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Interaction time and tunneling time. The problem
of the interaction time in quantum mechanics has long
been studied, at least theoretically. In the 1950s, Bohm
[1] and Wigner [2] analyzed the problem of wave-
packet interaction with an object on the basis of the
causality principle. As a result, they obtained the fol-
lowing familiar formula for the packet delay time
caused by interaction:

(1)

where ϕ is the phase shift of the particle wave function
after the interaction act (scattering).

In 1966, Baz’ analyzed theoretically the problem of
scattering time for a particle in a three-dimensional
potential. For a correct theoretical analysis of the prob-
lem, he suggested that spin precession in a constant
magnetic field be used as a physically definite clock [3].
Then, Rybachenko used this concept in calculating the
time of particle tunneling through a potential barrier
[4]. Later, this problem was studied in numerous works.
We refer to reviews [5, 6] and two recent papers [7, 8].

Baz’s Larmor time is closely related to the Bohm–
Wigner phase time (1). Indeed, the additional Larmor-
precession angle caused by interaction can be identified
with the phase difference ∆ϕ between two wave-func-
tion components corresponding to two spin z projec-
tions and differing in wavenumber:

(2)

where k0 is the neutron wavenumber in the absence of a
field, µ is the magnetic moment, and B is the magnetic
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induction. According to Baz’, we define the delay time
associated with interaction as

(3)

where ωL is the Larmor frequency. Then, taking into
account that

(4)

we arrive at the relationship

(5)

coinciding with Eq. (1) in the limit B  0.
Works [3, 4] are extensively cited in the studies of

quantum interaction time, and the term “Larmor clock”
has become common usage, although there has been
some debate over the Larmor clock concept (see, e.g.,
[5, 9]).

Until recently, the problem of interaction time was
investigated predominantly theoretically. The first
experiments where light beams were used to measure
tunneling time were carried out in the mid-1990s
[10−12].

Experimental implementation of the Larmor clock
concept in a neutron experiment faces considerable dif-
ficulties. In such an experiment, it is necessary to set off
a relatively small factor ωLτ, where τ is the time of
interaction with an object, against the background of a
considerably greater velocity-dependent Larmor pre-
cession angle ωL(L/v), where L is the size of magnetic-
field area and v  is the neutron velocity.

The problem is solved by the so-called neutron spin
echo method [13]. In this case, neutrons cover not one
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but sequentially two flight bases L1, 2 with opposite
directions of precession. If the neutron velocity is con-
stant on the whole path and the condition

(6)

is met, the total Larmor phase on the path L1 + L2

becomes zero for any neutron velocity. A practical
restriction on the monochromatization degree is
imposed only by the degree of fulfillment of echo con-
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Fig. 1. Scheme of the experiment on the IN15 spectrometer:
(1) velocity selector, (2) polarizer, (3) π/2 flippers, (4) pre-
cession solenoids, (5) π flipper, (6) polarization analyzer,
(7) position-sensitive detector, (8) multilayer mirror mono-
chromator, and (9) sample. The position of the sample in
one of the two beams formed by the diaphragm is shown in
the lower part of the figure.

Fig. 2. Interference filter: (a) structure, (b) effective poten-
tial, and (c) transmission function.
dition (6). The placement of a sample in one of the pre-
cession bases gives rise to a change in phase by ωLτ.

The problem of interaction time was nearly solved
by Hino et al. [14–16], who measured the additional
precession angle arising when a sample under investi-
gation was placed on the path of neutrons precessing in
a magnetic field. However, the samples were ferromag-
netic, and therefore the interpretation of the results in
terms of interaction time is doubtful.

Experimental setup and method of measure-
ment. We used the neutron spin-echo spectrometer
IN15 of the Institute Laue–Langevin [17] to measure
the neutron interaction time with objects. The experi-
mental arrangement of the setup is shown in Fig. 1.

A sample was placed on the path of precessing neu-
trons inside a solenoid with a magnetic field. The pre-
cession phases were measured simultaneously in two
beams, only one of which passed through the sample.
To increase the reliability of measurements, the sample
was periodically moved from one beam to the other.
This method was previously used to measure the pre-
cession phase shift associated with the refraction in a
sample [18, 19]. The high stability of the spectrometer
and the two-beam technique allowed the phase shifts to
be measured at a level of several degrees, and the accu-
racy of time measurement was 4 × 10–10 s.

Measurements of tunneling time in a quasi-
bound resonance. The experiment was carried out
with a so-called neutron interference filter consisting of
three thin films applied on a substrate [20–22]. The
interaction of long-wavelength neutrons with a sub-
stance is well described by the effective potential

where m is the neutron mass, ρ is the nuclear density,
and b is the coherent-scattering length. Since the scat-
tering length density ρb in the outer layers was larger
than in the inner layer, the potential structure of the fil-
ter was a double humped barrier with a well in the mid-
dle. The choice of parameters ensured the existence of
a quasi-bound state in this potential. In this case, the
transmission function of the filter has a distinct reso-
nance character (see Fig. 2).

We used a filter consisting of a Ti–Zr alloy film
sandwiched between two Ni layers (doped with a small
amount of solute nitrogen). The nitrogen dopant in
nickel excluded its ferromagnetism. The filter was pre-
pared by the method of magnetron sputtering onto a
0.6-mm-thick silicon substrate 150 mm in diameter.
The thicknesses of the layers were 300–195–300 Å.
The effective nickel potential is about 230 neV, whereas
the effective potential of the Ti–Zr layer is close to zero.
In this potential structure, there was only one resonance
level with energy E0 ≅  127 neV and a half width of
4 neV.
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Measurements were carried out using cold neutrons
with λ = 20.1 Å and the relative spectral halfwidth
∆λ/λ ≅  4.8%. Since the neutron energy was much
higher than the filter resonance energy, the experiment
was carried out in the grazing angle geometry. The sam-
ple was a stack of 32 individual filters of size 20 ×
26 mm cut from one wafer after sputtering (see Fig. 3).
The angular distribution of a beam with a calculated
width of 3.2 mrad was formed by several slit dia-
phragms. The sample was situated into a precession
coil in the position shown in Fig. 1. Neutrons with a
zero angle of incidence can freely pass through the sil-
icon substrate of the sample without touching the mul-
tilayer structure of the filter. With an increase in the
grazing angle, the probability of the direct passage
decreases and vanishes for  ≈ α ≈ d/L, where d and
L are the substrate thickness and length, respectively. In
this case, neutrons, for which the resonance tunneling
condition is not met, reflect from nickel films. As a
result of reflection, they change their direction of
motion and are easily separated from neutrons passed
directly through the sample. With a further increase in
the angle, secondary reflection from the nickel layer of
the neighboring plate in the stack becomes possible.
Doubly reflected neutrons leave the sample at the same
angle as neutrons passed without reflection. They are
indistinguishable from the latter neutrons and contrib-
ute to the background.

The count rate measured as a function of the grazing
angle is shown in Fig. 4, where the minimum corre-
sponds to the overlap angle of the direct beam. The
increase in the count rate for large angles corresponds
to the double reflection region. The results agree satis-
factorily with the predictions. However, it was impossi-
ble to separate the resonance peak, whose calculated
position was αr = 24.8 mrad, from the background in
these measurements.

Nevertheless, the phase shift of neutron precession
was measured over a relatively broad angular range
(Fig. 5). The magnetic field on the sample was B =
190 G. As is seen in Fig. 5, the precession phase sub-
stantially increases near the expected resonance tunnel-
ing peak indicated by the arrow. The delay time at the
maximum is equal to (2.17 ± 0.2) × 10–7 s. For small
angles corresponding to the direct passage, the delay
time is close to a value of 1.9 × 10–8 s caused by the
refraction in silicon.

Formula (1) yields 4.26 × 10–7 s for the tunneling
time at the resonance maximum and 2.27 × 10–7 s for
the time averaged over the transmission line. Thus, the
experimental delay time agrees with the calculation
within the experimental accuracy. It is highly probable
that a considerable delay in the neutron-propagation
time measured in the experiment is due precisely to the
tunneling passage time in the quasi-bound resonance.

Experiment on measuring the Bragg diffraction
time. In 1981, Baryshevskiœ considered the problem of
the diffraction of a neutron by a nonmagnetic crystal

αtan
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with allowance for the neutron spin precession in a con-
stant magnetic field [23]. He found that the spin evolu-
tion in this case does not reduce to the simple Larmor
precession and has a more complicated multifrequency
character. Such a multifrequency precession has not yet

Fig. 3. Sample geometry in the tunneling time experiment.

Fig. 4. Count rate vs. grazing angle in the tunneling time
experiment.

Fig. 5. Precession phase and delay time vs. grazing angle.
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been observed in neutron diffraction by a single crystal.
Nevertheless, we attempted to carry out a similar exper-
iment with an artificial one-dimensional “crystal”— a
Bragg mirror. We note that, according to the aforesaid,
the excess of the precession angle over the Larmor
value can be related to the interaction time.

In this experiment, we again made use of a stack of
samples each representing a silicon plates of size 0.7 ×
20 × 35 mm. Both sides of each plate were covered with
a periodic thin-film structure consisting of 30 pairs of
130-Å-thick Ni–V alloy and 70-Å-thick Ti layers. This
structure represents an interference mirror for neutrons
with wavelengths 430–530 Å and an energy of 350 neV.
The Ni–Ti film was covered with a 1000-Å-thick Gd
film for the absorption of neutrons which were not
reflected from the mirror. The plate length was chosen
so that, if the Bragg condition was met, neutrons under-
went two reflections before leaving the sample.

Measurements were made for wavelength λ =
19.8 Å (∆λ/λ = 7.6%) and the results are shown in
Fig. 6, where the right peak corresponds to the double
Bragg reflection, whose calculated value is θB =
43 mrad. The experimental value of the reflection coef-
ficient at the peak is somewhat smaller than its theoret-
ical value.

In the direct passage position, the delay time was
equal to (2.41 ± 0.03) × 10–8 s, which is close to a value
of 2.37 × 10–8 s caused by the refraction in silicon. At
the Bragg reflection peak, the delay time was (3.12 ±
0.03) × 10–7 s.

DISCUSSION

We directly measured the extra precession phase
arising when the sample under investigation was placed
into a beam of precessing neutrons. On the basis of the
Larmor-clock concept, we relate the detected phase

Fig. 6. Count rate vs. the rotation angle in the diffraction-
time experiment. Delay times measured at two points are
indicated by arrows.

0.03
shift to the delay time caused by the interaction time of
a neutron wave with the object. In both experiments, the
interaction time was found to be relatively long and was
on the order of 0.2 µs. This is the time during which a
neutron with a normal velocity component of several
meters per second is localized in the interaction area
with a size of about 10–5 cm. In the case of scattering
through the quasi-bound state, the interaction time is of
the same order as the state lifetime τr = "/Γ but is not
exactly equal to it. Here, Γ ≈ 4 × 10–9 eV is the reso-
nance width. In the diffraction experiment, the Bragg-
peak width is Γ ≈ 10–7 eV. This corresponds to the res-
onance time τr ≈ 7 × 10–9 s, which is one-twentieth of
the value measured in the experiment. However, this
result is not as paradoxical as it may appear, because
the quantity ∆t entering the uncertainty relation ∆E∆t ≥
" is the uncertainty in the knowledge of the exact
instant of collision and not of its duration (see, e.g.,
[24]).

We are grateful to V.E. Bunakov, V.G. Nosov,
B. Farago, and G. Kali for stimulating discussions. This
work was supported by the Russian Foundation for
Basic Research (project no. 01-02-17005) and by
INTAS (grant no. 00-00043).

REFERENCES
1. D. Bohm, Quantum Theory (Prentice-Hall, New York,

1951; Nauka, Moscow, 1965).
2. E. P. Wigner, Phys. Rev. 98, 145 (1955).
3. A. I. Baz’, Yad. Fiz. 4, 252 (1966) [Sov. J. Nucl. Phys. 4,

182 (1966)].
4. V. F. Rybachenko, Yad. Fiz. 5, 895 (1967) [Sov. J. Nucl.

Phys. 5, 635 (1967)].
5. E. H. Hauge and J. A. Stovneng, Rev. Mod. Phys. 61, 917

(1989).
6. R. Landauer and Th. Martin, Rev. Mod. Phys. 66, 217

(1994).
7. C. R. Leavens and G. C. Aers, Phys. Rev. B 40, 5387

(1989).
8. C. Bracher and M. Kleber, Ann. Physik (Leipzig) 4, 696

(1995).
9. J. P. Falck and E. H. Hauge, Phys. Rev. B 38, 3287

(1988).
10. P. Gueret, A. Baratoff, and E. Marclay, Europhys. Lett.

3, 367 (1987).
11. M. Deutsch and J. E. Golub, Phys. Rev. A 53, 434

(1996).
12. Ph. Balcou and L. Dutriaux, Phys. Rev. Lett. 78, 851

(1997).
13. Neutron Spin Echo, Ed. by F. Mezei (Springer-Verlag,

Heidelberg, 1980), Lecture Notes in Physics, Vol. 128.
14. M. Hino, N. Achiwa, S. Tasaki, et al., Physica B

(Amsterdam) 241–243, 1083 (1998).
15. M. Hino, N. Achiwa, S. Tasaki, et al., Phys. Rev. A 59,

2261 (1999).
16. M. Hino, N. Achiwa, S. Tasaki, et al., Phys. Rev. A 61,

013607 (2000).
JETP LETTERS      Vol. 75      No. 12      2002



MEASUREMENT OF THE NEUTRON INTERACTION TIME 609
17. P. Schleger, B. Alefeld, J. F. Barthelemey, et al., Physica
B (Amsterdam) 241–243, 164 (1998).

18. A. I. Frank, I. V. Bondarenko, A. V. Kozlov, et al., in Pro-
ceedings of the VIII International Seminar on Interac-
tions of Neutrons with Nuclei (ISINN-8), Dubna, 2000,
E3-2000-192, p. 215.

19. A. I. Frank, I. V. Bondarenko, A. V. Kozlov, et al.,
Physica B (Amsterdam) 297, 307 (2001).

20. A. Steyerl, W. Drexel, S. S. Malik, and E. Gutsmiedle,
Physica B (Amsterdam) 151, 36 (1988).

21. I. V. Bondarenko, V. I. Bodnarchuk, S. N. Balashov,
et al., Yad. Fiz. 62, 775 (1999) [Phys. At. Nucl. 62, 721
(1999)].
JETP LETTERS      Vol. 75      No. 12      2002
22. I. V. Bondarenko, A. I. Frank, S. N. Balashov, et al.,
Nucl. Instrum. Methods Phys. Res. A 440, 591 (2000).

23. V. G. Baryshevskiœ, Pis’ma Zh. Éksp. Teor. Fiz. 33, 78
(1981) [JETP Lett. 33, 74 (1981)].

24. A. I. Baz’, Ya. B. Zel’dovich, and A. M. Perelomov, Scat-
tering, Reactions, and Decays in Nonrelativistic Quan-
tum Mechanics (Nauka, Moscow, 1966; Israel Program
for Scientific Translations, Jerusalem, 1966).

Translated by R. Tyapaev



  

JETP Letters, Vol. 75, No. 12, 2002, pp. 610–616. From Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 75, No. 12, 2002, pp. 734–740.
Original English Text Copyright © 2002 by Gakh, Merenkov.
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The model-independent leading radiative corrections to polarization observables in semi-inclusive longitudi-
nally polarized electron–nucleus scattering with the registration of a produced hadron and scattered electron in
coincidence were calculated using the Drell–Yan representation in electrodynamics. The cases of a tensor-
polarized target or a produced hadron with tensor polarization were considered. The exclusive process of the
electrodisintegration of a polarized deuteron was also studied. © 2002 MAIK “Nauka/Interperiodica”.
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A e e B
1 1. Over the last few years, much of the activity in
QCD research has shifted from the determination of
quark distribution functions and cross sections in lead-
ing order to the study of more detailed questions. This
development was accompanied by an increased empha-
sis on semi-inclusive (SI) reactions [1]. As a result of
this interest, some proposals for studying these phe-
nomena have recently appeared. One of these is a new
ELFE project [2]. ELFE (Electron Laboratory For
Europe) is a project for developing a 15 to 30 GeV
high-luminosity continuous-beam electron accelerator
for scattering experiments from fixed nuclear targets.
The goal of this project is to explore the quark and
gluon structure of matter by exclusive and SI electron
scattering from nuclei. The availability of polarized
electron beam and targets is of particular importance
for the investigation of the internal spin structure of
hadrons, because the additional spin degrees of free-
dom allow one to isolate specific quark–gluon correla-
tors and other higher twist matrix elements [3].

Some problems of electron–deuteron interaction
can be investigated using tensor-polarized deuterons.
Tensor-polarized deuteron targets have been designed
in a number of laboratories. The polarization observ-
ables due to tensor polarization were measured in the
elastic ed scattering [4]. The asymmetry in the reaction

(e, np)e' with a tensor-polarized deuteron was mea-
sured at Novosibirsk [5].

The significance of the tensor-polarized target in
deep inelastic scattering (DIS) from the theoretical
point of view was considered in [6]. The tensor struc-
ture functions in a polarized pd Drell–Yan process were
investigated in [7].

Current experiments at modern accelerators reached
a new level of precision, and this circumstance requires

1  This article was submitted by the authors in English.
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a new approach to data analysis and the inclusion of all
possible systematic uncertainties. One important
source of such uncertainties is the electromagnetic radi-
ative effects caused by the physical processes which
take place in higher orders of perturbation theory with
respect to electromagnetic interaction. Earlier, we cal-
culated the radiative corrections (RC) to the polariza-
tion observables in a DIS process (due to the tensor-
polarized deuteron target) [8] and in an SI DIS process
(due to the vector-polarized target or detected hadron
with vector polarization) [9].2 

In this paper, we give a covariant description of the
polarization observables (due to the tensor polariza-
tion) in SI DIS of a longitudinally polarized electron
beam off the tensor-polarized target (or production of
tensor-polarized hadron)

, (1)

and we use the results obtained to calculate the model-
independent QED RC by means of the electron struc-
ture function method using Drell–Yan representation
[10] in electrodynamics.

We define the cross section for process (1), taking
into account RC, in terms of the leptonic Lµν and had-
ronic Hµν tensors contraction

(2)

where V = 2k1p1, ε2 (E2) is the energy of the scattered
electron (detected particle B), and q is the 4-momentum
of the virtual photon that probes the hadron block. Note
that only in the Born approximation (without taking
into account RC) q = k1 – k2. The hadronic tensor can be

2 Below, we will use notation I for [9].

e– k1( ) A p1( ) e– k2( ) B p2( ) X px( )+ + +

dσ α2

V 2π( )3
----------------

LµνHµν

2q4
-----------------

d3k2

ε2
----------

d3 p2

E2
-----------,=
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expressed via the hadron electromagnetic current Jµ of
the γ*A  BX transition (γ* is the virtual photon)

where px (Mx) is the total 4-momentum (invariant mass)
of the undetected hadron system.

By definition, the model-independent RC include
the electromagnetic corrections to the leptonic piece of
interaction only. Taking into account the leading contri-

bution (terms proportional to [α ln(Q2/ )]n in every
order n of the perturbation theory), the leptonic tensor
can be written in the standard form by means of the
Drell–Yan representation in electrodynamics. This rep-
resentation is defined by the double integral of the con-
traction of two electron-structure functions, which cor-
respond to the radiation of the collinear photons and
e+e– pairs by the initial and scattered electrons and the

Born leptonic tensor , which depends on the scaled
electron 4-momenta. For detail, see I, section 2.

Let us consider process (1) for the case of scattering
off a tensor-polarized target (for example, deuteron tar-
get). The part of the hadronic tensor, which depends on
the target quadrupole polarization tensor Qρσ, can be
written as

(3)

where gi (i = 1–23) are the hadron semi-inclusive struc-
ture functions, which depend in general on four invari-
ant variables. The set of these variables can be taken,
for example, as q2, (qp1), (qp2), and (p1p2).

Hµν p1 Jµ q( ) p2 X,〈 〉 X p2 Jν q–( ) p1,〈 〉
X

∑=

× δ px
2 Mx

2
–( ),

px q p1 p2,–+=

me
2

Lµν
B

Hµν HµνρσQρσ,=

Hµνρσ qρqσ g1g̃µν g2 p̃1µ p̃1ν g3 p̃2µ p̃2ν+ +[=

+ g4 p̃1 p̃2( )µν ig5 p̃1 p̃2[ ] µν+ ] p2ρ p2σ g6g̃µν[+

+ g7 p̃1µ p̃1ν g8 p̃2µ p̃2ν g9 p̃1 p̃2( )µν ig10 p̃1 p̃2[ ] µν+ + + ]

+ q p2( )ρσ g11g̃µν[ g12 p̃1µ p̃1ν g13 p̃2µ p̃2ν+ +

+ g14 p̃1 p̃2( )µν ig15 p̃1 p̃2[ ] µν+ ]

+ qN( )ρσ g16 p̃1N( )µν ig17 p̃1N[ ] µν g18 p̃2N( )µν+ +[

+ ig19 p̃2N[ ] µν ] p2N( )ρσ g20 p̃1N( )µν ig21 p̃1N[ ] µν+[+

+ g22 p̃2N( )µν ig23 p̃2N[ ] µν+ ] ,

Nµ eµνρσ p1ν p2ρqσ µ p1 p2q( ),= =

ab[ ] µν aµbν aνbµ, ab( )µν– aµbν aνbµ,+= =

g̃µν gµν
qµqν

q2
-----------, p̃iµ– piµ

q pi( )qµ

q2
------------------, i– 1 2,,= = =
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We use the normalization of the tensor Qρσ such that
the target spin-density matrix is defined as

(4)

where M (Wλ) is the target mass (polarization 4-vector).
The quadrupole polarization tensor satisfies conditions
Qρσ = Qσρ, Qρρ = Qρσ p1σ = 0.

In general, the traceless symmetrical tensor Qρσ has
five independent components and is usually repre-
sented in the form

(5)

Quantities Rαβ on the right-hand side of Eq. (5) are the
polarization degrees of the corresponding components

. In the case of a polarized target, these quantities
are specified by the procedure of the polarized-target
preparation and do not depend on the reaction mecha-
nism. On the contrary, the polarization characteristics
of the final particles are determined by the reaction
mechanism, and their measurement requires a second
scattering from another target [11].

As concerns components , they can be repre-
sented as independent bilinear combinations of three
mutually orthogonal 4-vectors, Pl (longitudinal), Pt

(transversal), and Pn (normal), such that (Pi)2 = –1,
Pip1 = 0, i = l, t, n, namely,

(6)

Due to the restriction on the spin-density matrix
Spρ2 ≤ (Spρ)2, the following inequality has to be satis-
fied (compare with [12])

(7)

In order to find the dependence of the cross section
on the target tensor polarization, one has to use expan-
sion (5) for Qρσ and then contract the hadronic and lep-
tonic tensors in Eq. (2). For a covariant description of
polarization phenomena with allowance for RC, it is
convenient to parametrize the 4-vectors Pi in terms of
the 4-momenta of particles participating in the process
under consideration.

The use of a polarized Born cross section depending
on the scaled electron 4-momenta under the integral in
the Drell–Yan representation leads to some problems. It
is clear that all components in expansion (5) are

ρρσ –
1
3
--- gρσ

p1ρ p1σ

M2
----------------– 

  i
2M
--------eρσλσWλ p1δ– Qρσ,+=

Qρσ Qρσ
αβRαβ Qρσ

ll Rll= =

+ Qρσ
tt nn– Rtt nn– Qρσ

lt Rlt Qρσ
ln Rln Qρσ

tn Rtn.+ + +

Qρσ
αβ

Qρσ
αβ

Qρσ
ll Pρ

l Pσ
l 1

2
--- Pρ

t Pσ
t Pρ

n Pσ
n+( ),–=

Qρσ
tt nn– 1

2
--- Pρ

t Pσ
t Pρ

n Pσ
n–( ),=

Qρσ
αβ Pρ

α Pσ
β Pρ

βPσ
α if α β .≠+=

–
W2

2
------- 3

2
---Rll

2 1
2
---Rtt nn–

2 2 Rlt
2 Rln

2 Rtn
2+ +( ) 2

3
---.≤+ + +
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attributes of the target only and cannot depend on radi-
ation by the initial and scattered electrons. On the other
hand, it may happen that in our theoretical calculations
the 4-vectors Pi in Eq. (6), which are expressed through
the 4-momenta, will change upon the scale transforma-

tion of the electron momenta: k1, 2  . Such a sit-

uation leads to the modification of , and we have to
find a solution in this case.

