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Laser Action in a Gas Condensation in the Vicinity 
of a Hot Star1
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In the region near 1 µm, we have found laser action in a quantum transition between highly excited states of Fe
II, with its higher levels being optically pumped by the intense H Lyα radiation (1215 Å) formed in the ionized
HII region of a gas condensation (blob B) in the close vicinity of the central star in η Carinae. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 97.10.Fy; 98.38.Hv; 95.85.Kr
1 Following the discovery of space microwave masers
operating in the OH radicals [1] and H2O molecules [2],
such masers were found to be operative in more than
100 molecular species [3], as well as in highly excited
hydrogen atoms [4] in the submillimeter wavelength
region. In the IR region of the spectrum, the effect of
stimulated emission of radiation in the CO2 molecule
was discovered in the Martian and Venus atmospheres
[5, 6]. In this letter, we report on the laser action in the
optical region of the spectrum—a possibility that was
discussed as far back as 1972 [7].

The probability of finding a laser effect in the optical
region differs considerably from that in the microwave
region, as a result of the enormous difference (1015 to
1018 times) between the spontaneous emission rates and
inverse population production mechanisms in the two
wavelength regions. This follows from simple qualita-
tive considerations of the steady-state saturation regime
of the isotropic maser/laser action.

The stimulated emission of radiation in a space
maser occurs as a result of pumping the upper maser
level, which is not associated with spontaneous emis-
sion in microwave radiative transitions. It may there-
fore have a decay rate much in excess of the spontane-
ous emission rate, which lies in the region Amn ≅  10–9–
10–7 s–1. Therefore, the intensity of stimulated radiation
can be many orders of magnitude higher than the inten-
sity of spontaneous radiation, and it is only limited by
the pumping rate. This is exactly the reason why the
brightness temperature of maser microwave lines
reaches as high a value as 1010–1015 K. The intensity of
maser lines is not borrowed from other microwave
spectral lines, which are very weak, but from other
pumping sources.

1 This work was submitted by the authors in English.
0021-3640/02/7510- $22.00 © 20495
In the optical region of the spectrum, the rate of
allowed spontaneous transitions is high (Amn ≅  108–
109 s–1), and it is precisely spontaneous transitions that
provide the pumping of the upper level in an optical
space laser at a sufficiently high rate to exceed the rates
of collisional pumping mechanisms. This is especially
true for the case considered here, where the space laser
is indirectly pumped by H Lyα in the vicinity of η Car,
one of the most luminous stars of our Galaxy. There-
fore, the intensity of the stimulated radiation in the opti-
cal region generated by the occurrence of an inversion
population and significant amplification cannot exceed
in the steady-state regime to any substantial extent the
intensity of the pumping spectral lines formed by spon-
taneous emission in allowed radiative transitions of
atoms or ions. This fact presents difficulties in detecting
laser action by a large enhancement of the radiation
intensity, but it should manifest itself in comparatively
moderate changes of the branching ratios of spectral
lines, having a common source of pumping.

One exception is the case of quantum transitions
having a relatively low spontaneous emission probabil-
ity (Amn ≅  1–105 s–1), and, consequently, the spontane-
ous radiation lines are weak. Once an inverted level
population has developed in such a transition with a
significant amplification in a properly sized cloud, a
stimulated emission channel opens up. The stimulated
transition rate cannot be much higher than the sponta-
neous emission rate, which is limited by the pumping
rate of the upper laser level. Thus, the intensity of the
laser line should become comparable with the intensity
of the lines which are due to the allowed spontaneous
emission of radiation and resulting from the optical
pumping (direct or indirect) of the upper level. This
takes place only in the inverted population volume with
size L @ 1/α, where α is the amplification coefficient
per unit length. In such a case, a spectral line, expected
to be weak, must appear as a spectral line of normal
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intensity, typical of an allowed transition. This is
exactly what we have found to be the case with several
spectral lines of Fe II pumped indirectly by the intense
H Lyα radiation (1215 Å) in a dense-gas condensation
(blob) in the vicinity of η Car.

Using the Space Telescope Imaging Spectrograph
(STIS) onboard the Hubble Space Telescope, the
authors of [8] recorded the spectra of blob B in the
vicinity of η Car with a high angular and spectral reso-
lution. The spectrum contains an intense 9997 Å line, as
well as other Fe II lines at 9391, 9617, and 9913 Å,
which can be excited by HLyα radiation in a cascade
fashion [9], shown schematically in Fig. 1. All these
spectral lines have long-lived (from a few microsec-
onds to a few milliseconds) upper states and a short-
lived (3.7 ns) lower state; i.e., an inverted population
always exists in these transitions. The gain by these
inverted-population transitions is governed by the rate
of photoexcitation of the upper levels by the HLyα radi-
ation.

Fig. 1. Schematic diagram of the relevant energy levels and
radiative transitions of Fe II illustrating the formation of an
inverse population of levels 3 and 2 and amplification in the
transition 3  2 owing to the photoselective pumping of
level 4 by the intense Lyα radiation.
Photoselective pumping 
of Fe II by HLyα Radiation

Dense-gas condensations (Weigelt blobs [10]) in the
neighborhood of the luminous blue variable (LBV) and
massive star η Carinae are capable of absorbing all the
photospheric radiation in the wide Lyman continuum
region (λ < λc = 912 Å) incident upon them from the
central star. This occurs because of the high Lyman-
continuum optical density τ(λc) of the neutral hydrogen
component in the ionized HII/HI region of the blob.
Since the gas condensations are very close to the central
star [11, 12], the density of the radiative energy depos-
ited in them proves to be so high that the spectral
brightness temperature Tbr(Lyα) of the more narrow
Lyα line at 1215 Å inside the blobs can be very high.
The magnitude of Tbr(Lyα) can become comparable
with that of the brightness temperature of the photo-
sphere of η Car, Ts = (20–30) × 103 K. This is a unique
situation for the photoselective excitation of those
atoms and ions whose absorption lines from the ground
state or low-lying metastable states coincide with Lyα.

This is exactly the situation that occurs for the Fe II
ions formed in the HI region of the blob by complete
photoionization of Fe I by the radiation from η Car in
the spectral region IFe = 7.6 eV< hν < IH = 13.6 eV. The
concentration of iron in typical nebulae is about 0.01%
of the hydrogen concentration. When Fe I undergoes
photoionization, a substantial portion of the Fe II ions
formed occupy low-lying long-lived metastable states
with energies E < IH – IFe ≈ 6 eV as a result of the decay
from numerous autoionization states. There are about
90 such metastable and pseudometastable states in Fe
II. Some of them have absorption lines coinciding in
wavelength with the extremely bright spectral line Lyα.
The large number of low-lying long-lived states and the
high density of spectral lines (≈15 lines/Å in the Lyα
region) result in several such coincidences in Fe II. Sev-
eral of them are similar to those shown schematically in
Fig. 1, which lead to photoselective excitation of
energy levels in Fe II, and the subsequent cascading
decay gives rise to population inversion.

The Lyα line at λ = 1215.671 Å almost coincides
with the absorption line of Fe II in the transition a4G11/2

(level 1 in Fig. 1)  sp4G° (level 4), the frequency
difference (detuning) between them being ∆ν =
+30 cm–1. This difference is compensated by the broad-
ening of the line profile when the Lyα radiation is
passed through the HI region with an optical density of
τ ≅  3 × 105. Thus, the transfer broadening of the Lyα
radiation makes the photoselective excitation of state 4
in Fig. 1 quite possible.

The photoselective excitation rate of state 4 is
defined by the expression

(1)Wexc
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Fig. 2. Physical model of the photoionization-resonance photoexcitation pumping of Fe II in the gas condensation by the radiation
emitted by ηCar with a brightness temperature of Ts.
where the indices 1 and 4 correspond to the level desig-
nations in Fig. 1, A41 = 1.2 × 107 s–1 is the Einstein coef-
ficient for the spontaneous decay of state 4 to state 1,
and Tbl is the brightness temperature of the Lyα radia-
tion inside blob B. For kTbl ≈ 1.0–1.5 eV (Tbl ≈ (12–

18) × 103 K), the photoselective excitation rate  ≈
103–104 s–1.

The main decay channel (branching fraction = 0.97)
of state 4 is the radiative transitions to two fine-struc-
ture levels of b4G, one of which (b4G11/2 is level 3) has
a channel of spontaneous radiative decay with a proba-

bility of A32 = 8 × 104 s–1 to level 2 (z4 ) with a much
shorter lifetime (≈3 ns). It is exactly in this 3  2
transition that a steady-state population inversion is
reached, its density being

(2)

where N2 ! N3 because of the much faster decay of the
level 2, τ3 = 11.5 µs, and N1 is the population of the ini-
tial metastable state with a lifetime of τ1 = 0.77 s @ τ3.

The linear amplification coefficient for the 3  2
transition at 9997 Å is defined by the standard expres-
sion

(3)

where ∆N is the inverted-population density defined by
Eq. (2). The stimulated emission cross section σ32 is
given by

(4)

where ∆νD is the Doppler width of the 3  2 transi-
tion in Fe II. At a temperature of T ≈ 100–1000 K in the
relatively cold HI region, ∆νD ≈ (300–1000) MHz, i.e.,

Wexc
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F9/2
0

∆N N3 N2– N3 Wexc
14 τ3( )N1,= = =

α32 σ32∆N ,=

σ32

λ32
2

2π
-------

A32

2π∆νD

-----------------,=
JETP LETTERS      Vol. 75      No. 10      2002
σ32 = (0.6–2) × 10–13 cm2. Thus, the amplification coef-
ficient may be estimated by the expression

(5)

where f is the fraction of the Fe II ions in their initial
state relative to all Fe II ions (all iron atoms in the HI
region of the blob are ionized).

The fraction f is governed by the excitation rate of
the level 1 and its lifetime τ1. The rates of collisional
excitation mechanisms for the level 1 (i.e., the recom-
bination of the Fe2+ ions and electron collisional excita-
tion) are negligible in comparison with the decay rate
1/τ1 of the state 1 because of the low electron concen-
tration in the HI region (ne ≅  104–105 due to the photo-
ionization of iron, as well as other elements with an ion-
ization potential of I < 13.6 eV). Most important for the
laser action observed are the following radiative chan-
nels: (1) the radiative decay of the high-lying states of
Fe II excited by the Lyα or other intense radiation lines
and (2) the decay of autoionization states of Fe I excited
by the radiation emitted by η Car in the spectral region
IFe + E1 = 10.6 eV < hν < 13.6 eV, where E1 is the
energy of state 1. These excitation channels can provide
an excitation rate > 1/τ1 ≈ 1 s–1 and, hence, sustain the
relative population of state 1 at a level, for example, of
f ≈ 10–2. This would correspond to an approximately
equal distribution of the Fe II ions among their 90 meta-
stable and pseudometastable states, including state 1.
Leaving the calculation of the magnitude of the fraction
f for future consideration, we will restrict ourselves
here to the qualitative estimate of f ≈ 10–2.

In this approximation, the amplification coefficient
for the transition 3  2 may be estimated, according
to Eq. (5), at α32 ≈ (3 × 10–18 to 10–16)N0 [cm–1], where
N0 ≈ 10–4NH is the density of the Fe atoms, NH being the

α32 σ32 Wexc
14 τ3( ) f N0,=
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density of the hydrogen atoms in the blob. According to
the data presented in [11] and the results of a calcula-
tion of the critical density of hydrogen atoms [13], the
density NH of the hydrogen atoms in the blob is obvi-
ously higher than 108 cm–3. Thus, for α32 ≥ 3 × 10–14–
10–12 cm–1 and a blob diameter D ≈ 1015 cm–3 [11],
which can be regarded as the size αL of the amplifying
region (Fig. 2), αL ≈ (30–1000) at a blob temperature
of Tbl = (12–18) × 103 K.

These values correspond to fairly high linear ampli-
fication coefficients K = exp(αL). However, at an
amplification coefficient of K ≈ A41/A32 ≈ 103 for an iso-
tropic radiation, the intensity of the weak line λ32 (in
photons/cm2 s) approaches that of the strong line λ43;
i.e., the rate of stimulated transition approaches the
pumping rate for level 3. Thereafter, the amplification
regime becomes saturated, and the intensity of the laser
line λ32 becomes equal to that of the pumping line λ43.
Under such saturated amplification conditions, the
intensities of both these lines grow in proportion to the
propagation length L.

