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The propagation characteristics of magnetization waves, as well as the instabilities of sound waves in a self-
gravitating dark interstellar molecular cloud containing ferromagnetic dust grains and baryonic gas clouds,
have been theoretically investigated by including the dynamics of both ferromagnetic dust grains and baryonic
gases. It has been shown that there exist two types of subsonic or supersonic (depending on the field strength
of the magnetization) transverse magnetization waves, which can be regarded as counterparts of Alfvén waves
(for the parallel propagation) and magnetosonic waves (for the perpendicular propagation) in a magnetoactive
plasma. It has also been found that, in addition to the usual Jeans instability, the sound waves suffer a new type
of instability, which is due to the combined effects of the baryonic gas dynamics and self-gravitational field in
both weakly and highly collisional regimes. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 98.38.Dq; 98.38.Am
12 Waves and instabilities in molecular clouds have
become outstanding and challenging topics in space
science and modern astrophysics because of their cru-
cial role in understanding collapse, formation and evo-
lution of interstellar molecular clouds, star formation,
galactic structure and its evolution, etc. [1–10]. The
instability of self-gravitating large gas clouds was first
predicted by Jeans [1] about a hundred years ago. It was
later rigorously investigated by a number of other dis-
tinguished physicists including Eddington [2], Chan-
drasekhar [3], Friedman and Polyachenko [4], Mestel
and Spitzer [5], Spitzer [6], and others.

Theoretical studies [5–10] suggested that magnetic
fields play a vital role in the evolution of interstellar
clouds into self-gravitating star-forming regions. Mes-
tel and Spitzer [5], as well as Spitzer [6], recognized the
importance of ambipolar diffusion (a process by which
the magnetic field carried by the ions diffuses through
the neutral gas). Strittmatter [7] estimated the critical
mass for gravitational collapse perpendicular to a mag-
netic field. Mouschovias [8, 9] rigorously investigated
self-gravitating magnetic clouds by numerical simula-
tions. Mouschovias and Spitzer [10] obtained an
expression for the critical mass-to-magnetic flux ratio
from the numerical studies of Mouschovias [8, 9].

On the other hand, Jones and Spitzer [11] provided
a model for the existence of gas-dust interstellar medi-
ums with a highly pronounced property of magnetic
polarizability. This can be assumed due to a superpara-
magnetic dispersion of the fine ferromagnetic grains

1  This article was submitted by the authors in English.
2 Permanent address: Department of Physics, Jahangirnagar Uni-

versity, Savar, Dhaka, Bangladesh.
0021-3640/02/7505- $22.00 © 20213
suspended in a gaseous cloud of molecular hydrogen.
The regular galactic magnetic field threading such a
medium introduces anisotropy in the orientation of per-
manently magnetized solid particles, tending to align
their magnetic moments. The alignment of magnetic
grains can be accompanied by filamentary agglomera-
tion of dust particles (presumably by means of dipole–
dipole interaction between magnetic moments of ferro-
magnetic grains) in the form of long-range magnetic
chains extending along the direction of the regular
magnetic field. Based on this model of Jones and
Spitzer [11] and motivated by recent measurements of
magnetic fields toward cores in magnetically supported
dark interstellar clouds [12], Yang and Bastrukov [13]
reported an alternative mechanism of large-scale wave
motion in a one-component ferromagnetic neutral fluid.
They suggested [13] that supersonic linewidths
(inferred from the recent measurements of magnetic
fields toward cores in magnetically supported dark
interstellar clouds [12]) may be due to the transverse
waves of magnetization propagating in such a one-
component ferromagnetic neutral fluid.

The limitations of the analysis of [13] were that the
ferromagnetic dust particles and baryonic gas mole-
cules are assumed to be identical with a constant mass
density [i.e., md = mb and nd = nb = const are assumed,
where md  (mb) is the mass of the ferromagnetic dust
particle (baryonic gas molecule) and nd  (nb) is the fer-
romagnetic dust particle (baryonic gas molecule) num-
ber density], and the effects of a self-gravitational field,
collisions of dust particles with baryonic gas mole-
cules, and the motions of ferromagnetic dust particles
parallel to the direction of the magnetic moment were
002 MAIK “Nauka/Interperiodica”
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neglected. However, in interstellar molecular clouds
[14–20] md ≠ mb and nd ≠ nb ≠ const., and the effects of
the self-gravitational field, collisions of dust particles
with baryonic gas molecules, etc., cannot be neglected
[14–20]. Thus, in order to study waves and instabilities
in interstellar molecular clouds containing ferromag-
netic dust particles [14–20], one must consider a two-
component neutral fluid (ferromagnetic dust particles
and baryonic gas molecules) and include the effects of
mass density perturbations of the ferromagnetic dust
fluid and the baryonic gas cloud, self-gravitational
field, collisions of dust particles with baryonic gas mol-
ecules, etc. In this letter, we generalize the model of
Yang Bastrukov [13] for a two-component (ferromag-
netic massive dust fluid and baryonic gas cloud), self-
gravitating, compressible fluid system including colli-
sions. We have found that there exist two types of subsonic
or supersonic (depending on the field strength of magneti-
zation) transverse magnetization waves, and, in addition to
the usual Jeans instability, the sound waves are subjected
to a new type of instability which is due to the combined
effects of the baryonic gas dynamics and self-gravitational
field acting on massive dust particles.

We consider a model of a self-gravitating interstellar
molecular cloud containing ferromagnetic dust parti-
cles and a baryonic gas cloud. These two fluids (ferro-
magnetic dust fluid and baryonic gas cloud) are
assumed to be intercoupled via the gravitational inter-
action and dust-baryonic gas molecule collisions. For
our purposes, we have the linearized basic equations
describing the massive ferromagnetic dust fluid [13]

(1)

(2)

(3)

the baryonic gas cloud [14],

(4)

(5)

ρd/ t∂∂ ρd0∇ ud⋅+ 0,=

ud∂
t∂

-------- –∇Ψ
2Vm

2

m0
----------∇ m ẑ×( )× νdb ud ub–( ),–+=

m∂
t∂

-------
m0

2
------ ∇ ud×( ) ẑ;×=

ρb/ t∂∂ ρb0∇ ub⋅+ 0,=

ub∂
t∂

-------- –∇Ψ
Cb

2

ρb0
-------∇ρ b;–=
and the gravitational potential Ψ

(6)

where ud  (ub) is the dust fluid (baryonic gas cloud)
velocity, ρd  (ρd0) is the perturbed (equilibrium) dust
fluid mass density, ρb  (ρb0) is the perturbed (equilib-
rium) baryonic gas mass density, m0 = m0 is the per-
turbed (equilibrium) field of magnetization (magnetic

moment per unit volume), Vm =  repre-
sents the speed of the magnetization wave [13], Cb rep-
resents the sound speed for the baryonic gas, νdb is the
collision frequency of ferromagnetic dust particles with
baryonic gas molecules, and G is the universal gravita-
tional constant.

To derive the dispersion relation for the perturbation
waves, we assume that all perturbed quantities ρd , ud,
m, ρb, ub, and Y are proportional to exp(–iωt + k · r),
where ω is the frequency and k is the wave propagation
vector. Thus, substituting ∂/∂t = –iω and ∇  = ik into
Eqs. (1)–(6), we have

(7)

where Ω2 = ω2 + iνdbω,  = αb /k2, αb = 1 – (  –

iνdbω)/(ω2 – k2  + ), ωJd = , and ωJb =

. From Eq. (7), we can express x, y, and
z components of ud as

(8)

(9)

(10)

Equations (8)–(10) then readily give a general disper-
sion relation,
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We now assume that k lies in the y–z plane; i.e., kx = 0.
Thus, the dispersion relation (11) can be simplified as

(12)Ω2 kz
2Vm

2–( ) Ω2 k2Vm
2–( ) Ω2 k2Vα

2+( ) 0.=
Equation (12) predicts three possible modes; namely,

Ω2 –  = 0, Ω2 – k2  = 0, and Ω2 + k2  = 0.

These three modes can be interpreted as follows.

kz
2Vm

2 Vm
2 Vα

2
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A. The mode W2 –  = 0: Substituting Ω , we
can express this mode as

(13)

When νdb ! ω, we have a stable transverse mode of

magnetization (ω2 = ) considered by Yang and
Bastrukov [13]. On the other hand, when we consider

νdb ≠ 0 and assume ω = ωr + iωi, we have  =  –

 and ωi = –νdb/2. Accordingly, we have a damped
mode with a damping rate νdb/2.

B. The mode W2 – k2  = 0: Substituting Ω,  we
can express this mode as

(14)

The difference between mode (14) and mode (13) is

that mode (14) contains the extra term . Mode
(14) represents a more general form of the dispersion
relation for the obliquely propagating magnetization
waves. We note that one cannot consider the perpendic-
ular propagation of the magnetization waves from the
dispersion relation (13) or from the dispersion relation
for the magnetization waves derived by Yang and Bas-
trukov [13]. This is because of their taking curl of the
ferromagnetic dust fluid velocity ud. We now compare

the magnetization wave speed Vm =  with

the Alfvén speed VA =  and with the isother-

mal sound speed Cb = . Using m0 = 3B0/8π,
we have Vm/VA . 0.61 and

(15)

It is clear from Vm/VA . 0.61 that the magnetization-
wave motions are sub-Alfvénic. Taking typical param-
eters for interstellar molecular clouds, i.e., considering
one micron-sized ferromagnetic dust grains of the num-
ber density [15–18] nd0 . 10–7 cm–3, the H2 cloud [15–20]
of the temperature Tb . 10 K, and the number density
nb0 . 103 cm–3, we have Vm/Cb . 0.4012 for B0 . 10 µG
and Vm/Cb . 1.003 for B0 . 25 µG. This means that the
magnetization-wave motions are subsonic for B0 <
25 µG and supersonic for B0 ≥ 25 µG. However, Yang
and Bastrukov [13] showed that the magnetization-
wave motions are supersonic (Vm/Cb . 1.47) for B0 .
10 µG. This discrepancy is due to the fact that Yang and
Bastrukov [13] used md = mb = 3.9 × 10–13 gm and nd0 =
nb0 = 103 cm–3, whereas we used nd0 = 10–7 cm–3, nb0 =
103 cm–3, md = 5 × 10–13 gm (corresponding to one-
micron-sized dust grains), and mb = 3.9 × 10–24 gm. For
these parameters (nd0 = 10–7 cm–3, nb0 = 103 cm–3, md =

kz
2Vm

2

ω2 iνdbω+ kz
2Vm
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kz
2Vm

2
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2Vm
2
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2
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2
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2
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3B0
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32πnd0mdkBTb

------------------------------------.=
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5 × 10–13 gm, and mb = 3.9 × 10–24 gm), we also numer-
ically estimated the Jeans frequency corresponding to
the dust particles and the baryonic gas molecules.
These are ωJd . 2.05 × 10–13 s–1 and ωJb . 5.72 ×
10−14 s–1, respectively.

C. The mode W2 + k2  = 0: Substituting Ω and
Vα, we can express this mode as

(16)

Equation (16) represents the sound waves associated
with the baryonic gas molecules coupled by their colli-
sions with dust particles and/or the self-gravitation field
acting on dust particles and baryonic gas molecules. To
explain it theoretically, we now consider two cases.

(i) Weakly collisional case: We consider the weakly
collisional case, i.e., νdb ! ωJd , ωJb, which allows one
to express Eq. (16) as

(17)

where ωJ = . When ω @ kCb, we have from
Eq. (17)

(18)

This clearly represents a purely growing mode (since
ωJ > kCb, in order to satisfy ω @ kCb), where Cb plays
the stabilizing role. This instability is just the usual
Jeans instability and is well understood, since Jeans
predicted the instability of self-gravitating large gas
clouds [1].

On the other hand, when ω2 ! |  – k2 |, we have
from Eq. (17)

(19)

Equation (19) represents a new mode which is due to
the combined effects of the baryonic gas dynamics and
the self-gravitational field. This mode disappears if we
neglect the baryonic-gas dynamics or the gravitational
field acting on the dust grains. The important character-
istics of this mode is that it is stable for ωJ > kCb, but is
unstable (purely growing) for ωJ < kCb, which is oppo-
site to the criterion for the Jeans instability.

(ii) Highly collisional case: We consider a very
low-frequency mode in a highly collisional case, for

which we can take νdb @ ω and |  – k2 | @ ω2.
These approximations allow one to express Eq. (16) as

(20)

Va
2

ω2 iνdbω ωJd
2+ +( ) ω2 k2Cb

2– ωJb
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=  ωJd
2 ωJb
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ωJb
2 ωJd
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ω2 k2Cb
2 ωJ

2.–=

ωJ
2 Cb

2

ω2 ωJd
2 k2Cb

2

ωJ
2 k2Cb
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ωJ
2 Cb

2

ω i
ωJd

2 k2Cb
2

νdb k2Cb
2 ωJ
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This clearly indicates that this particular mode is purely
damped for ωJ > kCb, but is purely growing (unstable)
for ωJ < kCb. The instability is due to the combined
effects of the baryonic gas dynamics and the self-grav-
itational field in a highly collisional regime.

To summarize, we have considered a two-compo-
nent neutral fluid (one is a massive ferromagnetic dust
fluid and another is a baryonic gas cloud) and investi-
gated the properties of obliquely propagating sub-
Alfvénic magnetization waves, as well as sound waves
by including the effects of collisions, the self-gravita-
tional field, and the dynamics of both ferromagnetic
dust particles and baryonic gas molecules. We have
shown that two types of transverse magnetization
waves, which can be regarded as counterparts of Alfvén
waves (for the parallel propagation; i.e., for ky = 0) and
of magnetosonic waves (for the perpendicular propaga-
tion; i.e., for kz = 0) in a magnetoactive plasma. We have
found that for typical interstellar molecular cloud
parameters [15–20], e.g. Tb . 10 K, nb0 . 103 cm–3,
mb . 3.9 × 10−24 gm (mass of the hydrogen molecule),
nd0 . 10−7 cm–3, md . 5 × 10–13 gm (corresponding to
one-micron-sized dust grains), the magnetization-wave
motions are supersonic for B0 ≥ 25 µG.

We have also investigated the sound waves propa-
gating in a self-gravitating gas-dust medium containing
tiny (micron sized) dust grains suspended in a cold gas
cloud of molecular hydrogen. We have shown that in
addition to the usual Jeans instability, the sound waves

satisfying ωJ < kCb < ωJ and ω2 ! |k2  – | suffer a
new type of instability which is due to the combined
effects of the baryonic-gas dynamics and self-gravita-
tional field in both weakly collisional [cf. Eq. (19)] and
highly collisional [cf. Eq. (20)] limits.

