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A transcendent equation for complex energy is derived on the basis of the exactly soluble 3D model of short-
range potential and the time-dependent Green’s function in a strong electromagnetic field representing the
combination of a constant magnetic field and the field of a circularly polarized wave. The parameters of the
quasistationary states of an electron in δ potential are calculated with account taken of the action of a strong
external field of complex configuration. The possibility of stabilizing the decay of the bound states of spinor
and scalar particles by a strong magnetic field is analyzed. The results require revision of the commonly
accepted view on the stabilizing role of a strong magnetic field in the ionization of atoms. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 32.80.Fb
Although the ionization of atoms and ions, as well
as photoabsorption by crystals in strong electromag-
netic fields, has been studied for more than 35 years [1–
6], a number of problems that are important for both
atomic and solid state physics are not yet adequately
understood. In particular, this relates to nonlinear phe-
nomena in strong fields of rather complex configura-
tions. Recently, interest in studying these phenomena
has been revived [7–12]. A specific feature of these
approaches is that they deal with exactly soluble mod-
els and the analytic analysis of the results for electro-
magnetic fields of arbitrary intensity.

Among the indicated studies, works [9, 10], where
the interesting possibility of decreasing the rate of
atomic decay with an increase in laser intensity (so-
called stabilization regime) was studied, can be high-
lighted. A similar problem of decreasing the width of a
quasienergy level in a magnetic field was analyzed in
[7]. It is significant that in the cited works only the sca-
lar charged particles were considered, irrespective of
the configuration of the electromagnetic field.

In this paper, the exactly soluble 3D model of short-
range potential is used to derive analytic expressions
describing the action of a strong electromagnetic field
of Redmond configuration, i.e., the combination of a
constant magnetic field and the field of a circularly
polarized wave, on the states of an electron. In particu-
lar, the possibility of stabilizing the decay of the bound
state of a spinor or scalar particle in a strong magnetic
field is analyzed. The approach is based on known exact
solutions of quantum equations for charged particles
moving in an electromagnetic field of the above-men-
0021-3640/02/7508- $22.00 © 20363
tioned configuration with the wave propagating along
the magnetic field [13].

Let the constant magnetic field H be oriented along
the z axis and the wave field specified by amplitude ε,
frequency ω, and polarization g = ±1. The state of an
electron with spin oriented along the magnetic field can
be described by considering the nonrelativistic limit of
corresponding solutions presented in [14]. The propa-
gator G(2, 1) averaged over the electron polarizations in
the magnetic field can be represented in the form

(1)

Omitting the details of standard calculations, we finally
write
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where

and the system of units " = c = 1 is used.
By passing to G(r, t; 0), one can easily see that

Eqs. (2) and (3) in the limit H  0 yield the well-
known relationship for the Green’s function in the field
of a circularly polarized wave [5, 6]. At ω  0, the
above expressions give results determining the Green’s
function of an electron moving in mutually perpendic-
ular constant electric and magnetic fields e and H, with
e ≠ H. Note that Eqs. (1) and (2) for a scalar charged
particle give G(r, t; r', 0) in the form consistent with the
similar result obtained in [7].

Generalizing the familiar technique developed in
[5–10] for an electromagnetic wave to the case of the
Redmond field configuration, one can obtain a tran-
scendent equation relating the complex energy E in an
external field to the unperturbed energy E0 and the
parameters ε, ω, and H of the external field:

(4)

(5)

where u = ωt/2, β0 = 2(–E0)/ω, β = 2(–E)/ω, and ξ =

eε/ω  is the dimensionless wave intensity
related to the Keldysh adiabaticity parameter by the
simple expression γ = 1/ξ.

One can easily see that, in the limit H  0, Eq. (4)
leads to the equation coinciding with a similar formula
for an electromagnetic wave [5, 6]. In the limit ω  0,
one can obtain from Eq. (4) the expression for the com-
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plex energy of an electron bound by a short-range
potential well in a constant crossed electromagnetic
field of the general form e ⊥  H, e ≠ H:

(6)

where v  = tωH/2, α0 = , and α = . Note
that the replacement of cotv  by (sinv )–1 in the preexpo-
nential factor in Eq. (6) gives the expression presented
in [7]. In that work, the ejection of a scalar particle from
a short-range potential well by crossed electric and
magnetic fields was considered.

An important feature of the procedure of deriving
the equations for complex energy E = Er – iΓ/2 by the
Green’s function method [5–10] is the exponential
divergence of integrals on the right-hand side of
Eqs. (4)–(6) at the upper limit. Therefore, in order to
obtain physically justified results, these integrals must
be regularized.

Equations similar to Eqs. (4)–(6) were derived by a
different method in [12], where the threshold phenom-
ena were studied in a strong external electromagnetic
field of the same configuration. This was accomplished
using the dispersion relations, while the properties of
the Green’s functions were not used. To apply this
method, it is necessary to prove preliminarily that the
energy distribution functions characterizing the cross
sections of interacting particles can be appropriately
continued to the upper half-plane of the complex
energy. This can be proved, e.g., using the optical theo-
rem, i.e., the relationship between the cross section and
the imaginary part of the amplitude of forward elastic
scattering.

The only difference between the relationships
obtained in [12] and Eqs. (4)–(6) is that the right-hand
sides of the former contain only real quantities β0, α0,
and E0 instead of the complex quantities β, α, and E. In
other words, these relationships are explicitly resolved
with respect to complex energy. They can be treated as
the first step in the iterative method of solving Eqs. (4)–
(6). This approach applies to the case under consider-
ation, because the shift of level E0 is physically mean-
ingful only if the condition

(7)

is satisfied. Therefore, at the first step one can put E(1) =
E0, i.e., Γ(1) = 0 in the exponentials in Eqs. (4) and (6).
As a result, the integrals converge and determine the
analytic functions in the upper half-plane of complex
energy. This allows a complex energy depending on the
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unperturbed energy E0 and on the field parameters to be
determined.

The vicinity of zero makes the dominant contribu-
tion to the integral in Eq. (6) [15]. Using the computa-
tional method described in detail in that paper and
passing over to atomic units for fields and binding
energies

we obtain the expressions

(8a)

and

(8b)

for the complex energy of particles with spins 

and 0, respectively. Here, Ai and Bi are the Airy func-
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,

where

(9)

are the normalized intensities of external fields.

Formulas (8a) and (8b) indicate that the shift and
width of a level are determined by only two parameters,
ε and h. It should be emphasized that the argument z0 of
the Airy function in the first term in the braces in
Eq. (8a) (for a spinor particle) is independent of h,
whereas Eq. (8b) does not contain such terms. This cir-
cumstance acquires fundamental importance in a suffi-
ciently strong magnetic field.

The figure shows the quantity Im(–E)1/2 as a func-
tion of h, as calculated by Eqs. (8a) and (8b). The solid
and dashed lines correspond to the scalar and spinor
particles, respectively. The calculations were per-
formed for the normalized electric field ε = 0.354,
0.414, and 0.544. It follows from Eq. (9) that, for a
fixed electric field at the level e = 0.1ea, curves 3 and 6
correspond to k = 0.827 [4Be(2s) and 79Au(6s) atoms];
curves 2 and 5, to k = 0.785 [5B(2p) atom]; and curves
1 and 4, to k = 0.716 [the value closest to the 24Cr(4s)
atom].1 In contrast, for a fixed binding energy [e.g., k =
0.075 for the easily ionized negative helium ion
He(2p)], curves 1 and 4 correspond to e = 5.9 ×
105 V/cm; curves 2 and 5, to e = 4.49 × 105 V/cm; and
curves 3 and 6, to e = 3.84 × 105 V/cm. It seems likely
that such electric fields can be produced by focused
laser beams.

1 Atomic characteristics are taken from [7].

yn 1 h/2 nh+ +( )/ε2/3=

ε 2e/k3ea, h 2H/k2Ha= =

The ionization probability vs. magnetic field h for different
values of electric field ε for (solid curves) scalar and
(dashed curves) spinor particles.
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One can easily see that the dependences of  on
magnetic field h in weak fields are virtually the same
for the scalar and spinor particles. Indeed, both
Eqs. (8a) and (8b) for ε ! 1 and h ! 1 yield, regardless
of the particle spin,

(10)

This relationship is quite expectable: the probability of
ionization in a weak electromagnetic field is exponen-
tially suppressed, while the real correction to energy
describes the quadratic Stark shift and the quadratic
Zeeman shift of energy levels.

In a strong magnetic field, the imaginary part of the
square root of energy for a spinless particle attains a
maximum at h ~ 0.03–0.05 and then decreases with
increasing h. For the above-mentioned He(2p) ion, the
maximum corresponds to the magnetic field H ~ 6.6 ×
102 G. By contrast, Im  for a particle with spin
increases almost linearly with the field at h > 0.1.

At h @ ε2/3 and ε ! 1, Eqs. (8a) and (8b) give

(11a)

and

(11b)

respectively.
Thus, the results obtained require the revision of the

commonly accepted viewpoint on the stabilizing role of
a magnetic field in the ionization of atoms [7]. In the
semiclassical approximation, the stabilization regime is
associated with the fact that the magnetic field “twists”
the subbarrier electron trajectory and, thereby, elon-
gates the electron path through the potential barrier.
Expression (11b) is quite consistent with this state-
ment: its imaginary part is suppressed exponentially.
However, according to Eq. (11a) allowing for the spin
states of a particle in a magnetic field, the imaginary
part of the square root of energy and the level width
increase with increasing h. This increase is close to lin-
ear in the most interesting case of a weak electric field.
Note that, in a weak field Γ ! (–E0), the level width vir-
tually coincides with the ionization probability. In a
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strong electric field (ε @ 1), the level width increases
proportionally to (ee/m2)2/3, but Γ > (–E0) in this region,
so that the simple relationship between the level width
and the ionization probability is lost. The case of a
strong electric field was considered in [10] and, earlier,
in [12]. Although the approaches were different, the
results of both works virtually coincide and indicate
that the energy level is completely smeared because its

width is larger than the shift by a factor of . The
same conclusion follows from Eqs. (8a) and (8b).

It is evident that the unusual behavior of ionization
probability in a strong magnetic field is due to the fact
that the lowest Landau level is accessible only to the
spinor particle with its spin oriented against the mag-
netic field. The quantizing magnetic field twists the tra-
jectory and suppresses the contribution from all doubly
degenerate energy electron states to the ionization.
However, the ground nondegenerate state makes a
dominant contribution to the level width in the strong
magnetic field. As a result, the probability of ionization
is not suppressed but increases with the intensity of the
magnetic field. Such distinctions in the behavior of
reaction cross sections in a strong magnetic field are
well known (see, e.g., [4, 14]) for the spinor and scalar
particles. This is particularly true for photoproduction
of e+e– pairs [16] and for the photoabsorption of non-
conducting crystals in a quantizing magnetic field [17].
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Within the framework of classical electrodynamics, a formula is derived for the spontaneous radiation rate of
molecules and atoms in an arbitrary open cavity in the weak coupling approximation with allowance made for
radiation absorption or amplification by the cavity material. The formula agrees well with microdroplet lumi-
nescence data. The effect of suppression of the spontaneous resonance radiation rate by the active laser medium
is predicted. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 41.60.-m; 33.20.-t
1. The rapid progress in new technologies has
resulted in the observation of new data concerning the
use of microscopic particles for changing the properties
of optical radiation. For example, new optical effects
involving plasma clusters [1], nanosized bodies [2], and
microdroplets [3] were reviewed in [1–3]. In the
mid-20th century, it was realized that the spontaneous
radiation rate 5 of a dipole can be changed by several
orders of magnitude if it is placed in a high-Q cavity [4,
5]. Today, this idea still stimulates both experimental
[6– 8] and theoretical [9–15] studies. In particular, an
algorithm for calculating 5 in an arbitrarily shaped
cavity with an arbitrary distribution of the real dielec-
tric constant εrwas developed in [13, 14]. A number of
recent studies [15] are devoted to the development of
the quantum theory of atomic spontaneous radiation in
the presence of dielectric bodies absorbing radiation.

In this letter, a solution to the problem of spontane-
ous radiation of a molecule in an arbitrary open cavity
is given. The formula obtained for 5 allows for radia-
tion absorption and amplification inside the cavity. The
main purpose of this letter is to demonstrate that these
factors should necessarily be taken into account,
because they may revise modern concepts of the spon-
taneous radiation of molecules.

2. Let us consider the well-known problem of clas-
sical electrodynamics of cavity excitation by a current
with volume density j(r, t) = Re[jω(r)exp(–iωt)], where
r is the radius vector and t is time. The solution to this
problem is presented below mainly to determine the
quantities entering the formula for 5.

Assume that the properties of electromagnetic
modes in an open cavity with real dielectric constant εr

are known. Each cavity mode is characterized by a set
of indices s, the electric field vector Es, the circular fre-
quency ωs, and the quality factor Qs = ωs/γs. The quan-
tity Qs allows for the radiation loss dUs/dt = –(ωs/Qs)Us,
0021-3640/02/7508- $22.00 © 20368
where Us =  +  is the sum of electric- and mag-
netic-field energies.

The oscillating dipole with dipole moment p and
jω(r) = –iωpδ(r – rp) excites the cavity modes with
amplitudes as. The electric-field energy in the cavity is

U = . The radiation power is given by the

expression

(1)

The conditions under which one can pass from the
wave equation to the equations for slowly varying
amplitudes are well known. These are, first, the mode
orthogonality conditions, which are satisfied for the
open cavity with a relative accuracy of about 1/Qs [16].
Second, the inequalities

(2)

must be fulfilled, where ∆ω (s–1) is the radiation line-
width [17]. When written in the form 5/∆ω ! 1, con-
dition (2) is referred to as the condition for weak oscil-
lator–cavity coupling [18, 19].

In classical electrodynamics, the light absorption or
amplification by the cavity material can be taken into
account through adding an imaginary part iεi to the
dielectric constant. For simplicity, it will be assumed
that the function εi is smoother than Es(r). In this case,
the effects of intermode energy exchange can be
ignored [20] and the quantities as are

(3)

where ω . ωs, γa ≡ ω/Qa, and Qa ≡ εr/εi.
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Substituting Eq. (3) into Eq. (1), one can find the
ratio of the dipole radiation rate 5 = –(2π/hω)(dU/dt)
in the cavity to the rate Rv = p2ω3/6ε0hc3 of the same
radiation in an infinite vacuum:

(4)

where ε0 is the dielectric constant, h is the Planck’s con-
stant, c is the speed of light, V is the cavity volume,
fs(e, rp) is the factor allowing for the orientation e ≡ p/p
of the dipole and its position in the cavity,

(5)

and Fs(ω) is the dimensionless radiation line shape in
the vicinity of the sth resonance,

(6)

When deriving Eq. (4), it was taken into account that

Us/  = 2 to within the terms on the order of 1/Qs.

One can see from Eq. (5) that the excitation effi-
ciency of the sth cavity mode and, hence, 5 strongly
depend on the dipole position and orientation in the
cavity. The fs value averaged over the directions e and
the coordinates rp is 〈fs(e, rp)〉  = 1. Below, the averaged
radiation rate is denoted by R.

By substituting 〈fs(e, rp)〉  into Eq. (4) and assuming
that ω = ωs and εi = 0, one arrives at the formula for the
mean spontaneous radiation rate at the resonant fre-
quency

(7)

where λ ≡ 2πc/ω. For εr = 1, the right-hand side of
Eq. (7) differs by a factor of 1/3 from the result of fre-
quently cited work [4], where the orientational averag-
ing was not carried out. The obtained result is also dif-
ferent from the result of Bunkin and Oraevskiœ [5] by a
factor of 2, because of a difference in the definitions of
the cavity-mode Q factors. An experiment devoted to
the verification of the formula of type (4) is described
in [7].

In spite of the long-standing interest in the sponta-
neous radiation in cavities [2–5] and recent theoretical
developments [8–15], Eq. (4), in which 5 depends on
the light absorption or amplification, is, probably,
obtained for the first time.

Before turning to the comparison of the obtained
formulas with the experimental data, the following
should be pointed out. When deriving Eq. (4), it was
assumed implicitly that the dipole interaction with the
external electromagnetic field could be ignored. That is

5
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why the dipole radiation was termed spontaneous. It
turns out that the rate (4) is independent of the sign of
γ ≡ γs + γa. However, the properties of the initial differ-
ential equations for slowly varying amplitudes as(t)
depend essentially on this sign. At γ < 0, the steady-
state solution (3) is unstable. A small addition to as

increases by a factor of e at time t = 1/|γ|. Consequently,
an active cavity may pass on to the lasing regime. How-
ever, this does not mean that solution (3) loses physical
meaning, because the spontaneous radiation is, by def-
inition, independent of the stimulated radiation.

3. Equations (4)–(6) involve cavity characteristics
ωs and Qs, whose calculation may become a compli-
cated mathematical problem. For a cavity of simple
shape, the solution for 5 can be brought to numerical
estimates. The problem of electric radiation of a dipole
inserted into an ideal dielectric sphere is most simple.
Its solution was given using both classical [19] and
quantum [18] electrodynamics [2, 3].

The classical and quantum theories both give the
same formula for R/Rv . However, contrary to the quan-
tum approach, classical electrodynamics allows one to
consider the radiation from a sphere with a complex
dielectric constant. For example, the properties of heat
radiation from a microsphere with positive imaginary
part εi were studied in [21]. It was found in [22] that the
use of asymptotic expansions for the Bessel and Hankel
functions leads to the form (6) for the line shape of elec-
tric dipole radiation. Equation (6) was suggested in
[22], where it involved the resonance mode frequencies
and the radiation Q factors introduced by Vaœnshteœn in
[16].

4. The inclusion of light absorption is important for
the understanding of radiation physics in a high-Q cav-
ity. Let us first consider the ideal case without light
absorption in the cavity; i.e., εi = 0. One has for this

case Fs(ωs) = Qs and  = (π/2)ωs. Therefore,

the spontaneous transition rate at the resonant fre-
quency increases with Qs; i.e., R(ωs)  ∞ as Qs 
∞. At the same time, the frequency-integrated quantity

 is independent of Qs.

In practice, light absorption is always present. For
this reason, let us determine the probability of sponta-
neous radiation for |εi | ≠ 0 and Qs @ |Qa |. If the latter
inequality is fulfilled, one has

(8)

Therefore, the spontaneous transition rate at the reso-
nant frequency decreases with increasing Qs; i.e.,

R(ωs)  0 and   0 as Qs  ∞.

The fact that radiation into high-Q modes is forbid-
den in a real (|εi | ≠ 0) cavity restricts the possibility of

Fs ω( ) ωd∫

R ω( ) ωd∫

Fs ωs( ) . 
Qa
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Qs

------  ! 1, Fs ω( ) ω . 
πωs

2
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Qs
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experimentally implementing the states with strongly
coupled oscillator and cavity [9–12].

5. In the experiments with luminescent microdrop-
lets [3], the radiation Q factors of the whispering gal-
lery modes (WGM) may be very high. For example,
according to the calculations carried out in [23], Qs >
1027 for the first-order modes in water droplets with x =
2πa/λ > 180. At the same time, in ordinary liquids, light
is absorbed with Qa = 108–1012 [24, 23]. Such a ratio
between Qs and Qa and Eqs. (8) explains the fact that
the low-order modes (with Qs @ |Qa|) are sometimes
not observed in the luminescence spectra of microdrop-
lets [24, 25, 8].

To reduce the Q factors for low-order modes, poly-
mer nanoparticles were added to a liquid in [26, 27]. In
[26], the influence of a poly(styrene) sphere of diameter
87 nm on the luminescence spectrum of monodisper-
sion droplets with a diameter of 20 µm was studied. The
droplets consisted of a solution of rhodamine 6G in a
mixture of equal volumes of ethanol and water. Let us
compare the fluorescence spectra that are obtained in
[26] and shown in the figure. At λ ≥ 585 nm, the light
absorption is negligibly weak. For this reason, the res-
onant modes in spectra (a) and (b) are of the first to fifth
orders. As λ decreases, the light absorption by the
rhodamine molecules increases. The first- and second-
order resonance peaks at, respectively, λ ≤ 575 nm and
λ ≤ 566 nm disappear sequentially from the fluores-
cence spectrum (b). These peaks appear upon the addi-
tion of scattering particles to the liquid. The greatest
distinction between spectra (a) and (b) is observed in
the vicinity of λ . 560 nm. In the range λ . 555–
562 nm, the number of resonances in the spectrum (a)
is more than twice the number of resonances in the
droplets of pure liquid. At λ . 550 nm, the absorption

Fluorescence spectra of rhodamine 6G (b) in the droplets of
pure liquid and (a) with dissolved nanoparticles [26].
coefficient rapidly increases with a decrease in λ and
appreciably exceeds the scattering coefficient. For this
reason, only the fourth- and fifth-order modes appear in
the spectra (a) and (b).

In the experiment conducted in [8], the first-order
peaks disappeared and appeared again due to the sur-
face oscillations of a droplet suspended in an electro-
magnetic trap.

The observed spectral features were explained heu-
ristically by introducing the cavity-mode efficiency φ
[25, 26]. It was pointed out in [26] that the peak ampli-
tude is proportional to φ = (1/Q0 + 1/Qb)/(1/Q0 + 1/Qb +

1/Qa), where Qb ≡ (1/β) (ω/c); β is the light scat-
tering coefficient; and Q0 is the WGM quality factor in
an ideal droplet, as calculated without inclusion of light
scattering and absorption. The mode Q factor in a real
droplet was taken to be 1/Q . 1/Q0 + 1/Qb + 1/Qa. This
relationship coincides with the theoretical estimate
obtained in [28]. Thus, according to [26], the product of
peak amplitude by peak width should not depend on Qa.
This conclusion is in contradiction with the figure and
Eqs. (6) and (8), where 1/Qs = 1/Q0 + 1/Qb. The heuris-
tic explanation given in [26] would be correct if φ was

introduced as an integrated quantity (2/πω)

in the vicinity of the sth resonance.
Thus, the suggested theory explains the fact that the

spectral composition of the microdroplet luminescence
spectra is enriched upon the artificial lowering of the
WGM Q factor.

6. Let us turn back to the analysis of Eqs. (18). The
light propagation in a medium with negative εi can be
characterized by the gain g = –εi (ω/c), where µ
is the permeability of cavity material. According to
Eq. (6), the spontaneous radiation rate at a resonance
frequency increases to infinity with increasing g, while
∆ω decreases to zero as ω  ωs and Qs + Qa  0.
If R(ωs) increases in the Qs . –εr /εi regime, condition
(2) breaks down and Eq. (3) becomes inappropriate.
This constraint on the possibility of using Eq. (4) is
removed if |εi | @ εr/Qs. In the regime of strong light
amplification in an active medium, the spontaneous
radiation into resonant modes is suppressed: R(ωs) 

0 and   0 as g  ∞. The effect of reso-

nance radiation suppression in an active microdroplet
was explored in recent work [22] numerically, analyti-
cally, and by analyzing the experimental data.

Therefore, an increase of |εi | (decrease of |Qa |) in
the cavity should suppress the resonance radiation, irre-
spective of the sign of εi.

7. In the commonly accepted paradigm of laser
physics, the Einstein coefficient A for the spontaneous
phototransitions is a constant. Let us consider the main
properties of A for the molecular transition in a linear
laser. A linear laser is a laser whose length L far exceeds

εrµ

F ω( ) ωd∫

µ/εr

R ω( ) ωd∫
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the characteristic cross section d. The Q factor of the
longitudinal modes in such a laser can be estimated by
the formula [29]

(9)

where M is the mirror gross reflectivity.
The Einstein coefficient A for the spontaneous tran-

sitions between two groups of levels with energies Eu

and El can be introduced the same way as in [5]:

(10)

where ρn(En)dEn is the number of states in the energy

interval from En to En + dEn (n = u, l);  = Gn;

Gu and Gl are the degrees of degeneracy of the upper
(u) and lower (l) states; and h(E) is the probability that
the excited molecule will have energy E, so that

 = 1. Of fundamental importance is that

the result of calculating A will be independent of the
cavity-mode Q factor only if |Qa | @ Qs.

Let us calculate the rate (4), which enters the right-
hand side of Eq. (10), by integrating only over the lon-
gitudinal modes of the linear laser. The resulting AL is
smaller than A. In the calculation of laser intensity in
[29–31], the corresponding decrease in the Einstein
coefficient was allowed for by multiplying A by ∆Ω/4π,
where ∆Ω = (π/4)(d/L)2.

The molecular transition linewidth is ordinarily
larger than ω/Qs and ω/|Qa |. Assuming that these con-
ditions and the inequality gL @ 1 – M are fulfilled and
ignoring the fact that R changes at the line wings, one
obtains from Eqs. (8) and (9) the following relations:

(11)

The theoretically obtained decrease in the Einstein coef-
ficient AL should be taken into account when calculating
the characteristics of laser superradiance [30, 32].

One may take a molecular F2 laser (wavelength
157 nm) as an object for experimentally testing the
validity of Eq. (11). This laser is of considerable inter-
est, because it holds promise for use in fabricating com-
puter chips with a 0.1-µm architecture [33]. According
to [34], the value of gL in an electric-discharge F2 laser
is as large as 29. The signal power amplified in such a
laser with g = 0.37 cm–1 and L = 40 cm in the saturation
regime [35] was found to be five times lower than the
predicted value.

8. The influence of a cavity on the spontaneous radi-
ation rate 5 of molecules is ordinarily believed to be a
well-known physical phenomenon. However, in the
calculation of 5 or the Einstein coefficient A, the light
absorption and amplification effects are, as a rule,

Q
ωL εrµ
c 1 M–( )
----------------------,=

A Elρl El( ) Euρu Eu( )h Eu( )R
Ei El–

"
---------------- 

  ,d∫d∫=

ρn En( ) End∫

ρu E( )h E( ) Ed∫

AL g( ) . 
1 M–

gL
--------------AL 0( ).
JETP LETTERS      Vol. 75      No. 8      2002
ignored. In this letter, a very simple theoretical model
has been used to demonstrate that these factors are of
fundamental importance. The model suggested accords
well with the results of previous theoretical and exper-
imental studies. Equations (4)–(6) can be used to deter-
mine 5 in cavities filled with a light-absorbing, ampli-
fying, or scattering medium. It is shown that a number
of effects, called laser effects, can be explained by the
specific properties of spontaneous radiation in a cavity.
For example, a nonlinear increase in peak amplitudes
may be caused by an increase of light scattering in a
medium. At the same time, it is predicted that spontane-
ous resonance radiation can be suppressed and broad-
ened in an amplifying medium.

This work was supported in part by the INTAS
(grant nos. 99- 00701 and 2000-556).
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What Initiates the Explosion 
of a Current-Carrying Conductor?
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It is shown that the explosion of a conductor heated by a high-power current pulse is initiated by the nuclei of
liquid phase that appear in the layer of a supersaturated vapor surrounding the liquid current-carrying core. The
instant of electric explosion and the expansion velocity predicted by this scenario are confirmed by the experi-
mental and computational data on current-induced heating of a tungsten conductor. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 64.70.Fx; 64.60.My
A conductor heated by a high-power current pulse
evolves through several stages: slow heating with ther-
mal expansion and melting is followed by heating in a
liquid phase (thermal expansion of a liquid is accompa-
nied by evaporation from its surface). At a certain
energy input, less than that required for the complete
evaporation of the conductor, there comes a point after
which the abrupt increase in the conductor radius can-
not be explained by these effects alone. The hypotheses
involving the propagation of the evaporation wave from
the wire surface and the loss of thermodynamic stabil-
ity of a superheated liquid have not been confirmed
experimentally and are incapable of elucidating the
cause for such a rapid transition from the slow expan-
sion regime to the regime of abrupt increase in expan-
sion velocity (see [1, 2] and references cited therein).

Analysis of the experimental data has shown [2] that
a fine-dispersed mass remaining after the metal explo-
sion is a sol with its particle size dependent on the
instant of current breaking and that the energy input
into the conductor is always lower than the energy
required for the complete evaporation of the wire. If the
current does not break until explosion, the characteris-
tic particle size is comparable with the electron mean
free path equal to ~2 × 10–6 cm. The physical nature of
the processes initiating the transformation of a liquid
conducting wire surrounded by vapor to a weakly con-
ducting sol rapidly expanding in the radial direction
remains to be clarified.

It is shown in [3, 4] that, in the fast heating regimes,
the two-phase system consisting of a liquid conductor
with current flowing in it and a vapor in equilibrium
with the conductor may become thermodynamically
unstable. In such regimes, the liquid phase with current
does not reach its boiling state (because of the mag-
netic-field-induced compression), while the equilib-
0021-3640/02/7508- $22.00 © 20373
rium pressure of a vapor coexisting with the liquid
exceeds the saturation vapor pressure ps. The system
consisting of a liquid with current flowing in it and
vapor surrounding it may become thermodynamically
absolutely unstable if the vapor pressure reaches the
limiting value corresponding to the spinodal gas
branch. As a result, this two-phase system will undergo
a thresholdless jumpwise transition to a new state,
namely, to liquid droplets dispersed in the vapor.

Below, we consider the mechanism of the threshold
initiation of electric explosion. At the stage of heating
of a liquid current-carrying conductor, the vapor is in
equilibrium with the conductor but is metastable rela-
tive to the liquid phase without current. For this reason,
liquid droplets may spontaneously appear and grow
upon achieving certain supersaturation. As a result, the
system “liquid conductor–vapor” with current may
become thermodynamically unstable and decay before
the vapor achieves the spinodal parameters. The possi-
bility of this decay occurring is determined by the ratio
between the heating characteristic time for the conduc-
tor and the expectation time for the appearance of drop-
lets with critical size in the vapor.

In this work, the semiempirical broad-range equa-
tion of state [5, 6] describing high-temperature phase
transitions to the metastable states is used to study the
phase states through which a tungsten conductor passes
during the current-induced heating and to determine the
limiting degree of vapor supersaturation above which
the vapor spontaneously condenses in the boundary
layer. It is shown that the probability of large critical-
sized droplets appearing increases with temperature.
The growth of these droplets initiates an abrupt
increase in the evaporation rate, as a result of which the
cylindrical shape of the liquid conductor becomes
unstable, the conductor breaks down into small-sized
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Time dependences of the (solid line) current and
(dashed line) voltage drop in a current-heated conductor [7].
The points are for the experimental data [8].

Fig. 2. (a) Tungsten phase diagram in the µ–P plane, as con-
structed according to the equation of state given in [6].
(b) The same on an enlarged scale.
droplets, and the system transforms into a weakly con-
ducting sol [2]. The time instant of this transition is
determined for a heating regime described in [7, 8] for
a tungsten conductor.

