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Academician Il’ya Mikhailovich Lifshits was an out- I. M. Lifshits is being used for the whole epoch in the wor

standing theorist and prominent scientist who left a deep
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imprint in physics as well as in memories of his colleagu
He was an apprentice and friend of L. D. Landau, who o
lined the evolution of a number of new trends in mode
physics of the condensed state of matter. The list of branc
in which I. M. Lifshits obtained fundamental results includ
the dynamics of crystal lattice with defects, the electro
theory of metals, the theory of energy spectra of disorde
systems, quantum diffusion and macroscopic quantum
fects in solids, the diffusion theory of phase transitions, a
physics of macromolecules and biopolymers.

Il’ya Mikhailovich is rightfully regarded as the founde
of ‘‘fermiology’’ since a new approach to the reconstructio
of Fermi branches in the energy spectra of metals is ass
ated with him or with his pupils. The terminology borrowe
from publications issued from the Kharkov school guided
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The research in the dynamic theory of real crystals
determined the development of this field in solid state ph
ics in many respects. The Lifshits theory of regular pertur
tions, which has become a working tool for calculating t
vibrational spectra of crystals with local defects, attrac
attention of not only physicists, but also mathematicians d
to its elegance.

Il’ya Mikhailovich possessed profuse intuition whic
helped him to find absolutely new trends in physics. Coal
cence in solid solutions, the macroscopic theory of twinn
in crystals, quantum diffusion in helium crystals, and pha
transitions in macromolecules of biopolymers can serve
examples of complex physical phenomena which were
plained theoretically in the works by I. M. Lifshits, thus en
suring advances achieved in many laboratories.

10001-02$10.00 © 1997 American Institute of Physics
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principles of Il’ya Mikhailovich were combined with open
ness and benevolence. These features of Il’mekh’s chara
~Il’mekh was his nickname among colleagues and cowo
ers! deeply impressed everyone who had the pleasure
meeting him. For this reason, the significance and influe
of Il’ya Mikhailovich spread far beyond his scientific schoo
Il’ya Mikhailovich worked in Kharkov for several decade
so that the Kharkov school in the theory of solids
‘‘manned’’ by his pupils~many of them have become prom
nent scientists themselves!.

The outstanding contribution of I. M. Lifshits to low
temperature physics as well as the role played by him in
2 Low Temp. Phys. 23 (1), January 1997
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perature Physics’’ are difficult to overestimate.
The editorial board of LTP considers that the publicati

of the special issue of the journal devoted to the memory
I. M. Lifshits is a proper deed to celebrate his 80th anniv
sary. Taking into account the vast scientific interests of Il’
Mikhailovich, we sometimes go beyond the traditional sco
of topics of the journal to give the opportunity to the autho
to mark by a scientific publication the role of I. M. Lifshits i
their research work and life.

Editorial Board

Translated by R. S. Wadhwa
2Editorial Board



Two-dimensional electron gas in a magnetic field and point potentials
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This paper presents a brief review of the electron properties in two-dimensional systems which
contain zero-range scatterers which are subjected to a magnetic field. The electron spectrum
is described for a periodic arrangement of point scatterers and rational magnetic flux per unit cell.
Delocalized states on the Landau levels are constructed for the case of positional disorder.
The electron localization in a one-dimensional disordered set of scatterers is studied. Application
to the study of electron transmission through quantum dots and ballistic channels is reviewed.
© 1997 American Institute of Physics.@S1063-777X~97!00301-0#
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Fifty years ago I. M. Lifshits published a paper, entitle
‘‘On the Theory of Degenerate Regular Perturbations. I. D
crete Spectrum’’, in the Journal of Experimental and The
retical Physics. This paper was a starting point of a serie
papers in which I. M. Lifshits developed his famous theo
of degenerate perturbations and successfully used it in st
ing the vibrations of disordered lattices. The theory of deg
erate perturbations was found to be a very effective tool
investigation of the local modes that appear outside of
initial spectrum. Lifshits emphasized that an ‘‘importa
class of perturbations, which can be reduced to the form
degenerate perturbation, corresponds to local perturbat
with a very short range’’. For an electron described by
Schrödinger equation, the local perturbation corresponds
zero range or point potential, which was first introduced
E. Fermi2,3 for three dimensional (3D) systems. Today the
point potential model is one of the very popular models
solid state physics and nuclear physics~see, e.g., the mono
graphs in Refs. 4 and 5 and the more recent mathema
review papers6,7!. This model is especially useful for study
ing the electronic properties of 2D systems in a magneti
field. These systems are ideal objects for application of
local perturbation theory because of a very rarefied ini
spectrum. It consists of a zero measure set of the infini
degenerate, discrete Landau levels8,9 that leave empty almos
all of the energy axis for the new states which occur a
result of degenerate perturbation and which are describe
the Lifshits theory~see Eqs.~2! and ~3! below!.

This paper is actually a mini-review dealing with th
electron properties of 2D systems with point potentials an
magnetic field. In Sec. 2 we describe the main points of
Lifshits theory of degenerate perturbations in the mod
formulation, the definition of a point potential, and modi
cation of the main equations of the degenerate perturba
theory for the case of an electron moving in an external fi
and in a field of a set of point potentials. In Sec. 3 we rec
the well-known basic results concerning electron dynam
in the presence of a magnetic field, obtain the scattering
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qualitatively the structure of electron spectrum in a magne
field and in a field of a single point potential and of a set
point potentials. The Bloch-type electron eigenstates in
field of an ordered set of point potentials and in a so-cal
rational magnetic field are described in Sec. 4, in which
dispersion laws and energy-flux diagram~Hofstadter-type
butterfly10! are obtained. Two-dimensional systems conta
ing a disordered set of point potentials are considered in S
5. Here we describe the delocalized states on the Lan
levels~Subsec. 5.1!, the density of states~DOS! for some of
the exactly solvable models~Subsec. 5.2!, and the electron
localization in the field of a one-dimensionally disordered
of point potentials~Subsec. 5.3!. In Sec. 6 we deal with the
application of point potentials to the theory of mesosco
objects such as quantum dots~Subsec. 6.1! and ballistic con-
ducting channels~Subsec. 6.2!. In Sec. 7 we give a brief list
of some of the unsolved problems and conclude this m
review.

2. DEGENERATE PERTURBATIONS AND POINT
POTENTIALS

Let us consider a quantum system described by a Ha
tonianH1V. The degenerate perturbationV is defined as1

V5(
j
Vj uy j&^y j u, ~1!

where$uyj &% is a set of orthogonal and normalized states. T
perturbed eigenstatesuc& with eigenenergiesE lying outside
the initial spectrum of the unperturbed HamiltonianH are the
sums of scattered waves

uc&5(
j

h jG~E!uy j&, h j5Vj^y j uc&,

G~E!5~E2H !21. ~2!

150015-12$10.00 © 1997 American Institute of Physics
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local potentials, which we call point potentials. A 2D point
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sponding sets of coefficientshj can be found from the set o
equations

(
j

L i j ~E!h j50. ~3!

Here

L i j ~E!5
d i j

Tj~E!
2~12d i j !Gi j ~E!,

Gi j ~E!5^y j uG~E!uy j&, ~4!

whereTj (E) is the scattering amplitude

1

Tj~E!
5

1

Vj
2Gj j ~E!. ~5!

Equations~2! and ~3! are the principal ingredients in th
Lifshits theory of local perturbations. In the Russian scie
tific literature they are often called the Lifshits equatio
~see, e.g., Ref. 11!. The main point in this theory is the
expression of the perturbation in a form~1!. Because of this
form, the perturbation~1! is the sum of the projection opera
tors, such that thej th operator projects the stateuc& onto a
numberhj @see Eq.~2!#. Thus the perturbed states~2! lying
outside the initial spectrum can be mapped onto the disc
set of coefficientshj , which map the initial Schro¨dinger
equation (H1V)uc&5Euc& on the Lifshits equations~3!.
Note that these equations, in spite of their visible simplic
are complex equations, because all their coefficients con
the spectral parameter~unknown eigenenergyE! in a com-
plicated, nonlinear way.

The Green’s operatorGV(E)5(E2HV)
21 of the per-

turbed HamiltonianHV5H1V can be expressed in terms
the Green’s operatorG(E) of the unperturbed Hamiltonian
and the same matrixL(E) ~4!

GV5G1(
i , j

Guv i&~L21! i j ^y j uG. ~6!

Using expression~5! for the scattering amplitude, we ca
rewrite the matrixL(E) @Eq. ~4!# in the form

L~E!5A1Q~E!,

where

Ai j5
d i j
Vj

,

and

Qi j ~E!52Gi j ~E!. ~7!

The diagonal matrixA depends on the perturbation~1! only,
while the matrixQ(E) reflects the properties of the unpe
turbed HamiltonianH.

Let us consider now a single electron which is describ
by the Schro¨dinger equation with an unperturbed Ham
tonian H which includes the interaction with an extern
~e.g., magnetic! field. In this case an important class of pe
turbations, which can be reduced to the form of degene
perturbations, i.e., which can be described by equations s
as Eqs.~1!–~6!, is formed by zero-range limits of finite-rang
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-

te

,
in

d

te
ch

potential can be treated as an attractive zero-range pote
with a single bound state with a fixed eigenenergy2Eb .
There are several ways to introduce such a potential.
first one is based on the idea12 of regarding a point potentia
as a delta-function with an infinitely small amplitude. Mo
precisely, the Fourier image of a point potential must
equal to some constant within a circle centered at the ori
and zero otherwise. The corresponding limiting proced
~the constant tends to zero and the radius tends to infin
keeping the scattering data fixed! can then be used. The se
ond approach5 is based on the Krein theory of self-adjoin
extensions.13 Finally, a point potential can be described al
with the help of a direct zero-range limit in coordina
space.14 The resulting 2D point potential represents a certa
generalized function which is less singular than the 2D Dirac
delta function. The character of this singularity is attributab
to the logarithmic singularity of the 2D Green’s function in
coordinate representation with coinciding arguments. A
tailed exposition of a general theory and numerous appl
tions of point potentials in all three dimensions can be fou
in Refs. 4 and 5.

The main equations of degenerate perturbations the
~2!–~4!, and ~6!, remain valid for the case of an electro
moving in a field of a point potential. However, some min
modifications must be made~see details, e.g., in Ref. 15!.
First, instead of the set of statesuyj & we must now use the se
of statesur j& localized at the points$r j%, where the point
potentials are placed. We can therefore write the scatte
wave @Eq. ~2!# with the eigenenergyE as follows:

c~r !5(
j

h jG~r ,r j ;E!, ~8!

whereG~r ,r 8;E!5^r uG(E!ur 8& is the Green’s function of the
unperturbed Hamiltonian in coordinate representation. S
ond, the scattering amplitude in this case is

1

Tj~E!
5 lim

r ,r8→r j

@G0~r ,r 8;2Ebj!2G~r ,r 8;E!#

5G0
reg~r j ,r j ;2Ebj!2Greg~r j ,r j ;E!. ~9!

HereG0
reg~r ,r 8;E! is the Green’s function of the free Hami

tonianH052D ~D is the 2D Laplace operator!, Ebj is the
binding energy of the point potential placed at the pointr j ,
and finally Greg~r j ,r j ;E! denotes the regular part of th
Green’s function. The scattering amplitude~9!, together with
an obvious equality

Gi j ~E![Greg~r i ,r j ;E! ~10!

~in fact, only the diagonal elements are needed in the re
larization procedure!, defines the matricesL(E) in Eq. ~4!,
andQ(E) in Eq. ~7!. The latter matrixQ in this case is called
the Krein matrix.6,7,13 The diagonal matrixA has the ele-
ments d i j G0

reg~r j ,r j ;2Ebj!. Equation ~6! for the perturbed
Green’s function has the form

16Gredeskul et al.
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3~L21! i j G~r j ,r 8;E!. ~11!

Thus, Eqs.~3!, ~4!, and~8!–~11! give a complete description
of the electron spectral properties in a system with po
potentials and an external field. The central role in suc
description is played by the matrixL(E): the zeros of its
determinant are the eigenenergiesEn of the perturbed Hamil-
tonianH1V, its eigenvectors$h j (En)%, which correspond to
the zero eigenvalue~3!, determine the wave functions~8!
with eigenenergies lying outside the spectrum of the unp
turbed HamiltonianH, and finally the inverse matrix~L!21

determines the Green’s function~11! of the perturbed system
H1V.

3. COMBINATION OF POINT POTENTIALS AND MAGNETIC
FIELD

The motion of electron with charge2e and massM in a
2D system, subject to a perpendicular magnetic fi
B5~0,0,2B!, is described by the Schro¨dinger equation

2~¹12p iwA!2c~r !5Ec~r !. ~12!

We use the set of units, where\52M51 and all the lengths
are measured in some scaled. In such units all quantities ar
dimensionless. In Eq.~12! A is a vector potential andw is
dimensionless flux

w5
F

F0
, F5Bd2 ~13!

~F05hc/e are the normal flux quanta!. In what follows we
choose the Landau gauge of a vector potential

A5~y,0,0!.

The spectrum of the system consists of a set of the Lan
levels8,9

EnL5S n1
1

2DEL , n50,1,..., ~14!

whereEL54pw is the distance between Landau levels. T
normalized eigenfunctions are the Landau functions

Ln,k~x,y!5~2n11p3/2n! l !21/2e2 ikx21/2~y/ l2kl !2

3Hn~y/ l2kl !,

n50,1,...,2`,k,`, ~15!

~l5~2pw!21/2 is dimensionless magnetic length, andHn is
the Hermite polynomial16!. Another possible set of eigen
functions consists of the statesLn,m(x,y), which coincide
with the gauge transformed states with a fixed angular m
mentumm in the symmetric gauge. For a fixed numbern of
the Landau level the angular momentumm is an integer and
satisfies the inequality2`,m<n. The Green’s function in
coordinate representation is

G~r ,r 8;E!52
G~2a!

4p
e2 ipw~x2x8!~y1y8!g~r2r 8;E!,

~16!

17 Low Temp. Phys. 23 (1), January 1997
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where

g~r ;E![F~j!5j21/2W1/21a,0~j!, j5pwr 2. ~17!

Here the gammaG and WhittakerW functions16 are used and
a is a new energy parameter

a52
1

2
1

E

EL
.

The scattering amplitude of a point potential in a magne
field in accordance with Eqs.~9! and ~16! is

1

Tj~E!
52

1

4p S c~2a!1 ln
EL

Eb
, ~18!

where c~2a! is the digamma function.16 This expression,
which was obtained with the help of each one of the th
approaches mentioned above,14,15,17–20 describes now an
electron spectrum in a magnetic field and in a field of
single point potential. A point potential scatters on
s-states.21 Therefore, the unperturbed wave functio
Ln,m(x,y), which correspond in the symmetric gauge to t
states with a fixed nonzero angular momentumm, vanish at
the origin and therefore are not modified by a point potent
They correspond to the Landau eigenenergiesEnL which are
zeros of the scattering amplitude~i.e., poles of the digamma
function in Eq.~18!!. New eigenenergiesEn , which corre-
spond to the scattereds-states, are determined by the poles
the scattering amplitude, Eq.~18!. Because of the attractive
character of a point potential, the valuesEn are shifted down
with respect to the Landau levels. Each perturbeds-wave
functioncn~r ! with eigenenergyEn coincide with the unper-
turbed Green’s functionG~r ,0;En! ~16! and therefore has a
logarithmic singularity at the origin. The magnetic field d
pendence of the lowest five shifted eigenenergies is show15

in Fig. 1.
Such a picture of the spectrum perturbed by a sin

point potential, is valid in the ultimate zero-range limit onl
The finiteness of the potential radius,rÞ0, leads to an addi-
tional shift of the eigenenergyEn and to an additional split-
ting of the Landau levelEnL .

22 For a cylindrically symmetric

FIG. 1. Thes-levels shifted by a single point potential in a magnetic field
the scaley5E/EL5a11/2 for the positive energies;y5E/Eb for the nega-
tive energies;x5EL/Eb . Thus,y521 corresponds to a bound state witho
a magnetic field andy5n11/2, n>0 corresponds to thenth Landau level.

17Gredeskul et al.
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gular momentumm, which they would have in the symme
ric gauge. The corresponding shifted eigenenergiesEn,m do
not depend on the sign of the momentumm,

«n,m[EnL2En,m}~r/ l !2umu/u ln~r2Eb!u,

and therefore the eigenenergiesEn,m with umu<n, remain
twofold degenerated.23 Note that the finite radius of the po
tential leads not only to the energy shift, but also modifi
the eigenfunctions withmÞ0, so that their intermediate as
ymptotic relations contain terms proportional tor2umu,

cm~r !'r umu1
rm
2umu

r umu r!r ,

with rm}r/uln~r2Eb!u
1/2umu ~Ref. 24!.

The main qualitative features of the electron spectrum
a magnetic field and in a field of a set of point potentials c
be established solely with the help of the fact that the rad
of a point potential equals zero. Indeed, consider an elec
moving in a field of a set of zero-range potentials which
placed at the points$r j % and letd be the averaged distanc
between scatterers~in standard dimensional variables!. If the
electron wave function vanishes at a point where a scatt
is placed, the electron does not ‘‘feel’’ this scatterer. The
fore, if one can construct a linear combinationc~r ! of Lan-
dau functions~15! with a fixed Landau level numbern,
which vanishes at all points$r j %, then this combination will
be an exact eigenfunction of an electron inthe presence o
this set of point potentialswith the eigenenergyEnL @Eq.
~14!#, Refs. 22 and 25.

To determine whether such a combination exists, re
that the number of states per scatterer per Landau level
given density of scatterers equals exactly the dimension
flux w @Eq. ~13!#. On the other hand, we have exactly o
conditionc~r !50 per scatterer per Landau level which t
wave function must satisfy. If the magnetic fieldB is suffi-
ciently strong,w.1, then the conditionc~r j !50 can be sat-
isfied at all points$r j %. This means that only one eigensta
per single scatterer is shifted from each Landau level. T
otherw21 states remain on the Landau level.22,25 In a small
enough field,w,1, all of the states are shifted from the La
dau level.

Thus the electron spectrum is naturally divided into tw
components. The first component consists of the eigenva
lying outside the Landau levels and is described by the
shits equations~3!. This component exists in an arbitrar
magnetic field. In disordered systems the correspond
eigenstates are localized.~In a recent paper26 this statement
was rigorously proved for a model reduced to the low
Landau level!. The number of these states per point poten
per Landau level equals unity for a strong field,w.1, and
equalsw in the opposite casew,1. In the periodic case fo
the rational fluxw5Q1/Q per unit cell with aread2, these
states are Bloch type. In complete accordance with the gr
theory predictions,27,28they form min$Q1 ,Q% dispersive sub-
bands below each Landau level with the number of states
point potential equalQ21 per subband.17,29,30Each of these
subbands in turn isQ-fold degenerate.

18 Low Temp. Phys. 23 (1), January 1997
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themselves. This component exists only in a sufficien
strong magnetic fieldw.1. The states that realize this com
ponent are linear combinations of the Landau functions w
a fixed number of levels, which vanish at all points where
point potentials are located. For a spatially uniform~on the
average! set of point potentials these states could always
chosen to be delocalized. Indeed, if these states are chos
be localized, then their localization centers are uniformly d
tributed. On the other hand, since their eigenenergies are
same, we can rearrange them to be delocalized states.22 The
density of these states is

rsing~E!5~w21!(
n

d~E2EnL!. ~19!

4. BLOCH STATES OUTSIDE THE LANDAU LEVELS

Let us now consider a set of identical point potentia
with binding energyEb and assume that the positionsr j form
~for simplicity! a square lattice with a unit lattice constan
Thus, r j5(mj ,nj ) with integersmj ,nj . This system repre-
sents a particular case of a 2D periodic system in a magneti
field. In an irrational magnetic fieldw the spectrum of the
system is of the devil-staircase type,31 while for a rational
field w5Q1/Q the spectrum is of a Bloch-type.27,28,31In this
case two componentsT~1,0! andT(0,Q) of the magnetic trans-
lation operator27

~TRc!~r !5e2p iwrA ~R!c~r1R!

~A is the vector potential! commute with one another an
with the perturbed HamiltonianH1V. Therefore, the elec-
tron wave functions can be choosen as eigenfunctions o
translation operatorsTR with R5(m,Qn) ~m andn are in-
tegers!, with eigenvalueseiqR. The quasimomentum vecto
q5(q1 ,q2) is defined in a rectangle 0,q1, Qq2,2p ~the
magnetic Brillouin zone! and the eigenfunctionscq~r ! have
Bloch-like form

cq~r !5uq~r !e
iqr

with quasi-Bloch amplitudes

uq~r1R!5uq~r !e
22p iwra~R!.

Nevertheless even for rational fluxes the spectrum has a
complicated fractal structure~in spite of simple Bloch-like
wave functions as solutions! which is defined by the arith-
metical nature of the fluxw.10,31

For a field which corresponds to a rational flux, the po
character of the periodic potential enables one to study
spectrum of the system in more detail. The first results w
obtained in Refs. 7, 17, 29, and 30. Using the symmetry
the problem, the authors expanded the Hamiltonian of
system into a direct integral over possible values of qua
momentaq and studied the discrete spectra correspondin
each sub-Hamiltonian with a fixedq. An exact expression
for the Green’s function of the system was obtained a
analized for an arbitrary rational fluxw. This enabled us to
establish, on the mathematical level of rigor, the main qu
tative properties of the spectrum, which were mentioned
the end of the last section.

18Gredeskul et al.



The next step was carried out in Refs. 19, 20, and 32,
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where the Lifshits equations~3! in a magnetic field were
obtained and studied. Here the symmetry of the equations~3!

~after mapping! was used. The matrix (L)m,n
m8,n8 , Eq. ~4!, de-

pends only on the differencem2m8. Therefore, the mappe
wave functionh j[hm,n~2! can be found in the form

hm,n5eiq1mzn ~20!

with zn satisfying a one-dimensional difference equation

ln~Ec /Eb!

G~2a!
zn05 (

n52`

`

Fn0 ,n
zn . ~21!

Here

Fn0 ,n
5 (

m52`

`

F~jm,n2n0
!eim@q11pw~n1n0!#,

whereF(0)52c(2a)/G(2a), andF~j! for jÞ0 is defined
by Eq. ~17! with jm,n5pw(m21n2). Equation~21! is used

below in Subsec. 5.3. Further, the matrix (L)m,n
m8,n8 is invari-

ant with respect to a simultaneous shiftn→n1Q,
n8→n81Q. This results in the final Bloch form of a mappe
wave function

hm,n5ei ~q1m1q2n!c~n!

with the Q-periodic discrete Bloch amplitudesc(n)5c(n
1Q), which satisfy the equations19,20,32

ln~Ec /Eb!

G~2a!
c~l!5 (

m50

Q21

Slmc~m!, 0,l,m,Q21.

~22!

The coefficients in this equation are

Slm5 (
N,m52`

`

F~jm,NQ1m2l!

3ei @mq11~NQ1m2l!q2#1~ impQ1 /Q!@NQ1m1l#. ~23!

In each energy interval between adjacent Landau le
equation~22! has, for a fixedq, exactlyQ solutions. For a
strong fieldQ1.Q these solutions determineQ dispersion
laws Ei~q!, which correspond toQ sets of coefficients
hm,n
( i ) ~q!, i50,...,Q21. These coefficients, together with E

~2!, determineQ dispersive subbands, which accumulate e
actly one state per scatterer per Landau level. Some of
dispersion surfaces are demonstrated in Fig. 2.35

For a weak magnetic fieldQ1,Q Eq. ~22! can be re-
duced to a finite set ofQ1 equation,

34 which determineQ1
dispersive subbandsEi~q!, i50,...,Q121. The otherQ2Q1
nontrivial solutionshm,n

( i ) ~q!, i5Q1 ,...,Q21 of Eq. ~22!,
when substituted into Eq.~2!, lead to the wave functions
c( i )~r ! which are identically equal to zero.35 All these results
are in complete agreement with the qualitative picture of
spectrum described in the previous section.

Equation~22! is very complicated even for a numeric
solution because, as was mentioned above, it is not a s
dard eigenvalue equation: the energy parametera appears on
both sides of this equation in a nonlinear way. Therefore,
us first discuss different approximate methods of the so
tion. The dispersive bands are the result of spreading
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single scatterer levels discussed in the last section. In
limiting cases of a very strong or very weak scatterer, wh
the parameteruln(EL/Eb) u is large, these levels are close
the initial Landau levels. In this case one can substit
E5EnL on the right side of Eq.~22! and linearize the left
side of this equation with respect to the differenceE2EnL .
Such a procedure significantly simplifies the solution of E
~22!, reducing it to a standard eigenvalue problem. In R
36, where this approximate scheme was proposed, the lin

FIG. 2. The dispersion relationsai~q!,i21,2,3 of the spectrum for flux
w55/3 describing three subbands which are situated between the first
Landau levels.
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ergy region lying between the zeroth and the fourth Land
levels and for rational fluxes with denominatorsQ<9. All
the corresponding dispersion relations were obtained and
energy-flux diagram was constructed. Calculations in a w
magnetic field confirmed the existence ofQ1 dispersive sub-
bands. Numerical results obtained in Ref. 36 indicated
for some rational values of the magnetic field dispersive s
bands touch the parent Landau level at some special poinq.
The condition for touching thenth Landau level isw<n11.
The touching of a given Landau level is evidently related
the symmetry nature of the problem and is not related to
strength of the point potential. Note also that the closer is
energy to the Landau level, the more exact is the approxi
tion applied, so we maintain that numerical results of Ref.
concerning this touching are exact. These statements are
used below in subsec. 5.3.

Another approximation can be applied in the strong fi
limit. Consider Eq.~21! near thenth Landau level. If the
Larmor radius is larger than the lattice constant, i.e.,

pw.n, ~24!

then, because of an exponential decrease of the Whitt
function 16, one should account only for the nearest neig
bors in this equation. Neglecting coupling with non-near
neighbors, we obtain the well-known Harper equation37

zn111zn2112zn cos~2pnw1q1!5«zn , ~25!

where

«5
Aa

W1/21a,0~a!

c~2a!1 ln~EL /Eb!

G~2a!
, a[pw, ~26!

and the single-valued branches of the gamma- and digam
functions, which correspond to the vicinity of thenth Landau
level, are chosen.

It is interesting to note that Harper equation appeared
the first time in the context of electron theory of metals in t
opposite limiting case. For a weak magnetic field one c
start from the dispersion lawE~p! of the system without a
magnetic field and use the Peierls substitution, which
places the quasi-momentump by the operator
@(\/ i )¹2(e/c)A#.38 Then the strong-coupling approxima
tion immediately leads to the Harper equation.39

Substituting into Eq.~25! zn5exp~inq2!c~n,q! with the
Q-periodic functionsc(n), we obtain in the general cas
Q>3 ~the casesQ51,2 are trivial! the following difference
second-order equation:

exp~Qq2!c~n11,q!1exp~2Qq2!c~n21,q!

12c~n,q!cos~2pnw1q1!5«c~n,q!.

Thus, in the ‘‘«’’ scale the dispersion laws«i~q! and the
eigenvectorsci~n,q! corresponding to the spectral regio
~24! areuniversal~within the accuracy of the approximation!
in the sense that they do not depend either on the Lan
level number or on the integer part of the dimensionless
w.40 The integer part of the flux and the concrete position
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the eigenenergy between Landau levels enter when one
stores the dispersion functionEi~q! from Eq. ~26! in the
natural energy scale.

Detailed numerical calculations carried out in Refs.
and 40 show that the results of this strong-field approxim
tion are very close to those obtained from the exact equat
~22! for all possible values ofq except those correspondin
to the touching of the Landau level. This is quite natu
since touching is an exact, which cannot be captured by s
an approximation. On the contrary, the approximation
very strong or very weak scatterer, discussed in the prev
paragraph, becomes exact in the nearest neighborhood o
Landau level. The numerical results obtained with the h
of the latter approximation completely coincide in the
neighborhoods with the exact ones. In turn, such an appr
mation fails far away from the Landau levels. Therefore,
obtain correct results one has to use different approximat
in different regions of the~E,w! plane. The part of the
energy-flux diagram lying between the zeroth and the fi
Landau levels is shown in Fig. 3.

5. DISORDERED SET OF POINT POTENTIALS

We now move on and discuss systems containing a
ordered set of point potentials. This disorder can be reali

FIG. 3. The energy-flux diagram between the first two Landau lev
0<a<1, for the rational fluxes 0,w,3 with denominators up to 9: 0,w,2,
where the exact equations are used~a!; 2,w,3, where the strong-field
approximation~the Harper equation! is used; only diagonal values of th
quasi-wave vectorq5pt(1/Q,1), 0,t,1, are accounted for~b!.
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we will discuss some features of the electron spectrum
such systems: disorder, independent extended states~subsec.
5.1!, peculiarities of the DOS~subsec. 5.2!, localization
properties of a 2D system with 1D disorder~subsec. 5.3!.

5.1. Extended states on the Landau levels

As was mentioned at the end of the previous section,
goal here is to construct a linear combination of Land
functions~15! with a fixed level numbern, which vanish on
a given set of points~where the point potentials are located!.
We begin by studying the states on the lowest Landau le
E0L. An arbitrary linear combination of Landau function
L0,k has the form

c0~r !5E
2`

`

Lnk~r ! f n~k!dk. ~27!

Evidently, this integral equation~27! can be written as17,41,42

c0~x,y!5exp~2y2/2l 2!F0~z!, ~28!

wherez5x1 iy . The functionF0(z) is defined by

F0~z!5E
2`

`

exp~2 ikz2k2l 2/2! f 0~k!dk.

If this integral converges, then it defines an entire functio43

of the complex variablez5x1 iy . Each entire function is
characterized by its order and type. If the modulus of
entire function grows at infinity as exp~tuzut!, then this func-
tion is of orderr and of typet ~see exact definition in Ref
43!. We do not, in fact, need the Fourier coefficientsf 0(k),
since any entire functionF0(z) which, when substituted into
Eq. ~27!, makesc0(x,y) vanish on the sites of the impuritie
will do. Therefore it is sufficient to construct an entire fun
tion F0(z), which vanishes at all pointszj where the point
potentials are located. To this end, let us introduce
Weierstrass product that pertains to the complex seque
$zj %.

17,41,42For a constant density of impurities, the sequen
of complex points$zj % is of genus 2~i.e., the sum of the
inverse squares 1/uzj u

2 converges!, and hence~assuming
there is no scatterer at the origin! the Weierstrass product

W~z!5)
j

S 12
z

zj
DexpS zzj 1 z2

2zj
2D ~29!

is well defined and defines an entire function of orderr52. If
the distribution of point potentials satisfies some uniform
condition ~Lindelöf criterion43!, thenW(z) is also of finite
type t. To control the rate of growth ofc0(x,y) on the real
axis, we multiplyW(z) by an exponent e2sz2 with s.t. We
thus obtain an entire function

F0~z!5e2sz2W~z! ~30!

on the order of 2 and of type less equal thant1s which falls
off with uxu as a Gaussian. Following Eq.~28!, it can be
easily verified that if the magnetic field is strong enough, i

1

2l 2
.s1t,
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imaginary axis. This implies the Gaussian falloff of the wa
function at infinity. Hencec0(x,y) @Eq. ~28!# with F0(z)
@Eq. ~30!# is an acceptable wave function.

To proceed further, we shall consider the simplest s
disorder case in which the point potentials with rando
strengths are located at the sites of a square lattice with
stant 1. In this case the Weierstrass productW(z) in Eq. ~30!
must be replaced by the Weierstrasss-function

s~z!5zW~z!,

where the pointszj in Eq. ~29! are all the sites of a squar
lattice ~except the origin!. Substituting instead of the Weier
strass s-function its expression in terms of the Jaco
u1-function

16 and using the fact that the typet of the
s-function equalsp/2,43 we obtain17,41,42

c0~r !5exp~2y2/ l 2!u1~pz!. ~31!

Further study shows that if the magnetic field is stro
enoughw>1, then this function represents an exact wa
function with eigenenergyE0L . In the casew51, this wave
function is delocalized in both directions, but it decreas
with uyu if w.1. The wave function~31! is regular~despite
the singular nature of the point potential in its limiting form!
and is independent of the strength of the disorder. The lat
symmetry and gauge invariance allow one to construct m
general wave functions which are delocalized in both dir
tions for an arbitrary field which satisfy the conditionw>1.44

The simplest example is given by the formula

C0q
~1!~x,y!5(

Y
expS iqY2 i

xY

l 2 Dc0~x,y2Y!. ~32!

This is a quasi-Bloch wave function with respect toy, and an
extended function ofx. ~By the term quasi-Bloch we mea
that it has anx-dependent wave number equal toq2x/ l 2, in
which q is a Bloch-type wave number with2p,q<p.

This approach can be generalized to an arbitrary inden
of the Landau level. In general, the integral equation~27! can
be written as follows:44

cn~x,y!5expS 2
y2

l 2 D HHnFyl 2 i l
d

dzGFn~z!J U
z5x1 iy

,

where in the expansion of the differential operator

HnFyl 2 i l
d

dzG ,
y is assumed to be a constant~independent ofz!. Unfortu-
nately, here it is not so simple to construct an appropri
analog of the wave function~31! or ~32!, because of an in-
direct relation between the point potential positions and
zeros of the entire functionFn(z). For example, it is suffi-
cient to chooseFn(z) in the last equation as

Fn~z!5@F0~z!#n11.

The resulting functioncn(x,y) again vanishes at all point
zj , but it represents a true wave function for essentia
higher fields. For the site disorder case~the square lattice
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infinity when w>n11 ~Ref. 44!, while the true wave func-
tions exist in a weaker fieldw>1.

5.2. Density of states

The condensation of states on the Landau levels, i
strong fieldw.1, which was predicted earlier,25 implies that
the most singular part of the DOS has the form~19! ~recall
that we fixed a finite-dimensional average distanced be-
tween point potentials!. In the periodic case of a~square!
lattice r j5(mj ,nj ) of identical point potentials this resu
was rigorously obtained in Ref. 29. However, the states
the Landau levels are sensitive to the positions of the p
potentials, not to their strength. Therefore, Eq.~19! is also
valid for any site disorder model.45 For the position disorde
models with uniformly distributed zero-range scatterers,
prediction~19! was confirmed in Ref. 46 for the lowest Lan
dau level and in Ref. 47 for the higher Landau levels. N
that in the two papers46,47 the projection on the correspond
ing Landau level was applied. This enables one to use no
point potential, but the conventional 2D Dirac delta function
as a model of zero-range scatterer.

Let us consider the DOS between Landau levels, wh
was studied for different types of site-disorder mod
~square lattice of point potentials!. Consider first the so-
called Maryland model, which was proposed for a 1D case48

and then generalized to the multidimensional case.49,50 In the
point potential version of this model51 the random binding
energyEbj of the point potential placed at the siter j is

Ebj5Eb tan~ppr j2v!.

Here the constant vectorp is chosen in such a way thatpr j is
not a rational number for any lattice vectorr j and a random
phasev is uniformly distributed over the interval~0, 2p!.
For a fixed realization~i.e., for a fixed phasev! this model is
described by an almost periodic Hamiltonian, in which t
values of the binding energies could be very large. Ifpr j is
‘‘sufficiently irrational’’, i.e., if it cannot be well approxi-
mated by a rational number for anyj , then all intervals be-
tween the Landau level are densely filled by nondegene
localized states, which are sums of scattered waves~2! with
amplitudeshj that satisfy some kind of Lifshits equation.51

The next two site-disorder models45 deal with the case in
which the binding energy is

Ebj5Eb exp~4pt j !.

Further details depend on the statistics of the random ex
nentst j .

The Lloyd model. All t j are independent random quan
ties with the same Lorentz distribution

p~ t !5
u

p~ t21u2!
.

Here the expression for the average DOS is obtained
closed form.45 Its analysis shows that the DOS is an analy
function of energy and differs from zero for all energies
ing between Landau levels. In the limiting cases of ve
small concentration of point potentials~very strong magnetic
field! the DOS between Landau levels is proportional to
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~In the latter case the relative position of the energy w
respect to the neighboring Landau levels must be fixed!.

Gaussian distribution. All t j are independent random
quantities with the same Gaussian distribution

p~ t !5~2pv!1/2 exp~2t2/2v!. ~33!

Here the asymptotic expression for the DOS in the sa
limiting cases as in the previous paragraph was obtain
The resulting DOS has sharp peaks near the levelsEn which
are shifted from the Landau levelsEnL in the presence of a
single point potential. In the nearest neighborhood of
levels En these peaks are Gaussian, but far fromEn they
become asymmetric~due to the asymmetric position ofEn

with respect to the Landau levelEnL! . More detailed inves-
tigation shows that for higher Landau levels such a form
peaks is valid also in the case of correlated, identically d
tributed exponentst j @Eq. ~33!#.

All these results concern the case of true point potent
But we have already mentioned that a single scatterer wi
finite radius splits the Landau levels. Disorder leads to
spreading of these sublevels. If the concentration of sca
ers is small and magnetic field is strong enoughw>1, then
the sublevels which are most remote from the parent Lan
level are spread into the resolved impurity subbands.23 Each
of these subbands accommodates one state~if 2m.n! or
two states~if umu,n! per scatterer~recall thatn is the num-
ber of the Landau level, andm is an angular momentum!.
Such an oscillating fine structure of the DOS should manif
itself in the oscillations in the low-temperature specific he
in the magnetic susceptibility, and perhaps in the transp
properties when the fluxw changes by 1 or 2~Ref. 23!.

5.3. Electron localization in a 1 D disordered system

Let us now consider a site-disorder model where
binding energies are identical along thex direction and are
random in they direction, i.e.,

Ebj5Ebn , $ j %5~m,n!.

We assume that the random binding energyEbn takes two
possible values:E1 with the probability 12c andE2 with the
probability c. In what follows we will be interested in the
case of weak disorder so that these two binding ener
almost coincide. Due to the presence of disorder and with
specific gauge, we can use the representation~20! for the
scattering coefficients, which reduced the initial 2D system
to a purely 1D disordered model, which conserves som
features of the initial 2D problem: it depends explicitly onq1
and on the magnetic field.

Consider first the unperturbed ordered system with id
tical binding energiesEbj5Eb . Fix some rational flux
w5Q1/Q and Landau level number, and choose some d
persive subband~i.e., some concrete segment on the ener
flux diagram!. Each value of energy from this subband co
responds to some specific line in the rectangle 0,q1,
Qq2,2p on theq-plane. In turn, each point of this rectang
corresponds to the eigenstate with quasi-momentumq. Now
switch on a weak disorder. The disorder shifts and sme
the subband boundaries and, because of the 1D nature of the
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direction!. The boundaries which do not coincide with som
of the Landau levels are the fluctuation boundaries:52 they
depend on the possible strengths of the point potentials.
states in the vicinities of these boundaries are strongly lo
ized. The states lying deeply in the subband are weakly
calized. They can be approximately classified by a qu
momentumq and by the localization length,j~q!, j(q)!1.
The edges which coincide with the Landau levels, are
stable boundaries: they do not depend on the poss
strengths of point potentials. The localization length n
such a boundary diverges

j~E!}~EnL2E!2n

with a critical exponentn.
These statements are now important within a quant

tive description. In the strong field limit, when the Larm
radius is of the order of or less than the lattice constant, e
of the Green’s functions that enters in the representation~8!
essentially differs from zero only when the pointr is close to
the corresponding site (m,n). Therefore

1! the localization properties of the wave function (
coincide with the localization properties of the set of scatt
ing coefficients$hmn% @Eq. ~20!#,

and
2! the scattering coefficientszn satisfy the random

Harper equation

zn1112zn cos~2pnw1q1!1zn215«zn1vznzn .

Here« is defined by Eq.~26!, where ln(EL/Eb) is replaced
by its average value. The random variablezn takes values
2c with the probability 12c, and 12c with the probability
c. The intensityv of the effective ‘‘random potential’’vzn is

v5
Apw

W1/21a,0~pw!

ln~E1 /E2!

G~2a!
.

In the weak disorder limit,uln(E1/E2) u!1, each solution
of the ordered Harper equation~which satisfies a fixed initia
condition! is slightly modified because of the appearance o
slowly increasing multiplier. The corresponding eigenfun
tions are slowly attenuated Bloch solutions. The pertin
inverse localization lengthj i

21~q! ~measured in units ofd21!
coincides with the doubled Lyapunov exponent.52 In the
weak scattering approximation it was calculated exactly:40

j i
21~q!5

1

Q (
p50

Q21 H ~12c!S 11
Zi~p,q!

v2c2 D 21

1cS 11
Zi~p,q!

v2~12c!2D
21J ,

Zi~p,q!54 Im2Fci~p11,q!

ci~p,q!
exp~ iq2!G .

The weak scattering regime corresponds to a very la
localization length. We define the condition of the weak sc
tering as
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Zi~p,q!/v2.N@1. ~34!

This inequality determines a domain inside the square 0,q1,
Qq2,2p, such that for eachq in this domain, the localiza-
tion length ~measured in the lattice constant! ji~q! will be
larger thanN. The dispersion relation«i~q! maps this domain
onto an energy interval on the« axis and, after inversion
using Eq.~26!, onto a set of intervals on thea axis. Each of
these intervals corresponds to a fixed value of the ratio
flux and a fixed Landau level~i.e., it is located below this
level but above the previous one!. The set of all these inter
vals vs fluxw forms a Hofstadter-type butterfly for the loca
ization length. The points of this diagram correspond
those eigenstates which can be classified as slowly att
ated Bloch states. A part of this butterfly is shown in Fig.
Note that some subbands, which are present in Fig. 3,
completely absent in Fig. 4. This means that all states
these subbands do not satisfy the weak scattering cond
~34!, i.e., they are localized.

Let us now consider the localization of states near
stable boundaries. Different types of touching scenar
~possible rational fluxes and possible points in theq rect-
angle! were analyzed in Ref. 36. It was shown19 that in the
case of short, correlated 1D disorder the localization length
diverges with the critical exponentn51. Exact expressions
for the localization length near the Landau levels, whi
were obtained for the model considered in this subsect
confirm this result.40 In particular, for the touching of the
first Landau level forw52 the localization length has th
form

j}
~^ ln~EL /Eb!&!2

~12a!c~12c!ln2~E1 /E2!
, F5const,

and diverges asa→1 ~the energy tends toE1L! and when the
disorder vanishes~c→0, 1, orE22E1→0!.

6. MESOSCOPIC SYSTEMS WITH A POINT POTENTIAL

The electron dynamics in the presence of a single sh
range impurity in a magnetic field is related to a number

FIG. 4. The energy-flux diagram for the delocalized~with the chosen accu-
racy! states between the first two Landau levels 0,a<1. The rational fluxes
2,w,3 with denominators up to 9 are used. Some subbands, which
shown in Fig. 3b, are absent here: the corresponding states are localiz
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semiconductors, the quantum Hall effect, the conductanc
a microconstriction, tunneling through a quantum dot, et!.
Because of the short-range character of the impurity, i
natural to model it by a point potential. Such a simplificati
often enables one either to obtain an exact solution of
problem, or at least to obtain a solution in a closed form

6.1. Point potential model of a quantum dot

Let us first discuss the problem of electron transmiss
through a quantum dot. On the basis of the model propo
and studied in Ref. 53 the dot itself is described by a 2D
HamiltonianH2 which accounts for a magnetic field~12! and
a confinement potentialVc5Ec

2r 2/4, r 25x21y2, with some
characteristic confinement energyEc . One-dimensional
channel is described by a 1D free Hamiltonian
H152d2/dz2. The unperturbed Hamiltonian of the nonin
teracting system dot-channel is a direct sumH2%H1 :

H5SH2 0

0 H1
D .

The unperturbed wave function is a two-component vect

C0~r ,z!5S c2~r !
c1~z! D .

The perturbationV located at the origin describes the zer
range interaction between the dot and the channel

V5S T221~E! b

b T1
21~E!

D .
Here T2(E) is the 2D point potential scattering amplitud
~18!, whereEL is replaced by (EL

21Ec
2)1/2, andT1(E) is the

1D point potential scattering amplitude. The 1D point po-
tential, however, is the usual repulsive Dirac delta funct
k0d(z), k0.0 ~repulsion models the potential barriers th
separate the real quantum dot from the leads, which are m
eled here by the channel!. Therefore, in accordance with th
general rule~9!, the scattering amplitudeT1(E) is

1

T1~E!
5

i

2AE
1

1

k0
.

The constantb describes mixing between the dot and t
channel. The caseb50 corresponds to two independe
subsystems—the dot, which contains the 2D point potential,
and the channel with the 1D point potential. The nonzero
value of the parameterb provides a mixing of the two sub
systems and thus the dot actually influences the elec
transmission along the channel.

The transmission coefficientT(E), which is calculated
by a standard method, has the form

1

T~E!
511

1

4E~k0
212b2T2~E!!2

.

At energies En
min satisfying the resonant conditio

k0
215b2T2(E) the channel is closed: the transmission va
ishes. On the other hand, at energiesEn

max, which coincide
with the poles of the scattering amplitudeT2(E), the trans-
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ply Landau levels in an effective magnetic field which
shifted by the 2D point potential. In this effective field the
interlevel distance is notEL but (EL

21Ec
2)1/2. The channel

conductance calculated by the Landauer formula has s
peaks at the energiesEn

max.
A similar idea was used for studying the electron sp

trum in a periodic array of quantum dots subject to a m
netic field.54 Consider a lattice of pointsR. Let HR be the
potential of the dot located at the pointR @i.e., with the
confinement potentialVc~r2R!#. The array of dots is de-
scribed by the HamiltonianH5H01U. Here the unper-
turbed HamiltonianH05 %HR is the direct sum of the
single-dot HamiltoniansHR over all sites of the lattice$R%.
This means that the unperturbed wave functionC0~r ! is the
vector column

C0~r !5S • • •

cR~r !
• • •

D ,
and each one of its componentscR~r ! satisfies the Schro¨-
dinger equation with the HamiltonianHR . The mixing of the
states in the different dots is realized by adding the per
bationU which in coordinate representation has the form

UR,R8
r ,r8 5tR,R8u~r2R!u* ~r 82R8!.

Here the matrixt has the lattice symmetry

tR1R0 ,R81R0
5tR,R8 ,

which contains only nondiagonal elements, andu~r ! is a lo-
calized function.

The perturbationU in this model is not a degenerat
perturbation. But like the degenerate perturbation~1!, which
acts in the subspace formed by the set of states$uv j.%, the
perturbationU acts in the subspace formed by the set
states$uuR&%. The spectrum of a single dot is rather rarifie
En,m5(n11/2)EL1(m11/2)Ec with integersn,m>0. As a
result, the set of the perturbed eigenstatesC~r ! with eigenen-
ergies lying outside the initial spectrum is sufficiently ric
and can be found from the set of Lifshits equations~2!–~4!.
The indexj must be replaced byR,

hR5E u~r2R!cR~r !dR,

tR,R8 stands forGi j and

1

TR~E!
5E u* ~r2R!GR~r ,r 8!u~r 82R!drdr 8.

