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It is shown that strong anisotropy of the quasi-two-dimensional electron spectrum in high-
temperature superconductors and the competition between attraction and repulsion in the
electron—electron interaction can lead either to anisotrspior d-type of Cooper pairing

depending on the system parameters. In the case when attraction prevails on the entire Fermi
surface(e.g., due to electron—phonon interaciothe s,,- or s*-symmetry in the

superconducting order parameter is advantageous from the energy point of view. At the same
time, thed,2_,2-symmetry of the gap is observed in the case of repulsion in the entire

Brillouin zone (which is typical, for example, of the electron—magnon interagtamwell as in

the case of effective attraction on the regions of Fermi surface with the maximum density

of states. In the latter case, the superconducting transition tempefatisalways higher than

in the former case, indicating the important role of additional attraction in the mechanism

of high-temperature superconductivity. €97 American Institute of Physics.
[S1063-777X97)00202-9

1. Experimental data on the observation of spontaneousntire Fermi surfac€rS), thes,, symmetry in the supercon-
Josephson currents in SQUID-type systems with two tunnedlucting order parameter or thes*-symmetry of
junctions at mutually perpendicular faces of123 single  A4(k)~(cosk.+cosk)) is advantageous from the energy
crystalé—2as well as the generation of half-integral magneticpoint of view. At the same time, thab2_,2-symmetry of the
flux quanta observed in superconducti{i®f) rings made of gap is observed in the case of repulsion in the entire volume
Y (123 and Bi2212 films with an odd number of weak of the BZ as well as in the case of effective attraction on the
links*® speak in favor of thel,2_o-type symmetry inthe SC FS regions with the maximum density of stat€sS). In the
order parameted 4(k) ~ (cosk,—cosky) in high-temperature latter case, the superconducting transition temperakyrne
superconductors. New results of experiments on photoele@ways higher than in the former case, indicating the impor-
tron spectroscopy with angular resolutichRPES methog  tant role of additional attraction in the HTS mechanism.
which were reported recentfy/, refute previous conclusions 2. It was proved in Refs. 16 and 17 that the strong hy-
drawn by these authdfs® on the s,-type symmetry of bridization of overlapping wide and anomalously narrow
Ag(k)~cosk, cok, and confirm thed,2_,2-symmetry in 2D energy bands in the electron spectrum of a layered crys-
Bi(2212 single crystals. tal leads to the formation of extended saddle regions which

It should be emphasized, however, that thewere observed in ARPES experiments with a high energy
dy2_2-symmetry of the SC gap does not indicate unambigu+esolution'*!> As a result, the anisotropic cylindrical FS
ously a specific mechanism of Cooper pairing of charge carsplits into four pairs of “electron” regions and four “hole”
riers. For example, it cannot serve as a proof of the magnoregions in the case when the Fermi leyeL) lies above the
mechanism of high-temperature superconductiiyTS)  bottom of the saddle&ee Fig. 1 The curvature?E/ok? of
due to exchange by virtual quanta of collective spin-densitythe spectrum in these regiorfthe “transverse” effective
excitations(by paramagnonsin a nearly antiferromagnetic mas$ is accordingly positive or negativélt is important for
Fermi liquid, in which the electron—electron repulsion pre-further analysis that these regions have essentially different
vails in the entire volume of the Brillouin zon®2Z). densities of states and characteristic energy sdqales be-

In this paper, we prove that a strong anisotropy of thelow). In this case, the DS on gquasi-one-dimensioffkat)
guasi-two-dimensional electron spectrum in  high-“electron” regions has a Van Hove root singularity, which
temperature superconducttt$® combined with a competi- might facilitate the enhancement of the electron—electron in-
tion between the attractiof@.g., due to the electron—phonon teraction and elevate the superconducting transition tempera-
interaction(EPI) and repulsion of the Coulomb or magnon ture T,,.1>18
origin) can lead either to the anisotropse or thed-type of It should be noted that the presence of an anomalously
Cooper pairing depending on the electron—electron interacaarrow band with a high DS near the FL facilitates the emer-
tion constants. In the case of prevailing attraction on thegence of the electron—plasmon interacti&@rl) due to ex-
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the matrix elements of the retarded electron—electron inter-
action,F,, anomalous Green'’s functions, and the subscripts
i andj label different regions on the FS.

If we disregard “cross” Cooper pairing of electrons
from different regions of an anisotropic FS and @dyf=0
for i#j, the system of equationd) for the gapsA;=4;;
assumes the following form after averaging over momenta
(within each region on the BS

Ai(w)==T2, fd@ ri(W,j(0—0")Fj(£0),
’ @

where¢ is the electron energy measured from the common
FL, andv; andW;; are the values of DS and matrix elements
W;; jj describing the retarded electron—electron attraction
near the FS due to the EPhI as well as due to screened Cou-
lomb repulsion, which are averages over area ofjthesur-

face element of the FS far~j, W;; defines the probability

of virtual two-particle transitions between different regions
of the FS. Naturally, such an approach cannot lead to an
explicit angular dependence of the anisotropic 44p), but
reflects the basic symmetry properties of the order parameter
taking into account only the mean values of the magnitude of
the gap and its signs on different regions of the FS depending
on interaction constani{see below.

If we neglect the violation of the&,, symmetry in the
initial spectrum, which can be associated, for example, with
the formation of a superlattice in thE—Y direction in a
Bi(2212 single crysta?, the system of equation@) for a
multicomponent order parameter has the following types of
solutions:

(1) in all “electron” regions of the FS, the gaps; have the
same magnitude and sign, while the gapsare smaller
thanA; in the “hole” regions and can have either the
same sign ad,, or the opposite sign; this solution cor-
responds to the-type of symmetry of the SC order pa-
rameter(Fig. 13;

Tt

FIG. 1. (a) The structure of an anisotropic superconducting gap in the case

of the s,,-symmetry of the order parameter. The cross section of the cylin-(z)
drical Fermi surface in a layered @212 single crystals in the first Bril-

louin zone(bold curves correspond to “electron” regions with a positive
curvature and dashed curves to “hole” regions with a negative curvature.
(b) The gap structure in the case of tlg_,2>-symmetry of the order pa-
rameter.

change of virtual quanta of low-frequenc€iF) collective
charge-density excitationgcoustic plasmons®

Bearing in mind the possibility of FS splitting into re-
gions with essentially different properties, we shall use the
model of anisotropic superconductor with a multicomponent
SC order parameter, which was developed in Refs. 16, 17

in mutually perpendicular “electron” regions of the FS,
the gaps have the same absolute values, but opposite
signs, while in the “hole” regiongalong the diagonals

of the B2), the gaps are equal to zero; this solution cor-
responds to thel,._,.-wave Cooper pairindFig. 1b.
Besides, al,,-type solution withA 4(k) ~sink, sink, is

also possible, but it has a low probability in view of a
low DS in the “hole” regions.

In the first casds-pairing), the system of equations for

the gapsA; and A, in the BCS approximation can be re-
duced to

) > . A=A N1+ 2N+ N DL+ 2A5(N o+ Nqo)Lo; 3
and 20. In this case, the equation for the superconducting ~ * 1t 2hg ALy oMzt Ailai (3)
order parameter can be presented in the form , " ,
p p A2:A2()\22+ 2)\22+)\22)L2+2A1()\21+)\21)L1, (4)
d2K’ ,
Aj(ko)=T> | =3 > Wjmkk o where
< | 2m?t&
—w,)FIm(k’,w,)a (1) L _E fEFl dé EFl )1/2tanh \/g +|A1| .
wherew andw’ are discrete Matsubara frequencig; |, Y2 ) e, VE+|A]? \E+ER 2T 7
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M FIG. 3. Interface between thgreg@ns V\Mndd-yptis of Cooper pairing
in the space of the parametexs,, Ay, and\j; for A, Ay =0.04.

FIG. 2. Cross section of a cylindrical FS centered at)ther Y) point of
the BZ. The arrows indicate the interaction between electrons from different
regions of the FS, corresponding to different coupling constants);; and

N (1= 1,2), and\i(i # J). In the latter caséd-pairing), we obtain a single equation

for the gap modulud ; in the saddld€"electron”) regions of

the FS:
l:()\ll_z)\il‘i‘)\zl)l_l (7)
Q d¢ VE+[A,* .
L,= tanh >T : (5) It should be noted that the magnon mechanism of Coo-
0 VEH|A, per pairing*~*3corresponds to negative signs of all constants

. . . < 1< N iti

Er, and \,; are the Fermi energy and the dlmensmnless()\11 0, 11;=0, Ay43,<0) so that a SC transition can take
. . . . : N ., place only for a strong anisotropy of interaction, when the

coupling constant in the quasi-one-dimensional “electron

~ magnitude of the coupling constant along a BZ diagonal sat-
region of the FS with a root singularity of the B3’ Q) and gnitu Hping g 129

. : .__isfies the inequality |Q.14)>21/2(|\14 +|\];). On the other
A, are th_e cutoff energy_of |nteract|on/ and t?e COUpIInghand, if the electron—electron attraction due to the EPhI and
constants in the “hole” regions of the F&;; and\;; are the

Fi ion b diff vl (1 EPI dominates in the “electron " regions of the FS, when
cons‘t‘ant(,)’ |'nteract|or.1 etween di ere’nt electron’™(1) N1.>>0, while Coulomb repulsion between electrons from
and “hole” (i =2) regions, and;; and\j; are the constants

: s mE neighboring regions dominate@ ;;<<0 and \7,<0), the
of cross interactioni@j) between “electron” and “hole” g ¢ reg o911 11=0)

. . . d-pairing can take place under a much less stringent condi-
regions of the FS. We assume that the Fermi energy in thﬁolil()\lli 2\ — |}\p,, >0 g
11 11 .

“hole” regions is Eg,>() so that the constantsy,, Az, 3. A comparison of the superconducting transition tem-
and X3, contain, along with the EPhl and EPI, the Coulomb peatyresrs and T¢ calculated on the basis of relatiof8—
pseudopotential: (5) on one hand and?) on the other hand allows us to find
the ranges of the parameters for which either or
k= Me — (6) d-symmetry of the gap is observed. Such a comparison can
1+ puc IN(Eps/Q) be carried out analytically by using a simple model of the

BCS type without taking into account the root singularity of
while X153, N33, and\j; contain the nonrenormalized con- the DS inL, and for the same values of cutoff interaction
stantu>ug of Coulomb repulsion sincEg; <€). Figure 2 energyQ, whenL,=L, for T—T,. In this case, relations
shows schematically electron—electron interactions in differ(3), (4), and (7) lead to Ti’dzﬁ exp1/A.4), where the
ent regions of the FS corresponding to different couplingefiective coupling constants, and A 4 are given by
constants.

Equations(3) and(4) show that in the case of prevailing A :A11+Azz+ (A= Ap)? oy 12
attraction in the entire volume of the BZ owing to strong s 2 4 12821
EPhI and EPI, when all the coupling constants are positive, a ,
quasi-isotropic solution of the-type with the same signs Ag=An—ary, ®
(phases of the parameterd; andA, is advantageous from where
the energy point of view. On the other hand, for negative
values of cross constants, and\j, with i#j (i,j=1,2),

AII:)\II+2)\I,I+)\:’I )\|J:2(}\|]+)\I,]), (|,J:1,2)

the solution with opposite signs of the gafps and A, is ©)
realized(e.g.,A;>0 andA,<0), which corresponds to the Figure 3 shows the surface defined by the condition
Syy~ OF s-type symmetry. A=Ay which can be reduced to the form
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seen that foi1;<0 there exists an interval of values of the
constanti ;; in which TS and T¢ are equal to zer¢curves4
andb). At the same time, attraction in “electron” regions of
the FS §,,>0) leads to elevation of . as compared to the
case of the EMI for which\,;<<0 even against the back-
ground of repulsion forming thel-symmetry of the gap
(A 11<0).

Thus, the existence of additional attraction in the FS
regions with a high DS, which facilitates the attaining of
high values ofT .. irrespective of the type of Cooper pairing

-1 -0, 0 0,5 1 and gap symmetry, is important for the HTS. It should be
A% noted that the values of coupling constants can change sig-
nificantly with the concentration of doped charge carriers;
FIG. 4. Dependences of% and T¢ on N, for Ap=0.5v, and &y, (IS follows from the strong concentration dependence of
Xo1=0.04 for various values ofy;: 1 (curvesl), 0.5 (curves2), 0 (curves  1¢ iN cuprate metal oxide compoungsee, for example, Ref.
3), —0.5 (curves4), and—1 (curves5). The dashed curves show continu- 21). This means that in the course of doping in high-
ations of curvesl and 2 to the region where the corresponding values of temperature Superconductorsl a transition from one Wpe of
T; andT; are smaller than the maximum value B . the order parameter symmetry to another can occur in prin-
ciple. It should also be noted that the violation of the initial
symmetryC,, of the electron spectrufidue to the formation
INUERY (K X 2 112 of a superlattice in BR212 in the directio_n of one o.f thg
— T | T2 NN (100  diagonals of the BZ or due to the ordering of chains in
2 4 Y (123)] leads to a more complex anisotropic structure of the

This surface separates the regionsofindd-pairing in the ~ SC gag>?**and to an anomalous temperature dependence
space of parametexs; = (A 13+ \1)), hpa= Appandn,,fora  Of the gap®?*which differs radically from the standard de-
fixed value of the constants of cross interaction bgtwee,pendencel(T) in the BCS theory.

“electron” and “hole” regions of the FS, i.e.\; This research was carried out under the project No. 2.4/

A21=0.04. 561 of the Ukrainian State Foundation on Fundamental Stud-
The region ofd-pairing in whicth>T§ lies below this jes.

interface, while the region af-pairing in WhichT§>Tg lies

above the interface. A region in which neithefF nor  *gmai: pashitsk@physics.kiev.ua
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Residual low-temperature resistivity and peculiarities of infrared absorption of
YBa,Cu3;0¢, , superconductor as manifestations of the long-distance potential relief
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Various physical phenomena connected with long-distance potential relief created by negative
oxygen impurity ions in a conducting plane are considered. The long-distance potential
generates a secondary electron structure responsible for these phenomena. The relation between
the residual low-temperature resistivity and the secondary structure is established
experimentally. The high sensitivity of the residual resistivity to photoillumination, modifying

the long-distance potential, and its increase with decreasing temperature suggest the low-
temperature localization of holes in long-distance potential wells. Optical transitions between
energy levels of the secondary structure differing from other optical transitions in a

much higher probability and a high sensitivity to the shape of the long-distance potential well are
analyzed. The results of analysis are in qualitative agreement with the available data on

optical absorption spectra. @997 American Institute of Physids$§1063-777X97)00302-2

INTRODUCTION the charge of the ion is compensated by an increase in the
charges of two adjacent copper ions freri to +2; on the

The electron properties of the copper-oxide superconeontrary, the attachment of an iorf Oto a chain changes the
ductor YBaCu;Og.., are determined to a considerable ex-charge of the chain plane by1.2°
tent by its structural peculiarity associated with the spatial It follows from what has been said above that the num-
distribution of the oxygen acceptor impurty® The G~ ber of holes in the conducting plafehich is equal in mag-
impurity ions supplying holes to the conducting Gu@ane  nitude to the negative charge of the chain plaimereases
are located in a parallel plane of CyGeparated from the even for a fixed oxygen index if the average length of
CuG, plane by a comparatively long distance in the conductcopper—oxygen chains increases as a result of a certain ex-
ing plate 4.15 A. For this reason, impurity charges creataernal effect(e.g., photoillumination®’ The long-distance
Coulomb potential wells in the conducting plate with a width potential relief increases simultaneou&ynd even to a larger
much larger than the atomic spacing in the lattice. Such poexteny. This makes it possible to control experimentally the
tential wells bend the bottom of the band of hole carrierssuperstructure, viz., the long-distance relief easily. Such a
moving in the conducting plane and create a long-distancpossibility was used in Ref. 1 for establishing experimentally
secondary potential relief for these carriétise primary, or the relation between the superconductivity mechanism and
fundamental potential of the conducting plane with the pethe long-distance potential.
riod of the lattice is taken into account in terms of the effec-  Thus, the electron properties of the superconductor
tive mass. YBa,Cu;04, « are determined to a considerable extent by

The secondary potential relief with a modulation depththe long-distance potential relief. New manifestations of this
significantly exceeding the Fermi energy of holesl eV)  relief are considered in this article.
affects the electron properties of the superconductor. This is In Sec. 1, the residual low-temperature resistivity of the
manifested in the conductivity anisotropy that is enhancegsuperconductor, displaying a high sensitivity to photoillumi-
upon an increase in the oxygen index, together with anisotration, is studied. Such a clearly manifested photoinduced
ropy in the secondary reliéf* as well as in anomalies of effect is incommensurate with a small photoinduced change
Raman scatterin§® The correlation interactiorfVan der in the number of charge carriers and can be attributed only to
Waals attractionof holes moving at adjacent minima of the more significant photostimulated changes in the long-
secondary relief can be sufficient for the formation of a su-distance relief. The observed increase in the residual resis-
perconducting gap having a width of the order of several ofance upon a decrease in temperature and during photostim-
even tens of millielectronvolts. ulated deepening in the minima of the long-distance potential

The form of the long-distance relief is determined by thesuggests a blurred low-temperature transition to the insulat-
oxygen indexx. With increasingx, the average length of ing phase with the localization of holes at these minima.
copper—oxygen chains formed in the Cu@ane increases, In Sec. 2, spectroscopic manifestations of the secondary
while the fraction of oxygen impurity contained in the plane €lectron structure, i.e., the energy levels of the long-distance
in the form of isolated & ions decreases. The negative potential, are considered. The frequencies of optical transi-
charge of the chain plane per oxygen impurity ion increase§ons between these levels correspond to the near infrared
(in magnitudg in this case. The charge of this plane does notregion. It will be proved below that transitions between the
change with the emergence of an isolatéd @n in it since  energy levels of the secondary structure differ from other

optical transitions in the same crystal in a much higher prob-
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sured with a high sensitivity in a temperature range below sample No.
1 (a) and 2(b).

dependence reflect the presence of two phases with different
oxygen indices and accordingly with different superconduct-
ing transition temperatureg, in samples No. 1Fig. 18 and
No. 2 (Fig. 1b (T;;=90 K, T.,=83 K for sample No. 1 and
T.1=90 K, T.,=65 K for sample No. 2 The characteristic
R(T) for sample No. 3 is typical of a one-phase material
with the superconducting transition temperatdie=80 K
(Fig. 10.

The high-sensitivity measurements have made it possible
to observe a weak residual resistivity in samples No. 1 and 2

sured with a low sensitivity over a wide temperature interval: sample No. 1below the critical temperatureb., down to T=1.8 K (the

(@), 2 (b) and 3(c).

ability and in a high sensitivity to the shape of the long-
distance potential relief. The experimental datanfirm this

conclusion qualitatively.

1. RESIDUAL LOW-TEMPERATURE RESISTIVITY AND ITS
RELATION TO THE LONG-DISTANCE POTENTIAL

RELIEF

1.1. Experiment

The objects of investigations were three ¥BayOg .

R(T) dependence for sample No. 1 measured in the high-
sensitivity mode is shown in Fig. 2aFor sample No. 3, we
can indicate the temperatute- 56 K, Fig. 2b below which
zero resistance is observed within the sensitivity of our mea-
surements.

The temperature dependence of the residual resistance
R for sample No. I(see Fig. 2ais an ascending curve with
a plateau in the interval from 20 to 75 K. In the interval from
5 to 20 K, the resistanc® increases linearly, while near
80 K its sharp increase preceding a transition to the normal
state in the low-temperature phadg,=83 K) is observed.
The dependence of voltage on current dendiffig. 33 is

epitaxial films with various extents of phase homogeneityalso characterized by a monotonic increase of the derivative,
The measurements were made by using the high-sensitivityndicating a noticeable resistivity for sample No. 1 even at
four-probe technique. The temperature dependences of thery low temperatures.

resistanceR of the samples are presented in Fig. 1. These
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In order to analyze the effect of photoillumination on the
1—-774K a resistive parameters of the film, we used a wide-band xenon
2 — 64.0 lamp DKSSh-150 as a light source. Electric contacts of the
. 3 — 204 films were thoroughly protected from illumination. The ex-
4— 42 posure dose did not exceed BY! photons per square cen-
5= 15 2 timeter of the film area. Such doses do not cause irreversible
structural changes in the sampi¢ was established by us
earliet that the transport characteristics of the film relax af-
3 ter illumination to their initial values It can be seen from
Fig. 4 that the peaks of the current—voltage characteristics

are intensified, become narrower, and are shifted toward
. - s - smaller transport currents as a result of photoillumination.
1 2 4 3 24 These changes are persistétite relaxation time at room

J, 100 A/cm temperatures is of the order of several hpurs

-~

» WV
O = N W s 0 O N O®

o
o}
-]

b 1.2. Relation between residual resistivity and the long-

I‘ kv distance potential and its possible mechanism

1.80 K The peculiarities of the current—voltage characteristics
for sample No. 2(see Figs. 3b and)4allow us to draw
certain conclusions on the mechanism of residual resistivity.
It can be seen from Fig. 4 that the maximum resistance
(corresponding to the first, most intense peak on the)l\éC
approximately doubled as a result of illumination for half an
hour. This effect is opposite in sign to the effect of metalli-
zation of films(increase in their conductivifyunder photo-
3.50 illumination, which was investigated earlitf Moreover, the
4.00 increase in the amplitudes of resistivity bands is incommen-
15.00 A , surate with the photoinduced increase in the number of hole
200 carriers. Indeed, an increase in the number of holes in a
I, mA YBa,Cu;05 5 sample induced by the same radiation dose
was approximately 29 while in sample No. 2 with a larger
FIG. 3. Current—voltage chara_cteristics _o_f films measured for fixed temperag (x=0.75, judging from the superconducting transition tem-
;urzgsz?gl'ow the superconducting transition temperature: sample ig. 1 peratureT.,=65 K) it must be smaller since the photoin-
duced effect in YBaCu;Og ., , iS suppressed with increasing

x.”

2.00

2.25

2.50
3.00

U, pv

g

o
g

_ - _ Thus, the photoinduced change in residual resistivity
smaller by 3—4 orders of magnitude; it is characterized by arannot be explained by the change in the number of charge
anomalously decreasing temperature dependence and an @grriers. According to some indications, this change is due to

cillating dependence on current. Figure 3b shows a series ghotoinduced ordering of the long-distance secondary poten-
current—voltage characteristi@y¥C) for sample No. 2, mea- tial relief.

sured at various temperatures. It can be seen from the figure The long-distance potential relief of the conducting
that the residual resistivity decreases upon an increase @uQ, plane changes due to photostimulated elongation of
temperature in the interval from 1.8 to 15 K. Below 15 K and copper—oxygen chains in the Cu@lane. We now prove

for a precritical current of 200 mAl ;; >300 mA), the volt-  that the chain length changes more strongly than the number
age across the sample is Qu¥, which corresponds to the of charge carriers. If we measure the chain length by the
sample resistance of A}, i.e., to the resistivity of the order numberw of oxygen ions contained in it, the chardein-

of 1071 Q-cm. creases with the chain length according to the?faw
It can be seen that the dependence of voltage on the [ 1 i
~py— 1.

transport current density at low temperatures is honmono-
tonic (Fig. 3b. The current—voltage characteristics contain Since the number of holas, in the conducting plane is
broad regions of negative dynamic resistance. In the formedqual to the total negative charge of the chain plane, we
“spectrum” of resistivity bands, the band width decreases,arrive at the following relation between the relative changes
while the amplitude increases with decreasing temperaturgn the number of holes, and the average length of the

At T=3 K, two bands with abscissasalues of transport chain for a fixed amount of oxygen in the chain plane
curren} of the peaksl;=45 mA andl,=81 mA can be (I v=const):

singled out. With decreasing temperature, the peaks of the — — —

bands become higher and are displaced towards smaller cur- ovlv=vény/ny  (v>1). 2)
rents, while below 2.07 K the “spectrum” does not change In the metal phaséoutside the narrow neighborhood of
qualitatively. the concentration metal—insulator transijionhe average
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FIG. 5. (@) Compound conductor whose resistance decreases upon a transi-
tion of the short superconducting partinto the normal state.(b) Super-
1 conductorS containing inclusions of typa, whose superconducting part is
" characterized by a small critical current.

