ NE2CO . 080

u= u(O)[ [QI\J] [QAJ] cosQNT]
2Noc

o2 ——5,(0)(1 - cosQy1),

N

®)

0
QNV(O)SII’]QNT +

where Q) = +/8” + (2¢)°N isthe Rabi frequency. Since
the function cosg varies with time much more slowly
compared to the rapidly oscillating variables u, v, and
z, the variable u can be regarded as a spatially indepen-
dent amplitude- and frequency-modulated signal con-
trolling the motion of the atomic center of mass accord-
ing to the equation of afrequency-modulated nonlinear

oscillator

& +ou(t)siné = 0. (6)

Without loss of generality, the analysis of this equation
can be simplified for ¢ = 1 and the special initial condi-
tion uy = vy = 0 and z, = 1 corresponding to the com-
pletely excited atom at T = 0 and to the arbitrary field
state. In this case, Eq. (6) is derived from the following
classical Hamiltonian:

H = %éz—wzcosE + W’ CoSQ T CoSE

(1)

= %0 + V,
where 7, isthe unperturbed Hamiltonian of afree non-
linear oscillator with the frequency w = ~/2aN|9| /Qy

of small-amplitude oscillations. Representing the per-
turbation V in the form

V= 9)2-2[605(2 +Q\T) +cos(E-QT)],  (8)

one can treat Eq. (7) as the Hamiltonian of a particle
moving in the field of three plane waves in the coordi-
nate system moving with the phase velocity of the first
wave, while the phase vel ocities of the second and third
waves are equal to Qy and —Q, respectively.

Near the separatrix, the variation in the trangl ational
atomic energy E = ¥, is calculated using the Poisson
brackets [11]

[

AE = J’{%O,V}d = wz_[ésin(z—QNr)dr. 9)

Thisintegral can be calculated using the known values

of the nonlinear pendulum variables & and E taken at
the separatrix, where the pendulum energy is Eq = .
These values are &, = 4 arctanexp[tw(T-T1,)] and

ES = 2w/ cosh[w(Tt—T1,)] , Where T, corresponds to

the center of velocity soliton. As aresult, one arrives at
the value

exp(nQNIZw)
am QZ N sinh(T1Qy/w)

which determinesthe dimensionless width of astochas-
tic layer of a modulated nonlinear oscillator (7) in the
vicinity of the unperturbed separatrix OE = max|AE|/Es.
Taking into account that Qy > w for real atoms, one
finally obtains the expression

AE = sSinQ\T,, (10)

3
OE = SHB%E exp(—mQy/2w), (11)

where theratio Q\/wison the order of ./N/ad| . Note
that the above simplified analysis yields the lower
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bound for the width of the stochastic layer. Thus, for
arbitrary parameters (under the above assumptions), the
strongly coupled atomic—field system with Hamilto-
nian (1) always contains the domain where classical
chaos originates. Thisdomain islocalized in the vicin-
ity of the separatrix and has an exponentialy small
width (11). This conclusion is corroborated by the
numerical experiments[10], wherethe Lyapunov expo-
nents and Poincaré sections were calculated in various
ranges of a, N, and d.

The phase portrait of a parametric nonlinear oscilla-
tor described by Egs. (7) and (8) consists of a sequence
of separatrix loops in the plane d(§ + Q\T)/dt — (€ %
Qu1), withfinitetraectoriesinside and infinite trajecto-
ries outside [11]. The width of each loop and the spac-
ing between loops are w and 2Q,, respectively. If Qy >
w, these nonlinear resonances interact with each other
but do not overlap [12]. As a result, stochastic layers
appear at the separatrix sites, with the width on the
order of at least OE, which can be very small for the
typical values of parameters N = 1-10, a < 107, and
[8]= 1. The atomic motion is very sensitive to small
variations of control parameters, especialy of the
detuning . The phase-space topology of a strongly
coupled atomic—field system changes due to bifurca-
tions. This opens up new possibilities for manipulating
cold atoms, their cooling and accel eration, and trapping
in the field one or several photons.

A typical chaotic tragjectory (characterized by a
small positive Lyapunov exponent) of an atomin a peri-
odic standing-wave field consists of long portions of
regular ballistic motions, so-called Lévy flights, alter-
nating with the chaotic small-amplitude atomic oscilla-
tionsin potential wells. The Lévy flights strongly affect
the global transport properties of the Hamiltonian sys-
tems and lead to an anomalous or “strange” kinetics
[13]. Recent numerical experiments [14] performed for
an atomic—field system with three coupled degrees of
freedom have demonstrated that the statistical motional
characteristics such as the distribution of Poincaré
recurrence times and the moments of the center of mass
of a cold atom testify to anomalous atomic diffusion
[14]. The Lévy flights can be used for laser cooling of

JETP LETTERS Vol. 75 No.2 2002

atoms bel ow therecoil limit, aswas demonstrated in the
experiments reported in [15, 16].

Thiswork was supported by the Russian Foundation
for Basic Research, project nos. 99-02-17269 and
01-02-06020.
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Enhancement of coherent anti-Stokes Raman scattering (CARS) by molecular nitrogen in ahollow planar peri-
odically corrugated waveguide is experimentally detected. The measured dependence of CARS efficiency on
the thickness of the waveguide layer indicates that CARS enhancement under these conditionsis at |least par-
tially due to the decrease in the group velocity of pump pulses around the photonic band gap. © 2002 MAIK

“ Nauka/Interperiodica” .
PACS numbers: 42.65.Dr; 42.65.Wi; 42.65.Hw

Remarkable properties of structures with a periodi-
cally modulated refractive index are opening ways to
modify and control the dispersion of optical materials
[1, 2]. Periodic and quasi-periodic structures, such as
multilayer mirrors, microstructure fibers, as well as
two- and three-dimensional periodic arrays generally
referred to as photonic crystals [2, 3], are now actively
used to shape, transfer, and control ultrashort light
pulses [4, 5], as well as to create optical fibers of new
types [6-8] and to develop optical switches, couplers,
filters, and other optical components [2]. Structures
with a periodically modulated refractive index often
allow nonlinear-optical interactions to be phase
matched [9-12]. Physically, phase matching in photo-
nic band-gap (PBG) structures is based on the general-
ized momentum conservation [9, 10] involving the
reciprocal lattice vector of a periodic structure.
Waveguides with a periodically perturbed refractive
index offer a convenient way of extending this
approach to large lengths of nonlinear-optical interac-
tion [13], providing more degrees of freedom in reduc-
ing the phase mismatch of light pulses involved in a
nonlinear-optical process.

In this paper, we will demonstrate the possibility to
considerably increase the efficiency of four-wave mix-
ing (FWM) in agas medium filling ahollow planar cor-
rugated waveguide. The main difference of our experi-
mental approach from the methods used in earlier non-
linear-optical experiments in PBG waveguides (see,
e.0., [13]) isthat a gas filling the waveguide layer of a
hollow planar waveguide serves as anonlinear medium
in our experiments. The coherence length under these
conditions considerably exceeds the waveguide length
(which was on the order of several centimeters in our

studies). Four-wave mixing efficiency can be improved
in such a situation, as will be shown below, due to the
field enhancement in a PBG waveguide related to
group-velocity lowering for one or several pump waves
around the PBG edge.

To experimentally implement the main idea of this
work, we employed awaveguide structure consisting of
amirror and adiffraction grating. Both optical elements
forming this waveguide were aluminum-coated. As
shown in our previous studies[14, 15], such a structure
integrates a hollow waveguide and a one-dimensional
photonic crystal, combining the advantages of both of
these optical components. On the one hand, high-power
laser radiation can be coupled into such a waveguide,
allowing ultrashort pulses to be produced due to self-
phase modulation and high-order stimulated Raman
scattering using the approaches similar to those devel-
oped in [16, 17] and permitting high-order harmonic
generation experiments [18]. Similar to gasfilled hol-
low fibers, the waveguide regime of nonlinear-optical
interactions in our structure improves the efficiency of
wave-mixing and harmonic-generation processes rela-
tiveto the regime of tightly focused pump beams dueto
aradical increase in the interaction length. On the other
hand, a periodic perturbation of the refractive index
introduced by the diffraction grating gives rise to pho-
tonic band gaps (Fig. 1), which substantially changethe
dispersion properties of light fields with respect to the
case of a gas medium in a conventional gas cell or
waveguide modes in a gas-filled hollow fiber. The cre-
ated waveguide opens new ways of phase and group-
velocity matching in nonlinear-optical interactions
through the independent control of three main disper-
sion components. material dispersion, dispersion of
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waveguide modes, and dispersion of a periodic struc-
ture. The material dispersion of the gas filling the
waveguide can be varied by changing the gas composi-
tion and the gas pressure. The waveguide dispersion
can be changed by varying the thickness of the
waveguiding layer and by choosing appropriate materi-
als for waveguide walls and a set of waveguide modes
involved in the nonlinear-optical process. Findly, the
period and the profile of the grating are the main knobs
to control the dispersion of the periodic structure.

Our analysis of the dispersion of light waves
involved in nonlinear-optical interactions in a hollow
planar PBG waveguide was based on the equations of
coupled-mode theory [1]. The use of this approach
allowed usto find complex propagation constants for a
hollow planar PBG waveguide by searching for the
eigenvalues of 2N x 2N sguare matrices of the relevant
characteristic equations, where N is the number of
modes of an unperturbed planar waveguide (a
waveguide with no corrugation), determined from the
cut-off condition. The inset in Fig. 1 presents the spec-
tral dependences of the transmission coefficient and the
effective refractive index for the lowest order bulk
mode TM,, of the hollow planar PBG waveguide calcu-
lated with the use of coupled-mode equations. The pho-
tonic band gap arises in this spectral region, as follows
from the results of our calculations, due to the strong
coupling of the lowest order bulk mode TM, with sur-
face plasmon modes TM, and TM;. The results of these
calculations, as can be seen from Fig. 1, qualitatively
agree with the experimental data. Our method of calcu-
lations allows the position of the photonic band gap in
the transmission spectrum of a hollow planar PBG
waveguide to be reproduced with reasonable accuracy
(Fig. 1). However, the absolute values of the transmis-
sion coefficient, effective refractive index, and group
velocity obtained with the use of the above-described
approach can be considered as very rough estimates
only, since these absolute values are highly sensitive to
the coupling coefficients, which are not known with
sufficient accuracy. These coupling coefficients depend
on the Fourier amplitudes of the periodic profile of the
grating, as well as on the spatial overlapping of light
fields in waveguide modes and the area of a perturbed
dielectric function.

The main purpose of our experimental studies was
to demonstrate the possibility of enhancing coherent
anti-Stokes Raman scattering (CARS) using the created
hollow PBG waveguide. Since a gas filling the
waveguide layer between the grating and the mirror
serves as a honlinear medium in our experiments and
the pressure of this gas never exceeded the atmospheric
pressure, the coherence length for CARS-type four-
wave mixing processes should considerably exceed the
waveguide length, which was typically on the order of
several centimeters in our experiments. The efficiency
of FWM processes can be increased under these condi-
tions due to field-enhancement effects, which are char-
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Fig. 1. Transmission spectra measured for TM and TE
modes of a planar corrugated hollow waveguide consisting
of a 2400-groovesymm aluminum-coated grating and an
aluminum mirror with 2a = 44 pm. The inset shows the
results of calculationsfor the transmission spectrum and the
spectral dependence of the effective refractive index for the
TM,, mode of this waveguide.
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Fig. 2. The spectral dependence of the groupindex ng=c/v
(cisthe speed of light in vacuum and v isthe group veloc-
ity in the waveguide structure) for the TM, (solid line) and
TM3 (dashed line) modes of a hollow planar corrugated
waveguide with a 1200-grooves/mm diffraction grating and
2a=22um.

acteristic of PBG structures and which are related to a
decreasein group velocities of light pulses around pho-
tonic band gaps in such structures. This effect isillus-
trated in Fig. 2, which displays the wavelength depen-
dence of the group index for TM, and TM; modesin a
hollow planar PBG waveguide with a mirror—grating
gap 2a = 22 umwithin the spectral range corresponding
to the second harmonic of a Nd:YAG-laser radiation.
The solid and dashed linesin Fig. 2 represent the group
indices for the TM, and TM; modes, respectively. The
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Fig. 3. Diagram of the experimental setup for studying
coherent anti-Stokes Raman scattering in a hollow planar
corrugated waveguide: My, M,, rotating mirrors, DM;,
DM,, dichroic mirrors; F1—F3, sets of optical filters; OMA,
optical multichannel analyzer; S, synchronization unit; CL,,
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Fig. 4. Theratio of the efficiency w of the CARS processin
a hollow planar PBG waveguide to the efficiency n; of the
CARS process with the same energies of pump pulses, but
for cylindrically focused pump beams in the absence of a
waveguide, as a function of the distance 2a between the
waveguide walls. The CARS signal is related to Raman-
active transitions of molecular nitrogen in atmospheric-
pressure air. Triangles show the CARS enhancement ratio
for TM waveguide modes, while the squares correspond to
TE modes. The circle shows the CARS enhancement ratio
for TM-polarized radiation in a waveguide with a second
mirror instead of the diffraction grating (an unperturbed
waveguide). The dashed line represents the scaling law
1/a2, which describes the increase in the efficiency of the
CARS process in a planar waveguide with no corrugation
relative to the efficiency of the same CARS processin cylin-
drically focused beams due to purely geometrical factors.

group velocity of light pulses, as can be seen from the
results presented in Fig. 2, decreases considerably in
this spectral range dueto the PBG effect. Thisincreases
the mean density flux of electromagnetic radiation in
the waveguide, leading to the enhancement of nonlin-
ear-optical processes.