For physical reasons, one can choose two different
sets of 4-vectors Pi. For the first set (Pl, Pt, Pn), the lon-
gitudinal direction in the laboratory system is chosen
along the 3-momentum of the initial electron, the trans-
verse direction is in the plane (k1, k2), and the normal
direction is perpendicular to the electron scattering
plane. Note that the choice of two arbitrary vectors
from the set defines also the choice of the third one.
This set remains stabilized (not changed) under the
scale transformation of the electron momenta, and the
corresponding form of Pi is given by Eqs. (33) and (34)
in I. In this case, there is no problem applying the ordi-
nary Drell–Yan representation to the calculation of RC,
and we have

(8)

where the notation for the kinematic variables and lim-
its of integration is the same as in I. In the argument of
the cross section, we omit those momenta which are not
affected by the scale transformation. In accordance
with expansion (5), the Born cross section in the inte-
grand in the right-hand side of Eq. (8) reads

(9)

where

k̂1 2,

Qρσ
αβ

dσ k1 k2,( )
dΦ

-----------------------
x1 x2dd

x2
2

----------------D x1( )D x2( )
σB k̂1 k̂2,( )d

Φ̂d
--------------------------,∫∫=

dΦ dxdydzdz1dz2,=

dσB k1 k2,( )
dΦ

-------------------------- Z PllRll Ptt nn– Rtt nn– PltRlt+ +[=

+ PlnRln PtnRtn+ ] , Z
α2yV6

128π2 η Q4
----------------------------,=

Pll 3η 2τ1z1 z–( )R20 y 2a+( )R16–[ ]=

+
1

V2τ1

----------- y 2a+( )2 2ab–[ ] G1[

+ 6τ1z1 τ1z1 z–( ) 2τ1τ2 z2+ +[ ] G6

– 2 τ1z2 τ1z1 3a 3b– 2+( ) z y 3a+( )–+[ ] G11 ] ,

Plt
1

ab
---------- 2τ1z1 z–( ) 2

V2
------ η2G6 2xybG11+( )=

+ η y 2a+( )R20 y 2a+( ) 2

V2
------ η2G11 2xybG1+( )–
For the second set (PL, PT, PN = Pn), the longitudinal
(L) direction is chosen along the 3-momentum q of the
intermediate heavy photon in the laboratory system,
and the transverse direction is in the electron scattering
plane. The specific form of this set is defined by
Eq. (35) in I. Under the scale transformation of the
electron momenta, the 4-vectors PL and PT begin to
rotate in the electron scattering plane, because direction
q is unstable.

To compute RC in this case, one needs to express
these unstable 4-vectors through the stabilized ones Pl

and Pt. The relation between them is given by the
orthogonal matrix [see Eq. (36) in I]. The elements of
this matrix are not affected by the scale transformation,

--+ η y 2a+( )R16 2ητ 1 η2R20 2xybR16+( )+ ,

Ptt nn– η y 2a+( )R16
2

V2
------ xybG1 η2G11+( )+=

+
1

2xyb
------------ η η 2 y 2a+( ) η1+( )R20

η2
2 η2–

V2
-----------------G6+ ,

Pln
1–

ab
---------- 2τ1z1 z–( ) 2

V2
------ηG6 η1R20– 

 =

+ y 2a+( ) η1R16
2

V2
------ηG11– 

  2τ1η
2R20+ ,

Ptn 2η1R16
4

V2
------ηG11–=

–
τ1

ab
------ η2

2

V2
------ηG6 η1R20– 

  η2 y 2a+( )R20+ ,

Gi 2
xy
V
-----gi– bgi 1+ z1z2 τ2xy–( )gi 2++ +=

+ z2 1 y–( )z1 xyz–+[ ] gi 3+ λη gi 4+ ,–

Ri
η
2
--- 2 y–( )gi z1 z2+( )gi 2++[ ]=

+
λ
2
--- η1gi 1+ η3gi 3++( ),

a xyτ1, b 1 y– a,–= =

η1 y z2 z1 1 y–( )– xz 2 y–( ) 2xτ1 z1 z2+( )+–[ ] ,=

η2 z2 1 y–( )z1 xyz– 2bz1,–+=

η3 z1 z2–( ) z2 z1 1 y–( )–[ ]=

– xy 2τ2 2 y–( ) z z1 z2+( )–[ ] .
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and we derive the modified Drell–Yan representation,
which is a direct analog of Eq. (30) in [8],

(10)

where we use the upper index u to indicate that the tar-
get quadrupole polarization tensor is defined with
respect to the unstable directions, and the summation
over indices α and β is borne in mind. The principle
moment of this modified representation is the appear-
ance of the matrix Xαβ(k1, k2) ahead of the integral,
which depends on the nonscaled electron momenta.
The elements Xll, Xtt , and Xlt are the same as in Eq. (31)
in [8], and the remaining ones have the very simple
form

(11)

where RAB are the polarization degrees of correspond-
ing components of the tensor polarization defined with
respect to the directions L, T, and N.

The partial cross sections under the integral sign in
the right-hand side of Eq. (10) read

(12)

where the quantities Pαβ are given after Eq. (9).

To obtain the Born approximation for the cross sec-
tion on the left-hand side of Eq. (10), it is enough to
substitute the ordinary δ function instead of the elec-
tron-structure functions in the integrand, and such pro-
cedure leads to the following result

(13)

where

dσu k1 k2,( )
dΦ

------------------------- Xαβ k1 k2,( )=

×
x1 x2dd

x2
2

----------------D x1( )D x2( )
σB

αβ k̂1 k̂2,( )d

Φ̂d
----------------------------,∫∫

Xln θ1RLNcos θ1RTN ,sin–=

Xtn θ1RTNcos θ1RLN ,sin+=

θ1cos
y 1 2xτ1+( )
y y 4xτ1+( )

--------------------------------,=

dσB
αβ k1 k2,( )

dΦ
---------------------------- ZPαβ,=

dσB
u k1 k2,( )
dΦ

-------------------------- Z PLLRLL PTT NN– RTT NN–+[=

+ PLT RLT PLN RLN PTN RTN+ + ] ,

PLL
1

τ1V2
----------- yhG1 2G11 2τ1 z1 z2–( ) yz–( )–[=

+
G6

yh
------ 2τ1 z1 z2–( ) yz–( )2 τ1

2xb
--------- hη2 η1

2

y
-----+ 

 – 
  ,
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It is easy to verify that the straightforward calculation
based on the expansion of the tensor polarization by
means of the set (PL, PT, PN) gives the same answer.

Note that the Born cross section (13), when the ten-
sor polarization components are defined relative to
unstable (under scale transformation) directions, is
simpler compared to cross section (9), if these compo-
nents are defined with respect to stabilized ones. Allow-
ing for RC changes the situation radically. In the last
case, it is trivial because the RC does not mix different
components. By contrast, in the first case the radiation
of particles by electrons leads to a mixture of tensor-
polarization components due to the rotation of PL and
PT; therefore, the RC is more complicated.

2. Let us consider the tensor polarization of the
detected particle B in process (1) provided with an
unpolarized target A. In this case, all tensor-polariza-
tion degrees Rαβ are defined by the reaction mechanism
and can be measured in the second scattering (see, for
example, [11], where the elastic electron–deuteron
scattering with polarization transfer from electron to
scattered deuteron was investigated).

Hadronic tensor  corresponding to the given
polarization Rαβ can easily be constructed using tensor
Hµν defined by Eq. (3). In order to do this, it is enough
to change expressions Qρσp2ρp2σ, Qρσ(qp2)ρσ, and

Qρσ(p2N)ρσ in Hµν by , , and

(qp1)ρσ, respectively, where  is the component
of the final-particle quadrupole polarization tensor Vρσ

in expansion Vρσ = . This is an analog of the
respective expansion for the target quadrupole polariza-
tion tensor. Besides, one needs to use another notation
for the hadronic structure functions, gi  fi, i = 1–23,
because, in general, they are different.

PLT
1

h ab
------------- 2τ1 z1 z2–( ) yz–( )

2η1G6

yV2
--------------- hη R20+ 

 =

– yh
2η1G11

yV2
----------------- hη R16+ 

  ,

PTT NN–
1

2xybh
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η1
2

y
----- hη2– 

  G6

V2
------ 2hηη 1R20+ ,=

PLN
1

y τ1xbh
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2ηG11

V2
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 =

– 2τ1 z1 z2–( ) yz–( )
2ηG6

V2
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  ,

PTN
1

xb yh
---------------- 2ηη 1

G6

yV
2

--------- hη2 η1
2

y
-----– 

  R20+ .–=

Hµν
αβ

Vρσ
αβ p1ρ p1σ Vρσ

αβ q p1( )ρσ

Vρσ
αβ Vρσ

αβ

Vρσ
αβRαβ
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The given tensor polarization Rαβ of the particle B is,
by definition, the ratio of the partial cross section dσαβ,
which can be derived by contraction of the leptonic ten-

sor with , to the unpolarized cross section

(14)

In the approximation used, RC to the unpolarized cross
section is defined by Eq. (19) in I; therefore, our prob-
lem is the calculation of RC to the partial cross section.

By full analogy with Eq. (6), components  repre-
sent traceless independent bilinear combinations of
three mutually orthogonal 4-vectors Si, which satisfy
conditions (Si)2 = –1, Sip2 = 0, i = l, t, n. If we take the
longitudinal direction in the rest frame of the detected
hadron opposite to the direction of 3-momentum p1,
and if the transverse direction is in the plane (k1, p1) (or
in the plane (k1, p2) in the laboratory system), the set
(Sl, St, Sn) remains stabilized under the scale transfor-
mation of the electron momenta. The form of this set in
terms of the 4-momenta is defined by Eqs. (14) and (15)
in I, and the Drell–Yan representation of the partial
cross section in this case reads

(15)

Hµν
αβ

Rαβ dσαβ/dσ un( ).=

Vρσ
αβ

dσαβ k1 k2,( )
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----------------------------
x1d x2d
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2
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-----------------------Sαβ,=
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1

V2τ2
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+
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2V2d1
2
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τ2
---- z z1 z2–( ) 2yτ2–[ ] 2 η4

2 η2d1
2+
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2

-----------------------– ,
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1
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V2
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2F16+ 
 =

+ d1
2 2

V2
------η4H11 ηd1

2F20+ 
  ,

Stt nn–
1

2d2
2

-------- 2ηη 4F16

η4
2 η2d1

2–

V2d1
2

-----------------------H1+
 
 
 

,=

Sln
1

d1d2 τ2

-------------------- d1
2 2

V2
------ηH11 η4F20– 

 =

+ z z1 z2–( ) 2yτ2–[ ] 2

V2
------ηH1 η4F16– 

  ,

Stn
1

d1d2
2

---------- 2

V2
------ηη 4H1 η4

2 η2d1
2–( )F16– ,=
where SA is the target spin.
If the longitudinal direction is the same (L = l) but

the transversal one (T) is chosen in the plane (q, p1) in
the rest frame of the detected hadron (or in the plane (q,
p2) in the laboratory system), the new set (SL = Sl, ST,
SN) has become unstable under substitution k1, 2 

. It means physically that collinear radiation
changes the direction of q, and this leads to the rotation
of vectors ST and SN around the longitudinal direction,
which remains unchanged. The form of the 4-vectors ST

and SN is defined by Eq. (17) in I. In this case we will
use capital letters to label the tensor polarizations of the
detected hadron and the respective partial cross sec-
tions

(16)

To compute RC to the partial cross sections, one
needs, as before, to express ST and SN through stabi-
lized 4-vectors St and Sn. The relation between these
4-vectors is given by the orthogonal matrix [see Eq. (18)
in I]. Then, it is necessary to find matrix Y which relates

unstable  and stabilized  components of the
quadrupole polarization tensor to each other,

(17)

The nonzero elements of the matrix Y are

(18)

The Drell–Yan representation for the partial cross
sections has the modified form

(19)

Hi Gi gk f k( ), Fi Ri gk f k( ),= =

d1
2 z2 4τ1τ2, d2

2– zz1 τ2– z1
2τ1,–= =

η4 2yτ2 z z1 z2–( )– xy z2 4τ1τ2–( )–=

+ z1 2τ1 z1 z2–( ) yz–[ ] ,

k̂1 2,
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Vρσ
AB Vρσ

αβ

Vρσ
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ABVρσ
αβ.=

Yll
LL 1, Ylt

LT Yln
LN θ,cos= = =

Ylt
LN Yln

LT– θ,sin= =

Ytn
TN Ytt nn–

TT NN– 2θ,cos= =

Ytt nn–
TN 4Ytn

TT NN–– 2 2θ,sin= =

θcos
η4

2d2d3
--------------,–=

d3
2 zy z1 z2–( ) xyd1

2 z1 z2–( )2τ1– y2τ2.–+=

dσAB k1 k2,( )
dΦ

----------------------------- Yαβ
AB k1 k2,( )=

×
x1 x2dd

x2
2
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σB

αβ k̂1 k̂2,( )d

Φ̂d
----------------------------,∫∫
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where the elements of the matrix Y depend on the non-
scaled electron momenta, and the Born cross sections
under the integral are defined by Eqs. (15).

To obtain the Born form of the partial cross sections
on the left-hand side of Eq. (19), one can use δ function
instead of D functions under the integral sign. Such a
procedure gives

(20)

As in the case of the polarized target, the partial Born
cross sections for unstable directions are simpler, but
allowing for RC takes away the whole simplicity.

3. Consider now the special case of reaction (1),
namely, the disintegration of polarized deuterons by
longitudinally polarized electrons for an exclusive
setup. In this case, the outgoing proton is detected in
coincidence with the scattered electron, and the lost
invariant mass is smaller than m + mπ; therefore, the
undetected hadronic state X consists only of a neutron.

Theoretically, the problems of polarization phenom-

ena caused by a tensor-polarized target in ( , e'p)n
reactions were investigated in a number of papers. For
detail, see review [13]. The experimental study of
polarized exclusive deuteron disintegration is planned
at future upgraded version of CEBAF at Jefferson Lab-
oratory [14]. This will provide a test for the basic prin-
ciples of our understanding of the electrodisintegration
dynamics. Progress in constructing tensor-polarized
deuteron targets will make it feasible to study reactions
at sufficiently large Q2. In this case, a direct separation
of S- and D-wave contributions is possible, which is
important for the understanding of short-distance NN
interactions [15].

Our aim is to show how to calculate the model-inde-
pendent RC for the process considered here. It is obvi-
ous that we have to use standard or modified Drell–Yan
representation [like Eq. (8) or (10) for a semi-inclusive
DIS process]. So, knowledge of the respective partial
Born cross sections in terms of used invariant variables
is necessary. One can derive them using the δ function
in the definition of the hadronic tensor Hµν to remove
the integration with respect to z2 in Eq. (12). Therefore,
for the exclusive partial cross sections, we can use
Eq. (12) with substitution dΦ  dxdydzdz1 in the left-

dσB
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dΦ
------------ k1 k2,( )

Z
2SA 1+
------------------SAB,=

SLL Sll,=

SLT

4d3

V2d1
2 τ2

--------------------- z z1 z2–( ) 2yτ2–( )H1 d1
2H11+[ ] ,–=

SLN

2d3

d1 τ2

-------------- z z1 z2–( ) 2yτ2–( )F16 d1
2F20+[ ] ,=

STT NN–

2d3
2

d1
2V2

-----------H1, STN 4
d3

2

d1
-----F16.–= =

d e
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hand side and gi  hi /V, z2  z1 + z – y(1 – x) – τ1
in the right-hand side, where hi are structure functions
of the deuteron electrodisintegration.

On the other hand, in the literature special kinematic
variables are used. They are suitable for separation of
the contributions into cross section caused by the longi-
tudinal and transverse polarizations (and their interfer-
ence) of the intermediate heavy photon. These are the
energy ε2 and the polar angle θ2 of the scattered electron
in the laboratory system [with the z axis along q and the
x axis in plane (q, p2)], the angle φ between the electron
scattering plane and plane (q, p2), and the proton scat-
tering angle θ in c.m.s. of the reaction γ* + d  p + n.
In terms of these variables, the Born cross section looks
as follows:

(21)

where θe and qL are the scattering angle of the electron
and virtual-photon 3-momentum in laboratory system,
W is the total invariant energy of system p–n, q0 and p2
are the virtual-photon energy and 3-momentum of the
detected proton in c.m.s., and λ is the degree of the lon-
gitudinal polarization of the electron beam. The quan-
tity ε represents the degree of the virtual-photon linear
polarization. This formula is obtained in the one-pho-
ton-exchange approximation using the conservation of
the electromagnetic current describing the γ*d  pn
transition and P invariance of the hadron electromag-
netic interaction.

The hadronic tensor hµν can be derived from Hµν by
the rule

(22)

and its components have to be written in c.m.s.
To use the Drell–Yan representation, we have to

express all variables and quantities in both sides of

dσ
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------------------------------------------------ F hxx hyy+ -=
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------------–

× φ hxz hzx+( ) φ hyz hzy+( )sin+cos[ ]

– iλ 1 ε2–( ) hxy hyx–( ) iλ 2ε 1 ε–( ) q2–
q0

------------–

--× φ hyz hzy–( ) φ hxz hzx–( )sin–cos[ ] ,

F
α2

32π2
-----------

ε2

ε1
----

p2

MW
---------- 1 ε–( ) 1–

q2–( )
--------------------, ε 1– 1 2

qL
2

q2
-----

θe

2
----- 

 tan
2

,–= =

Hµν
1
V
---hµνδ z2 z1– z– y 1 x–( ) τ1+ +( ),

gi hi,



616 GAKH, MERENKOV
Eq. (21) through invariant variables. The corresponding
formulas read

and the azimuthal angle φ can be obtained from the
equation

The components of the hadronic tensor on the right-
hand side of Eq. (21) can easily be written taking into
account that in c.m.s.

Fdε2d θ2dφd θcoscos
α2

32π2
-----------=

×
1 1 y–( )2 2xyτ1+ +[ ] 1 2xτ1+( )
xyV η y 4xτ1+( )2 y y 4xτ1+( )
-------------------------------------------------------------------------------dxdydzdz1,

W V τ1 y xy–+( ),=

p2
1
2
--- V τ1 4τ2– y xy–+( ),=

q2 Vy y 4xτ1+( )
4 τ1 y xy–+( )
---------------------------------,=

q2 xyV , q0–
1 2x–

2
--------------- V y2

τ1 y 1 x–( )+
-----------------------------,= =

ε
2 1 y– xyτ1–( )

1 1 y–( )2 2xyτ1+ +
------------------------------------------------,=

θcos
2z y– 2τ1–

τ1 4τ2– y 1 x–( )+
-----------------------------------------------

τ1 y 1 x–( )+
y y 4xτ1+( )
------------------------------,=

θ2cos
y 1 y– 2xτ1–( )

1 y–( ) y y 4xτ1+( )
-------------------------------------------------,=

φsin
η

θsin
-----------–=

× 1

xy 1 y– xyτ1–( ) τ1 4τ2– y xy–+( )
----------------------------------------------------------------------------------------.

qz p1z– q , p2z p2 θ,cos= = =
and all other components of the corresponding 3-vec-
tors are zeros.
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The equation generalizing the nonlinear Schrödinger equation to the case of pulses with a duration of few field
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The development of laser technique, optoelectron-
ics, and semiconductor technology have culminated in
the design of systems generating electromagnetic
pulses with a duration of few oscillation periods (see [1,
2] and bibliography therein). A new theoretical prob-
lem therefore arises of studying the propagation of an
ultrashort electromagnetic pulse and its interaction with
substance. The situation where the approximation of a
slowly varying wave amplitude becomes inappropriate
also occurs in the case of nonlinear processes leading to
a noticeable broadening of the temporal spectrum.

The following equation is one of the simplest gener-
alizations of the linear and nonlinear Schrödinger equa-
tions (NSE) used for studying the spatiotemporal evo-
lution of ultrashort electromagnetic pulses [3–6]:

(1)

This equation describes the reflectionless propaga-
tion of the wave field u(z, τ = z – v gr t, r) along the z axis
with group velocity v gr; r is the vector perpendicular to
the z axis. The quantity α is determined by the low-fre-
quency dispersion of the medium. The scale invariance
of the original equation allows it to be represented in
the form of Eq. (1). The dimensionless coordinates z, r,
and “time” τ are scaled to the corresponding nonlinear
characteristics (spatial and temporal) of the problem.
The dimensionless field u(r, z, τ) is normalized to the
characteristic nonlinear field. In particular, this equa-
tion is used for studying the self-action of a relativisti-
cally strong laser radiation in rarefied plasmas [6]
(ωp/ω0 ! 1, where ωp is the plasma frequency and ω0 is
the wave frequency). In this case, the dispersion param-
eter α < 0 is determined by the plasma density.

∂2u
∂z∂τ
----------- ∆⊥ u αu– u 2u+ + 0.=
0021-3640/02/7512- $22.00 © 20617
For the envelope ψ(z, τ, r) of the wave field u =
ψ(z, τ, r)expiωτ, one can easily obtain the following
equation from Eq. (1):

(2)

In the approximation of a long (on the wavelength scale
2π/ω) quasi-monochromatic pulse, the second term in
this equation is small compared to the first one
(∂2ψ/∂z∂τ ! ω(∂ψ/∂z)), and it is ordinarily ignored.
One can see that the evolution of such a “long” pulse is
described by the NSE.

As the pulse duration shortens, new effects arise in
the course of wave propagation along the path. They
can be explained as follows. Let us transform the sec-
ond term in Eq. (2) using the perturbation method. In
the first approximation, which corresponds to the NSE,
one has ψz = i(∆⊥ ψ + |ψ|2ψ)/ω. This allows the addi-
tional term in Eq. (2) to be written as

(3)

The first term in Eq. (3) accounts for the “nonstation-
ary” wave diffraction. In vacuum, it determines the
Goya effect [7]; the transformation of the spectrum of
spatially limited field distribution [8] gives rise to the
diffraction precursor [3, 5] and the horseshoe-shaped
spatial wave structure [5, 9]. The structural changes of
pulse shape caused by the dependence of the wave-
packet group velocity on the field amplitude [the sec-
ond term in Eq. (3)] were mainly studied for one-
dimensional systems (capillary and optical fibers; see,
e.g., [10, 11]).

In this work, the spatiotemporal evolution of the
finite-duration wave fields are considered on the basis
of Eq. (1) and equivalent Eq. (2). We will first obtain
some analytic relations and use them to qualitatively

iω∂ψ
∂z
------- ∂2ψ

∂z∂τ
----------- ∆⊥ ψ αψ– ψ 2ψ+ + + 0.=

ψzτ i ∆⊥ ψτ ψ 2ψτ+( )/ω.=
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analyze the characteristic features of the dynamics of
spatially limited wave fields, and then present the
results of the numerical study of Eqs. (1) and (2).

1. We use the moments method to qualitatively
study the self-action dynamics of ultrashort pulses [12].
Note first that the parameters

(4)

generalizing the well-known NSE expressions (I is the
“energy” or the “number of quanta,” H is the Hamilto-
nian, and P is the “momentum” or energy flux) are con-
served on the pulse propagation path.

Next, using the continuity equation

(5)

one can easily derive the following relations for the

moments of the form In, m =  (m and n

are integers). For the first-order moments  =

 and  describing the

behavior of the wave-field centroid, one has

(6)

It follows that the wave-field centroid moves along the
straight line determined by the initial conditions (e.g.,
at z = 0). For the axisymmetric wave packet (P = 0), the
centroid moves along the z axis. Depending on the sign
of Hamiltonian H, the wave- packet group velocity can
be both higher (H < 0) and lower (H > 0) than the pulse
velocity in a linear medium. The center-of-mass shift to
the leading (H < 0) or trailing (H > 0) pulse edge results
in an appropriately convex (concave) horseshoe-shaped
wave-field structure on the pulse propagation path.

The behavior of the squared characteristic wave-

field duration  =  reflects

another specific feature of the problem. From Eqs. (1)
and (5), one finds

(7)

where the notation qτ = u and pτ = |u|2u – αu is intro-
duced.