We believe that laser amplification and stimulated
emission of radiation is a fairly common and wide-
spread phenomenon, at least, for gas condensations in
the vicinity of bright stars. This is due to the occurrence
of two types of processes (fast radiative and slow colli-
sional) in a very rarefied gas of the condensations,
whereby the populations of electronic levels in atoms
(ions) can relax. These relaxation processes occur on
highly different time scales, radiative relaxation operat-
ing on a time scale of 10–9–10–3 (sometimes even within
10–3), and collisional relaxation, on a time scale of over
100 s (at gas densities <109 cm–3). In the case of photo-
selective excitation of some high-lying levels of an
atom or ion with a complex energy-level structure, radi-
ative relaxation takes place as a consequence of down-
ward transitions with spontaneous emission of radia-
tion, in the course of which there inevitably develops an
inverse population of some pair (pairs) of levels. If the
size of a gas cloud is large enough, large amplification
of the inverted-population transition automatically
switches on the radiative relaxation channel, which
leads to faster stimulated quantum transitions until col-
lisional relaxation becomes important. Thus, the laser
action is an intrinsic characteristic of the radiative cool-
ing of gas clouds near bright stars by stimulated emis-
sion for inverted transitions along with spontaneous
emission for normal noninverted transitions.
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Oscillations were observed in the radioactive decay curves of the 119mSn and 125mTe isomers. The phenomeno-
logical model based on a nonlinear decay equation is suggested for the phenomenon. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 21.10.Tg; 23.20.Lv; 76.80.+y
In work [1], published in 1998, the conditions were
established experimentally under which the radioactive
decay constant λ may strongly change; e.g., ∆λ/λ =
−(0.114 ± 0.027) for the 119mSn isomer. The decay
scheme for this isotope is shown in Fig. 1. The energy
of its isomeric level is 89.53 keV, T1/2 = 293 days, and
the energy of the intermediate Mössbauer level is
23.87 keV. The idea was to surround the isomeric
nuclei with their decay products, i.e., with the stable
119Sn isotopes. To do this, a screen made from “black”
Mössbauer absorber (with a very broad absorption
spectrum) containing many stable 119Sn isotopes (up to
15 mg/cm2) was attached immediately to a source. It
was assumed that the combined action of the recoilless
Mössbauer radiation and the recoilless reemission from
the stable nuclei could produce in local microregions
long-lived (~10–8 s), on the nuclear time scale, stand-
ing-wave interference patterns with antinodes on the
nuclei occurring in the predecay state. As a result, the
nuclear parameters may change dramatically. It was
predicted that, under these experimental conditions, the
decay curve, in principle, may show oscillatory behav-
ior [1–3].

These positions were elaborated in further studies.
Namely, the next experiment [4] was arranged in such
a way that the source was surrounded by the resonant
screen on all sides; i.e., the 4π geometry was used. As a
result, the effect was enhanced more than two times:
∆λ/λ = −(0.25 ± 0.03). The idea also arose of surround-
ing the emitting nuclei by the their decay products on
the atomic level through mixing the stable and radioac-
tive isotopes (internal screen). The result was even
more impressive: ∆λ/λ = –(0.32 ± 0.01) [4]. Finally, the
studies were carried out with another isotope, 125mTe.
The decay scheme of this isomer, which is produced
from the mother nucleus 125Sb (T1/2 = 2.7 year), is
shown in Fig. 1. The energy of isomeric level for this
nucleus is 145.0 keV, T1/2 = 58 days, and the energy of
0021-3640/02/7510- $22.00 © 20499
its intermediate Mössbauer level is 35.6 keV. The
experimental scheme with internal screen was also
used in this case. As a result, the portions of decay
retardation, decay stop, “emission generation,” and
decay acceleration were observed in the decay curve
[4, 5]. These pioneer results called for further inquiries
in this direction. This work is devoted to the imple-
mentation of this idea.

Fig. 1. Schemes of isotope decay for (a) 125Sb(125mTe) and
(b) 119mSn; α is the conversion coefficient.
002 MAIK “Nauka/Interperiodica”
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To enhance the effects observed for the 119mSn iso-
tope, long-term (~3 years) measurements were under-
taken for the decay curve of a source supersaturated
with an artificially introduced stable isotope. For this
purpose, an object with an activity of 0.5 mCi was syn-
thesized from the BaSnO3 compound, in which 2 × 104

stable isotopes were introduced per one radioactive
atom. This model corresponds to a source whose “age”
is ~14T1/2. The radiation was detected by the scintilla-
tion method using a 1-mm-thick NaJ(Tl) crystal. In this
and other experiments, the emission was detected from
the intermediate (Mössbauer) level, whose decay iden-
tically reflects the decay of the upper (isomeric) level.
A multichannel analyzer with 256 channels operating
in a multiscalar mode was used. The number J of counts
in 1 s per channel was the measured parameter. The
electronic parameters of the setup and the geometric
arrangement of the source and detector were kept stable
with a high accuracy for several years.

A similar experiment was carried out with the stan-
dard Mössbauer source 125Sb(125mTe) in a Cu matrix. It
was fabricated in 1991 and had an initial activity of
5.4 mCi. By the beginning of measurements, 14 stable
125Te nuclei had been accumulated per one radioactive
nucleus in the source; i.e., a rather active internal screen
was formed inside the source. This object corresponded
to a source passed through the stage of natural aging
(contrary to the case described above). The secular
equilibrium between 125mTe and 125Sb is achieved in the
first year of the source lifetime, whereupon the 125mTe
production rate becomes equal to the decay rate of the
mother nucleus (Fig. 1).

Fig. 2. Decay curve for a Ba 119mSnO3 source containing

2 × 104 stable 119Sn nuclei per one radioactive nucleus
(errors are given by the circle sizes). Solid line is the normal
decay law (T1/2 = 293 days).
Finally, to perform reference measurements, a non-
Mössbauer source in the form of an aqueous solution of
119mSnCl2 was fabricated and placed in a special
gamma-transparent ampule. The activity of this object
was 0.5 mCi, and the experimental conditions were the
same as described above.

All experiments were carried out at 293 K.

RESULTS

The results of the first experiment are presented in
Fig. 2. Measurements started on March 12, 1999. The
ordinate is ln J, and the abscissa is time (in days). The
solid line corresponds to the normal decay regime with
T1/2 = 293 days. It is clear from Fig. 2 that the decay has
the oscillatory character with a period of ~380 days.
Three oscillation “waves” with amplitudes increasing
with time are distinctly seen in the curve. The portions
of decay retardation (e.g., ∆λ/λ = –0.34 at t > 750 days),
normal run, and decay acceleration (e.g., ∆λ/λ = 0.42 at
t > 920 days) are seen in the curve. Strictly speaking,
the notion of decay constant loses its physical meaning
in this case, because λ is a function of time. Thus, the
presence of many self-decay products in the vicinity of
the emitting nucleus gives rise to the oscillations in its
decay curve. However, on the whole, the normal decay
still dominates.

The results of measurements with a 125Sb(125mTe)
source are presented in Fig. 3. Measurements started on
September 20, 2000. The oscillations with a varying
period of several hundred days are also clearly seen in
this case. The initial portion of the curve (the first
110 days), where the decay is accelerated by 2.36 times
(∆λ/λ = 1.36), is particularly pronounced. Then, the

Fig. 3. Decay curve for the aged 125Sb(125mTe) source in a
Cu matrix (errors are given by the circle sizes). Solid line is
the normal decay law (T1/2 = 2.7 year).
JETP LETTERS      Vol. 75      No. 10      2002
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decay starts to slow down and stops (dJ/dt = 0) for the
first time at t = 216 days, after which it gives way to
emission generation (dJ/dt > 0), another stop (t =
259 days), and normal decay. This cycle is repeated
again, though with a more pronounced generation peak.
Nevertheless, the overall shape of the curve corre-
sponds to the normal decay (T1/2 = 2.7 years).

The results obtained for a non-Mössbauer 119mSn
source are presented in Fig. 4. The measurements
started on July 20, 2001. One can clearly see that the
radioactive decay shows the standard behavior and does
not display any anomalies of the type described above.
This provides strong evidence for the Mössbauer nature
of decay oscillations.

DISCUSSION

It is clear that the results presented in this paper can-
not be described by the traditional radioactive decay
equation

(1)

where N is the number of radioactive nuclei at a given
instant of time. A modified form of this equation [4, 5]
is written as

(2)

where A is the proportionality coefficient. The physical
meaning of the term –AN3 consists in the fact that it is
equal to the number of nuclei “leaving” the decay pro-
cess or “retarding” because of an indefinitely large T1/2.
The mechanism of their production can be envisioned
as follows. The emitting and absorbing nuclei form a
system of standing Mössbauer waves, whose antinodes
may fall on the isomeric nuclei that did not yet decay.
The resulting “nucleus–wave” system has two excited
energy levels, with the energy of one of them being a
multiple of the other (145/35.6 = 4 for 125mTe). Under
these conditions, dynamic oscillation synchronization
may occur [6]; i.e., the occupied lower level may influ-
ence the parameters of the upper level. In other words,
the decay of the upper level is hampered because the
lower level is occupied for a time. As a result, the
“retarded” nuclei appear. Assume that the number of
emitting nuclei in volume unit at time t is equal to λN.
The probability of a standing wave being formed as a
product of pair interaction is proportional to the
squared concentration of interacting components; i.e.,
this probability is proportional to ~(λN)2. It is assumed
that, for each emitting nucleus, there is a scattering
nucleus, which is the case in the experiments consid-
ered. The number of retarded nuclei is equal to the
product of the probability of forming the standing wave
system by the number of radioactive nuclei; i.e., it is
proportional to (~(λN)2 N or equal to AN3. The analytic
solution to Eq. (2) is given in [5]. It leads to a power
retardation law, which transforms to the traditional
exponential form at long times. A remarkable feature of

dN /dt λN ,–=

dN /dt λ N AN3–( ),–=
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Eq. (2) is that it accounts for the oscillatory decay.

Indeed, dN/dt = 0 at N = ± . The solution with a
minus sign implies that Eq. (2) may take the form

(3)

allowing the emission generation or the decay bifurca-
tion.

The question now arises as to the origin of emission
generation (“autocatalysis”) provided by Eq. (3). There
can be only one reason for this process: upon reaching
a certain threshold concentration, the retarded nuclei
undergo rapid transition to the normal state, which is
accompanied by the “burst” of gamma radiation as a
result of collective energy accumulation.

Equations (2) and (3) can conveniently be analyzed
on the phase plane “rate (dN/dt)–coordinate (N).” For
definiteness, let us consider the experiment with 125mTe
(Fig. 3). The source in this experiment contained ini-
tially (in 2001) N0 = 0.177 × 1016 nuclei, and A = 3.19 ×
10–31. The constant λ for 125Sb is 70.3 × 10–5 1/day. The
extremes in the curves given by Eqs. (2) and (3) occur at

(4)

These initial data were used to construct dN/dt as a
function of N for Eq. (2) (Fig. 5, curve a). The time in
this figure is a parameter, and it increases, according to
the conventional rules adopted for the differential equa-
tions of this class, when moving from right to left
(shown by arrow) [7]. Assume, for definiteness, that the
number of retarded nuclei comprises, e.g., 1/3 of the
normal nuclei. This increases the parameter A to 2.78 ×
10–30, which is 8.7 times greater than for the normal
nuclei. Curve b in Fig. 5 corresponds to Eq. (3). Natu-
rally, N0 = 0 for this curve, because no generation
occurs at t = 0. For curve b, the time increases when
moving from left to right.

