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Using new experimental data, we calculated, with a high precision, a contribution to the muon anomalous mag-
netic moment from the vacuum-polarization intermediate states π0γ and ηγ taking into account a correction for
the trapezoidal rule: aµ(π0γ) + aµ(ηγ) = (53.1 ± 1.5) × 10–11. We also determined a small contribution from the
e+e–π0, e+e–η, and µ+µ–π0 intermediate states, which was found to be equal to 0.5 × 10–11. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 13.40.Em; 14.60.Ef
1 New experimental data [1–3] allow one to calculate
a contribution to the anomalous magnetic moment aµ ≡
(gµ – 2)/2 of a muon from the vacuum-polarization
intermediate states π0γ and ηγ with a high accuracy. We
also found a contribution from the e+e–π0, e+e–η, and
µ+µ–π0 intermediate states.

A contribution to aµ from an arbitrary vacuum-
polarization intermediate state X (hadrons, hadrons + γ,
etc.) can be obtained via the dispersion integral

(1)

1 This article was submitted by the authors in English.
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By evaluating the integral in Eq. (1) using the trape-
zoidal rule and the experimental data from SND [1, 2]
(Fig. 1a), one finds a contribution from π0γ:

(2)

The first error is statistical, and the second one is sys-
tematic. Note that the contribution from the φ region

(970 MeV <  < 1039 MeV) is 0.7 × 10–11.
For our level of accuracy, it is necessary to take into

account the error of the trapezoidal rule. The point is
that, when using the trapezoidal rule for determining an
exact value of R(s), we calculate not the integral, but a
sum. So, there is a problem of removing the error of the
trapezoidal rule. In our case we use three SND fits to
R(s) from [1], based on the vector dominance model [4]
(Fig. 1) for the experimental data in the energy region

600 MeV <  < 970 MeV.
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We construct a new small quantity which represents
the correction for the error of the trapezoidal rule,

(3)

where Ei are the experimental energies, E1 = 600 MeV,

EN = 970 MeV, si = , and R(si) are the SND fits. We
get

(4)

This result varies by less than 1% for different fits. Note
that the statistical error is also negligible (0.01 × 10–11).
So, we can neglect the errors in Eq. (4) and add it to
Eq. (2) to get the result

(5)
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Fig. 1. (a) Plot of the dependence of σ(e+e–  π0γ)

(in nb) on  (in MeV; SND experimental data and fit).

(b) Comparison of the theoretical formulas for σ(e+e– 
π0γ). Equation (6) is shown by the solid line, and the predic-
tion of the pointlike model is shown by the dashed line. 
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The point is that the values of both terms in Eq. (3),
as calculated using the fits, have a nonnegligible model
error. The contribution aµ(π0γ, 600 MeV, 970 MeV) cal-
culated using the SND fits differs by ~0.4 × 10–11 from
fit to fit. But the difference ∆aµ(π0γ, E1, EN) has a negli-
gible model error because of the inequality ∆aµ(π0γ, E1,
EN) ! aµ(π0γ, E1, EN), although the relative model error
is on the same order of magnitude.

For the energy region  < 600 MeV, we use the
following theoretical formula for the cross section:

(6)

where f 2 = (π/ )  ≅  10–11/MeV2, according to

[5]. Equation (6) is written in the approximation

(7)

The γ*  π0γ amplitude is normalized to the π0  γγ
amplitude at s = 0. The result is

(8)

Note that the region  < 2mµ gives a negligible con-
tribution of 2 × 10–13.

We neglect small errors associated with the experi-
mental error in width  (7%) and with approxi-

mation (7) (1.5%).
Equation (6) agrees with the data in the energy

region  < 700 MeV; at higher energies, approxima-
tion (7) does not work satisfactorily (Fig. 1b).

If we use a pointlike model, as in [6], we will obtain

Eq. (6) without the factor . The low-ener-
gies contribution predicted by this formula is several
times lesser than given by Eq. (8) (Fig. 1b).

Treating the CMD-2 and SND data [2, 3] in the
same manner and combining the results, one gets for
the contribution from ηγ

(9)

Note that the correction for the trapezoidal rule
gives –0.3 × 10–11.

According to the quark model (and also to the vector

dominance model), the energy range  < 720 MeV is
dominated by the ρ resonance, and, hence, σ(e+e– 
ηγ) ≅ σ (e+e–  ρ  ηγ). So, we can change Eq. (6)
according to this fact and take into account the ρ width,
to obtain a small contribution

(10)
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Combining Eqs. (5), (8), (9), and (10), one can write

(11)

where the statistical and systematic errors are sepa-
rately added in quadrature. In the table, we present our
results with the statistical and systematic errors added
in quadrature. Comparing Eq. (11) with the analogous
calculation in [6] (table), one can see that our result is
23% greater and the error is 2.5 times smaller. Note that
the increased result is mainly due to the interference of
ρ and ω in the π0γ channel, which was not taken into
account in previous works, where the Breit–Wigner
formula for the cross section was used. Contribution
(11) accounts for 133% of the projected error of the
E821 experiment at the Brookhaven National Labora-
tory (40 × 10–11) or 35% of the attained accuracy
(151 × 10–11 [7]).

We can also take into account the intermediate state
π0e+e– by using the obvious relation

(12)

where m is the invariant mass of the e+e– system,

and

is the c.m. momentum of γ*.
In the same manner, we can calculate aµ(µ+µ–π0)

and aµ(e+e–η). The result is

(13)

Note that, if m * mρ, we have the resonance excita-
tion effect in the reaction e+e–  π0(ρ, ω)  π0e+e–.
However, this effect increases final result (13) by less
than 10% because of the (p(m)/p(0))3 factor, which sup-
presses the high value of m. So, we ignore this correc-
tion. We also neglect aµ(µ+µ–η) = 2 × 10–14.

aµ π0γ( ) aµ ηγ( )+ 53.1 0.6 1.4±±( ) 10 11– ,×=

σ e+e– π0e+e– s,( )
2
π
---=

× md

m2
-------Γ

γ∗ e
+
e

–→
m( )σ e+e– π0γ∗ s m, ,( ),

2me

s m
π0–

∫

Γ
γ∗ e

+
e

–→
m( ) 1/2( )αβem 1 βe

2/3–( ),=

βe 1 4me
2/m2– ,=

σ e+e– π0γ∗ s m, ,( )

=  p m( )/ p 0( )( )3σ e+e– π0γ s,( ),

p m( ) s/2( )=

× 1 m
π0 m+( )2/s–( ) 1 m

π0 m–( )2/s–( )

aµ e+e–π0( ) aµ µ+µ–π0( ) aµ e+e–η( )+ +

=  0.4 0.026 0.057+ +( ) 10 11–× 0.5 10 11– .×=
JETP LETTERS      Vol. 75      No. 11      2002
As was noted in [6] and [8], it is also necessary to
take into account 

We take aµ(π+π–γ) = (38.6 ± 1.0) × 10–11 from [8]
(see also [6]) and aµ(π0π0γ) + aµ(hadrons + γ, s >
1.2 GeV2) = (4 ± 1) × 10–11 from [6]. Adding this to
Eq. (11), we get

(14)

Contribution (14) accounts for 239% of the pro-
jected error of the E821 experiment or 63% of the
attained accuracy.

In fact, the errors in Eqs. (11) and (14) are negligible
for any imaginable (g – 2)µ measurement in the near
future.

We thank A.D. Bukin for discussion of the correc-
tion for the trapezoidal rule. This work was supported
in part by the Russian Foundation for Basic Research,
project no. 02-02-16061.
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In this note we discuss the possibility of getting a time rather than space in the scenario of (de)construction of
a new dimension. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 11.10.Kk; 11.25.Mj
1 1. Recently, it was suggested in [1, 2] that a four-
dimensional gauge theory with a large gauge symmetry
behaves in the infrared region in a manner that is very
similar to a five-dimensional gauge theory with a
smaller gauge group. This leads to the idea of (de)con-
struction of extra dimensions, i.e., that the extra dimen-
sions do not exist at the fundamental level and emerge
dynamically in the infrared limit. The basic idea of
(de)construction is the following [1, 2]. One starts with
a theory with a chain of gauge symmetries G1 × G2 × …
GN, where all groups Gi are identical; i.e., we have N
copies of the same gauge group G. Matter is repre-
sented by a set of scalar fields Φi, i + 1’s, each trans-
formed as a fundamental representation with respect to
symmetry Gi and antifundamental with respect to
the neighbor2 Gi + 1. These scalar fields Φi, i + 1 develop
nonzero vacuum expectation values (VEV), and, hence,
the total gauge symmetry will be broken down to a
diagonal subgroup G. For simplicity, let us consider the
case where G = U(1); i.e., scalars Φi, i + 1 have charges
Qi = 1 and Qi + 1 = –1 with respect to the neighbor
groups U(1)i and U(1)i + 1. The system is described by
the Lagrangian

(1)

[the signature (–, +, +, +) is chosen], where the covari-

ant derivative is defined as Dµ = ∂µ + i  and

1  This article was submitted by the authors in English.
2  Alternatively, instead of the fundamental scalar fields one can

consider some bilinear fermion condensates [1], but this is of lit-
tle importance.
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T (i) are the generators of gauge symmetry with respect
to the group number i. Therefore, for a field Φi, i + 1 one
gets

(2)

When the order parameter Φi, i + 1 acquires a nonzero
VEV, one has

(3)

Neglecting in the infrared (IR) limit the kinetic
energy ∂µv∂µv, one can see that the scalar contribution
to the Lagrangian is equal to

(4)

This term has the structure of a discrete version of
Fµ,5Fµ,5, where phase φi, i + 1 is a phase of link variable
for the component A5(x, i) and

(5)

The lattice spacing a is related to the condensate v  by
the relation

, (6)

so that the continuous limit corresponds to large v. In
this model, one gets a “transverse-lattice” description
of a full 4 + 1 gauge theory, where the size of extra

DµΦi i 1+, ∂µΦi i 1+, i A i( )µ A i 1+( )µ–( )Φi i 1+, .+=
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µ A i( )
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space L is proportional to the number of independent
gauge symmetries in the unbroken phase:

(7)

It was shown recently that the deconstruction sur-
vives nonperturbatively in the supersymmetric case [3],
and two compact dimensions, instead of one, can be
constructed along this way if the full lattice of nonper-
turbative states is taken into account [4]. Moreover,
recently attempts were made to introduce gravity into
this scenario [5]. For other phenomenological applica-
tions of this approach, see [6].

2. Of course, this construction can be repeated for
the spacetime of dimension and, starting with the d +
1-dimensional spacetime, we can get (d + 1) + 1-dimen-
sional spacetime in the infrared limit. One can immedi-
ately raise the following question: is it possible to start
with d-dimensional space and get d + 1-dimensional
spacetime? In other words, can we obtain time from
nothing using (de)construction?

The answer to this question seems to be positive, but
we have to work with the system involving the appar-
ently tachyonic degrees of freedom. Actually, the dif-
ferent dependences of the vector and scalar degrees of
freedom on the metric seems to be crucial for our pur-
pose. Therefore, we explicitly restore the dependence
on the metric in gauge action:

(8)

and carefully study the metric which arises after decon-
struction.

Consider first a spacetime with the metric gnm =
diag(– + +…+) in the spirit of the example discussed in
[1, 2]. For simplicity, let us consider the case d = 3 with
gnm = diag(– + +). Lagrangian (8) leads to a well-
defined action:

(9)

For the choice of metric gnm = diag(+ – –), we have a
wrong sign of the scalar part of the action (it would be
ghostlike), but the gauge part is correct. The transition
from the signature (– + +) to the signature (+ – –) is
nothing but the transformation

gnm  –gnm, (10)

and, obviously, the Lagrangian of vector fields is invari-
ant under this transformation, while the kinetic part of
the scalar Lagrangian is not. Let us note that the path

L Na N / 2gv .= =

+
1

4g2
-------- gmngklF i( )mkF i( )nl

i 1=

N

∑–=

– gmnDmΦi i 1+,
† DnΦi i 1+,

i 1=

N

∑

S x3 g– +.d∫=
JETP LETTERS      Vol. 75      No. 11      2002
integral for the theory with action (8) is defined with an
oscillating exponent

(11)

In the low-energy limit, this path integral describes a
gauge (Maxwell or Yang–Mills) theory including mat-
ter in a 3 + 1-dimensional spacetime with one extra
compact spatial direction and metric Gµν =
diag(−+++).

Let us now turn to our main observation and show
how the time coordinate can be generated if a metric
different from gnm = diag(–++) is chosen before decon-
struction. The most interesting possibility is to assume
that our metric describes the Euclidean space; i.e., all
directions have the same signature. There are formally
two possibilities:

To take metric gE = diag(+ + +); i.e., all coordinates
are spacelike coordinates in our original 2 + 1 space-
time (of course, there is no time now; it exists only
when we have a quadratic form with an indefinite sign).

To take metric gL = diag(– – –); i.e., in our original
2 + 1 “spacetime” all coordinates are timelike coordi-
nates, or, formally, they are spacelike, but the “kinetic”
terms of Φ fields in Eq. (8) have the wrong sign.

In the first case, one can see that, starting with gE,
after deconstruction one gets the extra spatial coordi-
nate and, hence, the Euclidean gauge theory in the
d = 4 space:

(12)

with the low-energy action

(13)

where the extra “i” amounts from the factor , and
it cancels with the factor “i” in the path integral (11),
thus yielding an Euclidean field theory with a real path
integral:

(14)

Let us consider now the second choice, i.e., where
we have metric gL = diag(–– –). It is easy to see that, in
this case, the relative signs of gauge and scalar sectors
are different. If one considers a lattice regularization for
the space, one can see that the scalar part corresponds
to the antiferromagnetic coupling between the nearest
neighbors, contrary to the ferromagnetic coupling in
the space case: the state where neighbor fields are close
to each other does not correspond to a minimum but to
a maximum, implying the existence of the unstable
mode. One can easily see that, upon repeating the same
steps, we do not change anything in a gauge part (which
now becomes the magnetic-field part of the action), but

DAm x( ) DΦi i 1+, x( ) i x3 g– +d∫–{ } .exp
i

∏∫

GE
MN δMN ,=

iS– i
1

4g2
-------- x3d y GEFMNFMN ,d∫–=

g–

DAM x y,( ) S A[ ]–{ } .exp∫
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because of the change of the sign of the scalar part, we
effectively get an electric-field contribution.

The naive way to get the electric-field contribution
F0mF0m = –F0mF0m out of the Goldstone part is just to
identify φi, i + 1(x) as a scalar potential A0(x, i) and
approximate in the expression

(15)

the combination A(i + 1)m(x) – A(i)m(x) as a time derivative
(dAm/dt)δt. In this view, the step of the “time lattice” is
nothing but the inverse value of the condensate, δt =
1/gv. The higherderivative terms are suppressed by the
large value of the condensate.

As a result, we get to the theory in a spacetime that
has the Minkowski metric

(16)

Since the factor  should appear in this case, there
is no extra “i” when we go from 3 to 3 + 1 dimensions.
Therefore, we derive the correct path integral (with
complex phase) for the gauge theory in Lorentzian
spacetime. Note also that the deconstruction effectively
restores the symmetry GMN  –GMN, which becomes
the effective low-energy symmetry.

One can be more precise and look more carefully on
the “mass term” for the “W-bosons,” which can be eas-
ily found from the action. In [1, 2], this term was imme-
diately identified with Kalutza–Klein (KK) masses
using the mode expansion of the gauge field A(t, x, x5).
Now, since we are hunting for the time, it is natural to
assume that such a term amounts from the mode expan-
sion of Am(t, x) in t variable. As far as the eigenvalues
of the mass matrix have the structure mk = gv sin(k/N)
at large N, the linear spectrum of frequencies ωk ∝  k has
to be somehow explained. In the KK case, it is just the
consequence of the periodic or Z2 orbifold boundary
conditions. However, the case of time periodic condi-
tions in the Minkowski space are not acceptable.
Hence, in our case we could have only a kind of orbi-
fold boundary conditions on the “boundary of the Uni-
verse” or free boundary conditions and infinite N. In
principle, one can consider finite N, and this case will
correspond to the “Universe” which originates at some
moment and whose existence will be terminated at
some later moment. Perhaps, this approach could be
also useful for discussing periodic time, for example,
the case of AdS spacetime.

Since the time direction emerges dynamically, we
have to examine the Gauss law selecting the gauge
invariant states at the quantum level. Let us compare

F0m x i,( ) ∂mφi i 1+, x( )=

– 2gv A i 1+( )m x( ) A i( )m x( )–( )

GL
µν diag – + + +, , ,( ).=

G–
how Gauss law and gauge invariance are realized in the
KK and “time” cases. In the first case we have

(17)

One can easily see that, in a continuum limit, the den-
sity ρi becomes nothing but –∂5E5. As a result, we get a
five-dimensional Gauss law

(18)

A totally different story appears when we want to
get time from deconstruction. In this case, we do not
have an electric field to start with. One can see that the
Gauss law ∂mEm = 0, which is supposed to be valid at
any time moment i, can be written as

(19)

One can choose all φi, i + 1(x) = 0 (this is the A0 = 0
gauge). The Gauss law in this case reads

(20)

and corresponds to the time-independent gauge fixing.
Let us also comment on the possible relation

between the quasiclassical nonperturbative configura-
tions. It was argued in the KK supersymmetric case that
the nonperturbative configurations are mapped onto
each other under deconstruction [3]. In the time case,
we would like to get, for instance, an instanton in the
deconstructed theory. It can be obtained, indeed, con-
sidering the infinite arrow of monopoles in the d = 3
theory along the time direction.

3. Now let us briefly mention what the physical con-
sequences of the picture proposed are. First, note that
the perception of time as a chain of ordered events with
no return to the past means just the fact that we measure
observables in the ith sector only once. After we have
measured it, we have to measure the next one and can
never return, because the wave function in that sector is
already defined. Second, it is natural to ask if a kind of
appearance (or disappearance) of the time dimension in
the IR (UV) limits, similar to what happens in the KK
case, is possible. In the KK case, the condensate can be
destroyed at large energies, yielding the effective disap-
pearance of the fifth dimension. One can relate this to
the uncertainty relation ∆x5∆p5 ≥ 1: when we try to
localize the position in space, we bring such an uncer-
tainty into the momentum, which causes the destruction
of the condensate. If, for example, we destroy the con-
densate on the link (i, i + 1), it will cause the creation of
two disconnected worlds. In the time case, one could
also imagine the dynamical disappearance of the con-
densate, which would look as if time disappears. Again,
if we try to destroy a condensate just on one link, it will

∂mE i( )m ρi,=

–ρi ∂0φi i 1+, x( ) 2gv A i 1+( )0 x( ) A i( )0 x( )–( )–=

– ∂0φi 1– i, x( ) 2gv A i( )0 x( ) A i 1–( )0 x( )–( ).–

∂mEm ∂5E5+ 0.=

∂mF0m x i,( ) ∂2φi i 1+, x( )=

– 2gv ∂mAm x i 1+,( ) ∂mAm x i,( )–( ) 0.=

∂mAm x i 1+,( ) ∂mAm x i,( )=
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also cause the emergence of two disconnected worlds;
but now they will be disconnected in time. Now, we
have the uncertainty relation ∆E∆t ≥ 1, and because we
have the time quanta ∆t ~ v –1, one cannot have ∆E ≤ v.

Our perception of time is a causally ordered
sequence of measurement processes, each of which can
happen only once. If time emerges in the manner as we
have just described, this would mean that the observer
can make a measurement for all gauge fields, but only
once. In some sense, the full evolution is just a single
complete measurement. This indeed sounds quite natu-
ral. When one asks what happens when we repeat a
measurement, it is based on the assumption that we can
measure something again later. But later means later in
time, and if time itself emerges dynamically, this ques-
tion simply cannot be asked. There is only one mea-
surement for each sector, which means that you cannot
return to the past and reobserve the things.

Among other interesting points to be questioned is
the deconstruction of the d = 2 Yang–Mills (YM) the-
ory. Since for d = 2 the YM theory is topological, only
zero modes on the cylinder are relevant and all higher
KK modes can be safely cut off. The theory, which
amounts to the d = 2 YM theory after deconstruction,
can be presented as N copies of quantum mechanics
where N defines the radius of the cylinder. However,
since only zero mode works, only one copy of quantum
mechanics is relevant. Now, turn to the question con-
cerning the signature of the d = 2 theory. Before decon-
struction, the issue of the signature in quantum
mechanics is subtle, since we have to deal with “world
line” (time) and “target” (coordinate) simultaneously. It
can be well-defined only for the relativistic particle,
since the length of the world line is defined with some
metric.

On the other hand, the d = 2 YM theory at large N is
equivalent to the c = 1 string theory; that is, what we are
talking about is the deconstruction of the c = 1 string
theory from the set of copies of quantum mechanics.
Moreover, from the viewpoint of c = 1 string, we decon-
struct the target manifold, since the d = 2 YM theory is
defined on the target from the stringy point of view.
How the second dimension emerges in the c = 1 string
is known: it is the Liouville mode, while the c = 1 string
theory can indeed be defined via matrix quantum
mechanics. Hence, the issue of the resulting metric in
the d = 2 theory is associated with the sign of the Liou-
ville contribution to the action. Usually, it is assumed
that the Liouville field plays the role of time. One more
potential question concerns the deconstruction of the
(0 + 1) theory (quantum mechanics) from the copies of
the (0 + 0) (matrix model). This has something to do
JETP LETTERS      Vol. 75      No. 11      2002
with the M(atrix) model deconstruction of D0 brane
from the D instantons.

It is known how the deconstruction procedure can be
formulated in terms of branes. For instance, to get the
quiver models one could take the set of D3 branes on
orbifolds in supersymmetric case [7]; then W bosons
are represented by the strings connecting the pairs of
D3 branes. When this paper was almost completed, pre-
print [8] appeared, where new branes localized in time
direction were found. These branes are very natural
objects to start with to get the new timelike coordinates
in terms of the brane array leading to the group prod-
ucts. Since the fundamental strings can end on them,
the spectrum of “masses” could be reproduced in a way
similar to the KK case.

4. In conclusion, let us make our main statement
again. Starting with action (8), it is possible to get a
quantum field theory in a spacetime where either an
extra spatial coordinate or extra time emerges via
deconstruction. Alternatively, one can get statistical
field theory.
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We calculate the nuclear spin-dependent parity-nonconserving E1 amplitudes for the optical transition
6p1/2, F  6p3/2, F ' and hyperfine transition 6p1/2, F  6p1/2, F ' in 205Tl. The experimental limit placed upon
the former amplitude by Vetter et al. [PRL 74, 2658 (1995)] corresponds to the anapole moment constant κa =
−0.26 ± 0.27. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 31.30.Jv; 32.80.Ys; 11.30.Er
1 In 1980, Flambaum and Khriplovich [1] pointed out
that the nuclear spin-dependent (NSD) part of the par-
ity-nonconserving (PNC) interaction in heavy atoms is
dominated by the contribution of the nuclear anapole
moment (AM) [2]. After that, AM was observed in the
PNC experiment with 133Cs [3], where the measured
value of the AM constant κa appeared to be even larger
than the theoretical prediction for the “best values” of
the nuclear PNC interaction constants (see [4] and ref-
erences therein). On the other hand, in the most accu-
rate measurement of the PNC amplitudes for
6p1/2, F  6p3/2, F ' in 205Tl [5], the NSD amplitude was
found to be consistent with zero and smaller than the
theoretical predictions [4, 6].

In [6], the ratio between the NSD amplitude and the
dominant nuclear spin-independent (NSI) PNC ampli-
tude was calculated in the one-particle approximation.
Here, we recalculate this ratio using the CI + MBPT
method [7–9], which allows us to account for both
core–valence and valence–valence correlations. We
found that the correlation corrections are relatively
large but do not explain the discrepancy between the
measurement [5] and the theory [4]. A more accurate
measurement of the NSD amplitude for the optical tran-
sition 6p1/2, F  6p3/2, F ' is hampered by the much
larger NSI amplitude and the smallness of the hyperfine
structure of the upper state. Consequently, it is easier to
measure the PNC amplitude for the hyperfine transition
6p1/2, F  6p1/2, F ', where the NSI amplitude turns to
zero, while the NSD amplitude is not suppressed [10].
Here, we find that the correlation corrections to this
amplitude are 20%.

1 This article was submitted by the author in English.
0021-3640/02/7511- $22.00 © 20534
In the PNC experiments on the Tl 6p1/2  6p3/2
transition, the ratio

(1)

of the PNC amplitude to the magnetic amplitude was
measured with an accuracy of 1% in [5] and 3% in [11].
In those experiments, the hyperfine structure of the
lower level 6p1/2 was resolved. This allowed one to
determine 5(F) for two ground-state hyperfine levels,
F = 0 and F = 1. For the F = 0 level, only the transition
to F' = 1 of the 6p3/2 level is allowed, while for the F =
1 level the transitions to both upper hyperfine levels F'
= 1, 2 are allowed. Accordingly, 5(1) is a certain aver-
age of two transitions:

, (2a)

(2b)

where the coefficient x2 depends on the transition inten-
sities and experimental conditions such as the line
width and optical depth.

Observation of the F dependence of the PNC ampli-
tude is important because it can give information about
the NSD part of the PNC interaction:

(3)

where GF = 2.2225 × 10–14 au is the Fermi constant of
weak interaction, QW is the nuclear weak charge, κ is
the dimensionless coupling constant, γ5 and a ≡ γ0g are

the Dirac matrices, I is the nuclear spin (I =  for both

5 Im E1PNC/M1( )≡

5 0( ) 5 0 1,( )≡

5 1( ) x25 1 1,( ) 1 x2–( )5 1 2,( ),+≡

HPNC HNSI HNSD+=

=  
GF

2
------- –

QW

2
-------γ5

κ
I
---aI+ 

  ρ r( ),

1
2
---
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stable 205Tl and 203Tl isotopes), and ρ(r) is the nuclear
density distribution.

There are three main contributions to the coupling
constant κ in the NSD part of PNC interaction (3):

(4)

where the AM contribution is given by the constant κa

[1] and the constant κ2 = (4sinθW – 1) ≈ –0.06 corre-

sponds to the NSD weak neutral currents.2 The term
 is due to the interference of the NSI and hyperfine

interactions. For heavy nuclei, this constant is propor-
tional to A2/3 [12, 13], and for Tl  ≈ 0.02. Substitut-
ing these values in Eq. (4), we get

(5)

Theoretical predictions for the AM constant depend on
the nuclear model and vary within the range 0.1 ≤ κa ≤
0.4 (see [4] and references therein). On the other hand,
for a given nuclear model, one can use the measured
values of κa to gain information on the coupling con-
stants for the nuclear P-odd interaction [14–16].

In this article, we calculate the NSD amplitudes
6p1/2, F  6p3/2, F ' and use Eq. (5) and experimental
results from [5] to place a limit on the AM constant κa.
Following [5, 6], we use the parametrization

(6)

which links the NSD amplitude to the NSI amplitude
via the function ξ(F, F'). According to Eq. (2), one can
define the function ξ(F) as follows:

(7a)

(7b)

An important property of the one-particle approxi-
mation is the equality ξ(1, 1) = ξ(1, 2) [6], which
means that ξ(1) does not depend on the coefficient x2

in Eqs. (2b) and (7b). Numerical values (obtained
in [6]) are

(8)

In general, when the electron correlations are taken into
account, ξ(1, 1) ≠ ξ(1, 2). Then, one has to use Eq. (6)
for 5(F, F ') and calculate the function ξ(F ', F). After
that, the experimental function ξ(F) is given by Eq. (7).
Consequently, the difference in the NSI and NSD
amplitudes depends on the factor x2.

The NSI amplitude was studied many times, the
most advanced and accurate calculations being per-
formed in [17, 18] (for earlier references, see [19]). It

2 Note that the radiative corrections can change κ2 rather notice-
ably.

κ –
2
3
---κa κ2 κQW

,+ +=

λ
2
---

κQW

κQW

κ 2
3
--- κa 0.06–( ).–=

5 F F',( ) C Z( ) QW 6κξ F F',( )–[ ] ,=

ξ 0( ) ξ 0 1,( ),=

ξ 1( ) x2ξ 1 1,( ) 1 x2–( )ξ 1 2,( ).+=

ξop 0( ) 0.87, ξop 1( ) 0.29.–= =
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was shown there that the many-body corrections to the
PNC amplitudes in Tl may be important. This stimu-
lated us to recalculate the function ξ(F, F '). We follow
here the same procedure as was used in [18]. It is based
on a combination of the many-body perturbation theory
for core–valence correlations and the configuration
interaction for three valence electrons (CI + MBPT
method) [7–9].

Most of the technical details of this calculation, such
as the basis sets, configuration sets, etc., are the same as
in [18], where a number of test calculations were made
for the spectrum, hyperfine constants, E1 amplitudes,
and polarizabilities. All these parameters were shown
to be in good agreement with the experiment. This
allowed us to estimate the accuracy of calculation of the
NSI amplitude at a level better than 3%. Here, we use
the same wave functions for the 6pj states but neglect
several smaller corrections (such as structural radia-
tion) to the effective operators for valence electrons.
The normalization correction is the same for the NDI
and NSD amplitudes and does not affect the function
ξ(F ', F).

In order to find the PNC amplitude, we solve the
inhomogeneous equations

(9)

(10)

where Heff is the effective Hamiltonian for valence elec-
trons, which accounts for the core–valence correlations
in the second-order many-body perturbation theory [7,

8],  is the z component of effective E1 amplitude in
the length gauge [20], and m is the magnetic quantum
number. The solutions to these equations can be decom-
posed as a series in terms with definite angular quantum
numbers J:

(11)

The NSI amplitude can be found by calculating the
following matrix elements:

(12)

where we omitted the index m in the matrix elements and

took advantage of the fact that  is diagonal in quan-
tum number J. The NSD part of PNC interaction (3)

E6 p3/2
Heff–( )Ψa m,

D( ) Dz
effΨ6 p1/2m,=

E6 p1/2
Heff–( )Ψb m,

D( ) Dz
effΨ6 p3/2m,=

Dz
eff

Ψi m,
D( ) Ψi J m, ,

D( )

J

∑ ; i a b.,= =

E1NSI 1–( )
3
2
--- m– 3

2
--- 1

1
2
---

m– 0 m 
 
 
 

1–

=

× Ψ6 p3/2
HNSI

eff Ψa 3/2,
D( )〈 〉 Ψ b 1/2,

D( ) HNSI
eff Ψ6 p1/2

〈 〉+( ),

HNSI
eff
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Calculated values of ξ(F, F ') in different approximations: configuration interaction (CI) for the three valence electrons and
the CI + MBPT method; a and b correspond to the two contributions in Eqs. (12) and (13) 

F, F '
CI CI + MBPT

a b total a b total

0, 1 1.09 1.29 1.20 1.08 1.12 1.10

1, 1 –0.498 –0.513 –0.506 –0.500 –0.431 –0.462

1, 2 –0.337 –0.413 –0.378 –0.331 –0.361 –0.348
can change this quantum number, and the correspond-
ing amplitudes have a more complicated form:

(13)

where the constants C(J, F, F ') are certain combinations
of the 6j coefficients (see [21] for detail).