In the presence of current, the equilibrium condition
for a cylindrical conductor (of radius R) and its vapor,
whose conductivity is lower than the conductor con-
ductivity, is written as

(1)

where µg and µl are the chemical potentials of gas and
liquid, respectively; ρl is the liquid density; and the
integral in Eq. (1) is the potential of Ampere force fA per
unit mass. The Ampere force is directed to the center of
the conductor and has the form fA = µ0 j2r/2 for the
homogeneous current density, where µ0 is the perme-
ability of free space, and r is the distance from the con-
ductor axis. Condition (1) is supplemented by the
requirement that the pressures on both sides of the
interface be equal. For small deviations from equilib-
rium, the chemical potentials can be linearized with
respect to pressure: µ ≈ µs + (p – ps)/ρ (index s labels
the quantities corresponding to the equilibrium at a
given temperature in the absence of current). Combin-
ing this with the condition that the liquid density
depends weakly on the conductor radius, one obtains

(2)

where p is the pressure of gas and liquid, and ρg is the
gas density at the interface. One can see from Eq. (2)
that the pressure at the interface is always higher than
the pressure ps corresponding to the equilibrium in the
absence of current.

Figure 1 shows the calculated [7] and measured [8]
time dependences of current and voltage in the course
of heating a tungsten conductor. The conductor and cir-
cuit parameters are as follows: the radius of the conduc-
tor is a0 = 0.175 mm; its length is l = 8.7 cm; the induc-
tance is L = 4.5 µH; the capacitance is C = 6 µF; and the
initial voltage is U0 = 20 kV. The arrows in Fig. 1 indi-
cate (1) the onset of melting, (2) the completion of
melting, and (3) the beginning of an abrupt growth of
the conductor radius.

Figure 2 shows the “pressure–chemical potential”
phase diagram at a fixed temperature, as constructed
using the semiempirical equation of state for tungsten
[6]. The following notation is introduced for the lines:
b is the binodal; sl and sg are the liquid and gas spin-
odals, respectively; and ig and il are the isotherms of
chemical potential of gas and liquid, respectively. The
points of intersection of the lines ig and il correspond to
the equilibrium state of the liquid–gas system with
pressure ps and chemical potential µs in the absence of

µg µl

f A

ρl

----- r,d
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R

∫+=
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current. The horizontal line in Fig. 2b is the total chem-
ical potential, which is constant throughout the system.
The point O denotes the state of the conductor on its
axis (a contribution of the Ampere potential to the liq-
uid chemical potential at this point is zero, so that the
total chemical potential coincides with the liquid poten-
tial), and the points l and g denote, respectively, the liq-
uid and gas states at the interface at pressure p. One can
see that the liquid chemical potential µl(p) is lower than
the gas potential µg(p), which is equal to the total chem-
ical potential of the system. A balance is achieved after
adding the Ampere potential to the liquid chemical
potential. Therefore, the total chemical potentials in
both media are the same.

To determine the conditions for the formation of
critical-sized droplets in a supersaturated vapor sur-
rounding a conductor with current, we use the theory of
homogeneous nucleation [9], according to which the
probability of formation of a liquid droplet is propor-
tional to exp(–A/T), where A is the minimal work nec-
essary for droplet formation and T is temperature. For a
spherical droplet of radius a, the minimal work is given
by the expression

(3)

where σ is the surface tension and pg is the gas pressure.
Both the liquid conductor with current and a droplet of
condensed vapor may be in equilibrium with the super-
saturated vapor. The pressures and chemical potentials
of the condensed droplet and the liquid must coincide
on the conductor axis. The critical radius and the work
of formation of a critical-sized droplet can be found
from the expressions

(4)

where ∆p is given by Eq. (2). The surface tension σ(T)
was determined using the data reported in [10].

At temperatures T ~ 10–14 kK, the equilibrium
vapor density is n = (5 × 1020–3 × 1021) cm–3; the equi-
librium concentration of tungsten ions, as calculated
from the Saha formula, is ni = (1019–1.8 × 1020) cm–3;
the Debye radius is rd ~ (17–6) × 10–8 cm; and the mean
interaction energy (normalized to temperature)
between charged particles at a distance equal to the
Debye length is as large as ≤1.4, indicating substantial
nonideality. The role of charged particles in the nucle-
ation process [11] should also be taken into account at
distances smaller than the Debye radius, because the
field of an individual charge is “felt” only inside the
sphere of this radius.

Using [12], we write the following expressions for
the critical radius and the work of formation of a criti-
cal-sized droplet on an ion under the condition that the

A 4πa2σ 4πa3

3
------------ pg ps–( ) 1

ρl

ρg

-----– 
  ,–=

ac 2σ/∆p; Ac 16πσ3/3 ∆p( )2,= =
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droplet radius is markedly smaller than the Debye
radius:

(5)

(6)

The set of Eqs. (5) and (6) has two solutions. The first
corresponds to small critical sizes, i.e., to the case
where both terms on the right-hand side of Eq. (6) are
large compared to their difference. This gives the well-
known Rayleigh result ac = (e2/16πσ)1/3. In this case,
the surface electric force is counterbalanced by the sur-
face tension force. One can easily show that the corre-
sponding work A is minimum, so that the droplets of
this size are stable and represent, in actuality, the cluster
ions typical of metal vapor plasmas [13]. For the regime
of current-induced heating of a tungsten conductor con-
sidered in this work, the size of these droplets changes
weakly [ac = (1.5–3) × 10–8 cm] with changing temper-
ature in the range T ~ 7–14 kK and never exceeds the
Debye radius. These “droplets” contain from one to five
atoms.

The solution, for which the second term on the right-
hand side of Eq. (6) can be ignored, corresponds to
larger radii ac and to the maximum of function A. In the
same temperature range, the size of large droplets cor-
responding to this maximum changes within ac =
(9−1) × 10–7 cm. Inasmuch as these values are larger
than the corresponding Debye radii, the influence of ion
charge on the nucleation processes becomes insignifi-
cant for the droplets of sizes as large as those.

At a certain critical degree of vapor supersaturation,
the critical radii corresponding to minimal and maxi-
mal work start to coincide; i.e., the extremums of A as
a function of nuclear size disappear. As a result, liquid
droplets of every size start to grow [12]. In the heating
regime considered in this work for the tungsten conduc-
tor, the degree of supersaturation is markedly lower
than this critical value.

The mean expectation time τ for the appearance of a
nucleus in the volume V of a metastable vapor is usually
written as [9]

(7)

where G = Ac/T is the Gibbs number and n is the num-
ber of nucleation centers in unit volume. We are inter-
ested in the time it takes for the droplets of critical size
ac to appear in a layer of thickness Rr near the liquid
conductor–vapor interface; V = 2πRlRr is the volume of
this layer, and l is the conductor length.

Small-sized nuclei are universally present on ions,
because the expectation time for them is τk ~ 0.6 µs
even at T ~ 6 kK and rapidly decreases with a rise in
temperature. The nuclei of larger size become stable at

Ac 4πac
2σ

4πac
3

3
------------ pg ps–( ) ρl/ρg 1–( ) 3e2

8πac
4

------------– ,–=
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a certain temperature. As soon as the mean expectation
time for them becomes comparable with the character-
istic time of the process, the critical-sized droplets
appear in the near-surface vapor layer and start to grow.
In Fig. 3, the mean expectation time for the appearance
of a liquid-phase nucleus is shown as a function of tem-
perature. For the regime considered, the temperature,
after which large-sized droplets start to grow cata-
strophically fast, equals Tl ~ 13.6 kK. Note that this
temperature depends weakly on the thickness of the
boundary layer [we used Rr ~ (2–20)ac in our calcula-
tions]. According to [6], the instant of time at which this
temperature is achieved is t = 6.03 µs, which coincides
with the onset of intense wire expansion (arrow in
Fig. 1).

Assume that a ring waist with radius rn ! R appears
in the cylindrical conductor. Below, we show that such
a waist makes the formation of liquid-phase nuclei eas-
ier. The equilibrium pressure vapor near the waist
changes for two reasons: it decreases by a value of
2σρg/rnρl due to surface curving and increases due to a
decrease in the conductor radius in the waist (R 
R − 2rn) and, hence, a local increase in the current den-
sity in this cross section. Combining both these effects,
one can write the change in the vapor pressure in the

presence of the waist as ∆p' = ∆p(1 – acR/6 )). It fol-
lows that the cylindrical conductor surface becomes
unstable upon the formation of critical-sized droplets,
provided that the waist radius satisfies the condition
rn > (Rac/6)0.5. For T = Tl, one has rn > 10–4 cm.

Hence, a system “current-carrying conductor–vapor
collapsing into liquid droplets” becomes unstable and
should transform into a new state with a lower total
chemical potential. Before the decay, the states of the
liquid conductor at the interface (the point l in Fig. 2b)
had minimal chemical potential. After the decay, the
chemical potential of the currentless system of liquid

rn
2

Fig. 3. Expectation time for the appearance of liquid droplet
vs. vapor temperature: Rr = (1) 2ac and (2) 20ac.
droplets and vapor must be equal to this minimal value.
The chemical potential marked by the point f in Fig. 2b
corresponds to the vapor in equilibrium with these
droplets. The droplet size af after the decay can be esti-
mated from the Laplace formula af = 2σ/∆pf, where ∆pf

is the difference in the droplet and vapor pressures after
the decay, to obtain af ~ 3.5 × 10–6 cm for the regime
considered. This value is close to the experimental data
given in [14], where the diameter of particles in a fine-
dispersed tungsten powder obtained after the electric
explosion of the conductor was ~3 × 10–6 cm. The num-
ber of droplets appearing per unit length of a conductor
after its destruction can be found from the relationship

N = 3R2/4 . The excessive energy is expended on the
formation of the droplet surfaces and droplet kinetic
energy. The corresponding balance is written as

(8)

where ∆µ is the difference in the total chemical poten-
tials of the system before and after its decay. Then, the
droplet expansion velocity after the decay can be found
from the relationship

(9)

According to the graph in Fig. 2, ∆µ ≈ 2.5 × 104 J/kg
and ∆pf ≈ 0.02 GPa. Thus one finds that the initial
expansion velocity is u ≈ 200 m/s. The vapor pressure
in the mixture is ~0.21 GPa; in the calculations [7], the
pressure of the ambient medium was 0.1 GPa. For this
reason, the liquid–vapor two-phase system adiabati-
cally expands at the final stage of the process (accord-
ing to [15], the droplets with size a < 10–5 cm are in
thermodynamic equilibrium with the surrounding
vapor), the mixture temperature decreases by ~4 kK,
and the velocity increases by ~500 m/s. Therefore, the
maximal velocity of adiabatic expansion of the two-
phase system reaches ~700 m/s. This value is close to
the value of ~900 m/s observed experimentally for the
velocity of changing conductor radius at the instant of
time t ~ 6 µs.

This work was supported by the Russian Foundation
for Basic Research, project nos. 99-02-16596, 99-02-
16619, and 00-15-96529.
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The effect of three-center interactions on the formation of a superconducting phase with  symmetry is
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1. It is known that, in spite of its relative simplicity,
the Hubbard model [1] reflects the most essential fea-
ture of the behavior of an ensemble of strongly corre-
lated electrons and is frequently used as a base model
for constructing the effective Hamiltonian Heff acting in
a truncated Hilbert space. The expedience of construct-
ing Heff is determined by the possibility of explicitly
obtaining interactions that open, for example, addi-
tional ways for Cooper instability. Thus, when the t–J
model is derived [2, 3], an interaction leading to the
magnetic mechanism of Cooper pairing is distin-
guished.

In this work, it is shown that the three-center inter-
actions arising in constructing Heff and having the same
parametric smallness as exchange interactions radically
affect the properties of the superconducting phase,
decreasing (by more than an order of magnitude) Tc

with model parameters remaining unchanged.
2. Using an atomic representation, let us write the

Hamiltonian in the Hubbard model

(1)

where H0 takes into account contributions of one- and
two-electron states on one site with energies e and 2e +

H H0 V ,+=

H0 e µ–( )X f
σσ 2e U 2µ–+( )X f

22+
σ
∑

 
 
 

,
f
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+ σ X f
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σ2 Xm
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U, respectively; U is the Coulomb interaction parame-
ter between two electrons located on one site; and µ is
the chemical potential of the system. The operator V
describes the hopping of electrons within the lower and
the upper Hubbard subbands and also hopping from

one subband to another;  are the Hubbard operators

(2)

The symbol σ in Eq. (1) designates the quantity that
takes values ±1 and corresponds to two possible projec-
tions of the electron spin moment  = –σ.

In addition to the energy parameters of the model,
an essential factor is the electron concentration on a
per-site basis n = Ne/N (Ne is the total number of elec-
trons in the system, N is the number of sites in the lat-
tice). At n < 1 and large Coulomb repulsion U @ |tfm |,
electrons will tend to fill the lower Hubbard subband.
The effect of states with two electrons on one site can
be taken into account by perturbation theory based on
the use of the small parameter |tfm |/U ! 1. An elegant
implementation of such a program is provided, for
example, by perturbation theory in the operator form
[4] indicating a particular algorithm for constructing
the effective Hamiltonian.

In the case under consideration, Heff acts in the Hil-
bert subspace containing no doubles. The contributions
of double states are reflected in Heff as additional terms
that represent an operator series in increasing order of
the smallness parameter. With an accuracy quadratic in

X f
nm

X f
nm n f,| 〉 f m,〈 | , X f

nm p f,| 〉≡ δmp n f,| 〉 .=

σ
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tfm/U, the effective Hamiltonian is determined by the
equation [4]

(3)

where P is the operator of projection onto the Hilbert
subspace without doubles. Using the multiplication

rules for Hubbard operators  = δml , we
obtain

(4)

With regard to these relationships, we find the form of
the third term in Heff,

(5)

Addition of the first two terms from Eq. (3) leads to the
following structure of Heff:

In this equation, the projection operator is omitted,
because the Hilbert subspace of states without doubles
is invariant with respect to the action of Heff. Among
others, the last summand in Heff contains terms with f =
g, which, taken together with the two first terms of Heff,
give the Hamiltonian of the t–J model

(6)

Thus, Heff (thereafter Ht – J*) can be written as

(7)

Let us discuss the differences between Ht – J* for the
metallic phase and for the case of half-filling. At n = 1,
each site is occupied by one electron. Therefore, the
Hilbert subspace for Ht – J* represents a set of homopo-
lar states, when not only doubles but holes as well are
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absent. In this case, the projection operator can be writ-

ten as P = Πf( ), and, to a given accuracy,
Ht − J* is reduced to the Heisenberg model [5]. On the
other hand, if n < 1, holes are present in the system.
Therefore, electron hopping processes (the second term
in Eq. (6)) and three-center interactions H(3) are
included in Ht – J*.

It is evident from Eq. (7) that the parametric small-
ness of three-center interactions H(3) is the same as for
the exchange part of the t–J model, but it is consider-
ably lower than for the kinetic part. This fact explains
the smallness of the effect of H(3) on the spectral prop-
erties of the system in the normal phase [2, 3].

The situation is different when a superconducting
state with the d-type symmetry of the order parameter
(OP) is formed. In this case, the coupling constant in
the superconducting phase J ~ t2/U is of the same order
of magnitude as three-center interactions. This is why
one should expect that H(3) will strongly affect super-
conductivity with the d-type symmetry of OP. Below,
the truth of this statement will be confirmed by numer-
ical calculations.

3. Two methods were used in the solution of the
problem. In the first case, the diagram technique for the
Hubbard operators [6, 7] was generalized to the case
where three-center interaction is taken into account. In
the second approach, the apparatus of two-time irreduc-
ible Green’s functions was used in the same way as in
the consideration of the t–J in [8, 9]. Self-consistent
equations obtained within the above methods coincide
completely.

The linearized system of equations for normal and
anomalous Green’s functions is reduced to the standard
form of the Gor’kov equations:

(8)

In Eq. (8), the renormalized electron spectrum  is
described by the equation

(9)

where the Fourier transform of the hopping integral tq =
2t(cosqx + cosqy) is written in the nearest neighbor
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Fig. 1. Diagrams for the anomalous component of the mass operator in the t–J* model.
approximation, Jq = (2t/U)tq, and nqσ is determined by
the equation

(10)

Here, Eq =  is the spectrum of quasi-
particle excitations, and ∆q designates the OP of the
superconducting state.

To demonstrate the relative role of three-center
interactions, the contributions of the mass operator
Σ0↑ , ↓0(p, ωn) to the component are given. This contribu-
tion determines the superconducting order parameter.
Ten graphs are shown in Fig. 1, whose analytical
expressions in total determine

(11)

In Eq. (11), the contribution ~2tq originates from the
first two graphs and determines the kinematic mecha-
nism [10]; the term in round brackets reflects the con-
tribution determined by the third and fourth graphs [7]
and is responsible for the magnetic mechanism of the

t−J model. Finally, the term ~  is induced by three-
center interactions H(3) and is determined by the last six
graphs in Fig. 1.

The last term in ~  is the most significant factor
for the d-symmetry OP. It leads in the total Σ0↑ , ↓0 to the
renormalization of the coupling constant by the sce-

nqσ
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nario J  J[1 – (1 – n/2)] = (n/2)J. It is this renormal-
ization that determines the strong effect of H(3) on the
formation of superconductivity with the d symmetry of
OP. The self-consistent equation for OP can be found in
the conventional way:

There are two things distinguishing this equation from
the corresponding equation for the t–J model. First,
additional terms appear, which can be easily distin-
guished by the explicit dependence on the parameter U.
The second distinction is more important and is associ-
ated with the renormalization of the coefficient before
the terms Jk ± q indicated above.

4. Within the nearest neighbor approximation, the
equation for OP possesses solutions differing in the
symmetry types of the order parameter ∆k. The solution
with the s type of symmetry ∆k = ∆0 does not obey the
sum rule [9] and is not considered here. The solution
with the d symmetry of OP ∆k = ∆0(coskx – cosky) is of
prime interest. In this case, the equations for determin-
ing the temperature dependence ∆0(T) and for calculat-
ing the critical temperature Tc can be written as follows:

(12)

The results of the numerical solution of the equation
for Tc are given in Fig. 2 at various n for the t–J* model
(curve 2). For comparison, the dependence of Tc on the
electron concentration obtained without regard for H(3)
is also given in this figure (curve 1). The numerical cal-
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culations were performed under the assumption that the
ratio 2|t |/U equals 0.25. It is evident that the inclusion
of H(3) leads to a significant decrease in the supercon-
ducting transition temperature (hatched region).

The decrease in the critical temperature caused by
H(3) is due to two factors. The first (and the main) factor
is in the renormalization of the coupling constant. The
second factor is the additional renormalization of the
electron energy spectrum. In order to demonstrate the
role of the second factor, Fig. 3 displays (on an enlarged
scale as compared with Fig. 2) the critical temperature
in the t–J* model as a function of electron concentra-
tion both with regard for the contributions of H(3) to the
renormalization of the electron spectrum (curve 2) and
without these contributions (curve 2'). It is evident that
the second factor affects Tc much more weakly.

Figure 4 shows the dependence of Tc on the ratio
2|t |/U obtained without regard for three-center interac-
tions (curve 1) and with regard for these interactions
(curve 2). The electron concentration in the plots corre-
sponds to the optimal doping level (n = 0.665). It is evi-
dent that, at 2|t |/U = 0.25 (dashed lines), Tc obtained
taking into account the effect of H(3) is 25 times smaller
than Tc calculated without taking the three-center inter-
actions into account.

5. In order to demonstrate clearly the physical
nature of the renormalization of the coupling constant
by three-center interactions obtained in this work, con-
sider the action of the Ht – J and H(3) operators on a sin-
glet pair. If there are no other electrons, the state of a
system with this pair is described by the ket vector

where |0〉  is the state without electrons. This pair corre-
sponds to an eigenvector of Ht – J

ψ f f ∆+,( )| 〉 1

2
------- X f

↑ 0X f ∆+
↓ 0 X f

↓ 0X f ∆+
↑ 0–( ) 0| 〉 ,=

Ht J– ψ f f ∆+,( )| 〉 2e 4t2/U–( ) ψ f f ∆+,( )| 〉 .=

Fig. 2. Regions of the superconducting state in the (1) t–J
and (2) t–J* models.
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After the action of H(3) on the singlet pair, a superposi-
tion of states is obtained:

It is evident that the effect of H(3) is reduced to rotations
through the angles π/2, π, and 3π/2 of the singlet pair
under consideration around sites f and f + ∆. It is essen-
tial that the energy parameter in this case equals –2t2/U.
Because of this, when the right-hand side of the last
equation is written in the form that does not contain the
restriction ∆1 ≠ ∆ (one has to make an operation of this

H 3( ) ψ f f ∆+,( )| 〉 2t2/U–( )=

× ψ f f ∆1+,( )| 〉 ψ f ∆ ∆1+ + f ∆+,( )| 〉+{ } .
∆1 ∆–≠
∑

Fig. 3. Variations of Tc caused by the renormalization of the
spectrum due to H(3).

Fig. 4. Effect of H(3) on the dependence of Tc on the param-
eter 2t/U.
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kind when passing on to the Fourier representation), the
term (+4t2/U)|ψ(f, f + ∆)〉  should be added, and this
term fully compensates the action of the exchange part
of the Hamiltonian Ht – J. Thus, it can be seen that three-
center interactions make a significant contribution to
the dynamics of singlet pairs, whose formation under-
lies the mechanism of superconducting pairing. There-
fore, in the case where the system contains only one
singlet pair, one can talk about the full compensation of
the corresponding two-center terms of the effective
Hamiltonian. If the system contains other electrons,
three-center terms act in such a way that the states aris-
ing because of changes in the lattice sites adjacent to
the singlet pair under consideration start to make a con-
tribution to the resulting superposition. These addi-
tional contributions increase as electrons fill the sites
adjacent to the pair. These circumstances explain the
appearance of the concentration factor, which leads to
the renormalization of the coupling constant mentioned
above.

We note in conclusion that the analysis performed
unambiguously points to the essential role of three-cen-
ter interactions in the formation of a superconducting
state with the d-type symmetry of OP. Since it was
found that without H(3) Tc ~ 100 K at typical values of
parameters [2], we found, with regard to these terms,
that Tc ~ 4 K for the same parameters.
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work.
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Low-temperature conductance peaks due to the surface Andreev bound states in SIN and SIS junctions with
chiral superconductors are considered. It is shown that, in SIN junctions, the conductance as a function of volt-
age, G(V), is highly sensitive to the dependence of the barrier transparency on the direction of the quasiparticle
momentum. A weak magnetic field applied to the junction shifts the conductance peaks. In symmetric SIS junc-
tions, the presence of chiral levels of Andreev bound states on both sides of the barrier gives rise to a conduc-
tance peak at V = 0. © 2002 MAIK “Nauka/Interperiodica”.
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Possible examples of chiral superconductors are
Sr2RuO4 and the B phase of UPt3. These compounds are
characterized by highly anisotropic order parameters.
The latter property is confirmed by the strong suppres-
sion of Tc by nonmagnetic impurities [1]. Muonic
experiments testify to the presence of spontaneous
magnetic fields and, hence, the spontaneous violation
of time inversion in these superconductors [2].

The conductance of SIN junctions with supercon-
ductors characterized by anisotropic pairing was theo-
retically studied first in relation to high-Tc supercon-
ductors (see, e.g., [3]) and, later, in relation to chiral
superconductors [4–6]. Experimentally, the conduc-
tance of SIN junctions with Sr2RuO4 was studied in [7].
The conductance of SIS junctions with anisotropic
superconductors was experimentally studied in [8, 9].
The characteristic feature revealed in these experiments
was the presence of a zero-bias conductance peak,
which was found to grow lower and broader with
increasing temperature.

In the analysis of the conductance behavior in [4–6],
the barrier transparency was interpreted in terms of the
simplest model of a δ-like barrier. Below, it is shown
that the conductance as a function of voltage is highly
sensitive to the particular dependence of the barrier
transparency on the momentum direction. Therefore,
the actual dependence of the barrier transparency on the
momentum can fundamentally influence the interpreta-
tion of experimental data.

Let us consider an SIN junction. The x coordinate is
directed along the normal to the tunneling barrier, and
the chiral superconductor (S) is oriented so that the c
axis of the crystal is directed along the z axis. For the
quasiparticle current and, hence, the conductance in
0021-3640/02/7508- $22.00 © 20383
the tunneling junction, the following relationships are
valid [3]:

(1)

(2)

In Eqs. (1) and (2), the density of states in the supercon-
ductor, νl(pf , ε), is taken as in the case of an opaque
boundary. Here and below, e = –|e |; h = 1; and V = Φr –
Φl, where Φr, l represents the potentials to the left and to
the right of the barrier. For simplicity, let us denote the
quantity |e |V by V, i.e., eV  –V, and normalize the
conductance to the inverse normal resistance GN of the
junction (the NIN junction),

(3)

It is also convenient to introduce the renormalized bar-
rier transparency

(4)
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As a result, the conductance at zero temperature can be
represented in the form

(5)

In chiral superconductors, near their surfaces, surface
Andreev states are formed with the energies εB(pf) [10].
Then, the density of states in a superconductor, νl(pf ,
ε), can be divided into two components:

(6)

Here, the first (δ-like) term describes the bound state,
where  represents the residue of the polar term of
the quasiclassical Green’s function and depends on
both the suppression of the order parameter and the
type of pairing in the superconductor. The second term
in Eq. (6), νc(pf , ε), represents the component of the
density of states corresponding to the continuous spec-
trum. This component is zero below the gap, and at ε @
|∆| it tends to the density of states of a normal metal:
νc(pf , ε)  1. The quantity g is explicitly determined
from the expression for the coordinate-dependent order
parameter ∆(p, x) [11]. The part of conductance corre-
sponding to νc(pf , ε) contains no peaks in the case of
chiral-type pairing. For the part of conductance corre-
sponding to the bound states, the following expression
is valid at T = 0:

(7)

For Sr2RuO4, the Fermi surface can be considered as
cylindrical, and Eq. (7) can be integrated in the general
form:

(8)

Here, v f, y is determined from the equation V = εB(v f, y),
and the summation goes over all possible solutions for
this equation. For a step model of the order parameter
and a δ-like barrier, Eq. (8) takes the form of the expres-
sion obtained in [6]. However, one should note the cru-
cial role played by the dependence of the barrier trans-
parency on the direction at the Fermi surface. Conduc-
tance peaks occur at the voltages corresponding to the
extrema of the bound-state energy: ∂εB, i(v f, y)/∂v f, y = 0.
The direction ϕ corresponding to this energy is deter-
mined by the quantity v. For a δ-like barrier in the tun-
neling limit, the following dependence of the barrier
transparency on the direction is obtained (the polar
angle ϕ is measured in the xy plane relative to the nor-
mal): D(ϕ) = D0cos2ϕ. This D(ϕ) dependence does not
qualitatively affect the form of the G(V) dependence.
However, for the actual tunneling barrier, the range of
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angles ϕ for which the barrier transparency is not van-
ishingly small can be rather narrow. Then, the very pos-
sibility of the formation of conductance peaks depends
on the value of D(ϕ) in the direction corresponding to
the extremum of εB(v f, y). This can clearly be seen from
Fig. 1, which shows the dependence of G(V, T = 0)/GN

on |e |V/∆max for an SIN junction with a superconductor
characterized by the -type pairing. In this case,

the energy dispersion of the surface Andreev bound
states is described by the expression εB(ϕ) =
±∆max|cos(2ϕ)|sin(ϕ) [10], and the corresponding con-
ductance peak occurs at |e |V/∆max ≈ 0.27. The barrier
transparency is taken in the form D(ϕ) =
D0exp(−Asin2ϕ). The order parameter is modeled by a
step function, and a slight broadening of the bound lev-
els is introduced: γ = 0.01∆max. One can see that, as the
parameter A increases (i.e., the transparency cone
decreases), the conductance peaks vanish. It should
also be noted that the narrower the transparency cone of
the barrier, the higher the central part of the dependence
of G on the voltage. This occurs because at voltages
close to zero, the conductance actually depends only on
the absolute value of the barrier transparency along the
normal, D0, whereas the normalizing quantity GN also
depends on the cone angle of the barrier transparency
region.

To take into account the effect of a weak magnetic
field in the case ξ ! λ, one can use the approximate
expression

(9)

Generally speaking, it is necessary to include the
spontaneous current in Eq. (9), which is always
present at the surface of a chiral superconductor [12,
13, 10]. However, the estimate of εM made on the basis
of numerical calculations [10] shows that the contri-
bution of spontaneous currents to εM is small and εM ~

10−1 ∆max.

The Doppler shift of dispersionless zero levels in
d-wave superconductors leads to a splitting of the con-
ductance peak in a magnetic field [14]. When εB is ini-
tially characterized by a dispersion (which far exceeds
εM in amplitude), the effect of the magnetic field mani-
fests itself in a different way. For chiral types of pairing,
for which no conductance peaks are observed (the p-
type pairing with εB = ∆v f, y/v f), the presence of a weak
magnetic field cannot cause such peaks to appear and,
hence, does not lead to any qualitative changes in the
G(V) dependence. However, if the εB(v f, y) dependence

has extrema at some points  (as in the case of the f-
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Fig. 1. Dependence of the conductance on the voltage for an SIN junction with a superconductor with the -type pairing. The

barrier transparency is determined as D(ϕ) = D0exp(–Asin2ϕ). The plots correspond to different values of parameter A. The energy
levels of the surface bound states have a finite width γ = 0.01∆max.
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type pairing), the conductance exhibits peaks at V =

εB( ), and, in the presence of a weak magnetic field,
the points corresponding to the peaks of G(V) are dis-

placed by the distance V – V0 ≈ εM /v f, which is pro-
portional to the magnetic flux penetrating the supercon-
ductor. Figure 2 shows the changes in the G(V, T =
0)/GN dependence in the presence of a weak magnetic
field in the superconductor resulting in εM = ±0.1∆max.