0 100 200
I, mA

FIG. 4. Current—voltage characteristics of sample No. 2 measured at 2 ®.3. Can IVC oscillations be explained by inclusions of
before (curve 1) and after photoillumination for 1Qcurve 2) and 30 min normal phase?

3. .
(curve3) Under the assumptions made above, we could expect a

monotonic increase in resistance with currénat helium

temperatures fot>1% . In actual practice, the voltag¥e
length of chains is»>1. Consequently, it follows frontl) increases with current only up td* =80 mA, where the
and(2) that the width and depth of a long-distance potentialderivativedV/d| changes its sign. The nonmonotonic depen-
well increase as a result of illumination of the superconducdenceV=V(l) can be attributed to sample heterogeneity,
tor at a much higher rate than the number of charge carriers.e., microscopic inclusions of the normal phase in the super-
This circumstance, in combination with clearly manifestedconducting phase, or to a current-induced rearrangement of
photoinduced changes in the residual resistance, serves asthe electron state of the superconductor. The analysis carried
additional argument in favor of a decisive role of the long-out below shows that each version is fraught with certain

distance potential relief. difficulties. Let us first consider the possible role of normal
Residual resistivity, which is manifested most clearly ininclusions.
the helium temperature rangsee Fig. 3band is enhanced A thin layer of a normal substandef thicknessL ) in

upon photoillumination together with the minima of the sec-contact with superconducting layefsf thicknessLs) can
ondary potential relief(see Fig. 4, can be naturally ex- double its resistance as a result of a superconducting transi-
plained under the assumption concerning a partial lowtion due to Andreev’s reflection of normal charge carriers by
temperature metal—insulator transition. In the insulatorthe superconductor, which leads to interference of their wave
phase, holes as localized at broad minima of the secondafynctions® If the superconducting layer thicknelssis small,
relief, which corresponds to a small energy scale of the phaste resistance of the compound condudféig. 5 decreases
transition and its low temperatufaccording to Fig. 3b, this as a result of degradation of the superconducting statece
temperature is 7—8 K for sample No). 2 interference phenomena disappear in the absence of a super-

Since hole carriers in a strictly periodic potential are inconductor.
delocalized band states even at zero temperature, we can For this reason, a descending region on the dependence
associate the low-temperature localization of holes with &/(1) can be obtained in the compound superconductor pre-
periodicity of the long-distance potential, which is in quali- sented in Fig. 5 if the critical current of the superconduc-
tative agreement with the well-known Anderson mechanismtor S exceeds the critical curreitt in a thin layer of the

It is natural to assume that the low-temperaturesuperconductos. We increase the currehtin the interval
insulator—metal phase transition associated with the irreguldr <I <I,(1,<I1g) containing the points. As the value of
nature of the long-distance potential is blurred to a considereurrent passes through the point, the voltage decreases
able extent. This is manifested in that the effective nmsd  together with the resistance of intermabk-n inclusion since
hole carriers increases, but not to infinitely large valuesthe resistance of the remaining part of the conductor remains
while the numben of holes decreases, but not to zero. Ac- unchanged and equal to zero.
cordingly, the Fermi energy of holes decreases, and the su- Unfortunately, this mechanism can hardly explain the
perconducting gap becomes narrower, which must lead to shape of the IVC curves presented in Fig. 3b. In order to
decrease in critical current to a certain small valfie have such a mechanism, the inclusion of the normal sub-

Figure 3b shows that residual resistivity appears astance must cover the superconducting channel of diameter
T=1.8 K for a current exceeding 50 mA. This value can beD. The three dimensions of the inclusion must be of the
conditionally identified with ¥ . The value ofi* is an order same order of magnitude &. For the resistivityp~ 103
of magnitude smaller than the ordinary critical current ob-Q)-cm of the normal phase, the resistariRe p/D of the
served outside the temperature range of residual resistivityinclusion is of the order of 50) or more(if the width of the
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superconducting channel exceeds the thickries®-10° insulator—metal phase transitiofmarked by asterisksis
cm of the superconducting film, we must jRi= p/d). Thus, characterized by the parameter

the resistance of the normal inclusion exceeds the maximum

ratio V/I observed in the low-temperature range by six or- ~ 4=M/m*ny, ()

ders of magnitudgit can be seen from Fig. 3b that this wheren, andm are the number of charge carriers and the

resistance is 510 ° () for sample No. 2 The resistance of . : ; .
: . . o effective mass in the secondary potential relief. These pa-
an inclusion can approach this value if it has the shape of a
. . . rameters correspond to the metal phase away from the phase
layer whose thickness is 5—7 orders of magnitude smalle o, .
. . . . ransition temperaturédT>15 K). The asterisk marks the
than other dimensions of the inclusion. Apparently, such a : . o
o . Same parameters in the region of blurred phase transition

situation is hardly possible.

. . (T~2 K). In the region of the low-temperature phase transi-
Under our experimental conditions, other . . L
) 11 . . : ___tion, the parameter is regarded as very small; this corre-
mechanism¥'!! leading to a decrease in the dynamic resis- . .
sponds to a low Fermi energy of holes and a small width

tance of a heterogeneous superconductor upon an increase i :
: . 10 : A” of the superconducting gap. In turn, the narrow gap leads
current cannot be manifested either. Mighal.™ explained o x .
L to a small critical curreniy amounting to~50 mA for
a similar effect observed at low temperatures and for a pos- :
L ) 3 T=1.8 K (see Fig. 3h
tential difference of the order of 10 V across the junctions by ; - !
. . We now interpret the IVC presented in Fig. 3b, confin-
the Josephson tunneling of charge carriers between super- . .
) ) ing ourselves to the most clearly manifested insulator phase
conducting granules separated by a thin layer of the norm

_ igi R *
phase. The Josephson tunneling starts when the potential dif- =1.8 K). In the supgrcnﬂcal reg'|on| Glc), the voltage

. ) differs from zero and increases with current upl & =80
ference between adjacent granules increases to a value com-

parable with the superconducting gap width which is noth’ at which the derivativelV/d| changes its sign due to a

o certain rearrangement of electron properties. Such a rear-

smaller than 1 meMthe critical temperature of supercon- . ) o
L : ; rangement can be associated with a limited value of current
ducting inclusions must be higher than the sample tempera;

ture). The IVC peculiarities presented in Fig. 3 are observeodenSIty for a small number of carriers and a large effective

at a much smalletby 2—3 orders of magnitudeotential Mass. In ordgr t0 Impart a preset veI_oovtil /Sn* of .d'
: . : rectional motion to a system of holéS s the cross-sectional
difference across the junctions and hence cannot be ex- S
) ) area, we must transfer the directional momentum compo-
plained by Josephson tunneling.

. . . nent
In our experiments, the mechanism of resistance drop

due to oxygen redistribution over a heterogeneous sample P*=m*u* =m*1/Sr{t =ml/uSn,, (4)
under the action of current could not be manifested etther.

The change in resistance obtained in this way is virtually(to the holes here and below, we use atomic Qinits
preserved for an indefinitely long time at room or lower tem-  However, the value oP* in relation(2) cannot exceed
peratures, and the current—voltage characteristics shown in/Za. This leads to the following constraint on current:
Fig. 3 are successfully reproduced without any hysteresis.

| <Iax= TNRSu/Zam. 5)
Substituting n,~10?* cm 3=1510"% at. units,
1.4. Can current stimulate a change in electronic properties S~10"° cnP=3.6-10'! at. units. =40 at. units. and
leading to a decrease in voltage upon an increase in m=5 into (5), we obtainl .~ .4-10° at. units= w-3-10°
current? A ' max™ ' K
At first sight, such an interpretation of oscillations of Identifying | ,.x With the position of the first voltage

low-temperature IVGsee Fig. 3bcontradicts the very small peak!%* =80 mA (see Fig. 3b,T=1.8 K), we obtain the
value of voltage(~4-10 2 K) across the superconductor. estimateu=2-10"°. This means, for example, that the ef-
The energy of an electron or hole accelerated by such a fielfctive mass of the secondary hole band increases by 2-3
(5-1072 K) is two orders of magnitude lower than the tem- orders of magnitude as a result of transition to the insulator
perature of the insulator—metal transition, which determinephase, and the number of charge carriers decreases in the
the energy scale of the spectrum rearrangement accompanisame proportiory.
by metallization. The above estimate of the quantity,,, itself is valid
Let us prove, however, that even insignificant changes ifoth for the normal and for the superconducting state. Ac-
electron properties corresponding to a low applied voltageording to Fig. 3b, however, such a small valueuwotan be
can be manifested in noticeable IVC oscillations. attained for the substance under investigation only in the
If the secondary long-distance potential were strictly pe-helium temperature range, i.e., at temperatures much lower
riodic (with a perioda), the secondary electron structure thanT,.
would be characterized by a periodic energy—momentum re- A similar mechanism of limitation of current density is
lation with a quasi-momentum periodrZ/a. Our analysis known for semiconductors with a low charge carrier concen-
is based on the assumption that the irregularity in the sedration. When the current approaches the upper boundary of
ondary potential is not manifested very strongly, and the pethe allowed interval, the resistance increases until the applied
riodicity of the secondary energy—momentum relation is apelectric field becomes strong enough for the rearrangement
proximately preserved. of the electron structuréfor example, new energy valleys
The extent of metallization in the case of a blurredwith a smaller effective mass are filled
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In the case under investigation, the rearrangement oh the electron properties under the action of transport cur-
electron properties accompanying a decrease in effectiveent occur nonuniformly in the entire sample volume. How-
mass is associated with a considerable deformation of thever, the observed physical pattern is preserved if we assume
momentum distribution for charge carriers, which is inducedthat the same physical phenomena occur in a small part of
by the transport current. At first sight, the applied potentialthe volume which covers the sample cross sections com-
difference of a few microvolts is too small to cause such apletely. The role of such a volume can be played by a thin
rearrangement of the electron properties of a superconductdnterlayer between macroscopically homogeneous regions
However, the rearrangement corresponding to IVC peaks dtdomaing differing, for example, in the orientation of axes
T=1.8 or 2 K(see Fig. 3bcan be induced even by a very (the existence of such domains in single crystals is connected
weak field since it is connected with a very small increase irwith twinning). In the case of films, these can be islets of
the metallization parametéB). Indeed, the position of the homogeneous superconducting phases with different values
first voltage peak identified with the valdg,,, before the of T.. Irrespective of the physical origin of such a macro-
rearrangement and the position of the second peak corracopic heterogeneity, a microheterogeneity leading to irregu-
sponding td . after the rearrangement differ by a factor of larity in the secondary potentigvhich is sufficient for the
two. If we take into account5), this means that the metalli- Anderson localization of charge carrigrsan be formed in
zation parameteyr is doubled as a result of rearrangement,the transition layer between domains. The macroheterogene-
i.e., changes byAu=2-10"° (from the initial value ity of the type under investigation, which leads to residual
2-10 ° to 4-10 °). Complete metallization corresponding resistivity, is probably due to the two-phase nature of the
to an increase i by 4-5 orders of magnitude takes place, sample(it should be recalled that samples No. 1 and 2 ex-
according to Fig. 2a, at a temperature of the order of 10 K orhibiting residual resistivity contain two superconducting
after recalculation for the applied voltage, #6103 V. A phases with different values a@f.).
partial (very weak rearrangement corresponding to the volt- The transition layer with a lower electrical conductivity,
age peaks in Fig. 3b is observed fur=4.10"° V. The  which covers the sample cross section and generates residual
difference between these valu@ghich amounts to 2—-3 or- resistivity, is apparently macroscopically heterogeneous
ders of magnitudeis in qualitative agreement with the small within this cross section. The electrical properties of the
scale of variation of the metallization paramegerfor the  sample are obviously determined by the transition layer re-
observed rearrangement. gion with the minimum resistance. In the case of several

In order to illustrate what has been said earlier, we writecontacting layers connected in series in the circuit, the one
the metallization factor in the simple form as a function of differing from other layers by the highest resistance of the
voltage, using its parity and presuming its analytic nature: above-mentioned layer will be manifested in experiments.

— 2\ /2 Consequently, we can expect that the properties of a very

#(V)=pm(0) + pif (VI Vigy), ©®  smal region, which can easily be changed due to oxygen
whereu ~ 1; Vit~ 10 3 Vandu(0) ~ 2 - 107 ° (the sub-  diffusion caused by thermal cycling, photoillumination, pas-
script “tot” corresponds to total metallizatignand the ana- sage current, or annealing, will be manifested in the residual
lytic function f(z) satisfies the relations resistance. This explains the experimental fact that sample

£(0)=0, f(1)=1, f'(z)~1 for 0O<z<1. No. 2 subjected to not. very Iong cycle of !ow—temperature

measurements loses its peculiar properties and becomes

Expanding(6) in the vicinity of the pointV=0, we ob-  similar to sample No. 1 as regards its current—voltage char-
tain the following expression for the first IVC minimum cor- acteristics.
responding to partial metallization: The above analysis shows that the current—voltage char-

- 2 _10-5 acteristics of the residual resistance observed for different

#(Vpar) = p(0)~ (Vipan/ Vi)™~ 10 @ samples are different as a rule. The reproduction of the same
which is in qualitative agreement with the above estimate ijependence of voltage on current and temperature on differ-
Ap. ent samples is accidental and has a low probability. For this

Thus, energy considerations do not rule out the interprereason, the accumulation of experimental statistics is re-

tation of IVC oscillations on the basis of rearrangement ofquired to confirm and refine the concept developed here.
electron properties due to a small change in the metallization

parametel3).
1.5. Macroscopic heterogeneities of sample as a possible 2. PECULIAR PROPERTIES OF INFRARED ABSORPTION
reason behind the instability of residual resistivity CORRESPONDING TO TRANSITIONS BETWEEN

_ o ENERGY LEVELS OF SECONDARY STRUCTURE
It was shown in Sec. 1.3 that the IVC peculiarities for

sample No. 2 can hardly be explained by the presence
alternating superconducting and normal regions in the bul
of the sample. Nevertheless, the macroscopic heterogeneity Hole are real quasiparticles in the valence band that is
of the sample can affect significantly the manifestations ofilled almost completely with electrons. For this reason, the
the physical mechanism considered in Sec. 1.4. It has beesubsequent analysis will be carried out in terms of hole qua-
tacity assumed in the above analysis that the low-iparticles, which are described as electrons for brevity.
temperature metal—insulator phase transition and the change The electron structure of the Cy@lane (shown sche-

1. Two types of optical electron transitions differing in
i§ensitivity to secondary relief
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(the indexa labels the levels of the long-distance potential
well). The cofactorG,(n) takes into account the long-
distance potential and varies over its characteristic lehgth
which is much larger than the lattice constant

Let us write the matrix element of the dipole moméht
3 between the initial staté corresponding to the lowermost
A primary branch [=0) and a certain final state

Mif:; eXp{i(kf_ki)'n}Gi*(n)Gf(n)J'Xi*(r

—n)er x;(r—n)dr, (10

(e is the electron chargeThis expression is written in the
zeroth approximation in the overlapping of atomic functions
x centered at neighboring sites. The initial states pre-
sented in the effective mass approximation so #vatk,,
andG;(r) is the eigenstate of the Sclilinger equation with
the effective mass* and the long-distance potential which
serves as potential energy.

Figure 6 shows schematically the transitions between
hole energy branches of various types. In all cases, the initial
statei of the transition belongs to the energy level of the
long-distance potential well, which can be expanded into a
subband by overlapping hole states of the secondary struc-
ture, which are localized at neighboring wells. TAeype
FIG. 6. Optical transitions of various types in the Gu@nducting plane: ~ transitions occur, by definition, between different energy lev-
transitionA between the energy levels of the secondary structure, belongingls (1 and 2 of the long-distance well within the same low-
to the Iowermo_st_ primary branch and lying on qn‘ferent_ sides of the Fermiermost primary branch. The final lev@) for B-type transi-
level, and transitioB between the states, belonging to different branches of . . . .
the primary energy—momentum relation, tions belongs to another primary branch lying much higher

and distorted slightly by the long-distance potential relief.
Optical transitions of typ& (1—3) belonging to the visible
region were analyzed by Fugat al*® who called them in-
traband transitions. Tha-type transitions (% 2) belong to
the near infrared regiofthe depth of a long-distance poten-
tial well is 1-2 eV, while the most intense transitions be-
tween two-dimensional analogs of tse and p- states are
characterized by the energy 0.3—1)eVh Fig. 6, different

Mass. . . . hole branches of the energy—momentum relation do not
The primary electron structure can be considered in th%verlap; actually, they cover a wide energy interval com-

strong-coupling approximation. The wave function of a holepletely viz.. the common valence band whose width-i&
with the two-dimensio_nal wave vect@rcan be expanded in eV.z'lz,The,Iow-density filing of this band with holes is
the orthonormal atomic basjg(r —n): characterized by the Fermi energy=0.2 eV.
1 . Let us prove thatA-type transitions (3-2) differ in
Pi(r)=N ; exp(ik-n)x;(r—n). (8)  nature from theB-type transitions (1-3). This follows
from the structure of the matrix element of the dipole mo-
Heren is the radius vector of a plane lattice site, runningment(10).
throughN values, and the subscriptabels atomic states and We start fromA-type transitions between the energy lev-
corresponding energy branches of the primary structure. FQd|s of a long-distance potential well corresponding to the
the lowermost branChj FO), the effective massm* and the same lowermost primary branch. The quasimomwtand
position of energy minimunk, are introduced. k; coincide with its lower point and do not satisfy relation
Let us consider the actual electron structure of the10). The atomic functiong; andy; also coincide so that the
CuG, plane modified by the long-distance potential modula-integral in(10) becomes equal ten. Thus, forA-type tran-
tion. The normalized wave function of a hole can be represitions expressio10) assumes the form
sented in the form

Hole energy

Coordinate

matically in Fig. 6 includes the elements of the primary
structure realized in a strictly periodic latti¢@ the absence
of the long-distance potentjahs well as the elements of the
secondary structure described by the Sdinger equation
with the long-distance potential and the primary effective

. Mit(A)=2>, G} (n)Gy(n)en. (11)
Yo =2 explik-n)Ge(m)x;(r—n), 9 | no
The functionsG; andG; have a clear physical meaning
2 G (n)|2=1 in the opposite limiting casds,.<AE andE, . AE, where
n “ E,es IS the resonant energy associated with overlapping of
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hole states localized at neighboring wells of the low-scale  Thus, A- and B-type transitions differ in nature. An
potential, while AE is the characteristic value of random A-type transition actually corresponds to the secondary elec-
shift of the energy level due to its transition from a long- tron structure, and its dipole moment is determined by the
distance potential well to a neighboring well. B <AE, width L of the long-scale potential well. B-type transition
the quantityG; or G in (11) has the meaning of the state of is actually associated only with the primary structure and is

an individual long-distance well. In this case, we can writecharacterized by the atomic dipole moment.

the total probability of transitions from a fixed statef the
well (E;<Eg) to all its stated (E;>Eg) under the action of
incident light having a uniform spectral density and polar-
ized in the directiorg:

Pa(i—all f )CZ IDif | 2(Es—E)). (12)

HereD;; is the matrix element of the dipole moment between
the states of a long-distance potential wélthe direction of
polarization of incident light, an€ denotes a certain coef-
ficient containing the light intensity and having the same
value for A- and B-type transitions.

Relation(12) can also be obtained froifil) in the op-

posite limiting case whedE<E, and the long-distance (2)

potential is almost periodic. Relatiaii2) is obviously ob-
served(to within an order of magnituden the intermediate

Relation(15) leads to the following conclusions.

The intensity of infrared optical absorption of the type
A (Fig. 6) exceeds significantly the intensity of absorp-
tion of the typeB occurring within the valence band and
corresponding to the visible region of the spectrum. The
probabilities of transitions of both types are proportional
to the number of holes in the valence band; conse-
qguently, the oxygen content affects relati¢tb) only
through the shape of the long-distance potential e
timate (15) does not take into account interband transi-
tions with a nonzero probability and in the absence of
holes; interband transitions are limited to the spectral
regioniw>1.8 eV].:®

The A-type absorption is much stronger for the
y-polarization of light along the copper—oxygen chains
(i.e., parallel to the crystallographic axig than for the

case also. x-polarization (the xy plane coincides with the CuyO
Let us now consideB-type transitions from the same conducting plang this follows from the relation
statei belonging to the lowermost primary branch to all the | < L, for the dimensions of the potential well.
statesf belonging to the remaining primary branches. In(3) The A-type absorption is much more sensitif@s com-
view of orthogonality of the functiongo(r) and x¢(r), the pared to theB type) to the controllable variation of the

integral in(10) can be reduced to the atomic dipole moment  copper—oxygen chain length, which can be achieved

dis . Using relation(10), we can find the total probability of through photoillumination of the sampté, heating®*
transition from the staté to all the final stateg:

or by passing a strong currettindeed, theb-type ab-
sorption in all these processes changes only due to an

Pg(i—all f)=CB>, |dit | 2(Ec—Ep), (13 insignificant change in the number of charge carriers
f n,, while the B-type absorption is proportional to the
square of the width of a long-distance potential well,
B=N2 [Gi(n)[?G(n)|?=1. (14) which changes much more strongly thanaccording to

2).
(N is the number of sites in a planar lattic&he summation @
in (13) is carried out over atomic states, while the summation
over the wave vectors of the final state is carried out with- 2-2- Qualitative comparison of the theory with experimental
out taking into account the dependence @f on k (this 92
actually boils down to the conservation of the quasimomen-  Conclusions 1-3 drawn in the previous section are con-
tum in the electron transitionSince the depth of the long- firmed by the experimental data on the absorption spectrum
distance potential modulation is small as compared to thef polarized light in a wide range from 0.05 to 2 &Widder
energy of the final staté, its envelopG; is almost constant, et al® obtained the absorption spectrum of a single crystal
which justifies this approximation from the physical point of from the reflection spectrum by using the Kramers—Kronig
view [which leads to the estimaid4)]. It should be noted relation.
that a weak deviation from the quasimomentum conservation Figure 7 shows the absorption spectrum of a monocrys-
law for an allowed direct transition cannot lead to a signifi-talline YBa,Cu;Og 5 spectrum for the polarizatioa perpen-
cant change in the integral intensity of absorption. dicular to the direction of copper—oxygen chains as well as
Expressiong12) and (13) give the values of areas of for the polarizatiorb parallel to the chains. Two curves cor-

absorption bands of typgsandB. These expressions can be responding to sample temperatures 293 and 423 K were ob-
used to derive a relation between the absorption coefficientgined for each polarization. Figure 8 also shows the data for
ka andkg at the maxima of these bands considering that thea sample with a higher oxygen indé&.6) corresponding to
width of each band coincides in order of magnitude with thea higher value of the average length of chains.
position of its maximum: It can be seen from the figures that the absorption spec-

2 trum for each sample and each temperature changes signifi-

kalkg~(L¢/a)”. (15 o .
cantly upon a transition through a certain frequency

Here a is the atomic spacing and, the width of a long- 7 w.=0.8 eV. If we identify the spectral interval< o with
distance potential well in the direction of light polarization. a region of predominant transitions of tietype and the
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FIG. 7. Absorption spectrum of the YB@u;Og 5 single crystal, recon-
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structed in Ref. 8 according to the reflection spectrum for two values ofFIG. 8. The same as in Fig. 7 for YBAu;Og ¢ (according to the results
temperature and two directions of polarization parallel to the conductingobtained in Ref. 8

plane.

interval > w. with the regions ofB-type transitions, the

noted that, according to Figs. 7 and 8, absorption of type
B in the regionfi o <# w<Ey is almost isotropic in the

experimental data presented in Figs. 7 and 8 completely con-
firm the conclusions 1-3 drawn in Sec. 2.1. Let us comparé3)
these conclusions with the experimental results in greater
detail bearing in mind that the region of purely intraband
absorption is bounded from above by the dielectric gap

ab plane.