A diagram of the experimental setup employed to
investigate the CARS process in agas medium filling a
hollow planar PBG waveguide is shown in Fig. 3. We

studied a two-color CARS process leading to the gen-
eration of asignal at the frequency Wears = 20, — Wy,
where weags is the frequency of the CARS signal and
w, and w, are the frequencies of the pump waves. A
Q-switched Nd:YAG laser, generating 15-ns pulses of
1.064-um radiation, was employed as a master oscilla-
tor. The laser pulses produced by this oscillator were
amplified up to about 30 mJin two Nd:YAG amplifica-
tion stages. The fundamental radiation was then con-
verted into the second harmonic using a DKDP crystal.
The second harmonic produced in this crystal served as
one of the pump beams in the CARS process (the fre-
guency w,). Fundamental radiation that remained fre-
guency-unconverted at the output of the DKDP crystal
was separated from the second harmonic with a dich-
roic mirror DM, and was employed to generate the sec-
ond harmonic in the second DKDP crystal. This sec-
ond-harmonic beam was then used to pump a sulfor-
hodamine 101 dye laser. Dye-laser radiation served as
the second pump beam in the CARS process (the fre-
guency ). The pump beams with the frequencies w;
and w, were brought into spatial coincidence with a
dichroic mirror DM, and were coupled into a hollow
planar corrugated waveguide by a cylindrical lens CL,
with afocal length of 9 cm. The energy of the second-
harmonic pulse was 8 mJ, whilethe energy of dye-laser
radiation was equal to 0.8 mJ. Aluminum-coated mir-
rors and 1200- and 2400-grooves/mm auminum-
coated diffraction gratings were used to create a hollow
waveguide. The length of the waveguides used in our
experiments was equal to 5 cm. The distance between
the waveguide walls was varied from 22 up to 88 um.

The frequency w, of dye-laser radiation was chosen
in such away asto satisfy the condition of Raman res-
onance w, — w, = Q with a Raman-active transition of

molecular nitrogen with Q = 2331 cm. This condition
was met with the wavelength of dye-laser radiation
equal to 0.607 um. The wavelength of the CARS signal
related to molecular nitrogen in the atmospheric-pres-
sure air filling the hollow PBG waveguide was then
equal to 0.473 um. This signal was collimated with a
cylindrical lens CL, and separated from the pump
beams with a set of optical filters. Then, we let the
CARS signal pass through a monochromator and
detected the signal at the output of the monochromator
with the use of an optical multichannel analyzer.

To characterize the enhancement of the CARS pro-
cess involving Raman-active transitions of molecular
nitrogen in atmospheric-pressure air in a hollow planar
PBG waveguide, we compared the efficiency n,, of this
process in the waveguide with the efficiency n; of the
same process with the same energies of pump pulses,
but in the regime of cylindrical focusing of pump
beamsin the absence of awaveguide. Figure 4 presents
the CARS enhancement ratio n,,/n; measured as afunc-
tion of the distance 2a between the mirror and the 1200-
grooves/mm grating, forming a planar PBG waveguide.
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Triangles show this ratio for TM waveguide modes,
while the squares correspond to TE modes. The circle
shows the CARS enhancement ratio for TM-polarized
radiation in a waveguide with a second mirror instead
of the diffraction grating (an unperturbed waveguide).
A planar waveguide obviously provides an increase in
the efficiency of any FWM process relative to the effi-
ciency of the same FWM process in cylindrically
focused beams due to geometrical factors. In contrast to
FWM processes in gas-filled hollow fibers, when this
geometrical enhancement ratio scales as 1/a*, where d
isthefiber inner diameter [19, 20], a planar waveguide
provides FWM enhancement scaling as 1/a%. This scal-
ing law of FWM enhancement due to purely geometric
factorsis shown by the dashed linein Fig. 4.

The enhancement of the CARS process in the case
of TE modesin our experiments virtually coincided, as
can be seen from the data presented in Fig. 4, with the
enhancement attainabl e in the waveguide regime due to
purely geometric factors. A much higher CARS
enhancement ratio, as is seen from Fig. 4, can be
achieved for TM modes of a planar PBG waveguide,
when the maximum enhancement ratio relative to the
case of cylindrically focused beams may be as high as
300. These higher values of CARS enhancement ratios
attainable for TM modes are due to the fact that the fre-
guencies w; and w, of the second harmonic and dye-
laser radiation fall within the range of strong coupling
between the lowest order bulk mode TM, and one of the
higher order TM modes. The electromagnetic energy
density in the waveguide increases under these condi-
tions, which leads to the enhancement of nonlinear-
optical processes.

Since the CARS signal intensity is proportional to
the product of group indices of pump fields, the
decrease in the group velocity of the second-harmonic
field by a factor of 1.2-1.4 and the lowering of the
group velocity of dye-laser radiation by afactor of 1.1—
1.2 result in the enhancement of the CARS process by
a factor of 1.6-2.4. Although these estimates are, of
course, very rough since the group velocities of pump
waves are known only approximately, they indicate that
the improvement in CARS efficiency achieved in our
PBG-waveguide experiments in the case of TM modes
may be, at least partialy, attributed to the decrease in
the group velacities of pump fields. Quantitative dis-
crepancies between the experimental values of the
CARS enhancement ratio and the above estimates for
this ratio may be indicative of other physical factors
leading to FWM enhancement under conditions of our
experiments. One of these factors may be related to
local field enhancement in plasmon TM modes, which
increases the efficiency of nonlinear-optical wave mix-
ing, leading to energy transfer to the waveguide modes
that provide the dominant contribution to the FWM
process. Ancther group of factors includes effects
changing the material component of dispersion, e.g.,
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the excitation and ionization of the gas medium filling
the waveguide.

The results of experimental and theoretical studies
presented in this paper demonstrate the possibility of a
substantial enhancement of four-wave mixing pro-
cesses in a gas medium in a hollow planar corrugated
waveguide due to field enhancement effects related to
the decrease in the group velocity of one or several
pump fields around the photonic band gap. The
enhancement of the CARS process achieved in our
experiments, performed with a planar waveguide struc-
ture consisting of ametal mirror and a diffraction grat-
ing, can be considerably increased by optimizing the
parameters and the geometry of the waveguide for a
specific set of waveguide modes involved in a nonlin-
ear-optical process. The method of enhancement of
nonlinear-optical processes demonstrated in this paper
opens new possibilities for improving the sensitivity of
nonlinear-optical gas-phase analysis, promoting
ultrashort-pulse formation with the use of self-phase
modulation and high-order stimulated Raman scatter-
ing, and increasing the efficiency of high-order har-
monic generation and wave mixing in gas-filled hollow
waveguides.
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The parametric excitation of nuclear magnons by a microwave noise field was observed in an antiferromagnet.
Two critical pumping amplitudes were found to exist. Thefirst one correspondsto the onset of nonlinear micro-
wave absorption. Above the second amplitude, strong phase correlations appear in a system of excited magnon
pairs to form a nonequilibrium Bose condensate, which produces intense coherent electromagnetic radiation
from the sample and givesrise to the coherent response of parametric magnons to the modulation of their spec-
trum (modulation response). It was found that, for the noise pumping, the contribution from the processes of
elastic magnon relaxation to the threshold pumping amplitudes becomes nonadditive. © 2002 MAIK

“ Nauka/Interperiodica” .
PACS numbers; 75.30.Ds; 75.40.Gb

The spin and magnetoel astic waves in magnets are
highly suitable objects for studying the physics of non-
linear wave processes. To date, the parametric reso-
nance of these waves in an alternating magnetic field
hcoswyt paralel to the static field H has been much
studied. If the magnetic microwave field exceeds its
threshold value h., the system becomes parametrically
unstable against the decay of the pump quantum into a
pair of magnons (or quasiphonons) with half frequen-
cies and equal (but oppositely directed) wave vectors
(Wp = Wy + ). Thecritical amplitude h, of the micro-
wave field, ordinarily referred to as the pumping or
parametric excitation threshold, is given by the expres-
sion h. = y/V, whereyisthe linear relaxation rate of the
excited waves and V is the coefficient of their coupling
to the pumping field. Immediately above the excitation
threshold (i.e., at h > h;), the dynamic ordering charac-
terized only by two parameters sets in the system: the
number of parametric pairs of magnons (or qua
siphonons) and their phase with respect to the pump
field (see [1, 2]). Evidently, this nonequilibrium Bose
condensate (NBC) of a macroscopically large number
of excited quasiparticle pairsis a forced oscillation of
the medium at a frequency of the external field.

The situation becomes much more complicated if
the frequency of the external alternating field lies
within the interval (w, — Aw2, w, + Aw?2) and the
pump spectral width exceeds the parameter y of the
excited waves. In this case, the occurrence of a non-
equilibrium phase transition with the formation of NBC
isby no means evident, because the noise field does not
have a certain phase and cannot establish the coherent
state in the excited system.

The noise-pumped parametric resonance of spin
waves was considered by Mikhailov and Uporov in [3]
and by Cherepanov in [4]. The formulas obtained by
these authors for the average noise pumping threshold
P,,, above which the nonlinear (time-averaged) absorp-
tion appearsin the system, coincided at Aw > yto afac-
tor of two. For the arbitrary values Aw < wy, thethresh-
old formulais[5]

(P/P.) -1 = Awly, (1)

where P, [ hi is the threshold power of monochro-
matic pumping and the critical power P, is the inte-
grated noise-pump power (and not the pump spectral
density).

However, the above-threshold behavior of a system
of nonequilibrium magnons was treated in these works
inabasicaly different way. In[3], it was argued that the
microwave absorption is restricted mainly by the non-
linear dissipation, whilethe phase correlationsareirrel -
evant. By contrast, it was stated in [4] that strong phase
correlations must occur in the excited wave pairs (phase
restriction mechanism), as in the case of monochro-
matic pumping. This question still remains to be clari-
fied. The paper of Andrienko and Safonov [5] on the
noise pumping of magnetoelastic waves in antiferro-
magnetic FeBO; is the only work where these phase
correlations were observed experimentally. In [5], two
instability thresholds were observed. The first one cor-
responded to the onset of nonlinear microwave absorp-
tion and the second corresponded to the appearance of
NBC. However, the strong excitation anisotropy (qua-
siphonons were excited along the crystal C; axis) and
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Fig. 1. Power dependence of the modulation response signal
for (1) monochromatic and (2) noise pumping (recorded on
arecorder), and oscillograms of the microwave noise-pump
pulses passed through the cavity for points A, B, and C.

the possible influence of the sample boundaries on the
NBC formation (the thickness of aplane-parallel plate-
let was much smaller than the mean free path of the
magnetoelastic wave) did not allow us to answer the
guestion about the possibility of NBC formation in an
infinite sample.

One more possible incoherent action of external
fields on the spin-wave system was considered by Zau-
tkinet al. in [6]. In that work, the parametric excitation
of electronic magnons in yttrium iron garnet by a
monochromatic microwave field under conditions of
noise modulation of the spin-wave spectrum was stud-
ied and it was stated that this case corresponds to the
nonmonochromatic pumping with the fluctuating
phase. The threshold field corresponding to the onset of
nonlinear absorption and the nonlinear magnetic sus-
ceptibility of the sample were measured. Based on the
gualitative agreement between the theory and the
experiment, a conclusion was drawn that the phase cor-
relations are essential. However, strong phase correla
tionsin the wave system were not justified directly.

In this work, the noise microwave pumping of
nuclear spin waves (NSWSs) and the behavior of anon-
equilibrium NSW system excited by the noise pumping
are studied experimentally. Because the mean free path
of excited waves was much shorter than the crysta
sizes, the boundary effect on the formation of a steady-
state parametric waves was excluded. The main goal of
this study is the search for the states with strong phase
correlations (nonequilibrium Bose condensate) in this
system.

EXPERIMENTAL

Nuclear magnons in an easy-plane CsMnk; antifer-
romagnet (Néel temperature 53.5 K) were excited by a
noise field with frequency wy/2m = 1080-1200 MHz
and spectral width Aw/2rt< 1.5 MHz. The noise field
was produced by a microwave oscillator whose fre-
guency was modulated by a white-noise generator in
the rf region, with the generated microwave power
remaining constant. The pump spectrum was recorded
by a spectrum anayzer and was close to Gaussian. The
pump spectral width was measured at the half-maxi-
mum with an accuracy of 10%.

A singlecrystal of size~3 x 3 x5 mmwasplacedin
a helium-filled helix microwave cavity with a quality
factor Q ~500. Experimentswere carried out at temper-
atures T = 1.94.2 K and fields H = 500-2000 Oe with
parallel microwave pumping (h || H). The relaxation
rate of the excited magnons was determined from the
monochromatic pumping threshold h, with an accuracy
of 25% [7] and was found to be equal (dependingon T
and H) to y/2rt = (6-20) kHz. The accuracy of measur-
ing y in relative units was 5%. The magnon mean free
pathwasL <1 mm, i.e., several times smaller than the
characteristic sample size.

The microwave pumping was performed in the cw
mode and the pulsed mode with arepetition rate of 10—
100 Hz and a pulse duration of 300-2000 pus. In the
pulsed mode, the threshold pump power was deter-
mined from the onset of anonlinear distortion (kink) in
the microwave pul se passed through the cavity (Fig. 1).
In the continuous-wave mode, it was determined from
the onset of a modulation response in the spectrum of
the microwave signal passed through the cavity with the
sample (see below for detail). The relative accuracy of
measuring the threshold power was 10%.