Now, let us consider a symmetric SIS junction with
two identical chiral superconductors. Although, on both
sides of the barrier, the energy levels of the surface
Andreev bound states strongly depend on the momen-
tum direction, they can give rise to conductance peaks
at zero voltage. The component of quasiparticle current
determined by the presence of bound states on both
sides of the barrier has the form

(10)

For the chiral superconductors under consideration,
two cases are possible: either εB, l(pf) = εB, r(pf) ≠ 0 when
the chiralities on the two sides of the barrier are differ-
ent [10], or εB, l(pf) = –εB, r(pf) ≠ 0 when the chiralities
are identical. In the first case, the aforementioned cur-
rent component is zero, whereas, in the second case, for
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a cylindrical Fermi surface, the following expression is
valid:

(11)

where v f, y is determined from the equation V =
−2εB, r(v f, y). Thus, the presence of extrema in εB(v f, y)
gives rise to peaks not only in the conductance of a
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Fig. 2. Conductance for an SIN junction with a supercon-
ductor characterized by the -type pairing in the pres-

ence of a weak magnetic field. The solid curve corresponds
to zero magnetic flux through the superconductor, the dot-
ted curve corresponds to the magnetic flux leading to εM =
+0.1∆max, and the dashed curve, to the magnetic flux giving
εM = –0.1∆max.
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symmetric SIS junction but also in the quasiparticle
current through it. At the same time, experimental
observations revealed no double peaks for SIN junc-
tions with Sr2RuO4. The absence of such peaks in the
experiment argues against the presence of the f-type
pairing (or any other pairing for which the derivative
∂εB, i(v f, y)/∂v f, y becomes zero at some points) in
Sr2RuO4. Another explanation is based on the consider-
able broadening of the bound states or on cutting off the
peaks by a low barrier transparency in the correspond-
ing directions. In addition, from Eq. (11), one can see
that, for any type of chiral pairing, the conductance
exhibits a zero-bias peak of width ~T and height ~1/T,
which seems to agree well with the results obtained
from the experiments [8, 9].

I am grateful to Yu.S. Barash for useful discussions.
This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-16643.
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For a weakly disordered three-dimensional Ising model in the critical region, the sixth-order effective coupling
constant and the fourth- and sixth-order nonlinear susceptibilities are determined. The values of these quantities
are found to differ radically (by a factor of 1.5–3) from the corresponding values in a pure ferromagnet, and
their measurement is suggested for the identification of the critical behavior of impure systems.© 2002 MAIK
“Nauka/Interperiodica”.
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From the mid-1970s, the critical thermodynamics
of three-dimensional impurity systems has been the
object of intensive studies, both theoretical and exper-
imental. Theoretical achievements, such as the deter-
mination of the mechanism governing the effect of
impurities on the critical behavior, the formulation of

the Harris criterion, the construction of the  expan-
sion, and the calculation of the critical indices and crit-
ical amplitude ratios in the framework of the perturba-
tion theory [1–13], have stimulated subsequent stud-
ies, the development of which in the last few years
acquired the character of an explosion. Advancement
in this field of research was, to some extent, caused by
the discovery of the fact that, for the systems under dis-
cussion, an increase in the order of the renormalized
perturbation theory does not lead to stabilization of the
numerical results for the critical indices and other uni-
versal physical quantities. This feature is in contradic-
tion with the known properties of renormalized group
expansions for pure systems, which allow one, by
applying the appropriate resummation procedures, to
determine the universal parameters with an accuracy
progressively increasing from order to order [14–22].
Most likely, the aforementioned anomaly, which man-
ifests itself only in the five-loop and six-loop approxi-
mations [23–26], reflects the much discussed Borel
nonsummability of renormalization group expansions
for impurity systems (see, e.g., [27–29] and recent
reviews [30–32]).

The absence of convergence of the iteration proce-
dures based on the renormalization group theory of per-
turbations does not, however, preclude one from
obtaining numerical estimates of the critical indices
with an acceptable accuracy. The latter implies a rela-
tively small scatter of the results obtained from differ-
ent approximations, the insensitivity of the results to

e

0021-3640/02/7508- $22.00 © 20387
changes in the resummation technique, and, evidently,
a good agreement between the theoretical predictions
and the results of physical and computer experiments.
For example, for the critical index of susceptibility γ of
the impurity three-dimensional Ising model, the four-,
five-, and six-loop approximations yield the values
1.326–1.321 [10, 11], 1.325 [25], and 1.330 [26],
respectively, and the variations of γ in passing from one
resummation technique to another do not exceed 0.01.
This suggests that the field-theoretical renormalization
group method can be used for calculating other univer-
sal critical parameters of three-dimensional impurity
systems.

Below, we determine the nonlinear susceptibilities
of the fourth (χ4) and sixth (χ6) orders and the effective
coupling constant v 6 for a weakly disordered three-
dimensional Ising ferromagnet in the critical region. At
T  Tc, these quantities, just like the linear suscepti-
bility χ and other equilibrium parameters, take on uni-
versal asymptotic values, which can be measured with
high accuracy in modern experiment.

The free energy of a uniaxial ferromagnet as a func-
tion of magnetization M in an external magnetic field H
can be represented in the form

(1)

where m is the inverse correlation radius, η is the Fisher
index, and v 4 and v 6 are the effective coupling con-
stants taking universal critical values at the Curie point.

F M m,( ) F 0 m,( )
1
2
---m2 η– M2+=

+ m1 2η– v 4M4 m 3η– v 6M6 … HM,–+ +
002 MAIK “Nauka/Interperiodica”



 

388

        

PAKHNIN 

 

et al

 

.

                                                                             
Using expansion (1), one can easily express the nonlin-
ear susceptibilities χ4 and χ6 in terms of χ, v 4, and v 6:

(2)

Thus, the determination of the nonlinear susceptibili-
ties in the critical region is reduced to the calculation of
the universal asymptotic values of v 4 and v 6.

For weakly disordered systems, the thermodynamic
quantities are determined by averaging over random
impurity configurations. This averaging is most simply
performed by the replica technique. The latter is based
on the fluctuation Hamiltonian of the n-vector cubic
model

(3)

which, in the limit n  0, reproduces the critical
behavior of the impurity Ising model. This behavior is
controlled by the fixed impurity point of the renormal-
ization group equations. The point in question is a sta-
ble node in the (u4, v 4) plane, and its coordinates are
known in the highest approximation available, i.e., in
the six-loop approximation [26]. It is essential that the
case of a nonzero external magnetic field corresponds
to the n-component cubic model in a uniform field
directed along the principal diagonal of the hypercube.
It can be shown that, for the solution that does not vio-
late the replica symmetry, the coupling constant u4
drops out of the equation of state in the limit n  0.
From the physical point of view, this is quite important,
because, in this case, the “wrong” sign of u4 does not
lead to the instability of the effective Hamiltonian.

Thus, at the Curie point, the effective fourth-order
coupling constant in Eq. (1) is equal to the coordinate

 of the fixed impurity point. Hence, the asymptotic
behavior of χ4 at T  Tc is determined by the quantity

. The situation with the nonlinear susceptibility χ6 is
more complicated. The determination of its critical
asymptotic behavior involves the calculation of the
effective coupling constants u6, q6, and v 6 for the model
given by Eq. (3). These constants act as coefficients of

the invariants , , and  in the
expansion of the free energy of the cubic model.
Recently, the quantities u6, q6, and v 6 were determined
in the form of renormalized perturbative series expan-
sions in the four-loop approximation [33]. For the O(n)-
symmetric systems, the series of length as large as this
allow one to calculate the universal values of the sixth-
order coupling constant with an accuracy no lower than
1% [19, 22]. Since the expression for χ6 involves only
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one of the three coupling constants, namely, v 6, we
present the renormalization group expansion only for
this constant. In the limit n  0, the expansion has the
form

(4)

Note that the quantities u4 and v 4 differ by a factor of
π/4 from their analogs u and v  used in [33].

Series (4) is of the asymptotic type. However, series
of this kind allow one to obtain reliable quantitative
results by applying the appropriate resummation tech-
niques. One of them is used in our calculations in [11].
At the first step, expansion (4) is transformed to a con-
vergent series with the help of the Borel–Leroy gener-
alized transformation

(5)

Then, using the Borel transform of the initial function,
we construct an auxiliary series

, (6)

with the coefficients as homogeneous polynomials in
the variables u4 and v 4. To perform analytic continua-
tion beyond the circle of convergence, Padé approxi-
mants [L/M] in the variable λ are used, the value of this
variable being set equal to unity at the terminal step.
The described resummation procedure retains all point
symmetry properties of the initial expansions [34] and
provides rapid convergence of the iteration process if
the Borel summability of the renormalized group series
takes place.

Since the parenthetical expression in Eq. (4) is a
fourth-order polynomial, we can construct four differ-
ent Padé approximants: [3/1], [2/2], [1/3], and [0/4]. It
is well known that the diagonal approximants (L = M)
or approximants close to them possess the best approx-
imating properties. However, with an increase in the
denominator exponent M, the number of the approxi-
mant poles in the complex plane also increases, and

v 6

v 4
2

------
9
π
--- 2u4 v 4 2.9001567u4

2– 3.1830989u4v 4–+(=

– 0.9549296v 4
2 5.579725u4

3+

+ 10.03487u4
2v 4 6.222000u4v 4

2+

+ 1.389963v 4
3 12.5233u4

4–

– 31.7631u4
3v 4 30.6484u4

2v 4
2–

– 13.8874u4v 4
3 2.50173v 4

4– ).

f u v,( ) ciju
iv j

ij

∑ e t– tbF ut v t,( ) t,d

0

∞

∫= =

F x y,( )
cijx

iy j

i j b+ +( )!
--------------------------.

ij

∑=

F̃ x y λ, ,( ) λn cl n l–, xlyn l–

n!
---------------------------

l 0=

n

∑
n 0=

∞

∑=
JETP LETTERS      Vol. 75      No. 8      2002



NONLINEAR SUSCEPTIBILITIES 389
Table

b 0 1 2 3 5 10 15 20

 = –0.50, [2/2] 2.056 – – – 2.161 2.120 2.109 2.103

 = 1.53 [3/1] 2.319 2.255 2.216 2.190 2.156 2.117 2.100 2.090

(6-loop) [2/1] 1.960 2.033 2.072 2.095 2.123 2.153 2.165 2.172

 = –0.53, [2/2] 2.062 – – – – 2.150 2.135 2.127

 = 1.57 [3/1] 2.364 2.296 2.255 2.226 2.191 2.149 2.131 2.120

(6-loop) [2/1] 1.957 2.034 2.074 2.099 2.129 2.160 2.172 2.180

 = –0.56, [2/2] 1.867 – – – – 1.995 1.973 1.963

 = 1.58 [3/1] 2.188 2.125 2.087 2.061 2.028 1.990 1.973 1.963

(5-loop) [2/1] 1.762 1.834 1.871 1.895 1.922 1.951 1.963 1.969

u4*

u4*

u4*

u4*

u4*

u4*
when these poles fall on the positive real semiaxis or
close to it, they can make the approximant unsuitable
for series summation. Therefore, in the resummation of
expansion (4), we use only approximants [3/1] and
[2/2]. In addition, our analysis also includes approxi-
mant [2/1], which practically corresponds to the use of
the three-loop approximation. The above operations are
directed toward the aim of revealing the sensitivity of
the numerical results to the approximation order and to
obtain additional information for the optimization of
the resummation procedure by choosing the optimal
value of the free parameter b in the Borel–Leroy trans-
formation.

The results of our calculations are shown in the
table, which presents the effective coupling constant v 6
as a function of the parameter b. The values of v 6 are
determined at the fixed impurity point using the three
aforementioned Padé approximants. Since the coordi-

nates of the fixed impurity point,  and , are
known with a limited accuracy, we calculated the uni-
versal critical value of v 6 for three sets of  and .

The first two of them (  = –0.50,  = 1.53 and  =

–0.53,  = 1.57) are obtained in the six-loop approxi-
mation with the use of two different resummation strat-
egies [26], and the third set (  = –0.56,  = 1.58) is
determined from the five-loop expansions subjected to
the resummation by the Padé–Borel–Leroy method
[25]. The empty cells in the table mean that, for the cor-
responding values of b, the Padé approximant [2/2] has
“dangerous” poles.

As one can see from the table, the numerical values
of v 6 obtained with the three chosen Padé approximants
weakly depend on the parameter b, and, for each set of

 and , one can easily determine the optimal value
of b at which the three approximants yield coincident or
very close results. This fact points to the high efficiency

u4
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*

u4
* v 4

*

u4
* v 4

* u4
*
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*

u4
* v 4

*

u4
* v 4
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of the resummation technique used in our calculations.
The analysis of the data presented in the table shows
that three variants of the coordinates taken for the fixed
impurity point correspond to the estimates v 6 = 2.14,
2.15, and 1.96, respectively. Since the coordinates ,

 determined from the six-loop approximation should
be considered as the most reliable ones and the process-
ing of the divergent series (4) can hardly provide an
accuracy better than to the second decimal place, we
accept the following final result of our calculations:

(7)

The chosen error limits are rather conservative, and,
hence, the true asymptotic value of v 6 is certain to lie
within the interval bounded by Eq. (7).

It is of interest to compare the universal critical
value of v 6 for the impurity Ising model with its analog
for a pure (defect-free) system. The factor that really
characterizes the contribution of the effective coupling

constant v 6 to the equation of state is the ratio v 6/ .

Taking the average value  = 1.55 as the coordinate of
the fixed impurity point, we obtain the following ratio
for the disordered Ising model at the critical point:

v 6/  = 0.87. For a pure uniaxial ferromagnet, the cor-

responding ratio is v 6/  = 1.64–1.65 [17, 18, 35–38].
Thus, the impurities reduce this ratio almost by half.
Since the ratio under discussion appears in the equation
of state and, hence, is available for experimental study,

the measurement of v 6/  can be used to identify the
critical behavior of impurity systems.

An equally great difference is observed between the
nonlinear susceptibilities of impurity and pure Ising
ferromagnets. For the three-dimensional Ising model,
we have  = 0.99 [14, 15, 17, 18]. Then, according to
the first expression in Eqs. (2), the value of the universal
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2
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combination χ4χ–2m3 calculated for an impurity ferro-
magnet is 55–60% greater than for a pure ferromagnet.
The difference in the sixth-order nonlinear susceptibil-
ities is even more substantial. According to Eqs. (2), for
a pure uniaxial ferromagnet, we have χ6χ–3m6 = 4.5 ×
103, whereas for a weakly disordered system, we have
χ6χ–3m6 = 12.3 × 103. This almost threefold change in
the parameter χ6χ–3m6 under the effect of impurities can
certainly be detected experimentally.

This work was supported by the Russian Foundation
for Basic Research (project nos. 01-02-17048, 01-02-
17794) and the Ministry of Education of the Russian
Federation (project no. E00-3.2-132). A.I. Sokolov and
D.V. Pakhnin are also grateful to the International Sci-
ence Foundation and the St. Petersburg City Adminis-
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vidual projects (nos. p2001-90 and s2001-1002).

REFERENCES
1. A. B. Harris and T. C. Lubensky, Phys. Rev. Lett. 33,

1540 (1974).
2. A. B. Harris, J. Phys. C 7, 1671 (1974).
3. T. C. Lubensky, Phys. Rev. B 11, 3573 (1975).
4. D. E. Khmel’nitskiœ, Zh. Éksp. Teor. Fiz. 68, 1960 (1975)

[Sov. Phys. JETP 41, 981 (1975)].
5. B. N. Shalaev, Zh. Éksp. Teor. Fiz. 73, 2301 (1977) [Sov.

Phys. JETP 46, 1204 (1977)].
6. C. Jayaprakash and H. J. Katz, Phys. Rev. B 16, 3987

(1977).
7. A. I. Sokolov and B. N. Shalaev, Fiz. Tverd. Tela (Len-

ingrad) 23, 2058 (1981) [Sov. Phys. Solid State 23, 1200
(1981)].

8. G. Jug, Phys. Rev. B 27, 609 (1983).
9. I. O. Maœer and A. I. Sokolov, Fiz. Tverd. Tela (Lenin-

grad) 26, 3454 (1984) [Sov. Phys. Solid State 26, 2076
(1984)].

10. I. O. Mayer, A. I. Sokolov, and B. N. Shalaev, Ferroelec-
trics 95, 93 (1989).

11. I. O. Mayer, J. Phys. A 22, 2815 (1989).
12. N. A. Shpot, Zh. Éksp. Teor. Fiz. 98, 1762 (1990) [Sov.

Phys. JETP 71, 989 (1990)].
13. C. Bervillier and M. Shpot, Phys. Rev. B 46, 955 (1992).
14. G. A. Baker, Jr., B. G. Nickel, and D. I. Meiron, Phys.

Rev. B 17, 1365 (1978).
15. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B 21,
3976 (1980).

16. S. A. Antonenko and A. I. Sokolov, Phys. Rev. E 51,
1894 (1995).

17. R. Guida and J. Zinn-Justin, Nucl. Phys. B 489, 626
(1997).

18. R. Guida and J. Zinn-Justin, J. Phys. A 31, 8103 (1998).
19. A. I. Sokolov, Fiz. Tverd. Tela (St. Petersburg) 40, 1284

(1998) [Phys. Solid State 40, 1169 (1998)].
20. H. Kleinert, Phys. Rev. D 57, 2264 (1998).
21. H. Kleinert, Phys. Rev. D 60, 085001 (1999).
22. A. I. Sokolov, E. V. Orlov, V. A. Ul’kov, and S. S. Kash-

tanov, Phys. Rev. E 60, 1344 (1999).
23. B. N. Shalaev, S. A. Antonenko, and A. I. Sokolov, Phys.

Lett. A 230, 105 (1997).
24. R. Folk, Yu. Holovatch, and T. Yavors’kii, Phys. Rev. B

61, 15114 (2000).
25. D. V. Pakhnin and A. I. Sokolov, Phys. Rev. B 61, 15130

(2000); Pis’ma Zh. Éksp. Teor. Fiz. 71, 600 (2000)
[JETP Lett. 71, 412 (2000)].

26. A. Pelissetto and E. Vicari, Phys. Rev. B 62, 6393
(2000).

27. A. J. Bray, T. McCarthy, M. A. Moore, et al., Phys. Rev.
B 36, 2212 (1987).

28. A. J. McKane, Phys. Rev. B 49, 12003 (1994).
29. G. Alvarez, V. Martin-Mayor, and J. Ruiz-Lorenzo, J.

Phys. A 33, 841 (2000).
30. A. Pelissetto and E. Vicari, Phys. Rep. (in press); cond-

mat/0012164 (2000).
31. R. Folk, Yu. Holovatch, and T. Yavors’kii, cond-

mat/0106468 (2001).
32. Yu. Holovatch, V. Blavats’ka, M. Dudka, et al., cond-

mat/0111158 (2001).
33. D. V. Pakhnin and A. I. Sokolov, Phys. Rev. B 64,

094407 (2001).
34. S. A. Antonenko and A. I. Sokolov, Phys. Rev. B 49,

15901 (1994).
35. A. I. Sokolov, E. V. Orlov, and V. A. Ul’kov, Phys. Lett.

A 227, 255 (1997).
36. P. Butera and M. Comi, Phys. Rev. E 55, 6391 (1997).
37. A. Pelissetto and E. Vicari, Nucl. Phys. B 522, 605

(1998).
38. M. Campostrini, A. Pelissetto, P. Rossi, et al., Phys. Rev.

E 60, 3526 (1999).

Translated by E. Golyamina
JETP LETTERS      Vol. 75      No. 8      2002



  

JETP Letters, Vol. 75, No. 8, 2002, pp. 391–394. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 75, No. 8, 2002, pp. 463–466.
Original Russian Text Copyright © 2002 by Vasil’ev, Solov’ev, Mel’tser, Semenov, S. Ivanov, Yu. Ivanov, Kop’ev.

                                                   
Far Infrared Electroluminescence in Cascade Type-II 
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Far infrared radiation from type-II heterostructures is observed. The samples used for the observations have the
form of ten-period cascade structures, each period containing InAs and AlGaAsSb quantum wells separated by
a variband barrier. The results of studying the vertical transport and the electroluminescence testify that the
radiation is caused by transitions between the electron and hole states existing in the adjacent quantum wells.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.60.Fi; 78.66.Fd
In the last few years, one of the topical problems of
the quantum cascade laser design has been related to
the generation of long-wave radiation [1]. A recent
achievement consisted in the development of a quan-
tum cascade laser on intersubband transitions with a
wavelength up to 24 µm [2]. However, attempts to
extend the concepts used in the design of short-wave
cascade lasers to the terahertz region have remained
unsuccessful. The only advancement was the observa-
tion of a rather low-power spontaneous electrolumines-
cence with a wavelength of about 100 µm [3–5]. A
modification of the quantum cascade laser is the bipolar
cascade laser based on type-II heterostructures with a
band discontinuity [6]. This laser combines the advan-
tages of injection and unipolar cascade lasers. The
active region of this device consists of two quantum
wells, namely, InAs and GaAs wells with electrons and
holes, respectively, whose energy spectra overlap.
When a bias voltage is applied to the structure, elec-
trons are injected into the InAs well, where they recom-
bine with holes. This leads to a photon emission due to
the transitions between the electron and hole levels
existing in the adjacent wells. The structure of the bipo-
lar cascade laser provides radiation with a wavelength
of about 4 µm.

In this paper, we report the development of bipolar
cascade type-II heterostructures in which the spacing
between the 2D electron and hole layers decreases
when a bias voltage is applied. These structures pro-
duce an intense radiation at voltages exceeding a cer-
tain threshold. We present the results of an experimen-
tal study of the electric and radiative characteristics of
these structures. The characteristics show that the radi-
ation observed in the experiment is associated with
electron–hole recombination between adjacent wells.
0021-3640/02/7508- $22.00 © 20391
The active region of the proposed device is repre-
sented by InAs and Al0.1Ga0.9AsSb quantum wells,
which are characterized by n- and p-type conduction,
respectively, and separated by a variband semiconduc-
tor barrier. Unlike conventional quantum cascade
lasers, the structures with variband barriers can operate
without satisfying the condition requiring that the
parameters of all periods be identical, because the
“adjustment” of the active region levels occurs auto-
matically through the redistribution of voltage when the
tunneling conductance of the barriers varies [7].

The samples were grown by molecular beam epit-
axy on (100) p+-GaSb substrates with the use of a Riber
32 system supplied by a standard arsenic source and a
cracking source of antimony. The active region of the
structure was deliberately left undoped. Each period
included an AlxGa1 – xAsSb variband barrier layer that
was matched as a whole with GaSb in the lattice con-
stant, a 17-nm-thick InAs quantum well, and a 10-nm-
thick Al0.1Ga0.9AsSb quantum well with a constant
composition. The active region lay between two
p+-GaSb layers, which were doped with beryllium to
2  ×  1018 cm–3. The thickness of the lower layer was
0.1 µm, and that of the upper layer, 0.5 µm. The sam-
ples had the form of rectangles with side lengths of sev-
eral hundred microns. To obtain the radiation, rectangu-
lar voltage pulses were supplied to the sample with the
relative pulse duration equal to two and a repetition rate
of 1010 Hz (the duration of one pulse was 910 µs) at
T = 4.2 K. The radiation from the structure was
detected by a copper-doped germanium photodetector.
The sensitivity range of the photodetector extended
from several microns to 30 µm, with maximal sensitiv-
ity at a wavelength of 24 µm. The current–voltage char-
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Schematic band diagram of one period of the pro-
posed structure for different polarities of the bias voltage:
(a) reverse, (b) zero, and (c) forward.

Fig. 2. Current–Voltage characteristics of the structure for
two different temperatures, 77 and 300 K.
acteristics were recorded by a characteriograph in the
pulsed mode of operation, simultaneously with the
radiation, at different temperatures.

Figure 1 schematically represents the band diagram
of one period of the structure for different polarities of
the bias voltage. The major voltage drop occurs at the
barriers, because the tunneling conductance of the bar-
riers is much smaller than the conductance of the lay-
ers containing the charge carriers. As in the case of a
tunnel diode, the reverse bias corresponds to the situa-
tion where the negative potential is applied to the hole
layer (Fig. 1a). Typical current–voltage characteristics
obtained at T = 77 and 300 K are shown in Fig. 2. With
an increase in the reverse bias, the current exponen-
tially grows. According to Fig. 1a, this result can be
explained as follows: as the reverse bias increases, the
slope of the triangular barrier increases in such a way
that the “effective” barrier thickness decreases, which
leads to an increase in the number of states allowing
the tunneling of carriers through the barriers into the
adjacent layer. At the same time, the steep growth of
the current with temperature shows that, at high tem-
peratures, the major contribution to the current comes
from the thermal component rather than from the tun-
neling one. As follows from Fig. 1c, when a forward
voltage is applied, one should expect a radically differ-
ent form of the current–voltage characteristics. At
small positive voltages, no current should flow through
the structure because of the absence of allowed states
in the adjacent wells, through which the forward tun-
neling could occur. As the voltage increases, the slope
of the variband barrier decreases and the spacing
between the electron and hole layers decreases. At
some threshold voltage which is approximately equal
to the initial barrier height multiplied by the number of
periods, the valence band of all barriers becomes com-
pletely straightened out and the electron and hole lay-
ers become separated by only a thin interface layer. In
this case, if the overlap of the electron and hole wave
functions is strong enough for the electron–hole
recombination to occur between the adjacent wells,
one should observe a sharp increase in the current. In
fact, as one can see from Fig. 2, at small positive volt-
ages, the current is practically absent, whereas it
exhibits considerable growth near a voltage of 2.3 V.
The latter voltage is somewhat higher than the value
calculated as the product of the barrier height (which,
for the structure under study, is estimated at 0.08 eV)
by the number of periods. Current–voltage characteris-
tics of this kind are observed only at temperatures no
higher than T = 77 K, where the contribution of the
thermal current is insignificant.

The sharp current increase at forward voltages
exceeding the threshold value indirectly points to the
appearance of electron–hole recombination. One can
expect that this recombination is of a radiative charac-
ter. In the experiment, the radiation was recorded by the
Ge:Cu photodetector when voltage pulses were applied
to the structure. Figure 3 shows the dependences of the
JETP LETTERS      Vol. 75      No. 8      2002
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radiation intensity and the current strength on the for-
ward voltage. The radiation and the current behave in
the same way. One can see that, when the voltage
exceeds the threshold value, both radiation and current
sharply increase within a narrow voltage interval. This
behavior indicates that, when the voltage is applied, the
spacing between the electron and hole layers decreases
and, after the electron and hole wave functions overlap,
a sharp increase in the rate of radiative recombination
between the layers takes place. The forward branch of
the current–voltage characteristic is similar to that mea-
sured at T = 77 K. This means that the current–voltage
characteristics of the device do not change within the
temperature interval from 4.2 to 77 K, and one can
expect that the radiative characteristics will also exhibit
no considerable changes with a temperature increase up
to 77 K.

The dependence of the radiation intensity on the
current strength (the inset in Fig. 3) has two specific
features. First, one can clearly see the cutoff current
below which no radiation from the structure can be
detected (for the sample under study, this current is
equal to 2 mA and the corresponding current density is
~2 A/cm2). Presumably, the thermal current compo-
nent, which makes no contribution to the radiation,
does not completely vanish even at T = 4.2 K. Second,
the radiation intensity linearly depends on the pumping
current. This means that the radiation is not related to
heating, because, if this were so, a square-law depen-
dence of the radiation intensity on the current would be
observed. With an increase in the current, the signal-to-
noise ratio increases and, at the maximal currents stud-
ied in the experiment (25 mA), becomes greater than
100. It is significant that, for the reverse polarity of the
bias voltage, no signal was detected at the same current
strength values. It is possible to roughly estimate the
radiation wavelength, because the sensitivity range of
the photodetector is known. This estimate agrees well
with our assumption that the radiation is caused by the
optical transitions between the electron and hole states
of the adjacent wells. Namely, in this case, the radiation
wavelength should somewhat exceed the height of the
variband barrier, with allowance for the energy quanti-
zation in the quantum wells, which yields a wavelength
of ~ 12 µm. Since the exact value of the variband bar-
rier height is unknown, all estimates presented here are
fairly rough. The data that are necessary to confirm our
estimate can be obtained from spectral measurements,
which will be the subject of another study.

Thus, in this paper, we reported on the development
of devices based on the type-II heterostructures with
electrically controlled spacing between the conducting
layers. The characteristics of the vertical transport were
studied at different temperatures, and far infrared radi-
ation was obtained. The results of the study show that
the radiation is caused by electron–hole recombination
JETP LETTERS      Vol. 75      No. 8      2002
between adjacent wells. The proposed radiator struc-
ture opens up new possibilities for the development of
far infrared lasers.

This work was supported by the Russian Foundation
for Basic Research (project no. 00-02-17045), the

Fig. 3. Dependences of (a) the current and (b) the radiation
intensity on the voltage at a temperature of 4.2 K. The inset
shows radiation intensity versus current strength.
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A compact expression has been obtained for the superexchange coupling of magnetic ions via intermediate
anions with regard to polaron effects on both magnetic ions and intermediate anions. This expression is used to
analyze the main features of the behavior of isotope shifts for temperatures of three types in layered cuprates:
the Neel temperatures (TN), critical temperatures of transitions to a superconducting state (Tc), and characteris-
tic temperatures of the pseudogap state of normal phases (T*). © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.-q; 74.72.-h
Elucidating the nature of an unusual isotope effect
in copper–oxygen superconductors is one of the most
important problems on the way to ascertaining the
mechanism of the pairing of charge carriers in these
compounds. It is known that it was the observation of
an isotope shift of the superconducting transition tem-
perature (Tc) that was of crucial importance in ascer-
taining the phonon mechanism of pairing in conven-
tional (low-temperature) superconductors. The fact that
an isotope effect exists in high-temperature supercon-
ductors built of copper–oxygen planes has long been
beyond question; however, the relative smallness of the
coefficient (for example,  ~ 0.056 for YBa2Cu4O8

upon replacing 16O with 18O, instead of the standard
value 0.5) and the specific features of its behavior in
other compounds upon changing the number of holes in
copper–oxygen planes do not fit the Bardeen–Cooper–
Schrieffer (BCS) scenario. At the same time, the major-
ity of authors of articles related to the isotope effect (see
the recent review [1]) correctly point out that, neverthe-
less, phonon modes, in some mysterious way, affect the
superconducting transition temperature. In this context,
we believe that the facts of observing an isotope effect
for the characteristic temperature of the pseudogap
state of underdoped cuprates (so-called pseudogap
onset temperature T*) gain great importance. Thus,
according to [2], the isotope exponent upon replacing
16O with 18O corresponding to T* is  = 0.061. It was

natural that this fact suggested a common origin of 
and αT* [2].

We believe that another and even more important
similarity in the dependence of the order parameters of
the superconducting and pseudogap phases on the
d-type wave vector (that is, cosqx – cosqy) explained
had been under the assumption that the transitions to

αTc

αTc

αTc
0021-3640/02/7508- $22.00 © 20395
both these phases are associated with short-range
potentials [3]. It seems that superexchange interaction,
screened Coulomb repulsion, and interaction of holes
mediated by optical phonons are the most significant of
these. The isotope shift of Tc and T* due to interaction
mediated by optical phonons was discussed in a few
works (see, for example, [4, 5]), and that for T* was
considered in [6]. Below, we will focus our attention on
polaron corrections to the superexchange coupling of
copper spins (J) and demonstrate that a number of fea-
tures in the behavior of the isotope shift of Tc upon
changing the number of holes in the CuO2 plane can be
quite reasonably explained even within the framework
of the purely superexchange mechanism of pairing.