All wave functions in Eqs. (12) and (13) are many-
electron ones. In the one-particle approximation, these
expressions are simplified, and both NSI and NSD parts
of the PNC amplitude have the form

(14)

Here, the sum runs over the occupied (n = 1, …, 6) and
vacant (n > 6) states. The contribution of the occupied
states with n ≤ 5 is very small, while n = 6 contributes
almost as much as the whole sum over the vacant states.
The term n = 6 corresponds to the amplitudes with
index b in Eqs. (12) and (13). It can be seen that all
intermediate states in Eq. (14) have J = 1/2. This leads
to the equality ξ(1, 1) = ξ(1, 2), which is incorrect for
the more general case of Eq. (13). The many-body cor-
rections are the strongest for the weak F = 1  F ' = 1
amplitude, which affects the value of ξ(1, 1).

Our results for the function ξ(F, F ') are given in the
table. We found them from the calculated amplitudes
(12) and (13) using two approximations. At first, we
used the configuration interaction method for the three
valence electrons with conventional operators. Then,
we used the second-order many-body perturbation the-
ory to construct the effective Hamiltonian Heff and the
random phase approximation for the effective operators

 and .

It follows from the comparison of the table with
one-particle approximation (8) that the correlation
effects enhance the NSD amplitudes. For the weakest
F = 1  F ' = 1 amplitude, the correlation correction
exceeds 50%. For two other amplitudes, the correla-
tions are less important but still account for 20–25%
enhancement. The valence correlations are larger for
the amplitudes b. A dominant contribution to these

E1NSD C J F F', ,( )
J 1/2=

5/2

∑=

× Ψ6 p3/2
HNSD

eff Ψa J,
D( )〈 〉 Ψ b J,

D( ) HNSD
eff Ψ6 p1/2

〈 〉+( ),

E1PNC

6 p3/2 D ns1/2〈 〉 ns1/2 HPNC 6 p1/2〈 〉
ε6 p1/2

εns1/2
–

----------------------------------------------------------------------------------.
n

∑=

Dz
eff HPNC

eff
amplitudes corresponds to the intermediate states from
the 6s6p2 configuration, where the correlations between
two p electrons are very strong. In contrast, the main
contributions to the amplitudes a correspond to the con-
figurations 6s2np, where the correlations are much
weaker.

We showed above that the correlation corrections to
the NSD amplitudes are rather large. Moreover, our val-
ues of ξ(1, 1) and ξ(1, 2) noticeably differ from each
other. This leads to the dependence of the experimen-
tally observed amplitude (Eq. 2b) on x2. The value of
this parameter depends on the experimental conditions.
In the linear regime, x2 and 1 – x2 are proportional to the

corresponding line intensities. This gives x2 =  [19].

The actual experiment [5] was done in the nonlinear
regime, where the light was completely absorbed at the
line center and the PNC signal was detected only at the

wings. In these conditions, one can expect that  ≤ x2 ≤ .

Below, we analyze each of the limiting cases.

If we substitute the values from the table into
Eq. (7b), we get

(15)

The NSI amplitude can be found as a weighted average

(16)

The experimental difference between 5(1) and 5(0) is
only about 1%. Because of this, both values of ξ(1) in
Eq. (15) lead to the same value 5NSI = –14.68 × 10–8, in
agreement with the result from [5].

The difference ∆5 ≡ 5(1) – 5(0) can be written as

(17)

(18)

1
6
---

1
6
--- 1

2
---

ξ 0( ) 1.10;=

ξ 1( )
0.367, x2– 1/6,=

0.405, x2– 1/2.=



=

5NSI
ξ 0( )5 1( ) ξ 1( )5 0( )–

ξ 0( ) ξ 1( )–
---------------------------------------------------.=

∆5 6κξ 0( ) ξ 1( )–
QW

-------------------------5NSI,=

∆5 4 κa 0.06+( )ξ 0( ) ξ 1( )–
QW

-------------------------5NSI,–=
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where we use relation (5) between κ and κa. The table
and Eq. (15) give ξ(0) – ξ(1) = 1.49 ± 0.02, and, substi-
tuting the standard model value QW = –116.7 [22],
we get

(19)

where the error sign corresponds to two values of x2 in
Eq. (15) and does not take into account the theoretical
error caused by the neglect of higher orders in the
many-body perturbation theory. The latter was esti-
mated in [18] for the NSI amplitude at a level close to
3%. Here, we neglect the structural radiation correc-
tions and some other corrections which can contribute
on a one-percent level, so we estimate the actual accu-
racy of Eq. (19) at about 5%. On this level, the uncer-
tainty in the experimental conditions described by the
parameter x2 is negligible. 

Using the experimental values from [5],

(20)

(21)

we get the following result for the AM constant:

(22)

In an independent measurement [11] of the PNC effects
in Tl, a very close central value for the parameter ∆5
was obtained, though with an uncertainty that was three
times larger. If we use Eq. (8) instead of Eq. (15), we
get κa = –0.32 ± 0.35. This means that the correlations
account for 30% of the corrections and lead to a smaller
absolute value of the AM constant. Note that in [5] the

approximate values ξ(0) = 1 and ξ(1) = –  were used

instead of the more accurate one-particle values (8),

and the relation κ = –  was used instead of Eq. (5).

It was first recognized by Novikov and Khriplovich
[10] that the NSD operator also leads to the E1 ampli-
tude between the hyperfine sublevels of the same elec-
tronic state. The ground-state hyperfine transition is the
most interesting in this respect. The corresponding
amplitudes were calculated in the one-particle approx-
imation for Cs and Tl [10] and for K [23]. The only
many-body calculation was performed recently for Fr
[21]. It is straightforward to recast Eq. (13) for this
case, and all the calculations are similar to those for the
optical transition. The result in au is

(23)

where we use the same level of approximation as above
and add the normalization correction [18]. In the one-
particle approximation, the M1 amplitude for this tran-

sition is equal to –α/2 . The correlations change this

∆5 0.051 0.001±( ) κa 0.06+( )5NSI,=

5NSI –14.68 0.06 0.16±±( ) 10 8– ,×=

∆5 0.15 0.13 0.15±±( ) 10 8– ,×=

κa 0.26– 0.27.±=

1
3
---

2
3
---κa

6 p1/2 1 E1NSD 6 p1/2 0, ,〈 〉 2.11 10 11– iκ ,×=

3
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value only at a subpercent level, and we can safely use
it to calculate 5:

(24)

Comparison of this value with the one obtained in [10]
shows that the correlations increase the result by
approximately 20%. Result (24) can also be compared
with the F = 4  F ' = 5 transition in the 211Fr 7s
ground state, where 5 = 3.9 × 10–9κ [21]. Although the
M1 amplitude for the hyperfine transition in Tl is signif-
icantly smaller than in Fr, it would be much easier to do
the experiment with stable Tl than with radioactive Fr.
Note that for lighter Cs 5 is an order of magnitude
smaller.

We see that the electron correlations account for the
substantial corrections to the AM amplitudes but do not
explain the difference between the experiment [5] and
the prediction of nuclear theory that κa = 0.25 ± 0.15
[4]. The experimental accuracy for the NSD amplitude
of the 6p1/2  6p3/2 transition is not high, because this
amplitude is much smaller, than the NSI amplitude.
Therefore, it may be very interesting to measure the
hyperfine amplitude (23), where the PNC effects are
completely determined by the NSD part of the weak
interaction. Note also that the hyperfine transition fre-
quencies for two natural isotopes 203Tl and 205Tl differ
by 1% and can be easily resolved. This enables one to
measure the AM constants for each of the isotopes.
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was supported by the Russian Foundation for Basic
Research, project no. 02-02-16387.
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A solution to the problem of realizing the collapse of three-dimensional wave packets in nonlinear media with
normal group velocity dispersion is proposed. Wave packets with pronounced hyperbolic topology are shown
to collapse; i.e., the field increases infinitely near the system axis. In particular, wave collapse of the tubular
axisymmetric packets occurs through the concentration of the compressed ring field distribution at the axis.
The collapse is shown to stabilize due to the saturation of nonlinearity or nonlinear dissipation, which restrict
the field increase and lead to the packet splitting in the transverse direction. © 2002 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 42.25.Bs; 42.65.-k
As a rule, the group velocity dispersion of a laser
pulse in condensed media is normal (the derivative
∂v gr/∂ω < 0 is negative). For this reason, the dynamics
of laser radiation self-action is described by a modified
equation for the amplitudes of wave-packet envelope
[1]. In dimensionless variables, the corresponding
equation is a nonlinear Schrödinger equation (NSE)
with a hyperbolic spatial operator [1–9]:

(1)

Here, ψ is the complex amplitude E = ENLψ(z, x, y,
τ)exp(iωt – ikz) of the electromagnetic-field envelope
of a wave propagating along the z axis with group
velocity v gr = (dk/dω)–1; ENL is the characteristic non-
linear field; τ = (t – z/v gr)k3/2c2/(ω|∂v gr/∂ω|1/2); the
dimensionless evolution variable z and the dimension-
less transverse coordinates x and y are related to the cor-
responding dimensional variables ze, xtr, and ytr by z =
kze/2 and (x, y) = k(xtr, ytr); k is the wave number; and
∆⊥  = ∂2/∂x2 + ∂2/∂y2.

Equation (1) is extensively used to describe the self-
action of wave fields (upper-hybrid, cyclotron, etc.) in
a magnetized plasma [2, 9–11].

Equation (1), as well as the standard NSE with an
elliptic operator, has a number of integrals, among
which the energy integral

(2)

and Hamiltonian

(3)

i
∂ψ
∂z
------- ∆⊥ ψ ∂2ψ

∂τ2
--------- ψ 2ψ+–+ 0.=

I ψ 2 rd τd∫=

H ∇ ⊥ ψ 2 ψτ
2– ψ 4/2–( ) rd τd∫=
0021-3640/02/7511- $22.00 © 20539
are the most important. The Hamiltonian H of the sys-
tem accounts for the specific features of the wave-field
self-action in Eq. (1). These features are associated
with the competition between the processes in the lon-
gitudinal and transverse directions. In contrast to the
elliptic NSE, the qualitative analyses of the self-action
dynamics in the aberration-free approximation and the
use of the method of moments did not provide any
strong evidence for the occurrence of collapse in the
system, but they also did not exclude this possibility [2,
8–10]. Numerical study of the processes has confirmed
that the infinite transverse compression of the wave
packet is hindered primarily by the packet instability,
which leads to the pulse splitting in the transverse
direction. At the same time, it is evident that there is a
class of field distributions specific to the hyperbolic
NSE for which the diffraction and dispersion processes
compensate each other (|∇ ⊥ ψ|2 . |ψτ |2). For such distri-
butions, the role of the nonlinear processes increases, as
is seen from Eq. (3). Analytic and numerical studies of
the evolution of two-dimensional (∆⊥  = ∂2/∂x2) horse-
shoe field distributions corroborate this conclusion
[13]. An even more pronounced enhancement of non-
linear effects can reasonably be expected in the three-
dimensional case. Evidently, collapse occurs if the self-
focusing compression toward the system axis proceeds
faster than the splitting instability develops.

In this paper, we consider the evolution of axisym-
metric wave structures and study analytically the
dynamics of the three-dimensional horseshoe initial
wave-field distributions. Under certain simplifying
assumptions, we demonstrate that the wave-field distri-
bution of this type narrows and shifts to the system axis
(z axis). In the self-similar “fall-to-center” process, the
field amplitude tends to infinity; i.e., collapse occurs.
002 MAIK “Nauka/Interperiodica”
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Numerical calculations of the dynamics are presented
for a more realistic field distribution occurring in a
tubular wave beam evolving toward the self-similar
regime.

1. We note first that Eq. (1) for the function depend-

ing on the self-similar variable η =  has the
form

(4)

This equation describes the spherically symmetric col-
lapse [13, 14]. This collapse is distributed and differs
from the well-known self-focusing regime of axisym-
metric beams by the fact that the resulting singularity is
extended in z. In order to use the result obtained in [13,
14], we note that, in the case under consideration, the

field is localized along the hyperbolas  = r2 – τ2.
Therefore, the singularity arises at the “point” repre-
senting the cone surface |τ| = r. The dynamics of the
corresponding self-similar field distribution ψ =

ψ(z, ) inside the cone (|τ| > r) is described by
Eq. (4), though with defocusing nonlinearity, i.e., with
the minus sign of the nonlinear term.

It is convenient to analyze the evolution of the initial
distributions localized near the hyperboloids η2 = r2 – τ2

in the new variables

(5)

This transformation makes it possible to investigate the
evolution of the τ-even wave-field distribution both in
the region of focusing nonlinearity (outside the cone,
|τ| < r; i.e., ζ > 0) and in the defocusing region, where
the dispersion prevails over the diffraction (inside the
cone, |τ| > r; i.e., ζ < 0). For definiteness, we consider
the self-action dynamics in the half-space 0 < τ < ∞,
0 < r < ∞ (0 < τ < ∞, –∞ < ζ < ∞ in new variables). It is
convenient to transform Eq. (1) and introduce some
simplifications using the variational approach. In vari-
ables (5), the action with the Lagrangian density has the
form

(6)

We assume first that the wave beam retains its Gaussian
shape along τ in the course of evolution,

(7)

and carry out corresponding simplifications for the
Lagrangian density. Using the expression for the
reduced action, one can derive the Euler equation

r2 τ2–

i
∂ψ
∂z
------- 1

η2
-----

η∂
∂ η2∂ψ

∂η
------- ψ 2ψ+ + 0.=

η0
2

r2 τ2–

ζ r2 τ2–( )/4, τ τ .= =

S
i
2
--- ψψz* ψ∗ ψz–( ) ζ ∂ψ

∂ζ
-------

2 ∂ψ
∂τ
-------

2
–+

∫=

+
τ
2
--- ψζ*ψτ ψζψτ*+( ) ψ 4

2
---------– 

 dζdτ .

ψ u ζ z,( )

b
--------------- τ2

2b2
--------– 

  ,exp=
describing the wave-field evolution along the hyperbo-
las:

(8)

It can be seen that this approach enables one to explic-
itly separate the main singularity associated with the
compensation of diffraction by the normal dispersion at
the cone surface r = |z |. In the region ζ > 0, the disper-
sion term in Eq. (8) is positive and wave-field self-
focusing is possible. For ζ < 0, the dispersion term is
negative, and Eq. (8) describes self-defocusing. At the
boundary where the self-action changes its character
(ζ = 0), the dispersion term vanishes.

Using the integrals of the set of Eqs. (2) and (3), the
equation of motion for the wave-field center of mass

ρ(z) =  can be written in the form

(9)

where

in new variables (5). In the most interesting case of neg-
ative Hamiltonian (H < 0), the center of mass of a wave
packet concentrated in the focusing region (ρ ≥ 0)
“accelerates” toward the boundary separating different
self-action regimes, intersects the boundary, and occurs
in the defocusing region (ρ < 0), where it continues
moving with the same acceleration.

Let us minimize action (6) on the class of probe
functions (7) which are localized near the center of
mass and have the form

(10)

Substituting Eq. (10) into Eq. (6) and integrating with
respect to ζ, we obtain the reduced action and the equa-
tion of motion

(11)

which describes the change in the characteristic size
a(z) of the region of wave-field localization during the
course of system evolution.

Near the boundary where the dispersion changes
sign (ζ . 0), the approximate solution to Eqs. (9) and
(11) with H < 0 has the form

(12)

(13)

i
∂u
∂z
------

ζ∂
∂ ζ∂u

∂z
------ u 2u

2b 2
-------------+ + 0.=

ζ u 2 ζ /Id∫
d2ρ/dz2 2H/I ,=

H ζ ∂u
∂ζ
------

2 u4

2b 2
-------------– 

  ζd∫=

u ζ t,( )
u0

a
------- ζ ρ–( )2

2a2
------------------- iφ ζ ρ–( )2+– 

  .exp=

ρazz azρz– ρ3

a3
-----

ρ2u0
2

4a2b
-----------,–=

ρ 2 ρ0 H /I( )1/2 z0 z–( ),≈

a
1
8
---

u0
2

b
----- 

 
1/2 ρ0

a0
----- 

 
1/6

z0 z–( ),≈
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where ρ0 is the initial position of the center of mass, and
the evolution coordinate z = z0 = (ρ0I/|H|)1/2 corresponds
to the intersection of the center of mass and the bound-
ary ζ = 0. Therefore, as the center of mass approaches
the boundary separating two different self-action
regimes (focusing changes to defocusing), the field
amplitude tends to infinity as

(14)

2. The self-action mechanism described above is
confirmed by the numerical study of the dynamics of
initial Gaussian distributions localized near the hyper-

bolas r2 – τ2 = . To study the collapse stabilization
and the further evolution of the system, we used the
generally accepted methods for regularizing initial
Eq. (1). These methods are based on taking into
account the saturation of nonlinearity or nonlinear radi-
ation absorption in strong fields:

(15)

where ψs is the nonlinearity saturation field and δ is the
parameter of nonlinear dissipation. Using Eq. (15), we
consider the evolution of the initial distribution of the
form

(16)

ψ ζ 0 z z0,( ) z0 z–( ) 1/2– .≈

ar
2

i
∂ψ
∂z
------- 1

r
---

r∂
∂

r
∂ψ
∂r
------- ∂2ψ

∂τ2
---------–+

+ ψ 2

1 ψ 2/ψs
2+

--------------------------- iδ ψ 8+
 
 
 

ψ 0,=

ψ ψ0r4/ar
5 r2/2ar

2– τ2/2aτ
2–[ ] ,exp=

Fig. 1. Contour map of the |ψ(r, τ, z = zn)| field for the indi-
cated zn values. The evolution of the axisymmetric hollow
beam along the propagation path z for the dissipative col-
lapse stabilization at δ = 2 × 10–8.
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which models the field structure of a tubular spatially-
limited electromagnetic pulse. One can expect that dis-
tribution (16) at the initial stage of evolution should
transform into the horseshoe distribution of type (7).
This process can be treated as a bend instability of a
uniform wave beam [9]. It is well known that the τ-uni-
form tubular beams with a supercritical intensity are
compressed in the transverse direction and self-focused
toward the τ axis. Therefore, one can expect that the
central part (τ ≈ 0) of the nonuniform (with respect to
τ) distribution (16) will be focused on the axis (r = 0)
faster than its peripheral part (τ ~ aτ).

Numerical calculations confirm this prediction. For
definiteness, we first consider a nonconservative case
using Eq. (15) with the saturation field ψs  ∞ and
then present the additional results relating to the con-
servative collapse stabilization (δ = 0). The calculations
were carried out with the parameters ar = 2 and az = 12.

Figure 1 shows the results of the numerical calcula-
tions. It can be seen that the wave-beam self-focusing
without a change in the characteristic radius of the hol-
low field distribution (16) takes a rather long time. At
the next stage, a horseshoe structure is formed, and this
process is accompanied by the development of splitting
instability. In contrast to the two-dimensional case [13,
14], this splitting is immaterial and stabilized by the
shift of the horseshoe distribution to the system axis. In
the course of the “fall-to-center” process, the pulse
splits into two parts. The maximum field amplitude in
the focal region remains virtually constant during a
rather prolonged wave-field evolution (see Fig. 2). In
this case, the strong-field regions travel distances far
exceeding the pulse longitudinal length without a
noticeable change in the spatial structure. The nonlin-

Fig. 2. The squared maximum field amplitude |ψ|2 vs. z.
Lines 1 and 2 correspond to the dissipative collapse stabili-
zation at δ = 2 × 10–8 and 1.8 × 10–5, respectively. Line 3
describes the dynamics of a conservative system with non-
linearity-saturation field ψs = 20.
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ear energy absorption for the packet passing through
the collapse region (see Figs. 2, 3) is about 50%.

In the conservative case, the “fall-to-center” pattern is
quite similar. The only difference is the appearance of
reflection from the region of singularity formation. For
the chosen parameters, the distribution of field amplitude
has a sharp maximum on the axis, and the maximum
value markedly exceeds the corresponding value in the
dissipative case (see Fig. 2). The time it takes to form the
strong-field region also somewhat increases (Fig. 2).

On the whole, the modeling suggests that the smear-
ing of horseshoe distribution in the transverse direction
has virtually no effect on the dynamics of singularity
formation. However, it is clear that, in the fall-to-center
regime, the peripheral wave-packet part reaches the
system axis at a later time and maintains the intense
field during the entire interaction time. In this sense, the
type of collapse considered above should be assigned to
the prolonged collapses.

We have considered a new scenario of the self-
action dynamics of an axisymmetric wave packet in the
system described by the nonlinear Schrödinger equa-
tion with a hyperbolic spatial operator. We have found
the class of initial wave-field distributions whose evo-
lution illustrates the specific features of Eq. (1). For
these initial conditions, the self-focusing compression
prevails over the dispersion wave-field smearing. The
self-focusing narrows the tubular wave packets in the
transverse direction, forms a horseshoe structure, shifts
the wave field to the system axis, and, finally, creates a
collapse regime (due to the cylindrical symmetry of the
problem). This collapse is quite similar to the spheri-
cally symmetric process in the NSE with the elliptic
spatial operator. The specificity of collapse is that the
wave-packet splitting at the center of the system is
accompanied by the formation of two strong-field

Fig. 3. Dissipation of wave-packet energy in the course of
collapse. The parameters for lines 1 and 2 correspond to
lines 1 and 2 in Fig. 2.
regions (“hot” points) moving in the opposite direc-
tions.

The use of such traveling focuses hold much prom-
ise, e.g., for the creation of channels in condensed
media and artificial photonic crystals with a view to the
future application of these structures in the acceleration
of charged particles and radiation frequency conver-
sion.

This work was supported by the Russian Foundation
for Basic Research, project nos. 02-02-17277 and
01-02-17388.
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A mechanism of parametric reversal of the ultrasonic field from a quasi-monochromatic radiator situated in a
nonlinear acoustic medium is proposed and analyzed. The mechanism is based on the phonon–plasmon inter-
action in semiconductors with a high concentration of electron traps, when a sample is irradiated by a periodic
sequence of short laser pulses. The spectrum of output signal and, correspondingly, the temporal profile of the
spatially reversed wave are investigated as functions of the intensity and duration of pumping pulses. It is shown
that the choice of pumping parameters allows one to control the spectrum of reversed wave and, in particular,
closely reproduce the spatiotemporal structure of the original wave. The frequency matching of the nonlinear
ultrasonic wave harmonics and the pump Fourier frequencies occurs automatically at a certain pulse repetition
rate in this scheme. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 43.25.Jh; 63.20.-e
The problem of the wave-phase conjugation (WPC)
of ultrasonic beams is one of the topical problems of
physical acoustics. The interaction of acoustic vibra-
tions with the collective nonphonon modes in solids in
external varying force fields is the most efficient mech-
anism of acoustic WPC [1]. An external field modulat-
ing the parameters of a labile nonacoustic subsystem
induces the time modulation of the effective sound con-
stants in a medium and, therefore, the generation of a
reversed sound wave.

The supercritical WPC regime for a monochromatic
ultrasonic wave in the presence of phonon–magnon
interaction has now been experimentally realized for a
magnetostriction ceramic in an alternating magnetic
field with an amplification coefficient higher than
80 dB [1].

In the physically and practically interesting case of
intense ultrasonic beam reversal, the reversed wave is
substantially nonlinear, and the complete reversal,
which is treated as the recovery of spatiotemporal dis-
tribution of the acoustic wave on a source, implies the
synchronized WPC of all its harmonics that are formed
upon the propagation of an incident wave through a
nonlinear acoustic medium. In this respect, acoustics
differs from optics, where the reversal problem
amounts to the reversal of monochromatic waves.

At present, the WPC of nonlinear waves cannot be
realized using multichannel analog–digital systems [2].
The use of parametric physical mechanisms for this
purpose obviously requires coherent broadband modu-
lating pump sources. For the pumping of a sample by a
magnetic or electric field, the fabrication of such
sources is difficult.
0021-3640/02/7511- $22.00 © 20543
In this work, a mechanism of parametric reversal of
the ultrasonic field from a quasi-monochromatic radia-
tor situated in a nonlinear acoustic medium is proposed
and analyzed. The mechanism is based on the phonon–
plasmon interaction in semiconductors with a high con-
centration of electron traps when a sample is irradiated
by a periodic sequence of short laser pulses. The spec-
trum of output signal and, correspondingly, the tempo-
ral profile of the spatially reversed wave are investi-
gated as functions of the intensity and duration of the
pumping pulses. It is shown that the appropriately cho-
sen pumping parameters allow one to control the spec-
trum of reversed wave and, in particular, closely repro-
duce the spatiotemporal structure of the original wave.
The frequency matching of the nonlinear ultrasonic
wave harmonics and the WPC-pumping frequencies
occurs automatically at a certain pulse repetition rate in
the scheme considered.

In [3, 4], the WPC mechanism was proposed and
studied in detail for monochromatic (with frequency ω)
ultrasonic beams in the presence of phonon–plasmon
interaction in semiconductors in which the concentra-
tion of conduction electrons is modulated due to the
irradiation by a sequence (with period T = π/ω) of short
(with duration τi) laser pulses. For short relaxation
times τrel corresponding to a high electron-trap concen-
tration in the practically realizable conditions, this
mechanism ensures the WPC of an intense acoustic
wave, with initial frequency ω propagating in a medium
with ordinary acoustic nonlinearity.

Let a nonlinear transverse acoustic wave with fre-
quency ω and displacement

U+ 0( ) US
+ 0( ) isωt( )exp∑=
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be incident onto the entrance of a plane-parallel semi-
conductor WPC layer with thickness l.1 We assume that
the phonon–electron coupling is due to the piezoelec-
tric effect and the transformation coefficient of acoustic
harmonics in the system with intrinsic acoustic nonlin-
earity is smaller than the coefficient of parametric
transformation. Then, for the semiconductor crystal
structure and the propagation geometry accepted in [4],
the complete set of equations for the acoustic displace-
ment U, density n of electron oscillations in a Langmuir
wave (assuming that me < mp, where me and mp are the
effective masses of electrons and holes, respectively,
we ignore the hole component in plasma), internal elec-
tric field E, and electron velocity V has the form

(1)

Here, ρ is the semiconductor density; C, , and ε are
the elastic modulus, piezoelectric modulus, and dielec-
tric constant of the sample, respectively; ν is the elec-
tron scattering frequency; N is the equilibrium electron
density in the conduction band in an external laser field
with intensity I(t); γ is the coefficient of light absorp-
tion; and n0 is the dark electron density.

According to the above, I(t) can be expanded in the
Fourier series:

In the one-dimensional approximation and the steady-
state regime, the total acoustic field in the medium is
obtained from Eqs. (1) as

Here, U(z) are slowly changing amplitudes; ω = kVs,
where Vs is the speed of sound in the medium; and k is
the wave number. Then, similar to [3, 4], we obtain the

1 It is assumed that the discontinuity in the wave does not appear.

∂N
∂t
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∑ c.c.+ .
following system of independent pair equations for the
components  under ωτrel < 1 and n0 < N:

(2)

Here, q = τrel/ν, where  = 4πe2γτrelI0/me is the
plasma frequency determined by the constant compo-
nent of I(t), and

is the dimensionless variable. By solving Eqs. (2), one

obtains the output component  of the acoustic-
field amplitude in the general form

where L is the dimensionless thickness of the WPC

layer. Thus,  is conjugate to the input component

, signifying the spatial reversal (WPC) of the com-
ponent, and the transformation coefficient is deter-
mined by the pumping intensity (q value) and the ratios
of its Fourier amplitudes. The phase matching of the
reversed-wave components corresponds to their match-
ing in the incident wave.

Let us discuss two most interesting cases that dem-
onstrate the general regularities of the process.

(i) Meander pumping:

It is easy to see that, for sufficiently short pumping
pulses such that Neffωτi < 1, where Neff is the effective
number of harmonics in the input ultrasonic wave, and
for moderate pumping levels, q ≤ ε, we have

Figure 1 shows the normalized temporal profiles of the
input and output reversed waves for q ≈ ε and various
ωτi values. The Fourier components Us(0) are approxi-
mated by the conventional Bessel–Fubini distribution.
Figure 1a demonstrates that an increase in the transfor-
mation coefficient with frequency leads to an increase
in the relative contribution of higher harmonics. For
this reason, the reversed wave is distorted stronger than
the incident wave. An increase in the laser pulse dura-
tion at a constant pumping level q ≈ ε leads to a
decrease in the transformation coefficient of amplitude
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Us for higher harmonics and, therefore, to the equaliza-
tion of the transformation coefficients of acoustic har-
monics and the ensuing rise in the degree of reproduc-
ing the spatiotemporal profile of the incident wave (see
Fig. 1b). A complete reproduction, with allowance for
the nonlinear wave transformation upon the back pas-
sage, evidently corresponds to a value of ~1 for the

Fig. 1. Normalized temporal profiles of the (line with cir-
cles) incident wave and (solid line) reversed wave upon
pumping by a sequence of meander laser pulses (q ≈ ε) for
(a) ωτi ! 1, (b) ωτi = 0.9, and (c) ωτi ≈ π/2.
JETP LETTERS      Vol. 75      No. 11      2002
coefficient of harmonic transformation, which is con-
trolled by the length of active transformation zone at a
given pumping level. Figure 1c corresponds to the case
where ωτi ≈ π/2 and only even harmonics are trans-
formed, leading to the wave-profile deformation shown
in the figure.

Note that for the layer thickness l ~ 0.3 cm, q ≈ ε ≈ 10,
τrel ~ 10–9 s, ω ~ 108 rad, light absorption coefficient γ ~
101 cm–1, and typical values of the remaining semicon-
ductor parameters apply; 100% conversion of the inci-
dent wave into the reversed wave is achieved for the
pump intensity I ~ 10 W/cm2.

(ii) Pumping by pulses formed upon laser mode
locking with frequency shift 2ω. If the amplitudes and
phases are the same for different locked modes, then

I t( ) IL 2NL s–( ) 2isωt( )exp
s 0=

2NL

∑=

+ 2NL s+( ) 2isωt( )exp
s 1–=

2NL–

∑ ,

Fig. 2. The same as in Fig. 1 but for pumping by the pulses
formed upon laser mode locking with frequency shift 2ω for
(a) q ≈ ε/2 and N/2NL = 1 and (b) q @ ε/2 and N/2NL = 0.33.
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where NL is the number of locked modes and IL = |Es|2.
One then has for the components of reversed wave 

Figure 2a shows the input and output profiles of the
reversed and incident waves, respectively, for q ≈ ε/2
and Neff/2NL ≈ 1. In the opposite case of intense pump-
ing, i.e., for q @ ε/2, the transformation has the form
shown in Fig. 2b, where the temporal profile of the inci-
dent wave is well reproduced.

In conclusion, we note that the suggested mecha-
nism of nonlinear wave reversal allows the efficient
control of the spectral structure of an acoustic beam by
self-focusing on a source, which is of interest for vari-
ous applications, particularly at the powerful acoustic
action. The desired incident harmonics can be selec-
tively reversed by appropriately choosing the repetition
rate of laser pulses. The physical pattern of the phenom-
enon will obviously be retained in the supercritical
reversal regime as well.

