
  

JETP Letters, Vol. 75, No. 4, 2002, pp. 167–169. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 75, No. 4, 2002, pp. 199–201.
Original English Text Copyright © 2002 by Dremin.

                                                                                         
Cherenkov Radiation by Particles Traversing
the Background Radiation1 

I. M. Dremin
Lebedev Physical Institute, Russian Academy of Sciences, Moscow, 119991 Russia

e-mail: dremin@lpi.ru
Received January 15, 2002

High-energy particles traversing the Universe through cosmic microwave background radiation can, in princi-
ple, emit Cherenkov radiation. It is shown that the energy threshold for this radiation is extremely high and its
intensity would be too low due to the low density of the “relic photons gas” and very weak interaction of two
photons. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.85.Tp; 41.60.Bq; 98.70.Vc
1 Recently, particles with energies exceeding 1020 eV
were observed in cosmic ray studies. Their sources
have not yet been identified, but they most likely origi-
nate outside of our galaxy. One could hope that some
knowledge about the distance from these sources would
be possible to obtain, in principle, from studies of Cher-
enkov radiation by such particles, since its intensity is
proportional to the distance covered by a particle.

Let us consider Cherenkov radiation by a high-
energy particle traversing the “gas” of relic photons
with a temperature of 2.73 K. Even though the density
ν of such photons is very low in the Universe ν ≈
500 photons/cm3, the particle path could be rather
large, up to tens Mpc (1 Mpc ≈ 3 × 1024 cm), and one
could hope to register its Cherenkov radiation because
the intensity is proportional to the path length.

The necessary conditions for Cherenkov radiation to
be observed are the excess of the index of refraction n
over 1; i.e.,

(1)

and the real emission angle, given by the formula

(2)

where β = v /c =  (m, E are the particle mass
and energy). For small values of m/E and ∆n, one gets

(3)

From this, the condition for the energy threshold Eth is
written as

(4)

It is easily seen that the threshold can become very high
for small ∆n.

1 This article was submitted by the author in English.
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The number of Cherenkov photons emitted by a par-
ticle with the electric charge e in the interval of frequen-
cies dω from the path length dl is given by the common
expression [1]

(5)

where the fine-structure constant α = e2 ≈ 1/137. Thus,
all physical characteristics of the process are deter-
mined by the value ∆n. The intensity of the radiation (5)
decreases with the threshold energy (4) increase:

(6)

Surely, it is possible to use the notion of the medium
(and, consequently, the macroscopic approach) only in
the case of extremely long-wavelength radiation for the
very diluted gas of relic photons. At the same time, it is
well known that in usual media the value of ∆n is
uniquely related to the polarization operator of the
medium. If this relation is also valid in the case treated
here, one must consider the polarization operator of the
light–light scattering or the real part of the forward
elastic light–light scattering amplitude ReF(ω, 00). For
the index of refraction slightly different from unity2,
this relationship is given in the quantum scattering the-
ory by the common formula [2, 3]:

(7)

where the elastic scattering amplitude of the two
gamma-ray quanta F(ω) has been normalized to the

2 The more general formula of Lorentz–Lorentz (see [2], p. 693)
can be applied without this restriction.
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total cross section σγγ(ω) according to the optical
theorem

(8)

Using these formulas, one easily gets

(9)

where ρ = ReF(ω, 00)/ImF(ω, 00). From this and from
Eq. (5), it follows that

(10)

and

(11)

i.e., the radiation threshold increases with the energy of
the registered quanta.

The impressive strong limit is imposed on the
energy threshold for Cherenkov radiation in the gas of
relic photons. In electrodynamical processes, the total
cross section σγγ reaches its maximum value of about
1.6 µb at the total energy of the two photons in their
center-of-mass system ωc ≈ 3me where the electron
mass is me ≈ 0.5 MeV (see [4, 5]). At lower energies,
below the threshold for the creation of the electron–
positron pair (in particular, for a visible light), only
elastic scattering is important, the real part of the ampli-
tude dominates, and the cross section decreases at

ω  0 proportionally to  (see the discussion at the
end of the paper). At high energies, as seen from
Eq. (9), the value of ∆n tends to zero at ω  ∞, and,
therefore, the decline from the linear dispersion law
ω = k can become noticeable only in the region near the
maximum of the cross section σγγ.

The CM energy of the two-photon system varies
from 0 (when photons move in the same direction in the
laboratory system) to its maximum value

(12)

when the relic photon with energy ωr moves in the lab-
oratory system in the opposite direction to the emitted
quantum with energy ω. For the relic photons ωr ≈ 2.4 ×
10–4 eV. Thus, the energy ωc ≈ 3me can only be achieved
if the particle emits quanta with the energy

(13)

First, let us consider the high-energy quanta which
can create the electron–positron pairs in the cosmic
microwave background radiation. In this case of very
energetic radiation quanta, ∆n < 10–48 if one inserts
high-energy values of ρ ~ 0.1. Then, for the proton with
mass m = 1 GeV one gets an estimate

(14)

ImF ω 00,( )
ω
4π
------σγγ ω( ).=

∆n νσγγρ/2ω,=

dN /d ωln( )dl ανσγγρ,=

Eth m ω/ νσγγρ;=

ωc
6

ωc 2 ωωr,=

ω ωc
2/4ωr 2 1015 eV.×≈=

Eth 1033 eV.>
The particles with such high energy have not yet been
observed anywhere. Such a low index of refraction and,
correspondingly, a high value of the energy threshold
are determined by the low density of relic photons in
the Universe and by the small total cross section of the
photon–photon interaction.

The estimate of the upper limit of the intensity of the
high-energy Cherenkov radiation at the path length L

(15)

is obtained from Eq. (10), if one takes into account that
∆ω/ω < 1 and ρ < 1. If the path, from which the radia-
tion is collected, is equal to L ~ 1 Mpc ~ 3 × 1024 cm
and the maximum value of σγγ is about 1.6 µb (see [4,
5]), then for ν ≈ 500 photons/cm3 the following upper
limit on the number of emitted quanta is imposed
according to Eq. (15):

(16)

Thus, the intensity of the high-energy Cherenkov
radiation in the gas of relic photons is too low to be
observable even if a proton passes through the Universe
along hundreds of Mpc. For a primary nucleus, one
should insert its total charge into Eq. (5), and, therefore,
the intensity of radiation increases in proportion to the
nucleus charge squared. However, the total threshold
energy increases proportionally to its mass number, so
that the threshold is much higher for nuclei compared
to protons. At the same time, let us note that, according
to Eq. (4), the threshold energy per nucleon of a nucleus
is only determined by the value of ∆n and, therefore, it
is the same for all nuclei.

Some contribution to the polarization operator of
the light–light scattering is, in principle, provided by
the hadronic component of the photon structure func-
tion as well. It can be accounted for in the framework
of the vector dominance model when the quanta are
transformed into virtual ρ mesons which interact reso-
nantly. The real part of the scattering amplitude is nec-
essarily positive in one of the halves of the resonance
peak, as clearly follows from the Breit–Wigner for-
mula. The cross section σγγ slightly increases. Never-
theless, this does not lead either to a diminished thresh-
old value in Eq. (14) or to an increased intensity of
Cherenkov radiation because of the increase of ω due to
ωc increasing up to the values of the order of the
ρ-meson mass. The hadronic contribution to the ratio
ρ = ReF/ImF can also be positive at higher energies, as
is well known from experiments in all studied hadronic
reactions, in complete accordance with predictions of
dispersion relations. However, the threshold of the radi-
ation again increases in this case due to the further
increase of the required values of ωc.

The estimates have shown that the above conclu-
sions are “protected” by several orders of magnitude, as
is already seen from Eqs. (14) and (16), and, therefore,
they are robust.

N ανσγγL<
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Let us estimate the absorption of Cherenkov radia-
tion at cosmic distances. For a plane wave eikr, it is
given by the factor

(17)

from which the absorption length Labs is estimated as

(18)

The absorption length of the gamma-ray quantum in the
relic radiation gas depends on the energy of the gamma-
ray quantum only due to the cross section energy
dependence, and it is so large that the damping of Cher-
enkov radiation can be neglected for the distances
shorter than thousands of Mpc. Correspondingly, the
energy losses, which determine the redshift, are very
small at such “short” distances L ! Labs:

(19)

Thus, the final conclusion is that the high-energy
Cherenkov radiation by particles traversing the gas of
relic photons is impossible to observe, first of all,
because until now have been detected no particles with
such high energies in nature exceeding the required
energy threshold. Even if such particles were regis-
tered, the intensity of the high-energy Cherenkov radi-
ation would, possibly, be too low to detect it.

The principal possibility of Cherenkov radiation by
a charged particle in intergalactic space is, however, not
excluded if there exists “an intergalactic medium com-
ponent” with a higher density and a larger cross section
of interaction with photons.

Another possibility is related to studies of quanta
with energies lower than the threshold for creation of
the electron–positron pair; i.e., for ω < 1015 eV. Even
though the cross section decreases, the ratio ρ becomes
very large. To estimate the index of refraction for such
quanta, the classical consideration with Maxwell equa-
tions and dispersion relations [6] or the effective
lagrangian with 4-photon interaction [7], describing the
deviation from the classical theory by quantum effects,
has been used. More optimistic estimates of ∆n ~ 10–41

follow, e.g., from Fig. 2 of [6], where, in our notation,
the variables k and z read

(20)

This increase of ∆n is due to the much larger values of
ρ. This would lead to a lower threshold Eth > 1029 eV.
Nevertheless, this value of the threshold energy is still
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very high. The intensity of radiation could, however,
become quite noticeable N ~ 10. In [7], the value of ∆n
at low energies was estimated at 4.7 × 10–43. Let us
remember that the notion of the medium in the classical
approach can be used when the wavelength of the
impinging photon is larger than typical distances inside
the medium.

At the same time, ∆n increases [7] with the temper-
ature T in equilibrium as T4. Therefore, at the early
stage of the Universe, when the cosmic microwave
background radiation separated from matter at a tem-
perature of about 3000 K, the index of refraction was
∆n ~ 10–30; i.e., the threshold energy was Eth ~ 1024 eV.
This estimate is closer to realistic but still rather high
energies.

Thus, the final conclusion about the extremely high-
energy threshold for Cherenkov radiation in the cosmic
microwave background radiation is left intact.

In laboratory, Cherenkov radiation by a particle tra-
versing the “photon medium” can be observed for high-
energy electron beams colliding with optical laser
bunches. The corresponding estimates are ∆n ~ 6.2 ×
10–10, Eth = γthme ~ 14 GeV, and θmax ~  ~ 3.5 × 10–5.
It can be used for beam energy measurements, for tests
of laser bunch parameters, and for an understanding of
the “photon medium” properties (see hep-ph/0202060).

I am grateful to L.G. Tkatchev, who pointed out this
problem to me, and to I.V. Andreev, B.M. Bolotovsky,
A.D. Erlykin, E.L. Feinberg, I.F. Ginzburg, V.L. Gin-
zburg, and V.A. Maisheev for discussions and com-
ments.
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The method of laser isotope separation based on selective excited-atom “burning” in a flow with buffer and
reagent gases was implemented experimentally for zinc and rubidium. Selective excitation of isotopes was
accomplished by the one-photon method using weak absorption lines and at the edge of the Doppler contour of
atomic absorption with small isotope shift. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 28.60+s; 32.80-t; 42.62.Fi
The traditional methods of laser isotope separation
[1] encounter considerable difficulties for many ele-
ments. First, their isotopic splitting is masked by the
Doppler contour of spectral lines. In such a situation,
the photoexcitation selectivity is enhanced by the tradi-
tional methods of absorption line narrowing: the
atomic-beam method and the method of two-photon
excitation in a standing light wave. For some atoms,
these methods are inefficient. On the one hand, they are
poorly accommodated even at cooled surfaces, as a
result of which a well-collimated atomic beam is hard
to obtain [2]. On the other hand, two-photon excitation
requires the presence of two high-power tunable UV
sources [3]. This renders the laser isotope-separation
setup too complex and expensive. Second, even for a
good selectivity and efficient excitation of low-lying
working states, one does not always succeed in choos-
ing the appropriate pathway for the ionization or trans-
fer of a required isotope to the next excited levels.

In this work, a different method of isotope separa-
tion (two different examples of excitation) is demon-
strated experimentally for the zinc and rubidium atoms
and, presumably, for many other elements. The method
is based on the following principles.

1. A mixture with natural-abundance isotopes in an
atomic flow with inert buffer gas is excited. The drift
time across the region of interaction with laser radiation
is 1 s, and the number of collisions with the atoms of
buffer gas is as high as 107. The large time of interaction
with laser radiation and the large number of collisions
allow the use of weak absorption lines and weak hyper-
fine-structure components (the populations have time
to mix during the drift time) of odd isotopes to accom-
plish the 100% excitation of the required isotope during
the drift.

2. A fast chemical reaction between the excited
atoms and the molecules of reagent gas is necessary.
0021-3640/02/7504- $22.00 © 20170
The products of this reaction must deposit (“burn”) on
the walls in the separating chamber. For the burning to
be efficient, the conditions

(1)

should be met, where k* and k are the reaction rate con-
stants for the excited and unexcited atoms, respectively;
n is the concentration of the reagent gas; and τ is the
excited-state lifetime.

3. Single-photon isotope excitation. The transitions
with small oscillator strengths are preferable. In this
case, the excited-state lifetime is large and, hence, con-
dition (1) can easily be fulfilled. In addition, for the ele-
ments with Doppler-masked isotope shifts, narrow-
band laser radiation can be used to provide velocity-
selective excitation of the inhomogeneously broadened
absorption contours [4]. In this case, only those atoms
interact with the light field which have a certain veloc-
ity projection v  onto the wave propagation direction:

(2)

where ν0 is the central frequency of the absorption line;
ν and ∆ν are the frequency and the width of the emis-
sion line, respectively; and γ is the homogeneous width
of the absorption line. If the Doppler broadening is
much larger than the homogeneous width, the fre-
quency dependence of the absorption coefficient α has
the form [4]

(3)

where α0 is the absorption coefficient at the line center
and ∆νd is the Doppler width.

For a mixture of atoms and their isotopes, the
absorption contour represents the sum of coefficients
(3) with corresponding ν0’s and weights proportional to
the isotope percentages. If the laser frequency is tuned

k∗ nτ 1, knτ  ! 1,>

ν0 ν– ν0v /c+ γ ∆ν,,≤

α α 0 4 2 ν ν0–( )/∆νd( )2ln–[ ] ,exp=
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to the isotope absorption edge, the contribution from
other isotopes becomes small. In this case, the overall
absorption coefficient drops materially, but the long
interaction time between the laser radiation and atoms
provides 100% excitation efficiency for the desired iso-
tope, if the experimental parameters are properly cho-
sen.

In the experiments, Zn was separated in a quartz
tube 60 cm in length and 3 cm in diameter and Rb was
separated in a glass tube, which were heated by an
external furnace and through which a gas flow of atoms
with argon and reagent-gas molecules was passed. The
mixture pumping rate was ≥0.5 l/s, the argon pressure
was (1–2) torr, and the concentration of reagent gas was
≈1016 cm–3. The isotopes of interest entered the separa-
tion region from a reservoir heated by a separate fur-
nace to the temperature ensuring the desired atomic
concentration in the separation region. For Zn, the iso-
topic composition was analyzed either using probe
radiation or by mass spectrometry of atoms deposited
in a collector chamber, which was maintained at room
temperature and into which the mixture flow was
admitted. To analyze the isotopic composition of Rb,
semiconducting laser probing in the region of the Rb
5S1/2–5P3/2 transition (D2 line; ∆ν = 80 MHz and λ =
780 nm) was performed in the direction perpendicular
to the atomic flow at the end of the separation region.

The Zn atoms were excited by the pumping laser
along the flow in the separation region via the intercom-

bination transition 4s2 1S0–4p3  (λ = 307 nm), and the
Rb atoms were excited to the Rydberg state 11P3/2 (λ =
311 nm) by a source of narrow-band tunable pulsed
radiation described in [5]. The average laser output was
~2 W, and the beam diameter was ~1 cm at a repetition
rate f = 12 kHz, a pulse duration of 10 nm, and a radia-
tion line width ∆ν = 45 MHz. In this excitation scheme,
the lifetimes of the upper excited states are compara-
tively long: τ = 10.5 µs for Zn, and τ = 0.55 µs for Rb.
These values were obtained under real experimental
conditions by measuring the luminescence decay times
for the excited levels in the absence of reagent gas in the
separation region.

In Fig. 1, the experimental absorption spectrum in

the region of the Zn 4s2 1S0  4p3  transition at tem-
perature T = 350°C is shown together with the calcu-
lated spectra (3) of the major Zn isotopes and the calcu-
lated overall absorption contour. One can see from Fig. 1
that the isotopic shifts are much smaller than the Dop-
pler width. If the frequency of a monochromatic radia-
tion with ∆ν ! ∆νd is detuned from the center of the Zn
Doppler absorption contour, the absorption coefficients
for different isotopes will be different. One may choose
a radiation frequency so that only one of the isotopes is
preferably excited. Figure 2 shows the spectra of Rb
5S1/2–11P3/2 absorption in the separation chamber
recorded from the radiation absorption and lumines-
cence signal. Both spectra were identical. The spectral

P1
0

P1
0
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behavior did not change up to an Ar pressure of ~5 torr
and a Rb concentration of ~1013 cm–3. One can see that
the calculated and experimental absorption spectra (3)
agree well for the operating temperature of 120°C. The
calculated absorption spectra for the individual hfs
components of the 85Rb and 87Rb isotopes are also
given in Fig. 2. The excitation from these hfs compo-
nents (F = 1  F = 0, 1, 2 for 87Rb and F = 2  F =
1, 2, 3 for 85Rb) provides a good selectivity for a chosen
isotope.

Fig. 1. Absorption spectrum in the region of the Zn

4s2 1S0  4p3  transition (λ = 307 nm) in a gas flow:

(1) experimental spectrum at 350°C; (2) spectrum calcu-
lated by Eq. (3) for the same temperature; and (3, 4, 5) spec-
tra calculated, respectively, for the 64Zn, 66Zn, and 68Zn iso-
topes separately.