A.A. Mamun acknowledges the support of the Alex-
ander von Humboldt-Stiftung (Bonn, Germany).
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The monopole creation operator proposed recently by Fröhlich and Marchetti is investigated in the Abelian
Higgs model with compact gauge field. We show numerically that the creation operator detects the condensa-
tion of monopoles in the presence of the dynamical matter field. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 12.38.Gc; 14.80.Hv
1 The value of deconfinement temperature is one of the
most important predictions of the lattice QCD. To study
the temperature phase transition, we have to investigate
the order parameter. For full QCD, when dynamical
quarks are taken into account, the string tension and the
expectation value of the Polyakov line are not the order
parameters. On the other hand, in the dual supercon-
ductor model of QCD vacuum [1], we have the natural
order parameter for the confinement–deconfinement
phase transition. This is the value of monopole conden-
sate. It should be nonzero in the confinement phase (the
monopoles are condensed as the Cooper pairs in ordi-
nary superconductors) and zero in the deconfinement
phase. To extract the monopole from vacuum of the
non-Abelian fields, we have to perform the Abelian
projection [2] and, after that, we can evaluate the value
of monopole condensate using the monopole creation
operator.

Originally, the gauge-invariant monopole-creation
operator was proposed by Fröhlich and Marchetti for
compact U(1)-gauge theory [3]. The construction is
analogous to the Dirac creation operator [4] for a
charged particle. The monopole operator was numeri-
cally studied in the compact Abelian gauge model [5]
and in the pure SU(2)-gauge theory in the usual [6] and
the spatial [7] Maximal Abelian gauges. It was found
that the expectation value of this operator behaves as an
order parameter for the confinement–deconfinement
phase transition; the expected value is nonzero in the
confinement phase and zero in the deconfinement
phase. Similar conclusions were made for the other
types of monopole-creation operators [8]. These results
confirm the dual superconductor hypothesis [1] for a
gluodynamics vacuum.

1 This article was submitted by the authors in English.
0021-3640/02/7505- $22.00 © 20217
However, the monopole operator discussed in [3]
exhibits some inconsistency in the presence of charged
matter fields; namely, the Dirac string becomes visible.
To get rid of the Dirac string dependence, a new mono-
pole operator was proposed recently in [9]. Note that
even the pure gluodynamics contains electrically
charged fields in the Abelian projection: the off-diago-
nal gluons are (doubly) charged with respect to the
diagonal gluon fields. Thus, the newly proposed opera-
tor [9] is more suitable for the investigation of confine-
ment in SU(N)-gauge theories than the older operator
[3]. The purpose of this paper is to check numerically
whether the new monopole-creation operator is the
order parameter in theories with matter fields. Below,
we study the compact Abelian Higgs model in the Lon-
don limit, keeping in mind further numerical investiga-
tion of the new monopole-creation operator in the non-
Abelian gauge theories.

The original version of the gauge-invariant mono-
pole-creation operator [3] in the compact U(1)-gauge
theory is based on the duality of this model to the Abe-
lian Higgs model. The Higgs field φ is associated with
the monopole field, and the noncompact dual gauge
field Bµ represents a dual photon. The gauge-invariant
operator, which creates the monopole at the point x, can
be written as the Dirac operator [4] in the dual model,

(1)

where the magnetic field of the monopole, H, is defined
in the 3D time slice which includes the point x. By def-
inition, the magnetic monopole field satisfies the Max-
well equation divH = δ3(x), which guarantees the
invariance of the operator Φ under the dual gauge trans-
formation,

(2)

Φx
mon H( ) φxe

i B Hx,( )
,=

φ φeiα , B B dα .+
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The monopole-creation operator (1) can be rewrit-
ten in the original representation in terms of the com-
pact field θ. In lattice notation, the expectation value of
this operator is [3]

(3)

For compact lattice electrodynamics, the general type
of action satisfies the relation S(dθ + 2πn) = S(dθ),
n ∈  Z. Besides the Coulomb monopole field H, the ten-
sor form W = 2πδ∆–1(Hx – ωx) depends on the Dirac
string ω, which ends at the monopole position, δ*ωx =
*δx, and is not restricted to the 3D time slice.

The operator (1) is well-defined for the theories
without dynamical matter fields. However, if an electri-
cally charged matter is added, then the creation opera-
tor (1) depends on the position of the Dirac string. To
see this fact, we note that in the presence of the dynam-
ical matter the dual gauge field B becomes compact.
Indeed, as we mentioned above, the pure compact
gauge model is dual to the noncompact U(1) with mat-
ter fields [referred above to as the (dual) Abelian Higgs
model]. Reading this relation backwards, we conclude
that the presence of the matter field leads to the com-
pactification of the dual gauge field B.

The compactness of the dual gauge field implies that
the gauge transformation (2) must be modified:

(4)

where the compactness of the gauge field, B ∈  (–π, π],
is supported by the integer-valued vector field k =
k(B, α). The role of the field k is to change the shape of
the dual Dirac string attached to the magnetic charge in
the dual theory. One can easily check that the operator
(1) is not invariant under the compact gauge transfor-
mations (4):

(5)

This fact was discussed in [9]. According to Eq. (5),
if the field H is integer-valued, then operator (1) is
invariant under the compact gauge transformations (4).
This condition and the Maxwell equation require that
field H has the form of a string attached to the mono-
pole (“Mandelstam string”): Hx  jx, j ∈  Z. The string
must be defined in the 3D time slice similarly to the
magnetic field H. However, one can show that, for a
fixed string position, the operator Φ creates a state with
an infinite energy. This difficulty can be bypassed [9]

Φmon〈 〉 1
]
---- $θ S dθ W+( )–{ } ,exp

π–

π

∫=

] $θ S dθ( )–{ } .exp

π–

π

∫=

φ φeiα , B B dα 2πk,+ +

Φx
mon H( ) Φx

mon H( )e
2πi k Hx,( )

.

by the summation over all possible positions of the
Mandelstam strings with some measure µ(j):

(6)

If Higgs field φ is q-charged (q ∈  Z), the summation in
Eq. (6) should be taken over q different strings, each of
which carries the magnetic flux 1/q. The transformation

of  to the original representation can easily be
performed, and we get the expression similar to Eq. (3).

In this publication, we present the results of our

numerical investigation of the operator  (6) in
the compact Abelian Higgs model with the action

(7)

where θ is the compact gauge field and ϕ is the phase of
the Higgs field. For simplicity, we considered the Lon-
don limit of the model, in which the radial part of the
Higgs field is frozen. We calculated the (modified)
effective constraint potential

(8)

We simulated the 4D Abelian Higgs model on the
44, 64, and 84 lattice with γ = 0.3. The larger the charge
q of the Higgs field, the easier the numerical calculation
of Veff(Φ). We performed our calculations for q = 7. For
each configuration of 4D fields, we simulated a 3D
model to get the Mandelstam strings with the weight
µ(jx), which we specify below. We generated 60 statis-
tically independent 4D field configurations, and for
each of these configurations we generated 40 configu-
rations of 3D Mandselstam strings. We imposed the
antiperiodic boundary conditions in space.

To define the measure µ in Eq. (6), we introduce the
auxiliary 3D XY theory “living” on the time slice x0

with the action

(9)

where χ is 0-form with a value within [–πq, πq] and r
is Z-valued 1-form. One can prove that

(10)

In space dimension d ≥ 3, for sufficiently large κ and

sufficiently small B, 〈 〉   const as |x – y|  ∞.

Moreover, the two-point function 〈 〉 (B) is peri-
odic in B, with a period of 1. Hence, it has the Fourier
representation similar to (6):

(11)

Φx
mon new, φx µ jx( )e

i B jm,( )
.

* jx Z∈
δ* jx δx=

∑=

Φx
mon new,

Φx
mon new,

S –β dθ( )cos γ dϕ qθ+( ),cos–=

V eff Φ( ) δ Φ Φmon new,–( )〈 〉( ).ln–=

S χ r,( ) κ
2
--- dχ 2πB–

q
----------------------- 2πr+

2
,=

e
iχxe

iχR–
〈 〉 R ∞→ B( ) e

i B Hx,( )
.∼

e
iχxe

i– χy

e
iχxe

i– χR

e
iχxe

i– χR〈 〉 B( ) 1
]
---- µ jx( )e

i B jm,( )
,

jx
Z
q
----∈

δ jx δx δR–=

∑=
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where the measure µ is defined by

(12)

Thus, in the theory with action (9) the two-point corre-
lation function has the representation (10) analogous to
the original representation (1) for the monopole-cre-
ation operator, and the dual representation (11) is anal-
ogous to the new representation (6) for the monopole-
creation operator. Therefore, the measure in Eq. (6)
should be defined by (12).

It is well known [10] that the 3D XY model in the
Villain formulation has the phase transition for κc(B =
0) ≈ 0.32. According to the suggestion of Fröhlich and
Marchetti, the expectation value of the operator (6)
should be the order parameter in the κ > κc phase,
where the density of the Mandelstam strings ρ is large
enough. Our numerical observation has shown that, in
the presence of the external field B, κc(B) ≈ 0.42. In
Fig. 1, we present the effective potential (8) in the con-
finement (β = 0.85) and the deconfinement (β = 1.05)
phases for positive values of the monopole field. The
potential is shown for two values of the 3D coupling
constants κ > κc corresponding to high densities of the
Mandelstam strings. In the confinement phase (Fig. 1a),

µ jx( ) 1
2κ
------ jx

2–
 
 
 

.exp=

Fig. 1. The effective monopole potential (8) in (a) confine-
ment and (b) deconfinement phases.
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the potential V(Φ) has the Higgs form, signaling the
monopole condensation. According to our numerical
observations, this statement does not depend on the lat-
tice volume. In the deconfinement phase (Fig. 1b), the
potential has a minimum at Φ = 0, which indicates the
absence of the monopole condensate.

For small values of the 3D coupling constant κ (in
the phase where Mandelstam strings jx are not con-
densed), it was observed (Fig. 2) that the potential has
the same behavior in both phases of the 4D model.
Thus, the operator (6) serves as the order parameter for
the deconfinement phase transition if the density of the
Mandelstam strings is high; i.e., κ should be larger than
κc(B).

In summary, the new operator can be used as a test
for the monopole condensation in the theories with
electrically charged matter fields. Our calculations indi-
cate that the operator should be defined in the phase
where the Mandelstam strings are condensed, as was
suggested by Fröhlich and Marchetti. The minimum of
the potential corresponding to the value of the mono-
pole condensate is zero in the deconfinement phase and
nonzero in the confinement phase.
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Russian Foundation for Basic Research (project nos.
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We calculate a correction to the effective electromagnetic current at low energies, induced by a heavy-quark
loop, and determine the analytic structure of the vacuum polarization function at small q2, for which an explicit

expression is given to the O( ) order of perturbation theory. Implications to the high-precision analysis of
experimental data on heavy-quark production in e+e– annihilation are discussed. © 2002 MAIK “Nauka/Inter-
periodica”.
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α s
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1 High-precision tests of the standard model remain
one of the main topics of particle phenomenology.
Recent observation of a possible signal from the Higgs
boson may complete the experimentally confirmed list
of the standard model particles [1]. With improving
precision of experimental data, more accurate theoreti-
cal formulas will be necessary for extracting numerical
values of the standard model parameters. Recently,
essential progress in high-order perturbation theory cal-
culations for heavy quarks has been made, where a
number of new physical effects have been described
theoretically with high accuracy. The cross section of
top–antitop production near the threshold was calcu-
lated at next-to-next-to-leading order of an expansion
in the strong-coupling constant and the top quark veloc-
ity with an exact account of Coulomb interaction (for a
review, see [2]). This allows the precise determination
of the numerical value of the top quark mass at the next
linear collider. The Coulomb resummation resides on a
nonrelativistic approximation for the quark–antiquark
system near the threshold, which was successfully used
for the description of heavy-quark properties within the
operator product expansion techniques and sum rules
[3–5]. Being applied to the b  system, this method
gives the best estimates of the b quark mass parameters
[6–9].

In this work, we discuss the contribution of massless
intermediate states to the correlators of heavy-quark
currents. For the correlator of the vector currents, such

a contribution first appears in the O( ) order of per-
turbation theory and is given by a three-gluon state.
This gluon contribution to the correlator has a qualita-
tively new feature: its absorptive part starts at zero

1 This article was submitted by the authors in English.

b
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3
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energy, in contrast to other contributions, where the
absorptive parts start at the two-particle threshold. This
feature determines the analytic structure of the correla-

tor at small q2; namely, in the O( ) order of perturba-
tion theory, a cut along the positive semiaxis emerges.
The nonanalyticity at the origin resulting from such a
cut leads to strong limitations on the observables which
can be theoretically constructed for confronting the
experimental data. Because the data are most precise
near the production threshold, the theoretical analysis
should enhance this part of the spectrum. Technically,
an enhancement of the near-threshold contributions is
achieved by considering the integrals of production rate
with weight functions which suppress the high-energy
tail of the spectrum. The integrals with weight func-
tions 1/sn for the different positive integer n, s = E2,
where E is the total center-of-mass energy of the pro-
duced particles, are called moments of the spectral den-
sity and are most often used in the sum rule analysis.
Theoretically, such moments are given by the deriva-
tives at q2 = 0 of the vacuum polarization function
Π(q2), which is a basic quantity of the analysis of the
heavy-quark production in the JPC = 1– – channel. The
vacuum polarization function is given by

(1)

with the vector current jµ = γµψ of a heavy fermion ψ
of the mass m. With the spectral density ρ(s) defined by
the relation

(2)

α s
3

i T jµ x( ) jν 0( )〈 〉 eiqxd4x∫ qµqν gµνq2–( )Π q2( ),=

ψ

ρ s( ) 1
2πi
-------- Π s i0+( ) Π s i0–( )–( ), s 0,>=
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the dispersion representation

(3)

holds. The integral in Eq. (3) runs over the whole spec-
trum of the correlator in Eq. (1) or over the whole sup-
port of the spectral density ρ(s) in Eq. (2). A necessary
ultraviolet regularization (subtractions, for instance) is
assumed in Eq. (3). The moments of spectral density
ρ(s) of the form

(4)

are usually studied within the sum-rule method for
heavy quarks [10]. These moments are related to the
derivatives of the vacuum polarization function Π(q2)
at the origin as

(5)

Such moments are chosen in order to suppress the high-
energy part of the spectral density ρ(s), which is not
measured accurately in experiments. Within the sum-
rule method, one believes that the theoretical expres-
sions for the moments in Eq. (4) or, equivalently, the
derivatives in Eq. (5) exist, i.e., formally lead to the
well-defined quantities for any n. The existence of
moments seems to be obvious because of the implicit
assumption that the spectral density ρ(s) of the correla-
tor of the heavy-quark electromagnetic currents van-
ishes below the two-particle threshold s = 4m2, which
means that the vacuum polarization function of heavy
quarks Π(q2) is analytic over the whole complex plane
of q2, except for the cut along the positive real axis
starting at 4m2. This assumption about the analytic
properties of the vacuum polarization function Π(q2) is
valid to the first few orders of perturbation theory. How-
ever, its validity in a full theory depends of the details
of interaction. For instance, the resummation of Cou-
lomb effects to all orders may result in the appearance
of bound states below the perturbation theory threshold
s = 4m2. Still, this is only true for the attractive Cou-
lomb interaction, while the repulsive Coulomb interac-
tion modifies the shape of the free-particle spectrum but
does not change its support, i.e., does not lead to bound-
state formation below the continuum spectrum. The
assumption that the moments in Eq. (4) exist for any n
may also be incorrect in high orders of perturbation the-
ory in models with massless particles, for example, in

QCD with massless gluons. In QCD, in the O( )
order of perturbation theory, there is a contribution of
massless states to the correlator in Eq. (1), which leads
to the infrared (small s) divergence of theoretical
expressions for the moments for large n because of the
branching-point (cut) singularity of Π(q2) at the origin.