Us
– 0( ) iUs

+* 0( )
sq 1 s/2NL–( )2

ε q+( )2 q2 1 s/2NL–( )4–
-------------------------------------------------------------L .tan–=
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The important problem of Richtmyer–Meshkov turbulence (RMT) is solved. Much work has been devoted to
the experimental, numerical (direct numerical simulation), and semiphenomenological (turbulent diffusion and
bubble envelope models) analysis of RMT. All of them were of approximate character. They considered the evo-
lution of a mixing layer, and its average thickness h(t) was found. Then, the approximate value of the most
important exponent θ (h ∝  tθ) was judged from the slope of the h(t) curve in the lnt–lnh coordinates. In this
work, the theoretical approach for the exact determination of θ is developed. © 2002 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 47.20.Ma; 47.27.Cn
1. Current status. The necessity of studying turbu-
lent mixing arises in many physical problems (astro-
physics, physics of explosion, inertial nuclear fusion,
convection, etc.) [1–5]. Mixing is caused by the Richt-
myer–Meshkov (RM), Rayleigh–Taylor (RT), and
Kelvin–Helmholtz (KH) instabilities. In the case of RM
turbulence (RMT), the mixing front at the self-similar-
ity stage moves in a heavy liquid following the law h+ =

[ /(1 + µ)]gA , where θRT = 2, µ = ρl/ρh < 1 is the
density ratio, gA = (1 – µ)g is the Archimedes accelera-

tion, and  ≈ 0.05 [1–5]. The surface z = h+(t) bounds
the mixing layer from above. In the case of KH turbu-
lence and µ = 1, the mixed layer is bounded by the

fronts h± = ± u , where θKH = 1, u is the differ-

ence in liquid velocities, and  ≈ 0.07 [6, 7]. In the
case of RMT, the mixing front z = h+(t) asymptotically
extends in a heavy liquid following the power law

(1)

with exponent . This exponent is the most impor-
tant quantitative RMT characteristic.

It is deemed that RM turbulence is more complex
than RT and KH turbulences. In the RT and KH cases,
a “simple” inversion cascade occurs [1–5]. A clear
understanding of the reasons underlying the enlarge-
ment cascade follows from the triad of (i) random peri-
odic large-scale structures, (ii) subharmonic instability
(or periodicity instability), and (iii) enlargement
sequence [4, 5]. The exponents θRT and θKH can easily
be found from dimensionality considerations (gt2 and

α+
RT tθRT

α+
RT

α+
KH tθKH

α+
KH

h+ t
θ+

RM

∝

θ+
RM
0021-3640/02/7511- $22.00 © 20547
ut are proportional to the length). The coefficients 

and  cannot be calculated analytically. They are to
be approximately determined from the experiment.
These coefficients depend on a combination of the
complex nonlinear, statistical, and dissipative pro-
cesses.

The current general point of view on RM mixing is

as follows. It is thought that the exponent , similar

to the coefficients  and , cannot be calculated
analytically. The “energetic” consideration is conjec-
tured, according to which the relationship

(2)

is fulfilled. The exponent 2/3 appears due to the energy
conservation [3, 8–14] (E = ρv 2h/2 ~ ρh3/t2; hence,
h ∝  t2/3). This exponent is derived from energy balance
considerations in the problem of a powerful explosion
at a flat boundary between two gases with different den-
sities ρl and ρh [15]. Of interest is how the asymptotic
behavior in the problem of a powerful explosion trans-
forms at µ  0 to the asymptotic expression in the
short impact problem [16]. The “shift” ∆θdiss > 0 is usu-
ally related to the energy loss caused by the small-scale
(e.g., Kolmogorov) dissipation [10, 12, 13].

Thus, the quantities , , and  are the fun-
damental quantitative characteristics of RT, KH, and
RM mixing, respectively. Much work is under way to
refine these quantities (see, e.g., bibliography in the
review section of [14]). With RMT, (i) the theoretical

estimate gives  = 2/7 [17, 9, 18]; (ii) the empirical

α+
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α+
KH

θ+
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model of turbulent diffusion gives  ≈ 0.315 and
0.295 [9]; (iii) the empirical model of a bubble chain or

envelope gives  ≈ 0.40 [19]; (iv) the experiment [3,

14] gives  = 0.25 ± 0.05; and (v) direct numerical
simulation [10] gives (with some stipulations; see [10],

p. 737)  ≈ 0.30. One can see that the scatter is rather
broad. The role of geometry (2D or 3D) remains to be
clarified. Equation (2) relating the desired exponent to
the heat release on the short-wavelength viscous scale
remains the ideological basis of the investigation.

Below, an alternative theory is proposed. The expo-
nent is determined rigorously. The expansion of the tur-
bulence zone is accompanied by the enlargement of the
dominant structure. The expansion dynamics follows
from the law of impulse generation due to the long-
wavelength fluctuations. Their amplitude is determined
statistically. It is found that the layer expansion is due
to the statistics of the long-wavelength harmonics
rather than the short-wavelength viscous friction. The

exponents  for the 2D and 3D cases are different.

2. Short-scale perturbations and impulsive accel-
eration. RM instability develops after the passage of a
shock wave (SW) through the perturbed boundary η
between two contacting gases [3–5, 9–14, 18–24].
Before the interaction with the boundary, the SW plane
is parallel to the z = 0 plane. The unperturbed boundary
is the straight line z = ηunpert(x) ≡ 0 (2D) or the plane z
= ηunpert(x, y) ≡ 0 (3D). Let, for definiteness, the heavy
gas be situated “atop” at z > η. Before SW, the sub-
stances are at rest. The perturbed boundary before SW
is a wavy curve η2D = η(x) (2D) or wavy surface η3D =
η(x, y) (3D).

2.1. Random periodic curves and surfaces. The
initial perturbation has the characteristic scale λ0 in the
z = 0 plane and is a random periodic function (RPF).
One should “start” with the initial data that are (i) ran-
dom and (ii) “localized” in the wavenumber space (the
scale does not exceed a certain value, i.e., has no addi-
tional long-wavelength perturbations). The goal is to
study the evolution up to large times t @ t0 = λ0/w0,
where w0 is the characteristic velocity on the λ0 scale
after the passage of SW. At these times, the desired
power-law regime (1) prevails. The spectral and statis-
tical properties of the 2D RPF η2D are described in [4,
5, 25]. In the 3D case, the “relief” η3D is a random “lat-
tice” (chain in 2D) of “hills” and “pits,” with  =

(2π)–2  = 0. Let the functions η2D and

η3D be specified in “boxes” of width 2π with periodic
continuations on both sides. Clearly, λ0 ! 2π (there are
many hills in the box).

Let li be the distance from the top of the ith hill to
the nearest top. Index i runs over all tops. Consider the

θ+
RM

θ+
RM

θ+
RM

θ+
RM

θ+
RM

η3D

η3D xd yd
0

2π∫0

2π∫
li statistics. One has  ~ λ0 for the mean and

 ~ λ0 for the standard deviation. Hence, the
random is on the order of mean. That is why these func-
tions are called random periodic functions.

2.2. Spectral representation. Let us study the spec-
tra of the RPFs η2D and η3D. One has

(3)

(4)

(5)

The wavenumber n0 = 2π/λ0 corresponds to the length

λ0. In the 2D (3D) case, there are ~n0 @ 1 (~  @ 1)
hills on the interval 2π (in the square 2π × 2π).

Consider the long-wavelength asymptotic behavior
of spectra (3)–(5), n ! n0. Let us divide the integrals

 over the interval 2π in Eq. (3) and the integrals

 over the square 2π × 2π in Eq. (5) into the
sums of integrals over halfwaves. The wavelengths of
harmonics n, m are, respectively, λn = 2π/n and λm =
2π/m. Consider, for example, the Fourier amplitude

. Let us divide the interval [0, 2π] into subintervals
by points xi = λni/2, i = 0, 1, …, 2n, x2n = lnn = 2π. Write

(6)

In Eq. (6), the first sum comes from the positive half-
waves of the function sinnx, and the second sum comes
from the negative halfwaves. In the 3D case, the square
2π × 2π is divided into small squares corresponding to
the positive and negative sections of the functions
CnxCmy, CnxSmy, SnxCmy, and SnxSmy.

l i
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The terms in the sums in Eq. (6) correspond to the
halfwaves λn/2. Each halfwave involves many hills and
pits of the RPF η2D(x), because λn @ λ0. The average of

the individual term I =  over the halfwave is

zero. Due to the stochastic behavior of the RPF, I fluc-
tuates about its mean with the standard deviation

(7)

where η2D is the standard deviation of the function ,

and the multiplier λ0 gives the estimate of the inte-

gral  for a single hill/pit pair.

The mean amplitude of sum (6) is zero. The stan-
dard deviation of the sum (6) of random terms I (7) is
equal to

(8)

The factor  in Eq. (8) appears as a result of add-
ing together the random terms (7). One can see that the
wavelength λn in Eq. (8) cancels out, so that the n
dependence vanishes. Similarly, the mean amplitude of

 (5) in the 3D geometry is zero. The standard
deviation for the fluctuations of these amplitudes is
independent of the numbers n and m and equal to

(9)

One can show that the amplitudes ηn or ηnm of the
neighboring harmonics n and n + 1 or n, m and n, m + 1
fluctuate independently. This indicates that the phases
of these harmonics do not correlate.

2.3. Shock, setting in motion, and the Richtmyer
formula. Let us consider the interesting case of small
perturbations (  ! 1, ,  ! 1),
where the Richtmyer formula applies,

(10)
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In Eq. (10), wsw is the velocity of the unperturbed
boundary behind the SW; ηn and ηnm are the amplitudes
of boundary perturbation harmonics behind the SW; At
is the Atwood number behind the SW; and F is the coef-
ficient depending, in the case of ideal gases, on their
adiabatic exponents, the ratio of their sound velocities,
and on the Mach number of the incident SW (in the
incompressible case, F = 1). In the chosen system of
coordinates x, y, z and velocities u, v, w, the horizontal
velocities are u, v  and the vertical velocity is w. Much
work (see, e.g., [26] and reviews [4, 5]) has been
devoted to the linear theory of RM instability in a com-
pressible medium. The main purpose of those studies
was to determine the function F.

The SW “converts” harmonics ηn into harmonics
wn. A short (compared to the RMT development time)
process of boundary acceleration upon its crossing by
the SW (“shock”) leaves a vortex “wake” at the bound-
ary [4, 5, 23, 24], which affects the near-surface veloc-
ity field. Equation (10) gives a linear relationship
between harmonics ηn and wn. An important point is
that the coefficient F is uniform in scales (independent
of n). The initial velocity spectrum can be found from
Eq. (10) and from what was said in section 2.2. It deter-
mines the subsequent evolution. It turns out that, in the
most important long-wavelength region of the spectrum
0 < n < ~n0, the amplitudes wn (wnm) are linear in the
wavenumber n (Nnm) and the phases of the harmonics
are random.

2.4. Velocity field “grid” in the depth and power-
law velocity decrease on moving away from the
boundary. It is known [4, 5] that, for small angles
(|ηx | ! 1), the compressibility can be ignored after the
substance starts to move. The point is that, due to the
factor nηn, the velocities in Eq. (10) are smaller than the
sound velocity (cs ~ wsw). Consequently, one can use the
approximation of incompressible liquid. In addition,
the vorticity is concentrated at the boundary, because,
in the linear approximation in perturbations η, the SW
cannot create vorticity in the bulk. When determining
the initial velocity field, the boundary can approxi-
mately be considered flat. Under these assumptions, the
potential can easily be found from the Laplace equation
∆ϕ = 0 and the vertical velocity w(x, y, z = 0, t = 0) at
the boundary. All velocity components and the depen-
dence of velocity on the vertical coordinate z, e.g., w(x,
y, z, t = 0), can subsequently be determined. One has

(11)

At m = 0, one arrives at the 2D formula. Because of the
ellipticity of the Laplacian, the velocity of the harmonic
with wavelength λ exponentially decreases at depth ~λ.

Let us consider the dependence of velocity (11) on
the z coordinate. At the distance z* from the boundary,

w x y z 0, , ,( )

=  wnm
1( )CnxCmy wnm

2( )CnxSmy …+ +( ) Nnm z–( ).exp
m

∑
n

∑
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the harmonics with wavelengths λ* ~ z*, n* = 2π/λ*
dominate. Indeed, the small-scale (n @ n*) harmonics
decay exponentially, while the large-scale harmonics,
as will be seen below, have small amplitudes. For this
reason, to determine the velocity w* = w(x, y, z*, 0), it
is necessary to sum out in Eq. (11) a portion corre-
sponding to the numbers nlw < n < nsw, where nlw = n*/q,
nsw = n*q, and q ~ 1; for instance, q = 2. An important
fact is that the phases of the neighboring terms are ran-

dom. One has  = 0,

(12)

(13)

Equations (12) and (13) correspond to the 2D and 3D
cases, respectively; w(n, m) ≡ wnm. These equations
involve the amplitude wn of the nth harmonic, the
amplitude wn0 of the n0th harmonic, and the velocity w0
of the λ0-scale perturbations.

When deriving these formulas, (i) Eq. (10) was used
to express the amplitude wn* through the amplitude ηn*;
(ii) ηn* ~ ηn0 were taken from Eqs. (8) and (9);
(iii) Eq. (10) was used to return from ηn0 to wn0; (iv) the
amplitude wn0 was expressed through the standard devi-
ation of velocities w0 on the scale λ0, and the wavenum-
bers n* and n0 were replaced by the wavelengths; and
(v) the relation λ* ~ z* was used.

One can see that, due to the long-wavelength statis-
tics, the velocity fluctuations slowly decrease following
the power law (rather than exponentially fast on the
scale ~λ0) upon moving away from the boundary.

2.5. Grid enlargement and inversion cascade. The
statistics of velocity (11) is given by Eqs. (12) and (13).
Let us consider the alternation of the domains where the
function w(x, y, z, 0) is either positive or negative. One
can see that these domains are meshes with size ~z
along the vertical and horizontal axes. The mesh size
increases with increasing z. The curve (2D) or the sur-
face (3D), where the velocity changes sign, form a grid
with enlarging meshes. It is formed in the course of a
short SW-induced acceleration of the randomly per-
turbed boundary.

Let us determine the exponent . The mixing
layer expands according to the velocity field (11).
According to Eqs. (12) and (13), the passage through
the mesh z* takes time t* ~ z*/w* ~ (z*)5/2 in 2D and
~(z*)3 in 3D. For this reason, small meshes are
exhausted first, after which the successively larger
meshes disappear. This is the inversion cascade. For the

expansion velocity, one has dh+/dt ~ w ~ w0 /z3/2 ~

w∗

w∗( )2
n∗ wn∗ n∗( )3/2

wn0/n0∼ ∼

∼ λ 0/λ∗( )3/2
w0 w0λ0

3/2/ z∗( )3/2
,∼

w∗( )2
N∗ w n∗ m∗,( ) N∗( )2

w n0 m0,( )/N0∼ ∼

∼ λ 0/λ∗( )2
w0 w0λ0

2/ z∗( )2
.∼

θ+
RM

λ0
3/2
w0 /  in 2D and dh+/dt ~ w0 /  in 3D. This
brings about formulas

(14)

for the 2D and 3D cases, respectively.

3. Mixing of the vorticity random distribution.
Above, the RMT behind the SW front was studied. It
arises in shock tubes [10, 20–24, 26] or upon impulsive
acceleration of the incompressible liquid (incompress-
ible RM instability or impulsive RT instability) [3,
9−14, 19, 27]. It is difficult to calculate numerically the

asymptotic behavior of RMT (to determine ) in the
statement with SW or impulsive acceleration. One has
to track the fast SW together with the slow RMT. More-
over, the fast motion of the substance as a whole over
the Euler grid [w0 ! wsw (10)] impedes the detailed res-
olution of the RM vortices (it is desirable to “subtract”
wsw). In the case of impulsive acceleration, a code is
needed for the description of the incompressible liquid,
whereas one ordinarily uses gas-dynamic codes.

In this connection, it seems reasonable to use gas-
dynamic code for a small Mach number (see, e.g., [10,
25]) and with the initial near-surface velocity field cre-
ated by the random vorticity distribution over the flat
interface. We will show that the laws given by Eq. (14)
hold for this formulation as well. They are determined
by the long-wavelength wing of the pressure, accelera-
tion, and impulse fluctuation spectra.

Let us consider the initial data. For the sake of brev-
ity, we omit the expressions for the 2D and 3D poten-
tials. The vertical velocity field is specified by the
amplitudes wnm in Eq. (11) (the generalization to the 2D
geometry is straightforward). It must be random and
localized near the scale λ0 = 2π/n0 in the space of hori-
zontal wavevectors. With these requirements, one
obtains a long-wavelength “gap” wn = 0 (wnm = 0) for n
< n0 (Nnm < n0) at t = 0. The harmonics wn (wnm) with n
> n0 have random phases. The characteristic velocity is

w0 ~  (~n0w(n0, m0)), where wn0 is the average
amplitude of harmonics with n > n0 and n ~ n0.

To elucidate the mechanism of generation of the
long-wavelength fluctuations by means of bubble pres-
sure, we consider the periodic case. In this case, the ini-
tial spectrum contains only a single harmonic wn0
(w(n0, n0)). Let µ = 0. Due to the development of RMT,
a periodic chain (2D) or lattice (3D) of bubbles arises
[4, 5, 27]. The pressures p∞ in the depth of the heavy
liquid is different from the pressure at the boundary.
Specifically, pcb < p∞ and ∆p(t) = p∞ – pcb ~ ρ[w(t)]2,
where w is the velocity of bubble penetration into the
heavy liquid [4, 5, 27]. At a certain distance from the
bubble tops, the regions of positive and negative verti-

λ0
3/2 h+

3/2 λ0
2 h+

2

h+ λ0
3/5 w0t( )

2/5
, θ+

RM∼ 2/5;=

h+ λ0
2/3 w0t( )1/3, θ+

RM∼ 1/3,=

θ+
RM

n0wn0
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cal velocity have the form of vertical strips of width
λ0/2. The periodic case was taken to analyze pressure.

Let us return to the random array of 2D or 3D bub-
bles. The pressure p(x, y, z*, t) at the distance z* from
the bubble tops varies along the horizontal coordinates.
This is due to the statistical pressure fluctuations caused
by the presence of the groups of dissimilar bubbles.
One group contains about z*/λ0 (2D) or ~(z*/λ0)2 (3D)
bubbles. The variability step is on the order of z*. Dur-
ing the lifetime t0 ~ λ0/w0 of a bubble with size λ0, the
pressure variability produces the spatially variable dis-
tribution of liquid impulses. The difference in the verti-
cal velocities wλ in a mesh with size λ @ λ0 along the
vertical and horizontal axes can be found from the force
balance

(15)

(16)

In Eqs. (15) and (16), the quantity in the first parenthe-
ses is a force associated with one bubble; the root deter-
mines the amplitude of statistical fluctuations; and the
quantity in the second parentheses is the time t0. The
right-hand side of the estimate is the mesh impulse
λ × λ (λ × λ × λ) acquired during the acceleration time t0.

One can see again (cf. 2.5) that a grid with enlarging
meshes and power velocity-decay law is formed. At
t = 0, the decay is exponential at the depth ~λ0 because
of the initial long-wavelength gap. The gap (t = 0) is
“blurred” in a time equal to the time t0 of one vortex
“rotation.” By writing dh+/dt ~ wλ and h+ ~ λ, one again
obtains the laws given by Eqs. (14).

This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-17499.
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The spin splitting caused by the terms linear in wavevector in the effective Hamiltonian containing can give rise
to the new magneto-oscillation phenomena in two-dimensional systems. It is shown that the joint action of the
spin-dependent contributions due to the heterostructure asymmetry and to the lack of inversion center in the
bulk material suppresses beats that arise in the magneto-oscillation phenomena in the presence of the terms of
only one of these types. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Fg; 73.50.Jt
Thermodynamic and kinetic coefficients such as
heat capacity, magnetic susceptibility, conductivity, etc.
oscillate in systems with a degenerate electron gas
exposed to a quantizing magnetic field at low tempera-
tures. Such a behavior of these coefficients is due to the
appearance of the Landau levels, which successively
intersect the Fermi level as the magnetic field increases.
Measurements of the conductivity oscillations (Shubni-
kov–de Haas effect) and the oscillations of magnetic
susceptibility (de Haas–van Alphen effect) are among
the most efficient methods of structure characterization
and determination of the carrier concentrations and
relaxation times.

Quantum phenomena are highly sensitive to the fine
structure of the carrier energy spectrum, so that even a
small spin splitting may qualitatively modify the oscil-
lation pattern. The terms linear in wavevector k in the
effective Hamiltonian remove the degeneracy in the
carrier spectrum. In a magnetic field, the spin splitting
at the Fermi surface gives rise to the oscillations with
close frequencies, i.e., to beats [1]. Such a behavior of
the Shubnikov–de Haas effect was observed in two-
dimensional systems with a hole channel at the silicon
surface [2], with the electron gas in quantum wells
based on narrow-band [3, 4] and wide-band [5] semi-
conductors, and in other structures. The zero-field spin
splittings at the Fermi level were determined from the
analysis of experimental data.

In the general case, the terms linear in k appear
because the symmetry of heterostructures is lower than
the symmetry of bulk materials. In the quantum wells
grown on the basis of semiconductors with zinc blende
lattice in the [001] orientation, there are two types of
linear contributions to the effective electron Hamilto-
nian. First, they originate from the cubic terms in the
Hamiltonian of a bulk material without inversion cen-
0021-3640/02/7511- $22.00 © 20552
ter. Averaging these cubic terms along the quantization
axis in the case of low subband filling with carriers
gives rise to the terms linear in k (BIA terms), where k
is the wavevector in the electron gas plane [6]. Further-
more, a linear contribution can be caused by the intrin-
sic heterostructure asymmetry which is unrelated to the
crystal lattice (Rashba terms) [1]. The relative intensi-
ties of these contributions to the effective Hamiltonian
of a two-dimensional electron gas can change on pass-
ing from narrow-band to wide-band semiconductors
[7]. Moreover, one can control the degree of hetero-
structure asymmetry, e.g., by applying an electric field
perpendicular to the quantum well plane. Inasmuch as
the physical nature and symmetry of the BIA terms are
different from those of the Rashba terms, the direct
addition of their contributions to the spin splitting
would be incorrect.

In this work, we demonstrate that the BIA and
Rashba contributions interfere in the magneto-oscilla-
tion phenomena. The presence of only one type of lin-
ear terms gives rise to the beats. However, if the inten-
sities of both contributions are equal, the oscillations
occur only at a single frequency and the beats disap-
pear, although the Hamiltonian contains linear terms.
The suppression of beats should take place in all mag-
neto-oscillation phenomena. We take the Shubnikov–
de Haas effect as an example to examine the interfer-
ence of the BIA and Rashba contributions in detail. The
magnetoresistance tensor will be calculated for zero
temperature taking into account either only one contri-
bution or both terms with the same intensity. The Zee-
man splitting of electronic levels will be disregarded in
this work, because it is small compared to the spacing
between the Landau levels in the majority of semicon-
ductor structures based on the III-V compounds in a
002 MAIK “Nauka/Interperiodica”
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magnetic field perpendicular to the plane of electron
gas.

Qualitatively, the disappearance of beats can be
understood by analyzing the electronic spectrum in a
zero magnetic field. In the absence of magnetic field,
the effective Hamiltonian has the form

(1)

where k = |k| and m* is the effective mass. For a quan-
tum well grown along the [001] direction, the spin-
dependent BIA and Rashba contributions to the Hamil-
tonian of a two-dimensional electron gas can conve-
niently be written in the crystal system of coordinates

(x || [1 0], y || [110], z || [001]):

(2)

where  and  are the Pauli matrices.

In the presence of only one type of terms linear in k,
e.g., the BIA terms, the electronic spectrum is isotropic
and consists of two different spin subbands (Fig. 1a):

(3)

If both contributions are essential, the spectrum
becomes more complicated, and the energy becomes
dependent on the direction of wavevector k [8]. How-
ever, the spectrum is simplified if the BIA and Rashba
terms have the same intensity, i.e., if |α| = |β|. In this
case, the spectrum consists of two identical paraboloids
shifted relative to each other in the k space. For exam-
ple, if α = β (Fig. 1b), the paraboloids are shifted along
ky and characterized by the spin states with |±1/2〉  pro-
jections onto the x axis. Accordingly, the electronic
spectrum has the form

(4)

where k0 = γm*/"2 and γ = 2α = 2β.
The magneto-oscillation frequencies of kinetic

coefficients depend on the Fermi surface. In the pres-
ence of only one type of linear terms (Fig. 1a), the
Fermi surfaces of two spin subbands are different
because of the spin splitting 2αkF, where "kF is the
Fermi momentum. The subbands are responsible for
the oscillations with close frequencies, giving rise to
beats. In the case that the intensities of the BIA and
Rashba contributions are identical (Fig. 1b), the spin
subbands are equivalent and the oscillations have the
same frequency, and the beats do not arise.

In the regime of small Shubnikov–de Haas oscilla-
tions and electron scattering by short-range defects, the
conductivity tensor can be represented as the sum of

Ĥ
"

2k2

2m∗
---------- ĤBIA ĤR,+ +=

1

ĤBIA α σ̂ xky σ̂ykx+( ),=
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2

------------,–=
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classical magnetoresistance and the oscillating contri-
bution,

(5)

where N is the two-dimensional electron concentration,
τ is the momentum relaxation time, ωc = eB/m*c is the
cyclotron frequency, B is the magnetic field, e is the ele-
mentary charge, and c is the velocity of light. The
explicit expression for the quantity δ oscillating in a
magnetic field depends on the Fermi surface. In two-
dimensional systems with a simple band, δ has only one
harmonic [9, 10].

The calculation shows that, in the presence of only
one type of terms linear in k, the oscillating quantity
has the form

(6)

where EF is the Fermi energy measured from the sub-
band bottom in the absence of the linear terms. The
dependence of δ on magnetic field has the form of
beats, because EF @ αkF.

In the case that the intensities of the BIA and Rashba
terms are equal, the oscillations, as in the absence of
spin splitting, contain only one harmonic,

(7)

where  = EF + m*γ2/(2"2) is the Fermi level mea-
sured from the bottom of the subbands.
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Fig. 1. Electronic energy spectrum in zero magnetic field
for the case where (a) only one type of linear terms and (b)
both contributions with equal intensities (α = β) are taken
into account.
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Figure 2 displays the magnetic-field dependence of
the resistivity

.

If only one type of linear terms dominates (Fig. 2a), the
spectrum of Shubnikov–de Haas oscillations contains
two harmonics with close frequencies, and the field
dependence of resistivity appears as beats. The fre-
quency difference is determined by the spin splitting
2αkF at the Fermi level. In the case of identical intensi-
ties of the BIA and Rashba terms, |α| = |β| (Fig. 2b), the
oscillations of both spin subbands have the same fre-
quency and the beats are not observed.

In this work, a consistent theory of magneto-oscilla-
tion effects is developed using the Green’s function
method taking into account the terms linear in k. In the
two-dimensional systems, small oscillations are
observed in classical magnetic fields, ωcτ ≤ 1, while the
quantity exp(–π/ωcτ) serves as a parameter determining
the oscillation amplitude [9, 10]. We assume that the
inequality EFτ/" @ 1 providing good conductivity is
fulfilled. In the self-consistent Born approximation,
one-particle electronic Green’s function for electron
scattering by the short-range defects has the form

(8)

where  are the spinor electron wave functions
in a magnetic field B || z with the Landau-gauge vector
potential A = (0, Bx, 0); Ens are the electronic levels; Xε
is the self-energy part of the Green’s function; and n, ky,

ρxx

σxx

σxx
2 σxy

2+
---------------------=

Ĝε r r',( )
Ψnkys r( )Ψnkys

† r'( )

ε EF Ens Xε––+
----------------------------------------,

nkys

∑=

Ψnkys r( )

Fig. 2. Magnetic-field dependence of the resistivity ρxx in
the regime of Shubnikov–de Haas oscillations in the pres-
ence of (a) only one type of linear terms, EFτ/" = 50 and
αkF/" = 3, and (b) both contributions with equal intensities

and τ/" = 50.EF'
and s = ± are the quantum numbers. Green’s function
(8) is a 2 × 2 matrix in the spin space.

In the presence of only one type of linear terms, the
orbital and spin states are mixed (see [11]). At αkF @
"ωc, the electron energies near the Fermi level are

(9)

It is precisely the splitting 2α /λB in the spec-
trum (9) which gives rise to the beats in the magneto-
oscillation phenomena.

If |α| = |β|, then the wave functions are the products
of the spin and orbital functions, and the electronic
spectrum is determined by the expression

(10)

In this case, the spectrum is not split, for which reason
the oscillations due to the spin subbands have the same
frequency and, hence, there will be no beats.

For the scattering from the short-range potentials,
the self-energy part of the Green’s function does not
depend on n [9] and, in both cases considered, on s and
satisfies the equation

(11)

In the presence of only one type of linear terms,
Eq. (11) has, to first order in parameter exp(–π/ωcτ), the
solution

(12)

The multiplier cos(2παkF/"ωc) in the self-energy part
(12) appears due to the level splitting. It is responsible
for the beats in the magneto-oscillation phenomena,
e.g., in the Shubnikov–de Haas effect.

If |α| = |β|, then the self-energy part contains no such
term:

(13)

The Green’s function allows the calculation of vari-
ous kinetic and thermodynamic coefficients. Using the
standard methods [12, 13], one can deduce expressions
(5)–(7) for the conductivity tensor in the regime of
Shubnikov–de Haas oscillations. The remaining com-
ponents are related by the expressions σxx = σyy and
σyx = –σxy.
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The interference of the spin-dependent contribu-
tions caused by the heterostructure asymmetry and the
lack of inversion center in the bulk material was consid-
ered in [8], where the anisotropy of electronic spectrum
was taken as an example. Such an anisotropy was
experimentally observed in the Raman studies of the
GaAs/AlGaAs structures [14]. The fact that the terms
linear in k nonadditively add together in the case of
weak localization was predicted in [15] and observed in
the measurements of anomalous magnetoresistance in
[16]. It was shown in [17] that the joint action of both
spin-dependent contributions gives rise to the anisot-
ropy of relaxation times in the quantum well plane. It
has been demonstrated in this work that the interference
of the BIA and Rashba terms linear in k qualitatively
alters the pattern of magneto-oscillation phenomena in
two-dimensional systems.