P1
0

Fig. 2. Absorption spectrum in the region of the Rb
5S1/2  11P3/2 transition (λ = 311 nm) in a gas flow:
(1) experimental spectrum at 120°C; (2) spectrum calcu-
lated for the same temperature; and (3, 4) spectra calculated,
respectively, for the 85Rb and 87Rb isotopes separately.
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The reagent gas was chosen after testing various
molecules. The reactions of many excited atoms with
various hydrocarbons were examined earlier, e.g., in
[6–8]. However, the products of those reactions were
unstable and decomposed within hundreds of microsec-
onds [6]. For our purposes, we have chosen complex
oxygen-containing molecules: diethyl ether (C2H5)2O
and metanol CH3OH. In this case, the reactions of

Fig. 3. Absorption of the probe laser radiation by the Zn
atoms in the collector chamber in the region of 4s2 1S0 

4p3  (λ = 307 nm): (1) absorption spectrum without laser

pumping in the separation region; (2) spectrum in the pres-
ence of laser pumping at a frequency detuned by (–)2 GHz
from the absorption line center (scaled by a factor of 8);
(3) pump frequency is detuned to (+)2 GHz from the line
center (scaled by a factor of 20).

P1
0

Fig. 4. Absorption of the resonance radiation in the region
of the Rb 5S1/2–5P3/2 transition (λ = 780 nm) at the end of
the separation region: (1) without pumping laser radiation
in the separation region; (2) in the presence of pumping
radiation tuned to the transition frequency of the 87Rb hfs
components.
excited-state atoms with reagent-gas molecules yield
the stable ZnO compound, which is deposited on the
walls of the separation chamber; i.e., the reaction pro-
ceeds according to the scheme

(4)

The rate constants for reactions with reagent gas
were determined from the luminescence time decay at
different pressures of reagent gas to give k* = 1.61 ×
10−9 cm3/s for the reaction of Zn(4p3 ) with diethyl
ether (k < 10–14 cm3/s) and k* = 1.47 × 10–9 and 8.4 ×
10–10 cm3/s for the reactions of Rb(11P3/2) with, respec-
tively, metanol and diethyl ether. For Rb, the value of k
is more than three orders of magnitude smaller than k*.

If the frequency of the pumping laser is tuned to the
center of the Zn Doppler contour, virtually 100% of the
atoms are burned in the collector chamber. This fact is
evidence of the efficient excitation of Zn atoms in the
separation chamber and the efficiency of the chemical
reaction. As the laser frequency is detuned from the
center of the Doppler contour, the absorption line in the
collector chamber deforms. The corresponding experi-
mental results obtained for an atomic concentration of
≈1013 cm–3 in the separation region are presented in
Fig. 3. For a detuning of (–)2 GHz, the Doppler maxi-
mum shifts to the right. This is caused by the preferred
excitation of 64Zn and its subsequent burning (see
Fig. 1). The reverse situation occurs if the radiation fre-
quency is detuned by (+)2 GHz. It also follows from
Fig. 3 that the number of burned atoms detected in the
collector chamber exceeds the number of excited atoms
in the separation chamber. This is likely due to the sec-
ondary reactions between the radical products and the
unexcited atoms. A comparison of the experimental and
calculated shifts of the Doppler maximum showed that
more than 95% of the 64Zn isotope is burned in the sep-
aration chamber. The same results were obtained by the
mass spectrometric analysis of Zn deposited on the col-
lector chamber walls. The maximum product yield was
~1 g of a substance for an exposure of 3 h.

The Rb 5S1/2–5P3/2 absorption spectra recorded at
the end of the separation chamber are shown in Fig. 4
for a Rb concentration of ≈1012 cm–3. These spectra can
be used to judge the isotopic composition of Rb atoms.
Experimental results show (Fig. 4) that, as the fre-
quency of exciting radiation is tuned to the fourth
absorption peak (F = 1  F = 0, 1, 2) of the 87Rb iso-
tope (Fig. 2), its content at the end of the separation
chamber decreases to a level of less than ~10% of its
initial value.

In summary, a new method of isotope separation
based on selective excited-atom “burning” in a flow of
argon atoms and reagent gas has been demonstrated
experimentally. Its main advantage over the previous
methods consists in the one-photon excitation and the
high concentration of separated isotopes in the separa-
tion chamber.

A∗ M AO R.+ +
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We examine the spatial evolution of lightwaves in a nonlinear photonic crystal with a quadratic nonlinearity,
when a second harmonic and a sum-frequency generation are simultaneously quasi-phase-matched. We find the
conditions for a transition to Hamiltonian chaos for different amplitudes of lightwaves at the crystal bound-
ary. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Sf; 42.70.Mp; 42.65.Ky; 42.65.Hw
1 Wave mixing in nonlinear optical materials is a basis
of modern optical sciences and technologies. Cascad-
ing several wave-mixing processes in the same low-loss
material, one can, in principle, achieve a high efficiency
using a large value of the lowest order optical nonlin-
earity. The theoretical investigations of cascading of
several scalar optical three-wave-mixing processes in
bulk materials with χ(2)nonlinearity has a long history
[1]. In particular, Akhmanov and coworkers found the
efficiency of third harmonic generation (THG) via cas-
cading of a second harmonic generation (SHG) and a
sum-frequency mixing (SFM) in a quadratic medium
[2], while Komissarova and Sukhorukov described an
efficient parametric amplification at a high-frequency
pump in the same system [3]. Obviously, the observa-
tion of these nonlinear effects demands the simulta-
neous fulfillment of phase-matching conditions for sev-
eral parametric processes as perfectly as possible. On
the other hand, it was shown later that the systems for
which several wave-mixing processes can be simulta-
neously phase-matched are in general nonintegrable;
therefore, the competition of two (or more) parametric
processes can often result in the chaotic spatial evolu-
tion of lightwaves [4, 5]. However, until recently, it was
unclear as to how one can achieve phase-matching for
several processes in a homogeneous medium employing
traditional techniques, such as the use of birefringence
in ferroelectric crystals.

The solution of this problem has been found rather
recently [6–8]; it consists in the introduction of differ-
ent types of artificial periodicity of a nonlinear
medium, which results in the formation of nonlinear 1D
and 2D superstructures termed optical superlattices [9]
or nonlinear photonic crystals (NPCs) [10]. In NPCs,

1 This article was submitted by the authors in English.
0021-3640/02/7504- $22.00 © 20174
there is a periodic (or quasiperiodic) spatial variation of
the nonlinear susceptibility tensor, while the linear sus-
ceptibility tensor is constant.

In these engineered nonlinear materials, a phase
mismatch between the interacting lightwaves could be
compensated by the Bragg vector of NPC. The idea of
this kind of quasi-phase-matching (QPM) was intro-
duced by Bloembergen and coworkers many years ago
[11]. However, only recently, the rapid progress in the
fabrication of high-quality ferroelectric crystals with a
periodic domain inversion has made the QPM method
very popular [9, 12]. We should stress that the condi-
tions for QPM may be fulfilled for several wave-mixing
processes simultaneously; the QPM also has an advan-
tage of using the largest nonlinear coefficient.

Nowadays, there are several experiments on the
observation of third and fourth harmonics in different
periodically or quasiperiodically poled ferroelectric
crystals with χ(2) nonlinearity [7, 13, 14], which clearly
demonstrate the importance of multiple mixing in
NPCs for potential applications. Modern theoretical
activities on the nonlinear lightwaves interactions in
NPCs are mainly focused on the studies of strong
energy interchange between the waves [12] (this is a
development of the earlier activities [2, 3]), as well as
on the formation of spatial optical solitons [15].

In this work, we describe the effect of Hamiltonian
optical chaos novel for the physics of NPCs. Namely,
we show that spatial evolution of three light waves par-
ticipating simultaneously in SHG and SFM under the
conditions of QPM is chaotic for many values of the
complex amplitude of the waves at the boundary of χ(2)-
NPC. There also exists an integrable limit, where the
evolution of waves is always regular regardless of the
absolute values of their complex amplitudes. The inte-
002 MAIK “Nauka/Interperiodica”
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grable limit corresponds to the particular values of two
combinations of wave phases at the boundary of nonlin-
ear medium. In particular, the problem of THG belongs
to the integrable limit; therefore, under the conditions
of recent experiments [7, 13, 14], nonlinear light
dynamics should always be regular. However, even a
rather small change in amplitudes and phases of waves
at the boundary of crystal, with respect to those consid-
ered in [7, 13, 14], should result in a transition to chaos.

We consider a spatial evolution of three copropagat-
ing plane waves

in a periodically poled crystal under the conditions
where SHG, ω + ω  2ω, and SFM, ω + 2ω  3ω
take place simultaneously. Equations of motion for the
slowly varying complex amplitudes Al (l = 1, 2, 3) of the
waves are [9, 12]

(1)

where g(z) is a function equal to +1 (or –1) in a single
positive (negative) polarization domain of the ferro-
electric crystal. In this work, for the sake of simplicity,
we consider only a periodic alternative domain super-
lattice with a spatial period Λ. However, g(z) can be a
quasiperiodic function in the case of nonlinear quasic-
rystals [8, 9]. Note that we consider a typical situation
λ ! Λ, where λ is a wavelength [9, 12, 14].

The coupling constants between waves β2 and β3 are
defined as

where deff = 2πχ(2) and nj ≡ n(jω) (j = 1, 2, 3) are the
refractive indices for the different waves. Of course,
n1 ≠ n2 ≠ n3 because of light dispersion. However, it can
be shown that ∆n/n . λ/Λ ! 1 under the conditions of
QPM; therefore, in what follows we will take β2 = β3 ≡
β. Finally, the phase mismatches involved in Eqs. (1)
are ∆k2 = k2 – 2k1 and ∆k3 = k3 – k2 – k1. Let both these
mismatches be compensated by a reciprocal lattice vec-
tor of NPC, that is

(2)

where mj = ±1, ±2, ±5, … . The methods of achieving
QPM for several parametric processes in a single NPC
were recently discussed in [6, 8, 10] (theory) and [7, 13,
14] (experiment).

E
1
2
--- A j j iωt k jz–( )[ ] c.c., k j+exp

j 1=

3

∑ k jω( )= =

dA1

dz
--------- –iβ3g z( )A3A2*e

i∆k3z–
iβ2g z( )A2A1*e

i∆k2z–
,–=

dA2

dz
--------- –i2β3g z( )A3A1*e

i∆k3z–
iβ2g z( )A1

2e
i∆k2z

,–=

dA3
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--------- i3β3g z( )A1A2e
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,–=

β2 3, ωdeff/cn2 3, ,=

∆k2 2πm1/Λ , ∆k3 2πm2/Λ ,= =
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The dynamical system (1) together with the initial
conditions, which in our case are the values of complex
amplitudes at the boundary of NPC, Aj(z = 0), com-
pletely determine the nonlinear spatial evolution of
waves. Before specification of these initial conditions,
we can further simplify the equations of motion. First,

we introduce new scaled amplitudes al = Al/ A0,
where l = 1, 2, 3 and A0 ≡ max(|A1(0)|, |A2(0)|, |A3(0)|).
Second, we make the Fourier series expansion of the
function g(z)

where index n takes only odd values. Now we substitute
this expansion into Eqs. (1), take into account the QPM
conditions (2), and make an averaging of the resulting
equations of motion over the short characteristic spatial
scale 2π/Λ. We have the following basic equations

(3)

where ξ = m2/m3 (mj are the quasi-phase matching
orders, see Eq. (2); we assume that m3 ≥ m2). The over-
dot in Eqs. (3) means the derivative with respect to z/lnl

with a characteristic nonlinear length lnl, defined as

(4)

In the derivation of equations of motion (3), we
removed all rapidly varying terms in performing the
averaging over 2π/Λ. It can be shown that such a proce-
dure is correct if lnl @ Λ [16].

Equations (3) can be represented in the canonical
form with the Hamiltonian function

(5)

In addition to the energy of wave interaction E ≡ H
(Eq. (5)), the dynamical system (3) has the integral of
motion

(6)

corresponding to the conservation of energy of nonin-
teracting waves. In the general case, the system (3) does
not have other global integrals of motion; thus, it is non-
integrable and should demonstrate chaotic dynamics
for many initial conditions al(0) [17, 18]. However, for
some values of ξ and some specific initial conditions,
an additional local integral of motion can arise. Let us

l
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ȧ1 –a2a1* ξa3a2*,–=
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list these cases, because they include physically impor-
tant situations.

First, if one of the parametric processes, either SHG
or SFM, is dominant (ξ ! 1 or ξ @ 1), then an addi-
tional integral of motion arises, which is of the Manley–
Rowe type [12]. Second, the nonlinear dynamics
strongly depends on the initial values of the two “reso-
nant phases” ψ2(0) and ψ3(0), where

, (7)ψ2 2θ1 θ2, ψ3– θ1 θ2 θ3–+= =

Fig. 1. Dependence of the value of the maximal Lyapunov
exponent on the amplitude of the first wave at the boundary
of optical superlattice α and for different phases: φ = –π/2
(solid line), φ = –0.1 (dotted line), and φ = –0.01 (dashed
line). The first-order QPMs (problem 1, set I).

Fig. 2. Regular (upper) and chaotic (lower) spatial evolu-
tions of scaled intensities of lightwaves at the first-order
QPMs. For the upper subplot, α = 1 and φ = 0, while for the
lower subplot, φ = 0.95 and φ = π/2.
and θj (j = 1, 2, 3) are the lightwave phases; i.e., aj =
|aj |exp(–iθj). We found that, for ψ2(0) = ψ3(0) = 0,
the   dynamics is always regular. Moreover, using
approaches [3, 19], it is possible to show that an addi-
tional local integral of motion exists in this case [20]. In
particular, the problem of THG (a1(0) = 1, a2(0) =
a3(0) = 0) belongs to this class of initial conditions.
Therefore, the spatial dynamics of lightwaves at THG
is regular (cf. [21], where an analytic solution has been
found).

We performed an intensive search of chaotic trajec-
tories solving the equations of motion (3) numerically
for two characteristic values of control parameter ξ that
correspond to the experimental situations described in
[7] and [13], correspondingly:

Set I: The QPMs of first order for both processes,

m1 = m3 = 1, ξ =  ≈ 1.73;
Set II: The QPMs of the 9th and 33rd orders, m1 = 9,

m3 = 33, ξ = 3 /11 ≈ 0.472.
We consider several types of initial conditions,

which cover practically all physically interesting cases
[note that all these initial conditions satisfy the restric-
tion arising from the integral of motion (6)]:

Problem 1: a1(0) = α, a2(0) = [1 – α2]1/2 ×
2−1/2exp(−iφ), a3(0) = 0, where the real parameters φ
and α vary in the ranges –π ≤ φ < π and 0 ≤ α ≤ 1, cor-
respondingly. Obviously, here |ψ2(0)| = |ψ3(0)| = |φ|.

Problem 2: a1(0) = [1 – 3α2]1/2 × 3–1/2exp(–iθ1),
a2(0) = [1 – 3α2]1/2 × 3–1/2exp(–iθ2), a3(0) = α exp(–iθ3),
where –π ≤ θj < π ( j = 1, 2, 3) and 0 ≤ α ≤ 3–1/2 ≈
0.57735.

Problem 3: a1(0) = α exp(–iθ1), a2(0) = 0, a3(0) =
[1 – α2]1/2 × 3–1/2exp(–iθ3), –π ≤ θj < π (j = 1, 3) and
0 ≤ α ≤ 1.

We start our analysis with problem 1. This set of ini-
tial conditions describes, in particular, the THG at α =
1 (φ = 0) and the parametric amplification with a low-
frequency pump at α ! 1 [12]. In order to increase the
efficiency of energy transformation from a basic wave
of frequency ω to a wave of frequency 3ω, it was sug-
gested recently that some nonzero signal at the fre-
quency 2ω be mixed with a basic beam [22]. This kind
of initial condition corresponds to α  1 (but α ≠ 1)
with different values of phase φ.

To distinguish between regular and chaotic dynam-
ics, we compute the maximal Lyapunov exponent λmax
for different values of initial lightwave amplitudes, α,
and phases, φ. For chaos λmax > 0, in contrast λmax = 0
for a regular motion [18]. The dependence of λmax on α
for the first-order QPMs (set I) is depicted in Fig. 1. For
φ = 0, the initial values of resonant phases, ψ2(0) and
ψ3(0), are zero, corresponding to the integrable limit
with λmax = 0 independently on the value of α (not
shown in Fig. 1). However, even a small deviation from

3

3
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the integrable limit, |ψ2(0) | = |ψ3(0) | = |φ| = 0.01,
results in chaotic motion for a quite wide range of ini-
tial conditions (dashed line). A further increase in the
value of |φ| makes chaos more strong (dotted line, |φ| =
0.1); the strongest chaos arises for |φ| = π/2 (solid line),
corresponding to the initial values of resonant phases
|ψ2, 3(0) | that are most distant from the integrable limit.

The motion is always regular for the standard THG
(α = 1), as well as for some range of α in the vicinity of
α = 1 (see the right side of Fig. 1). A regular spatial evo-
lution of lightwaves for α = 1 is shown in the upper sub-
plot in Fig. 2. However, for |φ| = π/2, strong chaos exists
already for α ≈ 0.95, i.e., for a1(0) = 0.95, a2(0) ≈ 0.22i,
and a3(0) = 0; see lower subplot in Fig. 2. Thus, the pos-
sibility of transition to chaos must be taken into account
in the application of an additional pump of frequency
2ω in order to increase the efficiency of THG [22].

We now consider the situation corresponding to the
left side of Fig. 1 with α ! 1. This is the parametric
amplification with a low-frequency pump [12]. In this
case, our analysis demonstrates that the evolution of
waves is weakly chaotic for |ψ2, 3(0)| distant from the
integrable limit. In this regime, the Lyapunov exponent
has some very small yet positive value; therefore, it is
very difficult to distinguish between weak chaos and
regular motion. In practical terms, it means that one
needs to have a very long sample to see the differences
between regular and weakly chaotic spatial evolutions
of light waves.

We now turn to the consideration of nonlinear
dynamics using the second set of QPM parameters but
the same set of initial conditions (set II, problem 1).
The main results on the transition to chaos are depicted
in Fig. 3. Again, as in Fig. 1, |ψ2(0) | = |ψ3(0) | = |φ| = 0
results in a regular motion, while motion is chaotic for
many initial conditions if |φ| > 0. However, the absolute
values of the Lyapunov exponent are small: really,
λmax . 0.1 in Fig. 1, but λmax . 0.01 in Fig. 3. Therefore,
we conclude that the multiple interaction of waves
employing high-order QPMs is more stable against a
transition to chaos in comparison with the case of first-
order QPMs.