It can be seen from Figs. 7 and 8 that a decrease in the
chain length upon sample heating is manifested in a con-
siderable suppressidiby a factor of 2 and mojeof the
type A absorption band. This effect is incommensurate

width®® E;~1.8 eV (in the regionfiw>E,, interband tran-
sitions can make a significant contribution to light absorp-
tion).

with a small change in the number of charge carriers,
which does not exceed a few percent even in a wider
temperature interval 300—800R According to(2), the

D)

114

average length of the chains changes several times more
strongly, leading to a significant change in tAetype
absorption in proportion t&.2.

It can be seen from Figs. 7 and 8 that the absorption
coefficient at the maximum of the infrared bafid the

left of the pointw.=0.8 V) is 3—6 times larger than
the absorption coefficient observed in the region  Asregards the intraband absorption of tyjet changes

o <hw<Ey=1.8 eV for all samples, temperatures, with temperature in proportion to the number of charge car-
and polarizations. According t@l5), the ratio of these riers by not more than a few percent in the absence of tem-
values ofx must be equal tol(/a)?=20; actually, it can  perature phase transitiotisee Fig. 7.* Temperature varia-
decrease due to the additive contribution of (beude  tion of the B-type absorption shown in Fig. 8 are apparently
plasma absorption covering a broad spectral region aassociated with certain temperature phase transitions or with
well as due to the errors in the Kramers—Kronig trans-errors in calculations based on the Kramers—Kronig formula
formation using the reflection spectrum measured in anear the boundary of the measuring interval.

finite frequency range. The results obtained by Widdet al® were interpreted
Anisotropy of the infrared absorption of th&-type is  from the point of view of plasma oscillations. In order to
confirmed qualitatively in experiments: the absorption isexplain absorption anisotropy, the authors of Ref. 8 had to
approximately doubled upon a transition from the assume that the chain (CyGand conducting (Cug) planes
a-polarization perpendicular to the chains to themake comparable contributions to plasma absorption. Such
b-polarization parallel to the chains. This ratio decreasesn interpretation is fraught with significant difficulties. First,
with the average length of the chain and amounts to onlythe charges in the chain plane in the case of oxygen indices
1.2 for a lower oxygen index of 6.5 and at temperature0.5 or 0.6 close to the insulator—metal transition point are
423 K (the chain length decreases with decreasing oxylocalized, and their direct contribution to the optical conduc-
gen index and increasing temperajurét should be tivity is negligibly small. Second, plasma absorption in-
114
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creases with temperature, while the absorption observed iobserved photoinduced changes in physical quantities are
the infrared region decreases. Plasma absorption is appanuch greater than the corresponding change in the number
ently manifested in the absorption spectrum, but does natf charge carriers on the relative scale, a given phenomenon
make a dominating contributiotpredicted in Ref. Bto it, is apparently associated with the long-distance potential.
only smoothing the manifestations of the mechanism consid- , )
ered above and leading to the dependence of absorption on 1 he authors are grateful to A. M. Kadigrobov for fruitful
temperature and polarization. critical discussions. _ ,

Taking into account what has been said above, the type T_h!s research was (_:arrled out_under partl_al su_pport of the
A infrared absorption band can be used for diagnostics of the/krainian State Committee on Science, Engineering, and In-
average length of copper—oxygen chains in the process of i@ustrial Policy(grant No. 09.01.01/046-94
controllable variation.

*E-mail; shapiro@ilt.kharkov.ua

CONCLUSIONS Y0On account these circumstances, the estimate obtained in Sec. 1.5 can be

) too high forS and accordingly too low fop.
The electron properties of the superconductor

YBa,Cu;Og ., are associated with the long-distance poten-
tial relief created in the CuQconducting plane by charges \Z/igﬂ(-lgg"gf['ﬁv' V-TV- Efe';‘;e”‘;‘iv '1 gé(ﬁgggtft al, Fiz. Nizk. Temp21,
. ow Temp. Phys21, .

located in the parallel Cu(plane. It was proved by Us ar- 2, ‘" ramer, Fiz. Nizk. Temp21, 208(1995 [Low Temp. Phys21, 159

lier that the motion of holes in long-distance potential wells (1995].

affects the transport propertiés’ 3V. V. Erementko, . S. Kachur, V. G. Piryatinskaga al, PhysicaC262,
Electron transitions between energy levels of a Iong—4_?4|(t%)9?<@-Takenaka and S. Uchida, Phys. Rev. L6, 3995(1993

dIStanC? potential We_” are mamfeStec_j 'r? _the near '_nfrarEdsA. Sacuto, M. Balkanski, and O. Gorochov, Solid State Comr88n589

absorption spectrum in the form of a significant contribution (1993.

depending on the shape of the potential well and are sensiG. Uimin and J. Rossat-Mignod, Physi€499, 251 (1992.

tive to temperature, light polarization, and photoillumination E'gg’;q“'gu"’ M. Maenhoudt, B. Wuyitst al, Phys. Rev.B49, 3675
which determine the well width. 8K_ Widder, A. Zibold, M. Merzet al, PhysicaC232, 82 (1994).

A decrease in the temperature of a superconductor to dA. M. Kadigrobov, Fiz. Nizk. Temp14, 427 (1988 [Sov. J. Low Temp.
few kelvins can result in a blurred transition to the insulator Tgygilfi 1293;5:;]1988]: Fiz. Nizk. Temp.19, 943(1993 [Low Temp. Phys.
phase due to Iopallzat!on of hOI.es at th? mml.ma of the. l(_)n_g_mA. V. Mitin, G. M. Kuz’'micheva, V.V. Murashov, and E. P. Khlybov, Zh.
dlgtapce potential. This is manifested in residual resistivity gxsp. Teor. Fiz107, 1943(1995 [JETP8O0, 1075(1995].
existing at temperatures much lower th@ip; apparently, ™A. V. Mitin, N. E. Alekseevskii, and E. P. Krylov, Physioa199, 351
this effect is of the Anderson nature and is very sensitive tq,(1992.

structural inhomogeneities, which can be used for their diag- Méé@ Korotin, V. 1. Anisimov, E. P. Butorinet al, Matter. Lett.10, 34
nostics. 13). Fugol’, V. Samovarov, A. Ratnest al, PhysicaC216, 391 (1993.

The manifestations of long-distance potential relief are*B. W. Veal, H. You, A. P. Paulikast al, Phys. RevB42, 4770(1990.
characterized by sensitivity to photoillumination leading to a"’H- Shaked, J. D. Jorgensen, B. A. Hungiral, Phys. Rev.B51, 547
slight increase in the number of charge carriers and to a '
much stronger increase in the potential well widths. If theTranslated by R. S. Wadhwa

115 Low Temp. Phys. 23 (2), February 1997 Eremenko et al. 115



Magnetic properties of Ba ;_,K,BiO3,, single crystals near T,
S. N. Barilo, V. I. Gatalskaya, and S. V. Shiryaev

Institute of Solid State and Semiconductor Physics, Academy of Sciences of Belarus, 220072 Minsk,
Belarug

M. Baran, H. Szymczak, and R. Szymczak

Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
(Submitted May 20, 1996, revised July 31, 1996
Fiz. Nizk. Temp.23, 159-166(February 199y

Reversible magnetization and hysteresis loops of electrochemically gronnBdiO;, , single
crystals €=0.34,0.37) are studied in the vicinity @f.. The results of measurements of

reversible magnetizations are used to construct the temperature dependences of the magnetic
penetration deptih and the critical fieldH.,. The \(T) dependences are described by

the BCS theory more successfully than by the two-fluid model. The peak effect observed in

these isotropic superconductors on magnetic hysteresis loops is associated with the presence of
superstoichiometric oxygen regions. The behavior of the irreversibilityHipg€T) for both

single crystals is approximated successfully by the flux creep modell9€Y American Institute

of Physics[S1063-777X97)00402-7

1. INTRODUCTION polycrystalline BKBO by using the data on magnetization

. . , and dynamic susceptibility in a varying field for the BKBO
Single crystals of Ba ,K,BiOz,, (BKBO) with powder.

T.=30 Kand a simple cubic structure characterized by the  Tha irreversible component of magnetization(H)
absence of magnetic ions in the lattice, a large coherencgeasyred at various temperatures can be used to extract in-
length, and a number of some interesting physical propertieg, mation on vortex lattice pinnindin particular, on the

are excellent objects for experimental and theoretical invesgiitical current density. and the irreversibility lined;,) and

tigations aimed at determining the magnetic penetration, ihe anomalous behavior of magnetization in BKBO single

depth, upper critical field, and other important characteris¢,ytais in intermediate fieldsHere we consider the results

tics. These data lead to the conclusion concerning the mags” gy dies of reversible and irreversible magnetization of

nitggle O.f th? coupling constant, and hence the mechanism cEEKBO single crystals neaf . with various concentration of
pairing in high-temperature superconductors. potassium.

It has been established that the irreversibility line
H,.(T) separating the reversible and irreversible regions of
magnetizatiorM intersects théd—T phase diagram of hlgh- 2. SAMPLES AND EXPERIMENTAL TECHNIQUE
temperature superconductors in the mixed state. Above the
H;.(T) line, the phase diagram displays a sharp decrease in BKBO single crystals were grown electrochemically
critical current and a rapid relaxation of the diamagnetic moand have the superconducting transition temperature
ment. It should be noted that in spite of intense studies, thd.=29-30 K depending on the potassium concentration.
nature of the irreversibility line has not been established yeThe concentration of potassium was determined by three
(see, for example, Ref. 1 and the references cited thereinmethods: from x-ray measurements of the crystal lattice pa-
An analysis of isothermal curvéd (H) nearT, in the region ~ rameter according to the calibration cufEpm neutron ac-
of reversible magnetization makes it possible to determindivation analysis, and from the measurement of natural radio-
the London penetration depth for a magnetic fielace HTs ~ activity of the isotopé™. The typical size of the crystals is
materials are characterized by a wide range of magnetic field2X2X1 mm. The magnetization was measured néar
H.1<H<H., in which the reversible magnetization depends linearly on theWith the help of a vibrational magnetometer in fields up to
logarithm of magnetic field: 6 T and SQUID magnetometé@uantum Design, MPMS)5

in fieldsupto 5 T.
47M = (po/8mA\?)In(H,B/H), (1)

where ¢, is the magnetic flux quantunB=1, H., is the 3. DISCUSSION OF RESULTS
upper critical field, and. the magnetic penetration depth. In
the case of accessible magnetic fields, relatibnis appli-
cable in a bounded temperature range closé tof an iso- An analysis of the hysteresis loop(H) measured for
tropic superconductor free of vortex lattice pinning. TheBa (K,BIiO, single crystals withx=0.34 and 0.37 in the
magnitude and temperature dependence of the magnetic pemgh-temperature range showed that thiIn H) depen-
etration depth in the BKBO system have been studied insufdences are straight lines and are successfully described by
ficiently. In Ref. 3, thex(T) dependence was determined for relation(1) in the field and temperature regions under inves-

3.1. Reversible magnetization range
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FIG. 1. Field dependence of magnetization at various temperatures dind of the order parametéhe values oH,(T) measured

BKBO crystals withx=0.34(a) and 0.37(b). for the two crystals neaf, are shown in Figs. 3 and 4. The
temperature dependenceshtbf, nearT. are described by a
linear law, which is in accord with the Ginzburg—Landau

tigation (Fig. 1). Figures 2 and 3 show the values ofT)  theory: Heo(T)=25(1-T/T)*'{x=0.34) and
calculated for both crystals as well as the approximation oHc2(T)=19.3(1-T/T)*%(x=0.37). The values of
the experimental data by the BCS formula dH.,/dT near T, amount to—0.78 and—0.65 TI/K for
B o5 x=0.34 and 0.37 respectively. Using the WHH formalism
MT)=MO)L1=(T/Te)] ™ 2 H¢o(0)=—0.693. (dH.,/dT),® we can estimate the value
which gives a better agreement with the experimental dataf Hc>(0) for the crystals under investigation:
than the Gorter—Casimir two-fluid model H(®=15.7 Tl (x=0.34) and 13.1 TIX=0.37). The coher-
_ 44-05 ence lengths £(0) calculated from the relation
MT)=MOM=(T/Te)T] @) H,=eo/(27E?) are 46 A &=0.34) and 49 A

The corresponding values 0f(0) in expression(2) (x=0.37). On the other hand, the linear extrapolation which
amount to~924 A (x=0.34) and~935 A (x=0.37). The is in accord with the Ginzburg—Landau theory led to a con-
value of T, is of the order of 26.5 K for both samples. This siderably larger values ofH.:25 Tl (x=0.34) and
value corresponds to 90% of the temperaf[ﬁ‘ecorrespond- 19.3 Tl (x=0.37), which correspond to coherence lengths
ing to the onset of the transition in weak magnetic fields36 A (x=0.34) and 41 A x=0.37) atT=0 K. The upper
H=5 Oe under ZFC conditions. critical field H.,(0) for our crystals is much smaller than the

Expression(1) contains the upper critical fieltl .»(T) values of paramagnetic critical fieldp,=1.84T; (=55 TI
which is required for calculating the temperature depenfor x=0.34 withT.=30 K and=53 TI (for x=0.37 with
dencest(T) and x(T)=A(T)/&(T) of the coherence length T.=29 K), which means that the “paramagnetic effect” of
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ture H.,;=70 and 100 Oe forx=0.34 and 0.37, respec-

c ir breaking by th tic field is insianificant tively. The theoretical values oH., are in satisfactory
OOper palf breaking by the magnetic TIeld 1S insigniicant. agreement with the experimental valuesHyf; for BKBO
The estimates obtained for coherence length, magnetlgingle crystald?

penetration depth, and upper critical field are in good agree-
ment with the results of resistive and magnetic measure- ) L
ments on poly- and monocrystalline BKBO sampidsit 32 Imeversible magnetization range

For example, the value ofl., for single crystals grown The peak effect in Ba ,K,BiO5,, single crystals
electrochemically amounts to 30 Tlat T=2 K), whichis  (x>0.33) was observed for the first time by us eafliand
twice the value ofH., calculated according to the WHH investigated over a wide temperature range (4.2TK-in
theory. The coherence lengti§(0) corresponding to intermediate field$d.,<H,<H,. The shape of additional
H.,=30 Tlis 33 A. The order parameta(T) is equal to  peaks on hysteresis loops depends on the temperature, while
35 (x=0.34) and 26 X=0.37) forT=22 K. Using the re- the magnitude of the peak fieldl, decreases with increasing
lation H; /H,= (In k)/(2«?), we find that for this tempera- temperature. Figure 4 shows fragments of hysteresis loops
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for single crystals withx=0.34 and 0.37 for temperatures and 0.77k=0.37); m=1.45 (x=0.34) and 1.22(=0.37).
nearT.. The values ofj. (T=20 K) calculated according Thus, there are no grounds for associating the peak effect in
to Bean’s model were of the order of 50° A-cm 2. We  BKBO with the emergence of reversible regions in the crys-
analyzed the reproducibility of the,(T) andH;(T) depen- tal as a result of the passage of the magnetic field through the
dences for crystals with the same concentrationf potas- threshold valued;, for regions with a nonstoichiometric
sium as well as the effect of thermal treatment, sample sizegxygen concentrationwe assume that such regions are
and potassium concentration on the shape of the curves. Apresent Moreover, the values ok andB in the temperature
insignificant spread in the values of, and a shift of the dependence dfi, andH, are different: the rati®/A=6 for
H;(T) line are observed for crystals having the same valuerystals withx=0.34 and 4 for crystals witk=0.37.

of x and grown in the same experiment. The same was ob- The model of the “dynamic” nature of the peak effect
served for a crystal before and after its cutting. On the othepresumes the existence of a mirror relation between the field
hand, sample annealing in oxidizing and reducing media afdependences of the critical current densjtyH) and the
fects the values dfi, andH;, significantly even if the varia- magnetization relaxation rat(H),** for which the emer-
tions of T, as a result of thermal treatment are siait the ~ gence of an additional peak on hysteresis loops is associated
same time, an increase in the potassium concentration iith a decrease in the magnetization relaxation rate due to a
crystals leads to a sharp decreasefjnand to a more mono- change in the form of flux creep. The measurements of static
tonic decrease iil, . Such a dependence Hif, andH;, on ~ magnetization and magnetic relaxation in BKBO single crys-
potassium concentration is obviously connected with the initals (x=0.46) reveale® that the field dependence of relax-
tial structure of the defects, e.g., with different distribution of ation rateS(H) has a peak corresponding to the applied mag-
oxygen in the crystals. Although the peak effect was ob-hetic fieldH=H /2. Besides, the peak effect does not appear
served only in BKBO crystals with an elevated potassiumin the field dependence of the density of actual critical cur-
content &>0.33), we concludétithat this effect should be rent for this composition, which is obtained by using a gen-
attributed to its nonuniform distribution since the crystal €ralized inversion schenfé.These results indicate that the
structure of Ba_,K,BiO, with x>0.33 is strictly cubical “dynamic” interpretation of the peak effect plays a signifi-
and does not exhibit a phase separation into stoichiometrigant role in BKBO single crystals«¢ 0.46).

phases wittk=0.08 and 0.28 as in the case of polycrystals A systematic analysis of the pinning force as a function
with 0.2<x<0.281° At the same time, single crystals ac- Of magnetic field and temperature for the BKBO single crys-
quire additional oxygen in the course of electrochemicaft@ls (x=0.34,0.37) carried out by us showed that at least two
deposition, the intensity of this process increasing with podifferent mechanisms of pinning play a significant role in
tassium concentratioh. these compositions. Figure 5 shows experimental values of

An analysis of the behavior of irreversible magnetizationthe normalized pinning force in single crystals with these
in the temperature range close To confirms our conclu- compositions as functions c_>f reduced _field at diff«_arent tem-
sions that the peak effect in BKBO is due to the presence dperatures as well as their processing according to the
regions with nonstoichiometric oxygen concentration informule
crys,tlalf4 with values oH., and T, smaller than' for the Fo/F p(max = A(b*)P(1—b*)A, (4)
matrix." The models of peak effect such as anisotropy of
electron propertiés and the ®—-2D phase transition in a Whereb* =H/H;, is the reduced field in the sampla,the
vortex latticé® are inapplicable to an isotropic cubic system numerical parameter, angl and g characterize the pinning
like BKBO. The model of commensurability of the periods Mechanism in the superconductdr.
of a vortex lattice and a lattice of defects in the vicinity of ~ The processing mentioned above givps-1.95 and
the field corresponding to an additional peak on k¢H)  d=1.52 forx=0.34 atT=19-22 K,p=0.48 andj=1.7 at
curve'® presumes the absence of the temperature dependent& 25-27 K; for x=0.37, p=4.6 and g=3.1 at
of H,, which contradicts our resultsee Fig. 3 Itis appro- ~T=20-22 K, andp=0.43 andq=3.2 atT=25-27 K. It
priate to mention a relatively recent publicatiéin which ~ should be noted thaj>p for most HTS materialé’ How-
an attempt was made to attribute the peak effect irever, for BKBO single crystalsx(=0.34, 0.37, we obtained
YBa,Cu;0,_; (YBCO) single crystal to the formation of the opposite relationq<p) at low temperatures. It can be
irreversible regions with values of,, differing from that of ~ seen from Fig. 5 that the experimental values of reduced
the matrix on the basis of coincidence of temperature deperiRinning force are satisfactorily approximated by two differ-
dencesH ,(T) andH,, = (1—T/T,)™. In order to verify the ent curves having a peak, according(#, for H ., corre-
possibility of application of this model to the BKBO system, SPonding to
we analyzed the temperature dependertdggT) obtained * _
¢ . : biha= P/ (P+a). (5)
rom the hysteresis loops for YBCO and BKBO single crys-
tals. Our results of measurements of magnetization of YBCOt was found that by, =0.56(0.22) for x=0.34 at
single crystal$'® give close values for thed o(T) and T=19-22 K (24-28 K), while b},,=0.6(0.12) for
Hi(T) curves neall.:m=1.7 and 1.8. According to Fig. 3, x=0.37 atT=20-22 K (25-27 K). Thus, two contribu-
the temperature dependertdg(T) for BKBO single crystals tions to irreversible magnetization which obviously exist for
is described by the relatiod ,(T) =A(1—T/T,)", while ir- BKBO (x=0.34, 0.37 are manifested in a significant differ-
reversibility lines are described by the dependencesnce in scaling over the field at low and high temperatures.
Hi(T)=B(1-T/T,)™ (where n<m): n=0.59 (x=0.34) This means that the peak effect in single crystals with spatial
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dynamic phase of vortex glaés.The temperature depen-
dence of the irreversibility field in BKBO single crystals
which do not exhibit any peak effe¢including those sub-
jected to electron bombardmenvas investigated by us in
Refs. 12, 28, and 29. For fields above 0.1 TI, thg(T)
dependence was approximated by the functigp=H;,(0)

X (1—T/To)%2 with H;,(0)=17 Tl for the initial state. The
flux creep modéP presumes a similar dependenide, (T)
nearT. with m=3/2, namely,

Hin(T)~{HE(0)£(0) o} (1 T/T)¥, (6)

For BKBO crystals withx<0.341%2%2% the behavior of
Hi.(T) corresponds to this model. If, however, thHe, (T)
curve is due to vortex lattice melting, the irreversibility field
nearT, is described by the following relatic?t:>

Hir~{cl @3/4mudraN T2y} (1-TIT,)?, (7)

wherec, is the Lindemann criterion ang the anisotropy
parameter equal tonf./m,,)*2. It should be noted that the
guadratic dependend®) tends to a linear dependence upon
an increase iny on account of quantum fluctuations of the
vortex lattice®>3? It follows from Fig. 3 that the values of
m in the temperature dependenide,(T) decrease with in-
creasing potassium concentratigm=1.45 and 1.22 for
x=0.34 and 0.37, respectivelylt should be noted that the
model of vortex lattice melting correctly describes the ex-
perimentally obtained dependentk,(T) for an isotropic
superconductor Ris, nearT, .3 The fact tham=2 in this
case unambiguously confirms the presence of a first-order
phase transition of the type of vortex lattice—liquid.