This work was supported by the Russian Foundation
for Basic Research, INTAS, the program of the Presid-
ium of the Russian Academy of Sciences “Low-Dimen-
sional Quantum Structures,” and programs of the Min-
istry of Industry, Science, and Technologies of the Rus-
sian Federation.
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Results of an experimental observation of the voltage oscillations associated with a discrete tunneling of holes
in porous silicon at room temperature are presented. The noise characteristics of diode structures with a porous
silicon interlayer formed on heavily boron-doped silicon single crystals are studied. Peaks of excessive noise
are observed at frequencies of ~1 MHz, at which single-electron oscillations should be expected. The peak noise
power is found to increase with current according to the ~2.5 power law and, at a current density of 0.15 A/cm2,
to exceed the noise power of the receiver by three to four orders of magnitude. The complex shape of the noise
spectrum and its extension to the higher frequency region with increasing current are explained by the three-
dimensionality of the system of nanometer-sized silicon grains embedded in insulating silicon dioxide of
porous silicon. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.40.Sx; 73.40.Gk
Porous silicon (PS) as a representative of nanome-
ter-sized 1D and 0D heterostructures is most exten-
sively studied in connection with its luminescence
properties and the possibilities of its application in
optoelectronics [1, 2]. At the same time, certain prereq-
uisites and preliminary experiments suggest that PS can
be a suitable object for studying the discrete tunneling
of electrons or holes and for the development of a new
generation of nanoelectronics, namely, single-particle
electronics. According to our earlier publication [3], the
topology of pores and the partial oxidation of PS lead
to the formation of an anisotropic material with strings
of nanometer-sized silicon grains embedded in insulat-
ing silicon dioxide. The predominant presence of two
solid phases, Si and SiO2, in PS (apart from air) were
experimentally demonstrated in [4]. Because of the
small capacitance between the grains, a manifestation
of the Coulomb blockade of the electron or hole tunnel-
ing along the strings is possible. From our previous
experiments [3], it was found that, at room temperature,
the current–voltage characteristics of diode structures
with PS interlayers formed on p+ Si crystals (boron
doped p-type silicon with conductivities of 0.01 and
0.005 Ω cm) exhibit steps in current. The steps were
attributed to the discrete tunneling of holes. In this
paper, we continue the aforementioned investigation.
According to the theory of discrete tunneling [5],
because of the noncommutativity of the charge and cur-
rent operators, the voltage across the tunneling junction
that contains a conducting grain in the insulating gap
between metal plates oscillates with the frequency

(1)

where I1 is the current per grain through the structure
and e is the electron charge. If (as in [3]) we assume that

f I1/e,=
0021-3640/02/7511- $22.00 © 20556
the distance between the grain strings in PS is about
10 nm, then, in a diode structure with a PS interlayer
and with a junction cross section of 0.6 mm2, a current
I = 1 mA should give rise to voltage oscillations with a
frequency of about 1 MHz. In our experiment, we tried
to detect single-electron voltage oscillations at frequen-
cies of ~ 1 MHz.

We studied diode structures with PS interlayers,
namely, the metal(In)–PS(p+ Si)–metal(In) structures,
which were fabricated by an express technology that
was simpler than in [3] and uses p-type silicon single
crystals with even higher boron doping levels (boron-
doped p-type silicon with a conductivity of 0.001 Ω cm).
The PS layers were formed by the conventional method
[1] consisting in an anodic dissolution of silicon at the
surface of plates with the (110) orientation in a solution
formed by equal volumes of 48% HF and ethanol
C2H5OH; the current density was 10 mA/cm2 and the
duration of the process was 10 min. After etching, the
samples were rinsed in deionized water and in ethanol
and then dried in air. The metallic indium contact with
PS had an area of 0.5–0.7 mm2. The other indium con-
tact was on the part of the silicon sample surface that
was free from PS. Because of the use of heavily doped
silicon, the series resistance introduced by such con-
tacts with solid silicon into the diode structure was
much smaller than the resistance of porous silicon.

The current–voltage characteristics were recorded
point by point, with a direct current or in a periodic
mode with a frequency of 100 Hz, by a TR-4805 curve
tracer. To observe the voltage oscillations in the diode
structures, we used conventional equipment for the
noise measurements in two-terminal radioelectronic
devices. The current in the diode structure was set by a
controlled stabilized voltage source with a series resis-
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tance of 4.7 kΩ . The alternating voltage across the
diode structure was measured by a superheterodyne
receiver of the L2-7 impedance meter with an input
resistance of 4.7 kΩ , a passband ∆f = 6 kHz, and a lin-
ear detector at the output. The equipment was cali-
brated by a G4-158 oscillator. The noise measurements
were performed point by point in the frequency range
from 0.4 to 10 MHz. The intrinsic noise factor of the
receiver in this frequency range did not exceed 5 dB.

The procedure of measuring the electric characteris-
tics of the diode structures with PS was complicated by
the fact that the current–voltage characteristics of these
structures considerably vary during their storage in air
because of the oxidation of PS. The oxidation was evi-
denced by the growth of the voltage across the structure
at a fixed current of either polarity. The fastest changes

Fig. 1. Current–voltage characteristics of a diode structure
with a porous silicon interlayer. The lower family of curves
corresponds to the forward branch, and the upper family of
curves, to the reverse branch. The upward shift of the curves
in both cases is related to the oxidative aging of porous sil-
icon.

Fig. 2. Frequency dependence of the noise factor Knd of a
diode structure with a porous silicon interlayer in the for-
ward direction at different currents.
JETP LETTERS      Vol. 75      No. 11      2002
occurred within several hours after the formation of PS.
On the following day, the process slowed down. There-
fore, the noise characteristics of the structures were
measured starting from the second day, and the mea-
surements continued for three days. In addition, within
24 h after the fabrication of PS, for currents greater than
0.3 mA, the effect of charge accumulation in PS was
observed. This effect manifested itself in the hysteresis
of the current–voltage characteristics when the latter
were recorded point by point. The hysteresis was absent
in the I–U characteristics recorded by the curve tracer
with a sweep period of 100 Hz. In this case, the charac-
teristics were smooth and anhysteretic, but changed in
shape with time. When negative polarity occurred at the
contact of indium with PS, the current through the
diode structure decreased approximately by a factor of
2 within 1.5–2 min, whereas in the case of positive
polarity, it increased by a factor of 3–5 within 3–5 min,
depending on the maximal current value.

Figure 1 shows the static current–voltage character-
istics of one of the diode structures with PS, and Figs. 2
and 3 present the noise spectra for the same structure at
fixed frequencies. The spectra were obtained with
increasing current by the equilibrium voltage values at
fixed values of I at which the noise measurements were
performed. From Fig. 1, one can see that the current–
voltage characteristics are nonlinear and nonsymmetric
with respect to the current direction. The higher con-
ductivity is observed when a positive voltage is applied
to the silicon substrate and the holes are injected from
the p+ Si substrate into PS. The I–U curve branches cor-
responding to this polarity will be arbitrarily called the
forward branches. The opposite polarity corresponds to
the reverse branches. The regions with negative differ-
ential resistance appear in Fig. 1 only in the case of a
slow current variation, and they are caused by the afore-
mentioned effect of charge accumulation. In the records
obtained with a period of 10 ms, no negative slopes are
observed in the I–U curves. The I–U dynamics will be
discussed in more detail in the following paper.

Fig. 3. Same as in Fig. 2 for the reverse current direction.
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Figures 2 and 3 present the families of spectral
dependences of the conditional noise factor Knd for the
forward and reverse directions of the bias voltage,
respectively, at several fixed current values. The noise
factor is called conditional, because it is determined as
20log(Und/Uns), where Und is the time-averaged (over
10 s) voltage at the detector output with the diode struc-
ture connected to the measuring system, and Uns is a
similar quantity obtained for the system with the dis-
connected diode structure. To determine the true noise
factor, it is necessary to take into account the differen-
tial resistance of the diode structure. According to
Fig. 1, the differential resistance strongly depends on
the current for both polarities of the bias voltage.

As one can see from Figs. 2 and 3, when a current
flows through a diode structure with a PS interlayer, a
nonuniform noise spectrum manifests itself in the fre-
quency range 0.4–10 MHz. For the forward direction, a
sharp peak of oscillations is observed with its maxi-
mum near a frequency of 1.1 MHz at a current of 1 mA,
and the amplitude of this peak is an order of magnitude
higher than the noise power of the receiver. If we
assume that, according to Fig. 1, the differential resis-
tance of the diode at this current is about 200–300 Ω ,
i.e., an order of magnitude smaller than the input resis-
tance of the receiver, the true noise power of the diode
structure proves to be three orders of magnitude higher
than the receiver noise power and is characterized by a
maximal noise factor of about 30 dB. In the reverse
direction, according to Fig. 1, at currents of about 0.5–
1 mA, the diode structure has a differential resistance
close to the input resistance of the receiver, and the con-
ditional noise factor coincides with the true one within
several decibels. In this case, the noise maximum also
occurs at frequencies near 1 MHz. In this frequency
band at a current of 1 mA, the noise power amplitude
exceeds the noise power of the receiver by four orders
of magnitude. The spectral characteristic exhibits a fine
structure, which is reproduced at different currents. For
currents I = 0.5–1 mA, an excessive noise band appears
at frequencies up to 5 MHz. The estimated dependence
of the excessive noise power of the diode structure on
the current shows that the maximal power increases
with current approximately by the power law and is
proportional to I2, 5.

The excessive noise peaks observed occurred in the
region of 1 MHz, i.e., at frequencies at which, accord-
ing to Eq. (1), a current of 1 mA should be accompanied
by single-electron voltage oscillations related to the
discrete tunneling of electrons. However, a simple lin-
ear increase in the oscillation frequency with increasing
current as in Eq. (1) is not observed in the experiment.
As the current increases, a more complex extension of
the spectrum to the higher frequency region can be seen
in Fig. 3. According to [3], this can possibly be related
to the three-dimensionality of the system of grain
strings in PS with hundreds of grains across the PS
layer thickness. The astonishingly stable peak observed
at 1.1 MHz in the case of the forward bias in Fig. 2 and
the reproducible fine structure of the peaks near 1 MHz
in the case of the reverse bias in Fig. 3 for currents vary-
ing by a factor of 50 testify to the intrinsic resonance
properties of PS. The inductive contribution is presum-
ably caused by the phase lag of the current through
grains with respect to the grain charge variation, as this
phase lag is characteristic of discrete tunneling.

This work was supported by INTAS grant no. 000-
0064.
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Energy Spectrum of Quantum Wells in PbTe/PbEuTe-Based 
Structures from Photoluminescence Data
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It is shown that the energies of radiative transitions between the ground states of electrons and holes for high-
quality deep PbTe quantum wells at low temperatures are described well within the framework of the two-band
model with regard to the nonparabolicity, strong anisotropy, and multivalley character of the band structure and
also uniaxial deformation, that is present in the heterostructure. For a two-dimensional system, the temperature
coefficient of the variation of the forbidden band gap decreases with decreasing well width, which is explained
by a weakening of the electron–phonon interaction. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Fg; 78.55.Hx
A number of works are devoted to the size quantiza-
tion effect on the energy spectrum of quantum well
structures based on IV–VI semiconductors [1–6]. Opti-
cal absorption, giving information on high-lying quan-
tum states, was primarily studied in quantum-sized
PbTe/PbEuTe-based structures. The uniaxial deforma-
tion effect was also taken into account in interpreting
the results within the framework of both six-band [5]
and simpler [1–3, 6] models. However, the values of
deformation potential constants used by various
authors differed from each other several times, which
leaves open the question of the value of these constants.

This work is devoted to studying the size quantiza-
tion and temperature effects on the energy spectrum of
PbTe/PbEuTe-based quantum-well structures in which
Eg for the PbEuTe barrier reaches values of ~ 0.5 eV,
and Eg for PbTe, which serves as a quantum well, com-
prises 0.189 eV in the bulk material at 4 K. The calcu-
lated spectrum was compared with the data obtained
from photoluminescence (PL) spectra, which gives
accurate information on the band edges. The energies
of radiative transitions between the ground states in the
conduction and valence bands are described well within
the framework of the two-band model with regard to the
nonparabolicity, strong anisotropy, and multivalley
character of PbTe and also to the uniaxial deformation
present in quantum wells. In addition, a decrease in the
dEg/dT coefficient with decreasing well width was
observed in the two-dimensional system.

PbTe/PbEuTe-based heterostructures were grown
on freshly cleaved (111)BaF2 substrates by molecular
beam epitaxy [7]. In order to remove the consequences
of the strong mismatch of the lattice constant with the
substrate (∆a/a~ 4.5%), a thick (~4 µm) Pb1 – xEuxTe
(x ≈ 0.06) buffer layer was grown initially. Then, a
0021-3640/02/7511- $22.00 © 20559
PbTe-based quantum well of differing width (from 2.3
to 18 nm) and a Pb1 – xEuxTe barrier ~50 nm thick of the
same composition as the buffer layer were grown. In
this sequence, 50 high-quality quantum wells were
grown. The quality was checked on a high-resolution
X-ray diffractometer, with the use of which up to ten
Bragg satellites were observed. The structure period,
well width, and the value of mechanical strains ε|| due
to the mismatch of the lattice constants between the
well and the barrier (∆a/a ~ 0.3%) were determined
from X-ray measurements [6]. Isomorphic growth is
observed, because the well widths used are smaller than
the critical thickness. The value of Eg for the barrier was
determined from optical absorption spectra.

PL spectra were measured at 4.2 and 77.4 K. A YAG
pulsed laser (hν = 1.17 eV) was used for excitation. A
grating IR monochromator, a Ge:Au-based radiation
detector, and a V9-5 stroboscopic voltage transducer
were used for the analysis of emission spectra, which
allowed us to work with an energy resolution of
<0.5 meV. Note that this resolution is several times bet-
ter than the corresponding resolution for low-lying
states in the optical absorption spectra. The excitation
level reached relatively high values (up to 105 W/cm2).

As a rule, the emission spectrum consisted of one
induced emission line whose halfwidth was 1–3 meV,
depending on the sample. For high-quality epitaxial
IV–VI layers, radiative transitions proceed with quasi-
momentum conservation, and the induced emission line
arises on the sharp low-energy side of the spontaneous
emission line [8]. Thus, the position of the induced
emission line to a high accuracy corresponds to the
band edge. The correction for Eg due to many-body
interactions in the crystal is small (~1 meV at n, p ≤
002 MAIK “Nauka/Interperiodica”
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1017 cm–3 [9]) because of the small effective mass and
the high dielectric constant in IV–VI semiconductors.
Optical absorption gives an overestimated (by several
meV) value of the transition energy because of the
finite concentration of charge carriers in IV–VI semi-
conductors, which leads to the band filling effect.

Because of quantization, the energy of radiative
transition increased with decreasing well width at both
temperatures (Fig. 1). The increase in emission inten-
sity with decreasing well width also engages our atten-
tion. This increase is due to the increase of electron
confinement for nonequilibrium charge carriers.

Fig. 1. Emission spectra of structures with PbTe/PbEuTe-
based quantum wells as functions of the well width at tem-
peratures of 4 and 77 K.

Fig. 2. Dependence of the radiative transition energies on
the well width at temperatures of 4 and 77 K. Curves corre-
spond to the calculation of optical transition in the main val-
ley at average deformation ε = 2.5 × 10–3. Dotted lines cor-
respond to Eg for a thick (2 µm) epitaxial PbTe layer.

Bulk PbTe
For the preferred crystallographic direction [111]
determined by the orientation of the BaF2 substrate,
four equivalent valleys in PbTe are divided into one
main valley with longitudinal effective mass and three
oblique valleys with effective mass close to a transverse
mass. Because the anisotropy coefficient is large (K ≈
10), size-quantization levels in oblique valleys go
markedly deep into the band; therefore, radiative tran-
sitions proceed in the main valley. In addition to the
intervalley splitting, there is a deformation shift toward
the high-energy side, which for the main valley is
approximately four times larger than for oblique val-
leys. However, with the well width used in this work,
Lz < 20 nm, the size-quantization shift plays a deter-
mining part in the position of lower levels [3].

The energies of optical transitions in quantum wells
were calculated analytically in the framework of the
two-band model with the mirror symmetry of nonpara-
bolic bands and in the envelope function approximation
[10]. It was assumed that the discontinuities of the con-
duction and valence bands are equal (∆Ec = ∆Ev), and
deep quantum wells have a rectangular shape in accor-
dance with the X-ray data. The energy change due to
the uniaxial deformation ε⊥  directed perpendicular to
the heterostructure was calculated by the equations

 for the main valley,

 for oblique valleys, and

Here, the numerical coefficients take into account elas-
tic constants, which weakly depend on temperature.
The constants of optical deformation potentials Dd =
4.3 eV and Du = –2.8 eV were taken from [3]. Then, at
ε⊥  = 3 × 10–3, we obtain δEl/δEo ≈ 4, and the value δEl ≈
20 meV represents a significant (~10%) shift for a nar-
row-gap semiconductor.

The optical transition energies at two temperatures
are shown in Fig. 2 as functions of the well width. It is
evident that the PL data are in good agreement with the
calculated curves for transitions in the main valley. This
agreement is achieved only by taking into account the
measured deformation and using the constants of defor-
mation potentials determined in [3]. It was also taken
into account that the deformation depends on the well
width, decreasing by 20% when the well width
increases up to 20 nm. For smoothness, the calculated
curves in Fig. 2 are given for a certain average value of
deformation ε = 2.5 × 10–3, though a comparison with
the experiment was performed for each sample with
regard to the deformation measured in it and the barrier
height. Because the wells are relatively deep, the calcu-
lated curve for the ground state is virtually independent
of the variation of the europium content in the barriers
within the range 0.05 ≤ x ≤ 0.07.

δEl 0.92Dd 1.08Du–( )ε⊥=

δEo 0.92Dd 0.77Du+( )ε⊥=

ε⊥ 1.08ε||.–=
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Thus, the energies determined from the lumines-
cence data for the optical transitions between the
ground states of electrons and holes in deep PbTe quan-
tum wells are in good agreement with the results of cal-
culations within the framework of the two-band model
[10], though more sophisticated calculations within the
six-band model are necessary for the high-lying states
[5]. This result, in combination with the mechanical
strains measured in the PbTe/PbEuTe heterostructures,
allows the conclusion that the constants of the optical
deformation potentials found are most reliable. Note
that we also used this approach to advantage for inter-
preting the results of low-temperature PL in deep
strained PbSe/PbSrSe-based quantum wells, for which
the position of size-quantization levels assumed in [3]
was recently confirmed by measuring absorption spec-
tra [11].

The temperature dependence of the forbidden band
gap Eg is determined by the coefficient dEg/dT, which is
positive for IV–VI semiconductors. In the case of the
bulk PbTe crystal, it equals +4.5 × 10–4 eV/K in the tem-
perature range 50–300 K. Here, the contribution due to
the variation of the lattice constant with temperature
comprises 3αB(dEg/dP)T = +1.7 × 10–4 eV/K, where α
is the linear thermal expansion coefficient, B is the bulk
modulus of elasticity, and (dEg/dP)T is the pressure
coefficient. Hence, the remaining part (about 60%) is
due to the electron–phonon interaction. At low (<50 K)
temperatures, the dEg/dT coefficient decreases, tending
to zero, because the electron–phonon interaction
decreases, and α  0 in accordance with the Nernst
heat theorem.

The calculation of the dEg/dT coefficient for low-
dimensional systems is absent. The experiment shows
that this coefficient decreases with the size of the quan-
tum-sized object. In particular, it was shown in [12]
based on absorption spectra of PbS and PbSe quantum
dots that the dEg/dT coefficient drops to zero and even
changes its sign when the size of quantum dots
decreases. In this work, an analogous effect was
observed in the absorption and PL spectra of the two-
dimensional PbTe/PbEuTe system. However, the accu-
racy of measuring the dEg/dT coefficient by absorption
spectra is relatively low, especially at low temperatures,
where this coefficient nonlinearly goes to zero, which
possibly leads to the sign reversal. Therefore, we deter-
mined the difference ∆Eg = Eg(77 K) – Eg(4 K) from PL
spectra. Here, Eg implies the energy of the radiative
transition between the electron and hole ground states.
For PbTe, this approach is also important because the
quantum yield of emission in this material decreases at
elevated temperatures because of intervalley Auger
recombination. It is evident in Fig. 3 that the difference
∆Eg strongly decreases with decreasing well width
(more than two times for a well with the width Lz=
2.3 nm as compared to the bulk crystal); however, its
sign remains unchanged. Thus, the dEg/dT coefficient
JETP LETTERS      Vol. 75      No. 11      2002
for the two-dimensional PbTe/PbEuTe system also
decreases as the well width decreases as low as 2.3 nm
but does not change its sign.

Because the contribution due to the temperature
variation of the lattice constant weakly depends on the
well width, the experimental result points to a change in
the contribution to dEg/dT due to the electron–phonon
interaction. Confined 2D phonons and interface
phonons propagating along the quantum well plane
arise in the two-dimensional system. Although the role
of interface phonons increases as the well width
decreases, their contribution to the electron–phonon
interaction is relatively low. Long-wavelength phonon
modes propagating perpendicular to the well plane do
not exist in the case of 2D phonons. Therefore, polar
interaction in an ionic 2D crystal decreases. Hence, the
observed decrease in ∆Eg with decreasing well width
points to a weakening of the electron–phonon interac-
tion in the 2D system in agreement with the results of
calculations (see [13] and references therein).

Thus, the energies of radiative transitions between
the ground states in the conduction and valence bands
in high-quality PbTe/PbEuTe systems with deep quan-
tum wells are described well within the framework of
the two-band model with regard to nonparabolicity,
strong anisotropy, and the multivalley character of the
band structure. With regard to the measured mechanical
strains, this allowed the optical deformation potentials
to be reliably determined for PbTe. It was found that the
dEg/dT coefficient in the 2D system decreases with
decreasing well width, which is explained by a weaken-
ing of the electron–phonon interaction.
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The conductivity σ of C60 fullerene crystals is measured under quasi-isentropic loading by a spread shock wave
to a pressure of 200 kbar at the initial temperatures 293 and 77 K. A sharp increase in σ by seven to eight orders
of magnitude is detected: from 10–6–10–7 Ω–1 cm–1 at normal conditions to 5 Ω–1 cm–1 under pressure from
100 to 200 kbar. The conductivity of samples under pressure decreases with decreasing temperature, which is
characteristic of semiconductors. On pressure release, σ regains its initial value. © 2002 MAIK “Nauka/Inter-
periodica”.

PACS numbers: 72.80.Rj; 71.30.+h; 62.50.+p
In the crystalline state, C60 fullerene is a semicon-
ductor with an energy gap Eg of about 2.1 eV and with
rather narrow valence and conduction bands (about
0.5 eV each). The excitonic optical absorption edge
corresponds to an energy of about 1.7 eV (i.e., the bind-
ing energy of singlet excitons is about 0.4 eV) [1]. The
C60 molecules are mainly bound by the Van der Waals
forces, and the compressibility of C60 crystals under
hydrostatic pressure is very high. Under a pressure of
50 kbar, the relative variation of the crystal volume
∆V/V0 reaches 20%, and at 200 kbar it exceeds 30% [2].
One would expect that the valence and conduction band
widths, which exponentially depend on the intermolec-
ular distance, will rapidly increase under hydrostatic
pressure. This process should be accompanied by a
decrease in the energy gap, and, at some pressure, the
crystal can transform to the metal state.

An analysis of numerous data on the changes of the
optical absorption spectra of C60 crystals under hydro-
static pressure (see, e.g., [3, 4]) shows that the energy
gap decreases rapidly with increasing pressure. How-
ever, different experiments yield noticeably different
values for the slope of the pressure dependence of
energy gap dEg/dP: from –10 to –3 meV/kbar. There-
fore, estimates of the pressure corresponding to the
transition to the metal state show a considerable scatter
(200–700 kbar). Moreover, it is still unclear whether
the transition of C60 crystals to the metal state is possi-
ble before the collapse of the C60 molecules or their
polymerization.

The wide scatter of experimental data can be caused
by several factors. First, high pressures may lead to the
polymerization of C60 molecules (the formation of
0021-3640/02/7511- $22.00 © 20563
covalent bonds between the molecules) [5]. Polymer-
ization is a rather slow, thermally activated process
additionally depending on the relative orientation of
molecules, and it can be present to a variable extent in
different experiments thus affecting the data for dEg/dP.

Second, most hydrostatic experiments use a pres-
sure-transmitting medium (such as liquid xenon, alco-
hol mixtures, etc.). Because of the large diameter of C60
molecules and their almost spherical shape, the C60
crystal structure is characterized by the presence of
large intermolecular voids, which can be easily filled
with the molecules of the pressure-transmitting
medium. The latter process can strongly affect the elec-
tron band structure of the samples.

The aforementioned problems can be avoided in
experiments with a shock action [6, 7]. Special
dynamic experiments allow one to obtain fairly smooth
quasi-isentropic loading conditions with minimal heat-
ing of the medium. Earlier [8], a method was proposed
for recording the phase transformations under such a
compression by measuring the resistivity R of thin sam-
ples. In these measurements, the characteristic time of
the pressure increase to the maximal value was ~1 µs,
which was many orders of magnitude greater than the
thermodynamic equilibrium time but much smaller
than the time characterizing the diffusion processes.

The idea of the method is as follows. The sample
under study is placed between two plates made of glass
or fused quartz. One plate is in contact with a metal
screen. The dynamic loading occurs from the side of
the screen, which is struck by a metal striker acceler-
ated by explosion products to a velocity of ~2 km/s.
Because of the anomalous compressibility of glass and
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fused quartz below the elastic limit and by virtue of the
thermodynamic laws governing the transition to the
plastic state in these materials, no shock wave can exist
in them at pressures below ~120 kbar [9]. The shock
wave is spread as it travels from the boundary between
the quartz plate and the metal screen and transforms to
a continuous wave of isentropic compression, which
makes it possible to considerably reduce the irrevers-
ible shock-wave heating of the sample. As a result, in
the conditions of the dynamic experiment, the sample
under study is loaded smoothly without a shock. This
method had been successfully used earlier in studying
the “dielectrization” of lithium and sodium [10, 11].

Using the dynamic compression method described
above, we studied the conductance of crystalline sam-
ples of a C60 fullerene with a density of 1.67 g/cm3

under a pressure of up to 200 kbar.
The dynamic experiment is schematically repre-

sented in Fig. 1. The fullerite sample 1 had the form of
a rectangular plate with dimensions 8 × 3 × 1.5 mm.
Copper foil leads 2 were attached to the sample by a
conducting adhesive. The sample and the manganin
pressure sensor 3 were separated from the quartz sur-
faces by a teflon film 0.1 mm thick. The quartz plates 4
were 5 mm thick. The assembly was loaded by an alu-
minum striker 5 through a 6-mm-thick copper screen 6,
the striker being accelerated to a velocity of 2 km/s by
a special explosion device. The rear copper screen 7

Fig. 1. Schematic diagram of the experiment: (1) a C60 sam-
ple, (2) electric leads to the sample (copper foil strips), (3)
a manganin pressure sensor, (4) quartz plates (5 mm), (5) an
aluminum striker, (6) a copper screen (6 mm), and (7) a rear
copper screen.
was necessary for the generation of a reflected shock
wave and a pressure increase to 200 kbar. The experi-
ments were carried out at the initial room temperature
T = 293 K and also by cooling the measuring cell to the
temperature of liquid nitrogen T = 77 K. The recording
device was a Tektronix-744A digital oscilloscope with
a passband of 500 MHz.

Solid samples of C60 were fabricated by the method
developed at the Institute of Solid State Physics of the
Russian Academy of Sciences. A 10-g portion of chro-
matographically cleaned fullerene powder 99.98% pure
was placed in a quartz ampoule 30 mm in diameter and
500 mm in length. One end of the ampoule was made
of flat polished quartz. The ampoule was evacuated to a
pressure of 10–6 Torr and heated to 300°C. Under a con-
stant pumping during 8–10 h, the fullerene powder was
cleaned from traces of organic solvents and volatile
impurities. After this procedure, at the flat end of the
ampoule, a fullerene polycrystal was grown by resubli-
mation in a temperature gradient (the sublimation tem-
perature was 650°C, the crystallization temperature
was 600°C, and the time of growth of a 1-mm-thick
layer was 72 h). The resulting flat polycrystal was cut
into samples. X-ray examination (a D-500 Siemens
apparatus) showed that the samples correspond to the
fcc phase of C60 with the lattice constant a = 14.192 ±
0.004 Å.

The resistivity was measured against the back-
ground of the resistances Rsh = 10–10000 Ω shunting
the sample, as in [12]. Because of the small sample
thickness, it was possible to assume that, at every
instant, the sample was compressed to the pressure P
that was measured by a manganin-foil pressure sensor
positioned in the same plane. With this assumption, the
dependence of R on P could be obtained from the
results of a single experiment by analogy with one
cycle of pressure growth and drop in static systems.

The oscillogram of one of the experiments (without
cooling the assembly) is presented in Fig. 2. In the first
pressure wave with the amplitude up to 100 kbar, the
conductance of the sample 1/R increases from its initial
value about 10–7 Ω–1 to a value of about 10–2 Ω–1. With
the arrival of the reflected wave whose maximal ampli-
tude is 200 kbar, the conductance of the sample sharply
(within approximately 100 ns) increases to 0.35 Ω–1.
When the load is removed, the conductance drops to its
initial value. The pressure dependence of conductance
observed for a C60 sample cooled to 77 K is qualita-
tively the same, with the only difference that the value
of 1/R in the second pressure wave is much smaller:
about 2 × 10–3 Ω–1.

Knowing the geometric dimensions of the sample
and assuming that the shock compressibility of crystal-
line C60 is close to the compressibility of compacted
graphite with a density of 1.77 g/cm3 [13], it is possible
to estimate the conductivity σ of the sample under the
shock compression. It was found that, when the initial
JETP LETTERS      Vol. 75      No. 11      2002



        

CONDUCTIVITY OF C

 

60

 

 FULLERENE CRYSTALS 565

                
temperature of a C60 sample was 293 K, its conductivity
σ under pressure up to 200 kbar reached 5 Ω–1 cm–1. For
a sample cooled to 77 K before loading, the conductiv-
ity σ observed under a similar dynamic compression
was almost two orders of magnitude less: 0.07 Ω–1 cm–1.
This kind of temperature dependence of the conductiv-
ity is characteristic of semiconductors. Note that, in the
first case, σ increases with pressure by seven to eight
orders of magnitude with respect to the initial conduc-
tivity equal to 10–6–10–7 Ω–1 cm–1. One should also note
the reversible character of the conductivity variation
(see Fig. 2), which testifies that the samples regain their
properties after the dynamic load is removed. This
assumption was tested in special experiments in which
C60 samples placed in flat metal storage ampoules [14]
were subjected to shock-wave action. The geometry of
the devices was identical to the geometry of the mea-
suring cell shown in Fig. 1. The X-ray phase analysis
showed that the stored samples had a single-phase C60
structure with a somewhat smaller lattice constant a =
14.145 ± 0.004 Å.

The results of our study testify to a sharp decrease in
the band gap of C60 crystals under pressure. However,
the experimental temperature dependence of conduc-
tivity under pressure indicates that the band gap does
not decrease as low as zero, and the samples com-
pressed to 200 kbar remain semiconducting. This fact
qualitatively agrees with the data on the effect of static
pressure on crystalline C60 [15]. However, quantita-
tively, the value of σ observed in our experiments in the
dynamic compression conditions is two orders of mag-
nitude greater than the conductivity observed at room
temperature under a static pressure of 200 kbar. The

Fig. 2. Time dependences of (1) the pressure and (2) the
conductivity of a C60 sample under compression by a spread
shock wave.
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difference between our experiments and the static ones
is presumably caused by the dynamic heating of the
samples in our experiments: in the case of the isentropic
compression to 200 kbar, the temperature range of this
heating is 100–200°C. It is also possible that the quan-
titative difference is partially caused by such processes
as the polymerization of the C60 molecules and the dif-
fusion of impurities into the sample, which occur in the
static experiments.