We now consider a nonlinear dynamics in the case
when some portion of the energy is presented at z = 0 in
each of the interacting waves (Problem 2). We present
our findings in Fig. 4. Strong chaos arises as soon as
one of the resonant phases becomes different from the
integrable limit |ψ2, 3(0)| = 0 (|ψ2(0) | = π and |ψ3(0) | =
π/2 for a solid line, |ψ2(0) | = π/2 and |ψ3(0) | = 0 for a
dashed line). We should note that for the parameters
corresponding to the solid curve in Fig. 4 strong chaos
exists for almost all values of initial wave amplitudes α.
Chaos is sufficiently weaker for the high-order QPMs
in comparison with the case of first-order QPMs: cf a
dashed line with a dashed and dotted line that corre-
spond to the same values of phases θj but to the differ-
ent sets of QPM parameters.
JETP LETTERS      Vol. 75      No. 4      2002
Finally, we analyze the set of initial conditions
termed as Problem 3. In particular, it includes the down
conversion [3, 12] or, in other words, the fractional con-
version ω  (2/3)ω [19] in the case of α ! 1. For this
set of initial conditions, we did not find visible regions
of chaotic dynamics.

In order to reliably distinguish between regular and
chaotic spatial evolutions of lightwaves in conditions of
an experiment, one needs to have many characteristic
nonlinear lengths, lnl, on the total length of the crystal

Fig. 3. The same as in Fig. 1 but for the high-order QPMs
(problem 1, set II): φ = –π/2 (solid line), φ = –0.1 (dashed
line), and φ = –0.01 (dotted line). 

Fig. 4. Dependence of the value of the maximal Lyapunov
exponent on the amplitude of the third wave at the boundary
of optical superlattice α and for different phases and QPM
orders (problem 2, sets I and II): θ1 = π/2, θ2 = 0, θ3 = π,
first order QPMs (solid line); θ1 = θ2 = θ3 = –π/2, first order
QPMs (dashed line); θ1 = π/2, θ2 = 0, θ3 = π, high order
QPMs (dashed and dotted line). 
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L: L/lnl * 10 [4, 5]. Importantly, it appears possible to
meet this condition in the typical NPCs. In actuality, for
a periodically poled lithium niobate with a period Λ =
30 µm, a crystal length L . 1 cm, a nonlinear coeffi-

cient d33 = 34 pm/V [7, 13], and a light intensity  =
0.76 GW/cm2 (λ = 1.064 µm) [23], we have L/lnl . 100.
Moreover, chaos should be more easily observable in
the GaAs optical superlattice with d14 ≥ 90 pm/V [24].

In summary, we have shown that simultaneous mul-
tiwavelength generation in typical nonlinear photonic
crystals is often chaotic. This fact must be taken into an
account for the realization of compact laser multicolor
sources for printers, scanners, and color displays based
on quasi-phase-matched harmonics generation.

We should distinguish our results from a recent
paper [25], where nonlinear spatial field dynamics and
chaos were studied in a quadratic media with a periodic
Bragg grating.
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by the Academy of Finland (grant nos. 163358 and
100487) and the MPI PKS.
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GaAs/AlAs superlattices grown simultaneously on GaAs substrates with the (311)A and (311)B orientations
have been studied by photoluminescence and high-resolution transmission electron microscopy with a Fourier
analysis of images. A periodic interface corrugation is observed for (311)B superlattices. A comparison of the
structure of (311)A and (311)B superlattices indicates that the corrugation occurs in both cases and its period

along the [01 ] direction is equal to 3.2 nm. The corrugation is less pronounced in (311)B superlattices,
wherein it exhibits an additional modulation (long-wavelength disorder) with the characteristic lateral size
exceeding 10 nm. The vertical correlation of regions rich in GaAs and AlAs, which is well observed in (311)A
superlattices, is weak in (311)B superlattices due to the occurrence of long-wavelength disorder. The optical
properties of (311)B superlattices are similar to those of (100) ones and differ radically from those of (311)A
superlattices. As distinct from (311)B, strong photoluminescence polarization anisotropy is observed for
(311)A superlattices. It is shown that it is the interface corrugation rather than the crystallographic (311) surface
orientation that determines the optical properties of (311)A corrugated superlattices with thin GaAs and AlAs
layers. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.55.Cr; 68.65.Cd

1

In recent years, studying the corrugation of the gal-
lium arsenide surface in the case of heteroepitaxy on
(311)A-oriented substrates has received much atten-
tion. This effect was discovered in 1991 [1]. It is based
on the self-organization phenomenon, when the faceted
(311)A GaAs surface under certain conditions is recon-
structed to a periodic array of microfacets (micro-

grooves) directed along the crystallographic [ 33]

direction with a period of 3.2 nm along the [01 ] direc-
tion [1, 2]. The height of the microgrooves is 1.02 nm
in one of the models [1] and 0.34 nm in the other [2].
This is the determining parameter for the possibility of
obtaining corrugated superlattices (CSLs), which rep-
resent quasi-one-dimensional systems with a strong
effect of the size quantization of charge carriers. This
last-mentioned fact is important in studying quantum
phenomena at room temperature and in developing
instruments working on intersubband transitions at
high temperatures. The optical properties of (311)A
GaAs/AlAs CSLs were studied comprehensively in [1,
3]. However, these studies were restricted to a compar-
ison of (311)A- and (100)-oriented superlattices (SLs)
[1, 3]. Recently, the phenomenon of photolumines-
cence (PL) polarization anisotropy was observed in
such structures [3, 4]. It was found that the nature of

2

1
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polarization anisotropy differs for GaAs layers differing
in thickness [4]. When the thickness exceeds ~3.5 nm,
the nature of polarization is mainly explained by the
orientation anisotropy of the (311) surface, whereas the
interface corrugation is the predominant factor when
the thickness is less than ~ 3.5 nm [4]. The polarization
anisotropy of PL observed in [4] is in a good agreement
with the data of high-resolution transmission electron
microscopy (HRTEM) [1, 3, 5], where it was shown
that both the GaAs/AlAs and AlAs/GaAs interfaces are
corrugated in samples grown on the (311)A surface
with a lateral period of 3.2 nm and a height of 1 nm. The
optical properties of type II GaAs/AlAs SLs grown on
the (311) surface are determined by the surface polarity.
The interface structure and photoluminescence proper-
ties of SLs grown on the (311)B GaAs surface have not
been studied so far. This work is devoted to studying the
structure of heterointerfaces in (311)B SLs in compari-
son with the structure of (311)A samples. The differ-
ences in the PL properties of SLs grown on (311)A- and
(311)B-oriented surfaces are analyzed.

The GaAs/AlAs SLs under study were grown by
molecular-beam epitaxy on GaAs substrates with the
(311)A, (311)B, and (100) orientations. The A and B
directions were determined by the anisotropy of chem-
ical etching. The period in the SLs under study was
002 MAIK “Nauka/Interperiodica”
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4 nm, and the mean thickness of the GaAs and AlAs
layers was similar and equaled 2 nm. The samples were
examined by PL spectroscopy in the temperature range
from 77 to 300 K. The PL excitation source was an Ar
laser (488 nm) with a typical pump power of 10–
20 mW (the power density was 5–10 W/cm2). The PL
spectra were recorded using a SDL-1 double mono-
chromator with a resolution of 0.4 nm and a photomul-
tiplier with an S-20 cathode. A Glan biprism was used
as the polarization analyzer of the light emitted by the
samples. A depolarizing wedge was arranged at the
monochromator entrance slit. The SL structure was
studied by high-resolution transmission electron
microscopy with an appropriate image evaluation tech-
nique to enhance the contrast due to the difference in
the electron extinction coefficient for AlAs and GaAs.
A Philips Model CM200 FEG/ST microscope was
used.

An HRTEM image of the structure of (311)B super-
lattice heterointerfaces is given in Fig. 1. The [311]

direction is oriented upward, and the [01 ] direction is
oriented to the right. The dark and light layers corre-
spond to GaAs and AlAs, respectively. The image dis-
plays an indistinct corrugation with a lateral period of
3.2 nm. The lateral period of 3.2 nm is strongly blurred
by long-wavelength (with a characteristic lateral size of
more than 10 nm) disorder. The presence of the long-
wavelength disorder leads to a weak vertical correlation
of regions rich in GaAs and AlAs. As distinct from the
(311)A SLs, where the elevated regions are located
above the elevated ones and depressions are arranged
above depressions, a correlation of this kind is virtually
lacking in (311)B SLs. With the aim of performing a
more in-depth analysis of the differences in the
arrangement of heterointerfaces in the (311)A and

1

(311)B SLs, we obtained the Fourier transforms of pro-
cessed HRTEM images. These are shown in Figs. 2a
and 2b for (311)A and (311)B SLs. In order to distin-
guish the lateral periodicity more clearly, the long-
wavelength component was subtracted in images in
Figs. 2a and 2b. The Fourier transforms of images for
the same (311)A and (311)B SLs but without subtract-
ing are given in Figs. 2c and 2d. It is evident that both
the (311)A and (311)B SLs exhibit a lateral period of
3.2 nm. This period is manifested in (311)B SLs much
weaker and is strongly blurred by the long-wavelength
component; however, there is still an intensity maxi-
mum. The occurrence of the lateral period for the
(311)B SL correlates with the recent studies carried out
by scanning tunneling microscopy [6], where periodic
faceting (cleavage) of the (311)B GaAs surface was
observed with a similar period. We emphasize that it is
the periodic faceting of the (311)B GaAs surface that
was observed in [6], whereas we observed a periodic
corrugation of heterointerfaces. Finding a periodic
cleavage of the surface might not signify that the alter-
nating GaAs and AlAs layers grown on it will also be
height-modulated. Note that the lateral periodicity with
a period of 3.2 nm found for the (311)B SL is not as dis-
tinct as that in the (311)A SL, so it can be observed suf-
ficiently well only after excluding the long-wavelength
component. A very distinct corrugation with a height of
1 nm and a period of 3.2 nm was found in the (311)A
SL in full correspondence with the model [1].

The essential differences in the arrangement of het-
erointerfaces in the (311)A- and (311)B-oriented SLs
found here lead to a strong difference in their photolu-
minescence properties. Consider the PL spectra of
GaAs(2 nm)/AlAs(2 nm) SLs grown on the (311)A,
(311)B, and (100) surfaces in the same growth cycle
Fig. 1. Electron microscopy image of the structure of heterointerfaces in (311)B SLs. The [311] and [01 ] directions are oriented
upward and rightward, respectively. Dark and light layers correspond to GaAs and AlAs, respectively. Indistinct corrugation with a
lateral period of 3.2 nm and long-wavelength disorder with a characteristic lateral size of more than 10 nm can be seen in the figure.

1
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(311)B
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Fig. 2. Fourier transforms of HRTEM images obtained for (a) (311)A and (b) (311)B SLs with subtracting the long-wavelength
component. Fourier transforms of the same SLs but without subtracting are shown in (c) and (d). A lateral period of 3.2 nm can be
seen in all cases. It is manifested much weaker in the (311)B SL and is strongly blurred by the long-wavelength component; how-
ever, an intensity maximum is still evident.
and, hence, under the same conditions (see Fig. 3). The
spectra are given for different temperatures. A compar-
ison of the spectra of the (311)B and (100) SLs shows
that these spectra are very similar in appearance and
radically differ from the spectra of the (311)A SL. As
distinct from the (311)A SL, the spectra of the (311)B
and (100) SLs exhibit one maximum each, whose inten-
sity grows with decreasing temperature. The similarity
of the photoluminescence of the (311)B and (100) SLs
means that corrugation produces no significant modifi-
cation of electronic optical properties for the (311)B SL
in contrast to the (311)A SL. A weaker corrugation and
the occurrence of disorder in the (311)B SL do not
allow this to happen. On the other hand, the additional
size quantization of charge carriers due to distinct cor-
rugation in the (311)A CSL leads to a significant mod-
ification of its electronic optical and quantum proper-
ties. As a result, the Γ and X conduction band minima
mix together1; consequently the PL spectrum of the
(311)A CSL exhibits two minima from both the transi-
tions involving the X conduction band minimum and
the transitions from the mixed Γ and X states. Note that
this giant mixing is due to the distinct corrugation of
heterointerfaces with a period of 3.2 nm and a height of

1 The essence of the mixing phenomenon was described in [3].
JETP LETTERS      Vol. 75      No. 4      2002
1 nm in the (311)A CSL under study. Thus, a very clear
connection can be traced between the corrugation char-
acter and the optical properties of the CSL.

Fig. 3. Photoluminescence spectra recorded at different
temperatures for GaAs(2 nm)/AlAs(2 nm) SLs grown on
the (311)A, (311)B, and (100) surfaces simultaneously in
one growth cycle. The polarization of light was not ana-
lyzed. The spectra of the (311)B and (100) superlattices
contain one maximum each and are very similar to one
another, whereas two maxima are observed in the spectra of
the (311)A superlattice, which radically distinguish these
spectra from the spectra of (311)B and (100) superlattices.
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Figure 4 demonstrates the PL spectra of (311)A- and
(311)B-oriented SLs measured at room temperature for
various polarization geometries. The PL-exciting light
was polarized at an angle of 45° to the direction of cor-
rugation grooves, and the polarization of the sample-
emitted light was analyzed in two geometries: along
(line, S component) and across (dashed line, P compo-
nent) the grooves. The (311)A and (311)B SLs were

Fig. 4. Photoluminescence spectra recorded at room tem-
perature for GaAs(2 nm)/AlAs(2 nm) SLs grown on the
(311)A- and (311)B-oriented surfaces in one growth cycle.
The light excited photoluminescence was polarized at an
angle of 45° to the direction of the corrugation grooves, and
the polarization of the light emitted by samples was ana-
lyzed along (line, S component) and across (dashed line, P
component) the grooves. The intensity of spectra for the
(311)B superlattice was magnified 50-fold.

Fig. 5. Photoluminescence spectra recorded at room tem-
perature for GaAs/AlAs SLs grown in one growth cycle on
GaAs substrates with the (311)A (maximum at 2.02 eV) and
(100) (maximum at 1.87 eV) orientations. The amount of
deposited GaAs corresponded to a layer 1 nm thick for the
(100) surface. Under these conditions, flat layers are formed
on the (100) surface, whereas an array of quantum wires is
formed on the (311)A surface. The maximum of photolumi-
nescence from the superlattice containing quantum wires
lies at significantly higher energy values. The increase in
energy is explained by the occurrence of additional size
quantization of charge carriers in quantum wires.

Across corrugation (P)
grown simultaneously in one growth cycle. It is evident
that the GaAs/AlAs SL grown on the (311)A surface
exhibits efficient PL at room temperature. A red glow
from this SL was visible to the naked eye, and the PL
intensity was more than 50 times higher than in the case
of the (311)B SL (the spectra of the latter are shown in
50-fold magnification in Fig. 4). The difference is
explained by the formation of well-structured corru-
gated layers of gallium arsenide in the (311)A SL,
whose occurrence in the given sample was confirmed
by direct electron microscopy investigations. The lat-
eral localization of electrons in CSLs (preferentially,
the motion of electrons in CSLs is allowed only along
the corrugation grooves) decreases radiationless
recombination at the surface. That was the reason for
the high PL intensity at room temperature. As expected,
strong polarization anisotropy was observed in the PL
spectra of the (311)A CSL. The degree of polarization
(S – P)/(S + P) for the peak with an energy of 1.69 eV
was more than 60%, and that for the peak with an
energy of 1.84 eV was more than 22% (see Fig. 4). It is
evident in the same figure that the PL anisotropy was
considerably smaller in the case of the (311)B SL (max-
imum at 1.71 eV), and its degree was about 10%. The
decrease in the polarization anisotropy for the (311)B
SL is readily explicable and is associated with the fact
that the corrugation in this SL (see Fig. 1) is not as dis-
tinct as in the (311)A SL. No variation of the polariza-
tion anisotropy was found under variations of tempera-
ture. Thus, the corrugation effect was small in the case
of the (311)B SL, and the nature of polarization is
mainly explained by the valence band anisotropy.

The following data are also in a good agreement
with the corrugation model proposed in [1, 5]. Figure 5
displays PL spectra measured at room temperature for
GaAs/AlAs SLs grown simultaneously on GaAs sub-
strates with the (311)A and (100) orientations. In this
case, the amount of GaAs deposited in one growth
cycle corresponded to a layer 1 nm thick for the (100)
surface. Under these conditions, flat layers are formed
on the (100) surface, and quantum wires (QW) or, more
exactly, wirelike clusters are formed on the (311)A sur-
face [7]. The mean thickness of AlAs layers was larger
than the corrugation height (1 nm in the model [5]); that
is, it was sufficient for new AlAs facets to be formed.
The maximum of PL from the SL containing flat GaAs
layers lies at 1.87 eV. In the case of the SL containing
QWs, the maximum is located at 2.02 eV. Hence, the
maximum of PL from the SL containing QWs is dis-
placed by 150 meV toward larger energy values as
compared to the SL containing flat layers. Such a sig-
nificant increase in energy is explained by the change in
the dimensionality of the system in going from two-
dimensional flat layers to one-dimensional QWs. The
line half-width in the spectrum of PL from the (311)A
SL is smaller than that for the (100) SL. The decrease
in dimensionality results in a decrease in the width of
subbands, which leads to narrower optical spectra. In
the case of the (311)A SL, the line can be additionally
JETP LETTERS      Vol. 75      No. 4      2002
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broadened because the wirelike clusters can differ in
length (because the motion of carriers is confined in the
direction parallel to the QW). Note that the PL intensity
for the (311)A SL is approximately five times higher
than that for the (100) SL. Scattering by optical
phonons is strongly suppressed in one-dimensional sys-
tems. This results in a decrease in radiationless recom-
bination and, as a consequence, in an increase in radia-
tive recombination, which is the reason for the increase
in intensity observed in QWs in our case. A certain
additional increase in intensity can arise from the
increase in the density of states in the case of (311)-ori-
ented systems.