Evidently, all the observed results can be explained
by combining curves a and b in Fig. 5. Indeed, if time
is counted from the extreme points on the N axis, then
the result will be the sum of curves a and b. To obtain
the dependence of dN/dt on t, one has to correctly add
together curves a and b for each moment t. The neces-

1/A

dN /dt +λ N AN3–( ),=

dN /dt λ 2/3 1
3A
-------.×=

Fig. 4. Decay curve for a 119mSnCl2 source in an aqueous
solution (errors are given by the circle sizes). Solid line is
the normal decay law (T1/2 = 293 days).
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sity of the correct combination of these curves is dic-
tated by the fact that curve b is “swept” too fast, because
the emission generation, the decay slowing down, and
the subsequent acceleration occur in ~100 days (Fig. 3),
which is ~10 times faster than the mean trend in the
normal decay (T1/2 = 2.7 year = 985 days). An example
of such an addition is presented in Fig. 5 (curve c). One
can see that the resulting curve, starting at dN/dt = 0,
immediately falls into the generation regime (dN/dt >
0), which gradually slows down to reach the point p,
where dN/dt = 0, after which the decay is accelerated
(the curve becomes steeper than AN3) up to the point p',
where the outburst in the curve is terminated. However,
this does not mean that the radiation burst occurs only
once. The retarded nuclei are again accumulated as a
result of the burst and, together with a portion of
“untapped” nuclei, can generate a new burst after a
time, as is seen in Fig. 3.

The features of Fig. 5 can generally be used for
interpreting the behavior of the decay curve for 119mSn

Fig. 5. Graphic representation of Eqs. (2) and (3) on the
phase plane “rate–coordinate” (dN/dt–N). Curve a corre-
sponds to Eq. (2), curve (b) corresponds to Eq. (3), and
curve (c) corresponds to the combined representation of
Eqs. (2) and (3).
(Fig. 2). The distinctions are that the curve of type b in
Fig. 5 is poorly pronounced, and the decay of type a
starts on the left of the point p', so that the overall curve
never attains the level dN/dt = 0. The oscillations (“rip-
ple”) are only observed on the normal decay curve. This
is likely due to the fact that the energy of isomeric level
in 119Sn is not a strict multiple of its Mössbauer energy
(89.53/23.87 = 3.75), so that the dynamic oscillation
synchronization is less efficient in this system.

Note in conclusion that the decay control for the
class of isomers considered in this work, in principle,
may be brought to the “catastrophic” level, i.e., to the
instantaneous depletion of the isomeric level. To do
this, it is necessary to create, in one way or another, a
high concentration of retarded nuclei at least in two
identical sources and then bring them into contact at the
proper instant of time. Undoubtedly, the expected burst
will have the collective (and, possibly, coherent) char-
acter of the superradiance regime. This opens up a wide
field for the physical and technological applications of
the phenomenon observed in this work.

This work was supported by a grant from the
Research Institute of Nuclear Physics.
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in Birefringent Fiber1 
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Evolution of the vacuum fluctuations in the two-wave mixing of the optical fields propagating in a birefringent
fiber is studied. The two-wave mixing in the birefringent fiber was suggested as a possible scheme for the entan-
gled-state generation. Our treatment in studying the entangled-state generation uses depleted pump approxima-
tion and enables one to trace the influence of the input conditions of classical optical fields on the evolution of
vacuum squeezing. We report the periodical modulation of the vacuum squeezing when the input relative phase
of coherent waves varies. The measure of nonclassical correlations imposed on the generated light is calculated.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.50.Dv; 42.65.Hw; 03.65.Ud
1 Entanglement shared among many particles plays
an important role in various schemes of quantum infor-
mation processing, such as tests for Bell’s inequalities
and the Einstein–Podolsky–Rosen “paradox” [1], quan-
tum teleportation [2], quantum computing [3], and
quantum cryptography [4]. Spontaneous parametric
down-conversion (SPDC)—a nonlinear optical process
in which a pump is converted into a pair of photons,
called signal and idler—is considered as the main
source of strongly correlated photons [5]. Nevertheless,
we guess other parametric processes may be studied for
the correlated photons to be generated. In this paper, we
study the properties of a nonclassical light generated in
the parametric two-wave mixing of optical fields,
which propagate through the single-mode birefringent
fiber, using linearization treatment [6, 7]. The given
treatment enables one to allow for the influence of the
input conditions of the classical optical fields and the
parameters of the medium on the properties of the gen-
erated state. We show that vacuum squeezing under-
goes periodic modulation with a change in the input rel-
ative phase of the coherent optical fields.

In order to describe quantum noise in an optical
medium, it is necessary to introduce a suitable Hamil-
tonian comprising quantum operators. We choose the
model of two continuous waves (cws) propagating in
the single-mode birefringent fiber described by the
nonlinear susceptibility χ(3), which is invariant over a

1 This article was submitted by the author in English.
0021-3640/02/7510- $22.00 © 20503
finite frequency range. This Hamiltonian is given by

(1)

where , , , and  are the annihilation and
creation field operators orthogonally polarized along
the x and y directions of the fiber and obeying well-

known harmonic-oscillator commutation relations { ;

} = δij, { ; Aj} = 0, { ; } = 0 (i, j = 1, 2). Coef-
ficient R = n2"ω2/c2V2ε0Aeff is the nonlinear coupling
constant which characterizes the strength of nonlinear
interaction in the fiber, ω = 2πc/λ, λ is the wavelength
of the interacting fields, n2 = 3.2 × 10–16 cm2/W is the non-
linear refraction index of the fiber, ε0 = 8.85 × 10–12 F/m
is the electrical constant, V is the volume of the quan-

tized modes, Aeff ≅  π  is the effective area of the sin-
gle-mode fiber [8], rc is the radius of the core, and ∆k =
ky – kx is the wave mismatch between the wave vectors.
The nonlinear operator equations are derived from

Heizenberg equation i"  = { ; H} and given by

(2)
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Â1

2
+( )

=

+
R
2
--- Â1
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It is not clear outright whether the operator Eqs. (2) can
be solved in terms of some analytic functions. This
question is coming up for discussion, because the clas-
sical equations analogous to the quantum Eqs. (2) are
solved in [9]. For this reason, one should use approxi-
mate methods in analyzing the nonlinear operator equa-

Dependence of the quantities Er1, Er2 on the relative nor-
malized phase ψl2/π related to the phase of the second local
oscillator (a) and vacuum squeezing S1, S2 and correspond-
ing degree of the correlation Ersq of the quantities S1 and S2
(b) on the input normalized difference of the phases ψ(0)/π.
The quantities Er1 and Er2 are shown by solid and dashed
curves in (a), and S1, S2, and Ersq are shown by solid,
dashed, and dotted curves, respectively, in (b). The plots are
made under the following conditions rc = 1.5 µm, λ =
1.55 µm, L = 300 m, k = –0.1, P = 0.2 W.
tions. We use linearization treatment [6, 7] to study the
evolution of quantum fluctuations in the birefringent
fiber. We consider the vacuum fluctuations as small per-
turbations, as compared with the mean values of fields
[6, 7]. The reason to consider the quantum operators is
simple. A stabilized laser, for example, an He-Ne laser,
is known to emit almost coherent light with properties
very similar to the properties of a classical field with
quantum zero-point fluctuations (vacuum noise) super-
posed. This enables one to decompose the quantum

operators into two parts as  =  + ,  =

 + , [6, 7], where ,  are the expected
values of the operators, which can be obtained by aver-
aging the operators on the initial coherent states. The
operators  and  describe the evolution of vacuum
quantum noises in the birefringent fiber. Nonlinear
equations for the expectation values of quantum opera-
tors are derived in zero order with respect to vacuum
operators if we make use of assumption conditions

 =  (i, j = 1, 2) to be carried out.
As a matter of fact, this means that we use classical
waves of pump. The equations in zero order in operator

 (i = 1, 2) are given in terms of quantities η and ψ
by [7],

(3)

where η = |q2|2 = |E2|2/P, |q1|2 = 1 – η = |E1|2/P, ψ = ϕ2 –
ϕ1 is the difference in the phases of the normalized field
amplitudes q1 = |q1|exp(iϕ1) and q2 = |q2|exp(iϕ2), P ~

N is the conserved power, the quantity N =  +

|〈A2〉|2 is the total number of photons in the interacting
fields, the quantity τ = L/Lnl = LPn2ω/cAeff is the ratio
of the full fiber length to the interaction one, s = z/L is
the dimensionless longitudinal length (s is changed
from 0 up to 1), and k = 2∆kL is the dimensionless mis-
match. The quantities E1 and E2 are the field amplitude
moduli square of which is measured in units of W/cm2.
Equations (3) are the integrable Hamiltonian ones [9].
Equations for vacuum field operators are produced
when only linear terms on ,  are kept and the con-

ditions  = ,  = , are
effected. We present equations in the matrix form for

the vector column of the small operators a = ( , ,

, )T as da/ds = iτGaa, where Ga(s) is the evolution
matrix for the input column a(0) to be transformed to

Â1 Â1〈 〉 â1 Â2
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Âi
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â1 â1
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JETP LETTERS      Vol. 75      No. 10      2002



ENTANGLED STATE GENERATION AND MODULATION 505
a(s). Solution of the matrix equation a(s) = Ca(0)
defines coefficients of the generated entangled state,
which can be expressed in the general case with the
help of density operator ρ. In the particular case where

 =  = Ca, which is fulfilled under some input
conditions, the pure two-particle entangled state can be

written as |ψ〉 = / |21〉|02〉  + / |22〉|01〉  +

Ca|11〉|12〉 , where /2 + /2 + |Ca | = 1. The
generated state is determined by the coefficients of
matrix Ca and because it depends on the input condi-
tions of the strong classical optical fields. Because we
are interested in studying quadrature operators, we
introduce transformation matrix T Xa = T aX – 1 of pas-
sage of the column a to the quadrature operator column

X = ( , , , )T (X = T (aX) – 1a) as

C14
a C32

a

C12
a 2 C34

a 2

C12
a 2

C34
a 2

X̂1 Ŷ1 X̂2 Ŷ2
JETP LETTERS      Vol. 75      No. 10      2002
(4)

where the symbol T–1 means a matrix reverse to the
matrix T. Introduction of the vector X is useful since it

enables one to get equations for  in such a way that
the new equations comprise only quantities η and ψ
incurring Eqs. (4) [6]. To show it, we make use of the
transformation matrix (4) and find the equation for X [6],

(5)

where
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2
---=

×

iϕ1–( )exp iϕ1( )exp 0 0

i iϕ1–( )exp– i iϕ1( )exp 0 0

0 0 iϕ2–( )exp iϕ2( )exp

0 0 i iϕ2–( )exp– i iϕ2( )exp

,

X̂
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.=
Components of the quadrature operator vector Xi(s) are

found according to Xi(s) = Xj(0) [6]. Expressions
for squeezing (S1, S2) in the generated fields are pro-

duced in [6] in terms of the matrix elements ,

which are the solutions to the equation d /ds =

τ  satisfying the input condition  = δij. As
the generated state is the entangled state, we may infer
quadrature-phase information about one of the interact-
ing optical fields only by measuring the quadrature
component of another optical field. To evaluate error in
our inferring value of the nonmeasured quadrature
component, knowing information only about the
quadrature component of another field, we introduce
quantities Eri = Vi(s)/Vi(0) (i = 1, 2), where

V1 , V2 , subscript l is
related to the phase of the local oscillator, and the sign
〈 〉  implies averaging of the quantum operators over the
vacuum state. Using the results of [6], one can produce

Cij
X s( )

Cij
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Cij
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expressions for Er1 band Er2 in terms of the matrix ele-

ments :
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where ψl1 = ϕl1 – ϕ1(L) and ψl2 = ϕl2 – ϕ2(L) are the rel-
ative phases, and ϕl1 and ϕl2 are the phases of the local
oscillators for the first and second optical fields, respec-
tively. Measurement of the odd-order moments imparts
phase information on the components Xi and, because
it requires homodyning of the studied field with the ref-
erence field, is known as the local oscillator with the
local phase ϕli (i = 1, 2). Other quantity Er2(ϕl1, ϕl2)
stems from Er1(ϕl1, ϕl2) according to Er2(ϕl1, ϕl2) =
Er1(ϕl1, ϕl2 + π/2). The less the quantities Er1, Er2 take
their values, the more correlated photons are generated,
and, on the contrary, if the quantities Er1, Er2 become
more of 1, one may speak about the generation of the
noncorrelated photons. The quantities Er1 and Er2
depend on the relative phases ϕl1, ϕl2 and input param-
eters of the coherent optical fields, for example, on

ψ(0), through the elements of . The dependence
may be manifested in the periodical dependence of the
quantities Er1 and Er2 on the input varied conditions.
We performed calculations to check our idea and the
results are depicted in Fig. 1. So, Fig. 1a shows the
dependence of Er1 and Er2 on ϕl2/π provided that ϕl1 is
chosen in such a way that the vacuum squeezing S1 was
by this time observed. The variance of the other field
varies with change of the local phase ϕl2. Figure 1b
shows the dependence of the squeezing in the first S1
and second S2 optical fields, respectively, and their joint
correlation function Ersq on the input relative ψ(0)
phase of the classical waves. As can be seen from
Fig. 1b, squeezing (S1, S2) and correlation function Ersq

undergo periodical modulation with a change of the
input relative phase ψ(0).