I uτ
2 τd r⊥ ,d∫=

H ∇ ⊥ u 2 α u 2 u 4/2–+( ) τd r⊥ ,d∫=

P uτ*∇ u uτ ∇ u∗+( ) τd r⊥ ,d∫=

z∂
∂

uτ
2 div uτ*∇ ⊥ u uτ ∇ ⊥ u∗+( )–=

+ τ∂
∂ ∇ ⊥ u 2 u 4/2– α u 2+( ),

τnr⊥
m uτ

2 τd r⊥d∫
τ

τ uτ
2 τd r⊥d∫ r⊥ r⊥ uτ

2 τd r⊥d∫=

∂τ
∂z
----- H ,

∂r⊥

∂z
--------– P.= =

τ τ–( )2 τ τ–( )2 uτ
2 τd r⊥d∫

d2 τ τ–( )2

dz2
----------------------- 4 ∆⊥ q p+ 2[∫=

– 2α ∇ ⊥ q 2 ∇ ⊥ u 2–( ) ]dτdr⊥ 2αH ,–
The right-hand side of Eq. (7) is written in a form
suitable for obtaining the results associated with its
positive definiteness. In the linear case (|u|  0 and
H > 0), an obvious conclusion can be drawn from
Eq. (7) that the wave packet spreads in the longitudinal
direction. It is important that this result holds in the
absence of dispersion (α = 0), irrespective of the
Hamiltonian sign. In a more general case (α ≠ 0), this
conclusion is not quite clear. However, for the pulses of
duration exceeding several field periods (|∇ ⊥ u| > |∇ ⊥ q|)
and, hence, for H < 0, α > 0, one again arrives at the
conclusion that the wave-packet spreads during the
course of system evolution.

Finally, as in the case of NSE, the following relation

can be obtained for the effective wave-field width  =

:

(8)

Thus, in the case of negative Hamiltonian (H < 0 and
α ≥ 0), the wave packet “collapses” in the transverse
direction at a certain finite z that is determined from the
initial field distribution and the value of Hamiltonian H.
Contrary to the analogous NSE process, field singular-
ity on the axis forms despite the pulse longitudinal
spreading, which leads to a decrease in the linear value
of the Hamiltonian.

For the axisymmetric wave packet and α = 0, from
Eqs. (6) and (8) one can obtain the expression

(9)

which relates the effective scales of  and  to each

other during the process of system evolution (  is the
characteristic transverse scale of field at z = 0). This
relation is a consequence of the formation of the horse-
shoe-shaped wave-packet structure. Formally, it has the
same form as in the linear case. In the nonlinear case
and H < 0, Eqs. (9) and (6) can be used to estimate, e.g.,
the distance

(10)

at which the wave-packet centroid shifts during the col-
lapse.

2. Let us now discuss the results of the numerical
integration of Eq. (1) in the axisymmetric case. The ini-
tial wave-field distribution was taken in the form of a
Gaussian envelope with the carrier frequency ω0:

(11)

The integration results were controlled using integrals (4).

r⊥
2

r⊥
2 uτ

2 τd r⊥d∫
d2r⊥

2

dz2
---------- 8H 16α u 2 τd r⊥ .d∫–=

r⊥
2 4zτ– r0

2,=

r0
2 τ

r0
2

τ0 H r0
2/2=

u u0
ρ2

2a2
-------- τ2

2τ0
2

--------+–
 
 
 

iω0τ .expexp=
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For a positive value of the Hamiltonian, the wave-
field evolution proceeds qualitatively as in the linear
case (in vacuum) [2, 5, 8]. The wave field spreads in the
transverse direction. The pulse duration increases. The
centroid shifts to the back boundary of the computa-
tional interval, in compliance with Eq. (6). As a result,
the characteristic horseshoe-shaped structure is formed.

Let us consider the case of negative Hamiltonian
(H < 0) in more detail. Using Eq. (10), one can easily
see that the structural changes of shape (11) on the
propagation path can be disregarded for α = 0 if

. (12)

Under these conditions, the collapse takes on a local
character (Fig. 1). The central part of the pulse has the
maximal linear power and collapses first, after which
the lateral parts are involved in this process. The periph-
eral parts (the regions near the leading and trailing

τ0 H a2/2>

Fig. 1. Amplitude distribution map of (b) quasi-monochro-
matic (∆ω/ω0 = 10–3) and (a) short (∆ω/ω0 = 0.05) pulses
during the collapse at ω0z = 24.4.
JETP LETTERS      Vol. 75      No. 12      2002
edges) spread, because the linear power in these regions
is lower than its critical value. As a result, the wave-
field contour lines form the characteristic symmetric
butterfly structure (Fig. 1a).

As the pulse duration decreases, the centroid shifts,
and this is accompanied by a steepening of the pulse
leading edge. The symmetry of the pattern breaks
down. The collapse process is slightly accelerated. For
the amplitudes considered, these effects become deci-
sive at the spectral width ∆ω/ω ≥ 0.01. The correspond-
ing wave-field evolution is shown in Fig. 1b. Note that
the low-frequency dispersion does not stabilize the pro-
cess of breaking the leading edge.

The above-mentioned self-compression of the pulse
central part followed by the steepening of the leading
edge should, evidently, be accompanied by a modifica-
tion of the wave-field spectrum. Figure 2 shows the
pulse spectrum on the axis of the system (ρ = 0) during
the collapse process at ω0z = 24.4. One can see that the
self-action dynamics in the generalized NSE approach
gives rise to a doublet in the wave-field spectrum. A
more detailed study indicates that the spectrum of a
quasi-monochromatic pulse virtually does not broaden
during the collapse, so the formation of a doublet is the
main effect in this case. For shorter initial pulses
(∆ω/ω > 0.01), the wave-front broadening leads to an
additional noticeable broadening of the spectrum. As
the pulse duration shortens, the numerical computation
of field evolution along z is limited by the accumulation
of spectral harmonics near ω = 0 and by breaking the
integral relations (4).

To interpret the doublet formation in the spectrum,
we note that the corresponding effect of spectrum mod-
ification in the focal region was discussed in [8] for the
linear regime on the basis of the equations of type (2).
It was demonstrated that the pulse central frequency
decreases ahead of the focus and increases after passing
it; the doublet appears for the “rays” perpendicular to
the axis of the system, and this fact dominates its evo-
lution dynamics. It is conceivable that, due to this fact,

Fig. 2. (solid line; left axis) Spectrum of a short pulse
(∆ω/ω0 = 0.05) and (broken line; right axis) frequency
dependence of the wave-field phase ϕ during the collapse at
ω0z = 24.4. Dotted line is the initial spectrum.
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the doublet formation in the nonlinear regime predom-
inates over the spectrum (up- or downfrequency) shift.

Thus, within the framework of the generalized NSE
(1), wave-field collapse in a nonlinear medium is
accompanied by a noticeable shortening of pulse dura-
tion (more than seven times at the halfwidth). This pro-
cess provides a new method for creating intense
ultrashort pulses with a duration of few field oscilla-
tions.

The following way can be suggested for further
shortening the pulse duration. The frequency depen-
dence of the wave-field phase ϕ in the spectrum of a
pulse passed through a nonlinear medium has the form
shown in Fig. 2. Then, using a linear quadratic phase
corrector of the type used in the scheme of femtosecond
pulse generation, one can compress the output pulse. As
a result, the leading-edge steepening can be “con-
verted” into the shortening of pulse duration. In this
case, the field distribution in the central part becomes
quasi-Gaussian (Fig. 3). Our calculations based on the

Fig. 3. Amplitude distribution map of the short pulse
(∆ω/ω0 = 0.05) after its compression by a quadratic phase
corrector.
appropriate approximation of the dependence in Fig. 2
for the field-maximum region showed that the pulse
duration can additionally be decreased by a factor of 2
(cf. Figs. 1b and 3).

One more possibility is associated with the use of
such pulses as an exciting pulse in the scheme of
inverse Raman scattering in plasmas [13] with the
object of its shortening and amplification.

We are grateful to A.A. Solodov for useful discus-
sions. This work was supported by the Russian Founda-
tion for Basic Research, project no. 02-02-17277.
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The possibility of generating an extremely short (without high-frequency filling) pulse of an extraordinary wave
in a uniaxial crystal by means of nonlinear interaction with a quasi-monochromatic ordinary wave in the regime
of Zakharov–Benney resonance is discussed. It is shown that the appropriate conditions can be created in crys-
tals with positive birefringence, and stable extremely short extraordinary solitons can be created in the spectral
range of normal dispersion at the threshold intensity of input pulse on the order of 1013–1014 W/cm2. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Re; 42.65.Tg
In recent years, considerable interest has been
shown in the problem of the interaction between
extremely short pulses (ESPs) or video pulses and sub-
stance [1]. Such pulses carry one (or even a half) period
of electromagnetic oscillations, and the character of
their interaction with substance may be essentially dif-
ferent from that in the case of quasi-monochromatic
pulses with a well-defined carrier frequency [2].
Among other things, the generation of ESPs is a topical
problem because of their possible use in information-
optical systems: with shortening pulse duration τp, the
potential transmission capacity of such systems
increases. At present, the τp values for ESP vary in the
range from hundreds and tens of femtoseconds [3, 4] to
a few [5] femtoseconds. The possibility of generating
attosecond pulses is also under discussion [1, 5]. The
mechanisms based on Cherenkov radiation in a qua-
dratically nonlinear medium [3], mode locking [6],
compression of phase-modulated signals in dispersive
media [4], continuous energy transfer from the input
quasi-monochromatic pulse to the Stokes component as
a result of stimulated Raman scattering [7–9], etc. have
been proposed and implemented [1].

In this work, the possibility of ESP generation
through nonlinear intermode interactions in uniaxial
crystals is considered.

Let a quasi-monochromatic pulse with carrier fre-
quency ω lying in the transparent range of the crystal
(ω ! ω0, where ω0 is the characteristic optical reso-
nance frequency at which the absorption occurs) be
incident on the crystal along the z direction perpendic-
ular to the crystal optical axis y. The polarization plane
of the incident pulse is normal to the principal plane,
i.e., to the (y, z) plane, and is parallel to the x axis.
Hence, the incident pulse is polarized in the plane of the
ordinary wave. For this propagation geometry, the wave
0021-3640/02/7512- $22.00 © 20621
normals and rays are codirected, as a result of which the
longitudinal wave component is absent [10] and only
the ordinary Eo and extraordinary Ee pulse electric-field
components associated with the corresponding Po and
Pe polarization components are involved in the dynam-
ics.

In the low-frequency transparent region, the nonlin-
earity and dispersion can be taken into account addi-
tively in the polarization expansion in powers of the
field and its derivatives [1, 11]. Then,

(1)

(2)

where χo =  and χe = are the tensor components

of low-frequency susceptibility, χeo =  =  =

 and χee =  are the nonzero tensor components
of quadratic low-frequency susceptibility (the term
“low-frequency” should be understood in the sense that
ω = 0 is formally set in the corresponding expressions
[11, 12]), and κo, e = 0.5(∂2χo, e/∂ω2)ω = 0 are the coeffi-
cients allowing for the dispersion of electron response;
κo, e > 0, because the electronic dispersion in the equi-
librium medium is positive.

Note that the symmetry properties of a uniaxial
medium, i.e., invariance about the inversion of coordi-
nates transverse to the optical axis (then Po  –Po and
Eo  –Eo) and its absence for the inversion about the
longitudinal coordinates (Pe  –Pe and Ee  –Ee),
are taken into account in Eqs. (1) and (2).

By substituting Eqs. (1) and (2) into the right-hand
sides of the corresponding Maxwell wave equations,
applying the approximation of unidirectional propaga-

Po χoEo 2χeoEeEo κ0∂
2Eo/∂t2,–+=

Pe χeEe χeoEo
2 χeeEe

2 κ e∂
2Ee/∂t2,–+ +=

χxx
1( ) χyy

1( )

χxxy
2( ) χxyx

2( )

χyxx
2( ) χyyy

2( )
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tion along the z axis [2, 11, 12], and taking into account
that |χe – χo| ! χe, χo, one obtains

(3)

(4)

Here, c is the speed of light in vacuum; no, e =

 are the ordinary and extraordinary refrac-
tive indices, respectively; a = 4πχeo/noc; b = 4πχee/noc;
∆⊥  is the transverse Laplacian; and δo, e = 2πκo, e/noc.

Note that the approximation of slowly varying enve-
lope (SVE) [4] was not used for the moment, and
Eqs. (3) and (4) contain the field strengths rather than
their envelopes. However, it is straightforward to show
that, in the SVE approximation, the system of Eqs. (3)
and (4) transforms to the well-known system describing
the second harmonic generation (SHG) [4] (in this case,
the fundamental harmonic belongs to the ordinary com-
ponent).

The energy transfer from the fundamental to second
harmonic is most efficient if the phase- and group-
matching conditions are fulfilled (the phase and group
velocities should be the same for both frequencies) [4].
In our case, these conditions can be written, respec-
tively, in the form

(5)

It follows from Eqs. (5) that both conditions cannot be
satisfied in the collinear regime. In the stationary (con-
tinuous) regime, there is only the phase-matching con-
dition, which is expressed by the first relation in
Eqs. (5). Because the positive values of δo and δe usu-
ally differ only slightly from one another, the stationary
collinear SHG regime can be implemented in a uniaxial
crystal with negative birefringence (no > ne).

Apart from the SHG, the system of Eqs. (4) and (5)
can describe the regime of energy transfer from a high-
frequency ordinary component to the fundamental har-
monic of extraordinary component (optical detection).
This can be demonstrated by representing Eo in the
form

(6)

where ξ is the slowly varying envelope and ko is the
wavenumber of the ordinary wave. We also assume that

∂E0

∂z
---------

no

c
-----

∂E0

∂t
--------- a

t∂
∂

EeEo( )+ +

– δo

∂3Eo

∂t3
----------- c

2no

--------∆⊥ Eo t',d

∞–

t

∫=

∂Ee

∂z
---------

ne

c
----

∂Ee

∂t
--------- aEo

∂Eo

∂t
--------- bEe

∂Ee

∂t
---------+ + +

– δe

∂3Ee

∂t3
----------- c

2no

--------∆⊥ Ee t'.d

∞–

t

∫=

1 4πχo e,+

no ne–( )/c ω2 4δe δo–( ),=

no ne–( )/c 3ω2 4δe δo–( ).=

Eo ξe
i ωt koz–( )

c.c.,+=
Ee has no carrier frequency. By inserting Eq. (6) into
Eqs. (3) and (4), neglecting the fast oscillating terms,
and taking into account that |∂ξ/∂t | ! ωξ, one arrives at
the following system of equations describing the inter-
action between Ee and ξ in the regime of Zakharov–
Benney resonance (ZBR):

(7)

(8)

where g = 3δ0ω, τ = t – z/v g, and the group velocity v g

of the ordinary component is given by the expression
1/v g = dko/dω = no/c + 3δoω2.

In Eq. (8), the ZBR condition is taken into account,
according to which the group velocity of the short-
wavelength (ordinary) wave is equal to the phase veloc-
ity of the long-wavelength (extraordinary) component
[13]; i.e., v g = c/ne. In our case, this can be rewritten as

(9)

If the diffraction is neglected (∆⊥  = 0), Eqs. (7) and (8)
transform to the system studied in [14]. If, in addition,
the intrinsic nonlinearity and dispersion of the extraor-
dinary component are also neglected (b = δe = 0),
Eqs. (7) and (8) transform to the integrable Yadjima–
Oikawa system [15], i.e., to the unidirectional variant of
the Zakharov system [16]. The corresponding single-
soliton two-parametric solution in the laboratory frame
of coordinates has the form

(10)

where ξm = (6δo/aτp) ; Eem = 6δo/a ; q = Ω/v  +

g(Ω2 + ); the velocity v  is given by the expression
1/v  = 1/v g – 2gΩ; and the parameter Ω has a meaning
of the nonlinear redshift of the short-wavelength com-
ponent, because Ω > 0 [see expression for ξm and
Eqs. (6) and (10)].

The ordinary component is an envelope soliton,
whereas the extraordinary component is a video soli-
ton. One can see from Eqs. (7) and (8) that, if Ee = 0 at
the input of the crystal, then the ordinary envelope
pulse can produce an extraordinary video pulse inside
the medium. In this case, every ordinary photon under-
goes redshift, because it gives up a portion of its energy

i
∂ξ
∂z
------ g

∂2ξ
∂τ2
--------+ ωaEeξ

c
2noω
------------∆⊥ ξ ,+=

∂Ee

∂z
--------- bEe

∂Ee

∂τ
--------- δe

∂3Ee

∂τ3
-----------–+

=  a τ∂
∂ ξ 2( )–

c
2no

--------∆⊥ Ee τ',d

∞–

τ

∫+

ne no–( )/c 3δoω
2.=

ξ ξ me i Ωt qz–( )– t z/v–
τ p

---------------- 
  ,sech=

Ee Eem
t z/v–

τ p

---------------- 
  ,sech

2
–=

ωΩ τ p
2

τ p
2–
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to the extraordinary wave. This explains the nonlinear
shift ω  ω – Ω. Due to the positive sign of electronic
dispersion, the group velocity of the ordinary compo-
nent (along with that of the extraordinary one) is posi-
tively shifted, 1/vg = no/c + 3δoω2  no/c + 3δo(ω –
Ω)2 ≈ no/c + 3δoω2 – 6δoωΩ = 1/v g – 2gΩ . This expres-
sion coincides with the expression for 1/v  given above.

The intrinsic nonlinearity and dispersion of the
extraordinary component are the effects of the same
order of smallness. For this reason, they can be ignored

if [see Eq. (8)] b  ! a . Substituting the expres-
sions for Eem and ξm in this inequality, one obtains ωτp-

Ωτp @ b/a = χee/χeo. Assuming that χee and χeo are of the
same order of magnitude, one has (Eem/ξm)2 ! 1 (i.e.,
the intensity of the extraordinary component is rela-
tively low). Since the ordinary component is quasi-
monochromatic, one has ωτp @ 1. Then, the condition
under discussion can rather easily be satisfied over a
broad range of parameters Ω and τp.

On further propagation, the ordinary component
can be removed, e.g., by a polaroid plate cut into the
sample parallel to its optical axis. Then, the dynamics
of the remaining extraordinary component, according
to Eq. (8), will obey the Korteweg–de Vries equation,
for which the Ee pulse of form (10) can play the role of
input signal. From this point on, the evolution will be
determined by the relations between the parameters of
this signal and the coefficients b and δe, but either one or
several video solitons will necessarily be produced [13].

From the experimental point of view, the stability of
solution (10) to the self-focusing is an important prob-
lem. We will use the averaged Lagrangian method to
examine this issue [17]. Since the solution (10) is
obtained for b = δe = 0, we will consider the stability
problem under the same conditions. In this case, the
system of Eqs. (7) and (8) can be obtained from the
Lagrangian density

(11)

where the function U is related to Ee by the expression
Ee = ∂U/∂τ.

Let us take expressions (10) with substitution
1/τp  R(z, r⊥ ), ξm  A(z, r⊥ ), Eem  –B(z,
r⊥ )R(z, r⊥ ), and qz  –ωnoΦ(z, r⊥ )/c, where A, B, and
R are “slow” functions and Φ is “fast” function of the
longitudinal and transverse r⊥  coordinates, as a trial
solution. Substituting this solution in Eq. (11) and
retaining only the derivatives for fast variables [17], one

Eem
2 ξm

2

L
i

2ω
------- ξ∂ξ∗

∂z
--------- ξ∗ ∂ξ

∂z
------– 

  3δo
∂ξ
∂τ
------

2 c

2noω
2

--------------- ∇ ⊥ ξ 2–+=

+
1
2
---∂U

∂z
-------∂U

∂τ
------- c

2n0
-------- ∇ ⊥ U( )2– a ξ 2∂U

∂τ
-------,+
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obtains the following average Lagrangian after the inte-
gration over τ:

Variation of this Lagrangian with respect to A, B, R, and
Φ leads to the system of equations of ideal fluid dynam-
ics on a plane (continuity equation and Cauchy inte-
gral):

(12)

where the coordinate z plays the role of time, V⊥  = ∇ ⊥ Φ,
and the “pressure” p is related to the “density” ρ = A2/R
by the “equation of state”

(13)

The expressions for A and B are: A = 6δoR /a and
B = –6δoR/a. In the one-dimensional case (∇ ⊥  = 0), one
obtains R = 1/τp = const, and the trial solutions trans-
form to Eq. (10).

Evidently, the stability of solution (10) is equivalent
to the stability of ideal flow of type (12) and (13):
dp/dρ > 0. It follows from Eq. (13) that this condition is
fulfilled, because the dispersion of electron response is
positive (δo > 0).

The ZBR mechanism of video pulse generation is
closely similar to the Cherenkov mechanism [3, 4]. The
difference is that the generation regime in the latter case
is noncollinear and is not solitonic. The angle γ between
the propagation directions of the ESP and the generat-
ing pulse, whose spectrum contains two close edge fre-
quencies ω1 and ω2 with wavenumbers k1 and k2, is
given by the expression [4]

where k(ω2 – ω1) is the wavenumber determined by the
dispersion law at frequency ω2 – ω1. The velocity of the
nonlinear polarization wave at the difference frequency
should exceed the wave phase velocity in a medium at
the same frequency:

By passing to the limit ω2  ω1 and setting γ = 0 in
this inequality, one obtains the ZBR condition.

Λ 1
2
--- L τd

∞–

+∞

∫≡
no

cR
------A2∂Φ

∂z
------- δoA2R– 3δo

Ω2A2

R
-------------–=

+
no

2cR
----------A2 ∇ ⊥ Φ( )2 2δoωΩB2R–

2
3
---aA2B.–

∂ρ
∂z
------ ∇ ⊥ ρV⊥( )+ 0,=

∂Φ
∂z
-------

V⊥
2

2
------- pd

ρ
------∫+ + 3

c
no

-----δoΩ
2,=

dp
dρ
------ 6

c
no

-----δo
a

6δo ωΩ
---------------------- 

  4
ρ2.=

ωΩ

γcos
k2 ω2( ) k1 ω1( )–

k ω2 ω1–( )
------------------------------------,=

ω2 ω1–
k1 ω2( ) k1 ω1( )–
------------------------------------

ω2 ω1–
k ω2 ω1–( )
--------------------------.>
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From Eq. (9), it follows that the ZBR regime consid-
ered above can be implemented in crystals with positive
birefringence (ne > no). Since ne and no are close, one

can write ne – no ≈ (  – )/2no = 2π(χe – χo)/no. In

addition, δo = 2πκo/noc ≈ 2πχo/noc , and condition
(9) takes the form (χe – χo)/3χo ≈ (ω/ω0)2. For crystal-
line quartz, ne = 1.55 and no = 1.54 [18]. Then, (χe –
χo)/3χo ≈ 0.01. Hence, ω/ω0 ≈ 0.1. Taking ω0 ~ 1016 s–1

[19], one finds ω ~ 1015 s–1. Inasmuch as ωτp @ 1 for the
input pulse, its duration is τp ~ 10–100 fs. According to
Eq. (13), the duration of the generated video soliton is
of the same order. Therefore, by appropriately choosing
the carrier frequency of the input signal, one can satisfy
the ZBR condition and thereby implement efficient
ESP generation.

Let us estimate the input intensity for which a video
soliton can be created in a crystal. For b = δe = ∆⊥  = 0, one
has from Eq. (8) Ee ~ (1/v  – 1/v g)–1a|ξ|2 ~ –a|ξ|2/2gΩ .
Substituting this in Eq. (7) with ∆⊥  = 0, one arrives at
the nonlinear Schrödinger equation (NSE)

where β = ωa2/2gΩ [strictly speaking, this is not an
equation, because the coefficient β contains the param-
eter Ω of the solitonic solution to the system of Eqs. (7)
and (8)].

It is known [13] that the NSE soliton can be created

only if the threshold condition ξ0τp0 >  is met,
where ξ0 and τp0 ~ τp are the input pulse amplitude and
duration, respectively. Then, using the expression for β,

a, and g, one gets ξ0 > (χo/χeo) / .