Π q2( ) ρ s( )ds

s q2–
----------------∫=

}n
ρ s( )ds

sn 1+
----------------∫=

}n
1
n!
----- d

dq2
-------- 

  n

Π q2( ) q
2 0= .=

α s
3

We determine the behavior of the vacuum-polarization
function Π(q2) at small q2 (q2 ! m2) as

(6)

with

(7)

Here, dabc are the totally symmetric structure constants
of the SU(Nc)-gauge group defined by the relation
dabc = 2tr({ta, tb}t c), and ta are generators of the group
with normalization tr(ta, t b) = 1/2. For the SU(3)-gauge
group of QCD, one has dabcdabc = 40/3. The parameter
µ in Eq. (6) is the renormalization point.

The singularity of the vacuum-polarization function
given in Eq. (6) (a cut along the positive real axis in the
complex q2 plane) prevents one from calculating
moments of the spectral density in Eq. (4) with n ≥ 4.
Indeed, the high-order derivatives of Π(q2) at the origin
determining the high-order moments, according to
Eq. (5), do not exist for n ≥ 4 because of a branching-
point singularity, as one can see from Eq. (6). In terms
of moments, one can see this by calculating the behav-
ior of the spectral density at small squared energies s,

(8)

which makes the integrals in Eq. (4) divergent at small
s for n ≥ 4. The formulas for the vacuum-polarization
function in Eqs. (6) and (7) are given for a heavy quark
in the SU(Nc) ⊗  U(1)-gauge model. The result for QED
may be obtained by substituting αs  α for the cou-
pling constant and by changing the group factors; the
contribution is, however, very small and of no practical
interest. Contributions of light (massless) quarks

appear in the O( ) order of perturbation theory and
are neglected.

We present the derivation of our result given by
Eqs. (6) and (7) and briefly discuss some consequences
for the phenomenology of heavy quarks. Note that the
induced current is a correction on the order of 1/m4 in
the inverse heavy-quark mass, which vanishes in the
limit of an infinitely heavy quark. Corrections in
inverse heavy-quark masses are important for tests of
the standard model at the present level of precision and
have already been discussed in various areas of particle
phenomenology [11–13].

A correction to the electromagnetic current due to a
virtual heavy-quark loop is given by the transition of a
photon to three gluons (see figure). Two-gluon transi-
tions are forbidden, according to the generalization of
Farry’s theorem to the nonabelian theories [14]. We are
interested in the behavior of the transition amplitude at
low energies and take the limit of a very heavy quark.

Π q2( ) q
2 0≈

Cg

12π2
----------- q2

4m2
--------- 

 
4 µ2

q2–
-------- 

  ,ln=

Cg
17

243 000
-------------------dabcdabc

α s

π
----- 

 
3

.=

ρ s( ) s 0≈
Cg

12π2
----------- s

4m2
--------- 

  4

,=

α s
4
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Formally, the limit m  ∞ is taken, which, in physical
terms, means that m is much larger than all momenta of
the external legs of the diagram, namely, three gluous
and a photon. The induced current J µ is written in a
covariant form as a derivative of the antisymmetric
operator 2µν built only from the gluon fields,

(9)

This structure of the induced current automatically
guarantees the current conservation

, (10)

as it should be for the electromagnetic current. The
straightforward calculation gives the result for the
induced correction

(11)

with

(12)

where  is a gauge-field strength tensor for the
gauge group SU(Nc).

A correlator of the induced current J µ has the gen-
eral form

(13)

where the explicit expression of the current as a deriva-
tive of the antisymmetric operator 2µν is used. The
resulting correlator 〈T2αβ(x)2νβ(0)〉  in Eq. (13) con-
tains only gluonic operators. To the leading order, the
correlator in Eq. (13) has the topological structure of a
sunset diagram, which is readily computed in the con-
figuration space [15]. We find

(14)

The Fourier transform of the correlator in Eq. (14)
reads

(15)

with the constant Cg taken from Eq. (7). The spectral
density of the polarization function in Eq. (15) is given
in Eq. (8).

The spectral density of the correlator in Eq. (14) can
be found without explicit calculation of its Fourier
transform. Instead, one can use the spectral decomposi-

Jµ ∂ν2µν
, 2µν 2νµ

+ 0.= =

∂µJµ 0=

Jµ gs
3–

1440π2m4
------------------------ 5∂ν21

µν
14∂ν22

µν
+( ),=

21µν = dabcGµν
a Gαβ

b Gαβ
c , 22µν = dabcGµα

a Gαβ
b Gβν

c ,

Gµν
a

T Jµ x( )Jν 0( )〈 〉 ∂ α∂β T2µα
x( )2νβ

0( )〈 〉 ,–=

T Jµ x( )Jν 0( )〈 〉

=  –
34

2025π4m8
------------------------

α s

π
----- 

 
3

dabcdabc ∂µ∂ν gµν∂
2–( ) 1

x12
------.

i T Jµ x( )Jν 0( )〈 〉 eiqxd4x∫
=  qµqν qµνq2–( )

Cg

12π2
----------- q2

4m2
--------- 

 
4 µ2

q2–
-------- 

  ,ln
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tion (dispersion representation) in the configuration
space,

(16)

with D(x2, s) being the propagator of a scalar particle of

mass , and 

(17)

where K1(z) is a McDonald function (a modified Bessel
function of the third kind; see, e.g., [16]). Γ(z) is the
Euler’s gamma function.

Note that the three-gluon contribution to the spectral
density of the quark-current correlator in Eq. (1) for
large energies (when the limit of massless quarks can
be used) is well known and reads [17–19]

(18)

Here, ζ(z) is Riemann’s ζ function.
One immediate application of our result consists in

the precise determination of heavy-quark parameters
from the data on heavy-quark production. Because of
the low-energy gluon contributions, the large n (n ≥ 4)
moments of the spectral density do not formally exist.
The range of n used in original considerations of sum
rules and in some recent analyses requires the proper
modification of theoretical expressions for the
moments in order to account for this new contribution

at the O( ) level of precision. For the c  system, the
moments with n ~ 3–7 [10, 20] were analyzed. For the
precision analysis of b  production, the sum rules for
the moments with larger n ~ 5–20 were studied in the
literature. In view of our results, the modification of the

analysis is necessary at the formal level of the O( )
accuracy of perturbation theory. Note that the consid-
ered correction is of the same order in αs as the contri-
bution of Coulomb bound states, which is known to be
numerically important for the description of ϒ reso-

i

x12
------

π2

28Γ 6( )Γ 5( )
----------------------------- s4D x2 s,( ) s,d

0

∞

∫=

s

D x2 m2,( )
im x2– K1 m x2–( )

4π2 x2–( )
------------------------------------------------,=

α s

π
----- 

 
3dabcdabc

1024
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3
--------- 128ζ 3( )– 

  .

α s
3 c

b

α s
3

Heavy-quark loop correction to the electromagnetic current. 
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nances. The restriction of using only the first few
moments with n < 4 seems to be unsatisfactory from the
phenomenological point of view. For small n, the high-
energy contribution, which is not known experimen-
tally with reasonable precision, is not sufficiently sup-
pressed and introduces a large quantitative uncertainty
in the sum rules for the moments.

A modified analysis can be based on the theoretical
expression for the derivatives of the correlator at some
infrared safe point q2 = –∆ < 0 [21]. For the infrared
regularized moments

(19)

there is no divergence at small s. The infrared regular-
ization parameter ∆ should be small, because the con-
tinuum contribution to the moments is not suppressed
for large values of ∆ even for sufficiently large n. How-
ever, it cannot be arbitrarily small because the resulting
correlator of gluonic currents at low energies in
Eq. (13) is essentially normalized at µ2 = ∆ if radiative
corrections are taken into account. Therefore, ∆ should
be large enough for the perturbation theory calculations
to be justified [22, 23]. On the experimental side of the
sum rules, it is rather difficult to evaluate the part of the
spectral integral over the low-energy gluons because of
mixing with light-quark contributions. These theoreti-
cal and experimental constraints on the numerical value
of the parameter ∆ require special analysis of the accu-
racy attainable with the infrared-regularized sum rules
in Eq. (19).

Another possibility to bypass the problem of infra-
red divergence is to use finite-energy sum rules without
1/sn weight functions that are free from the infrared
problem [24] or to apply a direct subtraction of the
three-gluon contribution, as was been proposed in [25].

To conclude, we have presented a correction to the
electromagnetic current induced by a virtual heavy-
quark loop that is relevant to an effective theory of light
degrees of freedom at low energies. The spectrum of
the correlator of such an induced current starts at zero
energy. This fact necessitates the modification of the

standard analysis of the moment sum rules for the b

system to the O( ) order of perturbation theory.

This work was supported in part by the Russian
Foundation for Basic Research, project no. 99-01-00091.
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The propagation of a two-photon light in a transparent medium with group velocity dispersion is considered. It
is shown that, even in the stationary case of two-photon light generation by cw pumping, the second-order light
correlation function behaves like a short pulse: when propagating in a medium, this function smears and at large
distances acquires the spectral shape of two-photon radiation. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.50.Dv; 42.81.Dp
Two-photon light is ordinarily obtained in experi-
ments with spontaneous parametric scattering (SPS)
[1]; it is of considerable interest in the context of gen-
erating so-called entangled states in optics. At present,
the use of two-photon light for quantum information
transmission is the subject of animated discussion [2].

In the simplest form, the state vector of radiation
generated in SPS can be written, with allowance for the
polarization, as |ΨI 〉  = |vac〉  + c|2, 0〉  for the type-I
matching and |ΨII 〉  = |vac〉  + c|1, 1〉 for the type-II
matching. In these expressions, |n, m〉  denotes the state
with n photons in the polarization mode x and m pho-
tons in the polarization mode y; the parameter c ! 1
specifies the amplitude of a two-photon state, and |vac〉
stands for the vacuum state. However, this expression is
rather idealistic: in reality, the spectrum, both fre-
quency and angular, of a two-photon light is always of
a finite length. For example, in the case of frequency-
degenerate matching, the state generated in the SPS
from cw pumping has the form of spectral decomposi-
tion [3]:

(1)

where ωp is the pump frequency, and the indices i and s
correspond to the idler and signal modes, respectively.
These may be the polarization (for the type-II match-
ing) or spatial modes. The amplitude F(Ω), usually
called the biphoton amplitude,1 determines the spectral

1 A biphoton is referred to as a pair of photons with correlated
moments of creation, frequencies, wave vectors, and polariza-
tions.

Ψ| 〉  = vac| 〉 c ΩF Ω( )as
† ωp

2
------ Ω– 

  ai
† ωp

2
------ Ω+ 

  vac| 〉d∫+

≡ vac| 〉 c ΩF Ω( )
ωp

2
------ Ω –

s

ωp

2
------ Ω +

i
,d∫+
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properties of a two-photon light. It has different forms
for the type-II and type-I matchings:

(2)

where L is the length of nonlinear crystal, D is the dif-
ference in the reciprocal group velocities of the signal
and idler photons in the nonlinear crystal, and D" is the
second derivative of the dispersion relation k(ω) in the
nonlinear crystal. One can see from Eq. (1) that, in the
presence of spectral distribution, the light emitted in
SPS always occurs in the entangled state.

The spectrum of a two-photon light in the vicinity of
the degenerate phase-matching frequency ωp/2 is deter-
mined by the square of the modulus of the spectral
amplitude F(Ω). Accordingly, the first-order correla-
tion function has the form

(3)

For the second-order correlation function, calculations
give the following expression:

(4)

For SPS in crystals with a length on the order of 1 cm,
the typical width of the second-order correlation func-
tion is equal to several tens or hundreds of femtosec-
onds.

Let us now consider the propagation of two-photon
light in a transparent dispersion medium. In the vicinity
of degenerate matching, the dispersion relation in this
medium can be written as k(ω) = k(ωp/2) + k'(ωp/2)(ω –
ωp/2) + k"(ωp/2)(ω – ωp/2)2/2. It is well known that the

FII Ω( ) DLΩ/2( )sin
DLΩ/2

-------------------------------,=

FI Ω( ) D"LΩ2/2( )sin

D"LΩ2/2
------------------------------------,=

G 1( ) τ( ) 4 c 2 i
ωp

2
------τ–

 
 
 

Ω F Ω( ) 2 Ωτ( ).cosd∫exp=

G 2( ) τ( ) 4 c 2 ΩF Ω( ) Ωτ( )cosd∫
2
.=
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third term in this expansion is responsible for the
smearing of short pulses in the medium. For the
extended dispersion medium, z @ ld, where the disper-

sion length can be defined as ld = /2pk" and τ0 is the
initial pulse duration, the pulse acquires a shape coin-
ciding with its spectrum. Such a pulse has come to be
known in the literature as a “spectron” [4].