In conclusion, we have shown that the entangled
state of light is generated in the two-wave mixing of

Cij
X

optical fields propagating through the single-mode
birefringent fiber from the vacuum initially not contain-
ing correlations. We have found the degree of correla-
tion of the photons generated in the birefringent fiber
and discovered the possibility of modulation of the vac-
uum squeezing by a change of the input relative phase
of the coherent waves.
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The coherent recombination of several (N) Bose-condensed excitons with simultaneous creation of N photons
is considered. Due to the momentum conservation law, the total momentum of created photons is zero because
of the zero momentum of excitons in Bose condensate. This requirement, in conjunction with the fact that the
photon wavenumbers are fixed and equal to approximately Eg/c (Eg is the semiconductor gap and c is the speed
of light), determines the mutual orientation of the wavevectors of emitted photons. This can be seen from the
photon angular correlation in the experiments with several appropriately oriented detectors operating in the
time-coincidence mode. It is shown that, if these processes are induced by N – 1 external laser beams (each with

wavevector ki), then a unidirectional radiation with recoil wavevector k = –  should emerge from the exci-

ton system. The intensities of coherent three- and four-exciton recombination are estimated for the exciton sys-
tem in Cu2O. © 2002 MAIK “Nauka/Interperiodica”.
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kii∑
Recent discovery of atomic Bose condensation has
become one of the most spectacular developments in
many-body physics [1]. Since the theoretically esti-
mated temperature of exciton Bose condensation is
eight orders higher than the presently achieved atomic
Bose-condensation temperature, the studies of the cor-
responding effects in exciton systems can open no less
intriguing prospects [2–10]. This notably applies to
two-dimensional indirect exciton systems in coupled
quantum wells exhibiting interesting properties in the
coherent phase [5]. The studies of coherent exciton
phase have culminated in a number of encouraging
experimental results [6–8, 11]. Experimental research
in this field can result in the engineering of exciton
Bose condensate and the development of coherent exci-
ton optics [12]. At the same time, the situation with the
discovery of a three-dimensional coherent excitonic
phase in Cu2O, which is a promising material for the
observation of Bose condensation [4, 10], still remains
to be clarified [13]. For this reason, a search for the new
qualitative effects that can unambiguously prove the
occurrence of exciton Bose condensation, as well as a
search for the corresponding properties of the system,
are quite topical. This motivated us to consider new
effects that are associated with the optical manifesta-
tion of many-exciton coherence in the Bose-condensed
excitonic phase. Interest in the optical manifestations of
excitonic coherence is caused by the fact that excitons
are metastable particles and capable of recombining
with photon emission.
0021-3640/02/7510- $22.00 © 20507
We consider the coherent N-exciton recombination,
i.e., the processes where N excitons in the condensate
recombine simultaneously and coherently to create N
photons correlated in exit angles. Besides, it turned out
that these processes underlie a new nonlinear optical
effect, namely, laser-stimulated N-exciton recom-
bination.

The momentum of condensed excitons is zero, and
their energy is equal to the chemical potential of the
exciton system. Because of the momentum and energy
conservation laws, the momenta and frequencies of pho-
tons created in the elementary many-exciton recombina-
tion event must satisfy the following equalities:

(1)

where µ is the chemical potential of the exciton sys-
tem.1 In the general case, these conditions do not deter-

1 The exciton chemical potential measured from the top of the
valence band can be written as µ = Eg – Eex + , where Eg is the

semiconductor gap, Eex is the free-exciton binding energy, and 
is the exciton chemical potential calculated under the assumption
that the exciton is a metastable particle with zero rest energy.
Since , Eex ! Eg, one has µ ≈ Eg. To shorten the notation in for-
mulas, the photon energy is measured from the chemical potential
µ, so that the photon dispersion is given by the expression ωk =
ck – µ ≡ c(k – k0), where c is the speed of light in the medium and
k0 is the wavenumber of a photon with energy µ (" = 1). This
energy reading determines both photon and exciton energies, so
that the condensate excitons have zero energy.

ki

i 1=

N

∑ 0, cki

i 1=

N

∑ Nµ,= =

µ̃
µ̃

µ̃
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mine the relative angular photon directivity. However,
an analysis of the probability of these processes shows
(see below) that the photon exit angles are correlated,
which can be observed experimentally.

The N-exciton recombination process is of higher
order in many-body interaction than the one-exciton
recombination (Fig. 1). For this reason, its rate WN must
be considerably lower than the one-exciton recombina-
tion rate (W1). However, the matrix element of N-exci-
ton recombination contains N incoming condensate

lines, each introducing a large Bose factor  (N0 is
the number of condensate excitons), whereas only one

N0
1/2

Fig. 1. Matrix elements for (a) one-exciton, (b) three-exci-
ton, and (c) four-exciton recombinations. Broken lines are
for the condensate excitons, wavy lines are for photons,
dashed lines are for optical phonons, and solid lines with
one or two arrows are, respectively, for the normal and
anomalous exciton Greens function.

Fig. 2. Schematic representation of the possible experi-
ments on detecting the stimulated (a) three- and (b) four-
exciton recombinations. Heavy wavy lines correspond to
the inducing laser beams and thin wavy lines correspond to
the unidirectional radiation with recoil momentum (2) from
the Bose condensate.
such factor appears in the case of one-exciton recombi-
nation from the condensate. Accordingly, the one-exci-
ton recombination process is first order in the density
ρcond = N0/V of condensed excitons (V is the volume of
the system), i.e., W1 ~ ρcond, whereas the N-exciton
recombination is the Nth-order process, i.e., WN ~

. At a high condensate density ρcond, the weakness
introduced to the N-exciton diagrams by the additional
(compared to one-exciton recombination) interparticle
vertices is compensated, to some extent, by the addi-
tional factors ρcond. Thus, the spontaneous one-exciton
recombination forms a background against which one
may attempt to observe the many-exciton recombina-
tion processes of interest. This can be done, e.g., using
the experiments with several photon detectors operat-
ing in the coincidence mode. The photon angular corre-
lations do not vanish on the coherence time scale of the
exciton system. Another way of setting off these pro-
cesses from the background consists in their stimula-
tion by an external laser field.

When stimulated by the external N – 1 laser beams
with wavevectors k1, k2, …, kN – 1, the coherent N – 1-
exciton recombination should manifest itself as a unidi-
rectional emission outgoing with, respectively, recoil
momentum and energy

(2)

from the exciton system. This effect will be referred to
as (laser-)stimulated coherent N-exciton recombination
(Fig. 2).

In the stimulated coherent N-exciton recombination,
the rate of coherent emission with recoil momentum (2)
increases (compared to the rate of spontaneous N-exci-
ton recombination in the same direction) by a factor of

, where Ni is the average number of
quanta in the inducing laser mode with momentum ki.
At the same time, the luminescence intensity caused by
one-exciton recombination in direction (2) remains
unchanged, because the only photon that undergoes
stimulated emission belongs to the laser mode ki ≠ kN.

Laser radiation contains a great many quanta in the
mode. For definiteness, we take 103 photons in a
mode.2 The intensity of induced coherent emission may
exceed the background intensity (spontaneous one-
exciton recombination), if the following inequality is
fulfilled:

(3)

In what follows, this inequality will serve as a criterion
for experimental observation of the stimulated N-exci-
ton recombination effects. Thus, all we need is to esti-
mate W1 and WN.

2 Modern lasers contain up to 105 quanta in a mode.

ρcond
N

kN ki

i 1=

N 1–

∑ , ωN– ωi, ωi ωki
≡

i 1=

N 1–

∑–= =

Ni 1+( )
i 1=
N 1–∏

103 N 1–( )WN W1.>
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Let us consider the exciton system at zero tempera-
ture. The system is assumed to be in quasi-equilibrium
with respect to the exciton–exciton interactions. The
exciton–photon and exciton–phonon interactions are
assumed to be weak and, thus, will be considered per-
turbatively. The normal and anomalous Green’s func-
tions of the exciton system can be written as

Here,  = ρcondU0, εk = ( k2/m + (k2/2m)2)1/2, U0 is the
zero Fourier component of the exciton–exciton interac-
tion potential, and m is electron mass.

The direct electron–hole recombination in Cu2O is a
very weak process, and the exciton mainly recombines
with the creation of both a photon and an optical
phonon. The interaction operator for this process has
the form

(4)

where a, b, and c are the exciton, phonon, and photon
operators, respectively; Ω is the energy of optical
phonons (for simplicity, their dispersion is ignored); L
is the effective interaction constant; and V is the volume
of the system.

The phonon Green’s function is taken as

The energy of optical phonons in Cu2O is Ω ≈ 10–2 eV.
We take for numerical estimates γ = 109 s–1; i.e., the
phonon lifetime is assumed to be 10–9 s.

The matrix element for the three-exciton recombi-
nation also contains the exciton–phonon vertex
(Fig. 1b). The operator of this interaction is

(5)

For simplicity sake, both coupling constants g and L in
Eqs. (4) and (5) are assumed to be independent of the
momenta p and q; i.e., gp, q ≡ g and Lp, q ≡ L. Numerical
estimates will be carried out with g = 102L. This corre-
sponds to the intensity of exciton–phonon interaction
almost four orders of magnitude higher than the inten-
sity of the exciton–photon–phonon interaction.

Gk ω( )
ω εk

2 µ̃2++
ω εk iηk–( )–( ) ω εk iηk–( )+( )

-----------------------------------------------------------------------------,=

Fk ω( )
µ̃

ω εk iηk–( )–( ) ω εk iηk–( )+( )
-----------------------------------------------------------------------------.–=

µ̃ µ̃

V̂ex pht– phn– t( )
Lp q,

V
--------- ĉp q+

† e
iωp q+ t

âp t( )φ̂p t( )
p q,
∑ H.c.,+=

φ̂q t( ) b̂qe iΩt– b̂ q–
†

eiΩt+( ),=

&q ω( ) & ω( )≡ 2Ω
ω Ω iγ–( )–( ) ω Ω iγ–( )+( )

-----------------------------------------------------------------------.=

V̂ex phn– t( )
gp q,

V
---------âp q+

† t( )âp t( )φ̂q t( ) H.c.+
p q,
∑=
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The exciton radiative lifetime τ caused by the one-
exciton recombination process (Fig. 1a) is

(6)

The lifetime τ ≈ 10 µs found in Cu2O corresponds to L
≈ 2.5 × 102 s–1 cm3/2. The corresponding spontaneous
photon emission rate in a unit volume of the exciton
system is W1 = ρcondτ–1.

The spontaneous N-exciton recombination rate in a
unit volume of the exciton system can be written as

(7)

where }N is the matrix element of this process, and the
multiplier N allows for the fact that each N-exciton
recombination elementary event creates N photons. The
matrix element N involves N multipliers V–1/2, so that
the volume of the system, as expected, does not appear
in the final expression for WN. Below, we set V = 1.

The three-exciton recombination matrix element is
the sum of expressions obtained from Fig. 1b by trans-
posing the arguments of photon lines:

(8)

When integrating over momenta and frequencies, the
main contribution to the rate of the process comes from
the resonance regions, where the arguments of Green’s
functions are close to the corresponding poles. In these
regions, the photon energies differ weakly from the
exciton chemical potential. Indeed, this difference is
equal either to the phonon energy or to the energy of
elementary excitations in the exciton system. These
values are sizably smaller than µ [see Eq. (10)]. For this
reason, the absolute values of photon wavevectors can
be set equal to k0.