Since χo/χeo ~ χ(1)/χ(2) ~ "ω0/d [1], where " is the
Planck’s constant and d is the characteristic value of
dipole transition moment for the quantum transitions
involved in the interaction with pulse, one has ξ0 > ξth ~

" /dω0τp. Taking Ω ~ 1/τp ~ 1014 s–1, ω ~ 1015 s–1,
ω0 ~ 1016 s–1, d ~ 10–20 CGSE, one obtains for the

threshold intensity Ith ~ c /4π ~ 1013–1014 W/cm2.
Then, the intensity of the created video soliton is Ie ≈
c /4π ~ c /4πωτp ~ Ith/ωτp ~ 0.1Ith ~ 1012–
1013 W/cm2.

Although not rigorous, the above estimate proce-
dure nevertheless yields reasonable values of threshold

ne
2 no

2

ω0
2

i
∂ξ
∂z
------ g

∂2ξ
∂τ2
-------- β ξ 2ξ+ + 0,=

g/β

ωΩ ω0
2

ωΩ

ξ th
2

Eem
2 ξm

2

intensities, which can easily be attained by modern
lasers.

The fact that conditions (5) and (9) are fulfilled in
crystals with opposite signs of birefringence should be
favorable for the effective separation of video soliton
creation from SHG.

This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-17710a.
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Radiation of a Charge Moving over the Diffraction Grating
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The states of a charged particle with a finite free path are determined in the field of a resonant electromagnetic
wave. The exact resonance conditions, the modulation and beam instability mechanisms, the charge and current
densities (Ohm’s law) are obtained for the collisionless beam of resonance particles. Quantum theory of radia-
tion is developed for the resonant adiabatic interaction between a particle and a wave taking into account the
interaction with a constant magnetic field induced at the grating surface by the charge and nonresonant waves.
The radiation power, the spectrum, and the range of generated frequencies are determined. The results obtained
can be used in the plasma and solid-state theories and in electronics. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 41.60.-m; 42.79.Dj
1. The theoretical [1] and experimental studies in the
optical range (Smith–Purcell effect [2]) have aroused
persistent interest in the generation of electromagnetic
field by an electron beam passing over the surface of a
diffraction grating perpendicular to its grooves. This
effect has found use in O-type devices based on long-
duration interaction in the millimeter and submillimeter
range with grating in an open single-mode resonator
(orotron-type devices [3]). In the oscillation regime, the
grating interacts with particles to produce slow surface
waves of diffraction radiation with phase velocities
v ph ! c, where c is the speed of light [4] (the diffraction
radiation, i.e., the beam field scattered by grating, also
contains fast harmonics that break away from the sur-
face; we will ignore these in what follows [4]).

The available theories of frequency generation are
based on the known approximate classical theory of
energy exchange in plasma [5], where a particle and the
resonant wave propagate in the same direction with
close phase v ph and particle v  velocities. Quantum the-
ories of energy exchange supplement the classical the-
ory (see, e.g., [6]).

These theories do not apply in the case of finite free
path L = Nd (d is the lattice period and N @ 1 is the
number of periods) of a particle in the field and in the
case of prolonged interaction, i.e., under conditions of
adiabatic interaction in the system, ωT @ 1 [ω is the
oscillation frequency and T = L/v  (by order of magni-
tude) is the interaction time]. So, the theory of the effect
has not been fully elaborated to date. The field of slow
waves is negligible outside the resonator [4]. In this
work, the quantum nonrelativistic theory of the reso-
nant adiabatic interaction between a particle and a wave
is developed. The periodic potential of the electron–
wave interaction is considered as a barrier with finite
spatial and temporal “widths” L and T [7]. It is assumed
that the classical resonance conditions in the barrier
region |α| = |∆v |/v ph < 1, where v  = v  – v ph (α charac-
0021-3640/02/7512- $22.00 © 20625
terizes the relative velocity mismatch), and λ @ λB,
where λ and λB are the field and the particle wave-
lengths, respectively, are fulfilled. The radiation pro-
cesses and beam instability are caused by the tunneling
transitions (quantum parametric resonance [7]) of par-
ticles with energies (in the wave-fixed system of coor-
dinates) falling within the forbidden gaps in the famil-
iar problem of a particle in the periodic potential with
cyclic boundary conditions.

This effect is of interest as an experimentally well-
elaborated model of the processes occurring in real sys-
tems and media with finite particle free path in a field.
Among such processes are, e.g., the interaction with
Langmuir waves and the beam instability in confined
plasmas. In solid-state theory, these are the interaction
of particles with the long-wavelength phonons in defect
crystals and the channeling, with L being the length of
the undistorted region of the crystal or channel.

We will ignore the interparticle interaction in a rar-
efied beam and develop the single-particle theory. The
three-dimensional Schrödinger equation will be solved
with the inclusion of all interactions typical of this sys-
tem: the interaction with a constant uniform focusing
magnetic field **** = (0, 0, *) (the z axis lies in the grat-
ing plane along the direction of particle motion, the x
axis is parallel to the grooves, and the y axis is perpen-
dicular to the grating plane) with vector potential A* =
(0, x*, 0); the interaction with nonresonant harmonics;
and the interaction with a z-periodic potential V(r)
(with period d) of a charge induced at the grating sur-
face. This charge causes primary beam modulation [8],
which excites the grating. The theory is developed for
arbitrary wave amplitudes in the nonrelativistic approx-
imation.
002 MAIK “Nauka/Interperiodica”
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2. The scalar potential of a field produced by slow
waves can be written in the form

(1)

where km = ω/vm = 2πm/d, vm is the phase velocity of
the mth wave, π ≥ ηm ≥ –π is the phase, rm(x, y) =

rm(x)exp(– y),  = (1 – (vm/c)2)1/2, and rm(x) is the
amplitude of the mth wave with the known x distribu-
tion [4]. The vector potential Af has the same form (Af

and Φ correspond to the magnetic and electric field,
respectively) as in the classical theory of orotron [4]. In
the Lorentz gauge, |Af | ~ c–1|Φ|. In what follows, Af is
ignored.

The Hamiltonian of a particle moving over the grat-
ing is

where 2π" is the Planck’s constant; me and e are the
electron mass and charge, respectively;  = ( , ,

) and  are, respectively, the momentum and spin
operators; and W = V – eΦ.

The solution to the Schrödinger equation is sought
in the form

(2)

where py is the transverse momentum component and
E⊥  is the energy of transverse motion.

Let **** be such that V and Φ change weakly in the
region of transverse motion comparable in size to the
Larmor radius. We ignore the derivatives of χ with
respect to x and y assuming that χ is a “slow” function
of these variables. It is known that the motion of a wave
packet in the field **** coincides with the motion of a
classical particle with coordinates x0 and y0. By writing
in the Larmor region W = W(z, t; x0, y0) and χ = χ(z, t;
x0, y0), where x0 and y0 are parameters, we obtain the
following equation with separable variables:

where x0 = cpy/e*. The coordinate part of the well-
known solution for κ is [9]

Φ r t,( ) rm x y,( ) kmz ωt– ηm+( ),cos
m 0≠
∑=

km
y

km
y

Ĥ
1

2me

--------- p̂
e
c
--A*+ 

 
2 e"

cme

---------ŝ**** W r t,( ),++=

p̂ p̂x p̂y

p̂z ŝ

Ψ κ x( )χ r t,( ) i" pyy E⊥ t–( )( ),exp=

κ ∂2χ
∂z2
--------

2me

"
2

--------- W i"
∂
∂t
-----– 

  χ–

=  –χ d2κ
dx2
--------

2me

"
2

---------+ E⊥
me

2
------

e*
cme

--------- 
 

2

x x0–( )2– 
  κ ,

κ e
2c"
---------* x x0–( )2– 

  Hn r
e

c"
------* x x0–( ) 

  ,exp=
where Hn are the Hermitian polynomials, E⊥  ≡ En, σ =

*, σ = ± , and n are integers.

Appending the spin part of the above-mentioned
solution and the exponential multiplier in Eq. (2) to κ,
one obtains the wave function of transverse motion
ψn, σ(x, y, t).

Let us assume that the particle is at resonance with
the mth wave from Eq. (1) and pass on to the coordinate
system comoving with this wave. To do this, we intro-
duce the variable 2u = kmz – ωt + ηm [u(L, T) ≥ u ≥
u(0, 0)]; ∆u = kmαL/(1 + α) = πmαN/(1 + α) is the
“effective” barrier width and τ = t – ηm/ω (T > τ > 0) is
the “local” time; the variables z' = z and t' = t relate to
the “cloud” of nonresonant harmonics; and t0 = ηm/ω is
the origin for t'. The equation for χ in the new variables
takes the form

where

 = 4me  is the effective “mass” of a particle in the

field of the resonant wave,  = –i"(∂/∂u) is the opera-
tor of generalized momentum, Wn = ermcos2u,

{ , } is the anticommutator of  and , and

We will seek a solution to this equation in the form

(3)

where 3sh = 2ksh/km = 4Ωsh/ω, "ksh is the longitudinal
momentum of the wave-matching particle (α = 0),
"Ω' = E ' is the particle energy in the comoving coordi-
nate system, and

We assume that, due to the resonance and to the
“smoothness” of V caused by a high particle velocity
relative to the grating, χ slowly varies along z'. The cor-
responding variation ∆z = ∆u/km is small compared to
the variation ∆u of u. This allows the derivatives of χ
with respect to z' to be ignored in . Then, the

n
1
2
--- σ+ + 

  e"
cme

--------- 1
2
---

Ĥr i"
∂
∂τ
-----– 

  Ĥcl lc– i"
∂
∂t'
------– 

 – χ 0,=

Ĥr
1

2me*
----------3̂

2 1
2
---ω3̂ Wm u( ),––=

me* km
1–

3̂

Ĥcl lc–
1

2me

--------- P̂z'
2

P̂z' 3̂,{ }–( ) Wcl lc– ,–=

P̂z' 3̂ P̂z' 3̂

Wcl lc– e rm' x0 y0,( ) km'z' ωt'– ηm'+( ).cos
m' m≠
∑=

χ u τ ; z' t',,( ) ψcl lc– ϕ u( ) i 3shu Ω'τ–( )( ),exp=

"Ωsh Esh
"

2

2me*
----------3sh

2
.= =

Ĥcl lc–
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variables in the equation become separable, and one
should seek the solutions to the equation

(4)

(hereafter, z' and t' are unprimed).
Assuming that the separation constant is zero, one

obtains the equations

(5)

(6)

where

One can assume that the interaction switches on instan-
taneously, because the switching-on time is ∆t ~ λ/ν
(L @ λ) [6]. The quantity V can be expanded in terms of
the reciprocal lattice vectors Km; taking into account the
relation between z and t, one has V(z; x0, y0) =

(x0, y0)cos(kmv t). Substituting V(t) into Eq. (5)

with the initial condition ψcl – lc(t0) = 1 and using the
generating function for the Bessel functions J, we
obtain

(7)

where
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,
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Assume that, contrary to the results in [8], which apply
to small impact parameters or far off the grating, the
impact parameter y0 is considerably larger than the
atomic or interatomic distances. Since the interaction
between an electron and the grating is coulombic, one
can put Vm ~ 1/y0. It follows from the well-known prop-
erties of the Bessel functions that this interaction dom-
inates during the period of grating excitation or far off
the grating, where rm' are negligible, while ψcl ~ 1. The
influence of electron–grating interaction decreases
(ψlc  1) with an increase in y0, ω, and v  and a
decrease in d. As rm' increases, the interaction with
cloud modulates the wave function (3): ψcl decreases
with increasing rm' to reach its minimum at ϑm' = ±γm'
and it is maximal (ψcl = 1) at the ϑm' zeros. Setting q = 0

in Eq. (6), one gets ϕ =  and  = const, where

 = exp(±i3u). Then, the function χ for the incident
3+ particle overtaking the wave (3 > 0) or 3– particle
lagging behind the wave (3 < 0) is

where (u) = exp(i(3sh ± 3)u), and, except for the

factors containing ηm, one has in the variables z and t

where

Assuming that the period of  is L and using the
quantization condition for K(±), we obtain for the quan-
tization conditions for the 3sh and 3 numbers: 3sh =
2h0/mN and 3 = 2h/mN, where h and h0 are integers.

Then πmN is the period of , and  = (πmN)–1/2.

3. The particles are in the tunnel states if the solu-
tions to the Mathieu equation (6) with parameter q < 0
are unstable, i.e., if 3 lies in the intervals [10]

(8)
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The energy bands (measured from Esh) given by Eq. (6)
for the incident particles with the indicated scatter of 3
are

where al(q) and bl(q) are the eigenvalues corresponding
to the Mathieu functions cel(u, –q) and sel(u, –q) [10].
The fundamental system of solutions to Eq. (6) is given

by the functions  = exp(±(µ + i3)u) orthonor-

malized to πmN, where µ(q, 3) is the characteristic

index, Imµ = 0, (u, q) = (q)exp(±i(r –

l)u), and (q) are the known coefficients [10]. Let us
represent 3 = l + β, where l is the integral part of 3,
1 > β, β = 2g/mN, and g are integers. In the tunnel solu-

tion to Eq. (6) ϕ3 = ξ1  + ξ2 , we retain both

terms if the condition for quantum parametric reso-
nance µ & 1/∆u is fulfilled. To determine ξ1, 2, we solve,
instead of the boundary-value problem, the equivalent

time-dependent problem [6] through matching  and
χ (3) with ϕ = ϕ3 at τ = 0. Using the orthogonality con-
ditions, we obtain for the wave functions of the 3+

particles

For the wave functions of the 3– particles,  = 

and  = ξ(+).

Substituting ϕ3 into Eq. (4) and returning to z and t,
we obtain the desired wave functions of the tunnel non-
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stationary states in the form of a decomposition in the

plane waves (z):

(9)

where  = ψn, σψcl – lc, Γ3(q, ω) = ωµ is the decay
constant of the |3+〉 state (growth increment for the |3–〉
state), and  is equal to  with the multipliers

containing coefficients ηm that arise upon passing from
u, τ to z, t.

A twofold degenerate (according to the symmetry of
the potential Wm(u) in the comoving system of coordi-
nates)  level in the field of resonance wave (acci-

dental degeneracy) splits into two levels upon passing

to the laboratory frame:  > Esh and  < Esh. The

spontaneous transition frequency is (∆ω)3 =  –

 = ω3. By averaging  on πmN, so that  =

(q), ignoring the derivative of  with respect
to t, as was done when deriving Eq. (4), and using the
relation between z and t, we obtain the following
expression for the spontaneous radiation power of an
individual particle [11]:

where

are the average populations of the  levels; Mn, σ, 3 is
determined classically, because "ω3 = 4αEsh.

The oscillation in the presence of electron–wave
interaction is caused by the population inversion of the

 levels pumped by an external source. The absorp-

tion power of the 3– particles is –Mn, σ, 3. Since (q)
is a sign-variable nonperiodical function of q [10], the
oscillation may be quenched “accidentally” at the zeros
of this function.
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cl lc– 2
ξ1

+( ) 2
2µu( )exp(

+ ξ2
+( ) 2

2µu–( )exp ),

Y3
±( ) C3

±( ) 2 ξ1
+( ) 2

D̃3
±( ) 2

_n σ,
cl lc– 2

2µu±( )exp=

E3
±( )

E3
±( )

Cl
l( )
JETP LETTERS      Vol. 75      No. 12      2002



RADIATION OF A CHARGE MOVING OVER THE DIFFRACTION GRATING 629
Is was found experimentally that the spectrum of
generated frequencies has the form of bands [4] alter-
nating with the bands where the oscillation is absent.
We assume that such a spectrum is caused by the ther-
mal straggling of the 3 numbers in the beam. Indeed,
the particle–wave resonance has a finite width. Using
the quantization conditions for 3 numbers and the rela-
tion between 3 and α (which can be obtained using the
definition of k(±) to represent the 3 number as 2∆k/km,
after which, by writing α = ∆k/ksh, where ∆k = k – ksh,
one obtains α = 3/3sh), we find the minimal value of
α ≠ 0 for h = 1: αmin = 2/mN3sh. Since the phase veloc-
ities of the m ± 1 harmonics are vm ± 1 = mvm/(m ± 1),
one has v |αm – 1| > |αm + 1| for identical velocities v
(αm ± 1 is the relative velocity mismatch with the m ± 1
wave). Putting α = –αm + 1, we obtain the velocity for a
particle at resonance with the m and m + 1 harmonics:
vmax = 2mvm/(2m + 1). It follows that the maximal
αmax & 1/(2m + 1). Hence, the straggling of 3 numbers
in the beam of particles resonant to the mth wave is

(10)

For the 3 numbers satisfying Eq. (10) and lying
within a2s + 1 > 32 > a2s and b2s + 2 > 32 > b2s + 1 [10], the
incident particles with energies

belonging to the allowed energy bands in the periodic
potential pass through the barrier without resonance-
induced energy dissipation. We call these states the
overbarrier states.

The energies  of a beam of resonant 3± particles

with 3-number straggling given by Eq. (10) form the
alternating energy bands of the overbarrier and tunnel
states positioned symmetrically about Esh. Accordingly,
the frequency spectrum generated by a beam with ther-
mal straggling of 3 numbers also has the form of
bands, because the oscillation regions with widths

ω  > (∆ω)3 > ω  and ω  > (∆ω)3 >

ω  [see Eq. (8)] alternate with the gaps ω  >

(∆ω)3 > ω  and ω  > (∆ω)3 > ω ,
where the oscillation does not occur.

A change in the position of resonator mirrors [4]
does not change the oscillation frequencies; it merely
changes the frequency of the orotron oscillatory circuit
to extract the desired harmonic. The frequency tuning
can be caused by changing the accelerating voltage in
the case of a mono- or quasi-monoenergetic beam with

3sh

2m 1+
---------------- * 3

2
mN
--------.≥

"
2

2me*
----------a2s 1+ E3'

"
2

2me*
----------a2s,> >

"
2

2me*
----------b2s 2+ E3'

"
2

2me*
----------b2s 1+> >

E3'

b2s 1+ a2s 1+ a2s

b2s a2s 1+

a2s b2s 2+ b2s 1+
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3-number straggling not exceeding the widths given
by Eq. (8). In this case, the frequency is tuned jumpwise
through the radiationless transition from one band of
quantum parametric resonance to another, and it
changes “smoothly” within the bands because the β
manifold is quasi-discrete.

The gap widths decrease with increasing q, and the
gaps become asymptotically narrow, because a2s + 1 ~
a2s and b2s + 2 ~ b2s + 1 at |q| @ 1 [10]; accordingly, the
oscillation bandwidths, i.e., the range of generated fre-
quencies, increase. The number of bands lmax is equal to
the integral part of 3max = 3sh/(2m + 1) [see Eq. (10)].
The maximal oscillation frequency is –ωmax &

ω3sh/(2m + 1), and the minimal frequency is ωmin =
2ω/mN. Evidently, the beam radiation in the states with
different m, σ and equal 3 numbers within the interval
(10) is coherent, as is the radiation of particles with
equal 3 but different x0, y0. The intensity of coherent
radiation increases with the number of particles having
the same 3 number. This may be accomplished by
increasing the beam volume, i.e., its thickness [8] and
width.

The radiation power of an individual particle
increases with ω and 3. However, as 3 increases,
while q, ω = const, the oscillation bandwidths and the
value of µ decrease (cf. stability diagram for the solu-
tions to the Mathieu equation [10]), thereby reducing
the coherent radiation power because of a decrease in µ
and in the number of particles occurring in the tunnel
states, as happens in the Smith–Purcell effect (low-
intensity coherent radiation from the narrow tunnel
bands with 3 @ 1 and large numbers l @1).

The particles pass through the barrier without dissi-
pation of the longitudinal energy in the velocity-
matched states (3 = 0), whose wave functions can be
obtained from Eq. (4) with ϕ = const = 1, u = 0, and
Wn = erm. Then, 

(11)

4. The charge density [9] for the particles with 3 ≠ 0

is ρn, σ, 3 = ρn, σ, 0ρ3, where ρn, σ, 0 = e  =
e|Ψn, σ, 0| is the charge density for 3 = 0 (11), ρ3 =

, and ψ3 are the functions from Eq. (9) without

. Because  is the envelope for any ρ3,
the modulation caused by the characteristic interactions
in the system is independent of the particle state in the
field of the resonant wave. For instance, if the interac-
tion with the cloud of nonresonant harmonics domi-

nates, the beam “shrinks” at the minima of  (7) to
form bunches (“large” particles with the modulation
wavelength λm = cl/m starting at the time t0).

Ψn σ 0, , _n σ,
cl lc–

i kshz Ωsh
1
"
---erm+ 

  t– 
 

 
  .exp=

_n σ,
cl lc– 2

ψ3
2

_n σ,
cl lc– _n σ,

cl lc– 2

ψcl
2
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In the bunch ρ3 =  +  + , where

i.e., along with ρn, σ, 0, the beam contains a stable inter-

ference fraction with charge density  for any q and

two unstable tunneling fractions with densities .
The beam instability in the states |n, σ, 3 = const〉  (9)
with the increment and decrement Γ3(q, ω) is caused
by the quantum parametric resonance.

In the expression for the longitudinal current-den-

sity component j [9], we ignore and pass on to

∂/∂u. Then

Setting v sh = eTmU/2meL, where Tm = L/v sh and U is the
accelerating voltage, we arrive at the Ohm’s law for the
system considered:

where

is the electrical conductivity determined by the charac-
teristic interactions. The conductivity caused by the res-
onant electron–wave interaction is

where
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2 ξ1 2,

2 1 α±( ) 2µu±( ),exp=
are the conductivities Λn, σ, 0 and  for the stable frac-

tions of current density jn, σ, 0 and  and the conductiv-

ities  for the two unstable fractions.

5. The resonance states obtained in this work can be
found in other systems as well. The “memory” of the
system is contained in the _ function; the latter differs,
e.g., from the solid-state _ function, in particular, by
the cloud effect, whose potentials are expanded in the
time-dependent harmonics, as opposed to Eq. (1). The
wave functions of the resonant positively charged par-
ticles have the same form, but u is replaced by u + π/2.
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A phase diagram of two Ising subsystems σ and s has been constructed on a Bethe lattice with a coordination
number 4 (a simplified analog of a square lattice). In contrast to the known Ashkin–Teller model, the interaction
between these two subsystems is of a purely fluctuational nature; i.e., it does not manifest itself in the ground
state and nullifies the sums of the products of average spins 〈σ〉〈 s〉  (interactions of this type are realized in lat-
tice-type adsorbed systems with dipolelike intermolecular interactions and strong azimuthal angular depen-
dence of the adsorption potential of symmetry C4). Apart from conventional states, i.e., a high-temperature dis-
ordered state (〈σ〉  = 〈s〉  = 0) and a low-temperature ordered state (〈σ〉  and 〈s〉  ≠ 0), this system can also exist in
a correlated state (〈σs〉  ≠ 0 at 〈σ〉  = 〈s〉  = 0). In the theory of orientational phase transitions, this state corre-
sponds to a fundamentally different, intermediate (on the temperature axis) phase in which a preferred direc-
tion of long molecule axes arises in the absence of spontaneous polarization. The results of Monte Carlo sim-
ulation on a square lattice agree with the conclusions obtained on a Bethe lattice. The characteristics of the
orientational phase transition in a 2 × 1 monolayer of CO molecules adsorbed on the NaCl(100) surface are
discussed. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.60.Cn; 68.35.Rh; 05.50.+q
The simplest example of a system with fluctuation
interactions is a square lattice with sites nm each con-
taining two spin variables σnm = ±1 and snm = ±1 and
interactions between nearest-neighbor sites that are
described by the Hamiltonian [1]

(1)

The ground state of this Hamiltonian H0 = –4NJ1 (N
is the number of lattice sites) at J1 ≥ J2 ≥ 0 is indepen-
dent of the interaction constant J2 of spins of the differ-
ent sublattices. Attempts to analyze the states of such a
system in terms of the self-consistent-field (SCF)
approximation without allowance for the interactions
of thermodynamic fluctuations fail completely, since
the sum of the products of average spins 〈σ〉〈 s〉  vanishes
and the result is independent of J2. Therefore, the inter-
actions of the spin subsystems σ and s that are
described by Hamiltonian (1) will be called fluctua-
tional. While discussing models with interacting Ising
subsystems, one cannot but mention the well-known
isotropic Ashkin–Teller model [2]

(2)

H J1 σnmσn m 1+, snmsn m 1+,+(–[
nm

∑=

+ σnmσn 1+ m, snmsn 1+ m,+ ) J2 σnmsn m 1+,(–

+ snmσn m 1+, σnmsn 1+ m,– snmσn 1+ m,– ) ] .