The nonequilibrium Bose condensate was detected
by two methods based on the observation of collective
effects associated with the appearance of these states.

Thefirst method consists in the observation of mod-
ulation response a,,,. This method was developed and
widely used in studying the properties of a monochro-
matically pumped nonequilibrium magnon Bose con-
densate [2] and later successively used for the observa-
tion of a noise-pumped quasiphonon NBC [5]. A weak
rf field H,,,cos(w,t) modul ating the spin-wave spectrum
was applied to the sample. This gaveriseto the oscilla-
tions of the NBC amplitude and phase about their equi-
librium values (the so-caled collective oscillations)
and led to the modulation of the absorbed microwave
power with amplitude AP and frequency w,,. The occur-
rence of this amplitude modulation (AP = a,H,) gives
evidence for the presence of the NBC in the sample.

To detect a,,,, the microwave signal passed through
the cavity was detected, fed to a spectrum analyzer or
selective microvoltmeter tuned to the frequency w,
and then led to the Y axis of an X-Y recorder.
No. 2
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The second method consisted in the observation of
the electromagnetic radiation from a system of excited
nuclear magnons. This effect was earlier observed in a
system of magnetoelastic waves [8] and interpreted as
a characteristic electromagnetic radiation appearing
after switching off the microwave pumping of a mono-
chromatically produced nonequilibrium Bose conden-
sate. The frequency of thisfield is close to the pumping
frequency; itsintensity changes nonmonotonically with
time and is comparable with the microwave power
absorbed by the sample. In this work, the same radia-
tion was observed from a system of nuclear spin waves.

RESULTS AND DISCUSSION

I nvestigations showed that two thresholds should be
distinguished in the noise pumping of nuclear mag-
nons, P,; < P,,. The first threshold corresponds to the
onset of nonlinear microwave absorption and the sec-
ond corresponds to the appearance of Bose condensate.

The records of the modulation response amplitude
are shown in Fig. 1 asfunctions of the integrated pump
power. The records were made in the cw generation
mode. In the samefigure, the oscillograms of the micro-
wave pulses passed through the cavity and recorded for
three noise-field amplitudes are shown. The nonlinear
absorption at point A is absent. The absorption
“gplashes’ above the threshold P,,; are seen in oscillo-
gram B; i.e., nonequilibrium magnons exist (on the
average) in the sample, but a,, = 0. As the pump power
increases, the nonlinear absorption increases (the
splashes occur more frequently). Above the P,,, thresh-
old, the pulse has shape C and the modul ation response
(o, # 0) appears, indicating the presence (on the aver-
age) of phase correlationsin the system, i.e., theforma-
tion of NBC. The ratio of thresholds P, /P, increased
with Acw but did not exceed 1.25. Notice that this situa-
tion is cardinally different from the quasiphonon noise
pumping in [5], where this ratio was as high as 4.

The occurrence of NBC was also detected from the
electromagnetic radiation of the sample immediately
after switching off the pump pulse (Fig. 2). It is well
known that the signal power passed through the cavity
is proportional to the number of photons in the cavity.
In the absence of NBC, the microwave signal decays
monotonically immediately after switching off the
oscillator, with a characteristic photon decay time of
~0.1 ps determined by the cavity Q factor. If the pump
power exceedsitsthreshold value, i.e., if the NBC con-
densate is present, the sample radiates behind the pulse
trailing edge after switching off the pump field. The
microwave power passed through the cavity first
decreases drastically (the trailing edge falls off more
steeply than at Py, < P,). Then the signal starts to
increase, and its amplitude reaches a maximum within
T ~ 0.5 psof the pulse. After this, the radiation intensity
decreases exponentially with a characteristic time of
~1ps. The maxima radiation power is comparable
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Fig. 2. Oscillograms of the trailing edges of microwave
pulses and the signal of electromagnetic radiation from the
sample for the input power P;,, ~ 1000P,: (1) monochro-

matic and (2) noise pumping. Curve 3 demonstrates the
pulse trailing edge for P;,, < Pg; t = O corresponds to the
moment at which the pump oscillator was switched off.

with the power absorbed by the sample from the pump
field.

Similar radiation was studied earlier in [7] for the
parametric excitation of the magnetoelastic waves in
FeBO,. It is caused by the coal escence of two quasipar-
ticles(in our case, magnons) of a parametric pair to cre-
ate a photon with a frequency close to w,(m+ m —
ph), i.e., by the reverse process of pumping. Inasmuch
asall parametric pairsin the NBC have the same phase,
this radiation is coherent and has a large amplitude,
contrary to the radiation of individual magnons at fre-
quency w.

In this work, the eectromagnetic radiation of para
metric NSW pairs was observed for the firgt time. For a
fixed power of the microwave oscillator such that P > P,,,
the amplitudes of this radiation and the signal decay
timeswerevirtually the same for the noise and coherent
pumpings. This suggests that the NBC of nuclear mag-
nons produced by the noise pumping has approxi-
mately the same spectral width and the same amplitude
asin the case of monochromatic pumping.

The NSW parametric excitation threshold is pre-
sented in Fig. 3 as a function of the spectral width of
microwave pumping. Since the difference between the
thresholds P,; and P, did not exceed the experimental
error, only the threshold P,; was tracked in the mea-
surements, and it isdenoted below by P,,. In compliance
with the theoretical Eq. (1), (P/P.) — 1 was propor-
tional to Aw. However, the calculated value of (P,/P.) —
lat T =4.2K was greater than its measured value by a
factor of ~3 and at T = 2.05 K even by a factor of ~7.
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Fig. 3. Relative increase in the pump power vs. spectra
width of noise pumping: (@) T = 2.05 K, 2 =
1088 MHz, H = 1750 Oe, and y/2rt= 7.1 kHz and (0) T =
4.2 K, w2 = 1093.3 MHz, H = 1680 Oe, and y/2mt =
16.8 kHz. The solid straight lineis calculated by Eq. (1) for
T = 2.05 K with a coefficient of 0.15, and the dotted lineis
calculated by Eq. (1) for T = 4.2 K with an adjustable mul-
tiplier of 0.31.
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Fig. 4. Relative increase in the noise-pump threshold power
vs. static magnetic field for the fixed pump spectral widths:
AwY21t= (@) 40 and (A) 270 kHz; T =2.08 K and w,/2rt=

1094.4 MHz. The curves are calculated by Eqg. (1) with an
adjustable multiplier of 0.175.

Therefore, the theory does not account for the temper-
ature dependence of the noise pumping threshold.

The results of measuring the noise pumping thresh-
old as a function of static magnetic field are shown in
Fig. 4 for two fixed values of Aw. The curves were cal-

culated in the following manner. The y(H) values were
derived from the monochromatic pumping threshold
h.(H) and substituted into Eq. (1) for calculating the H
dependence of (P,/P.) — 1. A good qualitative agree-
ment between the theory and the experiment is seen
again, though with the above-mentioned adjustable
parameter. It is essentia that the P. value changes
40 times in the interval of fields used. The relaxation
rate of the excited nuclear magnons and the coefficient
of their coupling to the microwave field also strongly
vary. However, the adjustable multiplier remains con-
stant; i.e., the theory properly reproducesthe functional
dependences of the noise pumping threshold P,, on the
parameters of excited NSWs.

A comparison of these results with the data reported
in [5], where the quasiphonon noise excitation in
FeBO; was studied, shows that the NSW pumping is
much better described by the theory. Thisislikely due
to the fact that the boundary effect on the system of
excited magnonsisweak; i.e., the theoretical model for
the NSWsis close to the experimental situation. A sub-
stantial discrepancy between the theory and experiment
is observed only at low temperatures.

An analysis of the NSW relaxation mechanisms
showed [8] that the NSW relaxation in CsMnF; at T <
2.2 K is due by =95% to the NSW elastic scattering
from the fluctuations of nuclear magnetization, while
the contribution of elastic processes at 4.2 K comprises
~50%. In my opinion, the dominant role of the elastic
relaxation processes is precisely the reason why the
NSW noise pumping threshold is markedly lower than
its calculated value.

The assumption about the special role of the two-
magnon processes and their nonadditive contribution to
the threshold formula was done by Zakharov and L'vov
in [9]. The idea was that the wave energy does not
changein the elastic scattering (only the wave propaga-
tion direction changes), so that the secondary magnons
continue to participate in the pumping process and,
hence, reduce the parametric excitation threshold,
which should be given in this case by the expression

he = (Voa(Yra *+ Ya)) IV, )

where vy and y,4 are the relaxation rates of the elastic
and inelastic processes, respectively. However, the
experiments with monochromatic pumping [7, 10] did
not corroborate this assumption. The experimentally
observed contribution of al y's to the threshold ampli-
tude was found to be additive, h, = (Vg + Ya)/V. The
point is likely that the key role is played by the wave
phase, which changes after the magnon quasi-elastic
scattering. Besides, the magnon energy and the abso-
lute value of the magnon wave vector dlightly change
upon the quasi-elastic scattering, resulting in the so-
called spectral drift. Asaresult, the secondary magnons
are not coupled to the pump field. Asfor the noisefield,
whose frequency and phase fluctuate rapidly, neither
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the phase change of the secondary magnons nor the
weak spectral drift of NSWs (within Aw) influencetheir
coupling to the exciting microwave field. For this rea-
son, the secondary magnons continue to participate in
the pumping process and reduce its threshold (these
secondary magnons can be regarded as an additional
noisefield). Therefore, the contribution of two-magnon
processes to the threshold amplitude should be nonad-
ditive for the incoherent pumping. Our experiments
showed that the adjustable parameter becomes more
and more different from unity with an increasein rela-
tive contribution of elastic processes. Unfortunately,
the theoretical calculations of the noise pumping
threshold with regard to the special role of quasi-elastic
processes have not been carried out as yet. Neverthe-
less, it is evident that the qualitative model suggested
above agrees well with the experiment.

One may assumethat it isthe dominant contribution
of elastic processesto the NSW relaxation which leads
to a small difference between the P,; and P,, thresh-
olds. Evidently, the NBC formation threshold P,,
depends on the total number of magnons in the pump-
ing spectra range Aw. At P > P, the nonequilibrium
magnons are created in the sample by pumping. The
secondary magnons formed in the two-magnon scatter-
ing processes remain in the same region of the magnon
spectrum. Consequently, they are accumulated; i.e., the
occupation numbers of magnons with frequencies w, [
wy/2 rapidly increase. As aresult, the critical number of
magnons necessary for the formation of NBC is
achieved earlier, i.e., at lower supercriticality (P/P,,)
than would be the case for the three-particle relaxation
processes, which reduce the magnon occupation num-
bers near the frequency wy/2.

In summary, the formation of a coherent state (non-
equilibrium Bose condensate) of the nuclear spin-wave
pairs upon their parametric excitation by a noise micro-

JETP LETTERS Vol. 75 No.2 2002

wave field has been established experimentally. The
existing theory satisfactorily accounts for the pumping
threshold, except for the low-temperature region. The
observed discrepancy between theory and experiment
is explained on the basis of an assumption about the
special role of the elastic magnon relaxation processes.

| am grateful toV.L. Safonov for participating indis-
cussions of the results.
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It is established experimentally that the burning of a low-current (several and tens of amperes) pulsed (micro-
seconds) vacuum discharge is accompanied by the formation of plasmamicrobunches around some of the drop-
lets leaving the cathode spot. The parameters of these bunches (el ectron concentration n, ~ 10%° m and equi-
librium temperature T, ~ 1 €V) are close to the parameters of cathode-spot plasma. The data obtained suggest
that the initial temperature of droplets and the thermionic emission from them play akey rolein the formation
of such plasma microbunches. By analogy with the well-known cathode and anode spotsin vacuum discharges,
these dropl et plasma formations are classified as “droplet spots.” Thiswork reports the first results on studying
the formation dynamics and the characteristics of the droplet spots. It is noted that the concept of droplet spots
will require a certain refinement of the plasma formation mechanism in vacuum discharges. © 2002 MAIK

“ Nauka/Interperiodica” .
PACS numbers: 52.80.Vp; 52.70.Kz

Itiswell known [1, 2] that vacuum arcing is accom-
panied by the emission of dropletsasaresult of gjection
of liquid metal from the cathode spot crater, i.e., emis-
sion center (ecton [3]) providing current transfer from
the cathode to the discharge gap. The regularities of
droplet generation are asource of information about the
processes occurring in the cathode spot and, thereby,
maintain a certain interest in the study of this phenom-
enon. The detection of droplet glow was and il
remains one of the methods of studying the droplet
emission [4-6]. However, up to now, neither the dropl et
radiation spectrum nor the size of the luminous area
have been analyzed. It was customarily assumed that
the droplet glow is caused only by the thermal radiation
from the droplet surface, because the temperature of all
droplets leaving the cathode spot is rather high. We
established experimentally that the glow of some of the
objects leaving the cathode spot is caused not by the
droplet thermal radiation but by the radiation of dense
plasma surrounding the dropl ets.