In Eq. (8), the momentum kj can be replaced by k0,
because matrix element (8) is a function of only the
photon energy. Setting γ ! Ω and η ! , one can use

the pole approximation and retain in  only six res-
onant terms, which, in turn, make identical contribu-
tions

τ 1– L2k0
2/πc.=

WN N 2πδ ωi

i 1=

N

∑ 
 
 

∫=

× }N k1…kN( )
2
V N k2

id

2π( )3
-------------,

i 1=

N 1–

∏

}3 k1 k2 k3, ,( ) gL3ρcond
3/2 & ωi( )& ωj( )G k– ωj( ),

i j≠
∑=

i j, 1 2 3., ,=

εk0

} 2

}3 ω1 ω2 ω3, ,( )
2

=  6g2L6ρcond
3 & ω2( )& ω1( )Gk0

ω1( )
2
.
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In the fixed photon wavenumber approximation, the
following change of integration measure is possible in
Eq. (7):

The role of energy-conserving δ function amounts to
fixing the relative directions of photon wavevectors
with the same length. Namely, the angles they form
with each other are equal to 2π/3.3 

Taking this into account, one gets

The energy of optical phonons Ω = 10–2 eV far exceeds
the energy  ≈ 10–4 eV of elementary excitations in
the exciton system. This allows one to simplify the
expression for W3:

(9)

The numerical estimates were carried out with the fol-
lowing values for Cu2O: m ≈ 2.7me,  ≈ 0.5 meV (0.8 ×
1012 s–1), ρcond = 1019 cm–3, and η ≈ 0.1 . The dielectric

constant of Cu2O is e ≈ 9, c = c0/  ≈ 1010 cm/s, and
Eg ≈ 2 eV, so that k0 ≈ 3 × 105 cm–1. In this case, the
spontaneous three-exciton recombination rate is esti-
mated at W3 ≈ 10–2W1; i.e., approximately every hun-
dredth exciton decay is due to this process. Comparing
with Eq. (3), we conclude that this process, when stim-
ulated by external laser beams, can be observed exper-
imentally.

The major contribution to the rate of process (9)
comes from the resonance regions, where the interme-
diate particles are close to their mass surfaces (poles of

3 It follows from the adopted approximations that the angles
between the correlated photons may differ from 2π/3 by a small
value Ω/Eg ≈ 5 × 10–3.

…2πδ c ki k0–( )
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3
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---------------------------=
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2 ω1d
2π
--------- & ω2( )

2 ω2d
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3 k0
3
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γ
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1
η
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2
---------+

 
 
 

+
 
 
 

=

=  18
g2L4ρcond

2 k0

c2Ω2γ
--------------------------- 1

γ
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1
η
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2εk0

2
---------+

 
 
 

+
 
 
 

W1.

µ̃
µ̃

e

the corresponding Green’s functions). These regions
correspond to three sets of photon energies:4 

(10)

The first set corresponds to the first term in the paren-
theses in Eq. (9), i.e., to the process where the interme-
diate phonon is resonant; whereas the second and the
third sets correspond to the second term, i.e., to the pro-
cess where the elementary excitation of exciton system
is resonant. To enhance intensity of the induced three-
exciton recombination, the frequencies of inducing
laser beams should be equal to any two values from any
set in Eq. (10). In this case, the frequency of outgoing
radiation is equal to the remaining frequency from the
chosen set. In the case of four-exciton recombination,
the matrix element is given by

It consists of 12 diagrams obtained from the diagram in
Fig. 1c through all inequivalent transpositions of the
photon ends. This diagram involves explicitly only two
incoming exciton lines. The remaining two incoming
excitons are contained in the anomalous Green’s func-
tion, which is, physically, a diagram for the scattering
of two condensate excitons into two noncondensate
ones with opposite momenta and energies.

In the pole approximation, one can retain only 12
resonant terms in |}4|2. After integration in Eq. (7),
they give identical contributions,

In the fixed photon wavenumber approximation, the
integration measure in Eq. (7) can be replaced by

4 In this formula, the chemical potential µ is explicitly included
into the photon energy.

µ Ω+ µ Ω– µ, ,( ),

µ Ω+ µ εk0
± µ Ω– εk0

+−, ,( ),

µ Ω– µ εk0
+− µ Ω εk0

±+, ,( ).
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l m m n n l≠,≠,≠
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12ρcond
2 L8 F k1 k2+ ω1 ω2+( )& ω1( )& ω3( )

2
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2 ωi θi φidcosdd
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2π2c4
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ωid
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3
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This yields the following result for the rate of process:

where u = ω1 + ω2 and k = |k1 + k2|. For a small and
k-independent parameter η (η ! ), the first integral
is estimated as

where cv is the velocity of elementary excitations in the
exciton system in the linear portion of its spectrum:

cv = . With the parameters chosen above, cv ≈
0.5 × 106 cm/s. One finally obtains the following
expression for the photon creation rate in the coherent
four-exciton recombination process:

With the parameters chosen, one has the following esti-
mate: W4 ≈ 0.5 × 10–2W1. This result indicates that
approximately every hundredth exciton spontaneously
decays through this process. Comparing with Eq. (3),
we conclude that the stimulated four-exciton recombi-
nation can also be detected experimentally.

The mutual spatial orientation of the momenta of
four created photons is such that the sum of momenta
of any two of them is exactly opposite to the sum of
momenta of the remaining two photons. However, the
planes in which these two pairs of momenta lie need not
be mutually parallel.

As in the case of three-exciton recombination, it is
worthwhile remarking that the main contribution to the
rate of process comes from the “resonance” regions,
where some of the intermediate particles fall on their
mass surface. These regions are specified by the follow-
ing set of photon energies:5 

To intensify the stimulated four-exciton recombination,
the laser frequencies should be equal to any three val-
ues from this set. In this case, the frequency of induced
emission will be equal to the remaining value from this
set.

It should be noted in conclusion that the momentum
conservation law plays the crucial role in the effects
considered. However, due to the presence of impurities

5 The exciton chemical potential µ is explicitly included in this for-
mula [as in Eq. (10)].

W4 48ρcond
2 L8 k0

4

2π2c4
------------- ud

2π( )
-----------∫=

× k Fk u( ) 2 ω1d
2π( )

----------- & ω1( )
2 ω3d

2π( )
----------- & ω3( )

2
,∫∫d

0

2k0

∫

εk0

ud
2π( )

-----------∫ k Fk u( ) 2d

0

2k0

∫ πµ̃2

8η2cv

--------------,=

µ̃/m

W4
3ρcond

2 L8µ̃2k0
4

πcv c4γ2η2
-------------------------------

3ρcondL6µ̃2k0
2

cv c2γ2η2
-------------------------------W1.= =

µ Ω+ µ Ω– εk0
± µ Ω– µ Ω εk0

+−+, , ,( ).
JETP LETTERS      Vol. 75      No. 10      2002
in the real exciton systems, the exciton momentum
acquires uncertainty on the order of 1/l, where l is the
exciton mean free path. It is thus clear that, for the pre-
dicted effects to be observed, the inequality k0l @ 1
must be fulfilled.

The stimulated N-exciton recombination processes
belong to the family of new nonlinear optical effects.
Evidently, analogous effects can also be observed in
quantum wells (the respective article will be published
elsewhere; see also [14]). An alternative method of
studying the nonlinear properties of exciton systems is
provided by the multiwave-mixing experiments. It
should be noted that the physical origins of the stimu-
lated N-exciton recombination and the multiwave mix-
ing (which is used, e.g., for studying the nonlinearities
in exciton systems [11, 15]) are essentially different. In
particular, in the multiwave mixing, the wave in exciton
matter is induced by the external laser pump pulses,
whereas, in the case of stimulated N-exciton recombi-
nation, the Bose-condensed excitons already exist, and
the external laser radiations merely induce the recombi-
nation processes.

In the processes considered in this work, photons
are created coherently. In this case, the state of the pho-
ton subsystem is “squeezed” between the photon states
with different momenta. One of the classical ways of
studying these states is provided by the Hunburry–
Brown–Twiss experiments with several photon detec-
tors operating in the coincidence mode.6 The use of this
approach in studying the exciton systems provides an
alternative method for detecting the many-exciton
recombination processes. This will be the subject of
separate investigation.

Yu.E. Lezovik is grateful to L.V. Keldysh,
V.G. Lysenko, and the participants of the “Nanophoto-
nics-2002” workshop for helpful discussions. This
work was supported by the Russian Foundation for
Basic Research and the program “Solid State Nano-
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In this paper, a detailed theoretical analysis of the second-harmonic generation (SHG) efficiency as a function
of polarization ratio and crystal length of CsLiB6O10 (CLBO) in the phase matching using a computer simula-
tion is presented. The SHG efficiency was as high as 80% when the pumping radiation was a plane wave. The
efficiency is 65% and 80% for the pumping waves of type I and type II Gaussian beams, respectively. An impor-
tant result is that the phase matching of type II is perfectly adopted in the SHG experiment with CLBO. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Ky
1 1. A new ultraviolet (UV) nonlinear optical (NLO)
crystal CsLiB6O10 (CLBO) was discovered as a high-
power source for solid UV lasers by Y. Mori et al. in
1995 [1]. The shortest wavelength transparence of
CLBO was found to be at 180 nm [2]. In order to obtain
higher output energy and shorter laser wavelength in
CLBO, much effort was devoted to up-frequency con-
version of the fundamental laser [3–5]. The second-har-
monic generation (SHG) is the special case of a three-
wave interaction process in the NLO and the Nd:YAG
laser was utilized, such as the higher (3rd, 4th, and so
on) order harmonic generation [6, 7]. It is important
that the numerical analysis of the conversion efficiency
of SHG on the NLO CLBO is invested. While BBO was
demonstrated to be more effective in recent years, the
nonlinear frequency conversion in BBO is limited by its
large walk-off angle and relatively small acceptance
bandwidths. Recently, the harmonic generation of the
picosecond (ps) or nanosecond (ns) Nd:YAG laser out-
put from the SHG to the 5th is also tested in [9]. In this
paper, a detailed computer numerical simulation cen-
tering the SHG conversion efficiency versus the polar-
ization ratio and the crystal lengths of the CLBO will be
introduced in difference pump power on the type I and
type II beams. It is based on refractive index data, phase
matching (PM) curves, and walk-off angles as a func-
tion of fundamental wavelength.

2. Theoretical analysis and computer simulation.
The SHG is a special case of three-wave interaction
process in the NLO CLBO. The SHG is based on the
second-order nonlinear interaction between the laser
fields in an NLO medium with the propagation of three
waves in the z direction. The efficiency of the SHG on

1 This article was submitted by the authors in English.
0021-3640/02/7510- $22.00 © 0513
CLBO inferred from the Kleinman symmetry and the
instantaneous coupled wave equations in the constitu-
tive equations, and the approximations of slowly varied
amplitude can be obtained in the incidence of a plane
wave and a Gaussian beam.