HAT J1 σnmσn m 1+, snmsn m 1+,+(–[
nm

∑=

+ σnmσn 1+ m, snmsn 1+ m,+ )
– J4 σnmsnmsn m 1+, σn m 1+,(
+ σnmsnmσn 1+ m, sn 1+ m, ) ] .
0021-3640/02/7512- $22.00 © 20631
The main features of the phase diagram of this model
can be reproduced even in the SCF approximation
[3, 4].

The systems with fluctuation interaction of type (1)
are discrete analogs of a wider class of systems with a
continuously degenerate ground state, which include
the dipole short-range interaction model [5]

(3)

Here, enm are unit vectors and  and  are their
projections onto the axes of the square lattice. The
degenerate ground state H0 = –N|D2| is realized at 0 <
D1 < –D2. This case corresponds to the parameters of
the real dipole interaction D1 = µ2/a3 and D2 = –2µ2/a3

(where µ is the dipole moment and a is the lattice
parameter) [6–8] or to the parameters of quadrupole
interactions D1 = 3Q2sin22θ/4a5, D2 = –15Q2sin22θ/4a5

(Q is the quadrupole moment) of nonpolar molecules
oriented quasi-normally to the surface plane (at a small
angle θ to its normal) [1]. In the systems of adsorbed
molecules with a strong azimuthal angular dependence
of the adsorption potential of symmetry C4, only four
discrete orientations of vectors enm along the axes of the
square lattice (as, e.g., in the 2 × 1 monolayer of CO
molecules adsorbed on the NaCl(100) surface [9]) can
prove to be acceptable. If the orientations of enm are

HDip D1 enmen m 1+, enmen 1+ m,+( )[
nm

∑=

+ D2 enm
x en m 1+,

x enm
y en 1+ m,

y+( ) ] .

enm
x enm

y
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characterized by spin variables σnm and snm (Fig. 1),

(4)

then Hamiltonian (3) reduces to (1) with J1 = –D2/4 and
J2 = –D2/4 – D1/2. At the orientations of enm along the
diagonals of the square lattice, i.e., enm = 2–1/2((–1)nσnm,
(–1)msnm, 0), the case of noninteracting Ising sub-
systems [10] is realized.

Thus, Hamiltonian (1) determines not only a new
and interesting model in the theory of phase transitions
but also has concrete applications in the investigation of
orientational states of lattice systems of adsorbed mol-
ecules. Since the exact solution for such a model on a
square lattice is not available and since the SCF approx-
imation cannot describe fluctuation interactions, it is
natural to resort to a corresponding model on a Bethe
lattice (according to the known Baxter approach [4],
solutions obtained for this lattice can be considered to
be exact). A Monte Carlo simulation permits one to
control to what extent such a description corresponds to
a square lattice. The results obtained using these
approaches are presented in this paper.

The partition function for Hamiltonian (1) on a
Bethe lattice with a coordination number equal to four
can be written as

(5)

where the magnitudes of xi and yi for the sites located
deep in a Cayley tree (i.e., at an infinitely far distance

enm
1
2
--- 1–( )n σnm snm+( ) 1–( )m σnm snm–( ) 0,,( ),=

Z xi
2yi

2,
i 1=

4

∑=

Fig. 1. Correspondence of four orientations of vectors enm
to four pairs of values of spin variables σnm = ±1 and snm =
±1 (schematic).
from its boundary) are determined by the set of equa-
tions

(6)

The indices i, j = 1, 2, 3, 4 here correspond to the fol-
lowing values of the pairs of spin variables σ and s: +1,
+1; –1, –1; +1, –1; and –1, +1. The matrices Λ(x) and
Λ(y) of 4 × 4 dimension have a block form:

(7)

where K1, 2 = J1, 2/kBT (kB is the Boltzmann constant and
T is the absolute temperature). The average values of
spin variables are determined by the equations

(8)

Note first of all that the symmetry of the problem
provides for the equality 〈σ〉  = ±〈s〉 . Without loss of
generality, we can assume that 〈σ〉  = 〈s〉  and, thereby, at
〈σ〉  = 〈s〉  > 0, the right-hand orientation of the average
values of the vectors enm in Fig. 1 becomes preferred. In
this case, x3 = x4 and y3 = y4. The condition 〈σ〉  = 〈s〉  =
0 is met for one more pair of equalities, namely, x1 = x2
and y1 = y2. After applying the additional requirement
that 〈σs〉  = 0, we have x1 = x2 = y3 = y4 and x3 = x4 =
y1 = y2.

To analyze solution to the set of equations (6), it is
convenient to deal with eigenvalues of the matrices Λ(x)

and Λ(y)

(9)

which are expressed through the eigenvalues of the
matrices A and B

(10)

xi Λ ij
x( )x jy j

2, yi

j 1=

4

∑ Λ ij
y( )y jx j

2.
j 1=

4

∑= =

Λ x( ) A C

C B 
 
 

, Λ y( ) B C

C A 
 
 

,= =

A e
2 K1 K2+( )

e
–2 K1 K2+( )

e
–2 K1 K2+( )

e
2 K1 K2+( )

 
 
 
 

,=

B e
2 K1 K2–( )

e
–2 K1 K2–( )

e
–2 K1 K2–( )

e
2 K1 K2–( )

 
 
 
 

, C 1 1

1 1 
 
 

,= =

σ〈 〉 Z 1– σixi
2yi

2, s〈 〉
i 1=

4

∑ Z 1– sixi
2yi

2,
i 1=

4

∑= =

σs〈 〉 Z 1– σisixi
2
yi

2.
i 1=

4

∑=

λ1 a1, λ2 b1,= =

λ3 4,
1
2
--- a2 b2 a2 b2–( )2 16++−+[ ] ,=

a1 2 2 K1 K3+( ), a2sinh 2 2 K1 K3+( ),cosh= =

b1 2 2 K1 K3–( ), b2sinh 2 2 K1 K3–( ).cosh= =
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In addition, it is convenient to designate the ratios of the
variables xi and yi as

(11)

(ξ34 = η34 = 1 in view of the condition x3 = x4, y3 = y4
assumed above) and to introduce the parameters

(12)

In these designations, the solution corresponding to the
case 〈σ〉  = 〈s〉  = 〈σs〉  = 0 takes on the form

(13)

In the range of values a2b2 ≥ 16, i.e., at sufficiently low
temperatures, there exists another solution with 〈σ〉  =
〈s〉  = 0 and 〈σs〉  ≠ 0, namely,

(14)

Solutions with 〈σ〉  = 〈s〉  ≥ 0 arise when the condition

(15)

is fulfilled if ξ21 and η12 tend to unity according to the
laws

(16)

It is evident that if a2b2 ≤ 16, we should introduce
the values of ξ31 and η24 from Eq. (13) into Eqs. (15)
and (16). In this case, Eq. (15) determines the line of the
coexistence of a disordered high-temperature phase I
and an ordered low-temperature phase II with 〈σ〉  =
〈s〉  > 0 (Fig. 2). When the condition a2b2 > 16 is ful-
filled, we should substitute the values of ξ31 and η24
from Eq. (14) into Eqs. (15) and (16). Then, Eq. (15)
determines the line of the coexistence of phases II and
III and the condition a2b2 = 16 leads to the coexistence
of phases III and I, where phase III is characterized by
zero averages of 〈σ〉  and 〈s〉  but a nonzero value of 〈σs〉 .
It is expedient to explain the physical meaning of this
phase in terms of the average values of the vectors enm

ξ ij xi/x j, η ij yi/y j= =

γ3 4,
1
4
--- a2 b2–( )2 16+ a2 b2–( )±[ ] ,=

ϕ
ξ31

2 γ4η24+
1 γ4η24+

--------------------------, ψ
η24

2 γ4ξ31+
1 γ4ξ31+

--------------------------.= =

ξ21 η12 0, ξ31
2 η24

2 λ3γ3 λ4γ4+
λ3γ4 λ4γ3+
---------------------------

b2

a2
-----,= = = = =

x1
2 y4

2 λ4ϕ( ) 1– .= =

ξ21 = η12 = 0, ξ31η24 = 
1
4
---

b2

a2
----- a2b2 a2b2 16–+−( ),

x1
2 λ4ϕ( ) 1– , y4

2 λ4ψ( ) 1– ,= =

σs〈 〉
η34

2 ξ31
2–

η34
2 ξ31

2+
-------------------- 0.≥=

λ4
2ϕψ λ 1η24

2 ϕ λ 2ψ+( )λ4–

– 3λ1λ2η24
2 0=

ξ21 1 2ε, η12 1– 2δε,+
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λ4ϕ λ 2–
--------------------.=

ε → 0 ε → 0
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(see Fig. 1 and Eq. (4)): 〈enm〉  = 0,  = (1 +

〈σs〉)/2 >  = (1 – 〈σs〉)/2; i.e., no preferred ori-
entation exists in the system, but the orientations paral-
lel to the x axis are more preferable than those parallel
to the y axis.

An analysis of the diagram given in Fig. 2 shows
that the dimensionless temperatures τ ≡ kBT/J1 of phase
transitions I–II decrease from a value of 2.89 corre-
sponding to the Ising model on the Bethe lattice
(exp(2K1) = 2) to 1.79 at the point of coexistence of
phases I, II, and III, where the ratio of the interactions
κ ≡ J2/J1 takes on a value equal to 0.84. Phase III exists
in the range of sufficiently large values of κ: 0.84 < κ <
1. The dimensionless temperatures τ of the I–III and
III–II phase transitions vary from 1.79 at the point of
coexistence of the three phases to values equal to 1.94
and 0, respectively. The zero temperature of the transi-
tion into the phase with 〈enm〉  = 0 at J2 = J1 was noted in
[1], but the appearance of phase III due to fluctuation
interactions was not noticed in [1]. The results of Monte
Carlo simulation on a square lattice, even for a rela-
tively small cluster such as 10 × 10 with periodic
boundary conditions, agree with the suggested phase
diagram. The difference is only in the values of τ for the
lines of phase transitions, which are always lower than
on the Bethe lattice. The magnitude of τ decreases from
2.27 (a value characteristic of the Ising model on a
square lattice (sinh2K1 = 1)) to 1.8 at the point of coex-
istence of three phases and remains approximately con-
stant along the I–III line. At J2 = J1 and τ < 1.8, the con-
ditions of existence of phase III are fulfilled: 〈σs〉  > 0,
〈σ〉  = 〈s〉  = 0.

For adsorbed systems with quasi-normal molecular
orientations with respect to the surface plane, in which
quadrupole intermolecular interactions are dominant,

enm
x( )2〈 〉

enm
y( )2〈 〉

Fig. 2. Phase diagrams of two fluctuation-interacting Ising
subsystems (1) on a Bethe lattice with a coordination num-
ber equal to 4. For phases I, II, and III, 〈σ〉  = 〈s〉  = 〈σs〉  = 0,
〈σ〉  = 〈s〉  ≠ 0, and 〈σs〉  ≠ 0 at 〈σ〉  = 〈s〉  = 0, respectively.

k B
T

/J
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the parameter κ is equal to 0.6; and the corresponding
value of τ, according to Monte Carlo calculations, is
equal to 2.1. Estimating the energy Q2/a5 of quadrupole
interactions between neighboring CO molecules on the
NaCl(100) surface as being equal to 1.63 meV [1] (Q =

1.62 × 10–26 esu and a = 5.64/  Å) and using the value
θ ≈ 25° for the experimentally determined slopes of
molecules toward the normal to the surface [9], we
obtain J1/kB ≈ 10.4 K and Tc ≈ 22 K. The disappearance
of the Davydov splitting of spectrum lines characteris-
tic of the low-temperature 2 × 1 orientational structure
occurs in the temperature range of 17.5–21.5 K [11],
which agrees well with the calculated value of Tc. This
latter value can be refined by introducing an additional
interaction of Ising subsystems of the Ashkin–Teller
type (see (4)) with a negative coefficient J4 (J4/J1 =
−0.207 for CO/NaCl(100)) [1]. The investigation of the
generalized Ashkin–Teller model with fluctuation
interactions seems to be very promising, since in this
model also, new phase states observed in real systems
can be obtained.
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The exact solution for the evolution of nuclear spin polarizations in a system with spin–spin coupling constant
g identical for all spin pairs is obtained on the condition that only one (first) spin is polarized at zero time. It is
shown that the polarization P1(t) of the first spin has the form of periodic time pulsations with the period 4π/g.
In every period, the function P1(t) changes from its initial value P(0) = 1 to 1/3 during the time on the order of
t ≈ 4π/Ng, if the number of spins N @ 1, and remains in the state P1(t) = 1/3 virtually during the entire period.
A simple classical model within the framework of mean-field theory explains the physical nature of the noner-
godic dynamics of the system. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 76.60.-k; 33.25.+k
The study of the long-time asymptotic behavior of
the longitudinal spin order is of importance in gaining
structural information on the crystalline and amorphous
solids from the spin-diffusional NMR experiments [1].
In statistical physics, these studies are carried out by
invoking the ergodic hypothesis [2], which allows the
description [3] of the quasi-equilibrium state of a
many- particle spin system. Although the use of the
ergodic hypothesis is well justified in some cases (see,
e.g., [4]), the numerical and analytic analyses of the
one-dimensional dynamics of nuclear-spin systems
with dipolar interaction have demonstrated [5–7] that
the quasi-equilibrium states that are established in these
systems in times from hundred microseconds to several
milliseconds are nonergodic.

In this letter, the dynamics of a three-dimensional
system of nuclear spins is studied in a constant mag-
netic field H0, whose direction specifies the z axis. The
spin–spin coupling constant g is taken to be identical
for all spin pairs. The Hamiltonian of this system has
the form

(1)

where ω = γH0, γ is the gyromagnetic ratio, N is the
number of spins in the system, ζ is the arbitrary con-
stant, and Inα is the operator of projection of spin n onto
the axis α = x, y, z. At N = 3 or 4, this model describes
the proton spin dynamics in the CH3, CH4, and NH4Cl

H ω Inz

n 1=

N

∑=

+
g
2
--- ζ ImzInz ImxInx– ImyIny–{ } ,

m n≠

N

∑
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molecules. However, the main advantage of this model
is that it provides the possibility of exactly treating the
dynamics of a multispin system for any N. We assume
that the density matrix σ(t) at t = 0 corresponds to the
high-temperature approximation [8] σ(0) = I1z; i.e., the
polarization at zero time is concentrated only on spin 1.
The polarization of spin n at time t is given by the for-
mula

(2)

The correlation function in Eq. (2) does not change if
Hamiltonian (1) is replaced by

(3)

where I is the total spin of a cluster of N spins. Among
the set of polarizations Pn(t) (2), it is sufficient to calcu-
late only the polarization P1(t) of spin 1, because the
total polarization of all spins does not change with time;
i.e.,  = 1, and the polarizations of all spins,
except for spin 1, are always equal to each other. So, we
will calculate

(4)

where the dimensionless time τ =  is introduced.

Equation (4) is calculated by the method of coupled
angular momenta [9]. With this method, the whole
N-spin cluster is divided into two subsystems A and B.
The subsystem A includes only spin 1, and the sub-
system B includes the remaining N – 1 spins. The total

Pn t( ) tr eiHtI1ze
iHt– Inz{ } /tr I1z

2{ } .=

H'
g
2
---I2, I– In,

n 1=

N

∑= =

Pn t( )
n 1=
N∑

P1 τ( ) tr eiτ I2

I1ze
iτ I2– I1z{ } /tr I1z

2{ } ,=

1
2
---gt
002 MAIK “Nauka/Interperiodica”



636 RUDAVETS, FEL’DMAN
spin of the system is I = IA + IB. The quantum states
|IAmA〉  and |IBmB〉  of the subsystems A and B are related
to the state |IA, IB, I, m〉  of the whole N-spin cluster by
the Clebsch–Gordan coefficients as [9, 10]

(5)

where IA = 1/2 and mA = ±1/2 are, respectively, the
quantum numbers of spin 1 and its z component, and IB

and mB are, respectively, the quantum numbers of the
total spin and its z component for subsystem B. Making
use of the fact that basis (5) is complete and orthonor-
malized at fixed IA = 1/2 and IB, one can write the cor-
relation function P1(t) in Eq. (4) as

(6)

where

(7)

IA IB I m, , ,| 〉 CIAmA IBmB,
Im IAmA| 〉 IBmB| 〉 ,

mA
1
2
---±=

mB m mA–=

∑=

P1 τ( ) 2 N 2–( )– w IB( )

IB IB
min=

N 1–( )/2

∑=

× δm m', eiτ I I 1+( ) I' I' 1+( )–{ }

I m I≤ ≤–

I' m' I'≤ ≤–

∑
IB

1
2
---– I IB

1
2
---+≤ ≤

IB
1
2
---– I' IB

1
2
---+≤ ≤

∑

× mAC1
2
---mA IBm mA–,

I'm' C1
2
---mA IBm mA–,

Im

mA
1
2
---±=

∑
 
 
 
  2

,

w IB( )
2IB 1+

N
----------------- N

IB N 1+( )/2+ 
 
 

=

Fig. 1. Dependence of the polarization P1(τ) of the first spin
on the dimensionless time τ = gt/2 for different numbers N
of spins in the spin cluster: (a) odd N [Eq. (9)] and (b) even
N [Eq. (11)].
is the total number of m states in the subsystem B for a

given spin IB;  = 0 for the odd number N of spins

and  = 1/2 for the even number N of spins [10]. The
polarization P1(τ) in Eq. (6) is the sum of the constant

 and the oscillating  parts:

(8)

For the odd number N of spins in the cluster, the sum in
Eq. (6) is equal to

(9)

where

(10)

For the even number N of spins,

(11)

where the coefficient Ak(N) is given by Eq. (10). The

expression for  in Eq. (9) is presented without deri-
vation in [6].

Equations (8)–(11) show that the time-averaged
polarization

(12)

of the first spin in the N-spin cluster is different from the
polarization of each of the remaining spins. At N @ 1,
one-third of the initial polarization P1(0) = 1 remains on
the first spin, while the polarization of each of the
remaining spins is 2/(3N). The intuitively anticipated
equalization of the polarizations of all spins after a
large time interval as a result of spin diffusion [11] does
not occur in this model; i.e., the dynamics of the model
is nonergodic. Figure 1a demonstrates the time evolu-
tion of the polarization P1(τ) of the first spin in the clus-
ters with an odd total number N of spins. In accordance
with Eq. (9), the evolution of polarization P1(t) is peri-
odic with period 4π/g. At N @ 1, the polarization P1(t)
changes in time t ≈ 4π/Ng from the initial value P1(0) = 1
to the stationary plateau, which is retained during
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-------------,=
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almost all the evolution period, except for the narrow
time interval on the order of t ≈ 4π/Ng. This stationary
polarization virtually coincides with the average polar-
ization given by Eq. (12). Due to the presence of the sta-
tionary plateau in the polarization profile and to the
periodicity of polarization pulsation, the nonergodic
behavior of polarization in this model is more pro-
nounced than in the linear chains and rings of nuclear
spins with the XY Hamiltonian [12, 13].

Figure 1b demonstrates the time evolution of the
polarization P1(τ) of the first spin in the clusters with an
even total number N of spins. In this case, the period of
function P1(t) in Eq. (11) is 2π/g. The salient features of
the function P1(t) are the same for the even and odd

numbers N. At N  ∞, the average polarization 
on the first spin is always 1/3. The system dynamics is
nonergodic for any N.

We now substantiate qualitatively the nonergodic
dynamics by invoking a simple classical mean-field
model for the spin systems with infinite-range interac-
tion. Consider N @ 1 classical moments coupled to
each other by the infinite-range interaction. Each of the
N – 1 moments creates on the moment 1 the same field
of order N–1, and, hence, all N – 1 moments create a

finite field O(1). To estimate , we assume that N – 1
moments create on the moment 1 the effective field
Hef(t), which is equally probable for all directions and
has zero mean. By decomposing the polarization of

moment 1 into the parallel and perpendicular

 components with respect to Hef(t), we find that,
after averaging over the ensemble of N spin clusters, the

contribution from the  components to the polar-
ization on the moment 1 is zero, so that the polarization

 is determined only by the z projections of the

 components and equal to

(13)

where θ is the angle between the z axis and Hef(t), and
the averaging is over the angles. Thus, the classical
mean-field arguments yield a finite (= 1/3) time-aver-
aged polarization of the first spin. Although the numer-

ical value  in Eq. (13) coincides with its quantum
value given by Eqs. (9)–(11), it is difficult to explain
classically, e.g., the recovery of initial polarization after
t = 4π/g, which corresponds to the lowest frequency of
the quantum system. This can be done only by using the
exact quantum result given by Eqs. (9)–(11) and dem-
onstrating the periodicity (reversibility) of the spin
dynamics.

At first glance, the obtained polarization “localiza-

tion” (nonergodicity) on the first spin [  = 1/3
instead of expected O(1/N)] can be qualitatively

P1 t( )

P1 t( )

P1
|| t( )

P1
⊥ t( )

P1
⊥ t( )

P1 t( )

P1
|| t( )

P1 t( ) θcos
2〈 〉 1/3,= =

P1 t( )

P1 t( )
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explained as the manifestation of the reversibility of
quantum dynamics. Our preliminary calculations show,

however, that the polarization localization  also
occurs in the case where the first spin is subjected to an
additional time-dependent random field described by
the telegraphic process [14]. In this case, the spin
dynamics is irreversible and nonergodic.

The exact solution of the many-particle dynamics of
the system with Hamiltonian (1) has become possible
due to the simple form of spin–spin interactions. The
theory describing spin dynamics of the nuclear-spin
systems with dipole–dipole interactions is as yet not
sufficiently developed to explain the ergodic diffusional
behavior observed by modern NMR methods [15].

We are grateful to D.É. Fel’dman and S.V. Iordan-
skiœ for helpful discussions. This work was supported
by the Russian Foundation for Basic Research, project
no. 01-03-33273.
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The technique of ferromagnetic resonance (FMR) was used for the investigation of nickel powders dispersed
in a diamagnetic solid matrix. The fine structure of FMR was studied, which was observed against a background
of broad featureless FMR lines of conventional unoriented polycrystals. A model is suggested according to
which the narrow lines observed appear in the FMR spectra because of jumplike changes in the resonance con-
ditions caused by a sharp change in the magnetization of the sample due to a change in the external magnetic
field. In contrast to the Barkhausen effect, the fine structure detected in the FMR spectra in this case is observed
in stronger fields characteristic of the processes of magnetization rotation. It is shown that the physical origin
of magnetization jumps in this case may be magnetic interparticle interactions as well as complex anisotropy
of particles. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.50.Tt; 76.50.+g; 75.60.-d
The application of the method of ferromagnetic res-
onance (FMR), which is very informative in many
cases, for studying disperse magnets is restricted by
strong line broadening arising because of the chaotic
orientation of magnetically anisotropic particles that
comprise the solid [1]. As a result, a nonsymmetrical
absorption line is usually detected with a width that is
caused by the anisotropy of magnetic interactions. New
opportunities for obtaining information on the structure
of disperse magnets are now emerging, which are based
on an analysis of additional very weak and unusually
narrow FMR lines.

We studied samples of powder nickel prepared by
dispersion in a molten paraffin matrix with subsequent
cooling to room temperature. The agglomerates that
could be formed when using this procedure were
destroyed by ultrasonic treatment of molten suspen-
sions. According to electron-microscopic data, parti-
cles with dimensions from 0.2 to 10 µm were present in
the samples. The fraction of fine particles increased sig-
nificantly after the ultrasonic treatment. The FMR spec-
tra were detected using a Bruker-EMX 3-cm radio-fre-
quency spectrometer. The samples were placed in the
center of a rectangular resonator of the TE102 type (with
the magnetic component of the microwave field perpen-
dicular to the direction of the dc magnetic field). The
first derivative of the absorption spectrum was written
at a modulation frequency of the dc field equal to
100 kHz. The measurements were carried out at room
temperature.
0021-3640/02/7512- $22.00 © 20638
Figure 1 displays a Ni powder spectrum with a wide
particle-size distribution (from 0.1 to 10 µm). Against
the background of the wide spectrum, very weak and
narrow lines can be detected (see inset), which are
observed in a wide range of fields. Below, we will use
the term “fine structure of FMR” (FS FMR) for this fea-
ture of the spectrum. To analyze the fine structure, it is
convenient to subtract the wide smooth component
using the standard function of the MICROCAL ORI-
GIN program. The procedure of smoothing is as fol-
lows: first, the Fourier transform of the spectrum is cal-
culated; then, in accordance with given parameters,

Fig. 1. Spectrum of ferromagnetic resonance of nickel pow-
der in a paraffin matrix. According to electron microscopy,
particles with sizes from 0.2 to 10 µm are present. Nickel
content is ~5 wt %.
002 MAIK “Nauka/Interperiodica”
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higher harmonics are excluded (higher than a certain
specified one), and the reverse transformation is per-
formed. The resulting spectrum of the fine structure is
calculated as the difference between the experimental
and smoothed spectra (Fig. 2). Note that the fine struc-
ture of FMR can be registered in the spectra even with-
out the application of some additional mathematical
procedures at a sufficiently good signal-to-noise ratio.