Experiments were conducted under a high oil-free
vacuum of 10~ torr. A pulsed arc discharge with adura-
tion of up to 10 psand acurrent of 2-20 A wasinitiated
between the cathode and anode separated by 1-5 mm.
In the experiments, two types of liquid-metal gallium—
indium cathodes were used: capillary cathodes corre-
sponding to the case of a“deep” liquid whose flow was
practically not restrained by viscosity, and point cath-
odes in the form of a tungsten needle covered with a

thin ligquid-metal film. Solid (copper, tungsten, tanta-
lum, and graphite) point cathodes were also used. The
discharge current was detected by a one-gigahertz
LeCroy oscilloscope. Plasma glow in the cathode dis-
charge was detected by an Imacon-468 ultrahigh-speed
camera (up to 100 M frame/s). The sensitivity range of
this camera lies in the spectral range 200—700 nm. For
imaging, a QUESTAR QM-100 long-focus microscope
with the spectral sensitivity range 200 nm-3.5 pm was
used at the camerainput. The optical resolution of the
apparatus was no worse than 3 pm. Plasma glow
images were obtained either without an optical filter or
with a 350-nm interference (10-nm width) filter.

In our experiments, we repeatedly observed the pro-
cess of droplet gection from the cathode surface in
burning of the cathode spot of alow-current pulsed vac-
uum arc. A typical example of thisobservationis shown
inFig. 1.

The appearance of bright objects leaving the cath-
ode was a great surprise in these experiments. The
luminosity of these objects was comparable with the
cathode spot luminosity or even exceeded it (Fig. 2).
This process is very rarely observed in the arcing on a
deep fluid. Its probability can be estimated at one event
per 300 us of arcing with a current of a few amperes.
For the case of athin liquid film on the refractory sub-
strate, the probability of this process was an order of
magnitude higher under the same arcing conditions,
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Fig. 1. The process of droplet separation from aliquid-metal point cathode. Light wedges in the images are artifacts caused by the
illumination of the gap by a helium-neon laser. The exposure times are indicated in the frames. Time is read from the onset of dis-

charge.

alowing some of the characteristic features of this phe-
nomenon to be clarified.

The luminous objects move rectilinearly; they are
not deflected by an external magnetic field of 0.15 T.
The values of 10-100 m/s observed for their velocities
are typical of the droplet velocities observed earlier in
[5-8]. However, the sizes of these objects are 10—
100 pm, which isan order of magnitude larger than the
maximal sizes of droplets emitted by the cathode spot
at vacuum discharge currents close to the threshold arc
current [7]. Moreover, the boundaries of these objects
are not sharply outlined. These facts suggest that the
luminous objects are droplets surrounded by dense
plasma. Inthis case, the observed glow isdueto thevis-
ible radiation of the plasma surrounding droplets.

The surprising thing is that the luminous objects
arise at a considerable distance from the cathode spot.
An example of such a scenario is demonstrated in
Fig. 3. The frames were obtained for arcing with a cur-
rent of 5-10 A at the liquid-metal point cathode. It is
clearly seen that the lowest of the luminous objects in
thethird frame (3—4-pus exposure) is not seen in the pre-
ceding frame. Taking into account that the time interval
between the end of the preceding frame and the begin-
ning of the subsequent frameis zero, one can conclude
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that the droplet was “ignited” not in the cathode spot
but at a certain distance from it (~70 pum).

The probability of “burning” dropletsto appear was
found to strongly depend on the cathode material and
increase with its melting point. For instance, the
appearance of burning droplets was not arare event for
the copper cathode and was observed in each arcing
event with a duration of ~10 ps and a current of afew
amperes. As for the refractory metals, many droplets
were burning, as judged from the character of their
glow (Fig. 4a).

Theluminosity of burning dropletsin the UV region
is high and comparable to the luminosity of the cathode
spot (Figs. 4b-4d), also indicating that the glow of
these objects has a nonthermal nature.

The characteristic feature of arcing shown in Fig. 4a
is that the generation of burning droplets has a cyclic
character (droplets are generated in layers). This obser-
vation isagood illustration of the well-known fact that
the cathode processes in vacuum discharge have a
cyclic character [1-3]. In some cases, the cyclic charac-
ter of the processes occurring in the cathode spot man-
ifests itself in the twinkling of the burning droplets
(Fig. 4c).! Figure 4d illustrates the case where one of

LI n both cases, the cycle period is~1 us.
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Fig. 2. Theformation of aluminous object in arcing on a gallium—indium cathode and the current oscillogram corresponding to this

process.

the most distant droplets is ignited. The glow features
mentioned above suggest that the bright luminous
objects observed in the experiment are dense plasma
bunches surrounding the dropl ets.

With the aim of measuring the parameters of the
plasma of burning droplets, additional experiments
were carried out using picosecond laser interferometry
in conjunction with absorption shadowgraphy. Plasma
laser interferometry can be used for measuring the
plasmarefractiveindex and, hence, the concentration n,
of the plasma electronic component [9]. Assuming that
the plasma bunch has an axially symmetric shape, one
can apply the inverse Abelian transform to reproduce
the spatia distribution n,. The method of laser interfer-
ometry was implemented using the apparatus and tech-
nique described in detail in [10]. The probe radiation
wavelength was 532 nm, and the pulse duration was
100 ps. The sensitivity of the apparatus used for mea
suring the plasma parameters in our experiments
alowed the detection of concentrations within 10%—
10?" cmr3 for the plasma electronic component in the
plasma bunches with characteristic sizes of 10 pum.
Because of the smallness of the objects studied and a
high degree of plasma nonideality, only the order of
magnitude can be guaranteed for the numerical values
of the measured concentrations.

The interference pattern of the cathode spot at the
graphite cathode is shown in Fig. 5a. Two irregularities
areencircled with thewhitecirclein thisinterferogram.
The first irregularity corresponds to line 1. The next
line deviates only dlightly from the rectilinearity, indi-
cating that there is no plasma with the detectable den-
sity. Line 3 again shows defl ection corresponding to the
phase-shifted probe beam. Line 4 is similar to line 2.
The spatial distribution of the plasma electronic com-
ponent, as obtained by computer processing of the
interferogram presented in Fig. 5a, is shown in Fig. 5b.
Evidently, the upper plasma bunch corresponds to the
cathode spot of vacuum discharge. As to the lower
bunch, it represents an independent plasma formation
whose n, value is equal to ~10?® m= and only dlightly
differs from the n, valuesin the cathode spot.

The plasma bunches were observed both in the
immediate proximity of the cathode and away from it
(up to 100 um). Such bunches were also detected at the
liquid-metal point cathodes. The time delay between
the onset of discharge and the appearance of bunches
was 0.5-1 ps. The estimated maximal velocity of
bunches did not exceed 100 m/s.

Similar bunches were also observed in the absorp-
tion shadowgraphs obtained in one experimental run
with laser interferometry. An example of an absorption
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Fig. 3. The formation of plasma bunches near a gallium—indium film cathode.

Fig. 4. Luminous plasma bunches at (a) tantalum and (b—d) tungsten cathodes with arc currents of 2-5 A. Frames (b—d) were
obtained using a narrow-band (10 nm) interference filter for a wavel ength of 350 nm.
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Fig. 5. (a) Interference pattern of the emission center at a graphite cathode with an arc current of 20 A, and (b) spatial distribution

of the plasma electronic component for this interferogram.

shadowgram of a plasma bunch emitted from the cath-
ode spot isshown in Fig. 6. One can see that the plasma
bunches may contain a dense core with an optical depth
of more than 4 at their center, i.e., a practicaly non-
transparent medium. This medium can be interpreted
either as a condensed substance of the droplet or as
plasma with an above-critical density corresponding to
the total internal reflection of the probe radiation.

Dense plasma bunches without cores were aso
observed in the discharge. However, this does not
exclude the presence of several cores with sizes (less
than 1 um) too small to be optically detected. The char-
acteristic sizes, the appearance time, and the estimated
maximal velocity of plasma bunches in the absorption
experiments were similar to the characteristics of the
objects observed in the interferograms. This gave
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Fig. 6. (a) Absorption image of a gallium—indium cathode with an arc current of 20 A, (b) image of the same cathode without dis-

charge, and (c) their difference.

grounds to assume that in both cases we observed the
same objects. In such a situation, knowing the mea-
sured absorption coefficients and the n, val ues obtained
from the interferograms, one can reproduce plasma
temperature for both the cathode spot and the dense
plasma bunches observed away from it [11]. It was
foundin all our observationsthat T, was on the order of
1 eV both in the cathode spots and in the bunches. This
value of T, is appreciably lower than the value esti-
mated from the charge state using the Saha equation
[12-14] and than the value measured by the probe
method [15]. At the same time, our results agree well
with the data of laser Thomson scattering by the elec-
trons of the cathode-spot plasma (1.4 + 0.2 eV [16]) and
with the data of spectroscopic measurements (0.8-2 eV
[17]). Thisis likely caused by the fact that the optical
methods of plasma diagnostics are most sensitive at
high plasma concentrations. It is conceivable that
plasma Joule heating to a temperature of ~4 eV occurs
in the region of lower concentrations far away from the
surface.

Therefore, the results of three experimental runs
unequivocally indicate that the dense plasma
microbunches are formed in the cathode spot of vac-
uum arc discharge. The motion of these bunches and
the presence of a dense condensed core inside them
indicate that these bunches appear as aresult of intense

JETP LETTERS  Vol. 75
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plasma formation in the course of evaporation of the
droplets emitted by the cathode spot. The values of n,
and T, for the plasma surrounding the liquid-metal
droplets are identical to the parameters of cathode-spot
plasma.

The process of formation of dense plasma around
dropletsimmersed in aless dense plasmais considered
in[18]. If thedropletisrelatively “cold” and itstemper-
ature is not sufficiently high for the thermionic emis-
sion to occur, it behaves as a “floating” probe in the
cathode-spot plasma and rapidly acquires a “floating”
negative potential relative to the plasma potential.
Under these conditions, the droplet heating by the
plasma electrons belonging to the “tail” of Maxwellian
distribution isinefficient because of the limited ion cur-
rent into the droplet. However, if the droplet is “hot”
from the outset, it becomes an “emitting” probe
because of the thermionic emission from it, and its
potential with respect to plasma proves to be positive.
This enhances the plasma el ectron flow into the dropl et
and, as a result, drastically raises its temperature. The
calculations performed in [18] show that the heat car-
ried away through atom evaporation and radiation does
not compensate for the hesat flow from plasma into the
droplet; asaresult, the dropl et temperature increases up
to avalue on the order of 5000—7000 K, until the heat
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flow into the dropl et is counterbalanced by the heat car-
ried away by the electrons emitted from the droplet.

The key role of electron emission from the droplet
surface in the mechanism of droplet “ignition” is evi-
dent from the fact that the probability of this phenome-
non increases substantially with increasing melting
point of the cathode material. The fact that the parame-
ters of cathode-spot plasma are identical to the param-
eters of plasma bunches around the droplets and the
intense electron emission from the droplets in the
course of plasma formation give grounds to classify
these droplet plasma bunches as “droplet spots,” by
analogy with the cathode spots formed in vacuum dis-
charge at cathodes and anode spots at anodes.

One may assume that the dropl et spot shares a num-
ber of traits with the cathode spot of a unipolar arc,
because in both cases the energy of the plasma sur-
rounding the el ectrode serves as an energy source feed-
ing this spot. On the other hand, the droplet spot shares
some traits with the cathode spot of a cascade arc,
because a portion of current is closed to the droplet
through the electron emission from plasma into the
droplet and the thermionic emission from the droplet.
The concept of droplet spots calls for a more detailed
investigation into the conditions of their formation and
functioning, as well as for a certain refinement of the
mechanisms of plasma formation in vacuum dis-
charges. One can expect that, in arcing on the refractory
metals, a considerable portion of microdroplets “burns
up” in the cathode region. One can also expect that,
when moving over the cathode surface, the droplet
spots can influence the process of initiation of new
emission centers (ectons) and, thereby, the motion of
cathode spots on the whole.

We are grateful to Academician G.A. Mesyats and
A.V. Kozyrev for interest in the work and discussions.
Thiswork was supported by the INTAS and the Russian
Foundation for Basic Research (joint project no. IR-97-
663) and by the Ministry of Science and Education of
Germany (project no. WTZ RUS 99/185).
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A solution of atwo-band analogue of the time-dependent Schrédinger equation describing resonance coherent
electron interaction with a high-frequency field was found for asymmetric double-barrier structure, and an ana-
lytic expression was obtained for the small-signal conductivity proportional to the electron transition intensity.
It was found that the high-frequency conductivity of double-barrier structures in the case of interband transi-
tions could be significantly higher than in the case of intersubband transitions. © 2002 MAIK “ Nauka/Interpe-

riodica”.
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Recently, considerable attention has been given to
semiconductor heterostructures with coherent (colli-
sionless) electron transport [1, 2]. The mean time of
electron escape from an active site in these structures,
which commonly represents one or several quantum
wells, is significantly shorter than the characteristic
time of any of the processes breaking the coherence of
the electron wave function. Studying intersubband
electron transitionsin such structures allowed usto pre-
dict anumber of new physical effectsand to direct ways
of their applications to the effective generation of elec-
tromagnetic oscillations in the terahertz range [1-3].

However, these studies were related solely to elec-
tron transitions inside the conduction band of materials
with quadratic dispersion laws. At the same time, the
significant progress that has been made recently in the
molecular beam epitaxy of semiconductor heterostruc-
tures allowed interband el ectron transitions in quantum
wells formed by band discontinuities at heterobound-
aries between InAs and GalnSb to be found and used
for the generation of oscillationsin the IR range [4, 5].
It is natural to suppose that creating conditions for
coherent electron transport in such structures may be of
both fundamental (from the viewpoint of studying band
structure features) and practical interest. Moreover,
providing the fulfillment of these conditions for inter-
band transitions may be much easier than for intraband
transitions because of less intense phonon scattering
and suppressed Auger recombination in structures with
interband transitions [4, 5].