Thus, direct high-resolution electron microscopy
investigations of (311)A and (311)B SLs revealed the
occurrence of corrugation in both cases with a lateral
period of 3.2 nm. In the case of (311)B SLs, the inter-
face corrugation has been observed for the first time. In
addition, a very distinct corrugation 1 nm in height is
observed for (311)A SLs in full correspondence with
the model [1]. On the other hand, corrugation in the
(311)B SLs grown simultaneously with (311)A SLs is
significantly less pronounced and is characterized by
considerable long-wavelength disorder. The occurrence
of long-wavelength disorder in (311)B SLs weakens
the vertical correlation of GaAs- and AlAs-rich regions,
which is clearly observed in the case of (311)A SLs.
The character of interface corrugation found for (311)B
SLs is such that the optical properties of these SLs can-
not become similar to those of (311)A SLs, whose cor-
rugation fully fits the model [1]. As distinct from
(311)B SLs, strong photoluminescence polarization
anisotropy is observed for (311)A SLs, when the light
polarized in the direction along the heterointerface cor-
rugation grooves is significantly higher in intensity than
that polarized across the grooves. Polarization anisot-
ropy in the PL spectra of (311)B SLs is significantly
JETP LETTERS      Vol. 75      No. 4      2002
weaker. Thus, these results confirm the conclusion
made in [4] that the nature of polarization for (311)A
CSLs with thin GaAs and AlAs layers is mainly deter-
mined by the interface corrugation. It is found that
(311)B SLs are similar in their optical properties to
conventional (100) SLs and radically differ from
(311)A CSLs. It is stated that the electronic optical
properties of (311)B CSLs, as distinct from (311)A
CSLs, are not markedly modified by corrugation. It is
shown that it is the interface corrugation rather than the
difference in crystallographic orientation between the
(311) and (100) surfaces that determines the optical
properties of (311)A CSLs with thin GaAs and AlAs
layers.

G.A. Lyubas is grateful to the K.I. Zamaraev Inter-
national Charitable Scientific Foundation.
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The results of ab initio calculations are presented for the specific energy, pressure, and elastic constants of an
aluminum fcc single crystal with subnormal densities at T = 0. Kinks in the elastic constant vs. density curves
are revealed which are caused by the electronic topological transitions. An analysis of the mechanical stability
of aluminum fcc crystal at negative pressures suggests that the polymorphic transition to a noncubic structure
is possible. A method is suggested for taking into account the thermal nuclear excitation and the influence of
zero-point vibrations on the pressure dependence of crystal density. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.30.+t; 61.50.Ks; 62.20.Dc; 71.15.Mb
In recent experiments [1–3] with a pulsed nanosec-
ond shock load in metals, one succeeded in producing
exceedingly high tensions with negative pressures (ten-
sile stresses) attaining 150 kbar and more. This opens
up possibilities of studying polymorphic phase trans-
formations and other solid-state phenomena in the new
exotic field of state parameters. In studies of this kind,
the question inevitably arises of the equation of state for
the tensions as high as those mentioned above. The
known theoretical and semiempirical model equations
of state are aimed at describing the compression states
for which the results of many measurements are known,
while the tension states are calculated by extrapolating
these data [1–3] to the negative pressures. However,
inasmuch as the isotherms and isentropes of condensed
media have minima, there is still room for doubt about
the accuracy and range of applicability of this extrapo-
lation. It is likely that an ab initio calculation is now the
only way of making an unbiased estimate of the equa-
tion of state for a substance at high negative pressures.

In this work, we report and analyze the results of
ab initio calculations of the specific energy, pressure,
and elastic properties of aluminum single crystals with
the fcc structure at T = 0 in the region of subnormal den-
sities. The calculations of specific energy were carried
out for fixed nuclei by the full-potential linear muffin-
tin orbitals (FP-LMTO) method [4] within the frame-
work of the density functional theory with generalized
gradient corrections [5–7]. The accuracy of the calcu-
lated specific energy was 0.1 mRy/atom over the entire
range of specific volumes studied.
0021-3640/02/7504- $22.00 © 20184
The ab initio specific energies were approximated
by the Rose et al. [8] formula that was slightly modified
by supplementing it with two additional parameters:

(1)

where

(2)

v  is the specific volume, and v 0 is the specific volume
at P = 0 and T = 0. Formula (1) is not as universal as the
formula given in [8], but our experience suggests that
Eq. (1) allows a higher accuracy to be obtained when
approximating the ab initio results for the specific
energy of various metal crystal structures over a wide
range of densities, for which only the outer electron
shells are involved in interatomic interactions. The
quantities v 0, l, ∆E, E∞, α, and β in Eq. (1) were consid-
ered as fitting parameters. The following expression for
the pressure follows from Eq. (1):
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The fitting procedure yielded the following results for
the fcc aluminum:

(4)

The maximum error in approximating the calculated
values of specific energy by Eq. (1) with parameters (4)
is within the error of our calculations and does not
exceed 1 J/g ≈ 0.02 mRy/atom. The pressure curve given
by Eq. (3) reaches its minimum Pmin = –116.749 kbar
at vmin = 0.5508 cm3/g.

The elastic constants of the strained lattice were
determined after calculating its specific energy as a
function of the degree of deformation for several defor-
mation types. The elastic constants C ' = (C11 – C12)/2
and C44 and the pressure are displayed in Figs. 1 and 2
as functions of specific volume. The appearance of neg-
ative elastic constants in the negative pressure region is
noteworthy. This occurs because a term proportional to
the pressure with a minus sign makes a contribution to
the strain-induced energy increment. The presence of
well-defined kinks in the curves at v /  ≈ 1.125 is
another intriguing feature in the behavior of aluminum
elastic constants at high tensile strains. These kinks are
due to the electronic topological transition [9] occur-
ring at this value of v / . It will be shown below that
they are responsible for the kink in the volume depen-
dence of the Debye temperature and, as a result, for a
discontinuity in the pressure curve allowing for the
zero-point vibrations. Moreover, if the zero-point
vibrations are not taken into account, one of the condi-
tions for mechanical stability of cubic structures [10],
namely,

C44 > P, (5)

v 0 0.3664047  cm 3 /g, l 0.1459307  cm/g 
1/3 ,= =  

∆

 

E E

 

∞

 

44.874894  kJ/g,= =  
α

 

0.1945598,

 
β

 

0.2324356.= =

ṽ 0

ṽ 0

                   

Fig. 1. Dependence of C ' = (C11 – C12)/2 on the specific

volume at T = 0.  = 0.3705 cm3/g is the experimental

value of specific volume at T = 300 K and P = 1 atm.

ṽ 0
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is violated before the structure becomes absolutely
unstable upon crystal dilation. According to the calcu-
lations, this corresponds to the polymorphic phase tran-
sition of aluminum to the noncubic structure at negative
pressures. Such a behavior of elastic constants may be
responsible for the destruction of an ideal crystal sub-
jected to tensile stresses at specific volumes smaller
than it would occur in the absence of the anomaly or
may stimulate the onset of melting.

The elastic constants determined for different spe-
cific volumes were used to calculate the mean sound
velocity  and Debye temperature Θ(v) as func-
tions of specific volume with the aim of estimating the
influence of zero-point vibrations on the pressure
curve. The mean sound velocity was determined by
averaging the actual sound velocity cs(n) over the direc-
tions of unit vectors n and branches s = 1, 2, 3 according
to the formula [11]

(6)

According to [12], the true sound velocity can be found
from the solution to the problem for eigenvalues of the
matrix Lik(n), which is completely specified by the ten-
sor components 

 

C

 

ijkl

 

 of elastic constants and by the
pressure:

(7)

The corresponding equations have the form
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where ρ is the crystal density. The Debye temperature
is related to the mean sound velocity as

where kB is the Boltzmann constant, NA is Avogadro’s
number, and A is the atomic weight. The Debye temper-
atures calculated in this way are presented in Fig. 3. The
volume dependence of the Debye temperature can be
used for estimating the contribution of zero-point vibra-
tions to the energy and pressure at T = 0 and for the cal-
culation of the contribution to the thermodynamic func-
tions from the nuclear thermal excitations. Unfortu-
nately, the contribution of zero-point vibrations to the
elastic constants cannot be estimated in such a simple
way. One can see from Fig. 2 that the above-mentioned
approximate inclusion of zero-point vibrations
increases the minimum pressure and shifts the mini-
mum to smaller specific volumes. Nevertheless, consid-
ering the model character of taking zero-point vibra-
tions into account, the computational results may be
thought of as indicating the possible polymorphic tran-
sition of the aluminum fcc crystal to the noncubic struc-
ture at negative pressures. Of course, such a transition

Θ v( )
1
kB
-----

6π2NA

v A
---------------- 

 
1/3

"c v( ),=

Fig. 3. Debye temperature as a function of specific volume.
 = 0.3705 cm3/g is the experimental specific volume at

T = 300 K and P = 1 atm.

ṽ 0
         

is possible if the aluminum crystal has not already been
destroyed or does not melt because of the anomalies in
elastic properties caused by the electronic topological
transition. It would be of interest to explore this situa-
tion experimentally.

We are grateful to G.I. Kanel’ for drawing our atten-
tion to the studies of materials under hugh tensile
strains, to D.Yu. Savrasov and S.Yu. Savrasov for pre-
senting the possibility of using the authors’ version of
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and to D.Yu. Savrasov and E.G. Maksimov for the dis-
cussion of the details of this method. This work was
supported by the Russian Foundation for Basic
Research, project nos. 01-02-18044 and 01-02-16108.

REFERENCES
1. G. I. Kanel, S. V. Razorenov, A. V. Utkin, et al., J. Appl.

Phys. 74, 7162 (1993).
2. E. Moshe, S. Eliezer, Z. Henis, et al., Appl. Phys. Lett.

76, 1555 (2000).
3. G. I. Kanel, S. V. Razorenov, K. Baumung, and J. Singer,

J. Appl. Phys. 90, 136 (2001).
4. S. Yu. Savrasov and D. Yu. Savrasov, Phys. Rev. B 46,

12181 (1992).
5. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244

(1992).
6. J. P. Perdew, J. A. Chevary, S. H. Vosko, et al., Phys. Rev.

B 46, 6671 (1992).
7. U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).
8. J. H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys.

Rev. B 29, 2963 (1984).
9. V. G. Vaks and A. V. Trefilov, J. Phys.: Condens. Matter

3, 1389 (1991).
10. J. Wang, J. Li, S. Yip, et al., Phys. Rev. B 52, 12627

(1995).
11. N. W. Ashcroft and N. D. Mermin, Solid State Physics

(Holt, Rinehart and Winston, New York, 1976; Mir, Mos-
cow, 1979).

12. D. C. Wallace, Solid State Phys. 25, 301 (1970).

Translated by V. Sakun
JETP LETTERS      Vol. 75      No. 4      2002



  

JETP Letters, Vol. 75, No. 4, 2002, pp. 187–189. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 75, No. 4, 2002, pp. 220–222.
Original Russian Text Copyright © 2002 by Fomin.

                                                                                                          
Random Textures of the Order Parameter
of Superfluid 3He-B in Aerogel
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A phenomenological scheme of the observed properties of superfluid 3He in aerogel is proposed in the spirit of
the Ginzburg-Landau theory. The effect of the aerogel on the order parameter is described by the random tensor
field ηjl(r). The tensor field exerts a considerable disorienting effect on the order parameter in the A phase of
3He, but virtually unaffects the orientation of the order parameter in the B phase in zero magnetic field. The
change in the texture of the order parameter emerging in the B phase in aerogel in a magnetic field is considered.
It is shown that the mean square of the angle between the magnetic field direction and the anisotropy axis of the
B phase is proportional to the third power of the magnetic field strength. The fluctuations of the direction of the
magnetic anisotropy axis of 3He-B are correlated over the familiar “healing length”, which is inversely propor-
tional to the field strength and has a macroscopic scale. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 67.57.-z
1. Aerogels are materials with extremely high poros-
ity. The rigid “skeleton” formed by fibers with a diam-
eter of ≈30 Å occupies less than 2% of the volume. The
remaining volume can be filled with a substance under
investigation. At the present time, this is the only way
of introducing impurities in liquid 3He in the tempera-
ture range where it becomes superfluid [1]. Aerogel
does not suppress superfluidity completely; it only
decreases the superconducting transition temperature
Tc, which is in accordance with the concept of suppres-
sion of abnormal superconductivity and superfluidity
by nonmagnetic impurities [2] on account of the fact
that the estimated mean free path of quasiparticles l ~
1500−1800 Å is large compared to ξ0 ≈ 160 Å (under
the solidification pressure). The microscopic theory in
the spirit of superconducting alloys [3], which takes
into account the effect of impurities through an addi-
tional parameter, i.e., the transport mean free path, pro-
vides qualitatively correct description for the observed
decrease in Tc and the tendency in the variation of prop-
erties of superfluid phases of 3He, but does not offer a
quantitative agreement with the experimental data (see
the review and references in [4]). In order to obtain a
more detailed description of the observed properties of
superfluid 3He in aerogel, a phenomenological
approach should be used; i.e., the effect of the aerogel
should be described by a certain set of parameters
which are assumed to be preset. The number and choice
of parameters are determined by the symmetry of the
problem. Although this approach was discussed in [4],
it has not been developed sufficiently for obtaining spe-
cific results. In particular, the important aspect concern-
0021-3640/02/7504- $22.00 © 20187
ing the correct choice of parameters characterizing the
aerogel remains unclear. In the present work, a method
for the phenomenological description of superfluid 3He
in aerogel is proposed and a practically important
example of application of this approach is considered.

2. A macroscopic description is possible only for
long-wave phenomena for which the characteristic spa-
tial scale exceeds the correlation length ξ0 in superfluid
3He. In the vicinity of Tc, the additional contribution to
energy density can be presented in the form

(1)

where the complex 3 × 3 matrix Aµj is the order param-
eter of superfluid 3He, its first and second indices label-
ing the spin and momentum components, respectively.
The random rank-two tensor ηjl(r) is determined by the
properties of the aerogel. The aerogel fibers consist of
nonmagnetic SiO2, and the interaction of helium with it
is due to scattering of quasiparticles at the fibers; for
this reason, tensor ηjl(r) in formula (1) is convoluted
with the momentum indices. It is also clear that ηjl(r)
can be regarded as real-valued and symmetric. We will
assume that the isotropic component of the tensor
η0(r)δjl is included in the superconducting transition
temperature Tc, which thus becomes a position func-
tion, the trace ηjj being equal to zero. It is natural to
assume that the aerogel is, on average, isotropic; i.e.,
〈η jl(r)〉  = 0. Here and below, the angle brackets indicate
averaging over the ensemble of aerogels. It is conve-
nient to assume that the common factor gη is equal to

f η gη Aµj Aµl* η jl r( ),=
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the product of the density of states N(0) and the volume
concentration of the aerogel; in this case, tensor ηjl is
dimensionless and its elements are on the order of
unity. Under the assumptions made above, nontrivial
information on the properties of an aerogel is contained
in the correlation function

(2)

At a large distance from the wall, the aerogel is
homogeneous and, hence, the correlator is determined
by the difference r – r'. We will be interested in the Fou-
rier transform of the correlator for this difference:
Kjlmn(k). Definition (2) leads to the symmetry proper-
ties Kjlmn(k) = Kljmn(k) = Kjlnm(k) = Kmnjl(–k) as well as
Kjjmn(k) = Kjlmm(k) = 0. Taking these properties into
account, we can write the correlator in the form of a
combination of independent tensors composed from the

unit tensor δjl and the unit vector components :

(3)

where Φ0(k), Φ1(k), and Φ2(k) are real functions of the
absolute value of k. In the description of long-wave
phenomena, only the values of these functions for k =
0 are significant. It is these three numbers that deter-
mine the orienting effect of the aerogel on the order
parameter of superfluid 3He. Interaction (1) is weak as
compared to the terms in the free energy of superfluid
3He, which determine the form of the order parameter
in view of the smallness of the aerogel concentration.
Thus, it is natural to assume that the same superfluid
phases A and B are realized in aerogel as in pure 3He.
Substitution of the order parameter of the A phase into
formula (1) gives fη ~ –ηmnlmln, where l is the direction
of the orbital quantization axis in the A phase. It was
proved in [5] that the random effect of aerogel on the
orientation of vector l must lead to the disappearance of
the long-range orientation order in this phase. A differ-
ent situation is observed in the B phase, where the order
parameter has the form

(4)

where Rµj is an orthogonal matrix such that RµjRµl = δjl.
By virtue of this relation, the substitution of the order
parameter (4) into formula (1) gives zero. A nonzero
contribution to energy can be obtained by taking into
account either the surface dipole interaction or the pres-
ence of a magnetic field. The dipole interaction gives a
negligibly small effect; for this reason, we will consider

K jlmn r r',( ) η jl r( )ηmn r'( )〈 〉 .=

k̂ j

K jlmn k( ) 3Φ0 k( ) k̂ jk̂m δln k̂lk̂n–( )[=

+ k̂lk̂m δjn k̂ jk̂n–( ) k̂ jk̂n δlm k̂lk̂m–( )+

+ k̂lk̂n δjm k̂ jk̂m–( ) ] 3Φ1 k( ) 6k̂ jk̂lk̂mk̂n[+

– 2 k̂ jk̂lδmn k̂mk̂nδjl+( ) δjmδln δjnδlm+ + ]

+ Φ2 k( ) 3k̂ jk̂l δjl–( ) 3k̂mk̂n δmn–( ),

Aµj ∆eiϕ Rµj,=
below only the interaction induced by the magnetic
field.