If we apply the model of lattice melting to two HTS
systems(isotropic BKBO and anisotropic YBCQthe irre-
versibility line for YBCO must lie above the irreversibility
line for BKBO for the same reduced values of temperature
and field, and the ratio of reduced irreversibility fields must

) be of the order of 25y=1 and 5 for BKBO and YBCO,
02 04 06 08 1,0 respectively. In actual practice, our measureméfts
H/H, showed that this ratio amounts to 0.3-0.5. It follows hence
that the irreversibility line is still not associated with the
FIG. 5. Normalized pinning force , /F pmay as a function of the reduced lattice melting(at least for a YBCO single crystalThe pos-
field H/H;, for crystals withx=0.34(a) and 0.37(b). sibility of using the model of superconducting vortex gfdss
with the temperature dependentdg,(T) = (1—T/T)*?re-
quires additional verification.
oxygen nonstoichiometry can be a consequence of the com- Since the behavior of irreversible magnetization in fields
petition between two pinning mechanism each of whichsmaller tharH,, is closely connected with the critical current
dominates in its own temperature region. Comparing the podensity of the superconductor and depends on vortex pinning
sition of the peak of reduced pinning force with the theoreti-at the defects, it is natural to assume that the irreversibility
cal predictiong> we can assume that pinning centers have dine is also connected with pinning centers. Electron bom-
two-dimensional rather than three-dimensional geometry andardment E=4 MeV) makes it possible to introduce point
that both mechanisms of pinninghe so-calledéT.- and radiation defects into the crystal which serve as additional
Sl-pinning are important. In this case, the peak effect can beinning centers. The results of our measurements of residual
due to the crossover between two mechanisms of flux pinmagnetization in BKBO single crystals exposed to fluences
ning associated with applied magnetic field and/or temperaup to 2- 10'® cm™?2 indicaté®?°that critical currents increase
ture. by a factor of two, and the irreversibility line is shifted to-

It was mentioned above that complete understanding afvard strong fields. The values &f;,(0) amount to 20 TI,
the origin of irreversibility line has not yet been attained. It isbut the nature of temperature dependehtg(T) remains
assumed thatl;,, defined as the field for which the hysteresis unchanged, i.e., is determined by the simple activation
of the M(H) curves disappears can be due to flux créep, model?® These results can be explained by a stronger pin-
vortex lattice melting® or the formation of a new thermo- ning of vortex lattice in a crystal by radiation defects.
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The thermodynamic critical fieldH (0)=H,(0)/\2x  *E-mail: ifttpanb@iftt.basnet.minsk.by
is directly related to the effective pinning for€eand hence
the difference in vortex lattice pinning in crystals with dif- L. Civale, A. D. Marwick, M. W. McElfreshet al, Phys. Rev. Lett65,
ferent potassium concentratioBig. 5 can be explained, 164(1990.

: : 2V. G. Kogan, M. M. Fang, and S. Mitra, Phys. Ré&338, 11958(1989.
for example, by the difference in the valuestef(0). In 3H. C. Yang, M. H. Hsieh. D. S. Lee, and H. E. Horng, Phys. FR42.
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Dependences of rf absorption in HTS ceramic samples on a magneti¢ifield ;4 (H¢yq is the

lower critical field for granuleshave been investigated. Some features of these dependences
cannot be described by the standard model of critical states, taking into account magnetic flux
trapping only in granules. A new electrodynamic model, taking into account qualitatively

the magnetic flux trapping both in granules and in the intergranular space is proposed. The
modified model makes it possible to explain all the currently observed peculiarities in

the magnetic-field dependences of rf absorption bottHorH ;4 and forH<H; ;4. © 1997
American Institute of Physic§S1063-777X97)00502-1

INTRODUCTION intergranular space determining the current in Josephon junc-
tions were later proposed. Among these models, we must
Electrodynamics of ceramic or polycrystalline high- mention above all the model taking into account the effect of
temperature superconducto($iTS materialy is usually  Abrikosov vortices at the banks of a Josephson junétor
studied by using models, taking into account the coexistencthe model taking into account the magnetization of indi-
of two coupled electrodynamic subsystems, viz., superconvidual granules and demagnetization factdn. spite of the
ducting granuleggrains, or crystallitesand weak links be- fact that, in contrast to the model proposed in Refs. 2 and 4,
tween them. Both these subsystems are manifested in theRese models lead to not only qualitative, but sometimes also
hysteresis dependences of critical current density, magnetig quantitative coincidence of the results of calculations with
susceptibility, magnetoresistance, magnetization, and ele@xperimental data, the physical pattern of the processes oc-
tromagnetic absorption. curring in the intergranular medium is sometimes blurred,
Even in the first publications in this fiefcf the irrevers-  and (which is most importantthe fields trapped in the inter-
ibility of the dependences of critical current densltyon the  granular medium are ignored completely in this model.
magnetic fieldH was explained by magnetic flux trapping in At the same time, the magnetic flux trapping in fields
grains (first subsystem Upon a decrease in the external H<H., was established even in the first publications on
magnetic field, the magnetic field of the trapped flux com-HTS ceramic$ and the influence of the magnetic field on the
pensates the action of the applied field on intergranular link#iysteresis behavior of critical current was studied in Ref. 9
(second subsystemin Ref. 2, a detailed model of the for- (H,,, is the field determining the onset of penetration of
mation of the local magnetic-field in the intergranular spaceAbrikosov vortices in granulés
was developed on the basis of the model of critical state At the same time, a correlation between the magnetic-
applied to granules. This model explained qualitatively thefield dependence of dynamic magnetic susceptibility and
magnetic field penetration and magnetic flux trapping incritical current was establishé@!* An analysis of the hys-
HTS samples as well as the main peculiarities in theteresis behavior of electromagnetic energy absorption in
magnetic-field dependence of the critical current density irHTS samples in the microwave raffand in the rf rang€
HTS samples cooled in zero magnetic field at a fixed temrevealed the coincidence of the main features of the
perature(ZFC mode. magnetic-field dependences and similar dependence of criti-
However, subsequent analysis of the magnetic-field deeal current. This made it possible to apply the electrody-
pendences of HTS samples cooled in a magnetic fie@ namic model proposed in Refs. 2 and 4 in the analysis of
mode®* revealed a number of peculiarities which could notmagnetic-field dependences of magnetic susceptibility and rf
be explained by the model proposed in Ref. 2. In this conabsorption also.
nection, it was necessary to study local magnetic fields inthe  According to the results of more detailed investigations
intergranular space in greater detail, taking into account theiof the rf absorption in a magnetic fields which do not disturb
compression in order to modify slightly the model proposedthe Meissner state of granule$i€H.,4), these depen-
in Ref. 2. Independent analysis carried out by Miseral®  dences display peculiarities which cannot be explained on
confirmed that local fields in the intergranular space experithe basis of the model proposed in Refs. 2 and 4. These
ence stronger compression in the ZFC mode than in the F@eculiarities are also responsible for the difference between
mode. the magnetic-field dependences of rf absorption and the
In order to explain the hysteresis behavior of the criticalJ.(H) dependence in the same fields. For example, the field
current density upon a change in magnetic field, a number adependence of rf absorption in HTS samples with trapped
other physical models of formation of the local field in the magnetic fluxfor H=0), which is obtained during zero-field
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cooling, has clearly manifested regions of absorption associ- 29
ated with magnetic flux trapping in the intergranular
medium!**®which are not present on thie(H) curves!®’
Peculiarities in the magnetic field penetration into a hollow 24
cylinder’® or the rf absorption in texturized ceramitsas
well as in HTS samples upon a change in the orientation of
the applied magnetic field fad<20 O&%? cannot be ex-
plained either in the standard model of critical state for gran- @
ules proposed in Refs. 2 and 4. O 14
Consequently, the electrodynamic model proposed in
Refs. 2 and 4 must be modified by taking into account the

191

dynamics of magnetic field penetration and magnetic flux ST
trapping in the second subsystdintergranular spagealso.
In order to analyze the effect of fields associated with mag- 40

netic flux trapping in current loops embracing several gran-
ules and including Josephson junctions between granules in

their circuit in the intergranular medium, we analyzed the 22 3
magnetic-field dependences of rf absorption in external static b
fields smaller tharH . . T
EXPERIMENTAL RESULTS 18

The rf absorption at a frequency of 2.5 MHz in g
YBaCuO HTS ceramics was determined in our experiments -

S . e}

from the Q-factor of the rf circuit whose inductance was G
loaded by the sample under investigation. The intrinsic 14 }
losses in the circuit were subtracted. The measurements were 2
made at the nitrogen boiling temperature. The measuring H

technique was described in detail in Ref. 11. The graphic é '_:" ch
representation of the field dependences of rf absorption in the 10 A ) . N T

form of reciprocal absorptio@(H) facilitates their compatri- 0 20 40 60 80 100 120
son with magnetic-field dependences of the critical current H,Hy,  Oe

density° J.(H) which are basically similar.

Figures 1la and b show for comparison the dependencddG. 1. Magnetic-field dependences of Qefactor andQ e, of an rf circuit
obtained for the samples synthesized according to traditionéﬂaded with a ceramic sam_ple prepared_accor_ding to_ the standqrd _ceramic

. . . . . technology(a) and with partial meltingb) in an increasing magnetic field

ceramic technologyFig. 13 and by using parnal meltm_g as (curvel) and in a decreasing magnetic field faf,= 165 Oe(curve?2) and
a result of sample heating to 1050 °C during 10 r(fig. 70 Oe(curve2’), and in a sample with trapped magnetic fl@arve 3).
1b). The figures show three types of magnetic-field depen-
dences of absorptioi®(H) in a field increasing to the maxi-
mum value of the magnetic field=H,>H.4 (curve 1),
Q(H) in a field decreasing after the attainment of the valuethe curves describing the magnetic field dependences in in-
H=H,, (curves2 and2'), andQ,.(Hp) in the field associ- creasing and decreasing fields at the pbirtH.. The value
ated with the trapped magnetic flux in the sampleHoe0  of the external magnetic fieltll =H,, corresponding to the
(curve 3). The curve? and?2’ differ in the value of maxi- maximum value of critical current density on the dependence
mum magnetic fieldH,,. The characteristic values of critical in a decreasing magnetic field normally exceeds the value
fields determined from the field dependences of absorption il =H (He,>H,).1™® This peculiarity is also observed for
the sample with a trapped magnetic flux, i.e., cur@egre  the magnetic-field dependences of rf absorption.
plotted along the abscissa axisee Ref. 1L Hy; is the It is remarkable that the reverse situation, i.e.,
lower critical field for the intergranular medium, aht},; is  Hg<H¢, is clearly manifested in the experimémtimed at
the field corresponding to complete transition to the criticalthe determination of the effect of the fields trapped in the
state of the sample for the intergranular medium with thentergranular space by closed circular currents embracing
conservation of the Meissner state of the granules. several granules. However, this peculiarity was disregarded

It is well known that the magnetic-field dependences ofin Ref. 9 as well as in other publications.
rf absorption of granular HTS samples in a decreasing mag- Figure la shows a typical field dependence of the
netic field are characterized by a lower absorption as comQ-factor in a decreasing magnetic field for a sample synthe-
pared to the values obtained in an increasing field for thesized according to the classical technologyrve 2). For
same values ofH. However, nearH=0 the situation H,=165 Oe, H,,>H. on this curve. The condition of
changes in all cases: the absorption in a decreasing field Equality of absorption in increasing and decreasing fields for
stronger than in an increasing field. A transition from oneH=H_ in the case wheki ,>H_ can be easily explained in
situation to the other naturally determines the intersection othe model proposed in Refs. 2 and 4 and taking into account
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the critical state of the subsystem of granules alone. This B y
condition can be written in the form

|Bl=12Bl, @)

whereB= uH, u is the permeability, an8 the local value Bott
of the magnetic field in the intergranular space, which is \

associated with the dissipated field of the magnetic flux \
trapped by granules. It should be recalled that, according to

the concepts of the modéf the magnetic field vectof® and B(H)
By in the intergranular space are opposite. The peak on the > BQ(H) B
curve2 observed at the poiti ., is determined by the equal- il
ity of local fields in the intergranular space: :B , d B
7/
B]=|By. (2 NG ?
However, as the maximum value of the magnetic field ll
H, for which the hysteresis cycle takes place decreases, the
value ofH; on the magnetic field dependences of rf absorp- 0 H. Hex H

tion is larger tharH ., in some case&see Ref. § Curve2' in , _ o
FIG. 2. Schematic representation of the dependences of local magnetic field

Fig. 1a obtained foH,,=70 Oe is a typical example of the . ; - X .
.. . . components in the intergranular space on the applied decreasing magnetic
magnetic-field dependence in this case. Moreover, the COf|d H in the field rangeH <H,q for H > H,,g, taking into account mag-

dition H.>H,, can be also observed for higher values ofnetic flux trapping only in grainéaccording to the model developed in Refs.
H,, in the case when the technological conditions of synthe2 and 4.
sis of HTS materials are changed. By way of an example,

Fig. 1b shows the magnetic-field dependence of rf absorption .. . -
in a decreasing magnetic fieldurve 2) for an HTS sample totically for higher values of the magnetic field. The dot-and-

whose synthesis was accompanied by partial melting, WhiCHaSh line describes the change in the magnitude of the com-

made it possible to double the value of critical current den}d).om.ent .Bg quldthi lhoc‘:’:ll magnetlg bﬁeld crelatedThbyd.the
sity. For this sample, the conditidd.>H,, is also fulfilled Issipative field of the flux trapped by granules. The direc-

for H,,= 165 Oe, which is usually not observed for samplest'on of this component in the intergranular medium is oppo-

obtained by the standard method of solid-state synthesis. site to the _directi(_)n of the exte_rnal fiel_d component. How-
In the electrodynamic model proposed in Refs. 2 and 459ver, _the fieldB, is presented in the_ f'rSF qu_adrant of the
the conditions of intersection of magnetic-field dependence oordinate system for the sake of visualization of the total

of rf absorption in increasing and decreasing fields cannot b caloflel(rj] B'vaff. between granules:d tion. the effective local
formulated forH . >H,,, i.e., in the case when the total local n the diagram under consideration, the etlective foca

value B¢ of magnetic field in the intergranular space doesmagnetlc fieldBey acting on the Josephson junctions be-

not change its direction to become antiparallel to the externatwefan graqules IS detgrmlned by the sum of 'the 'vectors as-
ociated with the applied fielB and the opposite field, .

magnetic field. For this purpose, we must modify the mode L . . P
g burp fy he variation ofB¢ in a decreasing magnetic field is deter-

Ny .
O.f flu?( trapp_lngf In order to take into account the flux trap- mined by the vertical size of the hatched region between the
ping in the intergranular space. . 2

curvesB(H) andBy(H). Proceeding from this diagram, we
cannot explain the fulfilment of the “castling” condition for
the values oH. andH,,, which is expressed in the form of

Before we take into account the influence of rf absorp-the replacement of the inequality.,>H. by the inequality

tion of the magnetic field determined by the magnetic fluxH.>H,, (see Fig. 1b and curnv' in Fig. 13.
trapped by stable current loops embracing several granules, These peculiarities of the magnetic-field dependences of
let us consider the main features of the electrodynamicf absorption can be explained by introducing additional lo-
modef* applied for analysis of magnetic-field dependencesal fields B; induced by the magnetic flux trapped in the
of critical currentd.. We assume thal. (as well as rf ab- intergranular space by stable closed currents passing through
sorption is mainly determined by the intergranular medium the system of granules and containing Josephson junctions in
which can be often visualized as a network of Josephsotheir circuit. We assume that superconductivity of the inter-
junctions, and the influence of the external magnetic field orgranular subsystem is weakéhe value of critical current
J. (or absorption is determined by the magnitude of the density for this subsystem is much lower than for the sub-
local magnetic fieldB in the intergranular space. For this system of granulgs However, it is also a type Il supercon-
purpose, we consider the nature of variation of the compoductor which exhibits in static magnetic fields a transition to
nents of the local magnetic fielB. in the intergranular the critical state described by the simplest Bean’s model.
space as a function of @ecreasingmagnetic fieldH with Naturally, this medium exists in the critical state only in very
the help of schematic diagram presented in Fig. 2. The varianveak fields until intergranular junctions are broken by the
tion of B in the intergranular medium is presented by theapplied field which affects the variation of the local field
solid curve emerging from the origin, deviating from the B; more strongly than the variation of the local fieq .
straight line for small values dfi and approaching it asymp- Proceeding from these assumptions, we can present

DISCUSSION OF RESULTS
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With increasingH,,, i.e., for an ascending dot-and-dash
curve describing the variation d4(H), the conventional
conditionH>H. is satisfied in the case when it does not
intersect with the segment of the dashed cuBjéH) in
Benr accordance with the diagram presented in Fig. 2 and corre-
sponding to the modéf disregarding magnetic flux trapping
in the intergranular space. The effective local field acting on
the intergranular medium is determined from the hatched
region as in the diagram in Fig. 2.

The increase in the critical current density is reflected in
a decrease in the slope of the dependeBg@H) and an
increase in the value @;,,. This leads to an increase in the
value ofH, (the inequalityH .>H,, being preserved lead-
ing to an expansion of the magnetic field range in which rf
absorption in a decreasing field exceed rf absorption in an
jm H increasing field. The validity of the inequalitd .>H,, in

fields up toH,= 165 Oe is illustrated by curv2in Fig. 1b,

FIG. 3. Schematic rgpresentation of the dependencgs of local magnetic ﬁelﬂ/hich was obtained on YBCO samples with partial melting.
qompon_ents in Fhe intergranular space on the applleq de_creasmg magner.lrh liariti in th | of tic-field d )
field H in the field rangeH<H.4 for H,>H4, taking into account € peculiariues n . e ,re‘,’ersa O magnetc-tie . ePe”
magnetic flux trapping not only in grains, but also in the intergranular spacélences of rf absorption in increasing and decreasing fields
(modified model. observed in Ref. 19 on texturized samples can probably be
explained by a large abscissa of the point of intersection of
the dependences;(H) andBy(H), i.e., by a higher value of

schematically the pattern of variation of the local magneticHc in the |nequ_al|_tyHc>_Hex. i
The peculiarities in the magnetic-field dependences

field components in the intergranular space in a decreasin\%hich are manifested in magnetic fiele<H,. and cannot
clg

field as a function of the applied fieléFig. 3). The nature of i . . .
variation of the local magnetic field compondtassociated be ex.plamed n Fhe glectrodynamlc mo%febgn_pe easily
explained by taking into account the peculiarities of mag-

with the trapped magnetic flux in the intergranular space is . . L .
PP 9 9 P %éenc flux penetration and trapping in the intergranular me-

o of SNSRI

presented by a segment of the dashed curve with a slop L .
larger than that of the dot-and-dash curve describing th ium of the samples. These peculiarities include an addi-
ional peak on the field dependence of rf absorption in

variation of the field componei, . This curve terminates at samples with a trapped maanetic flux upon a change in the
the pointB;,, determining complete rupture of intergranular P PP 9 P 9

junctions. The direction of the magnetic field Componentdlrectlon of the applied magnetic fielfi,a manifestation of

B, coincides with the direction of the applied magnetic fieIthe effect of magnetic field orientation on qualitative changes

B in the medium. in the field dependence of absorptminder the same con-

In contrast to Fig. 2, the solid curve in Fig. 3 shows the?r:g?r:i’nﬁgg gzngiitii:rc]af ;nlzC:rrzﬁr):ytlrt]:vﬁEZIIknr?;\;inzon-
total value of the local fieldB,(H) in the intergranular me- tal  dependence O (H-) F:r? the field ir?lterval
dium which coincides in direction with the applied magneticH <N p<H for ngm Igs with a trapped maanetic flux
field componenB,=B+B;, and not the component associ- = P - m; clg i b aiti f th bp Lt ? + of th
ated with the applied magnetic fieB. However, the com- upon Ias% $Ege ']: € con II 'OES 0 Iermra rea'll mt()an 0 i €
ponentB; =0 for H>H,y. samples? This effect can also be explained easily by attrib-

An analysis of the points of intersection of the depen-Uting it to changes in th? system of Josep_hson junctio_ns that
denceB,(H) with the dependencB;(H) and the nature of dete_rmme the peculiarities in th_e mag_netlc flux tr_appmg in
- - S o S the intergranular space, which is confirmed by direct mea-
variation ofB,(H) indicates the possibility of “castling” of i T8
the pointsH . andH,, on the magnetic-field dependence. Forsurements of magnetic flux.
small H,,, the following condition is satisfied at the point
H:
Bg|=1By], (3)  CONCLUSION

which ensures mutual compensation of these fields. The role An analysis of peculiarities in magnetic-field depen-
of the effective local fieldB¢ acting on intergranular junc- dences of rf absorption in HTS ceramic samples of the
tions is played, as before, by the component associated withiBa,Cu;O;_, type in magnetic fields lower than the lower
the applied fieldB subjected to a certain compression. If the critical field H¢,4 for granules indicates a noticeable influ-
inequalityH.>H,, is satisfied, the condition ence of the magnetic fields created by the flux trapped in the
IB,|=|B.|=|B+B|| @) intergranular space on the electrodynamics of the medium.
g a I These peculiarities imply that the standard model of critical
is satisfied at the poinH,, corresponding to the extremal state proposed in Refs. 2 and 4 and taking into account the
point on the magnetic-field dependence of rf absorption in anagnetic flux trapping only in granules is inapplicable and
decreasing field. requires a modification. The conditidi,,<H. serves as the
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The method for investigating the electron properties of metals, which was developed by I. M.
Lifshits under the assumption that the form of the energy—momentum relation for charge

carriers is knowra priori, and for reconstructing the electron energy spectrum from experimental
data is applied for studying acoustoelectronic effects in layered conductors with a strongly
anisotropic conductivity of the metallic type. It is shown that the attenuation of acoustic waves
propagating along the layers can become much weaker in strong magnetic fields. The

conditions for acoustic transparency of layered conductors with a quasi-two-dimensional electron
spectrum are obtained, and the oscillatory dependence of acoustic damping decrement on

the magnetic field is analyzed for various orientations of the acoustic wave vector and the magnetic
field. © 1997 American Institute of Physid$§1063-777X97)00602-§