Quite the same effect arises for two-photon light
propagating in a dispersion medium. In this case, the

creation operators (ωp/2 ± Ω) in Eq. (1) assume fre-
quency-dependent phase factors, which can be inter-
preted as the appearance of a factor exp{i(  +

)Ω2z/2} for the spectral amplitude F(Ω). As a result,
the first-order correlation function, as well as the spec-
trum, does not change. However, the second-order cor-
relation function (4), which contains F(Ω) instead of
|F(Ω)|2 under the integral sign, changes. Since the rela-
tion between F(Ω) and G(2)(τ) is analogous to the rela-
tion between the pulse spectral amplitude and the
square of the pulse envelope, the second-order correla-
tion function behaves like a short pulse propagating in
a dispersion medium. For z @ ld (as in the femtosecond
pulse optics, this condition may be called “far zone”
condition), the correlation function has the form

where k" =  + . As in the case of a short pulse, the
width of the correlation function after passing through
the dispersion medium of length z becomes τ =
2πzk"/τ0, where τ0 is its initial width. Therefore, if the
initial width of the second-order correlation function is
50 fs, its width becomes equal to 6 ns after passing two-
photon light through an optical fiber 1 km in length (it
is assumed that k" for the fiber equals 3 × 10–28 s2/cm
[4]). As for the shape of the correlation function, it
coincides with the spectrum given by Eq. (2). Such a
two-photon wave packet in the far zone can be called
a two-photon spectron.

The smearing of the biphoton correlation function in
a dispersion medium should necessarily be taken into
account when designing the schemes of quantum infor-
mation transmission by two-photon light. It should be
noted that this smearing in optical fibers can be com-
pensated using the known linear methods of pulse com-
pression [5] (the nonlinear methods are unsuitable

τ0
2

as i,
+

ki"

ks"

G 2( ) τ( ) F Ω( ) 2
Ω τ /k"z= ,∼

ks" ki"
because of the low intensity of biphoton fields). One
sometimes assumes erroneously that the shape of the
second-order correlation function for biphoton light
manifests itself in the so-called anticorrelation effect
[7], which consists of a sharp decrease (practically to
zero) in the number of coinciding photocounts of two
detectors, which detect both signal and idler beams
(before detection, the signal and idler beams impinge
on a beam splitter, so that the effect can only be
observed if the optical paths of the signal and idler pho-
tons are balanced before beam splitting). However, it is
known that the presence of a dispersion medium,
through which the signal and idler beams propagate
before beam splitting, has no effect on the shape of the
anticorrelation “dip” [7]. This effect can easily be
explained if one considers that the dip shape is associ-
ated not with the second-order but with the first-order
correlation function [8]. However, according to Eq. (3),
the propagation of two-photon light (as well as any
other radiation) in a transparent medium with group
velocity dispersion does not affect the shape of the first-
order correlation function.
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The dynamics of Bose-condensate generation by a cw atom laser with simultaneous stimulated evaporative
cooling in a magnetic trap was analyzed using a quantum-mechanical master equation. The model of the atom
laser includes irreversible processes of incoherent trap mode pumping and spontaneous atomic transitions due
to the interaction of the atomic ensemble with heat reservoirs. The inelastic atomic collisions in the trap and the
continual coherent Bose-condensate output coupling from the trap were considered. At certain values of param-
eters, the Bose condensate created in this laser scheme occurs in a compressed sub-Poisson state. For large Bose
condensates with a mean number of atoms ~106, the Fano factor may be as high as ≅ 0.5. The influence of spon-
taneous transitions from the excited trap modes on the statistics of Bose condensate was analyzed. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Fi; 32.80.Pj; 42.50.Ct
Recent successful experiments on the creation of
atomic Bose condensates in traps have opened up pos-
sibilities of designing coherent sources of matter waves
(atom lasers) [1, 2]. The fundamental property of a laser
is that it creates a coherent field. The coherence and
quantum-statistical properties of this field are the sub-
ject of investigations in the quantum optics of photon
and atomic fields [3–9, 19]. The existing phenomeno-
logical semiclassical theories [10–15] and the quan-
tum-mechanical theories [3–9, 16–27] devoted to
studying atom lasers with various schemes of pumping,
cooling, and field outcoupling from the trap predict the
presence of a lasing threshold, saturation, as well as a
high degree of coherence for the Bose condensate gen-
erated by an atom laser.

We consider an open atomic system confined in a
trap and, therefore, having discrete energy levels. The
trapped atoms in the respective electronic states interact
with a set of reservoirs (bathes) formed by groups of
untrapped atoms, which render pumping of the trap
states incoherent because of the transitions of pump-
reservoir atoms to the electronic states in which they
are captured by the trap field. Such a reservoir is also
responsible for the trap losses caused by the backward
electronic transitions. The coherent Bose-condensate
output coupling from the trap is provided by the inter-
action of the lowest trap state with the continuum reser-
voir (vacuum). In the evaporative cooling model con-
sidered in this work, the upper excited states of the trap
are intensely depleted due to the interaction with the rf
electromagnetic field. The interaction of the trapped
atoms with the phonon field of a continuum atomic res-
ervoir is considered as a source of spontaneous transi-
tions between the discrete atomic states in the trap (see
also [26, 27]).
0021-3640/02/7505- $22.00 © 20227
To describe the system of trapped atoms interacting
with reservoirs, we use the formalism of secondary
quantization for atomic fields and introduce the cre-
ation and annihilation operators of the form

(1)

(2)

where (r)) is the operator of annihilation (creation)

of an atom in the trap at the point r, and (r) are the
operators of (p) annihilation (creation) of the pump res-
ervoirs, (out) coherent atomic-field outcoupling, and
(sp) spontaneous radiation. These operators obey the
following commutation relations:

(3)

In terms of field operators (1) and (2), the effective one-
particle Hamiltonian containing the free-energy terms
and the operators of interaction between the system and
the reservoirs

(4)

ΨS r( ) a jφj r( ), a j

j

∑ d3rφj* r( )Ψs r( ),∫= =

Ψα r( ) bαλ ψαλ r( ),
λ 0=

∞

∑=

bαλ d3rψaλ* r( )Ψα r( ), α∫ p out sp,, ,= =

Ψs
+( )

Ψα
+( )

Ψα r( ) Ψα '
+( ) r '( ),[ ] δα α ', δ r r '–( ),=

α α ', S p out sp,, , ,=

Ψα r( ) Ψα ' r( ),[ ] Ψα '
+( ) r( ) Ψα '
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α
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can be recast as

(5)

The first two terms in Eqs. (4) and (5) are the atomic
energy in the trap and the self-energy of reservoir oscil-
lators, respectively. The next three terms in Eq. (5)
[VRαSin Eq. (4)] are the sum of potentials of interaction
between the trapped atoms (system) and the reservoirs
responsible for the dissipation, pumping, and spontane-
ous decay from the discrete energy levels of the trap.
The coupling constants of the system to these reservoirs
are denoted by µ, κ, and Γ, respectively. The last term
(Vcoll) is the interaction potential for the elastic and
inelastic binary collisions of the trapped atoms.

In this work, we consider an atom laser model with
evaporative atom cooling [1, 2]. The preliminary
cooled atoms enter the trap formed by the thermody-
namically equilibrium reservoirs. The atoms in the trap
are in four energy states characterized by the creation

(annihilation) operators (ai), where i = 0, 1, 2, and 3.
It is also assumed that the high-lying trap levels are
sparsely populated because of the stimulated evapora-
tion mechanism implemented by the rf electromagnetic
field applied to the trap [1]. The Bose condensate

achieves its lowest energy state (a0), from which the
accumulated condensate exits with the rate κout to the
continuum reservoir of vacuum states (laser output
radiation). Various methods of the exit trap were con-
sidered for Bose condensate in [11, 24]. Pumping of
each of the trap states is accomplished independently,
with rates pi from the corresponding individual reser-
voirs having mean occupation numbers Ni, and the rates
of backward dissipation processes from the trap are γi.
The problem of pumping an atom laser from the ther-
mal bathes was considered in [5, 21–23].

In the case of binary collisions between the trapped
atoms, the interaction energy of colliding atoms [the
last term in Eq. (5)] contains the following terms in the
dipolar approximation:

H "ωja j
+a j
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∑ "ωαλ bαλ
+ bαλ

λ 0=

∑
α
∑+=

+ " Γλ i j, , bsp λ,
+ aia j
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i j>
∑





λ 0=

∞

∑

+ " κλ i, bp λ, ai
+ h.c.+( )

i

∑

+ " µλ i, bout λ,
+ ai h.c.+( )

i

∑




+
1
2
--- " gi j k l, , , ai

+a j
+aka1 h.c.+( )i j k , l, , .

j

∑

ai
+

a0
+

V coll V elast V inelast,+=
(6)

(7)

where gijkl = .

Eliminating the bath variables by the standard pro-
cedure, one obtains, in the Born and Markovian
approximations, the master equation for the reduced
density operator of the system. The presence of reser-
voirs gives rise to the terms accounting for the dissipa-
tive processes, field outcoupling from the trap, pump-
ing, and spontaneous decay in the equation of motion.

Since all operators in Hamiltonian (7) are bilinear in
the creation and annihilation operators, the contribution
to the coherent (unitary) evolution of the diagonal
matrix elements is zero. All elastic collisions have a dis-
persive character and influence the time evolution of
the off-diagonal matrix elements and, hence, determine
the magnitude of first-order field coherence.

Assuming that the rates of atom outcoupling from
the upper states are high for the density operator, one
can eliminate adiabatically the |2〉  and |3〉  modes. The
resulting master equation for the irreversible processes
can be written as

(8)

where D[o]ρ ≡ 2oρo+ – o+oρ – ρo+o for the correspond-
ing operator o.

The quantity γsp is the spontaneous transition rate

between the trap modes |1〉  and |0〉 ,  = (ωsp, λ ) =

〈 , bsp, λ 〉 , and "ωsp, λ = "(ω1 – ω0) = "ω01 is the
mean number of phonons in the spontaneous-decay res-
ervoir at the frequency of trap transition. Similarly, 

and  are mean numbers of atoms in the reservoirs
coupled to the states |0〉  and |1〉 , respectively.
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The effective inelastic collision rates in Eq. (8) are

(9)

We will assume below that the loss rates for the nonla-
ser field modes are much higher than the rates of pump-
ing and coherent laser mode outcoupling, as well as of
the effective evaporation rates; i.e., γ2, γ3 @ pi , κout, Ωj ,
γsp for i = 0, 1, 2, 3 and j = 1, 2, thereby providing for
the low populations of the |2〉  and |3〉  modes.

For the diagonal matrix elements of the reduced
density matrix (t) ≡ 〈n0n1|ρ(t)|n0n1〉 , one has

(10)

The quantum-mechanical means of the number of
atoms in the lowest trap state (laser mode) and of the
variance (fluctuation) of the number of atoms are calcu-
lated using the diagonal matrix elements of the density
matrix according to the relationships

(11)

(12)

The Fano factors for the Bose condensate and for the
first excited state of the trap are defined as

(13)
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In what follows, the pumping rates will be ignored for
all modes except for |2〉; the atomic transitions from the
laser mode |0〉  to the bath will also be ignored; i.e., we
assume that the rate of Bose-condensate outcoupling
from the lowest trap state into the vacuum is κout. The
influence of the |3〉  mode will also be ignored; i.e., it is
assumed that Ω2 ! κout.

In the laser model considered in this work, the
dynamics of atomic-field generation depends qualita-
tively on the ratios between the pumping rate (p1) into
the state |1〉  of the atomic trap and the rates (κout) of
Bose-condensate outcoupling from the lowest state |0〉 ,
(Ω1) of induced transitions from the state |1〉  to the
states |0〉  and |2〉 , and (γsp) of spontaneous transition to
the state |0〉  from the state |1〉  due to the interaction with
the bath. Assuming that γ1 is much less than all these
rates, the generation regimes of the atom laser can be
divided into two characteristic types. If p1 > Ω1 and p1,
Ω1 ~ κout, then two stages can be distinguished in the
lasing dynamics (Figs. 1a, 1b): the state |1〉  is populated
first. In the slowly growing Bose condensate, the num-
ber of particles in the state |0〉  is small, and the fluctua-
tions of the number of particles rapidly increases to the
values 〈(∆nBC)2 〉  = (〈n0 〉  + 1)〈n0 〉  typical of a chaotic
heat field. At the second stage, the number of atoms
〈n1〉  decreases and 〈n0 〉  increases with the simulta-
neous decrease in the fluctuation 〈(∆n0)2 〉  to achieve
the Poisson value 〈n0 〉 ss in the steady state. If p1 > Ω1
and p1, Ω1 @ κout, the steady-state Bose condensate in
the state |0〉  may occur in the compressed sub-Poisson
state F0 < 1 with an insignificant compression (Fig. 1c).

If p1 ! Ω1 and p1, Ω1 @ κout, the regime of Bose-
condensate generation becomes cardinally different
(Fig. 2). The population stage is absent for |1〉  in the las-
ing dynamics, and a sharp growth of the Bose-conden-
sate fluctuations in the state |0〉  is also absent. The
Bose-condensate fluctuations may attain sub-Poisson
magnitudes of the compressed state (Fig. 2a). The pop-
ulation |1〉  of the state |1〉  is small at all times up to the
establishing of the steady state, and the fluctuations
〈(∆n1)2 〉  of the number of particles become of the
essentially sub-Poisson: F1 < 1. In the regime p1, Ω1 @
κout, the population 〈n1 〉 ss is equal to 0.333 and the vari-
ance of the number of particles 〈(∆n1)2 〉 ss = 0.667〈n1 〉 ss

irrespective of the transition rates (Fig. 2b).
Our systematic numerical calculations showed that

the conditions for creating Bose condensate in the com-
pressed sub-Poisson state amount to the inequalities
Ω1 @ p1 @ κout @ γ1, irrespective of . The degree of
compression increases with an increase in the number
of bosons in the condensate, 〈n0 〉 ss @ 1, if Ω1, p1 @ κout.
For the laser parameters satisfying the relationships
Ω1 @ p1 @ κout @ γ1, for which 〈n0 〉 ss ~ 106, the maximal
fluctuation suppression is almost twice the shot noise
level, and the Fano factor attains the value F0, ss ≈ 0.54
(Fig. 2a).

N1
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Computations showed that, at p1 @  @ Ω1 and

p1 κ @ κout @ γ1, the steady-state mean number of
atoms in the Bose condensate can be estimated from the
formula

N1

N1

Fig. 1. (a) The mean number 〈n0 〉  of atoms in the Bose con-

densate, the variance (fluctuation) 〈(∆n0)2 〉  of the number of

atoms, and the Fano factor F0 = 〈(∆n0)2 〉/〈n0 〉  as functions
of the reduced time κoutt for the pumping rate p1 = 100κout,
collision transition rate Ω1 = κout, mean number of particles

in the bath  = 1, and γsp ! Ω1. (b) Time evolution of the

quantities 〈n1 〉 , 〈(∆n1)2 〉 , and F1 = 〈(∆n1)2 〉/〈n1 〉  for the first
excited state in the trap and for the parameters used in (a).
(c) Time evolution of the Fano factors F0 and F1 for the
parameters used in (a).