This work was supported in part by the Russian
Foundation for Basic Research (project no. 00-02-
17528).
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Superconductivity Signs at 110 K on Boride Inclusion Phases 
TiBk in the Titanium Matrix
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An experimental check of theoretically predicted high-temperature superconductivity in titanium borides TiBk
is done. These predictions, published as a theoretical phase diagram, concerned the possibility of the existence
of high-Tc TiBk phases with compositions 1.43 < k < 2.57. In titanium samples coated by diffuse surface boride
layers of depth-variable composition TiBk, there is a jump in the electrical resistance versus temperature depen-
dence R(T) at 110 K. This proves the presence of superconducting inclusion phases in the layers. Diffuse boride
layers were applied to metallic titanium by exposing its surface to a B2H6 + H2 gas mixtures at 610–700°C fol-
lowed by vacuum annealing. The composition of boride layers was studied by mass spectrometry. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 74.10.+v; 74.70.Ad
The discovery of medium-temperature supercon-
ductivity for magnesium diboride MgB2 (Tc = 39 K [1]),
which has comparatively simple composition and
structure, stipulated a search for nonoxide supercon-
ducting materials, including metal borides and related
compounds [2]. Note that it was as early as in 1989 that
high-temperature superconductivity was predicted in
binary titanium boride phases TiBk in which k is not
necessarily an integer [3–5]. Later, these predictions
were replicated in systematizing works [6, 7]. However,
no experimental checks of such predictions have yet
been published. Therefore, we undertook a provisional
experimental check, and here we report the results.

Most experimental evidence is in favor of low super-
conducting transition temperatures in borides. The sys-
tematization of data concerning low-temperature super-
conductivity in binary transition-metal borides at below
1 K [8] showed that the phases of composition MB2,
where M = Ni, Zr, Hf, V, Ta, Cr, or Mo (the AlB2 struc-
0021-3640/02/7511- $22.00 © 20566
tural type, Fig. 1d), have no superconductivity down to
0.42 K. For TiB2, transition temperatures of Tc < 1.26–
1.9 K were reported [9]. No superconducting transition
was observed down to 0.42 K in MB6 (M = Sr, Ca, Ba),
MB (M = Mo, Nb, Cr), W2B5, Cr5B3, UB2, UB4, or
UB12. The superconducting properties of MB6 and
mixed systems of the (Y,La)B6 type were reported [10,
11]. For YB6, Tc = 6.0 K; for the (Y0.5La0.5)B6 mixed
phase, Tc = 1.6 K. Mixed hexaborides (YYb)B6,
(YCa)B6, and (YTh)B6 show a notable decrease in Tc

compared to the Tc of pure YB6. Therefore, in MB2
(except for the aforementioned MgB2) and MB6 com-
pounds and in several binary borides, superconductiv-
ity exists only at low temperatures.

Some ternary borides also show superconductivity
[12, 13]. Examples are LuRh4B4 (11.5 K), LuRuB2
(10.0 K), LuRhB4 (11.3 K), Y(Rh0.85Ru0.15)4B4 (9.4 K),
and (Lu0.5Th0.5)Os3B2 (4.1 K).
Fig. 1. Structures of some borides. (a) Idealized models of boron linking in metal borides: isolated boron atoms, boron atom pairs,
zigzag chains in MB, and hexagonal chains in MB2. (b) Atom arrangement in TiB. (c) A hexagonal layer in the structure of a metal
diboride (MB2) characteristic of TiB2 and MgB2. (d) The dominant structural type AlB2.
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The crystal structures of borides involve combina-
tions of M–B, B–B, and M–M bond arrays. Selected
representative fragments of boride structures are
imaged in Fig. 1. Boron atoms can occur as separate
atoms or pairs, or they can form zigzag linear structures
(TiB) or planar unidimensional and two-dimensional
hexagonal networks (Figs. 1a, 1b) [6, 7, 14–17]. Layer
crystal structures of the AlB2 type (Figs. 1c, 1d) are
intrinsic to MgB2, TiB2, and transition-metal diborides
MB2 [1, 14, 17]. These structures are an alternation of
layers of hexagonal networks formed from B and M
atoms. Quasi-two-dimensional layer–network frag-
ments are also intrinsic to the structures of classical
high-Tc cuprates [18]. In the structure of TiB (Fig. 1b),
boron atoms form zigzag chains rather than layers or
networks [16]. No superconductivity in TiB was dis-
covered.

The occurrence of high-temperature superconduc-
tivity in binary titanium boride phases TiBk was pre-
dicted first by Zaitsev [5], then replicated by Shveikin
and Ivanovskii [6, 7]. A layer structural model was
ascribed to TiBk. The final result was represented as a
theoretical phase diagram with the field of TiBk compo-
sitions for which high-temperature superconductivity is
expectable (Fig. 2). The Habbard–Emery generalized
model [19, 20] including the suggested electronic states
of atoms in the system was used in estimations. The
occurrence of high-temperature superconductivity at
1.43 < k < 2.57 (including the range of 2 < k < 18/7 in
Ti2B5) was predicted, as well as and its absence in TiB,
Ti3B4, and TiB2. However, variation in Tc in TiBk as a
function of k was not quantified. This prediction mostly
coincides with data [3, 4] that indicate the possibility of
high-temperature superconductivity in TiBk phases.

It is interesting that, in terms of the BCS model,
borides of light elements have higher Tc among the iso-
structural compounds. Existing evidence is consistent
with the model: examples are ZrB (3.4 K) and HfB
(3.1 K), an NaCl structure; NbB (8.25 K) and TaB
(4.0 K), a δ-CrB structure; Mo2B (5.86 K) and W2B
(3.18 K), a CuAl2 structure [21].

We have attempted to experimentally verify the pre-
diction of high-temperature superconductivity in TiBk

phases. The experience of investigations into oxide
high-Tc systems requires the design of definite crystal-
chemical structures of working phases and the absence
of external impurities and other polymorphs in them.
This requirement also applies to boride systems. Tem-
peratures of up to 1500–2000°C are required to ensure
the completion of the B(solid) + M(solid)  MBk

(solid) solid-state reaction during synthesis of refrac-
tory transition-metal borides. The starting components
and reaction products (B, M, MBk) have high affinities
to O2, N2, H2O, and carbon, making the formation of
oxide, nitride, carbide, and other external phases possi-
ble. High temperatures are also necessary for perfect
crystal structures to form.
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However, a pair of more stable borides, TiB and
TiB2, is more likely to form than the desired TiBk

phases. To avoid this difficulty, we prepared samples
that could contain TiBk inclusion phases in the poly-
crystalline titanium matrix.

Our experiments were carried out on commercial
titanium samples shaped into 5 × 4 × 1.5-mm plates.
Samples with TiBk inclusions in the structure of surface
layers were prepared by doping titanium metal by
boron from a diborane(6) B2H6 + H2 gas flow at 610–
700°C for 3–4 h. Above 600°C, B2H6 dissociates to H2
and B. The newly formed boron deposits on the tita-
nium surface and then diffuses into the metal to yield
TiBk inclusion boride phases of variable composition.
To form TiBk inclusion structures, coated plates were
annealed in vacuum at 710–820°C for 4–5 h. Pure B2H6
mixed with H2 (1 : 1 vol/vol) was prepared from a
mechanochemical solid-state reaction of SnCl2 with
NaBH4 in a hermetic vibrational gas-producer installa-
tion [22]. Previously, titanium plates were polished
with a fine abrasive, and surface oxides were removed
by aqueous hydrochloric plus hydrofluoric acid mix-
tures. The vapor boration was carried out in a sealed
quartz tubular reactor heated by an electrical furnace
and equipped with a thermocouple and a temperature
controller. The reactor was attached by tubing to the
B2H6 producer and a vacuum system. Batches of four to
five samples were processed in a gradient-free zone of
the reactor. Black diffuse layers of TiBk borides
appeared on the samples as a result.

Secondary ion mass spectrometry in tandem with
Ar+ ion surface etching was used to determine the B : Ti

Fig. 2. Phase diagram for the compound TiBk [5]. Super-
conducting fields are shaded. Notation: np is the number of

holes in the 2p4 shell of boron anions, and nd is the number

of holes in the 3d4 shell of titanium cations. The electrical
neutrality lines for several TiBk compounds are shown by
dashed straight lines.
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atomic ratio and to estimate the variation in k for TiBk

compositions with h, the depth of the diffuse boride
layer. The instrument used was an MS-702 AEI mass
spectrometer (see table).

Resistance R was measured by a standard four-
probe technique with a 2-mA current from 77 to 293 K.

Fig. 3. R(T)/R0 curves for (a) sample 1 and (b) samples 2
and 3. The curves are numbered to correspond to sample
numbering.

Determination of the B : Ti atomic ratio in boride layers on
titanium for selected samples as a function of depth h

Character of the
R/R0(T) curve h, µm B : Ti atomic

ratio

Transition at 110 K 
(Fig. 3a)

0–0.3 10

1.4 ± 0.3 1

2.8 ± 0.3 0.5

No transition;
semiconductor
conductivity

0–0.3 6

1.4 ± 0.3 0.1

2.8 ± 0.3 0.05

No transition;
metal conductivity

0–0.3 3

1.9 ± 0.6 0.1

3.8 ± 0.6 0.02

No transition;
starting titanium 
(unexposed to B2H6)

0–0.3 0.0003
The probes were four copper wires positioned at a dis-
tance of 1 mm parallel to one another. A test sample
was pressed to the probes at a certain force, such that an
electrical contact appeared along the entire length of
the sample. The assembly—a cell with contacts, a sam-
ple, and conductor wires—was mounted in a bulky
temperature-controlled copper block, which was
cooled by the vapor of liquid nitrogen or helium. The
temperature was measured by a copper–constantan
thermocouple with an error of ±0.01 K; the voltage was
measured with an error of ±0.01 µV.

The following measurement procedure was prac-
ticed. First, the starting resistance of the sample R0 was
measured, then the measurement cell was cooled, and R
was measured after fixing temperature T. After reaching
the temperature of liquid nitrogen, the temperature was
raised in steps, and R was measured again. The results
of the measurements are presented as R/R0 versus T
plots in Fig. 3.

Even during provisional investigations, we observed
R(T) dropped in a jump at 100–110 K when cooling
several boride-coated titanium samples. Of the two
batches, only a few samples showed this effect upon
cooling (see Fig. 3, curves for samples 1, 2, and 3).
When the temperature was raised, R increased in a
jump at the same temperature (Fig. 3, sample 3). The
starting metallic (uncoated) titanium has no such effect.

We relate the jump in R of samples 1, 2, and 3 to the
appearance of superconducting inclusion phases TiBk

with 2 < k < 18/7 (for example, Ti2B5) in the layers
whose composition varies with depth, in accordance
with theoretical predictions [3–5]. Note that not all tita-
nium samples processed by B2H6 under identical condi-
tions showed such transitions in R. Of the two replicate
batches, only a few samples showed this transition: two
samples of the ten prepared in batch I and seven of the
twenty five prepared in batch II. A total of 12 samples
showed the transition at 110 K. Clearly, in our case,
boride layers of sufficient thickness with definite B-to-
Ti ratios are the necessary condition for high-T super-
conductivity to appear in TiBk inclusions. Some sam-
ples had pure metallic R(T) curves; others had semicon-
ductor curves (probably, due to a compact boron film).

The table displays the B-to-Ti atomic ratio in boride
layers on titanium measured by mass spectrometry at
various depths h. In a sample showing a clear-cut tran-
sition at 110 K (Fig. 3a), B : Ti = 10–0.5 (table) at
boride layer depths of h = 0–2.8 µm; that is, TiBk with
2 < k < 18/7 can be present, especially at h ~ 0.3–
1.4 µm. The other two samples show no transition; they
do not bear boride layers of the required thickness and
composition: their B : Ti ratio for h > 0.3 µm is almost
an order of magnitude lower than in sample 1.

To estimate the volume of the superconducting
phase in the samples, we employed phenomenological
theory to calculate a resistance jump in a composite
material consisting of a normal component and super-
JETP LETTERS      Vol. 75      No. 11      2002
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conducting inclusions that have a definite shape of the
other component with Tc transition in the effective
medium approximation [23]. In the approximation of
the smallness of the volume fraction cs of the supercon-
ducting phase,

(1)

where ρn is the resistance of the composite in the limit
where cs tends to zero, ρs is the resistance of the mate-
rial after the superconducting transition in the other
inclusion phase occurred, and nc is the demagnetization
factor (for spheric inclusions, nc = 1/3). With reference
to the percolation threshold [24],

(2)

In Eq. (2), the threshold concentration cp for the trans-
port current is a function of the geometry of supercon-
ducting domains. For spheric superconducting inclu-
sions, estimation gives a value of cp ≈ 0.15. Using
Eq. (2) and our data of Fig. 3a for sample 1 (this sample
showing the largest jump in R in the region of 110 K)
and regarding inclusions as spheric, we estimated the
volume fraction of the superconducting TiBk phase. For
this sample, cs ≈ 0.026; for samples 2 and 3, cs < 0.01.
The estimate according to Zhdanov [24] showed that,
with the amount of the superconducting phase in our
sample being less than 2.5%, the diamagnetic moment
is less than 10–9 A m2, making its measurements diffi-
cult.

Apart from diborane(6), other volatile boron com-
pounds were used to apply diffuse layers to titanium.
We used decaborane(14) B10H14 and its sulfur deriva-
tive SB9H11 in vapor borating the surface of titanium
plates. Diffuse layers bearing B, C, and N were pre-
pared from triethylamine borane (C2H5)3N · BH3 vapor.
B2H2 was used to coat titanium mononickelide TiNi.
However, none of the samples prepared in these man-
ners showed low-temperature resistance jumps.

The general result of this study is the following. We
have shown that titanium samples coated by diffuse
boride layers of variable composition TiBk show a jump
in the R(T)/R0 curve at 100–110 K; this jump can serve
as a sign of the presence of newly formed high-T inclu-
sion phases. Relatively low temperatures (610–700°C)
and synthesis involving the B2H6 gas phase could be
essential for the formation of boride phases with
desired structures and compositions.

Evidently, the results presented here are the basis for
further investigations to give a deeper insight into the
phenomenon in question.

This work was in part supported by the High-Tem-
perature Superconductivity Program, project no. 98009
and the Russian Foundation for Basic Research, project
no. 02-02-16564.

ρs/ρn 1 cs/nc,–=

ρs/ρn 1 cs/nc( ) l cs/cp–( )– cs/cp( )2.–=
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Bose Condensation of Interwell Excitons 
in Double Quantum Wells

A. V. Larionov1, V. B. Timofeev1*, P. A. Ni1, S. V. Dubonos2, I. Hvam3, and K. Soerensen3

1 Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia
2 Institute of Microelectronic Technology, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia

3 Microelectronic Centre, DK 2800 Lyngby, Denmark
*e-mail: timofeev@issp.ac.ru

Received April 29, 2002

The luminescence of interwell excitons in double quantum wells GaAs/AlGaAs (n–i–n heterostructures) with
large-scale fluctuations of random potential in the heteroboundary planes was studied. The properties of exci-
tons whose photoexcited electron and hole are spatially separated in the neighboring quantum wells were stud-
ied as functions of density and temperature within the domains on the scale less than one micron. For this pur-
pose, the surfaces of the samples were coated with a metallic mask containing specially prepared holes (win-
dows) of a micron size an less for the photoexcitation and observation of luminescence. For weak pumping (less
than 50 µW), the interwell excitons are strongly localized because of small-scale fluctuations of a random
potential, and the corresponding photoluminescence line is inhomogeneously broadened (up to 2.5 meV). As
the resonant excitation power increases, the line due to the delocalized excitons arises in a thresholdlike manner,
after which its intensity linearly increases with increasing pump power, narrows (the smallest width is
350 µeV), and undergoes a shift (of about 0.5 µeV) to lower energies, in accordance with the filling of the low-
est state in the domain. With a rise in temperature, this line disappears from the spectrum (Tc ≤ 3.4 K). The
observed phenomenon is attributed to Bose–Einstein condensation in a quasi-two-dimensional system of inter-
well excitons. In the temperature range studied (1.5–3.4 K), the critical exciton density and temperature
increase almost linearly with temperature. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Fg; 73.20.Mf
1. Since a hydrogen-like exciton in a semiconductor
consists of two fermions (electron and hole), its spin is
an integer, and, hence, it is a composite Bose particle.
This gives grounds to assume, as was formulated in a
number of theoretical works in early 1960s [1], that, at
sufficiently low temperatures, Bose–Einstein conden-
sation (BEC) may occur in a weakly nonideal and low-

density exciton gas in semiconductors (n  ! 1,
where n is the exciton density, aex is the electron Bohr
radius, and d is the system dimensionality). In recent
years, much effort has been devoted to a search for
excitonic BEC in two-dimensional (2D) systems based
on semiconducting heterostructures [2–18]. In an ideal
and unconfined 2D system, where the single-particle
density of states is constant, BEC cannot occur at finite
temperatures for fundamental reasons, namely, because
the number of occupied states diverges when µ  0
and because of the fluctuations that destroy the order
parameter [19]. However, in the spatially confined
quasi-two-dimensional and 2D systems, BEC may
occur at finite temperatures. The critical temperature in
the laterally confined 2D system, where the number of
states is finite, is equal to

(1)

aex
d

Tc n"
2Nex/kBmex NxS( );ln≈
0021-3640/02/7511- $22.00 © 20570
i.e., it decreases logarithmically with an increase in the
area S occupied by a 2D gas of Bose particles with den-
sity Nex and the effective mass mex; kB is the Boltzmann
constant.

The spatial confinement in the quantum-well (QW)
plane may be due to the large-scale fluctuations of a
random potential caused by the variations w(r) of the
QW width at the heteroboundaries. These variations
give rise to the variations of the effective lateral poten-
tial U(r) = U(w(r)) [14]. At quasiequilibrium, the exci-
ton density distribution is determined from the equation
µ(N(r)) + U(r) = µ, where the chemical potential µ of
the interwell excitons is determined by their mean den-
sity, and µ(N) is the chemical potential of the homoge-
neous excitonic phase in the spatial confinement
domain. Evidently,  < |µ|, because µ(N) = –|Eex | +
|δ(U(r))| (Eex is the exciton binding energy), so that
excitons are more easily accumulated in the lateral con-
finement domains, where, hence, the exciton density
may be appreciably higher than the mean density in the
QW planes [14]. For this reason, the critical conditions
for the Bose condensation of interwell excitons can be
created more easily precisely in the lateral domains.

With this in mind, we studied the properties of inter-
well excitons at various densities and temperatures in

µ r( )
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double quantum wells (DQW) GaAs/AlGaAs with
large-scale fluctuations of random potential. The fluctu-
ations at the QW heteroboundaries were produced
using the epitaxial growth interruption technique [20].
By applying bias to DQW and, hence, tilting the bands,
one can create excitons whose electron and hole occur
in different quantum wells, which are separated by a
transparent tunnel barrier. Such excitons are called spa-
tially indirect or interwell excitons (IWE), as opposed
to direct intrawell excitons, whose electron and hole are
located in the same QW. Compared to intrawell exci-
tons, interwell excitons are long-lived, because the
overlap of their electron and hole wave functions
through the tunnel barrier is weaker than in intrawell
excitons. As a result, interwell excitons can easily be
accumulated and cooled to a rather low temperature.
The dipole moment of the interwell excitons is nonzero
even in the ground state, so that they are not bound into
molecules because of dipole–dipole repulsion.

The n–i–n GaAs/AlGaAs heterostructure with dou-
ble quantum wells GaAs/AlAs/GaAs (120-Å-thick
GaAs wells and ~11-Å AlAs barrier) was studied. The
structure was grown by molecular-beam epitaxy on a
doped n-type GaAs substrate (concentration of Si
dopants was 2 × 1018 cm–3) with the (001) crystallo-
graphic orientation. A 0.5-µm Si-doped (2 × 1018 cm–3)
GaAs buffer layer was first grown on the substrate.
Then an isolating 20 nm-thick AlxGa1 – xAs (x = 0.35)
layer and a 10-period superlattice AlAs/AlxGa1 – xAs
(x = 0.35) with a period of 3 nm were applied. Next, a
GaAs/AlAs/GaAs DQW was grown and an isolating
120-nm AlxGa1 – xAs (x = 0.35) layer containing a
10-period superlattice AlAs/AlxGa1 – xAs (x = 0.35)
with a period of 3 nm was applied again. Next was a
0.1-µm Si-doped (2 × 1018 cm–3) GaAs layer. The
whole structure was capped by a 100-Å GaAs layer.
Metallic contacts made from a Cr/Ge/Au/Cr/Au alloy
were attached to the buffer layer and the doped layer at
the upper part of the mesa.

At the surface of the n–i–n structure with the above
architecture, a 120-nm metal mask (aluminum film)
with holes (up to 0.5 µm in diameter) was formed by
lift-off electron-beam lithography. The excitation and
recording of the luminescence signal were accom-
plished through these windows. The aluminum film
was not in contact with the doped n+-contact region of
the heterostructure.

The results pointing to the exciton condensation
were obtained upon optical excitation of the sample
through the windows with diameters less than one
micron. Experiments were carried out under conditions
of laser resonance excitation of intrawell excitons on
heavy holes (1sHH excitons) using a tunable Ti– sap-
phire laser. In all measurements, the size of the laser
spot focused onto the sample did not exceed 20 µm.
The luminescence spectra of interwell excitons (I) mea-
sured at various biases are shown in Fig. 1. The optical
transitions of interest are schematically illustrated in
JETP LETTERS      Vol. 75      No. 11      2002
Fig. 1b. In the intrawell luminescence range (not shown
in the figure), two lines are seen at zero bias: due to a
free exciton on a heavy hole 1sHH and to a bound exci-
ton [9]. The interwell exciton line (I line) appears in the
spectra when the bias-induced Stark shift of the size-
quantization bands in the neighboring quantum wells is
such that eF∆(z) ≥ ED – EI (ED and EI are the binding
energies of the intra- and interwell excitons, respec-
tively, and F is the electric field). The I-line shift
depends almost linearly on the electric field (Fig. 1c).
At large voltages (U > 0.3 V) and stationary excitation,
the IWE line dominates, while the luminescence of the
intrawell excitons and charged excitonic complexes
under the same conditions is several orders of magni-
tude less intense. In the structures studied, the IWE
luminescence quantum yield is high and the radiation-
less transitions can be ignored. This statement is based
on the fact that, as the voltage applied increases, the
IWE lifetimes change by more than an order of magni-
tude, whereas the luminescence intensity virtually does
not change (Fig. 1).

At low excitation power (lower than 50 µW), a mod-
erately broad asymmetric band (with a width of about

Fig. 1. (a) Luminescence spectra of interwell excitons for
various applied voltages. Temperature T = 1.51 K and opti-
cal excitation power P = 300 µW. (b) Scheme of optical
transitions. (c) Line positions in the spectra of (D) direct
exciton and (Iex) IWE vs. applied bias.
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2.5 meV; see Fig. 2) of the interwell excitons is
observed in the spectra. This band is inhomogeneously
broadened and is due to the strong localization of inter-
well excitons in the small-scale fluctuations of a ran-
dom potential created by the residual charged impuri-
ties. As the pump increases (≥50 µW), a narrow line
appears in a threshold manner at the violet side of the
broad band. The intensity of this line linearly increases
with pump power (see inset in Fig. 2). It increases much
faster than its luminescence background; simulta-
neously, the line slightly narrows and shifts by approx-
imately 0.5 meV to lower energies. The smallest mea-
sured width of this line is 350 µeV. Considering that the
spectral width of the spectrometer slit is 250 µeV, one
can state that the actual width of this line is smaller than
250 µeV. Note that the structureless background also
linearly increases with an increase in pump power.

Fig. 2. Photoluminescence spectra of the interwell exciton
(Iex line) under conditions of resonance excitation of the
direct 1sHH exciton for various excitation powers, bias U =
0.3 V, and T = 1.51 K. The numbers to the right of the spec-
tra indicate the excitation power in µW. The spectral resolu-
tion of the instrument is shown at the top right. Inset: the
IWE line intensity (dots) vs. optical excitation power. The
dashed line is the extrapolation of the linear dependence of
the background intensity.
 Upon further increase in pumping (higher than

0.5 mW), the narrow IWE line starts to broaden, after
which it gradually broadens and shifts to higher ener-
gies.

Temperature studies showed that the narrow IWE
line disappears at T ≥ 3.4 K. Figure 3 illustrates the typ-
ical temperature behavior of the I line at a fixed pump-
ing level. One can see that, at T = 1.8 K and an excita-
tion power of 150 mW, this line rises above the struc-
tureless luminescence band of localized excitons and
has a high intensity. As the temperature increases, the
intensity of I line decreases in a nonactivation manner,
its width changes only slightly, and at T = 2.7 K it dis-
appears on the background of the structureless spec-
trum of localized excitons, which retains its shape.
Measurements of the temperature behavior of the I-line
intensity in the temperature range T = 1.51–3.4 K at

Fig. 3. Temperature dependence of the IWE line intensity
for the excitation power P = 150 µW and the bias U = 0.3 V.
The numbers to the right indicate the temperature in K. Dots
in the inset show the temperature behavior of the IWE line
intensity, and the dashed line is the extrapolation of the IT ∝
(1 – T/Tc) dependence.
JETP LETTERS      Vol. 75      No. 11      2002
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various pump powers established that the temperature
behavior of this line obeys the law

(2)

where IT is the line intensity at temperature T, and Tc is
the critical temperature corresponding to the disappear-
ance of the line at a fixed pumping level.

We believe that the experimental results presented
above are indicative of the Bose condensation of inter-
well excitons in a single less-than-micron-sized lateral
domain whose origin is associated with the large-scale
fluctuations of the random potential. At low pumping
levels and low temperatures, the photoexcited IWEs are
strongly localized at the small-scale defects (e.g., resid-
ual charged impurities). This gives rise to a broad inho-
mogeneous IWE luminescence band at low excitation
powers. Due to the strong dipole–dipole repulsion, only
one exciton can be localized at a defect, so this lumines-
cence channel is saturated rather rapidly. In the struc-
tures studied, this occurs at concentrations lower than
5 × 109 cm–2. On a further increase in pump power
(above the percolation threshold), the interwell exci-
tons become delocalized. On achieving critical density,
excitons condense into the lowest delocalized state.
Experimentally, this is manifested by the thresholdlike
appearance of a narrow luminescence line, its narrow-
ing with an increase in pumping, and its shift to lower
energies, in accordance with the fact that excitons obey
the Bose–Einstein statistics and fill the lowest state in
the domain. The critical temperature behavior of the
observed properties is the strongest argument in favor
of the exciton condensation.

Bose condensation in the structures studied is
observed in a limited range of exciton concentrations:
Nloc < Nexc < NI – M. The lower limit (low densities) is
due to the strong localization of excitons at the domain
defects (Nloc ≈ 5 × 109 cm–2), and the upper limit NI – M
(high densities) is due to exciton destruction as a result
of the isolator–metal transition. Indeed, as the excita-
tion power exceeds 0.5 mW, the IWE luminescence line
starts to broaden, whereupon it continues broadening
and shifts to higher energies. The broadening of the I
line is due to the overlap between the exciton wave
functions and to the arisen Fermi repulsion between
electrons in one well and holes in the other. The esti-
mates made for the density at which the interwell exci-
tons lose their individuality to form e–h plasma with
electrons and holes spatially separated in the neighbor-
ing quantum wells give NI – M ≈ 8 × 1010 cm–2. A dimen-
sionless parameter corresponding to this density is rs =

1/( aB) = 1.8 (the exciton Bohr radius aB =
150 Å was determined from the diamagnetic shift of the
interwell exciton). The arisen e–h plasma starts to
screen the external electric field, and the interwell-
recombination band starts to move toward higher ener-
gies. This fact can be used to determine the e–h density.
Note that, in the case of micron-sized domains, the

IT 1 T /Tc–( ),∝

πNI M–
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number of excitons in the condensate is on the order of
several hundred.

The condensed excitons must be spatially coherent.
The spatial coherence should appear at least on the
scale of thermal de Broglie wavelength λex of interwell

excitons. At T = 2 K, one has λex = h/  = 1.5 ×
103 Å, which is an order of magnitude larger than the
exciton Bohr radius. Since the excitons should be in
phase on the spatial coherence scale, the radiative
decay rate of the excitons in the condensate may
increase. To verify this, experiments on the resonance
excitation of excitons by a circularly polarized light

πmexckT

Fig. 4. The IWE photoluminescence spectra for the reso-
nance excitation of the intrawell 1sHH exciton by a circu-
larly polarized light (σ+) with a power of (b) 50 and
(a) 500 µW. Solid lines are for the measured intensity of σ+

polarization, and dashed lines are for σ– polarization. Inset:
the degree γ of circular polarization (dots) vs. excitation
power for the resonance excitation at the line maximum; the
contribution from the structureless background was not
taken into account. Temperature T = 1.51 K and bias U =
0.3 V.
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were conducted. Recall that the ground state of the
interwell exciton is not a Kramers doublet but is four-
fold degenerate with respect to the projections of the
angular momentum M = ±1, ±2 (only the M = ±1 states
are optically active). The resonance excitation of the
intrawell 1sHH excitons by a circularly polarized light
resulted in a sharp increase in the degree of circular
polarization of the narrow IWE line (Fig. 4). This effect
is evidence that the radiative recombination rate of the
excitons in the condensate substantially increases com-
pared to the recombination rate of the localized inco-
herent excitons. We assume that the spin relaxation rate
does not change appreciably in this case. A high degree
(about 30%) of circular polarization obtained experi-
mentally for the I line points also to the fact that the
optical excitation can be used to create coherent vorti-
cal states of interwell excitons.

We are grateful to G.M. Éliashberg and S.V. Iordan-
skiœ for discussions. This work was supported by the
Russian Foundation for Basic Research (project nos.
01-02-16471, 02-02-06349, 02-02-16791) and, in part,
by the State Scientific and Technical Program of FTNS
on nanostructures.

REFERENCES
1. S. A. Moskalenko, Fiz. Tverd. Tela (Leningrad) 4, 276

(1962) [Sov. Phys. Solid State 4, 199 (1962)]; I. M. Blatt,
K. W. Boer, and W. Brandt, Phys. Rev. 126, 1691 (1962);
R. S. Casella, J. Appl. Phys. 34, 1703 (1963).

2. Yu. E. Lozovik and V. I. Yudson, Pis’ma Zh. Éksp. Teor.
Fiz. 22, 556 (1975) [JETP Lett. 22, 274 (1975)].

3. T. Fukuzawa, E. E. Mendez, and J. M. Hong, Phys. Rev.
Lett. 64, 3066 (1990).

4. J. E. Golub, K. Kash, J. P. Harbison, and L. T. Flores,
Phys. Rev. B 41, 8564 (1990).

5. L. V. Butov, A. Zrenner, G. A. Abstreiter, et al., Phys.
Rev. Lett. 73, 304 (1994); L. V. Butov, in Proceedings of
the 23rd International Conference on Physics of Semi-
conductors, Berlin, 1996.

6. V. B. Timofeev, A. V. Larionov, A. S. Ioselevich, et al.,
Pis’ma Zh. Éksp. Teor. Fiz. 67, 580 (1998) [JETP Lett.
67, 613 (1998)].