First, we emphasize the following important fact.
Within the scenario [3], the superconducting transition
temperature Tc ~ 2J – G, whereas the characteristic tem-
perature of the pseudogap phase T * ~ J + G [3, 7].
Here, G is the parameter of the screened Coulomb
interaction of holes on the nearest copper sites, which
partially includes the correction due to interaction
mediated by optical phonon modes. If it is granted that
the isotope shift is associated with the phonon renor-
malization of G, the shifts of Tc and T* would be of
opposite sign, which is in contradiction with the exper-
imental results [2]. In this connection, it is believed that
the scenario of phonon renormalization of the parame-
ter J is more reasonable to suggest as the source of pos-
itive isotope shifts of Tc and T*.

The renormalization of J within the Hubbard model
was investigated in detail by Kugel’ and Khomskiœ [8].
It is evident from the above estimates Tc ~ 2J – G and
T * ~ J + G that the small increase in J proportional to
the phonon frequency found in this work gives the cor-
rect sign of the isotope shifts but does not provide the
required magnitude of the shifts. This can be most sim-
002 MAIK “Nauka/Interperiodica”



 

396

        

EREMIN 

 

et al

 

.

                                                 
ply demonstrated with the example of the isotope shift
of the Neel temperature in related high-Tc compounds.
As was already indicated in [1], the Kugel’ and Khom-
skiœ correction gives the correct sign of the isotope shift
of the Neel temperature (TN) in La2CuO4 upon replac-
ing 16O with 18O; however, even the most overrated esti-
mates give a value that is six times lower than the exper-
imental one.

We believe that the main reason for the quantitative
disagreement between the theory [8] and the experi-
ment [1] is in the fact that the Hubbard model is not
suitable for the compounds we are interested in. As was
already stressed in [9], the energies of electron transfer
from oxygen to a magnetic ion (∆c) in the majority of
copper oxides are smaller than the energy of electron
transfer from copper to copper (∆a). However, the Hub-
bard model gives correct estimates only when ∆a ≥ ∆c.

The Hamiltonian in the form

(1)

is best suited to the description of superexchange inter-
action explicitly taking into account the cascade hop-
ping of electrons over oxygen. As applied to high-Tc

superconductors, it is rather frequently named the
Emery Hamiltonian. Here, tac is the hopping integral
between neighboring copper and oxygen sites, and Ua

and Uc are the parameters of electron Coulomb repul-
sion. We will estimate the corrections to the superex-
change parameter J due to polaron effects at copper (a)
and oxygen (c) sites in the fashion of [8], supplement-
ing Eq. (1) with the electron–phonon coupling operator

(2)

Ĥ εaaσ
+aσ∑ εccσ

+cσ∑ Uan↑
a n↓

a∑+ +=

+ Ucn↑
c n↓

c∑ tac aσ
+cσ cσ

+aσ+( )∑+

Ĥep gini pq p q–
++( ).

a b c, ,
∑=

Exponent of the isotope shift of Tc upon replacing 16O with
18O as a function of the number of holes per one copper site.
The symbols in the curve correspond to the points at which
Tc and T* were calculated.
Here, pq and  are phonon annihilation and creation
operators, and gi is the coupling parameter connected
with the polaron stabilization energy (Ei) at site i by the

equation Ei = /"ωi, where ωi are local vibrational fre-
quencies.

In the physical context, this calculation corresponds
to a simplified Holstein model, where the migrating
charge locally interacts with breathing modes, forming
electron–vibrational states with dispersionless optical
phonons. In this connection, it is pertinent to note that
conduction in the compounds under consideration is
exactly of the polaron type and is accomplished mainly
via oxygen ion sites [10].

This calculation is performed most simply by the
method of canonical transformations. The matrix of the
unitary transformation of the initial Hamiltonian is
found by excluding the odd terms with respect to hop-
ping integrals with an accuracy up to sixth-order pertur-
bation theory. The calculation, whose mathematical
details will be given in a more detailed article, gives the
following result:

(3)

where ∆ac = εa – εc + Ua – Uc means the energy of trans-
fer from oxygen to copper, and the corrections propor-

tional to Ea"ωa/∆ac  and Ea"ωa/  are not given
because of their smallness for the compounds under
consideration. J0 is the parameter of superexchange
interaction of copper spins via the intermediate oxygen
atom in the absence of phonons [9, 11]. Note that the
appearance of temperature factors in our equation is
generally characteristic of the problems on transitions in
transition metal compounds with the participation of
quasilocal vibrations [12]. At the same time, it should be
born in mind that polaron effects break down at T ~ ω
and the concepts used here become inapplicable.

The results of our calculations are given in the fig-
ure. The system of integral equations for the mean field
parameters corresponding to the transition to the
pseudogap phase was solved self-consistently. We iden-
tify the pseudogap phase with the phase of sliding
charge-density waves. This system was written in detail
in [3] and is not given here.

For the description of the superexchange coupling
parameter upon replacing some isotopes for other ones
at "ω @ kBT, it is convenient to introduce parameters
γCu and γO by writing

(4)
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It follows from Eq. (3) that, upon replacing 16O with
18O,

(5)

whereas, upon replacing 63Cu with 65Cu,

(6)

Substituting here (in electronvolts) ∆Cu–O = 1.5 [13] and
standard values "ωa = 0.05, Ea = 0.4 [10, 14], and using
the relationship ∆TN/TN ≈ ∆J/J characteristic of layered
cuprates (see [1]), we find that the Neel temperature
should decrease by 0.2% upon replacing 16O with 18O
in YBa2Cu3O6.383. According to measurements in
La2CuO4 [15], the shift ≅ 0.6%. If, however, it is
assumed, following [1], that Ea = 1.2 eV, our estimate
will coincide with the experimental value. We hope that
this explanation of the isotope shift of TN will stimulate
further experimental investigations of this important
problem. Our estimated value γO ≈ –0.014 is overrated.
The value γO ≈ –0.01 is better suited for comparison of
the calculated  with experiment; see the figure.

It is relevant to note that, generally speaking, there
is another possibility of changing J, which is given by
Eq. (4). This possibility is associated with the change in
the distance between copper ions upon replacing some
isotopes with other ones. It is known that the superex-
change parameters very strongly depend on the dis-
tance between the interacting ions. This mechanism
explains well the increase in Tc under the action of an
external pressure on a high-Tc crystal [16, 17]. The
question naturally arises in this case as to what occurs
with the lattice parameters upon substituting some iso-
topes for other ones. Recent precision measurements in
a YBa2Cu4O8 crystal showed [18] that the lattice
parameters a, b, and c in the case of 16O equal (A)
3.8411(1), 3.8717(1), and 27.2372(8), respectively,
whereas these are equal to 3.8408(1), 3.8718(1), and
27.2366(8), respectively, for 18O; that is, these parame-
ters are somewhat smaller in the latter case. The posi-
tive isotope shift of the nuclear quadrupole resonance
frequency of plane copper nuclei [18] is another impor-
tant experimental fact, which indicates that interatomic
copper–oxygen distances are smaller in the case of 18O.
Based on these data, one may only conclude that the
change of interatomic distances upon replacing some
isotopes with other ones must lead to negative shifts of
Tc and T* and will, probably, be relatively small. From
the theoretical point of view, this fact seems quite
understandable, because changes in interatomic dis-
tances upon substituting some isotopes with other ones
are due to the lattice anharmonicity, and its effect is nat-
urally of less importance than the effect of harmonic
vibrations.

γO
3
2
---

Ea"ωa

∆Cu–O
2

---------------- 
  ,–≈

γCu
3
2
---

Ec"ωc

∆Cu–O
2

--------------- 
  .–≈
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In the figure, the values of the coefficient  =

−dln(Tc)/dln(M) for the replacement of 16O with 18O are
plotted as abscissas and the numbers of holes per one
copper site are plotted as ordinates. The symbols in the
curve correspond to the points at which the system of
self-consistent equations from [3] was solved. Because
only the order of magnitude is known for the polaron
energies Ea and Ec, the parameter γO was normalized in
such a way that  was equal to 0.1 at the optimal level

of doping. The calculated behavior of  is not sym-
metric with respect to the point of optimal doping. The
physical nature of this asymmetry is associated with
strong competition between d-SC and id-CDW phases
in the underdoped state. On the left of this point, the
isotope shift exponent increases with decreasing num-
ber of holes, approaching 0.5, whereas the value of 
remains virtually constant, as it also does at δ/2 greater
than 0.16 (the so-called overdoped regime). It is this
kind of asymmetry (but without a step!) in the behavior
of  as a function of the number of holes that was
found recently in measurements [19]. The authors of
this work mentioned already that, if only conventional
interaction via the phonon field were responsible for the
isotope effect and the unusual drop of  in the opti-
mal doping region and were related to a peak in the den-
sity of states, the curve would have been approximately
symmetric with respect to the point of optimal doping.
At δ/2 larger than 0.16, the value of  would strongly
increase; however, this was not found [19].

As to the isotope shift of Tc upon replacing the cop-
per 63Cu isotope with 65Cu or 66Cu, the fact noted in
[20] that the ratio (Cu)/ (O) ≈ 0.75 ± 0.1 does not
depend on the type of the compound and on the doping
level is naturally explained based on Eq. (3). The stabi-
lization energy of a small-radius polaron (hole) at a
copper site is higher than that at an oxygen site. The
nearest environment of a hole at an oxygen site com-
prises positive copper ions, whereas the nearest envi-
ronment of copper comprises negative oxygen ions. It
is this fact that is the reason for the difference between
γO and γCu

The value of αT * calculated in this work in the
region 0.1 < δ/2 < 0.16 turned out to be approximately
constant: αT * ≈ 0.01. This is smaller than the value esti-
mated in experiments (0.061) [2]; therefore, the effect
of interaction via optical phonons on αT * discussed in
[6] cannot be excluded. This is also corroborated by a
number of experimental points in Fig. 2 from [19] on
the right of the point of optimal doping. It is hoped that
this problem will be described in a more detailed work.

Thus, the renormalization of the superexchange
interaction of copper spins due to polaron effects noted
in this work explains the main regularities of the iso-
tope shift of the superconducting transition temperature

αTc

αTc

αTc

αTc

αTc

αTc

αTc

αTc
αTc
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in layered cuprates both in the order of magnitude and
in the sign and the character of the dependence on the
number of holes. The starting equation for the renor-
malization of the superexchange parameter was veri-
fied using the isotope shifts of the Neel temperature of
the parent compounds as an example. Our calculations
were based on the scenario of competition between the
superconducting phase and the charge-density-wave
phase. Agreement between the calculations and experi-
ment confirms this scenario. At the same time, our cal-
culation predicts a rather sharp jump of the isotope
exponent  on passing through the point of optimal
doping. This effect is relatively small; however, we
believe that the experimental observation of this effect
will be of principal importance.

This work was supported by the Russian Program
“Superconductivity,” project no. 98014-1, INTAS,
project no. YSF 2001/2-45, and the partially supported
by was Swiss National Scientific Foundation, project
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A model of the fermion-condensation phase transition forming a plateau in the spectrum of single-particle exci-
tations near the Fermi surface at T = 0 is used to analyze those features of the spectral functions of normal states
of high-Tc superconductors which are inherent in a marginal Fermi liquid contaminated by impurities. With this
model, such a behavior is shown to be due to the fermion condensate, which acts as an impurity subsystem
because its energy spectrum at T = 0 is dispersionless. The influence of the anisotropy of condensate distribution
in the Brillouin zone on the spectral functions is discussed.© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.Mn; 71.27.+a; 74.72.-h; 05.45.-a
Among numerous anomalies of high-Tc supercon-
ductivity, of interest are the unusual properties of the
electron spectral function A(p, ε) defined as

(1)

and extracted from precise angle-resolved photoemis-
sion spectroscopy (ARPES) data [1–3]. The following
notation is introduced in Eq. (1): GR is the retarded
Green’s function; γ = –ImΣR [the sign of γ(p, ε) is
always positive]; the energy ε is measured from the

chemical potential µ; and the bare spectrum  is cal-
culated using the standard LDA scheme. These anoma-
lies are most pronounced in the normal phase. In the
region (denoted by M) adjacent to the diagonals of the
Brillouin zone, the function γM(p, ε) varies linearly with
energy, which is typical of the marginal Fermi liquid
rather than of the Landau liquid [4]. As the van Hove
points (±π, 0) and (0, ±π) are approached, the electron
line broadens and becomes close to Lorentzian.

It should be noted that presently available energy
resolution does not exceed 10 meV. For this reason,
when analyzing the experimental data, we will be
mainly interested in energies ε > T, for which measure-
ment errors are relatively small. The mystery is that,
although the experimental dependence of γM(n, ε) (n =
p/p) on ε at these energies is described by a nearly
straight line, its extrapolation to zero energy passes not
through the origin of coordinates but higher, in contrast
to the prediction of the model of a marginal Fermi liq-
uid. This is clearly seen for the Bi2Sr2CaCu2O8 + δ com-
pound [5]. Clearly, such a behavior is quite understand-
able if the system contains impurities. However, exper-

πA p ε,( ) –ImGR p ε,( )=

=  
γ p ε,( )

ε ep
0– ReΣ p ε,( )–( )2 γ2 p ε,( )+

--------------------------------------------------------------------------

ep
0

0021-3640/02/7508- $22.00 © 20399
imentally, the length of the section intercepted on the
vertical axis by the above-mentioned straight line
depends on n, rendering this explanation inappropriate,
because the impurities are usually distributed randomly
and scatter electrons elastically and isotropically. A cer-
tain anisotropy could appear in γM(n, ε) [6] if the impu-
rities were localized between the planes along which
electrons move, but the mechanism of such a selective
localization is as yet unknown.

We will show in this letter that these anomalies can
be interpreted as the manifestations of customary chaos
[6] and, thus, can be caused by reasons that are unre-
lated to the contamination of a superconductor. As in
the preceding work [7], which was also devoted to the
spectral functions of high-Tc superconductors, we
assume that their electron systems undergo fermion
condensation. This phase transition consists of the
spontaneous separation of a strongly correlated system
into two subsystems. A single-particle spectrum e(p) of
one of them looks like the spectrum of an ordinary
Fermi liquid. The other subsystem is a fermion conden-
sate (FC) and represents a set of single-particle states
whose energies e(p) at T = 0 coincide with µ [8–12].
The FC distribution is anisotropic even in a square lat-
tice [9, 13], because FC occupies a region C near the
van Hove points. When changing the degree of doping
and other parameters, the value of the dimensionless
parameter η characterizing its “residential area”
remains small and does not exceed 10–15%.

At T = 0, the zero-approximation condensate

Green’s function  is merely 1/ε, while the

spectral function of FC  ~ δ(ε) has almost the
same form as the spectral function of condensate in a
Bose liquid (note, parenthetically, that this fact gave the
name for the phenomenon of interest). The presence of

GC
0( ) p ε,( )

AC
0( ) p ε,( )
002 MAIK “Nauka/Interperiodica”



 

400

        

ZVEREV, KHODEL

                  
the δ function in  renders the scattering of noncon-
densate particles from condensate absolutely elastic, as
in the case of impurities. However, the number of con-
densate particles is conserved neither in the Bose nor in
the Fermi system; being scattered, they can escape the
condensate and return to it. In liquid He-4, the momen-
tum of Bose-condensate particles is zero, and taking
such transitions into account, as is known from [14],
gives rise to a pole in the mass operator of nonconden-
sate particles, thereby ruling out any correspondence
between the impurity system and condensate. A differ-
ent situation occurs in the Fermi systems: the conden-
sate occupies a certain finite region in the momentum
space, so that the possible singularities of Σ become
smeared after integration over the condensate
momenta. Consequently, if the zero approximation

(ε) ~ δ(ε) is valid, the FC distribution anisotropy will
be the only fundamental difference between the FC and
impurity systems. We will see below that it is this anisot-
ropy which causes the anisotropy of the electron spectral

function . To verify this, let us turn to the equa-
tion [15]

(2)

for the imaginary part of the mass operator ΣR in the
normal phase.

Recall that the scattering amplitude Γ in this equa-
tion must depend on momenta, otherwise fermion con-
densation is ruled out. The desired momentum depen-
dence of Γ appears as the system approaches the point
of second-order phase transition, which is caused, e.g.,
by the appearance of charge-density [16] or spin-den-
sity [13] waves in the ground state. In this case, the col-
lapse of collective degrees of freedom is preceded by
the reconstruction of a single-particle spectrum and the
formation of FC.

AC
0( )

AC
0( )

AC
0( ) p ε,( )

ImΣR p ε T>,( ) Γ p ε p1 ε1 q ω, , , , ,( ) 2

0

ω

∫
0

ε

∫∫∫∼

× ImGR p q– ε ω–,( )ImGR p1 ε1–,–( )

× ImGR q p1 ω ε1–,–( )dp1dqdωdε1

Fig. 1. Scattering diagrams contributing to the imaginary
part of mass operator γM(p, ε) in the near-diagonal region
M. Single line corresponds to a noncondensate particle, and
double line corresponds to a condensate particle.
In what follows, we will focus on the antiferromag-
netic scenario of fermion condensation, for which the
amplitude Γ calculated in the absence of FC has a sharp
maximum at the momentum transfer equal to the anti-
ferromagnetic vector Q = (π, π). The corresponding
singular part of Γ is given by the formula [17]

(3)

Here, the density of states N0 is the standard dimension-
less multiplier, and the parameter β turns to zero at the
point of antiferromagnetic phase transition.

We start our analysis of different contributions to
Eq. (2) with the diagram corresponding to the scatter-
ing of noncondensate particles by the condensate
(Fig. 1a). This diagram is an exact analog of the dia-
gram describing the electron scattering by impurities in
dirty superconductors. Substituting the spectral func-

tion  = νC(p)δ(ε) into Eq. (2), we find that the

contribution  from this diagram to γM at relatively
small ε is given by the formula

(4)

The following notation is introduced in Eq. (4): ξM(p) =

eM(p) – µ = pF(p – pF)/ , where M/  = 1 +

(∂ReΣ/∂ )F and SC(q) = , with
νC(p ∉  C) = 0.

As in the problem with impurities,  is indepen-
dent of ε. However, contrary to that problem, the
momentum dependence of the integrand in the case
considered is rather complicated, first, because the scat-
tering amplitude Γ as a function of momentum transfer
has a singularity and, second, because the momentum
distribution in FC is anisotropic. The anisotropy mani-
fests itself in the fact that the function SC(q) has two

almost identical maxima of width ~ pF and height
~ηpF corresponding to two narrow “windows” for the
momentum transfer q = (p – p1). One of them occurs at

small q ≤ pF, and the other occurs at small |q – Q| ≤
pF, so that SC(q) = SC(q – Q).

When integrating over p1 in Eq. (4), the singular part
of scattering amplitude Γ is of no importance in the first
of these regions, so that Γ can be taken to be constant
and factored out of the integral, after which integration
over the absolute value of momentum p1yields

(5)
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(the vector p1 should lie on the Fermi line). The result
of integration is, in fact, isotropic. The corresponding
value ~η3/2 is smaller than the standard value (~η) pre-
cisely because of the anisotropy of FC distribution.

The second window “opens” upon the transition of
the condensate particles from one FC “spot” to another.
The maximum of function SC(q) in this case coincides
with the maximum of amplitude Γ(q). When evaluating
this integral, one can use the fact that the Fermi line is
close to a circle centered at the edge of the Brillouin
zone. Placing the origin of coordinates at this corner,
we first integrate over the angles of vector p1 and then
over the absolute value p1 or, what is the same, over the
energy ξ1. The integral in Eq. (4) can only be taken
numerically. Its value dramatically depends on the dis-
tance of vector p–Q from the Fermi line; this eventually
causes the anisotropy of γM(n) (see below).

As for the contributions to γM from the processes
depicted in Figs. 1b and 1c, the interspot transitions in
this case are suppressed, the momentum transfer q can-
not be close to Q, and, consequently, these contribu-
tions to γM are isotropic and give ~η3/2.

The diagram in Fig. 1d corresponds to the creation
of one of the condensate particles in the collision of a
pair of noncondensate particles. This and the related
diagrams are calculated by the formula

(6)

The notation PM(q, ε) is introduced here for the imagi-
nary part of a particle–hole propagator in the region M.
The contribution to this integral comes from a broad
range of momentum transfers q, so that the singular
component of amplitude Γ(q) again becomes immate-
rial. Making use of the standard formula PM(q, ε) ~ ε
for PM, we find that the contribution of the diagram in
Fig. 1d to γM is proportional to the energy ε and density
η and is almost independent of p [18]. This practically
completes the list of contributions to γM, because the
appearance of only FC particles together with one
decaying noncondensate particle is kinematically for-
bidden or, at least, is strongly suppressed. As a result,
the following expression is obtained for the imaginary
part of the mass operator in the near-diagonal region M:

(7)

This result differs from that postulated in [4] by the
presence of an additional energy-independent term
γ0(n), i.e., by the term “governing” the dynamical chaos
in the systems with FC.

Let us now consider how this picture changes if one
takes into account that the states belonging to FC are
damped. When analyzing the damping effects, one
should bear in mind that the poles of GC(ε) at a finite tem-
perature are shifted to the complex plane. In this case, the
real ξ and imaginary γ parts of the pole are proportional

γM
d p ε,( ) η N0

1– PM p q– ε,( )

κ2 pF
2– p p1– Q–( )

2 β2+[ ]
2

--------------------------------------------------------------- q.d∫∼
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to T [10, 18]. If the pole drift was the only change in the
Green’s function GC(ε), then the energy transfer in the
scattering of noncondensate particles by FC would be on
the order of γ, i.e., on the order of T, and then nothing
would change in the above-mentioned picture, because
only the case ε > T is considered in this letter.

However, the condensate line has wings. They
appear due to the fact that in the region of sufficiently
high energies, ε > T, the condensate spectral function is
almost completely determined by the decay of FC par-
ticles into three like particles. For the leading term of
the expansion in powers of ε, calculation gives [7]

(8)

The influence of the wings of the condensate line on γM
becomes clear from Eq. (2). At small energies, the addi-

tion of δ  to γM is calculated using the formula differ-
ing from Eq. (4) only by one more integration over fre-
quencies and by the multiplier

(9)

When taken with the opposite sign, this integral is noth-
ing but the imaginary part of a particle–hole propagator.
Substituting spectral function (8) into Eq. (9), one
obtains

(10)

The authors of [4] postulated this result to explain the
marginal behavior of the electron mass operator Σ.

A more detailed analysis shows that PC(ω) in the
systems with FC is not a strict constant, although, con-
trary to the theory of Fermi liquid, it does not vanish at
ω = 0. These variations are due to the additional terms
that are omitted in Eq. (8), which is valid only at small

ε. The first correction to PC(ω) behaves like , and
the corresponding contribution to γM is proportional to
ε3/2. Note that the contribution from the diagram with
the creation of only one FC particle is also proportional
to ε3/2 and, hence, it is of the same order as this addi-
tional term.

As in the case with PC(ω), the effective electron–
electron interaction in the calculation of γM(n) anisot-
ropy (Fig. 2) was taken in the form of Eq. (3), and the

spectrum was  = –e0[cos(apx) + cos(apy) –
2tcos(apx)cos(apy)] with the parameter t = 0.45 [19].
We also included the energy dependence of ReΣ. This
function is related to ImΣ by the Kramers–Krönig rela-
tion, which was taken in the form [20]

(11)
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The set of Eqs. (2) and (11) was solved iteratively, with
a good convergence being achieved in 8–10 steps.

When comparing the computational results with the
experimental data, one should bear in mind that the
halfwidth of the line (Lorentzian in the momentum
space) is the only parameter that is reliably measured
by ARPES on the Fermi line. Measurements yield the

ratio ImΣ/vF, where vF = (∂ /∂p)[1 + (∂Σ/∂ξ)F]. The

value  = ∂ /∂p can be determined by the LDA cal-
culations. The second multiplier is usually taken to be
unity. However, this is not a good approximation
because of the observed flattening of the single-particle
spectra e(p) in the vicinity of the van Hove points.

In summary, we have invoked the antiferromagnetic
scenario of fermion condensation to demonstrate that
the characteristic features of chaos can manifest them-
selves in the electron systems of high-Tc superconduc-
tors, even if they are completely cleansed of impurities.
These features are due solely to the separation of the
system into two subsystems at the point of fermion con-
densation, one of the subsystems being a fermion con-
densate; i.e., the nature of this chaos is purely dynami-
cal. Similar features of dynamical chaos are expected to
be observed in the vicinity of other phase transitions,
e.g., with the formation of charge-density waves, where
these transitions are also preceded by the fermion con-
densation [16]. Indeed, precise photoemission data
obtained recently for the 2HTaSe2 compound [21, 22]
demonstrate the remarkable similarity in the behavior
of ImΣ in this system and in high-Tc superconductors.

We are grateful to L.P. Gor’kov, G.E. Volovik,
N.E. Zeœn, É.E. Sapershteœn, P.W. Anderson, A. Kamin-
ski, J.W. Clark, G. Kotliar, A.J. Millis, and M.R. Nor-
man for discussions. This work was supported in part

ξ p
0

v F
0 ξ p

0

Fig. 2. Plots of the energy-independent term (in units of )

in the imaginary part of mass operator γ0(ϕ) against the
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It is shown that the D’yakonov–Perel’ spin relaxation mechanism in a two-dimensional electron gas is con-
trolled not only by the electron-momentum relaxation that accounts for the electron mobility but also by the
electron–electron collisions. The kinetic equation describing the mixing of electron spin in the k space was
solved, and the spin relaxation time τs caused by frequent electron–electron collisions was determined. The time
τs was calculated for a nondegenerate electron gas both with and without allowance for the exchange interac-
tion. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.25.Rb
The precession mechanism of electron-spin relax-
ation (D’yakonov–Perel’ mechanism) is due to the
splitting of spin branches in the electron dispersion
relation in crystals without an inversion center [1]. The
presence of spin splitting is equivalent to the presence
of an effective magnetic field, with the Larmor fre-
quency Ωk depending on the magnitude and direction
of electron wave vector k. The inverse spin relaxation

time can be estimated as  ∝ 〈Ω 2τ〉 , where the angular
brackets stand for the averaging over electron energy
distribution and τ is the microscopic relaxation time. In
a two-dimensional system without an inversion center,
e.g., in a semiconducting quantum well, the frequency
Ωk is linearly related to the vector k. In this case, it is
commonly supposed [2–5] that τ is the electron-
momentum relaxation time, or the transport time. We
call attention to the fact that the contribution to the
inverse time τ–1 additively comes not only from various
momentum-relaxation mechanisms but also from elec-
tron–electron collisions that have no effect on the
mobility. Indeed, it makes no difference whether a
change in the wave vector k and, hence, in the axis of
Larmor precession Ωk , is due to scattering by a static
defect, a phonon, or by another electron.

Evidently, the time τ caused by electron–electron
collisions depends on the dimensional parameters in
the same manner as the ee-scattering time determining
the rate of energy exchange between electrons [6, 7];
i.e., τ, τee ~  ≡ "kBTκ2/e4N. Here, N is the two-dimen-
sional electron concentration, κ is the dielectric constant,
T is absolute temperature, and kB is the Boltzmann con-
stant (a nondegenerate two-dimensional electron gas is
considered). However, the dimensionless coefficients in
the expressions for τ and τee are different and should be

τ s
1–

τee*
0021-3640/02/7508- $22.00 © 20403
found by solving different kinetic equations. In this work,
we calculate the spin relaxation time of a nondegenerate
two- dimensional electron gas for the case where this time
is controlled by electron–electron collisions.

The electron wave-vector and spin distributions will
be described by a spin density matrix, which can con-
veniently be represented as a linear combination of the
2 × 2 identity matrix and the spin Pauli matrices; i.e.,
ρ(k) = fk + sk · σ. Here, fk = (1/2)Tr[ρ(k)] is the spin-
averaged distribution function, sk = Tr[ρ(k)(σ/2)] is the
average spin vector for an electron at the point k, and
the identity matrix is omitted. In the absence of spin
splitting, the spin-polarized electron gas with equilib-
rium energy distribution is described by the density

matrix ρ0(k) = (1 + 2  · σ), where  = exp[(µ –
Ek)/kBT] is the Boltzmann distribution function; Ek =
"2k2/2m; m is the electron effective mass; µ is the chem-
ical potential; and  is the spin per one electron, i.e., the
ratio S/N, where S is the total electron spin per unit
area. If the spin splitting is small compared to "/τ, the

function Tr[ρ(k)] = 2  does not change, whereas the
spin vector acquires the nonzero correction δsk = sk –

2 , which is proportional to the spin splitting. The
kinetic equation for this correction has the form

(1)

where the first term describes spin precession about the
vector Ωk, and the second term is the collision integral that
mixes spins in the k space. In the absence of exchange
interaction, the collision integral has the simple form

(2)

f k
0 s f k

0

s

f k
0

f k
0 s

2 f k
0 Ωk s×( ) Qk δs f 0,{ }+ 0,=

Qk δs f 0,{ } Wpp' kk', δsk f k'
0 δsp f p'

0–( ),
k'pp'

∑=
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where  is the probability of electrons k and k'
being scattered, respectively, to the states p and p'. For
the sake of simplicity, the sample area in the interface
planes is hereafter taken to be unity. Inasmuch as the
spin flip in collisions is ignored, the expression in the
parentheses is obtained by substituting the spin correc-
tions δsk and δsp for, respectively, fk and fp in the differ-
ence fkfk' – fpfp' entering the standard collision integral
of nonpolarized electrons and also by substituting cor-
responding equilibrium distribution functions for fk'
and fp'. Due to the rotation of electron spins about the
vectors Ωk, the averaged spin slowly relaxes following

the law dSα/dt + Sβ = 0, where the tensor of inverse
spin relaxation times is defined as

(3)

For definiteness, we will consider the removal of
spin degeneracy for an asymmetrical quantum well of
the GaAs/AlGaAs type grown in the [001] direction
and having the point symmetry C2v . In this case, the
vector Ωk lies in the interface plane and its dependence
on k is determined by two linearly independent coeffi-
cients [8]: "Ωk = (β–ky , β+kx) where the x and y axes are

directed along [1 0] and [110]. Then, the projections of
the vector (Ωk × ) can be represented in the form
Λαβγkβ , where the third-rank tensor with four nonzero

Wpp' kk',

τ s αβ,
1–

τ s αβ,
1– Sβ Ωk δsk× α .

k

∑=

1
s

sγ

Schematic representation of electron distribution in the k
space along the ky axis at fixed kx and kz. Curve 1 is the equi-

librium distribution function ; curve 2 is the Boltzmann

spin distribution function sk, z ∝  ; and curve 3 is the

ky-odd spin distribution δsk, y ∝  Λyyzky  due to the pre-

cession of spin  about the Ωk axes.

f k
0

sz f k
0

sz f k
0

sz
components Λxxz = –Λzxx = β–/" and Λyyz = −Λzyy = –β+/"
is introduced. This is illustrated in the figure, where the
equilibrium electron distribution function, the Boltz-
mann distribution function for a nonequilibrium spin in
the absence of spin splitting, and the spin-precession
correction δsk, y are shown.