The number of lines in the fine structure (Fig. 2) can
reach a few hundred, and the range of observation can
vary from virtually zero fields to magnetic fields close
to those maximally attainable in the EPR spectrometer
used. The width of the narrowest lines is a few oersteds
(see inset in Fig. 3).

The spectra observed are characterized by a strong
orientation dependence, although the envelope of the
fine structure of FMR is retained. With a change in the
position of the sample in the resonator of the spectrom-
eter, the positions and the shapes of individual lines
change in a random manner, but the natural criterion of
their physical reality is the strict reproducibility found
in independent series of detection.

The fine structures possess properties that are
unusual for nonuniformly broadened FMR spectra;
namely, they are very sensitive to external actions on
the sample such as changes in the gas atmosphere, tem-
perature, light illumination, etc. [2].

The type of the fine structure of FMR is determined
to a significant degree by the conditions of the prepara-
tion of the disperse samples. It has been established that
the variety of fine structures of FMR of ferromagnetic
powders arises as a consequence of the different signif-
icance of magnetic interparticle interactions. Thus, the
disintegration of aggregated particles of nickel powder
in a paraffin bath by ultrasonic dispersion at the content
of the ferromagnetic phase ~1 wt % leads to a substan-
tial simplification of the fine structure of the spectrum

Fig. 2. Fine structure of the spectrum of ferromagnetic res-
onance of nickel powder in a paraffin matrix. The spectrum
was obtained after the procedure of subtracting the broad
smooth component. Nickel content in the sample is ~5 wt %.
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(Fig. 3). The lines of various widths that were present
in the fine structure of FMR of the sample before dis-
persion (Fig. 2) turn out to be grouped in certain ranges
of the magnetic field (Fig. 3). In each such range, we
can distinguish a certain value of the magnetic field that
corresponds to a maximum intensity of the fine-struc-
ture lines.

A comparison of the observed spectra with data
from the literature shows that the appearance of the fine
structure of FMR is related to the processes of magne-
tization of isolated particles comprising the sample.
Kittel et al. [3] showed experimentally and theoreti-
cally that, to magnetize an isolated spherical particle,
its magnetic self field of demagnetizing should be over-
come, which is on the order of Hcs ≈ 2Kα /Js for single-
domain particles and Hcm ≈ 4πJs/3 for multidomain par-
ticles (here Kα is the magnetocrystalline anisotropy
constant and Js is the saturation magnetization). In the
case of metallic nickel, the corresponding values of
magnetic fields are Hcs ~ 550 Oe for single-domain par-
ticles and Hcm ~ 2100 Oe for multidomain particles.

It is seen that these values correspond well to the
maxima of the regions of the observed fine structure of
the spectrum. Thus, the range of narrow lines in weak
fields corresponds to single-domain particles, whereas
the region of wider lines with a maximum in a field of
~2100 Oe corresponds to multidomain particles. For
the case of nonspherical particles, deviations from the
above values are observed, which are related to the
effect of the demagnetizing shape factor. The absorp-
tion lines in higher fields can be attributed to the pro-
cesses of magnetization of the coarsest agglomerated
particles that have an irregular shape and a large
demagnetizing factor.

Qualitatively, this assumption is confirmed in exper-
iments. As was described above, upon the preparation
of the samples of metallic nickel, the powder placed in

Fig. 3. Fine structure of the spectrum of ferromagnetic res-
onance of nickel powder prepared using ultrasonic disper-
sion in a molten paraffin matrix. Nickel content in the sam-
ple is ~1 wt %.
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the paraffin matrix is subjected to ultrasonic dispersion,
which, according to electron microscopy, leads to an
increase in the amount of isolated particles with sizes
from several hundred angstroms to a micron. In the
sample that was stirred mechanically in the paraffin
matrix without ultrasonic dispersion, the number of
particles less than a micron in size was substantially
smaller. The fine structure of FMR for a sample pre-
pared in this manner is shown in Fig. 4. As is seen, no
low-field region with narrow lines is present in the
spectrum. This agrees with the absence of a noticeable
amount of fine particles in this sample.

Usually, the magnetization processes do not lead to
the appearance of new lines of small width in the FMR
spectra. It is also known that the FMR line of a single-
crystal Ni has a width of at least ~102 Oe [4]. Narrow
lines are supposed to appear in the FMR spectra
because of a jumplike change in the resonance condi-
tions upon the magnetization of ferromagnetic parti-
cles. One of the possible mechanisms of such changes
is the irreversible rotation of the magnetization vector,
which leads to the appearance of hysteresis.

In the classical case of a uniaxial ferromagnetic
crystal, the jump in magnetization due to an increase in
the magnetic field can occur only once. For such a jump
to be repeated, the crystal should be placed in a mag-
netic field of the opposite direction. However, in the
case of a real polycrystal, this condition may not be
necessary because of the effects of interparticle interac-
tions or the presence of isolated particles of irregular
shape.

To illustrate the possibility of the appearance of hys-
teresis and related jumps of magnetization in positive
magnetic fields, we consider a simple model system
consisting of two identical single-domain particles
placed in a magnetic field. We assume that both parti-
cles exhibit axial anisotropy, which may have either a
geometrical (shape anisotropy) or crystallographic
(magnetocrystalline anisotropy) origin. With allowance

Fig. 4. Fine structure of the spectrum of ferromagnetic res-
onance of nickel powder prepared by mechanically stirring
the powder in a paraffin bath without ultrasonic dispersion.
Nickel content in the sample is ~ 1 wt %.
for this anisotropy and the dipole–dipole interaction,
the energy of the system is written as follows:

where K is the effective anisotropy constant, V is the
volume of an isolated particle, µ1, 2 are the vectors of
the magnetic moments of the particles (µ = |µ1| = |µ2|),
n1, 2 are the directions of the easy axes of the particles,
and d is the vector characterizing their mutual arrange-
ment. Simulation shows that hysteresis in such a system
can arise upon a change in the magnitude of the mag-
netic field even its changing to the opposite direction.
Consider, for example, the case where the vector of the
magnetic field H is oriented along the vector d the easy
axes are parallel to one another (n1 = n2 = n), and the
angle between n and H is 82°. With the dipole–dipole
interaction defined as µ2/d3 = KV, the hysteresis is
observed near the field H = 0.7KV/µ (see Fig. 5). The
jump of the magnetization projection onto the direction
of the magnetic field is related to the irreversible rota-
tions of the magnetic moments at H = 0.678KV/µ and
H = 0.748KV/µ. Figure 6 displays the rotations of the
vectors of magnetic moments upon a decrease in the
magnetic field from H = 5KV/µ to zero. In the field H =
0.678KV/µ, the “collinear” minimum disappears and
the system passes into an “anticollinear” state. As the
field increases from zero, the “anticollinear” minimum
disappears at H = 0.748KV/µ and the system passes into
a collinear state.

Thus, to observe a hysteresis loop, it is sufficient to
change the field in the range H = 0.6–0.8(KV/µ) without
changing its direction to the opposite. An obvious and
important circumstance is that, upon the irreversible
rotation of the vectors of the magnetic moments of par-

E EK Edd EH+ +
KV

µ2
-------- µ1n1( )2 µ2n2( )2+[ ]–= =

+
d2µ1µ2 3 dµ1( ) dµ2( )–

d5
------------------------------------------------------ H µ1 µ2+( ),–

Fig. 5. Variation of the projection of the total magnetic
moment of a system of two particles onto the direction of
the magnetic field as a function of an external magnetic
field. The particles possess magnetic anisotropy and are
related by a dipole–dipole interaction. The Hamiltonian of
the system and its parameters are given in the main text.
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ticles, there occurs a jumplike change in the resonance
conditions of the system. This naturally leads to a
change in the absorption of the microwave field, which
is detected as the appearance of additional narrow lines
in the FMR spectrum.

The above mechanism permits us to explain the
experimentally observed strong angular dependence.
For example, as the angle between n and H decreases
by 2° (to 80°), the hysteresis loop in Fig. 5 shifts by a
distance of an order of its width. In the other regions,
the curve changes only slightly.

In the above-described system, such a situation is by
no means unique; a hysteresis in positive fields is
observed for other system parameters as well. An inter-
esting situation arises when the magnetic field is per-
pendicular to d at the strength of the dipole–dipole
interaction µ2/d3 = 1.5KV and the angle between n and
H equals 5°. In this case, as the magnetic field changes
from zero, there occur two irreversible rotations of the
vectors of the magnetic moments of particles at H =
1.56KV/µ and H = 2.03KV/µ and, during the second
rotation, the magnetization projection onto the direc-
tion of the magnetic field decreases.

It follows from the above analysis that the condition
for the appearance of hysteresis is as follows: µH ~
KV ~ µ2/d3. This explains the appearance of a fine struc-
ture of FMR in fields corresponding to the magnetic sat-
uration of single-domain particles (Hcs ~ 550 Oe) [3].

A consideration of the process of magnetization of
an isolated particle shows that the appearance of hyster-
esis in positive fields is possible even in the absence of
interparticle interaction in the presence of magnetoc-
rystalline anisotropy or a complex shape anisotropy of
particles.

A well-known example in which the magnetocrys-
talline anisotropy of a particle leads to the appearance
of hysteresis in positive fields is when an isolated parti-
cle with a cubic symmetry is placed in an external mag-
netic field applied along the crystallographic direction
[111] [5]. Using numerical simulation, we showed that
in this case the hysteresis is observed only if the vector
of the applied field falls into a narrow solid angle (of
about 1°) centered at this direction. Since the probabil-
ity that the field will have such a direction is small, this
mechanism cannot explain the fine structure of FMR
with a large number of lines in a broad range of mag-
netic fields that is observed in the system under con-
sideration.
JETP LETTERS      Vol. 75      No. 12      2002
At the same time, the existence of complex shape
anisotropy of particles can lead to the appearance of
hysteresis in positive fields for most randomly oriented
noninteracting ferromagnetic particles in a disperse
sample.

The appearance of lines of a fine structure of FMR
in stronger fields, near magnetic saturation of multido-
main particles, also is related to irreversible rotations of
magnetic moments, which in this case are determined
by changes in the number of domains in multidomain
particles.
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Fig. 6. Rotation of the vectors of magnetization of the par-
ticles on changing the magnetic field from H = 5KV/µ to
zero. At H = 0.678KV/µ, the irreversible rotation of the
magnetization vectors related to the disappearance of the
“collinear” minimum occurs.
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The relaxation dynamics of the lattice and low-energy quasiparticles in a YBa2Cu3O7 – x superconductor are
studied by the light reflection technique with femtosecond temporal resolution in a wide temperature range. It
is shown that, for T > Tc, there exist two temperature regions with qualitatively and quantitatively different exci-
tation dynamics, and the transition between these regions is of a hysteretic nature. It is also found that the char-
acter of changes observed in the charge carrier relaxation dynamics in the superconducting state testifies to the
presence of an anisotropic gap with nodes at the Fermi surface. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Kc; 74.72.Bk; 74.76.Bz; 78.47.+p
For the past few years, one of the major problems in
high-temperature superconductivity (HTSc) has been
the study of the physics of the pseudogap state, which
exists in the metallic phase at temperatures T ∗  > Tc [1,
2]. Today, this problem seems to be among the most
topical ones in the physics of high-temperature super-
conductivity, and its solution will undoubtedly contrib-
ute to the elucidation of the microscopic mechanism of
HTSc. The width of the pseudogap state region T ∗  – Tc

in the phase diagram depends on the carrier concentra-
tion. It is maximal for underdoped compounds and
decreases to zero at a certain critical carrier concentra-
tion; the latter is somewhat higher than the concentra-
tion at which the critical temperature Tc is maximal.
Recent theoretical papers suggest an inhomogeneity of
the pseudogap phase and the existence of the tempera-
ture crossover, which separates the regions of the
pseudogap states with different dynamic properties of
quasiparticles [3–5]. Progress in laser technology has
made it possible to decrease the laser pulse duration
down to a few femtoseconds, and this has opened up
new research prospects by making studies of quasipar-
ticle dynamics and lattice vibrations accessible in real
time. Such studies, whose typical example is the pump-
ing technique with subsequent probing by two laser
pulses separated in time, are actively performed on
HTSc systems [6–9]. The understanding of the mecha-
nism underlying the establishment of equilibrium after
its perturbation by a laser pulse gives an insight into the
characteristic features of the dynamics of charge carri-
ers and crystal lattice excitations, as well as the dynam-
ics of their interaction. Using the pump–probe tech-
nique, we performed detailed studies of the relaxation
dynamics of the lattice and charge carriers in the tem-
0021-3640/02/7512- $22.00 © 20642
perature range covering both superconducting and
pseudogap states. The aim of our studies was to deter-
mine the degree of homogeneity of the phase diagram
region for T > Tc and to reveal the characteristic features
of the superconducting state.

The studies of the optical response were performed
on an optimally doped (Tc = 88 K) epitaxial film of
YBa2Cu3O7 – x (Y123) grown on a SrTiO3 substrate.
The film thickness was 350 nm, and its c axis was per-
pendicular to the substrate plane. The sample was
placed in an optical helium cryostat, which allowed the
measurements in the temperature range 4–310 K. The
measurements in the time domain were done using a
fast scan system [6] and sapphire titanate laser pulses
(λ = 780 nm) with a duration of less than 50 fs and a
repetition frequency of 78 MHz. The polarizations of
the exciting and probe pulses were orthogonal to each
other and lay in the film plane. In the experiment, the
differential reflection from the excited and nonexcited
samples, ∆R(t) = R(t) – R0, was measured as a function
of time t between pumping and probing in a wide tem-
perature range.

Figure 1 shows a typical optical response obtained
from the excitation and subsequent probing of the Y123
film by the femtosecond pulses. The excited electron
state relaxes to the equilibrium state within the time of
order of picoseconds. The decay of the photoinduced
differential reflection has a non-exponential character
and may be described by a sum of two, fast and slow,
exponentials: ∆R/R0 = A(T)exp(–t/τA) + B(T)exp(−t/τB).
Fast oscillations shown in the inset in Fig. 1 and associ-
ated with the coherent phonons [6, 7] are superimposed
on this electronic decay. For the identification of the
phonon modes, the data obtained in the time domain
002 MAIK “Nauka/Interperiodica”
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were numerically transformed to the frequency domain
by using the Fourier transform. This paper studies both
the oscillatory component of the optical response
caused by the excitation of coherent optical phonons
and the nonoscillatory response related to the charge
carrier relaxation.

In the superconducting state, two fully symmetric
phonon modes generated by the corresponding dis-
placements of the Ba and Cu ions (see Fig. 2) [6, 7] are
detected in the spectrum of coherent phonons. An
increase in temperature leads to a decrease in the ampli-
tude of the Ba mode. Therefore, the Cu mode domi-
nates in the spectrum in the vicinity of the supercon-
ducting transition, which can be easily traced by com-
paring the amplitudes of the coherent phonons related
to Ba and Cu. At helium temperatures, the electron
relaxation is governed by the slow component, which
demonstrates a weak singularity at Tc. The quantity
∆R/R0 continues decreasing above Tc; however, at tem-
peratures above T >  = 160 K, the photoinduced
response abruptly changes its behavior. The fast com-
ponent of the electron relaxation exhibits a change of
sign and reduces to a spike whose duration does not
exceed that of the laser pulse. The slow component also
changes sign and considerably slows down. Simulta-
neously, the spectrum of coherent phonons changes,
becoming similar to the spectrum observed in the
superconducting state. A further increase in tempera-
ture above  = 220 K results in the recovery of the
character of the photoinduced response observed in the
temperature range Tc– . Interestingly, the tempera-

tures  and  corresponding to sharp changes in the
relaxation dynamics of charge carriers and crystal lat-
tice exhibit a hysteretic character. When approaching
the superconducting transition from above, the changes
in the photoinduced response are observed at  = 175 K

and  = 115 K. The results obtained for the relaxation
dynamics of the charge carriers and lattice are summa-
rized in Fig. 3.

The idea of the inhomogeneity of the pseudogap
state of HTSc was suggested theoretically and may be
explained as a consequence of the local pairing and
delocalization of the electron pairs [5]. In addition, the
inhomogeneous state may originate from weak and
strong regimes of the almost antiferromagnetic Fermi
liquid [4] or from the formation of a charge inhomoge-
neity (stripe fluctuations) with the subsequent appear-
ance of superconductivity in individual stripes [3]. The
results obtained do not allow one to give preference to
either of the above models. First of all, this is related to
the fact that the hysteretic behavior has been predicted
by none of the models; it still remains unclear whether
different models differ from each other and have any
fundamental limitations in this respect. However, cer-
tain features of the relaxation dynamics may be
explained by each theory. For example, the acceleration
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*
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of the fast component and deceleration of the slow

component within the temperature range –  may
be evidence for the appearance of local short-lived elec-
tron pairs whose constituents are localized. The disap-
pearance of (decrease in) the slow component at T < 
may be interpreted as the beginning of the electron pair
motion over the crystal. The similarity of the coherent

T1
* T2

*

T1
*

Fig. 1. Time-resolved differential reflection ∆R/R0 (on a
logarithmic scale) for YBa2Cu3O7 – x at room temperature.
The dashed lines show the fast and slow relaxation chan-
nels. The inset magnifies the oscillations caused by the
coherent phonon excitation.

Fig. 2. Temperature dependence of the time-resolved differ-
ential reflection ∆R/R0. The Fourier transforms of the oscil-
latory parts are shown on the right of each transient curve.
The two pronounced peaks at frequencies of 3.5 and
4.5 THz correspond to the fully symmetric Ag phonons gen-
erated by the Ba and Cu ion displacements.
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phonon spectra for the temperature ranges –  and
T < Tc also supports the hypothesis of the formation of
local electron pairs, because the increase in the Ba
phonon amplitude is usually attributed to the breaking
of Cooper pairs [6, 7]. However, in the range –Tc,
where, according to the theory in [5], the pairs are itin-
erant, the spectrum of coherent phonons exhibits a sim-
ilarity to the spectrum observed at temperatures above

the second crossover . It remains unclear why the
delocalized but still incoherent pairs cease interacting
with the lattice, whereas the localized pairs and Cooper
pairs, which constitute the superconducting conden-
sate, demonstrate this kind of interaction. Nevertheless,
the similarity of the coherent dynamics of the lattice in
the pseudo-gap and superconducting states enables one

T1
* T2

*

T1
*

T2
*

Fig. 3. Parameters of the relaxation dynamics of the excita-
tions and lattice versus the temperature. The circles corre-
spond to the data obtained with decreasing temperature, and
the crosses, with increasing temperature. (a) Ratio of the
phonon amplitudes of the Ba and Cu modes in the peri-
odogram; (b) extremum of the differential reflection
(∆R/R0)max; (c) fast relaxation time; and (d) slow relaxation
time.
to assume that the electron–phonon interaction is
needed to explain the experimental data. As an alterna-
tive explanation, the upper crossover could be assigned
to the beginning of the weak regime of the pseudogap
state, when the hot spots start appearing at the Fermi
surface. The lower crossover then could be attributed to
the appearance of the strong regime, in which the Fermi
surface starts loosing its parts in some regions of the
momentum space [4]. However, the changes in the
coherent phonon spectrum can hardly be explained in
terms of a nearly antiferromagnetic Fermi liquid.

In contrast to the pseudogap state, the superconduct-
ing state exhibits no hysteresis, and the characteristics
of the relaxation dynamics coincide within the experi-
mental error for both increasing and decreasing temper-
ature. This result is quite natural, because the supercon-
ducting transition in the absence of a magnetic field is
of second order, whereas the hysteresis is characteristic
of the first-order transitions only. However, it should be
noted that the ratio between the slow (B) and fast (A)
components in the superconducting state is tempera-
ture-dependent (it increases as T decreases). The fact
that the slow component predominates in the supercon-
ducting state is determined by the appearance of the gap
in the spectrum of excitations. Breaking the Cooper
pairs with a laser pulse leads to the appearance of qua-
siparticles whose relaxation is determined by the relax-
ation of the superconducting gap to the equilibrium
state. If we attribute the fast dynamics to the carriers in
the cold spots, which are located at the diagonals of the
Brillouin zone, and the slow dynamics, to the carriers in
the vicinity of the hot spots, which are located at the
zone faces where the superconducting gap takes its
maximal values, we should expect that the supercon-
ducting gap continues demolishing the Fermi surface in
the superconducting state as well. Such an association
of the two different dynamic times with the location of
quasiparticles in the Brillouin zone is supported by the
following experimental fact [10]: it was found that the
dependence of the slow component on the pump power
exhibits a saturation, whereas no saturation is observed
for the fast component, whose amplitude grows linearly
with the power of the exciting pulses. This fact enables
us to attribute the slow component to the breaking of
Cooper pairs, whose density is finite in the condensate,
and to assign the fast component to the quasiparticles in
the vicinity of the nodes of the superconducting gap.
The variation of the ratio B/A in the superconducting
state testifies to (1) the existence of nodes of the super-
conducting gap, because the fast component is finite at
the lowest temperatures, and (2) the dependence of the
anisotropy of the gap on temperature, which dramati-
cally disagrees with the predictions of the Bardeen–
Cooper–Schrieffer theory, in which the anisotropy of
the gap is found to be temperature-independent as a
result of the factorization of the wave vector and tem-
perature in the equation for the superconducting gap
[11]. The conclusion that an anisotropic superconduct-
ing gap with nodes at the Fermi surface exists agrees
JETP LETTERS      Vol. 75      No. 12      2002
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well with the experimental results obtained by other
optical techniques [11], although it differs from the data
on the gap obtained from earlier time-resolved mea-
surements [8].

Thus, by using the pumping–probing technique with
femtosecond resolution, we observed two temperature
crossovers in the normal state of an optimally doped
Y123 high-temperature superconductor. The cross-
overs manifest themselves as sharp changes in the
relaxation dynamics of the charge carriers and the lat-
tice and exhibit a hysteresis in temperature. The exist-
ence of such crossovers testifies to the inhomogeneity
of the pseudogap state. In addition, we have found that,
in the superconducting state, the energy gap has nodes
and its anisotropy depends on temperature.

This work was supported by the Russian Foundation
for Basic Research, project no. 01-02-1640.
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We investigate the Josephson effect in SFXSF junctions, where SF is a superconducting material with a ferro-
magnetic exchange field, and X is a weak link. The critical current Ic increases with the (antiparallel) exchange
fields, if the distribution of transmission eigenvalues of the X layer has its maximum weight at small values.
This exchange-field enhancement of the supercurrent does not exist if X is a diffusive normal metal. At low tem-
peratures, there is a correspondence between the critical current in an SFISF junction with collinear orientations
of the two exchange fields, and the AC supercurrent amplitude in an SIS tunnel junction. The difference in the
exchange fields h1 – h2 in an SFISF junction corresponds to the potential difference V1 – V2 in an SIS junction;
i.e., the singularity in Ic [in an SFISF junction] at |h1 – h2 | = ∆1 + ∆2 is the analogue of the Riedel peak. We also
discuss the AC Josephson effect in SFISF junctions. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.50.+r; 74.80.-g; 75.70.-i
1 The presence of a magnetic exchange field in bulk
superconductors [1, 2] and in superconductor (S)–fer-
romagnet (F) multilayers reduces the critical tempera-
ture Tc, i.e., suppresses superconductivity (see, e.g., [3]
and references therein). Similarly, an exchange field
suppresses the proximity effect: superconducting corre-
lations spread into the F layer of superconductor–ferro-
magnet structures for a shorter distance than into the
normal layer of a superconductor–normal metal struc-
ture [4]. Hence, it is natural to expect that the supercur-
rent in a junction will be suppressed by an exchange
field in the superconductors or by the presence of ferro-
magnetic layers between the superconducting banks.
Surprisingly, it was shown recently that the supercur-
rent can be strongly enhanced in a number of situations,
e.g., in an SFISF junction formed by two “ferromagnetic
superconductors” (SF), whose exchange fields are ori-
ented in an antiparallel way [5, 6], and in SFIFS junc-
tions [7, 8]. There is still no simple intuitive under-
standing of this exchange-field supercurrent-enhance-
ment (EFSE) effect, nor of what conditions favor this
effect. In what follows, we investigate the Josephson
effect in SFXSF junctions for different choices of the
scattering layer X, for example, when X is a diffusive
normal metal or an insulator, and find the conditions
favoring the EFSE effect.