7. V. V. Krivolapchuk, E. S. Moskalenko, A. L. Zhmodikov,
et al., Solid State Commun. 111, 49 (1999).

8. L. V. Butov, A. Imamoglu, A. V. Mintsev, et al., Phys.
Rev. B 59, 1625 (1999).

9. A. V. Larionov, V. B. Timofeev, J. M. Hvam, and K. Soe-
rensen, Zh. Éksp. Teor. Fiz. 117, 1255 (2000) [JETP 90,
1093 (2000)].

10. L. V. Butov, A. V. Mintsev, Yu. E. Lozovik, et al., Phys.
Rev. B 62, 1548 (2000).

11. A. V. Larionov, V. B. Timofeev, J. M. Hvam, and K. Soe-
rensen, Pis’ma Zh. Éksp. Teor. Fiz. 75, 233 (2002) [JETP
Lett. 75, 200 (2002)].

12. D. Yoshioka and A. H. MacDonald, J. Phys. Soc. Jpn. 59,
4211 (1990).

13. X. M. Chen and J. J. Quinn, Phys. Rev. Lett. 67, 895
(1991).

14. Xuejun Zhu, P. L. Littlewood, M. S. Hybersten, and
T. Rice, Phys. Rev. Lett. 74, 1633 (1995).

15. J. Fernández-Rossier and C. Tejedor, Phys. Rev. Lett. 78,
4809 (1997).

16. Yu. E. Lozovik and O. L. Berman, Zh. Éksp. Teor. Fiz.
111, 1879 (1997) [JETP 84, 1027 (1997)].

17. Yu. E. Lozovik and I. V. Ovchinnikov, Pis’ma Zh. Éksp.
Teor. Fiz. 74, 318 (2001) [JETP Lett. 74, 288 (2001)].

18. V. B. Timofeev, A. V. Larionov, M. Grassi Alessi, et al.,
Phys. Rev. B 60, 8897 (1999).

19. P. C. Hoenberg, Phys. Rev. 158, 383 (1967).
20. S. W. Brown, T. A. Kennedy, D. Gammon, et al., Phys.

Rev. B 54, R17339 (1996).

Translated by V. Sakun
JETP LETTERS      Vol. 75      No. 11      2002



  

JETP Letters, Vol. 75, No. 11, 2002, pp. 575–578. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 75, No. 11, 2002, pp. 695–698.
Original Russian Text Copyright © 2002 by Kamzin, Vcherashnii.

                                     
Spin-Reorientation Phase Transition on the Surface
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Direct comparison of the properties of a thin surface layer and the bulk of macroscopic hematite (α-Fe2O3) crys-
tals was used to study the magnetic structure of the surface layer and the bulk and the processes attendant on
spin-reorientation phase transition (SRT). The investigation tool was simultaneous γ-ray, X-ray, and electronic
Mössbauer spectroscopy, which enabled us to study the bulk and surface properties of macroscopic samples
simultaneously and to compare them directly. Direct evidence of the existence of a surface “transition layer” on
hematite crystals is obtained. The existence of this layer was suggested and described by Krinchik and Zubov
[JETP 69, 707 (1975)]. The study in the SRT region showed that (1) the Morin SRT in the crystal bulk occurs
in a jump (as a first-order phase transition), whereas in the surface layer of about 200 nm thick, some smooth-
ness appears in the mechanism of magnetic-moment reorientation; (2) SRT in the surface layer, as in the bulk,
involves an intermediate state in which low- and high-temperature phases coexist; and (3) SRT in the surface
layer occurs at a temperature several degrees higher than in the bulk. Our experimental evidence on the SRT
mechanism in the surface layer correlates with the inferences from phenomenological theory developed by
Kaganov [JETP 79, 1544 (1980)]. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.30.Kz; 75.70.-i
Surface effects on the properties of a near-surface
layer of macroscopic crystals have been receiving sys-
tematically growing attention since the late 1960s. Of
special interest are processes occurring in the surface
layers of a macrocrystal and attendant to fundamental
phenomena such as phase transitions in the bulk of the
sample. The first theoretical descriptions of the behav-
ior of the surface layer in the region of critical transi-
tions at the Curie or Néel points [1, 2] were followed by
numerous theoretical and experimental studies of the
surface properties upon these transitions (see [3–5] and
references quoted therein). Surface processes in macro-
crystals attendant on phenomena such as spin-reorien-
tation phase transitions (SRTs) are understood far less
well.

SRTs in the surface layer of crystals were first stud-
ied on powdered samples, because the surface in such
objects substantially dominates over the bulk. No dif-
ference (to within a measurement error of about 5)
between the SRT temperatures on the surface and in the
bulk was observed in α-Fe2O3 powders [6].

Studies on macroscopic ErFeO3 [7] and TbFeO3 [8]
single crystals showed that the onset spin reorientation
temperature in the surface layer is about 40 K higher
than in the bulk. Spin reorientation of the GxFz 
GzFx type in the bulk of TbFeO3 transforms to the
Morin transition GxFz  Gy in the surface layer [9].
Mössbauer studies on α-Fe2O3 single crystals showed
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that SRT in the surface layer shifts in temperature by
several degrees compared to the bulk transition [10].
Simultaneous investigations of the surface and bulk
properties were carried out on macroscopic Fe3BO6

crystals [11]; Fe3BO6 is also an antiferromagnet with
weak ferromagnetism. The boundaries of the SRT
widen as they approach the crystal surface; however,
the middle point of the SRT region does not shift [11].
In the bulk, magnetic moments change their orientation
in a jump; the moment reorientation is progressively
smoothed in proportion to proximity to the surface.
Outside the SRT region, there is a layer on the Fe3BO6

surface in which magnetic moments are not collinear to
the moments in the crystal bulk [11]. When iron ions in
Fe3BO6 are 7.5% replaced by diamagnetic gallium ions
to yield Fe2.75Ga0.25BO6, the SRT temperature is insig-
nificantly reduced, but the reorientation mechanism of
magnetic moment both in the bulk and on the surface is
conserved [12]. Experimental evidence [11, 12] corre-
lates with the inferences from phenomenological the-
ory concerning SRTs on the surface of semi-infinite
(macroscopic) crystals developed by Kaganov [13].
Kaganov [13] was the first to describe the forms of a
temperature hysteresis loop for an SRT occurring on
the surface of macrocrystals for various orientations of
the easy axis on the surface in the case of a first- or sec-
ond-order SRT in the bulk of a magnet.
002 MAIK “Nauka/Interperiodica”
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The experimental evidence is clearly insufficient to
compare with the theoretical data and is controversial.
In addition, the aforementioned data [7, 8, 10] were
obtained from rather thick surface layers (of several
hundreds of nanometers); the properties of these layers
can be similar to the bulk properties of a crystal. In view
of the above, we intended to study SRT in the surface
layer up to about 100 nm thick of macroscopic hematite
crystals (the chemical formula is α-Fe2O3).

In choosing hematite, we were guided by the sim-
plicity of its magnetic structure. The iron ions of this
compound occupy one crystallographic position, and
Mössbauer spectra in the magnetically ordered region
are a single Zeeman sextuplet. The good resolution of
the lines of this sextuplet enables a high accuracy in the
analysis of observed Mössbauer spectra. In addition,
the bulk properties of hematite are well studied by var-

Fig. 1. Mössbauer spectra of α-Fe2O3 measured in the SRT
region at 242.6 K with detecting (a) γ-ray quanta and
(b, c) conversion and Auger electrons, that is, recorded from
the crystal bulk and surface layers 0 to 100 nm and 100 to
200 nm thick, respectively. An observed spectrum is pre-
sented by a dotted line. The spectrum due to the phase
observed at temperatures above SRT is shown by a solid
line; the spectrum due to the phase observed at temperatures
below SRT, by a dashed line.
           

ious methods, including Mössbauer effect measure-
ments [14–16, references therein], which allows us to
compare experimental evidence concerning the bulk
properties obtained in this study with the related litera-
ture.

At temperatures below the Néel point (~960 K),
hematite is an antiferromagnet with a weak ferromag-
netic moment. The magnetic moments of iron ions are
located in a plane perpendicular to the 
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 axis. Upon
reduction in temperature, the Morin SRT 
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is observed in the region of ~260 K. Magnetic moments
become oriented along the 

 

c

 

 axis in the course of this
transition, and the weak ferromagnetic moment disap-
pears. Spin reorientation in hematite occurs over a
rather wide temperature range of about 10 K.

The investigation tool was simultaneous 

 

γ

 

-ray,
X-ray, and electronic Mössbauer spectroscopy (SGX-
EMS) described elsewhere [17]. This method is based
on the simultaneous record of Mössbauer spectra with
the detection of radiations having various mean free
paths in the substance, namely, 

 

γ

 

-ray quanta (GQ),
characteristic X-ray radiation, and conversion and
Auger electrons (CAE). The Morin transition in hema-
tite occurs at below room temperatures (ca. 260 K). We
adapted SGXEMS for use at temperatures from 300 to
10 K with the temperature maintained accurate to

 

±

 

1.5 K [18]. The use of this method enabled us to study
the bulk properties and the properties of surface layers
several microns thick and up to about 300 nm thick on
macroscopic crystals simultaneously under the same
conditions (under which a test sample is kept).

The 

 

α

 

-Fe

 

2

 

O

 

3

 

 single crystals were flux-grown. The
grown crystals had a natural concentration of 

 

57

 

Fe or
100% 

 

57

 

Fe. Platelets 10 mm in diameter and 50 

 

µ

 

m
thick were cut from the single crystals. X-ray diffrac-
tion measurements showed that the 

 

c

 

 axis was directed
normal to the plane of the platelets. In Mössbauer stud-
ies, the 

 

c

 

 axis of the plates was oriented parallel to the
wave vector of the incident 

 

γ

 

-rays with an accuracy bet-
ter than 1

 

°

 

. The quality of the test surface was given
special attention in crystal preparation. Previous exper-
iments [19] showed that chemical polishing in ortho-
phosphoric acid at 90

 

°

 

C for 1 min could provide a high-
quality surface.

Mössbauer spectra measured at temperatures below
or above the SRT region consist of Zeeman lines due to
iron ions in one magnetically equivalent position. The
GQ and CAE spectra recorded at 242.6 K are shown in
Fig. 1. The positions of the Zeeman lines corresponding
to different phases are shown by dashed lines. In the
SRT region, the measured spectra are a superposition of
the spectra observed below and above SRT. The spec-
tral lines from different phases in the SRT region are
well resolved, which allows the behavior of magnetic
moments to be studied for each phase.

Analysis of the measured spectra showed that the
line from the phase observed above SRT is reduced in
intensity, as temperature decreases within the SRT
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region, to disappear at some temperature. The phase
observed below SRT grows in intensity from zero to a
maximal value as temperature decreases.

From the intensity ratio of the first and second (fifth
and sixth) lines of the Zeeman sextuplets and using the
relationship

(1)

(for example, [10]), we found the θ angles, which con-
trol the direction of magnetic moments relative to the
wave vector of γ rays. Figure 2 plots θ versus tempera-
ture curves calculated from the observed γ-ray quanta
and CAE spectra, that is, from the bulk and surface lay-
ers of the hematite crystal.

The θ angle as determined from Mössbauer spectra
with detection of γ-ray quanta carrying information
about the bulk properties of a crystal acquires either of
the two values: 0 or π/2 (Fig. 2). This is made clear by
the GQ spectrum of Fig. 1a, in which the intensity ratio
for the Zeeman sextuplet observed at above SRT is
3 : 4 : 1 : 1 : 4 : 3. The intensity ratio for the sextuplet
from the phase observed below SRT is 3 : 0 : 1 : 1 : 0 : 3
(Fig. 1a). Because the wave vector of incident γ rays is
directed along the c axis, this means that the magnetic
moments positioned in the crystal bulk at temperatures
above and below SRT are located in a plane normal to
the c axis and along the c axis, respectively. Within the
temperature window of SRT, these two phases coexist.
This is convincing evidence that spin reorientation in
the bulk of an α-Fe2O3 crystal occurs as a first-order
phase transition to yield an inhomogeneous state in the
range of temperatures from T1 to T2, in agreement with
the related literature [14–16].

The values and temperature dependences of θ as cal-
culated from the Mössbauer spectra that were measured
from surface layers differ from those observed in the
crystal bulk (Fig. 2). At temperatures above or below
the SRT region, magnetic moments in the surface layers
deviate from the directions in which they are oriented in
the bulk (Fig. 2). The deviation of the θ angle increases
in proportion to proximity to the surface of the sample.
This is made clear by the CAE spectra (Fig. 1): the
spectra display second and fifth lines of the Zeeman
sextuplet with the intensities increasing as the test layer
approaches the surface (Figs. 1b, 1c). Experimental
evidence from outside the SRT region shows a “transi-
tion” layer in the surface layer of macroscopic hematite
crystals in which magnetic moments are oriented dif-
ferently than in the bulk. Such a transition layer was
first discovered using magnetooptical methods [20].

Within the SRT region, the magnetic moment devi-
ation angles of iron ions located in the surface layer are
slightly variable, whereas the moments of the iron ions
positioned in the bulk acquire only a value of 0 or π/2

θ
4A1.6 3A2.5–
4A1.6 3A2.5+
------------------------------ 

 
1/2

arccos=

=  
3/2( )A2.5/A1.6

1 3/4( )A2.5/A1.6+
------------------------------------------ 

 
1/2

,arcsin
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(Fig. 2). Magnetic moment reorientation in the surface
layer ends in a jump. The temperature window of SRT
both in the bulk and the surface layer has the same
width (Fig. 2). With approach to the surface, the SRT
region shifts to higher temperatures. This result is
inconsistent with evidence from fine hematite powders
[5] but coincides with the inferences made from the
investigations of SRT in the surface layer of ErFeO3 [6],
TbFeO3 [7], and α-Fe2O3 [10] macroscopic crystals.

The comparison of our experimental results for the
SRT mechanism in the surface layer of a crystal with
theoretical investigations has shown that experimental
evidence combines two cases described in [13]. One
case is where the jumped character of magnetic
moment reorientation in the crystal bulk (a first-order
transition) is smoothed toward the surface. Experimen-
tal curves (Fig. 2) in the SRT region also show some
smoothness in the variation of magnetic moment orien-
tation in the surface layer. The other theoretical case
with which experimental evidence coincides is where
the SRT boundaries on the surface are shifted compared
to the reorientation transition boundaries in the bulk
[13].

This work was supported by the Russian Foundation
for Basic Research, project no. 01-02-17889.
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The anisotropy of superconducting properties of a Nd1.85Ce0.15CuO4 single crystal is studied by resistance mea-
surements over the temperature range 2–30 K in magnetic fields of 0, 1, 2, 4, and 6 T parallel to the a–b plane.
A strong anisotropy of Tc(H) and Hc2(T) is observed for different orientations of magnetic field in the a−b plane.
This anisotropy leads to a twofold symmetry of Tc(H) and Hc2(T), and the gap node direction is determined. An
analysis of experimental data shows that this result can be attributed to a change in the local symmetry of the
copper atom environment, which manifests itself as a reduction from tetragonal to orthorhombic symmetry in
the low-temperature region. The comparison with La1.85Sr0.15CuO4 suggests that the mechanisms of supercon-
ductivity in electron and hole doped superconductors are similar, and the difference observed in the experiment
is related to the structural features of these materials. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Ha; 74.72.-h
The determination of the symmetry of the supercon-
ducting order parameter in high-Tc superconductors
provides important information on the mechanism of
superconductivity, because the structure of the super-
conducting energy gap is related to the pairing symme-
try. The anisotropy of the superconducting order
parameter in d-wave superconductors leads to a number
of characteristic features of their properties, as com-
pared to conventional s-type superconductors. These
features include the appearance of zero values of the
order parameter on the Fermi surface and the anisot-
ropy of vortices and vortex lattice structure in the mag-
netic fields Hc1 < H < Hc2. On the whole, experimental
data on the properties of the superconducting state in
cuprates [1, 2] show that, in these materials, an aniso-
tropic order parameter is realized with zero gap values
at certain points of the Fermi surface and that, in
high-Tc superconductors with hole conduction, the
superconducting order parameter has a d-wave symme-
try. For years, it was believed that, in high-Tc supercon-
ductors with electron conduction (one of the most stud-
ied of which is Nd1.85Ce0.15CuO4), the superconducting
order parameter has an s-wave symmetry. The results of
the tunnel spectroscopy of the Nd1.85Ce0.15CuO4 elec-
tron-type superconductor [3] rule out the d-wave sym-
metry for this material. At the same time, the studies of
the quasiparticle spectra of excitations in
Nd1.85Ce0.15CuO4 single crystals by the STM/STS
method [4] and by photoelectron spectroscopy [5] sug-
0021-3640/02/7511- $22.00 © 20579
gest that the superconducting order parameter is aniso-
tropic and has a d-wave symmetry. Because of the con-
tradictory data obtained from different experiments, the
question of the symmetry of the superconducting order
parameter in electron-type superconductors remains
open.

In the cited publications, the conclusions were made
on the basis of the measurements performed only in
three directions in the CuO2 plane: along the a or b axes
and at an angle of 45° to these axes. In a tetragonal lat-
tice, the 45° direction corresponds to the direction of
the energy gap node, and the comparison with the
results obtained along the a or b axes allows one to
make certain inferences about the symmetry of the
superconducting order parameter.

However, a closer examination of the structural fea-
tures of the Nd1.85Ce0.15CuO4 crystal lattice by neutron
powder diffraction [6, 7] revealed considerable aniso-
tropic displacements of the oxygen atoms and the effect
of these displacements on the parameters of the crystal
lattice. The strong anisotropy of the oxygen displace-
ments observed in the experiment was attributed to
changes in the local symmetry of the copper atom envi-
ronment, which leads to the reduction of symmetry
from tetragonal (I4/mmm) to orthorhombic (Cmca).
This effect is most likely to be responsible for the dis-
crepancy between the experimental data obtained for
Nd1.85Ce0.15CuO4.
002 MAIK “Nauka/Interperiodica”
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The neutron scattering experiments [8] revealed
nonmagnetic superstructure peaks located at the points
with the coordinates (π, π) in the reciprocal lattice.
These reflections do not belong to the structure of the
I4/mmm space group. This result implies the existence
of an atomic displacement that is long-wave in the a–b
plane and short-wave in the perpendicular plane. Since
the intensity of the observed peak is about 10–3–10–4 of
the fundamental Bragg intensity for X-ray and neutron
diffraction studies, atomic displacement occurs not
only for oxygen atoms but also for other heavy atoms.
Such fine features of the atomic structure can strongly
affect the properties of high-Tc superconductors.

To determine the symmetry of the superconducting
order parameter in a Nd1.85Ce0.15CuO4 electron-type
superconducting single crystal, we studied the anisot-
ropy of the superconducting transition by measuring
the resistance in the temperature interval 2–30 K in
magnetic fields of 0, 1, 2, 4, and 6 T oriented in the a−b
plane. These measurements allowed us to study the
behavior of the temperature and angular dependences
of the upper critical magnetic field Hc2 and the angular
and field dependence Tc(H) in the a–b plane of a high-
quality bulk single crystal of Nd1.85Ce0.15CuO4.

1. Sample preparation and their characteristics.
The Nd1.85Ce0.15CuO4 single crystal under study was
prepared by the crucibleless melting technique with
radiation heating, as in [9]. We used a four-mirror fur-
nace with 300-W lamps. The initial materials for pre-
paring the feeding and seed rods were Nd2O3, CuO, and

Fig. 1. Temperature dependence of the resistance in the
superconducting transition region in magnetic fields of 0, 1,
2, 4, and 6 T oriented along the a–b plane for the cases H || a
and H || b.
CeO2 powders 99.9–99.99% pure. The crystal growth
occurred under oxygen pressure of 0.08 atm at a rate of
0.4–0.8 mm/h along the a axis of the Nd–Ce–Cu–O
seed crystal. During the growth process, the feeding rod
and the growing crystal rotated in opposite directions at
a rate of 20–30 rpm to provide an effective mixing and
a uniform temperature distribution in the melt zone.
The temperature in the melt zone was controlled by set-
ting the current through the lamps.

The sample grown in this way was tested for com-
position and homogeneity by ICP-OES spectroscopy
(induction-confined plasma), electron-probe micro-
analysis (EPMA, Cameca SX100), and X-ray powder
diffraction (XRD, Philips PW-3710).

Initially, the resulting Nd1.85Ce0.15CuO4 single crys-
tal was nonsuperconducting and measured 30–40 mm
in length and 5 mm in diameter. The X-ray powder dif-
fraction revealed no foreign inclusions. The study with
a polarizing optical microscope confirmed that the (10–
20)-mm-long terminal part of the crystal contained no
other crystallites. The EPMA studies confirmed the
homogeneity of the Ce distribution along the growth
axis.

The Nd1.85Ce0.15CuO4 single crystal became super-
conducting after it was annealed in a flow of
99.99%-pure argon at 1030°C during 10–20 h. Such a
heat treatment allowed us to obtain a superconducting
single crystal with Tc = 21–22 K.

The resistance of the Nd1.85Ce0.15CuO4 single crystal
was measured by the four-terminal method with the
current along the a axis. The sample rotated about the c
axis in a constant magnetic field that was parallel to the
a–b plane. We denote the angle between the field H and
the a axis in the a–b plane by θ. The measurements
were performed on a plate with dimensions of about
0.7 × 1.5 × 4 mm. The leads were connected to the sam-
ple by indium. The current leads were attached at the
ends of the sample, and the voltage leads were fixed in
the a–b plane at a distance of ~4 mm from each other.
The measuring current was fairly small (1 mA) to pro-
vide a linear mode of operation and the absence of hys-
teresis of the heating and cooling runs. The temperature
measurements were performed by a TSKUM carbon
resistance thermometer. The accuracy of the tempera-
ture measurements was within ±0.01 K in the absence
of a magnetic field and ±0.02 K in a field of 6 T. The
value of Tc was determined as the midpoint of the resis-
tive superconducting transition. The transitions
observed in the experiment were rather narrow, which
testified to the high quality of the single crystal.

2. Experimental results and discussion. Figure 1
presents the temperature dependence of the resistance
R(T) in the superconducting transition region in mag-
netic fields of 0, 1, 2, 4, and 6 T directed along the a and
b axes. Magnetic fields of both directions shift the tran-
sition toward lower temperatures and cause an increase
in its width ∆Tc. The shift of Tc with increasing mag-
JETP LETTERS      Vol. 75      No. 11      2002
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netic field is much greater in the case of H || a than in
the case of H || b, which points to a strong anisotropy of
Tc(H) in the a–b plane and, hence, to the possible
orthorhombicity of the lattice.

Figure 2 shows the dependence of the superconduct-
ing transition temperature on the angle θ in the a–b
plane, Tc(θ), in a magnetic field of 6 T. This dependence
has a maximum at θ = 90° (H || b); as the angle θ
decreases, the temperature Tc also decreases, and its
value at θ = 0° (H || a) is characterized by the ratio
Tc(90°)/Tc(0°) = 1.4. The minimum of Tc(θ) is observed
at the angle θ = 29° to the a axis, and this angle deter-
mines the gap node direction. The observed anisotropy
of the angular dependence of the superconducting tran-
sition temperature Tc(θ) in the a–b plane points to the
twofold symmetry of Tc(θ) in the Nd1.85Ce0.15CuO4
crystal. Our measurements provided the first experi-
mental determination of the gap node direction in
Nd1.85Ce0.15CuO4.

Figure 3 displays the temperature dependence of the
upper critical field Hc2 obtained from the superconduct-
ing transition measurements in magnetic fields of 0, 1,
2, 4, and 6 T for the field directions making the angles
θ = 0°, 29°, 45°, and 90° with the a axis. The depen-
dence is nonlinear with a positive curvature. The results
of the measurements show a strong anisotropy of Hc2 in
the a–b plane; Hc2 is maximal at θ = 90° (H || b) and
minimal at θ = 29°. This indicates not only the strong
anisotropy of Hc2, but also the gap node direction in
Nd1.85Ce0.15CuO4.

As a result of our measurements, we observed a
strong anisotropy of Tc(H) and Hc2(T) for different ori-
entations of magnetic field in the a–b plane; this anisot-
ropy led to the twofold symmetry of Tc(H) and Hc2(T).
Another important result is that, at the angle θ = 29° to
the a axis, the minimal values of Tc(H) and Hc2(T) are

Fig. 2. Angular dependence of the superconducting transi-
tion temperature Tc(θ) in a magnetic field of 6 T in the a–b
plane (experiment no. (d) 1, (s) 2, and (+) 3).
JETP LETTERS      Vol. 75      No. 11      2002
observed, which corresponds to the gap node direction.
These anomalies are presumably related to the change
in the local symmetry of the copper atom environment
when the symmetry is reduced from tetragonal to
orthorhombic in the low-temperature region. (Detailed
studies of the local symmetry by the neutron diffraction
method were performed on Nd1.85Ce0.15CuO4 samples
in [6–8].)

The experimental results obtained by us agree to
some extent with the conclusions derived from the the-
oretical study [10] of the effect of a magnetic field on
the electron density E of states of an orthorhombic
superconductor. In the cited publication, the density of
states in a two-dimensional d-wave superconductor was
shown to depend on the orientation of the external mag-
netic field H in the a–b plane. For a tetragonal system,
a fourfold symmetry is observed and the density of
states exhibits minima along the gap node directions.
For an orthorhombic system, a twofold symmetry
should be observed with a minimum corresponding to
the field orientation along the Fermi velocity at a gap
node on the Fermi surface. The fourfold pattern
changes to a twofold one because of the orthorhombic-
ity in the lattice structure. It should be noted that the
angle at which a minimum is observed in the density of
states as a function of θ in an orthorhombic supercon-
ductor does not coincide with the angle corresponding
to a gap node in the case of the tetragonal lattice.

The comparison of the results obtained for
Nd1.85Ce0.15CuO4 with the results obtained earlier for a
La1.85Sr0.15CuO4 single crystal [11] allows us to judge
the symmetry type of the superconducting order param-
eter in an electron-type superconductor. Unlike the
fourfold symmetry observed in La1.85Sr0.15CuO4, the
Nd1.85Ce0.15CuO4 crystal exhibits a twofold symmetry
of Tc(H) and Hc2(T) in the a–b plane. Another important
result is the difference in the gap node directions. The

Fig. 3. Temperature dependence of Hc2 obtained from the
resistance measurements in magnetic fields of 0, 1, 2, 4, and
6 T with the magnetic field orientation at the angles θ = 0°,
29°, 45°, and 90° to the a axis.
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angle at which Tc(H) and Hc2(T) are minimal in
Nd1.85Ce0.15CuO4 is 29° with respect to the a axis. This
value differs from the angle θ = 45° at which the gap
node occurs in La1.85Sr0.15CuO4. This result can be
interpreted as a specific feature characterizing the
anisotropy of the superconducting energy gap in the
electron doped material and related to the d-wave order
parameter in Nd1.85Ce0.15CuO4. Such an interpretation,
in its turn, suggests that the mechanisms of supercon-
ductivity in electron and hole doped superconductors
are similar, and the difference observed in the experi-
ment is related to the structural features.
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At low temperatures, a perfect quasicrystal is in the “critical” state of metal–insulator transition. A power-law
temperature dependence of conductivity, which was experimentally observed at T < 5 K in the icosahedral
phase of Al–Pd–Re, was obtained using the critical wave functions. Mott’s hopping law was also observed in
the Al–Pd–Re samples and explained by the delocalization of electronic states in the momentum space. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 71.23.Ft; 71.30.+h
Quasicrystals have a finite electronic contribution to
heat capacity (density of states at the Fermi level is low
but finite); a negative temperature coefficient of electri-
cal resistivity, with the resistivity ratio 5 =
ρ(4.2 K)/ρ(300 K) ranging from several units to two
hundred and even higher, depending on the object and
the sample quality; and a low residual conductivity,
which decreases as the sample becomes more perfect
and defects are annealed. As a rule, the resistivity ratio
5 is a measure of the sample quality: the higher 5, the
higher the sample quality and the lower the residual
resistivity.

Measurements of conductivity at low temperatures
indicate that perfect quasicrystals behave similarly to
the usual disordered objects (disordered metals, doped
semiconductors, etc.) near the metal–insulator transi-
tion. For the samples of icosahedral quasicrystal i-Al–
Pd–Re with different ratios 5, a root temperature
dependence of conductivity σ ~ T1/2 is ordinarily
observed at T < 20 K. For samples with 5 on the order
of 20 and higher, this dependence is replaced at T < 5 K
by the law σ ~ T1/3 [1, 2]. In some cases, for samples
with high 5 (~45 and higher), a variable-range hopping
(VRH) conduction obeying either Mott’s law σ =
σ0exp[–(T0/T)1/4] or the Efros–Shklovskiœ law σ =

σ0exp[–( /T)1/2] [2] is observed (see review of exper-
imental data in [7]).

It is known from the theory of metal–insulator tran-
sition (Anderson transition) that, as the transition to the
insulator (metallic) phase is approached, the correlation
length ξ (localization length) tends to infinity. Accord-
ing to the scaling considerations for the Anderson tran-
sition with interacting electrons [3], at L < LT and ξ ! LT

(L is the sample size, LT = , and D is the diffu-
sion coefficient) the correction to the conductivity in

T0'

D"/T
0021-3640/02/7511- $22.00 © 20583
this region is proportional to . In the critical region,
ξ @ LT > L, and σ ~ T1/3.

It is known that the electron wave functions near the
metal–insulator transition point are neither extended
nor exponentially decreasing but decrease with dis-
tance following the power law (“critical” wave func-
tions). The wave functions in a three- dimensional per-
fect quasicrystal show the same behavior; i.e., ϕ ~ r–α

[4, 5]. We demonstrate below that the temperature
dependence of conductivity for the critical wave func-
tions in a quasicrystal is close to σ ~ T1/3.

Let us consider the quasicrystal as a structural limit
of a series of periodic approximants with increasing
period and use the model of fractional Fermi surface
(FFS) [6]. In [7], it was shown that the FFS model is
capable of explaining not only the power-law tempera-
ture dependence of conductivity but also the VRH con-
duction in a quasicrystal, provided that the tunneling
through the gaps formed by Bragg reflections are taken
into account. As expected, Mott’s law is obtained for
the exponentially decreasing wave functions.

Following [7], we consider the VRH regime and cal-
culate the tunneling integral using the critical wave
functions ϕ ~ r–α and, according to Mott’s procedure,
determine the conductivity

(1)

where ∆E = 3/4πR3N(EF) is the lowest activation
energy for hopping at distance R, and I is the tunneling
integral

. (2)

The expression

(3)

is maximum when the exponent

(4)

T

σ I ∆E/kT–( ),exp∼

I R α– 2
2α Rln–( )exp≡∼

2α Rln–( ) ∆E/kT–( )expexp

2α R ∆E/kT–ln–
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is minimum. By substituting ∆E in Eq. (4) and mini-
mizing Eq. (4) with respect to R, we determine the opti-
mal hopping length. It is then straightforward to obtain
for the conductivity

(5)

The numerical estimates of the exponent α in the tight-
binding approximation and the use of level statistics for
determining the same exponent from a series of peri-
odic approximants of a model quasicrystal [4, 5] yield
values ranging from 0.6 to 0.8. Considering that the
model is rather crude and that the processing of the
experimental results for conductivity at low tempera-
tures is not too accurate, the coincidence of the
obtained dependence σ ~ T2α/3 with the experiment can
be regarded as reasonable. Thus, the result obtained in
the microscopic model coincides with the predictions
of the scaling localization theory [3] for the critical
metal–insulator transition region.