Let us introduce a linear operator  that is inverse
of Qk{δs}. Since these operators conserve the angular
distributions in the k space, the function F(k) ≡
(1/kβ) {kβ } is independent of the azimuthal angle
ϕk. Then, the solution to Eq. (1) can be written as

Inserting it into Eq. (3) and summing over the angle ϕk,
one obtains the following for the principal values of the

tensor of inverse spin relaxation times:  = (β+/")2J,

 = (β–/")2J, and  =  + , where the
integral

is introduced.
Numerical calculation was performed for the

unscreened Coulomb interaction between two-dimen-
sional electrons. The corresponding k, k'  p, p' scat-
tering probability is given by

(4)

Here, Vq = 2πe2/κ|q|, and the δ function provides the
conservation of electron energy and momentum in col-
lisions. This form of the potential allows Eq. (1) to be
reduced to the equation for the dimensionless function

u(K) = F(kTK), which depends on the dimension-
less electron wave vector K = k/kT, where kT =

[2mkBT/"]1/2 and  = "kBTκ2/e4N. The function u(K)
satisfies the equation

(5)

Here, Θ is the angle between K and P, and the probabil-

ity  is given by Eq. (4), in which Vk – p is replaced by
|K – P|–1 and all dimensional wave vectors are replaced
by dimensionless vectors. In this case,

(6)

Qk
1–

Qk
1– f k

0

δsα k( ) 2ΛαβγsγQk
1– kβ f k

0{ }– 2ΛαβγkβsγF k( ).–= =

τ s xx,
1–

τ s yy,
1– τ s zz,

1– τ s xx,
1– τ s yy,

1–

J
"

2

2mkBT
----------------- 

 
1/2

F k( )k2 kd

0

∞

∫=

Wpp' kk', 4π/"( )=

× Vk p–
2 δk k'+ p p'+, δ Ek Ek' Ep– Ep'–+( ).

τee*
1–

τee*

Ke K
2–

=  W̃PP' KK', u K( )e K'2– Θu P( )e P'2–cos–( ).
K' P P', ,
∑

W̃

J kT
2 τee* I , I u K( )K2 K .d

0

∞
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JETP LETTERS      Vol. 75      No. 8      2002



PRECESSION SPIN RELAXATION MECHANISM CAUSED 405
The inhomogeneous term in Eq. (5) and the function
u(K) were expanded in series using the basis set ln(ε) =

exp(–ε)Ln(2ε), where Ln(x) are the Laguerre poly-
nomials and ε = K2. In doing so, the identity

was used for convenience (see, e.g., [9]). The series
expansion of the function u(K) was substituted into the
right-hand side of Eq. (5), and summation (integration)
over the dimensionless wave vectors was carried out
using the Monte Carlo method. In this ways the prob-
lem was reduced to a set of linear inhomogeneous equa-
tions for the expansion coefficients of the function
u(K). The resulting value of I in Eq. (6) was found to be
≈0.027. Inclusion of the exchange interaction slightly
increased this value to I ≈ 0.028. This result is obtained
if the term

(7)

describing the exchange interaction of colliding elec-
trons is added to the collision integral. In Eq. (7),

 = (2π/")δk + k', p + p'δ(Ek + Ek' – Ep – Ep')Vk – pVk – p'.
Note that the last term on the right-hand side of Eq. (7)
arises because the electron scattering cross section
depends on the mutual orientation of electron spins
[10]. The procedure for determining the function u(K)
and the value of I in the presence of contribution (7) is
analogous to the procedure described above.

The time τ = I controls the precession mecha-
nism of spin relaxation in the presence of electron–
electron collisions:

(8)

It is of interest to compare this value with the momen-
tum relaxation time due to the scattering of two-dimen-
sional electrons by the ionized impurities of the same
concentration N: τp = (2/π2)  (see [11]). The ratio of
these two times is τp/τ = 2/π2I ≈ 7.2; i.e., the elastic scat-
tering by impurities is less efficient. If the doped layer
is separated from the quantum well by a spacer, the
influence of elastic scattering by the Coulomb potential
of ionized impurities on τs can be completely sup-
pressed.

We note in conclusion that the time τ = I calcu-
lated without the inclusion of exchange interaction can
be assigned the meaning of the electron-momentum

2

εe ε– π
8

-------Γ n 1/2+( )
n!

------------------------ln ε( )
n 0=

∞
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exch δs f 0,{ }
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relaxation time in a two-component plasma composed
of holes with a high concentration N and electrons with
a small concentration Ne ! N and with coinciding elec-
tron and hole effective masses. In such a system, the
time τ is nothing more than the electron-momentum
relaxation time caused by the scattering from equilib-
rium holes: in the electron collisions with holes, the
directed electron momentum will flow to the hole sub-
system and virtually relax to zero if Ne ! N.

The following steps may continue this study: (a) cal-
culation of time τ in a quantum well with a finite width,
where the electron wave function is extended over this
width and the interaction energy of two electrons at
small distances ρ differs strongly from the e2/κρ law;
(b) analysis of the spin relaxation of a degenerate elec-
tron gas taking into account the Fermi-type state filling
and the screening of the Coulomb potential; and
(c) passing to a three-dimensional crystal of the GaAs
type with cubic (in k) spin splitting of the conduction
band.
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cussions. This work was supported by INTAS (grant
no. 99-00015) and by programs of the Russian Ministry
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of Sciences.
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Raman Spectra of MgB2 at High Pressure and Topological 
Electronic Transition1 
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Raman spectra of MgB2 ceramic samples were measured as a function of pressure up to 32 GPa at room tem-
perature. The spectrum at normal conditions contains a very broad peak at ~590 cm–1 related to the E2g phonon
mode. The frequency of this mode exhibits a strong linear dependence in the pressure region from 5 to 18 GPa,
whereas, beyond this region, the slope of the pressure-induced frequency shift is reduced by about a factor of
two. The pressure dependence of the phonon mode up to ~5 GPa exhibits a change in the slope, as well as a
“hysteresis” effect in the frequency vs. pressure behavior. These singularities in the E2g mode behavior under
pressure support the suggestion that MgB2 may undergo a pressure-induced topological electronic transition.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.62.Fj; 74.25.Kc; 74.25.Gz
1 The discovery of superconductivity in MgB2 [1] has
initiated a number of studies that are related to the pres-
sure behavior of the crystalline structure, phonon spec-
trum, and superconductivity transition temperature of
this material [2–10]. High-pressure experiments, which
traditionally are used to test the structural stability of
materials, can also play an important role in the under-
standing of the superconductivity mechanism. The
experimentally observed pressure-induced linear
decrease in Tc [6–10] is in general agreement with the-
oretical estimations based on the BCS theory. Theoret-
ical calculations show that MgB2 can be treated as a
phonon-mediated superconductor with very strong
electron–phonon coupling of the in-plane optical E2g

phonon mode to the partially occupied planar boron σ
bands near the Fermi surface [11, 12]. The strong cou-
pling contributes considerably to the anharmonicity of
the Raman-active E2g mode which is manifested by its
very broad lineshape, ranging from 460 cm–1 to
660 cm–1, according to various calculations [11, 13–
15]. The other three phonon modes of MgB2 with sym-
metries B1g, A2u, and E1u are harmonic and show insig-
nificant electron–phonon coupling [11].

The first report on Raman scattering in MgB2

revealed a broad asymmetric peak at ~580 cm–1 [16],
while subsequent investigations attributed the band at
the 615–620 cm–1 frequency range to the E2g phonon
mode [5, 17]. Recently, Kunc et al. [18] have reported
Raman spectra of MgB2 consisting of two broad peaks,
which differ considerably from the previously reported

1 This article was submitted by the authors in English.
0021-3640/02/7508- $22.00 © 20406
Raman results [5, 16, 17], and neither of these was
attributed to the E2g phonon mode. The original high-
pressure Raman experiment up to 15 GPa has shown a
large linear pressure shift of the E2g phonon frequency
[5]. Further extension of the pressure range up to
44 GPa has revealed a change in the slope of the linear
pressure dependence at ~23 GPa for the isotopically
pure Mg10B2 samples [6]. Similar singularities are
observed in the dependence of Tc on the relative varia-
tion of volume, V/V0 [6], which exhibits a change in the
slope of the linear dependence near the values of V/V0

corresponding to pressures of ~20 GPa and ~15 GPa for
isotopically pure Mg10B2 and Mg11B2 samples, respec-
tively. This behavior of the pressure dependence of Tc

was also observed at ~9 GPa for MgB2 samples pre-
pared from a natural boron-isotope mixture [10]. The
observed singularities in the pressure dependence of Tc

and E2g phonon frequency [6, 10] were related to the
Lifshitz isostructural topological electronic transition
[19], since the data available at that time on the pres-
sures dependence of the lattice parameters of MgB2 did
not show any structural phase transition at pressure up
to 40 GPa [3, 4]. New high-pressure X-ray results
showed that MgB2 undergoes an isostructural phase
transition in the pressure range 26–30 GPa [20].

We measured the Raman spectra of MgB2 as a func-
tion of pressure up to 32 GPa at room temperature. The
main goal of our experiments was to study carefully the
pressure dependence of the E2g phonon mode and to
reexamine possible phase transitions in the MgB2 sys-
tem. We believe that the results obtained in the present
002 MAIK “Nauka/Interperiodica”
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study show new aspects and, in some way, complete the
study of the pressure behavior of the E2g phonon mode.

Ceramic samples of MgB2 were prepared by direct
synthesis from constituent elements. The initial materi-
als were amorphous boron powder (natural mixture of
isotopes, atomic mass 10.811) and pieces of metallic
magnesium, both with a purity greater than 99.9%. The
stoichiometric weights of the materials were placed in
a molybdenum crucible and heated to 1400°C in a
medium-pressure furnace under an Ar-gas pressure of
~12 bar followed by annealing for an hour. During the
heating, the synthesis of MgB2 is assumed to occur at
~900°C. The resulting product was a bronze-colored
compact material with a density ~2.23 g/cm3 and a
grain size from 6 to 30 microns. The X-ray powder dif-
fraction pattern of synthesized samples showed the
hexagonal MgB2 (a = 3.086 Å and b = 3.52 Å) to be the
main constituent, with small quantities of MgO and
metallic Mg. The transition temperature Tc for the sam-
ples used in this study varied between 37.5 and 39 K at
normal pressure [10, 21].

Raman spectra were recorded using a triple mono-
chromator (DILOR XY-500) equipped with a CCD liq-
uid-nitrogen cooled detector system. The spectral width
of the system was ~8 cm–1, and the 514.5 nm line of an
Ar+ laser with the beam power below 10 mW, measured
before the cell, was used for excitation. Small good fac-
etted bronze-colored grains of MgB2 with a typical size
of ~20 µm were selected for Raman measurements.
Measurements of the Raman spectra at high pressure
were carried out in two independent pressure cycles
using a diamond anvil cell (DAC) of the Mao-Bell type
[22]. A 4 : 1 methanol–ethanol mixture was used as the
pressure-transmitting medium, and the ruby fluores-
cence technique was used for pressure calibration [23].
The E2g phonon frequency was obtained with an accu-
racy of about ~10 cm–1 by fitting a Gaussian function to
the experimental peak after background subtraction.
This background was taken as growing linearly, and the
reference points used for the subtraction were the min-
imum (maximum) intensity of the spectrum at its low
(high) frequency limits, respectively.

The Raman spectra of the ceramic samples of
MgB2, taken at normal conditions consist of a broad
peak centered near ~590 cm–1. This frequency value is
lower than the earlier reported frequency of the E2g

mode [5, 17]. Probing the ceramic MgB2 samples with
the use of high spatial resolution of the micro-Raman
system provided us with the possibility of identifying
small crystalline grains of MgB2, whose Raman spectra
represents a typical E2g-mode peak which differs dras-
tically from that of possible inclusions.

The Raman spectra of MgB2 for various pressures
up to ~29 GPa at room temperature are shown in Fig. 1.
The initial spectrum at 1.1 GPa (Fig. 1a) contains a
broad (FWHM ~ 250 cm–1) peak near ~600 cm–1, which
JETP LETTERS      Vol. 75      No. 8      2002
is assigned to the Raman-active E2g mode. The rela-
tively sharp peak near ~880 cm–1 is associated with a
methanol–ethanol mixture peak. The intensity of this
peak gradually drops with an increase in pressure and
vanishes at ~12 GPa upon mixture solidification. When
pressure increases, the E2g peak shifts to higher energy
(Figs. 1b–1f) and somehow broadens, while its Raman
intensity does not change noticeably. The release of
pressure down to 1.2 GPa (Fig. 1g) restores the main
features of the initial Raman spectrum.

The pressure dependence of the E2g-mode fre-
quency, worked out for various pressure runs, is shown
in Fig. 2. The open circles show the data for increasing
pressure to ~20 GPa, while the closed circles are related
to the decrease of pressure to ~1.2 GPa.

The data marked by open squares are recorded at the
subsequent upstroke pressure cycle from ~1.2 GPa to
~32 GPa performed immediately after the release of
pressure without disassembling the DAC. The shaded
areas near ~5 GPa and ~18 GPa separate the regions
where the pressure behavior of the E2g-phonon fre-
quency can be fitted to a linear dependence with

Fig. 1. Raman spectra of MgB2 for various pressures up to
~29 GPa at room temperature. Asterisk indicates a metha-
nol–ethanol mixture peak.
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different slopes ∂ω/∂P. The largest slope ∂ω/∂P =
18 cm–1/GPa, is found for the region 5 ≤ P ≤ 18 GPa,
while for P > 18 GPa the slope ∂ω/∂P is 6 cm–1/GPa.
The most intriguing behavior is observed in the pres-
sure region 1 bar–5 GPa, where the route (open cycles
in Fig. 2) of the two upstroke pressure cycles (new cell
loading) differs from the route of the downstroke (solid
cycles in Fig. 2) and upstroke (open squares) cycles
without the total release of pressure in the DAC. The
slopes ∂ω/∂P of both routes are slightly different,
~7 cm–1/GPa for the new loading and ~9 cm–1/GPa for
the recycling routes. Note that the spread of experimen-
tal data at the E2g-mode frequency is consistent with the
accuracy in the peak position determination, which was
found to be close to ~10 cm–1.

The pressure dependence of the E2g-mode frequency
demonstrates two singularities near ~5 GPa and
~18 GPa. These results are partly correlated with the
Raman data obtained by Struzhkin et al., who reported
a singularity in the slope of the phonon pressure depen-

Fig. 2. Pressure dependence of the frequency of the E2g
phonon in MgB2. The open (closed) symbols are related to
an increase (decrease) in pressure. The shaded areas show
the pressure regions where the changes in the slopes of lin-
ear pressure shift were observed.
dence near ~23 GPa for the isotopic pure Mg10B2 sam-
ple and near ~15 GPa in the pressure dependence of Tc

for the isotopically pure Mg11B2 sample [6]. Taking into
account that the samples in the present investigation
were prepared from a natural mixture of boron iso-
topes, we believe that the singularity near ~18 GPa has
the same origin as those observed in [6] for isotopically
pure samples. As for the singularity at ~5 GPa, it seems
to be a new result revealed by recording the spectra
with small steps of pressure increase in this interval.

The experimental data for the pressure dependence
of the E2g-phonon mode are seemingly in contradiction
with the X-ray data on MgB2. Although the Raman data
show distinct singularities in their pressure depen-
dence, the pressure dependences of the a and c param-
eters of the hexagonal lattice are smooth and do not
show any structural phase transition in the pressure
region up to 12 GPa [2, 3, 5–6]. Furthermore, the X-ray
results of Bordet et al. [4], extended to higher pressure,
indicated the absence of any structural phase transitions
up to ~40 GPa. However, Sun Li-Ling et al. [20]
observed an isostructural phase transition in the pres-
sure region 26–30 GPa accompanied by a substantial
change in the unit-cell volume, while their Raman
results also showed some anomalies in the E2g-mode
pressure behavior, the most significant of them being
the appearance of a band splitting at ~30 GPa. A possi-
ble explanation for these discrepancies in the pressure
behavior of MgB2 may be related to the Lifshitz topo-
logical electronic transition [19] associated with the
pressure-induced changes in the topology of a Fermi
surface. In such a transition, the electron density of
states at the Fermi level, as well as the electron dynam-
ics, possess some specific features which lead to anom-
alies of the electron thermodynamic and kinetic charac-
teristics. The band structure calculations for MgB2 [11,
12] show splitting of the planar boron σ bands along the
Γ–A line near the Fermi surface, which creates the con-
ditions for the Lifshitz-type transition under high pres-
sure. Tissen et al. [10] have suggested that MgB2 under-
goes the Lifshitz topological electronic transition, and
this explains the cusp in the pressure dependence of Tc

near 9 GPa. The same suggestion has been used to
explain the changes in the slopes of the linear pressure
dependences of the E2g-phonon frequency and super-
conducting transition temperature Tc for isotopically
pure Mg11B2 and Mg10B2 samples [6]. We believe that
the manifestation of the electronic topological transi-
tion in the pressure dependence of the E2g-phonon
mode may be related to the strong electron–phonon
coupling of this mode to the planar boron σ bands.

Concerning the singularity in the E2g-phonon pres-
sure dependence near ~5 GPa, we believe that this may
be related to some transformation of the initial ceramic
material associated with a trend towards phase homog-
enization under high pressure. It seems that the recov-
ered material is more homogeneous, because its pres-
JETP LETTERS      Vol. 75      No. 8      2002
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sure response and the E2g-phonon frequency is lower
than that of the starting material; therefore, the investi-
gation of Tc for a high-pressure-treated ceramic sample
might be interesting. In any case, we think that, in order
to clarify this suggestion, further experiments with
high-quality crystalline samples are necessary.

Finally, we would like to address the difference in
the E2g-phonon frequency reported in various Raman
studies at normal conditions [5, 6, 16–18]. We think
that its origin may be related to the difference in the sto-
ichiometry of ceramic samples. For example, recent
publication [21] indicates that the ceramic samples, in
fact, have various stoichiometries, Mg1 – xB2 with 0 ≤
x ≤ 0.2, and the superconducting transition temperature
Tc varies accordingly from 37 to 39 K.

In conclusion, the pressure dependence of the E2g

phonon-mode frequency measured as a function of
pressure up to 32 GPa shows two singularities near
~5  and ~18 GPa. The singularity at ~5 GPa may be
related to the pressure-induced homogenization of
ceramic samples, while the singularity at ~18 GPa may
be related to a Lifshitz topological electronic transition
[19].

This work was supported by the General Secretariat
for Research and Technology, Greece.

REFERENCES

1. J. Nagamatsu, N. Nakagava, T. Muranaka, et al., Nature
410, 63 (2001).

2. T. Vogt, G. Schneider, J. A. Hriljac, et al., Phys. Rev. B
63, 220505 (2001).

3. K. Prassides, Y. Iwasa, T. Ito, et al., Phys. Rev. B 64,
012509 (2001).

4. P. Bordet, M. Mezour, M. Nunez-Regueiro, et al., Phys.
Rev. B 64, 172502 (2001).
JETP LETTERS      Vol. 75      No. 8      2002
5. A. F. Goncharov, V. V. Struzhkin, E. Gregoryanz, et al.,
Phys. Rev. B 64, 100509 (2001).

6. V. V. Struzhkin, A. F. Goncharov, R. J. Hemley, et al.,
cond-mat/0106576 (2001).

7. B. Lorenz, R. L. Meng, and G. W. Chu, Phys. Rev. B 64,
012507 (2001).

8. S. Deemyad, J. S. Shcilling, J. D. Jorgensen, et al., cond-
mat/0106057 (2001).

9. T. Tomita, J. J. Hamlin, J. S. Shcilling, et al., Phys. Rev.
B 64, 092505 (2001).

10. V. G. Tissen, M. V. Nefedova, N. N. Kolesnikov, et al.,
cond-mat/0105475 (2001).

11. T. Yildirim, O. Gülseren, J. W. Lynn, et al., Phys. Rev.
Lett. 87, 037001 (2001).

12. T. Loa and K. Syassen, Solid State Commun. 118, 279
(2001).

13. J. Kortus, I. I. Mazin, K. D. Belashchenko, et al., Phys.
Rev. Lett. 86, 4656 (2001).

14. J. M. An and W. E. Pickett, Phys. Rev. Lett. 86, 4366
(2001).

15. X. Kong, O. V. Dolgov, O. Jepsen, et al., Phys. Rev. B 64,
020501 (2001).

16. K.-P. Bohen, R. Heid, and B. Renker, Phys. Rev. Lett. 86,
5771 (2001).

17. J. Hlinka, I. Gregora, J. Pokorny, et al., Phys. Rev. B 64,
140503 (2001).

18. K. Kunc, I. Loa, K. Syassen, et al., J. Phys.: Condens.
Matter 13, 9945 (2001).

19. I. M. Lifshitz, Zh. Éksp. Teor. Fiz. 38, 1569 (1960) [Sov.
Phys. JETP 11, 1130 (1960)].

20. S. L.-Ling, T. Kikegava, W. Qi, et al., Chin. Phys. Lett.
18, 1401 (2001).

21. M. V. Indenbom, L. S. Uspenskaya, M. P. Kulakov, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 74, 304 (2001) [JETP Lett.
74, 274 (2001)].

22. A. Jayaraman, Rev. Sci. Instrum. 57, 1013 (1986).
23. D. Barnett, S. Block, and G. J. Piermarini, Rev. Sci.

Instrum. 44, 1 (1973).



  

JETP Letters, Vol. 75, No. 8, 2002, pp. 410–414. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 75, No. 8, 2002, pp. 483–487.
Original English Text Copyright © 2002 by Sokolov, Tagantsev.

                                            
Fluctuations and Landau–Devonshire Expansion 
for Barium Titanate1

A. I. Sokolov1* and A. K. Tagantsev2

1St. Petersburg Electrotechnical University, St. Petersburg, 197376 Russia
*e-mail: ais2002@mail.ru

2Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
Received February 21, 2002; in final form March 18, 2002

The experimentally observed temperature dependence of the quartic coefficients in the Landau–Devonshire
expansion for BaTiO3 is naturally accounted for within a proper fluctuation model. It is explained, in particular,
why one of the quartic coefficients varies with temperature above Tc, while the second is constant. It is argued
that the tetragonal phase in BaTiO3 exists essentially due to thermal fluctuations, while the true Landau–Devon-
shire expansion with temperature-independent coefficients favors the rhombohedral ferroelectric phase. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 77.80.Bh; 77.84.Dy
1 The phase diagram of barium titanate contains three
lines of phase transitions, and its structure is known to
be properly reproduced by the phenomenological Lan-
dau–Devonshire theory [1]. It is accepted within the
phenomenological approach that all the coefficients in
the Landau free-energy expansion should be either con-
stants or weak functions of temperature, pressure, etc.,
except for the quadratic term, which changes its sign
when scrossing the second-order transition line or the
low-temperature spinodal. For barium titanate, how-
ever, the matching with the theory of the experimen-
tally observed temperature dependences of the nonlin-
ear dielectric susceptibility and spontaneous polariza-
tion forces one to allow for the strong temperature
dependence of some higher-order coefficients [2–4].
Being in conflict with the spirit of the Landau theory
itself, the rapid temperature variation of the quartic and
sextic coefficients is also quite unexpected from the
microscopic point of view. Indeed, barium titanate is a
displacive ferroelectric with weak anharmonicity,
which can only result in the rather slow temperature
dependence of the macroscopic parameters [5]. More-
over, there is one additional point showing how unsat-
isfactory the real situation is: because of the fast tem-
perature variation of a certain coefficient, the sixth-
order Landau–Devonshire expansion for BaTiO3 with
upgraded coefficients [6, 7] loses its global stability at
T = 443 K, i.e., at the temperature that exceeds the
cubic–tetragonal transition point Tc by only 50 K.

In this letter, we will show that the temperature
dependence of the quartic Landau–Devonshire coeffi-
cients, experimentally observed in a paraelectric phase
of BaTiO3, can be attributed to the thermal fluctuations

1 This article was submitted by the authors in English.
0021-3640/02/7508- $22.00 © 20410
of polarization and naturally accounted for within the
proper fluctuation model. It will be explained, in partic-
ular, why in experiments one of the quartic coefficients
demonstrates a well-pronounced variation with temper-
ature, while the second is temperature-independent. A
conjecture will be put forward concerning the structure
of the true Landau–Devonshire form for BaTiO3 using
constant (temperature-independent) coefficients, and
the first-order fluctuation corrections to the sextic Lan-
dau–Devonshire coefficients for T > Tc will be found.

Barium titanate is a displacive ferroelectric which
undergoes first-order ferroelectric phase transitions,
with the sixth-order anharmonicity and electrostriction
playing an essential role in forming its phase diagram.
The electrostriction is known to convert the second-
order transition, appropriate to the clamped crystal, into
the first-order one. Strong dipole–dipole interactions
affect the vibrational spectrum of BaTiO3, resulting in
a large gap between transverse (soft) and longitudinal
polarization modes. These main features are properly
described by an effective Hamiltonian that is the natural
generalization of the Landau–Devonshire free-energy
expansion:

(1)

H
1
2
---

T T0–
Ce0

--------------- s2q2+ 
  δαβ ∆2nαnβ+ φαqφβq

*
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(2)

(3)

Here, φα and uαβ are the Cartesian components of the
fluctuating polarization and strain, φαq stands for the
Fourier transform of φα(x), nα = qα/q, C is the Curie

constant, ∆2 ~  ~ sa–1 is the dipole gap in the fluctu-
ation spectrum, and a is a lattice constant. Contrary to
the original free-energy expansion, Hamiltonian (1)–
(3) accounts for the inhomogeneous fluctuations of the
polarization and elastic strains, making it possible to
explore the fluctuation effects in BaTiO3.

Dealing with the first-order phase transition, we are
in a position to study the fluctuation effects in the
region where thermal fluctuations of the order parame-
ter are weak. Hence, in what follows, we limit ourselves
to the calculation of the first-order fluctuation correc-
tions to the quantities of interest. The quantities to be
found are the full four-leg and six-leg vertices that are
reduced, under zero external momenta, to the effective
(“dressed”) quartic Bi and sextic Γi coefficients which
enter the Landau–Devonshire expansion. Among five
Feynman diagrams representing the lowest-order non-
trivial terms in the perturbative expansions of the verti-
ces mentioned, only two one-loop graphs give contribu-
tions that rapidly, as (T – T0)–1/2, grow as they approach
the transition point. These graphs have an obvious
structure and may be calculated in the standard way
using the propagator

(4)

with the longitudinal part being fully neglected. The
results for the quartic couplings B1 and B2 are found
to be

(5)
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The polynomials in brackets coincide with those of the
one-loop contributions to the renormalization-group β
functions of the cubic ferroelectric [8, 9]. This is not
surprising since, in fact, the same integrals and tensor
convolutions are evaluated in both cases. The fluctua-
tion correction to B1 given by the first Eq. (5) is consis-
tent with the results of Vaks [5, 10], who was the first to
evaluate this correction and show that it is essential for
the case of BaTiO3.

To proceed, we have to estimate the “bare” coupling
constants β1 and β2 for BaTiO3 trusting the experimen-
tal data available. Aiming to extract the necessary infor-
mation from experiments, one should realize that
(i) what is measured are not bare but dressed couplings
with the fluctuation contributions included, and (ii), in
experiments, the Landau–Devonshire coefficients are
measured for stress-free (not clamped) crystals. Hence,
in order to estimate β1 and β2, we have to first express

them via their analogs for a free crystal,  and .
This problem is solved by evaluation of the elastic
strains caused by the nonzero uniform polarization and
consequent renormalization of coefficients in the rele-
vant Landau–Devonshire expansion [1]. All the elastic
and electrostrictive moduli are known for BaTiO3 [7],
making corresponding calculations straightforward.
The final result is as follows:

(6)

Since, in the vicinity of Tc, the elastic and electrostric-
tive moduli weakly depend on temperature, similar
relations should be valid for the fluctuation-modified

(dressed) quartic coefficients B1, B2, , and .

At the transition point (Tc = 393 K),  = –2.0 ×

108Vm5C –3,  = 1.6 × 108Vm5C –3 [6, 7] and, hence,
B1 = 5.4 × 108Vm5C –3, B2 = –0.7 × 108Vm5C –3. It is
easy to see that for B1 > B2 the rhombohedral phase has
a lower free energy than the tetragonal one, provided
the sixth-order form is isotropic, i.e., does not influence
their competition. Hence, in the clamped crystal, the
quartic form of the Landau–Devonshire expansion
strongly favors the phase transition into the rhombohe-
dral phase. The same is true for higher temperatures T =

415 K and T = 423 K, where  = –1.3 × 108Vm5C –3

[2], B1 = 6.1 × 108Vm5C –3 and  = –1.0 × 108Vm5C –3

[2], B1 = 6.4 × 108Vm5C –3, respectively, with  and B2

remaining unchanged.
Now, we intend to estimate to what extent the fluc-

tuations can modify the behavior of barium titanate in
the vicinity of Tc. As seen from Eqs. (5), the quartic
Landau–Devonshire coefficients should vary with tem-
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perature in a similar way, provided the fluctuation cor-
rections to them are of the same order of magnitude. Let
us compare the magnitudes of the fluctuation terms

 and within the domain where parameters β1

and β2 have relevant values and signs. The quantity

characterizing the relative weights of  and  is
their ratio, which can be found directly from Eqs. (5).

The plot of the ratio R(1) = / as a function of r =
β1/β2 is shown in the figure. Analyzing this function,

one can find, in particular, that  does not

exceed 0.1 if  lies between –28 and –2.3.