Thesimplest way of describing interband transitions
is to use the two-band model [6, 7], which is obtained
when the so-called kp method of the perturbation the-
ory is used for describing the band structure of a semi-
conductor. In this work, a two-band model is used in
which only the states of the light-hole subband are

taken into account in the val ence band when interaction
between the states of the conduction band and the
valence band is calculated. Interaction with other (dis-
tant) bands is approximately taken into account by
adjusting the free parameter. This model is used for
studying the intensity of electron transitions between
the levels of a symmetric double-barrier structure, one
of whose levels can lie in the conduction band and
another, in the valence band of the semiconductor mate-
rial. The potential barriers of the structure are assumed
to be sufficiently thin to provide coherence of electron
transport.

The equation for the envelop of the Bloch function
of an electron within the two-band model takes the
form of the Schrodinger equation for the two-compo-
nent wave function,

N DLIJ 0 . DL[J l
HorO "0+ H®)O T°0O, (D)
gy, d Oy, O

Oy O
otg g, O
where Y, and (), are the corresponding envel ops of the
wave functions of the states in the conduction band and
in the light-hole band, and the Hamiltonian takes the
form

S Ec+k ik kPO
OR — |:| " Dl
0 Pk Ev O
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N 0
Aet) = E2U(x) coswt 0

0
L.
0 2U(X) coswt O
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Schematic band diagram of the structure under consider-
ation.

Here, ki = k« +iRy; ko = ky —iRy; IA<X,y =-l, y; Pis

the matrix element of the momentum operator for the
conduction band and the light-hole band; 2U(x) is the
variable potential; and ¢ = #2¢{/2m,, where { is the
parameter that takesinto account the contribution of the
distant bands. It is assumed that the x axis is directed
perpendicular to the plane of the potential barriers and
the y axis lies in the barrier plane (see figure). In the
subsequent discussion, we will consider only those
solutions of the given system of equations that repre-
sent plane waves in the direction of the y coordinate.

Then, the operators can be represented as follows: k=
ki —ik, ke = ke +ik, and ke =-i0,. Wewill call this
model reduced, because the term R+21R_ is omitted in

the H,, operator. The presence of thisterm leads to the
appearance of nonphysical localized states [8] associ-
ated with the incompleteness of the basis set.

In the absence of the variable field (U(X) = 0), |,
depends linearly on y,, the system in Eq. (1) is degen-
erate and can be reduced to a scalar time-independent
Schrédinger equation,

k-Dk.y, = (E-Eo)W.,

_#20 2mP’ [ 3
2Meg #*(E—E, )0
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with the dispersion law
2 _ 2mo(E-Ey)(E-E()

2 2
N A R (=)
2m
= -ﬁTZ—(E_EC)v (4)
2m,P? E-E
EP - m02 ' - mo ( V) :
3 Er+{(E-Ey)

here, E is the electron energy, and E. and E, are the
energies of the conduction band bottom and the valence
band top, respectively. It should be noted that the two-
band effective mass mintroduced here can differ from
the effective mass of current carriers observed actually.

It will suffice to calculate the high-frequency con-
ductivity of the double-barrier structure under consid-
eration (and the transition intensity proportional to it)
within the small-signal (linear with respect to U)
approximation. In this case, thefirst-order correctionin
the steady-state regime takes the form [1]

—iwpt —i (g + W)t —i (W —w)t

W= ye " +y.e +y_e )

and the equation for (, in the first order of the pertur-
bation theory can be obtained from Egs. (1) and (2),

O .0
. * O 00w, 0O
Aorg e B+ g U 0 FaW¥en
(6)
0 .0
= (Exnw)g Yol
owr o
This system, aswell asthe system of equations without
the variable field, is degenerate; therefore, Y; can be
written in the form
s __ P
' T E-Eythw

UX) Y,

kel + ==

w (7)

Substituting Eqg. (7) into the first equation of the system
in Eq. (6), we obtain

k D, ki@ — (E—Ec* )Y

kP  OuxP, O _ (8)
TE_E, ¢ hwE- Evk”“% +Ukwe = 0,
where
20 2mP? O
= — 0. 9)
2MoT #X(E-Ey * hw)]
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In order to find wave functions, it is necessary to
specify the forms of the barriers and the perturbing
field.

Double-barrier structure. Evenin the single-band
model, electron transitionsin double- and triple-barrier
nanostructures are amenabl e to the complete analytical
treatment only within the thin (&-like) barrier approxi-
mation [1-3]. In this case, a barrier with height ¢ and
thickness b is replaced by a &-like barrier with the
power a = ¢b, and the wave-function matching condi-
tion at the barrier takesthe form [1, 9]

2mEb(

P'(+0) —y'(-0) = (10)
where m* isthe electron effective mass. The analogous
approximation can also be used in the two-band model.

Consider the first barrier of the heterostructure
shown in the figure. Let ¢ be the barrier height in the
conduction band, and ¢, the barrier height in the
valence band. It can be shown that for thin rectangular
barriers

W0 - W0
_2m_ (E-E) _
<R th VO = 0b00),
1y
E>E,
0.

P(+0) —Y(-0) = ‘E—:‘E\‘/UJ'(O)V E<E,,

where the expression in the square brackets designated
in Eq. (11) as g isan analogue of the product of barrier
power by the effective electron mass 2m*a/A? in
Eqg. (10). Asin the case of a single-band &-like barrier,
it is assumed that g — const at b — 0. In the two-
band model, this asymptotic behavior may correspond
to a &-like barrier in either the conduction band or the
valence band.

Furthermore, for the case k, = O, consider a flow of
electrons with energy € = E — E¢ incident from the left
on a symmetric double-barrier structure with the quan-
tum-well width a shown in the figure. A uniform high-
frequency electric field U(X) = —gFx with the strength F
varying with time according to the equation 2F coswt =
F(e + &) is applied to the structure.

The unperturbed electron component, the electron
wave function , (for simplicity, index e is omitted
from here on) normalized to the unit amplitude of the
wave incident from the left, takes the form

Oexp(ikx) + Doexp(—ikx), x<0

Yo(X) = EAosin(kx)+Bocos(kx), O<x<a (12
HCoexp(ik(x—a)), x>a.
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In the small-signal approximation, the first-order
correction |, to the ground-state wave function equals

[1] Y =y.(x)e +P_(X)e (wp=¢/A).In
this case,

—i(wy + )t —i (00— W)t

EDiexp(—i k.x), x<O0
LA, sin(k,x) + B, cos(k,x) + X(x),

9.0 = [D<x<a (13)
C.exp(ik.(x—a)) + P.exp(ik(x—a)),

Loa

where
k2_2m0(E E,tAW)(E—Ec+/w) 2
R Ep+{(E-Ey £ fiw) v (14)
P, = ¥ 2y a),

and X, is a particular solution of Eq. (8), which is
sought inside the structure in the form

= BaXWe+ V.le. (15)
After substituting Eq. (15) in Eq. (8), we obtain
+aF
B. = ™
- OF
e e

E,(2E — 2E, + hw) + 2{(E—E,)(E— £, + oo 0

E,(E—E, +eiw) +{(E-E,)(E-Ey2/w)’
) (E—E, + hw)
M = Mo Z(E-E 2 hw)’

Here qistheelectron charge, and m, isdetermined sim-
ilarly to Eqg. (4).

The system of equations for determining coeffi-
cientsA,, B,, C,, and D, iswritten in the matrix form as

O 0
o 1 0 -1 0 g
Uik, —g K, 0 o U
O _ O
O 0 snk,a cosk,a -1 [
E 0 —k,cosk.,a k,sink,a ikt—gg
17)
O O O O
OB,O O P,—x.0) [
O 0 O . ..
DCiD D(g_lk)Pr_Xr(a)D
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Let the energy of incident electrons correspond to
the energy level N of the quantum well (the numbering
of levels starts from unity), and let the frequency of the
electric field correspond to transitions to the level with
the number L. Here, in accordance with the parity selec-
tion rules, N — L is an even number. The condition for
the resonance electron tunneling, which coincides with
the condition for the resonance interaction of electrons
with the HF field (the determinant of system (17) is
minimum), takes the form [9]

tan(k.a) = -2k./g. (18)
For sufficiently powerful barriers
g>kk,, (29)
the system in Eg. (17) can be solved anayticaly,
2
CzDzB:2y+—?—(—, A, = Bk (20)

which gives the following equation for the high-fre-
guency conductivity of the structure for the electron
concentration n in the flow incident on the structure:

q i g n 1

O, = % -z

e’ %l 2
E (28 £ hw) f
p(E E,+e+hw)+{(E-E,)(E-E,+Aw)U

xﬂG , (21)
m,|
_ € Ep -
Gn = [“ E—EVEp+Z(E—EV)}

Here, G, isthefactor that provides the normalization of
the squared two-component wave function to unity. At
low energiese < Egy, E;= Ec —Ey and Eq. (21) for tran-
sitions inside one band is transformed to the equation
obtained in [1] for adouble-barrier structure with a par-
abolic dispersion law.

At { = 0 (the effective electron mass is equal to the
light-hole mass), Eq. (21) is reduced to

e ey’ n% 2e + hw T
T[LCO m 2(E EV+Sih(A))|:| (22)
€ _ .3 °h’ g
1+ } = IR,
|m+|[ E-Ey CmLw’m’

For transitions within one band and not very high elec-
tron energies, the R factor only dightly differs from
unity (at € < Eg, 0.3 < R< 1). However, the transitions
between levels located within different bands can give
arather high conductivity o, of the structure. In partic-
ular, in asufficiently wide quantum well inwhich levels
are closely spaced between each other at 7w = E; and

e <E,

by L°
DN]T[Z(N —13)*

Thus, as digtinct from the intraband resonance tran-
sitionswhere the conductivity increases singularly only
if both the electron energy and the field quantum energy
tend to zero, the conductivity of a quantum well con-
fined by thin barrierswith coherent electron transport in
the case of interband transitions increases singularly
when the field quantum energy tends to the forbidden
band width. The effect found in this work can be used
for designing quantum cascade lasers.

Thiswork was supported by the Russian Foundation
for Basic Research, project no. 00-02-17119 and by the
Research Council on the Physics of Solid-State Nano-
structure Program, project no. 97-1094.
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Femtosecond laser-induced structural transitions in graphite were studied by time-resolved optical anisotropy
measurements. The decay of the anisotropic reflectivity seemsto indicate aloss of long-range order on a sub-
picosecond time scale, which is much faster than the electron—phonon relaxation time. This observation con-
firms the nonthermal nature of the structural transition. © 2002 MAIK “ Nauka/Interperiodica” .
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Ultrafast light-induced phase transitions have been
studied in anumber of covalently bonded materials and
using many different experimental techniques, includ-
ing time-resolved measurements of the reflectivity [1—
4] and of thereflected second harmonic[2, 5, 6], aswell
as by molecular dynamics simulations [7]. More
recently, the direct observation of the disordering of a
solid during melting has become possible through the
use of ultrafast time-resolved X-ray diffraction [8-10].
While reflectivity measurements provide information
only about the changes of the electronic properties,
which cannot be uniquely related to transient structural
changes, time-resolved X-ray diffraction has not yet
been applied to the particular case of femtosecond-
excited graphite.

In this letter, we present the results of femtosecond
time-resolved optical anisotropy measurements of
ultrafast order—disorder transitionsin single crystalline
graphite after excitation by femtosecond laser pulses.
The novel time-resolved optical anisotropy technique
developed in [11] was successfully applied to study the
melting dynamics of superficial layers of zinc and
graphite heated by picosecond laser pulses [12]. The
idea of the method can be described as follows. When
the p- or s-polarized electromagnetic wave is incident
on a surface of an opticaly isotropic medium, the
reflected wave has the same pol arization as the incident
wave. However, if the medium is optically anisotropic,
the reflected wave, in general, also contains a compo-
nent perpendicular to the polarization of the incident
wave. The latter component disappears if the crystal is
converted to an isotropic state as a result of a phase
transition [11, 12].

L This article was submitted by the authorsin English.

Optical anisotropy in uniaxial crystalsmost strongly
manifestsitself in the reflection from planes containing
the anisotropy axis (C); this situation is realized in our
experiments. A p-polarized wave with intensity 1, nor-
mally incident on the surface containing the anisotropy
axis possesses both s and p-polarized components
after reflection. Their intensities | and |, can easily be
obtained using the Fresnel formula:

ISERpslin = Iinz—azgnzzq)a
(n+1)>-3°
2 2 2 (1)
| =R .| =] [n"=0"—1+2dcos2¢|"
p pp'in in > >
(n+1)"-9%

Here, n=(n,+ny)/2and d = (n,—n,)/2 are, respectively,
the isotropic and anisotropic parts of the complex
refractive index, with n, and n, being the complex
refractive indices for the extraordinary and ordinary
waves, respectively; ¢ is the angle between the polar-
ization plane and the anisotropy axis. Only asmall frac-
tion of the incident intensity is converted into the
s-component: Ry 0 101073 [11, 12], which is maxi-
mal at ¢ = 45°. Being the ordinary reflectivity for ¢ =
90° and extraordinary reflectivity for ¢ = 0°, the reflec-
tivity of the parallel p component remains quite high:
Ry, U 1. The large difference in the intensities of the p
and s components immediately gives |d| < |n? — 1| and
allows oneto neglect in Eq. (1) the small terms propor-
tional to &°. Equations (1) for the particular case ¢ = 45°
have a simple form:

_ 25° ~|n—1J2
sy " |n¥1 )
for Ryy< Ry, 01, ¢ = 45°,
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Fig. 1. Schematic of the experimental setup.
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Fig. 2. (8) Anisotropic (s-polarized) reflectivity images of
the laser-annealed area at different angles ¢ = 110°, 130°,
160°, and 180°; the elliptical ablation crater can be easily
recognized. (b) The angular dependence of anisotropic
reflectivity of the polished and laser-annealed surface.