These formulas are valid for an arbitrary localized functi
u~r !. A further simplification can be made by using the po
potential asu~r !. In this case and for a rational flux pe
plaque an explicit equation for the Bloch-type spectrum c
be obtained.54

An explicit spectrum of the model can be obtained b
cause of its internal simplicity, which is attributable to th
use of degenerate-like perturbation, on the one hand, an
the construction of the unperturbed Hamiltonian as a dir
product, on the other. Due to the latter fact, the interact

24Gredeskul et al.
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dynamics of a single dot. In a sense, the model considere
an ordered analog of the famous Anderson model,55 while
the case of the point potential lattice, which is considered
Sec. 4, is an ordered analog of the much more complica
Lifshits model.56,57

6.2. Point scatterer in a microconstriction

Here we consider electron scattering by a single po
potential in a magnetic field and some additional field. T
start from the case of the crossed magnetic and ele
fields. The modification of the spectrum of the system due
the presence of an impurity is defined by the poles of
scattering amplitudeT(E) @Eq. ~9!#, whereG~r ,r 8;E! now
stands for the Green’s function in the presence of the
fields. As a result, in contrast with the case of zero elec
field, where exactly one bound state exists below each L
dau level~see Fig. 1!, there are nown novel, nondegenerate
quasi-bound states with energies close to thenth Landau
level.58

The next group of problems is related to electron tra
mission through a saddle-point potential

V~x,y!52
x2

k4 1y2 ~35!

@here k is the asymmetry parameter# in the presence of a
short-range impurity and magnetic field. Without impuri
and a magnetic field the electron wave functions are sad
point potential waveguide modes,

CE,n
6 ~x,y!5Fn~y!ES 2«n ,6

xA2
k D .

HereFn(y) is a harmonic oscillator wave function, whic
corresponds to they-dependent part of the potential@Eq.
~35!# and energyEn52n11. Thex-dependent factor is the
Weber-function16 E~2«,j!, and «n5k2(E22n21)/2. The
mode CE,n

1 (x,y) describes the initial wave which come
from the left ~x52`! and which contains the reflected an
transmitted waves with the corresponding transmission c
ficient Tn5~11exp~22p«n!!

21 ~this result was initially ob-
tained in the WKB approximation in Ref. 59 and reflectivi
Rn5~11exp~2p«n!!

21.The energyEn is the threshold for
moden. WhenE,En , the moden is mainly reflected, while
in the opposite case this mode is mainly transmitted. T
crossover from reflection to transmission turns out to be
the energy banduE2Enu<2k22. The saddle-point potentia
~35! models a ballistic microjunction, to which the two
terminal conductance in terms of the mode transmission
efficients is given by60

G05 (
n50

`

T~«n!.

The presence of a strong point potential, which is located
the central section of the constriction~i.e., near the origin!,
modifies the spectrum. Exactly one bound state appears
low the thresholdEn of each transverse quantization mod
The bound state with the energy far from the threshold
cays mostly into the continuous spectra of the above-ba
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tion to the conductance is due to the resonant reflection
the above-barrier modes, which have a downward dipDG
521 on the plot ofG vs the Fermi energyE. The bound
state close to threshold decays mostly into the continu
spectrum of the threshold mode~tunneling!. Here the point
potential correction to the conductance is due to reson
transmission of the threshold mode which is seen as a r
nant tunneling peak,61 DG511.

Let us consider the electron scattering by an isola
point potential in a magnetic field. In the limiting case of
narrow constrictiona>1 an explicit expression for the trans
mission coefficient as a function of the point potential po
tion and magnetic field could be obtained.62 Its analysis
shows that the transmission coefficient has a sharp peak~the
Breit–Wigner resonance! as a function of energy, and that
oscillates as a function of the point potential position.62 One
more aspect of electron transmission through a symme
@a51# saddle-point potential in a magnetic field is related
the levitation of delocalized states in the quantum Hall eff
regime. In the network model of the quantum Hall effect t
delocalization of states results from the tunneling of an el
tron through the saddle points of a smooth random poten
which are connected by equipotential lines.63 The mixing of
Landau levels changes the transmission coefficient o
saddle point, on the average, in such a way that it beco
smaller than 1/2 for the energy at the Landau level.64 This
means that to achieve the 1/2 average transmittivity, the
ergy should be shifted upwards, which is equivalent to le
tation. However, in a smooth potential the Landau level m
ing is generally weak since it is associated with a lar
momentum transfer. Short-range potentials are much m
effective in this respect. The average transmission throug
saddle point in a strong magnetic field in the presence o
random short-range scatterer was studied in Ref. 65. It
shown that a small portion of the short-range random im
rities located in the vicinity of the saddle points reduce t
transmission at a given energy even if the mixing of t
Landau levels by a smooth potential is disregarded. The
sulting upward shift of the energy position of the delocaliz
state increases with decreasing magnetic field asB24.65

CONCLUSIONS

In summary, we presented a brief review of the resu
concerning the electron dynamics in a magnetic field and
a field of a point or a short-range potential. We should e
phasize that the possibilities contained in the point-poten
model for the physics of 2D systems in a magnetic field ar
not exhausted yet. This is a unique model which make
possible to obtain exact results starting from first principl
In Sec. 4 we presented the results of a calculation of
electron spectrum and wave functions using solely the ze
range property of the scattering potential. It is very intrigui
to obtain some transport characteristics, e.g., the Hall c
ductivity or ac conductivity of the 2D periodic system of
point potentials. Unexpected application of point potenti
is attributable to the superconductivity. The results of Su
sec. 5.1 make it possible to construct explicitly an Abrikos
trial function for an arbitrary position of the vortices i

25Gredeskul et al.



type-II superconductors~this idea was communicated to us
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by the late Arkadii Aronov!. Investigation in this direction is
now in progress.

We shall conclude this article with some non-academ
words. We believe that the best way to honor the memory
an outstanding scientist is to show that his ideas are a
that they are at work, and that they are being developed.
attempted to demonstrate this point on a single subjec
local perturbations which has been proposed by I
Mikhailovich back in 1947. The fact that the topics related
this subject, such as electron localization in a magnetic fi
the quantum Hall effect, the physics of quantum dots, a
others, are at the forefront of contemporary solid state ph
ics speaks for itself. All the authors, two of whom~M. Ya.
Azbel’ and S. A. Gredeskul! are privileged to be former pu
pils of Ilya Mikhailovich Lifshits, would like to express thei
gratitude and to dedicate this article with love and respec
the memory of this brilliant scientist and person.
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On the theory of skin effect: inclusion of arriving term in collision integral

re
M. I. Kaganov

7 Agassiz Ave., Belmont, Massachusetts 02178

G. Ya. Lyubarski 

6442 N. Troy, Chicago, Illinois 60645

A. G. Mitina

744 S. Cleveland, Arlington Heights
~Submitted September 23, 1996!
Fiz. Nizk. Temp.23, 36–46~January 1997!

An algorithm for calculating the surface impedance of a normal isotropic metal is constructed by
taking into account the arriving term in the collision integral~in the case of specular
reflection!. Analytic expressions are obtained for scattering probability describing thes-, p-, and
d-scattering. ©1997 American Institute of Physics.@S1063-777X~97!00401-5#

1. At low temperatures, the mean free pathl is a macro- Naturally, this simplifies the problem significantly: the
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scopic parameter which is often larger than other parame
of the dimensions of length in good metals~the skin depth
d, the wavelength of sound, the thickness of a plate or wi!.
Under the condition whenl.d, the skin effect is usually
called anomalous. The skin effect anomaly is caused
spatial dispersion of conductivity, i.e., nonlocal relation b
tween the electric field strengthE5E„r … and the current den
sity j5 j „r …. Formally, spatial dispersion~nonlocality! is a
consequence of inclusion of the diffusion termv] f /]r in the
Boltzmann kinetic equation for the nonequilibrium comp
nent of the distribution functionf of conduction electrons~v
is the electron velocity!. The inclusion of the diffusion term
transforms the integral kinetic equation into an integrodiff
ential equation. One of the consequences of this transfor
tion is the dependence of the distribution function on
form of interaction of electrons with the sample boundary1!

It was shown in Refs. 1 and 2 that the integrodifferent
form of the kinetic equation leads to difficulties in the intr
duction of the concept of mean free path.

The collision integralI $ f % in the linearized kinetic equa
tion is always the difference of two terms:

I $ f %5E W~p,p8! f ~p8!d3p82E W~p8,p! f ~p!d3p8, ~1!

whereW(p,p8) is the probability density for an electro
transition from the stateup8& to the stateup&, which is nor-
malized in a certain way.

The first integral describes the arrival of electrons in
cell of the phase space~arriving term!, while the second
~with the minus sign! describes the departure of electro
~departing term!. If we can neglect the arriving term
(t-approximation!, the Boltzmann equation is not an integr
equation any longer, and the mean free timet is introduced
in the natural way:

1

t
5E W~p,p8!d3p8; I $ f %52

f ~p!

t
. ~2!
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is no need to solve an integral equation, andt has the mean-
ing of the ‘‘universal mean free time.’’

In the case when thet-approximation is inapplicable, a
universal relaxation time and/or universal mean free patl
do not exist. It is necessary to obtain a solution of the kine
equation which depends on the formulation of the proble
In order to describe the situation more precisely, we sh
consider below two problems differing only in the form o
the action on conduction electrons. Here we confine o
selves to the case of a spherical Fermi surface, elastic c
sions of electrons, and an extremely degenerate electron
(T50). Scattering changes the direction of electron mot
specified by the unit vectorn.

The collision integral can be written in the form

I $ f %5E W~n,n8! f ~n8!dO82E W~n8,n! f ~n!dO8,

~3!
n5p/p,

wheredO8 is an element of the solid angle of the unit vect
n8. In the isotropic case~which we consider here!, we have

W~n,n8!5W~u!, cosu5n–n8, ~4!

and

I $ f %5E W~u! f ~n8!dO82E W~u!dO8 f ~n!. ~5!

In order to formulate the problem~to be more precise, its
part pertaining to kinetics!, we must also know the function
W(u), viz., the probability densities of electron scatterin
through the angleu. The calculation of this function is be
yond the scope of this paper, and we shall assume tha
functionW5W(u) is known and is independent of the sp
cific formulation of the problem. This is quite admissible
long as the reason behind the deviation of the conduc
electron state from equilibrium lies in macroscopic~electro-
magnetic and acoustic! fields whose nonuniformity is smalle
than the de Broglie wavelengths of a Fermi electron. In
case of inelastic collisions of electrons, an additional a

270027-08$10.00 © 1997 American Institute of Physics



rather stringent constraint is imposed on the macroscopic
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field frequencyv. A violation of this condition makes the
scattering probability a nonuniversal function of frequen
v ~see Sec. 47 in Ref. 3!. Inelastic collisions will be disre-
garded.

2.The aim of this paper is to demonstrate that the det
emerging in the functionW(u) in the anomalous skin effec
do not allow us to confine the analysis of zero momentum@as
in the t-approximation, see~2! and ~5!#. But before that, let
us determine the change in the ‘‘mean free path’’ depend
on the nature of action exerted on the metal~in other words,
on the kinetic coefficient calculated by us!. The resistivity of
a metal is determined by the transport mean free patht tr :

s5
ne2t tr
m*

;
1

t
tr

5E W~u!~12cosu!dO;

~6!
m*5pF /vF .

While considering the absorption of sound by condu
tion electrons, we can write the integral equation for det
mining the ‘‘relaxation time’’ in the form of a tensor equa
tion

E W~u!@C ik~n!2C ik~n8!#dO85nink2
1

3
d ik .

Hence,C ik 5 t tr
tens@nink2 d ik/3#, and

1

t tr
tens5

3

2E W~u!~12cos2 u!dO. ~7!

Naturally, the two times coincide forW(u)[const. It
should be recalled that* f dO50 so that the case whe
W(u)5const corresponds to thet-approximation.

The physical consequences of expressions~6! and~7! are
identical: both transport times are much longer than the
ciprocal ~total! scattering probability in the case of sma
angle scattering due to a decrease in the contribution of s
tering through small angles. However, it should be borne
mind while calculating the corresponding kinetic coefficie
exactly thatt tr

tensÞt tr . For a small-angle scattering, we ca
write

1

t tr
tens53

1

t tr
.

3. In our opinion, the role of the arriving term in th
collision integral in skin effect was considered for the fi
time in Ref. 1. It is clear a priori2 that the role of the arriving
term is important in the ‘‘intermediate’’ case. Forl /d!1, we
can use the macroscopic value of electrical conductivitys in
the zeroth approximation inl /d ~it should be borne in mind
however, that the expression fors contains the timet tr de-
pending on the arriving term in the collision integral!. For
l /d@1, the impedance in the zeroth approximation ind/ l is
completely independent of bulk dissipative characteristics
conduction electrons. The correction terms~to both limiting
expressions! depend on the arriving term in the collision in
tegral. It is important that the role of the arriving term
manifested in different ways for different values ofl /d. This
means that there is no universal dependence of electr
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the impedancej and the penetration depthd, we must fix a
special parameter describing the arriving term. In act
practice, there is no need to introduce a special param
whose presence and magnitude determine the contribu
from the arriving term. This parameter emerges in natu
way when the functionW5W(u) is specified. In Ref. 1, the
role of the arriving term is demonstrated by the simpl
complication of the collision integral@to be more precise, the
functionW(u)]. It was assumed that

W~u!5W0~11a cosu!, ~8!

i.e., we have taken into account not only thes-scattering,
whenW(u)[W0 , and the arriving term in the problem o
skin effect vanishes, but also thep-scattering whose intensity
is described by the coefficienta(uau,1).

The fact that the kernel of the arriving term of the col
sion integral is degenerate simplified the solution of t
problem on skin effect with the functionW(u) defined by
expression~8!. As a result, its action is reduced to the r
placement of the electric field strengthE(z) by the sum

E~z!→E~z!1
a

3s
j ~z!. ~9!

The role of the arriving term is determined just by th
parametera:a50 corresponds to thet-approximation.

In Ref. 1, as well as in the well-known publications b
Reuter and Sondheimer,4 the theory of skin effect was con
structed for the two limiting cases as regards the type
interaction of an electron with the sample boundary, i.e.,
specular reflection of electrons at the boundary, and diff
scattering.

It is well known that in the case of diffuse scattering, t
problem should be solved by the Wiener–Hopf method.
in Ref. 4, we managed to obtain a closed formula for imp
ance, but the integral appearing in this formula is much m
complicated than in Ref. 4. Naturally, the calculation of a
ymptotic forms is also more complicated. This statement
be refined; we can estimate the difference in the results
tained in Refs. 1 and 4~see also Ref. 5! and emphasize the
difficulties which we managed to overcome.

A function of k (k is the wave vector conjugate to th
z-coordinate! will be referred to as a function of the firs
degree of complexity if, by definition, it depends algebr
ically on the Fourier transformK̄(k) of the kernel of the
integral relation between the electric field strengthE(z) and
the current densityj (z). An example of such a function is
the function

F~k!5k22S a

3
k21

2i l 2

d2 D K̄~k! ~10!

introduced in Ref. 1~see formula~37! from Ref. 1!. A func-
tion of the second degree of complexity is defined as
integral of the first-degree function, e.g., the functi
G6(k) in the same publication:

G6~k!5
1

2p i E7 i«2`

7 i«1` dj

j2k
ln

F~j!

j22k0
2 ~11!
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@see~38! in Ref. 1#. The function
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H1~k!5
1

2p i E2 i«2`

2 i«1` dj

j2k0

iE~0!j2E8~0!

j2k0
K̄~j!

3exp@G2~j!#

@see formula~39! in Ref. 1# is an example of the function o
the third degree of complexity.

The result obtained by Reuter and Sonderheimer,4 i.e.,

zRS
dif5

v l

c S k02
1

2p i E2`

`

dk ln
F~k!

k22k0
2D 21

~12!

is reduced to the calculation of a function of the seco
degree of complexity.

The intermediate formulas in Ref. 1 show that, in ord
to calculate impedance fora Þ 0, we must determine the
value of a function of thethird degree of complexity@see
formulas~A19! and~A20! in Appendix to Ref. 1#. The math-
ematical result obtained in Ref. 1 is that the calculation
impedancecould be reduced to the determination of t
function G1 of the second degree of complexity: for W(u)
5W0(11a cosu) and for a diffuse reflection of electrons
the boundary, the impedancez is given by

z5
v l

c
i j0

12S2

11S2
; ~13!

Here

S5
j0 exp@2G1~j0!#

j01k0
, j05

1

d
~26i /a!1/2,

and the functionG1(k) is defined by equalities~10! and
~11!.

In the present communication, we generalize the res
obtained in Ref. 1. It is assumed that

W~u!5W0S 11 (
k51

n

ak cos
k u D . ~14!

This expression is obviously much more general th
~8!. The natural limitation imposed on the coefficientsak is
that the probabilityW(u) must be positive. As a rule, th
value of the coefficientuaku decreases with increasing exp
nent k, although the sum~14! must undoubtedly contain
large number of terms in the case of small-angle scatter

We consider the normal incidence of an electromagn
wave on a metallic half-spacez.0. By definition, the imped-
ancez5E(0)/H(0). According to Ref. 1, it is convenient to
introduce the functionx5x(z,q) defining the current den
sity

j ~z!5
3s

4l E0
p

x~z,q!sin2 q dq,

~15!
n5~sinq cosw, sinq sinw, cosq!,

where the mean free pathl differs slightly from that defined
in Ref. 1:
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l
54pW0S 11 (

k51 2k11D . ~16!

The probabilityW(u) ~14! differs fromW(u) appearing
in ~6! and ~7! in the factor 1/vF ,@W0#5@cm21#.

The functionx(z,q) satisfies the kinetic equation

cosq
]x~z,q!

]z
1
1

l
x~z,q!

2E
0

pE
0

2p

W~u!x~z,q8!sin q8 cos~w2w8!dw8dq8

5E~z!sin q. ~17!

The angleu can be expressed in terms of the ang
q,q8 andw,w8 connected with the vectorn andn8:

cosu5cosq cosq81sin q sin q8 cos~w2w8!. ~18!

Although the specific results were obtained by us
specular reflection of electrons at the sample boundary,
will first consider a more general case generalizing the w
known Fuchsconditions:6

x~0,q!5E
p/2

p

sin q8Q~q,q8!x~0,q8!dq8,

~19!
0<q<p/2.

The matrixQ(q,q8) can be defined from an analysis o
electron scattering at a rough boundary.7 A transition to the
Fuchs condition is carried out through the substitution
Q(q,q8) in the form of thed-function:

x~0,q!5Qx~0,p2q!, 0<Q<1. ~20!

The substitution of the function~14! for W(u) in ~8!
leads to a system of ordinary integral equations supp
mented with a differential equation which must be cons
ered on the semiaxisz.0 instead of a single integrodiffer
ential equation. The number of such equations
N511(n/2)2 ~see Appendix 1!.

If we take the Fuchs conditions~20! instead of the
boundary conditions~19!, the matrix kernel of the system i
simplified considerably and assumes a special form of
sum of two kernels, the difference and the ‘‘sum’’ kernel.

Finally, if we confine the analysis to the case of specu
reflection (Q51), the system under investigation is co
verted~after transformations! into a system of integral equa
tions on the entire axis with a difference kernel, which c
easily be solved explicitly.

In Ref. 1, the following expression was obtained for im
pedance in the case of specular reflection@it should be re-
called that the probabilityW(u) is defined by formula~8!#:

z5
v l

ipcE2`

` dk

k222i ~ l 2/d2!m~k,a!
, ~21!

where

29Kaganov et al.



m k,a 5
K̄~k!
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12 1

3aK̄~k!
~22!

K̄~k![
3

2E0
1 12y2

11k2y2
dy52

3

2k2 1
3

4ik S 11
1

k2D ln 11 ik

12 ik
,

d5c/A2psv, and s depends on the mean free pa
l5(4pW0)

21.
In the general case@see~14! and~16!#, if the reflection is

specular, expression~21! remains valid. However, the func
tion m(k,a) changes significantly. It depends on all the c
efficientsa1 ,a2 , . . . ,an , i.e., a5$a1 , . . . ,an%. More-
over, the mean free path is renormalized@see~16!#. The same
function m(k,a) characterizes the electric field streng
E5E(z).

The computational algorithm for the functionm(k,a) is
derived in Appendices I–III. It has the form

m~k,a!5
3

4

D01~k,a!

D~k,a!
, a5$a1 , . . . ,an%, ~23!

whereD(k,a) is the determinant composed of the eleme

D ~pq!~p8q8!~ lk!5dp2p8dq2q8

2 lW0Ap8q8Pp1p8,q1q8~ lk!. ~24!

The parametera will be omitted. Since the unknown
j pq in the system of equations~A.10! are labeled by two
indices, the rows and the columns of the determinant
accordingly labeled by two indices;D01( lk) is the determi-
nant which is obtained fromD if we replace the column~0,1!
in it by the columnPp,q11( lk).

The functionsPp1p8,q1q8 are defined as follows:

Pp1p8,q1q8~l!

[5 2E
0

1

~12t2!~q1q8!/2
tp1p8

11l2t2
dt, p1p8 is even;

2ilE
0

1

~12t2!~q1q8!/2
tp1p811

11l2t2
dt, p1p8 is odd.

~25!

The coefficients have the form

Ap,q5ap1qCp1q
q Bq ;

Bq5H 0, q is even;

p

2q
Cq11

~q11!/2 , q is odd;
~26!

whereCq
p are binomial coefficients.

In the same approximation in which expression~21! for
impedance was obtained, the electric field strength in a m
is given by

E~z!52
iv l

c
H~0!I ~z!, ~27!

where

I ~z!5
1

pE2`

` exp~2 izk/ l !dk

k222i ~ l 2/d2!m~k!
. ~28!
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I ~0!. ~29!

Formulas~28! and~29! together with formulas~23!–~26!
complete the solution of the problem formulated abo
Naturally, for a large number of coefficientsa(n.1), these
formulas are cumbersome~see below!. Besides, it is incon-
venient to use integral~28! directly for deriving the asymp-
totic formulas.

If, for example,z@ l , the integrand function oscillate
rapidly so that the integral itself is a sort of ‘‘differenc
effect.’’ If l /d is very small or very large, it is natural to tr
to expand the integrand into a power series inl /d of d/ l
respectively. This, however, is not admissible since the ra
of k2 to 2i ( l 2/d2)m(k) is not small or large uniformly in
k irrespective of the ratiol /d. For this reason, it is expedien
to deform the integration contour by taking it away from t
point k50 and bringing it close to the negative imagina
semiaxis, where the factor exp(2ikz/l) stops oscillating and
decreases rapidly for largez/ l .

It should be borne in mind that the functionm(k) has
two branching pointsk56 i . This follows from the explicit
expressions~25! for the functionsP . . . (k) and the function
m(k) which contain the logarithm ln@(11ik)/(12ik)# ~this
can be verified easily!.

In addition, it was found that for the given deformatio
the contour~its left wing! intersects the denominator zero
a single point, which leads to the emergence of a residu

We denote by ln(1)@(11ik)/(12ik)# and ln(2)@(11ik)/
(12 ik)] two analytic functions in the ringuku.1, such that
the function ln@(11ik)/(12ik)# coincide with the function
ln(1)@(11ik)/(12ik)# on the semiaxisk.1 and with the
function ln(2)@(11ik)/(12ik)# on the negative semiaxis. I
can easily be seen that these two functions are defined by
formulas

ln~6 !S 11 ik

12 ik D56p i1 lnS 111/ik

121/ik D , uku.1.

Replacing the function ln@(11ik)/(12ik)# in formulas
~25! by the function ln(1)@(11ik)/(12ik)# or by ln(2)

3@(11ik)/(12ik)#, we obtain analytic continuations of th
functionsP . . . , and hence of the functionm(k) @its analytic
continuations arem1(k) andm2(k)].

We can now bring the integration contour in integr
~28! to both banks of the cut (2 i ,2 i`). After elementary
transformations, this gives
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I ~z!52 i
exp~2 ik0z/ l !

23i
l 2

P~z!,

k02 i ~ l 2/d2!m8~k0! d2

~30!

P~z!5E
1

` ~1/t !~121/t2!exp~2tz/ l !dt

@ t2D2~2 i t !1 3
2i ~ l

2/d2!D01
2 ~2 i t !#@ t2D1~2 i t !1 3

2i ~ l
2/d2!D01

1 ~2 i t !#
.

These functions are suitable for calculating the asymp- l tr 21
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s 5s , l 5E E W~u!~12cosu!dO. ~37!
totic forms, but as before, these formulas are very cumb
some in view of the structure of the functionsD(k) and
D01(k) @see~24!#.

A natural simplification can be made if only the coef
cientsa1 anda2 differ from zero:

W~u!5W0~11a1 cosu1a2 cos
2 u!, ~31!

i.e., if thes-, p- andd-scattering is taken into account.
In this case, we have

m~k,a!5
3

4

P02~k!2 4
3b2P22~k!

12b1P02~k!2b2~12 4
3b1!P22~k!

, ~32!

where

b15
a1

4~11a2/3!
; b25

a2

2~11a2/3!
, ~33!

and according to the general formulas~25!, the functions
P02(k) andP22(k) are given by

P02~k!52
2

k2 1
1

ik S 11
1

k2D ln 11 ik

12 ik
.

~34!

p22~k!5
1

2k4 1
4

3k2 2
1

ik3 S 11
1

k2D ln 11 ik

12 ik
.

The determinants@see~23! and~24!# contained the func-
tion P12(k). By virtue of the relation

P12~k!52ikP02~k!

this function does not appear in the final result. For the sa
reason, the determinants@the numerator and denominator
formula ~32!# are linear functions ofP02(k) andP22(k).

Substituting expression~32! into formula ~21! and its
corollaries, we obtain an expression for the impedance wh
is valid for the probabilityW(u) taking into account thes-,
p-, andd-scattering. Naturally, this expression differs fro
the formula describing only thes- andp-scattering@see~2!
and ~21!#. The difference is manifested most clearly if th
functionsP02 andP22 are expressed in terms of the comp
nent of the Fourier operator of conductivityK̄(k):

P02~k!5
4

3
K̄~k!; P22~k!5

4

3k2 @12K̄~k!#. ~35!

Puttinga2 ~or b2)50, we return to the first formula in
~22!, and hence to all the corollaries analyzed in Ref. 1.

5. Analyzing expressions~21!, ~32!, and ~35! with the
function K̄(k) defined in~22!, we can easily see that, at lo
frequencies~in the limit l /d→0), we arrive at the conven
tional value of impedance:

znorm5Av/4ps tr, ~36!

where
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In the given case, we can write

1

l tr
5
1

l S 12
a12a2

3 D ; 1

l
54pW0 . ~38!

Refining the classical formulas~36!–~38!, we must take
into account the relative correction; l 2/d2. We proceed
from formula ~30! for the quantity I(z) which is connected
with impedance through expression~29!. The first term in
~30! for z50 can be easily evaluated with the required ac-
curacy

2
i

k02 i ~ l 2/d2!m8~k0!
5

11 i

2Am~0!

d

l S 11 i
l 2

d2
m9~0!

2 D ,
where the functionm(k) is defined by~23!. The second term
in ~30! has the order of smallnessl 2/d2 and hence can be
omitted. Thus, we can write@ #

zspec5
11 i

2

vd

c

1

Am~0!
S 11 i

l 2

d2
m9~0!

2 D . l!d . ~39!

Let us use this general formula in the case when the
probabilityW(u) has the special form~31!, and the function
m(k) is defined by~32!. In order to calculatem(0) and
m9(0), it is convenient to use the integral representation of
the functionsP02(k) andP22(k):

P02~k!52E
0

1

~12t2!
dt

11k2t2
;

~40!
P22~k!52E

0

1

~12t2!
t2dt

11k2t2

@see~25!#. Elementary calculations lead to

zspec5
12 i

2
Av/2ps trS 12

1

5
i
l tr
2

d2
11a2/3

11a2/5
D . ~41!

Pay attention to the fact that the correction term of the
parametera2 does not enter only intol tr . According to for-
mula ~32! from Ref. 1, the parametera1 appears only in
l tr .

6. In order to calculate the impedancez in the case of
extremely anomalous skin effect (l@d), we must know the
asymptotic form of the functionm5m(k) for k@1. Using
formulas~32!–~34! and ~41!, we obtain

m~k!'
3p

4k F11
1

k S a1p

4~11a2/3!
2
4

p

1
8

9p

a2

11a2/3
D G , k.0. ~42!

Using this formula and~21!, we obtain a generalization
of formula ~33! from Ref. 1:2)
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W

1Ep

sin q8dq8E2p

dw8W~u!x~z,u8!cosw8.

:

~43!

A~a1 ,a2!5
1

8 S 2p D 1/3~A31 i !

3F 4p2
a1p

4~11a2/3!
2

8

9p

a2

11a2/3
G .

While deriving this formula, it is convenient to trans
form the integral ~21! to the integral over the semiaxi
k.0.

7.We can make here the following concluding remar
First of all, the main result of this publication are not analy
expressions~41! and ~43! containing small correction to th
well-known limiting formulas, but formulas~21!, ~23!–~26!
which make it possible to calculate impedance in the cas
a virtually arbitrary functionW5W(u) @see~14! and ~18!#.
Naturally, the larger the number of the terms required
defining the functionsW5W(u), the more cumbersome th
numerical calculations. In our opinion, the formulas deriv
above can be used in subsequent analysis based on sp
properties of the scattering functionW5W(u). We are plan-
ning to return to this problem later.

It was mentioned more than once~see Refs. 1 and 2! that
the arriving term in the collision integral is responsible f
correlation between the scattering at the surface and in
bulk. The formulas derived here~and, naturally, in Ref. 1!
confirm this fact. An interesting example can be conside
in this connection: forl@d and for specular reflection o
electrons, the main correction depends on the structure o
arriving term@see formula~33! from Ref. 1 and formula~43!
of this publication#. According to formula~46! from Ref. 1,
which described diffuse scattering forl /d@1, the term con-
taining the parametera and appearing due to the introdu
tion of the arriving curve is added to the logarithmica
large term lnl@l5(3pl2/2d2)1/3#, i.e., its role is much less
significant than in the case of specular reflection of electr
at the boundary.

And the last remark: forl@d, the parameters associate
with the arriving term appear only in correction terms. If w
confine the analysis to the extremely anomalous skin eff
we can apparently use the perturbation theory, conside
that the integral term in Eq.~17! is a perturbation. Such a
approach might also be used in subsequent investigation

APPENDIX I

Let us demonstrate how the kinetic equation~17! with
the boundary conditions~19! can be transformed into a
equivalent system of integral equations on the semiaxis.
assume that the functionE(z) is known. At the first step, we
solve formally Eq.~17! which will be first presented in the
form

cosq
]x

]z
1
1

l
5S~z,q!,

where@see~17! and ~18!#

S~z,q!5E~z!sin q
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0 0

~A1!

This gives

x~z,q!5

{
x~0,q!expS 2

z

l cosq D
1E

0

z

expS j2z

l cosq DS~j,q!

cosq
dj;

0<q<p/2;

2E
z

`

expS j2z

l cosq D S~j,q!

cosq
dj;

p/2<q<p.

~A2!

According to the boundary condition~13!, the term
x(0,q)exp(2z/l cosq) can be written in the form

x~0,q!expS 2
z

l cosq D
52E

p/2

p

sin q8dq8Q~q,q8!

3E
0

`

expS j

l cosq8
2

z

l cosq D S~j,q8!

cosq8
dj.

Let us consider the structure of the functionS(z,q) in
greater detail. Using the relation~18! betweenu andq,q8,
andw, we can write

W~u!5W0F11 (
k51

n

ak~cosq cosq8

1sin q sin q8 cosw!kG
5W0F11 (

p1q<n
ap1qCp1q

q

3cosp q cosp q8 sinq q sinq q8 cosq wG ,
whereCp

q are binomial coefficients.
Substituting these relation into~17!, we obtain

S~z,q!5E~z!sin q

1W0 (
p1q<n

8 Ap,q cos
p q sinq q j pq~z!, ~A3!

where new unknown functionsj pq(z) have been introduced

j pq~z![E
0

p

x~z,q9!cosp q8 sinq11 q8dq8 ~A4!

and the coefficients are defined as
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for negativez, we can reduce the system~A5! to the form

flec-
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ts

a-

by

t

or-
c-
Bq[E
0

2p

cosq11 w dw5H 0 q is even

p

2q
Cq11

~q11!/2 , q is odd.

It should be noted that the indexq in the sum~A3! runs
through odd values sinceBq50 if q is even. The prime on
the sum reminds of this circumstance.

We can now obtain the system of integral equations
fining all the functionsj pq(z) with an oddq @the functions
j pq(z) with an evenq are not required#. For this purpose, in
the definition~A4! of the function j pq(z) we eliminate the
function x(z,q) by using ~A2!; as a result,j pq(z) can be
presented by an integral depending only onS(j,q). The
second and last step consists in the replacement of the f
tion S(j,q) in the integrand by its expression~A3! in terms
of the functionsj p8q8(j). This leads to the following funda
mental system of integral equations:

j pq~z!2W0 (
p8,q8

8 Ap8q8E
0

`

j p8q8~j!@Tp1p8,q1q8~z2j!

1T~pq!~p8q8!~z,j!#dj5E
0

`

E~j!@Tp,q11~z2j!

1T~pq!~01!~z,j!#dj. ~A5!

The following notation has been introduced:

Tpq~z![E
0

p/2

cosp21 q sinq11 q

3expS 2
uzu

l cosq Ddq sgnp11z,

~A6!

T~pq!~p8q8!~z,j![2E
0

p/2

dqE
p/2

p

dq8Q~q,q8!

3cosp q sinq11 q cosp821 q8

3sinq811 q8 expS j

l cosq8
2

z

l cosq D .
This is the system ofN ordinary integral equations on th
semiaxis mentioned above.

APPENDIX II

As a result of a transition to boundary conditions of t
Fuchs type, these equations remain in force, but the exp
sions of the kernelsT(pq)(p8q8)(z,j) are simplified:

T~pq!~p8q8!~z,j!5~21!p8QTp1p8,q1q8~z,j!.

Even after such a simplification, however, the system
equations can be solved either fork51 andQ50, or for an
arbitrary value ofk andQ51, i.e., in the case of specula
reflection.

In the latter case, if we supplement the definition of t
functions j pq(z) andE(z) by putting

j pq~z!5~21!pj pq~2z!, E~z!5E~2z!, z,0, ~A7!
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j pq~z!2W0 ( 8
p8,q8

Ap8q8E
2`

`

j p8q8~j!Tp1p8,q1q8~z2j!dj

5E
2`

`

E~j!Tp,q11~z2j!dj, 2`,z,`. ~A8!

APPENDIX III

Let us suppose that electrons experience specular re
tion at the boundary. The system~A8! can be solved in the
standard manner through a transition from the functio
E(z) and j pq(z) to their Fourier transformsE(k) and
Jpq(k). The Fourier transforms of the coefficien
Tp1p8,q1q8

(z) can be represented in the form

E
2`

`

Tp1p8,q1q8~z!exp~ ikz!dz5 lPp1p8,q1q8~ lk!,

where

Pp1p8,q1q8~l!

[5 2E0
1

~12t2!~q1q8!/2
tp1p8

11l2t2
dt, p1p8 is even;

2ilE
0

1

~12t2!~q1q8!/2
tp1p811

11l2t2
dt, p1p8 is odd.

~A9!

The system~A8! becomes an algebraic system of equ
tions

Jpq~k!2 lW0 ( 8
p8,q8

Ap8q8Jp8q8~k!Pp1p8,q1q8~ lk!

5E~k!Pp,q11~ lk!. ~A10!

Solving this system forJ01(k), we obtain

J01~k!5
D01~ lk!

D~ lk!
E~k!, ~A11!

whereD( lk) is a determinant whose elements are given

D ~pq!~p8q8!~ lk!5dp2p8dq2q82 lW0Ap8,q8Pp1p8,q1q8~ lk!;

and D01( lk) is the determinant which is obtained from
D( lk) by replacing the column~0,1! in it by the column
D (pq)5Pp,q11( lk).

We denote byJ(k) the Fourier transform of the curren
densityj (z). According to definition~A4! of j pq(z), formula
~15! indicates that the current densityj (z) has the form

j ~z!5
3s

4l
j 01~z!.

Consequently, the Fourier transformJ(k) of current
density is given by

J~k!5
3s

4

D01~ lk!

D~ lk!
E~k!. ~A12!

This is a consequence of the kinetic equation and f
mula~15! expressing the current density in terms of the fun
tion x(z,q).

33Kaganov et al.



The second independent relation between Fourier trans-
e

ha

of
he
rac-
forms of current density and field is the corollary of th
corresponding Maxwell’s equation:

E9~z!1
4p iv

c2
j ~z!50.

Carrying out Fourier transformation and considering t
E8(20)52E8(10), we obtain

2k2E~k!22E8~0!1
4p iv

c2
J~k!50,

~A13!

E8~0!5
iv

c
Hy~0!.

Eliminating J(k) from relations~A12! and ~A13!, we
obtain

E~k!52
2~ iv/c!Hy~0!

k22~3i /2d2!~D0~ lk!/D~ lk!!
;

34 Low Temp. Phys. 23 (1), January 1997
t

~A14!

d2[
c2

2psv
.

1!The Boltzmann integrodifferential equation requires the formulation
boundary conditions for the conduction electron distribution function. T
boundary conditions can be obtained from an analysis of electron inte
tion with the sample boundary.

2!We take the opportunity to note that formula~33! in Ref. 1 is incorrect: the
factor (d2/3l 2) should be raised to the power 1/3.
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6K. Fuchs, Proc. Camb. Phil. Soc.34, 100 ~1938!.
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Diffusion in solid helium (A review)

V. N. Grigor’ev

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted July 4, 1996!
Fiz. Nizk. Temp.23, 5–20~January 1997!

The results of experimental investigations of diffusion processes in solid helium are reviewed. It
is shown that3He impurities in hcp4He are narrow-band quasiparticles whose motion can
be adequately described in the existing theory of quantum diffusion. The observed peculiarities of
3He diffusion in the bcc phase of concentrated3He–4He solutions, i.e., a noticeable
diffusive transport at concentrations higher than critical, the independence of the diffusion
coefficientD on the concentration forx,20%3He, an abrupt increase inD for x.20%, and a
dependence ofD on the diffusion length in the latter case, have not received a quantitative
interpretation. The relation between diffusion phenomena in concentrated solutions and the
percolation problem is emphasized. The results of experiments on vacancy diffusion are
analyzed, and it is proved that vacancies in3He–4He are wide-band quasiparticles. ©1997
American Institute of Physics.@S1063-777X~97!00201-6#

INTRODUCTION studies which were accounted for~apart of original papers!
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Diffusion phenomena is solid helium belong to the fie
of physical studies whose development was determined
the ideas formulated by I. M. Lifshits. The publication
1969 of the article ‘‘Quantum Theory of Defects in Crysta
by Andreev and Lifshits1 changed radically the existing con
cepts concerning diffusion processes and determined th
rection of research work in the field of quantum crystal ph
ics for many years. The term ‘‘quantum crystal’’ wa
introduced by de Boer2 in 1948 for substances in which th
energy of zero-point vibrations of particles is comparable
the total energy of the crystal. Solid helium was always
garded a typical representative of this class of crystals,
prior to the publication by Andreev and Lifshits1 no mani-
festations of quantum effects in its macroscopic proper
had been predicted. In Ref. 1, several such effects~quantum
diffusion, zero-point vacancions, and the possibility of sup
fluidity of crystals! were predicted simultaneously, whic
stimulated experimental and theoretical investigations
solid helium.

The main regularities of quantum diffusion have be
observed experimentally after a comparatively short time
accordance with the predictions of Andreev and Lifshits
was found that3He impurities in hcp crystals of4He are
narrow-band quasiparticles whose motion is determined
gas laws in many cases. It has been proved theoretically
vacancies in solid helium must be wide-band quasipartic
and experimental evidences in favor of this hypothesis h
been obtained recently.

Subsequent studies have made it possible to gener
the theory to the range of high impurity concentrations,
analyze the properties of other narrow-band particles, to
tablish the relation between diffusion and percolation p
nomena, and to observe quantum diffusion in other syste

Dozens of publications appearing in this field allow us
make a brief review of the obtained results. Since the ba
aspects of theoretical studies are covered in the review
Kagan,3 the main attention here will be paid to experimen
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in a single review of the results obtained at the early sta
of quantum diffusion studies.

The present review has the following construction. Ba
theoretical concepts and relations are presented in Se
The main features of NMR method in solid helium are o
lined in Sec. 2. Section 3 is devoted to publications conce
ing the observation of quantum diffusion of impurities in th
hcp phase, and Sec. 4 to the effects of phonon-stimula
diffusion and localization of impurities. Section 5 covers t
results of investigations in the bcc phase, while Sec. 6 c
tains the results of direct measurements of vacancy diffus
Some general aspects of diffusion phenomena in helium
considered in Conclusion, where all the results are sum
rized.

1. BASIC CONCEPTS AND THEORETICAL RELATIONS

The main idea put forth by Andreev and Lifshits1 is
based on the assumption that the probability of tunnel
change of neighboring particles in quantum crystals beco
noticeable in view of the large amplitude of zero-point vibr
tions of atoms, which leads to the conversion of impurit
and point defects into peculiar quasiparticles that can m
almost freely over the entire volume. In perfect crystals,
motion of quasiparticles is limited only by collisions wit
one another and with other excitations. Such a quasi-
motion occurs within the energy band whose widthD>zJ is
determined by the tunneling frequency characterized by
exchange integralJ (z is the number of nearest neighbors!.
For example, the motion of impurity atoms in the case o
low concentration is determined by collisions with phonon
leading to a peculiar diffusion flow under these condition
the diffusion coefficientD must increase upon a decrease
temperature. Andreev and Lifshits1 derived the following re-
lation:

D;
a2D2

hQ S Q

T D 9, ~1!

30003-12$10.00 © 1997 American Institute of Physics
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Debye temperature, andh the Planck constant. The eme
gence of such a large exponent for temperature is not
prising. The number of phonons is proportional toT3, their
cross scattering section is proportional toT4, and the addi-
tional factor (T/Q)2 associated with low efficiency of colli
sions appears in view of the difference in the momenta
phonons and impuritons.

Expression~1! was obtained on the basis of a pure
qualitative analysis. Subsequent calculations made
Pushkarov5 showed that the numerical coefficient in this fo
mula is significant (;106) since the role ofQ is played by
an effective temperature approximately equal to (Q/8).
Later, Slyusarevet al.4 carried out a quantitative analysis fo
the hcp phase taking into account possible anisotropy
derived the relation

D5Aa2~ I 2/Q!~Q/T!9, ~2!

whereA is a numerical coefficient equal to 2.3•105 for the
hcp phase.

An unexpected result was obtained by Kagan a
Klinger7 who proved that the coherent motion of impurito
described by the dependence of type~1! is preserved up to
T.Q even when the impuriton mean free path is of t
order of or smaller than the lattice parameter.

The interaction between impurities inevitably becom
significant upon an increase in the impurity concentration
a decrease in temperature. The situation in which such
interaction plays a decisive role was analyzed simultaneo
and independently in Refs. 8–10. It was proved that in
case of gas-like motion, the impurity diffusion coefficie
can be written in the form

D.a4J/hsx, ~3!

where x is the impurity concentration ands the impurity
scattering cross section.

The problem of determining the cross section of impu
tons, which was solved most consistently by Kagan,11 proved
to be very important. The analysis11 showed that the scatter
ing cross section is quite large (s@a2) and depends on th
impuriton band width. Such a dependence can be expla
qualitatively on the basis of the following consideration
Owing to a large amplitude of zero-point vibrations, t
3He impurity atom occupies a slightly larger volume in t
lattice than the4He atom. This leads to a lattice distortio
and to the emergence of elastic interaction between disto
regions. The presence of such an interaction prevents
convergence of two impurity atoms to a distance at wh
the potential energy exceeds the energy band width. The
teraction potential is described by the lawU5U0(a/r )

3, and
the characteristic distancer 0 at which the interaction energ
coincides with the band width is given by

r 0.a~U0 /D!1/3. ~4!

Obviously,r 0
2 plays the role ofs, and the substitution of~4!

into ~3! gives

D;~Ja2/x!~J/U0!
2/3. ~5!

4 Low Temp. Phys. 23 (1), January 1997
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interaction anisotropy reduces the scattering cross sectio
a factor of several units, and the final expression for dif
sion coefficient in the region of impurity scattering can
written in the form

D5
k0

21z5/6v0Ja
3

P3A2G~1/3!a2\x
S J

U0
D 2/3 ~6!

(k0 is the numerical factor taking into account the decre
in the scattering cross section for an anisotropic potential
depending on the crystal lattice type;k0.0.29 for the hcp
phase!.

It is very important to determine the limits of applicabi
ity of the expressions obtained above. As regards the t
perature, it was noted above7 that it is virtually unbounded. It
should be noted, however, that at high temperatures
quantum diffusion of impurities can be ‘‘screened’’ by a
exponentially increasing vacancy diffusion which can also
unusual in quantum crystals.

The estimation of the concentration limit is based on
comparison of the average energy of interaction of impurit
and the energy band widthU(R)5D, whereR ; a/x0

1/3. A
correct estimate of the critical concentration (x0<1023) was
obtained by Guyeret al.13 In view of the large value of
dD/dr, the concentrationx0 strongly depends on densit
~see below!.

An analysis of the diffusion flow under the condition
when U(R) is slightly larger thanD was carried out by
Andreev14 who paid attention to the fact that the violation
the conditionU(r ),D does not rule out the tunnel exchang
which terminates only fora(dU/dr ).D. Andreev14 proved
that diffusion transport fora(dU/dr ),D,U follows the
law

D;~J2a2/\U0!x
24/3. ~7!

This dependence is close to~3!, and the two depen-
dences and can hardly be distinguished in experiments,
more so that the range of applicability of~7! is rather small.

A further increase in impurity concentration leads to
considerable expansion of the regions in which quantum
fusion is impossible. As a result, the larger and larger fr
tion of the crystal is excepted from free motion, clusters
stationary impurities are formed, diffusion becomes of p
colation nature, and impurities are localized completely fo
certain critical impurity concentrationxc . Such a situation
was analyzed by Kagan and Maksimiv15 who demonstrated
the dual role of temperature. On one hand, in the case
coherent motion of impuritons, phonons decelerate the di
sion flow, while on the other hand, in the case of a fin
temperature, the localized impuritons can become delo
ized due to their interaction with phonons and can sub
quently participate in diffusion transport. Taking into a
count these mechanisms, we can write the diffus
coefficient in the form

D5
za2J2Vph~T!

3\@d«21Vph
2 ~T!#

, ~8!