Mott’s law σ ~ exp[–(T0/T)1/4] cannot be obtained
with the use of critical wave functions [7]. It is obtained
with the well-localized exponentially decreasing wave
functions. Nevertheless, Mott’s law in quasicrystals is
observed experimentally, despite the fact that the wave
functions are critical. This paradox can be resolved if
one considers the localization of electronic states of a
quasicrystal in the momentum (reciprocal) space (much
as Al’tshuler and Levitov [8] reduced the problem of
weak chaos in the Kepler quantum problem to the prob-
lem of electron motion in a periodic lattice of scatter-
ers).

Under condition that  > , where

 is the Fourier components of lattice potential and
g and g' are the reciprocal lattice vectors (in a quasic-
rystal, {g} forms a dense set), resonances (and also res-
onances of the resonances themselves) may appear near
the spectral gaps appearing due to the interaction of
FFS with the face of Brillouin zone, and this may be
followed by the delocalization of electronic states in the

σ T2α /3.∼

Ug g'– Eg Eg'–

Ug g'–
momentum space [8]. As a result, the exponentially
decreasing electronic states should appear and lead to
Mott’s law in real space [7]. The condition  >

 for the appearance of resonances in a quasic-
rystal can easily be met, e.g., for the gaps correspond-
ing to the reciprocal lattice vectors forming the Bril-
louin quasi-zone (the first strong reflections in the dif-
fraction pattern), so that the observation of Mott’s law
can serve as the experimental confirmation of the exist-
ence of resonances.

We are grateful to S.I. Mukhin and D.V. Livanov for
discussions. This work was supported by the Russian
Foundation for Basic Research (project no. 00-02-
17668), the NWO (grant no. 047-008- 016), the Royal
Swedish Academy of Sciences, and the Department of
Science and Technologies of the Moscow Government
(project no. 1.1.240).
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Sign Reversals of the Carriers and the Volume Change 
in Al–Cu–Fe Quasicrystalline Alloys
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New results of dilatometric experiments with rapidly quenched Al–Cu–Fe quasicrystalline alloys in the course
of their thermal annealing are presented. It is established that the icosahedral (I) phases with different types of
carriers exhibit different signs of volume changes with ordering. The observed effect is a direct experimental
proof of the fact that structural defects in icosahedral quasicrystals are electrically active centers. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.23.Ft; 72.20.Pa
It is well known that the electronic properties of sta-
ble icosahedral quasicrystals are highly sensitive to the
degree of the structural perfection of their lattice. The
origin of this phenomenon is still unknown. In this con-
nection, researchers are searching for empirical laws
that relate the kinetic and thermodynamic coefficients
in the experiments where the heat treatment is a param-
eter of the system [1]. From such experiments, it was
found that samples of fast-quenched quasicrystalline
alloys increase in volume under a high-temperature
annealing [2]. A volume change accompanying a struc-
tural transformation is a fairly common phenomenon,
and the observed effect would hardly attract special
attention, were it not for the following fact.

A thermal ordering of I phases is accompanied by a
sharp drop in the residual conductivity σ0 of the sam-
ples. The magnitude of the effect is different in different
systems. For example, in the Al–Cu–V system, σ0 is
about 5000 Ω–1 cm–1, in the Al–Cu–Fe system, it is about
100 Ω–1 cm–1, and in Al–Pd–Re, about 10 Ω–1 cm–1. It
was found that the volume change and the value of the
residual conductivity correlate with each other. The
greater the volume change due to the annealing of the
disordered phase, the closer the state of the ordered I
phase to the metal–insulator transition. Since in quasi-
crystals the value of σ0 is mainly determined by the
concentration of metallic electrons, one can expect that
the volume changes are somehow directly related to the
concurrent existence of free carriers and structural
defects in the system.

In trying to reveal the mechanism relating the elec-
tronic and structural (volume) transformations, we
noticed that, in stable I phases, a sign reversal of the
metallic carriers takes place. Depending on the contents
of different components, either n-type (a negative Hall
effect) or p-type (a positive Hall effect) I phases are
realized [3, 4]. If we assume that the presence of free
0021-3640/02/7511- $22.00 © 20585
carriers in quasicrystals is related to the presence of
defects, we arrive at an analogy with semiconductors in
which the intrinsic defects are charged centers. When
the number of these centers varies, the concentration of
free electrons in the conduction band (or the concentra-
tion of free holes in the valence band) also varies. In
this case, the volume changes are not only possible but
also predictable. An excessive positive charge of a
defect enhances the Coulomb repulsion of atoms in the
defect region and causes a local expansion of the lattice.
Conversely, an excessive negative charge of a defect
weakens the direct Coulomb repulsion of atoms in the
defect region and causes a local compression of the lat-
tice. In the presence of a great number of charged
defects and in conditions of a pronounced decompensa-
tion, one should expect that the sign reversal of the car-
riers may be accompanied by a sign reversal of the
changes in the macroscopic dimensions of the sample.

We decided to verify whether the aforementioned
reversals in quasicrystals accompany each other. For
this purpose, we prepared Al–Cu–Fe alloys of the fol-
lowing compositions: Al63Cu25Fe12, Al62.8Cu24.8Fe12.4,
Al62Cu25.5Fe12.5, and Al62.3Cu24.9Fe12.8. According to
data from [3], the first two alloys are n-type I phases
and the second two alloys are p-type I phases. The
alloys were prepared in an arc furnace in high-purity
argon from components whose purity was no lower
than 99.99. The samples were obtained as follows.
First, Cu and Fe were alloyed, and then Al was added.
To make the alloy homogeneous, the ingot was five
times remelted by turning it over with the exposure
time up to 60 s. Then, an ingot of the alloy was melted
on a flat surface and flattened by a falling copper block.
Samples in the form of parallelepipeds with the dimen-
sions 4 × 4 × 6 mm were cut out of the resulting plate
by the spark cutting method. The measurements were
performed using a SINKU-RIKO quartz dilatometer.
The procedure was as follows. The temperature was
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increased at a rate of 5°C/min to 700–750°C and main-
tained constant at this level within 1 h; then, it was
reduced to room temperature at a rate of 5°C/min. The
dilatometer readings were continuously recorded.

The results of measurements are shown in Fig. 1.
One can easily see that the alloys behave in different
ways. The magnitude of the effect observed at the
ordering temperature is different in different samples,
but this is not the point of our concern. We are inter-
ested in the sign of the hysteresis observed in the linear
dimensions of samples when they return to room tem-
perature. One can see that, in p-type I phases, the
annealing results in an expansion, whereas in n-type I
phases, it causes a compression of the initial material.
Phenomenologically, it means that the n-type imperfect
I phases are less closely packed while the p-type imper-
fect I phases are more closely packed, as compared to
the perfect phases.

According to the logic of the experiment, the
observed effect with the sign reversal of the volume
changes is a direct proof of the fact that the structural
defects in icosahedral quasicrystals are electrically
active centers. From the correlation between the sign of

Fig. 1. Effect of the heat treatment on the linear dimensions
of the samples of four quenched alloys.
the metallic carriers and the sign of the volume changes
with varying number of defects, we make the following
inferences. The appearance of a defect in an n-type I
phase is accompanied by electron transfer from the
defect to the conduction band. In this case, the defect
acquires a positive charge and causes a local expansion
of the lattice. The appearance of a defect in a p-type I
phase is accompanied by electron transfer from the
valence band to the defect. In this case, free holes
appear in the valence band, and the defect acquires a
negative charge and causes a local compression of the
lattice. When the samples are annealed, the number of
defects decreases, and the sample volume decreases or
increases, accordingly, to its equilibrium value. The
concentration of metallic carriers decreases in both
cases. If this scenario of metallic state evolution takes
place, the Fermi level of an imperfect I phase is either
near the bottom of an almost empty conduction band or
near the top of an almost filled valence band. Corre-
spondingly, I phases that differ in the number of defects
and in the value of σ0 form a homologous series of
states at the metal–insulator transition with respect to
the band filling.

Over the last ten years, numerous theoretical and
experimental studies of the electronic structure of sta-
ble icosahedral quasicrystals have been carried out.
However, the problem still remains poorly understood.
Moreover, new problems challenging both theory and
experiment have appeared [5]. Primarily, this refers to
the role of aperiodicity. Until now, no physical proper-
ties that could be directly attributed to the aperiodic
structure of I phases had been revealed. This is
explained by two factors: the lack of knowledge of the
type of electron states (extended, critical, or localized)
in a perfect aperiodic structure and the lack of knowl-
edge of the role of defects. In the framework of conven-
tional band concepts, the semimetal version of the elec-
tronic structure, which represents the I phase as a two-
band metal with a weak band overlapping, has been
studied in detail. In this case, the role of defects is
reduced to the limitation of the electron free path by the
interatomic distance and to the formation of a
pseudogap at the Fermi level [6]. The semiconductor
version of the electronic structure (the nonoverlapping
band approximation) was developed for explaining the
giant negative temperature coefficient of resistance and
the unusual magnetic and optical properties of quasic-
rystals [7–9]. In the framework of this approach, the
role of defects was not specified. In this paper, the role
of defects is determined, as far as we know, for the first
time. The role of defects in quasicrystals proved to be
opposite to their role in metallic systems. Evidently, the
understanding of many features of the physical proper-
ties can undergo considerable changes. As an example,
we consider the Curie-type component of magnetic
susceptibility at low temperatures.
JETP LETTERS      Vol. 75      No. 11      2002
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On the whole, the data of magnetic experiments tes-
tify that the atoms of high-structural-quality I phases of
Al–Cu–Fe have no localized moments, i.e., are in the
zero-spin state [10]. Therefore, earlier, we ascribed the
Curie-type component to the presence of uncontrolled
impurities or foreign phases [11]. Now, we may sup-
pose that the nonzero spin is related to the electron con-
figurations of the alloy’s own atoms in the defect.
Hence, the Curie constant can serve as the measure of
the concentration of these defects and, what is most
interesting, the measure of the free carrier concentra-
tion. We tested this assumption with the data of the
experiment in [11], in which the temperature depen-
dences of conductivity and magnetic susceptibility
were studied for different stages of the heat treatment of
a fast-quenched Al62Cu25.5Fe12.5 alloy. The result of test-
ing is shown in Fig. 2. One can see that the dependence
is close to linear. This result is quite unexpected,
because a linear dependence should be observed only
when all defects are identical. In quasicrystals, a full
identity of defects can hardly be possible, because the
icosahedral lattice has no equivalent positions [5].

The subsequent confirmation and development of
the concept of charged defects of an icosahedral lattice
is possible by different experiments, both direct and
indirect. For example, a structural experiment can con-
sist in studying the dependence of interplanar spacings
on the degree of perfection of the lattice in the n- and
p-type I phases with the aim of detecting the sign rever-
sal of these changes. As far as we know, such studies
had never been carried out before. Spectroscopic meth-
ods can be used to study the changes that occur in the
charge state of part of the atoms with varying degrees
of perfection of the lattice. As for the indirect experi-
ments, a good illustration could be the detection of dif-
ferent signs of the effect of hydrostatic pressure on the
residual conductivity in n- and p-type I phases. Finally,
different signs of the volume changes due to ordering
may give rise to morphological differences between the
samples of n- and p-type I phases. For example, on the
surface [12, 13] and in the bulk [14] of some stable I
phases, faceted voids are observed, whose origin has
not yet been understood. The Al62Cu25.5Fe12.5 phase, in
which this phenomenon was observed and thoroughly
investigated, has (according to the aforementioned
data) a positive sign of the Hall effect and increases in
volume as a result of ordering. For the other phase,
Al71Pd20Mn9, in which this phenomenon was also
observed, the sign of the Hall effect is unknown, but it
was found that the volume of this phase increases with
ordering [13]. If the effect of faceted voids is of charge-
related origin, one can expect that this effect will be
mainly observed in p-type I phases.

We are grateful to M.I. Kurkin for the interest taken
in this study and for the idea of taking into account the
possible role of Coulomb interaction in the presence of
charged defects. We are also grateful to V. Dmitrienko
(Institute of Crystallography, Moscow) and J. Hartwig
JETP LETTERS      Vol. 75      No. 11      2002
(European Synchrotron Radiation Facility, Grenoble)
for useful information and for discussing the formation
and morphology of icosahedral phases.
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Various types of current–phase relation I(ϕ) in superconductor–ferromagnet–superconductor (SFS) point con-
tacts and planar double-barrier junctions are studied within the quasi-classical theory in the limit of thin diffu-
sive ferromagnetic interlayers. The physical mechanisms leading to highly nontrivial I(ϕ) dependence are iden-
tified by studying the spectral supercurrent density. These mechanisms are also responsible for the 0–π transi-
tion in SFS Josephson junctions. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.80.-g
1 The relation between the supercurrent I across a
Josephson junction and the difference ϕ between the
phases of the order parameters in the superconducting
banks is an important characteristic of structure. The
form of I(ϕ) dependence is essentially used for analyz-
ing the dynamics of systems containing Josephson
junctions [1]. Studying I(ϕ) also provides information
on pairing symmetry in superconductors [2].

In structures with tunnel-type conductivity of a weak
link (SIS), the current–phase relation is sinusoidal,
I(ϕ) = Icsinϕ with Ic > 0, over the whole temperature
range below the critical temperature. At the same time,
in point contacts (ScS) and junctions with metallic type
of conductivity (SNS), strong deviations from the sinu-
soidal form take place at low temperatures T [3] with the
maximum of I(ϕ) being achieved at π/2 < ϕmax < π.

The situation drastically changes if there is a mag-
netoactive material in the region of the weak link. The
transition from the 0 state [I(ϕ) = Icsinϕ with Ic > 0] to
the π state (Ic < 0) in junctions containing ferromagnets
was theoretically predicted for a variety of Josephson
structures [4–12] and experimentally observed in the
SFS and SIFS junctions [13, 14]. In the general case,
modifications of I(ϕ) are not reduced to the 0–π transi-
tion. It was shown that the tunneling across a ferromag-
netic insulator (FI) in clean SFIS junctions [15] or
across a magnetically active interface between two
superconductors [16] may result in a nonsinusoidal
shape of I(ϕ) due to the shift of Andreev bound states.
A similar situation occurs in long SFS junctions with

1 This article was submitted by the authors in English.
0021-3640/02/7511- $22.00 © 20588
ideally transparent interfaces in the clean [17] and dif-
fusive [7, 8] regimes.

However, in the latter case the effects take place
only in a narrow interval of very low temperatures (due
to the smallness of the Thouless energy), while here we
will consider short-length structures, where the effects
are more pronounced and exist practically over the
whole temperature range (the role of temperature will
be discussed elsewhere [18]).

In this letter, we investigate anomalies of the I(ϕ)
relation in several types of SFS structures which allow
an analytic solution but have not yet been fully
explored: the SFcFS point contact with clean or diffu-
sive constriction as a weak link and the double-barrier
SIFIS junction; the ferromagnetic layers are assumed to
be thin, and the magnetization is homogeneous
throughout the F part of the system. In particular, we
show that the maximum of I(ϕ) can shift from π/2 ≤
ϕmax < π to 0 < ϕmax < π/2 as a function of the exchange
field in the ferromagnet. Previously, a current–phase
relation of this type was theoretically predicted either if
superconductivity in the S electrodes was suppressed
by the supercurrent in the SNS structure [19–21] or in
the vicinity of T = 0 in long SFS junctions [7, 8].

The outline of the paper is as follows. We start by
studying the SFcFS structure composed of two SF
sandwiches linked by a clean Sharvin constriction with
an arbitrary transparency D. We show that the energy–
phase relation of this junction can have two minima: at
ϕ = 0 and ϕ = π (the junction energy in the pure 0 or π
state has a single minimum at ϕ = 0 or ϕ = π, respec-
tively). As a result, the I(ϕ) dependence can intersect
002 MAIK “Nauka/Interperiodica”
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zero not only at ϕ = 0 and ϕ = π but also at an arbitrary
value ϕ0 from the interval 0 < ϕ0 < π. The salient effects
occurring in the junctions with clean constriction sur-
vive the averaging over the distribution of transmission
eigenvalues and, thus, occur also in the diffusive point
contacts. Physically, the properties of SFS structures
are explained by the splitting of Andreev levels in the
exchange field; to demonstrate this, we study the spec-
tral supercurrent. Finally, we show that the same mech-
anism provides shifting of the I(ϕ) maximum to ϕ < π/2
in the double-barrier SIFIS junctions, which can be
more easily realized in experiment.

SFcFS with clean constriction. We start with a
model structure composed of two superconducting SF
bilayers connected by a clean constriction with trans-
parency D (the constriction size a is much smaller than
the mean free path l: a ! l). We assume that the S layers
are bulk and that the dirty-limit conditions are fulfilled
in the S and F metals. For simplicity, we also assume
that the parameters of the SF interfaces γ and γB obey
the condition

(1)

where RB and !B are the resistance and the area of the
SF interfaces, ρS(F) is the resistivity of the S (F) mate-
rial, and the coherence lengths are related to the diffu-

sion constants DS(F) as ξS(F) = , where Tc is
the critical temperature of the S material. We will con-
sider symmetric structure and restrict ourselves to the
limit where the thickness of F layers is small:

(2)

where H is the exchange energy in the F layers.

Under condition (1), we can neglect the suppression
of superconductivity in the S electrodes by the supercur-
rent and the proximity effect and reduce the problem to
the solution of the Usadel equations [22] in the F layers

(3)

with the boundary conditions at the SF interfaces (x =
) in the form [23]

(4)

In the above equations, the x axis is perpendicular to the
interfaces and has its origin at the constriction; ω =
πT(2n + 1) are the Matsubara frequencies;  = ω + iH;
and ∆0 is the absolute value of pair potential in the

γ ! max 1 γB,( ),

γB RB!B/ρFξF, γ ρSξS/ρFξF,= =

DS F( )/2πTc

dF ! min ξF DF/2H,( ),

ξF
2

x∂
∂

GF
2

x∂
∂ ΦF

ω̃
πTc

---------GFΦF– 0,=

dF+−

γB

ξFGF

ω̃
------------

x∂
∂ ΦF± GS

ΦF

ω̃
-------

ΦS

ω
------– 

  ,=

GS ω/ ω2 ∆0
2+ , ΦS dF+−( ) ∆0 iϕ /2+−( ).exp= =

ω̃

JETP LETTERS      Vol. 75      No. 11      2002
superconductors. The function Φ parameterizes the
Usadel functions G, F, and :

(5)

Under condition (2), the spatial gradients in the F
layers arising due to the proximity effect and current
are small. Then, we can expand the solution to Eqs. (3)–
(5) up to the second order in small gradients, arriving
at [12]

(6)

where

(7)

and the indices 1 and 2 refer to the left- and right-hand
side of the constriction, respectively.

The supercurrent in the constriction geometry is
given by the general expression [24]

(8)

where RN is the normal-state resistance of the junction.
Inserting Eq. (6) in this expression, we obtain

(9)

Finally, the current–phase relation takes the form

(10)

At small ω, the function A [and, thus, I(ϕ)] changes
its sign at a finite phase difference ϕc =

2  if the exchange field is in
the range 1 – D < (γBMh)2 < 1; here, h is the normalized
exchange field h = H/πTc. The results for I(ϕ) are shown
in Figs. 1 and 2 and can be understood by considering
the spectral supercurrent density ImJ(ε). The latter is
obtained by analytic continuation in Eq. (9) and is given

F
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by a sum of delta functions δ(ε – EB), where EB are the
energies of the Andreev bound states. At γBM = 0, the

well-known result EB = ±∆0  is repro-
duced, while at finite γBM the exchange field splits each
bound level into two states (see inset in Fig. 1). At ϕ =
ϕc, one of these split (positive) peaks crosses zero leav-
ing the domain ε > 0, and, simultaneously, the negative
peak moves from the region ε < 0 into ε > 0, reversing
the supercurrent sign.

The sign reversal of the supercurrent (the 0–π tran-
sition) can also be achieved at a fixed H due to the non-
equilibrium population of levels. This phenomenon
was studied in long diffusive SNS [25–27] and SFS
junctions [7, 8].

SFcFS with diffusive constriction. To obtain the
I(ϕ) relation for a diffusive point contact [l ! a !

min(ξF , )], we integrate ,

where I(D) is given by Eq. (9) for the clean case (note
that RN ∝  D–1 in this equation) and ρ(D) is Dorokhov

density function ρ(D) = 1/2D  [28]. Finally, we
arrive at the result

(11)

This expression coincides with the direct solution to the
Usadel equations, and at γBM = 0 it reproduces the
Kulik–Omelyanchuk formula for the diffusive ScS con-
striction [29].

1 D ϕ /2( )sin
2

–

DF/2H ρ D( )I D( ) Dd
0

1∫

1 D–

I ϕ( )
4πT
eRN

----------Re
∆0 ϕ /2( )cos

W2 ∆0
2 ϕ /2( )2cos+

------------------------------------------------
ω 0>
∑=

×
∆0 ϕ /2( )sin

W2 ∆0
2 ϕ /2( )2cos+

------------------------------------------------
 
 
 

.arctan

Fig. 1. Current–phase relation in a clean SFcFS junction
with ideally transparent constriction (D = 1) at T/Tc = 0.01
and γBM = 1 for the different values of normalized exchange
field h. Inset: spectral supercurrent density at ϕ = 2π/3 for
h = 0 (solid line) and h = 0.4 (dashed line).
Calculation of I(ϕ) using the above expression
yields results similar to those for the clean point con-
tact, however the transition from the 0 to the π state
becomes less sharp (see Fig. 3).

Temperature dependence of the critical current in
this case shows a thermally-induced 0–π crossover with
a nonzero critical current at the transition point, in
agreement with the results of [8, 10] (the results for
Ic(T) will be presented elsewhere [18]). This result is
natural, since the barrier transparency is high and the
current–phase relation is strongly nonsinusoidal. We
note that in [13] the measured critical current vanished
at the 0–π transition point because of the low-transpar-
ency regime (and, hence, sinusoidal current–phase rela-
tion) realized in that experiment.

SIFIS. Now, we turn to a double-barrier SIFIS junc-
tion (I denotes an insulating barrier); this structure is
easier for experimental implementation than the SFcFS
junction. In the case of SIFIS, due to dephasing effects
(this situation is similar to the SINIS junction [30]), the
supercurrent cannot be obtained by integrating over the
corresponding transmission distribution (except for the
case of vanishing γBM) and must be calculated by solv-
ing the Usadel equations.

We assume that condition (1) is satisfied; then we
can neglect the suppression of superconductivity in the
S electrodes by the supercurrent and the proximity
effect. In this case, the system is described by Eqs. (3)–
(5), although now instead of two F layers connected by
a constriction we have a continuous F layer (at –dF <
x < dF).

We also assume that the F layer is thin [condition
(2)] and that γB @ dF/ξF; hence, the spatial gradients in
the F layer are small. Then (similarly to the case of con-

Fig. 2. Current–phase relation in a clean SFcFS junction at
T/Tc = 0.01, γBM = 1, and h = 0.8 for different values of bar-
rier transparency D.
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striction) we can expand the solution to Eqs. (3)–(5) up
to the second order in small gradients, arriving at

(12)

(13)

with Φ0 defined in Eq. (6) [in the final result (12), we
retained only the first order in gradients; this accuracy
is sufficient for calculating the current].

Inserting solution (12), (13) into the general expres-
sion for the supercurrent

(14)

we obtain

(15)

(our assumptions imply that RN ≈ 2RB). This result dem-
onstrates that the SIFIS junction with a thin F layer is
always in the 0 state.2 Nevertheless, I(ϕ) is strongly
modified by a finite H (see Fig. 4), especially at low

2 In the case under discussion, where the F layers are thin and the
interface parameters obey condition (1), the phase of the pair
potential is constant in the S part and almost constant in the F
part; however, it jumps at the two SF interfaces [12]. The two
jumps compensate each other in SIFIS with a single F layer,
whereas in SFcFS they add up at the weak link, thus opening the
possibility for the π state.
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Fig. 3. Current–phase relation in diffusive SFcFS point con-
tact at T/Tc = 0.01 and γBM = 1 for different values of
exchange field h.
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temperatures. Figure 4 clearly demonstrates that an
increase in H results not only in the suppression of crit-
ical current but also in the shift of the I(ϕ) maximum
from ϕmax ≈ 1.86 at H = 0 to values smaller than π/2. In

the limit of large exchange fields, h @ , I(ϕ) returns
to the sinusoidal form.

The physical origin of these results can be clarified
in the real-energy ε representation. Making analytic
continuation in Eq. (15) by the replacement ω 
−i(ε + i0), we obtain the spectral supercurrent density
ImJ(ε), which contains contributions of Andreev bound
states with different energies:

(16)

(17)

Equation (17) implies that, at ϕc = 2 , the
singularities in ImJ(ε) are shifted to the Fermi level. At
ϕ > ϕc, the negative singularity in ImJ(ε) crosses the
Fermi level for one spin projection and appears in the
positive energy domain, whereas the positive peak for
the other projection leaves the domain ε > 0 (this pro-
cess is illustrated in Fig. 5). As a result, the contribution
to the supercurrent from low energies changes its sign,
and the supercurrent I(ϕ) becomes suppressed at ϕ > ϕc

(see Fig. 4). However, at higher energies, ε ~ ∆0, the
modifications in ImJ(ε) are weak, and the resulting I(ϕ)
does not change its sign.

In conclusion, we have studied the nonsinusoidal
current–phase relation for the Josephson junctions with
thin ferromagnetic interlayers and identified the physi-
cal mechanisms of these effects in terms of Andreev
bound state splitting in the junction by the exchange

γBM
1–

I
1

4eRN

------------- ImJ ε σH,( )
ε

2T
------ 

 tanh ε,d∫
σ 1±=

∑=

ImJ ε H,( ) Im
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2 ϕsin

∆0
2 ε2– ∆0

2 ϕ /2( )2 ε̃2–cos
------------------------------------------------------------------,=

ε̃ ε γBM ε H–( )Ω ε( ), Ω ε( )+ ∆0
2 ε2– /πTc.= =

γBMh( )arccos

Fig. 4. Current–phase relation in a double-barrier SIFIS
junction at T/Tc = 0.02 and γBM = 1 for different values of
exchange field h. The value ϕ = 2π/3 is used in Fig. 5.
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field. In particular, we have shown that zero-energy
crossing of Andreev bound states is responsible for the
sign reversal of I(ϕ), which also survives the averaging
over the distribution of transmission eigenvalues in the
diffusive junction. As a result, the energy–phase rela-
tion for the junction has two minima: at ϕ = 0 and ϕ = π.
The phenomena studied in this work may be used for
the engineering of cryoelectronic devices manipulating
spin-polarized electrons and in the qubit circuits.
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1. INTRODUCTION 
Quasi-one-dimensional conductors with a charge-

density wave (CDW) (of which, NbSe3, TaS3, and
K0.3MoO3 are the best studied) have been the subject of
theoretical and experimental investigations over more
than two decades. The condensed electronic state with
a CDW was predicted by Peierls in [1]. It manifests
itself as a bound electronic state at the Fermi surface
(condensate) with a spatially modulated electron den-
sity and a gap in the excitation spectrum. One of the
most intriguing properties of these materials is that
CDW can make a collective contribution to the conduc-
tivity (so-called “Fröhlich” conductivity). This prop-
erty was originally studied in the spirit of Fröhlich’s
idea [2] about nondissipative CDW motion. This
approach was developed most consistently in Bardeen’s
theory of CDW quantum transport [3]. The models
allowing the flux quantization in a mesoscopic CDW
ring [4], the Andreev reflection at the normal metal–
CDW interface [5], and analogs of the Josephson effect
in heterostructures with CDW [6] were also considered
theoretically. All these theoretically predicted manifes-
tations of quantum-coherent properties of conductors
with CDW have not been confirmed experimentally in
macroscopic samples with sizes far exceeding the
coherence length of the CDW order parameter. By con-
trast, virtually all the transport properties of macro-
scopic samples were satisfactorily described by the
classical models of CDW transport [7]. The develop-
ment of modern technologies has culminated in the
possibility of fabricating submicron- and nanometer-
scale mesostructures with CDW. This opened the way
for studying the coherent properties of CDW on a
length scale comparable to and smaller than the phase
and amplitude correlation lengths of the CDW order
parameter [8]. In this review, the methods of fabrication
of the mesostructures with CDW using heavy-ion irra-
diation, electron-beam lithography, and focused ion
beams, as well as the use of microcontacts for obtaining
various heterostructures with CDW, will be briefly dis-
0021-3640/02/7511- $22.00 © 20593
cussed. We will also discuss experiments on the obser-
vation and study of the Aharonov–Bohm effect for a
CDW moving in columnar defects in NbSe3, a study of
an analog of the Andreev reflection at the normal
metal–CDW interface, and the observation of depairing
currents in the microchannels formed by the CDW–
CDW point contacts in the chain direction. Experimen-
tal studies of CDW current conversion on the submi-
cron length scale will also be briefly discussed, together
with experiments on the observation of the coherent
interlayer tunneling of carriers localized in “pockets”
without a Peierls gap at the Fermi surface of a quasi-
one-dimensional conductor with an incompletely
demetallized electronic spectrum.

2. QUANTUM INTERFERENCE OF A CDW 
MOVING IN COLUMNAR DEFECTS
WITH TRAPPED MAGNETIC FLUX 

In the classical description, the CDW motion is con-
sidered as the motion of a classical object, either rigid
[9] or deformable [10], in a periodic potential. In the
quantum description, CDW is considered as a quantum
object whose motion is a result of coherent tunneling
[3]. The majority of observed properties of CDW,
including its narrow-band generation, are rather well
described by the appropriate classical models [9, 10].
The possible quantum tunneling of CDW was dis-
cussed only for very low temperatures [11, 12].

At the same time, it was predicted theoretically that
quantum interference effects can be observed for a
CDW in a ring formed by a quasi-one-dimensional con-
ductor with a small diameter (comparable to the CDW
coherence length) and containing a magnetic flux [4].
For the regime of CDW motion along a ring consisting
of a single conducting chain, the magnetoresistance
oscillations with a period corresponding to a flux
change of a single “superconducting” quantum Φ0 =
hc/2e were predicted. The cited work motivated exper-
imental search for quantum interference effects in
002 MAIK “Nauka/Interperiodica”
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materials with CDW [13, 14]. The results of this search
are presented below.

The experimental idea consisted in the selection of
a thin, less than 1-µm-thick, CDW crystal (NbSe3) con-
taining columnar defects (CDs) formed by the irradia-
tion of a material by heavy ions with an energy on the
order of 1 GeV. As is well known [15], CD is a homo-
geneous amorphous cylinder with a diameter of ~10 nm
and length of ~10 µm formed in the crystal matrix
along the particle track as a result of melting and fast
quenching of the material. Since each CD is formed by
a single particle, all of them have the same size. It was
assumed that, since the defect size is comparable to the
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Fig. 1. Oscillating magnetoresistance component (quadratic
background is subtracted) in the CDW slip regime vs. the
magnetic field H || a* || CD axis in the NbSe3 sample (B1-1)

with CD concentration C = 4 × 109 defect/cm2 for I = 100 µA,
It = 100 µA, and T = 52 K. Inset: HREM image of CD.