3. In a magnetic field, the order parameter (4), tensor
ηmn, and the magnetic field components Hµ can be used
to compose the following nonzero scalar combination:

(5)

where χ is the magnetic susceptibility of the normal
phase of 3He, and ga is a temperature-dependent coeffi-
cient. This is the main term in the expansion of the addi-
tional energy in µH/∆, where µ is the magnetic moment
of the nucleus of 3He. The correction fη preserves its
form away from the temperature Tc as well. Matrix R in
definition (4) is usually regarded as the matrix of rota-
tion defined by the direction n of the rotation axis and
the rotational angle θ. The volume dipole energy
defines θ = . Estimates similar to those
obtained in [5] show that perturbation (5) cannot lead to
a noticeable deviation of angle θ from the equilibrium
value. Direction n in the bulk is fixed by a much weaker
interaction including both the magnetic field and the
dipole energy fH = –χaH(nH), and the situation is not so
clear in this case. Let us consider in greater detail the
effect of the random field ηjl(r) on the spatial distribu-
tion, or texture, of vector n. It should be noted that the
texture will also be random. In order to find the texture,
we must minimize the total free energy, including the
sum of the energy densities fη and fH , as well as the gra-
dient energy f∇ :

(6)

In the course of minimization, it is convenient to
choose the Euler angles α, β, γ as parameters determin-
ing the matrix Rµj, assuming that the z axis is parallel to
H. We will assume that random deviations of the tex-
ture from equilibrium are small for fields of several
hundred oersted that are normally used (this is con-
firmed by the results). We will also consider 3He away
from the walls and then n || H in the absence of aerogel;
i.e., β = 0, and α and γ satisfy the relation 1 + 2cos(α +
γ) = 0 following from the condition cosθ = –1/4. For
small deviations from equilibrium, we have β ! 1 and
the energy densities appearing in formula (6) can be
written in the form fη = (1/2)χH2gahjhlηjl, where h is the
direction transformed into the direction of the z axis
under the action of rotation Rµj: h = (–βcosγ, βsinγ,
1 − β2/2). The second term fH ≈ (2/5)χaHH2β2. In order
to simplify the expression for gradient energy, we will
assume that the velocities of spin waves c|| and c⊥ ,
appearing in it as coefficients, are identical. This leads
to an insignificant inaccuracy, but makes the obtained
relations much less cumbersome. Taking into account
this simplification, we obtain

(7)

f η
1
2
---χgaHµHνRµjRν lη jl r( ),=

–1/4( )arccos

F r3 f η f H f ∇+ +{ } .d∫=

f ∇ χ/2γ2( )c||
2 β2 ∇γ( )2 ∇β( )2+[ ] .=
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It is natural to pass to new variables: u = βcosγ and
v  = βsinγ. As a result, the free energy will be written in
the form

(8)

We now have h = (–u, v, 1 – (u2 – v 2)/2). By varying
energy (8) in u and v, we obtain, respectively, the equa-
tion for u,

, (9)

and the equation for v, which differs from Eq. (9) only
in that u is replaced by v  everywhere. Equation (9) can
be solved by passing to the Fourier components:

(10)

where κ2 = 4aH /5 . We can now find

(11)

A similar expression can also be obtained for
〈v 2(r)〉 . Considering that 〈β2〉  = 〈u2〉  + 〈v 2〉  and using
formula (3) for Kmjln(k), we can write

(12)

The quantities Φ0, Φ1, and Φ2 are the values of the cor-
responding functions Φ0(k), Φ1(k), and Φ2(k) for k = 0
and have the same order of magnitude as the third
power of the correlation radius rc of field ηjl(r). We can
expect that rc ~ 300–1000 Å. The indeterminacy in the
value of rc strongly affects the estimate of 〈β2〉 . In
accordance with formula (12), the value of 〈β2〉  is deter-
mined by the product of two factors: (κrc)3(5ga/4aH)2,
where κ is the reciprocal “healing length” of the texture
in a magnetic field, which is proportional to the mag-

F χH2 r3 c||
2

2ωL
2

--------- ∇ u( )2 ∇ v( )2+[ ]




d∫=

+
2
5
---aH u2 v 2+( ) 1

2
---gah jhlη jl+





d3r.

c||
2

ωL
2

------∆u–
4
5
---aHu+ gaη jl u∂

∂ 1
2
---h jhl 

 –=

uk κ2 5ga

4aH

--------- 
 

u∂
∂ 1

2
---h jhl 

  η jl k( )

k2 κ2+
-----------------,–=

ωL
2

c||
2

u2 r( )〈 〉 κ 2 5ga

4aH

--------- 
 

2

u∂
∂ 1

2
---h jhm 

 =

×
u∂

∂ 1
2
---hlhn 

  k3d

2π( )3
-------------

Kmjln k( )

k2 κ2+( )2
-----------------------.∫

β2〈 〉 3
20π
---------κ2 5ga

4aH

--------- 
 

2

2Φ0 7Φ1 Φ2+ +[ ] .=
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netic field. In the field of 300 Oe and not very close to
Tc, κ ≈ 20 cm–1 [6]. If we put rc ≈ 500 Å, (κrc)3 ≈ 10–12.
Estimation of the second factor gives ≈109; i.e., we have
in all 〈β2〉  ≈ 10–3, and the aerogel virtually unaffects the
texture under these conditions. The same formula
shows, however, that 〈β2〉  ~ H3 and 〈β2〉  ~ 1 for an order-
of-magnitude stronger magnetic field. Another impor-
tant characteristic of random texture is the characteris-
tic length over which the correlations of angle β decay.
The correlation function 〈β(r)β(r')〉  can be expressed in
terms of Kjlmn(k) in the same way as was done while
evaluating 〈β2〉 . The expression obtained for the corre-
lator of angles is cumbersome in view of the complex-
ity of the structure of Kjlmn(k). It is only significant for
us that for large values of |r – r' |, the decay of correla-
tions of angle β is determined by the factor exp[–κ|r –
r' |]; i.e., the correlation length is equal to 1/κ. In the
field ~1 kOe, this length is ~10–2 cm; i.e., it is not very
small compared to the size of conventional experimen-
tal cells. Thus, the emerging random variation of tex-
ture is of the mesoscopic type. The properties deter-
mined by the texture may differ considerably in differ-
ent experiments. The relations for the mean values must
be satisfied after averaging over a large number of
experiments.
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A quantitative theory of the Josephson effect in SFIFS junctions (S denotes bulk superconductor, F is metallic
ferromagnet, and I is insulating barrier) is presented in the dirty limit. A fully self-consistent numerical proce-
dure is employed to solve the Usadel equations for arbitrary values of the F-layer thicknesses, magnetizations,
and interface parameters. In the case of antiparallel ferromagnet magnetizations, the effect of critical current Ic
enhancement by the exchange energy H is observed, while in the case of parallel magnetizations the junction
exhibits a transition to the π state. In the limit of thin F layers, we study these peculiarities of the critical current
analytically and explain them qualitatively; the scenario of the 0–π transition in our case differs from those stud-
ied before. The effect of switching between 0 and π states by changing the mutual orientation of F layers is
demonstrated. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.80.Dm; 74.60.Jg; 75.30.Et
1 Josephson structures involving ferromagnets as
weak link material are presently a subject of intensive
study. The possibility of the so-called “π state” (charac-
terized by the negative sign of the critical current Ic) in
SFS Josephson junctions was predicted theoretically
[1–8]. The first experimental observation of the cross-
over from the 0 to the Ic state was reported by Ryazanov
et al. [9] and explained in terms of temperature depen-
dent spatial oscillations of induced superconducting
ordering in the diffusive F layer.

More recently, a number of new phenomena were
predicted in junctions with more than one magnetically
ordered layer. First, the possibility of critical current
enhancement by the exchange field in SFIFS Josephson
junctions with thin F layers and antiparallel magnetiza-
tion directions was discussed in the regimes of small
S-layer thicknesses [10] and bulk S electrodes [11, 12].
Second, the crossover to the π state was predicted in
[11] for the parallel case even in the absence of the
order parameter oscillations in thin F layers. Still, the
physical explanation of these effects and accurate cal-
culation of their magnitude have not been given so far.
To make such estimates in the model with thin S elec-
trodes, one must consider KO-1 type solutions [13] and
take into account spatial variation of the superconduct-
ing state in the SF bilayers; at the same time, in the bulk
S case an approximate method was used in [11] beyond
its applicability range [12]. This problem is of a rather
general nature, since one may expect from previous

1 This article was submitted by the authors in English.
0021-3640/02/7504- $22.00 © 20190
knowledge (see, e.g., review [14]) that the supercurrent
in a short weak link is H independent.

The above intriguing scenario motivated us to attack
the problem of the Josephson effect in SFIFS junctions
by self-consistent solution of the Usadel equations for
arbitrary thicknesses of the F layers, barrier transparen-
cies, and exchange field orientations. Below, we show
that the 0–π transition in the case of parallel H orienta-
tion or enhancement of Ic by H in the antiparallel case
with thin F layers occurs when the effective energy shift
in the ferromagnets (due to the exchange field)
becomes equal to a local value of the effective energy
gap induced into an F layer. Under this condition, a
peak in the local density of states (DoS) near the SF
interfaces is shifted to zero energy. In the models with
DoS of the BCS type, this leads to logarithmic diver-
gence of Ic in the antiparallel case at zero temperature,
similarly to the well-known Riedel singularity of ac
supercurrent in SIS tunnel junctions at voltage eV = 2∆.
We also describe the general numerical method to solve
the problem self-consistently and apply it for quantita-
tive description of the 0–π transition and Ic enhance-
ment in SFIFS junctions.

The model. We consider the structure of the SFIFS
type, where I is an insulating barrier of arbitrary
strength. We assume that the S layers are bulk and that
the dirty limit conditions are fulfilled in the S and F
metals. Although our method is applicable in the gen-
eral situation of different ferromagnets and supercon-
ductors, for simplicity, below we illustrate our results in
002 MAIK “Nauka/Interperiodica”
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the case where equivalent S and F materials are used on
both sides of the structure (although the directions of
the exchange field in the two F layers may be different),
both F layers have the thickness dF, and the two SF
interfaces have the same transparency. At the same
time, we do not put any limitations on dF and the trans-
parency.

The Usadel functions G, F obey the normalization

condition  + Fω  = 1, which allows the following
parameterization in terms of the new function Φ:

(1)

The quantity  = ω + iH corresponds to the general
case where the exchange energy H is present. However,
in the S layers, H = 0 and we have simply  = ω.

We choose the x axis perpendicular to the plane of
the interfaces with the origin at the barrier I. The Usadel
equations [15] in the S and F layers have the form

(2)

(3)

where Tc is the critical temperature of the superconduc-
tors, ∆ is the pair potential (which is nonzero only in the
S layers), ω is the Matsubara frequency, and the coher-
ence lengths ξ are related to the diffusion constants D

as ξS(F) = . The pair potential satisfies the
self-consistency equations

(4)

In this paper, we restrict ourselves to the cases of paral-
lel and antiparallel orientations of the exchange fields H
in the ferromagnets.

The boundary conditions at the SF interfaces (x =
) have the form [16] (see [17] for detail)

(5)

(6)

with

where RB and ! are the resistance and the area of the
SF interfaces, respectively; and ρS(F) is the resistivity of
the S (F) layer. At the I interface (x = 0), the boundary

Gω
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conditions read

(7)

(8)

with

where the indices 1, 2 refer to the left and right side of
the I interface, respectively.

In the bulk of the S electrodes, we assume a uniform
current-carrying superconducting state

(9)

where m is the electron mass, v s is the superfluid veloc-
ity, and ϕ is the phase difference across the junction.

The supercurrent density is constant across the sys-
tem. In the F part, it is given by the expression

(10)

while an analogous formula for the S part is obtained if
we substitute   ω. This expression, together with
the boundary condition (8) and the symmetry relation
F(–ω, H) = F(ω, –H), yields the formula for the super-
current across the I interface:

(11)

(the functions F are related to Φ via Eq. (1)).
The limit of small F-layer thickness: dF ! min(ξF,

). Under the condition γB/γ @ 1, we can
neglect the suppression of superconductivity in the
superconductors. We further assume that the transpar-
ency of the I barrier is small, γB, I @ max(1, γB), and the
SF bilayers are decoupled (the exact criterion will be
given below). In this case, we can set v s = 0 and expand
the solution of Eq. (3) in the F layers up to the second
order in small spatial gradients. Applying the boundary
condition (6), we obtain the solution in a form similar
to that in the SN bilayer [18, 17]:

(12)

with

Substituting Eq. (12) into the expression for the super-
current (11), we obtain I(ϕ) = Icsinϕ.
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For the parallel orientation of the exchange fields,
H1 = H2 = H, the critical current is

(13)

where Ω = ω/πTc, δ = ∆0/πTc, α = (hγBM)2, h = H/πTc,
g1 = 2GS + γBMΩ , and g2 = (GS + γBMΩ)2.

For the antiparallel orientation, H1 = –H2 = H, the
critical current is given by

(14)

At h = 1/γBM and small Ω , the expression in the sum in
Eq. (14) behaves as 1/Ω; thus, at low T, the critical cur-

rent diverges logarithmically:  ∝  ln(Tc/T). This
effect was pointed out earlier in [10, 11].

The above results become physically transparent in
the real energy ε representation. Making an analytical
continuation in Eqs. (1) and (12) by the replacement
ω  −iε, we obtain the expression for the DoS per
one spin projection (spin “up”) NF(ε) = ReGF(ε) in the
F layers

(15)

which demonstrates the energy renormalization due to
the exchange field. Equation (15) yields NF(0) =

Re(γBMh/ ), which shows that at h = 1/γBM

the singularity in the DoS is shifted to the Fermi level.

Exactly at this value of h the maximum of  is
achieved due to overlap at two ε–1/2 singularities. This
leads to logarithmic divergency of the critical current
(14) in the limit T  0, similarly to the well-known
Riedel singularity of a nonstationary supercurrent in
SIS tunnel junctions at voltage eV = 2∆0, where the
energy shift is due to the electric potential. At the same
value of the exchange field h = 1/γBM, the critical current
changes its sign (i.e., the crossover from the 0 to the π
contact occurs) for parallel magnetizations in the F lay-
ers [see Eq. (13)]. We emphasize that the scenario of the
0–π transition in our case differs from those studied
before, where the π shift of the phase was either due to
spatial oscillations of the order parameter in F layers or
due to the proximity-induced phase rotation in S layers.
In our case, the phase does not change in either layer;
instead, it jumps at the SF interfaces. This scenario is
most clearly illustrated in the limit of large H where
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Eqs. (1) and (12) yield FF ∝  –i∆ , whereas FS ∝
∆; thus the phase jumps by π/2 at each of the SF inter-
faces, providing the total π shift between FF1(–H) and
FF2(H) [it is the phase difference between these two
functions that determines the supercurrent according to
Eq. (11)].

The considered effects take place only for suffi-
ciently low I-barrier transparency. Indeed, it follows

from Eq. (12) that GF(Ω) ∝  1/  for small Ω under
the condition h = 1/γBM. As a result, the boundary con-
dition (8) results in that, at

, (16)

the solutions (12) are not valid, since in this frequency
range the effective transparency of the I interface (the
parameter GF1GF2/γB, I [19]) increases and the spatial
gradients in the F layers become large (the limit of large
gradients is called “the KO-1 case” [13, 14]). In this
case, the nongradient term in Eq. (3) can be neglected
and the general solution of the Usadel equation in the F
layers has the KO-1 form [13]:

(17)

where M = , while C, B, Q, and η are
integration constants. From Eqs. (1) and (17), it follows
that the Green’s functions G, F and hence the contribu-
tion to the critical current from these frequencies are H
independent. As a result, the barrier transparency
parameter γB, I provides the cutoff of the low-tempera-

ture logarithmic singularity of  at h = 1/γBM [see
Eq. (14)]. According to Eq. (16), the critical current sat-
urates at low temperature T* = Tcmin(ξF/dFγB, I, γB/γB, I).
We note that any asymmetry in the SFIFS junction will

also lead to the cutoff of  divergency [19]. The
above estimates are made for the case of low barrier
transparency, ξF/dFγB, I ! 1 and γB/γB, I ! 1. The oppo-
site regime of high transparency deserves separate
study.

The general case. For arbitrary F-layer thicknesses
and interface parameters, the boundary problem (1)–(9)
was solved numerically using the iterative procedure.
Starting from trial values of the complex pair potentials
∆ and the Green’s functions GS, F, we solve the resulting
linear equations and boundary conditions for functions
ΦS, F. After this, we recalculate GS, F and ∆. Then, we
repeat the iterations until convergency is reached. The
self-consistency of calculations is checked by the con-
dition of conservation of the supercurrent (10) across
the junction. We emphasize that our method is fully
self-consistent; in particular, it includes the self-consis-
tency over the superfluid velocity v s, which is essential
(contrary to the constriction case) in the quasi-one-
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dimensional geometry. The details of our numerical
method will be presented elsewhere [19].

Figure 1 shows Ic(H) dependences calculated at T =
0.05Tc from the numerical solution of the boundary
problem (1)–(9) for the fixed value of γBM = 1 and a set
of different F-layer thicknesses and SF interface param-
eters γ. The normal junction resistance is RN = RB, I +
2RB + 2ρFdF/!. The curves dF/ξF = 0 are the limits of
the vanishing dF/ξF ratio at fixed γBM and are calculated
from Eqs. (13) and (14). For thin F layers, the results
depend only on the combination γM = γdF /ξF. The
enhancement of Ic and the crossover to the π state are
clearly seen for the antiparallel and parallel orienta-
tions, respectively. In accordance with the estimates
given above, these effects take place for the values of
the exchange field H close to πTc. The enhancement dis-
appears with increasing gradients in the F layers, since
the solution to Eq. (12) loses its validity. This is illus-
trated in Fig. 1 by increasing the thickness dF or γM. In
particular, in the case of large γM the enhancement is
absent, in contrast to the statement in [11] (see [12]).

The influence of temperature and barrier transpar-
ency on the critical current anomaly is shown in Fig. 2.
One can see that, in accordance with the above esti-

mate, the cutoff of the  singularity is provided by
finite temperature or barrier transparency; i.e., with the
decrease of the barrier strength parameter γB, I, the peak
magnitude starts to drop when the ratio dFγB, I /ξF

becomes comparable to T/Tc. With a further decrease of
dFγB, I /ξF, the singularity disappears, while the transi-
tion to the π state shifts to large values of H.

Ic
a( )

Fig. 1. Enhancement of the critical current (antiparallel
magnetizations, solid lines) and the 0–π transition at which
Ic changes its sign (parallel magnetizations, dashed lines) in
the SFIFS junction at T/Tc = 0.05, γBM = 1, and γM = 0. Inset:
the same for large values of γM (when dF ! ξF, the results
depend only on this parameter).

γM = 5
JETP LETTERS      Vol. 75      No. 4      2002
Figure 3 demonstrates the DoS in the F layers for a
certain spin projection calculated numerically in the
limit of small I-barrier transparency. At H = 0, we
reproduce the well-known minigap existing in an SN
bilayer. At finite H, the gap shifts in energy (asymmet-
rically) and the peak in the DoS reaches zero energy at
h = 1/γBM. One can see that, even for a small value γM =
0.05, the peaks are rather broad; this is the reason why

the singularity in  is suppressed by γM very rapidly.

In the limit of finite F-layer thickness (see Fig. 4),
which is of practical interest, the numerical calculations
show monotonic suppression of Ic with an increase of

Ic
a( )

Fig. 2. Enhancement of the critical current (antiparallel
magnetizations, solid lines) and the 0–π transition at which
Ic changes its sign (parallel magnetizations, dashed lines) in
the SFIFS junction: influence of temperature and barrier
transparency. The dotted line corresponds to T/Tc = 0.01 and
ξF/dFγB, I = 0; the parameters for other curves are given in
the figure.

Fig. 3. Normalized density of states for spin “up” in the F
layer for various exchange fields.
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the exchange field H for antiparallel magnetizations of
the F layers and the 0–π crossover for the parallel case.
One can see from Fig. 4 that, for given temperature and
thickness of the F layers, it is possible to find the value
of the exchange field at which switching between par-
allel and antiparallel orientations will lead to switching
of Ic from near-zero to a finite value (or to switching
between 0 and π states). This effect may be used for
engineering cryoelectronic devices manipulating spin-
polarized electrons.