4V. N. Grigor’ev



where Vph5A(Q)(T/Q)9 is the amplitude of impuriton
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scattering by a phonon,A is a constant of the order of 10,
and

d«5aU0x
4/3, ~9!

whered« is the mismatching of energy levels at neighbori
lattice sites due to interaction between impurities. Kagan
Maksimov15 also proposed an interpolation formula takin
into account various mechanisms and describing the di
sion of impurities in a wide range of concentrations, te
peratures, and densities:

D.
za2J2

3\ F Q~x!

Vx1Vph~T!
1

@12Q~x!#Vph~T!

d«21Vph~T! G . ~10!

Here

Q~x!5@~xc2x!/xc#
t ~11!

is the percolation function characterizing the fraction of
gions where free motion can occur, and

Vx5BxU2/3I 1/3 ~12!

is the amplitude of scattering of an impuriton by anoth
impuriton (B5const). It can be easily seen that equatio
~10! is transformed into~1!, ~5!, or ~8! in limiting cases.

In the region of extremely high temperatures, we m
supplement~10! with the termDxv5D0 exp(2W/T) describ-
ing the vacancion diffusion of impurities~see Sec. 6 for de
tails!.

2. PECULIARITIES OF NMR MEASURING TECHNIQUE IN
3He–4He SOLID SOLUTIONS

The main experimental results on diffusion of impuriti
in solid helium were obtained by the NMR method based
spin echo. Spin echo signals appear in spin systems
nonuniform magnetic field as a result of action of seve
radio pulses filled with resonant Larmor frequency. T
maximum amplitude of echo signal is obtained when t
pulses~90 and 180°) are used. This notation characteri
pulses whose amplitudes and durations are selected so
the magnetic moments of the sample are rotated under
action through 90 and 180° respectively. The amplitudeh
of echo signals generated in this case are described by
following dependence:

h5h0 exp@22t/T22~2/3!g2G2Dt3#. ~13!

Heret is the time interval between 90 and 180° pulses,h0 is
the amplitude of a free induction signal emerging after
90°-pulse,g the gyromagnetic ratio,G the magnetic field
gradient, andT2 the spin–spin relaxation time. Relation~13!
allows us to determine the value ofD directly from the de-
pendence of then echo-signal amplitude onG or t. The dif-
fusion coefficient measured in this case corresponds to
diffusion and can differ from the self-diffusion coefficient
the mechanisms of spin transfer without a displacemen
atoms are significant. Such processes can occur due to
exchange or dipole–dipole interaction. However, these p
cesses are significant only between nearest neighbors,
hence make a noticeable contribution only when the conc
tration of 3He in 3He–4He solutions are of the order of sev

5 Low Temp. Phys. 23 (1), January 1997
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diffusion coefficient coincides with the self-diffusion coeffi
cient.

Peculiarities in the application of the spin echo meth
in the case of weak solutions of3He in 4He are due to the
requirement of combination of the high sensitivity of th
setup with the possibility of measuring small values of d
fusion coefficient for anomalously long spin–lattice rela
ation timeT1 which can be as large as several hours for
most dilute solutions. In this case, the operation under
conditions of equilibrium magnetization of the samples
virtually impossible, and it must be ensured that the value
h0 in ~13! be constant in a given series of measurements
many cases, this problem was solved by using the metho
preliminary saturation.16 In this method, the sample was su
jected to the action of a series of high-power pulses levell
out the population densities of spin sublevels prior to ea
measurement. If the probing 90 and 180° pulses are app
to the sample with a time intervalt1 which is constant for a
given series after switching off the pulses, when the sam
magnetization is restores according to the conventional
ponential law, the constancy ofh0 whose role is played by
the quantityh`@12 exp(t1 /T1)# will be ensured.

However, this method is inapplicable to the most dilu
solutions in view of a considerable decrease in the amplit
of signals being measured. In this case, for a givent1 the
amplitude decreases in proportion tox2 ~on account the de-
pendenceT1

21 ; x). We used an original approach associat
with melting of the sample.17 Intrinsic relaxation times for
solid samples are also long, but boundary relaxation p
cesses reducing the value ofT1 to a few seconds play a
significant role in the liquid due to rapid diffusion. Befor
each measurement, the samples of the most dilute solut
were melted by reducing pressure and then crystalliz
which allowed us to obtain virtually equilibrium sample
during several minutes.~Carrying out melting and crystalli-
zation at a lower temperature, we could even obtain
samples with a magnetization higher than the equilibri
value.! The approaches described above made it possibl
carry out reliable measurements for low concentrations
3He down to 6•1025.

The conventional method of spin echo using a seque
of 90–180° pulses makes it possible to measure the diffus
coefficient down to 1028 cm2/s. The method using stimu
lated echo18,19 emerging after the action of three 90°-puls
appears to be more promising for measuring lower value
D. In this case, the echo amplitude can be described by
expression

h5
h0
2
expF22t1

T2
2

t22t1
T1

2g2Dt1
2S t22

1

3
t1D G , ~14!

wheret1 is the interval between the first and second pul
andt2 between the second and third pulses. The contribu
of diffusion to signal damping depends on both signals. T
allows us to reduce significantly the role of relaxation dam
ing, thus lowering the limit of measurement of low diffusio
coefficients. The gain is especially large in the case

5V. N. Grigor’ev



3He–4He solid solutions due to a very large value of the ratio
3 210
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T1 /T2>10 . This allows us to measureD down to 10
cm2/s.

The limit of the measured values ofD can be reduced
further only by increasing the applied magnetic field gra
ent. However, the increase inG under stationary condition
is limited in view of a strong narrowing of echo, necessit
ing a significant expansion of the transmission band of
receiver, as well as due to an increasing role of spin ph
mismatching during the action of pulses. These difficult
can be avoided by using the pulsed gradient applied in
interval between pulses. If in this case the value of the pul
magnetic field gradient can be made much larger than
constant field gradient, and the interval between the HF fi
pulses and the gradient can be made short, the expres
for the signal amplitude remain virtually unchanged. The
plication of pulsed gradient does not impose formal limi
tions on its magnitude, and hence there are no restriction
measurement of small diffusion coefficients. In actual pr
tice, the limit of measurements in concentrated solutio
could be reduced by two more orders of magnitude
10212cm2/s.

The development and applications of the approaches
scribed above has made it possible to study diffusion
3He–4He solid solutions in a wide range of concentration
temperatures, and densities and to discover a large numb
interesting and unexpected phenomena.

3. QUANTUM DIFFUSION OF 3He IMPURITY IN hcp PHASE

The first evidence of quantum-mechanical motion of i
purities was obtained while studying the concentration
pendence of the diffusion coefficient of3He in the hcp phase
of solid helium near the melting curve atV521.0
cm3/mole. The experiments were carried out by Richar
Pope, and Widom20 at the Sussex University~UK! at 0.54 K
in the concentration range 0.22–3% and by Grigorev,
elson, Mikheev, and Shulman21 at B. Verkin Institute for
Low Temperature Physics and Engineering, National Ac
emy of Sciences of the Ukraine, who studied the tempera
dependence of diffusion coefficient in the temperature in
val 0.4–1.4 K for four solutions with3He concentrations
varying from 0.09 to 2.17%. In both publications, it wa
found that the diffusion coefficient in the region under inve
tigation varies in inverse proportion to concentration acco
ing to the predicted dependence~3!. In Ref. 21, it was also
proved that the diffusion coefficient of the solutions is virt
ally independent of temperature. The upper temperature l
in these experiments was confined to the hcp–bcc transi

The next significant step was made in experiments a
higher value of density, in which measurements could
made up to the melting point.22 The main results of this
research were the establishment of a stronger dependen
the diffusion coefficient on density~in comparison with a
similar dependence of the spin diffusion coefficient in pu
3He) as well as an exponential increase in the diffusion
efficient observed at higher temperatures~Fig. 1!. The first
fact could be regarded as a confirmation of a nonlinear
pendence of the diffusion coefficient on the exchange in

6 Low Temp. Phys. 23 (1), January 1997
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gral according to~5!, while the second can indicate a signifi
cant contribution of vacancion diffusion under the
conditions. Similar experiments were carried out later
higher densities up toV519.9 cm3/mole.23,24The concentra-
tion dependence constructed according to the results
tained by the Kharkov group are presented in Fig. 2~this
dependence is described by the relationDx510211cm2/s).
The results obtained by Richardset al. follow in general the
same dependence with a slightly differing numerical coe
cient. The difference in the absolute values of diffusion c
efficient is in all probability due to a strong dependence
the results obtained by the spin echo technique on the m
netic field gradient used, which is difficult to measure w
the required accuracy. It should also be noted that consi
able deviations from the lawD ; x21 were observed in one
of the experiments carried out in Sussex.24 Possible reasons
behind such a behavior will be considered below.

The experimental observation of the predicted dep
denceD ; x21 suggests that quantum diffusion of3He impu-
rity takes place in the hcp phase of solid helium. Howev
Huanget al.25 proved that almost the same dependence
be obtained in the concentration range 1022–1023 in the
framework of the ‘‘model of interaction’’ developed by them

FIG. 1. Temperature dependence of the diffusion coefficient of3He in the
hcp phase of4He for V520.7 cm3/mole in solutions with various concen
trations of3He,%: 0.25~curve1!, 0.75 ~curve2!, and 2.17~curve3!.

FIG. 2. Concentration dependence of the diffusion coefficient of3He in the
hcp phase of4He for V521 cm3/mole in the plateau region.

6V. N. Grigor’ev
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without using the concepts of coherent motion of impur
excitations. This circumstance was an additional impetu
carry out investigations in the region of lower concent
tions, aimed at observing the dependenceD ; T29 associated
with phonon scattering of impuritons and most typical
quantum diffusion.

Such investigations were carried out for the first time
B. Verkin Institute for Low Temperature Physics and En
neering on a solution containing 0.006%3He,17,26and later at
Sussex27,28for concentrations up to 1022%. A sharp increase
~almost by an order of magnitude for dilute solutions! in the
diffusion coefficient upon a decrease in temperature was
tected. The results of these experiments are presented in
3. If we disregard the traditional difference in absolute v
ues, the results of both experiments~as well as of subsequen
experiments! indicate that the diffusion coefficient in th
temperature range 0.8–1.4 K varies in proportion toT29 in
accordance with the predictions of the theory. Figure
showing the dependence ofD21 on T9 for a 0.06%3He so-
lution illustrates the extent to which the experimental resu
fit into dependence~1!. The results of these experiments u

FIG. 3. Temperature dependence of the diffusion coefficient of3He in the
hcp solution with 0.006%3He for V521 cm3/mole.26

FIG. 4. Dependence of the reciprocal diffusion coefficient of3He in the hcp
solution with 0.006%3He onT9 ~replotted curve in Fig. 3!.
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ambiguously confirmed the existence of quantum diffus
in weak3He solutions in the hcp phase of4He.

4. LOCALIZATION OF IMPURITIES AND
PHONON-STIMULATED DIFFUSION

The next important step in experimental investigati
was associated with analysis of the behavior of diffus
coefficient with increasing3He concentration and with obse
vation of impurity localization and phonon-stimulated diffu
sion predicted by Kagan and Maksimov.15 Such experiments
were made by Mikheev, Maidanov, and Mikhin23,29 in the
concentration range up to 5%3He and for molar volumes
19.9–20.7 cm3/mole. A tendency to impurity localization
was manifested above all in a stronger~as compared toD
; x21) concentration dependence of diffusion coefficient
the plateau region forx>2%3He ~Fig. 5!, which can be
naturally explained by a decrease in the factorQx in formula
~10! with increasing concentration. However, the most re
able data on localization were obtained while studying
dependence of diffusion coefficient on density at a cons
concentration. Figure 6 shows the corresponding data fo
2.17%3He solution. It can be clearly seen that the diffusi
coefficient decreases abruptly upon a decrease in molar
ume associated with a decrease in the value ofxc in ~11!.
The same figure illustrates the formation of a plateau
D>2•10212cm2/s, which can be naturally attributed to th
contribution of spin dipole diffusion. The calculation of th

FIG. 5. Concentration dependence of the diffusion coefficient of3He for
various molar volumesV, cm3/mole: 20.7 (s), 20.5 (L), and 19.9 (h).
The curves correspond to the dependence~11! for t51.7. The dot-and-dash
straight line corresponds to the dependenceD ; x21.23
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TABLE I. Parameters of3He–4He solid solutions.

tion

-

contribution was carried out by Slusarev and Strzhemech30

and resulted in a value close to that determin
experimentally.1!

The processing of the obtained results with the help
formulas~9! and ~10! made it possible to determine the p
rametersxc andt. ForV520.7 cm3/mole, the values of thes
parameters for the most thoroughly investigated sam
werexc5(762)%3He andt51.760.2. It should be noted
that the latter value virtually coincides with the critical inde
obtained form an analysis of the metal–insulator transit
~see, for example, Ref. 31!.

Manifestations of phonon-stimulated diffusion were o
served while studying the temperature dependence of d
sion coefficient in a sample containing 4%3He ~Fig. 7!. A
sharp increase in diffusion coefficient was observed upon
increase in temperature toT;1 K, for which the contribution
of vacancion diffusion is comparatively small. The observ
tion of all basic mechanisms of quantum diffusion of imp
rities has made it possible to carry out a complex proces
of experimental data on the basis of formula~10! in the en-

FIG. 6. Dependence of the diffusion coefficient of3He in a solution with
2.17%3He on molar volume in the plateau region.

FIG. 7. Temperature dependence of the diffusion coefficient of a solu
with 4%3He for V520.7 cm3/mole.
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d

f

s

n

-
u-

n

-

g

tire range of concentrations, temperatures, and molar
umes under investigation.29 Such a processing gave matchin
values of basic parametersI , U0 ,W, andxc ~Table I! which
turn out to be independent of concentration, and their dep
dence on molar volume was determined by the correspo
ing ‘‘Grúneisen parameters’’:g I 5 d ln I /d ln V 5 22,
gU 5 d lnU0/d lnV 5 25, gW 5 d lnW/d lnV 5 27,
gx5d lnxc/d ln V 5 20. The values of coefficients in for
mulas~1! and ~3!, as well as the parameterst andD0 were
assumed to be universal. The curves in Fig. 8 were plotted
using the obtained values of parameters. The possibility
self-consistent description of all the experimental dep
dences is the most convincing evidence of the correctnes
theoretical ideas concerning quantum diffusion of3He impu-
rities in the hcp phase of4He as well as of calculations fo
various mechanisms of scattering of impurity quasiparticl

It is interesting to trace the temperature variation of co
tribution of various diffusion mechanisms described by c
responding terms in formula~10!. This is illustrated in Fig. 9
presenting the data for a 0.25% solution atV520.7
cm3/mole. It can be seen that in this case each of the th

n

V, cm3/mole I •105 U0•10
2 Q, K W x0 , %

3He

21.0 2.2 2.14 26 14 9.3
20.7 1.6 2.3 27 15.4 7.0
20.5 1.3 2.4 28 17.9 5.8
20.2 1.0 2.56 29 18.9 4.3
19.9 0.72 2.7 30 20.3 3.2

FIG. 8. Temperature dependences of the diffusion coefficient of a solu
with various 3He concentrations: theoretical dependences~2! for V521.0
~curve1! and 20.5 cm3/mole ~curve2!, for 21.0 cm3/mole, x50.006~curve
3! and 0.05%3He ~curve4!; for 20.7 cm3/mole, x50.25 ~curve5!; for 2.17
~curve6! and 4.0%3He ~curve7!; for 20.5 cm3/mole and 4.98%3He ~curve
8!. The curves are calculated by formula~10! taking into account the vacan
cion contribution with the parameters given in Table I.

8V. N. Grigor’ev



ue

b
n
ing
aw
n
o
on
o
ou
uld
h
m
t
x

ng

in
s
ar
te
le
n
ro
nt
re
-

cp
th
n
n

n
ins

DC

t the

tial
tem-
nce

th a

the
nd

than
ease
f a

in

p

bcc
terms becomes significant alternately, while the total val
are in good agreement with experimental data.

It is appropriate to mention here the attempt made
Kisvarsanyi and Sullivan32 to find an alternative explanatio
of the decrease in the diffusion coefficient with increas
temperature in dilute solutions. Using the fact that the l
D ; T29 can be approximated by an exponential depende
in a bounded interval, these authors attributed the effect
served in Refs. 26 and 27 to the contribution of impurit
scattering by localized vacancies. However, the vacancy c
centration required for a quantitative explanation turned
to be so high that their contribution to heat capacity wo
exceed the total experimental value of heat capacity of
lium. The interpretation proposed in Ref. 32 contains so
other contradictions~see Ref. 42!, but the most importan
fact is that the vacancy contribution obviously cannot e
plain the entire body of experimental data.

5. DIFFUSION OF 3He IN THE bcc PHASE OF 3He–4He
SOLUTIONS

The phase diagram of solid helium has the followi
peculiarity: the bcc phase of4He and dilute3He–4He solu-
tions exists only atT.1 K. This rules out a quantitative
analysis of regularities in quantum diffusion of impurities
the bcc phase, and experimental studies of regularitie
quantum diffusion of impurities in the bcc phase were c
ried out in a wide temperature range only for concentra
solutions withx>4%. These experiments have not revea
the regularities typical of quantum diffusion, but demo
strated a number of new interesting features of diffusion p
cesses. Above all, it was found that the diffusion coefficie
~DC! in coexisting bcc and hcp phases in the vacancion
gion differ significantly.33 This is illustrated in Fig. 10 show
ing the temperature dependence of DC in a 0.75%3He solu-
tion along the melting curve in the region of the bcc–h
transition. The obtained results indicate that the DC in
bcc phase is almost two orders of magnitude larger tha
the hcp phase. This fact was confirmed in later experime

FIG. 9. Temperature dependence of various contributions to diffusion
solution with 0.25%3He: contribution from the first term in~10! ~curve1!,
from the second term~curve2!, the vacancion contribution~curve3!, and
the total diffusion coefficient~curve 4!; the symbolsj correspond to ex-
perimental data.

9 Low Temp. Phys. 23 (1), January 1997
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on diffusion28 as well as during measurements of io
mobility.34 The reason behind such a discrepancy rema
unclear.

Figure 11 shows the temperature dependence of the
for 3.9 and 6.3%3He solutions withV521.15 cm3/mole. The
shape of the curve is the same as in the hcp phase, bu
dependence has the following two peculiarities:~a! the pres-
ence of a large transition region between the exponen
dependence at high temperatures and a plateau at low
peratures, and~b! the absence of a concentration depende
for DC. Subsequent measurements35 revealed that the DC is
independent of concentration up tox>15%.

The most unexpected circumstance is connected wi
noticeable diffusion flow observed in solutions with3He
concentrations exceeding the critical values typical of
hcp phase. According to estimates obtained by Kalnoj a
Strzhemechny,36,37 the interaction potential for impurities in
the bcc phase is more than an order of magnitude larger
in the hcp phase. This must lead to a corresponding decr
in xc . It is appropriate to note here that other proofs o

aFIG. 10. Temperature dependence of the diffusion coefficient of3He in a
solution with 0.75%3He on the melting curve in the region of bcc–hc
transitions.

FIG. 11. Temperature dependence of the diffusion coefficient in the
phase of solutions with %3He: 3.9 (s) and 6.3 (d) for 21.15 cm3/mole.
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significant diffusion flow in solid helium at low temperature
for x.xc also exist. First of all, this concerns the data on
kinetics of decomposition of solid solutions atT,0.4 K ~see,
for example, Ref. 39!. The results of experiments show th
the decomposition of solutions occurs at any concentrat
The measurements of heat capacity of concentra
solutions40,41 show that such solutions can be obtained in
nearly equilibrium state. Some results of NMR measu
ments, e.g., the dependence of diffusion on density,29 also
speak in favor of this hypothesis. In such experiments,
increase in density, and accordingly in the fraction of stati
ary clusters, must lead to a decrease in the spin echo s
amplitude in view of the absence of relaxation in the ca
when particles are completely stationary. However, this
fect was not observed in these and other experiments.

It was found that the value of diffusion coefficient for
19.5%3He solution is higher, and one more peculiarity, i.
the dependence of the diffusion coefficient on the time in
val Dt between probing pulses in the spin echo method, w
discovered.35 The results of a more detailed analysis of th
effect presented in Fig. 12 indicate a decrease in the DC w
increasingDt almost by a factor of 3. The same figure sho
for comparison the results of similar measurements fo
0.5% solution in the hcp phase, in which this effect does
exist. A D(Dt) dependence was also observed in a 31.
solution. The data on the concentration dependence ofD in
the plateau region forV521.15 cm3/mole for concentrated
solutions are presented in Fig. 13. Dashed curves mark
region in which aD(Dt) dependence was observed.

In contrast to situation in the hcp phase, where the
veloped theory provides a quantitative explanation for alm
all peculiarities observed in the diffusion of impurities, th
results of measurements in the bcc phase can be expla
only qualitatively at the best. In Ref. 43, the following em
pirical formula taking into account the contributions of v
cancion transport (Dv) and flip–flop spin exchange pro
cesses 3He–3He (D33) was proposed for explaining
peculiarities of the temperature dependence of DC in s
tions with a concentration 3.9%<x<15%:

FIG. 12. Dependence of the diffusion coefficient in a solution w
19.7%3He for 21.15cm3/mole on the interval between pulses, measured
the spin echo method.35

10 Low Temp. Phys. 23 (1), January 1997
e

n.
d
a
-

n
-
nal
e
f-

,
r-
s

th

a
t

he

-
st

ed

-

D5~D341Dxv!F11
D33

Dxv1D341D33
G . ~15!

This formula also takes into account the fact that t
3He–3He exchange in dilute solutions, for which the pro
ability that 3He atoms are nearest is low, can make a con
bution to the attenuation of spin echo signal only in com
nation with other processes, e.g., the exchange w
vacancies or with4He atoms (D34) ensuring spin transpor
over distances of the order of diffusion lengthl D;ADDt.

The latter circumstance makes it possible to explain
increase in the diffusion coefficient as well as the emerge
of the D(Dt) dependence forx>20%. This value of con-
centration corresponds to the percolation limit for the form
tion of infinite continuous chains of impurity atoms in bc
structures~see, for example, Ref. 44!. When the number of
such chains becomes large, DC approaches the value ty
of pure3He. Near the percolation threshold, the depende
of D on Dt appears quite natural and reflects a decreas
the number of chains of lengthl> l D upon an increase in
l D . In this region, diffusion phenomena in helium get mix
with percolation effects, and we can expect that subsequ
investigations will be used for a quantitative verification
various versions of the percolation theory.

It should also be noted that the observedD(Dt) depen-
dence is similar to that established earlier for samples wit
constrained geometry~see, for example, Ref. 45!. This anal-
ogy, however, is rather formal since in the case of co
strained geometry we are actually speaking not of a r
change in the diffusion coefficient, but only of the fact th
the conventional formulas connecting the attenuation of s
echo signal with DC become inapplicable. On the contra
in the case under investigation we have a real change in
transport. Moreover, if the pattern in question is correct,
DC might increase with decreasing sample lengthd under
the conditions when the value ofd< l D ~in the direction of
grad H). Naturally, the value of DC must be determined
using adequate formulas taking into account the bounded
of the geometry in the case when the spin echo metho
employed for measurements.

y
FIG. 13. Concentration dependence of the diffusion coefficient in the
teau region in the bcc phase of solutions3He–4He.35
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He in the bcc phase ofHe– He solid solutions led to the
discovery of the following additional peculiarities:

~1! considerable difference in DC in coexisting bcc and h
phases;

~2! the presence of a noticeable spin transport at low te
peratures for concentrationsx>4%3He and its indepen-
dence of concentration up to 15%3He;

~3! the presence of a noticeable transition region in the te
perature dependence ofD between the exponential de
pendence at high temperatures and a plateau at low
peratures;

~4! an abrupt increase in DC in the plateau region
x.20%3He and the dependence ofD on diffusion
length in this region. The latter circumstance is asso
ated with the percolation behavior of diffusion coef
cient.

6. DIFFUSION OF VACANCIES IN SOLID HELIUM

The experiments described above proved that3He impu-
rities in the hcp phase4He of solutions withx,1% behave
as quasiparticles with a narrow bandD<1024 K. On the
other hand, according to most theoretical calculations,
band withD of vacancies in solid helium must be great
than 1 K. This circumstance stimulates investigations in
kinetics of vacancies since it becomes possible in this cas
study a new aspect of quantum diffusion related to wi
band quasiparticles, i.e., quasiparticles for whichDv.T.

Although vacancion diffusion was observed by Rei
long back in 1963,46 and a large number of publications a
peared later on various vacancion effects in heat capa
compressibility, velocity of sound, etc.~see, for example
Ref. 47!, no convincing evidence of quantum behavior
vacancies has been obtained. One of possible reasons b
such a situation was the lack of direct methods of study
the motion of vacancies. As a rule, information on their b
havior was extracted against the background of other m
significant contributions.

A method of direct investigation of motion of vacanci
in helium crystals was proposed in Ref. 48. The essenc
this method lies in the measurement of mobility of a fin
pore membrane frozen into solid helium under the action
small loads which do not exceed the yield stress. The por
membrane was in the form of a movable plate of a paral
plate capacitor the change in whose capacitance determ
the amount of substance flowing though the pores.

In these experiments, the dependence of the velocit
the membrane on the applied load was calculated, and
limiting values for which this dependence was linear~which
is typical of vacacion creep! were determined. The measur
ments were made in the hcp phase of4He in the interval
20.3–20.9 cm3/mole at 1.3–1.7 K and in the bcc phase alo
the melting curve.49,50 The results of measurements are p
sented in Fig. 14. All the temperature dependences obta
are exponential.

The further processing of the available data was ass
ated to a considerable extent with the determination of
cancy concentrations. At the first stage, the results obta

11 Low Temp. Phys. 23 (1), January 1997
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by Simmonset al.51 from the x-ray analysis of the tempera
ture dependence of the lattice parameters of helium crys
at constant volume were used. The obtained values of
cancy concentrations and the relation

Ds5Dvx ~16!

were used for obtaining temperature dependences ofDv
which turned out to be exponential with the activation ene
4–5 K. This fact could be regarded as an evidence of cla
cal diffusion of vacancies. However, such a treatment
volved a number of considerable difficulties.

First of all, the obtained value of the pre-exponent
factor could be explained only by introducing a large entro
factor which turned out to be a function of density. Mor
over, a comparison of the tunneling probability and the a
vation motion of vacancies for the obtained values of barri
proved that tunneling must dominate even atT<4.5 K. Be-
sides, according to estimates, the contribution of vacancie
heat capacity near the melting point for the energy of th
formation obtained from x-ray measurements must be lar
than the total heat capacity of solid helium. The attempts
overcome these difficulties by treating vacancies as narr
band quasiparticles or presuming a noticeable contribu
from bivacancies also led to various contradictions.

For this reason, subsequent analysis52 was carried out
under the assumption that vacancies are wide-band quas
ticles, which is in accord with a larger part of theoretic
estimates and with the approach used by Bernier
Hetherengton47 for 3He. The concentration of vacancies w
estimated on the basis of the data on heat capacity and
mal expansion leading to identical results to within the e
perimental error and matching to the results obtained fr
NMR measurements taking into account the contribut
from phonon-stimulated diffusion29 ~see Sec. 4!. In their
analysis, Bernier and Hetherengton47 assumed a peculiar de
pendence of the vacancy density of states in3He:

r~E!5A~E2F!2. ~17!

Heat capacity data processing showed thatA5F23. Thus,

FIG. 14. Temperature dependence of the self-diffusion coefficient in4He
with various molar volumesV, cm3/mole: 20.82~curve1!, 20.67~curve2!,
20.49 ~curve 3!, 20.30 ~curve 4!, and 20.92–21.08~bcc phase; along the
melting curve! ~curve5!.49,50
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TABLE II. Values of parameters in3He and4He crystals obtained from
comparison of theoretical and experimental results.

cies
the theory contained only one arbitrary parameter, which
evated the reliability of data processing. Under these co
tions, it was found that

xv5~T/F!3 exp~2F/T!, ~18!

Cv5Rx/T16T/F112~T/F!2. ~19!

However, dependence~17! has not received a theoretic
substantiation, and hence a more traditional situation with
ordinary quadratic energy–momentum relation was a
lyzed. In this case

xv54~T/pDv!
3/2 exp~2F/T!, ~20!

Cv5Rxv@~F/T!213F/T115/4#. ~21!

Here we have two fitting parameters determined with diff
ent reliability levels. Nevertheless, the ratioDs /Cv in both
approaches does not depend on concentration at all, w
makes it possible to determine reliably the DC for vacanc
just empirically. The temperature dependence ofDv obtained
from such a processing is presented in Fig. 15. The obta
Dv(T) dependence can be interpreted as associated
phonon-stimulated tunneling of vacancies considered l
ago by Flynn and Stonecham.53 These processes lead to th
following dependence:

D5a2D2~p/\2EaT!exp~Ea /T!, ~22!

whereEa is the activation energy corresponding to the d
ference in the lattice energy in the equilibrium state and in
activated state~i.e., the state in which the energy levels
neighboring sites become equal due to the interaction w
phonons!. The values ofEa andDv obtained from a com-
parison with experiment are given in Table II. It was fou
thatDv.T, which confirms the hypothesis on vacancions
wide-band quasiparticles.

The approach used above has made it possible to ob
a self-consistent pattern. However, in this case also we
counter a difficulty associated with a significant contributi
of band motion of vacancies for the obtained band width
this motion is confined only to two-phonon scattering p
cesses as in the case if impuriton diffusion. In this case,
dependenceD ; T27 must be observed.36 The absence o
such a contribution can be associated, for example, wit
significant role of one-phonon processes in the case of a w

FIG. 15. Temperature dependence of the diffusion coefficient of vacan
in 4He for various molar volumes~notation is the same as in Fig. 14!.50
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band as it was done in the publication by Stamp and Zhan54

devoted to the interpretation of data on quantum diffusion
m-mesons in insulators. The estimates obtained on the b
of Stamp–Zhang formulas show that the dependenceD
; T23 typical of such a process must be observed only
T,1 K.

Similar experiments and data processing were car
out for a large number of samples of bcc phase of3He ~Fig.
16!.55,56In this case, it was found thatDv does not depend on
temperature, which can be regarded as an evidence of tu
motion of vacancies. This conclusion is also confirmed
the results of similar processing of the data on spin diffus
obtained by Reich.46 A comparison of these data with th
results of calculations made by Landesman57 made it pos-
sible to obtain much more reliable values of the vacanc
band width which also turned out to be larger than the te
perature. The obtained results are presented in Table II.

An interesting problem concerning3He is that of vacan-
cion polarons considered for the first time by Andreev.58 In
this case, the band motion of vacancies is impossible in v
of disordering of spins, and the formation of a region w
the ferromagnetic spin ordering around a vacancy turns
to be advantageous from the energy point of view in the c
of a large band width and low temperature. The presenc

es

Phase V, cm3/mole F, K Dv , K Ea , K

hcp4He 20.30 6.35 4.0 7.5
20.49 6.18 3.2 6.3
20.67 6.0 2.5 5.2
20.82 5.88 2.0 4.3

bcc4He 20.92–21.08 5.1 6.9 5.7
19.32 12.9 8.2 —

bcc3He 20.12 11.2 6.1 —
21.10 8.8 4.9 —
22.48 6.6 3.5 —
24.30 4.1 3.2 —
24.40 3.9 3.4 —
24.50 3.8 3.6 —

FIG. 16. Temperature dependence of the diffusion coefficient of vacan
in the bcc phase of3He for various molar volumesV, cm3/mole: 19.32~1!,
20.12 (¹), 21.10 (3), 22.48 (L), 24.30 (n), 24.40 (h), and 24.50
(s).46,56
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erties of solid helium. For example, their effect on spin d
fusion was considered by Biushvili and Tugushi59 and on the
mobility of vacancies by Iordanskii.60 In several
publications,61,62 attempts were made to observe vacanc
polarons~see also Ref. 63!, but no reliable evidence of suc
an observation have been obtained.

Concluding the section, we can state that the availa
data on vacancy diffusion can be described self-consiste
in the model of wide-band vacancions whose motion is
stricted by disordered spins in3He and one-phonon scatte
ing processes in4He. However, the latter statement requir
a further experimental and theoretical verification. The m
important experiments will be those in4He at T,1 K in-
tended for the observation of band motion of vacancies
in 3He atT,0.3 K, in which we can expect a manifestatio
of the effect of vacancion polarons predicted by Andreev

CONCLUSIONS

The main result of investigations described here is
doubtedly the discovery and analysis of quantum diffusion
solid helium, which was predicted by Andreev and Lifshit1

It was proved that the3He impurities in the hcp
phase of4He behave like narrow-band quasiparticles who
diffusion flow can be described quantitatively by using t
theoretical concepts developed in Ref. 1. Experimental
dence of the fact that vacancies in solid helium atT<1 K are
wide-band quasiparticles were also obtained. However,
clearly manifested effects typical of such particles were d
covered. A number of new peculiarities were observed in
bcc phase of concentrated solutions such as a noticeable
fusive transport forx.xc , the absence of a concentratio
dependence of DC in the interval 4%<x<15%, a sharp
increase in the diffusion coefficient in the vicinity o
x>20%, and aD(Dt) dependence under these condition!.
These peculiarities have not yet received a quantitative th
retical explanation. The established relation between di
sion and percolation phenomena in concentrated solu
seems to be promising and can open additional opportun
for a more profound analysis of both phenomena.

A few additional remarks will be appropriate here. Nat
rally, quantum diffusion must be manifested in various pro
erties of quantum crystal. In this connection, we can men
a number of publications in which such effects were cons
ered. Meierovich64 proved that the formation of delocalize
defects must lead to a nonmonotonic temperature de
dence of internal friction in the crystal. The attempts to o
serve this effect65,66were not a success probably because i
difficult to ensure a high quality of crystals in such expe
ments. The effect of quantum-mechanical motion of partic
on the shape of the Mo¨ssbauer lines as well as the NMR an
EPR lines was also studied.67,68

The quantum nature of motion of impurities must
manifested directly in the kinetics of decomposition
3He–4He solid solutions occurring atT<0.4 K. Under the
conditions of decomposition of solutions, diffusion is rea
ized for a finite concentration gradient. The mobility of qu
siparticles in this case is mainly limited by U-processes, a
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information on such processes. However, numerous pub
tions in this field failed to provide information on
U-processes; moreover, the results of these investigations
not correlate with the available data on diffusion. The o
tained values of decomposition time were often too lar
depended on the past history of the samples under inves
tion, and could not be interpreted unambiguously. The o
exception was the publication by Shwartset al.,39 in which
reproducible times of decomposition were obtained for
first time, and their decrease with temperature was obser
The authors of Ref. 39 reasonably associated this effect w
the dependenceD ; x21 and proved the possibility of quan
titative agreement between the obtained results and the
fusion coefficient determined in NMR experiments. Nat
rally, the diffusion coefficient measured in the presence o
finite concentration gradient can differ from the se
diffusion coefficient. In order to carry out a correct quantit
tive comparison, the corresponding diffusion problem m
be solved under the phase-separation conditions, which
not been done yet. Further experimental and theoretical
vestigations of this problem are very important.

Another promising trend is associated with the study
extremely dilute solution of3He in 4He and with the possi-
bility to observe the peculiar effect predicted by Widom69

under the conditions when the impuriton mean free pathl i

becomes larger then the diffusion length of attenuation
spin-echo signal. Widom69 proved that in this case an un
usual dependence for spin echo amplitude is observed:

h5h0I 0~2agr 2GD/3\!, ~23!

whereI 0 is the Bessel function of the first kind. The presen
of the band widthD in the argument ofI 0 in formula ~23! is
worth noting. This circumstance provides a unique oppor
nity for its direct measurement.

In this connection, it is expedient to estimate the conc
tration of the solution in which dependence~23! can be ob-
served. The condition of applicability of relation~23! was
formulated by Widom,69 but it actually determines only the
possibility of observation of this dependence in NMR expe
ments and does not contain concentration. Using the co
tion l i.lD , expressingl i throughD, and determininglD

from the conditiongDG2t3;1 @see~13!#, we can obtain by
using ~5!

x,~gaGh/U0!
1/2~D/U0!

1/6. ~24!

Taking into account a weak dependence onD in ~24!, we can
write the following expression for the boundary concent
tion xl>3•1028(G/U0)

1/2. Thus, for actual values ofG this
effect must be observed forx;1026, which is attainable for
modern NMR technique~at least in the case when th
melting–crystallization method is used for the restoration
sample magnetization!.

*E-mail: grigorev@ilt.kharkov.ua
1!In Ref. 30, the value ofDdip is underestimated. The refined valu
Ddip52.6•10212 for x54% is given in Ref. 38. The author is grateful t
M. A. Strzhemechny who pointed out this circumstance.
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On magnetoresistance of layered conductors

V. G. Peschansky
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The dependence of the resistance of a layered conductor with an arbitrary quasi-two-dimensional
electron energy spectrum on the magnitude and orientation of a magnetic field relative to
the layers is analyzed. It is shown that, when the current flows along the normal to the layers,
the resistance of the sample depends significantly on the angleu between the normal
and the strong magnetic field vector; foru5p/2, the resistance increases linearly with the
magnetic field in a wide range of magnetic fields. ©1997 American Institute of Physics.
@S1063-777X~97!00501-X#

The electron theory of metals constructed by I. M. Lif- whereAn is the maximum value of the function«n(px ,py)
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/01
shits under the most general assumptions concerning
energy–momentum relation of charge carriers1 stimulated a
large complex of experimental studies of thermodynamic
kinetic parameters of metals in a magnetic field. These
rameters, calculated under the assumption that the de
dence of the conduction electron energy« on the momentum
p is knowna priori, were found to be very sensitive to th
form of the electron energy spectrum in the case of a str
magnetic field. This made it possible to solve the inve
problem ~formulated by Lifshits! of reconstructing of the
Fermi surface«(p)5«F , which is the main parameter of th
electron energy spectrum, from experimental data. It w
found that the constant-energy surface in the momen
space, which is equal to the Fermi energy«F , has a very
complex shape and is open for most of metals. Galvanom
netic phenomena, which are most sensitive to the topolog
the Fermi surface, formed the basis of a reliable spec
scopic method of analysis of the topological structure of
electron energy spectrum.2

The well-substantiated concepts concerning conduc
electrons in metals are quite suitable for describing the e
tron properties of a wider class of conductors. For exam
these concepts can be rightfully used for studying trans
phenomena in low-dimensional conductors with the me
type conductivity. This property is typical of conductors
organic origin of the type of tetrathiafulvalene salts, tetra
lenotetracene halides, and many other layered conducto
which the electrical conductivity along the layers is mu
larger than the electrical conductivity along the normaln to
the layers. The strong anisotropy of electrical conductivity
apparently associated with a strong anisotropy in the velo
v of charge carriers on the Fermi surface, i.e., their ener

«~p!5( «n~px ,py!cos~anpz /h!, ~1!

depends only slightly on the momentum compon
pz5p•n.

We shall assume that the coefficients of the cosines
crease significantly with increasingn so that

A15hA0!A0 ; An11!An ; ~2!
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on the Fermi surface,a the separation between the layer
andh the Planck constant.

The specific form of the quasi-two-dimensional electr
energy spectrum leads to a number of peculiar effects wh
are not observed in conventional metals. These effects
clude the orientational effect, viz., a strong dependence
kinetic parameters on the angleu between the normal to the
layers and the vector of a strong magnetic field.

We shall consider the dependence of the magnetore
tance of layered conductors on the magnitude and orienta
of the magnetic fieldH5~0, H sinu, H cosu) relative to the
layers.

In order to find the relation between the current dens

j i5E ev i f ~p!2d3p~2ph!235s i j ~H !Ej ~3!

and the electric fieldE, we must solve the kinetic equatio
for the charge carrier distribution functionf (p):

@eE1e~v3H!/c#] f /]p5Wcol$ f %. ~4!

In an infinitely weak electric field, the deviation of th
distribution function f (p)5 f 0(«)2c(p)] f 0 /]« from the
equilibrium Fermi functionf 0(«) is small, and the kinetic
equation~4! can be linearized in a small perturbation of th
system of conduction electrons. In this approximation,
collision integralWcol is a linear integral operator acting o
the sought functionc. At low temperatures, when conduc
tion electrons are scattered mainly by impurity atoms or
other crystal defects, the collision integral can be regarde
the operator of multiplication of the nonequilibrium corre
tion to the Fermi functionf 0(«) and the collision frequency
1/t to a high degree of accuracy, i.e., the solution of t
kinetic equation disregarding the electron–phonon scatte
is an eigenfunction of the integral collision operator. In th
approximation, the kinetic equation assumes the follow
simple form:

]c/]tH1c/t5eE–v, ~5!

and its solution
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c5eEc 5eE E t

dt8v ~ t8!exp@~ t82t !/t# ~6!
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makes it possible to determine easily the electrical cond
tivity tensor components:

s i j52e3H/c~2ph!3E d~«2«F!d«E dpHE
0

T

dtv ic j

5^v ic j&. ~7!

Heree andtH are the charge and the time of motion of
conduction electron in a magnetic field with a peri
T52p/V according to the equations

]px /]t5~vy cosu2vz sin u!eH/c;

]py /]t52~eH/c!vx cosu;

]pz /]t5~eH/c!vx sin u; ~8!

c is the velocity of light, the angle brackets denote integ
tion over the Fermi surface with the weight fact
2e3H/(c(2ph)3), and the subscriptH on t will henceforth
be omitted.

It can easily be seen that the velocity of conduction el
trons forh!1 depends weakly on the momentum comp
nent pH5pz cosu1py sinu along the magnetic field, an
closed electron orbits in the momentum space are alm
indistinguishable for different values ofpH . Hence it follows
that the expansion of the electrical conductivity tensor co
ponents into a power series in the quasi-two-dimensiona
parameterh starts at least with quadratic terms if at least o
of the indices ofs i j coincides withz.

3

The fact that only two frequencies of the Shubnikov–
Haas oscillations of magnetoresistance of organic conduc
are observed experimentally~for some magnetic field orien
tations, their beats are observed when the values of m
mum and minimum cross sections of the Fermi surface
close; see, for example, Refs. 4–7 and the literature c
therein! indicates that one group of charge carriers domina
in these conductors. At any rate, there are no grounds
assuming that the compensation of electron and hole
umes are admissible in the presence of several cavities o
Fermi surface. While considering galvanomagnetic pheno
ena in such conductors, it is sufficient to present the Fe
surface in the form of a weakly corrugated cylinder open
the direction of thepz-axis.

The resistance of a conductor along the layers is of
same order of magnitude as the resistance of a noncom
sated metal, i.e., it differs insignificantly from the resistan
in zero magnetic field equal to 1/s0 for any orientation of the
magnetic field. In contrast to metals, the amplitude of
Shubnikov–de Haas oscillations of magnetoresistance in
ered conductors is much larger since these oscillations
formed by almost all the charge carriers on the Fermi surf
since its cross sections by the planepH5const are indistin-
guishable forh50.

On the contrary, the resistivityrzzof a layered conducto
along the ‘‘difficult’’ direction for the current, i.e., along th
normal to the layers, is very sensitive to the magnetic fi
orientation. As a rule, the asymptotic expression forrzz is
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of electrical conductivity tensor components and increa
abruptly only for some magnetic field orientations, for whi
the term proportional toh2s0 vanishes in the expansion o
szz in small parametersh and g51/Vt. This forms the
basis of the orientation effect.

The asymptotic expression forszz(h,g), i.e.,

szz5K T21E
2`

0

dt1 exp~ t1 /t!E
0

T

dtvz~ t !vz~ t1t1!L ~9!

can be easily analyzed for smallh and g under the most
general assumptions concerning the form of the funct
«n(px ,py) satisfying condition~2!. Confining our analysis
only to the terms proportional toh2, we can easily carry ou
integration with respect topH . This gives

szz5 (
n51

` E
0

T

dtE
2`

t

dt8S anh D 2«n~ t !«n~ t8!

3exp
t2t8

t

e3H cosu

ac~2ph!2
cosH anh @py~ t !2py~ t8!#tanuJ ,

~10!

where all the integrands depend only ont and t8. For
g!1,szz assumes the form

szz5ae2tm* cosu/2ph4( n2I n
2~u!

1h2s0~h2w11g2w2!, ~11!

wherem* is the effective cyclotron mass, and

I n~u!5T21E
0

T

dt«n~ t !cos~py~ t !an tan u/h!. ~12!

The functionsw i are of the order of unity and should b
taken into account for the values ofu5uc for which I 1(u)
vanishes. In this case, the asymptotic expression for ma
toresistance depends considerably on the rate of decrea
the functions«n(p) with increasingn. If, for example,I n are
proportionalhn, the resistance along the normal to the laye
in strong fields foru5uc increases in proportion toH

2 in the
range of fields satisfying the conditionh!g!1 instead of
attaining saturation. The saturation of resistance is obse
in stronger magnetic fields forg<h.

The integrand in formula~12! for tan u@1 is a rapidly
oscillating function, andI n(u) can easily be evaluated b
using the stationary phase method. If an electron orbit c
tains only two stationary points at whichvx vanishes, the
asymptotic expression forI n acquires the form

I n~u!5S h

anDp tan u D 1/22 cosS anDp tan u

2h
2

p

4 D , ~13!

whereDp is the diameter of the Fermi surface along the a
py .

According to formula~13!, the zeros of the function
I 1(u) are repeated with a period

D~ tan u!52ph/aDp . ~14!
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T~p !5h21/2V21Ep

da~j21sin2 a!21/2, ~18!
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ameters of the Fermi surface for quasi-two-dimensional c
ductors by measuring galvanomagnetic parameters are d
the presence of electrons orbits strongly elongated along
axis pz and passing through a large number of unit cells
the momentum space. The period of electron motion in s
orbits increases asu approachesp/2 and can exceed th
mean free timet of charge carriers for any value of magne
field. Hence it should be borne in mind that the above f
mulas are valid for not very large values of tanu. In this
case, the conditionT!t is satisfied only for electrons whic
rotate in orbits that do not contain points of self-intersect
at which the period of motion diverges logarithmically. F
tan u>1/h, self-intersecting electron orbits appear. Let
analyze their role foru5p/2, when a strongly elongate
orbit is ‘‘torn’’ into two open orbits. In this case, the perio
of electron motion, which has the form

T~py!5E
0

2ph/a

dpzc/eHvx ~15!

in the case of motion in the open section of the Fermi surf
by the planepH5py5const, changes jumpwise.

As an electron approaches the boundary cross sec
py5pc separating the region of open cross sections from
small fraction of closed cross sections of the Fermi surfa
the period of motionT(py) increases without limit. This is
due to the fact that the cross sectionpy5pc contains points
of self-intersection at which open orbits converge
py→pc , and an electron stays for a considerable time n
points of self-intersection, since its velocity in the plane p
pendicular to the magnetic field is negligibly small.