1. Plane wave. The loss of the crystal medium is
neglected. The Ej(z, t) form of the incident plane wave

(1)

where ωj, kj, and Φj are the frequencies, wave vectors,
and initial phase, respectively. The polarization ratio is
written as

(2)

where αi is the walk-off of the corresponding wave-
lengths. Now let us consider the PM in type I, the con-
version efficiency η for γ = 1 can be written as [1]

(3)

, (4)

where tanh(x) is the hyperbolic tangent function, Is is
the intensity of pump power, and n1 and n2 are the
refraction index of the pumping wave and the SHG
wave, respectively. Figure 1 shows the PM efficiency
curves versus the crystal length, as calculated for type I
SHG according to the dispersion equations [1], Eqs. (3)
and (4), when the pumped peak power is a scale of
100 MW. We can see clearly from Fig. 1 that the effi-
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ciency is infinity access to 100% when the optical crys-
tal length increases. But this efficiency will be less than
100% when the phase matching is not realized because
of the beam divergence in different directions. When
we consider the PM in type I, the efficiency for γ ≠ 1 can
reach [10]

(5)

(6)

(7)

where sn(x, y) is Jacobi elliptic function of the first
class. The efficiency curves are shown in Fig. 2 when
γ = 0.8, which is calculated for type II according to the
dispersion equations of the CLBO and Eqs. (5) and (6).
As shown in Fig. 3, we considered the efficiency curves
both of the polarization ratio and the crystal lengths
with 80 MW. From Fig. 2 and Fig. 3 that the polariza-
tion ratio of the pumping wave is access to 1, the SHG
efficiency has a higher in a range of the crystal lengths
and a fixed pump. The efficiency is up to 80% when
γ = 0.8. A larger pumping intensity and the longer crys-
tal lengths will lead to a higher energy conversion effi-
ciency with a constant polarization ratio of the pumping
wave. The higher output and efficiency can be obtained
by increasing the crystal lengths and pumping intensity
because the smaller the effect of the nonlinear coeffi-

η
ω3t2

ω1 ω2t2+
-----------------------sn2 1

ω1 ω2t2+
-----------------------Bz t,

 
 
 

t 1<( ),=

η
ω3t'2

ω2 ω1t'2+
------------------------sn2 1

ω2 ω1t'2+
------------------------Bz t',

 
 
 

t' 1<( ),=

B
16π3deff

2 Is

n1n2n3λ1λ2λ3ε0
-------------------------------------- 

 
1/2

,=

Fig. 1. SHG efficiency curves of type I phase matching for
CLBO pumped by the plane wave of 1064 nm.
cient [11], the higher the damage threshold and the
larger the crystal dimension of the CLBO.

2. Gaussian distribution. If a Gaussian beam is writ-
ten as

(8)

where Ej(z, t) is a symmetry function for the z axis and
is used in separable form. Then, we can get

(9)

Now let us insert a form of (9) to the three-coupled
wave equations [12] can be developed as

(10a)

(10b)

(10c)

(10d)

where θ = z∆k + Φ3 – Φ2 – Φ1, ∆k = k3 – k2 – k1, nj is the
light wave refractive index, and ω1 and ω2 is the angle
frequency of the foundation wave and harmonic wave,

respectively. D = ∆k + (2∆k – 5k1)/ (∆k – 2k1),

E j z j,( ) E j z r,( ) i K jz ωt– Φ j z( )–[ ] ,exp=
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Fig. 2. Curves of SHG conversion efficiency as a function
of the crystal length and for t = 0.8.
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where ω0 is the waist radius of a pumping wave. In
order to get the SHG efficiency of type I, we insert

Fig. 3. Curves of SHG conversion efficiency as a function
of the crystal length and t, and for p = 8 × 108 W.
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ω0 = 4 mm into the form D = 0, which leads ∆k to be 0,
approximately. Then, we can get

Fig. 4. Efficiency curves of type I SHG versus the length of
CLBO pumped by the Gaussian fundamental wave.
(11)
η =  1

2
-------

2
kzu0
---------- 2kzu0( )tanh–

1

kzu0( )2
----------------- 2kzu0( )cosh[ ]ln+ ,
where u0 = u1(0). The form of Eq. (11) is the energy
conversion efficiency of the CLBO in PM type I. As
shown in Fig. 4, we considered the conversion effi-
ciency versus the crystal lengths and used the following
typical power parameters: 100 MW, 70 MW, and
50 MW. From Fig. 4, the efficiency is up to 68% when
the pumping intensity is larger and the crystal lengths is
increasing for type I PM.

For type II PM CLBO, we will use

in order to get the formula for the efficiency. Then, we
can get

(12a)
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where γ = u2(0)/u1(0) is a polarization ratio,
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For type II PM CLBO, which will be used in our theory
in order to get the SHG efficiency from the form of
(12), we let g1 = 2.05, g2 = 0.672 × 10–4, g3 = 1.008, and
g3γ = 0.9, which leads γ to be approximately 0.89.
Then, we let the pumping powers be 100 MW, 70 MW,
and 50 MW, which leads to the efficiency curves versus
the crystal lengths in Fig. 5. From Fig. 5, the efficiency
can be up to 80% for type II PM. From Figs. 4 and 5,
we can clearly see that the efficiency of type II CLBO
is larger than that of type I under the same conditions
for a Gaussian beam distribution; type II CLBO is con-

Fig. 5. SHG conversion efficiency curves for CLBO
pumped by Gaussian beam and t = 0.893. 
sidered to be ideal for high order harmonic generation,
as it follows from our theoretical analysis and computer
simulation.
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The magnetization distributions in a symmetric magnetic film nanocontact for oppositely magnetized ferromag-
netic electrodes are analyzed based on numerically solving the Landau–Lifshitz and magnetostatic equations
as a function of magnetic and geometrical factors. It is found that a symmetric magnetic configuration is unsta-
ble when the head-to-head domain wall dividing the regions with opposite orientations of magnetization is
located at the center of the nanocontact. The instability arises when the uniaxial magnetic anisotropy constant
reaches a certain critical value Kc below which it spontaneously leaves the center of the nanocontact. The tran-
sition from the symmetric state (wall at the center) to an asymmetric one can be continuous (second order) or
discrete (first order), depending on the geometrical and physical parameters of the nanocontact (length to width
ratio, anisotropy constant, and saturation magnetization). The phase diagram is constructed in terms of the vari-
able’s nanocontact length vs. anisotropy constant. This diagram divides the symmetric and asymmetric mag-
netic configurations of the system. The occurrence of a tricritical point in the phase diagram is its characteristic
feature. © 2002 MAIK “Nauka/Interperiodica”.
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1. The transport properties of nanoscale metal wires
and contacts have been the subject of much investiga-
tion [1–3]. Quantum jumps of 2e2/h, where e is the elec-
tron charge and H is the Planck constant, have been
observed in electrical conductivity upon varying the
thickness of the nanocontact [2, 4, 5]. In the last few
years, ferromagnetic nanocontacts and wires have
attracted considerable interest in the context of the
giant magnetoresistance effect [6–8]. Spin-dependent
electron transport through nanowires and contacts with
domain walls are also of interest from the viewpoint of
the phenomenon of macroscopic quantum tunneling of
a domain wall [9] and the effects associated with the
Berry phase [7]. The effect of spin accumulation [10,
11] and new effects of magnetization reversal and
domain wall displacement induced by a spin-polarized
current [12–14] should also be noted in this connection.

Experimental work [15] gave a considerable impe-
tus to investigations of nanocontacts. In this work, a
system was investigated that was composed of two
macroscopic ferromagnetic rods being connected or
disconnected in such a way that a point nanocontact
was formed between them at the instant when structure
continuity was formed or lost. It was demonstrated that
such a system exhibited the effect of giant magnetore-
sistance that reached several hundreds of percent at
room temperature (see also [16–20]).

In spite of the intensive experimental and theoretical
investigations of the transport properties of a magnetic
nanocontact [15–26], its magnetic structure has been
scarcely studied until now. In the analysis of experi-
mental data, it was commonly supposed that the mag-
0021-3640/02/7510- $22.00 © 20517
netizations of ferromagnetic rods are uniform and
directed strictly antiparallel to each other. The shape
and position of the domain wall in relation to the mag-
netic and geometrical parameters of the system have
not been investigated either. It is evident that all these
factors can strongly affect the magnetoresistance of the
nanocontact. Micromagnetic modeling is a rather effec-
tive method for studying these properties. A micromag-
netic study of magnetic configurations arising in nano-
contacts that connect bulk rods was carried out in [28].
It was shown that a complex magnetic structure forms
in the vicinity of the nanocontact whose main elements
are vortex–antivortex pairs in oppositely magnetized
regions of the rods adjacent to the contact. Moreover, it
was found that, in a number of cases, the head-to-head
domain wall is pushed out of the contact; that is, it is
localized in one of the electrodes in the vicinity of the
contact. The calculated distributions are of importance
in understanding the mechanism of the occurrence of
giant magnetoresistance and instabilities in the obser-
vation of the effect.

It should be noted that nanocontacts with poorly
controlled geometry have been used for experiments up
to recent time. Thus, work [15] is actually devoted to a
statistical study of random nanocontacts formed by the
detachment or coupling of two oppositely magnetized
rods. It is evident that creating nanocontacts with
strictly specified geometrical parameters is necessary
for setting up more convincing experiments and for
practical use. It is suggested to use film nanostructures
for this purpose. This work is devoted to a micromag-
netic investigation of such nanostructures.
002 MAIK “Nauka/Interperiodica”
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As was mentioned above, we are interested in nano-
contacts of oppositely magnetized electrodes. Such a
magnetic configuration is accomplished in a numerical
experiment as follows: it is assumed that line conduc-
tors are arranged above the ferromagnetic electrodes
(beaches), through which oppositely directed current
pulses are delivered to induce magnetic fields necessary
for the oppositely directed magnetization of the
beaches by the head-to-head type. It should be noted
that this procedure of creating magnetic head-to-head
configurations rather closely models that employed in
experiments [15].

2. We present a numerical analysis of the problem
obtained by computer micromagnetic modeling. A
widespread approach is used in the framework of which
a ferromagnet is modeled with the use of a two-dimen-
sional computational grid. Magnetization vectors are
specified at the centers of its meshes. To model the
quasi-statistics and dynamics of magnetization reversal
processes, the magnetodynamic Landau–Lifshitz equa-
tions are numerically integrated in each mesh of the
computational grid [27],

(1)

where M = M(x, y) is the magnetization vector; M, γ,
and α are the saturation magnetization, gyromagnetic
ratio, and dissipation constant, respectively; and Heff is
the effective field, which represents a sum of fields of
various magnetic interactions,

(2)

∂M
∂t

-------- γ M Heff×[ ] αγ
M
------- M M Heff×[ ]×[ ] ,–=

Heff Hext Hm Hexch in layer–– ,+ +=

Fig. 1. (a) Nanocontact geometry; (b) magnetization distri-
bution at a high value of the anisotropy constant, the domain
wall is at the center of the nanocontact; (c) the domain wall
is displaced from the center of the nanocontact; and (d)
magnetization distribution at a zero value of the anisotropy
constant.
where Hext is the external magnetic field. The magneto-
static field Hm, defined by the equation

(3)

where rl is the radius vector and Gl is the region under
consideration (magnetic surface charges are also taken
into account in a standard way), is of the most compu-
tational complexity. The main problem is in the long-
range character of the magnetostatic interaction; that is,
the magnetostatic interaction with all other computa-
tional meshes must be recalculated at each time itera-
tion of the solution of Eq. (1) for each computational
mesh. We used the fast Fourier transformation method
for the acceleration of this procedure.

The other components of Heff are local and are cal-
culated as follows.

The uniaxial anisotropy field Hanis takes the form

(4)

where K and n are the anisotropy constant and unit vec-
tor directed along the easy magnetization axis, respec-

tively; and  is the intralayer exchange field

(5)

where A is the intralayer exchange constant and ∆ is the
two-dimensional Laplacian. The following boundary
conditions were used:

(6)

where N is the vector normal to the boundary ∂G of the
region G.

3. Consider a single-layer ferromagnetic film struc-
ture of thickness t composed of two wide platforms
connected by a narrow channel of size d × w (Fig. 1a).
Assume that the magnetization and the exchange
energy are close to their values in Permalloy, namely,
Ms = 800 G and A = 1.25 × 10–6 erg/cm. It is assumed
that the easy magnetization axis in the film coincides
with the x axis. The uniaxial anisotropy constant and
the nanocontact length were varied.