Let us further estimate β1/β2 in BaTiO3. Since,
according to experiments, B1 varies appreciably with
the temperature, the estimate for β1 is expected to have
a somewhat limited accuracy. To keep the perturbation
theory more or less meaningful, one should accept that

the fluctuation term  is, at least, two times smaller
than the value of B1 at T = Tc. At the transition temper-
ature, B1 = 5.4 × 108Vm5C –3 and this coefficient was
shown to increase when the temperature increases.
Hence, the limitation β1 ≤ 109Vm5C –3 looks quite rea-
sonable. Another quartic coefficient, B2, does not
depend on T, and the estimate β2 = B2 = –0.7 ×
108Vm5C –3 may be considered as an accurate one.
Since, in any case, β1 > B1(T = 393 K) = 5.4 ×
108Vm5C –3, we see that –14 < β1/β2 < –8 in barium
titanate. This implies that, according to the figure,

 < 0.08  and the fluctuation correction  is
inevitably very small. This means that B2 is virtually
independent of T and explains why in BaTiO3 the Lan-

dau–Devonshire coefficient  is insensitive to tem-
perature.

B2
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The ratio of the first-order fluctuation corrections R(1) =

/  as a function of the ratio of bare coupling con-

stants r = β1/β2. 

B2
1( )

B1
1( )
Apart from the smallness of , the theory natu-
rally accounts for the experimentally observed sign of
the fluctuation contribution to B1. Indeed, as seen from

Eqs. (5), the sign of  is completely controlled by

the first term proportional to : the large number of 24
provides the positiveness of the polynomial in brackets,
avoiding any possibility for the rest of the terms to com-
pete with the first one for any values of β1 and β2.
Hence, the theory definitely predicts that the fluctuation

correction  is negative and, therefore, when

approaching Tc from above, B1 and  should vary
downward. This conclusion is in agreement with exper-
iments [2, 3].

As we have already seen, the experimental data
available do not allow one to fix the true temperature-
independent value of the Landau–Devonshire coeffi-
cient β1. However, there are obvious requirements that
enable us to improve the crude estimate for β1 pre-
sented above. The theory developed on the basis of the
first-order perturbative calculations is believed to
account for the main features of the behavior of

BaTiO3. Hence, it should explain the variation of (T)
by, at least, 108Vm5C –3 [2] and remain valid, at worst,
at the semiquantitative level. It is possible to meet both
requirements by only accepting that the true value of β1

is appreciably larger than 6.4 × 108Vm5C –3 and appre-
ciably smaller than 1.1 × 109Vm5C –3; i.e., it lies some-
where between 7 × 108Vm5C – and 109Vm5C –3. As a
result, the stress-free crystal should possess the Lan-
dau–Devonshire coefficient that obeys the inequalities

–0.4 × 108Vm5C –3 <  < 2.6 × 108Vm5C –3.

The upper part of this interval is of particular inter-

est. The point is that whenever  exceeds 1.6 ×

108Vm5C –3 =  the crystal whose fluctuations are
“switched off” should undergo a phase transition to the
rhombohedral phase rather than to the tetragonal one. If

this were true, i.e., the inequality  >  took place,
the tetragonal and orthorhombic phases in barium titan-
ate would essentially exist due to the thermal fluctua-
tions, while the rhombohedral phase would survive
only at sufficiently low temperatures, where the fluctu-
ations are weak enough. Thus, the analysis based upon
the effective Hamiltonian (1) supports the conjecture
about the fluctuation stabilization of the high-tempera-
ture ferroelectric phases in BaTiO3 which was first for-
mulated within the microscopic theory [5].

This conjecture looks rather attractive. It is worthy
of a more detailed discussion. It turns out that, apart
from the results of the first-order calculations, there
exist two additional arguments in favor of the scenario
just described. The first is as follows. As we have

B2
1( )

B2
1( )

β1
2

B2
1( )

B1
f

B1
f

β1
f

β1
f

β2
f

β1
f β2

f

JETP LETTERS      Vol. 75      No. 8      2002



FLUCTUATIONS AND LANDAU–DEVONSHIRE EXPANSION 413
already seen, the lowest order correction to  is con-
siderable and, therefore, the higher order fluctuation
contributions can influence the results appreciably. The
leading perturbative term shifting the first-order esti-
mates is the second-order one, and it’s sign is opposite

to that of . One can show that account of the posi-
tive second-order fluctuation term in the course of fit-
ting to the experimental data [2] results in the upward

shift of the estimated value of . Hence, within the
refined theory, the fluctuation origin of the tetragonal
and orthorhombic phases in BaTiO3 would become
more plausible.

The second argument deals with the fluctuation cor-
rections to the sixth-order coefficients in the Landau–
Devonshire expansion. Let us calculate them. Evaluat-
ing the six-leg one-loop diagram, we arrive at the fol-
lowing expressions for Γi:

(7)

where f (T) = kBT (10πs3 )–1.

The above formulas are written for the physical case
where the polarization vector has three Cartesian com-
ponents. In fact, the fluctuation terms were calculated
for the generic model with the n-vector order parame-
ter. It was done in order to reserve an opportunity for
the independent check of the results obtained. Indeed,
as is well known, the model with cubic anisotropy pos-
sesses a special symmetry property for n = 2: if one
turns the field (φ1, φ2) by 45° in its two-dimensional
space, the coupling constants will transform, but the
structure of the Hamiltonian will remain unchanged.
This implies some exact symmetry relations between
coupling constants [11], which interrelate dressed
(Bi, Γi) and bare (βi, γi) couplings and can be used to
accept (or disregard) the results of perturbative calcula-
tions in the arbitrary order. Having made such a verifi-
cation, we found that the n-vector analog of Eqs. (7)
does obey these symmetry relations when n = 2.

To estimate the magnitudes of fluctuation correc-

tions , experimental information about γi is neces-
sary. The experiments, however, were carried out in the
ordered (tetragonal) phase and yielded, in particular, a
strong dependence of Γ1 on temperature. This tempera-
ture dependence was already noted to be so dramatic
that, being extrapolated to the paraelectric region, it
makes the Landau–Devonshire form unstable for T >
Tc + 50 K. It is hardly believed therefore that the exper-
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imental data available can be used to extract more or
less reliable estimates for γi.

In such a situation, it is natural to analyze the gen-

eral structure of the correction terms  in Eqs. (7)
with the hope of finding some conclusions that are
insensitive to particular values of γi. Let us proceed by
accepting that γ1 ~ γ2 ~ γ3. As we have already found, in
barium titanate |β2| ! |β1|. This means that the magni-

tudes of  are in fact determined by the terms in
Eqs. (7) containing Γ1. The numerical coefficients of
these terms are seen to be markedly different. The larg-

est one (120) stands in the expression for , making
Γ1 more strongly dependent on temperature than the

other two coefficients. Moreover, the structure of 

fixes its sign. Since β1 > 0,  is negative and the fluc-
tuations diminish the Landau–Devonshire coefficient
γ1, provided γ1 > 0. The positiveness of γ1 is, in its turn,
inevitable, because this coefficient is responsible for the
global stability of the system outside the fluctuation
region.

So, we see that, when approaching Tc, the coefficient
Γ1 decreases more rapidly than Γ2 and Γ3. On the other
hand, as one can see, the smaller Γ1, the more stable the
tetragonal phase. Hence, the fluctuations modify the
sixth-order form in the Landau–Devonshire expansion
in a way that favors the transition to the tetragonal
phase. It confirms the conjecture about the fluctuation
stabilization of the phases lying between the cubic and
rhombohedral ones in the phase diagram of barium
titanate.

To conclude, we have shown that the temperature
dependence of the quartic Landau–Devonshire coeffi-
cients in a paraelectric phase of BaTiO3 can be
explained by the fluctuation effect. The theory which
was developed naturally accounts for the signs of the
temperature variations of B1 and makes it clear why the
second coefficient, B2, is temperature-independent. A
conjecture was formulated that the true Landau–
Devonshire form for BaTiO3 with the temperature-
independent coefficients favors the transition from
cubic to the rhombohedral phase, and it is the thermal
fluctuations that stabilize the tetragonal and orthorhom-
bic phases and provide the space for them in the phase
diagram.
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The anomalous (nonclassical) behavior of heat capacity in the region of the second-order phase transition “ini-
tial phase–incommensurate phase” was experimentally observed in the SC(NH2)2 ferroelectric. Such a critical
behavior of heat capacity above and below the temperature of incommensurate phase transition is shown to be
qualitatively consistent with the fluctuation theory of XY-type systems. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 65.40.Ba; 64.70.Rh; 77.80.Bh
Heat capacity is one of the most fundamental prop-
erties that exhibit a temperature anomaly in phase tran-
sitions. To explain the anomalies of heat capacity of fer-
roelectrics in the region of consecutive transitions “ini-
tial phase–incommensurate phase–polar phase,” one
usually invokes the Landau theory because of its
remarkable simplicity. However, the thermodynamic
Landau model qualitatively reproduces the anomalous
part of the heat capacity of the incommensurate phase
only in the temperature range adjacent to the first-order
transition “incommensurate phase–commensurate fer-
roelectric phase.” Experimental studies of a number of
physical properties in the region of the second-order
phase transition “initial phase–incommensurate phase”
demonstrate dramatic deviations from classical Landau
behavior both above and below the transition. The
interpretation usually amounts to comparing the mea-
sured critical indices with the corresponding theoretical
values adopted in the XY-type model.

The deviations from the behavior predicted by the
Landau theory and from regular behavior may be due
not only to fluctuations but also to defects [1]. However,
the defect theory has not been adequately developed for
the XY systems and incommensurate phases in particu-
lar; it does not account for the temperature dependences
and critical amplitudes of deviations in both phases,
which is necessary for the description of the expe-
riment.

To elucidate the possible nature of deviations from
the Landau theory, Levanyuk et al. [2] developed a
method for the analysis of the experimental data in the
region of structural transitions on the basis of fluctua-
tion theory. As a result, it was shown by the example of
birefringence and thermal expansion coefficients of a
ferroelectric crystal [2, 3] that, in the vicinity G ! |τ| !
G1/2 of the transition to the incommensurate phase at
temperature Ti (G is the Ginzburg number expressed in
0021-3640/02/7508- $22.00 © 20415
terms of the coefficients of thermodynamic potential
[4], and τ = T/Ti – 1 is the reduced temperature), the
diverging corrections no longer approximate the exper-
iment for |τ| ≤ 10–1. These corrections become large for
the incommensurate transitions in various crystals at
reduced temperatures |τ| on the order of G ≈ 10–2 (the
value of correction achieves the jump magnitude),
which can be taken as the experimental estimate of the
Ginzburg number G. If G is not too small, not only does
the anomaly become broad but all the conclusions also
become qualitative.

It is worth noting that the weakness of previous
experimental studies (their authors admit this fact
themselves) is that the critical index α is estimated indi-
rectly (see, e.g., [2, 3]) and, in some cases, the accuracy
of measurements does not satisfy due requirements. In
this regard, the elucidation of the role of fluctuation
effects in the transition to the incommensurate phases
in crystals of different types is of fundamental impor-
tance. In this work, with the aim of gaining direct infor-
mation on the nature of the incommensurate phase, we
undertook a careful experimental investigation of the
critical behavior of specific heat in the region of the
structural transition to the incommensurate phase in the
SC(NH2)2 ferroelectric with a one-component order
parameter.

SC(NH2)2 is a well-known molecular crystal which
undergoes an intricate sequence of structural phase
transitions, including transitions to the polar and non-
polar phases with incommensurate and long-period
structures in the region between the initial nonpolar

phase  (Ti ≈ 202 K) and the ferroelectric phase 
(Tc ≈ 169 K) [1]. Below the temperature Ti ≈ 202 K, an
incommensurate superstructure appears with the mod-
ulation wave vector along the b axis. The studies were
carried out with SC(NH2)2 single-crystals (unit-cell

D2h
16 C2v

2
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parameters a = 7.655, b = 8.537, c = 5.520 Å) grown
from solution by the temperature lowering method. The
geometric sizes of the samples were 0.50 × 0.45 ×
0.025 cm and their quality was monitored using an
optical microscope. The studies were carried out on an
automated setup for measuring the specific heat of
small samples by ac calorimetry with a relative accu-
racy no worse than 0.1% [5]. The average temperature
in the calorimeter was measured by a copper–constan-
tan thermocouple with a wire diameter of 100 µm, and
the temperature oscillations were measured by a
Chromel–constantan thermocouple with a wire diame-

Fig. 1. Temperature dependence of the specific heat Cp of
SC(NH2)2 in the region of phase transitions.

Fig. 2. Log–log plot of the anomalous part of specific heat
of SC(NH2)2 against the reduced temperature τ = T/Ti – 1;
Ti = 201.58 K.
ter of 25 µm. The temperature variation rate did not
exceed 0.01 K/min; in the vicinity of transition, it did
not exceed 0.005 K. The accuracy of stabilizing the cry-
ostat temperature was no worse than 0.005 K. The mea-
suring process and the processing of experimental data
were controlled by the program HEAT-MASTER for
the automation of thermophysical measurements.

The results of measuring the specific heat Cp of the
SC(NH2)2 crystal in the temperature range of the sec-
ond-order structural transition “initial phase–incom-
mensurate phase” at Ti and the first-order transition
“incommensurate phase–polar phase” at Tc are pre-
sented in Fig. 1. We will focus on the anomaly of Cp in
the region of the second-order phase transition “initial
phase–incommensurate phase” at Ti = 201.58 K. The
changes in enthalpy and entropy at the transition point
Ti are, respectively, ∆Htrs = 7.4 kJ/mol and ∆Strs =
68 J/(mol K).

According to [2–4], the experimental temperature
dependence of heat capacity can be represented as the
sum of Landau and fluctuation contributions:

(1)

where Cb is the regular part of heat capacity, CL is the
heat capacity jump at T = Ti (according to Landau), λ+

and λ– are constants, and the ratio λ–/λ+ is  for the

XY-type systems and 2  for the Ising systems.
As with the temperature dependences of birefrin-

gence and thermal expansion coefficients obtained in
[2, 3], Eq. (1), with CL = const and λ± = const, properly
approximates the experiment only if Cb ≠ const (this
imposes a limitation on the domain of applicability of
the Landau theory). We will assume that the regular
part can be represented as a polynomial suitable for the
description of empirical data on the thermal character-
istics of solids [6] in a limited temperature range on the
order of the Debye temperature:

where t = T – Ti. In this case, Eq. (1) approximates well
the experimental dependences in the region from 1 ≤ t ≤
70 K and –2 K < t ≤ –20 K (Fig. 1).

According to Eq. (1), the ratio of critical amplitudes
λ–/λ+ derived from the measurements of heat capacity
(λ+ = 0.0598 ± 0.0033 and λ– = 0.0862 ± 0.0038 for
T > Ti and T < Ti, respectively) is equal to 1.441, which

corresponds to the theoretical estimate  for the

XY-type systems (2  for the Ising systems). It follows
from the experimental data that the Ginzburg number is
G ≈ 1–2 × 10–2. Therefore, the corrections are small in
the temperature region |τ| > G, while anomalous scaling
behavior can be expected at |τ| < |G |.

C+ Cb λ+τ 1/2– at T Ti,>+=

C– Cb CL λ– τ 1/2– at T Ti,<+ +=

2

2

Cb c0 c1t c2t2,+ +=

2

2
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The dependence of log∆Cp on logτ above and below
the transition point Ti, where ∆Cp is the singular part of
the specific heat, is shown for the SC(NH2)2 crystal in
Fig. 2. Experiment shows that the specific heat of
SC(NH2)2 exhibits anomalous (nonclassical) behavior
above Ti in the temperature range 0.02 K < (T – Ti) <
0.36 K (1.0 × 10–4 < |τ| < 0.18 × 10–2) and below Ti in
the range 0.05 K < |Ti – T | < 1.82 K (2.5 × 10–4 < |τ| <
0.9 × 10–2), with the critical indices being, respectively,
α = –0.0394 ± 0.0099 and α' = –0.0428 ± 0.0094, which
is in qualitative agreement with the fluctuation theory
(the Landau value is α = 0).

Note that the value obtained for α correlates with
the results of studies where the critical index α was esti-
mated indirectly for the improper ferroelectric
Rb2ZnBr4 by the birefringence (α = –0.05 ± 0.02) [2]
and thermal expansion (0 < |α| < 0.07) [3] methods.

Recall that the known calculated value for the XY
model lies in the range –0.04 ≤ α < 0 [7]. Nevertheless,
our conclusions about the critical index are only quali-
tative because the “infinitely sharp” scaling peak is not
observed experimentally.

In summary, the results of our study on the specific
heat of SC(NH2)2 and the corresponding theoretical
analysis, according to [2], provide evidence that there is
a critical region in the vicinity of the incommensurate
JETP LETTERS      Vol. 75      No. 8      2002
phase transition Ti, where the anomalous behavior
agrees qualitatively with the theory making allowance
for the critical fluctuations of order parameter.

This work was supported by the Russian Foundation
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90241, 00-15-96662, 02-07-06048) and the program
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On the Kelvin–Helmholtz Instability in Superfluids1 
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The Kelvin–Helmholtz instability in superfluids is discussed on the basis of the first experimental observation
of such an instability at the interface between superfluid 3He-A and superfluid 3He-B (R. Blaauwgeers,
V. B. Eltsov, G. Eska et al., cond-mat/0111343). We discuss why the Kelvin–Helmholtz criterion, the Landau
critical velocity for nucleation of ripplons, and the free-energy consideration all give different values for the
instability threshold. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 67.57.Np; 47.20.Ma; 68.05.-n
1 1. Classical Kelvin–Helmholtz (KH) instability.
KH instability belongs to a broad class of interfacial
instabilities in liquids, gases, plasmas, etc. [1]. It refers
to the dynamic instability of the interface of a discon-
tinuous flow, and may be defined as the instability of
the vortex sheet. Many natural phenomena have been
attributed to this instability. The most familiar of these
are the generation of waves in the water by wind, whose
Helmholtz instability [2] was first analyzed by Kelvin
[3], and the flapping of sails and flags analyzed by Ray-
leigh [4] (see recent experiments in [5]).

Many of the leading ideas in the theory of instability
were originally inspired by considerations about invis-
cid flows. The corrugation instability of the interface
between two ideal liquids sliding along one other was
first investigated by Lord Kelvin [3, 6]. The critical rel-
ative velocity |v 1 – v 2 | for the onset of corrugation
instability is given by

(1)

Here, σ is the surface tension of the interface between
two liquids; ρ1 and ρ2 are their mass densities; and F is
related to the external field stabilizing the position of
the interface: typically, it is the gravitational field

(2)

The surface mode (ripplon) which is excited first has
the wave vector

(3)

and frequency

(4)

1 This article was submitted by the author in English.

1
2
---

ρ1ρ2

ρ1 ρ2+
-----------------2 v 1 v 2–( )2 σF.=

F g ρ1 ρ2–( ).=

k0 F/σ=

ω0 k0

ρ1v 1 ρ2v 2+
ρ1 ρ2+

------------------------------.=
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The excited ripplon propagates along the interface with
the phase and group velocity v ripplon = (ρ1v 1 +
ρ2v 2)/(ρ1 + ρ2).

However, among the ordinary liquids one cannot
find an ideal one. That is why in ordinary liquids and
gases it is not easy to correlate theory with experiment.
In particular, this is because one cannot properly pre-
pare the initial state; the planar vortex sheet is never in
equilibrium in a viscous fluid: it is not a solution for the
hydrodynamic equations if viscosity is finite. That is
why it is not quite apparent whether one can properly
discuss its “instability.”

Superfluids are the only proper ideal objects where
these ideas can be implemented without reservations
and where the criterion of instability does not contain
viscosity. Recently, the first experiment was performed
in superfluids, where the nondissipative initial state was
well determined, and a well-defined threshold was
reported [7]. The initial state is the nondissipative vor-
tex sheet separating two sliding superfluids. One of the
superfluids (3He-A) performs a solid-body-like rotation
together with the vessel, while in the other one (3He-B)
the superfluid component is in the so-called Landau
state; i.e., it is vortex-free and thus is stationary in the
inertial frame. The threshold of a Kelvin–Helmholtz-
type instability has been marked by the formation of
vortices in the vortex-free stationary superfluid: this
initially stationary superfluid starts to spin up by the
neighboring rotating superfluid.

2. KH instability in superfluids at low T. The
extension of the consideration of a classical KH insta-
bility to superfluids adds some new physics. First of all,
it is now the two-fluid hydrodynamics with superfluid
and normal components which must be incorporated.
Let us first consider the limiting case of low T, where
the fraction of the normal component is negligibly
small and thus the complication of the two-fluid hydro-
dynamics is avoided. In this case, one may guess that
002 MAIK “Nauka/Interperiodica”
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the classical result (1) obtained for ideal inviscid liquids
applies to superfluids as well and the only difference is
that the role of gravity is played by the applied gradient
of magnetic field H, which stabilizes the position of the
interface between 3He-A and 3He-B in the experiment
[7]:

(5)

Here, χA and χB are the temperature-dependent mag-
netic susceptibilities of the A and B phases, respec-
tively.

However, this is not the whole story. The instability
will start earlier if one takes into account that there is a
preferred reference frame. It can be the frame of the
container, the frame of the crystal in superconductors,
or even the frame where the inhomogeneity of magnetic
field H is stationary. The energy of surface excitations
(ripplons) can become negative in this reference frame,
and the surface modes will be excited before the onset
of the classical KH instability.

Let us consider this phenomenon. We repeat the
same derivation as in case of classical KH instability
assuming the same boundary conditions, but with one
important modification: in the process of interface
dynamics, one must add the friction force arising when
the interface moves with respect to the container wall.
In the frame of the container, which coincides with the
frame of the stable interface position, the friction force
between the interface and container is

(6)

where ζ(x, t) is the perturbation of the interface position

(7)

We assume that both velocities v 1 and v 2 are along the
x axis, the container walls are parallel to the (x, z) plane,
and that the interface is parallel to the (x, y) plane.

The friction force in Eq. (6) violates the Galilean
invariance in the x direction, which reflects the exist-
ence of the preferred reference frame—the frame of the
container. This symmetry breaking is the main reason
for the essential modification of the KH instability. The
parameter Γ in the friction force was calculated for the
case where the interaction between the interface and
container is transferred by the normal component of the
liquid due to the Andreev scattering of ballistic quasi-
particles by the interface [8]. The friction modifies the
classical spectrum of surface modes:

(8)

F 1/2( ) χA T( ) χB T( )–( )∇ H2( ).=

Ffriction Γ∂ tζ ,–=

z z0 ζ x t,( ), ζ x t,( )+ a kx ωt–( ).sin= =

ρ1
ω
k
---- v 1– 

  2

ρ2
ω
k
---- v 2– 

  2

+ F k2σ+
k

------------------ iΓω
k
----,–=
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or

(9)

where v 1 and v 2 are the velocities of superfluid compo-
nents of the liquids with respect to the container walls.

For Γ = 0, the spectrum of ripplons acquires the
imaginary part, Imω(k) ≠ 0, at the classical threshold
value in Eqs. (1) and (3). However, the frame-fixing
parameter Γ leads to an essentially different result: the
imaginary part of the frequency becomes positive,
Imω(k) > 0, first for ripplons with the same value of the
wave vector as in Eq. (3), but the ripplon frequency is
now ω = 0 and its group velocity is v group = dω/dk = 0.
The critical ripplon is stationary in the reference frame
of the container; as a result, the onset of instability is
given by

(10)

This criterion does not depend on relative velocities of
superfluids, but is determined by velocities of each of
the two superfluids with respect to the container (or to
the remnant normal component). Thus, the instability
can occur even if two liquids have equal densities, ρ1 =
ρ2, and move with the same velocity, v 1 = v 2. This sit-
uation is very similar to the phenomenon of a flapping
flag in wind, discussed by Rayleigh in terms of the KH
instability—the instability of the passive deformable
membrane between two distinct parallel streams having
the same density and the same velocity (see latest
experiments in [5]). In our case, the role of the flag is
played by the interface, while the role of the flagpole,
which pins the flag (and thus breaks the Galilean invari-
ance), is played by the container wall.

Note that, in the limit of vanishing pinning parame-
ter Γ  0, Eq. (10) does not coincide with the classi-
cal Eq. (1) obtained when there is no pinning, i.e. when
Γ is exactly zero. Such a difference between the limit-
ing and exact cases is known in many areas of physics.
In classical hydrodynamics, the normal mode of invis-
cid theory may not be the limit of a normal mode of vis-
cous theory [9]. Below, we discuss this difference for
the case of KH instability in superfluids.

3. KH instability and modified Landau criterion.
Let us first compare both results, with no pinning (Γ =
0) and for vanishing pinning (Γ  0), with the Lan-
dau criterion. According to Landau, a quasiparticle is
created by the moving superfluid if its velocity with
respect to the container wall (or with respect to the
body moving in the superfluid) exceeds

(11)

ω
k
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ρ1v 1 ρ2v 2+

ρ1 ρ2+
------------------------------
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ρ1 ρ2+
---------------------±=

× F k2σ+
k
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2+ σF.=
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E p( )
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Recall that the energy E(p) here is the quasiparticle
energy in the reference frame moving with the super-
fluid vacuum. In our case, there are two superfluids
moving with different velocities. That is why there is no
unique superfluid-comoving frame where E(p) could be
uniquely determined. Such a frame appears only in par-
ticular cases, where either v 1 = v 2 or if instead of the
interface one considers the free surface of a single liq-
uid (i.e., if ρ2 = 0). In these particular cases, the Landau
criterion in the form of Eq. (11) must work. The energy
spectrum of the ripplons at the interface between two
stationary fluids (or at the surface of a single liquid) is
given by Eq. (9) with v 1 = v 2 = Γ = 0:

(12)

This gives the following Landau critical velocity:

(13)

This coincides with Eq. (10) if v 1 = v 2 or if ρ2 = 0. But
this does not coincide with the classical KH result: the
latter is obtained at Γ = 0 when the interaction with the
reference frame of the container is lost, and thus the
Landau criterion does not apply.

In the general case, where neither of the two condi-
tions (v 1 = v 2 or ρ2 = 0) is fulfilled, the Landau criterion
must be reformulated: the instability occurs when the
frequency of the surface mode in the frame of the con-
tainer crosses zero for the first time: ω(k; v 1, v 2) = 0.
Inspection of Eq. (9) with Γ = 0 shows that for k = k0 the
spectrum with a negative square root touches zero just
when the threshold (10) is reached. Thus, the Landau
criterion in its general formulation coincides with the
criterion for instability obtained for the case of nonzero
friction force. As distinct from the Landau criterion in
the form of Eq. (11), which is valid for a single super-
fluid velocity, where it suffices to know the ripplon
spectrum in the frame where the superfluid(s) is (are) at
rest, in the general case one must calculate the ripplon
spectrum ω(k; v 1, v 2) for the relatively moving super-
fluids.

4. Matching zero-pinning and vanishing-pinning
regimes. The difference in the result for the onset of
KH instability in two regimes—with Γ = 0 and with
Γ ≠ 0—disappears only in the case where two superflu-
ids move in such a way that in the reference frame of
the container the combination ρ1v 1 + ρ2v 2 = 0. In this
arrangement, according to Eq. (4), the frequency of the
ripplon created by classical KH instability is zero in the
container frame. Thus, under this special condition, in
the two criteria, zero pinning (1) and vanishing pinning
(10), must coincide; and reality, they do.

If ρ1v 1 + ρ2v 2 ≠ 0, the crossover between the zero-
pinning regime and the regime of small pinning occurs
by varying the observation time. Let us consider this by

ω2 k( )

k2
-------------

1
ρ1 ρ2+
-----------------F k2σ+

k
------------------.=

v Landau
2 min

ω2 k( )

k2
------------- 2

ρ1 ρ2+
----------------- Fσ.= =
the example of the experimental setup [7] with the vor-
tex-free B phase and the vortex-full A phase in the
rotating vessel. In the container frame, one has v1 =
vsA = 0, v2 = vsB = –Ω × r; the densities of two liquids,
3He-A and 3He-B, are the same with a high accuracy:
ρA = ρB = ρ. In the nonzero-pinning regime, the insta-
bility occurs at the boundary of the vessel, where the
velocity of 3He-B is maximal, when this maximal
velocity reaches the value

(14)

This velocity is by a factor of  smaller than that
given by the classical KH equation (1) for the zero-pin-

ning regime. On the other hand, it is  times larger
than the Landau criterion in the form of Eq. (11) but
coincides with the Landau criterion properly formu-
lated for two superfluids.

From Eq. (8), it follows that slightly above this tre-
shold the increment of the exponential growth of the
interface perturbation is

(15)

In the vanishing-pinning limit Γ  0, the increment
becomes small and the discussed instability of the sur-
face has no time to develop if the observation time is
short enough. It will start only at a higher velocity of
rotation when the classical threshold of KH instability,
vKH in Eq. (1), is reached. Thus, experimental results in
this limit would depend on the observation time—the
time one waits for the interface to be coupled to the lab-
oratory frame and for the instability to develop. For a
sufficiently short time, one will measure the classical
KH criterion (1), while, for a sufficiently long observa-
tion time, the modified KH criterion (14) will be
observed.

5. Thermodynamic instability. Let us now con-
sider the case of nonzero T, where each of the two liq-
uids contains a superfluid and normal components. In
this case, the analysis requires the 2 × 2 fluid hydrody-
namics. This appears to be a rather complicated prob-
lem if it is taken into account that, in some cases, the
additional degrees of freedom related to the interface
itself must also be added. The two-fluid hydrodynamics
was used for the investigation of the instability of a free
surface of superfluid 4He using the relative motion of
the normal component of the liquid with respect to the
superfluid one [10]. We avoid all of these complications
assuming that the viscosity of the normal components
of both liquids is high, as it actually is in superfluid 3He.
In this high-viscosity limit, we can neglect the dynam-
ics of normal components, which is thus fixed by the
container walls. Then, the problem is reduced to the
problem of the thermodynamic instability of the super-
flow in the presence of the interface.

v c
2 2

ρ
--- Fσ 1

2
---v KH

2 2v Landau
2 .= = =

2

2

Imω k0( )
Γk0

2ρ
--------

v sB

v c

-------- 1– 
  , at v sB v c ! v c.–=
JETP LETTERS      Vol. 75      No. 8      2002



ON THE KELVIN–HELMHOLTZ INSTABILITY IN SUPERFLUIDS 421
We start with the following initial nondissipative
state corresponding to the thermal equilibrium in the
presence of the interface and superflows. In thermal
equilibrium, the normal component must be at rest in
the container frame, vn1 = vn2 = 0, while the superfluids
can move along the interface with velocities vs1 and vs2
(here, the velocities are in the frame of the container).