N1
(14)

In [7], where the atom laser model was analogous to
ours, the master equation for the density operator was

n0〈 〉 ss

p1

2κout
----------- N1

1
2
---– 1

4
---

κout

Ω1
--------+ 

  1/2

+ 
  .≈

Fig. 2. (a) Time evolution of the Fano factor for p1 =

106κout, Ω1 = 109κout,  = 1, and γsp ! κout. (b) Time evo-

lution of 〈n1 〉 , 〈(∆n1)2 〉 , and F1 for the parameters given in
(a): Ω1 @ p1 @ κout @ γsp. (c) Time evolution of 〈n0 〉  and

〈(∆n0)2 〉  for the parameters given in (a).

N
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transformed to the Fokker–Planck equation for the qua-
siprobability P in the phase space of atomic-field
amplitude and phase. This equation was used in [7] to
derive the stochastic differential equations for the num-
ber of particles and field phases in the trap modes and
then solved for the mean values under the steady-state
conditions. In the limit n0 @ 1, the semiclassical expres-
sion for the mean number of atoms in the lowest trap
state was found in [7, 25] in the form analogous to Eq.
(14), but the square-root sign, which was arbitrary in
those calculations, was chosen to be negative. Our
exact quantum-mechanical calculations indicate that
Eq. (14) with the positive root sign is valid with a high
accuracy.

The calculations also showed that, at p1 ~  Ω1, the
mean number of atoms in the Bose condensate is
described by the formula ηp1 κout, where η ≅  2. This
relation is qualitatively consistent with the computa-
tional results obtained for the analogous laser scheme
in [3]; namely, 〈n0 〉  = 2p1 /3κout for the case consid-

ered in this work, i.e., for Ω1 > p1  @ κout.

The lasing threshold in our case is expressed as
p1  > κout.

It is assumed in the above computations that the
spontaneous transition rates between the trap modes are
much lower than the rates of other processes. The cal-
culations carried out for the situation where the sponta-
neous transition rates are comparable with the rate of
coherent condensate output coupling from the trap, i.e.,
for γsp = 0.5κout and  = 1, are presented in Fig. 3. A
comparison of the values characterizing the condensate
under these conditions with the values in the absence of
spontaneous decay (γsp ! κout) indicates that the spon-
taneous transitions have no effect on the steady-state
mean 〈n0 〉 ss but considerably enhance the Bose-conden-
sate fluctuations 〈(∆n0)2 〉 ss and alter the evolution
dynamics for the atom laser action.

The quantum-mechanical calculations performed in
this work suggest that the evaporative continuous-wave
atom laser allows the creation of both the Bose micro-
condensate with the mean number of particles 〈n0 〉  ~ 10
and the Bose macrocondensate with 〈n0 〉  ~ 106 in the
compressed sub-Poisson state. However, the fluctuation
of the number of particles in the microcondensate devi-
ates only slightly from the Poisson distribution,
whereas the compression for the macrocondensate is
large and is almost twofold (Fano factor FBC  0.5).
The condition for the generation of the compressed
Bose condensate amounts to the requirement that the
rate of coherent atomic-field outcoupling from the trap
and the rate of spontaneous transitions between the trap
modes be smaller than the rates of incoherent pumping
and induced transitions caused by the atomic collisions
in the trap. The results obtained in this work allow the
assumption to be made that one may construct schemes

N1

N1

N1

N1

N1

N01
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of atom lasers which are capable of generating rela-
tively small Bose condensates in the states close to the
Fock state. Such lasers can be considered as sources of
groups of ultracold atoms with a predetermined exact
number of particles, which are necessary for some
modern experiments in atomic and photon optics.
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A system of two simultaneously trapped condensates consisting of 87Rb atoms in two different hyperfine states
is investigated theoretically in the case where the minima of the trapping potentials are displaced with respect
to each other. It is shown that the small shift of the minima of the trapping potentials leads to a considerable
displacement of the centers of mass of the condensates, in agreement with the experiment. It is also shown that
the critical angular velocities of the vortex states of the system drastically depend on the shift and the relative
number of particles in the condensates, and there is a possibility to exchange the vortex states between conden-
sates by shifting the centers of the trapping potentials. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Fi, 47.32.Cc
1 The experimental realization of Bose–Einstein Con-
densation (BEC) in trapped alkali-atoms gases at
ultralow temperatures offers new opportunities for
studying quantum degenerate fluids [1–3]. The art of
manipulating these condensates, which contain thou-
sands of atoms confined to microscale clouds, has now
achieved a very high level. Creation of vortices in one
[4] and two-component BEC [5, 6] of 87Rb atoms is an
amazing example of this art.

In this article, we focus on the properties of the two-
component BEC in the trap, in which the trapping
potentials for each component are displaced with
respect to each other in the vertical direction [7]. The
condensate consists of simultaneously trapped other-
wise identical atoms of 87Rb in two different hyperfine
spin states |1〉  and |2〉  (|1〉  and |2〉  denote the |F = 1,
mf = –1〉  and |2〉 , |1〉  spin states of 87Rb atoms, respec-
tively) [7–9]. The scattering lengths of the states |1〉
and |2〉  are known to be in proportion a11 : a12 : a22 =
1.03 : 1.0 : 0.97, with the average of the three being
55(3) Å [7–9].

The double condensate system was prepared from
the single |1〉  condensate by driving a two-photon tran-
sition, which transfers any desired fraction of the atoms
to the |2〉  state by selecting the length and amplitude of
the two-photon pulse [8]. The rotating magnetic field of
the time-averaged orbiting potential trap gave the pos-
sibility of displacing the minima of the trapping poten-
tials V1 and V2 with respect to each other. When the

1 This article was submitted by the authors in English.
0021-3640/02/7505- $22.00 © 0233
minima of the trapping potentials were not shifted, the
|1〉  atoms formed a shell about the |2〉  atoms [7]. This
case was discussed theoretically in [10, 11]. If the min-
ima of the trapping potentials V1 and V2 are displaced
from each other by a distance which is small compared
to the size of the total condensate, the resulting separa-
tion of the centers of mass of the condensates is much
larger [7]. In this paper, we provide an analytical expla-
nation of this result.

In order to explore the boundary between the two
condensates, we begin with an analysis of their behav-
ior in the framework of the Thomas–Fermi Approxima-
tion (TFA), which ignores the kinetic energy terms in
the Gross–Pitaevskii equations for the condensate wave
functions [12]. It has been shown that, in the case of
one-component condensates, the TFA results agree
well with the numerical calculations for large particle
numbers, except for a small region near the boundary of
the condensate [13, 14]. In fact, even for small numbers
of particles, TFA still usually gives qualitatively correct
results.

In the dimensionless variables, the Gross–Pitaevskii
equations for the condensates in the harmonic traps
may be written in the following form [10, 11]:

(1)
–∇ '2ψ1' x '2 y '2 λ2 z ' z0'+( )2

+ +( )ψ1'+

– µ1' ψ1' u1 ψ1'
2ψ1'

8πa12N2

a⊥
-------------------- ψ2'

2ψ1'+ + 0;=
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(2)

Here, ψi(r) = (r'); ψi(r) is the wave function
of the species i of a two-species condensate (i = 1, 2);
λ = ωz/ω; r = a⊥ r', where a⊥  = ("/mω)1/2, ω is the trap-
ping frequency; and  = 2µi/"ω, where µi is the chem-
ical potential of the species i. The chemical potentials

µ1 and µ2 are determined by the relations |ψi |2 = Ni,

and ui is given by ui = 8πaiiNi/a⊥ . The wave function
(r') is normalized to 1, and  denotes the shift of the

minimum of the trapping potential in the vertical direc-
tion.

Equations (1) and (2) were obtained by minimiza-
tion of the energy functional of the trapped bosons
given by

(3)

Here, the energy of the system E is related to E' by E =
"ωE '

In the TFA, Eqs. (1), (2), and (3) can be further sim-
plified by omitting the kinetic energy terms. In the
framework of TFA, the phase-segregated condensates
do not overlap, so we can neglect the last terms in Eqs. (1),
(2), and (3), obtaining simple algebraic equations

(4)

(5)

Here, Θ denotes the unit step function and ρ'2 = x'2 + y'2.
If  = 0, from Eqs. (4) and (5) one can see that the con-

–β2∇ '2ψ2' x '2 y '2 λ2 z ' z0'–( )2
+ +( )ψ2'+

– µ2' ψ2' u2β
2 ψ2'

2ψ2'
8πa12N1

a⊥
-------------------- ψ1'

2ψ2'+ + 0.=

Ni/a⊥
3 ψi'

µi'

d3∫
ψi' z0'

E '
1
2
--- d3r ' N1 ∇ 'ψ1'

2
N2β

2 ∇ 'ψ2'
2

+∫=

+ N1 x '2 y '2 λ2 z ' z0'+( )2
+ +( ) ψ1'

2 1
2
---N1u1 ψ1'

4
+

+ N2 x '2 y '2 λ2 z ' z0'–( )2
+ +( ) ψ2'

2

+
1
2
---N2u2β

2 ψ2'
4 4πa12

α⊥
--------------N1N2 ψ1'

2 ψ2'
2

+ .

ψ1' r'( ) 2 1
u1
----- µ1' r '2 λ2 z ' z0'+( )2

+( )–( )=

× Θ µ1' r '2 λ2 z ' z0'+( )2
+( )–( )

× Θ r '2 λ2 z ' z0'–( )2 µ2'–+( );

ψ2' r '( ) 2 1
u2
----- µ2' r '2 λ2 z ' z0'–( )2

+( )–( )=

× Θ µ2' r '2 λ2 z ' z0'–( )2
+( )–( )

× Θ r '2 λ2 z ' z0'+( )2 µ1'–+( ).

z0'
densate density has the ellipsoidal form. This case was
considered in detail in [10, 11].

In the case of phase separation, the energy of the
system can be written in the form [10, 11] E = E1 + E2,
where

(6)

(7)

To determine the position of the boundary between
the condensates, we use the condition of thermody-
namic equilibrium [15]: the pressures exerted by both
condensates must be equal, P1 = P2. Pressure is given
by [16]: Pi = Gii |ψi |4/2, where Gii = 4π"2aii/mi. Using
these equations, one can obtain the equation for the
phase boundary

(8)

where z' = z", r' = r", r'2 = x'2 + y'2, α = λ ,

κ = , and

(9)

From Eqs. (8) and (9) one can easily understand
why a small displacement of the centers of the trapping
potentials leads to the significant separation of the cen-
ters of mass of the condensates [7]. The basic physics
of this amplification of the trap center difference comes
from the two possible final configurations of the mix-
ture and from the fact that the system is close to the
“critical point” that separates the two final configura-
tions. Of the two configurations, one is symmetric,
where one component is inside and the other compo-
nent is outside, and another is asymmetric [17–19],
where the two components are on the opposite sides.

The former configuration is favorable if κ =  is
different from unity, with the less repulsive component
being in the middle, where the density is higher. The
asymmetric configuration possesses a lower interface
energy and is favorable when κ is close to unity. We
found that in the Thomas–Fermi approximation, when
the trapping frequencies for the two components are the
same, the amplification factor is proportional to 1/(κ – 1).

From Eqs. (8), (9) the evolution of the system upon
increasing α may be described as follows: for α = 0,
condensate 1 forms the shell about the ellipsoidal con-
densate 2. The semiaxis of this ellipsoid is given by
Eq. (8) for α = 0. Upon increasing α, the inner ellipsoid
moves upwards, while the external one moves down.

E1
1
2
---"ωN1 µ1'

1
2
---u1 d3r ' ψ1'

4∫– ,=

E2
1
2
---"ωN2 µ2'

1
2
---u2 d3r ' ψ2'

4∫– .=

r"2 λz" α κ 1+( )
κ 1–

---------------------– 
  2

+ R2,=

µ1' µ1' z0''

a11/a22

R2 µ1' κµ2'–

µ1' 1 κ–( )
-----------------------

4α2κ
κ 1–( )2

-------------------.+=

a11/a22
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It may be shown that they touch each other at the criti-

cal value of α: αc = (1 – ). For α > αc, phase

boundary (8) intersects boundaries of condensates at
the points with coordinates

(10)

(11)

which can be obtained from Eqs. (4)–(8). Critical value
αc is a function of the ratio N2/N1.

Using the normalization condition (r')|2d3r' = 1,

one can determine the chemical potentials  as func-

tions of N1, N2, and α. Analytic expressions for are
different for α < αc and for α > αc. In the former case,
one has

(12)

(13)

where  = (15λui/8π)2/5, γ = 2ακ /(κ – 1),  = γ/κ. In
the limit α  0, one has the results obtained in our
previous papers for the nondisplaced potential [10, 11].
In the case α > αc, the formulas for  and  obtained
after tedious but straightforward calculations are rather
cumbersome and will be given elsewhere. In this arti-
cle, we discuss the results of calculations. To be spe-
cific, we will use the parameters corresponding to the
experiments on 87Rb atoms: a⊥  = 2.4 × 10–4 cm, N =

N1 + N2 = 5 × 106 atoms, λ = .

In Fig. 1, we show the density profiles of the con-
densates [see Eqs. (4) and (5)] as functions of the verti-
cal coordinate z for r'2 = 0 and N1 = N2. In this case, αc

= 0.0047. Figure 1a illustrates the experimental situa-
tion [7]: α = 0.03 (approximately 3% of the extent of
the density distribution in the vertical direction) is
larger than the critical value αc, and condensates are
completely separated in the vertical direction, in accor-
dance with the experiment [7]. In the case α < αc, the
condensate N2 is inside the condensate N1. It should be
noted that rather small shifts of the trapping potential
centers with respect to each other produce considerable
displacements of the condensates. The condensates in
Fig. 1 do not overlap, because, as was mentioned ear-
lier, in the framework of TFA it is impossible to
describe the overlap of the condensates.

1
2
--- µ2' /µ1'

λzc''
α

κ 1–
------------

κ 1–( ) R2 1–( )
4ακ

-------------------------------------,–=

r1 2,'' 1 λzc'' α+( )
2

– ,±=

|ψi'∫
µi'

µi'
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µ1
0( ) 5/2( )-------------------

1

1
5
2
---R3 1 γ2–[ ]–

3
2
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-----------------------------------------------------,=
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µ2
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2
5
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3
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µ1'
----- κ̃2– R5

5
-----–
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µ0' κ̃

µ1' µ2'
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Another interesting question is how the vortex states
change when the minima of the trapping potentials V1
and V2 are displaced with respect to each other. In a
frame rotating with the angular velocity Ω along the
z axis, the energy functional of the system is

(14)

where (r) = | (r)|  is the wave function for the
vortex excitation with angular momentum "lj. In the
TFA, the vortex-induced change in condensate density
is negligible [20] (hydrodynamic approximation).