In this letter, we show that the EFSE effect exists in
SFXSF junctions if the distribution of transmission
eigenvalues of the X layer has its maximum weight for
small values. If the transparency increases, we find that
the effect becomes less pronounced; it disappears when
the transparency is close to unity. If X is a diffusive nor-

1 This article was submitted by the authors in English.
0021-3640/02/7512- $22.00 © 20646
mal metal, there is no exchange field enhancement of
the supercurrent. At zero temperature, we find a corre-
spondence between the critical current Ic(V = 0, h1 – h2)
of an SF1ISF2 junction with collinear exchange fields
h1(2) and the AC supercurrent amplitude ReIc(V) of an
SIS tunnel junction. Both quantities coincide if the volt-
age V across the junction is equal to h1 – h2. Thus, the
peak singularity of Ic(V = 0, h1 – h2) at |h1 – h2| = ∆1 + ∆2

has the same nature as the Riedel peak in SIS contacts
at |eV | = ∆1 + ∆2 [9–12]. Here, ∆1(2) are the supercon-
ducting pair potentials of the two contacts.

To derive the results listed above, we relate the
supercurrent through the SFXSF junction to the scatter-
ing matrix of the region X, and then use statistical prop-
erties of this scattering matrix. The model considered is
illustrated in Fig. 1. It consists of a scattering region
(hatched) between two superconducting SF layers.

Fig. 1. Sketch of the device showing the EFSE effect; two
ferromagnetic superconductor layers SF are characterized
by BCS order parameters ∆1(2) and exchange fields h1(2).
The scattering region X (e.g., an insulator or a diffusive nor-
mal metal) separates the two SF layers.

(SF)1 (SF)2
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Examples of SF layers include superconductors with
ferromagnetic impurities [1] or superconductor–ferro-
magnet (normal metal) multilayers, where the super-
conducting (and ferromagnetic) order parameter is
induced by the proximity effect [5, 13]. They can be
described by adding an exchange field to the BCS
model [14, 15]. Then the self-consistency equation at
zero temperature shows that the superconducting order
parameter ∆(h) = ∆(0), if the exchange field h < ∆(0),
and ∆(h) = 0 otherwise. In this paper, we assume that
|h | ≤ ∆(0) in the two “ferromagnetic superconductor”
leads.

The supercurrent is calculated using the quasiclassi-
cal Green’s function technique. We assume that the
junction is short, i.e., that the traversal time τ through
the region X is such that "/τ exceeds the superconduct-
ing order parameters ∆1, 2 of the SF layers. Then, follow-
ing [16, 17], we relate the supercurrent I to the Keldysh
Green’s functions, and, finally, to the retarded quasi-

classical Green’s functions  in the bulk of the SF

layers and the eigenvalues 7n of tt †, where t is the
matrix transmission amplitude of the X layer:

(1a)

(1b)

(1c)

Here,  is the Pauli matrix acting in Nambu space,
the trace is taken over the Nambu and spin spaces, and
ϕ1, 2 is the superconducting phase corresponding to the
SF layers. Equations (1a)–(1c) are valid for both ballis-
tic and dirty SF layers.

To derive Eqs. (1a) and (1b), we used the general
Zaitsev boundary conditions [16, 17] for the Green’s
functions rather than the Kupriyanov–Lukichev dirty-
limit approximation [18], which is valid for small 7
(see, e.g., [19] and references therein). Using the Zait-
sev boundary condition leads to the anticommutator of
the Green’s functions in the denominator of Eq. (1b),
which plays an important role here and cannot be
neglected. Due to this anticommutator, the EFSE effect
is suppressed in SFISF junctions with large transparen-
cies 7 and in SFXSF junctions, in which X is a dirty
normal metal (see, e.g., Fig. 3).
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If h1 || h2, Eq. (1b) reduces to:

(2)I ϕ( ) = 7ρ 7( )
e
"
---T ϕd

d
g iω ϕ σ 7, , ,( )[ ] .ln

ω
∑d∫

σ 1±=

∑

Fig. 2. The integration domain shown gives the main contri-
bution to the supercurrent in an (SF)1I(SF)2 junction accord-
ing to Eq. (7). The supercurrent shows a Riedel singularity
when |h1 |  ∆1, |h2 |  ∆2.

Fig. 3. Exchange-field dependence of the critical current in
an SFXSF junction with ∆1 = ∆2 and Eex = h1 = –h2. (a) X is
an insulator with transparency D. For D ≥ 0.7, the supercur-
rent-enhancement effect disappears. (b) X is a disordered
normal metal with conductance GN and the tunnel junction
has conductance GT; α = GT/GN. The supercurrent-
enhancement effect disappears for α @ 1.

(SF)1

(SF)2
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Here,

(3)

where ϕ = ϕ1 – ϕ2, ρ(7) =  is the distri-
bution of transmission eigenvalues, ω = 2πT(k + 1/2),
k = 0, ±1, … are Matsubara frequencies, and a1, 2 =

 represent the phases picked
up at an Andreev reflection from the SF layers. Equa-
tions (2) and (3) can be also derived using the scattering
theory developed in [20].

In the general case , the supercurrent is
given by

(4)

where the indices p, a correspond to the parallel and
antiparallel configurations of the exchange fields and θ
is the angle between h1 and h2. Equation (4) can be
derived from Eqs. (1a)–(1c) using the following iden-
tity for an analytic function L of two variables:

(5)

where the trace is taken over the spin degrees of free-
dom. The last identity can be proved by a series expan-
sion.

Using Eqs. (2)–(4), we can work out the effect of
ferromagnetic interactions on the supercurrent in a
number of structures.

We will concentrate below on the case where the
exchange fields are collinear. Suppose that X is a tunnel
barrier. Then ρ(7) = Nδ(7 – D), where D ! 1, N is the

number of channels [N = /4π, where A is the area
of the junction cross section, and kF is the Fermi
wavevector in S]. It follows from Eq. (2) that

(6)

where RN = (NDe2/π")–1 is the normal-state resistance
of the junction. If  > 0, Eq. (6) gives I (p), and,
in the opposite case, I (a) [see Eq. (4)]. For ∆1 = ∆2, h1 =
–h2, Eq. (6) reproduces the corresponding results of [5].

It follows from Eq. (6) that, at small temperatures,
T ! min{∆1, ∆2}, as long as |h1 | < ∆1, |h2 | < ∆2, the
supercurrent does not depend on h1 + h2. It grows with

g E ϕ σ 7, , ,( ) 1 7–( ) a1( ) a2( )sinsin=

+
1
2
---7 ϕ( ) a1 a2+( )cos–cos( ),

δ 7 7n–( )
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E σh1 2,+( )/∆1 2,[ ]arccos
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I ϕ( ) I p( ) ϕ( )
θ
2
--- 

 cos
2
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θ
2
--- 

 sin
2

,+=
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≡ 1
2
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a b⋅
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------------+ 

  L σ1 a σ2 b,[ ] ,
σ1 2( ) 1±=

∑

kF
2 A

I ϕ( ) ϕ( )π
e
--- RN( ) 1– ∆1∆2sin=

× T Re
1

∆1( )2 ω ih1+( )2+ ∆2( )2 ω ih2+( )2+
-----------------------------------------------------------------------------------------------,

ω
∑

h1h2( )sgn
h1 – h2 and diverges logarithmically when |h1 – h2 | 
∆1 + ∆2. To illustrate this, we write Eq. (6) in the real-
time representation:

(7)

The integration domain is shown in Fig. 2. Equation (7)
and Fig. 2 show that the exchange fields h1(2) shift the
Fermi energies of the two superconductors by σh1(2).
The potentials V1(2) applied to the superconducting
banks of an SIS junction shift the Fermi energies in a
similar manner. In particular, it turns out that the ampli-
tude ReIc(V) of the AC Josephson supercurrent [which
is proportional to sin(2eVt/")] of an SIS junction is
equal to the critical current Ic = I(ϕ = π/2) in Eqs. (6)
and (7) after the substitution h1(2)  eV1(2). At zero
temperature, the critical current Ic = I(ϕ = π/2) defined
by Eq. (7) can be expressed through the elliptic func-
tion K [10, 11, 21]. If we define h ≡ h1 – h2, then, within
the interval |h | < |∆1 – ∆2 |,

(8)

If |∆1 – ∆2 | < |h | < ∆1 + ∆2, then

(9)

For h1 = h2 = 0, ∆1 = ∆2, Eq. (9) leads to IcRN = e∆π/2,
i.e., to the usual result of the critical current of an SIS
Josephson junction [12].

For |h | close to ∆1 + ∆2, integral (7) has a singularity.
The singular part of the current is

(10)

If the temperature is close to the critical temperature
of the SF layer, the supercurrent depends on h1 + h2, as
well as on h1 – h2, and there is no EFSE effect, in agree-
ment with [5]. In this case, the correspondence of the
exchange field in SFXSF junctions and the voltage in
SIS junctions is no longer valid.

The main point of the above discussion is that the
supercurrent is strongly enhanced by the exchange field
in the tunneling regime, i.e., when the scattering region
X is an insulator with small transparency. Below, we
investigate whether the enhancement effect is seen in

I ϕ( )
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E
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∞

∫
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other types of SFXSF junctions, e.g., when the layer X
is a diffusive normal metal.

If ∆ = ∆1 = ∆2, h ≡ h1 = –h2 (antiparallel magnetiza-
tions), Eq. (3) can be simplified:

(11)

The current can be evaluated using Eq. (2).
Let us first turn to the case when the distribution of

transmission eigenvalues ρ ∝ δ (7 – D). As shown
above, the enhancement effect exists as long as D ! 1.
If the transparency D becomes larger, we find from
Eq. (2) that the EFSE effect becomes less pronounced;
it disappears when the transparency is close to unity.
This is illustrated in Fig. 3a, where the critical current
of an SFXSF junction with ∆ ≡ |∆1 | = |∆2 | is shown as a
function of the exchange field Eex ≡ h1 = –h2 at different
transparencies D. The relation between the transpar-
ency and the normal-state resistance is given by D =
RSh/RN, where the Sharvin resistance RSh =

, and A is the area of the junction.
Another possibility is that X is a dirty normal wire

of conductance GN, and an insulating layer with con-
ductance GT crosses the wire [this insulating layer, for
example, can be situated at the SF–X interface]. In this
case, the distribution of the transmission eigenvalues
ρ(7) is known [22]; for example, if GT/GN @ 1, then

ρ(7) = (π"GN/e2)/7  [23]. The graph of the
critical current versus the exchange field is shown in
Fig. 3b for a set of values of α ≡ GT/GN. It follows from
this figure that, in the metallic regime α @ 1, when both
small and large transmission eigenvalues give the main
contribution to the current, EFSE is suppressed. If X
consists of two insulating barriers separated by a dirty

normal wire, ρ ∝  1/73/2 , there is a weak EFSE
effect, and the relative supercurrent enhancement does
not exceed 10%.

Figure 4 shows the relative contribution of the dis-
crete spectrum (Andreev levels) and the continuous
spectrum to the supercurrent. It turns out that the EFSE
effect is mostly due to the continuous spectrum; the
contribution of the discrete spectrum to the supercur-
rent decreases with the exchange field, while the contri-
bution of the continuous spectrum increases. If X is an
insulator, the continuous spectrum gives the main con-
tribution to the supercurrent (see Fig. 2), and there is a
pronounced EFSE effect.

Finally, we discuss the AC Josephson effect in SFISF
structures. Similar to tunnel SIS junctions [10–12], the
current consists of three parts: I(t) = I1(t) + I2(t) + I3,
where I1(t) = Re[Ic(V, h)]sin(2eVt/") is the supercurrent,

g E ϕ σ 7, , ,( )
2 7–

2∆2
-------------- ∆2 E2– h2–( )2

4E2h2–=

+
7
2
----- ϕ( )cos h2 E2–

∆2
----------------+ 

  .

e2kF
2 A/4π2

"( ) 1–

1 7–

1 7–
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I2(t) = Im[Ic(V, h)]cos(2eVt/") the interference current,
and I3 the quasiparticle current; here, h = h1 – h2. We
concentrate on the behavior of I1 and I2; the quasiparti-
cle current was studied in [13]. The complex supercur-
rent amplitude Ic(V, h) in an SFISF junction can be cal-
culated in a way similar to an SIS junction [10, 11]. At
zero temperature, it has the remarkable property that

(12)

By setting V = 0, we find again that the DC critical cur-
rent of an SFISF junction coincides with the real part of
the AC supercurrent amplitude of an SIS junction if we
replace eV by h. Using Eq. (12), we can also discuss the
AC Josephson effect of the SFISF junction. In an SIS
junction, ReIc(V) has a Riedel singularity at |eV | = ∆1 +
∆2; but in the SFISF case, the Riedel singularity appears
at |eV ± (h2 – h1) | = ∆1 + ∆2 (we assume a collinear ori-
entation of the exchange fields h1, 2). In an SIS junction,
ImIc(V) vanishes for |eV | < ∆1 + ∆2 and jumps to

π /2RN at |eV | = ∆1 + ∆2 [12]. In contrast, in an
SFISF junction, ImIc(V) jumps at |eV ± (h2 – h1) | = ∆1 +
∆2 [see Fig. 5], and the jump is half as large as in the
SIS case.

In conclusion, we have shown that there is a
pronounced exchange-field supercurrent-enhancement
effect in SFXSF junctions if the distribution of transmis-
sion eigenvalues of the X layer has maximum weight at
small values. If X is a diffusive normal metal, there is
no exchange-field enhancement of the supercurrent. At
small temperatures, there is a correspondence between
the critical current in an SFISF junction with collinear
orientations of the exchange fields and the supercurrent
amplitude in an SIS tunnel junction in the AC regime;

Ic V h,( )
1
2
--- Ic V h/e+ 0,( ) Ic V h/e– 0,( )+( ).=

∆1∆2

Fig. 4. The critical current in an SFXSF junction with ∆1 =
∆2, Eex ≡ h1 = –h2, ρ(7) ∝ δ (7 – D), and D = 0.2. The fig-
ure shows the relative contributions to the critical current
from the discrete spectrum (Andreev levels) and the contin-
uous spectrum.
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the difference in the exchange fields in an SFISF junc-
tion is the analogue of the voltage in an SIS junction.
Finally, we have also discussed the AC Josephson effect
in SFISF junctions.
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A semiclassical study is carried out of the nonlinear interaction dynamics between two-level atoms and a stand-
ing-wave field in a high-finesse cavity. As a result of atomic movement or wave amplitude modulation, a
dynamic local instability occurs in a strongly coupled atom–field system. The appearance of dynamical Hamil-
tonian chaos, fractals, and Lévy flights is demonstrated for the models of two experimental devices: a
(micro)maser with thermal Rydberg atoms and a microlaser with cold atoms. Numerical simulation showed that
the manifestations of classical chaos, atomic fractals, and flights can be observed in the appropriate real exper-
iments. Attention is drawn to the prospects provided by work on the atom–field systems in the coupling-mod-
ulated high-finesse cavities for further investigation of the quantum–classical correspondence, quantum chaos,
and decoherence. © 2002 MAIK “Nauka/Interperiodica”.
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1. Atoms with long-lived operating transition states
and a field mode of a high-finesse cavity form a
strongly coupled nonlinear dynamical system with
excitation exchange. A simple Jaynes–Cummings
model accounts for the coherent periodic lossless exci-
tation exchange [1]. Virtual processes [2], external per-
turbation [3, 4], and standing-wave modulation in a
cavity [5, 6], generally speaking, destroy the periodic-
ity and may induce Hamiltonian chaos in the semiclas-
sical limit. The deterministic (dynamical) chaos in clas-
sical systems manifests itself by the exponentially fast
divergence of the initially close trajectories in a closed
phase-space domain. Quantum evolution is unitary, and
no bona fide quantum chaos, in the sense of exponential
instability, say, of the states in a finite quantum system
can occur. However, measurements break the unitary
evolution of quantum systems and show evidence of
classical chaos, provided that the classical analog of the
quantum system is chaotic. On the other hand, quantum
evolution can suppress classical chaos and manifest
itself in the dynamical localization and tunneling
effects. These phenomena have been actively studied
with atoms and photons in cavities and traps [7]. A
strongly coupled atom–field system in a high-finesse
cavity is an ideal object for the fundamental tests of
quantum mechanics [8] (superposition principle, non-
locality, teleportation, wave-function collapse, non-
demolition measurements, etc.) and for studying the
quantum–classical correspondence, one of whose
aspects amounts to the problem of quantum chaos [9].

Let us consider a system of N identical two-level
atoms prepared by laser excitation with a given internal
energy and using a velocity selector with a given
motion velocity. Such a monokinetic “droplet” is
injected into a high-finesse single-mode cavity, where-
0021-3640/02/7512- $22.00 © 20651
upon the internal atomic energy, time of flight through
the cavity, and atomic velocity are measured at the cav-
ity output. The condition for the strong coupling regime

is expressed by the inequality Ω0  @ , ,
where Ta, f are, respectively, the atomic and field relax-
ation times and Ω0 is the amplitude of atom–field cou-
pling coefficient (vacuum Rabi frequency). In the
strong-coupling regime, oscillations arise as a result of
multiple interaction exchange between the atoms and
the field of their own radiation maintained by the high-
finesse cavity. This process was observed experimen-
tally even for single atoms and photons [8, 10].

In this work, two types of experimental devices are
considered: a Rydberg atom maser and a microlaser.
The first deals with the thermal highly excited (Ryd-
berg) atoms with long-lived (Ta . 10–2 s) operating tran-
sition states and a giant electric dipole transition
moment (da . 103 a.u.). The superconducting micro-
wave cavity of a Rydberg maser has a very high Q-fac-
tor (Q . 109–1010) and is distinguished by weakly
relaxing photons in the cavity (Tf . 10–3–10–2 s). Due to
the high atomic moment and despite the macroscopic
dimensions of the cavity (L . 1–10 cm), the vacuum
frequency is on the order of Ω0 . 2π × 105 Hz, which is
sufficient for establishing the strong-coupling regime
[8]. In microlasers, conventional cooled atoms and
high-finesse Fabry–Pérot cavities of micron size (Q .
105–106), in which the vacuum Rabi frequency is as
high as Ω0 . 2π × 108 Hz, are used [10].

When moving along the cavity axis r, atoms inter-
sect the nodes and antinodes of the standing wave
described by a certain function f(r). The atom–field-
coupling coefficient is modulated by the standing wave

N Ta
1– T f

1–
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with the frequency kfv a, where v a is the atomic velocity.
The simplest model Hamiltonian of this problem has
the following form in the rotating-wave approximation:

(1)

where the collective operators of atomic momentum

 = , of internal atomic energy  = ,

and of atomic dipole moment  = , obeying the

usual commutation rules [ , ] = 2  and [ , ] =

± , and the operators of a single-mode field with the
commutator [ , ] = 1 are introduced. In this work, an
essentially semiclassical approach is used in the
description of the nonlinear dynamics for the coupled
atom–field system with Hamiltonian (1). In the Heisen-
berg representation, a closed finite set of equations of
motion is derived for the expectation values of the oper-
ators of characteristic quantities.

2. Thermal Rydberg atoms in a microwave cav-
ity. Since the recoil energy of an atom emitting micro-
wave photons is very low, a change in the kinetic energy
in Hamiltonian (1) is ignored in this section (Raman–
Nath approximation). Rydberg atoms fly through a
high-finesse single-mode microwave cavity with the
mode function f(r) = sinkf r with a constant velocity v a

and emit and absorb photons. In this case, the atomic
interaction with the radiation field is periodically mod-
ulated with frequency kfv a by the standing wave. By
factorizing the Heisenberg equations for the operators

exp(–iωf t) ± exp(iωf t), exp(iωf t) ±
exp(−iωf t), and , one arrives at the following

closed system of Maxwell–Bloch equations

(2)

for the real averages

(3)
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P̂ p̂ jj∑ R̂z
1
2
--- σ̂z

j

j∑
R̂± σ̂±

j

j∑
R̂+ R̂– R̂z R̂z R̂±

R̂±
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2
N
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Note that the system of Eqs. (2) is different from the
Maxwell–Bloch equations in the problem considered in
[3, 4] in that it is written in the coordinate system rotat-
ing with frequency ωf and normalized in time to the

value Ω0 . The parameter δ = (ωf – ωa)/Ω0  is the

normalized detuning and β = kfv a/Ω0  is the normal-
ized modulation frequency caused by the atomic move-
ment through the nodes and antinodes of the standing
wave. The length of Bloch vector and the excitation
number density are independent integrals of motion for
Eqs. (2):

(4)

where n is the mean number of photons in the mode.
Introduce new variables

(5)

which have, respectively, a meaning of the oscillation
amplitude of atom–field interaction energy density and
the rate of atomic population inversion density z. Using
the integrals of motion (4), the five-dimensional system
of Maxwell–Bloch equations (2) reduces to three equa-
tions

(6)

which can be called the nonlinear Bloch equations with
the invariant 4(u2 + v 2) + Wz2 + 2z – 2z3 = W. Thus, a
comparatively simple nonlinear dynamical system with
one-half degrees of freedom underlies the dynamics of
a Rydberg atom maser. For the atoms which are at rest
or moving in the direction along which the cavity field
is spatially uniform, i.e., for sinβτ = 1, Eqs. (6) have an
additional independent integral of motion C = 2u – δz,
and the equation for z

(7)

can be integrated in terms of elliptic functions. At the
exact resonance (δ = 0), the quantity u = u0 is a constant
for an arbitrary modulation of the vacuum Rabi fre-
quency. The equation for inversion has the form

(8)

and can be exactly solved in terms of elliptic functions
[4]. For a large detuning, |δ| @ 1, the smallness of the
variable v  and, hence, the smallness of the change in
inversion z in the course of evolution follows from the
simple considerations about the smallness of the δ–1
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value. As a result, the variable u approximately satisfies
a simple harmonic oscillator equation with a driving
force. For the low modulation frequency, β ! 1 (slow
atoms), one has an approximate additional integral of
motion 2usinβτ – δz . const. These oscillations repre-
sent a virtually regular signal with weak amplitude and
frequency modulations. In the opposite limit, β @ 1,
i.e., where the atomic velocity is so high that the mod-
ulation frequency far exceeds the Rabi frequency, the
Rabi oscillations are the slow regular z oscillations
superposed by the fast oscillations with frequency β
and small amplitude 1/β2.

The analysis of chaos initiation in a strongly cou-
pled semiclassical atom–field system in a cavity was
carried out in a number of works [4, 6, 11, 12] for vari-
ous mechanisms of modulation of the coupling coeffi-
cient. It is based on the Melnikov method of solving
nonautonomous dynamical systems in the vicinity of
their unperturbed invariant sets. The Maxwell–Bloch
Eqs. (2) have two stationary points S± (xs = ys = es =
ps = 0, zs = ±1), which correspond to the stationary points
of the nonlinear Bloch Eqs. (6) (us = v s = 0, zs = ±1).
In the absence of modulation, these points in the z–v
plane are connected by a closed separatrix, whose sta-
ble and unstable saddle-point sets S+ coincide. The
modulation caused by one or other physical mechanism
results in the splitting of this homoclinic set into two
surfaces intersecting transversally infinitely many
times in the respective Poincaré sections. It is this
mechanism of formation of a highly intricate
homoclinic pattern in the vicinity of the unperturbed
separatrix which is responsible for the chaos initiation
in the atom–field systems with modulation. The dis-
tance between the stable and unstable sets of saddle sin-
gular point S+ determines the width of a stochastic layer
appearing at the site of the unperturbed separatrix. For
our system, this quantity, as calculated by the Melnikov
method, has the form

(9)

From this formula, several important conclusions can
be drawn. The distance between the split surfaces
changes sign with modulation frequency β, and hence,
these surfaces intersect transversally infinitely many
times. This occurs for β values as small (or large) as
desired, although the width of stochastic layer
decreases exponentially fast for small and large β. As
expected, the surfaces do not split at the exact reso-
nance δ = 0, and the motion is fully regular.