The nanostructure in hand (Fig. 1a) is symmetric
with respect to the center of the nanocontact; therefore,
it may be expected that the boundary between the oppo-
sitely magnetized beaches is localized at the center,
which is actually accomplished as a result of the action
of initial current pulses. We studied the stability of this
magnetic configuration after the termination of the
action of current pulses creating magnetic fields at the
element edges. The results of calculations are reduced
to the following. At sufficiently high values of the

Hm r( ) divM r1( )
r r1–

r r1– 3
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uniaxial magnetic anisotropy constant, the symmetric
magnetic configuration is retained in the system; that is,
the equilibrium state corresponds to a domain wall of
the head-to-head type located at the center of the nano-
contact. As the uniaxial magnetic anisotropy constant
decreases, it reaches such a critical value Kc that the
domain wall located at the center of the nanocontact
loses its stability. For example, Kc = 5.5 × 104 erg/cm3

for a bridge of size 140 × 40 × 1 nm3, and Kc = 7 ×
104 erg/cm3 for a bridge of size 80 × 40 × 1 nm3. Typical
magnetization distributions in a nanostructure at K > Kc

and K < Kc are shown in Figs. 1b and 1c. As the anisot-

Fig. 2. Dependence of the domain wall position displace-
ment from the center of a long (wl = 140 × 40 nm, solid line)
bridge and a short (wl = 140 × 40 nm, dashed line) bridge in
a structure of thickness t = 1 nm. Shown below are the spin
distributions in the nanocontact corresponding to the
marked points 1, 2, and 3 of the curves shown in the upper
figure.

Fig. 3. Phase diagram where the nanocontact length L (nm)
and the anisotropy constant (erg/cm3) are plotted on the
axes; the diagram demonstrates the loss of stability of the
central position of the domain wall; Atkr is the tricritical
point separating the region of parameters at which the
domain wall is continuously displaced from the center of
the nanocontact from the region of parameters with hyster-
esis in the displacement of the domain wall.

Atkr
JETP LETTERS      Vol. 75      No. 10      2002
ropy constant further decreases, the magnetization at
the adjacent platform ends turns aside perpendicular to
the bridge (Fig. 1d).

The phenomenon of spontaneous breaking of the
domain wall position symmetry inside the neck of the
nanocontact channel described above has an evident
analogy with phase transitions at which the system
changes its symmetry. The type of the transition
depends on the channel length and the anisotropy con-
stant, which is demonstrated well in Fig. 2 by the plots
of the deviation of the center of the boundary localiza-
tion from the middle of the channel as a function of the
anisotropy energy.

In the case of a short bridge, the domain wall dis-
placement varies continuously as the anisotropy con-
stant decreases below the critical value (dashed curve)
like it takes place in the case of a second-order transi-
tion, and a hysteresis curve arises in the case of a long
bridge much as for a first-order transition (solid curves
in Fig. 2).

Figure 3 displays a phase diagram that determines
the regions of existence for these types of domain wall
displacement from the center of the nanocontact,
depending on the relative values of the anisotropy con-
stant and the nanocontact length. The characteristic tri-
critical point is shown in the phase diagram. The region
of parameters at which the domain wall is continuously
displaced from the center of the nanocontact is sepa-
rated by this point from the region of parameters with
hysteresis in the displacement of the domain wall. Line
A1Atkr corresponds to a continuous transition, and lines
AtkrK ' and AtkrK '' are lines of the loss of stability of the
symmetric and asymmetric metastable phase (lability
lines). These lines were determined by the calculated
hysteresis width.

This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-17389; INTAS,
project no. 99-01839; and Federal Specialized Program
“Physics of Magnetic Nanostructures.”
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The fundamental restrictions on the maximum admissible rate of secret-key commitment in quantum cryptog-
raphy in real time are discussed. It is shown that the maximum rate in a quantum channel with limited trans-
mission band is achieved in a cryptosystem on orthogonal states. The dimensionless rate (the number of bits
per unit time frequency band through unit of the channel) is determined by the universal function
C(λ0(∆kT))/∆kT [where C(λ0(∆kT)) is the transmission capacity of a classical binary channel, ∆k is the trans-
mission band width, 1/T is the transmission frequency of quantum states, and λ0 is the maximum eigenvalue of
a certain integral equation]. © 2002 MAIK “Nauka/Interperiodica”.
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The problem of the maximum possible rate of
secret-key transmission in quantum cryptography is of
both fundamental and practical interest. The commit-
ment of the secret key in quantum cryptography
requires two communication channels: a quantum
channel through which quantum states carrying infor-
mation about the secret key are transmitted and an open
auxiliary classical channel [1]. In this paper, the restric-
tions imposed by the parameters of the quantum com-
munication channel (in particular, by its transmission
band) on the limiting rate of secret-key generation are
analyzed. The restrictions on the limiting rate of key
generation arise because the states of a quantum system
must have carriers in the Minkowski spacetime, in spite
of the fact that they are described by vectors (rays) in
the Hilbert space * [2]. In addition, the states in *
should be associated with physical objects (particles),
which propagate in the Minkowski spacetime when
information is transmitted. The assignment of the basis
vectors belonging to different irreducible representa-
tions of the Poincaré group in * to the states of various
particles (photons, electrons, etc.) is one of the basic
positions in the interpretation of quantum field theory
[2].

All quantum cryptosystems can conventionally be
divided into three types: systems based on the nonor-
thogonal states [1], on the Einstein–Podolsky–Rosen
effect [3], and on the orthogonal states [4, 5]. The secu-
rity of the cryptography on nonorthogonal states is
based on the impossibility of gaining information about
them without their disturbance [1]. In contrast to the
nonorthogonal states, the orthogonal states are distin-
guishable with certainty if they are entirely accessible
for measurement (in fact, the state carrier in the
Minkowski spacetime is entirely accessible) and are
0021-3640/02/7510- $22.00 © 20521
indistinguishable with certainty if they are not accessi-
ble entirely. Moreover, they remain indistinguishable
with certainty even if they are orthogonal in the pres-
ence of a restriction on any spacetime region [5].1

Secret-key commitment protocols on the orthogonal
states are organized in such a way that the states propa-
gating through a communication channel are never
present entirely in it at the same time [4, 5]. For detect-
ing the eavesdropping attempts in the cryptography on
orthogonal states, it is substantial that, according to
special relativity, the propagation velocity of quantum
states is limited [4, 5]. For the cryptosystems on nonor-
thogonal states, the spacetime structure of the latter is
not taken into account in an explicit form, because the
fact that the state vectors in * are nonorthogonal is for-
mally sufficient for the protocols. In contrast, for the
cryptosystems on orthogonal states, the spacetime
structure of states is taken into account in an explicit
form from the very beginning, because it is the neces-
sary element in commitment protocols.

Below, it will be shown that taking account of the
spacetime structure of quantum states leads to the
restrictions on the limiting rate of secret-key commit-
ment in a quantum channel with a finite frequency
transmission band. These restrictions, in effect, are the
same for the cryptographies on nonorthogonal and
orthogonal states, if one does not ignore the fact that the
information is carried by particular physical objects.
Restrictions on the properties of the quantum commu-
nication channel always exist. For example, in an opti-
cal fiber, restriction is associated with the finiteness of
the pass band. For the cryptography through open
space, a restriction is imposed by the transparency win-

1 Note that, in the scheme given in [4], the states in the channel are
effectively nonorthogonal, in contrast to [5].
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dow in the atmosphere. Therefore, restriction on the
transmission band is a rather general thing.

Let us first discuss the restrictions on the limiting
rate of key generation for the cryptosystems on nonor-
thogonal states. The amount of classical information,
which can be transmitted from one participant (A) of a
cryptographic protocol to the other participant (B)
using quantum states is determined by the maximum of
mutual information restricted by the Holevo inequality
[6]:

(1)

where S(ρ) is the von Neumann entropy, π0, 1 are the
a priori probabilities of sending quantum states ρ0, 1,
ρ = π0ρ0 + π1ρ1 (π0 + π1 = 1), and Ei are the measuring

operators such that I =  is the identity operator.
Consider pure states ρ0, 1 = |ϕ0, 1〉〈ϕ 0, 1|. In this case,
S(ρ1) = 0. The maximum rate of key generation is deter-
mined by the transmission capacity of the quantum
channel. This capacity is given by the maximum among
all possible input a priori distributions of mutual infor-
mation (1) [7] (maximum is reached at π0 = π1 = 1/2):

(2)

The quantity C is the amount of information in classical
bits (≤1) which can be transmitted with an arbitrarily
low error in one message for a sufficiently long trans-
mitted sequence [8]. Therefore, the quantity 1/C deter-
mines the number of messages (rate). These arguments
are valid for the case where an eavesdropper is absent.
In the presence of an eavesdropper, it is impossible to
make any general conclusions about the key-generation
rate, because eavesdropping may be so intense that it
blocks the key commitment.

The maximum key-generation “rate” (transmission
capacity) for the cryptosystems on nonorthogonal
states cannot exceed the rate for orthogonal states. To
achieve the generation rate equal to the transmission
capacity for the nonorthogonal states in the asymptotic
limit of large sequences, collective measurements on
the blocks of states are required [9] (these measure-
ments amount to the projection onto the subspace of
typical sequences). For the orthogonal states, collective
measurements are not required. It is sufficient to make
individual measurements for the state in each message.
The measurement reduces to the tensor product of indi-

I A; B( ) π0Tr ρ0Ei{ }
Tr ρ0Ei{ }
Tr ρEi{ }
----------------------- 

 
2log





i

∑
Ei

max=

+ π1Tr ρ1Ei{ }
Tr ρ1Ei{ }
Tr ρEi{ }
----------------------- 

 
2log





S ρ( ) πiS ρi( ),
i 0 1,=

∑–≤

S ρ( ) –Tr ρ ρ2log{ } ,=

Eii∑

C
1 ε–

2
----------- 

  1 ε–
2

----------- 
 

2
log

1 ε+
2

----------- 
  1 ε+

2
----------- 

 
2

log+ ,–=

ε ϕ0 ϕ1〈 〉 .=
vidual measurements, each given by the unity decom-
position of the form

(3)

where E0, 1 are the projectors onto the states. The mea-
surement on a sequence of length N is given by the
unity decomposition

(4)

Measurements consisting in the projection onto either
the individual states or their blocks provide no informa-
tion about the key-generation rate in real time, because
projectors do not involve explicit information about the
spacetime structure of states. Since all events for
observers inevitably occur in the Minkowski spacetime,
measurements must involve explicit or implicit infor-
mation about the spacetime regions. This remark is
immaterial in the nonrelativistic quantum mechanics,
because the propagation velocity is unlimited. In quan-
tum field theory, one cannot ignore restrictions imposed
by special relativity on the limiting propagation veloc-
ity of quantum objects.

Below, the vectors |ϕ0, 1〉 ∈  * denote the one-photon
states, and information is assumed to be coded, as
usual, by the polarization states of photons. Within the
framework of the “nonrelativistic” quantum-mechani-
cal treatment of photons, which is often used in the
problems of the quantum theory of information, the
spatial degrees of freedom are, as a rule, ignored and
only the polarization degrees of freedom, which are
described by the vectors in a Hilbert space with
dim* = 2, are taken into account. Neither the electron
spin nor the photon polarization exist independently of
the spatial degrees of freedom. Moreover, since the
quantized photon field is massless and transverse, the
spatial and polarization degrees of freedom, strictly
speaking, cannot be represented in the factorized form.
For our purposes, it is sufficient to consider a one-
dimensional massless particle with two polarization
states. Though idealized, this representation reflects the
main properties of quasi-one-dimensional optical fibers
and narrow light beams. The states of a free massless
quantized field are generated by field operators (gener-
alized functions with operator values) [2] acting on the
vacuum vector:2 

(5)

2 Strictly speaking, the generalized operator functions must satisfy
the Maxwell equations idϕ/dt = –∇  × ϕ and ∇  · ϕ = 0.

I E0 E1, E0 1,+ ϕ0 1,| 〉 ϕ 0 1,〈 | ,= =

I ⊗ N I I… I⊗⊗ .
N

=

    

ϕµ
+ x̂( )

1

2π
---------- k̂d( )δ k̂

2
( )θ k0( )eik̂ x̂aµ

+ k( ),∫=

k̂ k k0,( ), x̂ x t,( ), dk̂ dkdk0,= = =

k̂ x̂ kx k0t, aν
– k( ) aµ

+ k( ),[ ]– k0δ k k'–( )δν µ, .= =
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The subscripts µ, ν = 0, 1 number two basis polariza-
tion states. The physical states |ϕm〉 ∈  * of a quantized
field are obtained by smoothing out the generalized
operator functions with the basic functions ϕ( ) ∈
Ω( ) [Ω( ) is the space of basic functions [2]];

|0〉 ∈  Ω( )* are the generalized eigenvectors

(linear continuous functionals in *); Ω( ) ⊂  * ⊂
Ω*( ) is the equipped Hilbert space (Gelfand triad)
[10]; and

(6)

The normalization condition is

(7)

The states are assumed to differ only in the polarization

and have the same spatial amplitude . The states

|ϕµ〉  are determined by the amplitude  on the mass
surface k0 = |k |. If the information is transmitted
between two participants, it is reasonable to consider
the states propagating in one direction (k > 0). In this
case, all quantities depend on the difference τ = x – t,
i.e., on the variable on one of the light-cone branches.