Note that Egs. (2) are different from those derived in
[11] for metallic surfacesin the impedance approxima:
tion |&| < |n|, [n| > 1. It follows from Eq. (2) that the
intensity of the s wave vanishes when the materia
looses order or acrystal becomesisotropic correspond-
ingtod — 0.

The experimental results were obtained by time-
resolved polarization microscopy; the schematic of the
setup is presented in Fig. 1. A p-polarized pump pulse
(t = 100 fs, A = 800 nm) at an angle of incidence of
approximately 45° was used to excite the surface of a
single-crystal graphite sample. The excited surface area
was illuminated by a weak time-delayed p-polarized
probe pulse (second harmonic, T = 100 fs, A =400 nm)
normally incident on the surface through a high-resol u-
tion microscope abjective (20X, NA = 0.3). A CCD
camera located in the image plane of the microscope
objective was used to acquire the transient surface
reflectivity images formed by the reflected probe pulse.
By adjusting a polarizer placed in front of a CCD cam-
era, the “isotropic” (p-polarized) or *“anisotropic”
(s-polarized) reflectivity component can be detected.

Perfect crystalline surfaces parallel to the basal
graphite plane (perpendicular to the optical axis) can
easily be obtained by removal of the upper layers[4]. In
contrast, the preparation of a surface containing the
anisotropy axis and having a perfect crystalline struc-
turein athin surface layer with athickness on the order
of the skin depth represents a serious problem. An
effective way to prepare a perfect crystalline surfaceis
based on “laser annealing” [6]: removal of the nonper-
fect upper layers of the material by laser ablation. In
Fig. 2, we compare the angular dependence of the
anisotropy signa R,(¢) from the initialy polished
graphite surface with that from the annealed surface
area (annealing pulse: T = 100 fs, A = 800 nm, F =
0.6 Jcm?).

The anisotropic reflectivity images are taken at dif-
ferent angles ¢ between the optical axis and the polar-
ization vector by rotating the sample; the annealed area
isclearly seeninthe center of eachimage (Fig. 2a). The
visible scratches with atypical depth of 1 um originate
from the polishing procedure and cannot be eliminated
by laser annealing, since only afew tens of nanometers
are removed by laser ablation. Nevertheless, laser
annealing does significantly improve the crystaline
structure of the surface, whichis shownin Fig. 2b. The
anisotropy signal from the initial surface is relatively
weak and contains only two maxima. In contrast, the
angular dependence measured in the center of the
annealed area shows four distinct maxima of equal
amplitudes, which is in good agreement with the
expected sin’(2¢) angular dependence [see Eq. (2)].

The maximal value of the anisotropy signal RYe =4 x

1073 is consistent with the value 5.5 x 103 obtained
from Eq. (2) by assuming n, = 2.62 — 1.28i and n, =
2.04-0.62i [13]. The nonzero minima value of the
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Fig. 3. Time-resolved reflectivity images for s and p polar-
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Fig. 4. Temporal evolution of theisotropic (p-polarized) and
anisotropic  (s-polarized) reflectivity; laser fluence
0.35 Jem?.

anisotropy signal Rr,;';“ = 0.4 x 103 is determined from
the extinction ratio of the polarizers in the current
geometry of the experiment. A detailed surface inspec-

JETP LETTERS  Vol. 75
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tion by Nomarski (differential interference contrast)
optical microscopy also indicates an improved surface
morphology of the laser-annealed area, as compared to
the as-polished surface.

For time-resolved experiments, the pump pulse with
maximal fluence 0.35 Jcm? was focused inside the
laser-anneal ed surface area. The orientation of the sam-
ple was set to maintain the maximal initial anisotropy
signa at ¢ = 45°. An example of transient anisotropy
measurementsis shownin Fig. 3, where the normalized
isotropic and anisotropic reflectivity images for the
delay time At = 0.7 ps are presented. The normalization
procedure impliesthe division of the transient reflectiv-
ity image by the initial reflectivity image of unexcited
surface to eliminate the influence of inhomogeneous
probe illumination and initial surface defects. The
small increase in an isotropic (p-polarized) and signifi-
cant decrease of the anisotropic (s-polarized) reflectiv-
ity can beinferred from thereflectivity imagesin Fig. 3.
The temporal evolution of normalized isotropic and
anisotropic reflectivity components is summarized in
Fig. 4. Within a few hundreds of femtoseconds after
laser excitation, an increase in the isotropic p compo-
nent is observed, similar to the results reported by
Downer et al. [4] for the experiments performed on the
basal plane of graphite. In contrast, the anisotropic s
component drops very sharply within 300-500 fs. This
behavior indicates avery rapid loss of crystalline order,
much faster than the electron—phonon relaxation time,
which is on the order of 1-2 ps[4]. Thus, the destruc-
tion of crystaline order is caused by a nonthermal
mechanism due to the strong electronic excitation of
the material.

To summarize, we have extended time-resolved
optical anisotropy measurements[11, 12] to the femto-
second time domain and applied this technique to
detect an ultrafast structural transformation in fs-laser
excited graphite. Laser annealing using fs-laser abla-
tion proved to be arobust technique for the preparation
of well-ordered surfaces containing the anisotropy axis.
The first time-resolved measurements indicate the dis-
appearance of crystalline order on a subpicosecond
time scale and thus emphasi ze the nonthermal nature of
the structural transition. A dight modification of the
experimental geometry will allow one to follow the
temporal evolution of both ordinary and extraordinary
refractive indices. This experiment is expected to pro-
vide more insight into the physical mechanisms of the
structural transformation in graphite and is currently in
progress.
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Spontaneous For mation of a System of Highly Ordered
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on Profiled (111) Silicon Substrates
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Atomic-force microscopy was used to study the surface topography of SiGe structures grown by epitaxial dep-
osition of Ge on profiled Si(111) substrates under electromigration conditions. Systems of highly ordered ger-
manium nanosized islands with dimensions of 10-20 nm and a density of 6 x 10'° cm= were obtained. It is
shown that the geometrical parameters of self-organizing nanoislands can be controlled by a proper choice of
the growth and postgrowth annealing conditions for these structures. © 2002 MAIK “ Nauka/Interperiodica” .

PACS numbers; 68.65.-k; 61.46.+w; 68.37.Ps; 81.15.Hi

In the last 5-10 years, the constant growth of
researchers interest in the heteroepitaxial system
Ge,Si; _,/Si hasbeen observed because of the high tech-
nological potential of self-organizing SiGe islands
(“quantum dots’) for various device applications. In
spite of the large number of experimenta works
devoted to the investigation of the formation and evolu-
tion of SiGe islands on substrates of various orienta-
tions, the problem of creating structures with quantum
dots as the elemental base for a new generation of
devices is now far from being completely solved. The
main difficultiesin the production of high-quality struc-
tures with quantum dots are associated with the large
dimensions of the self-organizing germanium islands,
which prevents the manifestation of quantum proper-
tiesin such systems, and with the random character of
the localization of these islands in the film—substrate
heterojunction plane. In this connection, efforts
directed at the investigation of the possibilities of addi-
tionally affecting the mechanism of self-organization of
the surface and the development of the technological
elements of the production of such structures are very
important. In this paper, we present some preliminary
results of the investigation into the process of spontane-
ous formation of germanium nanoislands upon epitax-
ial deposition on Si(111) profiled substrates under con-
ditions of electromigration of germanium adatoms.

The samples to be studied were obtained by molec-
ular-beam epitaxy in an experimental ultrahigh-vac-
uum system whose basic distinction from standard
devices of molecular-beam epitaxy isin the possibility
of annealing samples by both indirectly heating them
using an external source of heat and by directly passing

ac or dc current of a given polarity through the crystal.
The system is equipped with a standard molecular
source of germanium, which representsacrucible made
of boron nitride surrounded with a tantalum heater and
asystem of protective thermal shields. Asthe source of
silicon, an additional silicon crystal located at a dis-
tance of 15 mm over the surface of the substrate was
used. To rapidly chop the molecular beam, a tantalum
bellow-controlled shutter located in the immediate
proximity to the source was employed.

As substrates, KES-0.1 silicon single crystals ori-
ented 4.4° off the (111) plane, which were cleaved out
in the rectangular form with dimensions of 0.3 x 5 x

15 mm along the [121] direction, were used. The tem-
perature of the samples during annealing was con-
trolled with an optical pyrometer or, at low tempera-
tures, with a chromel—alumel thermocouple.

The sample was placed into the vacuum chamber
and, after the maximum vacuum had been achieved
(p= 3 x 1079 torr), the surface of the substrate was
cleaned from natural oxides and inclusions of silicon
carbide using a flashing to 1300°C for 1.5 min by
directly passing alternating current through the sample.
Then, the substrate temperature was lowered to 400°C
and a buffer layer of silicon 50 nm thick was applied.
After this, the crystal was annealed at atemperature of
1250°C for 0.5-2 min by passing direct current to pro-
duce the desired surface profile in the form of terraces
and nanosteps [1]. Then, by decreasing the density of
the direct current passed through the sample, the tem-
perature of the substrate was decreased to 550-600°C,
and a germanium film 5 to 15 monolayers (ML) thick
was deposited and subjected to postgrowth annealing
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Fig. 1. System of highly ordered Ge nanoislands on a pro-
filed Si(111) surface. The effective thickness of the germa-
nium filmis 7 ML; the postgrowth annealing of the sample
is performed by passing direct current for 10 min at atem-
perature of 600°C.
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Fig. 2. Decomposition of an elastically strained germanium
film deposited on a profiled substrate into isolated islands.
The effective thickness of the germanium filmis 12 ML; the
postgrowth annealing of the sampleis performed by passing
direct current for 3 min at atemperature of 550°C.

for several minutes without changing the direction and
intensity of the current. The rate of deposition of ger-
manium was 0.05 nm/s. Theinvestigation of the surface
topography of the structures was performed using a
Solver P47-SPM MDT atomic-force microscope.

The above heat treatment of the substrate resulted in
the formation of a system of nanosteps with periodi-
cally located kinks, which served upon subsequent dep-
osition of germanium as the sites of pinning of ada-
toms, initiating the development of a nanoisland. The
process of electrotransfer due to the passage of a dc

electric current during the deposition of the film wasan
additional factor stimulating the motion of germanium
adatoms toward edges of nanosteps and pinning them
along the fronts of moving nanosteps on the substrate.
The use of this technique permitted us to obtain arrays
of highly ordered nanoislands of germanium 10-20 nm
in diameter, whose density was 2-6 x 10 cm™. The
surface topography of typical structures with highly
ordered germanium nanoislands observed in an atomic-
force microscope is displayed in Fig. 1. Note that the
spatial characteristics of the produced islands are deter-
mined by both the dimensions of the steps on the sub-
strate and the effective thickness of the germanium film
and the duration of the postgrowth annealing of the
sample. By varying these growth parameters, we could
observe various stages of the rearrangement of the sur-
face, beginning from the breaking up of the film into
isolated islands and ending by the formation of large
clusters due to the coal escence of nanoislands. Figure 2
illustrates the stage of the decomposition of an elasti-
cally strained germanium film, which covers steps on
the substrate, into isolated islands. In this case, after the
deposition of agermanium film with an effective thick-
ness closeto 12 ML, the sample was annealed at atem-
perature of 550°C by passing direct current for 3 min.
The deposition of germanium at sufficiently high tem-
peratures of the substrate, in our opinion, prevents the
formation of structural defects in nanoislands, which
can take place when the epitaxial deposition is per-
formed at low temperatures (e.g., 200°C) [2].

Thus, in this paper, we suggest a new original
approach to the formation of highly ordered structures
with germanium nanoislands on silicon, which permits
one to produce dense arrays of islands with dimensions
of 10-20 nm. The results obtained indicate the basic
possibility of directionally affecting the process of self-
organi zation of the surface of heterostructures by intro-
ducing an additional factor such as electromigration
with the purpose of creating arrays of nanoislands with
predetermined parameters.
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Characteristic features of transverse transport along the a* axis in the NbSe; charge-density-wave conductor
arestudied. At low temperatures, thel-V characteristics of both layered structures and NbSe;—NbSe; point con-
tacts exhibit a strong peak of dynamic conductivity at zero bias voltage. In addition, the -V characteristics of
layered structures exhibit a series of peaks that occur at voltages equal to multiples of the double Peierls gap.
The conductivity behavior observed in the experiment resembles that reported for the interlayer tunneling in
Bi-2212 high-T, superconductors. The conductivity peak at zero bias is explained using the model of almost
coherent interlayer tunneling of the charge carriers that are not condensed in the charge density wave. © 2002

MAIK “ Nauka/Interperiodica” .
PACS numbers: 71.45.Lr; 72.15.Nj; 74.50.+r

Itiswell known that the crystal structure of BSCCO
high-T, superconductors consists of atomically thin
superconducting cuprate layers spatially separated by
atomically thin insulating layers of BiO and SrO. The
corresponding spatial modulation of the superconduct-
ing order parameter in the direction across the layers
(along the c axis) leads to a discrete description of the
transverse transport (the Lawrence-Doniach model [1])
with the neighboring superconducting layers being
coupled through Josephson tunneling junctions. The
validity of this approach is confirmed by the results of
the experiments on natural Bi-2212 layered structures
of small lateral size [2, 3]. Currently, the study of the
interlayer tunneling of Cooper pairs and quasiparticles
[4, 5] is one of the new original methods for investigat-
ing high-T, superconductors.