The velocity of motion of a charge in an open orbit f
h!1 depends ont weakly. For example,

]vx~ t !/]t5~]2«/]px
2!]px /]t1~]2«/]px]pz!]pz /]t

5~eH/c!~vx]vz /]px2vz]vx /]px!;h. ~16!

The period of electron motion in orbits separated
large distances from a self-intersecting orbit is inversely p
portional tovx(0) to within the terms proportional toh ~the
point t50 lies on the cross section of the Fermi surface
pz50). However, as an electron approaches a s
intersecting orbitpy5pc , the electron velocity along the
x-axis decreases, and small correction in the parameteh
should be taken into account. At the pointpc5(0,pc, 0) of
self-intersection of the electron orbit, the electron veloc
vx(0) vanishes. The small value of the velocityvx on elec-
tron orbits withpy close topc corresponds to a weak depe
dence of« onpx , and we can calculate the period of electr
motion in this case by using the power expansion of ene
in small px . Omitting higher harmonics in formula~1!, we
obtain

«5«0~0,py!1px
2/2m11«1~0,py!cos~apz /h!. ~17!

Using relation~17!, we can easily calculate the period
electron motion in orbits close to self-intersecting trajec
ries:
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whereV0 is the frequency of electron rotation in a magne
field parallel to the normal to the layers, and

j25
«2«0~0,py!2«1~0,py!

2«1~0,py!
. ~19!

As we approach a self-intersecting orbit, the value oj
becomes infinitely small, and the integral in formula~18!
diverges logarithmically in proportion to ln(1/j).

In contrast to conventional metals for which the peri
of motion of charge carriers is greater than or comparable
the mean free time only in an exponentially small~of the
order of exp(2V0t)) region of cross sections of the Ferm
surface near a self-intersecting orbit in a quasi-tw
dimensional conductor the conditionT>t is satisfied in a
considerably wider region of electron orbits in whichj can
be of the order of unity.

For h1/2,g051/V0t, the main contribution toszz

comes from a small fraction of charge carriers for whi
h1/2vF,vx!vF . For such electrons, the velocity can be r
garded to a high degree of accuracy as a harmonic func
of t of the form

vz52«1~0,py!~a/\!sin Vt, ~20!

whereV 5 aeHvx(0)/\c 5 V0vx /vF , andvF is the charac-
teristic Fermi velocity of the order ofh/am1 .

Simple calculations lead to the following result for th
electrical conductivity along the normal to the layers:

szz5h2s0E djg0
2/~y0

21j2!>h2g0s0 . ~21!

The contribution toszz from electrons belonging to
closed cross sections of the Fermi surface is consider
smaller than that determined by the formula~21!. Thus, a
small region of open orbits near a self-intersecting o
makes the major contribution to the electrical conductivity
the sample, and the sample resistance along the normal t
layers in the above-mentioned region of magnetic fields
creases linearly with magnetic field.

A further increase in magnetic field leads to narrowi
of the region of electron orbits in which the period of motio
of an electron is longer than its mean free time. As a res
the contribution toszz from electrons near a self-intersectin
orbit for g0!h1/2 is also proportional tog0

2 as well as the
contribution from electrons for whichT!t. In this case, the
resistivity rzz is proportional to the square of the magne
field.

Thus, for a layered conductor with a quasi-tw
dimensional electron energy spectrum, the region of m
netic fields for which the resistance along the normal to
layers in a single crystal increases linearly with magne
field is quite large.
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Surface magnetization of metals

by
S. S. Nedorezov and E. F. Rofe-Beketova

Ukrainian Academy of Engineering and Education, 310003 Kharkov, Ukraine*
~Submitted July 10, 1996!
Fiz. Nizk. Temp.23, 52–57~January 1997!

The surface magnetization of metals associated with electrons whose orbits are tangential to the
metal boundary is investigated, taking into account anisotropy in the energy spectrum of
conduction electrons. It is shown that the angular dependence of magnetization has peculiarities
determined by the curvature of the Fermi surface at the reference points. Explicit
expressions have been obtained for the surface magnetic susceptibility of electrons in bismuth,
and appropriate numerical estimates of its value have been made. ©1997 American
Institute of Physics.@S1063-777X~97!00601-4#
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The problem concerning the effect of the metal bound
on the diamagnetic susceptibility of electrons was enco
tered even in the first publications appearing after the c
ation of the theory of diamagnetism by Landau.1 Subsequent
investigations are closely related to the Lifshits represe
tion2 of electrons in metal as a gas of quasiparticles~conduc-
tion electrons! with an arbitrary energy– momentum rel
tion. The publications by Lifshits and Kosevich3–5 on the
theory of the de Haas–van Alphen effect and quantum os
lations in metals and metallic layers~see also the review in
Ref. 6! determined the theoretical and experimental stud
of quantum magnetic and size effects in metals.

Special attention was paid to the effect of metal bou
ary on the magnetization component of conduction electro
which does not oscillate with a variation of the magne
field H ~see Ref. 7 for the literature concerning this pro
lem!. The semiclassical approximation can be used for c
culating quantum oscillations of magnetization for quant
energy levels of conduction electrons in a magnetic fie4

but the calculation of the smooth magnetization compon
requires the knowledge of exact values of energy lev
However, the thermodynamic theory of perturbations in
powers ofH is inapplicable for an analysis of contribution o
special electron orbits to the surface magnetization of me
The results obtained by Lifshits and Kosevich8 proved to be
very important in this respect~see below!.

Taking into account the boundary surface of a metal,
can represent the thermodynamic quantities in the form
the sum of two terms one of which is proportional to volum
V and the other to the areaS of the boundary surface. Fo
example, for the magnetic momentM of conduction elec-
trons, we can write

M5VM ~v !1SM ~s!. ~1!

The first term in~1! is associated with the Landau magne
levels and is determined by electron orbits away from
metal~Fig. 1a!, while the second term is determined by ele
tron orbits near the metal boundary~Figs. 1b and c!.

The orbits of electrons hopping over the metal surfa
~see Fig. 1b! are responsible for magnetic surface lev
~MSL!. The interest to such levels has increased consi
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Khaikin ~see also Ref. 10!. The contribution of MSL to the
magnetization of metals was studied by many authors.8,11,12

On the basis of the semiclassical approximation for MS
the following analytic dependence ofM (s) on H was ob-
tained:11,12

Mquasi
~s! }H21/3, ~2!

which leads to a strong surface magnetization of metals
weak magnetic fields.

Another approach to this problem was indicated by L
shits and Kosevich.8 They proved that, while calculating
M (s), we must take into account exact values of MSL sin
the value ofM (s) differs considerably fromMquasi

(s) . Accord-
ing to the estimate obtained by Kosevich,13 M (s)/Mquasi

(s)

,0.1. According to the statement made in Ref. 8~which,
however, was not proved!, the magnetic field dependence
magnetic moment does not contain the singularity descri
by formula~2!. The calculations ofM (s) in the semiclassica
approximation were continued until this problem was solv
by one of the authors of the present publication.14 An explicit
expression obtained forM (s) taking into account the exac
values of MSL has made it possible to calculate the con
bution of MSL to the magnetization of metals. This cont
bution indeed proved to be equal to zero.

It was shown in Ref. 15 that the surface magnetization
metals is determined by electrons with the orbits tangen
to the metal surface~see Fig. 1c!. It has a root dependence1!

on the magnetic fieldH:

M ~s!}H1/2 ~3!

and is much larger than the surface corrections of the o
of lF /L, wherelF is the Fermi wavelength for electrons an
L the sample length.

In the present research, the surface magnetization
metals is studied by taking into account the anisotropy in
energy spectrum of conduction electrons. The angular dep
dence of magnetization on the magnetic field orientation
analyzed for an ellipsoidal Fermi surface~FS!. Explicit ex-
pressions for the surface magnetic susceptibility of electr
in bismuth are obtained, and the numerical values of its m
nitude are estimated. The predicted singularities in the an
lar dependence of surface magnetization are determine

390039-05$10.00 © 1997 American Institute of Physics
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the curvature of the FS at the reference points and are du
conduction electrons with the orbits tangential to the me
boundary.

SURFACE MAGNETIZATION OF CONDUCTION ELECTRONS

According to Ref. 7, the surface magnetization of ele
trons with the orbits tangential to the metal boundary~see
Fig. 1c! is defined by the formula

M ~s!5
b

2 S ecD
3/2SH\ D 1/2(

j
E
0

z

Kj
3/4~«!kj

21/2~«,N!d«. ~4!

HereKj («) is the Gaussian curvature of the constant-ene
surfaceE(p)5« at the j th reference point with the norma
parallel toH ~see Fig. 2!, kj («,N) is the curvature of the
normal cross section perpendicular toN at the j th point, and
the vectorN is perpendicular to the boundary surface of t
metal. The magnetic fieldH is parallel to the metal bound
ary. The energy« and the chemical potentialz are measured
from the bottom of the relevant energy band.

For the numberb in ~4!, we have17

b5
3

4p4 H 2A221

8
zS 52D 1

p1/6

21/3
GS 56D (k51

`

~21!k
1

k11/6

3E
0

`FcosS 2pky~x!1
p

12D
1cosS 2pky~2x!1

p

12D 2cosS p

12D GdxJ
50.78•1022, ~5!

where the functiong(x) is defined as

FIG. 1. Types of conduction electron trajectories in a plate placed i
parallel magnetic field.
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and Ai(x) and Bi(x) are the first and second order Air
functions, respectively. In the case of the quadratic isotro
energy–momentum relationE5p2/2m, relation~4! leads to

M ~s!2bS ecD
3/2S z

2m\ D 1/2H1/2. ~7!

For an anisotropic energy–momentum relation

E~p!5
px
2

2m1
1

py
2

2m2
1

pz
2

2m3
, ~8!

the calculation of the Fermi surface curvature at the re
ence points gives

M ~s!52bS ecD 3/2S z

2\Am1m2m3
D 1/2 uhmu5/2

unm3hmu
H1/2, ~9!

where

hm5
1

H
~HxAm1i1HyAm2 j1HzAm3k!,

~10!
nm5NxAm1i1NyAm2 j1NzAm3k.

Here the normalN to the boundary surface of the metal an
the magnetic field strengthH are defined in the intrinsic
reference frame of expansion~8!, andH'N, uNu51.

It follows from ~4! that the surface magnetization is d
termined by the curvature of constant-energy surfaces at
reference points~see Fig. 2!. The largest contribution to
magnetization comes from conduction electrons near the
erence points with the largest curvature of the Fermi surfa
which leads to a considerable anisotropy in surface mag
tization. Let us prove this for the case of an ellipsoidal
elongated along thex-axis (m1@m2 ,m3). Denoting
m5m1 , l5m2 /m1 , m5m3 /m2 and introducing the unit
vectorsh5H/H, s5h3N, we obtain from~9!

M ~s!52bS ecD
3/2S zH

2m\ D 1/2F~w!, ~11!

where the function

F~w!5
1

lm1/4@hx
21l~hy

21mhz
2!#5/4~sz

21msy
21lmsx

2!21/2

~12!

defines the magnetizationM (s) as a function of the anglew
of rotation of the magnetic fieldH. In the isotropic case
(l5m51), we haveF51.

An analysis of the angular dependence ofM (s) in the
case of strong anisotropy (l!1) leads to the following re-
sults. In the directionh0 (h05 i3N) perpendicular to the axis
along which the FS is elongated (x-axis!, the function
F(w) assumes the minimum value

F~0!5S l

m D 1/4~Nz
21mNy

2!5/4

3@Nx
2~Nz

21mNy
2!1lm~12Nx

2!2#21/2. ~13!

The value ofF~0! is very sensitive to the angleg at
which the X-axis is tilted to the metal boundar

a
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(Nx5sing), varying from values of the order ofl1/4 to the
value;l21/4 for g50. The abrupt increase in the value
F(0) in the angular intervalugu;Al is due to a decrease i
the curvaturekj («,N) of the normal cross section of the F
at the reference points.

The reference points of the FS with the minimum curv
ture correspond to the directionh0 . WhenH is tilted relative
to h0 , the value ofF(w) increases abruptly to;l21. For
small angles of inclination of theX-axis (g,1), theF(w)
dependence is defined by the formula

F~w!'
usin wu3/2

lm1/4 ~Ny
21mNz

2!21/2, ~14!

where w is the angle betweenH and h0. The function
F(w) assumes the maximum valueF(p/2) in the direction
corresponding to the reference points of the FS with
maximum curvature. Formula~14! is applicable forwÞ0. In
a narrow angular intervaluwu;Al!1, the values ofF~w!
decrease toF~0!.

In the vicinity of the directionh0 , (w,1) and for small
angles of inclination of theX-axis to the metal boundar
(g,1), the angular dependence of the surface magnetiza
is very sensitive to the value ofg and is defined as

F~w!;
1

lm1/4@sin2 w1l~Nz
21mNy

2!#5/4

3@~Ny sin w1Nz sin g!2

1m~Nz sin w2Ny sin g!21lm#21/2. ~15!

For usinwu.l, formula ~15! coincides with~14! and de-
scribed a sharp decrease in the surface magnetization in
angular intervaluwu;Al ~see Fig. 3!.

FIG. 2. Reference points of the Fermi surface, determining the surface m
netization of metals.
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The above analysis shows that anisotropy in the elec
energy spectrum is manifested clearly in the angular dep
dence of surface magnetization. The typical dependenc
M (s) on the anglew along with its field dependenc
(;AH) can be useful for an analysis of experimental dep
dence of magnetization of conduction electrons with orb
tangential to the metal boundary. The FS model conside
above can be used directly for calculating the surface m
netization due to conduction electrons in small groups, e
electrons in a semimetal.

SURFACE MAGNETIC SUSCEPTIBILITY OF ELECTRONS IN
BISMUTH

Proceeding from the known electron energy spectrum
bismuth18 and calculatingM (s) by formula~9!, we obtain the
following expression for magnetic susceptibilityx (s)

5]M (s)/]H:

x~s!bS ecD
3/2S z

2m\ D 1/2H21/2F~w!, ~16!

where the functionF(w) is defined by the sample shape a
depends significantly on the magnetic field orientation. W
describe the results of calculations odx (s) for a plate with
the normalN parallel to the trigonal (C3), bisector (C1),
and binary (C2) crystallographic axes of bismuth. The ang
w determines the direction ofH in the plane of the plate.

g-

FIG. 3. Angular dependenceF(w) of surface magnetization of metals in th
case of strong anisotropy of the Fermi surface (l'4.503•1023,
cosw5h0•h, Nz50, Nx5sing) for various values ofg50 ~curve1!, 6°238
~curve2!, 15° ~curve3!, and 30°~curve4!.
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F~w!

5
1

lm1/4(
k50

2
@ac cos

2~w12pk/3!1l sin2~w12pk/3!#5/4

@as sin
2~w12pk/3!1m cos2~w12pk/3!#1/2

,

~17!

where the anglew is the angle between theC1-axis andH,

ac5cos2 a1lm sin2 a, as5sin2 a1lm cos2 a, ~18!

a is the angle of inclination of the major axis of the ellipso
to theC1-axis,l5m2 /m1 ,m5m3 /m2 , andm5m1 . In the
isotropic case (l5m51), F(w)53, i.e., to the number o
electron ellipsoids in bismuth.

2. NiC1 .

F~w!

5
1

lm1/4(
k50

2
~as cos

2 w1bk~l,ac!sin
2 w1dgk sin 2w!5/4

~ac sin
2 w1bk~m,as!cos

2 w1dgk sin 2w!1/2
,

~19!

whered51/4(12lm)sin 2a, and

bk~x,y!5H x, k50

1

4
~x13y!, k51,2 ;

~20!

gk5H 0, k50

~21!kA3, k51,2 .

The angle of rotation of the magnetic fieldH in the plane of
the plate is measured from the axisC3 .

3. NiC2 .
The angular dependenceF(w) in this case is defined by

formula ~19! in which bk(l,ac) is replaced bybk(ac ,l),
bk(m,as) by bk(as ,m), andgk by

gk5H 2, k50

21, k51,2 .
~21!

In this case, the last two terms in~19! coincide due to the
equivalence of the two ellipsoids relative to the plate bou
ary.

The results of calculations ofF(w) determining the an-
gular dependence of the surface magnetic susceptibilityx (s)

are presented in Fig. 4. In accordance with the experime
data on the Fermi surface in bismuth,18 we choose the fol-
lowing values of the parametersl, m, and a: l
54.503•1023, m51.7355,a56°238.

The contributions from individual ellipsoids~see Fig.
4b! have a clearly manifested anisotropic nature with a dip
the direction of minimum values of the FS curvature at
reference points. In the case whenNiC3 , the summation
over ellipsoids leads to smoothing of these singularities~see
Fig. 4a!. A different angular dependence is observed
NiC1 ,C2 . In such cases, the singularities are not smooth
and the functionF(w) has a sharp dip in the direction of th
C3 axis. This is associated with different roles of ellipsoi
in the formation ofF(w), especially forNiC1 , when the
contribution of the first ellipsoid can be neglected~see Fig.
4b!.

42 Low Temp. Phys. 23 (1), January 1997
-

al

n
e

r
d,

In weak magnetic fields, the field dependence of
magnetic susceptibilityx(H) of the plate is determined by
its surface componentx (s) } H21/2 @see~16!#. For a plate with
the normalNiC3 , the relative variation of the angular func
tion F(w) is small, and we can use any orientation of t
magnetic fieldH in the plane of the plate. ForNiC1 and
NiC2 , the functionF(w) has the maximum value in th
directionsC2 andC1, respectively, which must be taken int
account while choosing the orientation ofH.

The obtained angular dependencex (s)(w) ~see Fig. 4! is
due to conduction electrons with orbits tangential to t
meatal boundary. Experimental observation of such a dep
dence ofx (s) on the anglew along with its field dependenc
can serve as a confirmation of the existence of the elec
states under investigation. Also, an analysis of the ang
dependence of magnetic susceptibility can give informat
on the electron energy spectrum of metals.

In conclusion, we express our gratitude to the editor
board of LTP for publishing the jubilee issue dedicated to
memory of Il’ya Mikhailovich Lifshits and for the opportu
nity of participating in this issue. This is especially importa
for one of the authors~S. N.! whose research work was ca
ried out under the direct support and guidance of I. M. L
shits starting from post graduate work and finishing w
D.Sc. dissertation.

*E-mail: docents@uenpa.kharkov.ua
1!The field dependence of the surface magnetic susceptibilityx (s) } H21/2

obtained in Ref. 15, and the corresponding root dependence ofM (s) on
H(x (s)5]M (s)/]H) are in accord with the results of subsequent calcu
tions of magnetic moment carried out in Ref. 16 by using another meth
Shishido16 analyzed the contribution of MSL to the magnetization of me
als once again. The approach used by this author did not allow him
derive an exact expression for the coefficientC21/6 of H

21/3. The upper

FIG. 4. Angular dependenceF(w) of surface magnetic susceptibility o
electrons in bismuth: the total contribution~a! and contributions from indi-
vidual electron ellipsoids~b!.
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estimateuC21/6u,0.002 obtained by Shishido does not contradict the zero
result.14
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The theory of kinetic effects in two-dimensional degenerate gas of colliding electrons

R. N. Gurzhi, A. N. Kalinenko, and A. I. Kopeliovich

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted July 9, 1996!
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A mathematical method based on a reduced representation of the electron–electron collision
operator acting in the space of quasi-equilibrium functions is constructed. A number of kinetic
phenomena such as the evolution of highly anisotropic and high-energy electron distributions,
the quasi-hydrodynamic effect in electrical conduction, and a new nonlinear transport mode are
described from a unified point of view. Kinetic effects which can be observed in experiments
on electron beam propagation and electrical conduction of~GaAs!Al wires with a high mobility of
charge carriers are predicted. ©1997 American Institute of Physics.@S1063-777X~97!00701-9#
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A reduction of the dimensionality of an electron syste
with a weak repulsion from 3D to 2D does not lead to a
rearrangement of its ground state, but modifies significa
the processes of electron–electron relaxation. Energy re
ation in a degenerate two-dimensional (2D) electron system
is accelerated by a factor of ln(«F /T) as compared to the
3D case («F is the Fermi energy andT the temperature!.1,2

Relaxation in the direction of electron velocity~angular, or
momentum relaxation! undergoes more radical changes.3–5

Collisions of two arbitrary electrons generally leads to sc
tering through a small anglew.T/«F!1. The only excep-
tion is the collision of electrons with nearly opposite m
menta: the angle of deviation from antiparallelism
h<T/«F!1. In this case, scattering can be of any ty
(w.1). It should be noted that, in contrast to the 3D case,
the probabilities of both types of processes in a 2D system
have the same order of magnitude. Processes of the se
type are effective in the case of relaxation of an elect
distribution even in momentum and corresponding to the
laxation time of the same order of magnitude as in theD
case:ts } («F /T)

2. Both types of collisions are ineffective i
the case of relaxation of a distribution which is odd in m
mentum:ta.ts(«F /T)

2 } T24. The ineffectiveness of colli-
sions of the second type is due to the fact that the rotatio
a pair of electrons with opposite momenta through an a
trary anglew does not affect the odd component of the d
tribution.

These results refer to weakly anisotropic and sligh
nonuniform electron distributions. As the characteristic a
gular scalew0 characterizing the deviation from equilibrium
decreases, the relaxation time for odd distribution decrea
and becomes of the order ofts for w0.AT/«F.6

The effects in which the above peculiarities in angu
relaxation in 2D systems play a significant role were disco
ered recently in heterostructures. These are hydrodyna
effects in electrical conductivity of wires with a two
dimensional electron gas~2DEG!, leading to a reverse tem
perature dependence of resistivity,7 as well as the experi
ments with electron beams injected into 2DEG ~see, for
example, Refs. 8 and 9; these experiments might provide
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cording to Ref. 10, the effect of 2DEG entrainment by a
ballistic phonon beam11 can also be used for studying th
angular electron relaxation.

This research aims at a consistent theoretical descrip
of momentum relaxation in a 2D degenerate electron syste
and an analysis of some new effects associated with stro
anisotropic electron distributions and nonlinear phenome
The general scheme of description of angular relaxation
various stages is given in Sec. 1. In Sec. 2, the develo
mathematical apparatus is applied for analyzing effects of
hydrodynamic type. The evolution of strongly anisotrop
distributions for which electron excitation energy excee
the temperature significantly~high-energy beams! is consid-
ered in Sec. 3. In conclusion, relaxation of strongly anis
tropic distributions are considered on qualitative level, a
the results pertaining to experimentally observed effects
~GaAs!Al-based structures are formulated.

1. TRANSFORMATION OF COLLISION OPERATOR

1.1. Energy distributions close to equilibrium

The linearized integral of electron–electron collisio
can be written in the form

J$xp%5
p2

2Th5 E Wpp1p2p3
npnp1~12np2!~12np3!

3~xp1xp1
2xp2

2xp3
!d~«p1«p12«p22«p3!

3d~p1p12p22p3!d
2p1d

2p2d
2p3 ,

Wpp1p2p3
5~Fp2p3

2Fp2p2
!21Fp2p3

2 1Fp2p2
2 . ~1!

Here p is the two-dimensional electron momentum,«p the
electron energy measured from the Fermi level,np the Fermi
distribution function, the nonequilibrium correction is wri
ten in the formf p52xp]n/]« ~in should be noted that suc
a form is convenient only for distributions in which the cha
acteristic energy« of electron excitations does not excee
significantly the temperatureT!, andFp the Fourier trans-
form of the functionF(rW ) connected with the screened ele
tron interaction potentialU(rW ,y,y8) through the following
relation:
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F~rW !5E uC~y8!u2uC~y1y8!u2U~rW ,y;y8!dydy8,
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J$x %57E D̂7D̂2F D̂7D̂2x d2kd2q, ~5!
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n
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r:
whererW andy are the components of the vector difference
the coordinates of two electrons in the conduction plane
in the perpendicular direction respectively. In view
screening,U also depends on the transverse coordinatey8 of
one of the electrons, andC(y) is the wave function of an
electron in the layer.

The frequencyten
21 of electron–electron energy relax

ation can be obtained from~1! in the relaxation time approxi
mation, i.e., in the same way as the coefficient
2xp]n/]« in ~1!:

ten
21.t0

21 «212p2T2

«F
2 lnS «F

T1u«u D ,
t0

215
p2WmpF

2

4h5
. ~2!

In order to simplify calculations, we assume that the value
W is constant.

It is convenient for subsequent analysis to introduce
following functional which is quadratic in the arbitrary func
tionsxp andcp :

F$c,x%5E cp J$xp%d
2p5

1

4 E Rpp1p2p3
~cp1cp1

2cp2
2cp3

!~xp1xp1
2xp2

2xp3
!

3d2pd2p1d
2p2d

2p3 ;

Rpp1p2p3
5

p2

2Th5
Wpp1p2p3

npnp1~12np2!~12np3!

3d~«p1«p12«p22«p3!d~p1p12p22p3!.

~3!

We have used the following symmetry properties of t
quantity R:R12345R21345R12435R3412. The functional
F$x,x% is often used in the formulation of the variation
principle in kinetics problems.

If the functionsxp andcp have a certain parity relative
to the substitutionp→2p, the functional~3! can be written
in the form

F5E Fpkq~D̂k
7D̂q

2cp!~D̂k
7D̂q

2xp!d
2pd2kd2q,

Rpp1p2p3
54Fp2k/22q/2,k,qd~p1p12p22p3!,

k5p1p1 , q5p2p25p32p1 , ~4!

where the finite difference~sum! operator

D̂a
7xp5xp1a/27xp2a/2 .

has been introduced. The operatorsD̂k
2 and D̂k

1 in ~4! cor-
respond respectively to odd and even functionsxp ~the func-
tionsxp andcp are even or odd simultaneously since oth
wise F[0!. Using the arbitrariness of the functionc, we
obtain the following expression from~4! for the collision
operator:
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which is naturally identical to expression~1!.
The exact expression~5! itself is not convenient for es

timating the angular relaxation frequencies since the quan
F is a sharp function of energy. If we assume that the fu
tion x can be regarded as independent of« in view of the
closeness to energy equilibrium~the basis of this assumptio
will be considered in the next section!, the expression for the
angular relaxation operator can be integrated with respec
the energies of the statesp,k2p, andp2q:

E J$x~a!%d«p.7E
2p

p E
2p

p

V~h,w!

3~D̂h
7D̂w

2!2x~a!dhdw,

V~h,w!5E Fpkq d«p d«k2p d«p2q ;

D̂b
6x~a!5xS a1

b

2 D6xS a2
b

2 D ; ~6!

wherea is the angular variable corresponding to the statep.
It is more convenient to derive this expression not from~5!,
but from ~4! by assuming that the functionc is also inde-
pendent of energy. While deriving~6!, we assumed that fixed
values of the quantitiesq andk correspond to fixed values o
angular displacementsw andh: sin(w/2) 5 q/2pF , sin(h/2)
5 k/2pF . Deviations from this correspondence of the ord
of T/«F are significant only in the angular interva
h<T/«F andp2h<T/«F . However, it can be verified tha
the inclusion of the contribution from these regions lea
only to insignificant changes in the numerical coefficients
we assume that the value ofW changes insignificantly upon
a change in the energy of electron states in the region
thermal blurring of the Fermi surface, i.e.,W.W(h,w), we
can write

V~h,w!5
p2m3

8Th5
W~h,w!

11cosh F D

2sinh~D/2T!G
2

;

D52«F
sin w sin h

11cosh
; h,p2h@T/«F ; ~7!

whereD is the energy transfer during a collision.
Let us also consider angular relaxation, taking into a

count weak dependence ofx on «. In the stationary and
spatially homogeneous case, the energy dependence ha
form of a ‘‘local drift’’ 3:

x~a,«!.x̄~a!2
«

2«F

d2x̄~a!

da2 , ~8!

where x̄(a) is an arbitrary odd function. Such a relatio
between the energy and angular dependences, which is
observed for the true driftx5u•p, is imposed by ‘‘horizon-
tal transitions,’’ i.e., collisions with a small energy transfe
D!qvF ~but at the same time,q!pF!. It is convenient to
use in calculations the functional~4! with the functionc
which also has the structure~8!. The result has the form
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F$c,x %.E Ep E c̄~a! V~h,w!S D̂2D̂2
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F$c, f %52E U ~c 1c 2c 2c !

nd
-
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-

nel
in
ax-
the
e

rbi-
d

n-
f

a
2p

H h w

2
D

«F
D̂h

1D̂w
1

d2

da2D 22V1~h,w!

3~D̂w
2!2

d4

da4 J x̄~a!dh dw da,

V1~h,w!5
1

3
V~h,w!

D214p2T2

«F
2 . ~9!

In view of the arbitrariness ofc̄(a) and the fact that

F$c,xa%.F$c̄,xa%, ~10!

~this relation is proved in Appendix A!, relations~9! imme-
diately lead to the expression for the operator*J$xa%d« of
odd angular relaxation.

For smallh and w, the operatorsD̂h
6 and D̂w

6 can be
expanded into series in this parameters. It is interesting
note that the principal terms of the expansion, which
proportional to (hw)2, are present in~6!, but are cancelled
out in expression~9! ~in the term withV!. Thus, the inclusion
of even a weak energy dependence of the functionx is in
general significant for estimating the rate of odd angular
laxation.

1.2. High-energy nonequilibrium distributions ( T!z«z!«F)

If the excitation energy for nonequilibrium electrons
much higher than temperature, the value
x52(dn/d«)21f increases exponentially withu«u within
the excitation region~in which f is not vanishingly small!.
Consequently, in the parentheses in~1! containingx we can
neglect three terms in comparison with the one correspo
ing to the maximum value ofu«u. This means that, for
T→0, the collision integral can be written in the form

J$ f p%52E ~np8pf p2npp8 f p8!d
2p8,

npp85
p2

2h5 5
2E Upp1p2p8d

2
p1
d2p2 ,

««8.0,««1.0,««2,0,

2E Upp8p2p3d
2p2d

2p3 ,

««8,0,««2,0,««3,0,

Upp1p2p3
5Wpp1p2p3

d~«1«12«22«3!

3d~p1p12p22p3!,

«[«p , «8[«p8 , «1[«p1, «2[«p2. ~11!

It can be seen from these formulas thatnp,p850 for
u«8u,u«u. This is not surprising since at the given ‘‘pretem
perature’’ stage of relaxation, the departure from the statp
is realized only downwards on the scale of energy valu
while the arrival in this state is possible only from above.
this approximation, instead of~3! we have

46 Low Temp. Phys. 23 (1), January 1997
to
e

-

f

d-

s,

pp1p2p3 p p1 p2 p3

3 f pd
2pd2p1d

2p2d
2p3

52E npp8~cp2cp8!

3 f p8d
2pd2p8,

u«2u,u«3u,u«4u,u«1u. ~12!

Assuming that the electron spectrum is quadratic a
isotropic, and the quantityW is constant, we obtain the fol
lowing expression~11!, accurate to within insignifican
quantities of the order of«/«F :

npp8.2C5
uK~w,e!2K~w,e8!u

z sin~w/2!
, ee8.0,

2arcsin
ue1e8u

A~de!214 sin2 w
, ee8,0,

K~w,e!5~cos2~w/2!2ez!1/2Q~cos2~w/2!2ez!;z51

1S de

4 sinw/2D
2

;

e[«p /«F , e8[«p8 /«F ; de5e82e; ueu,ue8u!1;

C[2t0
21pF

22; ~13!

wherew is the angle betweenp andp8, andQ(x) the Heavi-
side function. For anglesw for which expression~13! can be
expanded into a power series ine,e8, we have

npp8.
C

sin w 5
2udeu,

ee8.0; w@udeuAue8u,p2w@Aue8u

2ue1e8u,

ee8,0; w,p2w@udeu.
~14!

The kernelnpp8 in ~14! was found to be even in momen
tum, i.e., invariant relative to the substitutionw→p2w ~by
definition, the anglew varies in the limits 0<w<p!. The
odd component appears in the next approximation:

npp8
a

52C
cosw

sin3 w
~e822e2!Q~ee8!sgne8;

w,p2w@Aue8u. ~15!

A rapid decrease in the odd component of the ker
npp8
2 ; w23 is in accord with the general statement made
Refs. 3 and 4 concerning the low rate of odd angular rel
ation. It should be noted, however, that the evenness of
kernel in approximation~14! is a consequence of the abov
assumption about the constancy ofW. The expression ob-
tained earlier in Ref. 12 and actually analogous to~14! does
not possess a definite parity. In the general case, for an a
trary dependence ofW on its variables, the slow rate of od
relaxation follows from~12!. Indeed, is we take forc a
slowly varying odd function of the angle independent of e
ergy, the functionalF$c, f %;e3; the additional degree o
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smallness in comparison with the collision frequency
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ten ;e appears in the expansion of the parentheses w
four c into a power series in the small momentum trans
p32p1 , or in the small total momentump1p1 of the collid-
ing pair sinceup1 p1u •u p3 2 p1u/pF

2 < e. ~It should be noted
that the functionalF$c,x% is the total change in the value o
cp per unit time due to collisions, and hence characteri
the rate of odd angular relaxation associated with transpo
particles through large angles for a give choice ofc.! If,
however, we assume thatW is a smooth function of its vari-
ables, we can use~12! to obtain more detailed estimates a
sociated with odd angular relaxation. We choose the func
f in ~12! in the form of f p5d(p2p0) and assume that th
odd functionc(w) is equal to 1/2 for 0,w,w̃ andc50 for
w̃,w,p/2, wherew is the angle betweenp and p0 and
Ae0!w̃,p/2,«0 being the energy of the statep0 . In this
case, the expression in the parentheses withc in ~12! differs
from zero only if three of the states contained in it lie
regions of nonzero values ofc, while the fourth state~say,
p3! lies outside this region. This means that the contribut
to the integral comes only from narrow neighborhoods of
anglew̃ ~of the order of«0 /w̃0 for the statesp1 andp3 ; see
the above inequality for the values ofup32p1u and
up1p1u).

Consequently, it follows from~12! and ~11! that

mE E
2w̃

w̃
J$da~p2p0!%d« dw5mE E

2w̃

w̃
npp0
a d« dw

2
1

2 E npp0d
2p;e0

3w̃22;

2da~p2p0!5d~p2p0!2d~p1p0!. ~16!

The additional power ofe0 appears due to integration wit
respect to«1 in the thermal layer. Differentiating~16! with
respect tow̃, we obtain the following relation which is in
accord with~15!:

E npp8
a d«;~e8!3w23; w,p2w@Aue8u. ~17!

2. EFFECTS OF THE HYDRODYNAMIC TYPE IN ELECTRICAL
CONDUCTION OF TWO-DIMENSIONAL CONDUCTORS

The temperature minimum in the resistivity of 2DEG
wires discovered by Molekamp and de Jong7 indicates a
manifestation of the hydrodynamic mechanism of electri
conduction. It was shown in Ref. 13 and 14 that electro
electron collisions in 2D conductors can lead not only to
conventional Poiseuille flow of electron liquid over
bounded 2DEG sample,15 but also to new effects of the hy
drodynamic type. The latter were obviously observed in
experiments.7 In this section, we develop the theory of inh
mogeneous current states in 2DEG, which provides a de
scription of these hydrodynamic effects.

The linearized kinetic equation for the nonequilibriu
correction to the distribution function has the form

vz
]x

]z
1I $x%5eE–v, I5S ]n

]« D 21

J. ~18!
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electric fieldE is directed along the strip, and the collisio
integralJ is defined by~1!. We separate the components
Eq. ~18! with different parities in momentum:

vz
]xs

]z
1I $xa%5eE–v, ~19!

vz
]xa

]z
1I $xs%50. ~20!

If we can neglect low-rate odd relaxation altogether,
the case of diffuse scattering of electrons at the boundary
have

xs5
z

vz
eE–v,

xa5S d28 2
z2

2 D 1

vz
I H eE–vvz

J 2
deE–v

2uvzu
. ~21!

In this approximation, the current density

j ~z!5
4«Fm

2

h2 E xa~z,a!cosa da ~22!

diverges for small anglesa.vz /v since the first term for
xa in ~21! behaves approximately asa22(I $a21% ; a21, a
more exact estimate will be given below!. Thus, ‘‘grazing’’
electrons flying at a small anglea to the boundary make the
main contribution to conduction, which can be determin
only by taking into account the low-rate odd relaxation.
should be emphasized that the main singularity in~21! is
associated with the first term forxa describing effects of the
hydrodynamic type: this term is principal for all values
a in the hydrodynamic limitd@ l s5vFts .

It is impossible to solve the system of equations~19!,
~20! exactly. However, a semiquantitative description
hydrodynamic-type phenomena can be obtained by using
following self-consistent procedure. We introduce the me
free paths for the even and odd angular relaxation, which
determined by the characteristic angular scalew0 of variation
of the functionx:

I $xs%.
xsvF
I s~w0!

, I $xa%.
xavF
l a~w0!

.

In this approximation, we can easily obtain a solution of E
~19! and~20!, which, however, is rather cumbersome. To t
same accuracy, we can use the following compact exp
sion:

xa.
d2l a~w0!eE–v

d21a2l s~w0!l a~w0!
,

w0.d/Al s~w0!l a~w0!. ~23!

For the transport mean free pathl tr determined by the Lif-
shits relation

1

d E
2d/2

d/2

j ~z!dz5
eN
2

pF
l tr E,

whereN is the two-dimensional density of charge carrie
we obtain
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If the dependencesl s(w0) and l a(w0) are known, rela-
tion ~23! is an equation forw0 that can be used to expres
w0 in terms of the quantitiesd,l s ,l a( l s } T22,l a
. («F /T)

2l 2 } T24 correspond tow0.1!. Let us find the de-
pendencesl s(w0),l a(w0) with the help of expressions~6!
and ~9!. It follows from ~7! that the inequality
uwhu<g[T/«F, determining the ranges of the anglesw and
h which make the contribution in formulas~6! and ~9! that
cannot be regarded as exponentially small.

Let us first consider not too anisotropic distribution
w0@Ag. In this case, the total interval of variation ofh can
be divided into three asymptotic regions: region I w
h!g/w0 , in which h!w0 , and wmax@w0; region II with
g/w0!h!w0 , in which h,w!w0 , and region III with
h@w0 , in whichw!w0 . The operatorD̂h

6 can be expanded
in the small parameterh/w0 :D̂h

1x(a) . 2x(a) and
D̂h

2x(a) . hx8(a) in region I, in the parameterw/w0 in
region III, and in both these parameters in region II. Wh
evaluatingl s(w0), we can obviously neglect the contributio
from regions II and III, which is proportional to the sma
parameter (w/w0)

2. In region I, we can neglect the integr
terms (D̂w

2)2x(a) . 2x(a). As a result, an approximate e
timate of the quantityl s(w0) has the form

l s
21~w0!2gE

g

g/w0
dhE

0

g/h
dw;2l 0

21g2 ln~w0
21!,

w0@Ag, ~25!

where l 05vFt0 , andt0 has the form~2!. While estimating
the value ofl a(w0) by formula ~6!, we can write the contri-
butions from the above regions in the form

l a
21~w0!;gH E

0

g/w0
dhS h

w0
D 2E

0

g/h
dw

1E
g/w0

w0
dhS h

w0
D 2E

0

g/h
dwS w

w0
D 2

1E
w0

p

dhE
0

g/h
dwS w

w0
D 2J ; l 0

21 g4

w0
4 ln

w0
2

g
,

w0@Ag. ~26!

Region III makes the dominating contribution in the para
eter ln(w0

2/g).
It should be recalled that expression~6! corresponds to

the assumption that the functionxa is independent of energy
It will be shown in Appendix A that for relatively large
w0 , the energy dependence acquires the form of a ‘‘lo
drift’’ ~8!, and the value ofl a(w0) should be estimated b
using expression~9!. In this case, the expansion in region
leads to terms of the order of

~wh/w0
2!2@~w/w0

2!1~h/w0
2!#,

which reduces its contribution as compared to~26!; on the
contrary, the contribution from regions I and III increas
and becomes predominant:
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Thus, the inclusion of the energy dependence ofxa leads to
a redistribution of the contribution tol a(w0)

21 between the
region, which does not change the result significantly. It w
be shown in Appendix A that the true value ofl a(w0)

21 for
w0@Ag is determined by the larger of the quantities~26! and
~27!.

In the case of more anisotropic distributions (w0!Ag),
the division of the total interval of variation ofh into three
asymptotic region is carried out as follows: region I wi
h!w0 , in which the expansion in the parameterh/w0 is
possible; region III withh@g/w0 , in which the expansion
can be carried out in the parameterw/w0 , and region II with
w0!h!g/w0 , in which the expansion is not possible. In th
case of an even distribution, region III is ineffective, whi
regions I and II give

l s
21~w0!; l 0

21g2 ln~g21!, w0!Ag. ~28!

For odd distributions, regions I and III are ineffective
compared to region II, and its contribution, according to~6!,
has the form

l a
21~w0!; l 0

21g2 ln
g

~g1w0!
2 , w0!Ag. ~29!

Expressions~25!–~29! refine the dependencesl s(w0)
andl a(w0) obtained in Refs. 6 and 14. It should be noted t
a more accurate analysis carried out here establishes a
dependencel s(w0) which was not observed in Refs. 6 an
14. It can be seen from relations~25!–~27! that the ratio of
lengthsl a(w0)/ l s(w0)@1 and decreases rapidly withw0 for
w0@Ag. This leads to a decreases in the transport len
with w0 ~see ~24!!, and hence to the inverse temperatu
dependence of resistivityl tr

21 } T21 for d2!g l s
2 ~the latter

inequality corresponds tow0@Ag). However, it can be seen
from ~28! and~29! that l a(w0). l s(w0), and forw0!Ag the
inverse temperature dependence defined by~24! is weaker
than the linear dependence determined by the conventi
Fuchs term d ln(ls/d) @disregarded in ~24!#. Thus, for
d2!g l s

2 we are dealing with the Fuchs situation in electric
conduction with a weak increase in resistivity with tempe
ture.

The above analysis carried out in the framework of tw
relaxation times has the upper limit on the plane thickn
d defined by the inequalityd2! l sl a . In this limit, w0!1,
and hence we can disregard the conservation of the t
electron momentum in collisions: the departure of a noneq
librium electron from the grazing region of widthw0 during
the timevF

21l a(w0) leads to a rapid relaxation at the boun
ary, i.e., is equivalent to its disappearance. In the oppo
limit d2@ l sl a , this approximation is inapplicable, and it ca
be proved that the conventional hydrodynamic situation
realized.

Till now, the analysis was carried out in the linear a
proximation. However, inverse temperature dependence
resistivity was observed by Molekamp and de Jong7 under
nonlinear conditions, when nonlinearity is ‘‘trivial,’’ i.e., is
reduced to the necessity of taking into account the dep
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ceeds the correction to the chemical potentialx(a). If the
electron system loses its energy due to emission of phon
~the mean free path for these collisions isl ep!, and the con-
dition l s! l ep ensuring the closeness of the electron system
equilibrium in energy is satisfied, it can easily be verifi
that the linearity condition has the forml epw0

2@ l tr . This con-
dition is obviously violated forl a(w0)@ l ep , when the odd
relaxation associated with electron–phonon collisions do
nates. In the opposite limiting casel epw0

2! l tr , we cannot use
the linearized collision integral~1!. ~For the sake of simplic-
ity, we assume that the electron energy and momen
change significantly during electron–phonon collisions.!

Essentially nonlinear electron–electron relaxation
two-dimensional systems requires special consideration;
we only indicate the following important circumstance. T
nonequilibrium distribution corresponding to a shift
chemical potential which is odd in momentum~i.e., the dis-
tribution of the formn@«p2x(a)# with x(2a)52x(a),
x!«F! for T→0 relaxes very slowly to the equilibrium sta
~at any rate, relaxation is absent to within quantities of
order of (x/«F)

3, inclusively!. In order to verify this, note
that, by virtue of conservation laws, the two initial statesp
andp1 and two final statesp2 andp3 lie on the same circle in
thep-space. The pointsp andp1 as well as the pointsp2 and
p3 are diametrically opposite relative to the center of t
circle. Let us first consider a circle of radiuspF displaced
relative to the Fermi surface~FS! through a small distance
dp. This circle will contain the initial and final states o
collision if it includes pairs of diametrically opposite poin
corresponding to occupied states as well as pairs of oppo
points corresponding to free states. However, the displa
ment of points of distorted FS relative to the circle und
investigation as well as their displacement relative to
unperturbed FS is odd in the first order inx/«F . This means
that free regions of the circle are opposite to occupied
gions, and hence collisions are ruled out. An increase in
radius of the circle does not change the situation: final st
but not the initial state become possible~the converse situa
tion takes place upon a decrease in the radius!. A consider-
able increase in displacementdp does not change the situa
tion either. In the second approximation inx/«F , the
situation changes. Consequently, the role of effective te
perature in expression~2! for ten is played by the quantity
x2/«F . Preliminary analysis shows that the relaxation tim
for the FS deformed in the odd way can be even higher t
t0(«F /x)

4. In the case of the evenly deformed FS, the r
of effective temperature is played by the quantityx, and the
relaxation time is of the order oft0(«F /x)

2.

3. EVOLUTION OF STRONGLY ANISOTROPIC HIGH-
ENERGY DISTRIBUTIONS

Although spatial dispersion effects play a significant ro
in 2D electron beams, we shall confine ourselves in t
section to the analysis of pretemperature relaxation in m
mentum space, which is described by the equation

] f p /]t5J$ f p%, ~30!
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be indicated in the Conclusion how the results of this
search can be used for analyzing experiments with elec
beams, i.e., taking spatial dispersion into account.

Let us suppose that the distribution of nonequilibriu
electrons at the initial instant is described by the funct
f 05ApF

22d(p2p0), where «0@T. The coefficient of the
d-function obviously decreases with time in proportion
exp(2t/ten) with ten(«p) from ~2! (T50).

For timest!ten(«0), the distribution of electrons expe
riencing a collision can be determined in the first approxim
tion in the collision integral:

f p.ApF
22npp0t. ~31!

We shall be interested in the evolution of the distributi
for times exceedingten(«0). Obviously, the energy of non
equilibrium electrons decreases after each collision~to ap-
proximately one third of the previous value! since a nonequi-
librium electron shares energy with equilibrium electron
Thus, nonequilibrium electrons ‘‘fall’’ on the FS~holes rise
above it!, each next collision occurring at a much lower ra
than the previous collision (ten; «22). In the limit«→0, the
process terminates:npp850 for «p850. Consequently, an ar
bitrary angular distribution of electrons over the Fermi s
face is a solution of the equationJ$ f %50 describing the
stationary situation which is final for the pretemperatu
stage. Since the total energy of electrons is conserved du
collisions, we must distinguish between two types of so
tions of the steady-state equation

f`5l~a!d~«!1k~a!d8~«!. ~32!

The second term ensures a nonzero energy of the
distribution.