An analysis of acoustic waves propagating in metals in a&onductors decreases with increasing magnetic field. The
magnetic field resulted in the successful solution of the in-only exception are the resonant values of the magnetic field
verse problem of reconstructing of the electron energy specsatisfying the conditiotr = 7(n+ 1/4) under whicH™(H) is
trum from experimental data, which was formulated by I. M. again proportional td/r.>
Lifshits. The concept of quasiparticles, viz., elementary ex-  The current interest in low-dimensional structures is
citations above the ground state of condensed media, is umrainly due to the need in new superconducting materials for
doubtedly effective in an analysis of physical properties ofpractical applications. However, the specific properties of
various conductors, including low-dimensional ones. This issuch superconductors in the norm@onsuperconducting
associated with a long lifetime of conduction electrons withstate can undoubtedly be used in various fields of electronics
the energy close to the Fermi energy, which makes it pOS(e.g., acoustoelectronicsGalvanomagnetic phenomena in
sible to study in detail the Fermi branch of the energy speclyered conductors have been studied experimentally by
trum in detail without resorting to specific models of the Many authors, but acoustoelectronic effects have not been
energy—momentum relation for charge carriers. Such an apfvestigated experimentally to our knowledge. The presence
proach developed by I. M. Lifshtshas made it possible to Of an additional parametewave frequency can undoubt-
investigate thoroughly the electronic properties of layered?dly b€ used for studying the properties of charge carriers in
conductors with a strong anisotropy in the electrical conducl@yered conductors in greater detail and can probably help to
tivity. Most of these conductors are layered structures of orlind the reason behind some discrepancies between the
ganic origin, whose electrical conductivity along the normalth€0ry of galvanomagnetic effects and experiments.

n to the layers is considerably smaller than the conductivity in addltl_on _to aCOU.St'C wave da”_‘p'”g n conducting
along the layers. The quasi-two-dimensional nature of th&rystals, WhICh is associated with the interaction of th_ermal
energy spectrum of charge carriers in such conductors Iea(%]Onons with coherent phonons having the acous_tlc fre-
to a number of specific effeés which are not observed in dY€NCcy @, many mechanisms of electron absorption of

ordinary metals. The most impressive effect is associateﬁ]cgcuhsgﬁigvﬁvgsaaslzggg'tzta -I\—/\r/]i(t:}hn:r?zt;genrmda:::\%rrnr;ztllicz)gtion
with acoustic transparency of layered conductors in a ma gy

netic fieldH, when the radius of curvatureof the trajectory Yor charge carriers under the action of crystal deformation

of a conduction electron is much smaller than its mean free

pathl, but much larger than the acoustic wave lengtk. 1/ Se=N\ijUj; - (1)

The damping decrememi(H) for acoustic waves in metals

in this magnetic field range igk times larger tha'(0). On

the other hand, the electron energy absorption for acoustic In a magnetic field, this mechanism competes with the
waves propagating along the layers in quasi-two-dimensionahductive mechanism, i.e., Joule losses associated with the
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generation of electromagnetic fields by an acoustic wave. In the linear approximation in a small perturbation of the
These fields can be determined with the help of Maxwell’'selectron system by crystal deformation, the kinetic equation
equations forthe functionf = fo(e — p - U) — ¥(p,r)exp(— iwt)dfy/de

] ) assumes the form
curl curl E= (47 w/c?)j;

Il ty+Vagar + vp=ev-E—iw A (p)uj; , )

div E=4mp’, ©) wherev=(—iw+1/7); we assume that the wave is mono-
while the relation between the current density chromatic with frequency; the collision integral in Eq(8)

is taken into account in the-approximation, i.e., as the op-

. 3 4 erator of multiplication of the functiofiy— f by the collision
j=2(2mh) f d*pevi(p.r.1), (4) frequency 1f of conduction electrons, artg, is the time of

. o motion of a charge in the magnetic field according to the

and the strain tensar; = du;/Jx; and the electric field equation

E=E+[UxH]/c+mile, (5) aplat=e[vx H]/c. 9)

Here and below, the subscripH” on t is be omitted,

in a concomitant reference frame moving with the velocity of
—(\ij)/(1), where

ions U= du/dt can be determined by using Boltzmann's ki- a"dAij(P) = Aij(p)

netic equation for the charge carrier distribution function 4 5
f(p,r.t): (9)=2(2mh) fg(p)d PS(e—eF). (10)
If1at+vaflgr +{e(E+[vx H]/c—adelar}aflap The solution of the linearized kinetic equation
=Weor . (6) = Isz{Aij(P)UijWLQE'V}, (11

whereR is the resolvent of Eq8), makes it possible to find
the acoustoelectric coefficients connecting the electron fluxes

e andm are the charge and mass of a free electron. The lagjue to the crystal deformation with the ionic displacement

term in formula(5) is associated with the Stewart—Tolman The conditions for the existence of a nontrivial solution
effect. The collision integraW,,{f} vanishes upon the sub- of the complete system of linearized equations pf the prob-
stitution of the equilibrium Fermi distribution function !€M has the form of the energy—momentum relation between

the wave vectok and the wave frequenay. The imaginary

fo(e—p-u) for charge carriers in the concomitant reference . k
frame. component of the wave vector determines the damping dec-

Maxwell's equations and the kinetic equation should pe'ements for the acoustic wave and the electromagnetic wave
supplemented with the equation from the theory of elasticity9enerated by sound, while the real component of the wave
taking into account the reciprocal effect of the system ofvector takes into account the renormalization of velocity of
electrons whose equilibrium is disturbed by the crystal defn€ir Propagation associated with the interaction of these

formation on the ionic vibrations. Such a system of equation¥/a@ves with conduction electrons.

in the case of small deformations was obtained for the first Hoyvever, _the acoustic dampmg d_ecr_emErttan_ also be
time by Silir for an isotropic metal, by Kontoroviéht3for detgrmmed with 'the help gf the dissipative functi@npro-
an arbitrary energy—momentum relation for charge carrierdPortional to the time variation of entropy of the conducior.

and by Andreev and Pushkaf@vor arbitrary deformations. Taking into account only the electron energy absorption for
In the case of small ionic displacementsit is sufficient acoustic waves, we can write the dissipative function in the

to use only the linear approximationiry and to assume that form

the defor_matlon potential tensor componen1§|n Eq. (1) Q=(yWo{t}), (12)
are functions of the momentum of a conduction electron ] ) . ) )

alone, while the magnitudes of these components can appafhile the acoustic damping decrement is defined as
ently be assumed to be of the order of the characteristic T =(|y|%pu?s7), (13
energy of charge carriers, i.e., the Fermi energy. In this case,

the tensor components; (p), as well as the electron energy wherep is the crystal dens.ity e_msl the velqcity of sound..
¢(p) in an undeformed crystal, i.e. Using Maxwell’'s equation in the Fourier representation,

we obtain the following relation connecting the electric field

Herep' andv=ge/dp are the noncompensated density
and velocity of charge carriers, the velocity of light, and

g} with the ionic displacement:

e(p)= 2, en(Px,Py)coganp,/h), (7 ~ .
= {mij— &0 (K)}E ={ €k wayj (K) + time mnji oH /CK?
are also strongly anisotropic functions of the momentum of _Mijmwzle}uj ;

charge carriers. We assume that the coefficients of cosines in .
; : oy : j-k=0, (14

expression(7) for e(p) decrease rapidly with increasimgso

that A;= nAg<Ap and A, <A, WhereA, is the maxi- where¢ = 4miw/(k*c® — w?); wj; = &; — kik;/k?; 8 isthe

mum value of the functior,(p,,p,) on the Fermi surface, Kronecker delta,ej,; the antisymmetric rank-three tensor

e(p)=¢E. (e123=1), and the acoustoelectric coefficients
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oij(k)=(ezviﬁ€vj>, aij(k):<eUi§A]’n(p)>ujkn/k kr<.1. If the magnetic field bends the trajectory of charge
(15) carriers not very strongly, so that

in the Fourier representation connect the current density 1<kr<Kl, (19

Ji(k)=aj;(K)Ej(k) +ajj(k)kewu;(k) (16 the energy absorption for acoustic waves in metals is mainly
determined by the deformation mechanism. In low-
imensional conductors, the role of electromagnetic fields
nerated by an acoustic wave is very significant over a
much wider range of magnetic fields including the magnetic
fields satisfying condition(19). This is due to the fact that
the acoustoelectric coefficiengs; and oy; in such fields for

with the electric field and the displacement of ions.
Let us suppose that an acoustic wave propagates alo
the layers at right angles to the magnetic field
= (0, H sin 6, H sin #). In this case, the solution of E¢L4)
in the main approximation in the small parametehas the

form . . S
_ kr<1/n and r<I| experience giant oscillations upon a
Ey(k)={1- g’&yy(k)}‘l[iwuxH cos 0/ck? change in the reciprocal magnetic field. As a result, the as-
- ymptotic behavior of the dissipative function differs signifi-
+&kwayj(k)u;l; 17) cantly from that in ordinary metals, and the inclusion of elec-
Ez(k): —iwuH sin 8/ck’+mao?u,le, (18) tromagnetic fields leads to compensation of the deformation

_ ~ mechanism of energy absorption for acoustic waves, and
whereaj(k) = aij(k) — oix(k)oxj(k)/ox(k) andajj(k)  hence to acoustic transparency of the layered conductor. The
= (K) — ay;(K) i (k) oxx(K).. asymptote of acoustoelectric coefficients in this range of

Equation(18) is valid only for very small values oy,  magnetic fields has the form
whenz? < B = (wc/wgS)?/ o, Wwherew, is the frequency of _
plasma oscillations of the electron gas. In the opposite lim-  7yy(k)=(G/kD)(1—sinkd);
iting case, for determining, we must also take into account ~ _
the terms depending on in the power expansion gf, in the 3yj(K)=~1(GA,/evkD)coskD, 20
small parameterp. However, v,E, is always small for whereD=cD,/eH cos#, andD being the diameter of the
n<1, and the electric field has to be taken into account irFermi surface along thpy-axis,v and Aj, are the electron
the calculation of the asymptotic expression for the dissipavelocity and the value oA ,(p) at the reference point of the
tive function only in the cases wheé® vanishes forp=0. Fermi surface along the same axip,, and G

In ordinary metals, Joule losses are significant only in=4vae27-/ac(27rh)2.
the region of strong magnetic fields, when the radius of cur- The asymptotic expression for the dissipative function
vature of the electron trajectory is smaller than not only itsfor 1<kD<1/% and for the longitudinal polarization of the
mean free path, but also the acoustic wave length, i.eacoustic wave assumes the form

o eHr cos 6{g?(1+sin kD)+g3(1—sin kD) —2g,g, coskD}

m*h*akvc{1+]|éay,|*} ’ @D

whereg; = Aj,ujkw, andg, = av wueHc ! cosé. of the layered conductor must be observed between the reso-
It can be easily seen that the asymptotic form of thenant values of magnetic field, which are repeated with the

electroacoustic coefficien't?;yy and'&yj changes significantly period

for kD=2m(n+ 1/4), which leads to a sharp increase in the

dissipative function. However, under nonresonant condi- A(1/H)=2me cosd/cD,, (23

tions, when co&D differs significantly from zero, and there

is no need to take into account small corrections in formulagthe anomalous acoustic transparency must have the same

(20) for acoustoelectric coefficients, the denominator in for-periog).

mula(21) for the dissipative function increases in proportion In pure conductors, the mean free path of charge carriers

to H?, and the damping decrement at low temperatures can be so large that the condition
T'=(wlv)r/l 22) kln>1 'is 'observed. In this case, there exist a range of

magnetic fields for which ¥<kr<kl, and oscillations of

decreases upon an increase in the magnetic field and timgoustoelectric coefficients are due to a small fraction of

mean free path of charge carriers. For the longitudinal polarcharge carriers of the order oki(7)~*? on the Fermi sur-

ization of sound, the tensor componey, is obviously of ~ face near its cross section by the extremal diamBgt".

the order of the Fermi energy, and the valugypig,kD is ~ The magnetoacoustic resonance karH is absent in this

much larger tharg,. In this case, acoustic transparency isSituation, and the acoustic damping decrement

optimal for the values of magnetic field for whidtD is

close to 2r(n—1/4), and anomalous acoustic transparency  I'(H)={1+ (kr») Y2 sinkkDg— 7/4)}wl/vr (29
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has the same order of magnitude as in ordinary metals. In- In the calculation ofQ, we confined ourselves to only
significant numerical factors of the order of unity are omittedthe first two terms in expressiofi7) for the energy—

in formulas(22) and (24), andD0=cDSX"/(eH cosb). momentum relation for charge carriers. Acoustic transpar-

Magnetoacoustic resonance far H is possible only for ency takes place whekD is strictly equal to 2r(1—1/4),

krp<1, and small corrections in the parameters and and we must take into account small correctionsyirand
1/(kr) must be taken into account in the expression’&w 1/kr in the expression for the dissipative function. If gD
near the resonant values of the magnetic field. Simple calcudiffers significantly from— 1, attenuation of acoustic waves
lations lead to the following interpolation formula for increases with magnetic field as in ordinary crystals and is

I'(H): mainly determined by the first term in the brackets in for-
mula (27), except in some exotic models of deformation po-

I'(H)= wllvr 25 tential for whichA ,,< e . The amplitude of oscillations of
1+(1/kr?)?’ I' with period (23) associated with the periodic dependence

of o,,0n 1H, i.e,,
and the absorption of acoustic wave energy by conduction s
electrons increases with the magnetic field in proportion to 0= 7 90 1+sinkD COS(@ tan 6
H for I <kr?. kr h
Attenuation of transverse waves in a Iayered conductop a5 an order of magnitude thatuss times smaller than the
considerably depends on the form of nondiagonal compOa o stic decrement component varying monatonically with
nents of the deformation potential tensog(p). In the cases  he magnetic field if\,~ 7¢ . In addition to these oscilla-

whenAy,(p) and A,,(p) are much smaller than, in the  tjong, the damping decrement of acoustic waves oscillates
region of effective interaction of charge carriers with the, i 5 change in the angle with the period

wave, wherek - v=w, the order of magnitude of the acoustic

damping decrement changes significantly. However, for A(tan #)=2wh/aD,. (29
shear waves with the polarization in the plane of the layers, Angular oscillations in magnetic fields satisfying condi-
periodic alteration of transparency and resonant absorptiogOn (19) take place over the entire range of angles between
of acoustic wave energy is of the same nature as for Iongifhe magnetic field and the normal to the layers,

tudinal waves, i.e., resonant peaks in the dependence of ¢ 5"conduction electron drifts along the acoustic wave

acoustic damping decrement orHlare repeated with period | o.tor (for example, the sound propagates along the

(23), although the order of magnitude of acoustic wave en'y-axis), the acoustic damping decrement decreases by a fac-

ergy absorption can differ considerably from that in the casg,, ¢ (k1 7)? for r/l<krp<1. The solution of the kinetic

of longitudinal waves. equation in this case has the form
Acoustic waves polarized along the normal to the layers

attenuate over considerably longer distances if the compo-
nent A,, is small and vanishes ag tends to zero. In this
case, the asymptotic solution of Maxwell's equations for

: (28)

- t+T
¢={exp(vT+ik.vT)—1}—1f dt'g(t")
t

u=(0,0u) has the form xexplik-[r(t")—=r(t)]}, (30)
~ o~ whereg(t) = wA () k;u; + ev(t)E.
Ey:kwaszr mff oy.le u; For 1<kln<l/r, the term proportional t&k-vT plays
1-¢ay, the leading role in the power series expansion of the factor in
- 2/ (260 front of the integral invT andk - vT = fgdtk - v(t). For this
EZ:M reason, the termvT in the expression for the dissipative

1-¢o,, ' function in the case of charge carrier drift alokgwith the
velocity vy, = v, tané = mttané should be replaced by
krzn tané. If kryp tand >1, i.e., an electron can move dur-

i at | t the indicet L ing its mean free time over a distance much longer than the
parametery if at least one of the indicesand] coincides 5., gfic wave length, we have the magnetoacoustic reso-

with z. While calculating the dissipative function, we should nance predicted and studied theoretically in Ref. [Tis

not take into_account the electric fielf, proportional 10 resonance is sometimes called in the literature the Doppler-
n* since ev,E, contains the term proportional to the first shifted acoustic cyclotron resonan@SACR).] The reso-
power of . As a result of simple calculations, we obtain the ,5nce sets in fok-vT=2mn: in contrast to the case of
following expression for the dissipative function for qorginary metals, the amplitude of resonant oscillations is de-
1<kr<1/zn and for arbitrarily smally: termined by the parametér » rather than bykr.

3 2 The above formulas are valid when o#scD,/eHl. If

= LHCOS& ‘ the value off is close ton/2, i.e., cosf is so small that an
acwv(2mh)? ZX electron cannot complete a revolution in its orbit in a mag-

It can be easily verified that the components of the ma
trix a;; as well asoj; do not contain terms linear in the

iA,amo aD 2 netic field during its mean free time, the electrical conduc-
+ hk(1—Eo,) cos( h Ptan || (1+sinkD). tivity tensor component’:s}yy anda,, are close to their values
z

in zero magnetic field. This is due to the fact that only the
(277  magnetic field component along tleaxis affects the dy-
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namics of charge carriers in a two-dimensional conductordecrement in a magnetic field oriented in the plane of the
and for <1 the role of magnetic field componeht, be-  layers, i.e., orthogonal to the wave vector of sound:
comes noticeable in magnetoacoustic effects only in small

corrections in the parametey. For = /2, the magnetic- I'(H)= et {1—(krp)~ 128 sin(kcAD,/2eH
field dependence of the acoustic damping decrement is r
present only in the terms that vanish adends to zero, and +l4)}, (33

magnetoacoustic effects are manifested most clearly only if a ) ) )

wave propagates with a displacement of ions along the nofvhere ADy, is the difference between the maximum and

mal to the layers. minimum diameters of the section of the Fermi surface by
The oscillatory dependence Bfon 1H takes place for the planep,=const in the direction orthogonal to the mag-

9= /2 only for not very weak corrugation of the Fermi netic field. Fo_r such an experlmental geometry, charge carri-

surface, wherkr 7> 1. The period of oscillations ers do not drift along the acoustic wave vector, and the os-

cillations of I' due to variation of the magnetic field are
A(LH)=4me/kcADy, (8D similar to Pippard oscillation® but their amplitude is sup-

of the damping decrement of an acoustic wave propagatingressed due to the presence of the small fator

along the normal to the layers can be used to determine the . . S .
) . . ) : This research was carried out under partial financing by
intensity of Fermi surface corrugation to a high degree of

.~ the International Soros Foundati¢@rants No. USP 042051

accuracy. H.ereADPX 1S the difference bet_ween the maxi- and K5X 100 and by the Ministry of Sciences of Mace-
mum and minimum diameters of the Fermi surface along the

i donia.

px-axis for p,=0.
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The paramagnetic susceptibility of @2metal with attraction between charge carriers is

obtained, proceeding from the simple theoretical field model. The temperature dependence of the
magnetic susceptibility is calculated for various concentrations of fermions. It is shown that

the paramagnetic susceptibility can be reduced significantly in view of the presence of a finite
number of decoupling fermion pairs in the normal phase. The relation of the proposed

model to the marginal behavior of the Fermi liquid in hi§h-superconductors, in particular,

with the effects associated with the formation of a spin gap, is considered.993

American Institute of Physic§S1063-777X97)00702-0

1. INTRODUCTION mal HTS phase, i.e., high values ©fand a relatively high
number densityn; of delocalized(free) charge carriers. As
Normal properties of high-temperature superconductorsegards the second factoD2(and quasi-B) metals includ-
(HTS materialg including the spin gap manifested in a low- ing copper-based HTS materidisopper oxidesare clearly
frequency spectral weight of quasiparticle Fermi excitationscharacterized by a parameter separating the regions of low
[which is smaller than predicted by the Landau theory ofand high values ofi;, i.e., by the energy, of the bound
Fermi liquid at temperatures exceeding significantlyby a  two-fermion state formed as a result of attraction of any ori-
factor of 1.5-2 the superconducting transition temperaturegin (direct™? or indirect®). For example, if the Fermi en-
T.], are undoubtedly one of the most acute and disputablergy e-<|e;|, the value ofn; can be regarded as small, and
problems in the HTS theorgsee the reviews in Refs. 135 the behavior of the Fermi systéhuliffers significantly from
The decrease in spectral weight is observed most clearly ithe ordinary behavidf*® (e.g., the fermion chemical poten-
magnetic measurement®MR,! neutron scattering,etc)  tial u # &g, attaining negative valugs<0). A high number
and is attributed to the emergence, or opening of a gap in théensity n; corresponds to the opposite inequality>|ey|
spectrum ofspin excitations at certain values df. Above  which leads to the “restoration” of the normal properties of
this temperature regiofi.e., atT>(1.5-2)T.), the spin gap the Fermi liquid. Finally, the range otg=|e,| (with
is not manifestedor is closed according to experimental u=~eg) is known as the “crossover” region in which we can
data, and the Fermi subsystem of the HTS material becomesxpect a noticeable deviation of the temperature dependences
similar to the standard subsystem in many respects. No indef various parameters of a2metal from those predicted by
cations of a phase transition are observed in this case eithéghe Landau theory without assuming that its Fermi sphere of
Many attempts have been m&de°to attribute the ob- the metal is broker(the latter is clearly detected in HTS
served behavior of HTS materials to peculiarities of theirmaterialg.®>—>
magnetic dynamics. Among other things, the authors of these For this reason, the assumption that the anomafmus
publications assumed that magnetic anomalies of the normaluding magnetic behavior of the normal phase of HTS
phase of HTS materials, e.g., the temperature dependence @dmpoundstheir “strangeness)’ is probably due to lower
uniform paramagnetic susceptibilitPMS) y differing from  dimensions of their electronic properties and a relatively low
the Pauli dependencal¢/dT>0), are consequences of in- (as compared to ordinary metpisumber densityn; rather
teraction of quasiparticle excitations of an AFM metal with than due to the structure of their magnetic ground state ex-
overdamped spin waves which strongly attenuate accordingibiting strong AFM correlations appears quite plausible.
to the Landau mechanism, due to the formation of electron-The numerical calculation&(see also the review in Ref. 17
hole pairs(see also Refs. 3, 10The conclusions of the made for the ® Hubbard model with attractiol{<0) at a
theory (which do not contradict the experimeyité®are de- lattice site also speak in favor of such an assumption. These
termined to a considerable extent by the charge carrier corealculations proved that, in view of fluctuational formation
centration: the anomalies for weakly doped compounds aref noncorrelated pairs abovie,, anomalous temperature de-
manifested more clearly than for strongly doped samples, fopendences can be traced even for not very large ratios
which the Landau theory is more or less applicable. |U|/t (t is the one-particle hopping parameten this case,
Even disregarding the magnetism of HTS compounds athe PMS of fermions and the low-temperature spectral
such, we can speak of tw@quivalent to a certain extant weight measured from NMR signat§® (whose decrease
physical factors facilitating the ordinary behavior of the nor-was noted aboyebehave similarly.
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At the same time, analytical calculations that would Returning to model(1), we write the uniform PMS
demonstrate the nature of and the reason behind the deviashich can be expressed in terms of the thermodynamic po-
tions in the behavior of the normal phase of@ thetal from  tential Q(v,u,T,H) (v is the volume:
the predictions of the Landau theory as well as the tempera- )
ture T at which these deviations are observed have not yet _ _l Q )

been carried out. For this reason, we shall make an attempt v 9H? Heo

here to calculate the static PMS of B 2lectron system with

attraction between particles. On one hand, the calculation df' 1€ ?pﬁroxmanon taking |rr11'gohapcount IGauss,lan.quEtua-
y for the normal phase has the simplest form for such a gagions of the order parametéwhich is equal to zero in the
ormal phasg we can obtain, by using the functional inte-

and on the other hand, it allows a tracing of the complexn . ) . )
dynamic processes occurring in a fluctuating low- dration formalisn?* the following expression for the thermo-

dimensional system. We deliberately disregard the contribudynamic potential:
tion.to the PMS from thg magnetig subsystem proper which Qv u, T H)=—T(TrLn Gy '=TrLn 'Y, 3)
obviously plays a significant role in the case of copper ox-
ides. It should only be noted that the Hubbard model within which
U<0 was investigated in recent publicatidfis? through _ -
the solution of self-consistent equations for thematrix (iw, KH)= ('_‘”n’LMBH)Hf(k)TZ
with the help of the method of momentm the two-pole o (iwn+ ugH)*=£%(k)
approximation, taking into account the two Hubbard sub-
bands, and it was proved that such a model gives another
example of the behavior differing from that typical of a Lan- 53ng
dau Fermi liquid.