In this paper, we study the interlayer tunneling in a
layered system with an electron condensate of a differ-
ent type, namely, in acharge-density-wave (CDW) con-
ductor. The material chosen for our experiments is
NbSe;. This compound is characterized by two Peierls
transitions, which occur at the temperatures T, =
145K and Ty, = 59 K. In the low-temperature Peierls
state, the Fermi surface retains some regions where the
nesting conditions are not satisfied (the “ pockets’) and,
hence, the Peierls gap is absent. Therefore, NbSe; does
not undergo transition to the insulating state and retains
its metallic properties down to the lowest temperatures
[6]. From the analysis of both the crystal structure of

NbSe; and the anisotropy of its properties, it follows
that this material can be classed with quasi-two-dimen-
siona layered compounds. In fact, its conductivity
anisotropy in the (b—c) planeis determined by the chain
conductivity along the b axis and is estimated as 0,,/0.
~ 10, whereas the conductivity ratio 0,/0, is deter-
mined by the layered character of the structure and
reaches the values ~10* at low temperatures[7, 8]. Fig-
ure la showsthe crystal structure of NbSe; in the (a—)
plane. One can see that, in this material, the layered
structure is formed as a result of a pairwise coordina
tion of selenium prisms with the predominant orienta-
tion of their bases in the (b—) plane. In Fig. 1b, the
shaded areasindicate the elementary conducting layers
in which the prisms are rotated and shifted with their
edges toward each other. In these layers, the distances
between the niobium chains are relatively small,
whereas the neighboring conducting layers are sepa-
rated by an insulating layer formed as a double barrier
by the bases of the selenium prisms.

This type of layered structure in combination with
the conductivity anisotropy offersthe possibility for the
CDW condensation in the elementary conducting lay-
ers spatially separated by atomically thin insulating
layers. In this case, as in layered high-T, superconduc-
tors, one can expect that the CDW order parameter will
be modulated along the a* axis, and the transport across
the layers will be determined by theintrinsic interlayer
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Fig. 1. (a) Schematic representation of the NbSey structure in the (a—c) plane; (b) the same structure with the conducting planes

indicated by shading.

tunneling between the elementary layers with the
CDW.

To verify these speculations, we carried out an
experimental study of the transport across the layersin
NbSe; in the condensed CDW dtate.
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Fig. 2. Dependences of di/dV on the voltage V for an over-
lap junction (sample No. 1) at different temperatures: 59.5,
55.6, 52.1, 48.0, 43.7, 40.1, 37.0, 34.3, 31.0, 28.0, 25.1,
22.6,19.1,15.7, 12.8, 8.0, and 4.2 K. The dynamic conduc-
tivity scale correspondsto thecurveat T =59.5K, and other
curves are shifted upwards for clarity. The inset shows the
sample configuration.

The samples used in the experiment were layered
structures with a small area through which the current
flows acrossthelayers, S=2 x 2 um, and with the num-
ber of elementary layers ~ 30 (the overlap junctions).
They were made from athin NbSe; single crystal by the
focused ion beam processing technique developed for
fabricating similar structures from Bi-2212 [9]. Sche-
matically, the structure under investigation is shown in
theinset of Fig. 2. In addition, we studied the character-
istics of NbSe;—NbSe; point contacts oriented in the
direction of the a* axis. The configuration of such a
contact is shown in the inset of Fig. 3. The contact was
formed directly at low temperature by bringing two
NbSe; whiskers together with high accuracy. In both
cases, we performed four-terminal measurements of the
|-V characteristics and their derivatives at low tempera-
tures, i.e., below the second Pelerlstransition T, = 59 K.

The main results of the experiment are shown in
Fig. 2, which, for one of the virtually perfect structures
(no. 3), displaysthe dynamic conductivity along the a*
axis versus the bias voltage V at different temperatures
from 59.5 t0 4.2 K. It can be seen that, for T < T, the
differential 1-V characteristics are of a tunneling char-
acter. When the temperature decreases below ~35 K,
the |-V characteristics begin to exhibit a conductivity
peak at zero bias voltage. As the temperature decreases
further, this peak becomes a dominant feature. The
peak amplitude reaches saturation when the tempera-
ture decreases below 6-8 K, and at T = 4.2 K, it is
almost 20 times as great as the conductivity observed at
high bias voltages. Note that this anomaly cannot be
attributed to Joule heating. The estimate of the sample
heating for a typical value of heat transfer to helium
yields a conductivity decrease of less than 10% for the
whole range of measured voltages. In addition, the I-V
characteristics show a clearly defined set of conductiv-
ity peaks that are symmetric about zero voltage and at
low temperature correspond to |[V| = 50, 100, and
150 mV, i.e, to |V| = nV,, where V=50 mV and n=1,
2, 3. As the temperature increases above 25 K, these
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Fig. 3. Dependences di/dV(V) (1) for aNbSe;-NbSe; point

contact and (2) for an overlap junction (sampleNo. 2) a T =
4.2 K. Theinset shows the point contact configuration.

peaks move to lower energies, and, at the temperature
T =59 K corresponding to the second Peierlstransition
for NbSe;, the values of V,, vanish.

The picture described above was observed only for
perfect structures. The presence of structure defects,
such as atwin boundary, leads to a considerable reduc-
tion of the conductivity peak at zero bias and to the
appearance of apeak at V = 25-27 mV = V/2 (curve 2
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Fig. 4. Temperature dependences of the dynamic conductiv-
ity a zero bias voltage for two overlap junctions: sample
No. 3 (full circles) and sample No. 1 (full squares), and for
aNbSez—NbSe; point contact (empty circles). The conduc-
tivity valuesare normalized to the value of di/dV (T = 62 K).
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in Fig. 3). Qualitatively similar dependences were
observed for some of the NbSe;,—NbSe; point contacts.
Their |-V characteristics also exhibit a conductivity
peak at zero bias with an amplitude approximately
equal to that observed for defect overlap junctions, as
well as a conductivity peak at V = 25 mV (curve 1 in
Fig. 3). Figure 4 presents the temperature dependences
of the normalized dynamic conductivity at zero bias
voltage for al types of samples studied in the experi-
ment. One can see that, for a perfect overlap junction,
the amplitude of the zero bias anomaly is more than
three times greater than the amplitudes observed for the
defect layered structures and point contacts. Note that
the voltage value V, = 50 mV isclose to twice the value
of the low-temperature energy gap, 2A,/e, for NbSe;
[10, 11], while the dependence V,(T)/V,(0) obtained for
both overlap junctions and point contacts (Fig. 5)
agrees well with the temperature dependence of the
energy gap predicted by the BCS theory (the dashed
lineinFig. 5). Thisresult suggeststhat the conductivity
features observed in the experiment are governed by a
gap mechanism.

It is important to note that all effects described
above were observed exclusively for the transport
across the layers (along the a* axis). The extra experi-
ments performed by us on specially fabricated bridges
and point contacts oriented along the ¢ axis (with the
transport across the chains in the layer plane) showed
no conductivity peak at V = 0.

Let us first analyze the results obtained for perfect
overlap junctions. The most prominent feature of the |-
V characteristics of these structures is the strong con-

1.0 —au«’-’-,;g}g °
\m.\
»
0.8 0
— Y
e \\\
w06 °°
~ 04
\\.
02 i
':
| | | | |

0 02 04 06 08 1.0
T

Fig. 5. Temperature dependence of the second Peierls
energy gap for an overlap junction (sample No. 3, full cir-
cles) and a NbSes—NbSe; point contact (empty circles).
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ductivity peak at zero bias voltage. In addition, the
characteristics exhibit a periodic sequence of peaks at
[V] = nV,, which resembles the series of quasiparticle
branches observed in the I-V characteristics of Bi-2212
layered structures when the measurements are per-
formed across the layers [3]. As was noted above, the
value V, =50 mV iscloseto twice the value of the low-
temperature CDW gap in NbSe;, and the temperature
dependence V(T) follows the prediction of the BCS
theory. However, in contrast to the case of a supercon-
ductor, the conductivity observed for NbSe; at zero bias
voltage is finite. This fact suggests that the interlayer
conduction at zero bias does not originate from the col-
lective CDW contribution of the Josephson tunneling

type.

The conductivity peak observed at zero bias cannot
be explained by the regular (incoherent) single-particle
tunneling aswell. If thiswere the case, the conductivity
peak could be attributed to the energy dependence of
the density of states of electronsthat are not condensed
in the CDW. Then, the conductivity feature under dis-
cussion should also be observed for man-made N——
CDW tunnél junctions. However, no such effects were
revealed by the detailed experimental studies of this
kind of tunnel junctions oriented aong the a* axis
[10, 11].

We believe that the conductivity peak at zero biasis
caused by the coherent interlayer tunneling of the
charge carriers localized in the pockets of the Fermi
surface, and below we thoroughly substantiate this
Statement.

In the general case, the tunnel current between two
nonsuperconducting layers, a and b, is described by the
expression [12]

41168
I = 5 Z lta(P, O)|°
P, q

w—eV (1)
2T U

X oodu) anh22 _ tanh
I % 2T

x ImGL(p, 0)IMG{(q, w—eV),

where GRis the retarded Green function of an electron
with the momentum p in the layer a, ImGR(p, w) isthe
spectral density of the Green function, t,,(p, q) is the
matrix element characterizing the tunneling from the
state with the momentum p in the layer a to the state
with the momentum q in the layer b, V is the voltage
between the adjacent layers, and T is the temperature.

Note that the contribution of the collective (moving)
CDW mode [13] to the interlayer tunneling is absent,
because the tunnel current is determined by the Green
functions in different layers, whereas the collective
mode propagates within the layers.

Below, we consider the coherent tunneling, when
the electron momentum in the plane does not change
under the tunneling: p = q. Then, we have

€es
| = 1= [dp|ta(P)]”

) 9 n@=eV @
x J’doo%anh >T tanh 5T 0

X ImGs(p, oo)ImG,Ff(p, w—eV).

Taking into account that the scattering in a layer is
determined by the collision frequency v, we obtain

Y
, 3

i w—e(p)” +Y") X
where e(p) isthe electron spectrum and y = Av. We can
use this expression with y =y + V., Which takes into
account the change in the momentum because of the
scattering within the layers and the change due to the
tunneling v = [&(p) —e(g)JIn both cases, we take into
account the energy uncertainty for the state character-
ized by the momentum p. We define the tunneling as
almost coherent when y;. and y are small relative to
other energy parameters of the electron system. In our
case, such parameters are the Peierls gap and the width
of the electron band in the pockets. Replacing t,,(p) by
the momentum-independent quantity t and integrating
with respect to p, we obtain

ﬁ{z [Pl ImGE(P, )IMG(p. o-eV)

ImGR(p, w) =

4
_ 2yNO)It)?

e2V2 + 4y2’

where N(0) is the density of states of electrons in the

pockets. Finally, for the interlayer current when eV <
2/, we obtain the expression

N(0)|t/*yeV
I(v) = —NOIyeV (5)
2 (eV© + 4y7)
and the dynamic conductivity has the form
o(V) _ , 2 4y —€’V?
o(0) ~ 2, 2 202" (6)
o(0) (e°V° +4y9)

Note that the temperature dependenceis present in y(T)
only. One can see that the dynamic conductivity has a
peak of width =y at V = 0 and becomes negative and
unstable when eV > 2y. For athirty-layer structure, the
experimentally observed peak width =10 mV corre-
spondsto y= 0.3 meV. For comparison, we estimate the
parameter y,. characterizing the scattering within the
layers. Using the known mobility data p = elvgm* =
4 x10* cm?/V s [7, 14], where m* = 0.24m, [15], we
obtain y. = 0.13 meV; i.e., the changes in the electron

JETP LETTERS  Vol. 75

No. 2 2002



COHERENT TUNNELING BETWEEN ELEMENTARY CONDUCTING LAYERS 97

momentum because of tunneling are approximately
equal to changes caused by the scattering within the
layers.

Now, we explain why the interlayer current
decreases with increasing voltage V. The electron tun-
neling between the layers must obey the energy conser-
vationlaw; i.e., e(p) = €(q) —eV to within 2y. For coher-
ent tunneling, we have e(p) = €(q), and for eV < vy, tun-
neling is possible and we have the conventional Ohm’s
law. When eV > 2y, tunneling is impossible up to the
voltage V reaching 2A/e. In this case, electrons con-
densed in the CDW begin to contribute to the interlayer
current in the form of aregular tunneling of CDW qua-
siparticles through the double Peierls gap 2A. Thus, the
interlayer current can be realized by means of only one
of the two aforementioned mechanisms. In an actual
multilayer structure, because of the geometric nonuni-
formity of individual layers (the areas of the layers are
somewhat different), the voltage value V ~ 2y/e will not
be reached simultaneously for different individual tun-
neling junctions. When V > 2y/e, some of the junctions
can be in the coherent tunneling regime whereas other
junctions can bein the regime of single-particle tunnel-
ing through the gap. As aresult, a sequence of conduc-
tivity peaks must appear in the I-V characteristic of the
compound under study at the voltages V = 2nAj/e,
wheren=1,2, ....

In the presence of defectsin an overlap junction or
inthe case of apoint contact, the incoherence of tunnel-
ing is enhanced, although in the best structures the tun-
neling remains amost coherent. Therefore, the I-V
characteristics of these structures, along with the con-
ductivity peak at zero bias, contain an additional feature
at vV = Aje, which is related to the single-particle tun-
neling of the N-I-CDW type.