Let us formulate the following question: what is the fin
distribution of particles over the FS for the pretemperat
relaxation stage? In other words, what is the limit of t
solution of Eq. ~30! with an arbitrary initial condition
f (t50)5 f 0 for t→`? In order to answer this question, w
multiply both sides of Eq.~30! by the functionf̃ , which is a
solution of the equation

J̃$ f̃ %50,

J̃$ f̃ %52E np8p~ f̃ p2 f̃ p8!d
2p8 ~33!

~J̃ is the transposed operator forJ! and integrate with respec
to p and time betweent50 and` for f5 f ` . This gives the
following relation between the final and initial distribution

mE
0

2pFl~a! f̃ ~a,«!1k~a!
]

]«
f̃ ~a,«!G u«50 da

5E f 0 f̃ d
2p. ~34!

The solutions of Eq.~33! are quantities conserved durin
collisions. The functionsf̃5const,p, and « are obviously
such solutions in view of the conservation of the number
particles, momentum, and energy. Do other solutions of
~33! exist? In view of isotropy of the problem, such solutio
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It can easily be seen that additional solutions of Eq.~33!
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lutions with f̃ n(0) Þ 0 exist and omitting the arbitrary coe
ficient, we can writef̃ n(«)512gn(«),gn(«)→0 for «→0.
As a result, we obtain the following equation forgn from
~33!:

gn~«!2ten~«!E np8pgn~«8!eia8nd2p85ten~«!J̃$eian%.

~35!

In order to analyze this equation, it is important to estim
its right-hand side.

For oddn, we have the following order-of-magnitud
estimate:

ten~«!J̃$eian%.n2e
ln~n2ueu!
lnueu

, ueun2!1. ~36!

The smallness of this expression fore→0 is a direct conse-
quence of the low rate of odd angular relaxation conside
in Sec. 1. It is convenient to obtain estimate~36! from ~12!
by puttingf p 5 d(p2 p0),cp 5 eian and dividing the integra-
tion domain into three regions in analogy with the compu
tional algorithm used for deriving expression~26!. A rapid
decrease in the right-hand side of~35! with e makes it pos-
sible to solve this equation by iterations in the second te
on the left-hand side of~35!. Indeed,J̃$g̃n%'ten

21gn since in
this case we are speaking of energy relaxation, and there
no grounds for the compensation of the nonintegral and
tegral terms on the left-hand side of~35!. Moreover, accord-
ing to estimates, the ratio of these terms is small:

ten gn
21J̃$gne

ian%21.
1

6 F12
3

2

ln n2

ln~ ueu21!G< 1

6
.

Thus, Eq.~35! is solvable for oddn, and hence additiona
odd solutions of Eq.~33! with f̃ n(0) Þ 0 do exist. It should
be noted that for reasons similar to those considered in
previous section, the functionsgn with smalln correspond to
the ‘‘local drift’’ ~8!:

gn~«!.2
1

2
en2eian, ueu!1, ~37!

while for n561 this expression corresponds to actual dr
i.e., exact solution of Eq.~33!, to a high degree of accuracy

For evenn, we have

ten~«!J̃$eian%.
ln~ unu11!

ln~ ueu21!
, ueun2!1. ~38!

Let us prove that Eq.~35! cannot be solved for evenn in
view of a weak energy dependence of its right-hand side.
first assume thatg tends to zero according to the same law
for the right-hand side of~35! ~i.e.,g }u lnueuu21). In this case,
the left-hand side is considerably smaller than the right-h
side: in the main approximation inu lnueuu21, the operatorJ̃
acts on the logarithmic function of energy as on the cons
( J̃$geian% . gJ̃$eian%). If, however, we assume thatg de-
creases with energy at a faster rate, the first term domin
on the left-hand side of~35!, and we arrive at a contradictio
again.
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with f n(0)50 do not exist. This is obvious for oddn since
in this case we actually apply thet-approximation for the
operatorJ̃ acting on the function depending significantly o
energy. For evenn, we can write f̃ in the form f̃ n
5«@12qn(«)# and arrive at the right-hand side of the equ
tion for the functionqn which has a weak dependence on«
similar to that in Eq.~35! for gn .

In order to make relation~34! informative to the maxi-
mum possible extent, we construct from additional odd so
tions of Eq.~33! their following linear combination, depend
ing on the parametera0 :

Gp~a0![G~«,a2a0!,

G~«,a!5
1

2p (
n561,63,...

`

@12gn~«!#eian. ~39!

This function is the odd component ofd(a) for «50. The
conserved quantityG corresponds to a local conservation
the number of particles in the anglea. It is obvious form the
physical point of view that the absence of a similar ev
conserved quantity and the quantity«@12qn(«)#e

ian of the
type of local energy density indicates complete isotropizat
of the even component in the distribution of the number
particles and their energies at the pretemperature relaxa
stage, in other words, the independence of the quantitiels

and k in ~34! of a. Substituting f̃5G,1,« into ~34!, we
obtain

la~a!5m21E f 0p8Gp8~a!d2p8, ~40!

ls5~2pm!21E f 0p d
2p, ~41!

k5~2pm!21E « f 0p d
2p. ~42!

These formulas complete the solution of the problem on
final state of pretemperature relaxation. More rigorous ma
ematical substantiation of these formulas will be given
Appendix B. It can be seen from~40! that the function
G(«0 ,a) is the final angular distribution over the FS for
nonequilibrium state which initially has the form1!

mda(p2p0),ap0
50. Substituting the solution of Eq.~35! in

the zeroth order of iteration into~39!, we obtain the explicit
form of the functionG:

G~«,a!.ten~«!E np8p
a d~a8!d2p8

.2
2

3

e

u lnueuu
cosa

sin3 a
,

up2au,a@ueu1/2. ~43!

Obviously, uGu.ueu21/2 in the region a,up2au<Aueu.
However,G cannot be a monotonic function of the angle f
«.0. This statement follows from the fact thatG in ~43! is
negative for«.0 and from the ‘‘normalization condition’’
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Ep/2

G~«,a!da>
1
, ~44!
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which indicates the conservation of the number of partic
The proof of relation~44! is given in Appendix B.

The odd distributionla(a) sets in even after a few firs
collisions, i.e., approximately over the timeten(«0). ~The
zeroth approximation of the iterative method for Eq.~35!
indicates that the first collision is taken into account, wh
the next iterations take into account a small contribution
gn from the next collisions.! It can be see from estimate~38!
that isotropization of the even component~number density of
particles and energy density! requires approximately
ln(«F /«0) collisions.

It should be borne in mind, however, that the prete
perature stage of relaxation considered above under the
sumptionT→0 terminates when the average excitation e
ergy becomes equal to the electron temperatureT, i.e., after
the thermalization periodten(T) @see~2!# ~approximately af-
ter ln(«0 /T) collisions!. Thus, isotropization of the even dis
tribution is not completed at the pretemperature stage
«0
2<T«F .
The electron temperatureT stabilized as a result of ther

molization is determined by the initial temperatureT0 of
equilibrium electrons~the temperature of the thermostat! as
well as the energy of the electron beam:

T5AT0216p22k. ~45!

This relation follows from the equality of the energy of th
electron system at the pretemperature and temperature s
of relaxation.

Let us consider the applicability of the linear approxim
tion for collision integral in the given case. It can easily
seen that the most stringent constraint boils down to the
quirement that any region of thep-space with a radius of the
order of«/vF must contain a much smaller number of ex
tations than the maximum possible numberh22(«/vF)

2. In
this case, the linear approximation is applicable for sm
angle collisions with the momentum transfer;«/vF also.
This requirement is satisfied for

k!«0
3«F

21. ~46!

In the opposite limit, the pretemperature stage is transform
into the linear mode of relaxation of the FS deformed in
odd way~for T0<T!, which was mentioned at the end of th
previous section. It should be noted, however, that e
when the inequality~46! is observed, the linear approxima
tion is inevitably violated upon a transition from the prete
perature stage to the temperature stage~for T0<T!, but is
restored again for the timet@ten(T).

CONCLUSIONS

Qualitative ideas concerning the relaxation of stron
anisotropic distributions are outlined in Refs. 4, 5, and
and can be formulated as follows. After several electro
electron collisions, i.e., after a timet.ten(«0), the electron
distribution component which is even in the momentum
comes isotropic, while the odd component, which acqu
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slowly with time ~«0 is the excitation energy for electrons i
the beam!. This long-lived nonequilibrium state, which i
odd in thep-space, has the form of electron and hole bea
moving in opposite directions in the coordinate space. Si
an electron is converted into a hole~and vice versa! over a
time of the order often, the evolution of this electron–hole
formation is realized though one-dimensional diffusion ov
a time much longer thanten.

5,14 ~It is interesting to note tha
as a result the current state is blurred symmetrically both
the direction of injection of the primary beam, and in th
opposite direction.! Under certain conditions, the seconda
electron and hole beams can be observed directly in exp
ments with narrow primary electron beams injected into
2DEG. In the electrical conduction of 2DEG wires~see Sec.
2! whose widthd!Al al s, d@ l sAT/«F, such electron–hole
formations make the main contribution to current. The tra
port mean free path of a charge carrier moving at an an
a!1 to the boundary can be written as the one-dimensio
diffusion length of the charge carrier:

@ l tr#
215

I s~a!a2

d2
1(

l
l ai

21~a!.

The second term takes into account all processes of odd
laxation~due to electron–electron collisions, impurities, a
phonons!, which take a carrier out of the angular interval
the order ofa.

The consistent analysis of the problem carried out in t
paper allowed us to substantiate the qualitative conclus
drawn in Refs. 13 and 14. In addition, we refined the dep
dences of the mean free pathsl a(w0) and l s(w0) on the pa-
rameters of the problem@see formulas~25!–~29!#. Among
other things, we have established a slow dependence o
even relaxation rate on the anisotropy scale of the distri
tion, which allowed us to determine the lower boundary
the layer widthd for the region of inverse temperature d
pendence of resistivity:d> l sAT/«F. Although the length
l a(w0) is noticeably larger thanl s(w0) in the regionT/«F
< d/ l s ! AT/«F, the slow increase in resistivity with tem
perature typical of the Fuchs situation in the electrical co
duction of plates dominates.

The analysis of the evolution of high-energy strong
anisotropic distribution disregarding spatial anisotropy
fects ~Sec. 3! can nevertheless be used for studying the
sults of experiments with narrow electron beams in 2DEG. It
should be noted that, in the case of a strong dependenc
the distribution function on the coordinater , the momentum
distribution f p5* f p(r )d

2r of particles in the linear approxi
mation satisfies Eq.~30!. In other words, all the results con
cerning the evolution of the initial distributionf 0p are valid
for a beam injected in pulses into the momentum space a
initial instant~naturally, until the electron beam collides wit
the boundaries!. The application of a magnetic field lead
only to a rotation of the distribution in the momentum spa
f (a,«,t)→ f (a2Vt,«,t),V being the cyclotron frequency
~although even a very weak magnetic field leads to a str
beam broadening in the coordinate space!.4,14 It was men-
tioned at the end of the previous section that the proces
thermalization is nonlinear forT0<T, and hence the mo
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without taking spatial dispersion effects into considerat
for t>ten(T). It can be stated, however, that these effects
not hamper the stabilization of local temperature in the
ordinate space since the thermalization len
l en(T)5vFten(T) for such a time has the minimum valu
among all characteristic lengths. According to~45!, the con-
dition T2T0!T0 , which allows us to avoid the solution o
the problem on the coordinate dependence of temperatur
reduced to the inequalityAkT!T0 . HerekT is the value of
the quantity̧ ~which is proportional to the energy density
the beam! at the instantt5ten(T) @the substitutionk→kT

must also be made in condition~46!#. The realization of
these linearity conditions is facilitated by the fact that t
initial energy density of the injected beam decreases sig
cantly during its propagation.

The relation between the momentum distribution of p
ticles f p[ f (a,«) and their distribution in the coordinat
space in the problem on electron beams is determined f
the following simple physical considerations. The displa
ment of a particle in the direction perpendicular to the vel
ity of the primary beam is

r'.vFE
0

t

a~ t8!dt8.a~ t !tvF ,

wherea(t)!1 is the angle of deviation of the particle from
the initial direction of the beam. For this reason, the dis
bution of particles overr' repeats qualitatively the functio
* f (a,«,t)d«, wherea.r' /vFt, andt stands for the time of
motion of the particle between the emitter and the detecto
the separation between the emitter and the detecto
L< l en(«0), a binary collision is hardly probable, and th
momentum distribution is defined by~31! with t.L/vF
~both for electrons deviating through small angles from
primary beam and for particles moving in the opposite dir
tion!. If L. l en(«0) @but L, l en(t)#, a particle participates in
several collisions before hitting the detector, and the ang
distribution is described by the functionG(«0 ,a) ~see Sec.
3!. This function is positive and has a peak in the angu
rangea<Ae0. Then it changes sign, andG }2 a23 for
a@Ae0. Negative values ofG correspond to holes, i.e., th
detection of a positive charge. The estimatet.L/vF is pre-
served in this case also since each next mean free pa
approximately six times longer than the previous one due
a decrease in energy during a collision, i.e., the total m
free path is approximately equal to the last mean free p
If, however,L@ l en(T), the main broadening of the electro
and hole beams occurs at the temperature stage of relaxa
It follows from the results of Sec. 2 that the angular width
beamsw0.AT/«F(t/ts)1/4, and the quantityt is the time of
diffuse traversing the pathL(t.L2/vFl s) by the electron–
hole formation. It should be borne in mind, however, th
after its first collision, a hole returns to the emitter regi
with a probability approximately equal to 1/2, an
t. l en/vF for such holes for anyL@ l en(«).

In order to observe these effects associated with
beams, the emitter must create a narrow primary beam, w
the detector must transmit particles in a much wider ang
range as compared to the emitter. Indeed, electrons reac
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with the mean angle of deviation from the primary bea
;r' /tvF , and hence a detector having the same ang
width as in the emitter would not detect most of electron

It was mentioned above that a new nonlinear mode
electron–electron relaxation in 2D degenerate systems ex
ists, in which odd deformations of the Fermi surface w
respect to the angle relax at a much slower rate than e
deformations. The ranges of existence of the nonlinear m
have been determined in problems on electrical conduc
of 2DEG wires and on the evolution of electron beams
jected into a two-dimensional gas. It should be noted t
under the nonlinear conditions, the inclusion of spatial d
persion forms an independent problem which must be sol
separately.

This research was carried out under partial financial s
port of the International Science Foundation and the Uk
nian Government~Grant No. U2D200!.

APPENDIX

A. Approximation of frequent collisions

Under the conditions when the characteristic length a
time intervals for a system exceed significantly the quanti
l en(T). l s and ts , the electron system is close to ener
equilibrium. In the problem on static electrical conductivi
of a 2DEG wire, these conditions are reduced to the inequ
ity x5 l s(a)a/d!1. The presence of new effects associa
with the two- dimensional nature of the system is associa
with the inequality

y5 l s~a!/ l a~a!!1.

Successive expansion of the kinetic equation~19! in
these small parameters leads to the following chain of eq
tions:

I 0$x
00%50, ~A1!

vz
]x00

]z
1I 0$x

10%50, ~A2!

I 1$x
00%1I 0$x

01%50, ~A3!

vz
]x10

]z
1I 0$x

021x20%1I 1$x
01%1I 2$x

00%5eEv.

I5I 01I 11I 2 ,

x5x001x011x101x021x201... . ~A4!

The operatorI 0 describing energy relaxation differs fromI in
that both operatorsD̂q

2 in ~5! are replaced by the operato
D̂q« :

D̂q«x~«p ,ap!5
1

2
@x~«p1q/2 ,ap1q/2!

2x~«p2q/2 ,ap1q/2!1x~«p1q/2 ,ap2q/2!

2x~«p2q/2 ,ap2q/2!#.

Here« anda are the energy and angular variables defin
the position of the pointp. The operatorI 1 is equal to the
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sum of two operators each of which was obtained by the
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replacements of one of the operatorsDq in ~5! by Dq« , and
the other byD̂qa :

D̂qax~«p ,ap!5
1

2
@x~«p1q/2 ,ap1q/2!

2x~«p1q/2 ,ap2q/2!

1x~«p2q/2!,ap1q/2!

2x~«p2q/2 ,ap2q/2!].

Both operatorsD̂q
2 in I 2 are replaced byD̂qa . The first su-

perscript onx indicates the order of the expansion in t
parameterx, while the second shows the order of the expa
sion in the parameterAy. Equation~A4! is the sum of equa-
tions of the orders~02! and ~20!.

Let us first prove that an arbitrary odd function ofa, i.e.,
x005x̄(a) independent of«, is the only solution of Eq.~A1!
~apart from the solutionx00;« corresponding to a sma
variation of temperature!. Equation~A1! is equivalent to the
detailed balancing condition

D̂k
6D̂q«xs,a

00 50.

This is obvious if we note that relation~A1! leads to
F«$x

00,x00%50, where the functionalFs can be obtained
from F by replacing the operatorsD̂q

2 in ~4! by D̂q« and
taking into account the fact that the kernel ofF is essentially
positive. Naturally, the functionx̄(a) is a solution of this
equation sinceD̂q«x̄50. In order to prove the uniqueness
this solution, it is sufficient to consider infinitely smallq:

]

]«
xs,a
00 ~p1k/2!56

]

]«
xs,a
00 ~p2k/2!,

which givesxa
005x̄(a) andxs

00;«.
The field termeE•v is not included in Eq.~A1!: the

identity*]n/]«I 0$xa%d« 5 0 shows that otherwise the equ
tion would be unsolvable. It cannot be included either in E
~A2! ~since its left-hand side is even inp! and~A3! ~in view
of the identity*]n/]«I 1$x̃%d« 5 0). Thus, Eqs.~A2! and
~A3! allow us in principle to express the correctionsx10 and
x01 in terms of x̄, while the functionx̄(a) can be deter-
mined from the condition of solvability of Eq.~A4!:

E d«Fvz ]x10

]z
1I 1$x

01%1I 2$x̄%2eE–vG ]n

]«
50. ~A5!

This algorithm supplements the approach developed
Secs. 1.1 and 2: Eq.~A3! defines the energy-dependent co
rectionx01 which is essential for estimating the rate of o
angular relaxation.

While analyzing Eq.~A3!, it is convenient to separat
three domains of integration with respect to the angleh as in
the derivation of expressions~25! and ~26!. For
w0@AT/«F, region II makes the main contribution i
ln(w0

2 «F /T) to the quantityI 1$x
00%. However, the contribu-

tion form region II containing ln(w0
2 «F /T) to I 0$x

01% com-
petes with the contributions from regions I and III containi
lnw0

21. If we retain in~A3! only the contribution from region
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functionx in q andk in region II, we obtain from~A3!

E D̂k
2D̂q«FpkqS pF2wh

d2x

da2 12D̂q«x01Dd2kd2q50,

where the integration with respect tok is carried out within
region II. This equation can be solved by equating to zero
expression in the parenthesis in the integrand. In this c
x01 has the form of the ‘‘local drift’’~8!. Thus, for not too
anisotropic distributions@ ln(w0

2«F /T) . 2 ln(w0
21)#, the ‘‘local

drift’’ describes successfully the energy dependence of
nonequilibrium correction; for more anisotropic contrib
tions, the energy dependence is weaker than~8!.

It can be seen from Eqs.~A1!–~A3! that a significant
energy dependence of the quantityI $x001x101x01% can ap-
pear only in second-order terms in the small parameterx
and y. This proves relation~10!: the correctionc01 can be
neglected to within the required accuracy.

B. The limit t˜` for pretemperature relaxation stage

In order to control the limiting transitiont→`, we in-
troduce the term2n f describing infinitely slow damping o
states forn→0 into the right-hand side of Eq.~30!. Let the
nonequilibrium correction at the time instantt50 have the
form f (0)5d(p2p0). Integrating the kinetic equation with
respect tot from 0 to`, we obtain

~2 Ĵp1n!Gn~p0 ,p!5nd~p2p0!,

Gn~p0 ,p!5nE
0

`

f p~ t !dt. ~A6!

The quantityGn(p0 ,p) is the value of nonequilibrium cor
rection averaged over the damping timen21. This quantity
obviously tends to the required final distribution to which t
initial nonequilibrium state evolves with time forn→0. Let
us consider the transposed equation

~2 J̃̂p1n!Gn~p1 ,p!5nd~p2p1!. ~A7!

Multiplying both sides of~A6! by Gn(p1 ,p) and integrating
with respect top, we obtain, according to~A7!,

Gn~p1 ,p0!5Gn~p0 ,p1!. ~A8!

Being the final state of pretemperature relaxation,
functionGn(p0 ,p) for n→0 is obviously not small only nea
the Fermi surface for«p→0. ~It can easily be seen from~A7!
and~A8! thatGn is not small in the range of momenta whe
nen(«p).n.! It is convenient to introduce the angular dens
of particles on the FS, i.e.,

Gn~p0 ,a!5mE Gn~p0 ,p!d«

and, accordingly, the angular energy density

«n~p0 ,a!5mE «Gn~p0 ,p!d«.

It follows from ~A7! and ~A8! that the functionGn(p,a0)
satisfies the equation
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~2 J̃̂1n!Gn~p,a0!5nd~a2a0!.

e

i-

-
a

i

-

values for «,0 are naturally deprived of any physical meaning for
T→0. However, it is convenient to analyze the evolution of the initial

.

.

on,

ev.

.

If we write the solution of this equation in the form

Gn~p,a0!5
1

2p (
n

@12gnn~«!#ein~a2a0!,

it becomes obvious that forn→0, the odd component of th
function Gn(p,a0) tends to the functionGp(a0) which is
defined by expression~39!. Indeed, equations for the quant
ties gnn(«) differ from ~35! only in that nen(«) is supple-
mented with an infinitely small termn. For oddn, these
equations can be solved by the iterative method~see Sec. 3!.
The absence of even solutions of Eq.~33! ~apart from a
constant! indicates that the even component ofGn(p,a0)
attains the constant value fornen(«)@n. Thus, the assump
tion made in Sec. 3 concerning the relation between the
sence of additional even solutions of~33! and the isotropy of
the even component of the final distribution is proved. Sim
lar arguments applied to the energy densityEn(p,a0) prove
that the quantityk in ~32! is constant. The value of the func
tions Gns(p,a0) and En(p,a) for nen(«)@n can be easily
obtained from the conservation laws: multiplying~A6! by a
constant and« and integrating with respect top, we obtain
Gns(p,a0) 5 (2p)21 andEn(p,a0) 5 (2p)21«. In order to
obtain the ‘‘normalization condition’’~44!, we must multiply
both sides of~A6! by sgn(p–p0), integrate with respect top,
and use expression~16!.

*E-mail: gurzhi@ilt.kharkov.ua
1!Negative values of the initial nonequilibrium state for«.0 and positive
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electron («.0) or hole («,0) nonequilibrium state by dividing them into
components having different parities.
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The high-frequency conductivity tensor of a two-dimensional electron gas with electron

ion
impurity states in a magnetic field
N. V. Gleizer and A. M. Ermolaev

Kharkov State University, 310077 Kharkov, Ukraine
~Submitted May 13, 1996; revised June 18, 1996!
Fiz. Nizk. Temp.23, 73–78~January 1997!

The Lifshits method of local perturbations is used for studying the properties of a two-
dimensional electron-impurity system in a quantizing magnetic field perpendicular to the plane of
electron motion. The high-frequency conductivity tensor of the system is calculated in the
model of independent point impurity atoms, taking into account the impurity states of electrons
and spatial dispersion. The dissipative component of the conductivity has narrow resonant
peaks at frequencies of electron transitions between the Landau levels and local levels, which are
induced by the magnetic field. In zero magnetic field, these peaks merge into one broad
peak lying above the threshold frequency for electron transitions from a local level to the energy
band. Numerical values of the peak heights are obtained for semiconducting structures with
a two-dimensional electron gas. ©1997 American Institute of Physics.
@S1063-777X~97!00801-3#

The problem of impurity states of quasiparticles in solidsfirst Landau level. He observed that Landau quantizat
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was formulated for the first time in classical works by I. M
Lifshits on the theory of vibrations of nonideal crystal la
tices, which appeared more than fifty years ago.1 Lifshits
formulated and solved the problem on the effect of impur
atoms on the phonon spectrum, predicted local vibratio
and developed a computational method for physical par
eters of systems perturbed by impurity atoms. This the
was used later for studying impurity states of other quasip
ticles ~electrons and magnons!.2,3 A natural continuation of
studies in this direction was the analysis of electron impu
states in a magnetic field.

The problem on electron impurity states in conductors
the presence of a magnetic field has specific features. A
matter of fact, the bound state of an electron in the field of
impurity in a three-dimensional conductor appears o
when the potential well in which the electron falls is de
enough for the uncertainty in the particle energy in the w
to be much smaller than the well depth.4 If this condition is
not observed, electrons experience only potential scatte
by the impurity center accompanied by an insignificant ph
shift, and the bound state is not formed. The motion of
electron in a magnetic field is bounded in two directions, a
the electron drifts along the field. In a strong magnetic fie
the situation resembles the one-dimensional case, when
bounds state emerges in a well of any depth. Thus, the m
netic field localizes electrons at attracting impurities ev
when localization in zero field is impossible. In a magne
field, specific local and quasi-local states of electrons app
due to joint action of attracting impurities and magnetic fie
For this reason, such states are referred to as magnetoi
rity states.

The idea of magnetic localization of electrons at isola
impurity atoms was put forth by Skobov5 and Bychkov.6

Skobov derived an exact expression for the amplitude
electron scattering by a point center in a magnetic field
observed its resonant nature. Bychkov predicted a bo
state of an electron split by an attracting impurity from t
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leads to the ‘‘reproduction’’ of bound state. A small-radiu
attracting impurity removes degeneracy in the position of
center of the Larmor ‘‘orbit’’ and splits a level from eac
Landau level. The levels split from the second, third, e
Landau level get in the continuous spectral region and
come quasi-local. Being in resonance with the Landau sta
these levels acquire a finite width which is inversely prop
tional to the lifetime of an electron near the impurity. Th
influence of magnetoimpurity states on the de Haas–val
phen effect in metals was considered in Refs. 7 and 8.

In a two-dimensional electron–impurity system, an in
nitely weak attractive potential of the impurity atom leads
the formation of a bound state of the electron. The bind
energy in such a state is exponentially small as compare
the depth of the impurity potential well.4 Bound states cor-
respond to the poles of the amplitude of electron scatte
by an impurity atom. These states are located on the phys
sheet of the Riemann surface of scattering amplitude a
function of the electron energy and affect significantly t
low-temperature properties of two-dimensional systems. T
presence of such poles indicates that it is impossible to
culate the kinetic parameters of a two-dimensional electro
impurity system on the basis of the perturbation theory in
scattering potential. The exact expression of scattering
plitude is required.

The amplitude of scattering of quasiparticles by impur
centers in a solid is usually calculated by using the method
local perturbations developed by Lifshits.1,2 or the method of
zero-radius potentials.9,10 The exact expression obtained b
these methods for the amplitude of electron scattering
short-range impurity atoms was used recently for calculat
the static conductivity of a two-dimensional electron gas11

In this publication, peculiarities of static conductivity of two
dimensional metals, heterojunctions, and inversion layer
the semiconductor boundary~which cannot be obtained o
the basis of the perturbation theory! were predicted.

A system of local layers alternating with the Landa

550055-04$10.00 © 1997 American Institute of Physics



levels is formed in a quantizing magnetic field perpendicular
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to the plane of electron motion. In the case of short-ran
impurity potentials of various types, their positions were d
termined in Refs. 12, 13 by the method of local perturb
tions. Such a spectral structure of the electron–impurity s
tem is manifested in optical experiments with a tw
dimensional electron gas in a magnetic field.14 In spite of the
large number of publications devoted to study of hig
frequency properties of such systems,14–16the calculations of
high-frequency conductivity of two-dimensional electron g
taking into account the local states of electrons have not b
carried out yet.

In this paper, we describe the results of calculations
the high-frequency conductivity tensor for a tw
dimensional electron gas taking into consideration the im
rity states of electrons in a magnetic field perpendicular
the plane of electron motion. We used the effective m
approximation. Point impurity atoms are assumed to
scarce and distributed at random. The pole structure of
amplitude of electron scattering by isolated impurity ato
in a quantizing magnetic field is taken into account. T
frequency of the electromagnetic field is assumed to
higher than the electron collision frequency. The results p
sented here can be used in an analysis of the inversion l
at the boundary between a semiconductor and an insul
as well as thin metallic films under the conditions when el
trons fill only the lower energy level associated with si
quantization. It should be noted that the application of
convenient model of point impurity centers in Ref. 11 and
this publication indicates that the impurity potential is r
garded as strongly screened. Otherwise, the obtained re
can be used only for a qualitative comparison with expe
mental data.

In order to calculate the dynamic conductivity tensor
a two-dimensional electron gas in a magnetic field, we s
use the Kubo formula which makes it possible to express
conductivity tensor in the form of the product of two on
electron Green’s functions averaged over the configurat
of impurity atoms.17 Neglecting apical corrections and usin
the spectral representation of the average one-elec
Green’s function, we obtain a relation between the cond
tivity tensor and the spectral densityr of this function. The
latter, being a function of the electron energy«, has
d-shaped peaks at local levels. In the approximation of i
lated impurity atoms, the contribution of local levels to t
spectral density of Green’s function has the form

drs~k,«!5uv0uni~«2«ks!
22d@12v0Fs~«!#. ~1!

Herek ands are the orbital and spin quantum numbers of
electron in a magnetic field,«ks the electron energy in the
stateuks&, v0 the constant characterizing the scattering p
tential intensity,ni the number density of impurity atoms
andFs(«) the function appearing in the Lifshits equation1,2

12v0Fs~«!50 ~2!

for local levels.
The contribution of local levels to the high-frequen

conductivity tensor is connected with function~1! through
the relation
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ab vS (
kk8s 2`

kk8

3Vk8k
b

~q!drs~k8,«!@ f ~«!2 f ~«ks!#@~«

2«ks1\v1 io !211~«2«ks2\v

2 io !21#, ~3!

whereq andv are the wave vector and frequency,e is the
electron charge,f the Fermi function,Vkk8(q) are the matrix
elements of the operator

V~q!5
1

2
~veiq•r1eiq•rv!

~r is the radius vector andv the operator of electron velocity
in a magnetic field! in the Landau basis,S is the sample area
a,b5x,y, and electrons move in the planez50. Relation
~3! is obtained by the method used in Ref. 18 in the thr
dimensional case. In the approximation used by us, it m
be supplemented with the well-known contribution14–16,19

calculated without taking into account the impurity states
electrons.

Using formula ~1! for the d-function of a complex
argument,4 we obtain from~3!

dsxx~q,v!5
ie2vc

2ni
2p l 2v (

knn8s
r ks~«n8s2«ks

l !22

3@ f ~«ks
l !2 f ~«ns!#@~«ks

l 2«ns1\v

1 io !21

1~«ks
l 2«ns2\v2 io !21#Qn8n~q!. ~4!

Herevc is the cyclotron frequency,l the magnetic length,
«ns and«ks

l are the positions of thenth Landau level and the
kth local energy level of an electron with the spin compon
s,

r ks52FdFs~«!

d« U
«5«

ks
l G21

is the residue of the amplitude of electron scattering by
impurity center relative to the pole«ks

l ;

Qn8n~q!5F ddq wn8n~q!G2,
wn8n5~n!/n8! !1/2j1/2~n82n! expS 2

j

2DLnn82n~j!;

Ln
n82n are generalized Legendre polynomia

j5\q2/(2mvc), m is the effective mass of the electron, an
the wave vectorq is parallel to they-axis. The componen
dsyy can be obtained from~4! by replacing Qn8n by
(n82n)2wn8n

2 (q)/q2.
The high-frequency Hall conductivitydsyx differs from

~4! in that it contains, instead ofQn8n , the factor

2
i

2q
~n82n!

d

dq
@wn8n~q!#2,
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and the term («ks
l 2 «ns2 \v 2 io)21 in the brackets appears
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with the minus sign. While deriving formula~4!, we used
only the fact of existence of local levels. Their characterist
«ks
l andr ks are arbitrary. These parameters can be calcula
on the basis of a definite model of scattering potential
from a comparison of the theory with the experiment.

If we disregard spatial dispersion (q50) in formula~4!,
the latter assumes the form

dsxx~v!5dsyy~v!5
ie2\2nl
4pm2l 4v (

kns
r ks

3@ f ~«ks
l !2 f ~«ns!#@~«k

l 2«n1\v1 io !21

1~«k
l 2«n2\v2 io !21#@n~«n212«k

l !22

1~n11!~«n112«k
l !22#, ~5!

where«n and «k
l are the positions of thenth Landau level

and thekth local level without spin splitting. The compone
dsxy(v) can be obtained from~5! by multiplication by2 i
and by the sign reversal in the second term in the brack
Expressions~4! and ~5! have resonant singularities at fre
quencies corresponding to electron transitions between
Landau levels and local levels, which are induced by an e
tromagnetic field. The resonant frequencies are given by

vkn5u«k
l 2«nu/\. ~6!

The real component of~5! determining the absorption o
electromagnetic field energy by electrons has peaks~which
have thed-shape in the given approximation! at resonant
frequencies. The peaks are blurred when the finite width
the Landau levels and local levels is taken into account. F
ure 1 shows the real~curve1! and imaginary~curve2! parts
of the dimensionless circular component of conductivity

dC5ds1

p\3v1
2~11v1 /vc!

2

2e2rni
. ~7!

as a function ofx5v/v121 in the vicinity of the frequency
v1 5u v0u/(2p\ l 2) corresponding to electron transitions b
tween the Landau leveln51 and a local level split from it.
Here ds15dsxx1 idsyx . The calculations were made fo
the case of short-range attractive impurity poten
(v0,0) and forg/v150.1, where\g is the total width of
the energy levels participating in resonant transitions. T
ratio of the maximum value of the real componentds1 and
the static conductivitye2ne /(mn) ~ne is the number density
of electrons andn the collision frequency associated wi
scattering by impurities! is given by

A54
ni
ne

v1

vc

n

g S 11
v1

vc
D 22

. ~8!

Using the values of the parametersni /ne50.5,
v1 /vc50.1, andn5g typical of semimetals and semicon
ducting structures with a degenerate two-dimensional e
tron gas,14 we obtainA517% from ~8!. It should be noted
that in the two-dimensional case, the resonant freque
v1 is proportional to the magnetic field strengthH. In the
three-dimensional conductor, the frequency is proportiona
H2.7,8
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In zero magnetic field and in the case when short-ra
impurity atoms attract electrons, one local level« l splits
from the bottom of the band. In this case, the sum overn in
~5! can be replaced by an integral. As a result,dsxy50, and
formula ~5! gives

Re ds~v!5
e2rni
\4v3 U~« l1\v!~« l1\v!

3@ f ~« l !

2 f ~« l1\v!#1~v→2v!, ~9!

Im ds~v!5
e2rni

p\4v3 ~« l1\v!lnU«F2« l2\v

«F2« l
U

2~v→2v!, ~10!

where«F is the Fermi energy,Q the Heaviside function, and
(v→2v) indicates the term obtained from the previo
term by reversing the sign of frequency. Formula~10! was
derived at zero temperature (T50). As expected, the rea
conductivity component~9! is an even function of frequency
while the imaginary component~10! is odd. It can be seen
from ~9! that the real conductivity component has a thresh
at the frequencyvg5u« l u/\. In the vicinity of the threshold,
Reds;v2vg . It increases with frequency, attains its pe
value, and then decreases according to the lawv22. For
T→0, the threshold frequency is shifted to the po
vg1«F /\ in accordance with the Pauli exclusion principl
At this point, the imaginary conductivity component~10! has
a logarithmic singularity.

FIG. 1. Frequency dependence of the real~curve1! and imaginary~curve2!
components of conductivity~7! near the resonance (x5v/v121).
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In order to estimate the contribution~9!, we approximate
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the density of states of two-dimensional electrons unp
turbed by impurities by a rectangular step of widthw and
heightm/(2p\2). In this case, the functionF appearing in
Eq. ~2! is given by

F~«!52
m

2p\2 lnUw2«

« U.
In the case of attractive impurity potential and f
uv0u!\2/m, the solution of Eq.~2! has the form

« l52w expS 2
2p\2

muv0u
D

in accordance with the well-known result.4 In this case, we
have

r52p\2u« l u/m.

We use the following values of parameters:m510231 kg,
u« l u50.01 eV, «F /\vg50.5, and\vg /T510, which are
typical of semiconducting structures with a two-dimensio
electron gas.14 In this case, the ratio of the maximum valu
of ~9! to the static conductivity is equal to 4.8(ni /ne)
3(n/vg). If ni /ne50.5 andn/vg50.1, this ratio is equal to
24%.

It was mentioned above that the impurity levels of
two-dimensional electron gas in a magnetic field are loc
They split from degenerate Landau levels in the downw
direction (v0,0) or upwards (v0.0) depending on the type
of impurity potential. The electron energy spectrum can
studied taking into account their impurity states by analyz
high-frequency properties. The contribution of these state
the high-frequency conductivity calculated here leads to n
row resonant peaks of high-frequency parameters determ
by the frequencies~6! of electron transitions between th
Landau levels and local levels. In zero magnetic field, wh
the electron energy spectrum contains only one local leve
the bottom of the band, these peaks merge into a single b
peak. It lies above the threshold frequency of activation
the local level.

The results obtained here can be used for studying
absorption of high-frequency radiation incident at right an
to the inversion layer at the boundary between a semic
ductor and an insulator. The absorption of radiation polari
in the plane of the layer is proportional to the real compon
of conductivity ~5!. The inversionn-layer at the boundary
between Si and SiO2 is studied most thoroughly.

14 The sim-
plest model of such a system is a plane occupied by elect
and immersed in a three-dimensional insulator. The cond
58 Low Temp. Phys. 23 (1), January 1997
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absence of impurity states of electrons was calculated in R
19. It follows from the equations presented in this public
tion and formula~5! that the absorption coefficient as a fun
tion of frequency has peaks at the cyclotron frequency an
frequencies~6!. The peculiarities of conductivity consider
ably affect the properties of plasmons and magnetoplasm
in inversion layers also. This will apparently lead to the d
formation of the magnetoplasmon spectrum in the vicinity
resonant frequencies~6!.

The authors are grateful to V. G. Peschanskii for help
advice and to N. A. Ermolaeva for her assistance in num
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1. INTRODUCTION 2. THE THEORY IN THE GENERAL CASE
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Many problems in the theory of elementary excitatio
in solids can be reduced to the following: self-adjoint ope
tors H andH0 such thatH5H01V, whereV is a finite-
dimensional~local, degenerate! perturbation, are defined in
separable Hilbert spaceG. Finite dimensionality of the op-
erator V indicates that there exists an orthonormal ba
$ei% i50

` of the spaceG, such that for a certain numberr the
conditionVei50 is satisfied for alli>r . The spectral pa-
rameters~the spectrum, eigenvectors, and spectral functio!
of the operatorH0 are known. The theory of finite
dimensional perturbations aims at determining the spec
characteristics of the operatorH as well as the quantitie
Tr$ f (H)2 f (H0)% which are variations of thermodynam
functions associated with the perturbationV. Since the value
of V is not necessarily small, the small-perturbation the
based on the power expansion inV is inapplicable here.

Under certain assumptions concerning the models,
above-mentioned physical problems include the determ
tion of the influence of a point defect on the spectrum, eig
functions, and thermodynamics of the crystal1–201!

as well as
the problems on linear and planar defects in the crystal.3 The
fact that this class of problems includes the determination
thermodynamic functions of a solid solution1,21,22 and the
calculation of the distribution function for squares of vibr
tional frequency of a perfect lattice24 is less obvious. Natu-
rally, this list does not exhaust all possible applications of
finite-dimensional perturbation theory. The fundamentals
this theory were developed by I. M. Lifshits in h
publications25–29 where no assumptions concerning som
special properties of the operatorsH andH0 were made. It
will be proved below that the further evolution of the theo
has become possible on the basis of the method of Ja
matrices~J-matrix technique!11–13,19,20,24,30–35taking into ac-
count the special form of the matrix of the operatorH.

In this paper, we shall review the theory of finite
dimensional perturbations and acquaint the reader with s
new results obtained in this field.
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This chapter is based on publications by I. M
Lifshits25–29and M. G. Krein.36

2.1. Operators with discrete spectra

At the beginning, we assume that the operatorH0 acting
in theN-dimensional space~N is finite orN5`! has only a
discrete spectrum$l i% i50

N21 and the corresponding normalize
eigenvectors$c i% i50

N21. Let us consider the equation fo
eigenvectors of the operatorH5H01V:

~H01V2zI!f50

or

f52R~z!Vf, R~z!5~H02zI!21. ~1!

SinceVei50, i>r , the condition det(I1RV)50 of solv-
ability of system~1! has an especially simple form when th
matrix I1RV and the vectorf are presented in the bas
$ei% i50

N21, namely,

D~z![det@ I1R~z!V#5ud l j1~R~z!Vej ,el !u0
r2150, ~2!

@R~z!Vej ,el #5(
i

(
k50

r21
~ek ,c i !~c i ,el !

l i2z
Vk j ,

Vkj5~Vej ,ek!. ~3!

The solutionszq of Eq. ~2! are eigenvalues of the opera
tor H. It follows from Eq. ~1!, presented in the basi
$ei% i50

N21, that the corresponding eigenvectors have the fo

fq52(
i

(
j50

r21

aj(
k50

r21
~ek ,c i !

l i2zq
Vk jc i , ~4!

whereaj are the solutions of the system of equations

(
j50

r21

@ I1R~zq!V# l j aj50, l50,...,r21.

It should be noted that Eqs.~2! and~4! can be simplified
if nonzero eigenvalues and the corresponding normali
eigenvectors$h i% i50

r021 of the operatorV are known. Then we
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can putei5h i( i50,...,r 021), andVkj5Vkkdk j in this case.
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Further, the numberr has the minimum value in this case~it
is equal to the rankr 0 of the operatorV!.

If all the eigenvaluesl i are simple, the meromorphi
function D(z) can be decomposed in partial fractions, a
Eq. ~2! assumes the form

11(
i

ci
l i2z

50. ~5!

It was shown by Lifshits26 that the coefficientsci are defined
as follows:

ci5V~ i !1 (
i0Þ i

V~ i ,i 0!

l i0
2l i

1...

1
1

~r21!! (
i0Þ i ,...,i r22Þ i

V~ i ,i 0 ,...,i r22!

~l i0
2l i !...~l i r22

2l i !
,

V~ i 1 ,...,i n!5UVi1i1 ••• Vi1i n

A A

Vini1 ••• Vini n

U ,
where Vik5~Vck ,c i !.

Equation~5! can be used for a qualitative analysis of t
shifts in the energy levels under the action of
perturbation.26 However, it is easier to use the Couran
Fischer theorem. The following statement is a simple co
lary of this theorem37,38:

Lemma 1. Let
~a! the eigenvalues of the operatorH0 be ordered as

follows: l0>l1>...>lN21 ;
~b! the rank of the matrixV is equal tor 0 , the number of

negative eigenvalues isn, and the number of positive eigen
values isp5r 02n;

~c! z0>z1>...>zN21 are eigenvalues of the operat
H.

Then the interval (ls11 ,ls) contains not more thanr 0
eigenvalueszi , the interval (2`,lN21) not more thann,
and the interval (l0 ,`) not more thanp such eigenvalues
Also, l i2p>zi>l i1n ~we formally put herel j5` for
j,0 andl j52` for j.N21!. For example, if a certain
level lm is x-fold degenerate andx.r 0 , lm is also an ei-
genvalue of the operatorH5H01V of multiplicity not lower
thanx2r 0 .

Taking into account the continuity of the dependence
eigenvalues and eigenvectors of the operatorH on eigenval-
ues of the operatorH0 and introducing arbitrarily small cor
rections to the eigenvaluesl i , we can also use Eqs.~2! and
~4! in the case when the eigenvaluez of the operatorH
coincides withlm for a certainm. However, it is expedien
to derive an explicit formula for this case. We write th
equation (H02zI)f52Vf in the form

~H02zI!f852Vf, ~6!

wheref5f81hm , andhm is the orthogonal projection o
the vectorf onto the eigenspaceGm of the operatorH0

corresponding to the eigenvaluez5lm . Equation~6! is valid
since, by definition, (H02zI)hm50. Thus, (H02zI) in Eq.

60 Low Temp. Phys. 23 (1), January 1997
l-

f

where the resolventR(z)5(H02zI) is defined correctly.
Using the same arguments for~6! as in the derivation of
formulas~2! and ~4! from ~1!, we obtain

f5hm2 (
iÞm

(
j50

r21

aj(
k50

r21
~ek ,c i !

l i2lm
Vk jc i , ~7!

whereaj are solutions of the system of equations

al1(
j50

r21

aj (
iÞm

(
k50

r21
~ek ,c i !~c i ,el !

l i2lm
Vk j5~hm ,el !,

l50,...,r21. ~8!

Among other things, Lemma 1 states that, if the sp
trum of the operatorH is contained in a certain interval, thi
operator can have not more thanr 0 eigenvalues outside thi
interval. The upper and lower boundaries of these eigen
ues can be obtained conveniently by using the Gerschg
theorem~see, for example, Ref. 37! formulated for the case
of a Hermitian matrix: each eigenvalue of theN3N matrix
H lies at least in one of the intervals

uHii2zu< (
k~kÞ i !

uHiku, i50,...,N21,

whereHik are the matrix elements ofH in an arbitrary basis,
and summation is carried out over all the elements of
i th row, excludingHii .

2.2. Operators with discrete and continuous spectra

2.2.1. Limiting transition to continuous spectrum. Shift
function

In many physical models of systems with a large num
M of particles, a fraction of eigenvalues of the Hamiltoni
are ‘‘condensed’’ in one or several intervals of continuo
spectrum forM→`. ~The remaining ‘‘isolated’’ eigenvalues
form a discrete spectrum.! Hence it is important to generaliz
the above formulas to the case when a fraction of the eig
valuesl i is ‘‘condensed’’ into a continuous spectrum. Fo
lowing Lifshits,27 we introduce a set of self-adjoint operato
Ha possessing only a discrete spectrum and depending
the parametera. Let lp

(a) be their eigenvaluesl0
(a) > l1

(a)

> ...> lN21
(a) , andcp

(a)(x) the normalized eigenfunctions de
pending on the argumentx. By definition, we assume tha
the following conditions are satisfied for a part of the spe
trum of the operatorHa ~this part is called the quasi
continuous spectrum!.

~1! There exists a piecewise continuous functionl(u) inde-
pendent ofa and having a piecewise continuous derivativ
such that

lp
~a![l~a!~up!5l~up!1O~a!, up5pa,

lp
~a!2lp21

~a! 5aFdl

duU
u5up

1O~a!G .
~2! There exists a set of functionsxu(x) such that the fol-
lowing relations are observed in a certain range ofx:
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xp
~a!~x!5xup~x!1O~a!, xp

~a!5cp
~a!/Aa,
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where the prime indicates that the integral is taken in the
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xp
~a!2xp21

~a! 5aF ]xu

]u U
u5up

1O~a!G .
In the limit a→0, the quasi-continuous spectrum

transformed into a continuous spectrum. For systems
many particles,a;1/M .