The case of parallel F-layer magnetizations in the
absence of the I barrier corresponds to the standard SFS
junction where the 0–π transition is possible due to spa-
tial oscillations of induced superconducting ordering in
the F layer. The thermally induced 0–π crossover in an
SFS junction was observed in [9], where a simple the-
ory based on the linearized Usadel equations was also
presented. Here, we show such a crossover (see the
inset in Fig. 4) from the fully self-consistent solution in
the range of the exchange fields corresponding to that
of [9]. Comparison with the experimental data and
more detailed results of our model will be given else-
where [19].

In conclusion, we have presented a general method
for solving Usadel equations in SFIFS junctions self-
consistently. Using our method, we have theoretically
investigated the Josephson current in SFIFS and SFS
junctions as a function of relative F-layer magnetiza-
tions, thicknesses, and parameters of the S/F and F/F
interfaces. We have identified the physical mechanisms
of the critical current enhancement and of the 0–π tran-
sition in these junctions.

We thank J. Aarts, N.M. Chtchelkatchev, K.B. Efe-
tov, M.V. Feigel’man, V.V. Ryazanov, and M. Siegel for

Fig. 4. Critical current in SF1F2S junction: switching effect.
T/Tc = 0.5, the solid and dashed lines correspond to the anti-
parallel and parallel orientations of magnetizations, respec-
tively. Inset: thermally induced 0–π crossover in the parallel
case. 
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The angular dependence of the upper critical magnetic field was investigated in a wide range of temperatures
in very high-quality Bi2Sr2CuO6 + δ single crystals with critical temperature Tc (midpoint) . 9 K in magnetic
fields up to 28 T. Although the typical value of the normal state resistivity ratio ρc/ρab ≈ 104, the anisotropy ratio
Hc2 || ab/Hc2 ⊥  ab of the upper critical fields is much smaller and shows an unexpected temperature dependence.
A model based on strong anisotropy and small transparency between superconducting layers is proposed. ©
2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Ha; 74.60.Ec; 74.72.Hs
1 One of the puzzling phenomena of high-Tc super-
conductors (HTSC) is the anomalous positive curvature
of the temperature dependence of the upper critical
field Hc2, which was observed in some superconducting
oxides [1–4]. The magnitude of the critical field at zero
temperature was far in excess of the Werthamer–Hel-
fand–Hohenberg extrapolation [5], and no quadratic
saturation of Hc2 was found at temperatures in the mK
range for low-critical-temperature Tl2Ba2CuO6 single
crystals [1] and Bi2Sr2CuO6 films [2]. In addition, it
was deduced from measurements in 61-T pulsed mag-
netic fields applied parallel to the c axis that the shape
of Hc2(T) in the high-Tc cuprates depends on the anisot-
ropy of the materials, becoming more conventional as
the normal state anisotropy gets smaller [6]. The
authors argued that the normal state anisotropy plays a
key role in determining the curvature of Hc2(T) [6].
However, in different models [7–9], which have been
proposed to account for the upward curvature in Hc2(T),
the effect of anisotropy is not important. This problem
of anisotropy in the superconducting properties is
related to the more general question for the understand-
ing of high-Tc superconductivity on the basis of the nor-
mal-state properties.

In transport measurements on the low-Tc phase
Bi2Sr2CuO6 (Bi2201), we obtained a much smaller
(nearly two orders of magnitude) anisotropy for the
superconducting critical field than for the normal-state

1 This article was submitted by the authors in English.
0021-3640/02/7504- $22.00 © 20195
resistivity. To explain this contrasting behavior with
respect to the situation for Bi2Sr2CaCu2O8 (Bi2212)
where both measured anisotropies are comparable [10],
we analyzed the angular dependence of the upper criti-
cal field in a model based on weakly coupled supercon-
ducting layers.

The anisotropy is usually expressed by the ratio γ =

 between the effective masses of the quasipar-
ticles along the c axis and the ab plane, which can be

related to the transport anisotropy with γ . 
using ρ = m/ne2τ for the out-of-plane resistivity ρc and
in-plane resistivity ρab [8, 10]. For the three-dimen-
sional (3D) limit with the superconducting coherence
length ξc larger than the interlayer distance s, the aniso-
tropic Ginzburg–Landau (AGL) relation Hc2(θ) =
Hc2 || ab(cos2θ + γ2sin2θ)–0.5 describes the angular depen-
dence of the upper critical field, with γ = Hc2 || ab/Hc2 ⊥  ab =

 for the applied field H || ab plane and H ⊥  ab
plane [11]. Here, θ is the angle between the magnetic
field and the ab-plane. For layered superconductors
with a high degree of anisotropy, such that ξc(T) < s, a
2D situation with decoupled layers arises. For such a
thin-film superconductor in the vicinity of a critical
temperature Tc (in the GL approximation), Tinkham has
proposed a qualitative model with the angular depen-
dence |Hc2(θ)sinθ/Hc2 ⊥  ab | + [Hc2(θ)cosθ/Hc2 || ab]2 = 1
[12]. The thin-film model results in a cusp at θ = 0° with

mc/mab

ρc/ρab

mc/mab
002 MAIK “Nauka/Interperiodica”
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dHc2/dθ ≠ 0; this behaviour has been observed in super-
conducting multilayers [13]. An important feature is
that both models predict a temperature-independent
critical-field anisotropy Hc2 || ab/Hc2 ⊥  ab.

Fig. 1. In-plane resistive transitions of sample no. 1 as a
function of applied field for various field orientations rela-
tive to the ab plane of the crystal at 6.8 K. Angle θ from
above is 90°, 72°, 54°, 36°, 27°, 18°, 9°, 4.5°, 2.7°, 1.8°,
0.9°, 0°. The resistance has been normalized to extrapolated
normal-state resistance Rn at the highest fields. The inset
shows the temperature-dependent superconducting transi-
tion of the same sample.

Fig. 2. Temperature dependencies of the upper critical field

 for sample no. 1 at various angles  extracted

from the 80%-resistive transitions of the crystals. The inset
shows the magnetoresistance curves for the same sample at
various temperatures with the field direction perpendicular
to the ab-plane of the crystal.

Hc2* T( ) Hc2*
For YBa2Cu3O7 with a not too strong anisotropy
(typically γ . 10–30), there are indications for a dimen-
sional crossover from 3D to 2D with decreasing tem-
perature [14, 15]; for Bi2212 with γ values up to 1000,
deviations from the AGL theory have been observed in
resistivity experiments in the vicinity of Tc by Palstra
et al. [16], but without a clear indication of the dimen-
sional crossover. In similar experiments with a better
angular resolution, Marcon et al. [17] and Naughton
et al. [18] have found the 2D behavior in Bi2212 crys-
tals. Because of the high Hc2 values in these systems, a
direct determination of the Hc2 anisotropy can only be
done close to Tc. To extend the temperature region fur-
ther below Tc, the anisotropy of irreversibility has been
investigated.

The low Tc of Bi2201 does not restrict the critical
field studies to temperatures close to Tc while its struc-
ture and properties are closely related to HTSC. Single
crystals of the pure Bi2201-phase are difficult to grow,
because the crystals are nonstoichiometric and, as a
rule, not perfect. For this reason, most of the measure-
ments were carried out on single-phase La-doped
Bi2201 single crystals. The three, slightly overdoped
crystals investigated in this study were grown without
doping by the KCL solution-melt method with the sto-
ichiometry Bi2 + xSr2 – (x + y)Cu1 + yO6 + δ and with excess
Bi in order to have good quality single crystals [19].
The zero-field critical temperatures defined by the 10%
and 90% points of the resistive transition equal to 8.1–
9.8, 8.7–9.5, and 8.1–8.9 K for samples nos. 1, 2, and 3,
respectively. In the inset of Fig. 1, we have plotted the
temperature dependence of the resistive transition for
sample no. 1. In the four-probe resistance measure-
ments, the transport current was in the ab-plane of the
crystals and orthogonal to the field in all cases. The
angular resolution was better than half a degree with the
θ = 0° orientation obtained from the highest value of
Hc2(0)c2 || ab.

Figure 1 shows the in-plane resistive transitions for
sample no. 1 at 6.8 K as a function of applied field for
various field orientations relative to the ab-plane of the
crystal. The resistance has been normalized to the
extrapolated high-field normal-state resistance Rn. The
inset in Fig. 2 shows the magnetoresistance curves for
the same sample at various temperatures with the field
direction perpendicular to the ab-phase of the crystal.
In spite of the strong broadening of the magnetic tran-
sitions at high temperatures one can see in the inset that
the resistive transitions in the normal state are com-
pleted at H > 13 T, even at T = 5.5 K (the weak increase
of the normal-state resistance is due to a magnetoresis-
tance contribution in high magnetic fields).

The field-induced resistive transitions for samples
nos. 2 and 3 were similar to those shown in Fig. 1. The
influence of the flux-flow dissipation on the broadening
of the superconducting transition becomes less notice-
able for a critical field determination close to Rn [16, 20,
JETP LETTERS      Vol. 75      No. 4      2002
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6]. In support of this, we display in Fig. 2 the 
phase diagram for sample no. 1 at various angles θ
obtained from a 80% criterion of its normal-state value
Rn. For the lowest θ values, these temperature depen-
dencies are analogous to the dependence for conven-
tional type II superconductors. The phase diagram
obtained from the R = 0.5Rn criterion exhibited for all
field orientations a strong anomalous concave upturn of

.

In Fig. 3, we show  for sample no. 1 at 6.8
and 5.55 K. The inset shows similar data for sample no.
2 at 1.42 and 0.82 and for sample no. 3 at 4.2 K (data
points). For the angular dependence  a good
agreement is found with the 3D AGL model with
anisotropy parameters γ = Hc2 || ab/Hc2 ⊥  ab equal to 9.8,
7.15, and 5.3 at 7.8, 6.8, and 5.55K, respectively, (crys-
tal no. 1). This anisotropy is much lower than γ =

 found from resistivity which equals 140 at
6 K. Moreover, the obtained anisotropy parameter γ
varies with temperature, which is unexpected for a sim-
ilar temperature dependence of the critical fields in the
two field orientations. We conclude, therefore, that the
anisotropy parameter γ of our Bi2201 single crystals
cannot be deduced from the angular dependence of
Hc2(θ) using the available models as has been done
before for Bi2212.

A temperature dependent critical-field anisotropy
was observed in layered low-Tc 2H–TaS2 [21] and
MoS2 [22] single crystals intercalated with a variety of
organic molecules and alkali metals. The data have
been analyzed using the theory of dimensional cross-
over developed by Klemm et at. [23]. Klemm et al.
have extended the Lawrence-Doniach model [24] and
found the conditions necessary for observing crossover
to a 2D behavior characterized by the temperature
dependent critical-field anisotropy and a strong upward
curvature in Hc2 || ab vs T. In our case, the 
phase diagram obtained from an 80% criterion of its Rn

does not show the upward curvature in  and is
analogous to the dependence for conventional type II
superconductors (Fig. 2 and [20]).

In the following, we propose a model for the
observed critical-field anisotropy based on a supercon-
ductor with a high degree of anisotropy consisting of
stacked two-dimensional superconducting planes with
an effective thickness d coupled by weak Josephson
coupling [24]. The upper critical field  is deter-
mined by the depairing currents in the ab-plane, and
will be finite even for ρc/ρab  ∞. We neglect spin
effects so that Hc2 || ab remains smaller than the para-
magnetic limit. In this model, the upper critical field at
an arbitrary orientation with respect to the crystal and
an arbitrary temperature is determined by lowest eigen-

Hc2* T( )

Hc2* T( )

Hc2* θ( )

Hc2* θ( )

ρc/ρab

Hc2 || ab* T( )

Hc2 || ab*

Hc2 || ab*
JETP LETTERS      Vol. 75      No. 4      2002
values of the operator  = – , where A

is the vector potential. For the magnetic field H oriented
at an angle θ to the ab-plane (xy plane), the vector
potential A can be written as

(1)

where z lies in the range of –d/2 < z < d/2. Under the
assumption that the effective thickness d is less than the
correlation length in the ab-plane of the crystal, the
order parameter will be independent of x and z coordi-
nates. In a strongly layered anisotropic superconductor
for a magnetic field directed along one of the general
axes of the crystal, the vortex cross section has the
shape of an ellipse. At low transparency between layers,
the small half-axis of the vortex can be less than d. The
effective mass approximation is no longer valid. In this
case, currents between the superconducting layers may
be neglected and we can consider one single isolated
layer with effective thickness d. As a result, the operator

 is given by

(2)
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Fig. 3. Angular dependence of the upper critical field 

for sample no. 1 at 6.8 and 5.55 K. The inset shows similar
data for the samples nos. 2 and 3 at lower temperatures. Full
lines are fits of Eq. (4) to the experimental data for sample
nos. 1, 2, and 3 (see also inset) with the indicated β and γ'
parameters. The long dashed lines show the result without
angular broadening (β  ∞).
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where 〈z2〉  = d2/12. From Eq. (2), we obtain the relation-
ship between the angular dependent critical field H(θ)
and the upper critical field Hc2 ⊥  ab:

(3)

where γ' . ed2/6. This expression is similar to the one
given above for thin-film superconductors proposed by
Tinkham [12] and Harper and Tinkham [25], but the
coefficient γ' is now a material constant and hence tem-
perature-independent. This equation is valid over a
wide temperature region except for temperatures in the
vicinity of Tc (see below). From a rough estimation
from the experimental data in Fig. 3, we obtain the tem-

perature-independent value γ' = Hc2 ⊥  ab/  .

0.0068 T –1.
For small θ, we do not observe the expected cusp-

like structure for the 2D model described by Eq. (3). In
practice, the CuO2 layers in the crystal are slightly mis-
oriented with respect to the distribution of c-axis orien-
tations. Moreover, defects may cause the enhancement
of a link between layers and thus increase the effective
thickness of the superconducting layers. Such crystal
imperfections have no influence for high angles θ. For
small θ, the expression for the angular dependence of
the upper critical field Hc2(θ) can be rewritten with a
Gaussian distribution of the c-axis orientations on a
sphere

(4)

where β @ 1 determines the angular width in the mis-
alignment of the CuO2 layers and the possible existence
of shorted layers in the crystal. The solid curves shown
in Fig. 3 are fits to Eq. (4) to our experimental data for
sample no. 1 using β as a temperature independent
parameter. The inset shows the same data for samples
nos. 2 and 3. With the dashed lines, we have shown the
cusp-like structure for β  ∞.

Using this analysis (at β  ∞) of the critical-field
data, we obtained the same parameter γ' = 0.0021 ±
0.0001T –1 for samples nos. 1, 2, and 3. Because the
angular within the misalignment of the CuO2 layers in
the investigated crystals is much less than we obtained
from the parameter γ' (these crystals showed X-ray
rocking curves with a width of about 0.1°–0.3°), this
means that even a small proportion of the shorted layers
is of first importance. From this value of γ' we evaluate
the effective thickness of the superconducting layers

d .  = 2.7 × 10–7. This value is close to the
lattice parameter along the c-axis (2.46 × 10–7 cm),
which looks reasonable. The critical-field anisotropy
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γ = Hc2 || ab/Hc2 ⊥  ab now depends on temperature.
Because the temperature dependence in Eq. (3) is only
determined by the temperature dependence of Hc2 ⊥  ab

(~1 – T/Tc for Tc – T ! Tc), one gets 
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, there is only a nar-
row region near 
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 where this inequality does not hold,
and an effective mass approach with a diffusion tensor
becomes more adequate. In the studied crystals at 
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This condition only breaks down at 1 – 

 

T

 

/
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c

 

 

 

.

 

 0.002 a
limit which may not be reached in view of the broaden-
ing of the superconducting transitions.

In conclusion, the effective-mass approximation is
not suitable for layered superconductors with a very
low transparency between the superconducting layers.
In a magnetic field parallel to a layer, the vortex cross
section has an elliptical shape with the small half-axis
much less than the lattice parameter along the 

 

c

 

-axis of
the crystal. For this high degree of anisotropy, the pro-
posed model of weakly coupled superconducting layers
allows one to explain the observed angular dependence
of the upper critical field.
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Collective State of Interwell Excitons in GaAs/AlGaAs Double 
Quantum Wells under Pulse Resonance Excitation
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The time evolution and kinetics of photoluminescence (PL) spectra of interwell excitons in double
GaAs/AlGaAs quantum wells (n–i–n structures) have been investigated under the pulse resonance excitation of
intrawell 1sHH excitons using a pulsed tunable laser. It is found that the collective exciton phase arises with a
time delay relative to the exciting pulse (several nanoseconds), which is due to density and temperature relax-
ation to the equilibrium values. The origination of the collective phase of interwell excitons is accompanied by
a strong narrowing of the corresponding photoluminescence line (the line width is about 1.1 meV), a superlinear
rise in its intensity, a long time in the change of the degree of circular polarization, a displacement of the PL
spectrum toward lower energies (about 1.5 meV) in accordance with the filling of the lowest state with the exci-
ton Bose condensate, and a significant increase in the radiative decay rate of the condensed phase. The collec-
tive exciton phase arises at temperatures T < 6 K and interwell exciton densities n = 3 × 1010 cm–2. Coherent
properties of the collective phase of interwell excitons and experimental manifestations of this coherence are
discussed. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.67.De; 78.55.Cr; 71.35.Lk; 78.47.+p,
1. In the last decade, double quantum wells (DQWs),
p–i–n, n–i–n heterostructures, superlattices, and other
tunnel-coupled quantum systems have been an object
of intensive experimental and theoretical studies [1–
10]. Interest in these systems is due to the possibility of
separating (both in the real and momentum spaces)
electrons and holes in the neighboring quantum wells
followed by the formation of spatially indirect or inter-
well excitons (IEs) due to the Coulomb interaction. In
particular, it was shown in the recent article by Berman
and Lozovik [11] that, in spite of the dipole–dipole
repulsion of IEs, the condensed dielectric phase of exci-
tons may become a stable state in the electron–hole sys-
tem at certain critical parameters, such as the IE dipole
moment, IE density, and temperature. As applied
already to real two-dimensional systems (see [12]), it is
important to have a confinement in the quantum-well
plane in order to reach the required critical exciton den-
sities. As was already stated in a series of experimental
works by Butov [13, 14], stimulated exciton scattering
may serve as one of the manifestations of this dielectric
exciton phase. This scattering manifests itself as a
strong rise in the rate of exciton scattering to the lowest
energy state with increasing exciton density due to the
Bose nature of excitons.