The onset of instability can be found from free-
energy considerations: when the free energy of static
perturbations of the interface becomes negative in the
frame of the container, the initial state becomes thermo-
dynamically unstable. The free-energy functional for
the perturbations of the interface in the reference frame
of the container is determined by “gravity,” surface ten-
sion, and perturbations  = ∇Φ 1 and  = ∇Φ 2 of the
velocity field caused by deformation of the interface:

(16)

For generality, we discuss anisotropic superfluids,
whose superfluid densities are tensors (this occurs in
3He-A). The velocity perturbation fields  = ∇Φ k,

obeying the continuity equations ∂i( ) = 0, have
the following form:

(17)

(18)

The connection between the surface deformation,
ζ(x) = asinkx, and the velocity perturbations follows
from the boundary conditions.

Because of the large viscosity of the normal compo-
nent, it is clamped by the boundaries of the vessel.
Then, from the requirement that the mass and the heat
currents be conserved across the wall, one finds that the
superfluid velocity in the direction normal to the wall
must be zero: vs1 · n = vs2 · n = 0. This gives the follow-
ing boundary conditions for perturbations:

(19)

Substituting this into the free-energy functional (16),
one obtains the quadratic form of the free energy of the
surface modes:

(20)
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This energy becomes negative for the first time for the
mode with k0 = (F/σ)1/2 when

. (21)

This is the criterion (10) for the nonzero-pinning
regime extended to finite temperatures. Equation (21)
transforms to Eq. (10) when T  0; the normal com-
ponents of the liquids disappear, and one has ρsx1 =
ρsz1 = ρ1 and ρsx2 = ρsz2 = ρ2.

6. Nonlinear stage of instability. Equation (21) is
in excellent agreement with the onset of the surface
instability measured in experiment [7]. The onset of the
instability is marked by the appearance of the vortex
lines in 3He-B, which are monitored by NMR measure-
ments. This demonstrates that vortices appear in the
nonlinear stage of this KH instability.

The precise mechanism of the vortex formation is
still unknown. One may guess that the A-phase vortic-
ity is pushed by the Magnus force towards the vortex-
free B-phase region [11]. When the potential well for
vortices is formed by the corrugation of the interface
(see figure), the vortices are pushed there and further
enhance the growth of the potential well, until it forms
a droplet of the A phase filled with vorticity. The vor-
tex-full droplet propagates to the bulk B phase, where it
relaxes to the singular vortex lines of 3He-B.

Under the conditions of the experiment, the nucle-
ation of vortices leads to a decrease of the B-phase
velocity below the instability threshold and the vortex

1
2
--- ρsx1ρsz1v s1

2 ρsx2ρsz2v s2
2+( ) σF=

Possible scenario of vortex formation by Kelvin–Helmholtz
instability of the AB interface
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formation is stopped. That is why one can expect that
the vortex-full droplet is nucleated during the develop-
ment of the instability from a single seed. The size of
the seed is about one-half of the wavelength λ0 = 2π/k0
of the perturbation. The number of vortices created is
found from the circulation of superfluid velocity carried
by a piece of the vortex sheet of size λ0/2, which is
determined by the jump of superfluid velocity across
the sheet: κ = |v sB – v sA |λ0/2. Dividing this by the circu-
lation quantum k of the created B-phase vortices, one
obtains the number of vortices produced as a result of
the growth of one segment of perturbation:

(22)

It is equal to about 10 vortices per event under the con-
ditions of the experiment, which is in a good agreement
with the measured number of vortices created per event
[7]. This counts in favor of the droplet mechanism of
vortex formation.

In all likelihood, the experiments on KH instability
in superfluids will allow one to solve the similar prob-
lem of the nonlinear stage of instability in ordinary liq-
uids (see, for example, [12]).

The vortex formation by surface instability is a
rather generic phenomenon. This mechanism has been
discussed for vortex formation in the laser-manipulated
Bose gases [13, 14]. It can apply to different kinds of
interfaces and under very different physical conditions.
In particular, vortices can be generated at the second-
order phase boundary between the normal and the
superfluid phases [15]. Such an interface naturally
appears in the rapid phase transition to the superfluid
state [16]. The instability of the free surface of a super-
fluid under the relative flow of the normal and super-
fluid components of the same liquid was recently reex-
amined by Korshunov [17]. He also obtained two crite-
ria for instability: for zero and nonzero values of the
viscosity of the normal component of the liquid.

I thank R. Blaauwgeers, V.B. Eltsov, N. Inogamov,
N.B. Kopnin, S.E. Korshunov, M. Krusius, E.A. Kuz-
netsov, and E.V. Thuneberg for fruitful discussions.
This work was supported by the ESF COSLAB pro-
gram and by the Russian Foundation for Basic
Research.
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We analyze the analog of the Kelvin–Helmholtz instability on the free surface of a superfluid liquid. This insta-
bility is induced by the relative motion of superfluid and normal components of the same liquid along the sur-
face. The instability threshold is found to be independent of the value of viscosity, but turns out to be lower than
in the absence of dissipation. The result is similar to that obtained for the interface between two sliding super-
fluids (with different mechanisms of dissipation) and confirmed by the first experimental observation of the
Kelvin–Helmholtz instability on the interface between 3He-A and 3He-B by Blaauwgeers et al. (cond-
mat/0111343). © 2002 MAIK “Nauka/Interperiodica”.
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11. INTRODUCTION 

The Kelvin–Helmholtz instability [1] is a dynamic cor-
rugation instability of the interface separating two liq-
uids sliding with respect to each other. The concept of
such instability was originally introduced when consid-
ering ideal liquids, and, in the presence of dissipation,
it becomes ill-defined, because the relative motion of
two liquids in contact with each other is no longer a
solution to the hydrodynamic equations.

The simplest situation, where an equilibrium differ-
ence in velocities can be maintained at the surface of a
liquid, is the relative motion of the superfluid and nor-
mal components (a counterflow) in superfluid 4He. The
corrugation instability of the free surface of a superfluid
liquid in the presence of a counterflow along the surface
was studied in [2] (in relation to the experiments of
Egolf et al. [3]). It can be considered as an example of
the Kelvin–Helmholtz instability, in which both liquids
are located on the same side of the interface. An analo-
gous instability can appear when superfluid 4He slides
along the atomically rough interface separating it from
solid 4He [4]. Such an interface is known to account for
the equilibrium melting and crystallization of 4He [5,
6], and, as a consequence, its behavior resembles that of
the free surface of a liquid.

Recently, interest in surface instabilities of superflu-
ids has been revived [7–9] in relation to the experiments
on laser-manipulated Bose gases and the first experi-
mental observation of the Kelvin–Helmholtz instability
at the interface between two superfluids, 3He-A and
3He-B [10]. In particular, it has been demonstrated [9]
that addition of a friction related to the motion of the

1 This article was submitted by the author in English.
0021-3640/02/7508- $22.00 © 20423
interface with respect to container walls shifts the point
of instability from the well-known classical threshold
[1] to another value. This value does not depend on the
strength of dissipation and can be reproduced in the
framework of thermodynamic analysis by looking for
the instability of free energy calculated in the reference
frame of the normal component, which, in equilibrium,
is at rest with respect to the container walls. The
appearance of the same threshold in dynamic analysis
was ascribed in [9] to the symmetry breaking related to
the violation of the Galilean invariance by the consid-
ered friction force.

In this work, we return to the investigation of the
corrugation instability on the free surface of a super-
fluid liquid in the presence of a counterflow [2] taking
into account the viscosity of the normal component and
show that, for any finite value of viscosity, the instabil-
ity threshold is shifted to a viscosity-independent value,
which is in agreement with the results of [9]. However,
in our analysis, this phenomenon appears in the
absence of the friction force violating the Galilean
invariance. Therefore, the modification of the instabil-
ity criterion in the presence of dissipation is not a con-
sequence of the symmetry-breaking form of the fric-
tion, but has a more general nature.

2. DISPERSION RELATION

The calculation of the spectrum of surface oscilla-
tions in a superfluid liquid in the presence of a counter-
flow can be performed in the same way as the calcula-
tion of the spectrum of a gravitational wave in a normal
liquid with finite viscosity [11]. For frequencies small
in comparison with the frequency of the first and the
second sound, the mass and the entropy densities can be
002 MAIK “Nauka/Interperiodica”
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assumed to be constant. Accordingly, the conservation
laws for mass and entropy are reduced to the constraints

(1)

where vs and vn are the superfluid and normal veloci-
ties, respectively. In this limit, the Navier–Stokes equa-
tion for a superfluid liquid can be written as [12]

(2)

where ρs and ρn are, respectively, superfluid and normal
densities (ρ = ρs + ρn being the total density); ρ is the
pressure; g is the free fall acceleration; and η is the vis-
cosity.

The solution to Eqs. (1, 2), satisfying the constraint
curlvs = 0 and corresponding to a small-amplitude sur-
face wave with frequency ω and wavevector q parallel
to the surface (we assume that, in equilibrium, the liq-
uid is situated at z < 0) can be chosen in the form

(3)

(4)

(5)

(6)

(7)

where superscript || refers to the component of a vector
parallel to the surface; γ ≡ expi(qr – ωt);

(8)

A, B, and C are (arbitrary) constants; and the possibility

of an equilibrium counterflow (characterized by  ≠

) is taken into account.

Substitution of Eqs. (3–7) into the boundary condi-
tions describing the conservation of mass and entropy,

(9)

and mechanical equilibrium,

(10)

, (11)

divvs divvn 0,= =

ρs

∂vs

∂t
-------- vs∇( )vs+ ρn

∂vn

∂t
-------- vn∇( )vn++

=  –∇ p ρg η∆vn,+–

vs
|| r t,( ) vs

0 iqγeqzA,+=

v s
z r t,( ) qγeqzA,=

vn
|| r t,( ) vn

0 iqγ eqzB ekzC+( ),+=

v n
z r t,( ) γ qeqzB q2/k( )ekzC+[ ] ,=

p r t,( ) –ρgz=

+ iγeqz ρs ω vs
0q–( )A ρn ω vn

0q–( )B+[ ] ,

k q2 i
ρn

η
----- ω vn

0q–( )– , Rek 0;>=

vs
0

vn
0

v s
z vs

||∇ ||( )ζ– v n
z vn

||∇ ||( )ζ–
∂ζ
∂t
------,= =

η ∇ zvn
|| ∇ ||v n

z+( ) 0,=
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at the surface (whose deviation from the plane z = 0 is
denoted by ζ and surface tension by σ) shows that they
are compatible with each other for

(12)

The derivation of Eq. (12) does not require the assump-
tion that viscosity is small, so it is applicable for an
arbitrary value of viscosity.

3. INSTABILITY THRESHOLDS FOR ZERO 
AND FINITE VISCOSITY 

For ρs = 0 and σ = 0, Eq. (12) is transformed to the
dispersion relation of a gravitational wave on the free
surface of a normal liquid [11], whereas, in the limit of
η = 0, it is reduced to the equation

(13)

describing the spectrum of surface waves in a super-
fluid with the counterflow [2] derived in the framework
of the nondissipative two-fluid description. Here, v =

(ρs  + ρn )/ρ is the mass velocity and w =  + 
is the relative velocity in the superfluid. The form of
Eq. (13) shows that the roots with positive and negative
imaginary parts (the former correspond to growing cor-
rugation) exist only if the right-hand side can be nega-
tive, that is, if the absolute value of w exceeds wc0
defined by

(14)

with the instability taking place at q = ±(w/w)qc, where

 = ρg/σ.

On the other hand, for any finite η > 0, one of the
roots of Eq. (12) crosses the real axis already when

(15)

touches zero, that is, at

(16)

with the instability appearing at the value of relative
velocity lower than in the absence of dissipation,
although at the same value of q. Note that, in the limit
of zero temperature (when ρs  ρ), the criterion (16)
coincides with the Landau criterion for the creation of
ripplons in the reference frame of container walls.
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For S(q) sufficiently close to zero, the value of the
root crossing the real axis is given by

(17)

This shows that, for small viscosity and w just above
wc, the rate of instability development decreases with
decreasing η, contrary to what is naturally expected.

By looking where the free energy of a corrugation,
calculated in the reference frame of the normal compo-
nent, is no longer positively defined (such an approach
can be considered as a macroscopic generalization of
the Landau criterion), the threshold for the instability of
the interface between two different superfluids was
found in [9] to be

(18)

where F is a generalized restoring force, whose role in
the case of a free surface is played by ρg. In the limit
where the density of one of the liquids goes to zero,
Eq. (18) is reduced to our criterion (16) obtained for the
free surface of a single superfluid liquid.

4. CONCLUSION 
In this work, we have investigated the dynamic

instability of the free surface of a superfluid liquid
caused by the relative motion of superfluid and normal
components along the surface. The value of the insta-
bility threshold for finite viscosity, given by Eq. (16), is
found to be independent of viscosity, but lower than in
the absence of dissipation. The same criterion can be
obtained by looking for the thermodynamic instability
in the reference frame of the normal component.

An analogous modification of the instability thresh-
old was found [9] to take place at the interface between
two superfluids in the presence of friction with respect
to the reference frame related to container walls,2

which leads to violation of the Galilean invariance.
Note that in our problem the same phenomenon appears
in the situation where the form of dissipation does not
imply the explicit selection of a particular reference
frame. Nonetheless, the presence of dissipation (a finite
value of viscosity) turns out to be sufficient to produce
the same criterion for surface instability as in the case

2 The same type of dissipation was taken into account by Kagan [4]
when studying the instability of the quantum interface between
superfluid and solid 4He.
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where the form of friction leads to the direct violation
of the Galilean invariance.

The first experimental observation of the Kelvin–
Helmholtz instability at the interface between 3He-A
and 3He-B by Blaauwgeers et al. [10] unambiguosly
demonstrated that it does indeed take place not for the
classical, but for the modified value of the threshold.
According to our results, the same can be expected
from the instability on the free surface of superfluid
4He.
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Billiards are an important geometric model in nonlinear physics. A dynamical description of a billiard in sym-
metric coordinates is proposed. The topological structure of a symmetric phase space and geometric criteria for
the stochasticity of billiard systems are determined. © 2002 MAIK “Nauka/Interperiodica”.
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Billiards are a simple but important physical model.
They were used to justify the hypothesis for molecular
chaos in statistical physics [1], to demonstrate ergodic-
ity and mixing in dynamical systems with a few degrees
of freedom in chaotic dynamics [2–5], and to develop
the (semiclassical) correspondence principle in post-
modern quantum mechanics [6, 7]. Practical applica-
tions of billiards [8–10] are important for the physics of
resonators, wave guides, traps, detectors, etc.

A billiard has geometric nature. In the classical for-
mulation, it corresponds to the free motion (with unit
velocity v  = |v| = 1) of a pointlike particle inside the
region Ω with elastic reflection from its boundary ∂Ω.
The geometry of ∂Ω determines a variety of dynamical
regimes of a billiard, i.e., the behavior of its trajectories.
Mixed regular and chaotic dynamics is typical. Among
dynamical systems, the billiard has become a paradigm
of determinated chaos [11]. Most problems that are
reduced to billiards require a description of trajectory
dynamics. Geometric trajectories intersect each other
inside Ω and can be highly intricate. For this reason, the
description is usually carried out in a phase space with
nonintersecting trajectories. In this case, a billiard is
traditionally associated with the conservative mapping
[12] obtained by cross sectioning the initial flux [13] at
the moments of sequential reflections from the bound-
ary ∂Ω . The phase state of this Hamiltonian system is
specified by a pair of canonical variables: coordinate
and momentum. These are usually local Birkhoff coor-
dinates—the natural parameter l at ∂Ω [14] and the
angle of incidence θ at the reflection point.

In this paper, a billiard is described in more equiva-
lent (symmetric), though nonlocal, coordinates, which
determine a new symmetric phase space Σ. The sym-
metric coordinates have a projective nature, and an
arbitrary billiard in these coordinates reduces from the
outset to a discrete dynamical system—the mapping of
a special form. In this case, no auxiliary (with singular-
ities) Poincaré sections for the billiard flux are required.
0021-3640/02/7508- $22.00 © 20426
The topology of Σ is closely related to the geometry of
∂Ω, which directly influences the billiard stochasticity.

Let us construct a symmetric phase space Σ. For this
purpose, we will not explicitly track the dynamics of
geometric trajectories between their sequential colli-
sions with the boundary ∂Ω . When introducing the
space Σ, the particular form of trajectories (not neces-
sarily rectilinear rays if the motion occurs on the curvi-
linear surfaces or in an external field) between reflec-
tions is immaterial. The dynamics of a billiard is gener-
ally determined only by the initial state and the
sequence of reflections from ∂Ω . The state of the sys-
tem will be specified by a pair of coordinates, s1 and s2,
of sequential reflections at the points r(s1) and r(s2),
where r(s) = r|∂Ω is a certain boundary parametrization
[14] and s ∈  M. The manifold M is determined by the
topology of ∂Ω. For a one-dimensional, closed, simply
connected boundary, M = S1 (circle). Geometrically, a
phase point s is identified with an individual segment
(ray) of the billiard trajectory:

(1)

For the planar billiard, this is a ray between reflections.
A passage from points (reflections) to rays (incident
and reflected) is the projective duality operation that is
useful in applications [15]. The topology of Σ for a two-
dimensional billiard is the topology of a torus T2 = S1 ×
S1 (there is no edge; i.e., ∂T 2 = ∅ ). In terms of Birkhoff
coordinates, the phase space is the lateral area of a cyl-
inder Π = S1 × [–π/2, π/2] (with edge θ = ±π/2). For a
convex multidimensional billiard, Σ = Sn × Sn, etc. In
terms of new coordinates, a state is determined nonlo-
cally, because it is related not to one point but to differ-
ent points of reflection. It is this nonlocality that allows
the symmetrization of the description of the billiard.

The motion along each billiard trajectory is possible
in opposite directions (time reversibility). For this rea-

s s1 s2,( ) Σ∈ M M; M ∂Ω.∼×= =
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son, regardless of the direction of an arbitrary ray with
either the coordinates st = (s1, s2) or the transposed coor-
dinates s–t = (s2, s1), the direct (and reverse) reflections
provide the same billiard trajectory. Therefore, the
introduced coordinates are symmetric. Along with the
phase trajectory with the initial point (s10, s20), the sym-
metric trajectory with the initial point (s20, s10) is
present in Σ. For this reason, arbitrary functions in Σ are
symmetric, including the indicators χU(s) (U ⊂  Σ)
describing bundles of trajectories and densities of any
measure µ:

(2)

The phase-space diagonal ∆ = {(s1, s2) ∈ Σ|  s1 = s2} is a
line of symmetry. Symmetry (2) means that the billiard,
as a dynamical system in Σ, belongs to reversible sys-
tems generalizing Hamiltonian systems [16]. The
description of a billiard in symmetric coordinates
becomes covariant. The dynamics remains invariant for
any geometric changes s' = z(s) of coordinate systems
or for any reparametrization of ∂Ω , because they apply
to both variables s1 and s2 of the symmetric phase
space.

Let us construct a dynamical system corresponding
to the billiard in the symmetric coordinates. The inci-
dent ray with the coordinates (s1, s2) converts to the
reflected ray , and the reflection point s2 con-

verts to the exit point,  = s2. The point  = f(s1, s2)
is determined by the reflection law. This is usually the
law of elastic (mirror) reflection. The angle of reflec-
tion is equal to the angle of incidence, or  = π – θ for
oriented angles. There is also an anomalous law, when
the sign of the total momentum, rather than that of only
its normal component, changes. After the reflection, a
particle becomes an antiparticle. This is the Andreev
reflection [17]. In this case,  = fA(s1, s2) = s1. Below,
billiards of both convenient and Andreev [18] types
will be analyzed. For the Andreev reflection of massive
particles (superconducting electrons), a macroscopic
condensate acts as a physical vacuum creating parti-
cle–antiparticle pairs. The anomalous reflection of
photons can be realized using the nonlinear effect of
phase conjunction [19]. The sequential reflections
(s1, s2)    … correspond to the iterations
of billiard mapping:

(3)

Phase trajectories in Σ correspond to geometric trajec-
tories upon the natural projection Σ  ∂Ω . Each
physical image (ray, trajectory, bundle, etc.) corre-
sponds to a certain element in Σ (phase point, orbit,
domain, or curve). The chaos dynamics and the statisti-
cal properties of billiards obey the features of a special
class of billiard mappings (3). These features are asso-
ciated with the properties of the function f.

χU s1 s2,( ) χU s2 s1,( ); µ s1 s2,( ) µ s2 s1,( ).= =

s1 s2,( )
s1 s2

θ

s2

s1 s2,( )

B := s1 s2; s2 f s1 s2,( )=={ } .
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A repeated reflection of the initially reflected ray
returns us to the initial ray. Hence, the equality f (f (s1,
s2), s2) = s1 must be satisfied. This property will be
referred to as billiard involution; i.e., f ° f = id (id is the
identity function), where f is a one-parametric (depend-
ing on the reflection point) family, f (s1, s2) = . If
the motion occurs in a magnetic field or any other sole-
noidal field with H*(t) ≡ H(–t) ≠ H(t), the reversibility
is restored under the more general condition

(4)

In a potential field, the velocity of a particle changes
and f depends on time t. The property of involution is

(5)

where

In particular, the motion remains rectilinear for breath-
ers, i.e., billiards with the perturbed boundary ∂Ω =
∂Ω(t) [11, 20]. For them, 

where r(s1) = r(t – τ), r(s2) = r(t), r(f) = r(t + τ*),
v (s1) = v(t – – τ), and v(s2) = v(t –). The “quivering” of
the boundary r(t) is specified, and the velocity v(t –)
(here, t – = t – 0) of a ray at the time instant before
reflection is known. Inverting the expressions for τ and
τ* by applying the implicit function theorem, we obtain
the local dependences t2 = t(τ) and τ* = ϕ(t2) = τ*(τ). As
a result, the breather involution depends only on the
shift τ (time between collisions); i.e., f(s1, t1; s2, t2) =
f(s1, s2; τ). This is a billiard with “retardation.”

The particular form of f is determined by the shape
of ∂Ω and the character of motion in Ω. The condition
for elastic reflection  = –  in the Cartesian
coordinates r = (x, y) and n|∂Ω = (nx, ny) (normal) gives

(6)

where

R is the rational projection transformation, a(s) =

 – , and b(s) = 2nx(s)ny(s). Examples of such

f s2
s1( )

f f s1 s2; H,( ) s2; H∗,( )

=  s1 f H∗( ) ° f H( ) id .=

f f s1 t1; s2 t2,,( ) t2 τ∗ ; s2 t1 τ+,+,( ) s1,=

τ t2 t1–
rd

v r( )
---------- and τ∗

s1

s2

∫ rd
v r( )
----------.

s2

f

∫= = =

τ
r s1( ) r s2( )–

v s1( )
-------------------------------; τ∗ r f( ) r s2( )–

v s2( )
-----------------------------,= =

θcot θcot

ξ f s2,( ) R ξ s1 s2,( ) s2,( )
a s( )ξ b s( )+
b s( )ξ a s( )–
----------------------------,= =

ξ s1 s2,( )
x s1( ) x s2( )–
y s1( ) y s2( )–
----------------------------,=

nx
2
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involutions were obtained in [21]. They can be used to
describe the dynamics of particular billiards.

It follows from Eq. (6) that the variables can be
changed so that the involution becomes rational in new
coordinates. Geometrically, this means that the billiard
is reducible to the local projective transformations. The
projectivity of involution follows from the geometric
nature of a billiard.

In the symmetric coordinates, the phase-space struc-
ture most completely reflects the features of billiard
geometry. The basic elements of this structure are reg-
ular R and chaotic C components and singularities P:
diagonal ∆, lacunas L, discriminants D, and Andreev
domains A:

(7)

This structure corresponds to the billiard with a typical
boundary (figure). In the regular domains ΣR ⊂  Σ, a
quasiperiodic motion occurs on the invariant tori [15]

Σ ΣR ΣC ΣP; ΣP⊕ ⊕ ∆ L D A.⊕ ⊕ ⊕= =

(a) Geometry of a typical billiard with a boundary contain-
ing convex, concave, rectilinear, and Andreev sections.
(b) Qualitative structure of the symmetric phase space of a
planar billiard presented in (a); C and R are the chaotic and
regular domains, respectively; ∆ is the diagonal; L is lacuna;
D is the discriminant; and A is the Andreev domain. The
structure is shown in the flat I × I development of a torus
Σ = T2.
or, for a planar billiard, on the invariant closed curves.
In the chaotic domain ΣC, the exponentially unstable
(with respect to the perturbations of initial conditions)
phase trajectories mix and the motion is ergodic. The
singularities as topological obstacles separate the phase
flux. The diagonal ∆ contains all fixed points of billiard
mapping (3), ∆ ⊇  Fix(B). This follows from the prop-
erty f(s, s) = s, which means that the incident and
reflected rays coincide for the tangential propagation
along ∂Ω . It is evident that the tangential rays cannot
propagate inside Ω . The diagonal separates symmetric
phase trajectories corresponding to the motions in
opposite directions.

Inside the Andreev domains A, the symmetric trajec-
tories match with each other (at the points symmetric
about ∆) and the time-reversed trajectories are local-
ized. Topologically, matching means the gluing of cer-
tain phase-space regions and is not a continuous rear-
rangement. This corresponds to the appearance of a gap
in the excitation spectrum. In addition, the Andreev
domains can be superimposed on the other components
of Σ and change their topology. In particular, the inter-
section of A and ΣR gives rise to a discontinuity in a reg-
ular quasiperiodic curve, because the anomalous reflec-
tion domain cannot contain more than two points of
reflection for the same billiard trajectory. The symmet-
ric phase space is particularly suitable for the descrip-
tion of mixed-type Andreev billiards with ordinary and
anomalous reflections (figure). Whereas the orientation
is conserved for the ordinary reflection [Jacobian J(s) =

– (s1, s2) of mapping (3) with involution (6) is posi-
tive, JN > 0], it changes for the Andreev reflection (JA =
–1). In the Hamiltonian coordinates, JN, A = ±1.
Canonical transformations must conserve the Jaco-
bian. Therefore, the reflection must be of the same
type everywhere. In the symmetric approach, only the
reversibility is required, whereas the Jacobian may
change, and the description will be adequate for a bil-
liard of an arbitrary type.

Lacunas correspond to the domains of geometric
shadow. These are the domains of classically forbidden
rays specified by their points of intersection with ∂Ω
but situated outside of Ω . Lacunas appear in billiards
with the concave boundary ∂Ω– (figure) or cusps (the
tangential rays pass inside Ω). For billiards with curva-

ture, these are the domains with oriented curvature  <

0 [14] (for the outer normal) or singularities with  =
−∞. Discriminants are the degeneracy domains. They
are filled with “adhering” rays lying entirely or partially
in the rectilinear sections of ∂Ω0 with zero curvature

 = 0 and with the rays falling into the corner points

(tangents are outside the Ω), where  = +∞. The fur-
ther propagation of such rays is indefinite and their
dynamics is considered interrupted. The phase measure
of the rays ending at the isolated singularities of ∂Ω is
zero. The measures of lacunas and discriminants are,

f s1
'

K̂

K̂

K̂

K̂
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respectively, µ(L) ∝ |∂Ω – |2 and µ(D) ∝ |∂Ω 0 |2 (|∂Ω| is
the length of a curve). The number of lacunas is equal
to the total number of concave components and cusps,
and the number of discriminants is equal to the number
of rectangular sections and corner points. The bound-
aries of singular domains are determined from the fol-
lowing geometric equations for the points (s1, s2) ∈ Σ :

(8)

(9)

(10)

where (·, ·) is the scalar product. Conditions (8) and (9)
determine the bundles of rays tangential to ∂Ω– and
∂Ω0, respectively. Setting µ(Σ) = 1, we obtain µ(ΣP) =
1 – µ(ΣR) – µ(ΣC). The phase-space volume of the com-
ponents can be calculated in the Euclidean metric on
the development I × I of the torus (figure). The bound-
aries of lacunas (8) and discriminants (9) are deter-
mined strictly geometrically. Therefore, their phase
dimension µL, D depends only on the shape of ∂Ω and
does not change upon the uniform inflation of a billiard.

We emphasize that the lacunas and discriminants are
the attributes of a symmetric phase space. These ele-
ments are indistinguishable and absent in the phase
space with Birkhoff-type coordinates. The nonlocal
elements not involved in the Hamiltonian dynamics
(rays in the shadow domain or those with an indefinite
evolution) are projected onto the edge of an asymmetric
phase space (onto the bases of a cylinder ∂Ω in the case
of a 2D billiard) and prove to be “invisible.” In Σ, the
projectivity of the billiard restores their equivalence.
The corresponding L and D domains appear together
with the destruction of a portion of the diagonal ∆ to
change explicitly the topology of Σ (after gluing,
“holes” appeared with the sheets of the projective
plane). Thus, the singularities hidden for the classical
Birkhoff or related coordinates become resolved in the
symmetric approach. The appearance of these singular-
ities is closely related to the chaotic properties of bil-
liards.

Singularities variously influence the chaotic proper-
ties of a billiard. These properties can be analyzed
using the general concepts of chaotic dynamics of the
dynamical systems and mappings (see, e.g., [5, 6, 12,
13]), including billiards. The Andreev domains sup-
press chaos. The appearance of lacunas leads to the
destruction of “whispering-gallery” trajectories (near
∆) and to the appearance of chaos. An increase in the
size of L enhances chaos, because the number of hyper-
bolic periodic trajectories involving the points of ∂Ω–

∂L := 
r s1( ) r s3( )– n s3( ),( ) 0=

r s2( ) r s3( )– n s3( ),( ) 0;=



K̂ s3( ) 0;<

∂D := r s1( ) r s2( )– n s3( ),( ) 0; K̂ s3( ) 0;= =

∂A := r s2( ) ∂Ωa; r s1( ) r s2( ) Ω,∈–∈
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increases. This is also evident from the physical point
of view, because the collisions of chaotic trajectories
with ∂Ω–, where they disperse, become more frequent
as the size of the geometric shadow increases.

It is natural to suggest the following geometric cri-
terion for chaos. (i) The Lyapunov exponent in the
phase space of a billiard is positive for any nonzero
measure of lacunas. (ii) As the sizes of lacunas change,
the Lyapunov exponent changes monotonically upon
increasing their phase-space volume:

(11)

where λB is the Lyapunov exponent [6]. In billiards,
which are measure-conserving mappings, this exponent
is always nonnegative (or zero in the integrable bil-
liards). Criterion (11) is consistent with the condition
[4] for the stochasticity of a billiard formed by circle
arcs: the complement of each arc with respect to the
complete circle must lie inside Ω. This condition means
that the arc junctions are cusps and, therefore, they gen-
erate lacunas in Σ. The disappearing lacunas are
replaced by regular trajectories. It should be empha-
sized that criterion (11) relates the positiveness of the
lacuna measure to the positiveness of the Lyapunov
exponent outside the lacunas, i.e., in the remaining part
of the phase space accessible to dynamics. It is impor-
tant that, when applying this criterion, one can estimate
not only the presence of the corresponding billiard but
also the degree of its stochasticity. Moreover, this crite-
rion holds true for billiards of higher dimensionalities.