We shall consider the field model of &2Fermi system
with attraction(which is closer to an ordinary systemith-
out presuming strong correlations between charge carriers.
We proceed from a physical situatibm which strong cor- —K/2)—iQ,]*
relations form the ground state of an HTS material and do "
not affect significantly free charge carriers appearing due to 1
doping. Nevertheless, the spectrum of a low-dimensi@nal +K/2)+ ugH]+tanh= [ &(k
cluding 2D) systems containéee abovean additional dis- 2T
crete statdenergye,) or (depending orT) a continuum of
such states which makes a significant contribution to the ob- —K/2)— ugH]
served properties of the system.

expi Swn77),

5—+0 4

iy I
D100 KH) =G5 | e kK2 £k

h ! k
tan ﬁ[é(

®

are the temperature Green'’s functid@F) of an ideal Fermi

gas and of fluctuations of the order parameter in the external

field. Green’s function$4) and(5) are written in the follow-

ing notation: 7 is the Pauli matrix,| is the unit matrix,
The simplest field Hamiltonian of a2 Fermi system  &(k) = k?/2m — u; w, = (2n + 1)7TandQ, = 2n7T. We

with a local attraction in an external magnetic fielchas the  assume that the energy—momentum relation is quadratic, and

2. MODEL AND GENERAL DISCUSSION

form hencens=meg /7 for 2D metals. The chemical potential
V2 can be determined fror8) according to the relation
-%‘:—j dzf(l//;(r) om tH e 10Q
np=——-— ©

v o’
Vi (0§ (D¢ (N iy (1) + pgHL g (1) iy (1) _
whose role increases as the valuespfapproachese,|, and

accordingly the difference between the valueiofand e
increases:’
Taking into account the explicit form df3), we obtain

wherem is the effective mass of a particlé>0 the attrac-  the following equation from(6) for the number of particles
tion constantug the Bohr magneton, and it is assumed that(ywe putH=0 in it):

hi=kg=1. In accordance with the problem formulated

above, we have omitted ifl) the vector potential which is ne=ng(u,T)+2ng(u,T), (7)
known to be associated with diamagnetic susceptitlity.
should be noted that modél) was considered long ago by
many authorgsee, for example, Ref. 20but only the super- * dk

conducting phaseT(<T,) of a 3D system in strong fields rlp(,u,T)ZTnzoo f Wtr[Go(iwn,k,H=0)Tz]

—«pf(r)%(r)]], oY)

where

(the PM limit) was studied comprehensively for large values )
of n; (which, in other words, corresponds to the BCS
theory). and
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” dK
nB(,u,T)zTn;xJ WF(iQn,K,H=O) (9)

momentum(or, which is the same, space—tiniehavior and
temperature distribution of fluctuations. It should be noted in
this connection that although potenti@) was obtained by

are the effective average numbers of fermions and compourféking these fluctuations into account, we used the lowest

bosons(fluctuating pairs for given w andT. After the sub-
stitution of the GH4) into expressior(8) for the number of

(Gaussiaih approximation in which the interaction between
fluctuations is neglected. This approximation is completely

unpaired fermions, the latter expression can easily bédentical to the one used in Refs. 23 and 24, where the equal-

summed ovem,?? and integrated ovek:

dk
nF(M,T)ZJ (2m)? Ne[€(K)]

:gT In[1+exp(u/T)], (10

[exp@/T) + 1] ' is the Fermi distribution

sinceng(w)
function.

In analogy with(7), we can also split the expression for

the PMS so that
X, T)=xe(w, T)— xp(u,T), (11

i.e., we have two contributions: the fermion contribution

XF(M!T):XPauI[1+eX[X_M/T)]71;

XPaul= ,u,ém/# (12
and the boson contribution
xs(&,T)=xp(u, T)ng(u,T), (13

in which

0

1
Xb(M!T):XPauIiW f /ZTX*1 sinh x cosh 3 xdx
—p
(14

ity u=eg was not presumed, and E¢/) was solved to-
gether with another equation, viz., the so-called Thouless
condition. In the case of[3 systems, such an approach has
made it possible to trace directly the crossover from the local
pair mode to Cooper pairing.

On the other hand, an attempt was méde use the
same approach for analyzing the normal phase f<¥s-
tems. Among other things, the(T) dependence for differ-
ent initial charge carrier concentrations was determined from
the solution of Eq.(7), and an astonishing conclusion was
drawn that the system always contains a finite number of
stable bound fermions fof> T irrespective ofn; .

One way or another, we encounter here the problem of
T. of 2D systems. Indeed, phase fluctuations of the order
parameter disturb long-range correlations so that either
T.=0,2° or this temperature is much lower than its mean-
field valueT¥" % if we identify with this value the tempera-
ture Tgkr corresponding to the establishment of algebraic
order”? due to confinement of vortices.

All these stimulated the authors of Refs. 15 and 29 to
revise the justification of the Gaussian approximation in the
case when fluctuations are taken into account. It was found
that the existence of stable pairs abovgdepends om; :
there exists a critical concentration{' separatina the
Fermi-like (n;>n{",u>0) and Bose-like f;<n{’,u<0)
behavior of the system. In other words, a néwermi-like)

describes the contribution from the compound boson. It caglass of solutions, which did not exist in Ref. 14 and for
be seen that the fluctuating Bose component makes a finitghich it is meaningless to speak of real bosons abibye
(and negativecontribution to PMS. It should be noted, how- was obtained in Refs. 15, 29.

ever, that the quantitiesg(w,T) defined by(6) and(9) gen-
erally do not coincidéthe PMS(13) is associated witli9)].

At the same time, it was found in Ref. 29 thigt # O in
the Gaussian approximation, which, strictly speaking, cannot

However, in the case considered below, when the role of Ecpe regarded as a satisfactory result since, as soon as we go
(7) becomes significant indeed, these definitions are identibeyond this approximatiorfor take fluctuations into ac-

cal.
Boson fluctuations taken into account ({B) can corre-
spond to relatively stable as well decayigsfport-lived com-

cound, the result T.=0 for 2D systems is restored
immediately*® Thus, we have to decide whether we can cal-
culate the PMS for an idealized?2system or we must take

pound particles. In the general case, their lifetime depends ointo account the facfon the basis of purely physical consid-

the relation betweerg and ey, but for largen; (i.e., for
eg>|ey|), it depends on the relation betwegr~er and

erationg that real so-called R metals are actually quasi-
2D systems(as in the case of HTS compoundmd that a

T. (see below, which is more convenient and natural to use.transition to the three-dimensional casaking into account

(It should only be noted that expressiqi8) and(14) can be
obtained most easily by expandiii§) in powers ofH; the

the coupling between conducting layerways stabilizes
Tc-3l'32

corresponding expansion contains only even powers since We will stick to the second alternative and will hence-
compound singlet bosons do not perceive the direction of théorth assume that, on one hand, real densities are such that

field.)

u~eg in actual practice, and on the other hafige= T for

As a result, the calculation of PMS for various densitiessome reason or another. This allows us to calculate consis-
of fermions can be reduced to an analysis of the selftently (naturally, under the assumptions made abae

consistent system of equatiofi§ and(11), the actual case
of relatively high values oh; corresponding to the formal
substitutionw— &g or to the solution of only onésecond

equation. Even such a simplat first sighj problem is actu-
ally complicated
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in view of a complex frequency—

contribution of Gaussian fluctuations to the PMS of a
strongly anisotropi¢2D in the limit) metal with high values

of n;. Moreover, we must admit that such assumptions are
common for virtually all publications on the HTS theory, but
as a rule, they are not formulated explicitly.
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3. GREEN'S FUNCTION FOR COMPOUND BOSONS

2 /2
o , _ f(x,y)=— f de
If we continuei(),,— w+i0 analytically to the GK5), m™Jo

we arrive at the retarded GF for bosons:
y cosh{\/xy cos ¢/T)—1

I'Y,K)=I'" o+i0K,H=0) costix+y—2u)/2T] + cosh yxy cos /T)’

11 dk
:V_Ef G2 LEICHKID + E(k—K12)

(21)

which, however, virtually cannot be used in such a general
form and also requires approximations.

1
—w—i0]?! tanhﬁ E(k+K/2) In this case, the conditioa=0, or the equation
aTVF 1 P
1 ¢ _ -1
+tanh— &(k—K/2)|, (15 N ooy fo dhox ™ tanh e X 22

o _ _ for the critical line is just the implicit dependende ()
which is more convenient for analysis. Expressi@h) was ¢4 g values of u. If, however, we consider the available

written for the first time in the pioneering work by Aslama- experimental data on HTS materidtee Refs. 1, 4, and 5t
. 3 . . . . 1 L
zov and Larkir® (see also Ref. 34devoted to investigation o pe easily seen that peculiarities of the problem are re-

of quc.tuation effects in B s.,upe.rc.onductors. In spit.e of itS flacted in the possibility of expanding the rangeTotip to
long history and apparent simplicity, a comprehensive analy-l-_TCZ-l-C rather than in the knowledge of the behavior of
sis of the boson GF for arbitrary, K, w, and T has not I'Y(w,K) for an arbitraryu.

been carried out yet. Such an analysis normally presumes the | 4eed.  the relations wlep=1 and T./sp
standard BCS mode in which./e~10"%, the fluctuation ~(1-3)-10"2 are fulfilled for most of investigated HTS

range is narrow(i.e., [T—T¢[<T), and © andK are so  aerials in the region of optimal dopirif These relations
small that the lowest ‘expansion in de_rlvat|ves in the(especially the second oninply that, even if a mode close
Ginzburg—Landau effective potential is valid. to the BCS conditions is realized in an HTS material, it can-

The attempts to study this GF for arbitra(mcluding. _ not be regarded as stand4thlis was emphasized more than
negative values ofu were made in Refs. 15, 21, and 35; it 5h0q 1n our opinion, it is important indeed that it is obvi-

was proved, for example, that the following expansion hOIdSOusly insufficient to use the expansion of IM(w,0) in

in the region of smalk, andK: as well as the expansion of Be {(w,K) (16) in order to find
K2 ng(u,T) [see Eqs(9) and(15)] in the range ofT values far
Rel Y(w,K)=a+b ——cw, (16)  from T(=T4") since it would ultimately be equivalent to
4m the application of the Ginzburg—Landau theory which cannot

. ’38 . . . _
whose coefficients in the2 case can be represented by thebe used directf/**in view of a large contribution of short

1 wave and high-frequency fluctuations for-T.~T.. Con-
formulag - 2 )
sequently, a correct description of fluctuatiofiscluding
m T 1 u those under consideratipwan be obtained by taking into
a=,— In ——j dx x ttanh—= x|; (170 account the dependence of the @) on w andK with the
m | leoly Jo 2T : : . )
maximum possible accuracy. For this purpose, it would be
m expedient to use first of all a more accurate expression for
b= — |tanh o+ & Im I Yw,K) (expression(16) being preserved which is
8mu 2T 2T physically due to dynamic decay processes for compound
2 bosons, which are intense for>T. and strongly affect the
+ Ll f dxx 2 tant? x|; (18 properties of the B system. The parameters of this decay
2T) J-prer are mainly determined by Ifi~}(w,K). It is also important
that the approximate expression for Im'(w,K) proposed
c= m focdxxfz tanhi X (19) below for calcula’Fing PMS is within the limits of applicabil-
8mwu J1 2T ity of representatiori16).

Thus, whenu is indistinguishable fronz g and simulta-
and Iny=0.577 is the Euler constant. In contrast toneously much larger an the actual valued pthe solution of
Rel' Y(w,K), we can obtain the following closed expression Eq. (22) has the form
for Im I Y(w,K):

Y
m o [ 2 K2 e =— V2lepler~Te, (23
=——tanh-—= 1—f(w+2,u——,—) 0l o+2u
4 a4t 4m’4m which immediately leads to the following relation for the
K? corresponding actual values of:
~ 2 (20
SF_ o EE (24)
where Te vay Ve
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This relation allows us to describe the extent of deviation ofsion in derivative®’ in that large momenta if28) are “cut”

the behavior of the system from the predictions of the BCSer s&? which corresponds to the suppression of the contri-
theory by using the value @f. which is more accessible for bution from short-wave Bose fluctuations. It should be noted
direct measurements than the enesgy As regards expres- that earlier such a cutting was introduced artificifllin or-
sions(17)—(19), they can be simplified significantly, for ex- der to expand the temperatuf@uctuation region of appli-
ample, for the regiont/T=10 and assume the form cability of the Ginzburg—Landau approach.

The form of ImI'}(w,K) given above allows us to use

a= m In l = m 7§_(3) ~. analytical calculations virtually to the end and to carry out
2m T 2m (2m)* T numerical integration only at the last stage, which is very
m 1 important in view of lack of analytical results. It should only

c=5_ i (250  be noted that henceforth we will have to use expres&2a&n

in the region ofw~ w also, i.e., beyond the above-mentioned
[£(x) is the zeta-functioh It follows hence that when limits where this expressiofas well as(27)] holds directly.
T-T.~T., the approximate nature of the definition of Nevertheless, the concordance between this algorithm and
T.=TYF used in(23) becomes immaterial. Moreover, using the approach developed in Ref. 40 indicates that the inaccu-
(25), we can transforni16) to racy introduced by us is rather of quantitative than of quali-
tative nature.

Rel Yo K)= o [ In + 4 ak?— 2 |.
el o K)=52 | InF+aki=70 ]
1 743) p
“=am 2m? T 9
m( 7T) 4. TEMPERATURE BEHAVIOR OF PARAMAGNETIC

while the coefficientm/27 in fact specifies the density of SUSCEPTIBILITY
2D fermion states. To within the factor 2/3 in the coefficient
a, which is associated with the® nature of the system,
expression(26) coincides with that derived by Aslamazov
and Larkirt® (it should be noted that they considered only the
region close taol ., replacing the quantityr by T.; in our

The summation over frequencies (8) is carried out
after the substitution of the spectral representat®f) into
this expression:

case, the retaining of current valuesToind « is of funda- 1 J'°° f dK
ng(u, T)=— d ——n ImI'(w,K),
mental importance s(wT)=— | do (2m)?2 s(@)Im I'(w,K)
It should also be noted that the teraf4u in (26) is (29

associated with the absence of complete electron—hole

symmetry® in the model under investigation; this term de- whereng(w) = [exp@/T) — 1] ' is the Bose distribution

scribes the undamped component of the boson GF. In Refunction.

33, this term was omitted since the valuewfvas regarded Before analyzing the behavior og(u,T) (29) for rela-

as small, while, on the contrary, the rajid T, was assumed tively large values oh;, we write for comparison the solu-

to be large. In our case, this term is not small and affects thgon of Eq. (7) in the case of smalhs, when <0 and

behavior and value of PMS considerably. ||/ T>1 (the limit of local compound paijs The required
We complete the calculation of I Y(w,K) by deriv-  solution is the valueu~ —|ey|/2; it follows directly from

ing an expression for the region of small frequencies andormulas(11)—(14) that x(u,T) =O[exp(—|ep|/T).] The ob-

momenta defined by the inequalitesv<T and tained result has a simple meaning: the contribution from

K?2/4m<(T/w)T. In this case, we obtain frorf20) and(21)  fermions to the total PMS is exponentially small in view of

their absence; the contribution from compound singlet

ImT~ Yw,K)=— m tanl‘(i (1— 6K2) 0(w bosons is suppressed by the large binding energy and zero
4 AT spin [ xp(—|epl/2,T)=0; see(14)] in spite of the fact that
+2,)6(1— 5K?), 27 their number is relatively largéng(—|ep|/2, T)=~n;/2].

Among other things, this simple physical situation is impor-
wheres= (1/16m)(u/T?). Using formulag26) and(27), we  tant because it can be considered analytically, although
can write the sought GF for compound bosons appearing iBose-like Fermi systems are apparently of theoretical interest

(9) as well as its imaginary component used by us: only.
As regards PMS in the region of optimal concentrations,
Im I'(w,K) .
we can write[see(14)]
Im I Y(w,K)
T w\? [m\? o)’ m
_ 2_ — —5K2 — =2 a—, (30
In T + aK in +| 5] (1-6K )tank? 4T) Xb(4, T) = 2xpauict o
(28)

where xpaui and a are defined i(12) and (26) respectively,
which is proportional to the boson spectral density. This exand we assume, as before, thgt/T>1. Integrating(29)
pression differs basically from that obtained form the expanwith respect toK and using(28), we obtain
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3
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1+ k°t?(w)
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TC 48F T / T ¢
T w \? ) )
_+ N — — FIG. 1. Behavior of PMS as a function @f: ¢ /T.=10 (curve 1) and
Kl'(w) K T. 4dsg ep /T,=50 (curve 2). Characteristic temperaturd$ and T, are indicated
2 n T w |2 ) (3D approximately, and the intersection of the curves is due to the coefficients

( N — — —I—tz(w) a, b, andc used in the form{25), for which the inequality./T>10 used for

T, 4eg calculating curvel is violated with increasing .

where t(w)=(w/2)tanh@/4T), and the parameter

k= 0la=m?[7{(3)=1.18 can be used as a fitting parametercorrelation between these particles and their number increase

in view of the approximate nature ¢27). as we approach the critical temperature. It should be borne in
In order to complete the derivation of the expression formind that the above statement concerning the large boson

the densityng(er,T), we must substitut€31) into (28), but  contribution to PMS is determined to a considerable extent

before that we consider its another representation, i.e., by the dimensionality2D in our casg For 3D systems, the
1 (= dK situation is different. For example, taking the same value of
nB(SF,T)=—f do J —— [Im ['(,K) Im I'(w,K) (which coincide$” with that for a D system
™ (2 only for small @ and K, but is much smaller for
—Im T(= w.K) ng( o) w~—2¢g), we can find thahg(eg, T)~ (T/eg) Y2 only due

to the root dependence of the density of states on energy.
This means that the boson contribution to the PMS Df 3
T fo d“’f W Im I'(—w,K). (32 systems decreases with increasing instead of being con-

stant as in the R case.
This simple division is actually not formal, but has a certain In order to obtain the required temperature dependence
physical meaning. Indeed, the first integral®®) is singular  of PMS, we integrated expressi¢81) numerically with re-
atT=T, in view of the presence of the functioy(w) in it, spect tow. The corresponding results are shown in Fig. 1.
while the second integral remains finite at this point. ThisThe calculations were made far(eg,T) determined from
means that the first integral corresponds to thermally excite@ll), where we assumed thgt(eg,T)~ xpaui» @and on the
decaying bosons which become coherent and stabilize in thehole confirmed the above estimates. For example, for
form of Cooper pairs alT =T, (if we proceed from the re- T=2T., the main contribution tog(eg,T) indeed comes
gion T>T.). On the contrary, the second integral describedfrom the second[see (32)] term, and the dependence
incoherent metastable Bose particles whose number is aj(eg,T) on T is close to linear. The contribution from the

ways finite. first term becomes significant in the regidi= 2T ; it can
The simplest estimates of the dependenceg pindi- be seen that this contribution farg/T.=10 is naturally

cate that the order of magnitude of the first term3@), or larger than fore /T,=50.

the boson density component depending Tanis propor- A comparison of theoretical curves with experimental

tional to T/eg; in the range ofn; under investigation, this dependencegsee, for example, Refs. 1 angl iidicates that
term is small if the value of is not close toT.. The esti- they are close qualitatively. For example, two characteristic
mation of the second term giv€¥(1), i.e., the contribution temperature intervals are usually distinguished on the experi-
of compound bosons to PMS is always negative and can beental temperature dependences of PMS: the first interval,
comparable with the fermion contribution even if the ferm-where PMS decreases linearly, and the second interval,
ion density in the system is large, and the fraction of com-where x(eg,T) decreases more rapidly. In the case of HTS
pound bosons is relatively small. In other words, a finitematerials, this is explained by the formation of a gap in their
number of short-livedin view of the relatively large value spin excitation spectrum. The regioh* <T<T. corre-

of Im I' Y(w,K) ] and noncorrelated Bose particles, which de-sponds to the first interval and the regibp<sT<T* to the
pends onT, weakly [only through ImI'%(,K)], is always  second interval; her&. andT* are some empirically deter-
present in the normal phase oD2Fermi systems with at- mined temperature&ee Fig. 1 Although we could not es-
traction between charge carriers irrespectiveepf Their  timate the values of these temperatures, it can be seen that
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the temperature dependence obtained for PMS convincingly6, 4841(1996, and V. E. Kataeet al,, Usp. Phys. Nauk
demonstrates the same behavior. In our opinion, this castsk66 213(1996), the results of measurements of one-particle
shade of doubt on the theories and models in which such photoemission spectra with angular resoluti&dRPES for
behavior of PMS is attributed exclusively to the magneticcuprates are reported. These results indicate that the gap ob-
ground state of an HTS materials or to the magnetism oferved abovel;. (to be more precise, a pseudogap as cor-
their cuprate planes, while the role and properties of theectly indicated in these publicationss transformed more
Fermi subsystem of a lower dimensionality is actually ne-of less smoothly into a superconducting gap. Both gaps ex-
glected. We believe that the latter can also be manifested ihibit anisotropy, but their relation to the magnetism of HTS
experimentgat any rate, its role cannot be disregarnded materials is not discussed.