In order to generalize the theory presented in Sec. 2.
the case of operators with a continuous spectrum, we app
to the operatorHa5H0a1V and then proceed to the lim
a→0.

Since the perturbationV is finite-dimensional, it follows
from Lemma 1 that the continuous spectrum of the limiti
operatorH5H01V5Ha→0 coincides with the continuou
spectrum of the unperturbed limiting operatorH05H0,a→0 .
In this case, the ‘‘action’’ of the operatorV can ‘‘split’’ not
more thanr 0 discrete eigenvalues from an interval of th
continuous spectrum.

We can now write formulas~2!–~4! for Ha and proceed
to the limit a→0. This transition affects only the sums ov
i . For formulas~7! and~8!, the limit is obvious; for example

(
iÞm

~ek ,c i !

l i2lm
c i

is replaced by

E ~ek ,xu!

l~u!2lm
xudu1 (

lÞm

~ek ,c i !

l i2lm
c i ,

where the sum is taken over the discrete spectrum of
operatorHa→0 , while the integral takes over the continuo
spectrum~in the sense of the Cauchy principal value iflm

belongs to the continuous spectrum ofHa→0!. Similarly, if
z belongs to the discrete spectrum of the limiting opera
Ha→0 , formulas~3! and ~4! are generalized: the sums ov
i are replaced by integrals over the continuous spectrum
the sums over the discrete spectrum. In order to procee
the limit in ~3! and ~4! in the case whenz belongs to the
continuous spectrum, we introduce the shift functionj(l) on
the continuous spectrum of the operatorHa→0 according to
the formulas2!

zp
~a![z~a!~up!5l~a!~up!1a

dl

duU
u5up

j~a!@l~up!#,

j~a!@l~up!#5j@l~up!#1O~a!, ~9!

under the condition thatdl/duÞ 0. Herezp
(a) are eigenvalues

of theoperatorHa(z0
(a) > z1

(a) > ...> zN21
(a) ).

According to Lifshits, the following relation holds fo
the sum over the quasi-continuous spectrum:

(
p

a f ~up!

lp2zq
5E 8 f ~u!du

l~u!2l~uq!

2
p f ~uq!

dl

duU
u5uq

cot pj@l~uq!#1O~a!, ~10!
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Since formula~5! is valid in the case of a simple spec

trum, we have

tanpj@l~u!#5
pc~u!

dl

du S 11*8
c~v !dv

l~v !2l~u! D
,

c~u!5V~u!1E 8 V~u,u0!du0
l~u0!2l~u!

1...1
1

~r21!! E 8•••E 8

3
V~u,u0 ,...,ur22!du0 ...dur22

@l~u0!2l~u!#...@l~ur22!2l~u!#
,

V~u1 ,...,un!5uVuiuk
u1
n , Vuiuk

5~Vxuk
,xui

!

~for simplicity, we assume thatH has only a continuous
spectrum!.

Substituting~10! into ~4!, we obtain the formulas for the
eigenvectors of the simple quasi-continuous spectrum, wh
are expressed in terms of the shift function. Some of
relations for eigenvectors used in the subsequent analysi
presented in Refs. 27 and 28.

The role of the shift function is that the changes in th
modynamic functions~the traces Tr$ f (H01V)2 f (H0)%) as-
sociated with the perturbationV can be expressed in terms o
this function.29 Indeed,

Tr$ f ~H0a1V!2 f ~H0a!%

5(
k

$ f ~zk
~a!!2 f ~l

~a!
!%5(

k
$ f @lk

~a!1j~l~uk!#

3@lk
~a!2lk21

~a! !1o~a!#2 f ~lk
~a!!%1S

5(
k H d fdlU

l5l
k
~a!

j@l~uk!#~lk
~a!2lk21

~a! !

1o~a!J 1S,

whereS is the sum over the indicesk for which zk
(a) or

lk
(a) do not belong to the quasi-continuous spectrum.
In the limit a→0, we have

Tr$ f ~H01V!2 f ~H0!%5E d f

dl
j~l!dl1(

l
@ f ~zi !

2 f ~l i !#, ~11!

where the integral is taken over the continuous spectrumzi
is the discrete eigenvalue ofH, while l i is the discrete ei-
genvalue ofH0 or the boundary of the continuous spectru
The numberszi and l i are determined from the conditio
thatzi

(a) , l i
(a) , i 5 0,...,N 2 1 are arranged in a decreasin

order. However, the sum in~11! should not necessarily b
calculated in this way~see the remark following formula
~19!!.
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2.2.2. Calculation of the density of states and spectral
functions of Hamiltonian
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The density of statesh(l) in the continuous spectrum o
the operatorH can be defined as follows:

h~l!5 lim
N→`

1

N (
i50

N21

r̃ i i ~l!, r̃ i j ~l!5
~dElejei !

dl
, ~12!

whereEl is the unit expansion of the operator

H5E ldEl ;

and r̃ i j is the spectral function corresponding to the vect
ei andej .

Let us consider a crystal lattice with a low concentrati
of identical local defects, such that the defects can be
garded as independent. Let us suppose that the Hamilto
H0 describes a perfect lattice, and the Hamiltoni
H5H01V describes the lattice with asingledefect.

We calculate the density of statesh(l) in the lattice
with defects. Substituting into formula~11! the function

ux~l!5 H0,1, l.x,
l<x,

wherex is the real number from the continuous spectru
Lifshits29 found that

Tr~Ex2Ex
0!52j~x!, ~13!

whereEx
0 andEx are unit expansions of the operatorsH0 and

H respectively. Assuming that the concentration of defect
c, we obtain from~13!

h~x!5h0~x!2cj8~x!, ~14!

whereh(x) andh0(x) are the densities of states in a latti
with defects and in a perfect lattice, respectively.

In problems such as the determination of the Ram
spectrum~see, for example, Ref. 39!, it is sometimes impor-
tant to know the spectral functionsr̃ i j (l) of the operator
H. Since

R̃ml~z!5E
2`

` r̃ml~l!dl

l2z
,

whereR̃(z)5(H2zI)21, it follows from Ref. 40 that

r̃ml~x!5
1

p
Im lim

y↓0
R̃ml~x1 iy !. ~15!

almost everywhere on the real axis. In order to determine
matrix elements R̃ml(z), we use the Dyson equatio
R̃5R2RVR̃ which can easily be verified by pos
multiplying it by H2zI. The Dyson equation leads to th
relation

R̃5~ I1RV!21R5R2RV~ I1RV!21R, ~16!

which can be used for determiningR̃ml(z).

2.2.3. Calculation of shift functions

According to Krein,36 the value ofj(l) is determined
unambiguously by formula~11! from H0 and V to within
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the operatorsH0 andH should not necessarily be simple
Consequently, formulas~11! can be regarded as a definitio
of the functionj(l), which is more general than~9!. ~For-
mulas~13! and~14! obviously remain valid.! By substituting
the function *(l)51/(l2z) and calculating
Tr$R̃(z)2R(z)%, Krein found that

j~x!5
1

p
lim
y↓0

argD~x1 iy !, ~17!

wherex andy are real numbers andD(z) is defined in anal-
ogy with ~2!:

D~z!5ud l j1@R~z!Vej ,el #u0
r21. ~18!

If, in addition, t i( i51,...,r 0) are eigenvalues of the op
eratorV, from which the number of positive values isp and
the number of negative values isn5r 02p, we have

2n<j~x!<p. ~19!

~It should be noted that formulas~17! and ~19! remain
valid if we expand the range of the shift function to the ent
set of real numbers by putting

Tr$ f ~H01V!2 f ~H0!%5E
2`

` d f

dl
j~l!dl.

In this case,*2`
` uj(l)udl < ( i51

r0 ut i u.)
The branch of the argument in~17! can be easily estab

lished by substitutingj(l) into ~11!, where we chose for
f (l) a certain trial function. For example, forf (l)5l we
have

Tr V5E j~l!dl1(
i

~zi2l i !. ~20!

3. THE THEORY IN THE CASE OF BLOCK-TRIDIAGONAL
AND TRIDIAGONAL MATRICES

3.1. Method of Jacobi matrices

The finite-dimensional perturbation theory was dev
oped and found new applications on the basis of the met
of Jacobi matrices30 ~see also Refs. 11–13, 19, 20, 24, 31
35!. In this method, special type of matrices is consider
which allows us to obtain simpler formulas forD(z) and for
matrix elements of the resolventR(z) than those presented i
the previous section.

The method reduces the problem to an analysis of a
of tridiagonal~Jacobi, orJ-! matrices of the form

J5S a0 b0 0

b0 a1 b1

b1 a2 b2

0 � � �

D
b1Þ0, i50,1,... ~21!

with real matrix elements, which allows us to use the we
developed theory ofJ-matrices and the theory of orthogon
polynomial which is closely related to it.
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For the further analysis, we will require some basic con-
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cepts from the theory ofJ-matrices~see, for example, Ref
41!.

The first- and second-degree polynomials@pi
J(z) and

qi
J(z) respectively# associated with theJ-matrix of the type

~21! are defined as follows:

p21
J 50; p0

J51;

pi11
J 52bi

21~~ai2z!pi
J1bi21pi21

J !, i50,1,...

q0
J50; q1

J5b0
21;

qi11
J 52bi

21~~ai2z!qi
J1bi21qi21

J !, i51,2,... . ~22!

The spectrum of the truncatedn3n Jacobi matrixJ(n) ~i.e.,
Jik
(n) 5 d ikai 1 d i11,kbi 1 d i21,kbk , i ,k5 0,1,...,n2 1! coin-
cides with the roots$zk

(n)%k51
n of the polynomialpn

J(z). The
evaluation of these roots is simplified by the fact that
roots of the polynomialpn

J(z) are simple, while the roots o
two adjacent polynomialpn

J(z) andpi11
J (z)( i51,2,...) alter-

nate. The~non-normalized! eigenvectorx of the matrixJ(n)

corresponding to the eigenvaluezk
(n) has the componentsxj

5pj (zk
(n)), j50,...,n21.

If the matrix of the operator in the orthonormal bas
$ei% i50

` has the form ~21!, the equality ei5pi
J(J)e0 ,

i50,1,..., is valid. Consequently, we can write

d i j5~ei ,ej !5@pi
J~J!pj

J~J!e0 ,e0#

5E
2`

`

pi
J~x!pj

J~x!rJ~x!dx, ~23!

whererJ(x) 5 (dExe0 ,e0)/dx is the spectral density of th
matrix J, andEx is the unit expansion of the matrixJ.

Equality ~23! indicates that the polynomials$pi
J(x)% i50

`

form an orthonormal system relative to the weight functi
~or weight! rJ(x). ~It should be noted that the properties
relevant polynomials are studied in detail for some wei
functions. This refers to Laguerre, Jacobi, Hermite, and o
polynomials; see, for example Ref. 42!.

The range of applicability of theJ-matrix techniques can
be divided intotwo classesdepending on the possibility o
obtaining exact and approximate solutions of the problem

~1! The methods gives exact solutions for a number of pr
lems for a linear chain~1D system! with interaction between
nearest neighbors. We are speaking of problems in the th
of finite-dimensional perturbations, in which the matrix
the HamiltonianH has the well-known tridiagonal form
H5L1V, whereL is theJ-matrix corresponding to polyno
mials with a known weight andV the finite-dimensional ma
trix. In the case of a homogeneous chain, the matricesL are
identical~i.e.,ai5a, bi5b, i50,1,...!, and hence the repre
sentationL 5 pJCh1 qI, p 5 4b, q 5 a 2 2b, whereJCh i i
5 1/2, JCh i i11 5 1/4, i 5 0,1,..., isvalid. The polynomials
pi
JCh(x) are the Chebyshev polynomials of the second ki

which are orthogonal on the interval@0,1#. Their weight
function is well known:rCh(l) 5 (8/p)Al(12l) if l
P @0,1# andrCh(l)50 in the opposite case. Consequent
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r~l!5
1

uru
rChS l2q

p D . ~24!

~2! The method provides only approximate solutions for
much wider class of problems for 1D, 2D, and 3D systems
since the matrix of any Hamiltonian can be reduced to a
of tridiagonal matrices by using the Lanczos algorithm~see,
for example, Refs. 34 and 43!. The theoretical basis of this
algorithm will be given below.

We choose a certain vectorw ~which will be henceforth
referred to as a generating vector! and consider the subspac
Kw invariant to the operatorH and stretched on the vector
w,Hw,H2w,... . Orthogonalization of the sequence of the
vectors gives a basis in which the matrixH is tridiagonal.

The Lanczos algorithm involves the simultaneous co
struction of this basis and the matrix of the operatorH in this
basis. Namely, we put

w05w/A~w,w!;

a05~Hw0 ,w0!; w185Hw02a0w0 ;

b05A~w18 ,w18!; w15w18/b0 ;

a15~Hw1 ,w1!; w285Hw12a1w12b0w0 ;

b15A~w28 ,w28!; w22w28/b1 , etc.

At the i th step, we have

ai5~Hw i ,w i !; w i118 5Hw i2aiw i2bi21w i21 ;

bi5A~w i118 ,w i118 !; w i115w i118 /bi .

Thus, we obtain the matrix~21! in the basis$w i% i50
` of the

spaceKw .
In actual practice, we calculate only a finite number

elements of theJ-matrix. Using various properties o
J-matrices, we can obtain approximate expressions for
crete energy levels and the quantities (f (H)w,w), where
f (x) is a certain function, even at this stage~we shall not
consider this question here; see Refs. 30, 34, and 41!. If,
however, the asymptotic behavior of the elementsHik for
i ,k→` of the matrixH can be determined, it becomes po
sible to apply the finite-dimensional perturbation theory
operators with a continuous spectrum. This theory coinci
with the theory applied in the class 1 of problems describ
above. Indeed, if the asymptotic behavior of the matrix e
mentsHik for i ,k→` coincides with the behavior of the
matrix elements of theJ-matrixL corresponding to the well-
known system of orthogonal polynomials, we have the r
resentationH'L1V, where V is the finite-dimensional
tridiagonal matrix.~It should be noted that we can extend t
range of applicability of the method by considerin
J-matrices in the Hilbert space of operators and using
Liouville equation.44–47! It should be emphasized that th
spectrum ofJ-matrix issimple. This means that, if the initia
system has a degenerate spectrum, a complete descripti
its properties can be obtained by choosing several genera
vectors~whose number must be not smaller than the sp
trum degeneracy! and consider a set ofJ-matrices.
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3.2. Generalization of the method of J -matrices
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The method of Jacobi matrices can be generalized19,20 to
the case of a special class of Hermite matrices of the fo

H5S A0 B0 0

B0* A1 B1

B1* A2 B2

0 � � �

D , ~25!

whereAi ,Bi aren3n matrices with real matrix elements fo
i50,1,..., andinverse matricesBi

21 exist.
Such a generalized method has the following potenti

ties.

~1! It provides an exact solution for problems with a line
chain in which atoms interact withseveral~to be more pre-
cise,n! ‘‘spheres’’ of its nearest neighbors, which are simil
to problems of class 1 of the method of Jacobi matrices.
are speaking of the problems in which the matrixH of the
Hamiltonian is (2n11)-diagonal (H5(Hjk), where
Hjk50 if u j2ku.n! and can be presented in the for
H5Tn(L)1V, whereTn(x) is then-degree polynomials and
L is the J-matrix corresponding to polynomials with
known weight, and the matrixV is finite-dimensional. For
example, in the case of a homogeneous chain with a p
defect, which is interesting from the physical point of vie
the rows of the matrixH are identical~i.e., Hj j 5 a0 ;
Hj , j115 Hj , j215 a1 ;Hj , j1n5 Hj , j2n5 an , where thenum-
bers$ai% i50

n do not depend on the indexj ! starting from the
r th row. It can easily be seen that such a Hamiltonian can
represented in the formH5Tn(JCh)1V.

Obviously, the (2n11)-diagonal matrix has a block
tridiagonal structure~25! with blocks of dimensionalityn.3!

~2! It also provides an approximate solution for a wider cla
of problems for 1D, 2D, and 3D systems since forn.1 we
can use an algorithm, similar to the Lanczos algorithm a
involving n generating orthonormal vectors, and reduce
matrix to the (2n11)-diagonal form. Such a reduction ca
be useful when the initial system has a degenerate spec
~since a block-tridiagonal matrix with blocks of dimensio
ality n canhave ann-fold degenerate spectrum!. A further
analogy between the cases withn51 andn.1 is clear, but
its technical realization is not trivial: the main problem is
estimate the asymptotic behavior of matrix elements. To
knowledge, no publications in this field exist.

3.3. Calculation of spectrum, spectral functions of the
Hamiltonian, and shift functions

In accordance with the above arguments, let us write
formulas for calculating the spectrum, spectral functions
the operatorH5H01V, and the shift functions for the cas
when H and H0 are block-tridiagonal matrice
@H05Tn(L)1V#. Then the formulas for tridiagonal matr
ces are obtained as a special case.

Let L be a J-matrix with the spectral density
r(m),H5Tn(L)1V~Hi j50 if u i2 j u.n! the matrix of a
self-conjugate operator in the orthonormal basis$ei% i50

` of
the Hilbert space,Tn(x) the n-degree polynomial, andV a
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polynomialTn(x) are real-valued.
For subsequent analysis, we shall need the matrix po

nomialsPs
M(z) andQs

M(z) of the first and second kind, re-
spectively, associated with the block-tridiagonal matrixM of
the form~25!, which are known to be defined by the formu
las

P0
M5I , P1

M5B0
21~zI2A0!,

Pi11
M 52Bi

21@~Ai2zI!Pi
M1Bi21* Pi21

M #,

i51,2,...,

Q0
M50, Q1

M5B0
21,

Qi11
M 52Bi

21@~Ai2zI!Qi
M1Bi21* Qi21

M #,

i51,2,...,

where I is a unit n3n matrix. In particular, forn51 we
obtain formulas~22!.

We also introduce the vector matrices

PM~z!5S P0
M~z!

P1
M~z!

A
D , QM~z!5S Q0

M~z!

Q1
M~z!

A
D .

It was shown in Ref. 19 that determinant~18! for the
special case of the block-tridiagonal matri
H5H01V,H05Tn(L) under investigation has the form

D~z!5cD̃~z!, D̃~z!5uFi j ~z!u0
n21,

Fi j ~z!5d i j1 (
s50

@r /n#

(
k50

n21

@VPH~z!#sn1k, j

3H (
m50

n21

Ps,km
Tn~L !

~z!Rim~z!1Qs,ki
Tn~L !

~z!J ,
Rim~z!5E

2`

` pm
L ~m!pi

L~m!

Tn~m!2z
r~m!dm. ~26!

~V is multiplied by the vector composed of the matrix poly
nomialsPi

H(z) according to conventional rules for the calcu
lation of matrix products!, where the factorc is a real num-
ber depending onH0 andV.

It should be noted that in order to find the matrix ele
mentsRim(z) in ~26!, we must know the spectral density
r(m), while in formulas~3! and ~18! a large set of spectral
parameters~the spectrum and eigenfunctions of the unpe
turbed Hamiltonian! is used. In addition, in contrast to~18!,
the dimensionality of the determinant in~26! does not de-
pend on the dimensionality of ther3r perturbation matrix.
For example, in the case whenH andH0 areJ-matrices, we
have

D̃~z!511(
s50

r21

@VpH~z!#sH psL~z!E
2`

` r~m!dm

m2z

1qs
L~z!J . ~27!
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spectrum of the operatorH5Tn(L)1V is determined from
the conditionD̃(z)50, and the shift function from the for
mula

j~x!5
1

p
lim
y↓0

arg D̃~x1 iy !1d, ~28!

whered is an integer that can easily be determined toget
with the branch arg(z) by the formulas~19! and ~20!.

For example, in the case whenH andH05L are Jacobi
matrices, we can obtain from~27!

j~x!5
1

p
arctan

3
p(k~Vp

H~x!!kpk
L~x!r~x!

11(k~Vp
H~x!!kS pkL~x!E

2`

`8
r~m!~m2x!21dm1qk

L~x! D .
~29!

The eigenvector of the operatorH corresponding to the
point zk of the discrete spectrum isx5PH(zk)c. Here the
n-component vectorc is determined from the equatio
F(zk)c50.

For the spectral functions of the operatorH, we can
derive the following expression:

r̃ns1 i ,nt1 j~x!5 (
m,l50

n21

Ps,im
H ~x!Pt, j l

H ~x!r̃ml~x!, ~30!

where

r̃ml~x!5
1

p
Im lim

y↓0
R̃ml~x1 iy !, 0<m,l<n21

and the matrix elements of the resolventR̃(z)5(H2zI)21

are defined as follows:

R̃ml~z!5
1

D̃~z!
(
j

D̃jm~z!FRjl ~z!

2(
s,i

@VQH~z!#ns1 i ,l H(
k

Ps,ik
Tn~L !

~z!Rjk~z!

1Qs,i j
Tn~L !

~z!J G , ~31!

where D̃jm(z) is the cofactor of the elementF jm(z). The
summation over the indicesi , j ,k is carried out between 0
andn21.

In the case whenH andH05L areJ-matrices, we can
obtain the following expression for the spectral dens
r̃00(x)[r̃(x) from ~30!:

r̃~x!5
r~x!

G~x!
, G~x!5H 11(

k
~VpH!k~pk

LS1qk
L!J 2

1H(
k

~VpH!kpk
LJ 2r2p25u lim

y↓0
D̃~x1 iy !u2,

~32!
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S~x!5E
2`

`8 r~m!

m2x
dm.

If, in addition, H05JCh, the following expression is
valid:

r̃~x!5
rCh~x!

(k50
2r21ckpk

H~x!
, ck5E

2`

`

rCh~x!pk
H~x!dx.

~33!

This expression was initially used in Ref. 24 for calculati
an approximate expression for the distribution functions
the squares of vibrational frequencies of a perfect cry
lattice. It should be noted that there is no need to evaluate
integral in~33!: as a matter of fact, according to the orthog
nality relations~23! for the polynomialspi

JCh(x),ck5d0 in
the expansion

pk
H~x!5(

i50

k

dipi
JCh~x!,

which can be constructed by comparing the coefficients
the powers of the variablex on both sides of the equality.

3.4. Calculations of spectral density of a periodic Jacobi
matrix

It was mentioned above more than once that matri
L with identical rows, which are associated with the Cheb
shev polynomials, play a significant role in physical pro
lems. In a certain sense, these matrices correspond to
tems of identical particles with identical interactions. In th
respect, some complex crystal lattices correspond to the
called periodic Jacobi matrices.~The Jacobi matrixLt of type
~21! is called a periodic matrix with a periodt if
ai5ai1tm ,bi5bi1tm ,i ,m50,1,... .! A simple example of
such a lattice is a linear chain of two different alternati
spinss ands, which is described by the Heisenberg Ham
tonian with the interaction between nearest neighbors,
contains a point spin defectx. Let us suppose that the spin o
the defect is at the site with index 0, and the spinss ands
are at the odd and even sites of the chain respectively.
denote byu0& the normalized state of the complete spin o
dering, which is defined by the formulasx0

2u0& 5 xu0&,
si
zu0& 5 su0& ands i11

z u0& 5 su0&, i 5 61,6 3,... . In thebasis
e0 5 x0

2u0&/A2x, ei 5 (si
2u0& 1 s2 i

2 u0&)/2As, ei11

5 (s i11
2 u0& 1 s2 i21

2 u0&)/2As, i 5 1,3,..., thematrix of the
Hamiltonian has the formH5L21V, whereV is a 232
matrix andL2 is a periodicJ-matrix with a period 2. A
similar representation of the operatorH can be obtained in
the basisgi 5 (si

2u0& 2 s2 i
2 u0&)/2As, gi11 5 (s i11

2 u0&
2 s2 i21

2 u0&)/2As, i 5 1,3,...supplementing$ei% i50
` to the

basis of a one-magnon space. Thus, in order to calculate
shift function and the spectrum of the Hamiltonian on t
basis of the formulas from Sec. 3.3, it remains for us
determine the spectral density of the matrixL2 .

The problem on a Bloch electron in an external magne
field also leads to the structure of a periodic tridiagonal m
trix ~see, for example, Refs. 50–55!.
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t-periodicJ-matrix Lt , after which the entire theory deve
oped in Sec. 3 can be applied to the matrixL5Lt .

For this purpose, we introduce a block-tridiagonal mat
Et of type ~25! with the following blocks of dimensionality
t3t:Ai50, Bi5I ,i50,1,... .

The following inequality holds:

St~Lt!5Et1V, ~34!

where St(x) 5 pt
Lt(x) 2 bt21qt21

Lt (x), and Vik50 for
i ,k>t21 ~the indices of matrix elements ar
i ,k,50,1,...).

The equality~34! can be derived from the results ob
tained in Refs. 56 and 57, but it is much more convenien
carry out its direct proof.

Let L be an infinite~in both directions! t-periodic tridi-
agonal matrix of a symmetric operator in the ba
$ei% i52`

` of a certain space with the matrix elements

~Lei ,ei1k!5d21kbi211d0kai1d1kbi ,

ai5ai1tm , bi5bi1tm , i50,1,...,t21,

m50,61,62,... .

We associate the matrixL with two systems of polyno-
mials pi(x) and qi(x) defined by the initial conditions
p2150, p051, q2151, q050 and by the same recurrenc
relationyi11 5 $(x2 ai)yi 2 bi21yi21%/bi , i 5 0,1,...~here
yi5pi ,i50,1,... oryi5qi ,i50,1,...).

We define the matrix E through the relations
Ei ,i1 j5Ei ,i2 j5d j t ,i , j50,61,62,... .

Lemma 2.

pt~L !1qt21~L !5E. ~35!

Proof of the lemma.Using the recurrence relations fo
the polynomialspi(x),qi(x) as well as the obvious equalit
Lei5bi21ei211aiei1biei11 , we find by induction that

pk~L !e05ek2qk~L !e21 , k50,1,... . ~36!

Consequently, we have

pt~L !e01qt21~L !e05et1w, ~37!

w52qt~L !e211qt21~L !e0 . ~38!

Substituting into~38! the expression forqt(L) in terms of
L, i.e.,qt21(L),qi22(L), obtained from the recurrence rela
tion and then applying the operatorL to the vectore21 , we
have

w5
bt22

bt21
~2qt21~L !e221qt22~L !e21!. ~39!

This is the first step in the transformation of the formula
w. The second step involves a similar operation
qt21(L) in ~39!. Continuing the process, at the (t21)th step
we obtain

w5
b0
bt21

~2q1~L !e2t1q0~L !e2t11!5e2t , ~40!

i.e.,

pt~L !e01qt21~L !e05et1e2t . ~41!
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pt(L)e212pt21(L)e05e2t21 which can be proved in anal
ogy with the derivation of the formula~40!, we obtain

~pt1qt21!ek5~pt1qt21!~pke01qke21!5pk~et1e2t!

1qk~pte211et212pt21e0!5pket

1qket211pke2t1qk~pte212pt21e0!

5et1k1pke2t1qke2t215ek111ek2t ,

~for brevity, we have omitted the argumentL of the polyno-
mials!, which completes the proof of the lemma.

Equality ~34! follows directly from Lemma 2 if we pre-
multiply and postmultiply relation~35! by the operatorW of
the orthoprojection onto the subspace stretched on the
tors $ei% i50

` and note that the equality
WLkW5(WLW)k1Vk , whereVkei50 for i>k21, holds
for any naturalk.

Since the matrixE has a 2t-fold degenerate spectrum
filling the interval @22,2#, and the spectrum of the matri
L is not more than doubly degenerate, relation~35! leads to
the well-known fact the spectrum of the matrixL is formed
by a set oft intervals, which is the inverse image of th
segment@22,2# in the mappingSt(l)5n. Consequently,
the continuous spectrum of the matrixLt5WLW consists of
a set of the same intervals.

It follows from formula~34! that in addition to the con-
tinuous spectrum filling the interval@22,2#, the operator
St(Lt) can have up tot21 discrete eigenvalues~the multi-
plicity of each of these values corresponds to its degener!
which can be sought by using the method described in S
3.3. If l0 is one of such eigenvalues of multiplicitym, there
exists a basis$c i% i51

m of the corresponding eigen subspac
such that Ltc i5« ic i , where « i satisfies the equation
St(« i)5l0 . Thus, the matrixLt can have up tot21 discrete
eigenvalues.~It should be recalled that the spectrum of
J-matrix is simple.!

Since the spectral functions of the operatorEt corre-
sponding to the blockA0 are defined by the formula

r~0! jk~x!5d jk

1

4
rChS x12

4 D , j ,k50,1,...,t21, ~42!

we can write

lim
y↓0

Rjk~x1 iy !5 lim
y↓0

E
2`

` r~0! jk~l!dl

l2~x1 iy !

5d jkH 2
x

2
1 ipr~0! j j ~x!J ~43!

and the spectral functionsr̃ i j (x) of the operatorEt1V are
calculated by the formulas~30! and ~31! in which the block
dimensionality isn5t.

In order to determine the spectral density of the mat
Lt , we write Eq.~34! in the form

E
2`

`

lH (
i50

t21 dE« i

d« i
Ud« i
dl UJ dl5E

2`

`

l
dẼl

dl
dl, ~44!
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where l5St(« i), i50,1,...,t21, andEx and Ẽx are unit
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expansions of the operatorsLt andEt1V, respectively.
Relation~44! leads to

S E
2`

`

lH (
i50

t21 dE« i

d« i
Ud« i
dl UJ dle0 ,ej D

5S E
2`

`

l
dẼl

dl
dle0 ,ej D , j50,1,...,t21. ~45!

Introducing the notation

r8~« i !5r~« i !Ud«

dlU
«5« i

U ,
wherer(«) is the spectral density of the matrixLt , we ob-
tain from system~45!

(
i50

t21

pj
Lt~« i !r8~« i !5 r̃0 j~l!, j50,1,...,t21. ~46!

Hencer8(« i)5Di /D, whereD5upm
Lt(«n)u0

t21 , andDi is a
t3t determinant which can be obtained fromD by replacing
the i th column by the column composed by the quantit
r̃01(l). The expression forD can be simplified by expand
ing the polynomialspm

Lt(«n) in the recurrence formulas suc
cessively in each row of the determinant starting from
last row. Repeating this operationt21 times, we obtain

D5
u«n

mu0
t21

bt22bt23
2 ...b0

t21 5 )
n51

t21

)
k50

n21
«n2«k
bk

.

Thus, the spectral density of the matrixLt on the i th
interval of the continuous spectrum has the form

r~« i !5
Di

D UdSt~«!

d« U
«5« i

U , St~« i !P@22,2#,

i50,1,...,t21, ~47!

and the correction to spectrum density from each point«k of
the discrete spectrum has the form

rk~«!5d~«2«k!u~ck ,e0!u2, ~48!

where the eigenvectorck is assumed to be normalized.
Relations ~47! and ~48! complete the solution of the

problem formulated above. It should be noted that it is s
pler to determine the coefficients of the polynomialSt(x)
and the matrix elements of the operatorV directly by for-
mula ~34! proceeding from the equality of the matrix el
ments on the right and left sides of the relation@in analogy
with the calculation of Tn(x) and V by the formula
H5Tn(L)1V#.

CONCLUSIONS

It follows from the above discussion that practical c
culations of spectral and thermodynamic characteristics
problems pertaining to the finite-dimensional perturbat
theory can be reduced to the determination of the ma
elements of the resolventR(z) of the unperturbed operato
and to the calculation of the determina
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H andH0 lead to the following simplifications of calcula
tions.

~1! If the operatorsH andH0 have a block-tridiagonal struc
ture with blocks of dimensionalityn, for an arbitrary rank of
the perturbation operator the determinantD(z) coincides
with the determinantD̃(z) of dimensionalityn to within an
insignificant factor.

~2! In the case of the representationH05 f (L), wheref (x) is
a certain function andL the Jacobi matrix, the determinatio
of matrix elements of the resolventRml requires the knowl-
edge of the spectral density of theJ-matrix L, while a larger
set of spectral characteristics, viz., the spectrum and
eigenfunctions of the unperturbed Hamiltonian, are requi
in the general case for calculating the values ofRml(z).

It was mentioned in Sec. 3 that these two conditions
satisfied by the Hamiltonians for a large class of physi
problems.

*E-mail: ivk@igorvk.kharkov.ua
1!The publications1,3,7,8,21,22,25–28are contained in Ref. 23.
2!We confine the analysis to the case when the spectrum of the ope
Ha is simple.

3!The method can be easily extended to the case when the polyno
Tn(x) is replaced by an integrable functiong(x1 ,...,xd) of several
variables.20 Among other things, this allows us to analyzeexactlysome of
2D and 3D problems by using the given method. This refers to the pr
lems in which the relevant Hamiltonians can be represented in the f
H5H01V, whereV is a finite-dimensional perturbation andH0 a function
of severalJ-matrices with known spectral densities. For example,
space of one-magnon excitations of a simple cubic spin lattice with
interaction between nearest neighbors and with a point spin defect ca
expanded into an orthogonal sum of subspaces, in which the matrice
the Heisenberg Hamiltonian have the form
H5L1^ I ^ I1I ^L2^ I1I ^ I ^L31V, where Li are J-matrices with
known spectral densities andI is the unit matrix. The corresponding func
tions g(x1 ,x2 ,x3) in this case are polynomials in their variables. On t
other hand, according to Ref. 20, the functiong(x)5ex, for example, is
connected with the model of a linear chain with an infinitely large range
interaction. In the case wheng(x1 ,...,xd) is a polynomial, we can use the
fact that the matrix of the Hamiltonian can be regarded as a blo
tridiagonal matrix, but, in contrast to the 1D case, the block has an infi
nitely large dimensionality~i.e., n5`!.
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Rayleigh-type vibrations localized at the free surface of a fcc crystal

-

A. M. Kosevich, D. V. Matsokin, and S. E. Savotchenko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted August 13, 1996!
Fiz. Nizk. Temp.23, 92–96~January 1997!

The waves localized near the free surface~001! of a fcc crystal and propagating along the@110#
direction are analyzed in the model of central interaction of nearest neighbors. The
frequencies of these waves fall in the gaps of the frequency spectrum of bulk harmonic vibrations
for a fixed value of the wave vectork along the surface. The long-wave limit and the case
of wave vectors close to the Brillouin zone boundary are studied analytically. These limiting
dependences are in accord with the results obtained earlier by other authors by numerical
methods. The analytical calculations in the limiting intervals of vectork are supplemented with
numerical calculations for arbitrary values of wave vectors. It is significant that the waves
under investigation have a displacement component perpendicular to the crystal surface and hence
can be studied by standard methods of inelastic scattering of helium atoms. ©1997
American Institute of Physics.@S1063-777X~97!01001-3#

INTRODUCTION the limiting cases~of small wave vectors, which is the long
d

r

h
o
in

s

i
a
ics
na
ia
it
h
th
en

a
r,
lie
es
ec

th
e
m

r-
n
th
nc
ke
o

e

ncy
n-
en-
ar-
er
ed
rum
the
gap

ust
of
ns
he

s of
ave
e
um
in
g-
se
for-
ve
t
y–
nu-
e
fre-
ce

/01
I. M. Lifshits initiated theoretical studies of localize
vibrations in a crystal with defects~see, for example, the
reviews in Refs. 1, 2!. He considered local vibrations nea
point defects and introduced the classification~which is gen-
erally accepted at present! of local vibrations associated wit
the dimensions of defects responsible for the localization
crystal lattice vibrations, such as the vibrations near po
defects~impurities!, near linear defects~dislocations!, and
near two-dimensional, or planar defects~including the free
surface of the crystal!. Although the study of surface wave
in the theory of elasticity~Rayleigh waves! has a century-
long history, investigation of surface waves in the dynam
theory of a discrete crystal lattice remains essential. The
plication of multilayered crystalline systems in electron
and acoustoelectronics, which is often based on reso
properties of such systems, involves the analysis of pecul
ties of the vibrational spectrum, which are associated w
surfaces separating individual monocrystalline layers. T
research aims at the solution of a similar problem in
simple model of a fcc crystal with the interaction betwe
nearest neighbors.

In Sec. 1, the model of central interaction between ne
est neighbors, characterized by only one free paramete
formulated. However, even this primitive model used ear
more than once3–5,7makes it possible to observe peculiariti
for vibrations localized near a planar defect. If the def
plane coincides with the crystallographic plane~001!, the
dynamics of a wave with the displacement parallel to
surface~shear wave! and the dynamics of a Rayleigh-typ
wave ~with the displacement vector having a vertical co
ponent and lying in the sagittal plane! in a localized wave
propagating in the direction@110# can be separated. The su
face wave of the first type, which has only one compone
was analyzed in Refs. 3, 5. Here we study vibrations of
second type, which are bipartite. The latter circumsta
complicates analytical calculations significantly and ma
them cumbersome, but still permits a detailed description
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wave limit, and of wave vectors close to the Brillouin zon
boundary!.

In Sec. 2, the dependence of the surface wave freque
on the wave vector is studied. According to the Lifshits ge
eral theory, localized vibrations are characterized by frequ
cies lying outside the continuous frequency spectrum of h
monic vibrations of the crystal lattice. In the case und
investigation, propagating harmonic vibrations with a fix
wave vector in the direction indicated above have a spect
with a gap under the lowermost frequency which adjoins
long-wave frequency of one of transverse waves, and a
in the frequency spectrum of harmonic vibrations4,6 for wave
vectors near the Brillouin zone boundary~Fig. 1!. The fre-
quencies of vibrations localized near the free surface m
fall in these gaps. In order to find possible frequencies
surface vibrations, the localized solutions of the equatio
describing volume vibrations of the crystal, which satisfy t
boundary conditions at the crystal surface, are used.

The obtained results are analyzed in Sec. 3. Two type
localized waves are observed, viz., the low-frequency w
existing for all wave vectors in the Brillouin zone and th
high-frequency wave existing only in the gap of the spectr
of volume vibrations for wave vectors near the Brillou
zone. The velocity of the low-frequency wave in the lon
wave limit coincides with the velocity of a quasi-transver
volume wave. Consequently, it has been proved in con
mity to the results obtained earlier that a Rayleigh wa
propagating in the@110# direction in the fcc crystal does no
exist. The coincidence of the limiting cases of the energ
momentum relation for surface waves and the results of
merical calculations4,6 is confirmed as well as the qualitativ
coincidence of the general form of the dependence of
quency of surface vibrations with the pattern for surfa
waves localized near the free surface~110! in the fcc
crystal.8

690069-04$10.00 © 1997 American Institute of Physics
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1. THEORETICAL MODEL

Let us consider the dynamics of a simple fcc crys
consisting of identical atoms of massm, confining the analy-
sis to the central interaction of nearest neighbors. We cho
the coordinate axes in the standard way by determining
coordinates of the nearest neighbors of the selected ato
the form a(61,61,0), a(61,0,61), a(0,61,61). The
equations of motion for atoms of the crystal in the harmo
approximation have the form

mui~n!52(
n8

Aik~n2n8!uk~n8!, ~1!

wheren is the vector number of an atom in the chosen
ordinate system andAik(n) the dynamic matrix of force con
stants of the crystal, which takes into account the symm
of the problem and ensures translational and rotational
variance of the energy of the crystal. The force matrix, tak
into account the interaction between the nearest and the
neighbors was derived in Ref. 7. We shall use only the
proximation of nearest neighbors. In this case, nonzero fo
matricesAik(n) in the bulk of the crystal have the form

Aik~0,0,0!58ad ik ,

Aik~1,1,0!52a~d i11d i2!~dk11gdk2!,

Aik~1,0,1!52a~d i11d i3!~dk11dk3!, ~2!

Aik~0,1,1!52a~d i21d i3!~dk21dk3!,

wherea is the single force constant in the adopted mo
(a.0). The force matrix for the remaining nearest neig
bors is written in a similar way.

Let the crystal in question occupy the half-spacez.0.
The presence of the free surface (z50) is taken into accoun
in the equations of motion of atoms of the boundary layer
changing the corresponding matrices of force constants:
interaction with atoms in the regionz.0 is zero, and the
‘‘self- action’’ element can be written in the form

FIG. 1. Dependence of the squared frequencyl5mv2/(4a) on the com-
ponent of the wave vectork along the crystal surface for surface waves S
and SV2. Hatched regions correspond to bulk vibrational states.
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Aik~0,0,0!5aS 0 6 0

0 0 2
D .

We seek the solution of Eq.~1! in the form of a wave
localized near the free surface. We assume that the w
propagates along the symmetry lineGX in the direction of
the nearest neighbor:k5(k,k,0). In this case, we can write

ui~n,t ![ui~nx ,ny ,2s,t !5ui
0qs

3exp@ iak~nx1ny!2 ivt#,
~3!

whereq is the quantity responsible for the decrease in
amplitude towards the bulk of the crystal (uqu,1), ands
labels planes in the bulk of the crystal~s50 for the boundary
plane!. Substituting~2! and ~3! into ~1!, we obtain the fol-
lowing equations in the bulk of the crystal:

F32cos 2ka2S q1
1

qD coska2
mv2

2a Gux0
1@12cos 2ka#uy

01F i S q2
1

qD sin kaGuz050,

@12cos 2ka#ux
01F32cos 2ka2S q1

1

qD coska
2
mv2

2a Guy01F i S q2
1

qD sin kaGuz050,

F i S q2
1

qD sin kaGux01F i S q2
1

qD sin kaGuy0
1F422S q1

1

qD coska2
mv2

2a Guz050. ~4!

It can easily be seen that the system~4! splits into the
equation for the horizontal shear waveux

052uy
0 , uz

050
with the energy–momentum relation

v25
2a

m F22S q1
1

qD coskaG ,
and the system of equations for a wave with the Rayle
polarization(ux

05uy
0 ,uz

0Þ 0):

5
F422 cos 2ka2S q1

1

qD coska22l Gux0
1F i S q2

1

qD sin kaGuz050,

F i S q2
1

qD sin kaGux01F22S q1
1

qD coska2l Guz050,

~5!

wherel5mv2/(4a).
The solvability of system~5! leads to the obvious rela

tion

F22S q1
1

qD coska2l GF422 cos 2ka2S q1
1

qD coska
22l G1S q2

1

qD
2

sin2 ka50. ~6!
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b51, 2. This means that the surface wave with the vert
polarization~SV! is a bipartite wave:

u5~u1
0q1

s1u2
0q2

s!exp@ iak~nx1ny!2 ivt#. ~7!

It should be noted that, if we putq5eiw(uqu51) into ~6!, the
latter relation will define the spectrum of possible bulk v
brations with the polarization in question for a fixedk. The
regions of these states in Fig. 1 are hatched.

2. ENERGY–MOMENTUM RELATION FOR A WAVE WITH
RAYLEIGH POLARIZATION

In order to find the energy–momentum relation, i.e.,
dependencev5v(k) for the wave~7!, we substitute~7! into
the equation of motion of surface atoms (z50). This gives

~322 cos 2ka22l!~u1x1u2x!2coska~q1u1x

1q2u2x!1 i sin ka~q1u1z1q2u2z!50,

i sin ka~q1u1x1q2u2x!1~12l!~u1z1u2z!

2coska~q1u1z1q2u2z!50, ~8!

where the superscript ‘‘0’’ on the wave amplitude is omitt
for the sake of simplicity.

Since the componentsuax and uaz(a51,2) are con-
nected through the relation

uax5 i
22~qa11/qa!coska2l

~qa21/qa!sin ka
uaz , ~9!

following from ~5!, the homogeneous linear system~8! de-
fines two amplitudes~e.g.,u1z andu2z!. By equating to zero
the determinant of this system, we obtain an equation for
energy–momentum relation of a surface wave. Unfor
nately, an explicit analytic expression forv(k) cannot be
found since the obtained determinant leads to a high-de
algebraic equation. For this reason, we have to confine
analysis to obvious limiting dependences, supplemen
them with numerical calculations on a computer.

3. ANALYSIS OF RESULTS

The long-wave limit (k→0) of surface vibrations can b
analyzed most easily. Only one localized wave~SV1! exists
near the free surface of a fcc crystal. However, the velo
of this wave in the long-wave limit is equal to the velocity
the bulk transverse acoustic wave:

v1~k!5s1k, s1
25

4a

m
a2. ~10!

For this reason, from the point of view of the theory
elasticity, a wave localized near the free surface does
exist in the@110# direction. This conclusion is naturally in
accord with the known results in the theory of elasticity~see,
for example, Ref. 9!.

The splitting of the energy–momentum relation of t
surface wave from the acoustic spectrum for smallk has the
order of magnitude of

s1k2v1~k!

s1k
;~ak!2
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In the limit ak5p/2, the squared frequency of the SV
wave isv1

254al1 /m, where

l15
1

4
~72A17!. ~11!

In the main approximation in smallj5(p/2)2ak, we can
obtain the following expansion:

v1~k!5v120,6vVS p

2
2akD 2, ~12!

wherevV
254a/m.

In addition to SV1, a high-frequency localized vibratio
~SV2! corresponding to the ‘‘window’’ in the vibrationa
spectrum exists near the Brillouin zone boundary~see Fig.
1!. The limiting square of the frequency of SV2
v2
254al2 /m, where

l25
1

4
~71A17!. ~13!

For smallj, the energy–momentum relation for SV2 can
written in the form

v2~k!5v220,7vVS p

2
2akD 2. ~14!

The limiting values of squared frequencies of the wav
SV1 and SV2, i.e., the quantities~11! and~13!, coincide with
the values obtained earlier as a result of numeri
calculations.4,6

The curve describing thev5v(k) dependence away
from the Brillouin zone boundary can be plotted on the ba
of numerical calculations. In complete agreement with
results obtained by Allenet al.,6 this curve terminates at th
point corresponding to the ‘‘window’’ in the spectrum o
bulk vibrations at which the lower boundary of pseud
longitudinal bulk waves intersects the upper boundary
pseudo-transverse bulk waves~see Fig. 1!. A similar result
was described by Franchiniet al.8 who studied surface
waves at the free surface of a fcc crystal of another orien
tion @namely, ~110!#. The authors of Refs. 6, 8 conclude
that the dependencev5v(k) for the so-called resonan
states serves as a continuation of the curve describing
energy–momentum relation of the wave SV2 in the contin
ous spectrum. However, the experience of studying qu
localized surface waves in an isotropic medium10,11 shows
that this problem must be investigated separately.