This work is devoted to studying the time evolution
of photoluminescence (PL) spectra and the degree of
circular polarization of interwell excitons under their
resonance excitation via intrawell 1sHH excitons. Pre-
viously (see [15, 16]), we showed that interwell exci-
0021-3640/02/7504- $22.00 © 200200
tons in n–i–n DQWs with a thin (four monolayers)
AlAs barrier at low temperatures (2 K) and high densi-
ties (of order n ~ 3 × 1010 cm–2) exhibit unusual proper-
ties, which, in our opinion, can be explained within the
framework of collective behavior caused by the Bose
nature of excitons. The results obtained can be summa-
rized by the following: with increasing density of the
optical excitation power, which increases the IE con-
centration, the intensity of the corresponding PL line
increases superlinearly, the line itself becomes strongly
narrowed and somewhat shifts toward the long-wave-
length, which is accompanied by the threshold appear-
ance and the superlinear growth of the degree of circu-
lar polarization. This phenomenon turned out to be very
sensitive to temperature. We did not observe a sharp
boundary in temperature, but all the events took place
at T ≤ 6 K. The aim of this work was to further investi-
gate the previously discovered event with the time res-
olution of the origination and development of the col-
lective IE phase and the kinetics of its radiative decay.

2. An n–i–n GaAs/AlGaAs heterostructure with a
double GaAs/AlAs/GaAs quantum well (the width of
GaAs wells ≈120 Å, and the width of the AlAs barrier
≈11 Å) was studied. The structure was grown by molec-
ular-beam epitaxy on an n-type doped GaAs substrate
(the concentration of the doping Si impurity was
1018 cm–3) with the (001) crystallographic orientation.
First, a 0.5-µm Si-doped (1018 cm–3) GaAs buffer layer
was grown on the substrate. Next, an insulating AlGaAs
02 MAIK “Nauka/Interperiodica”
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(x = 0.33) layer 0.15 µm thick was arranged. Next,
GaAs/AlAs/GaAs DQWs were grown. An insulating
AlGaAs layer 0.15 µm thick was arranged after the
DQWs. Then, a 0.1-µm Si–doped (1018 cm–3) GaAs
layer was located. The entire structure was closed with
a 100-Å GaAs layer. Mesas 1 × 1 mm2 in size were
made on the structure by the lithographic technique.
Metal contacts of an Au + Ge + Pt alloy were deposited
on the buffer layer and the doped layer on the upper part
of the mesa.

Time-resolved spectra and PL decay curves were
studied under conditions of pulse resonance excitation
of intrawell (direct) excitons on heavy holes using a
tunable femtosecond Ti-sapphire laser. To excite the
required narrow spectral range (the 1sHH exciton
state), the laser beam was previously passed through a
dispersive medium with positive dispersion (diffraction
grating), which resulted in its spectral narrowing and
changed its duration (from 100 fs to 1 ps). With the aim
of optical orientation of the angular momentum in the
exciton, circular and linearly polarized resonance exci-
tation was used. The time evolution of spectra and the
kinetics of intensities were measured by a high-speed
photomultiplier and a time-correlated photon counting
system providing a time resolution of 400 ps.

3.1. Figure 1 demonstrates the time evolution of PL
spectra under pulse excitation measured with various
time delays relative to the exciting laser pulse at T . 2 K
and the applied voltage U = +0.5 V. Time-resolved
spectra were detected under excitation by circularly
polarized light (σ+ component, full curves) in reso-
nance with the 1sHH exciton and were analyzed in the
σ+ and σ– circular polarizations. The excitation power
density was selected in such a way that, on integrating
over all laser pulses, the PL line width was a minimum
at the highest degree of circular polarization. This con-
dition was fulfilled at the peak power density
~30 kW/cm2. An estimation of the IE concentration in
this case gives the value n ~ 3 × 1010 cm–2. It is under
these conditions that, as was shown in [15], the collec-
tive properties of IEs are most pronounced.

At zero delays, the IE PL line is strongly polarized
(more than 70%) on the high-energy side and has a
width of about 3 meV. As the time delay increases, the
line intensity increases superlinearly, and the line nar-
rows and somewhat displaces toward the long-wave-
length part of the spectrum. At delays of 5–6 ns, its
width is a minimum and comprises about 1.1 meV. The
maximum intensity of the IE PL line is reached at
delays of about 3 ns. This time is necessary for the for-
mation of IE upon the resonance tunneling of electrons
and holes to the neighboring quantum wells and their
relaxation in energy to the equilibrium values of density
and temperature. This behavior of the IE PL line is also
demonstrated by luminescence decay curves (see inset
in Fig. 1). It is evident in the figure that it takes about
2.5–3 ns after the arrival of a laser pulse to attain the
maximum intensity of the PL line. In this case, the max-
JETP LETTERS      Vol. 75      No. 4      2002
imum PL intensity in the other (σ–) polarization is addi-
tionally displaced with respect to the beginning of the
laser pulse action by approximately 1 ns. At the same
time, the maximum degree of circular polarization cor-
responds to the beginning of the laser pulse action.

The time evolution of the degree of circular polar-
ization reflects the process of IE spin relaxation. It is
evident in Fig. 1 that this process is different along the
PL line contour. In the first nanosecond after the arrival
of a laser pulse, the IE PL line is strongly polarized only
on the high-energy side of the spectrum. Further, the
degree of polarization remains equal along the entire
line contour for approximately 3 ns. Then, only the
high-energy part of the spectrum remains polarized. We
recorded PL decay curves for different spectral posi-
tions along the line contour. The time of the change of
the degree of circular polarization (spin relaxation
time) at the PL line maximum and in its red edge differs

Fig. 1. Time-delayed IE PL spectra (numbers to the right of
the spectra correspond to the time delay relative to the laser
pulse in ns) under the resonance excitation of the direct
1sHH exciton by circularly polarized light (σ+, full curves)
integrated over 1 ns and recorded at an applied bias of +0.5 V,
T = 2 K, and P = 30 kW/cm2. The inset displays IE PL decay
curves (σ+, full curves, and σ–, square symbols) for detec-
tion at the spectral position of 1.5365 eV. The dashed curve
(the scale on the right) gives the degree of circular polariza-
tion.
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by a factor of 1.5; that is, it equals 4.3 and 2.9 ns,
respectively. Temperature is an important factor that,
along with the excitation power density, affects all the
kinetic events in which the IE participates. Figure 2 dis-
plays the width of the PL line at its half-height and the
degree of circular polarization as functions of tempera-
ture. The high sensitivity of the PL line width to varia-
tions of temperature is well pronounced already from 2
to 4.5 K. There is no such strong narrowing of the line
with increasing delay in the time dependences at T =
4.5 K, and the dependence itself is not nonmonotonic,
as it is at T = 2 K. At T = 10 K, the effect of line narrow-
ing is virtually absent. Simultaneously, the behavior of
the degree of circular polarization also changes signifi-
cantly. The initial degree of circular polarization at T =
4.5 K is only about 30% (more than 70% at T = 2 K); it
drops monotonically, and becomes equal to zero at
delays of more than 5 ns. At T = 10 K, the maximum

Fig. 2. (a) Temperature dependence of the IE PL line width
as a function of time delay at an applied bias of +0.5 V, T =
2 K, and P = 30 kW/cm2. Dashed curves are given for con-
venience. (b) Temperature dependence of the degree of cir-
cular polarization of the IE PL line under excitation by cir-
cularly polarized light (σ+) as a function of time delay for
the spectral position of 1.5365 eV. Dashed curves are given
for convenience.
degree of circular polarization is less than 20%, and the
line polarization vanishes after 3 ns.

2. We also measured the time evolution of IE PL
spectra under resonance excitation by linearly polar-
ized light followed by a time-resolved analysis of the
degree of circular polarization. The plane of laser polar-
ization coincided with the 〈110〉  crystallographic direc-
tion (see [16]).

Figure 3 illustrates time-delayed IE PL spectra at
T . 2 K and the applied voltage U = +0.5 V. As is the
case under excitation by circularly polarized light at
zero delays, the width of the IE PL line at the half-
height is ~3 meV, but this line is strongly polarized
(60%) along almost the entire line contour. As the delay
increases, it also increases superlinearly and displaces
toward lower energies (about 1 meV). After 4 ns, when
the equilibrium density and temperature are attained,
the IE PL line becomes as narrow as possible
(1.2 meV), and the degree of circular polarization
reaches saturation at a value of about 25%. The time
evolution of the degree of circular polarization under
excitation by linearly polarized light is also very sensi-
tive to temperature (see Fig. 4). The degree of circular
polarization does not exceed 30% even at T = 4.5 K; it
drops monotonically, becoming negligibly small after
7 ns, and the PL line itself is polarized preferentially on
the violet side. The events develop even faster at T =
6 K: the maximum degree of circular polarization is
about 15%, and it tends to zero at delays longer than
4 ns. Simultaneously, as the time delay changes, the PL
line, whose initial width is about 3 meV, narrows at T =
4.5 K by 75% (almost 2.5 times at T = 2 K) and by less
than 40% at T = 6 K. The shift toward the long-wave-
length part of the spectrum at T = 4.5 K comprises less
than 0.5 meV and is absent at T = 6K.

Thus, as the time delay increases, the IE Pl line dis-
places toward the long-wavelength part of the spec-
trum, narrowing to the highest degree within 3–4 ns
after the laser pulse action. Its degree of circular polar-
ization (60–70%) gradually decreases to zero in a non-
monotonic way under excitation by circularly polarized
light and reaches saturation (25%) under excitation by
linearly polarized light. The time evolution of the line
shift, width, and degree of circular polarization
observed experimentally is critical with respect to tem-
perature. With increasing temperature, the shift
strongly decreases, the line width exhibits no dramatic
change, the initial degree of circular polarization mark-
edly decreases, and the spin relaxation time becomes
significantly shorter. All the events indicated above take
place in the temperature range up to Tc ≤ 6 K.

4. All the experimental results outlined above con-
firm the suggestion that we made previously (see [15])
about the collective nature of the event that occurs with
interwell excitons at low temperatures. Qualitatively,
the pattern of the origination of the collective exciton
phase can be described as follows. At low temperatures
(T ≤ 2 K), as the density of the optical excitation power
JETP LETTERS      Vol. 75      No. 4      2002
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increases, IEs fill the potential relief in the quantum-
well plane, which arises from residual impurities,
defects, and other structural imperfections. This is man-
ifested as a narrowing of the PL line with an increase in
pumping, which ceases to reflect the statistical distribu-
tion of fluctuation amplitudes of the random potential.
In our opinion, the sharp narrowing of the PL line and
the superlinear rise in its intensity cannot be associated
with only the attainment of the percolation threshold by
IEs, because this event is very sensitive to temperature,
though it has no distinct temperature boundary. Berman
and Lozovik showed [11] that a sufficiently dense sys-
tem of IEs at certain values of the dipole moment of the
interwell exciton could condense into a dielectric phase
in spite of the dipole repulsion among such excitons.
An essential amendment was made in [12], whose
authors indicated that such a condensation in real sys-
tems can most probably occur in regions with confine-

Fig. 3. Time-delayed IE PL spectra (numbers to the right of
the spectra correspond to the time delay relative to the laser
pulse in ns) under the resonance excitation of the direct
1sHH exciton by linearly polarized light integrated over
1 ns and recorded at an applied bias of +0.5 V, T = 2 K, and
P = 30 kW/cm2. Full curves correspond to σ+ circular polar-
ization, and dotted curves correspond to σ– circular polar-
ization.
JETP LETTERS      Vol. 75      No. 4      2002
ments in the quantum-well plane. In the structures stud-
ied using the technique of epitaxial growth interrupted
at heteroboundaries (in our case, the growth interrup-
tion time reached 2 min), large-scale fluctuations of the
widths of quantum wells and barriers arise in the plane
of heteroboundaries (the geometrical size of fluctua-
tions in the direction of epitaxial growth is of the order
of one monolayer). The characteristic linear scales of
such fluctuations in the quantum-well plane reach one
micrometer (see, for example, [17]). Because of such
fluctuations, lateral wells or domains arise in the quan-
tum wells themselves. As judged from the characteris-
tic doublet structure in the photoluminescence excita-
tion spectra of intrawell excitons measured in our sam-
ples, the depth of such domains reaches 1.5—2 meV.
IEs can accumulate in these domains, because the
boundaries of lateral domains prevent excitons from
spreading randomly in the quantum-well plane. We

Fig. 4. (a) Temperature dependence of the IE PL line width
under excitation by linearly polarized light as a function of
time delay at an applied bias of +0.5 V, T = 2 K and P =
30 kW/cm2. Dashed curves are given for convenience.
(b) Temperature dependence of the degree of circular polar-
ization of the IE PL line under excitation by linearly polar-
ized light as a function of time delay for the spectral posi-
tion of 1.5365 eV.
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believe that it is in these domains where the density of
excitons and their temperature reach critical values that
the IEs demonstrate a collective behavior. Thus, as the
exciton density increases, the random potential fluctua-
tions become shielded to a certain extent. With a further
increase in density exceeding the percolation threshold,
the IEs become delocalized within macroscopically
large domains; however, their motion is spatially con-
fined by the dimensions of the domains in which exci-
tons are accumulated. IEs are composite bosons;
therefore, excitons must condense upon reaching the
critical concentration and temperature values (ana-
logue of Bose–Einstein condensation). Under condi-
tions of the confinement in the quantum-well plane, the
critical temperature at which this condensation takes
place can be determined using the equation Tc =
π"2Nex/kmexln(NxS) ln (NxS), where Nx is the exciton
concentration, mex is the exciton mass, and S is the
domain area. If it is assumed that the exciton mass
mex = 0.25m0 and the domain size is 0.5 µm2, we obtain
the critical temperature Tc = 3 K for the densities Nex =
5 × 1010 cm–2 used in our experiment. This is very close
to the values observed experimentally. It should also be
noted that the measurements under our experimental
conditions are carried out simultaneously with several
tens of domains with regard to the fact that the smallest
geometrical size of the excitation spot on a sample from
which luminescence spectra are detected is about
30 µm. Considering the dispersion of the lateral sizes of
domains and the integration of spectra from domains
differing in lateral size, we are not surprised that we do
not observe a sharp threshold of critical behavior in
temperature in the experiments described above. For
the same reasons, the smallest observed luminescence
line width (about 1 meV) is inhomogeneous, because
domains differing in size contribute to the line width. At
the same time, the sharp narrowing of the interwell
exciton luminescence line observed experimentally at
T < Tc (Tc ~ 6 K) and the long-wavelength shift of this
line (about 1.5 meV) in accordance with the filling of
the lowest energy state in the domain are clear manifes-
tations of Bose properties of excitons.

The condensed IE phase must exhibit coherent
properties. This means that IEs must possess the same
phase on the scales of the de Broglie wavelength, which
is close to the linear domain sizes. In our opinion, this
phase coherence of excitons must, in its turn, affect the
radiative annihilation rate, and this rate must increase.
It is clearly evident from the kinetics of luminescence
spectra that the lifetime of the collective exciton state is
more than an order of magnitude shorter than the lumi-
nescence decay time of localized IEs. Thus, the
increase in the radiative decay rate of IEs and the result-
ing increase in the degree of circular polarization of
luminescence are particular manifestations of the
coherence of the collective exciton state.

Note in conclusion that, experiments on measuring
luminescence spectra from single domains with the use
of near-field optics or scanning tunneling optical
microscopy for this purpose are of special interest in the
context of the results discussed above. We expect that
more drastic spectral changes should be observed in
this case near the critical temperature and that the
homogeneous luminescence line width in the con-
densed phase must comprise no more than several tens
of microelectron volts. In the case of weak tunnel cou-
pling of two domains containing coherent exciton
phases, phenomena similar to the Josephson effect
must be observed: luminescence intensity beats and
rotation of the plane of polarization.

This work was supported by the Russian Foundation
for Basic Research, project no. 01-02-16471, and partly
by the Interagency program on “Nanostructures.”

REFERENCES
1. E. Yu. Lozovik and V. I. Yudson, Zh. Éksp. Teor. Fiz. 71,

738 (1976) [Sov. Phys. JETP 44, 389 (1976)].
2. T. Fukuzawa, E. E. Mendez, and J. M. Hong, Phys. Rev.

Lett. 64, 3066 (1990).
3. J. E. Golub, E. E. Mendez, J. P. Harbison, and L. T. Flores,

Phys. Rev. B 41, 8564 (1990).
4. J. A. Kash, M. Zachau, E. E. Mendez, et al., Phys. Rev.

Lett. 66, 2247 (1991).
5. L. V. Butov, A. Zrenner, G. A. Abstreiter, et al., Phys.

Rev. Lett. 73, 304 (1994); L. V. Butov, in Proceedings of
the 23rd International Conference on Physics of Semi-
conductors, Berlin, 1996.

6. V. B. Timofeev, A. I. Filin, A. V. Larionov, et al., Euro-
phys. Lett. 41, 435 (1998).

7. V. B. Timofeev, A. V. Larionov, A. S. Ioselevich, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 67, 630 (1998) [JETP Lett.
67, 613 (1998)].

8. V. V. Krivolapchuk, E. S. Moskalenko, A. L. Zhmodikov,
et al., Solid State Commun. 111, 49 (1999).

9. D. Yoshioka and A. H. MacDonald, J. Phys. Soc. Jpn. 59,
4211 (1990).

10. X. M. Chen and J. J. Quinn, Phys. Rev. Lett. 67, 895
(1991).

11. Yu. E. Lozovik and O. L. Berman, Zh. Éksp. Teor. Fiz.
111, 1879 (1997) [JETP 84, 1027 (1997)].

12. Xuejun Zhu, P. B. Littlewood, M. S. Hybersen, and
T. Rice, Phys. Rev. Lett. 74, 1633 (1995).

13. L. V. Butov, A. Imamoglu, A. V. Mintsev, et al., Phys.
Rev. B 59, 1625 (1999).

14. L. V. Butov, A. L. Ivanov, A. Imamoglu, et al., Phys. Rev.
Lett. 86, 5608 (2001).

15. A. V. Larionov, V. B. Timofeev, J. M. Hvam, and C. Soe-
rensen, Pis’ma Zh. Éksp. Teor. Fiz. 71, 174 (2000) [JETP
Lett. 71, 117 (2000)].

16. A. V. Larionov, V. B. Timofeev, J. M. Hvam, and C. Soe-
rensen, Zh. Éksp. Teor. Fiz. 117, 1255 (2000) [JETP 90,
1093 (2000)].

17. S. W. Brown, T. A. Kennedy, D. Gammon, and E. S. Snow,
Phys. Rev. B 54, R17339 (1996).

Translated by A. Bagatur’yants
JETP LETTERS      Vol. 75      No. 4      2002



  

JETP Letters, Vol. 75, No. 4, 2002, pp. 205–209. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 75, No. 4, 2002, pp. 239–244.
Original Russian Text Copyright © 2002 by Bulashevich, Rotkin.