In our opinion, these measurements confirmed qualita-
CONCLUSION tively (and quite reliably the pattern described above, ac-

. , ._cording to which compound bosons exist in low-dimensional
The results of above calculations confirm the peculiar

i . . . metals not only belowl ., but also at temperatures consid-
properties of ® Fermi systems with attraction between par- : | . -
. . . : ._erably higher than critical. The only difference lies in the
ticles. We considered direct nonretarded attraction by usin

the BCS model, but in all probability, the indirect interaction fitetime and correlation of these particles: above, the

in a 2D system will necessarily lead to the same behavior Otformer Is very shortbosons are overdampiednd the latter

PMS, although this statement requires additional verification'.S absentin the global senge However, the indirect nature

. . . . : . of fermion—fermion attraction, or, in other words, the inclu-

An interesting physical result obtained by us is the dis-_. . . . .
o . sion or delay effects in the model, is an important circum-
covery of a significant role of noncorrelated fluctuating Bose : : . .
stance which should be consistently taken into account in the

pairs aboveT.. They are responsible for the anomalous be—model in order to comparéat least semiquantitativelyits

havior of the normal phase associated, for example, with the, ~"* . ; .
. L physical properties with experimentally observed param-
formation of a pseudogap in it. A decreaseTirleads to the : :
? : eters. In this case, the formation of a g@ee Ref. 1Bas
emergence of correlations, and the behavior of the system . ; .
) . . ; well as a pseudogap under BCS-type conditions will obvi-
nearT. is determined to a considerable extent by ordinary . » .
) : . : ously occur predominantly at the expense of “corrosion” of
superconducting fluctuations like those in the Aslamazov— 4 . . ¥ -
. . fermions just in the “phonorimagnon, etg.strip” near the
Larkin theory. The conclusion that the presence of the Ferm : R ) .
. : ermi surface, which is observed in experiments.
surface does not rule out a peculiar behavior of the Fermi
system if its electron properties have lowguasi-D) di-
mensionality also appears to us as important. In the theoriegmail: vioktev@gluk.apc.org

. . . . In this case, it would be more appropriate to refer to it as a Bose system
with real (and not virtual local pairs(e.g., in the form of since all the fermions are coupled in individykdcal) pairs, and the Fermi

bipolarong, the Fermi surface does not ext§The problem surface is absertte., the spectral weight of quasiparticle Fermi excitations
of the presence or absence of pairs abbyean be solved if _is equal to zerp
we assume that the pairs are not stable, but decaying formgl_t can easily be seen that when the fieldies in the plane, the diamagnetic

ti h le i iallv i tant i t ith contribution to the total magnetic susceptibility is excluded altogether.
lons whose role 1S especially important in systems with &g quantity is in complete agreement with the criterion formulated in

lower dimensionality. Introduction, the only difference being that the valuenSf obtained in
At the same time, our calculations did not reveal a ten- Ref. 15 corresponds to finite values Bf
dency of PMS to the Pauli susceptibility &t>2T. upon an YFor this_ reason, expressiény?) is valid_V\_/ithin the limits of applicability of
increase in the ratier /T.. We can assume that this is due ©€xPansion in momenta used for deriviti).
to the fact that we actually analyzed ® Zather than quasi-
2D model since it was shown that the required behavior of M. Mehring, Appl. Magn. Res3, 383 (1992.
PMS is observed for B systems. For this reason. a gener- 2A. Sokol, in Proc. of the Stanford Conf. on Spectroscopics in Novel Su-
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PHYSICAL PROPERTIES OF CRYOCRYSTALS

Crystal phase formation and growth in rare-gas clusters
S. I. Kovalenko, D. D. Solnyshkin, E. A. Bondarenko, and E. T. Verkhovtseva

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukrairfe

(Submitted July 24, 1996

Fiz. Nizk. Temp.23, 190—196(February 199y

The structure of clusters formed in supersonic jets of heavy rare gases is studied by the methods
of electron diffractometry. It is found that a crystalline fcc structure with “deformation-

type” stacking faults(SF) is formed in aggregates consisting &2 - 10° atoms/cluster. The SF
density is a linear function dfl =%, The number of “defective” planes does not depend

on the cluster size and is equal to four in all cases. Such a number of intersecting SF leads to the
formation of nonvanishing atomic steps ensuring a rapid and subsequently defectless growth

of the cluster on all densely packed planes facing the cubooctahedron. The obtained results confirm
experimentally the important role of the kinetic factor in the formation of the atomic

structure of a cluster. €997 American Institute of Physid$§1063-777X97)00802-3

The interest of fundamental science in the structure andiffraction study of argon, krypton, and xenon clusters aimed
physical properties of clusters is due to their intermediateat detection, identification, and determination of the number
position between individual aton{molecule$ and a macro- of SF in small crystalline aggregations of heavy rare gases. A
scopic systentgsolid or liquid). The information on the prop- detailed description of some methodical aspects of these in-
erties of clusters is also important for solving problems in thevestigations is also included.
physics of phase transitions, surface, and surface processes.

The mechanisms of formation of cluster structure, kinetics 0EXPERIMENTAL TECHNIQUE

cluster growth, and the establishment of stages at which the The experiments were carried out on a setup consisting

formation of a certain property of a solid is completed are ofy¢ 5 generator of the supersonic cluster beam and an electron

considerable interest. _ diffractometer EMR-100M. A detailed description of the
In recent years, experiments on clusters free of subgeyn was given in Ref. 4 The supersonic gas jet was created
strates and formed as a result of homogeneous nucleation i, 5 conical nozzle with the critical cross section diameter
a gas jet expanding at constant entropy became very popula§;34 mm, the cone angle 8.6°, and the ratio of the inlet and
At the last stage of growth, such clusters have a high teMeyitical cross sectional areas 36.7. The gas flow was colli-
perature, facilitating a high rate of relaxation processes angated with the help of a conical diaphragm of diameter
the attainment of the equilibrium state. 1.09 mm. The distance between the end face of the nozzle
The maximization of the binding energy of particles and the diaphragm was 5 mm. The point of intersection of
forming a cluster served as the main criterion in the choice ofhe cluster jet and the electron beam was separated from the
the optimal model of cluster structure until recently. Van dengzzle exit section by 110 mm. The size distribution of
Waal constructed the diagram of the dependence of th%lusters, and hence the average divevere determined by
structure of a cluster consisting of Lennard-Jones particles ofhe gas pressur, at the nozzle entrance at a constant tem-
its sizeN on the basis of vast theoretical material obtained byperatureToz 200 K. The value oP, was varied from 0.027
using this approach. According to this diagram, icosahedrogy 0.6 mPa. The construction of the electron diffractometer
is most advantageous from the energy point of view forgllowed us to record diffraction patterns both electrometri-
N=<1.5 :I.(j3 atoms/cluster, while decahedron is advantageouga”y, and photographica”y_ In the former case, a consider-
for largerN. The minimum size of a stable cubooctahedralaple fraction of incoherently scattered electrons could be re-
fcc cluster must exceed 1@toms/cluster. However, electron moved by a counterfield, which improved the accuracy in
diffraction studie$™ confirmed the formation of an fcc determining the shape of diffraction peaks significantly. The
structure even foN~ 10° atoms/cluster. Van de Wdapro-  photographic recording was used for precision measurements
posed a considerable effect of kinetic procegsesh as ag- of the diameters of diffraction rings. A typical electron dif-
gregation growth on the structure formation and proved fraction pattern from coarse crystalline clusters of inert gases
theoretically that a less advantageous fcc structure can kig shown in Fig. 1. The diffraction pattern was obtained from
realized in argon clusters in the presence of stacking faultan argon cluster jet formed under pressBge=0.6 mPa at
(SP), facilitating a rapid and defectless aggregation growthT,=150 K. The positions and relative intensities of diffrac-
Preliminary experimental data confirming this assumptiortion peaks correspond to an fcc structure of aggregations.
for argon clusters were reported by us in a briefReliable detection, identification, and calculation of packing
communicatior?. The present research is a detailed electrordefect density involves the precision measurement of the in-
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FIG. 1. Electron diffraction pattern for an argon cluster beam:

N=2.510" atoms/clusters=4m sin ®/\, whered is the Bragg angle. . ) .
independent oH for H<H,=0.4 mm. As diffraction peaks

become blurred, the value d¢f, is shifted toward higher

strumental widthb, of the electron beam and the instrument values, and vice versa. In the case of the sharpest peaks a on
constantL o4\, WhereL . is the effective distance from the electron diffraction patterns from the TICI standard film,
sample to the electron collector and the electron wave Hy=0.3 mm. For this reason, the gap width in our experi-
length. These quantities were determined by using a standardents did not exceed 0.25 mm. In Fig. 2b, the intensity of
island thallium chloride film deposited on a substrate transthe primary electron beam is plotted along the abscissa axis
parent for electrons. The values bbf and L.\ were mea- and the half-widths of th€220) and (311) peaks for A
sured before the gas jet was exhausted to vacuum. The sta@ong the ordinate axis. The maximum valuel gfsatisfied
dard film was fixed in the region of intersection of the clusterthe requirements of reliable detection of diffraction peaks
and electron beams, and the value gf was determined with intermediate intensity. It can be seen from the curves
from the half-width of diffraction peaks of the standard. Thethat the half-width of diffraction peaks are virtually indepen-
correctness of such a method of measuremenbgpivas dent of the intensity of the primary beam for reasonable val-
ensured by a large size of coherent scattering rediGSR) ues ofly.
for thallium chloride. According to electron-microscopic The determination of the average size of clusters consti-
observation$, its value ranges from 400 to 500 A. The tutes a central problem in the physics of cluster jets. Here we
value ofL 4\ was determined according to the experimentaldetermined the characteristic average gizeN'® of crystal-
technique described in detail in Ref. 7. line clusters with the help of the Selyakov—Schert86

Peculiarities of the problems considered here require natelation from the results on complete broadening of diffrac-
only precision measurements of the positions of the centergon peaks as well as broadening caused by stacking faults.
of gravity in diffraction peaks, but also an analysis of their The correctness of application of the SS relation for crystal-
shape in order to eliminate instrumental factsch as the line clusters with the fcc structure and average $ize1C®
gap diaphragm widti relative to which the diffraction pat- atoms/cluster was based on the calculations carried out in
tern is scannedas well as the intensity, of the electron Ref. 8. In addition, we compared the size of CSR obtained
beam forming the diffraction pattern, which affect the peakby two independent methods, i.e., electron diffractometry us-
width and profile. In order to determine the value ofing the SS relation and electron microscopy. Reference mea-
H=H, below which a change in the gap width of the en-surements were made on gold island films obtained by ther-
trance diaphragm does not affect the shape of the peak, theal evaporation of Au in a high vacuum followed by its
dependence of half-widtB,, of diffraction peaks o was  deposition on an amorphous carbon substrate film. The val-
recorded. The gap width varied from 0.02 to 0.5 mm. Theues of § obtained by the two methods were in good agree-
results are presented in Fig. 2a, where the gap width is ploiment. The difference was smaller than 10%, i.e., did not
ted along the abscissa axis and the half-widtH2#0) and  exceed the error in the measurementssdy electron dif-
(311) peaks on the diffractogram from an argon cluster jetfraction method.
with N=2.10* atoms/cluster along the ordinate axis. It can  According to the theory of x-ray scatterifighe charac-
be seen from the curves that the valuedgf, are virtually teristic size of clusters was calculated by the formula
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1/6=1/6* —1/6s, (1)
. o . . 401
where §* is the effective size determined from the total dif- 30 -~ Xe Kr Ar
fraction peak broadening with the help of the SS relation, g C Z
and 16, is the broadening due to SF. According to the ~
~ 20F
theory, we have « .
© . 40 o
d 1 7 V4
5= 111 _ , (2) 10k ,/ s
1.5+ B ] cose ' o’ , L4 4
whered,; is the separation between densely packed layers, 0,05 0,'1: M%: 04 06
[«

j cose the parameter typical of a given family of planes,
« the density of a SF of the “deformation” type, amglthe
density of twin(growth) SF.

The presence of stacking faults of the “deformation”
type in fcc clusters can be determined from a certain regu-
larity in the displacement of diffraction peaks relative to their In order to find the value of, the diameters of diffrac-

position in a defect-free crystaln addition, the blurring and  tjon rings(111) and (220 were measured with the help of a
considerable displacement of certain closely-spaced peakfiecision comparator 1ZA-2. The relatively high intensity
toward one another leads to their poor resolution. This refersand sharpness of the chosen peaks ensured a quite admissible
for example, to(111) and (200 peaks as well ag331) and  precision of measurements. In most cases, the relative error
(420. The presence of twinned SF does not cause a displacgy the measurements of did not exceed 20%.

ment of diffraction peaks and only leads to their insignificant
e_lsymmetrlc bro_adenlng. An analysis of the obtained dlffrac-DISCUSSION OF RESULTS
tion patterns did not reveal any asymmetry of the peaks,
which implies a low density of twinned SF. The value ®f It was mentioned above that our task was the detection
was determined as follows. In the case of an isomeric clustesaind measurement of the SF density in crystalline clusters of
(this assumption is justified for an aggregation formed in arrare gases. The primary stage in the solution of this problem
expanding gas jgtthe difference in complete broadenings of was the determination of the range of pressupgsunder

two diffraction peaks ljkl) and ('k’l") according to rela- which the cluster beams are predominantly formed by crys-

FIG. 3. Dependence of the effective radiffs/2 of clusters on the pressure
at the nozzle entrancé& (=200 K): Ary(®), Kry(X), and Xg(O).

tions (1) and(2) is C(1.5a¢+ B), where talline aggregations. For this purpose, we used the following
) ) arguments. According to the calculati§rsonfirmed by the
C=Leh[(j COS@)na—(] COS@)nricrir]daas. results of electron diffractomet’/ a transition from a fcc

Since the value ofr can be found from independent mea- structure to an icosahedral structure causes a strong broaden-

surements of the position of diffraction peaks, this differencd™Y of diffraction peaks, followed by, a change in_ the form of
determines the value g8 unambiguously. Our experiments jthe dependence of t_he peak half-width on the size of scatter-
proved that the density of SF of the “twinning” type was ing _aggregatlons. Figure 3 shows the dependence of the ef-
equal to zero to within experimental error for all the cases€Ctive radiuss®/2 of the clusters on pressufg plotted on

under investigation. The value af was calculated from the the basis of an analysis of obtained diffraction patterns for

displacement of the centers of gravity of diffraction peaksiN® thrée gases under investigation. The values of these

relative to their position in a defect-free crystal. The value ofduantities are plotted on the logarithmic scale. It should be

this quantity was determined by using a standard diffractioj€c@lled that the value of* was determined on the basis of

ring (311) of the object under investigation, whose diametert"® SS j(lalation from the half—width' of diffraction peaks
(6% = Bpyp)- It can be seen from the figure that above a cer-

did not change in the presence of SF. The valuea @fere g : : -
calculated by using the Patterson formui@sn the case of tain pressure range, the experlmentgl po_mts obtained for
Ary, Kry, and Xe, clusters fit to a straight line correspond-

diffraction of fast electrons, these formulas can be trans: 0.61
formed, in view of the smallness of Bragg’s angles?to ing to the dependencé” = Py™". For lower values of,
&5* decreases rapidlgmore rapid peak blurring indicating,

ADge/D=Gja*/2, (3)  according to Ref. 4, the predominance of icosahedral aggre-
} ) ) ) gations in the cluster beam. Subsequent experiments were

where ADg/D is the relative change in the diameter of & made with pressureB, under which crystalline clusters are
diffraction ring under the effect of SK; is a constant quan- preferentially formed.
tity for a given family of planeghkl} averaged over all the Figures 4a, b, and c show diffraction patterns of Ar, Kr
groups of fikl) planes with the same displacemeptthe  anq Xe cluster beams respectively. The diffraction patterns
fraction of planes of the familfhkl} affected by SF, and gpserved experimentally for all the three types of cluster
a* the parameter connected with the SF density through thgeams display peculiarities typical of fcc structures with

relation “deformation” stacking faults: displacement ¢f11) and
(220 peaks toward large diffraction angles, and poor resolu-

e arctanv3(1—2a)|. (4  tion of (111 and (200 as well as(331) and (420 peaks
3312 27 associated with their broadening and displacement toward
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FIG. 4. Electron diffraction patterns for (@), Kry, (b) and X, (c) clusters. The insets show the calculated positions of peaks for defect-free c{sstiers
lines) and experimentally observed positioftiashed lines s=4sin 6/\.

each other. The insets on these figures give an idea as to the The SF density as a function of the characteristic size of
magnitude and nature of these displacements: solid linesrystalline cluster is shown in Fig. 6. It can be seen from the
show the positions of diffraction peaks for defect-free fccfigure that the value of for clusters of all the gases under
clusters, while dashed lines indicate the experimental valuesvestigation fits to the same straight line to within experi-
It can be seen from the figure that as the average size ohental error, and the SF density decreases monotonically
clusters increases, the discrepancy between the calculatedith increasing size of crystalline aggregations, and hence
positions of peaks for defect-free aggregations and the exhe total numben of densely packed planes. If we consider
perimentally observed peaks decreases, and the splitting tiiat
(111) and (200 peaks increases. It should be noted that a _

; ) . : a=ngg/N, (5)
decrease in the average size of crystalline clusters increases
the contribution to the diffraction pattern both from the sur-where nge is the number of stacking faults, the observed
face, and from the quasi-crystalline structure. However, posregularity indicates that the value ogr remains constant or
sible changes in the intensity distribution of diffracted beamschanges insignificantly during the cluster growth.
initiated by these contributions do not affect the peculiariies  In order to determinengg, we will use relation(5) as
which makes it possible to detect and identify SF. The resultsvell as the fact that
of observations were subsequently used for determining the n=3s/d (6)

. . . . 111-

true (taking into account SFradius 6/2 of crystalline clus-
ters. The results obtained for &y Kry, and Xg are shown This gives
in Fig. 5. The values ob/2 are plotted along the ordinate
axis and the values oP, along the abscissa axis on the
logarithmic scale. The scales of pressure for different rare
gases are shifted relative one another according to the law of ]
“corresponding jets.”*? It can be seen from the figure that < 40F
the experimental points corresponding toyArKry, and -
Xey clusters fit to the same straight line with the slope equal
to 0.61. The same slope was obtained in Refs. 12 and 13 for
argon clusters in a wide range of average size by using the
acoustzilcmnozzle and with the same object for supersonic 20
nozzle™'* An analysis of the curves in Figs. 3 and 5 showed e L1 .|
that crystalline clusters prevail in cluster beams with an av- 01502 03 040506 Poar » MPa
erage radius of aggregations exceeding 26— 30itdvalue '0'3 P P
depends on the gasThis means that crystalline clusters pre- L L l' OKr ! a
vail in atomic beams wittN=2.10° atoms/cluster. It should 0,04 0,05 0,075 0,1 0,15 P
be noted in this connection that the vale=800 atoms/ OXe'
cluster, for which crystalline aggregations prevail in argon_
cluster beams according to our earlier reduissunderesti-
mated since we did not take into account stacking faults.
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FIG. 5. Dependence of the true radid® of clusters on the gas pressure
P, at the nozzle entrance at a constant temperalyre200 K: Ary(@®),
Kry(X), and Xg(O).
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FIG. 7. The numbeng; of “defective” planes in crystalline clusters of
FIG. 6. Variation of the SF density with the cluster size:\@&), various size: Ag(A), Kry(O), and Xg(0).
Kry(O), and Xg(O).
the SF density decreases as the aggregation grows. Thus, our
results of observations indicate a significant role of the ki-
Nse=3v3adla, () netic factor in the formation of the cluster structure and serve

wherea is the crystalline cluster lattice constant for the cor-as @ convincing experimental proof of the hypothesis put

responding inert gas. Figure 7 shows the results of calculdorth by van de Waal. The obtained experimental results

tion of thens(8) dependence by formul&). According to also indicate the important role of stacking faults in the for-

the figure, clusters of different sizes contain the same numbénation of the crystalline structure of the cluster. The realiza-

of stacking faults, equal to 4. The obtained result is valid fortion of an fcc structure in solidified heavy inert gases is ap-

all the gases under investigation and indicates that SF afearently determined to a considerable extent by the presence

formed at early stages of formation of fcc clusters whoseof intersecting SF which can ensure a rapid and subsequently

subsequent growth is defectless. defectless crystal growth only in the f¢out not in the hcp
Thus, the analysis of the obtained results shows that al@ttice.

fce structure with stacking faults of the “deformation” type ,

is formed in clusters of heavy rare gases with a size

N=2.10° atoms/cluster §/2=26—30 A). Stacking faults TS W van de Waal. J. Cherm. Phag. 4909(199
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The soliton states localized at a point defects are investigated by using the nonlineatir@gro
equation for various signs of the nonlinearity and for different types of defects. The

quantum interpretation of these nonlinear localized modes is given in terms of bound states of a
large number of Bose particles. The dynamic properties and stability of these states for

different types of interaction between elementary excitations with one another and with the defect
are investigated. The boundaries of the region of existence and stability of “impurity”

solitons are determined depending on the “intensity” of the defect, and the frequency of small
oscillations of a soliton near the defect is calculated. 1897 American Institute of
Physics[S1063-777X97)00902-X

INTRODUCTION asymptotic method. It was proved that nonlinearity can lead
The states localized near an imourity were studied forto the formation of specific local modes in crystals with de-
, : purtty v fects even for the defect sign for which local vibrations are
the first time 50 years ago by I. M. Lifshit$ In recent . . - L
) . ¥ - ,absent in the linear limit. In these publications, however, the
years, this problem was considered on a new, “nonlinear " : :
. .. . stability of local modes of various types was not discussed,
level. New experimental data on low-temperature diffusion

and internal friction served as an impetus for theoretical in—and the semiclassical interpretation of these states was not

vestigations of local vibrational states in ideal and defectiveused' Semiclassical quantization of self-trapped elastic vibra-

anharmonic elastic mediz® Such excitations were consid- tions in an ideal(defect-fre¢ one-dimensional anharmonic

ered for the first time in Refs. 11 and 12 in which long-lived chain was carried out in Ref. 16, where the concept of elastic

vibrational states of molecules were studied in simple moS0litons of the envelope as a bound state of a large number of
nons was formulate@ee also Ref. 17

lecular crystals. The stability of such localized vibrationspho 18 - !
was associated with anharmonism of intramolecular oscilla-  Later;~ & somewnhat different modésine-Gordon equa-

tions. The frequencies of these oscillations lie outside thdionS was used for semiclassical quantization of small-

continuous spectrum band and depend on the amplitude &mplitude nonlinear oscillations localized near an impurity
vibrations. for a fixed sign of anharmonisms and for a certain sign of the

On the other hand, a medium with defects can also exdefect, and a hypothesis concerning the nature of stability for
hibit local vibrations(which, however, are localized near an local modes of various types was formulated. Finally, the
impurity) even in the linear limit. The frequency of these interaction of a soliton with an impurity was congidered in
vibrations is fixed and is determined by the sign and “inten-Ref. 19 in the model described by a nonlinear Sdiger
sity” of the defect(e.g., by the sign and magnitude of the €quation with as-shaped potential simulating the defect.
mass defegt For this reason, it would be interesting to ana- ~ Here we will analyze excitations localized near point
lyze local vibrations, taking into account anharmonisms andlefects of various signs by using a one-dimensional nonlin-
defects simultaneously. Zavt and Reitntawere the firstto  €ar Schrdinger equation(NSE) with an arbitrary sign of
study this problem by considering the effect of anharmon-anharmonisms and carry out the semiclassical quantization
isms on the behavior of an isotopic defect in quantum crysof all types of obtained solutions. It will be shown that the
tals (the emergence of local vibrations with low frequenciesresult can be interpreted in terms of quasiparticles interacting
in the case of a heavy impurjty with one another and with a defect.