It should be noted in conclusion that the surface wa
studied here have a displacement component perpendic
to the crystal surface, and hence can be observed, for
ample, in experiments on scattering of electromagne
waves at the crystal surface. The main contribution to suc
scattering comes just from the component perpendicula
the crystal surface.12

The authors are grateful to E. S. Syrkin and A. V. Tut
for fruitful discussion of the obtained results.
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The smoothing of the surface structure in solids under irradiation
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The general system of equations describing the smoothing of surface structure in solids under
irradiation is formulated. It is shown that under real conditions the system can be reduced
to a simpler form which has an exact solution. A general formula describing the smoothing of
surface structure with time is derived. As a special case, this formula gives the evolution
~smoothing! of the relief in the absence of radiation, which is associated with the difference in
curvatures for different roughnesses. The physical reason behind the intensification of
smoothing under irradiation is the difference between the positions of the centers of gravities for
concentration profiles of vacancies and interstitials. The radiation gives rise to a new type
of dependence of the rate of smoothing on the roughness parameters of the surface, which permits
the experimental separation of the contribution from radiation to smoothing and
simultaneously makes it possible to determine some parameters which are difficult to measure.
© 1997 American Institute of Physics.@S1063-777X~97!01101-8#
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Diffusive processes in solids are important from t
point of view of the theory and applications since they d
termine many important properties of solids. The works
I. M. Lifshits1,2 play the main role in the study of this pro
cesses. The corresponding problem formulated in these
lications in the general form stimulated the development o
new trend in investigations. This paper also continues
research work associated with I. M. Lifshits.

The evolution~smoothing! of roughnesses on the surfac
of a solid is analyzed for determining important constants
the material such as the surface and volume diffus
coefficients.3,4 These constants are required for describ
many processes associated with the transport of mass in
ids ~such as fritting of powders, creep, and formation of th
surface layers!. In this problem, it is very important to tak
into account the role of sources of point defects created
various types of radiation. This paper is devoted to an an
sis of this problem.

The physical reason behind smoothing of the surf
structure in solids is the difference in the equilibrium co
centrations of vacancies in convex and concave region
the surface. The equilibrium concentration of vacancies
the convex and concave regions isK.0, uK.u0 and
K,0, uK,u0, respectively, whereuK is the equilibrium sur-
face concentration of vacancies on the surface with the
vatureK, while u0 is the equilibrium concentration of vacan
cies corresponding to a plane surface (K50). Thus, the
vacancies at convexities and concavities should be redis
uted to attain a thermodynamically equilibrium state cor
sponding to a plane surface. The concentration of surf
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by the flow of vacancies from the bulk since the concent
tion of vacancies in the bulk of the sample is uniform a
corresponds to an equilibrium valuec0 , while near the sur-
face it is also determined by the curvatureK.

The problem of smoothing the surface structure un
the influence of the above factors was considered theo
cally by Mullins3 and tested experimentally by Hoehne a
Sizmann.4 Here we consider the problem in which th
smoothing of the surface is initiated not only by the curv
ture of the relief, but also by sources of vacancies and in
stitial atoms. Such a situation emerges for various types
radiation acting on the surface of a solid. Point defe
formed as a result of irradiation make an additional con
bution to the process of smoothing.

In order to consider the smoothing of roughnesses,
introduce the volume (c) and the surface (u) concentrations
of vacancies. The concentrations are normalized to a lat
site.1! The system of equations describing the change of
sample surface as a result of diffusion flows and taking i
account the presence of a source of vacancies has the f5

5
]u

]t
5DSDSu2n~u2uK!1

DV

a

]c

]nU
z5 f ~x,y,t !

]c

]t
5DVDc1I ~x,y,z,t !

]z

]tU
z5 f ~x,y,t !

5an~u2uK!cos~n,z!,

~1!

whereDV ,DS are the volume and surface diffusion coef
cients for vacancies,n the frequency of vacancy absorptio

730073-09$10.00 © 1997 American Institute of Physics
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by the surface,uK the equilibrium surface concentration o
vacancies, which corresponds to the curvat
K:(uK5u01u0gSVK/(kT), gS is the surface tension
V5a3,T is the sample temperature,I (x,y,z,t) the intensity
of a source of vacancies, i.e., the number of vacancies
erated per unit time per lattice site, thez-axis is directed into
the bulk of the sample,z5 f (x,y,t) is the equation of the
surface at the instantt, and n the inward normal to the
sample surface, cos(n,z).0 ~Fig. 1!.

The boundary conditions to system~1! have the form

DV

]c

]nU
z5 f ~x,y,t !

5S bDV

a
c2

a

tS
uD U

z5 f ~x,y,t !

, ~2!

wherebDV5D8 ~D8 determines the last jump for a vacan
emerging from the bulk to the free surface,b is the dimen-
sionless coefficients that takes into account the presence
potential barrier for a vacancy emerging at the sample
face (0,b<1), andtS is the time of departure of the va
cancy to the bulk,tS51/n.

The coefficients in~2! are connected through the follow
ing condition: in equilibrium, the vacancy concentration
the bulk is constant, i.e.,]c/]n50; in this case, relation~2!
leads touK /cK 5 bDVtS /a

2, wherecK is the equilibrium
volume concentration of vacancies corresponding to the
vatureK:cK 5 c0 1 c0gSVK/kT, andc0 is the equilibrium
volume concentration of vacancies, corresponding to a p
surface. For dilute solutions of vacancies in the surface
gion, the equality of their chemical potentials leads to

mS5cS1kT ln uK5mV5cV1kT ln cK ,

uK
cK

5expS cV2cS

kT D5b
DVtS
a2

. ~3!

The initial condition for the system~1!, ~2! have the
form

5
u@x,y, f ~x,y,0!,t50#5uK@x,y, f ~x,y,0!#

f ~x,y,t50!5 f ~0!~x,y!

DV

]c

]nU
z5 f ~x,y,0!

5S b
DV

a
c2

a

tS
uD U

z5 f ~x,y,0!

c~x,y,z,t !u t505c0 , z. f ~x,y,0!.

In the given problem, we have two characteristic tim
scales: the short time~of absorption! tS51/n;a2/(bDV)
~this expression fortS follows from ~3!!, and the long~re-

FIG. 1. Orientation of coordinate axes. Thez-axis is directed to the bulk of
the sample, and the normaln to the sample surface forms an acute an
with the z-axis.
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tween identical roughnesses on the surface. For example
DV;10212 cm2/s, DS;1028 cm2/s, l;1023 cm, and
a;1028 cm, we obtaintS;1024 s andt rel;102 s. Since
a!l, t rel@tS ~for b;1!. In view of these inequalities and
for a timet@tS , the first equation of the system~1! and the
boundary condition~2! taking into account~3! in the form

DV

]c

]nU
z5 f ~x,y,t !

5S bDV

a
c2

a

tS
uD U

z5 f ~x,y,t !

5S bDV

a
~c2cK!2

a

tS
~u2uK! D U

z5 f ~x,y,t !

,

indicate that the difference between the vacancy concen
tions u and uK is small as well as the difference betwee
cuz5 f (x,y,t) andcK :

uu2uKu5
1

nUDSDSu1
DV

a

]c

]nU
z5 f ~x,y,t !

2
]u

]t U;1

nUDS

uK
l2

1
DV

a

cK
l

1I 0a
21

uK
t U; uK

nt rel
1S al D uK

btSn

1
uK
tn

1
I 0a

2

n
!uK ;

ucuz5 f ~x,y,t !2cKu5Ua2~u2uK!

bDVtS
1
a

b

]c

]nU
z5 f ~x,y,t !

U
;Uu2uK

uK
cK1

a

l

cK
b

1I 0a
2tSU!cK ,

where we used the estimate]c/]n ; cK /l 1 I 0V/DV ~I 0 is
the number of vacancies per unit surface area of the sam
per unit time! and the conditionI 0a

2tS!uK ~this means that
the number of vacancies emerging in a unit area of the
face during the time;tS is much smaller than the equilib
rium number density!. In other words, the tuning of concen
tration u anduK and of cuz5 f (x,y,t) to cK occurs during the
short timetS . This statement can be formally obtained fro
~1! and ~2! for n→` in all the terms exceptn(u2uK). Us-
ing the equations from the system~1! and~2!, we can obtain
the following correction in 1/n to the quantities of interest
For example, the first equation of the system~1! and the
boundary condition~2! immediately lead to the correction t
cuz5 f (x,y,t) :

cuz5 f ~x,y,t !5cK1
a2DS

bDV
DSuK5cK1

DS

n
DScK .

It follows hence that the expansion is actually carried out
powers ofDS /(l

2n). Taking into account what has bee
said above, we can write the initial system of equations~1!
and ~2! to within the first nonzero approximation i
DS /(l

2n) in the form

H DVDc1I ~x,y,z,t !50
]z

]tU
z5 f ~x,y,t !

5SDSaDSuK1DV

]c

]nU
z5 f ~x,y,t !

D cos~n,z!
~4!

with the initial and boundary conditions
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c~x,y,z,t !uz5 f ~x,y,t !5cK~x,y,t !
.
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e

where x̂5x and ẑ5z2 f (x,t). Substituting~8! into ~7!, we

f

to
H f ~x,y,t50!5 f ~0!~x,y!

In the system of equations~4! we take into account the fac
that for a real experimental time@ t@tmax5max(l2/DS,
l 2/DV];102 s, wherel is the characteristic depth at which
source of vacancies is located! and for a long characteristi
time of variation of roughness of the sample surface~
( f / ḟ )@tmax, which is observed under real conditions sin
( f / ḟ );105 s!,4 we can neglect the time derivative
(]c/]t']m/]t'0) and obtain a quasi-stationary state
within the terms;tmax/t, where the depth up to which th
solution can be regarded as stationary is defined by the
dition z!ADVt. Thus, the timet is a parameter at this quas
stationary stage. In other words, we must first determ
quasi-steady-state fluxes for a given shape of the surfac
lief, and then find a closed equation determining the ti
variation of the surface on the basis of these fluxes. It follo
from the second equation of system~4! that we must deter-
mine only the vacancy flux]c/]nuz5 f (x,y,t) from the bulk to
the surface. For this purpose, we must solve the first equa
from system~4! to the above accuracy and with the bounda
conditioncuz5 f (x,y,t)5cK .

2. SOLUTION OF THE BASIC SYSTEM OF EQUATIONS

Henceforth, we shall consider the shape of the surf
periodic inx, i.e.,

z5 f ~x,t !5(
n

zn~ t !e
2 invx, v5

2p

l
, ~5!

where l is the characteristic distance between equival
surfaces~period inx!. For a given shape of the surface, t
dependence ony is absent, and the variabley can be omitted.
Using ~5!, we obtain the following expression forcK :

cK~x,t !5c01c0
gSVK

kT
5c0

1
c0
kT

gSV(
n

zn~ t !n
2v2e2 invx

5c01B(
n

zn~ t !n
2v2e2 invx, ~6!

whereB5c0gSV/(kT), and we have taken into account th
fact that

K'2]2z/]x25(
n

znn
2v2e2 invx.

for small zn /l.
6

Thus, we must solve the following equation inc:

HDVDc~x,z,t !1I ~x,z,t !50

c@x,z5 f ~x,t !,t#5cK~x,t !
, ~7!

wheret appears only as a parameter throughzn(t).
In order to solve Eq.~7!, we introduce a new function

V( x̂,ẑ) and carry out the substitution of variables

c~x,z,t !5V~ x̂,ẑ,t !1cK~ x̂,t !, ~8!
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obtain a nonhomogeneous equation forV with zero boundary
conditions on the plane surfaceẑ50:

H DV2 f x̂x̂Vẑ22 f x̂Vx̂ẑ52cK,x̂x̂2
I ~ x̂,ẑ!

DV

V~ x̂,ẑ50!50,
, ~9!

where wx denoted the derivative ofw with respect to
x:wx5]w/]x, andwxx5]2w/]x2.

The differential equation~9! contains two inhomoge-
neous terms:cK,x̂x̂ and I /DV . In view of the linearity of the
homogeneous part of Eq.~9!, we can consider the following
two separate problems:

HDVC2 f x̂x̂VC,ẑ22 f x̂VC,x̂ẑ52cK,x̂x̂
VC~ x̂,ẑ50!50 ~10!

and

H DVI2 f x̂x̂VI ,ẑ22 f x̂VI ,x̂ẑ52
I ~ x̂,ẑ!

DV

VI~ x̂,ẑ50!50.
~11!

The solution of Eq.~9! in this case is equal to the sum o
solutions of Eqs.~10! and~11!: V5(VC1VI) ~superposition
principle!. In this case, in accordance with~8!, the concen-
tration c(x,z,t) is given by

c~x,z,t !5cC~x,z,t !1cI~x,z,t !,

where we have introduced the following notation:

cC~x,z,t !5VC~ x̂,ẑ,t !2cK~ x̂,t !

cI~x,z,t !5VI~ x̂,ẑ,t !. ~12!

2.1. The role of surface and volume diffusion in smoothing of
the surface structure of a solid

Let us first consider Eq.~10!. We shall seek the solution
in the form of a power series inzn /l to within the first-order
terms inzn /l:VC5VC

(0)1VC
(1) , whereVC

(0) andVC
(1) denote

the zeroth order inzn /l. It follows from ~7! that

f x̂52 i( 2p~zn /l!n exp~2 inv x̂!

is of first order inzn /l; in this case, Eq.~10! can be written
to within zn /l in the form

H DVC
~0!1DVC

~1!2 f x̂x̂VC,ẑ
~0! 22 f x̂VC,x̂ẑ

~0! 52cK,x̂x̂

VC
~0!~ x̂,ẑ50!1VC

~1!~ x̂,ẑ50!50.
~13!

SincecK } zn /l ~according to~6!!, Eq. ~13! splits into the
following system of equations each of which corresponds
its own order of smallness inzn /l:

H H DVC
~050

VC
~0!~ x̂,ẑ50!50

H DVC
~1!2 f x̂x̂VC,ẑ

~0! 22 f x̂VC,x̂ẑ
~0! 52cK,x̂x̂

VC
~1!~ x̂,ẑ50!50.

~14!
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It follows from the first equation of system~14! that
(0) o

a

o

in

th
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ion

f

dzn~ t !
52z ~ t ! D

c0gSV
v3n3

-

. It

Eq.

We

s
ab-
e
king
can

er

in
-

ac-
be
VC 50. Substituting this result into the second equation
system~14!, we obtain the two-dimensional Poisson equ
tion for VC

(1) :

H DVC
~1!52cK,x̂x̂

VC
~1!~ x̂,ẑ50!50.

~15!

It is well known7 that the solution of Eq.~15! can be
conveniently expressed in terms of the Green’s function
the two-dimensional Laplace operator:G2( x̂,ẑ)51/(4p)
3 ln@(x̂ 21ẑ2)/L2#, whereL is the sample size (L→`) and
G2( x̂,ẑ) satisfies the conditionDG2( x̂,ẑ) 5 d( x̂)d( ẑ), where
d( x̂) is the Dirac delta-function. It should be recalled that,
view of the absence of the dependence ony, the two-
dimensional Laplace operatorD5] x̂

2
1] x̂

2 actually appears in
Eqs.~7!–~15!. The boundary conditionVC

(1)u ẑ5050 is taken
into account by specular continuation of the source to
entire space~this is a standard approach in electrostatics
the problem with a charge near the metal surface!. After the
substitution of the explicit expression forcK,x̂x̂( x̂,t) from ~6!,
VC
(1) can be expressed in terms of tabulated integrals:

VC
~1!~ x̂,ẑ,t !5E

2`

`

dx8E
0

`

dz8
1

4p
cK,x8x8~x8,t !$ ln@~ x̂2x8!2

1~ ẑ2z8!2#2 ln@~ x̂2x8!21~ ẑ1z8!2#%

5E
2`

`

dx8E
0

`

dz8
B

4p (
n

zn~ t !n
4v4e2 invx8

3$ ln@~ x̂2x8!21~ ẑ2z8!2#2 ln@~ x̂2x8!2

1~ ẑ1z8!2#%

5B(
n

zn~ t !n
2v2e2 inv x̂~e2nv ẑ21!.

Using relation~12!, we obtain

cC~x,z,t !5VC~ ẑ,x̂,t !1cK~ x̂,t !

5c01B( zn~ t !n
2v2e2 inv x̂e2nv ẑ, ~16!

where x̂,ẑ and x,z are connected through relation~8!. The
latter relation immediately leads to the following express
for the derivative with respect to the normaln in the new
coordinates to withinf x̂;zn /l:

]

]n
5

]

] ẑ
2 f x̂

]

] x̂
. ~17!

Using the relation~3! betweenuK andcK as well as the fact
that cos(n,z)>1 to within (zn /l)

2, we substitute~6!, ~16!,
and~17! into the second equation of the system~4! to obtain
the equation describing the smoothing of the surface o
solid in the absence of irradiation:

] f ~x,t !

]t
52HDV

c0gSV

kT (
n

zn~ t !v
3n3e2 invx

1DSaS bDVtS
a2 D c0gSV

kT (
n

zn~ t !v
4n4e2 invxJ ,
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a

dt n H V kT

1DSaS bDVtS
a2 D c0gSV

kT
v4n4J , ~18!

where we have used the explicit expression~5! for f (x,t).
The obtained equation~18! coincides~to within the fac-

tor 2! with the sum of equations~9! and ~14! from Ref. 4
under the condition (bDVtS) /a

251 ~this condition indi-
cates thatcuz5 f (x,t)5u! and after the substitution of the den
sity for the vacancy concentration~c→c/a3 and u→u/a2!
and corresponds exactly to the solution obtained in Ref. 3
should be noted that Hoehne and Sizmann4 took into account
twice the same reason behind vacancy redistribution in
~6!.

2.2. Source of vacancies and increase in the roughness on
the surface of a solid

Let us now consider Eq.~11! describing the correction to
~18! associated with an additional source of vacancies.
take the source in the form of ad-function:
I ( x̂,ẑ)5I 0Vd( ẑ2 l ), where I 0 is the number of vacancie
emerging at the surface per unit time per unit area. The
sence of a dependence ofI on x̂ indicates that the sourc
repeats completely the shape of the sample surface. Ta
this type of the source of vacancies into account, we
write Eq. ~11! in the form

H DVI2 f x̂x̂VI ,ẑ22 f x̂VI ,x̂ẑ52
I 0V

DV
d~ ẑ2 l !

VI~ x̂,ẑ50, t !50.
~19!

We seek the solution of this equation in the form of a pow
series inzn /l. SubstitutingVI5VI

(0)1VI
(1) into Eq. ~19!

~whereVI
(0) andVI

(1) have the zeroth and the first order
zn /l, respectively!, we obtain the following expressions ac
curate to withinzn /l:

H DVI
~0!1DVI

~1!2 f x̂x̂VI ,ẑ
~0!22 f x̂VI ,x̂ẑ

~0! 52
I 0V

DV
d~ ẑ2 l !

VI
~0!~ x̂,ẑ50, t !1VI

~1!~ x̂,ẑ50, t !50.
~20!

Using the fact thatf x;zn /l, we obtain the following equa-
tion for the zeroth orderVI

(0) :

H DVI
~0!52

I 0V

DV
d~ ẑ2I !

VI
~0!~ x̂,ẑ50, t !50.

As in the case considered above~Eq. ~15!!, the solution can
be expressed in terms of Green’s function taking into
count specular continuation. The integrals can easily
evaluated, which gives

VI
~0!~ x̂,ẑ!52E

2`

`

dx8E
0

`

dz8
I 0V

4pDV
d~z82 l !

3$ ln@~ x̂2x8!21~ ẑ2z8!2#2 ln@~ x̂2x8!2

1~ ẑ1z8!2#%5
I 0V

DV
H ẑ,l , l. ẑ.0

ẑ. l .
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It can be seen that the results corresponds exactly to the
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]zU 5I V1I V z nv e2 invx@12e2nv l #.
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an
electrostatic analogy~a positively charged plane near a me
surface!. It should be noted that the above result forVI

(0) is
inapplicable for largeẑ.ADVt, where the solution of the
initial system~1! is naturally nonstationary. However, in o
der to find the fluxes from the bulk to the surface of t
sample, we must know the behavior of the vacancy conc
tration only near the surfaceẑ'0, where the problem is sta
tionary, and the above result fVI

(0) is applicable. Considering
that the solutionVI

(0) is a function ofẑ alone, we obtain from
~20! the following first order equation forVI

(1) in zn /l:

H DVI
~1!5 f x̂x̂VI ,ẑ

~0!

VI
~1!~ x̂,ẑ50, t !50.

As before, the solution of this equation can be expresse
terms of tabulated integral:

V~1!~ x̂,ẑ,t !52E
2`

`

dx8E
0

l

dz8
I 0V

4pDV

3(
n

zn~ t !n
2v2e2 invx8

3$ ln@~ x̂2x8!21~ ẑ2z8!2#2 ln@~ x̂2x8!2

1~ ẑ1z8!2#%

52
I 0V

DV 5
(
n

z~ t !e
2 inv x̂

3@e2nv ẑ211e2nv l sinh~nv ẑ!#,
l. ẑ.0

(
n

zn~ t !e
2 inv x̂@12cosh~nv l !#e2nv ẑ,

ẑ. l .

Then the total value forVI( x̂,ẑ,t) is given by

VI~ x̂,ẑ,t !5VI
~0!~ x̂,ẑ!1VI

~1!~ x̂,ẑ,t !

5
I 0V

DV 5
ẑ2(

n
zn~ t !e

2 ivnx̂

3@e2nv ẑ211e2nv l sinh~nv ẑ!#,
l l. ẑ.0

l2(
n

zn~ t !e
2 inv x̂

3@12cosh~nv l !#e2nv ẑ,
ẑ. l .

~21!

Using ~4!, ~12!, ~17!, and~21!, we can find the correction to
the rate of variation of the surface associated with the p
ence of a source of vacancies:

]z

]tU
z5 f ~x,t !

5DV

]cI~x,z,t !

]n U
z5 f ~x,t !

5DV

]VI~ x̂,ẑ,t !

]n U
ẑ50

5DVS ]VI~ x̂,ẑ,t !

] ẑ U
ẑ50

2 f x
]VI~ x̂,ẑ,t !

] x̂ U
ẑ50

D ;
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n-
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]t
z5 f ~x,t !

0 0 (
n

n

Using ~5!, we obtain

dz0~ t !

dt
5I 0V, ~22!

dzn~ t !

dt
5I 0Vzn~ t !nv@12e2nv l #, nÞ0. ~23!

Equation~22! describes the shear of the surface withou
change in its shape, while Eq.~23! describes the change i
the shape of the surface. It can be seen from~23! that the
presence of a source of vacancies is responsible for an
hancement of roughness (dzn /dt.0).

Analyzing the equation forVI in the initial system of
coordinatesx,z, we can explain qualitatively why an exte
nal source of vacancies increases the roughness of the
face. Indeed, Eq.~11! for VI in the initial system of coordi-
nates has the form

H DVI~x,z,t !52
I 0V

DV
d~z2 l2 f ~x,t !!

VI~x,z5 f ~x!,t !50.

Since the concentrationVI at the surface is identically equa
to zero, the vacancy flux proportional to the gradient ofVI is
directed along the normal to the sample surfa
]VI /]tW uz5 f (x,t)50, wheretW is the vector tangential to the
surface~in analogy with the behavior of the electric fiel
near the metal surface!. It can be seen from the simple geo
metrical construction~Fig. 2! that vacancy flows near con
cavities are denser than near convexities. This means tha
number of vacancies emerging at a concavity is larger t
the number of vacancies at a convexity, which leads to
increase in the surface roughness.

3. A SOURCE OF INTERSTITIALS AND SMOOTHING OF
ROUGHNESSES ON THE SURFACE OF A SOLID

Let us now take into account the fact that irradiation o
sample creates, in addition to vacancies, interstitial ato
whose fluxes can also lead to a change in the sample sur
In the absence of radiation, the equilibrium concentration
interstitialsc0

at is several orders of magnitude smaller th

FIG. 2. Flow lines of point defects created by irradiation. The curveAA is
the contour of the sample surface. TheBB curve indicates the position of a
delta-shaped source of point defects.
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the corresponding concentration of vacancies. For this rea-

to
c
n
x

e
th
h

hi

of
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he
a

dzn~ t !
52zn~ t !VnvI 0@e

2nv l vac2e2nv lat#,

es
hole

ion,

,

ure

of
delta-
stri-
pe
u-

of
h

ce

the
em-
son, we shall disregard the terms in Eq.~4! associated with
the curvature, i.e., putuK

at5cK
at50.

In this case, the system of equations~4! for interstitial
atoms assumes the form

H DV
atDcat1I at~x,y,z,t !50

]z

]tU
z5 f ~x,y,t !

52SDV
at ]cat

]n U
z5 f ~x,y,t !

D cos~n,z!
~24!

with the boundary condition

cat~x,y,z,t !uz5 f ~x,y,t !50.

The index ‘‘at’’ indicates that the quantities correspond
interstitial atoms. It should be noted that the main differen
between the systems~24! and~4! is that the second equatio
in system~24! has the minus sign in front of the volume flu
~while in the case of vacancies we have the plus sign!.

The solution of the first equation in system~24! with a
delta-shaped source leads to the result~21!, and we can write
for dzn /dt in this case

]z

]tU
z5 f ~x,t !

52I 0
atV2I 0V(

n
zn~ t !nv e2 invx

3@12e2nv lat#,

dz0~ t !

dt
52I 0

atV; ~25!

dzn~ t !

dt
52I 0

atVzn~ t !nv@12e2nv lat#, nÞ0. ~26!

The above equations show that, in contrast to a sourc
vacancies, an additional source of interstitial atoms smoo
the roughness of the surface. This is illustrated in Fig. 2. T
number of interstitials emerging at a concave surface
larger than at a convex surface, which leads to the smoot
of the sample surface.

4. INTENSIFICATION OF SURFACE SMOOTHING UNDER
IRRADIATION

Summing up~22! and~25!, ~23! and~26!, we obtain the
total contribution tożn due to irradiation, i.e., the presence
a source of vacancies and interstitial atoms:

dz0~ t !

dt
5~ I 0

vac2I 0
at!V,

dzn~ t !

dt
52zn~ t !Vnv@ I 0

at~12e2nv lat!2I 0
vac~1

2e2nv l vac!#, nÞ0,

where the quantities with the indices ‘‘at’’ and ‘‘vac’’ cor
respond to interstitials and vacancies, respectively.
I 0
at5I 0

vac5I 0 ~i.e., if the number of vacancies emerging at t
surface is equal to the number of emerging interstitial
oms!, the above equations assume the form

dz0~ t !

dt
50, ~27!
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dt

nÞ0. ~28!

It follows from Eq. ~27! that when, the sources of vacanci
and interstitials are taken into account, the surface as a w
does not move. Fornv l vac,at!1, we obtain from~28!

dzn~ t !

dt
52zn~ t !Vn2v2I 0@ l at2 l vac#. ~29!

Since an interstitial atom acquires, as a result of irradiat
an additional momentum~as compared to vacancies! directed
to the bulk of the sample,l at. l vac, and thenżn,0 ~the sur-
face roughness is smoothed!. In order to obtain an estimate
we take I 0'1015 s21

•cm22, V'10223 cm3, l at2 l vac
'1025 cm, andl'1023 cm; it follows from ~29! that

dz1
dt

'2z1•10
25~s21!,

which coincides in order of magnitude with the temperat
contribution forT;1000 K.4

When the sample is bombarded with ions, the profile
generated point defects has a Gaussian shape, and the
shaped source is a good approximation for a narrow di
bution of defects. If sources have an arbitrary sha
I at( ẑ),I vac( ẑ) ~e.g., in the case of bombardment with ne
trons!, in view of the linearity of system~11! we can easily
obtain ~by using the superposition principle! the following
expression for smoothing rate:

dzn~ t !

dt
52zn~ t !nvE

0

`

dj@ I at~j!2I vac~j!#~12e2nvj!.

If I 0
at5*djI at(j)5I 0

vac5*djI vac(j), we have

dzn~ t !

dt
52zn~ t !nvE

0

`

dj@ I vac~j!2I at~j!#e2nvj. ~30!

In the case of bombardment with neutrons, the profile
generated point defects has a shape of a step of lengtd:
I ( ẑ) 5 I 0(V/d)u(d 2 ẑ). Using~30!, we then obtain the fol-
lowing expression for the rate of smoothing of the surfa
structure~for dnv!1!:

dzn~ t !

dt
52zn~ t !Vn2v2

I 0
2

@dat2dvac#. ~31!

Taking ~18!, ~28!, and ~31! into account, we obtain the
general equation describing the rate of smoothing of
sample surface having already taken into account the t
perature factor and irradiation, i.e.,

dzn~ t !

dt
52zn~ t !SDV

c0gSV

kT
v3n3

1DSaFbDVtS
a2 G c0gSV

kT
v4n41I 0V~ l at

2 l vac!v
2n2D ~32!
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diation, which corresponds to the bombardment with ions

dzn~ t !

dt
52zn~ t !SDV

c0gSV

kT
v3n3

1DSaFbDVtS
a2 G c0gSV

kT
v4n41

I 0
2

V~dat

2dvac!v
2n2D ~33!

in the case of a step-shaped profile of generated def
which corresponds to neutron-type of irradiation. After in
gration, we have

S l

2p D 4 ln zn~ t !

zn~0!
52FBn1CnS l

2p D1PnS l

2p D 2G t, ~34!

where

Bn5DSaS bDVtS
a2 D c0gSV

kT
n4;

Cn5DV

c0gSV

kT
n3; Pn5I 0V~ l at2 l vac!n

2

~in the case of a delta-shaped profile of point defects ge
ated by irradiation with ions! or Pn 5 (I 0/2)V(dat 2 dvac)n

2

~in the case of a step-shaped profile of point defects ge
ated by neutron irradiation!. In can be seen from~34! that the
first two terms on the right-hand side describe the role
surface and volume diffusion in surface smoothing, while
third term describes the role of radiation. All the three ter
have different dependences onl. Thus, analyzing Eq.~34!,
we can determine the role of each factor in the process u
investigation from the experimentally determined dep
denceszn(t)/zn(0) ~for different values ofl!. For example,
we can obtain information on the values ofDV andDS as
well as physical parameters characterizing radiation~e.g.,
l at2 l vac!.

Let us analyze expression~34! in greater detail for a
delta-shaped profile of the sources:

ln
zn~ t !

zn~0!
52S ~2pn!4

tS
b
c0gSV

kTa

DStSDVtS
l4

1
~2pn!3

tS

c0gSV

kTa

DVtSa

l3

1
~2pn!2

tS
I 0a

2tS
~ l at2 l vac!a

l2 D t. ~35!

According to this equation, there exist two characteris
values ofl:

l1;a
DS

DV

bDVtS
a2

,

for which the first and second terms on the right-hand side
Eq. ~35! become equal, and

l2;a
c0gSV

kT~ l at2 l vac!

1

I 0a
2~a2/DV!

,
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c0gSV

kT~ l at2 l vac!

is the difference between the equilibrium concentration
vacancies near the surface with the curvatu
K;( l at2 l vac)

21 from the equilibrium concentration near th
plane surface, wherel 0a

2(a2/DV) is the concentration of
point defects emerging at the surface due to irradiation o
the time;a2/DV . Depending on the value ofl and the
relation betweenl1 andl2 , different terms in Eq.~35! play
the leading role. For example, considering that the right-h
side in Eq.~35! is a function ofl, we can observe a segme
with the dependence of 1/l3 only for a relatively low radia-
tion intensity such thatl1,l2 , i.e.,

I 0a
2tS

c0gSV@kT~ l at2 l vac!#
21 ,

1

b

DV

DS
,

whereI 0a
2tS is the concentration of point defects emergi

at the surface as a result of irradiation during the tim
;tS . Under this condition, the transition from the depe
dence 1/l4 to 1/l3 on the right-hand side of~35! occurs at
l;l1 , while the transition to the dependence 1/l2 takes
place forl;l2 . If, however, the radiation intensity is high
the second term on the right-hand side of~35! is manifested
weakly, and the transition from the dependence 1/l4 to
1/l2 occurs almost immediately.

5. THE RATE OF SURFACE STRUCTURE SMOOTHING FOR
A FINITE TIME OF ABSORPTION OF POINT DEFECTS
BY THE SURFACE

In previous sections, we considered a fast absorption
point defects by the surface, when the surface concentra
of the defects can be regarded as equal to its equilibr
value. In some cases, however, this approximation is ins
ficient, and a more exact analysis of the basis system
equations~1!, ~2! is required. Under the quasi-steady-sta
conditionl @ tmax5 max(l2/DS, l

2/dV) the system of equa
tions ~1!, ~2! can be written in the form

5
DSDSu2n~u2uK!1

DV

a

]c

]nU
z5 f ~x,y,t !

50

DVDc1I ~x,y,z,t !50
]z

]tU
z5 f ~x,y,t !

5an~u2uK!cos~n,z!,

~36!

DV

]c

]nU
z5 f ~x,y,t !

5S bDV

a
c2

a

tS
uD U

z5 f ~x,y,t !

. ~37!

As before, the shape of the surface will be taken in
form ~5!; in this case,the solution of the system of equatio
~36!, ~37! is independent ofy, and the solution at the sampl
surface can be presented in the form of Fourier series inx:
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cu 5c 1 c ~ t !e2 invx

or
e

.
m
le
ng
ith

c~x,z,t !5c 1 c ~ t !e2 inv x̂e2nv ẑ1
I 0V

ẑ

g

f

5
z5 f ~x,t ! 0 (

nÞ0
n

u~x,t !5u01 (
nÞ0

un~ t !e
2 invx

]c

]nU
z5 f ~x,t !

5 (
nÞ0

hn~ t !e
2 invx,

~38!

wherec0 ,u0 are equilibrium concentrations of vacancies c
responding to a plane surface, the time dependence app
only throughzn(t), and the term withn50 is omitted in the
summation overn. Substituting~38! into ~36! and ~37! and
considering that cos(n,z)'1 to within (zn /l)

2, we obtain
the following system of equations:{
DVDc~x,z,t !1I ~x,z,t !50,

cuz5f~x,t!5c01(
nÞ0

cn~t!e
2 invx

DSun~ t !v
2n21nS un~ t !2

gSV

kT
u0zn~ t !v

2n2D
2
DV

a
hn~ t !50

DVhn~ t !5
bDV

a
cn~ t !2

a

tS
un~ t !

dzn~ t !

dt
52aDSun~ t !v

2n21DVhn~ t !,

, ~39!

wheren Þ 0, and the expression foruK in terms of curvature
uK 5 u01 u0gSVK/kT,K ' 2d2f (x,t)/dx2 havebeenused
In order to find the solution of the first equation of syste
~39!, we shall use the method of substitution of variab
described in Sec. 2. As a result, we obtain the followi
expression for the delta-shaped source of vacancies to w
(zn /l)

2:
into the last equation of system~41!, we obtain the rate of
-
ars

s

in

0 (
n

n DV

2
I 0V

DV
(
n

zn~ t !e
2 inv x̂@e2nv ẑ21

1e2nv lsh~nv ẑ!#,

ẑ, l , ~40!

wherex̂5x and ẑ5z2 f (x,t). Substituting~40! into the last
equation of system~38!, we obtain the equation connectin
hn(t) andcn(t):

hn~ t !52cn~ t !nv1
I 0V

DV
nvzn~ t !@12e2nv l #, nÞ0. ~41!

Taking into account~39!, we obtain the following system o
equations:{

DSun~ t !v
2n21nS un~ t !2

gSV

kT
u0zn~ t !v

2n2D
2
DV

a
hn~ t !50

DVhn~ t !5
bDV

a
cn~ t !2

a

tS
un~ t !

hn~ t !52cn~ t !nv1
I 0V

DV
nvzn~ t !@12e2nv l #

dzn~ t !

dt
52aDSun~ t !v

2n21DVhn~ t !

nÞ0.

~42!

Using the first three equations of system~42!, we can express
un(t), cn(t), andhn(t) in terms ofzn(t):
un~ t !5
~11nvab21!gSV~kT!21u0zn~ t !v

2n21I 0V~an!21nvzn~ t !@12e2nv l #

~11DSv
2n2n21!~11nvab21!1nvab21 ;

cn~ t !5
a2

bDVtS

gSV~kT!21u0zn~ t !v
2n21I 0V~an!21nvzn~ t !@12e2nv l #$11tS~n1DSv

2n2!%

~11DSv
2n2n21!~11nvab21!1nvab21 ;

hn~ t !52cn~ t !nv1
I 0V

DV
nvzn~ t !@12e2nv l #, ~43!

where the relationtS51/n has been used. Substituting~42!
P 5

gSV~kT!21v3n3c0DV
;
1 2 21 21 21
smoothing of the surface of a solid:

dzn~ t !

dt
52zn~ t !P12zn~ t !P21zn~ t !P3 ,

lnS zn~ t !zn~0!
D52~P11P21P3!t. ~44!

80 Low Temp. Phys. 23 (1), January 1997
@11n ~tln! #~11nvab !1nvab

P25
gSV~kT!21bDVtSa

22v4n4c0aDS

11n2~tln!211@11b/~nva!#21 ;

P352
I 0Vv2n2l

@11n2~tln!21#~11nvab21!1nvab21 ,

~45!
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wheretl 5 (v2DS)
21 5 l2/4pDS as well as the relationu0
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It can be seen from~48! that for tl
vac,atnvac,at→0, the surface
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of
5 c0(bDVtS /a ) as well as the conditionlvn!1 have been
used.

Equation~44! can be easily generalized to the case wh
the source of interstitials is taken into account in addition
the source of vacancies: the termsP1 andP2 do not change
in view of the smallness of the equilibrium concentration
interstitial atoms as compared to the equilibrium concen
tion of vacancies~see Sec. 3!, while the expression for the
termP3 associated with sources of point defects assumes
form

P35
I 0Vv2n2I at

@11n2/~tl
atnat!#~11nva/bat!1nva/bat

2
I 0Vv2n2l vac

@11n2/~tl
vacnvac!#~11nva/bvac!1nva/bvac,

~46!

where the conditionI 0
at5I 0

vac5I 0 has been used. Equation
~44! and ~46! show that forvna/b!1 and (tl

vacnvac)21

! 1, (tl
atnat)21 ! I the result~32! is reproduced as the zerot

approximation in these small parameters.
If sources have the form of a step~as in the case o

bombardment with neutrons!, in analogy with~33!, expres-
sion ~46! assumes the form

P35
1

2

I 0Vv2n2dat
@11n2/~tl

atnat!#~11nva/bat!1nva/bat

2
1

2

I 0Vv2n2dvac
@11n2/~tl

vacnvac!#~11nva/bvac!1nva/bvac.

~47!

For a slow absorption of point defects by the surfa
(tln!1) and fornva/b!1, equations~44! and~46! lead to
the following expression~for a delta-shaped profile of th
source of point defects!:

lnS zn~ t !zn~0! D 52F2p

l
n
c0gSV

kT

DV
vac

DS
vac nvac

1S 2p

l D 2n2 c0gSV

kT S bDVtS
a2 D nvac

1I 0VS l atnatDS
at 2

l vacn
vac

DS
vac D G t. ~48!
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is not smoothed (żn→0), which is natural since point defect
emerging at the sample surface under these conditions
time to be redistributed uniformly over the entire surfa
before absorption.

Knowing the diffusion coefficients and other constan
and analyzing Eqs.~44!–~47! as functions ofl experimen-
tally, we can easily determine the quantitiesnvac,at and
bvac,atwhich are difficult to measure.

Thus, we have proved that the presence of point defe
created by irradiation leads to a faster smoothing of the s
face of a solid. The observed effect is important for ma
applied problems. It should be noted that we did not take i
account the effects associated with evaporation of a s
stance upon irradiation, which can lead to a dependence
the depth of location of a source of point defects and on
vapor pressure, or to a deterioration of the surface~increase
in its roughness!, or to acceleration of smoothing of the su
face structure.
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New exact solutions of the Schro ¨dinger equation with potentials of spin

r-
and soliton origin
V. V. Ulyanov, O. B. Zaslavski , and Yu. V. Vasilevskaya

Kharkov State University, 310077 Kharkov, Ukraine
~Submitted June 24, 1996!
Fiz. Nizk. Temp.23, 110–119~January 1997!

New classes of exact solutions of the Schro¨dinger equation with simple explicit analytic
expressions for potential fields, energy levels, and wave functions of stationary states are
considered. The solutions are discovered with the help of new original methods
elaborated in the quantum theory of spin systems. The corresponding effective potentials are
compared to similar models of soliton origin. The main attention is paid to peculiar phenomena
such as quasi-exact solvability, potentials with multiple and flexible profiles, fourth-order
extrema, finite-band spectra and structural transformations in energy bands, and the spin–soliton
analogy. ©1997 American Institute of Physics.@S1063-777X~97!01201-2#
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Exact solutions of these equations have been obtain
In order to clarify the following considerations, we consid
this question in greater detail . . . 1!

I. M. Lifshits

The quantum-mechanical problem of exact solutions
the Schro¨dinger equation for stationary states of a particle
a potential field remains the object of interest for speciali
The number of potentials permitting a simple exact solut
was scarce until recently. The situation has changed afte
development of the method of inverse scattering prob
~ISP! in soliton theory.3 Finally, a noticeable breakthrough i
the problem of exact solutions of the Schro¨dinger equation
has been made4 of when original methods in the theory o
spin systems were elaborated, and several new classe
exact solutions were indicated, together with the directio
of a search for such solutions. Moreover, exact solutions
the Schro¨dinger equation with simple explicit expressions f
potentials, energy levels, and wave functions of station
states form a solid ‘‘golden’’ foundation of the quantu
theory.

The problem of exact solution naturally attracts pers
tent attention. We can single out three periods in which n
models with exact solutions were created.

The first models with exact solutions with simple expre
sions for potentials, energy levels and wave functions of
tionary states ~harmonic oscillator, Morse, Eckart, an
Peschel–Teller potentials, infinitely deep rectangular w
and delta-well! appeared at the early stage of evolution
quantum mechanics at the end of the twenties.

This stage was followed by a period of various gener
zations, complications, and compositions of differe
models.5,6 The search for new models with exact solutio
continued, but the results were either too complicated
cumbersome, or too abstract.

The first breakthrough into the region of new simp
models with exact solutions is associated with the evolut
of soliton theory, since in the case of ISP, soliton formatio
play the role of potential fields in the time-independe
Schrödinger equation for a certain quantum partic
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acterized by fixed energy levels~which are integrals of mo-
tion of the Korteweg–de Vries nonlinear evolutio
equation!3 for potentials with flexible profiles, and the state
of the continuous spectrum correspond to complete trans
ency for scattered particles.

Another trend is associated with the discovery of a ba
cally new object in quantum mechanics, viz., quasi-exac
solvable models. The insight moment was the discovery o
whole class of new models with exact solutions in conn
tion with the development of new methods in the theory
spin systems.7 Spin systems in relevant effective potenti
fields with exact solutions of the Schro¨dinger equation are
characterized by various potential profiles depending on
choice of the spin parameter and the values of magn
fields and by simple formulas for the energy spectrum a
corresponding wave functions.4

These two new trends have made a sound contributio
the depository of problems with exact solutions.

The subsequent evolution of quasi-exactly solvable m
els resulted in the development of a new branch of ma
ematics and mathematical physics~see Refs. 8 and 9 and th
literature cited therein!, but here we shall confine the analys
to only a few physical aspects of the problem.

Why are exact solutions of the type under investigat
so important?

It should be emphasized above all that they form
basis of stationary states in quantum mechanics~see, for ex-
ample, Refs. 10–14!. It should also be noted that exact s
lutions are foundations of new problems. The significance
exact solutions as the basis of approximate methods is
worth noting. The models with exact solutions are often us
in the analysis of complex phenomena for which exact re
larities are unknown or in the case when basic properties
independent of the form of the potential and can be stud
by disregarding complications introduced by the poten
details. For example, I. M. Lifshits1 often used the so-called
separable model of perturbation. It should also be noted
new theories are usually verified on the basis of well-kno
special cases with exact solutions. In addition, the proble

820082-07$10.00 © 1997 American Institute of Physics



with exact solutions serve as test examples in numerical
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In all probability, the problem of exact solutions wi

remain important in the future.

2. EFFECTIVE SPIN POTENTIALS

As a rule, it is easier to study differential equations th
their discrete analogs . . .

I. M. Lifshits

Spin systems form a special class of quantum syst
whose Hamiltonian contains spin operators~effective spin,
pseudospin, etc.!. Such systems are encountered in ma
fields of physics~magnetism and superconductivity, nucle
physics, and interaction between light and a substance!. The
description of such systems involves special methods
theoretical physics since the commutation relations for s
components differ from the Bose- and Fermi-type relatio
The methods for many-particle systems have received w
application, while systems with one-spin Hamiltonian r
mained unnoticed. Anisotropic paramagnets can be m
tioned in this connection by way of an example. This a
applies to many-particle systems since collective degree
freedom of the one-particle type can describe in some c
the motion of the system as a whole.4

Spin is a quantum-mechanical concept of essentially
crete origin. For this reason, the equation required for
analysis of the energy spectrum of spin systems has a m
form. For large values of spin, this complicates the analy
of the properties of the system with the help of stand
quantum-mechanical methods. It turned out, however,
we can introduce a rigorous potential description for a w
class of spin systems such that the energy spectrum o
spin system coincides with certain energy levels of
pseudoparticle moving in a potential field of a simple sha
Such an exact spin–coordinate correspondence also fo
the basis for the development of various approximate m
ods for describing spin systems, e.g., the perturbation the
and the semiclassical approximation. It is especially imp
tant that this leads to new exact solutions of the Schro¨dinger
equation in an appropriate coordinate system.4

In the approach proposed by us, the Hamiltonians c
structed from generators of a certain Lie group~in particular,
spin operators! are considered, and the eigenvalue and eig
vector problem is solved by using the concept
generalized15 coherent states~including spin states!. In the
obtained coordinate representation, such a Hamiltonian
comes a differential operator, e.g., the Schro¨dinger operator
with a certain effective potential energy. The potentials o
tained for simple spin systems either have the form of n
localized wells, or are periodic. In all cases, various mu
parametric potential models ~both symmetric and
asymmetric! exist.

Going over to specific examples, we first consider one
the simplest spin-Hamiltonians~here and below, we use d
mensionless quantities without loss of generality!, corre-
sponding to the so-called easy-axis paramagnet in a tr
verse magnetic field:7
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H52Sy
22BSx . ~1!

HereSj are operators of spin components andB is propor-
tional to the applied magnetic field. If we are dealing wi
the problem of determination of stationary states of suc
system with the help of the above method, we arrive at
standard one-dimensional Schro¨dinger equation

d2c

dj2
1@E2Ueff~j!#c50 ~2!

for a pseudoparticle with a quadratic energy–momentum
lation ~spinon! moving in the effective potential field con
structed from hyperbolic functions:

Ueff~j!5
B2

4
sinh2j2B~S11/2!coshj, ~3!

whereS is the magnitude of spin andj can be regarded as
certain dimensionless coordinate. It turns out4 that the energy
eigenvaluesE of the spin system~1! coincide with the lower
2S11 energy levels of a spinon in the potential field~3!.

Such an approach to the description of spin systems
used for studying the low-temperature physical proper
~such as energy spectrum, magnetization, susceptibility,
spin tunneling! of anisotropic paramagnets.4,7

For a magnetic fieldB.B052S11, the obtained non-
localized potential~3! has the form of a solitary well, while
for B,B0 it is transformed into a well with two minima
~Fig. 1a!. It is important that forB5B0 this model has the
form of a well with a fourth-order minimum~Fig. 1b!.