In the case of the phase-segregated condensate, one
finds from Eqs. (14) and (6)–(7) that the energy change
due to the presence of the vortices ∆E = Erot(l1,l2) –
Erot(0, 0) has the following form [10, 11]:

(15)

In the hydrodynamic limit,  is given by Eqs. (4)
and (5).

Erot l1 l2,( ) E ψl1
ψl2

,( )=

+ d3r ψl1
* ψl2

*+( )i"Ω∂φ ψl1
ψl2

+( ),∫
ψl j

ψl j
e

il jφ

∆E ∆EN1
EN2

+=

=  
1
2
---"ωN1 d3r '

l1
2

ρ'2
------ ψ1'

2 2Ωl1

ω
------------ ψ1'

2
–

 
 
 

∫

+
1
2
---"ωN2 d3r '

l2
2

ρ'2
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2 2Ωl2

ω
------------ ψ2'

2
–

 
 
 

.∫

ψi'

Fig. 1. Density profiles of the condensates as functions of
the vertical coordinate z for N1 = N2. Panel (a) corresponds
to α > αc and panels (b) and (c) to α < αc. Solid lines cor-
respond to the |1〉  atoms and dashed lines to the |2〉  atoms.
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In the case α = 0, critical velocities as functions of
ratio N2/N1 were calculated in [10]. It was shown that,
for all values of N2/N1, the critical velocity  of the

inner condensate is lower than the critical velocity 
of the outer one. So, upon increasing Ω , a vortex will
appear first in the external condensate. However, if for
a given Ω one shifts the centers of the trapping poten-
tials with respect to each other in the vertical direction,
the inner condensate floats to the surface. In this case,
one can expect that the critical velocities of the conden-
sates become closer and can even be equal for some
values of Ω and N2/N1.

As in the case of the chemical potentials, the expres-
sions for the critical velocities have different analytic
forms for α < αc and for α > αc, the latter being rather
cumbersome. For α < αc, the critical velocities are
given by

(16)

(17)

ΩN2

ΩN1

ΩN1

ω
---------

5l1 µ1'( ) 3/2( )

2 µ1
0( ) 5/2( )--------------------------
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3
---– 

 




=

–
3
2
---R 1 γ2– R2

3
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,
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15l2 µ1'( ) 3/2( )
R

4 µ2
0( ) 5/2( )---------------------------------

µ2'

µ1'
----- κ̃2– R2

3
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 =

×
2R µ1' µ2'
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 –ln .

Fig. 2. Critical velocities of the outer condensate /ω

and the inner condensate /ω as functions of α for dif-

ferent values of N2/N1. Dashed lines correspond to /ω

and solid lines to /ω.

ΩN1

ΩN2

ΩN2

ΩN1
Again, in the limit α  0 one has the results obtained
in our previous paper for the nondisplaced potential
[10].

Figure 2 shows the behavior of critical velocities as
functions of α for different values of N2/N1. Dashed
lines correspond to the inner condensate and solid lines,
to the outer one. From Fig. 2c, one can see that the crit-
ical velocities really can intersect. Physically, this
means that there is a possibility of exchanging the vor-
tex states between condensates by shifting the centers
of the trapping potentials with respect to each other at
fixed angular velocities.

In summary, we have investigated the behavior of
simultaneously trapped condensates consisting of 87Rb
atoms in two different hyperfine states. It is shown that
the small shift of the minima of the trapping potentials
with respect to each other leads to the considerable dis-
placement of the centers of mass of the condensates, in
agreement with the experiment [7]. It is also shown that
the critical angular velocities of the vortex states of the
condensates strongly depend on the shift and relative
number of particles in the condensates. The predicted
exchange of the vortex states between the condensates
as a function of the shift remains to be studied experi-
mentally.
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Superconducting Energy Gap Distribution in c-Axis Oriented 
MgB2 Thin Film from Point Contact Study1
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We have analyzed about a hundred voltage-dependent differential resistance dV/dI(V) curves of metallic point
contacts between c-axis-oriented MgB2 thin film and Ag, which exhibit clear Andreev reflection features con-
nected with the superconducting gap. About one half of the curves show the presence of a second larger gap.
The histogram of the double gap distribution reveals distinct maxima at 2.4 and 7 meV, while curves with sin-
gle-gap features result in a more broad maximum at 3.5 meV. The double-gap distribution is in qualitative
agreement with the distribution of gap values over the Fermi surface calculated by H.J. Choi et al. (cond-
mat/0111183). The data unequivocally show the presence of two gaps: ∆S = 2.45 ± 0.15 meV and ∆L = 7.0 ±
0.45 meV in MgB2 with the gap ratio ∆L/∆S = 2.85 ± 0.15. Our observations further prove a widely discussed
multigap scenario for MgB2, where two distinct gaps are seen in the clean limit, while a single averaged gap is
present in the dirty one. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.40.Jn; 74.76.Db; 74.80.Fp
1 INTRODUCTION

Direct spectroscopic investigations of the supercon-
ducting order parameter in the recently discovered [1]
superconductor MgB2 with Tc . 40 K by tunneling [2–
10] and point-contact spectroscopy [10–17] unambigu-
ously show an energy gap ∆ in the quasiparticle density
of states (DOS). However, the experimental results are
controversial with respect to the gap width ∆, whose
variation from 1.5 to 8 meV (see, e.g., review [18]) is
unexpectedly large, pointing to the possibility of mul-
tiphase or nonhomogeneous samples, a degraded sur-
face, or an anisotropic energy gap. Another way to
solve this puzzle is to consider two superconducting
gaps in MgB2, as proposed by Liu et al. [19], account-
ing for the complex electronic structure of MgB2 with
both a quasi-2D and 3D Fermi surface [20]. Indeed,
several papers [6–8, 15–17] have reported a double-gap
structure in the differential conductance (resistance),
with the smaller gap being far below the weak-coupling
BCS value ∆ = 1.76kBTc . 6 meV and the larger gap
slightly above the standard BCS one, in accordance
with theory [19].

Therefore, one of the intriguing key issues of the
superconducting state of MgB2 is whether the double
gap state is intrinsic or the spread of the gap values is a
result of anisotropy, nonhomogeneity, surface effect,

1 This article was submitted by the authors in English.
0021-3640/02/7505- $22.00 © 20238
etc. In other words, before high-quality macroscopic
single crystals will be available for thorough investiga-
tions, the sample imperfection may raise doubts about
the final conclusion. However, in our opinion, good
reproducibility of the double-gap values given by dif-
ferent authors [6–8, 15–17] by different, in their physi-
cal background, methods, such as tunneling and point-
contact spectroscopy, carried out on different samples
such as pellets, films, and grains (all this with a great
degree of probability) supports the intrinsic nature of
the double gap in MgB2.

In this paper, we will give further confirmation of
the double-gap scenario in MgB2 based on an analysis
of about a hundred point-contact spectra of c-axis-ori-
ented thin films.

EXPERIMENTAL AND CALCULATION
DETAILS

We measured a high-quality c-axis-oriented 0.4-µm
thick MgB2 film [21] grown by the PLD technique on
Al2O3 substrate. The resistivity of the film exhibits a
sharp transition at 39 K with a width of ~0.2 K
from 90% to 10% of the normal-state resistivity [21].
The residual resistivity ρ0 at 40 K is ~6 µΩ cm2 and
RRR = 2.3.

2 There is a scattering by a factor of 4 in ρ0 for different films.
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Different point contacts (PCs) were established in
situ directly in liquid 4He by touching the as-prepared
surface (sometimes etched by 1% HCl solution in etha-
nol) of the MgB2 film by the sharpened edge of an Ag
counter electrode, which was cleaned by chemical pol-
ishing in HNO3. This geometry corresponds to the cur-
rent flowing preferably along the c axis. A number of
contacts were measured by touching the film edge after
breaking the Al2O3 substrate. In this way, the current
flows preferably along the ab plane. The differential
resistance dV/dI vs. V was recorded using a standard
lock-in technique. The normal resistance RN (at V @ ∆)
of the investigated contacts ranged mainly between 10
and 1000 Ω at 4.2 K.

The important characteristic of PC is their size or
diameter d, which can be determined from the simple
formula derived by Wexler [22] for contact resistance:

(1)

where the two terms represent ballistic Sharvin3 and
diffusive Maxwell resistance, correspondingly. Here
ρl = pF/ne2, where pF is the Fermi momentum and n is
the density of charge carriers. The latter for MgB2 is
estimated at n . 6.7 × 1022 [23], which results in ρl .
2 × 10–12 Ω cm2 using vF . 5 × 107 cm/s [20]. Hence,
the upper limit for the elastic mean free path l = ρl/ρ0
for our film is about 3 nm. In this case, according to
Eq. (1), the condition d < l is fulfilled for PC with
R > 40 Ω or for a lower resistance, supposing multiple
contacts in parallel.

We used the conventional Blonder–Tinkham–Klap-
wijk equations [24] describing the I–V characteristic of
ballistic N–c–S metallic junctions (here N is the normal
metal, c is the constriction, and S is the superconductor)
by accounting for the processes of the Andreev reflec-
tion. At finite barrier strength at the N–S interface char-
acterized by parameter Z ≠ 0 and T ! Tc, the theory
gives dV/dI curves with minima at V . ±∆/e. To get the
correct ∆, the measured curves should be fitted to the
theory. The additional smearing of dV/dI curves due to,
e.g., broadening of the quasiparticle DOS in the super-
conductor, can be taken into account by including
parameter Γ [25].

In the case of curves with a double-gap structure, we
calculated, according to the theory [24], the sum of two
differential conductances dI/dV with the weight w for
the larger gap and, correspondingly, with (1 – w) for the
smaller one. After this, we transformed dI/dV into dV/dI
to compare with the measured dependences. The best fit
was achieved, as a rule, by using its own values of Z and
Γ for the large and small gaps. It is acceptable if we sup-
pose that we have a number of microconstrictions with
various Z in the region of mechanical contact. It is note

3 In the case of interface scattering, Sharvin resistance should be
multiplied by the factor (1 + Z2) [24].

RPC T( ) . 
16ρl

3πd2
------------ ρ T( )

d
------------,+
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worthy that, with increasing weight factor, the differ-
ence between the Z and Γ values for large and small
gaps becomes smaller or even vanishes for some PCs.

RESULTS AND DISCUSSION

Approximately one half (44 of total 91) of the ana-
lyzed raw dV/dI vs. V curves show a visible two-gap
structure, although, in most cases, with shallow fea-
tures corresponding to a larger gap. The samples of
some dV/dI curves taken at 4.2 K ! Tc with the double-
gap structure, along with calculated curves, are shown
in Fig. 1. In spite of a number of fitting parameters (∆,
Γ, Z, ω) for curves with pronounced (or at least visible
as shown in Fig. 1) double-gap features, the deter-
mined, the ∆L and ∆S are robust with respect to the fit-
ting procedure.

Table 1.  Fitting parameters for curves presented in Fig. 1

Parameters Curve 1 Curve 2 Curve 3 Curve 4

RN, Ω 47 35 20 34

∆L, meV 7.4 6.25 7.35 7.3

∆S, meV 2.6 2.54 2.4 2.6

w-factor 0.11 0.08 0.07 0.06

ZL 0.7 0.71 0.63 0.21

ZS 0.75 0.55 0.56 0.76

ΓL, meV 0.4 0.1 0.55 0

ΓS, meV 0.5 0.54 0.38 0.3

Fig. 1. Reduced differential resistance dV/dI vs. V mea-

sured at T = 4.2 K for four MgB2–Ag contacts with a dou-
ble-gap structure (symbols). Thin lines are theoretical
dependences calculated with parameters given in Table 1.
The curves (1–3) are vertically offset for clarity. Vertical
dashed lines show approximate positions of large ∆L and
small ∆S gaps. Experimental curves are taken nominally in
c directions.

RN
1–

2∆L
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Fig. 2. The superconducting energy-gap distribution in
c-axis-oriented MgB2 thin film in the case: (a) double gap
and (b) single gap. Thin lines show Gaussian fit with max-
ima at (a) 2.45 and 7 meV and (b) 3.5 meV. The histogram
window of 0.25 meV for (a) and 0.5 meV for (b) is chosen
to achieve the most close to normal (Gaussian) distribution.
(c) Distribution of gap values over the Fermi surface calcu-
lated in [26].

Fig. 3. Dependence of the weight factor w on the point-con-
tact resistance. 

w
 (

%
)

It turns out that the histogram of the distribution of
gaps built on the basis of fitting 44 spectra (see Fig. 2a)
has two well-separated and quite narrow (especially for
the small gap) maxima.

The double-gap distribution is in qualitative agree-
ment with the distribution of gap values over the Fermi
surface, which was recently calculated in [26] (see
Fig. 2c). The main difference is that the theoretical dis-
tribution for the lower gap is wider and has a dominant
maxima around 1.6 meV. This discrepancy can be
resolved if we consider that we have measured curves
with a double-gap structure for contacts that are pre-
dominantly along the c axis. In this case, according to
[26], the gap values along the c axis spread between 2
and 3 meV. The c-axis directionality of our measure-
ments is, apparently, the main reason for a shallow
large-gap structure in dV/dI, because the large gap
dominates in the “a–b” plane [26].

It should be mentioned that two very different order
parameters exist only in the clean limit l @ 2πξ. Since
in our case l has an upper limit at 3 nm and the coher-
ence length ξ ~ 5 nm [27], the observation of two gaps
is in line with our supposition that in the PC area there
are small grains with a much larger mean free path.
Indeed, the SEM image of MgB2 films [16] shows that
the film is granular with 100- to 500-nm grains. There-
fore, in the area of mechanical contact there is some
amount of small metallic bridges, perhaps, with a
slightly different crystallographic orientation being in
parallel.

The single gap ∆ is seen for the dirty limit4 and is the
average of small and large gaps with some weights. If
we assume that this weight has some relation to the
weight w used in the fitting procedure, then, admittedly,
∆ . w∆L + (1 – w)∆S = 3.4 meV by using the upper limit
w . 0.2 (see Fig. 3). This agrees with the position of the
maximum of the single-gap distribution at 3.5 meV (see
Fig. 2b). In addition, according to the calculation in
[28], a large amount of impurity scattering will cause
the gaps to converge to ∆ . 4.1 meV.

Therefore, the superconducting properties of this
compound can be strongly influenced by nonmagnetic
defects and impurities, which seem to have a great
impact also on the scattering of gap value(s) given by
different authors.

As to the w factor, it is hardly to see in Fig. 3 its
dependence on RN or PC size, which one would expect
if the small gap reflects a degraded surface or the large
gap is a result of surface states [29].