A measurement distinguishing with certainty
between a pair of orthogonal states is given by unity
decomposition (2) in the one-particle subspace of
states. The projectors inevitably include the spatial
component of the state vector. The states are distin-
guished with certainty if the entire state [spatial region
where the state amplitude ϕ(x, t) is nonzero] is accessi-
ble. Formally, the amplitude is nonzero in the whole
space. This fact follows from the Wiener–Palley theo-
rem [11]: the Fourier transform of a normalized func-
tion ϕ(k) (k ≥ 0),

(8)

equal to zero in the k < 0 semiaxis, but not identically
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equal to zero must satisfy the condition

(9)

As follows from Eq. (9), the state amplitude cannot
decrease exponentially but can decrease at infinity
arbitrarily close to the exponential |ϕ(τ)| ∝
e−α|τ|/ln(ln(ln(…ln |τ|))), where α > 0 can be as large as
desired.

The real measurements cannot cover the whole
space; the access to the whole space would require infi-
nite time because of the existence of the limiting veloc-
ity. If measurement is carried out in a finite accessible
region, the space of results is Θ = (Ω × (0, 1) ∪  ),
where Ω is the region accessible for detection, µ = (0,
1) label the channels for the orthogonal polarization
states, and the region  is inaccessible for the mea-
surement.

(10)

where

(11)

(12)

Unity decomposition (12) is the formal description of
an instrument; it can be interpreted as follows. If the
spatial regions x are considered as the space of results,
a measurement should be treated as an instrument dis-
tributed over x and generating random outcome in the
vicinity of a certain point (x, x + dx) at time t. If x is
fixed (local instrument), a measurement describes an
instrument operating in the waiting regime and gener-
ating the outcome at a random time instant (t, t + dt).
The fact that the operator measure }(dτ, µ) depends
only on the difference τ = x – t (coordinate in the left

ϕ τ( )ln
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branch of the light cone) and not on x and t separately,
implies that, if an outcome can be obtained with a cer-
tain probability in the vicinity of x at time t, it can be
obtained with the same probability at another point x '
but at time t ' = x ' – x + t. The size of a region accessible
on the light cone determines the time it takes for obtain-
ing the final outcome. For brevity, a measurement with
outcomes in the accessible region Ω on the light cone
will be referred to below as a measurement in the time
window Ω = (−T, T) (the outcome cannot be obtained
by an observer faster than in time T [12]). The probabil-
ity of correct identification of the states with orthogonal
polarizations in the time window (–T, T) is equal to [5]

(13)

and, correspondingly, the probability of error is

(14)

Note that, to distinguish with certainty between two
spatially extended classical signals (electromagnetic
wave with two orthogonal polarization states), it suf-
fices to use an arbitrarily small region where the signal
exists. Since the vector of quantum state is normalized

(  =  = 1; t and t ' are arbi-

trary), the probability of correctly distinguishing
between the locally orthogonal quantum states is pro-
portional to the contribution coming to the normaliza-
tion integral from the region accessible for measure-
ment. For the same reason, the probability of distin-
guishing provided by the collective measurements is no
higher than the probability provided by the individual
measurements.

Since the states are orthogonal (more precisely,
locally orthogonal), the transmission capacity is given
by the formula for a classical symmetric binary
channel:

(15)

If there are no restrictions on the properties of the quan-
tum channel, one can transmit through it the states
localized in τ as strongly as desired. In this case, the
property that the states can be detected with an arbi-
trarily small error within an arbitrarily narrow time
window (–T, T) means that they can be transmitted with
an arbitrarily high rate. More exactly, for any given T <
ε and δ > 0, the state can be chosen in such a way that

p p 0 0( ) p 1 1( )= =

=  
1
2
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∞∫ ϕ x t',( ) 2 xd
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C p( ) 1 CH p( ),–=

CH p( ) 1 p–( ) 1 p–( )2log p p2log .––=
the probability of correctly distinguishing will be as
close to unity as desired:

(16)

Let the channel transmission band be limited by the
energy interval ∆ω = ∆k (speed of light c = 1). The posi-
tion of the transmission window on the energy axis is of
no importance. In this case, the problem amounts to
finding the optimal form of the state ϕ(k) (ϕ(τ), for
which the maximum transmission capacity C(p)) [max-
imum probability of detecting the state within the time
window (–T, T)] is reached at a given channel transmis-
sion band and chosen transmission rate 1/T. Thus, it is
necessary to find the states maximizing the functional

(17)

By varying the functional, δ^/δϕ = 0, one arrives at the
integral equation

(18)

The maximum eigenvalue and the corresponding
eigenfunction give the maximum of the functional and
the optimal form of the state, respectively. This equa-
tion was analyzed earlier in [13, 14]. The eigenvalues
are positive and form a descending sequence (1 > λ1 >
λ1 … > 0, n = 0, 1, …, ∞). They are functions of the
parameter ∆kT. Several first eigenvalues were found
numerically in [13] for various values of ∆kT (the
eigenvalues tend rapidly to unity with increasing
parameter ∆kT; e.g., λ0 = 0.99589 for ∆kT = 4). For a
fixed number n, the asymptotic behavior at ∆kT  ∞
is also known [14]:

(19)

i.e., the eigenvalues are exponentially close to unity.
The latter means that the error of distinguishing
between the orthogonal states is exponentially small for
a wide time window (T @ 1/∆k), and the channel trans-
mission capacity is exponentially close to unity.

According to the standard treatment of transmission
capacity, the latter means that one can always find a
random code with transmission rate R as close to C as
desired, but R < C, which allows information of C clas-
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sical bits to be transmitted per one message with an
arbitrarily small error for a sufficiently long sequence.
In this case, each message and measurement occurs
with the rate 1/T in real time. The rate of generating one
bit in a key in real time is C(λ0(∆kT))/T. In actuality, the
transmission rate on the nonorthogonal polarization
states is always somewhat lower, because the transmis-
sion capacity for the nonorthogonal states is always
lower than for the orthogonal states (if their spatial
forms are identical).

For small parameters ∆kT ! 1, the eigenvalue is λ0 ~
∆kT and the transmission capacity is C ~ (∆kT)2 ! 1.

Let us discuss the key generation rate in a cryptosys-
tem on extended orthogonal states [5]. Since the whole
orthogonal state is never present in the communication
channel at the same time and the propagation velocity
is limited, these states are indistinguishable for an
eavesdropper and any eavesdropping attempt can be
detected. At first glance, it may appear that the key gen-
eration in real time is slower, because one is led to use
the states having extended carriers in spacetime. How-
ever, it proves that the theoretical maximum of secret-
key generation for a given transmission band of a quan-
tum communication channel is achieved for a crypto-
system on extended orthogonal states rather than for a
cryptosystem on nonorthogonal states. Before proving
this statement, we present some heuristic arguments.
The length of a state cannot be less than the channel
length Lch = cTch [5]. Therefore, this must be a suffi-
ciently narrow-band state (∆kch < 1/Tch). For a given
transmission band ∆k, N states with orthogonal polar-
izations and nonoverlapping carriers in the k space (N ~
∆k/∆kch) can be transmitted simultaneously. The detec-
tion of each state requires a time window no smaller
than Tch, but, in this case, N states are simultaneously
transmitted through independent channels. The physi-
cal time per key bit is T ~ NTch = N/∆kch = N/N∆k, which
coincides with the preceding result. The frequency
band ∆k can be divided into an arbitrary number of
independent channels; the only requirement is that the
band of each channel be narrow enough (∆kch < 1/Tch).
In fact, this division is analogous to multiplexing in the
classical case. In this case, the channel is a set of N
independent channels, each having the transmission

band δki (δki ∩ δkj ≠ ∅  = ∆k). In what follows,

all δki are assumed to be identical. N states ,

where  = , are simultaneously sent

into each channel.

The unity decomposition describing a measurement
in the subspace spanned by the generalized vectors

δkii∪
ϕµ

i| 〉{ }

ϕµ
i| 〉 kϕ k( ) k µ,| 〉dδki∫
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|k, µ〉 , k ∈ ∆ k has the form

(20)

where the detecting operators for each channel are

(21)

(22)

and similarly for . The probability of correct
identification of the states in each channel in time win-
dow (–Tδ, Tδ) is given by

(23)

where 0i and 1i correspond, respectively, to 0 and 1, for
each channel. The maximal pi (and, therefore, the min-
imal error) in each channel is reached for the states
maximizing the functional analogous to (17) with
replacements ∆k  δki and T  Tδ.

Since the eigenvalues of integral Eq. (18) depend
only on the product of the transmission band by the
time window, the total transmission capacity through
all N independent channels is

(24)

Since the transmission bands of individual channels are
identical, δki = ∆k/N, and the upper bound δki is deter-
mined by the length of the communication channel, one
can conclude, after choosing the time window Tδ = TN,
that the transmission, with an arbitrarily small error, of
one secret bit through one of the channels requires, for
a sufficiently long sequence, the physical time

(25)

Since the states can be transmitted simultaneously
through N independent channels, one bit requires the
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time T = TN /N, which coincides with the preceding
result.

The above formulas are asymptotic, since the states
in the individual frequency channels or individual mes-
sages become orthogonal (distinguishable with cer-
tainty) only in the asymptotic limit [correspondingly,
the nonorthogonal operator-valued measures }(τ ∈
(−T, T)) become the orthogonal projectors I(∆k)]; i.e.,

(26)

However, the limit is attained exponentially fast with
respect to the parameter ∆kT. For this reason, the for-
mulas for the channel transmission capacity can be
used even at ∆kT ≈ 2. Since the transmission capacity
depends only on ∆kT, it is more convenient to introduce
a dimensionless quantity C(λ0(∆kT))/∆kT, which can be
treated as the number of bits per unit time through unit
frequency band. The values of this quantity are pre-
sented below for several values of parameter ∆kT (the
eigenvalues λ0 are taken from the numerical calcula-
tions in [12]). For large ∆kT ≈ 2, the transmission
capacity is exponentially close to C(λ0(∆kT))/∆kT ∝
1/∆kT:

In the case that the spatial amplitudes of states over-
lap in sequential messages, the expression for key-gen-
eration rate cannot be obtained without considering a
particular model of quantum communication channel.

As with the cryptography on orthogonal states, one
can use nonorthogonal states with extended carriers
(with an arbitrary effective length, either smaller or
larger than the communication channel length), which
are transmitted simultaneously though the communica-
tion channel in the multiplex regime. In this case, the
limiting rate of key generation will be determined by
the same expression, because it depends only on the
product ∆kT, and will be lower than the rate for orthog-
onal states.

In conclusion, note that the expression
C(λ0(∆kT))/∆kT for the dimensionless rate of secret-
key generation is Lorentz-invariant (is the same in dif-
ferent inertial frames of reference), which can be rigor-
ously proved as in [15]. This follows from the Lorentz

invariance of the scalar product  = kx – k0t (c = 1,
k0 = |k |) for a photon propagating in one direction k0 =

∆kT: 0.5 1.0 2.0 4.0

: 0.14067 0.25148 0.33684 0.24467.

I ∆k( ) } τ T T,–( )∈( ).
µ 0 1,=
⊕∆kT ∞→

lim=

C λ0 ∆kT( )( )
∆kT

------------------------------

k̂ x̂
k (k > 0). In the other inertial frame of reference, one

has k' = (k – βk0)/  = k , and

T '  =  (x + βt)/  – (t + βx)/  =

T , because the time and coordinate
for a massless field appear only in the combination T ' =
x ' – t ' and T = x – t. Therefore, the product ∆kT = ∆k 'T '
is Lorentz-invariant.
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