Analysis of the period of CDW conduction magnetooscilla-
tions

No. C
(defect/cm2) T (K) D (nm) ∆H

(πD2/4)/Φ0

B1-1 4 × 109 52 15 0.86

G1-1 5 × 109 50 16 0.85

36 16 0.84

G1-3 10 × 109 36 16 0.89

G2-2 3 × 109 40 16 0.97

Note: C is the defect concentration; T is the temperature of mea-
surements; D is the diameter of columnar defect; and ∆H is
the oscillation period. The error of determining the quantity
∆H (πD2/4)/Φ0 is 15%.
CDW amplitude coherence length across the chains,
the CDW, when moving through the defect, can “flow
around” it to retain coherence in motion. In a magnetic
field aligned with the defect axis, the CD behaves as a
solenoid making an Aharonov–Bohm contribution [16]
to the wave-function phase of the CDW passed through
the defect. In the limiting case of the CDW coherent
motion over the entire crystal, the contributions from
all the defects may be synchronized, thereby increasing
appreciably the probability of the effect being
observed.

The perfect samples of the NbSe3 single crystals
selected were irradiated on two big accelerators, VIKSI
(Berlin) and GANIL (Caen, France). For the reference
measurements, a part of the sample was usually pro-
tected from irradiation. Several irradiation runs were
performed using Xe, Pb, and U ions with energies of
0.3–6.0 GeV. The density of defects was varied from
2 × 109 to 2 × 1010 defect/cm2. The direction of the
heavy-ion beam coincided with the a* axis of the irra-
diated crystal. Beam divergence was less than 0.5°. The
diameter of defects was determined using the TEM and
HREM techniques and was found to be ≈16 nm (see
inset in Fig. 1).

The studies of the differential current–voltage char-
acteristics of the irradiated samples and the spectra of
Shapiro steps [17] at a frequency of ~10 MHz showed
that, for CD concentrations less than 1010 defect/cm2, the
CDW transport characteristics vary insignificantly and
that the coherence in the CDW motion persists over the
entire length of the sample (~0.5 mm) [14]. These sam-
ples were selected for the magnetoresistance measure-
ments. Magnetoresistance was measured on a Bitter
magnet in fields of up to 23 T at the Laboratory of
Strong Magnetic Fields (Grenoble). As a rule, the sam-
ple had six probes, which were aimed at simultaneously
measuring the magnetoresistance of the section con-
taining CDs and the defect-free section. At a given tem-
perature and current through the sample, magnetic field
was slowly scanned to the maximum value and back.
The measurement results were accumulated and aver-
aged over both scans.

In the CDW slip regime, we observed a magnetore-
sistance component oscillating with a period of 10 T in
the section containing CDs, whereas, under the same
conditions, there were no oscillations in the defect-free
section [13] (Fig. 1). In the CDW pinning state, the
magnetooscillations were not observed in either sec-
tion. More recently, we carried out a detailed analysis
of conditions for the existence of the oscillations and
compared their period with the flux captured by the
defect [14]. The following facts were established.

(i) Oscillations were reproduced in four samples.
Their period corresponded, with an experimental accu-
racy of ≈15%, to a flux change of a single quantum
hc/2e in the defect and was independent of the temper-
ature (36–52 K) and defect concentration (3 × 109–
1010 defect/cm2), see table:
JETP LETTERS      Vol. 75      No. 11      2002
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(ii) The oscillation amplitude was maximal at cur-
rents stronger than It by a factor of 2–3, where It is the
threshold current corresponding to the CDW depin-
ning, and it decreased both with increasing current and
upon approaching the threshold.

(iii) The oscillations were observed in a field aligned
with the defect axis and disappeared for the orientations
perpendicular to the defect axis [14].

(iv) The oscillations were observed in the perfect
and thin samples containing CDs and disappeared in
the samples thicker than 1 µm. The oscillations also
disappeared upon CD degradation after keeping the
sample at room temperature for several months [14].

These results indicate that the magnetoresistance
oscillations have a quantum nature. They are observed
only for the coherently moving CDW and under the
condition that all defects are identical (as-irradiated
samples). It was shown in [14] that the coherence of a
moving CDW is lost upon increasing current by two to
three times and also in the samples with thickness
exceeding the phase coherence length (~1 µm) along
the a* axis. The oscillations are observed at high tem-
peratures (on the order of 50 K), at which the one-par-
ticle interference effects [18] are negligibly weak.
Hence, we can conclude that the oscillations are due to
the quantum interference of a CDW coherently moving
in the columnar defects with captured flux.

Although the microscopic nature of the phenome-
non is not quite clear, it follows from the experiment
that the elementary charge determining the microscopic
origin of the phenomenon is equal to 2e, i.e., to the
value typical of the quantum interference phenomena in
superconductors. However, the validity of this analogy
is as yet not clear. The question of the existence and
possibility of observing persistent currents in nano-
structures with CDW and Josephson-type effects in the
heterostructures with CDW is still open [6].

The observed quantum interference of moving
CDW raises new questions in the understanding of the
mesoscopic properties of a condensed state with CDW
and calls for further experimental study and the devel-
opment of new microscopic theory that would account
for the quantum properties of CDW. Recently, two the-
oretical models were suggested [19, 20] that explain,
albeit from different viewpoints, some aspects of the
phenomenon observed. In our opinion, both works are
based on the model description and cannot account for
the phenomenon in full detail. Recently, there has been
some progress in the development of the quantum the-
ory of CDW transport [21].

From the experimental point of view, the structures
with columnar defects are rather complex and difficult
to reproduce. For this reason, the study of the quantum
interference of the CDW in a single nanohole is of great
interest. At present, work is under way on the prepara-
tion of structures with a single nanohole using micro-
etching in focused ion beams [focused ion-beam (FIB)
technique; for detail, see below]. The resolution of this
JETP LETTERS      Vol. 75      No. 11      2002
method makes it possible to obtain holes with a diame-
ter less than 100 nm. The FIB technique can also be
used to decorate columnar defects of a rather low con-
centration, because the amorphous substance inside the
CD should be etched with a higher rate, after which the
ion beam can be used to cut out a bridge containing a
single CD.

3. CARRIER REFLECTION AT THE NORMAL 
METAL(N)–CDW INTERFACE.

CDW GAP SPECTROSCOPY

It is well known that, at the normal metal–supercon-
ductor interface, an Andreev reflection (AR) can occur
[22], in which a particle incident from the normal metal
changes its charge and all momentum components
upon reflection. In this case, a charge 2e is carried away
as a Cooper pair upon transition through the interface,
whereas the reflected particle moves back along the
incident trajectory. Such a quantum transformation of
charge is possible only if the energy of the incident par-
ticle is lower than the superconducting gap, where the
quasiparticles have no permitted states. This fact was
used to demonstrate the AR in the following way (van
Kempen method) [23]: a thin normal-metal film with
thickness d smaller than the mean free path l was
deposited on the superconductor surface. Then, elec-
trons were injected into the normal film from a point
contact with diameter a ! l and reached ballistically the
N–S interface. In the presence of AR, most of them
would return as holes along the incident trajectories to
the point contact (Fig. 2a), thereby reducing the contact
resistance by a factor of approximately 2. Therefore,
the differential resistance Rd of the contact as a function
of bias V on it would have the form of a step function:

(1)

where 2A is the contact resistance in the absence of AR.
As was shown in [24], the presence of an N–S barrier at
the interface reduces the AR probability at small biases,
giving rise to a local maximum of Rd(V) at V = 0. The
Rd(V) dependence of this type was observed in [23]
(Fig. 2b).

The question of the possibility of observing the sub-
gap carrier reflection at the N–CDW interface was first
raised by Kasatkin and Pashitskiœ in [5], where it was
stated that the reflected particle must not change the
sign of its charge but must, as in the AR, reverse all its
velocity components. Compared to the Rd(V) depen-
dence for the N–S interface, the expected Rd(V) depen-
dence (Fig. 2c) should be mirror-symmetric about the V
axis (Fig. 2b), and Rd(|V | < ∆) should be @Rd(|V | > ∆),
because most of the particles reflected along the inci-
dent trajectory should return to the contact without
changing the charge sign. We undertook a search for
this effect in the Au–K0.3MoO3 structures using point

Rd V( )
A at V ∆<
2A at V ∆,>
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counterelectrodes made from Au or Cu [25]. In the
early experiments, a gold film with thickness 50–100
nm was laser deposited onto the end face perpendicular
to the axis of conducting chains. Qualitatively, the
obtained results were indeed very similar to the
expected dependences [25, 26] (Fig. 3a). A sharp drop
in Rd(V) at T = 77 K corresponded to the value 2∆ ≈ 100
mV, which was consistent with the earlier measure-
ments of the Peierls gap in K0.3MoO3 by other methods
[27]. The occurrence of a local minimum at zero bias is

Fig. 2. (a) Schemes of normal and Andreev quasiparticle
reflections upon the local injection of carriers into a thin
normal-metal (N) film applied to a superconductor. (b)
Schematic representation of the differential resistance Rd as
a function of bias V for the N–N–S structure in the presence
of an Andreev reflection at the N–S interface. (c) The Rd(V)
dependence expected for the N–N–CDW structure on the
basis of the results obtained by Kasatkin and Pashitskiœ in
[5] for the Andreev-type reflection at the N–CDW interface.
noteworthy. This minimum indicates that the reflected
particle is emitted from the condensate (as in the case
of an Andreev reflection) and transmits through the sur-
face barrier, whose transmittivity is small at small ener-
gies. At the same time, the contribution from the
reflected particles was two orders of magnitude smaller
than expected and was only 3%. It was shown in the
more detailed studies [26] that the amplitude A* due to
the reflected particles (A* = Rd/RdN – 1) is proportional
to (a/d)2 (Fig. 3b), where a is the diameter of a point
contact (determined from the contact resistance by the
Sharvin formula [28]) and d is the thickness of the gold
film. It was concluded from these measurements that
the Andreev-type contribution to the reflection comes
only from the particles injected along the chains. This
is in compliance with the statement [29] that the
momentum of the incident particle is transferred to the
CDW condensate that moves away from the interface.
Contrary to a superconductor, where the Cooper pairs
can move in any direction and, hence, the incident par-

Fig. 3. (a) Reflection spectrum of the carriers locally
injected at T = 77 K and reflected from the N(Au)–
CDW(K0.3MoO3) interface. (b) Amplitude contribution
from the particles reflected at V = 0 vs. the parameter
(RdN(0)d2)–1 ∝  a2/d2, where a is the contact diameter and d
is the thickness of the normal-metal film: d = (d) 50 and (s)
100 nm and T = 77 K.
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ticles can undergo Andreev reflection at any angle, the
CDW can move only in the chain direction, so that only
those particles which are injected along the chains,
whose contribution is small (~2πa2/d2), can contribute
to the Andreev-type reflection. The distinction from the
AR is also that only the momentum transfer occurs
through the N–CDW interface (and not the charge, as in
the Andreev reflection). The wavevector of the incident
particle is kF, and the momentum of the reflected parti-
cle is –(kF – δk). The momentum transfer to the CDW
is equal to "(2kF + δk).

A detailed analysis of the alternative explanations
and the measurement of the spectra of across-chain
reflection [26] showed that the observed spectra of par-
ticles reflected from the Au–K0.3MoO3 interface can be
explained neither by the mirror reflection from a barrier
with height ∆ nor by the Bragg reflection [30] with the
participation of the transverse CDW wavevector com-
ponent. So, the mechanism considered above is as yet
the only possible explanation. It should be noted that
this mechanism allows the direct subgap quasiparticle-
current conversion into CDW current without the for-
mation of a phase-slip center (PSC) [31] (see below for
detail).

The Rd(V) dependences similar to those found in the
Au–K0.3MoO3 system were recently also observed in
the Au–NbSe3 system [32]. The corresponding mea-
surements gave the energy gaps for the high-tempera-
ture (2∆1 ≈ 200 mV) and low-temperature (2∆2 ≈
60 mV) CDW in NbSe3 and their temperature depen-
dences. These values agree well with the STM data
[33]. Thus, the method of local injection into the
N−CDW structures can be used for the spectroscopic
determination of the Peierls gap in materials with a
CDW. Note that the experiments in [32] were carried
out using a direct Au–NbSe3 contact without an inter-
mediate metallic spacer. This allowed the spectra of
reflected particles to be observed more distinctly with a
maximal reflection amplitude of ~20%.

4. CRITICAL CURRENT FOR SUPPRESSING
THE CDW GAP

It is well known that superconductivity is destructed
by the electric current if the kinetic energy of a Cooper
pair reaches a value comparable with the pairing energy
2∆. This is the so-called depairing current. Continuing
the analogy between the CDW slip state and supercon-
ductivity, we raise the question of the current-induced
suppression of the CDW gap. A simple estimate of the
critical velocity v c from the condition that the kinetic
energy of a CDW must achieve a value equal to the
CDW gap gives v c ~ (∆/M)1/2. For ∆ ~ 100 meV and
M = 100me [7], this gives v c ~ 105 cm/s. This estimate
seems to be reasonable, because it is smaller than the
sound velocity in the materials with a CDW: the limit-
ing CDW velocity probably cannot exceed the sound
JETP LETTERS      Vol. 75      No. 11      2002
velocity because of the strong electron–phonon cou-
pling, which provides the existence of the CDW. For a
concentration of 1021–1022 cm–3 taken for the CDW-
condensed electrons, one estimates the critical current
density at 107–108 A/cm2. In bulk samples, current den-
sities as high as those are difficult to achieve without
Joule heating. However, it turned out that they can be
achieved rather easily in microcontacts. In point con-
tacts, the resistance is formed on the length scale ~a,
while the energy is scattered on the mean free path scale
l [34]. In the experimentally organized ballistic regime
a ! l, the electron velocities may reach very high val-
ues without heating the material.

The first evidence of the current-induced CDW-gap
suppression was obtained in our experiments with Au–
Au/K0.3MoO3 contacts [26]. For the contacts with dif-
ferent thicknesses of the Au sublayer (50–100 nm) and

Fig. 4. (a) Characteristic voltage 2V0 determining the
K0.3MoO3 CDW gap 2∆0 in the reflection spectra of the
Au–K0.3MoO3 interface vs. current density through the
interface [d = (d) 50 and (s) 100 nm] at T = 77 K. (b) The
Rd(I) spectra of the point contact NbSe3–NbSe3 formed
along the conducting chains; the contact resistances (areas)
are different in different panels. The contact geometry is
schematically shown in the inset. The arrows indicate the
characteristic jumps of differential resistance to the metallic
state with dRd/dI > 0 at currents exceeding I0. Note that the
product I0Rd determining the current density in the jump
region is independent of the contact parameters.
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different resistances (from several hundred to ten
ohms), the Peierls gap in K0.3MoO3 was measured as a
function of the current density passing through the con-
tact. The contact diameter was calculated by the Shar-
vin formula [28]. The experiments showed a sharp nar-
rowing of the gap (Fig. 4a) at current densities ≈5 ×
107 A/cm2. According to the estimates, the contact was
heated by no more than 3 K. The critical CDW velocity
v c = Jc/ne corresponding to this current density (n is the
concentration of condensed carriers) was 0.6 ×
105 cm/s, which is several times lower than the sound
velocity c = 4.5 × 105 cm/s in K0.3MoO3 [35].

In the other group of our experiments with high cur-
rent densities, the NbSe3–NbSe3 point contacts oriented
along the chains were studied [36]. It was established
that the nonlinear differential resistance Rd caused by
the contribution from the moving CDW drops abruptly

2 µm(‡)

N

NCDW

30 µm

Gold NbSe

(b)

Substrate

Fig. 5. Mesostructures obtained on thin NbSe3 crystals by
electron-beam lithography: (a) periodic 2D structure of
antidots and (b) microline. The inset schematically demon-
strates that the nonlinear transport in the antidot structure is
caused by the contribution from only the short submicron
sections along the conducting chains.
with an increase in current and transforms into a state
with a metallic character of the Rd(I) dependence
(Fig. 4b). The current density corresponding to the
jump did not depend on the contact resistance and was
of the same order of magnitude (6 × 107 A/cm2) as in the
experiments of the first group. A value of 2.7 × 105 cm/s
obtained for the corresponding CDW critical velocity
in NbSe3 also did not exceed the sound velocity in
NbSe3 (5.5 × 105 cm/s [37]). The results obtained for
different materials in independent experiments provide
strong evidence for the existence of a universal mecha-
nism of current-induced CDW-gap suppression. A
more detailed understanding of this mechanism calls
for further investigations, both theoretical and experi-
mental.

5. MESOSTRUCTURES ON NbSe3

5.1. Structures Obtained Using Electron-Beam 
Lithography

The use of modern technologies and, in particular,
electron-beam lithography extended substantially the
experimental possibilities for studying the CDW prop-
erties on the small-length scale. Below, two types of
mesostructures are described which were obtained on
NbSe3 single crystals by electron-beam lithography and
used for studying nonlinear CDW transport in segments
as short as 0.5 µm. This made it possible to study the
problem of CDW current conversion on the submicron
length scale.

In early experiments of this type, we obtained struc-
tures containing periodic 2D rows of antidotes in thin
NbSe3 crystals [38] (Fig. 5a). The antidots constituted a
triangular lattice in such a way that the CDW could
move only inside a confined section between the anti-
dots with a length equal to the lattice period along the
chains (b axis). In the transverse direction, these sec-
tions were electrically connected by linear conduction
(inset in Fig. 5a). The resulting network contained from
two to seven thousand cells, over which the single-cell
properties were averaged.

The process of structure preparation included the
fixation of a thin (<0.5 µm) sample on a substrate, coat-
ing it with a resist, the formation of a desired structural
profile on the resist by electron-beam lithography, cap-
ping the resist with an Al mask (oblique evaporation),
and etching the sample through the Al mask using plas-
mochemical etching (SF6) [38]. The resulting periodic
structures had a period from 3 to 0.5 µm along the b
axis. The smallest sizes of the conducting fragment
along the b axis were 0.5 µm with a cross section of
0.2 × 0.3 µm.

For the submicron-sized structures, the size effect
consisting of a decrease in the linear conduction of the
structure was observed below 40 K, when the carrier
mean free path became greater than the minimal size of
the structure [38]. This allowed the mean free path to be
JETP LETTERS      Vol. 75      No. 11      2002
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estimated at l ~ 0.3 µm at T ≈ 40 K. It was also estab-
lished that the CDW-depinning threshold field
increased almost fourfold upon decreasing the cell
length from 1.5 to 0.5 µm [38] (see also [39]).

The process of CDW depinning in a finite-length
section is usually accompanied by the formation of a
PSC at the boundary (boundaries) with an immobile
CDW. The reason is that the CDW phase is independent
of time in the section with an immobile CDW, whereas
it linearly increases with time in the section with a mov-
ing CDW. As a result, the order parameter turns to zero
when the phase gradient at the boundary achieves its
critical value and the phase “slips” by 2π, after which
the process is repeated periodically. This mechanism of
CDW current conversion into quasiparticle current with
the formation of the PSC was proposed by Gor’kov in
[31]. More recently, the picture of current conversion
was considered in more detail by Brazovskiœ and
Matveenko in [40].

In the general case, the formation of a PSC demands
an additional energy associated with the CDW defor-
mation in the near-contact region up to the critical val-
ues, with the formation of local phase-slip domains and
the motion of corresponding dislocation loops to the
sample surface. The corresponding CDW-depinning
threshold voltage, measured between two contacts
placed L apart, can be expressed as [41] Vt = EtL + Vps,
where Vps is the excess stress required for the formation
of a PSC. It was previously thought that Vps is indepen-
dent of the separation between the current contacts [i.e.,
Vps(L) = Vps0 ≈ 1 mV], based on experiments with L
decreasing to 20 µm [42]. Our experiments with the
rows of submicron antidots allowed the energy of PSC
formation to be estimated for L ≈ 0.5 µm. It was found
that the threshold voltage for the submicron sections is
considerably (by a factor of 2–3) lower than Vps0 [38].
This pointed to a considerable (by several times)
decrease in the PSC formation energy on the submicron
length scale. The obtained results were confirmed by
the direct measurements of Vps in the individual micro-
sections of a microline-type structure on NbSe3 [43]
with a distance between the probes varying from 7 to
0.5 µm (Fig. 5b). This effect cannot be explained within
the framework of the available models of CDW current
conversion [44], so new PSC models need to be devel-
oped for the mesoscopic samples. Qualitatively, the
drop in Vps on a submicron length can be explained as
follows. For large distances between the current con-
tacts, the phase slip on them is uncorrelated. One can
imagine that they become time-correlated with a
decrease in distance; i.e., the addition of a CDW period
in one contact is accompanied by the synchronous
elimination of the CDW period in the other contact.
Such a coherent phase slip requires weaker CDW
deformation and, as a result, lower bias Vps than in the
case of a large separation between the contacts [43].
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Measurements on the periodic structure of antidots

were used to compare the CDW conductivity  of

a submicron domain and  of a macroscopic sam-
ple of the same geometry. This enabled us to estimate
the length lconv of CDW current conversion into normal
current. Assuming that the CDW in the submicron sam-
ple makes a contribution to the conductivity at the length

L – 2lconv, one has [38] lconv = .

This estimate gives a value of 20 to 30 nm for lconv, in
agreement with the theoretical estimate lconv ~ hvF/2π∆
[31, 45].

5.2. Structures Obtained Using Focused Ion Beams 

One more efficient method for obtaining micro- and
nanostructures consists of microetching with focused
ion beams (FIB). This method has been intensively
elaborated over the last decade mainly in connection
with the appearance of stable liquid (gallium) cathodes
and computer systems for controlling the ion beams
and the microetching process. Commercial setups have
already emerged with a resolution as high as 10 nm and
currents of ~10 pA, which is superior to the resolution
of electron-beam lithography. Another advantage of the
FIB method is that there is no need for the resist and
that it allows the preparation of 3D structures. The
drawback is that the beam energy is rather high (from
16 to 30 kV), for which reason the defects can appear
in the structure at a depth of ~30 nm along the beam and
~20 nm in the lateral direction. This renders the method
less efficient in the preparation of structures with
dimensions smaller than 50 nm.

Recently, we have used FIB to obtain submicron-
sized mesostructures on the layered single crystals of
high-Tc superconductor Bi2Sr2CaCu2O8 + x [46, 47] with
the aim of studying the interlayer tunneling of Cooper
pairs and quasiparticles [48]. The methods developed
were applied to the CDW materials with the object of
preparing various microstructures on them. As an illus-
tration of the FIB method, Fig. 6 shows the micropho-
tographs of the structures of two types obtained by this
method on the NbSe3 single crystals: the first structure
is of the planar microbridge type containing a hole with
a diameter of 0.1 µm (Fig. 6a). This structure is
designed for studying the Aharonov–Bohm effect on a
single microhole with a trapped magnetic flux. These
structures are currently under development. The second
structure of the overlap type is designed for studying
the transverse transport (transverse to the easily con-
ducting bc layers) at a small area (Fig. 6b). The overlap
length of the vertical cuts is less than 0.05 µm. The
structures of the second type are considered below.
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CDW

1
2
---L 1 σmicro

CDW /σmacro
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(‡) (b)

1 µm

1 µm

Fig. 6. Mesostructures obtained by the FIB method on thin NbSe3 single crystals: (a) bridge containing a nanohole with a diameter
of 80 nm and (b) overlap structure formed at the bridge by two lateral cuts overlapping by ~50 nm. The bridges in both cases are
formed in the bc plane. The overlap structure is photographed at an angle of 45° to the c axis.
6. INTERLAYER TUNNELING IN NbSe3 

NbSe3 has a well-defined layered structure. In con-
junction with the conductivity anisotropy, this suggests
that CDW may condense inside the elementary con-
ducting layers separated by thin (on the atomic scale)
isolating layers. In this case, similar to the layered

Fig. 7. The dI/dV dependences as functions of bias V in a
high-quality overlap structure; T = 59.5, 55.6, 52.1, 48.0,
43.7, 40.1, 37.0, 34.3, 31.0, 28.0, 25.1, 22.6, 19.1, 15.7,
12.8, 8.0, and 4.2 K. The dynamic conductivity scale corre-
sponds to the curve for T = 59.5 K. The remaining curves
are shifted up for clarity. The configuration of the structure
is schematically shown in the inset.
high-Tc superconductors [49], one can expect that the
CDW order parameter is modulated along the a* axis
perpendicular to the layers, so that transport across the
layers is governed by the internal interlayer tunneling
between the elementary layers with CDW. For the pur-
pose of experimental verification of these premises, we
carried out a direct experimental study [50] of the trans-
port across the layers in NbSe3 in the condensed state
with CDW. Measurements were made on the layered
mesostructures containing ~30 elementary layers
(structures of the overlap type) with a small current-
flow area (S = 2 × 2 µm) across the layers and on the
tight NbSe3–NbSe3 contacts oriented along the crystal-
lographic axis a*.

The most prominent feature of the measured charac-
teristics of these structures was a strong conductivity
peak observed at zero bias for both the overlap struc-
tures (Figs. 7, 8) and the point contacts (Fig. 8). In addi-
tion, the most perfect overlap structures showed a peri-
odic peaking at V = nV0 with V0 = 50 mV (Fig. 7), anal-
ogous to the sequence of quasiparticle branches
observed in the current–voltage characteristics of the
layered Bi-2212 structures upon measuring across the
layers [51]. Indeed, the value V0 = 50 mV was close to
twice the low-temperature NbSe3 CDW gap, and the
temperature dependence V0(T) corresponded to the
BCS prediction. However, contrary to superconductors,
the zero-bias conductivity was nonzero in NbSe3. This
indicates that the zero-bias interlayer conductivity is
not due to the collective CDW contribution of the
Josephson tunneling type.

It should be noted that, of all presently known quasi-
one-dimensional compounds with CDW, NbSe3 is a
unique material. Whereas the ground state of the major-
ity of compounds is semiconducting below the Peierls
transition, NbSe3 retains metallic properties down to
the lowest temperatures. This is caused by the fact that
the Fermi surface in the low-temperature Peierls state
contains domains (“pockets”) where the nesting condi-
tions are not met, so the Peierls gap does not appear [7].
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We managed to explain the data obtained by assuming
that there is a coherent tunneling (tunneling with elec-
tron momentum conservation) of the CDW-noncon-
densed carriers. In this case, the theoretical calculation
of the interlayer tunneling current–voltage characteris-
tic yields the following expression for eV < 2∆ [50]:

(2)

where N(0) is the density of states in the pockets, t is the
matrix element for the interlayer tunneling with
momentum conservation, γ = "ν, and ν is the collision
frequency. The quantity γ is determined by both the in-
layer scattering (γsc) and the tunneling (γint) and can be
represented as γ = γint + γsc. The expression for the
dynamic conductivity has the form

(3)

One can see that the dynamic conductivity shows a
peak at V = 0 with the width ~γ and becomes negative
at eV > 2γ, indicating instability at these voltages.
Based on the known data for the mobility µ = e/νscm* ≈
4 × 104 cm2/(V s) [52] and effective mass m* = 0/24me

[53], one arrives at the following estimate for the in-
layer scattering: γsc = 0.13 meV. A peak width of
~10 mV experimentally observed for the structure
composed of 30 layers corresponds to γ = 0.3 meV. This
implies that γint ≈ γsc, and, hence, tunneling is coherent.
In the interlayer electron tunneling, the energy is con-
served [i.e., ε(p) = ε(q) – eV, where p and q are the elec-
tron momenta in the neighboring layers] to within 2γ.
For coherent tunneling, p = q and ε(p) = ε(q), so that,
if eV ! γ, tunneling can occur and one arrives at the
conventional Ohm’s law. At eV > γ, tunneling cannot
occur until V achieves 2∆p/e. In this case, the CDW-
condensed electrons start to contribute to the interlayer
current via the usual tunneling of CDW quasiparticles
through the doubled Peierls gap 2∆p. Therefore, the
interlayer current can occur due to only one of the
mechanisms described above. Because of the geometri-
cal inhomogeneity of the layers in real multilayer struc-
tures (layer areas slightly differ from layer to layer), the
voltage V > 2γ/e cannot be achieved simultaneously for
all individual tunneling transitions. At V > 2γ/e, some of
the transitions occur in the coherent tunneling regime
and some of them occur in the regime of single- particle
tunneling through the gap. As a result, the current– volt-
age characteristic of the compound should display con-
ductivity peaks at V = 2n∆p/e, where n = 1, 2, …. In the
case of tight contacts, the incoherence of tunneling is
enhanced, although it remains almost coherent in the
best structures. As a result, the current–voltage charac-
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teristics of these structures show, in addition to the
zero-bias conductivity peak, a singularity at V = ∆p/e
due to the single-particle tunneling of the N–I–CDW
type.

Fig. 8. The dI/dV(V) dependences for (curve 1) the tight
NbSe3–NbSe3 point contact oriented along the a* axis and
(curve 2) the overlap structure with a planar defect. The
configuration of the point contact is shown in the inset.

Fig. 9. Temperature dependences of the zero-bias dynamic
conductivity: black circles correspond to the data obtained
for a perfect overlap structure shown in Fig. 7; black squares
correspond to the overlap structure with a defect; and empty
circles correspond to the NbSe3–NbSe3 point contact. The
conductivity is normalized to the dI/dV value at T = 62 K.
Crosses correspond to the theoretical dependence obtained
from Eq. (2) and the known temperature dependence of
mobility in NbSe3 [52]. The quantity γint was taken as a
temperature-independent fitting parameter. The best agree-
ment was obtained for γint/γsc = 2 at 4.2 K.
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One can see that the temperature in Eq. (2) appears
only in γ(T). In this case, the zero-bias temperature
dependence of conductivity, according to Eq. (2), is
σ(0, T) ∝  [e"/µ(T)m* + γint]–1. This dependence agrees
rather well with the experiment (Fig. 9), if one takes the
known in-layer µ(T) dependence [52] and assumes that
γint is independent of temperature. Thus, the saturation
of σ(0, T) at low temperatures can be explained by the
saturation of µ(T) at T  0.

It would be of interest to study the zero-bias conduc-
tivity peak in variously oriented magnetic fields. One
can expect that a rather strong magnetic field perpen-
dicular to the layers can change the momentum along
the mean free path, leading to a decrease in the contri-
bution from the coherent tunneling and, hence, to the
peak suppression. It is also of interest to measure the
angular dependence of magnetoresistance for a field
rotated in the layer planes. This dependence can be
used to determine the pocket orientations at the Fermi
surface, similarly to that proposed in [54] for determin-
ing the directions of zeros of the order parameter in
Bi-2212.

7. CONCLUSIONS

We have considered some experiments that were
aimed at searching for quantum coherence in the mate-
rials with CDW on small length scales. Quantum coher-
ence was observed in the interference of a CDW mov-
ing in the columnar defects with trapped magnetic flux;
in the local reflection of carriers at the N–CDW inter-
face; and in the interlayer tunneling of carriers local-
ized in Fermi-surface pockets without a CDW gap. Fur-
ther development of these studies will allow us to gain
a better insight into the quantum nature of charge-den-
sity waves.
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