                                                         
Nanotube Devices: A Microscopic Model
K. A. Bulashevich1 and S. V. Rotkin2, *

1St. Petersburg State Technical University, ul. Politekhnicheskaya 29, St. Petersburg, 195251 Russia
2Beckman Institute, UIUC, Urbana, IL 61801, USA and Ioffe Institute, 

ul. Politekhnicheskaya 26, St. Petersburg, 194021 Russia
*e-mail: rotkin@uiuc.edu
Received January 21, 2002

A microscopic model is developed for calculating electrostatic properties of nanotube devices. It is shown that
the quantum-mechanical approach yields the same results as the statistical calculation in the limit of a thin tube
suspended over a conducting gate at a distance exceeding the nanotube radius. A closed analytic expression is
obtained for the atomistic capacitance of a straight nanotube and for a nanotube with a modest curvature. This
method allows the fast and exact calculation of device parameters for the nanotube electromechanical systems
and nanotube electronic devices. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 85.35.Kt; 61.46.+w
The high strength of carbon nanotubes, along with
low lateral bending stiffness, a size comparable with
the scale of modern nanotechnologies, and unique elec-
tronic properties provide good prerequisites for their
use in nanotube electromechanical systems (NEMS).

The functioning of nanotweezers composed of two
multiwall nanotubes with their spacing controlled by an
applied voltage was demonstrated experimentally in
2001 [1]. In 2000, it was suggested that a memory cell
can be created on the basis of two crossing nanotubes
[2].

However, the available models and programs for
simulating device characteristics of micron-scale elec-
tromechanical systems cannot be used for the calcula-
tion of NEMS without substantial modification. At the
same time, ab initio calculations of nanotube electronic
and electromechanical devices seem to be impossible.
Therefore, the development of an appropriate physical
model is quite topical. Continuum approximations are
most promising for modeling such devices, because
they provide a high accuracy and minimal computa-
tional expenses. In this work, a microscopic model is
suggested for the description of electrostatic properties
of NEMS, which, in conjunction with the parameteriza-
tion previously developed for the continuum elasticity
of nanotubes [3] and with the continuum theory of van
der Waals forces, allows the derivation of basic equa-
tions for the analysis of the operation of nanotube
devices in nanoelectronics.

In this work, we will apply the electrostatic model to
the analysis of equilibrium charge-carrier distribution
over the nanotube surface, which is necessary for mod-
eling NEMS operation (Fig. 1). In NEMS, the nanotube
shape is determined by the balance between the electro-
static and elastic forces acting on the tube. For weak
bending, typical of NEMS, the elastic forces can be
0021-3640/02/7504- $22.00 © 20205
considered within the framework of a one-dimensional
continuum model [4]. To determine the electrostatic
forces, one should calculate the distribution of a charge
accumulated on the nanotube under the action of the
applied voltage; i.e., one should calculate the distrib-
uted capacitance. At present, the conducting nanotubes
are described using classical electrostatics of macro-
scopic conductors, while the quantum-size effects are
disregarded. This work fills this gap and gives an esti-
mate for the resulting corrections. The capacitance of a
weakly bent nanotube situated over a flat conducting
contact (gate) is expressed in terms of the capacitance
of a metallic cylinder of the same shape.

Theoretical model. First, we ignore all contact phe-
nomena occurring at the contact–nanotube boundary.1

Second, we ignore the transverse polarization of the
nanotube and assume that the charge density depends,
generally, only on the curvilinear coordinate l along the
nanotube axis.2 

The key approximation consists in the use of a local
statistical relation between the acting potential and
charge density

(1)

1 In our model, the difference ∆W = WM – WNT in work functions
of an electron in the contact material and the nanotube can be
taken into account. In doing so, the relation for E0 should be

replaced by E0(l) = ∆W – eφact(l).
2 The estimate of the relative contribution to the capacitance from

the transverse polarization gives  ! 1.
R

2

4h
2

-------- 1
2h/R( )log

-------------------------

ρ l( ) e ν E( ) E,d

0

E0 l( )

∫=
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where E0(l) = –eφact(l) is the electroneutrality level mea-
sured from the Fermi level of the side contact, φact(l) is
the acting potential on the nanotube axis reckoned from
the potential of the side contact, ν(E) is the density of
electronic (hole) states in the nanotube, the energy E is
measured from the electroneutrality level; and e > 0 is
the absolute value of electron charge. This model was
proposed by Odintsov and Tokura for considering the
Schottky barrier between the contact and the nanotube
[5]. Since the density of electron wave functions in the
ring direction is constant if the transverse polarization
is ignored, by the acting potential in all formulas should
be meant its value averaged over the nanotube cross
section.

Fig. 1. Scheme of a nanotube electromechanical device.
The image charge in the bottom contact (gate) is shown by
dashes.

Fig. 2. Linear capacitance of a straight nanotube (in units of
c∞) vs. the distance (in nm) to the side contact. The results
of quantum-mechanical calculation (solid curve) are shifted
upward, because they coincide with the results of statistical
calculation (dot-and-dash curve) to within oscillations (see
text). The dashed curve is an approximation (10). The nan-
otube height is 5 nm, its radius is 0.67 nm, and its length is
50 nm.
For the conducting nanotubes, the density of states
near the electroneutrality level is constant and equals
νM = 8/3πbγ0. Here, b = 0.14 nm and γ0 = 2.7 eV are the
bond length and the hopping integral, respectively.

Then, if the condition e|φact | ≤ γ0(b/R), where R is the

nanotube radius, is met, the charge density linearly
depends on the acting potential

(2)

The product of the density of states into the squared
electron charge e2νM = 3.2 is the dimensionless param-
eter of our problem.

Expression (1) is written in the zero-temperature
limit. However, since the density of states is constant,
Eq. (2) also holds for the temperatures at which carrier
thermal excitations to the next subband can be ignored.

To test the statistical model, we calculated the
charge distribution on a straight armchair nanotube of
finite length by solving the Poisson and Schrödinger
equations self-consistently. The Schrödinger equation
was solved in the tight-binding approximation [6]. The
resulting charge density and the corresponding value
calculated by the statistical model coincided to within
quantum beats due to finiteness of the nanotube length
(Fig. 2). Analogous beats were observed experimen-
tally in [7].

Semi-infinite straight nanotube over flat contact.
Let us consider a single-wall nanotube arranged paral-
lel to the flat contact at a height h (Fig. 1). The voltage
V is applied between the side and bottom contacts. We
will reckon the acting potential from the side contact.
Then, the potential of the bottom contact is –V and the
charge density on the nanotube is positive.

The Green’s function G(r, r') in the region bounded
by two perpendicular planes is the sum of the potentials
of a probe unit charge and three image charges. The act-
ing potential can be written as

(3)

The first term in Eq. (3) is the potential created by two
contacts with the voltage V applied to them in the
absence of the nanotube. By integrating the Poisson
equation for two perpendicular contacts, one obtains
this term in the form

(4)

The second term is the potential created by the nano-
tube charge and the image charges. Substituting Eq. (3)
into Eq. (2) and taking into account that the nanotube

3
2
---

ρ l( ) e2νMφact l( ).–=

φact r( ) φext r( ) 4π G r r',( )ρ r'( ) r'.d∫+=

φext r( ) φext x z,( ) V
2
π
--- z

x
-- 

  .arctan–= =
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charge density depends only on z, one obtains the inte-
gral equation for the linear charge density

(5)

with the one-dimensional Green’s function

(6)

as a kernel, where α and α' are the angular coordinates
of the points r and r' in the nanotube-fixed cylindrical
system of coordinates. The quantity F(z, z') is the
energy of screened Coulomb interaction between two
uniformly charged rings representing cross sections of
a nanotube of radius R at distances z and z' from the side
contact (Fig. 1). In Eq. (6), averaging is done over the
angles α and α', because the acting potential in Eq. (2)
means its average over the nanotube cross section.

If the distances z and z' to the side contact are much
larger than the height h, the contribution from the image
charges in the side contact to the one-dimensional
Green’s function is on the order of 2h2/(z + z')3 and,
hence, can be ignored in comparison with the influence
of the image charge in the bottom contact. Then, the
kernel depends only on the difference ∆z = |z – z'| and
behaves as

(7)

where K is the complete elliptic integral of the first
kind. Let us now determine the asymptotic value of the
charge density at z  ∞. The right-hand side of
Eq. (5) becomes equal to the applied voltage V, and the
charge density becomes

(8)

In Eq. (8), c∞ = (1/e2νM + 1/ )–1 is the nanotube ato-
mistic capacitance and the notation

(9)

ρ z( )

e2νM

----------- F z z',( )ρ z'( ) z'd

0

∞

∫+ φext z( )–=

F z z',( )
1

4π2
--------=

× 4πG z R α, ,( ) z' R α', ,( ),( ) αd α'd

π–

π

∫
π–

π

∫

F z z',( )
2

π∆z
----------K

4R2

∆z 2
-----------– 

  1

∆z( )2 4h2+
--------------------------------–=

≈

1
πR
------- 8R

∆z
------- 

  , ∆z ! R,log

1
∆z
------, R ! ∆z ! 2h,

2h3

∆z( )3
-------------, ∆z @ 2h,











ρ∞ φ∞
extc∞ Vc∞

met 1 c∞
met/e2νM–( ).≈–=

c∞
met

c∞
met F ∆z( ) ∆zd

∞–

∞

∫ 
 
 

1–

1
2 2h/R( )log
-----------------------------= =
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is introduced for the capacitance of a unit length of an
infinite metallic cylinder of radius R situated at a
height h parallel to the flat conducting contact. Thus,
the relative correction to the classical capacitance is

− /e2νM. For the typical values h = 5 nm and R =
0.67 nm ([10, 10] armchair nanotube), this amounts to
8%. The correction to the capacitance is inversely pro-
portional to the nanotube density of states, so that it is
inversely proportional to the number of layers in multi-
layer nanotubes. The correction to capacitance weakly
(logarithmically) depends on the ratio of the nanotube
radius to the distance from the contact.

By analogy with [5], one can analytically calculate
the charge-density Fourier component for the straight
semi-infinite nanotube (see Appendix). However, for
the bent nanotube one fails to obtain a solution in the
closed form. Away from the side contact, the charge
density changes slowly compared to the one-dimen-
sional Green’s function. For this reason, to find an
approximate expression for the charge density as a
function of the distance to the side contact, one may
factor charge density outside the integral sign in
Eq. (5). As a result, one arrives at the following approx-
imate expression describing the behavior of the charge
density as it approaches its asymptotic value ρ∞ (see
Appendix):

(10)

To make an estimate for engineering and calculating
the characteristics of nanotube electronic and electro-
mechanical devices, we suggest that the finite-length
nanotube be divided into three regions: (i) near-contact
region, where the screening effect of the image charge
in the side contact should be taken into account,
(ii) central region, where the charge density is deter-
mined by the screening effect of the image charges in
the bottom contact (gate), and (iii) end region (only for
nanotubes with a free edge), where the charge density
is higher than in the central region.

For example, the charge density on the straight sin-
gle-wall nanotube behaves as follows: it increases lin-
early on the length of order h near the side contact,
asymptotically approaches the value ρ∞ following the
hyperbolic law, and again then increases on the length
of order R near the nanotube end (Fig. 2). Correspond-
ingly, the electric field component along the nanotube
axis is equal to c∞V/e2νMh in the near-contact region
and decreases rapidly as c∞Vh2/e2νMhz2 in the central
region. This approximation allows for the rapid calcu-
lation of the Coulomb forces when modeling NEMS.

Bent nanotube of finite length. Let the nanotube
axis form be specified by the function r(l). The specific

c∞
met

ρ z( ) c∞φext z( ).–≈
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charge density on the nanotube is determined by the
equation

(11)

where L is the nanotube length and, similarly to Eq. (6),
the one-dimensional Green’s function F(l, l ') is equal to
the energy of a screened Coulomb interaction of two
uniformly charged rings representing cross sections of
the nanotube at distances l and l'.

By integrating with respect to dz' and introducing

the function F1(z, z') = F(l, l ') , where h(z) is
the x coordinate of a small nanotube element at a dis-
tance z from the side contact, one obtains the equation
for the charge density in the form analogous to Eq. (5),

(12)

Let us now find the approximate solution to Eq. (12)
for a deformed nanotube. Let the nanotube be initially
situated at a height h0 parallel to the bottom contact and
bent under the action of electrostatic forces. The nano-
tube height over the bottom contact, the kernel of
Eq. (12), and the charge density can be written as

(13)

where F0 and ρ0 are, respectively, the kernel and the
charge density for the straight nanotube at a height h0.
Note that δF < 0 for downbending, because the screen-
ing image charges in the bottom contact become closer
to the nanotube in this case. Then, assuming that the
nanotube bending is small, one obtains the following
equation for the correction δρ:

(14)

As pointed out above, the charge density in the cen-
tral region of the straight nanotube increases very
slowly and tends to ρ∞. One can then factor ρ0 ≈ ρ∞ out-
side the integral sign on the right-hand side of Eq. (14)
for the central region of the nanotube because of a fast
decrease in δF. Now, the function F0(z, z') in the integral
on the left-hand side of Eq. (14) has a logarithmic sin-
gularity at z = z' and rapidly decreases at |z – z' | > 2h
[see Eq. (7)]. Since we assume that the bending is
small, while the capacitance logarithmically depends
on the height, the charge density is a smooth function
of the coordinate z. Then, the charge-density variation
can also be factored outside the integral sign on the left-

ρ l( )

e2νM

----------- F l l',( )ρ l'( ) l'd

0

L

∫+ φext r l( )( ),–=

1 h' z'( )2+

ρ z( )

e2νM

----------- F1 z z',( )ρ z'( ) z'd

0

∞

∫+ φext h z( ) z,( ).–=

h h0 δh, F1+ F0 δF, ρ+ ρ0 δρ,+= = =

δρ z( )

e2νM

------------ F0 z z',( )δρ z'( ) z'd

0

∞

∫+

=  δF z z',( )ρ0 z'( ) z'
∂φext

∂h
-----------δh.–d

0

∞

∫–
hand side of Eq. (14). Introducing notation  =
−∂φext/∂h, one obtains the following expression for the
correction to the charge density:

(15)

Therefore, the capacitance of the bent nanotube is

(16)

As the density of states νM tends to infinity, our
problem reduces to determining the specific capaci-
tance of a metallic cylinder shaped like a nanotube.
After the approximate solution of Eq. (12), for the bent
metallic cylinder one has

(17)

Comparing Eqs. (16) and (17) with the use of Eq. (8)
for c∞ and retaining only the leading term in the correc-
tion to the capacitance, one obtains the following rela-
tion between the capacitance of the bent nanotube and
the capacitance of a bent metallic cylinder:

(18)

Equation (18) generalizes Eq. (8).
Thus, we have found a simple relation between the

capacitance of a weakly bent nanotube and the capaci-
tance of a metallic cylinder of the same shape.

The results of our calculations allow one to formu-
late the following principles of modeling the electro-
static properties of electromechanical and electronic
nanodevices based on single- and multiwall carbon
nanotubes: (1) the equilibrium one-dimensional spe-
cific charge density at the tube surface is linearly
related to the external potential, with the proportional-
ity coefficient designated below as the nanotube atom-
istic capacitance; (2) the nanotube atomistic capaci-
tance is determined not only by the intrinsic properties
of the nanotube material (density of states at the Fermi
level) but also by the geometry of a device (in NEMS,
distance from the gate) because of the one-dimensional
character of charge screening in the system; (3) the nan-
otube atomistic capacitance can be expressed analyti-
cally through the classical capacitance of a metallic cyl-
inder of the same shape and through the density of
states in the nanotube; the corresponding expression
holds for a single-wall nanotube in the voltage range of
a few volts and for modest deformations also having no

Ex
ext

δρ z( ) Vc∞
2 δF z z',( ) z'd

0

∞

∫ c∞Ex
extδh.+–=
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effect on the electronic structure of the tube; and (4) the
resulting expressions can be used to avoid computa-
tional difficulties in calculating the electrostatic forces
in NEMS with good accuracy. The further generaliza-
tion of the theory to the case of nonequilibrium charge
density will be helpful in deriving equations for the
analysis of the operation of nanotube electronic
devices.
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APPENDIX

Closed expression for the charge density on a
straight semi-infinite nanotube. Formally, the influ-
ence of the image charge in the side contact can be
taken into account as follows. Let us continue the
charge density ρ and the external potential φext to the
half-space z < 0 in an odd way. Then, Eq. (5) can be
rewritten as

(19)

where the kernel F2 does not contain terms correspond-
ing to the image charges in the side contact:

(20)

Since the kernel F2 for the infinite straight nanotube
depends only on the difference ∆z = z – z', the Fourier
transform converts integral equation (19) into an alge-
braic equation. Then, the exact solution to Eq. (19) in

ρ z( )

e2νM

----------- F2 z z',( )ρ z'( ) z'd

–∞

∞

∫+ φext z( ),–=

F2 z z',( )
2

π z z'–
------------------K

4R2

z z'– 2
----------------– 

 =

–
1

z z'–( )2 4h2+
-------------------------------------.
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the k space has the form

(21)

where  and F2k are the Fourier components of the
external potential and kernel, respectively:

(22)

(23)

where I0 and K0 are modified zero-order Bessel func-
tions [8]. The approximation in Eq. (10) is obtained
from Eq. (21) by the replacement of the kernel Fourier
component F2k by its zero-wave vector value F20 =
(1/π)log(2h/R). Inasmuch as the Fourier component

 of the external potential rapidly decreases with an
increase in the wave vector, the resulting approximation
is quite accurate.
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Erratum: “The Efficiency of Repeaters Based 
on the Einstein–Podolsky–Rosen Effect 
for Quantum Cryptography in a Damping Channel”

[JETP Letters 74, no. 10, 517 (2001)]
S. N. Molotkov

PACS numbers: 03.67.Dd; 03.65.Ud
In the titled article, I criticized the work of L. M. Duan
et al. {Nature 414, 413 (2001), quant-ph/0105105;
ref. [4]} and argued that, to create a through EPR pair
in the damping channel, an exponentially large number
of attempts are required to generate the EPR pair, rather
than a polynomially large number, as was stated in [4].
My arguments disregarded the presence of the quantum
0021-3640/02/7504- $22.00 © 20210
memory that was used in [4] and because of which the
conclusion drawn in [4] about the polynomial increase
in resources is correct.

I make my apology.
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