For large values of spin (S@1), the spin–coordinate
correspondence established above is convenient for stud
the properties of a spin system4 by using the standard

FIG. 1. Typical effective potentials~3! for S52: a well with two minima
for B!B0 ~a! and a well with a fourth-order minimum forB5B0 ~b!.
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~2!; however, for small values of spin, the eigenvalues of
spin-Hamiltonian~1! can be determined directly in the dis
crete spin representation as the roots of the character
equation. Taking into account the symmetry properties of
problem, we can obtain simple analytic expressions for
ergy levels and wave functions of stationary states. Vari
specific problems were considered in our earl
publications.4,17,18 Here we shall concentrate attention on
special case of exact solutions for model~3! with the critical
value of the parameterB5B052S11, when the potentia
has the form of a well with a fourth-order minimum:

Ueff~j!52
B0
2

2
1B0

2 sinh4 j/2. ~4!

It is convenient for subsequent analysis to introduce
new coordinatex5j/2 and to measure energy from the min
mum of potential~4!. In the new variables, Eq.~1! assumes
the form

d2c

dx2
1@«2u~x!#c50, ~5!

where

«54E12B0
2; u~x!5Q sinh4 x, Q54B0

2. ~6!

Thus, exact solutions for a potential field with a fourth-ord
minimum ~6! exist for the values ofQ54(2S11)2, where
S50,1/2,1,3/2,2, . . . . It wasnoted above that in this cas
simple explicit expressions for energy levels and wave fu
tions of stationary states are obtained for small values
parameterS. Omitting computational details, we shall writ
some of these expressions~the first indices on energy corre
spond to the upper signs in the formulas!. If S50, for the
ground state we have

«052; c0~x!5A0 expS 2
1

2
cosh 2xD .

If S51/2, the ground state is supplemented with the fi
excited state:

«053; c0~x!5A0 exp~2cosh 2x!coshx;

«1511; c1~x!5A1 exp~2cosh 2x!sinh x.

For S51, the formulas acquire radicals:

«0,251672A37;

c0,2~x!5A0,2 expS 2
3

2
cosh 2xD S cosh 2x6

A3771

6 D ;
«1514; c1~x!5A1 expS 2

3

2
cosh 2xD sinh 2x.

If S53/2, we have the following expressions for four sta
with low-lying energy levels:

«0,251974A13; c0,2~x!5A0,2 exp~22 cosh 2x!

3S cosh 3x6
A1361

2
coshxD ;
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3S sinh 3x6
A2173

2
sinh xD .

For S 5 2, we confine ourselves to only two energy leve
These expressions contain not only radicals:

«2n5
130

3
1
8

3
A313 cosF13 arccosS 17653133/2D1wnG ,

n50,1,2;

w0,156
2

3
p, w250; «1,254072A109.

Normalization quantities are connected with modifi
Bessel’s functions~Macdonald functions!; for example,
A05@K0(1)#

21/2 for S50.
It should be emphasized that the number of exact so

tions in the model under investigation is finite. This prope
is known as ‘‘quasi-exact solvability.’’8 In this case, station-
ary states with exact solutions~the multiplet 2S11 of en-
ergy levels! lie in the lower part of the energy spectru
~starting from the ground state!, while the remaining station-
ary ~‘‘superspin’’! states have no exact solutions.

It is well known that the power potentialu(x)5Qx4

~quadruple oscillator! has no exact solutions, being an impo
tant element of many essentially anharmonic system19

Thus, a paradoxical situation takes place: a simpler mode
the fourth-degree potential has no exact solutions, whil
more complex 4-hyperbolic model~6!, which is close to the
former model both qualitatively and quantitatively, has su
solutions. A comparison of the energy levels of these t
models shows that they become closer upon an increas
the parameterS in ~6!, and the relative error is of the order o
S22/3.

It is important to note that we have thus obtained anot
method of determining the energy levels of a quadruple
cillator with the help of model~6! with exact solutions. In a
more general case, this applies to a mixed quadra
quadruple oscillator in the exactly solvable model~3!.

For the system with the spin-Hamiltonian~1! under in-
vestigation, we can also introduce a description on the b
of a certain periodic model of potential. However, we sh
illustrate such a possibility for a spin system with the Ham
tonian of a more general type:

H5aSz
22bSy

22BSx , ~7!

describing, for example, a biaxial paramagnet in a magn
field B perpendicular to anisotropy axes with the consta
a,b>0. In this case, we can also arrive at the stand
Schrödinger equation of type~2! with the periodic effective
potential

Ueff~j!5
W1sn

2j2W2cnj

a1bcn2j
,

W15
B2

4
2abS~S11!, W25~a1b!B~S11/2!, ~8!
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constructed from Jacobi elliptic functions with the modul
k5Ab/(a1b).

Since the spin system~7! has an exact solution in th
form of simple explicit formulas for energy levels and ve
tors of stationary states for smallS, the Schro¨dinger equation
also has corresponding exact solutions. The eigenvalue
the spin-Hamiltonian~7! coincide in this case with 2S11
extreme energy levels for the lower energy bands~alternating
bottom and top of the energy band! in the potential field~8!.

With increasing magnetic fieldB, the minima of the
wells in the cells of the periodic potential are transform
from binary to solitary minima through quadruple minim
while the shape of barrier peaks changes in the reverse o
It is interesting to note that fora5b there exists a critica
value of magnetic fieldB052aAS(S11) for which the po-
tential has a quadruple minimum and a quadruple maxim
simultaneously~Fig. 2!. We shall confine our analysis t
specific examples for this case puttinga51.

We will not consider here wave functions but descri
the results for some energy levelsE. Energy levels are la-
beled according to the spin system~the first index corre-
sponds to the upper sign in the formulas!. Their positions in
the energy bands of effective potentials will be indicat
simultaneously.

If S50, E050 ~the bottom of the ground-state band!.
For S51/2, E0,157A3/2 ~extreme levels of the first gap!.
For S51, E0,2573 ~the bottom of the ground-state ban
and the bottom of the second band!, while E150 ~the top of
the first band!. If S53/2, E0,1523A27A15/2 ~extreme en-
ergy levels of the first gap! andE2,353A27A15/2 ~extreme
energy levels of the third gap!. For S52, E0,4576A3 ~the
bottom of the ground-state band and the bottom of the
band!, E1,357A33 ~the tops of the first and third bands!, and
E250 ~the bottom of the second band!.

It was mentioned above that one of extreme energy
els in each of 2S11 lower bands is a spin level, whic
allows us to refer to these bands as spin bands. Howe
higher~‘‘superspin’’! bands deserve special attention. It w
found that their arrangement has interesting peculiarities
we assume that the value ofS varies continuously, all the

FIG. 2. Energy bands of the effective potential~8! with fourth-order ex-
trema and exact solutions (S53/2).
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gaps are closed. In addition, one of the superspin band
converted into a spin band, and exact solutions for s
bands appear. These transformations of energy bands ca
called a periodic structural spin transition.

Puttinga50 andb51 in formulas~8! and taking into
account the limiting properties of elliptic functions, we o
tain the effective potential of a uniaxial spin system~3!.

If B50, potential~8! for integralS can be reduced to the
Lamé–Eines finite-band conoidal potential for which all s
perspin bands are interlocked to form a single infinitely lar
band.

The above examples of spin systems illustrate a rem
able feature of effective potentials, viz., the existence of
act solutions only for a part of stationary states.

In addition to stationary states having exact solutio
there exists an infinite set of stationary states lying ab
them~on the energy scale!, for which this property is absen
in general. Also, this property is manifested in the abo
models of potentials not for all possible values of parame
appearing in them, but only for certain values associa
with integers~of multiplicity 2S11!. The remaining values
of parameters correspond to ‘‘extraspin’’ potentials w
‘‘extraspin’’ stationary states~energy levels, wave functions
and energy bands!.

Thus, we have discovered a new peculiar property
quantum-mechanical systems known as quasi-exact solv
ity. The origin of such models of potentials usually lies in t
group-theoretical properties of systems. Among other thin
the basis of spin systems is the spin–coordinate corres
dence.

As regards physical objects, quasi-exact solvability w
apparently manifested for the first time for spin systems.

Until now, we considered only one-dimensional pro
lems. However, a remarkable property of models with qua
exact solutions is that exact solutions can be also obtaine
two-dimensional cases even without separating the variab
This was demonstrated for the first time in Ref. 21. It
appropriate to mention here the publications22,23 in which
models with quasi-exact solutions were constructed in
presence of a magnetic field.

3. LOCALIZED SOLITON POTENTIALS

. . . Weconsider here a special case permitting an exa
solution and leading to the simplest expressions . . .
. . . By way of an example, we depict the pattern of def
mations emerging in this model . . .

I. M. Lifshits

The close relation between the nonlinear evoluti
Korteweg–de Vries~KdV! equation and the one-dimension
time-independent Schro¨dinger equation established in solito
theory3 makes it possible to indicate new types of exact
lutions of the latter equation. The authors studying solito
were interested only in the method of solution of the Cauc
problem for the KdV equation, and the Schro¨dinger equation
played only an auxiliary role. If, however, we consider th
dependence only from a purely quantum-mechanical poin
view, we find that the Schro¨dinger equation has a multipara
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expressions exist for potential models as well as for ene
levels and wave functions of stationary states. The disc
part of energy spectrum~for localized potentials! is most
interesting, while the continuous part is characterized, in
cordance with the steady-state theory of scattering, by z
reflection~supertransparency!, i.e., its reflection coefficient is
equal to zero.

It is important that, in contrast to other models with e
act solutions in quantum mechanics, for which the poten
is specified, and the Schro¨dinger equation~the eigenvalue
problem! is solved~as a result, energy levels are obtained!, in
models of soliton origin the energy levels are defin
straightaway, and each set of the levels is characterize
potentials with exact solutions. In other words, we are de
ing with an inverse problem: energy levels~arranged arbi-
trarily! are given, and potentials are constructed for th
directly. In this case, each set of energy levels is charac
ized not by a single fixed potential profile, but by an infin
multiparametric family of potential models.

The relation between energy levels and potentials
comes of primary importance, while wave functions
bound states play an insignificant role. This was inheri
from the ISP method in which the wave functions of bou
states do not appear in a complete form, but are represe
only through their asymptotic parameters~they appear as so
called scattering data!. However, explicit exact solutions ca
be obtained for wave functions also.

ChoosingN successive bound stationary states ar
trarily with parameters 0,k1,k2, . . .,kN ~soliton num-
bering!, we can always use the formulas

u~x!522
]2

]x2
ln F,

F5detFd lm1
2Aklkm
kl1km

exp~2g l !G ,
g l5klx24kl

3t1D l1d l , ~9!

l ,m51,2, . . . ,N ~d lm is the Kronecker delta! corresponding
to theN-soliton solution of the KdV equation, to construct
family of spatially localized potentials with energy leve
En52kN2n

2 , n 5 0,1,...,N21 and corresponding wav
functions which satisfy an equation of the type~5! and at the
same time have a simpler form~we do not write them here!.
The quantityt having the physical meaning of time for sol
tons, appears here as a constant parameter which wi
referred to as ‘‘quasi-time,’’ the quantitiesD l are determined
by energy parameterskm , while phase correctionsd l for
t50 affect the symmetry properties of models~9!.

Potentials~9! are negative, and their deformations up
the variation of quasi-timet occur with area conservation.

In the region of continuous energy spectrum, models~9!
are reflectionless in the case of particle scattering.20

For t→6`, potential~9! consists ofN different solitary
reflectionless Eckart wells which are combined fort50 into
a composite well acquiring various symmetric properties~if
all d l50! as well as asymmetric forms.
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it is a one-level reflectionless Eckart well for which we c
always choose the origin of the coordinatex so that
u(x)522k1

2/cosh2 k1x. A similar profile is also obtained for
N.1 if d l 5 0, kl 5 lk1 , l 5 1,...,N and t 5 0: u(x) 5
2N(N11)k1

2/cosh2(k1x).
ForN52, models~9! have various forms determined b

two parameters: quasi-timet and the ratio of energy param
etersk2 /k1 ~the phase correctionsd1 and d2 can be made
equal to zero by an appropriate choice of the parametex
and t!. In view of the equalityu(2x)5u(x), for t50 we
have symmetric models~9! whose specific forms can be de
termined from the behavior ofu(x) nearx50, where a peak,
i.e., double well, exists fork2 /k1,A3 and a minimum, i.e.,
a solitary well ~in particular, an Eckart well fork2 /k152!
exists fork2 /k1.A3. Fork2 /k35A3, we have a well with a
flat bottom, i.e., a fourth-order minimum:

u~x!524k1
21

8

3
k1
6x42

32

15
k1
8x61O~x8!.

For t Þ 0, we have asymmetric models.
While one- and two-level potentials~9! are well known

from the corresponding soliton profiles, it is not possible
speak of three-level models with four independent para
etersk3 /k1 ,k2 /k1 ,t and one of the phase corrections~say,
d1 ; the other two corrections affect only the origin ofx and
t and can be disregarded!. If t50 andd150, we have sym-
metric forms of potentials~9! which are determined above a
by the behavior nearx50. Simple calculations show that

u~x!522~k3
22k2

21k1
2!12@k3

42~k2
22k1

2!~4k3
223k2

2

1k1
2!#x22

4

3
$k3

62~k2
22k1

2!@6k3
422~5k2

2

23k1
2!k3

215k2
425k2

2k1
21k1

4#%x41O~x6!.

Thus, under the condition

k3
424~k2

22k1
2!k3

21~k2
22k1

2!~3k2
22k1

2!50

we have fourth-order extrema. On the plane (k2
2/k1

2,k3
2/k1

2),
this corresponds to a branch of a hyperbola whose one
corresponds to fourth-order minima~Fig. 3e!, and the other
part to fourth-order maxima~Fig. 3f!. A sixth-order mini-
mum appears at the junction of minima and maxima~Fig.

3g! for the valuesk2 /k15A21A2 and k3 /k15A312A2
for which the expansion of the potential has the form

u~x!522~21A2!k1
21

4

45
~17112A2!k1

8x6

2
8

315
~58141A2!k1

10x81O~x10!.

Figure 3 shows some typical symmetric profiles cor
sponding to various relations between energy parame
For t Þ 0 and/ord1 Þ 0, we obtain asymmetric profiles.

Thus, a set of potentials with simple explicit exact so
tions in quantum mechanics is considerably enriched w
localized multiparametric models of various types. Ap
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FIG. 3. Characteristic profiles of exactly solvable three-level symmetric potential models of soliton origin.
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band potential models of soliton origin also exist,3 but we
shall not consider them here.

A transition to the quantum-mechanical situation and
formulation of the problem on exact solutions of the Sch¨-
dinger equation of the soliton origin have not been discus
in monographs on quantum mechanics from this point
view ~to our knowledge, the only exception is Ref. 16!.

4. SPIN–SOLITON ANALOGY

In spite of the apparent physical difference betwe
these problems, a deep-rooted similarity can be observe

I. M. Lifshits

The spin and soliton models of potential fields ha
many features in common.

For example, the spin–coordinate correspondence in
theory of spin systems is an analog of so-called Lax pai
the soliton theory, i.e., the soliton–coordinate corresp
dence. In both cases, there exists a certain associated S¨-
dinger equation which can be used for solution of the m
problems, viz., the problem of energy spectrum~or stationary
states in general! in spin systems and the Cauchy problem
soliton theory for nonlinear evolutionary Korteweg–de Vri
equation. The role of a link in the spin–coordinate cor
spondence is played by the representation by coherent
states, while a similar role in the soliton–coordinate cor
spondence is played by the Gelfand–Levitan–Marchenko
tegral transformation in the ISP method.

In both cases, the initial elements are discrete~spin and
soliton!, while the coordinate representations with on
dimensional potential fields and a certain energy match
which are put in correspondence to them are continuous
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ergy levels for nonlocalized potentials, while in the solito
case we have a discrete soliton spectrum for localized po
tials and a continuous ‘‘supersoliton’’ spectrum with com
plete transparency. Another object in common is the integ
analogy: the basic parameter of potential models in the s
case is the integer 2S11, while an equivalent element in th
soliton case is the number of solitonsN.

Finite-band potentials typical of soliton periodic~and
nearly periodic! models are encountered in spin models al

The clear-cut splitting of the energy spectrum into tw
parts is a common feature for spin and soliton systems
spin systems, this is manifested in the quasi-exact solvab
of the models, while in soliton systems, in reflectionless~and
finite-band! potentials.

We can assume that the corresponding Schro¨dinger
equation describes the states of some pseudo-particles,
‘‘spinon’’ in the case of spin systems and ‘‘vrieson’’ in th
case of soliton systems. A peculiar feature of the spinon
that a spin system can be characterized by nonlocalize
well as periodic potentials. The vrieson is distinguished
the fact that both localized and periodic potentials can c
respond to a soliton system.

Furthermore, potential models in both cases are cha
terized by a variety of forms, several parameters, and
emergence~in addition to discrete profiles mentioned abov!
of analogous special potential profiles: with a fourth-ord
minimum, with two wells and possible location of energ
levels in the critical region near the peak of the barrier se
rating the wells, etc. In both cases, various asymmetric m
els as well as periodic potentials exist along with symme
models.
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introduction of new concepts~quasi-exact solvability, asso
ciated Schro¨dinger equation, spin–coordinate correspo
dence, reflectionless and finite-band potentials, pseudo
ticles, etc.! which play a significant role.

In both cases, the discovery of exact solutions was
auxiliary result in basic investigations aimed at the devel
ment of new methods in the theory of spin and soliton s
tems. The soliton boom exploited the quantum theory t
considerable extent, but advances in soliton theory have
been reflected yet in the monographs on quantum mecha
and its applications~except Ref. 16!. The same situation is
observed for the problem of quasi-exact solutions and n
approaches to the theory of spin systems, although we
mainly dealing with a relation between two branches
quantum mechanics. Mathematical physics and pure m
ematics play an increasingly large role in quasi-exactly so
able problems,8,9 as was also the case with the soliton theo

Thus, the two completely different systems supplyi
models with exact solutions to the quantum theory hav
number of analogous properties. It would be interesting
find out whether these are purely formal analogies or a de
rooted structural similarity.

5. CONCLUSIONS

The goal of this article will be reached if we have ma
aged to clarify . . . new andunusual ideas at least par
tially . . .

I. M. Lifshits

Thus, we have traced briefly the emergence of n
quantum-mechanical problems with exact solutions eme
ing in connection with systems of different origins~spin and
soliton systems!. The problems have enriched the family
potential models with simple explicit analytical expressio
for energy levels and wave functions of stationary states
quantum mechanics. The new class of exact solutions is
tinguished above all by a variety of potential profiles.

It is necessary to grasp many aspects of the new s
of-the-art in the problem of exact solutions~such as quasi-
exact solvability, spin–soliton analogy, and structural tra
formations in the energy bands of spin models! and to
generalize the obtained results, for example, on the bas
more complex spin and soliton systems.

The models under consideration have a clear phys
meaning even at the stage of their creation since these m
els appeared not as a result of mathematical transformat
but as a result of analysis of specific systems~such as spin
and soliton systems!.

It should be noted in conclusion that quantum
88 Low Temp. Phys. 23 (1), January 1997
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tively developing trend.
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11S. Flügge,Practical Quantum Mechanics, Springer, Heidelberg~1971!.
12V. M. Galitskii, B. M. Karnakov, and V. I. Kogan,Problems in Quantum
Mechanics@in Russian#, Nauka, Moscow~1981!.

13V. V. Ulyanov,Problems in Quantum Mechanics and Quantum Statist
@in Russian#, Vysshaya Shkola, Kharkov~1980!.

14V. V. Ulyanov, Integral Methods in Quantum Mechanics@in Russian#,
Vysshaya Shkola, Kharkov~1982!.

15A. M. Perelomov,Generalized Coherent States and Their Applications@in
Russian#, Nauka, Moscow~1987!.

16V. V. Ulyanov, Methods of Quantum Kinetics@in Russian#, Vysshaya
Shkola, Kharkov~1987!.

17O. B. Zaslavskii and V. V. Ulyanov, Zh. E´ksp. Teor. Fiz.87, 1724~1984!
@Sov. Phys. JETP60, 991 ~1984!#.

18O. B. Zaslavskii and V. V. Ulyanov, Tekh. Mekh. Phys.71, 260 ~1987!.
19S. I. Chan, D. Stelman, and L. E. Thompson, J. Chem. Phys.41, 2828

~1964!.
20I. Kay and H. E. Moses, J. Appl. Phys.27, 1503~1956!.
21M. A. Shifman and A. V. Turbiner, Commun. Math. Phys.126, 347

~1989!.
22O. B. Zaslavskii, Phys. Lett.A190, 373 ~1994!.
23O. B. Zaslavskii, J. Phys.A27, L447 ~1994!.

Translated by R. S. Wadhwa
88Ulyanov et al.



Hamiltonian description of the motion of discontinuity surfaces
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The Hamiltonian description of the motion of arbitrary discontinuity surfaces is proposed on the
basis of the variational principle, taking into account the conservation laws in terms of
consecutively introduced volume potentials~of the Clebsch type! as constraints. Such a method
of introduction of Hamiltonian variables makes it possible to generalize the known
canonical variables for the interface between two media to the cases of shock waves and slip
surfaces. The results are compared with the introduction of surface Hamiltonian variables
through the canonical transformations of bulk Hamiltonian variables. The results permit a direct
generalization to the case of magnetohydrodynamics, plasmas, superfluid liquids, and other
media for which the bulk Hamiltonian equations are known. ©1997 American Institute of
Physics.@S1063-777X~97!01301-7#

INTRODUCTION a nonpotential flow, the above-mentioned approach co
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The surface canonical variables were introduced
Zakharov1 for describing the potential motion of the fre
surface of a liquid. The superior convenience of this a
proach to nonlinear and stochastic problems renders the
sition to canonical variables also suitable for describing
motion of an arbitrary discontinuity surface in hydrodyna
ics, i.e., for a shock wave and slip surface; this forms
subject matter of this publication. It should be noted that
Ref. 1 as well as the later publication by Sinitsyn and one
the authors,2,3 in which the results obtained by Zakharo
were generalized for the interface between two media,
surface Hamiltonian variables were virtually guessed. La
a regular method of derivation of surface Hamiltonian va
ables from the bulk variables with the help of canonic
transformations applicable at the interface between two
compressible liquid was proposed.4–6 Here we describe a
method of introduction of surface Hamiltonian variables
natural boundary conditions of the variational problem~see,
for example, Ref. 7!. Both these approaches can be used
other cases also, when bulk variables are known:8–11magne-
tohydrodynamics, plasma, magnets, superfluid liquids, e

At the same time, the variational principle is formulat
so that it allows us to introduce Hamiltonian potentials in t
bulk as Lagrangian multipliers at constraints by using
conservation laws for this purpose. It should be noted t
such an approach was used fruitfully by Dirac12 in quantum
electrodynamics; for continuous media, this approach w
applied in Refs. 13 and 14.1! Although bulk Hamiltonian
variables in conventional hydrodynamics are known fo
long time,18–21 the method of their introduction is ofte
purely directive ~especially in the case of a nonpotent
flow!. In this connections, it remains unclear, for examp
how many pairs of Clebsch variables are required10,22,23and
whether the entropy is included in the set of su
variables.4,22As regards the representation of the velocity
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sponds to Lin’s variational principle and leads unambigu
ously to Clebsch vector potentials, excluding arbitrariness
their number.

VARIATIONAL PRINCIPLE WITH CONSTRAINTS

The bulk equations must be equivalent to the equati
of hydrodynamics of an ideal liquid~the notation is the same
as in the monograph by Landau and Lifshitz24!:

dv

dt
52

¹p

r
1g, ~1!

]r

]t
1div rv50, ~2!

ds

dt
50;

d

dt
5

]

]t
1~v–¹!. ~3!

We will derive these equations by using the variational pr
ciple for the action

S5E dtL5min,

L5E drI, I5
rv2

2
2e, e[r«. ~4!

The internal energy can be supplemented with the te
describing potential forces such as the force of gravity w
ten symbolically in~1! ~this force will be omitted below!.
We introduce canonical variables by the Lagrangian meth
taking into account~nonintegrable! constraints~2! and ~3!.
The constraints introduce into the Lagrangian the requi
temporal and spatial derivatives

I→I85I1Ic , Ic5w~ṙ1div~rv!!1s
ds

dt
. ~5!

890089-07$10.00 © 1997 American Institute of Physics



By varying the action~4! with the Lagrangian density~5!
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CANONICAL TRANSFORMATIONS
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independently inv, r and s, we obtain a representation o
velocity and equations which will be written below for
more general case@Eqs.~27!, ~29!#. The variation inw ands
reproduces the constraints~2! and~3!. For the simples isoen
tropic case, we arrive at a purely potential flow

dS

dv
50→v5¹w.

The Lagrangian multiplier of the constraint expressing
law of mass conservation turned out to be just the velo
potential, which in turn indicates that the densityr and the
potentialw are canonically conjugate variables.20 We shall
use this circumstance below in a more complex case o
nonpotential flow by introducing the bulk Clebsch potenti
by Lin’s method13,15as well as the surface Hamiltonian var
ables.

CANONICAL VARIABLES

We can now write the equations~for the case under in
vestigation! in the Hamiltonian form:20

dS

dw
50→ ṙ5

dH

dw
;

dS

dr
50→ẇ52

dH

dr
. ~6!

In this case, generalized coordinates and momenta have
form

q5~r,v!, r5~w,0!.

The density of the Hamiltonian is given by

Ĥ[pq̇2I5wṙ2I. ~7!

~Pay attention to the fact that generalized momentum
pressure have the same notation.! Zakharov1 was the first to
show that, in the presence of a free boundary

z5z~r' ,t !, r'5~x,y!, ~8!

it is possible to introduce ‘‘two-dimensional canonical va
ables:’’

z~r' ,t !, c~r' ,t !5wuz , ~r51!. ~9!

These variables were introduced by using the bulk equa
for velocity potential~the Laplace equation! and the fact the
coordinate conjugate to it in the given case of an incompre
ible liquid is constant. In view of the latter fact, the potent
can be in principle excluded from the Hamiltonian. In th
case, the essential variables are the elevation and the bo
ary value of potential, which corresponds to the existence
one ~continual! physical degree of freedom.

These Hamiltonian variables were used in the analysi
disturbance on the liquid surface~see, for example, Refs. 10
25 and 26!. The investigation of internal waves in Ref. 2~see
also Ref. 3! resulted in the following generalization of th
Zakharov variable to the case of the boundary between
media:

z; c5~r1w12r2w2![@rw#, z5z. ~10!

~This generalization is obvious, but it is very important f
subsequent analysis.!
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Later, a method of derivation of surface canonical va
ables from the bulk variables through a canonical trans
mations was proposed4–6 and generalized to a nonpotenti
flow ~see below! as well as to the case of magnetohydrod
namics. We write the bulk Hamiltonian equations for a p
tential flow:20

H5E dVS rv2

2
1e~r! D . ~11!

Following Kontorovichet al.,5 we consider a transition to
two incompressible liquids with densitiesr1 and r2 which
are separated by the boundaryz5z(r' ,t). For this purpose,
we introduce the representation

r5 f ~z2z![r21~r12r2!Q~z2z!, ~12!

where the continuous functionQ describing a real or ficti-
tious transition layer tends to the function of discontinuity

Q~z2z!→u~z2z!51~z.z!; 0~z,z!. ~13!

Naturally, the change in density at a given point as a resu
a limiting transition is determined only by the motion of th
interface and is described by the functionz(r' ,t). On the
other hand, the derivative is transformed to thed function:

f 8→d~z2z!.

Let us now go over from the old coordinater and momen-
tum w to new canonical variables through a canonic
transformation,27 assuming that the elevationz is a new co-
ordinate. The generating functional

F~w,z!5E dVw f ~z2z!

is transformed as a result of a limiting transition into

F~w,z!5E dr'H E z

r1w1dz1E
z
r2w2dzJ ,

and the variation inz gives the new momentum

c[
dF

dz
5~r1w12r2w2!uz5z[@rw#, ~14!

so thatz and c[@rw# form a canonically conjugate pai
coinciding with~10!. It will also be obtained below from the
variational principle.

CLEBSCH REPRESENTATION AND VECTOR POTENTIAL

In order to describe a nonpotential flow, we shall use
Clebsch representation18,19,21

v5¹w2
l

r
¹m2

s

r
¹s, ~15!

where the Clebsch parameters satisfy the relations

ṁ5
dH

dl
52~v•¹!m,

dm

dt
50; l̇52

dH

dm
52div lv.
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A generalization of the previous approach with the help of a
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canonical transformation makes it possible to introduce s
face variables in this case also.6 For example, omitting the
entropy terms, we can introduce the generating function
the form

F~w,m;z,l̃!5E dV$w f ~z2z!1ml̃f ~z2z!%,

where

r5 f ~z2z!, l5l̃f ~z2z!.

As a result, we arrive at the canonical equations

]c

]t
52

dH

dz
,

]z

]t
5

dH

dc
,

in which the role of surface Hamiltonian variables is play
byz,c [ @r(w 1 ml)#.

Although the three scalar fieldsw, l, andm may appear
as sufficient for describing an arbitrary vector veloc
field,23 it is not so. The incompleteness of the descripti
becomes obvious if we calculate the helicity~Hopf
invariant!28,29

I5E dV~v•curl v!.

In the representation under investigation~for isoentropic
flows!, it vanishes identically, while for topologically com
plex flows it must differ from zero, characterizing the degr
of knoffing.9,30,31

Apparently, the intuitive conception that the three sca
fields are sufficient becomes false in the case of emerge
of special points and lines as in the above example, sinc
this case the conditions of expansibility into a series~form-
ing the basis of the Darboux theorem32 that expresses thi
possibility exactly! are violated.

Let us introduce vector canonical variables in analo
with the scalar potential, but using the momentum conse
tion as an additional constraint:

I85I1w~ṙ1div rv!1Al~] trv l1]mP lm!,

P lm5rv lvm1pd lm . ~16!

Variation in v leads to

dv: v l5Ȧl1~vV!Al1vm] lAm1] lw.

Alternately, solving this equation for velocity, we obtain

Klmvm5] lw1Ȧl ; ~17!

Klm5d lm2]mAl2] lAm . ~18!

Thus, the Lagrangian multiplier of the constraint express
the conservation of momentum proved to be velocity vec
potential. In view of the nonlinearity of equations, howev
its role in hydrodynamics is much less significant than
electrodynamics. The generalized coordinates and mom
have the form

~r,rv!~coordinate!, ~w,A!~momentum!. ~19!

It can be seen that this method leads to the emergence
vector potential as a canonical variable, which is used

91 Low Temp. Phys. 23 (1), January 1997
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this representation makes it possible to describe a liquid fl
in canonical variables by using a number of functio
smaller than the number of vector Clebsch variables. Ho
ever, the emergence of a tensor nonlinear inA and inverse to
Ki j in the Hamiltonian after elimination of velocity compli
cates the analysis. For this reason, we shall not consider
interesting case here.

CLEBSCH VECTOR VARIABLES

In order to reduce the Lagrangian to a more conventio
form, we represent the velocity as the total derivative of
displacementjW :

v5
djW

dt
5jẆ1~v–¹!jW . ~20!

Using ~2! as a relation with the Lagrangian multiplierlW , we
can easily derive canonical equations. We write these eq
tions by introducing preliminarily the displacement by a r
dius vector

jW~r , t !5r2mW ~r , t !, ~21!

for a comparison with the Clebsch variables and the varia
mW (r ,t) instead of the field variablejW (r ,t). Assuming, with-
out loss of generality, that the displacementjW50 for t50,
we obtainmW (r ,t)50 so thatmW (r ,t) determines Lagrangian
coordinates of a liquid particle located at a point with Eu
coordinatesr at the instantt. By fixing mW , we can invert this
relation and determine the trajectoryr (mW ,t) of the particle;
using ~21!, we can also determine the displacement:

jW5jW~r ~mW ,t !,t !, r ~mW ,0!5mW . ~22!

This leads to the following expression for the velocity:

v5
djW

dt
umW 5] tr umW 5jẆ ur1~v–¹!jW , ~23!

so that the equation of motion formW (r ,t) coincides with the
transport equation for a conserved quantity:dmW /dt50. Ob-
viously, the variableslW andmW correspond to the conserve
Lagrangian coordinates (mW ) and momenta (lW /r) of the par-
ticle. This corresponds to the introduction of the vector se
Clebsch parameters by Lin.4,15,22A transition to scalar Cleb-
sch variables is carried out in a special case whenmW andlW

are proportional to the same constant vector.
For the bulk density of the Lagrangian function, we o

tain

I85I1Ic8 , Ic85w~ṙ1div~rv!!1lW
dmW

dt
1s

ds

dt
, ~24!

which leads to the following representation of velocity:

d

dv
:v5¹w2

lm

r
¹mm2

s

r
¹s ~25!

and the bulk equations

d

dmW
:lẆ1]m~lWvm!50, ~26!
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50, ~27!

d

dr
:
dw

dt
1w2

v2

2
50, ~28!

d

dw
: ṙ1div~rv!50, ~29!

d

ds
: ṡ1div~sv!1rT50, ~30!

]/]s: ds/dt50. ~31!

The canonical coordinates and the momenta conjugat
them are given by

q5~r,mW ,s!,p5~w,lW ,s!. ~32!

Differentiating ~25! with respect to time and using Eq
~26!–~31!, we can verify that velocity satisfies the Eul
equation~1!.

It should be noted that in this case the Hamiltonian h
the form

Ĥ5( pq̇2I8[ Ĥ̃2div~rvw!, ~33!

where Ĥ̃ is the energy density for a liquid, and the dive
gence term is significant.

HAMILTONIAN VARIABLES ON A SURFACE OF
DISCONTINUITIES

Let the equation of a discontinuity surface~of any type!
have the form

R~r ,t !50, ~34!

where the functionR is either given~defining the shape of a
fixed rigid boundary!, or is to be determined~e.g., of a free
boundary! from the solution of the hydrodynamic problem
Under obvious constraints, it can be represented locally
the form ~8!: R→z2z(r' ,t). Differentiating ~34! with re-
spect to time, we obtain the kinematic condition

dR

dt
5

]R

]t
1u¹R50, ~35!

where

dr

dtU
R50

5u, u5nun

is the velocity of the boundary which, without loss of gene
ality, will be assumed to be directed along the norman
5¹R/u¹Ru ~the normal is directed from medium 1 to m
dium 2!. It should be noted that, in the case of a cont
break,un coincides with the velocity of liquidvn . We use
the kinematic condition as a constraint in the variatio
principle with the Lagrangian multiplierc.

Since we had to integrate by parts in order to obtain
bulk equations of motion, only the surface term contain
the boundary values of bulk variations is left after the va
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tegrating by parts, taking into account the identity

E dtE dr
] f

]t
5E dtS ]

]t E dr f2E dS@unf # D
52E dtE dr'@ fu•¹R#

and adding the term corresponding to the variation of
boundary, we obtain the following expression for action:

~dS!bound5E dtE dr'@~wdr1lWdmW 1sds!v8¹R

1rw~dv!¹R1Idz#, ~36!

where the brackets indicate the jump in the correspond
quantity at the boundary (@X#[X12X2), and we consider
that uIc8u50 according to the bulk equations. It should b
noted that the surface term in~36! contains only the bound
ary variations of generalized coordinates~including velocity!
dq5(dq)uz and not momenta.

The Hamiltonian potentials on both sides of a discon
nuity are not independent. We modify the Lagrangi
through the surface terms by introducing additional co
straints on the canonical variables at the boundary so tha
obtained variational equations are equivalent to hydro
namic boundary conditions. An analysis shows that it is s
ficient to impose two additional~scalar and vector! con-
straints at the discontinuity, i.e., to require the continuity
the mass fluxes

g:@rv8#50↔@rv8¹R#50, ~37!

and of the vector Lagrangian coordinate

hW :@rmW vn8#50↔@rmW ~v8¹R!#50, ~38!

whereg andhW are the Lagrangian multipliers, and

v85v2u ~39!

is the velocity of the liquid relative to the boundary. F
convenience of introduction of surface variables, we sh
also use the kinematic condition~35! with the multiplierc as
a constraint.

The requirement of continuity of the flux of the quanti
mW is in accord with its interpretation as a set of Lagrang
coordinates for a liquid particle: these coordinates do
change upon an intersection of a shock wave, while in
case of a contact break or slip surface, the flux vanishes
to the equality to zero of the normal velocity component
the liquid. It should also be noted that such an interpretat
of mW is not necessary from the formal point of view, b
indicates a certain choice of calibration.2! With such a
choice, the canonical equations are written in the Euler r
resentation, but include Lagrangian coordinates and m
menta as field variables.

As a result, we obtain the surface density of the L
grangian in the form

IS52c~Ṙ1u¹R!1@rv8G#¹R, ~40!

G5g1hW mW . ~41!

92A. V. Kats and V. M. Kontorovich
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the next section!. This leads to the following expression fo
the Lagrangian:

L→L81LS , LS5E dr'IS , ~42!

so that the momentum conjugate to the elevation of
boundary is equal toc ~10!, ~14!: c5dL/dż. The surface
density of the Hamiltonian and the Hamiltonian itself a
given by

HS5cż2IS[cu–¹R2@rv8G#¹R, ~43!

H5H̃1E dr'c~u–¹R!2E dr @div~rvw!

1div~rv8G!#.

Assuming now that the variations of the boundary values
all bulk variables on both sides of the discontinuity and
introduced surface variables~c, z, g, andhW ! are indepen-
dent, we obtain the system of boundary conditions~it should
be emphasized that conditions~44!, ~45!, ~47!, and ~48! are
satisfied on both sides of the boundary!:

dr: ~w1G!~v8¹R!50, ~44!

dv: r~w1G!50→G52w, ~45!

du: c1@rG#50→c5@rw#, ~46!

dmW : ~lW1rhW !~v8¹R!50, ~47!

ds: s~v8¹R!50, ~48!

dg: @rv8¹R#50, ~49!

dhW : @rmW ~v8¹R!#50, ~50!

dc: ż2u¹~z2z!50, ~51!

dz: @Spq̇2Ĥ1div~rvw1rv8G!#2~] tc1¹'~u'c!!

1a¹'S ¹'z

~11~¹'z!2!1/2D50. ~52!

Here a is the surface tension~the corresponding standar
term

Ha5E dSa5aE dr'F 1

~11~¹'z!2!1/2
21G1const

in the Hamiltonian was omitted!.
In the variation of the surface term@rv8G#¹R in ~43!, it

is convenient to transform it first to the bulk term with th
help of the identity

E dr'@X¹R#5E dr divX,

carry out variation, and then integrate by parts.
Equations~44!–~52! form a complete system of bound

ary conditions in canonical variables for the bulk equatio
of motion ~25!–~31!. Before going over to an analysis o
various types of discontinuities, let us analyze the obtai
equations. Obviously, Eq.~44! is a consequence of~45!, i.e.,
without loss of generality, we can assume that the bound
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remaining boundary conditions and bulk equations, we
transform Eq.~52! which has the most cumbersome form

@p1rvn8
2#1a¹'S ¹'z

~11~¹'z!2!1/2D50, ~53!

which corresponds to the continuity of the normal mome
tum flux component. Instead of Eqs.~44!–~52!, we shall
henceforth consider a system of independent equations~45!–
~51! and ~53!. It can be seen that this system can be simp
fied further since Eqs.~47!, ~48!, and~50! contain the same
factor v8 • ¹R, i.e., the normal velocity component of th
liquid relative to the boundary. Consequently, the obtain
system of equations as well as the standard hydrodyna
system24 contains a ‘‘fork’’ corresponding to two classes o
discontinuities: shock waves through which mass is tra
ferred andj5rvn8 Þ 0, so thatvn8 Þ 0, and the slip surfaces
and contact breaks for whichvn850.

SURFACE TENSION

In the above analysis, the surface tension was taken
account, as usual, by introducing a special surface termHa

into the energy, and accordingly into the Lagrangian fun
tion. However, using the limiting transition~13! and~15!, we
can obtain this term from the bulk internal energy dens
For this purpose, we must take into account the depende
of the latter quantity on local density gradients~weak spatial
dispersion!, which reflects the finiteness of the range of i
termolecular forces responsible for surface tension:

r«~r![e~r!→e~r,¹r!. ~54!

Such a dependence on local gradients is naturally include
the conventional formulation of the variational principl
where the Lagrangian function is a function of not only ge
eralized coordinates, but also of their gradients~which are
essential for the formulation of field equations!. On the other
hand, for the equation of state this corresponds to the w
known Ornstein–Zernike approximation which is used
describing, for example, critical opalescence~we should not
only come too close to the critical point at which dispersi
is not weak any longer in view of a nontrivial contributio
from fluctuations! and for deriving the Van der Waals equ
tion. The isotropy of interactions indicates that the argum
of energy is the square of density gradient, and hence
must retain in the limiting transition the derivative of th
Q-function describing the actial shape of the transition la
~and the form of interpolation! as a multiplier of the
d-function:

¹r→~r22r1!n
dQ

dR
A11~¹z!2.

Accordingly, we can write

E dVe@r,~¹r!2#→E dVe~r!1E dSa,

where

93A. V. Kats and V. M. Kontorovich
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ż5v–¹R5vnA11~¹'z!2, ~65!

or

o a

te a
s of
ee-
ui-
or-

if-
x-

the

of
oni-

es,
s a
on

dis-
nt
is-
o-
,
em

e
ma-
n-

ibe
ns
]~¹r!2 2 1 dR
R50

This leads to the estimatea;ea2/ l , wherea is the atomic
scale andl the transition layer thickness.

HAMILTONIAN VARIABLES ON THE SHOCK WAVE
SURFACE

If vn8 Þ 0, the mass flux through the discontinuity diffe
from zero and is continuous according to~49!:

rvn85 jÞ0, @ j #50. ~56!

Bearing this in mind, we obtain the following expressions
the discontinuity surface from~47!, ~48!, and ~50!, respec-
tively:

hW 52lW /r→@lW /r#50, ~57!

suz50, ~58!

@mW #50. ~59!

Consequently, the Lagrangian invariantsmW andlW /r are con-
tinuous, and the momentums conjugate to entropy vanishe
at the boundary. The continuity ofmW leads to the continuity
of G which, according to~45!, results in the continuity of the
potentialw at the boundary:

G[g1lWmW /r52w→@w#50, c5@r#wuz . ~60!

For the boundary values of velocity, we obtain

vuz5¹w2~lm¹mm!/r. ~61!

Taking into account what has been said above, we arriv
the continuity of the tangential velocity component:

@vt#5@¹tw2~lm¹tmm!/r#50, n¹t[0, ~62!

where the indext denotes the tangential component. Usi
the obtained conditions, we can verify that the energy fl
through the boundary is continuous.

Supplementing these equations with~53!, we see that
they describe a shock wave~in accordance with the abov
estimates, we must puta50 in the case of a gas!.

It is interesting to note that the fluxes of the quantit
mW , lW /r, andw are continuous:

@ j mW #5@ j lW /r#5@ j w#50;

j mW [rmW vn8 , j l/r[lWvn8 , j w[rwvn8 . ~63!

HAMILTONIAN VARIABLES ON THE SLIP SURFACES
AND CONTACT BREAK

Let us now suppose thatvn850 on one side of a discon
tinuity. Then it follows from~49! that this quantity is equa
to zero on the other side of the discontinuity also, i.e.,
normal velocity component of the liquid is equal to the v
locity of the boundary, and the liquid does not intersect
discontinuity. Equations~44!, ~47!, ~48!, and~50! in this case
do not impose any additional constraints. Using relation~51!,
the quantityun can be eliminated:

v8¹R50, j50, vn5un , ~64!
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at

x

e
-
e

expression~45! can be written in explicit form

r~G1w!50→g1~w1hW mW !uz50, ~66!

and expression~53! can be reduced to

@p#1a¹'S ¹'z

~11~¹'z!2!1/2D50. ~67!

Supplementing these equations with the result of~45! and
~46!, i.e.,

c5@rw#, ~68!

we obtain the set of the boundary conditions~64!–~68!
which must be satisfied by Hamiltonian variables f
@vn#50. For velocity components, we obtain

vt5¹tw2
lm

r
¹tmm2

s

r
¹ts, ~69!

vn5
]w

]n
2

lm

r

]mm

]n
2

s

r

]s

]n
, @vn#50. ~70!

It follows hence that the boundary conditions correspond t
slip surface for@vt# Þ 0 and to a contact break for@vt#50.

It should be noted that the obtained equations indica
considerable freedom in the choice of the boundary value
Hamiltonian variables, which corresponds to a gauge fr
dom in the choice of potentials. For all types of discontin
ties, additional surface Hamiltonian variables, viz., the co
dinate z(r' ,t) and the momentumc5@rw#uz5z are
significant. The expression for momentum derived by us d
fers by a canonical transformation from the symmetric e
pression

c5@rw1lWmW 1ss#z5z , ~71!

generalizing the expression given in Refs. 5 and 6 to
vector Clebsch variables.

CONCLUSIONS

The variational principle with additional constraints
various types has been used for introducing the bulk can
cal variables~including Clebsch-type potentials! as well as
surface canonical variables for all types of discontinuiti
including shock waves which can also be regarded a
Hamiltonian system. The latter statement is not trivial
account of the dissipative nature of shock waves.

The obtained system of conditions at the surfaces of
continuities in canonical variables is minimal and equivale
to the ordinary system of hydrodynamic conditions at d
continuities ~i.e., discontinuities of mass, energy, and m
mentum fluxes!. Owing to minimality and gauge freedom
additional constraints corresponding to a specific probl
can be imposed.

A canonical transformation from the bulk to surfac
Hamiltonian variables has been considered; this transfor
tion is used for the introduction of terms with surface te
sion.

Vector Clebsch potentials make it possible to descr
the most general type of flow, and the continuity conditio
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cate that the surface of discontinuity should not necessa
coincide with the equipotential surface; this makes it p
sible to avoid a number of difficulties in applications.
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1!Of course, the boundary conditions on the bulk Hamiltonian variab

~and, correspondingly, the choice of the surface canonical variab!
should lead to a continuity of flow of mass, energy, and momentum; h
ever, they are not uniquely determined by these conditions. Evidently
use of the variational principle, which is connected with the introduction
the same canonical variables would be the simplest method of obta
such a system which, on the one hand, would be complete, and on
other, would allow the greatest gauge freedom~see notes in Refs. 15–17!.

2!One can easily be convinced that there exists a gauge~and simultaneously
canonical! transformation which transformsmW into mW 1s–b, whereb is a
constant vector which disrupts the natural continuity ofmW . Attempts in the
literature at using the entropys in place of the scalar Clebsch variable a
connected with this circumstance. From what has been noted above
limited nature and unsuitability of such a representation are obvious
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