Note that the chaotic component can also exist in an
everywhere convex billiard, for which lacunas are
absent, µ(L) = 0. Another feature of such a billiard is
that it has regular phase trajectories passing near and
along the diagonal ∆ of the symmetric phase space.
These trajectories correspond to the whispering-gallery
trajectories in the geometric space. The trajectories of
this type are most pronounced for the billiard in a circle,
where they fill the whole symmetric phase space and
fiber it into the multitude of invariant curves parallel to
the diagonal ∆. The billiard in a circle is the degenerate
case (all periodic trajectories have neutral stability). It
is worth noting that the appearance of lacunas destroys
all whispering-gallery trajectories.

Whereas the appearance of lacunas always induces
chaos, the increase of discriminants variously changes
it. In particular, the Lyapunov exponent of a “stadium”
increases (l < d) or decreases (l > d) through extending
its rectilinear sides (∂Ω is the circle diameter) [3]. Ran-
domization occurs upon “scattering” by the curvilinear
components of ∂Ω. The rectilinear segments do not
scatter parallel rays but enhance spreading (focusing)
of already scattered (focused) rays, thus playing the
role of instability “amplifiers.” Discriminants are phase
images of these segments. As D increases, the defocus-
ing on convex boundary ∂Ω+ should increase. However,

µL 0 λB 0;
dλB

dµL

--------- 0,>>>
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the increase in µD picks up a part of the accessible phase
space. This retards the randomization. As a conse-
quence, the following criteria can be formulated,
respectively, for the enhancement (attenuation), “drop,”
and “saturation” of stochasticity:

(12)

In the condition for saturation,  =  is

the limiting size of discriminants at |∂Ω|   for
the billiard boundary ∂Ω including rectilinear compo-
nents with length li.

A jumpwise change of stochastic properties with
the appearance of discriminants occurs, e.g., upon
passing from the billiard in a circle (l = 0 and µD = 0)
to a stadium (µD = 2l2). Using the expressions from
[22] for the Kolmogorov–Sinai entropy, HKS, coincid-
ing with the Lyapunov exponent averaged over the
phase space, HKS ≈ 〈λ B〉Σ, we arrive at the relationships

∂λstad/(∂µD) ≈ const  > 0 for l ! d and ∂λstad/(∂µD) ≈

–1/ ((1 – 2µD)/2π)ln2π(1 – 2µ) < 0 for d ! l. As
µD  0, one has ∂λstad/(∂µD)  +∞. The saturation
of the instability exponent corresponds to the rectifica-
tion of the boundary, ∂Ω  ∂Ω0, upon extending

l @ d, when  = 1/2 and ∂λstad/(∂µD)  0. This
example clearly demonstrates the validity of general
relationships (12).

Note that, as the relative fraction of scattering ∂Ω–
and neutral ∂Ω0 boundary components increases, the
rates of filling the phase space Σ with lacunas and dis-
criminants are different. One can easily verify that the
discriminants are symmetric along and across the diag-
onal ∆ and always shaped like squares in the torus
development (figure). They increase quadratically: µD =

, whereas lacunas (  < 0) extend expo-

nentially ~exp[ln(1 – )] transverse to ∆ with an
increase in |∂Ω– |/|∂Ω|. This is due to the scattering char-
acter of the concave components. The exponential
decoupling of the correlations upon their power-law
decrease in negative-curvature defocusing billiards can
also be assigned to this difference. With a change in D,
the transition to a completely regular dynamics is pos-
sible for some ∂Ω (e.g., when a billiard inside the seg-
ment of a circle attains half the circle). The monotonic-
ity dλB/dµL > 0 or dλB/dµD _ 0 can be found numeri-
cally and analytically for various billiard families. The
usefulness of utilizing this information is enhanced by
the possibility of geometrically calculating the shape
and sizes of lacunas and discriminants from the shape
of the billiard boundary, i.e., in fact, without using the
dynamic properties of trajectories.

dλB

dµD

---------- _ 0; dλB

dµD

----------
µD 0→
lim ∞;

dλB

dµD

----------
µD µD

*→
lim 0.= =

µD* li
2

i∑ / lii∑( )2

lii∑

µD
3/4–

2µD

µD
*

∂Ω0( )i
2

i∑ K̂

K̂

Thus, the topological structure of the symmetric
phase space of a billiard directly influences its sto-
chasticity. All 2D billiards of different types can be
topologically classified. They are equivalent to the
compact orientable and nonorientable 2D manifolds.
The character of the dynamics depends on this topol-
ogy. It is also possible to show that the kinetic
symmetric description of a billiard (invariant distri-
butions) is directly determined by the dynamics (invo-
lution). The commutativity of observables corre-
sponding to the symmetric phase variables (in contrast
to the noncommutative momentum and coordinate
operators) provides new possibilities of describing
quantum chaos in billiard systems. For this reason, the
choice of symmetric coordinates introduces important
physical meaning to the theory. This approach can be
naturally generalized to the multidimensional and cur-
vilinear geometry.

We are grateful to Academicians V.G. Bar’yakhtar
and S.V. Peletminskiœ for stimulating discussions and
valuable remarks, and to the referee for valuable com-
ments, which enabled us to improve the manuscript.
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The works devoted to studying the polarization properties of a two-photon light generated upon spontaneous
parametric down-conversion in the collinear frequency-degenerate regime are briefly overviewed, with empha-
sis on the studies carried out by us over a period from 1999 to 2001 within the framework of the project “Polar-
ization Optics of Biphotons” of the Russian Foundation for Basic Research. In particular, the polarization state
of a two-photon light was analyzed and its pictorial mapping onto the Poincaré sphere was proposed. The exper-
iments on polarization transformations of a two-photon light were performed; based on these transformations,
a method was suggested for ternary quantum information coding. A two-photon state with the orthogonal pho-
ton polarizations was synthesized experimentally from the two beams of identically polarized correlated pho-
tons, and the spectral properties of this state were investigated. Finally, a method was suggested for measuring
the polarization state of a two-photon light in the collinear frequency-degenerate case (“tomography”). © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 42.50.Dv
1. INTRODUCTION

At present, two-photon fields generated, e.g., upon
the spontaneous parametric down-conversion (SPDC)
[1] attract attention as an example of entangled states in
optics. The light radiated in the SPDC consists of so-
called biphotons, namely, pairs of photons with corre-
lated moments of creation, frequencies, wave vectors,
and polarizations. The state vector of such a pair cannot
be represented as the product of state vectors of individ-
ual photons (called signal and idler photons). The state
vector of the light radiated in the SPDC can be written
as

(1)

where the variable α may stand for the frequency, wave
vector, and polarization, and the states |α〉 and  are
conjugate. For example, in the case of frequency expan-
sion, these are |ω〉 and |ωp – ω〉, where ωp is the pump
frequency. The first term in Eq. (1) far exceeds the sec-
ond term in amplitude and corresponds to the vacuum
state, which is inevitably present in the SPDC radiation.

Of special interest is the case of collinear frequency-
degenerate biphoton fields, so we will focus on this in
our review. Besides being of fundamental interest, this
case is also important in the context of using biphoton
fields in quantum information transmission. Emphasis
will be on the polarization properties of biphoton fields,
because the polarization of light allows its quantum
state to be formulated in terms of dichotomic variables
and, thus, serves as a basis for the optical methods of
quantum information transmission.

Ψ| 〉 0 0,| 〉 α F α( ) α| 〉 α̃| 〉 ,d∫+=

α̃| 〉
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2. POLARIZATION STATES 
OF A BIPHOTON FIELD

Let us consider the state of a two-photon light radi-
ated upon the collinear frequency-degenerate SPDC.
For the sake of simplicity, we will consider the ideal-
ized situation where the field contains only a single spa-
tial and spectral mode. The arbitrarily polarized state of
this field has the form [2]

(2)

where |m, n〉  symbolizes the state with m photons in the
polarization mode x and n photons in the orthogonal
polarization mode y. The vacuum component |0, 0〉  is
omitted in Eq. (2), because it is of no interest in our
consideration. The first and third terms in Eq. (2) can be
determined from the SPDC experiment with type-I
phase matching, and the second term can be determined
from SPDC with type-II matching. Due to the normal-
ization condition |c1|2 + |c2|2 + |c3|2 = 1 and the arbitrari-
ness in choosing the phase of the wave function, state
(2) can be characterized by four real parameters d1, d3,

ϕ2, and ϕ3: ci = diexp{iϕi}, ϕ1 = 0, Σ  = 1, and ϕ2, ϕ3

∈  [0, 2π]. Much as the polarization state of a classical
polarized light can be mapped into a point on the
Poincaré sphere (S2 in R3), the state of a two-photon
light (2) can be mapped into a point on the sphere S4 in
R5. Accordingly, the vector e = (c1, c2, c3) can be called
the biphoton polarization vector.

There is a more pictorial way for the geometric
interpretation of the polarization state of a two-photon
light. One can show that state (2) can be uniquely rep-
resented as

ψ| 〉 c1 2 0,| 〉 c2 1 1,| 〉 c3 0 2,| 〉 ,+ +=

di
2
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(3)

Here, a†(ϑ , ϕ) and a†(ϑ ', ϕ') are the operators of photon
creation in an arbitrary polarization mode; for example,

a†(ϑ , ϕ) = cos  + eiϕ sin , where  are the

operators of photon creation in the linear polarization
modes x or y, and ϕ, ϕ' ∈  [0, 2π] and ϑ , ϑ ' ∈  [0, π] are,
respectively, the azimuthal and polar angles on the
Poincaré sphere. The transformations from {ϑ , ϑ ', ϕ,
ϕ'} to {d1, d3, ϕ2, ϕ3} have the form

Ψ| 〉 a† ϑ ϕ,( )a† ϑ ' ϕ',( ) v ac| 〉
a† ϑ ϕ,( )a† ϑ ' ϕ',( ) v ac| 〉

-----------------------------------------------------------.=

ϑ
2
---ax

† ϑ
2
---ay

† ax y,
†

d1
2 ϑ /2( )cos ϑ '/2( )cos

ζ
------------------------------------------------------,=
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(4)

where

The inverse transformation can be written as

d3
2 ϑ /2( )sin ϑ '/2( )sin

ζ
----------------------------------------------------, ϕ3 ϕ ϕ ',+= =

ϕ2cos

=  
ϕ ϑ /2( ) ϑ '/2( ) ϕ' ϑ '/2( ) ϑ /2( )cossincos+cossincos

d2ζ
----------------------------------------------------------------------------------------------------------------------------,

ϕ2sin

=  
ϕ ϑ /2( ) ϑ '/2( )cossinsin ϕ' ϑ '/2( ) ϑ /2( )cossinsin+

d2ζ
--------------------------------------------------------------------------------------------------------------------------,
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2
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2
--------------sin

2
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(5)

ϕ ϕ ',
ϕ3

2
-----

2d1d3 d2
2– d2

4 4d1
2d3

2 4d1d3d2
2 2ϕ2 ϕ3–( )cos–++

4d1d3
--------------------------------------------------------------------------------------------------------------------------,arcsin±=

ϑ ϑ ',
d1

2 d3
2– 2 d2

2 d1d3 2ϕ ϕ 3–( )cos–[ ] 2
d1

2d3
2–±

1 d2
2 2d1d3 2ϕ ϕ 3–( )cos–+

------------------------------------------------------------------------------------------------------------.arccos=
Therefore, every state of the degenerate biphoton field
can be mapped into two points on the Poincaré sphere
and specified by four parameters θ, θ', ϕ, and ϕ'. For
example, the state |2, 0〉  is mapped into a “double” point
on the sphere, and the state |1, 1〉  is mapped into two
points at the opposite ends of the same diameter
(Fig. 1). The Stokes vector of a biphoton light is equal
to the sum of Stokes vectors S, S' of, respectively, the
states a†(ϑ , ϕ)|vac〉  and a†(ϑ ', ϕ')|vac〉 , and the degree
of polarization is equal to the cosine of the half-angle
between the vectors S and S'.

3. POLARIZATION TRANSFORMATIONS 
OF A BIPHOTON FIELD 

The arbitrary polarization transformations of state
(2) belong to the Lie group SU(3) and are specified by
eight parameters [2]. These transformations cannot be
accomplished by the linear polarization transformers
that are ordinarily used in the experiment (phase plates
or their combinations, rotators, interferometers, etc.),
because these transformers correspond to the SU(2)
group and are characterized by only three parameters.
This is clearly seen from Fig. 1; the above-mentioned
transformations can be represented as the simultaneous
rotation of both points on the Poincaré sphere so that
they do not change the relative positions of the points.
However, the transformations of this type can easily be
implemented experimentally. This was accomplished
in [3], where, from all states of (2), three mutually
orthogonal states

(6)

Ψ+| 〉 2 0,| 〉 0 2,| 〉+

2
------------------------------ + –,| 〉 ,≡=

Ψ–| 〉 2 0,| 〉 0 2,| 〉–

2
------------------------------ +45° 45°–,| 〉 ,≡=

Ψ0| 〉 1 1,| 〉 x y,| 〉 .≡=

Fig. 1. Mapping of the state (3) of an arbitrarily polarized
biphoton (two correlated arbitrarily polarized photons) onto
the Poincaré sphere. (1) Is the |2, 0〉  state, i.e., a pair of cor-
related photons linearly polarized along the X axis; (2) is the
state of two correlated orthogonally polarized photons; and
(3) is the biphoton state with an arbitrary polarization.
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were chosen. They are depicted in Fig. 1 by the pair of
points at the opposite ends of the diameter; the degree
of polarization is zero for all these states, and they can
be transformed into each other using linear polarization
elements. The first of these states corresponds to a pair
of photons, one of which is right-hand circularly polar-
ized and the other is left-hand polarized. The second
state corresponds to a pair of photons, one of which is
linearly polarized at an angle of 45° to the X axis and
another is polarized at an angle of –45° to the X axis.
The third state corresponds to a pair of photons polar-
ized, respectively, along the X and Y axes. It has been
demonstrated in [3] that this state can be obtained from
the Ψ+ or Ψ– state. The scheme of the corresponding
experiment is shown in Fig. 2. The cw pumping
(helium–cadmium laser radiation with a wavelength of
325 nm) is fed into the input of an interferometer with
a lithium iodate crystal in both its arms. The SPDC with
collinear type-I phase matching in the crystal produces
two-photon radiation in the |2, 0〉  state in both arms.
After the crystal, the pump radiation is cut off by a fil-
ter. A half-wave plate in one of the arms turns the polar-
ization through 90° to transform the beam state into
|0, 2〉 , and both beams impinge, without loss, on a
polarizing beam splitter PBS1. Mirror M in the interfer-

Fig. 2. Scheme of the experiment on polarization transfor-
mations of a biphoton field. The pump radiation is led into
the interferometer through a nonpolarizing beam splitter.
Crystal LiIO3 is placed in both interferometer arms. Filter F
suppresses the pump radiation. A λ/2 plate in one of the
arms turns the polarization through 90°. Mirror M is
equipped with a piezoelectric feed; its displacement
changes the phase between the |2, 0〉  and |0, 2〉  components
of the biphoton state vector at the interferometer output.
Beam splitters PBS1 and PBS2 are polarizing; the first of
these delivers, without loss, the |2, 0〉  and |0, 2〉  biphotons to
the interferometer output channel, and the second measures
the correlation between the numbers of photons in the X and
Y modes [|c2|2 in the state (2)]. Phase plate P accomplishes
the polarization transformations. The interference filter IF
and the aperture select the collinear frequency-degenerate
scattering. The block in the bottom of the figure serves for
measuring |c1|2 and |c3|2 in the state (2).
ometer can be shifted using a piezoelectric feed, so that
the biphoton field at the interferometer output is

(7)

where the phase ε can be changed by shifting mirror M.
The state Ψ+ or Ψ– is produced if, respectively, ε = 0 or
π. This state is converted to Ψ– using the appropriate
phase plate P (λ/4 plate oriented at an angle of π/4 in
the first case, and λ/2 plate oriented at an angle of π/8
in the second case). The resulting state is detected by a
polarizing beam splitter PBS2 and a pair of photodetec-
tors (avalanche photodiodes) D1 and D2, from which
the photocurrent pulses are led to a photocount coinci-
dence circuit. The coincidence counting rate is propor-
tional to |c2|2 [see Eq. (2)]. The completeness of the
transformation (for certain plate positions, the states |2,
0〉  and |0, 2〉  are absent at the output) can be checked as
follows. If a special unit consisting of an X(Y)-polariz-
ing polaroid and a π/8 half-wave plate are placed ahead
of the beam splitter, the coincidence counting rate will
be proportional to |c1|2 (|c3|2). The number of coinci-
dences obtained in the experiment is given in Fig. 3 as
a function of the angle of plate rotation. One can see
that, for the plate positions corresponding to the maxi-
mum of |c2|2, |c1|2 drops practically to zero. Note that the
phase ε is fixed and equal to π for both curves shown in
Fig. 3. To demonstrate the dependence of state (7) on
the phase ε, measurements were also made with a fixed
position of plate P and a fixed displacement of mirror
M. The resulting curve is shown in Fig. 4.

The setup shown in Fig. 2 was used to synthesize,
without loss, “type-II biphotons,” i.e., pairs of corre-
lated, orthogonally polarized photons, from the two
beams of type-I biphotons, i.e., pairs of identically
polarized photons. It should be noted that the two-pho-
ton light in this experiment was weak to the extent that
the different photon pairs, radiated at random time
instants, practically never overlapped at the interferom-
eter output. The observed effect was a manifestation of
the two-photon interference or “the interference of
independent biphotons” [4]: if the two-photon light is
produced in two different regions illuminated by the
coherent pumping, the probability amplitudes of pair
creation may either add to or be subtracted from one
another. Interestingly, this effect can be observed even
if the interferometer arms in Fig. 2 are not balanced to
within the coherence length of two-photon light, as it
should with classical interference. For example, the dif-
ference in arm lengths in the experiment was 2 cm,
while the SPDC radiation coherence length was about
20 µm. The only necessary condition is that the differ-
ence in arms should not exceed the pumping coherence
length (in our case, about 15 cm).

The states Ψ+. Ψ–, and Ψ0, like the states |2, 0〉 ,
|1, 1〉 , and |0, 2〉 , form the orthogonal basis in the space
of biphoton polarization states. They can easily be

Ψ| 〉 2 0,| 〉 eiε 0 2,| 〉+

2
------------------------------------,=
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transformed into each other using the phase plates; as
indicated above, a half-wave plate set at an angle of
22.5° to the X axis transforms Ψ– into Ψ0, while the
quarter-wave plate set at an angle of 45° to the X axis
transforms Ψ+ into Ψ0. The transformation from Ψ+ to
Ψ– is accomplished by a quarter-wave plate set at an
angle of 0° to the X axis.

The analogous orthogonal basis can be constructed
in the space of polarization states (2). The elements of
this basis transform into each other using only a single
phase plate. Such basis states were obtained in [5]; they
are also related to the nonpolarized states and corre-
sponded to the pairs of orthogonally polarized photons
(in Fig. 1, they would be mapped into diametrically
opposite points on the sphere).

Based on the polarization states of two-photon light
(6) and their transformations, one can develop a ternary
code for quantum information transmission. This
would increase the density of quantum information
recording, as compared to the standard qubit coding. If
the information is coded using biphotons, whose state
is given by Eq. (2) in the three-dimensional space and,
hence, is analogous to a three-level system or a particle
with spin 1, then N biphotons (qutrits) will encompass
not 2N states, as in the case of N qubits, but 3N states.
The qutrit coding was first demonstrated in [6], though
for the nondegenerate (two-beam) SPDC. The single-
beam regime is more convenient for quantum informa-
tion transmission, because it allows one to pass both
correlated photons through the same optical fiber. A
possible scheme of quantum cryptography based on the
ternary coding was suggested in [7].

In [8], the anticorrelation effect was observed for
synthesized type-II biphotons. The idea of this effect
(which was first observed in [9]) is as follows. The sig-
nal and idler photons radiated into different spatial or
polarization modes (their frequencies must necessarily
be identical) are led to different inputs of a 50% beam
splitter. At the outputs of the beam splitter, two detec-
tors, D1 and D2, are placed together with the coinci-
dence circuit, so that the coincidence may occur upon
the detection of an idler photon by the detector D1 and
a signal photon by the detector D2 or vice versa. Due to
the interference of the corresponding probability ampli-
tudes, the coincidence counting rate drops virtually to
zero (more precisely, to the counting rate of accidental
coincidences) upon balancing optical paths of the sig-
nal and idler photons before the beam splitter. In [9], it
was suggested that this effect be used for measuring
short group delays between photons. The coincidence
counting rate Rc as a function of the time delay τ
between the signal and idler photons before the beam
splitter takes the form of a “dip” given by the expres-
sion [8]

(8)Rc 1 g 1( ) 2τ( ) ,–∼
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where g(1)(τ) is the first-order correlation function of
the two-photon light. Inasmuch as this function is deter-
mined only by the spectrum, the dip shape depends
only on the spectrum of two-photon light. As a result,
the anticorrelation effect for the |1, 1〉  state synthesized
from the |2, 0〉  and |0, 2〉  states shows itself as a narrow
dip, as in the case of type-I biphoton light (as a rule, the
spectrum for the type-I phase matching is broader than
for the type-II matching). However, if the anticorrela-

Fig. 3. Plots of the number of coincidences in the scheme
shown in Fig. 2 against the rotation angle of the λ/2 plate:
(a) without the additional block (|c2|2 is measured); (b) with
the additional block, in which the polarizer selects the X
polarization (|c1|2 is measured).

Fig. 4. Plot of the number of coincidences in the scheme
shown in Fig. 2 against the displacement of mirror M.
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tion effect is observed for the synthesized state with
orthogonally polarized twin photons, the time delay τ
can be introduced by the polarization method, which
can be done much easier than in the case of different
spatial modes.

In [8], the anticorrelation effect was observed by
slowly changing the delay between the signal and idler
photons of a pair in the state ψ− using four KDP plates
of thickness 1.17 mm, two of which were fixed (their
optical axes were oriented at an angle of 45° to the X

Fig. 5. Scheme for measuring the shape of an anticorrela-
tion dip in the |1, 1〉  state synthesized from the |2, 0〉  and
|0, 2〉  states. The optical axes of quartz plates Q are set at an
angle of 45° to the X axis; four KDP plates are oriented so
that they do not introduce, in the absence of rotation, delay
between photons linearly polarized at 45° to X. The rotation
of the plate pair allows smooth variation of this delay.

Fig. 6. The shapes (a) of the first-order correlation function
and (b) of the anticorrelation dip for the synthesized |1, 1〉
state.
axis), while the other two plates could be rotated about
their optical axes tilted at an angle of –45° to the X axis
(Fig. 5). In addition, the delay could be introduced dis-
cretely using crystal quartz plates.

Because measurements were performed for the pho-
ton pairs in the state ψ− (linearly polarized at 45° to the
X axis), the polarizing beam splitter passed or reflected
each of the twin photons with a probability of 50%; i.e.,
the conditions for the observation of the anticorrelation
effect were fulfilled. The coincidence counting rate was
measured as a function of delay τ (Fig. 6). To check
relationship (8), the first-order correlation function
g(1)(τ) was also measured. To do this, one of the inter-
ferometer arms was shut off, and the system of quartz
and KDP plates functioned as a polarization interfer-
ometer for the horizontally polarized radiation from
another arm. The signal intensity detected by each of
the detectors showed an interference pattern upon turn-
ing the KDP plates. The value of |g(1)(τ)| was deter-
mined from the visibility of the interference pattern.
The results of measurements are shown in Fig. 6. The
solid line corresponds to the theoretical curve con-
structed using Eq. (8); the function |g(1)(τ)| was calcu-
lated as a Fourier transform of the SPDC spectrum,
which, in turn, was calculated on the basis of the
parameters of lithium iodate crystal.

One can see that, in accordance with Eq. (8), the
anticorrelation dip is twice as narrow as |g(1)(τ)|. For a
lithium iodate crystal of length 15 mm, its width was
30 fs.

4. POLARIZATION TOMOGRAPHY 
OF A BIPHOTON FIELD

To determine the polarization state of biphoton field
(2), standard polarization measurements, such as, e.g.,
the measurement of Stokes parameters, are insufficient.
The state of biphoton light (2) is primarily character-
ized by the fourth moments with respect to the field. As
shown in [10], complete information about the fourth
moments of polarized light is contained in the so-called
fourth-order coherence matrix

whose elements are the normally ordered fourth
moments of the form

Here, A, B, and C are real and D, E, and F are complex
numbers. In the general case of a mixed biphoton field
state, all nine real numbers specifying this matrix must
be known (if the total number of photons or the total

K4

A D E

D∗ C F

E∗ F∗ B 
 
 
 
 

,=

A ax
†2ax

2〈 〉 , B ay
†2ay

2〈 〉 , C ax
†ay

†axay〈 〉 ,≡≡≡

D ax
†2axay〈 〉 , E ax

†2ay
2〈 〉 , F ax

†ay
†ay

2〈 〉 .≡≡≡
JETP LETTERS      Vol. 75      No. 8      2002



POLARIZATION OPTICS OF BIPHOTONS 437
energy is known, it is sufficient to know eight num-
bers). However, for the pure state (2), it is sufficient to
know only the three real elements A, B, and C and any
two of the complex elements D, E, and F [2]. For exam-
ple, if A, B, C, D, and F are known, then the parameters
of state (2) are expressed as follows:

(9)

The mixed state of a biphoton field can be imagined as
the classical fluctuations of amplitudes ci in Eq. (2). To
describe such a state, one should use the density matrix
whose nine elements are in one-to-one correspondence
with the elements of K4.

In [11], a set of 16 measurements was suggested for
the characterization of a double-mode biphoton field.1

Note that the matrix, whose elements were measured in
[11], transforms into the matrix K4 from [10] after pass-
ing to the single-mode description. Following [11], one
can propose a scheme for measuring the polarization
state of a single-mode two-photon light (Fig. 7). In this
scheme, a biphoton beam is first divided into two beams
using a nonpolarizing beam splitter, whereupon the
measurements analogous to those suggested in [11] are
performed for the two output beams: for each of them,
the combination of a half-wave plate, quarter-wave
plate, and a vertically oriented linear polarizing filter is
mounted. Then, for a certain set of plate positions, the
coincidence counting rate is measured for the photo-
counts of two detectors placed behind the polarizing fil-
ters. However, because of the symmetry of both beams
(due to the single-mode character of two-photon light)
and also because one is dealing with a pure (rather than
mixed) state, it suffices to perform only seven measure-
ments instead of sixteen, as was suggested in [11].2 A
full set of measurements is given in the table, where the
plate orientations and the measured quantities are pre-
sented. Note that this set is not unique; when choosing
measurements, we tried to ensure that the measured
correlation function would contain the smallest possi-
ble number of elements of the coherence matrix. One
can see that only one quarter-wave plate and two half-
wave plates are sufficient for the full set of measure-
ments, or, if the polarizers can be rotated, it is sufficient
to place only one quarter-wave plate for one of the
beams.

Note that, although the pure polarization state of a
beam is characterized only by four parameters, polar-

1 To pass from a single-mode to a double-mode description, it suf-
fices to assume that the signal and idler photons either have dif-
ferent frequencies or their scattering angles are different.

2 For a mixed single-mode state, nine measurements is required.

d1
2 A

A B 2C+ +
---------------------------, d3

2 B
A B 2C+ +
---------------------------,= =

d1d2e
iϕ2 2D

A B 2C+ +
---------------------------,=

d3d2e
i ϕ3 ϕ2–( ) 2F

A B 2C+ +
---------------------------.=
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ization tomography involves seven measurements
rather than four. This is due to the fact that, first, the
total number of biphotons is unknown, so that this num-
ber (A + B + 2C)/2 should also be measured, and the
result should be normalized to it. Second, it is seen
from the table that each of the last four measurements
yields either the real or the imaginary part of the com-
plex quantities F and D, which corresponds to the
cosines or sines of phases in state (2). Since the phases
ϕ2 and ϕ3 are defined on the interval [0, 2π], one must
know both the cosines and sines of these phases.

If the biphoton-field state is mixed, then the set of
measurements listed in the table should be comple-

Fig. 7. Scheme of a setup for the polarization tomography
of a single-mode biphoton light. A nonpolarizing beam
splitter BS divides the input beam into two output beams. In
each of them are placed one half-wave plate (H1, H2), one
quarter-wave plate (Q1, Q2), and a polarizing filter transmit-
ting only the vertically polarized light (V1, V2). Detectors
D1 and D2 detect the radiation of output beams, and their
output signals are fed into the coincidence circuit CC. The
coincidence counting rate, as measured at different posi-
tions of the phase plates (table), allows a full set of biphoton
field parameters to be measured (2).

Set of measurements in polarization tomography of the state
of single-mode biphoton light

Measure-
ment no.

Position
Measured quantity

H1 Q1 H2 Q2

1 0° 0° 0° 0° B
2 45° 0° 45° 0° A
3 45° 0° 0° 0° C

4 22.5° 0° 0°
0°

(B + C – 2ReR)

5 0° 45° 0°
0°

(B + C – 2ImF)

6 45° 0° 22.5°
0°

(A + C – 2ReD)

7 0° 45° 45°
0°

(A + C – 2ImD)

1
2
---

1
2
---

1
2
---

1
2
---
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mented by two measurements corresponding to the real
and imaginary parts of the moment E.

5. CONCLUSIONS

This article is a brief overview of the works carried
out from 1999 to 2001 within the framework of the
Russian Foundation for Basic Research (project no. 99-
02-16419 “Polarization Optics of Biphotons”). The
related problems have also been discussed in this work.
We have considered the polarization state of a two-pho-
ton light in single spatial and frequency modes, as well
as the transformations and measurements of this state.
As a prospect for further investigations, one may sug-
gest the generalization to the case of the mixed state of
a biphoton field. The study of the polarization state of a
multiphoton light of interest is also. Finally, the funda-
mental results can serve as a basis for applied develop-
ments; for instance, the possibility of using polarization
states of a biphoton light in designing ternary quantum
cryptographic protocols are being discussed.

We are grateful to S.P. Kulik and A.A. Zhukov for
discussions. This work was supported by the Russian
Foundation for Basic Research (project nos. 99-02-
16419 and 00-15-96541).
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