Chaos in the deterministic systems is primarily
characterized by the exponential sensitivity of motion
to small changes of initial conditions. A measure of this
sensitivity is given by the Lyapunov exponent

(10)
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2π δ β2
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where ∆(τ) is the distance (in the Euclidean sense), at
the instant of time τ, between two trajectories that were
close to each other at τ = 0. The number of Lyapunov
exponents is equal to the dimensionality of the system.
If the maximal Lyapunov exponent is larger than zero,
the element of phase volume increases exponentially
fast in the respective direction (and decreases in the
other direction, because the phase volume of the con-
servative system is an invariant).

The topographic maps of the maximal Lyapunov
exponent were calculated in our works [3, 4–6, 11, 13,
14] for atom–field systems with various modulation
variants. Figure 1 shows the λ map for the Rydberg
atom maser obeying equations of motion (2) with the
initial state x0 = y0 = 0, z0 = 1, e0 = p0 = 1 corresponding
to the fully excited atoms at the cavity input and the

photon mean number density n0 =  at τ = 0. The gray-

shadowed regions correspond to the positive values of
the maximal Lyapunov exponent in the corresponding
ranges of both driving parameters (detuning δ and mod-
ulation frequency β). The range of most unstable Rabi
oscillations of moving atoms is given by |δ| & 2 and
0.01 & β & 2. Inasmuch as the initial atomic and field
values can be measured with only a finite accuracy (say,
equal to ∆zin for the population inversion at the cavity
input), the atomic states at the output can be predicted,
within a certain confidence interval ∆z, for a time not
exceeding the so-called predictability horizon (correla-
tion uncoupling time):

(11)

1
2
---

τc . 
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Fig. 1. The maximal Lyapunov exponent λ for Eq. (2) vs.
the logarithm of velocity β of thermal atoms (in units of

Ω0 /kf) and the detuning δ (in units of Ω0 ).N N
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which shows very weak dependence on ∆zin and ∆z and,
hence, is as representative a characteristic of the system
as the Lyapunov exponent. Since the maximal confi-
dence interval lies in the range |z | ≤ 1, while λmax . 0.1,
the predictability horizon of a Rydberg atom maser can
be τc . 20–30 dimensionless units or .20–30 Rabi
oscillations.

A Rydberg atom maser is a promising device for
observing the manifestations of dynamical chaos in the
fundamental process of interaction between radiation
and substance. Imagine experiments that are repeatedly
carried out at the same conditions with the atomic
ensemble prepared by a laser π-pulse in a collective
excited state with zin . 1. The atomic state at the output,
zout, can be measured using the high-sensitivity selec-
tive atomic ionization technique [8]. The inevitable
errors ∆z in preparing the initial atomic state in the reg-
ular maser operation mode produce the output errors
∆zout of the same order. In the chaotic regime, the initial
uncertainty increases exponentially, resulting in a com-
plete uncertainty of the atomic output states in a reason-
able time. The dimensionless atomic-flight time with a
constant velocity v a through a microwave cavity of
length L = mλf (m is the number of wavelengths) is τout

= 2πm/β. From Eq. (11), it follows that even a negligi-
ble initial error ∆zin = 10–4 of atomic state would lead to
a complete uncertainty ∆zout . 2 at the output in time τ
. 200 for λ . 0.05. If ∆zin = 10–2, then the probability
of obtaining any value of zout in the interval [–1, 1] is
almost unity in time τ . 100. To feel the difference, it
will suffice to carry out a control experiment at the
exact resonance (δ = 0), for which the motion is fully
regular with any initial value and any atomic velocity.
These considerations are illustrated in Fig. 2, where the

Fig. 2. Chaotic spreading of a small uncertainty ∆zin = 10–4

in the atomic population inversion at the cavity input over
the entire interval ∆zout of allowable values at the output
(β = 0.1 and δ = 0.5). Inset: regular dependence ∆zin(∆zout)
at the exact resonance (β = 0.1 and δ = 0).
dependence ∆zout(∆zin) is shown for very small ∆zin =
10–4 in the chaotic regime with λ . 0.04. For compari-
son, the same dependence is demonstrated in the inset
for –1 ≤ ∆zin ≤ 1 in the regular regime with δ = 0, all
other things being the same.

Let us discuss the characteristics of the chaotic
regime that are expected for real Rydberg atom masers.
In a high-finesse superconducting cavity with Q . 108

and L . 1–10 cm, the vacuum frequency of the Rydberg
atoms reaches Ω0 . 2π × 105 Hz [8]. For N = 106 Ryd-
berg atoms, the period of collective oscillations is TR =

2π/Ω0  . 10–8 s, which is appreciably lower than all
decoherence times. In the detuning range |δ| & 2, the
positive maximal Lyapunov exponent on the order of
0.005 & λ & 0.1 was obtained numerically in the inter-
val of dimensionless modulation frequency 0.01 & β & 1,
which corresponds to the atomic velocities 106 & v a =
108β & 108 cm/s. An atom with velocity v a . 5 ×
106 cm/s flies through a 10-cm cavity in a time on the
order of 2 µs, which amounts to approximately τout .
200 dimensionless units. Our calculations show that the
complete mixing occurs in approximately the same
time, so that any output value zout is equally probable.

Let us dwell briefly upon the simplest, in our opin-
ion, experimental scheme for observing the manifesta-
tions of semiclassical chaos with atoms in cavities. The
idea is to periodically switch on and off the field in a
cavity according to a certain law f(t). Taking this mod-
ulation in the form f(t) = sin2ωmt and assuming, for sim-
plicity, that the atom flies along the cavity axis, where
the field is uniform, one can use almost all the results
presented above. The Maxwell–Bloch equations have
the form of Eqs. (2), in which one should replace
sinβτ  sin2β1τ1, where τ1 = Ω0t is the new measure
of time and β1 = ωm/Ω0 is the dimensionless modulation
frequency. Calculations show that the maximal
Lyapunov exponent is positive in the same ranges of
modulation frequency and detuning as in Fig. 1 but is
somewhat smaller. One can expect that the manifesta-
tion of chaos occurs with a single atom if the frequency
of switching on and off ωm = β1Ω0 lies in the range
(0.01–1)Ω0 Hz. The resulting “spread” of a small initial
inversion uncertainty has the same character as in
Fig. 2. Below, some estimates are given for the Rydberg
atom micromasers (although a similar experiment is
possible for ordinary atoms in a microcavity). Let the
period of vacuum Rabi oscillations of one atom be T1 =
2π/Ω0 . 2 × 10–5 s and the field modulation period be
Tm = 2π/ωm . 2 × 10–4 s (i.e., β1 . 0.1). If the inversions
of atoms entering the cavity one by one lie in the range
∆zin . 0.01, then, for the detuning |δ| . 1, any output
atomic state ∆zout becomes almost equally probable in
the interval [–1, 1] at t . 2 × 10–3 s, i.e., at v a . 103 cm/s
and L . 2 cm. The advantages of operating with a single
atom are evident, because there is no need to take care

N
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of producing monokinetic droplets consisting of many
identically prepared atoms. Except for the pulsed cavity
field, the scheme and parameters of the suggested
experiment are quite standard (see [8]).

We also considered the variants of driving-parame-
ter modulation for the quiescent atoms in a high-finesse
cavity. In [5], the parametric exponential instability and
the Hamiltonian chaos were observed for the Maxwell–
Bloch equations with detuning modulation. The topo-
graphical λ maps showed a well-defined correlation of
the chaos zones and the zones of different-order para-
metric resonances. In [6], a semiclassical model of
atom–field interaction with the modulation of standing-
wave node positions was analyzed, which can be imple-
mented using an electro-optical modulator by changing
cavity length. The Maxwell–Bloch equations have
practically the same form as Eqs. (2) with the modula-
tion function 1 + asinbτ, and their solutions are most
unstable in approximately the same ranges of dimen-
sionless detuning and modulation frequency b as for the
moving atoms.

3. Cold atom in a Fabry–Pérot microcavity. The
recoil energy of sufficiently cold atoms interacting with
visible light is comparable to their kinetic energy. In
this section, the nonlinear dynamics is described for a
simple semiclassical model of interaction between a
cold atom and a given mode of a high-finesse Fabry–Pérot
microcavity. Let us choose the following quantum expec-
tation values as dynamical variables: ξ = kf , ρ =

/"kf, u = , v  = i , and z =

. Then one obtains the following closed system of
equations of motion from Hamiltonian (1) with N = 1
and mode function f(r) = –coskfr[15]:

(12)

where the dot stands for the differentiation with respect
to the dimensionless time τ = Ω0t, and the driving

parameters α = " /mΩ0, δ = (ωf – ωa)/Ω0, and N0 =

 are the normalized atomic recoil
frequency, the normalized resonance detuning, and the
number of excitations, respectively. The system of
Eqs. (12) generalizes the corresponding equations in
[16, 17] to the case of arbitrary N0. The integral of
motion

(13)

reflects the energy conservation in the system.
At the exact resonance (δ = 0), the slow translational

variables ξ and ρ are separated from the fast atom– field
variables u, v, and z. As a result, the system of equations
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acquires an additional conservation law u = const and
becomes integrable. The atom moves in the spatially
periodic optical potential u0cosξ, so that the motion of

its center of mass obeys the simple equation  +
αu0sinξ = 0. Depending on the energy E, the atom exe-
cutes either the regular oscillations in a potential well or
regular flight above the tops of potential hills. The
atomic population inversion satisfies the equation of
type (8) and represents a regular Rabi-oscillation signal
modulated by the standing wave. In the case of nonzero
detuning, the translational motion obeys the equation

(14)

where u is the function of time and all dynamical vari-
ables of the system. For the chaos to arise upon the
atomic motion in the cavity with standing wave, the
simplest harmonic oscillations of u with time are suffi-
cient. Taking into account that the normalized Rabi fre-

quency has the order of  > 1, which far
exceeds the frequency of small translational oscilla-

tions ~ , the equations for the fast variables of the
system of Eqs. (12) with N0 @ 1 reduce to linear equa-
tions of the Bloch type

(15)

in which the function cosξ can be set equal to a con-
stant c on the time interval of many Rabi oscillations.
The general solution to these equations for u has the
form

(16)

where Ω =  is the normalized Rabi fre-
quency. For an atom fully excited at the cavity input
(z0 = 1) and for an arbitrary field state in the cavity
(u0 = v 0 = 0), the oscillation amplitude of atom–field
interaction energy changes harmonically with the Rabi
frequency. A nonlinear pendulum with harmonic mod-
ulation frequency (14) is the classical model for which
the Hamiltonian chaos appears in the vicinity of the
broken unperturbed separatrix [18]. Our calculation in
[15] gives the following estimate for the width of sto-
chastic layer:

(17)

where ω = /Ω . The quantity ∆ is a change in
the unperturbed motion energy normalized to the sepa-
ratrix value Es = ω2. In our case, Ω/ω @ 1. Note that
Eq. (17) gives the lower bound for the layer width,
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because, generally, u is not a harmonic but a frequency-
and amplitude-modulated signal. Small changes of
energy give rise to relatively small changes in fre-
quency. For motion energy that is much lower or much
higher than Es (i.e., near the potential well bottoms or
high above the tops of potential hills), small changes in
frequency give rise to small changes in phase during the
period of translational oscillations. However, near the
unperturbed separatrix, where the oscillation period
tends to infinity, even small changes in frequency can
result in considerable changes in phase. This is the rea-
son for the exponential motional instability of the para-
metric nonlinear oscillator (14) and, hence, for the cha-
otic atomic motion in the field of a periodic standing
wave.

Numerical simulations confirm these premises. Fig-
ure 3 shows the λ map as a function of detuning δ and
initial atomic velocity va (cm/s) for N0 = 10 and α = 10–3.
The calculation of other λ maps in the coordinates
v a−α, v a–δ, z0–v a, and α–N0 allowed us to determine
the ranges of driving parameters and initial conditions
for which one could expect the maximal motional insta-
bility of real atoms in the microcavities: α * 10–3, N0 &
102, and |δ| & 2. The strong-coupling condition
Ω0Ta, f /2π * 102 is fulfilled in the visible range for the
metastable 2S–2P transitions in helium and magnesium
and the 3S–3P transition in calcium [19] placed in a
high-finesse Fabry–Pérot cavity of micron size with
Q * 106 and Ω0/2π . 108 Hz [10]. In experiments [10]
with cold atoms, the authors managed to create an
atomic trap in the field of a single photon in such cavi-
ties and to detect long atomic flights and small atomic
oscillations in the potential well. Note that the observa-
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Fig. 3. The maximal Lyapunov exponent λ for Eq. (12) vs.
the initial velocity va of a cold atom (in cm/s) and the detun-
ing δ (in units of Ω0).
tion time in these experiments far exceeded the relax-
ation times.

4. Atomic fractals and flights. A typical chaotic
trajectory of a cold atom in a cavity consists of intervals
of constant motion of different length (so-called Lévy
flights) interrupted by random walks. Such an intermit-
tency is typical of Hamiltonian systems with nonhomo-
geneous phase space. The Lévy flights appear due to
the presence of “islands,” to whose boundaries the cha-
otic trajectory can “stick” in the phase space for a rather
long time. In the closed Hamiltonian system with non-
homogeneous phase space, the representative point on
the chaotic trajectory sooner or later approaches, as
closely as desired, the invariant curve (island boundary)
that separates the regular and chaotic motions. Near this
boundary, λ  0, and the partially broken KAM tori
(cantori) block the trajectory escape to the stochastic
“sea.” As a result, the trajectory very slowly moves
away from the island boundary. It is worth noting that
the Lévy flights occur not only with particles moving in
the coordinate space. In the space of internal atomic
and field coordinates, they appear as long portions of
regular oscillations of these coordinates. We observed
such flights in the Rabi signals from both cold and hot
atoms flying with a constant velocity. Note that in the
Rabi oscillations of atoms moving through the standing
wave and quiescent atoms in the cavity with length
modulation, structures arise which are associated with
the presence of standing-wave nodes, in which the vac-
uum Rabi frequency is zero. These structures are
clearly seen both in the signal [20] and in its wavelet
spectra, giving grounds to call this chaos structural
chaos [6, 12, 21].

The intermittency, the Lévy flights, and the struc-
tures fundamentally change the statistical properties of
the chaotic motion [22, 23]. The motion predominantly
in the region with complete mixing leads to normal dif-
fusion and to exponential Gaussian and Poissonian dis-
tribution functions for the spatial and temporal diffu-
sion, respectively. The intermittency gives rise to the
anomalous diffusion described by the Lévy distribution
functions with a power-law decrease at their wings and,
hence, with infinite moments. It was found by computer
simulation [24] that the positions of a cold atom in the
optical potential evolve with time following the law
〈ξ 2m〉  ~ τµ(m), where the transport exponent µ(m) is, in
the general case, different for different time intervals.
With normal diffusion, the transport exponent for the
second moment is unity; i.e., µ(1) = 1. The Lyapunov
exponent λ depends on the detuning δ (Fig. 3), and its
value is a suitable measure of mixing in the system. For
a relatively large λ (“good mixing”), the asymptotic
value µ(1) ≈ 1.13 is close to the normal value. For small
λ and weak mixing, the asymptotic value µ(1) ≈ 2.2 was
found to correspond to the superdiffusion, i.e., to the
ballistic atomic motion with acceleration. Figure 4
illustrates the evolution of several moments 〈|ξ2m|〉 for
λ . 0.02 (the slopes of the lines are given for τ * 103) [24].
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In the superdiffusion regime, the self-similarity is
clearly seen; i.e., µ(km) = kµ(m) for k = 1, 2, 3, and 4.

According to the Poincaré theorem, every trajectory
of a closed conservative dynamical system (except for
the trajectories of the set of measure zero) returns to an
arbitrary vicinity of its initial point infinitely many
times. The recurrence time distribution is a representa-
tive statistical characteristic of chaotic motion. For
good mixing, the distribution is Poissonian, P(τ) =
h−1exp(–hτ), where h is the Kolmogorov–Sinai entropy.
The motion with intermittency and Lévy flights leads to
the power law, P(τ) ~ τ–γ at τ  ∞. The algebraic
asymptotic behavior of the Poincaré recurrence times is
shown in the inset in Fig. 4 for the long atomic Lévy
flights with γ * 2. The exponents γ and µ are related to
each other.

The intermittent chaotic dynamics with Lévy flights
gives rise in the Hamiltonian system to the trajectories
with fractal properties. Let two atomic counters be
placed at the cavity input and output and let them detect
the time τd of atom departure from the cavity. Let the
atoms with given initial momenta ρ0 (all other things
being the same) be placed one by one in the middle of
the cavity, and calculate the τd(ρ0) dependence. This
function has an obviously fractal character. Along with
the regions of ρ0 values where it is smooth, there are
regions where τd(ρ0) can by no means be resolved.
These properties repeat for the initial momentum reso-
lution as small as desired (Fig. 5). The fact that the
curve becomes more complicated with a decrease in the
sampling interval e is the consequence of atomic
dynamics in the optical potential rather than of the res-
olution. Evaluation of the curve “length” T =

 as a function of e yields the function

T(e) ~ e–d, where d . 0.84 has the meaning of fractal
dimension. The properties of this fractal are the subject
of a separate study [25].

It should be emphasized that the random walk with
Lévy flights appears in a fully deterministic system.
The spontaneous radiation process, in which the atomic
momentum changes chaotically, should seemingly be a
Gaussian process. However, this is not necessarily so.
In the experiments [26] on cooling atoms down to the
energies lower than the recoil energy, Lévy statistics
were observed, in which long intervals of constant
momentum alternated with random jumps. The proba-
bility of an atom being held in a close vicinity of ρ = 0
for time τ represents a broad distribution decreasing at
its wings following such a slow power law that the aver-
age time 〈τ〉  diverges.

The two-level atoms in high-finesse cavities are
ideal objects for studying the interrelation between the
micro-, meso-, and macrocosms. By changing the num-
ber of atoms (photons), the resonance detuning, the
spontaneous radiation rate, etc., one can pass from the
dynamical regimes, in which the quantum effects are
significant, to the regimes that are essentially classical.

τd i 1+, τd i,–
i∑
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In this review, only the semiclassical conservative
atom–field systems have been discussed. A further
problem consists in the quantum description of these
systems and the comparison of the semiclassical and
quantum results on the regular dynamics and classical
chaos. Of special interest is revealing how the noise and
dissipation (mainly spontaneous radiation) influence
the quantum dynamics, because they can destroy quan-
tum interference and exhibit traces of dynamical chaos
in the corresponding classical analog.

Fig. 4. Log–log plot of the evolution of moments 〈|ξ|2m〉  of
the coordinate of cold atom. Inset: the Poincaré recurrence
time distribution.

Fig. 5. Time τd of cold atom departure from the cavity (in
units 1/Ω0) vs. the atomic initial momentum (in units "kf)
for the sequentially increasing resolution.
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In [1], V.B. Shikin invoked the well-known phenom-
enon of resonance splitting in coupled resonators to
carry out a model calculation on the mutual influence of
electron resonance in a magnetic field and the electro-
magnetic resonance system where electrons are placed
for measurements. Without numerical analysis of the
experimental situation occurring in [2, 3], he concluded
that some features of cyclotron resonance observed in
[2] for electrons localized over helium are artifacts.
Below, we show that this conclusion is erroneous.
Though casting no doubt on the possible mutual influ-
ence of the coupled resonance systems (this was
directly stated, in particular, in Section 2 of [2]), we
present once more the arguments which can be formu-
lated upon careful reading of [2] and which prove that
this mutual influence is negligible. 

1. As follows from Fig. 3, the relaxation time is τ =
5 × 10–9 s at n = 108 cm–2 and, correspondingly, the
parameter σ0 = 0.05 (Eq. (14) in [1]), i.e., is much
smaller than unity. For other electron concentrations, it
becomes even smaller, either because of a decrease in n
with a decreasing pressing field (the τ variations are
small in this case) or because of the increase in the
parameter nτ in pressing fields higher than 200–
300 V/cm. Therefore, the statement made in [1] does
not hold.

2. In [2], special precautions were taken for weaken-
ing electron coupling to the resonator field; the electron
layer was brought closer to the resonator bottom to pro-
vide a comparatively weak (at a level of 10–20%) influ-
ence of the cyclotron resonance on the resonator Q fac-
tor (see Fig. 2). It was pointed out that the electron-
induced shift of resonator eigenfrequency was small
and disturbed (at a fixed frequency of the measuring
signal) the signal passage through the resonator only by
10%. For a Q factor of 2000 and a frequency of
18.5 GHz, this corresponds to a frequency shift of less
than 1 MHz or, when recalculated to the magnetic field,
less than 0.3 Oe, which is two to three orders of magni-
tude lesser than the observed CR shifts under the action
of pressing field. This gives an estimate for the “anti-
crossing” in the situation considered.
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3. The fact that the data presented in Fig. 4 on the
resonance shifts coincide for different helium layer
depths (which is varied in different experiments by
approximately 1.5 times; in energy terms, this corre-
sponds to a change in the coupling constant more than
twice), different frequencies (18.5 and 37.7 GHz), and
different temperatures (from 0.36 to 1.2 K) (according
to Eq. (20) in [2], this is accompanied by a change in τ
by an order of magnitude) by no means fits to the
scheme suggested by Shikin. Note also that in [3],
where the results were obtained in the range of pressing
fields <600 V/cm, the CR shift is appreciably larger
than in our case and corresponds, with an accuracy of
10–20%, to Eq. (15) in [2] without the constant term.
This may be due to the fact that the Wigner crystalliza-
tion in [3] occurs at temperatures substantially lower
than in [2].

4. Both the resonance shift and its linewidth for
electrons over 3He and 4He are inversely related to their
surface tensions (Fig. 4). One can hardly suggest any
explanation for this observation other than the coupling
to riplons and surface deformation.

5. The study of electron heating by measuring the
signal (Fig. 5) showed that the relaxation time increases
with electron temperature, whereas the resonance shift
drops to zero and even changes sign in some cases (this
correlates with a decrease in the CR shift with a rise in
temperature [3]). If the author of [1] were right, all
things would be quite the reverse.

These arguments are more than sufficient for con-
sidering the results of work [1] inconsistent.
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In my work [1], I suggested a simple model that
allows the description of the dynamics of 2D electrons
in a resonator. This model can be used to explicitly
renormalize the resonator eigenfrequencies in the pres-
ence of a 2D electron layer and describe the anticross-
ing effect in a vertical magnetic field and, what is prob-
ably most interesting, determine the influence of a 2D
electron system on the transmission coefficient for an
external wave passing through the electron-“loaded”
resonator (a version of the Fabri–Pérot analyzer).

The anticrossing phenomenon in a system “resona-
tor + 2D electrons” was recently observed experimen-
tally with details following from the description given
in [1]. This communication is admitted as a plenary lec-
ture at the LT-23 Japan, 2002.

As regards signal passage through a resonator with
2D electrons, the results of [1] are also useful in inter-
preting the data of the interesting work [2], which was
pointed out in the comments at the end of [1]. The fre-
quency shifts observed in [2] upon loading resonator
with electrons, as well as the noticeable sensitivity of
the amplitude of passing the signal to the depth of the
helium layer in the resonator, can serve as an indepen-
dent information source about the density of 2D elec-
tron systems, if one takes into account the results of [1].
However, these effects are mentioned in [2] too briefly
and without any quantitative details.
0021-3640/02/7512- $22.00 © 20660
As for the principal achievement of [2], namely, the
as yet unexplained quadratic dependence of the CR line
shift on the pressing field, starting practically at its zero
value, it may well be that the anticrossing is immaterial
in this case (the author of [2] insists on this), provided
that the data on electron density are valid. In fact, there
are indications [3, 4] that the method used in [2] for
determining the 2D electron density from a given press-
ing field that holds electrons near the helium surface is
not unambiguous. In other works with electrons in a
resonator, the authors used more complex cells in order
to determine the electron density more reliably (see
[5]).
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