Table 2 shows double-gap values given by different
authors. Good correspondence between our results and
data of other authors carried out on different types of
MgB2 samples is evident. In our case of averaging over

4 On dV/dI of “edge” contacts (a total of 11 curves) only single-gap
structure was observed, probably due to the deterioration of the
film edge after breaking.
JETP LETTERS      Vol. 75      No. 5      2002
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44 curves, the ratio of the larger gap to the lower one of
2.85 ± 0.15 is close to the theoretical value of 3 : 1 [19].

CONCLUSION
We have analyzed dV/dI point-contact spectra of

MgB2 with clear single- and double-gap structures. The
observed distinct maxima in the double-gap distribu-
tion, which is consistent with the theoretical calcula-
tions [26], ruled out the surface or multiphase origin of
the gap structure and testify to the intrinsic supercon-
ducting double-gap state in MgB2. The averaged gap
value ratio turned out to be in accordance with the the-
oretically predicted ratio 1 : 3 [19].
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Foundation of Fundamental Research, Grant F7/528-
2001. The work at Postech was supported by the Min-
istry of Science and Technology of Korea through the
Creative Research Initiative Program. IKY is grateful
to Forschungszentrum Karlsruhe for hospitality.
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The magnetization dynamics was studied for a system of two magnetic layers separated by a nonmagnetic
spacer providing their antiferromagnetic coupling. A new effect of orientational phase transition occurring upon
a change in the amplitude (frequency) of a microwave field was observed near the edge of the orientational hys-
teresis loop. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Cn; 75.30.Kz
1. The uniqueness and broad spectrum of static and
dynamic properties of multilayer structures composed
of alternating layers of a ferromagnetic metal and a
nonmagnetic material are primarily due to the diversity
of coupling types between the layer magnetizations and
to the nonlinear character of their interaction with an
external field [1–3]. Various types of coupling give rise
to various types of equilibrium magnetic ordering
driven by an external magnetic field [4, 5]. Of particular
interest are the properties of such structures near the
critical fields corresponding to the orientational phase
transitions accompanied by a jumpwise change in the
layer magnetizations. For instance, field domains in
which the states of orientational bistability showed up
as the orientational hysteresis and jumpwise rearrange-
ment of magnetization were observed in [6] for a sys-
tem of two antiferromagnetically coupled magnetic
films.

The character of magnetic ordering in a multilayer
structure largely determines the resonance behavior of
its spin subsystem in a high-frequency field [7, 8]. The
nonlinear interaction of an alternating field with the
magnetic moments of the layers also gives rise to a
number of dynamic effects, namely, to an increase in
the precession angle [9] and to dynamic bistability and
fractionation [10], which occur even in a system of two
magnetic moments with dipolar coupling [11, 12]. A
search for the conditions under which various dynamic
regimes can be excited by a high-frequency field is of
interest in many practical applications. In this work, the
dynamic magnetization reversal occurring near the
edge of an orientational hysteresis loop in the course of
precession under the action of a high-frequency field is
studied for a two-layer structure with antiferromagnetic
coupling.

2. Let us consider a structure composed of two fer-
romagnetic layers and a nonmagnetic spacer between
them. Each of the magnetic layers has thickness di,
0021-3640/02/7505- $22.00 © 20242
magnetization Mi, and in-plane uniaxial anisotropy
with the anisotropy constant Ki. The external magnetic
field H is aligned with the easy axis common to both
layers, and the high-frequency field h(t) is linearly
polarized in the film plane and is perpendicular to the
external magnetic field. In this case, the energy of a
magnetic subsystem per a film unit area is

(1)

where d12 = d1d2(d1 + d2)–1 is the reduced thickness of
the two magnetic layers; A is their coupling constant
depending, in the general case, on the spacer thickness,
material, and its structural characteristics; the azi-
muthal angle ϕi measured from the y axis, and the angle
ψi of departure from the film plane specify the direc-
tions of vector Mi in the horizontal and vertical planes.

The equations of motion for the magnetization vec-
tors Mi of each layer are written as

(2)

where γ is the gyromagnetic ratio and λi are the damp-
ing parameters in the respective layers [13]. The linear
approximation in small deviations from equilibrium
position (δi = ϕi – ϕ0i and ψi) yields the following

E di Ki ϕ i HMi ϕ icos–sin
2{

i 1 2,=

∑=

– hMi ϕ i ψi 2πMi
2 ψicos

2
–cossin }

+ AM1M2d12 ψ1 ψ2 ϕ1 ϕ2–( )coscoscos[

+ ψ1 ψ2 ] ,sinsin

ϕ̇ iMidi ψisin γ E∂
ψi∂

--------
λ i

Mi

------ 1
ψisin

------------- E∂
ϕ i∂

-------,+=

ψ̇iMidi

λ i
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ψisin
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ϕ i∂
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expression for the susceptibility of the system and its
layers [14]:

(3)

Here, the quantities ∆i =  – ω2 – 4πγ2Di + 4πiλiω,
where

are the resonance frequencies of the isolated layers and
Hki = 2Ki/Mi is the magnetic anisotropy field of the ith
layer.

3. A two-layer magnetically coupled structure with
a nonmagnetic spacer and the antiferromagnetic type of
interaction between the magnetic moments of the lay-
ers (A > 0) may undergo orientational phase transitions
resulting in collinear and noncollinear states of the film
magnetic moments [6]. If the system has the states with
two or three stationary orientations of magnetic
moments (at H = const), then variously shaped orienta-
tional hysteresis loops can appear upon changing the
magnetic field. Near the edges of the hysteresis loop,
the system is expected to be most sensitive to the micro-
wave field. We will study the dynamic behavior of the
system near the critical field Hc, where the state with
oppositely directed film magnetic moments ceases to
be stable. In the calculations, we will use parameters
close to the parameters of real films of the Permalloy
class: λ1 = λ2 = 5 × 107 s–1; anisotropy field and magne-
tization of the first film Hk1 = 10 Oe and 4πM1 = 1.1 ×
104 G, respectively, and Hk2 = 5 Oe and 4πM2 = 8 ×
103 G for the second film; γ = 1.76 × 107 Oe–1 s–1; and
the thicknesses of both films are chosen to be equal; i.e.,
d1 = d2 = 0.1 µm.

Numerical analysis of the equations of motion (2)
shows that, if the magnetic field is close to its critical
value Hc (Hc – H ≤ 0.5 Oe), then one can choose the
microwave amplitude hc for any frequency ω in such a
way that the precession axes are directed oppositely at
h < hc, whereas at h > hc the system undergoes dynamic
magnetization reversal from the initial configuration
with angles ϕ01 = 0 and ϕ02 = π to the state with the
codirected precession axes in both films. The transients
of azimuthal angles and the steady-state orbits of mag-
netic moments of the (a) first and (b) second films are
shown in Fig. 1 for the coupling constant A = 0.01, fre-
quency ω = 7 × 109 s–1, which is close to the resonance
frequency ω01 of the first film, and microwave ampli-
tudes h = 0.70 and 0.71 Oe (curves 1 and 2), which are
lower and higher, respectively, than the critical value hc.
The magnetic field H = 8.6 Oe is chosen so that for the
given coupling constant A it is close to the critical field,

χ d1χ1 d2χ2+( ) d1 d2+( ) 1– ,=

χ i = 4πγ2Mi

Mi∆3 i– ϕ0icos 4πγ2DiM3 i– ϕ03 i–cos–

∆1∆2 16π2γ4D1D2–
--------------------------------------------------------------------------------------------.

ω0i
2

Di Ad12M1M2 ϕ0i ϕ03 i––( )/di,cos=

ω0i
2 4πMiγ

2 H ϕ0icos Hki 2ϕ0icos+[ ]=
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while the directions of the film magnetic moments in
the equilibrium state are opposite with angles ϕ1 = 0
and ϕ2 = π in the absence of a microwave field. One can
see that the initial stage of establishing precession is
virtually the same in both cases. However, small dis-
tinctions in the trajectories at this stage lead to the cat-
astrophic changes in the dynamics of magnetic
moments of the system, so that the steady-state preces-
sion regimes are different. After the dynamic magneti-
zation reversal, the precession amplitude proves to be
several times larger, despite the fact that the microwave
amplitude increases only slightly. Similar situation can
also be obtained when the microwave frequency ω
changes in the vicinity of the critical field at a fixed
amplitude h.

The frequency-dependent (a) amplitudes φi =  –
ϕ0i of precession angles in the first and the second films
and (b) high-frequency susceptibility  = (M1cos  +

M2cos )/h, where  are the amplitudes of azimuthal
angles of steady-state oscillations of the corresponding
magnetic moments, are shown in Fig. 2 for the chosen
coupling constant and magnetic field and for different

ϕ̃ i

χ̃ ϕ̃1

ϕ̃2 ϕ̃ i

Fig. 1. Time-dependent azimuthal angles of magnetic
moments of the first and the second films at frequency
ω ≈ ω01 for two microwave amplitudes close to the criti-
cal value hc.
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field amplitudes h = 0.1, 0.2, 0.5, and 1 Oe (curves 1–4).
The dashed lines in Fig. 2b correspond to the linearized
solutions obtained for the equilibrium orientations
(curve 5) ϕ01 = ϕ02 = 0 and (curve 6) ϕ01 = 0, ϕ02 = π
using Eq. (3). One can see from these curves that at fre-

Fig. 2. Frequency-dependent (a) precession angles φi of
magnetic moments of the first and the second films and
(b) high-frequency susceptibility  of the system for differ-
ent microwave amplitudes; dashed curves 5 and 6 are the
linearized solutions corresponding to ϕ01 = ϕ02 = 0 and
ϕ01 = 0, ϕ02 = π, respectively.

χ̃

quencies ω ≤ 109 s–1 the second film undergoes magne-
tization reversal even at h ≤ 0.1 Oe, and both magnetic
moments undergo steady-state precession about the
codirected axes. Starting at a certain frequency
(depending on the microwave amplitude), the magneti-
zation reversal does not occur and the precession axes
in the films remain oppositely directed. As the ampli-
tude h increases, the frequency interval of magnetiza-
tion reversal extends to the larger values. For example,
at h = 0.5 Oe, it covers only the first resonance region,
while, at h = 1 Oe, it covers both resonances and the
magnetization reversal is absent only at the end of the
indicated frequency interval. The presence of a rather
narrow magnetization-reversal frequency region con-
tiguous to the resonance frequency of the system in the
initial configuration ϕ1 = 0, ϕ2 = π is typical of the effect
considered (curve 3). It is worth noting that a change in
the magnetic field H by a few tenths of oersted dramat-
ically alters the intervals of microwave frequencies
where the dynamic magnetization reversal occurs.

After the dynamic magnetization reversal, the pre-
cession amplitude may both increase compared to the
precession about the oppositely directed axes and
decrease, depending on the chosen frequency range.
Analysis shows that it increases in the frequency inter-
val ωa < ω < ωb, where the boundary frequencies are
found from the equation |χ(ϕ02 = 0)| = |χ(ϕ02 = π)|. In
the structure with equal thicknesses of magnetic layers,
the following approximate expressions hold for the
cited frequencies if the damping in the spin system is
ignored:

(4)

Over a rather broad range of parameters, the frequen-
cies determined by these expressions differ from their
true values only by 1–5%.

The analysis carried out in this work indicates that a
two-layer magnetically coupled system with antiferro-
magnetic interaction of the layer magnetic moments
undergoes dynamic magnetization reversal under the
action of a microwave field. As a result, the oppositely
directed magnetic moments in the initial configuration
are replaced by the precession about the codirected
axes. It is found that a small increase in the amplitude
of the microwave field near its critical value may dras-
tically enhance the amplitude of precession caused by
the magnetization reversal of one of the layers.
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The model of impurity transport in highly disordered fractal media is generalized with account taken of the
superdiffusional behavior at large distances and fluctuative behavior at small distances. It is found that the
impurity source power is renormalized due to the spatial fluctuations of medium characteristics. The renormal-
ization coefficient K decreases dramatically with changing the source dimension R for R values smaller than the
correlation length in the medium. In the same domain of R values, the coefficient K, together with the effective
power, undergoes increasing statistical scatter. © 2002 MAIK “Nauka/Interperiodica”.
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The impurity migration in highly disordered media
with fractal properties is usually analyzed on the basis
of the generalized transport equation, which leads to
anomalous diffusion [1, 2]. Such a description has an
averaged character. At the same time, it is clear that the
local characteristics of a fractal medium strongly fluc-
tuate. The question arises as to how these fluctuations
influence the transport processes and how the corre-
sponding effects can be taken into account. In this
work, the influence of fluctuations on the impurity
transport is analyzed for sources of various size.

The general scheme of the averaged description of
impurity transport in a statistically uniform three-
dimensional medium can be formulated in terms of the
continuity equation

(1)

where the flux density vector q = q(r, t) and the particle
concentration c(r, t) are functions of coordinate and
time and related to each other by the relationship

(2)

and the function fi(r) is determined by the medium
characteristics and has the property

(3)

If the function fi(r) decreases at large distances faster
than |r |–4, then Eq. (1) reduces to the classical diffusion
equation giving the r(t) ∝  t1/2 law for the migration dis-
tance at large times and to the Gaussian law for the con-
centration decrease at large distances. If the decrease is
slower than |r |–4, then, considering that the integral in

c/ t∂ divq+∂ 0,=

qi r t,( ) r ' f i r r '–( )c r ' t,( ),d∫–=

r f i r( )d∫ 0.=
0021-3640/02/7505- $22.00 © 20246
Eq. (3) must converge, the asymptotic behavior of the
function fi(r) is expressed by the formula

(4)

Here, d(n) ~ 1 for |n| = 1, and V and L are the medium
characteristics with dimensions of velocity and length,
respectively. Substitution of Eq. (4) into Eq. (2) and
then into Eq. (1) gives the generalized diffusion equa-
tion, which is suitable for the averaged description of
impurity transport under the condition that the concen-
tration spatial scale is larger than the correlation length
L, L|∇ c | ! c. The corresponding transport processes
have a superdiffusion character, for which the migra-
tion distance varies as r(t) ~ L(Vt/L)1/(2 – α). An alterna-
tive formulation of this problem consists in using the
formalism of fractional derivatives. The corresponding
transport equation differs from the classical equation by
the replacement of the second-order spatial derivatives
by the derivatives of the order 2 – α. It should be
emphasized that both formulations deal with the aver-
aged description of the processes on the |r | @ L scale.