Thus, the results of this study show that the inter-
layer tunneling in natural layered structures obtained
from NbSe; represents an independent efficient method
for investigating the Peierls state in this compound. The
tunneling conductivity peak observed at zero voltage
can be self-consistently explained by the amost coher-
ent interlayer tunneling of charge carriers that are not
condensed in the CDW and are localized in the Fermi
surface pockets not covered by the gap. The series of
equidistant peaks in the I1-V characteristic can be
explained by the quasiparticle tunneling through the

JETP LETTERS Vol. 75 No.2 2002

CDW gap under sequential transitions of individual
tunneling junctions to the resistive state. Note that the
conductivity peak observed at zero bias is a unique
manifestation of coherent single-particle transport in
solids.
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A theory is developed to describe the nucleation of a periodic nanometer-scale adatom structure formed as a
result of the instability caused by the interaction of adatoms with a self-consistent quasi-Rayleigh acoustic
wave. The periods of the structure are determined as functions of adatom concentration and temperature. On
the basis of the theoretical results, amechanism is proposed that explainsthe recently observed effect of nanom-
eter-scal e structurization in the course of ow-temperature molecular beam epitaxy of Gaunder laser irradiation.
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1. The spontaneous formation of periodic nanome-
ter-scale adatom structures on crystal surfaces has
recently become an object of intensive study. The
period of such a nanostructure is usually determined
from the calculation of the stationary (equilibrium) free
energy of this structure [1]. For some problems, the
study of theinitial stage of the periodic adatom struc-
ture formation (the nucleation) is of particular interest
(see below). In this paper, we develop a kinetic theory
of the spontaneous nucleation of a nanometer-scale sur-
face grating that occurs as a result of the instability in
the system of adatomsinteracting through the deforma-
tion field.

The atoms adsorbed in the course of molecular
beam epitaxy or deposition can be considered as sur-
face defects (e astic inclusions). Owing to the deforma-
tion potential, and due to the local renormalization of
the surface energy, the defects cause an inhomogeneous
deformation of the surface and the underlying elastic
continuum. In its turn, this self-consistent inhomoge-
neous deformation, also through the deformation
potential, redistributes the adatoms along the surface.

This paper shows that, when the adatom concentra-
tion exceeds some critical value, such defect—deforma-
tion (DD) feedback leads to the development of a DD
instability, which gives rise to a nanometer-scale peri-
odic modulation of the surface relief with the accumu-
lation of adatoms at the maxima or minimaof the mod-
ulated structure. In this kind of DD structure, the com-
ponents of the displacement vector of the medium are
determined by the expressions that coincide with the
corresponding formulas for the displacement vector in

a Rayleigh surface acoustic wave (SAW) in the static
limit (i.e., when the wave frequency tends to w = 0).

2. Let the surface of anisotropic solid coincide with
the plane z = 0 and the z axis be directed from the sur-
face into the depth of the medium.

The equation for the displacement vector u of the
medium has the form

d°u/at® = c’Au + (¢ —c)grad(divu), (1)

where ¢, and ¢; are the longitudinal and transverse
velocities of sound, respectively.

Assumethat a spatially inhomogeneous surface per-
turbation of the elastic continuum arises along a given
direction x. We represent this perturbation in the form
of a static (w = 0) quasi-Rayleigh SAW [2] with an
amplitude exponentially growing with time:

u, = —igRexp(igx + At—k,2)

. . (29)
—ikQexp(igx + At—k.2),
u, = kRexp(igx + At—k;z
| p( q 12) (2b)
+0Qexp(igx + At—kz),
ki, = o° + NI, ?3)

where A is the increment of the DD instability and R
and Q are the initial amplitudes of the SAW. Expres-
sions (2) and (3) define the solution to Eq. (1).
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The strain & at the surface is related to the compo-
nents of the displacement vector as follows:

_ 0y, au
g = o+ =2 = E@exp(io M),
\2 @
¢(@ = SR
C

The spatially inhomogeneous surface strain & givesrise
to the perturbation of the homogeneous distribution of
adatoms:

Ng = Ngo + Ng1(X) = Ngo + Ngs(a) exp(igx + At), (5)

where Ny isthe spatially homogeneous part and N, (q)
isthe amplitude of the spatially inhomogeneous pertur-
bation (Ng;(X) < Ny).

The equation for Ny has aform similar to the equa-
tion for the volume concentration of defects[3]:

ONg _ - 0°Ny 0y 9, 0 zazg
~Dugox Negxk + Yo% S0

ot Tox
where Dy is the surface diffusion coefficient for ada-
toms, 6y is the surface deformation potential of an ada-
tom, and | is the characteristic interaction length for
the adatom interaction with the atoms of the crystal lat-
tice [3]. The term proportional to |, takes into account
the nonlocal character of the interaction between the
adatoms and the surface atoms [ 3, 4].

Linearizing Eg. (6) with allowance for the condition
Ng(X) < Nyo and using Eg. (5), we obtain

0
(A +Dgq")Nas(@) = DaNao—0 11~ 10 1E @)- (7)
The inhomogeneous adatom concentration Ny, (X) mod-
ulates the surface energy o(x) = o, + (06/0Ng)Ny;(X),
which leads to the appearance of a shear (lateral) sur-
face stress da(x)/0x, which is compensated by the shear
stress arising in the medium. The boundary condition
for the balance of lateral stressesin the linear approxi-
mation in strain has the form
_ 90 19Na(X)

ou, Ou,
M[62 axl o [N oax ®)

where [ isthe shear modulus of the medium. Below, we
consider the coefficient (00/0N,) as a preset phenome-
nological parameter.

The interaction of adatoms with the surface of the
medium through the deformation potential also gives
riseto anormal stress at the surface. The corresponding
(linear in strain) boundary condition has the form

ou, ou, ed Ndl(x)
[BZ +(1-20) aXL:O PC| ©
JETP LETTERS Vol. 75 No.2 2002

where a is the crystal lattice constant of the surface,
B =c’/c?, and p isthe density of the medium.

Substituting Eq. (2) and Eq. (7) with alowance for
Egs. (4) in Egs. (8) and (9), we obtain a system of two
linear equations for the amplitudes R and Q. From the
condition that the determinant of this systemis zero, we
derive a dispersion equation for the DD instability:

2 2 202 83Ny Dyq’
[o + k] —4d’kk, = 25
t T Bc?kaTpc?A + Dy

2 9
(11500 kg + (@ + kD52 |

After the substitution A — iw the left-hand side of
Eqg. (10) coincides with the Rayleigh determinant,
which, being set equal to zero, determines the disper-
sion law for the Rayleigh acoustic wave [2]. The right-
hand side of Eq. (10) describesthe force action (~8,) of
adatoms, which deforms the surface and leads to the
DD instability.

Expanding k, and k; in powers of the small parameter

(\3/ ¢’ g?), we derive from Eq. (10) the expression for
the DD instability increment:

Ma) = Dy’
x edeO _ 2 2
[(1 B)ksTpC ( o9 )Eﬂ

3. Consider two limiting cases of Eq. (11).

A. When the shear stress can be neglected (6 /a >
g(0c/oNy)), from Eq. (11) at T = const, we obtain

(10)

} (11)

A = quzm—jo(l_lng)_l} (12)

where Ny is the critical concentration of adatoms:

apcI k T

=(1-B)—— (13)

d
Setting 6, =10 eV, T=100 K, a=5 x 108 cm, and
pc’ = 102 erg/cm?, from Eq. (13) we obtain the esti-
mate Ny, = 1.8 x 10% cm2,
Function (12) has a maximum at g = ¢, Thisvalue

determines the period A\ = 217q,, of the dominant DD
grating:

A(Ngo) = /8T g[1—Ngo/Nggl 2. (14)

The formation of the DD grating on the surface
occursin athreshold manner when the adatom concen-
tration exceeds the critical value: Ny > Ny.. At the DD
instability threshold (Ng, — Ng.), the period tends to
infinity, A — co. At high concentrations Nyy > N, the
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period asymptotically tends to its minimal value A =

J8ly.

At a constant adatom concentration Ny, = const, the
period is determined by the temperature:

A(T) = JBrly[1-T/TJ ™, (15)
where T, isthe critical temperature:
03N
T, 1 Zatdo (16)

T 1- Bapciks

At Ngo = 2 x 10*2 cm?, from Eq. (16) we obtain an esti-
mate for the critical temperature T, = 110 K.
According to Eq. (15), the formation of the DD grat-
ing on the surface is possible only when T < T.. As
T — 0, the period tends to the minimal value A\ =

J/8ml,, and when T — T, the period tends to infinity,
N — oo,

B. Consider the second limiting case of Eq. (11)
where the norma stress can be neglected (B/a <
g(00/dNy)). The necessary condition for the DD insta-
bility isthe condition B84(00/0Ny) > 0. In this case, from
Eqg. (11), weobtain

N@) = Dya’Tpals(1-15a") - 11, (17)
where p is the dimensionless control parameter:
1 ed(acr/aNd)Ndol (19)

PTESR T I pck,T

Function (17) has amaximum at g = g, This value
is determined from the condition 0A(g)/dq = O and is
obtained as a solution to the equation

5pl3gs,—3plyq,+2 = O. (19)

The corresponding period of the dominant DD grating is

A= Ap) = Jénld/cos[ﬁrﬁ‘io—s—(:-;——@—p—)] (20)

The condition A(q,,) = 0 determinesthe critical value of
the control parameter p = p.= 2.597. When thisvalueis
exceeded, the DD instability begins to develop.

Note that, from Egs. (14), (15), and (20), it follows
that the period of the adatom superlattice formed on the
surface is proportiona to the characteristic length of
interaction between the adatoms and the atoms of the
lattice, 14, which lies in the nanometer range. The dis-
persion parameter |, was introduced in the theory of the
self-organization of three-dimensional DD nanostruc-
turesin an earlier publication [3]. In comparing the the-
oretical predictions with the experimental results, the
parameter | ; can be considered as afitting parameter (as
in[3]). Inanother publication [4] devoted to the dynam-
ics of the formation of three-dimensional DD nano-
structures, it was found that this dynamicsis also gov-

EMEL’YANOV, EREMIN

erned by |4 Later [5], it was shown that the parameter
|4 determines the screening length for the elastic inter-
action of defects with each other in media with high
concentrations of point defects.

4. The x direction on the crystal surface has a pref-
erence because of the elastic anisotropy, and, on an iso-
tropic surface, because of the external action inducing
an elastic anisotropy, or owing to a spontaneous viola-
tion of the symmetry of the DD system (asin [6]). The
growth of the amplitudes of the corresponding DD grat-
ing, which are given by Egs. (2), (4), and (5), becomes
saturated owing to the elastic nonlinearity of the DD
system. In this case, a stationary one-dimensional ada-
tom superlattice (a singleemode DD structure) is
formed on the surface. Its amplitude can be calculated
by taking into account the nonlinearity in the boundary
conditions (8) and (9). By analogy with [6, 7], one can
expect that, when the excess over the one-dimensional
structure generation threshold is large enough, the for-
mation of atwo-mode or three-mode (hexagonal) nano-
structure is most probable. In this case, the absolute
extrema of the surface deformation form a cellular
structure and can serve as the nucleation centers of a
cellular surface nanostructure formed by adatoms.

In connection with this prediction, we note that
recently, the group of Prof. N.I. Zheludev (from
Southampton University) reported on the formation of
avirtually close packing of Gananoparticleswith anar-
row size distribution on theilluminated (central) part of
the end surface of a quartz optical waveguide asaresult
of the low-temperature (100 K) molecular beam epit-
axy of Ga[8]. At the sametime, the part of the substrate
where the laser radiation was absent (corresponding to
the peripheral part of the waveguide) was characterized
by Ga particles with a wide distribution in size (up to
microns).

The consideration presented above suggests the fol-
lowing possible scenario for the formation of an ensem-
ble of Ga nanoparticles with a narrow size distribution
under laser irradiation.

The radiation with a wavelength of 1550 nm [8],
which lies within the molecular absorption band of
covalently bonded Ga dimers [9], excites the dimers
from the bonding state to the antibonding one [10], thus
increasing the mobility of dimersand small Gaclusters.
This provides the possibility for the development of a
DD instability ontheilluminated part of the end surface
of the optical waveguide, and this instability induces
the nucleation of a cellular adatom nanostructure. The
periodic surface deformation field produced in this case
gives rise to flows of randomly nucleated mobile Ga
clusters in the direction toward the deformation
extrema. As a result, only those clusters grow that are
located at the extrema of the surface deformation field.
Thus, in the illuminated region of the surface, within
some time of cluster growth, a close packing of nano-
particles is formed with a narrow size distribution cen-
tered at a value that is proportional to the DD nano-
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structure period given by Eqg. (14), (15), or (20). From
our consideration, it follows that the nucleation of the
DD nanostructure is possible only at a sufficiently low
temperature, below the critical one. This condition
agrees with the results of the experiment [8], where the
nanometer-scale structurization of Ga occurred at T =
100 K and was not observed at T = 300 K.

In the region where light is absent (the peripheral
region), the deposition products are aimost immobile
and the DD instability isimpossible. In thisregion, the
particles nucleatein arandom way and their subsequent
growth also occurs randomly. As aresult, in the nonil-
luminated region, Ga particles are formed with a wide
distribution in size.

One of the authors (V.1.E.) is grateful to the Engi-
neering and Physics Science Research Council
(EPSRC, United Kingdom) for financia support
(project no. RG/R4441538/01).
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