Let us now consider the problem in which the size R
of an impurity source can be on the order of or smaller
than the correlation length L. Assume that the time
intervals measured from the beginning of source action
satisfy the inequality t @ L/V. Let us surround the
source with an imaginary surface S1 with a characteris-
tic radius R1 @ L. The surface shape is chosen so that
the impurity concentration at the surface is constant for
a point source placed at the origin coinciding with the
center of the real source. The total impurity flux Q from
the source to the surface can be represented as

(5)

f i r( ) r  @ L d
r
r
----- 

  V

L3
----- L

r
----- 

 
4 α–

, 0 α 1.< <≅

Q A c0 c1–( ).=
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Here, c0 and c1 are the concentrations at the source sur-
face S and the surface S1, respectively, and the quantity
A is determined by the properties of the medium
between these surfaces (near zone). The flux Q is con-
tinuous at the surface S1 and, hence, can be expressed in
terms of the medium characteristics outside the surface
S1 (far zone), where the generalized transport equation
holds:

(6)

By eliminating the concentration c1 from Eqs. (5) and
(6), one arrives at the relations

(7)

For a given concentration at the source surface, the
quantity Q0 corresponds to the source power in the
absence of fluctuations of medium properties; Q is the
effective power depressed due to fluctuations; and K is
the power renormalization coefficient.

The coefficient B is calculated by the standard
method using Eq. (1) and Eqs. (2) and (4). By the order
of magnitude, it can be written as

(8)

At distances |r | @ L, the average concentration can be
expressed in terms of the effective power Q, regardless
of the source size. In particular, one can use Eq. (1) and
Eqs. (2) and (4) to obtain the following expression for
the far tail of concentration distribution in the case
where the permanent source acts from t = 0:

(9)

Coefficient A cannot be derived from the general-
ized transport equation, because it requires knowledge
of the distribution of medium characteristics in the near
zone, where they strongly fluctuate. This situation
resembles the problem of tunneling barrier conductiv-
ity explored by Raikh and Ruzin in [3]. Thus, we will
use their approach. Like the conductivity in [3], the
transmission coefficient A in our problem is determined
by rare combinations of favorable conditions (e.g.,
cracks for the impurity transport in rocks), i.e., so-
called “punctures.” The contribution F to the transmis-
sion coefficient from an individual puncture is statisti-
cally distributed over a wide range of its values. This
contribution can be expressed as F = F0exp(–u), where
u is the auxiliary variable taking values from 0 to ∞. As
in [3], the puncture concentration per unit area of the
source surface S can be determined by the expression

(10)

Q Bc1.=

Q KQ0, Q0 Bc0, K A A B+( ) 1– .= = =

B V L2 R1/L( )1 α+ .∼

c r t,( ) Q
t2

2
---

f i∂
xi∂

------- Q
t2

r 5 α–
-------------.∝∝

ρ u( ) S0( ) 1– Ω u( )–[ ] .exp=
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Here,  is the characteristic cross-sectional size of
the puncture, which is small compared to the average
distance between the punctures, and Ω(u) is the function
with the properties Ω(u) @ 1, ∂Ω/∂u < 0, ∂2Ω/∂u2 > 0.
The ensemble-averaged transmission coefficient is

(11)

The integrand in this expression has a sharp peak.
Because of this, one obtains from Eq. (11) with an
accuracy of a pre-exponential factor

(12)

Here, a is the specific transmission coefficient (inde-
pendent of the source surface area), Ωopt = Ω(uopt), and
the value u = uopt corresponding to the optimal pinholes
is determined from the relation (∂Ω(u)/∂  + 1 = 0.
The condition for applicability of result (12) amounts to
the requirement that the mean number of optimal punc-
tures be large at the source surface, Sρ(uopt) @ 1, or

(13)

For a small area of the surface S, S < S∗ , and for the
mean number of optimal punctures less than unity, the
average transmission coefficient is determined by the
integral in Eq. (11), in which the lower limit should be
replaced by the value u = uf corresponding to the pin-
holes whose mean number for this area is on the order
of unity, Sρ(uf) = 1. Then, with an accuracy of the pre-
exponential factor, one has

(14)

By definition and according to Eqs. (10) and (13), the
quantity uf satisfies the equation

(15)

Note that, whereas for large source sizes (S > S∗ ) the
value 〈A〉  decreases proportionally to the area, it
decreases, according to Eqs. (14) and (15), much faster
for small sizes (S < S∗ ). One more effect caused by the
fluctuations of the properties of a disordered medium
consists of the increase in the statistical scatter of the
transmission coefficient A with decreasing source size.
The calculations analogous to those performed for the
tunneling barrier conductivity in [3] suggest that the
relative scatter ∆(A) = 〈(A – 〈A〉)2 〉1/2/〈A〉  is small if
S > S∗ , comparable with unity if S < S∗ , and may be
larger than unity if S ! S∗ .

Taking into account the results obtained for the
transmission coefficient and based on the estimate (8)
and Eqs. (7), one can conclude that the power renormal-

S0
1/2

A〈 〉 S
F0

S0
----- ue–u Ω u( )– .d

0

∞

∫=

A〈 〉 Sa, a
F0

S0
----- –uopt Ωopt–[ ] .exp≈=

u )u uopt=

S S*, S*> S0 Ωopt( ).exp=

A〈 〉 S*a u f uopt–( )–[ ] , S S*.<exp=

S
S*
------ Ωopt Ω u f( )–[ ]exp 1.=
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ization coefficient tends to unity for large-sized sources
(K ≅  1 if S @ S∗ ) and that its mean value for small sizes
(S < S∗ ) is determined by the expression

(16)

As for A, the statistical scatter ∆(K) of the renormaliza-
tion coefficient increases with a decrease in area. Natu-
rally, the characteristic area S∗  separating the domains
of two different impurity transport regimes (the fluctu-
ations are immaterial at S > S∗  and should be taken into
account at S < S∗ ) is on the order of L2.

Thus, the spatial fluctuations of medium character-
istics suppress significantly the ensemble-averaged
effective power for small-sized impurity sources.

K〈 〉 A〈 〉 /B ! 1 at S ! S*.≅
In this case, the effective power also exhibits a large
statistical scatter.
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Complex quasienergy and level width are calculated for a weakly bound atomic state in an intense circularly
polarized monochromatic laser field using the method suggested by Zel’dovich for the regularization of diver-
gent integrals with the Gamow wave function. It is demonstrated that this method converges, and the conditions
for its applicability are indicated. These results are used to discuss the accuracy of the semiclassical approxi-
mation in the problems of ionization theory. © 2002 MAIK “Nauka/Interperiodica”.
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Quasistationary states whose Gamow wave func-
tions increase exponentially at infinity, |χk(r)| ~

exp(k2r), where k =  = k1 – ik2 is the momentum
with k2> 0, frequently occur in the theory of elementary
particles and atomic and nuclear physics. As a result,
obvious difficulties arise when using a quantum mechan-
ical apparatus, because even the normalization integral

χk(r)|2dr diverges. The method for overcoming this

difficulty was pointed out by Zel’dovich in [1], where he
suggested that the normalization integral should be
understood in the regularized sense as the limit

(1)

which, in particular, allows one to construct perturba-
tion theory for the quasistationary states [1, 2].

However, as far as we know, the Zel’dovich regular-
ization method has not been applied to particular phys-
ical problems of quantum mechanics so far. In this
work, we discuss the applicability of this method by the
example of decay of an atomic level bound by the short-
range forces in the field of a circularly polarized elec-
tromagnetic wave and indicate conditions for the appli-
cability of this method.1

In the frame of reference rotating with the field [5],
the Schrödinger equation becomes stationary with the
Hamiltonian

(2)

1 This problem is also of interest in the theory of multiphoton ion-
ization of the negative ions of the type H–, Li–, Na–, etc. Numer-
ous results achieved in this area are discussed in monograph [3]
and review [4].
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where " = m = e = 1, ω and % are the frequency and the
amplitude of the electric field, respectively, and Lz is
the projection of the orbital angular momentum of an
electron onto the direction of wave propagation. The
spectrum of complex quasienergy levels coincides
with the spectrum of quasistationary levels of the
Hamiltonian Hω.

We restrict ourselves to the s states and, as in [6, 7],
use for U(r) the zero-range approximation (δ potential).
In the three-dimensional case, this is equivalent to the
boundary condition [2]

(3)

where E0 = – /2 is the energy level in the absence of
the wave. Taking into account the explicit analytical
expression for the Green’s function of (2) satisfying the
Sommerfeld radiation condition at infinity, one arrives
at the closed equation for the quasienergy E

 

 = 

 

E

 

r

 

 – 

 

i

 

Γ

 

/2
of the quasistationary state. This equation was obtained
by Berson [6] and Manakov and Rapoport [7] and can
be written as

 

2

 

 

(4)
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See also [3, 4]. Equation (4) was generalized in [8] to the states
with nonzero orbital angular momentum 
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Here,

(5)

(5a)

where ε and F are the reduced quasienergy and the elec-
tric field, respectively, γ is the Keldysh adiabaticity
parameter [9], and K0 is the multiquantum parameter of
the process. Taking into account that the scaling rela-

tionships Γ ∝   and % ∝   are fulfilled in the
δ-potential model, we set κ0 = 1 without loss of gener-
ality.

Since Ime = Γ > 0 for the quasistationary state, inte-
gral (4a) diverges exponentially at the upper limit and
requires regularization. In this case, the regularization
reduces to the analytic continuation of Eq. (4a) from the
lower e half-plane, where the integral is well defined.
For this purpose, we use the Zel’dovich method, i.e.,
assume that the α  +0 limit of the solutions to the
equation

(6)

is the solution to Eq. (4); Iα differs from I only by the
factor exp(–αu2) in the integrand. To illustrate that the
Zel’dovich method converges, we consider a character-
istic example. The numerical solution to Eq. (6) gives
the following for γ = 3 and K0 = 1.5: δ = 3.89207(–3) and
Γ = 6.27485(–4), δ = 3.89202(–3) and Γ = 6.27398(–4),

e ε γ 2– , ε+ E/E0 1 δ iκ0
2– Γ ,+ += = =

δ Er E0–( )/E0,=

γ ωκ0/% 1/2K0F, K0 E0 /ω,= = =

F %/κ0
3,=

κ0
2 κ0

3

Iα e; γ K0,( ) e 1–=

Fig. 1. Level width Γ vs. 1/K0 = 2ω. The solid lines are the
numerical calculations by Eq. (6), and the dashed lines are
the semiclassical approximation ΓQ. Each curve is labeled
Keldysh parameter γ; the ordinate-axis scale is logarithmic.
 

and δ = 3.892006(–3) and Γ = 6.27370(–4) for  =
2.0(–3), 1.0(–3), and 2.5(–4), respectively, while the
extrapolation to the α = 0 yields δ = 3.892005(–3) and
Γ = 6.27369(–4). Here, a(b) ≡ a × 10b. To calculate Γ
with the relative accuracy 10–5, it is usually necessary to
achieve the values α ≤ 10–4–10–5, with the convergence
of the method being 1–2 orders of magnitude higher for
the Stark shift δ than for Γ.

The results of calculation of the widths Γ for differ-
ent values of the Keldysh parameter are shown in Fig. 1.
It is seen that the behavior of Γ in the antiadiabatic
region γ > 1 exhibits irregularities caused by opening or
closing the successive channel of n-photon ionization.
At the same time, the level width for γ ≤ 1 depends
monotonically on the field frequency. Figure 1 also
shows the semiclassical ΓQ values calculated by the for-
mulas obtained in [10, 11]. The accuracy of the semi-
classical approximation can be judged in more detail
from Fig. 2, where the ratio q(γ, K0) = Γ/ΓQ is shown.
At γ < 1, this ratio decreases monotonically with multi-
quantum parameter K0, while it exhibits oscillations
due to the threshold effects as γ increases. In the limit
K0  +∞, the semiclassical approximation becomes
exact for any γ. Finally, Fig. 3 shows the width Γ as a
function of the field F for several values of ω = 1/2K0.
The function Γ(F, ω) shows characteristic discontinui-
ties in the vicinity of the n-photon ionization thresholds
(K0 = n at γ @ 1). The calculation of the width encoun-
ters difficulties in these regions of parameters, because
Eq. (6) has no limit there. Thus, the Zel’dovich method
does not apply in narrow regions near the ionization
threshold.

α

Fig. 2. Accuracy of quasiclassical approximation: the ratio
q = Γ/ΓQ against 1/Κ0.
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To reveal the cause for this fact, let us consider the
integral

(7)

which converges in the lower ε half-plane. Introducing
Zel’dovich regularization, one obtains

(8)

where $–s(z) is the parabolic cylinder function. At
α  0, this gives

(9)

where the correction in the braces is written with the

pre-exponential accuracy. If  –  > 0, this formula
reduces to Eq. (7) in the limit α  +0. However, at

 –  < 0, the second term in Eq. (9) increases expo-
nentially and Jα has no limit, which is caused by the
Stokes phenomenon known in the theory of asymptotic
expansions.

Thus, the Zel’dovich recipe (1) applies to the quasis-
tationary state with momentum k = k1 – ik2 if

(10)

i.e., if the width of the level is smaller than its distance
from the threshold. This condition (not pointed out in
[1, 2]) is usually satisfied (and even with a margin).
However, when considering the dynamic Stark effect in
a strong field [particularly, when solving Eq. (6)], ine-
quality (10) may be broken and the Zel’dovich method
becomes inapplicable, as is manifested by the presence
of discontinuities in the curves in Fig. 3.

The question then arises of whether it would be
more profitable to use in Eq. (6) the regulators decreas-
ing even more rapidly at infinity, e.g., as exp(–αu4). It
turned out that such is not the case. Numerical analysis
of this case shows that the convergence at α  +0
becomes even worse and the region of applicability of
the method becomes narrower: |k2 | < 0.41|k1 | instead of
Eq. (10). One can show that for the regulator of the
form Rλ = exp(–αuλ ) the method converges within the
angle

(11)

At λ  ∞, i.e., for R∞ = exp(–αeu), the regularization
fails for any k2 > 0. In this sense, the Zel’dovich regu-
larization method is optimal.
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Note that a similar situation takes place in the theory
of divergent series [12]: although there are very power-
ful methods for summing some rapidly divergent series,
these methods become inoperative in the case of a
slightly divergent series such as 1 – 1 + 1 – 1 + … = 1/2.

In conclusion, we note that previous calculations [3,
7] of the width Γ as a function of the parameters γ and
ω in the δ-potential model are in sharp contradiction
with Fig. 1 and, in our opinion, are incorrect (as was
already pointed out in [8]). Recently, Manakov et al.
[13] suggested for Eq. (4) the regularization method,
which considerably differs from the Zel’dovich
method.3 The Γ values obtained by this method agree
with our results (cf. curve 2 in Fig. 3 with the corre-
sponding curve in Fig. 1 from [14]). However, the
Zel’dovich regularization method is far more universal
and, in our opinion, will find further use in the theory of
quasistationary states.
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