In Refs. 14 and 15, this problem was considered in a  Following the technique described in Ref. 20, we shall
one-dimensional model using the soliton approach. In thearry out a stability test for the obtained soliton solutions and
case of an isotropic impurity in an anharmonic chain, solitonshow that the presence of an attracting impurity is a factor
solutions whose frequencies lied above as well as below thstabilizing a soliton. In this case, a soliton exists and is stable
continuous band spectrum of linear waves were found by theoth for attraction between quasiparticles, and for their re-
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pulsion. In. the former cas@ttrgctior), the vibratiopal mgde. ol az| o= duldz| _o+Quo. (1.5
of the soliton center of gravity relative to an impurity is ) ) _
present in the spectrum of small excitations of the soliton. In e Will seek steady-state solutions of H4.3) in the
the latter casérepulsion, such an “intrinsic mode” does not  form

exist, and we have only the continuous excitation spectrum  (z t)=u(z)exp( —iwt), (1.6)
corresponding to free quasiparticles. _

A repulsive impurity does not disturb a soliton self- Whereu(z) —0 for |z]—. As a result, for3>0 we obtain
trapped due to attraction between quasiparticles, but onl{he following expression for the solution satisfying the
deforms and repels it. This process is described by a linedtoundary conditions:
mode of the unstable soliton. _ N T(z,t) =(218) Y% cosh He(|z| - zo)lexg —i wt),

Thus, we shall carry out a complete analysis of stability 1.7
of a soliton localized at a defect for an arbitrary type of " _ .
interaction of quasiparticles with one another and with arivhere the parameter= (wo— )™ characterizes the excita-
impurity. tion frequency, while the parametersandz, are connected

The application of our results is not limited to the theory through the relation following from the boundary condition:
o_f anharmqnic crystals_ since NSE with attracti_on and repul- 5, tanh(ez5)=Q. (1.9
sion are widely used in the theory of magnetically ordered

media, nonlinear optics, dynamics of superfluid liquid he- It can be seen from this relation that sgi¢sgnQ, and

lium, etc. the maximum possible frequency of the solution with any
sign of Q coincides with the frequency of local vibrations in
the corresponding linear system:

1. SOLITON SOLUTIONS OF NONLINEAR SCHRO DINGER 0= wo— Q4 (1.9

EQUATION IN THE PRESENCE OF IMPURITY

. . ,, and the interval of admissible frequencies is not bounded
In the theory of a crystal lattice, the term “local defect from below

is applied to a defect whose size is of the order of atomic In the case of negative values of the paramggetthe

spacing. In-an analy5|_s of soliton solutions whose size Solution satisfying the boundary conditions has the form
determined by the soliton frequency and can vary over a

wide range, it is natural to apply the term lodalr poind U(z,t)=(2/|8])Y% sinh™Ye(|z|—zp) }exp — i wt).

defect to a perturbation of the characteristics of the medium, (1.10

which is concentrated over distances much smaller than the In this case, the quantitg, can assume only negative

soliton width. ) _ values, and the relation between the parametensdz, now
In the presence of a point defect, the NSE for the fleldhas the form

variableu has the form

iul gt+ 9?ul 922 — wou + Bulul?=Q48(z)u, (1.9 2e cothlez9) =Q. (11D

whereg is the interaction constant for elementary excitationsth 'kl;hus, dth? ?ualnntyl? fodr B t<o can on_Ity be p(:gatlvle, ."ei'h
(B>0 corresponds to their mutual attraction agec0 to € oann st?e t_oca(ljz? ? an impunty exists only in the
repulsion, wq is the minimum frequency of elementary ex- case of an atlracting detect.

citations in the linear system, ar@l the characteristic of the d':'he mtgrvaldof gdm;ﬁ3|blg frequenc:es now has thde lf[ppt)ﬁr
magnitude of the defecits “intensity” ). For Q>0, elemen- and lower boundaries: the minimum value corresponds to the

tary excitations are “repelled” by a defect, while fQ<0 ILequenqym of Iolcal V|brat|onsdof tthetr:ln%ar s;&ztemf, Q/r\]/hlle
they are effectively attracted to it. € maximum vaiue corresponds 1o the boundagyol the

In the linear limit for Q<0, vibrations localized at an linear wave spectrum.

impurity atom are present in the system. The frequency of | tT_hus, tr:otnlmeartlﬁcahzed st?tes ex:jst f(?r Te foi%wmg
these vibrationso, = wy— Q?/4. ForQ>0, such local vibra- relations between the parametefs and Q: (1) >0,

tions are absent Q<0; (2) B>0,Q>0, and(3) 8<0, Q<O0. Let us consider
The equation of motior{1.1) is the Euler equation for the structure of these solutions in these three cases in greater

. . ; " detail.
the Lagrangian with the following density: (1) For >0, Q<0, the maximum of the vibration am-
L=v2[u* gu/dt—uau*/at]—|aul 9z|*— wo|u|? plitude is at the point of location of the impurityzd<0),

4 2 and the solution has the form presented in iristg Fig. 1a.

(B2~ Qa()|ul" (1.2 In the small-amplitude limit, whemw,— w<<w,, the param-
The solution of Eq(1.1) is reduced to the solution of the eterz, tends to infinity[ zy~— Q! In(w,— w)], and the am-

homogeneous equation plitude of a local excitation depends on frequency according

U/t + 92Ul 92— wou+ Bulu|2=0 (1.3 to the law typical of solitons:

in the regionsz>0 andz<0 with the following boundary U(z=0)| 40, ~(2B) A @~ )™ (1.12

condition forz=0: . . .
For w= w, the nonlinear local mode is transformed into

ul;o=uU|_o, (1.4  conventional vibrations in the linear theory.
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N The Iimiting transit.ion to the frequency yaluez @o is
,////////// M///////////% more interesting. In this case—0, and relation(1.11) im-

plies that the parametey, tends to a finite valug,=2/Q,
/'_)u X/AZ /2 u | c

\\

while the solution(1.10 is transformed into a function with
/ 4Q power asymptotic forms at infinity, i.e., into an algebraic
/ 7 soliton (see inseB’ to Fig. 1H
U(z)=(218D Y|z +21Ql} * exp(—iwt) (1.1
a with the impurity vibration amplitude
[\ Q u(z=0)|,.,=(218)"1Q|/2. (1.16

It is well known'’ that the possibility of existence of
power solitons is associated with the inclusion of competing
2lal nonlinearities in the evolution equations or with the presence

| ﬂl of many-particle interactions of various types. For example,
the inclusion of paired repulsion of particles and their three-
3 ju 3 AU article attractior(i.e., of the terms of the|u|* type in Eq.
B 7. b particle A of thel|u|* type in Eq
i 7777 (1.2) with 8<0) leads to the formation of algebraic solitons
3 at the edge of the linear wave spectrum. Such solitons are
unstablé’! In the case of an impurity under consideration,
FIG. 1. Regions of existence of nonlinear localized stdtestched for the_ Sltuatl(_)n 1S Sl_mllar In m_any _rESpeCt_S: we have two tYpeS
different types of nonlinearity8>0 (a) and 8<0 (b). Double hatching ~ Of interactions, viz., the paired interaction between particles
marks the regions of applicability of perturbation theory in the stability testdescribed by the term?u|u|2, and the one-particle interac-
for'solutior?s. The insets show characteristic profile of the envelope of lo{jgn of elementary excitations with an inhomogeneity. In this
calized soliton states. . . . . . . .
case, paired solitons exist for paired repulsion of quasiparti-
cles and their attraction to the defect. It will be shown below,
however, that these solitons are stable.

In the opposite limiting casew— —o, the parameter In order to clarify the physical origin of the states con-
Z, tends to zero 4,~—Q/w), and the solution becomes sidered above, we will carry out their semiclassical quanti-
singular. zation.

(2) For >0, Q>0, the vibration amplitude maximum
does not coincide with the point of location of the defect, and
the local excitation is a bound state of two solitons located, |\ 1eGRALS OF MOTION AND SEMICLASSICAL
symmetrically on both sides of the defect with the centers aHUANTIZATION OF SOLITONS
points *z, (see inset2 to Fig. 1. In this case, the limit
w— —oo virtually coincides with the previous case, but the Equation(1.1) describes the dynamics of a conservative
form of the solution at the maximum possible frequergy system, and hence possesses an obvious integral of motion,
is essentially different. Fow,—w<w,, the separation be- viz., the total energy
tween the bound solitons tends to infinity: o
22p~—2Q ! In(w—w), and the vibrational amplitude of E:f e(z)dz, (2.1
the defect tends to zero in accordance witH 2. However, -

the amplitude of solitons tends to a finite quantity whose density has the form

Alo=w,=(2IB)VQ12, (113 e(2) = |aul 92|+ wolu|>— (B12)|ul*+ Q(2)|ul?. (2.2)
and this limit is not a small-amplitude limit. Moreover, it has an additional integral of motion, viz.,
(3) In the case3<0, Q<O0, the localized excitation pro- the total number of elementary excitations, of field quahta
file has approximately the same shape asfgor0, Q<0 oo .
(case(1)), and the maximum of the vibrational amplitude is N—f n(z)dz=f |ul?dz, (2.3

at the point of location of the defe¢tee inseB to Fig. 1D,
but the frequency range of the local mode is completely difwheren(z) is the number density of quasiparticles.
ferent. In the case€l), the frequency changes in the interval  Till now, we characterized a soliton solution by its fre-
—©o<w<w|, while in the present case;<w<wg. quencyw. In order to clarify the quantum-mechanical nature
The linear limit corresponds to the transitien— |, for  of the soliton, it is convenient to go over from frequency as
which the parametez, tends to infinity as in the casé):  a dynamic characteristic to the numbkr of excitations
2o~—Q ! In(w—w), and the amplitude tends to zero in pound in the soliton.
analogy with(1.12: Let us first consider the case whgi0. We express the
_ 12 12 integrals of motionE and N in terms of frequencyor the
U(Z=0)l 40~ (2IB) (0= )" (1.149  arameters associated with jt Using the explicit form of
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the solution(1.7) in formulas (2.1)—(2.3) and taking into For >0, the interpretation of the obtained expression is
account the dependengg(e) [see(1.9)], we obtain the fol-  obvious. The first term if2.11) describes the energy o
lowing relations: noninteracting elementary excitations and corresponds to the
Y —2.Y — 0¥ description of the system in the linear approximation. In this

E=p"1—4e73+4c 0o+ 2Quo—Q7/6], (24 case, the intrinsic energy of these excitations changes as a

N=48"s+0Q/2]. (2.5 result of their interaction with the impurity:

wo— w;=wy— Q%/4. The frequencyw, corresponds to the

It should be noted that for a small intensi§y of the  frequency of linear local impurity vibrations. The second
defect and for small values of the parameterexpression terms in(2.11) describes the energy of interaction of elemen-
(2.4) leads to the following relation for energy: tary excitations in a soliton and has the same form as in the
_ 1 case of solitons in a homogeneous medium. Finally, the last

E=4wof (e +Q12), (2.6 term describes the interaction of bound particles through an
which is similar to the energy of a local vibration of a point impurity. It should be noted that the sign of the deftibee
isotopic impurity in a one-dimensional crystaee Ref. 15 Sign of Q) determines only the last term: f{@<0, the en-

For <0, we substitute solutiofl.10 andzy(¢) from  €rdy decreases, i.e., the impurity “attracts” the particles and
relation (1.11) into formulas(2.1)—(2.3) and obtain the de- the soliton as a whole, while fa@>0 the presence of im-
pendencesE=(w) and N=N(w) which are completely PuUrity increases the soliton energy, i.e., the impurity “re-
identical to formulag2.4) and (2.5). pels” the soliton.

The positiveness of the integral of motidhimplies that Expression(2.11) implies that the energy at the bound-
e>— Q/2 for positive values of3, while the boundary con- ary of the region of existence of nonlinear localized vibra-
dition (1.8) leads to a more stringent inequality determining ions iSE = 2(Nowo — BZN5/48) for 8>0, with No=20Q/ 8,

the range of the solution: i.e., is equal to doubled energy of a soliton witly bound
elementary excitations. It is interesting to note that, for
e>[Q|/2 for p>0. (2.7)  B<O0, the relatiorE = Nowo — 8°N3/48 coinciding with the

expression for a soliton in a homogeneous medium is satis-
fied at the boundary of the region of existence of localized
solutions(for Ng=2|Q|/| 8|) for power solitons at the impu-
rity. (For ordinary power solitons, we ha#e= Nwg, i.e., the
0<e<|Ql|/2 for pB<O. (2.8 binding energy of quasiparticles vanishés.

. Expression(2.11) also shows that the energy per el-
The critical value ofe=[Q|/2 corresponds to the fre- ementary excitation in a local state is lower than the energy

For B<0 (when the solution exists only fa@<0), the
positive value oN [or relation(1.11)] means that the param-
etere must satisfy the following condition:

guencyw, of the local linear mode. of a free quasiparticle:
Using relations(2.5) and (2.7), we find that all positive
values ofN are admissible for positivg and Q<0, while E/N=wo— (Q/2— BN/8)?— B>N?/192< wy,. (2.12

for Q>0 the following constraint is imposed ad: . . . . . .
Q g P This relation makes it possible to interpret a soliton so-

N>4Q/B8 for Q>0, B>0. (2.9 lution as a bound state of a large number of elementary
excitations’
The valueN, =2Q/ corresponds to the frequenay Differentiating expressiori2.11) with respect toN and

at which a local vibration splits into two solitons separatedusing relation(2.5) for N(&), we can easily verify the ful-
by infinitely large distances from the impurity and incorpo- fjiment of the conventional,relation

rating 2Q/B8 bound elementary excitations in each. For
Q<0, the minimum value oN is zero, which corresponds to JE/IIN= w, (2.13
zero amplitude of the solution at the frequensy. In Fig.
la, the region of existence of the solitons in the plane o
parameters,Q) for >0 is hatched.

In the case of negativg, relations(2.5 and(2.8) lead
to the following constraint on possible valuesNof

1which takes place for solitons in conservative nonlinear sys-
tems with the quantitiN as an integral of motion.

Thus, the frequency of a nonlinear local vibration plays
the role of chemical potential for elementary excitations
bound in it.

N<2|Q|/|B| for Q<O0, B<O. (2.10 We shall use relatiof2.11) to write the explicit expres-

. " sion for frequencyw:
In this case, the critical valus,=2|Q|/| 8| corresponds

to a power soliton at the frequenay,. The minimum value w=9JEIIN=wy— (8%16)(N—2Q/B)?. (2.19
N=0 is attained at the frequeney, . The region of admis-
sible values of parameter&l(Q) for <0 is hatched.

Using expression$2.4) and (2.5 and eliminating the
parametei, we find the following relation between the total
energy and the number of bound excitations:

For Q=0, this expression is identical to the dependence
o=w(N) for a soliton in a homogeneous system.

Since the inequality?E/IN? = dw/dN < 0 usually de-
fines the region of stability for soliton solutions, we shall
calculate the derivativéw/JdN. According to(2.14), in our
E(N)=Nwy— NQ?%4— B2N3/48+ BQN?/8 case we have

=Nw,— B°N%/48+ BQN?/8. (2.12) dwl IN=—(B%18)(N—2Q/B). (2.15
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3. STABILITY OF NONLINEAR IMPURITY STATES

w
Let us analyze the stability of the obtained solutions
2Q/ﬁ 4Q/B relative to small perturbations of amplitude and phase. We
W, —~C shall solve this problem by following the algorithm proposed
"~ in Ref. 20.
'~ \ Representing the solution of E(L.1) in the form
o, . u(z,t)=u(z,t)+ 6(z,t)=u(z)exp —iwt)
\.\ +o(zt)exp —iwt), (3.0
\ whereU(z,t) is the solution of Eq.(1.1) for a stationary
" soliton and 6(z,t)|<[U(z,t)|, we linearize Eq(1.1) in small
correctionsv(z,t) and obtain the following equation for
v(zt):
1 .
idv(z,t)lat+ 0%v(z,t)19z2— e%v(z,t) + 2 Bv(z,t)u?(2)
FIG. 2. Dependences=w(N) for various types of nonlinear localized + Buv*(z,H)u?(2)=Q¥8(2)v(z,1). (3.2
states;3>0, Q<0 (curvel), B>0,Q>0 (curve2), andB<0, Q<0 (curve . ) .
3). The curvedl and4’ describe the dependences (N) for a soliton and Writing the solution of Eq(3.2) in the form

two noninteracting solitons in an ideal system free of defects. .

g Y v(z,1)=(A(2) +iB(2))exp Qt), 3.3
we obtain the following system of two ordinary linear differ-
ential equations for the functions andB:

LoB=0QA,

L,A=—QOB, (3.9
holds for positive values of the paramet@rin the entire i
region of existence of nonlinear localized states, while in theWhere the operatorss, andL, are defined as
case of negative values @, the opposite inequality holds: Lo=—d)dZ%+&2— Bu?(z)+ Q4(2), (3.5

It hence follows that the inequality

dwlIN=9?EIIN><0 for pB>0, (2.163

dwlIN=32EIgN2>0 for B<O. (2.160 Ly=—d%dZ+e°-3Bu?(2)+Q4(2), (3.6

Usually (in spatially-homogeneous nonlinear systems and the functionu(z) (in the notation introduced aboyve

dynamic solitons are modulation-stable for the negative sigrj{nUSt satisfy the equation
of the derivativedw/JdN and unstable for the positive sign of Lou(z)=0. 3.7
the derivativet”?%22 |t will be shown below that for
spatially-heterogeneous systems with defects, the situation 5
different: a soliton solution localized at a defect is stable
only for Q<0 (for any sign of3) and unstable fo>0. Lol A=—0Q2A. (3.8
The dependence=w(N) (2.14 for various signs of
Q andp is shown in Fig. 2. Curvé corresponds to cagé)
(B8>0,Q0<0), curve2 describes thes=w(N) dependence
in case(2) (>0, Q>0), and curve3 corresponds to nega-

tive values ofg [case(3)]. , W 2 £ _
The dot-and-dash curves in same figure show th%;V_I‘EIZBV\;;d LQ_VC/;L_Where L™= didz+(du/dz)/u,
= 0= i

= w(N) dependences for a solitary soliton in an ideal me- : . :
©=w(N) dep y Since the functioru does not vanish anywhere, there

dium (curve 4): . - - 1.
exists a positive-definite operatdry = inverse to operator
w=wy— B2N?/16, (2.173 Lo on the subspace of functi_oqs orthogopaluo Conse-
qguently, we can apply the variational principle to E8.8),
and for two noninteracting solitons separated by an infinitelyaccording to which the minimum eigenvalueQé is given
large distance from one anoth@urve4'): by

Eliminating the functiorB from the system of equations
.4), we arrive at the following eigenvalue problem:

It should be noted that although the operadtgt ; is not
Hermitian, the real-valuedness of its eigenval@¥scan be
proved easily by reducing the initial eigenvalue problem
(3.4) to an equivalent problem for the Hermitian operator

w=wo— (B216)(N/2)2. (2.179 —QF=min[(e|Lie)/(¢|Lo*|e)], (ul¢)=0. (3.9

In this case, the problem can be reduced to an analysis of
the conditional minimum of the function®=(¢|L,|¢).

Using the Lagrangian method of undeterminate multipli-
ers, we can obtain the following equation for the function
 minimizing the functionaF for (u|)=0:

At the pointw=w,, N, =4Q/ 3, curves2 and4’ inter-
sect, i.e., bifurcation of thev=w(N) dependence is ob-
served: forN=N, , the dependenc® for a solution local-
ized near the impurity splits from curve’ for two
noninteracting solitons, i.e., two solitons are “coupled”
through the defect. Lig=Ny+ au. (3.10
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The minimum value ofF is determined by the minimum Substituting the expression obtained fofz) into for-
value of A for which Eq.(3.10 has a solution. Taking into mula(3.6) and taking into account the terms of the order not
account the conditiogu|#)=0, we obtain from(3.10 the  higher that the first power d®/(2¢), we obtain the expres-

following equation for\ (see Ref. 2 sion for the operatok ;:
% L,=—d%dZ+e%—6g? cosh ?(s2)+[Q/(2¢)]
2 —_ = =
“nzl Col(An=N)=af(A)=0, (311 X {—12¢? sinh(g|z|)cosh 3(e2) +2e 8(2)}

where C,=(uo|#,), and ¢, and \, are the eigenfunctions =LP+7, (3.19

and the eigenvalues of the operaltar, respectively. wherez « Q/(2¢) is the perturbation of the operatbﬁo).

Let us first analyze the stability of solutions for a posi- In perturbation theory, we obtain the following correc-

tive parametes (cases(1) and(2)). - _tions to eigenvalues of the operatof®:
In the absence of a defect, the stability test for solution
(1.7) corresponds completely to the scheme described in Ref. (1) _ (o)~ (o) _ f*m (0)% ~ ,(0)
20. In this case, the operathy, is defined as M= o= {00 [l —o dzgn ™ mgn”. (319
L®=—d¥dZ+e%- 62 cosh 4(s2). (3.12 In this case, the eigenfunctions of the operétqgras-
sume the formy, = 9 + £(z), whereZ(z)~Q/(2¢) is a
The eigenfunction of the ground state of this operatorcorrection of the same parity as the functigff’ .
and the corresponding eigenvalue have the form The correction to the eigenvalue corresponding to the
round state of the operatbf® has the form
PO=(3e)12 cosh2(ez2)/2, A P=—3e2, 313 O persibh

+ oo
(1) — =2
while the eigenfunction and the eigenvalue of the next state M1 — Q/(2e)(3¢/4) me dz cosh “(e2)
are given by

X {—12¢? sinh(¢|Z|)cosh 3(s2)

+2¢8(z)}cosh 4(e2)
It is well known that, in the absence of impurity, the _
soliton solution of the NSE is stable. The presence of a de- =~ (3e/4Q, (320
fect complicates the analysis of the stability of the solutionwhile the correction to the eigenvalug” of the next level is
since in this case the operatdrg andL; have a more com- given by
plex form than in the case whe@=0. Let us prove, how-

0 =(3e/2)? sinh(ez)cosh X(e2), A\Y=0. (3.14

ever, that for values ot|zy|<1, the operatolL; has the )\(21>:Q/(28)(38/2)f+ dz sinh(ez)cosh %(e2)

form L,;=L{Y+ 7%, where7 is a perturbation linear in small -

corrections. In this case, we can take into account the varia- X {—12¢2 sinhe|z|)cosh 3(s2)

tion of eigenfunctions and eigenvalues of the operhﬁB’rin

perturbation theory. +2&6(2)}sinh(ez)cosh *(2)
If the inequalitye|z,| <1 is satisfied, it follows from the _

boundary conditior{1.8) that =~ (3:2)Q. (329

Thus, taking into account the expressions X(i?) and

£20~Ql(2¢), &>|Ql/2. 3819  \( we obtain approximatéto within Q/&) expressions for

In this case, formuld2.5) leads to the relation between eigenvalues of the two lowest states of the operatar

the parametersl andQ, which determines the region on the A1=—3e2-3:Q/4, (3.2239
plane (N,Q), where the solution of the above-formulated

problem in the perturbation theory exists: Ap=—3eQl2. (3.22
It can be seen that;<\{¥<0 and\,<0 for Q>0;
N=>2|Ql/8. (3.16 AMP<\ ;<0 and\,>0 for Q<O0. In view of different signs

This region is shown by double hatching in Fig. (the of thg eigenvalua., for Q>0 andQ<0, these cases must be
sector near th&l-axi9). It should be noted that the smallness considered separately. _
of the soliton amplitude is generally not required, and the 1€ case 08>0, Q>0. Fora=0 (see Eq(3.10), 4 is
role of small perturbation is played by the defect whose “in-2n €igenfunction of the operatbr, while A coincides with
tensity” plays the role of the expansion parame@¥(2s). one of its eigenvalues. Since the e|genfunct¢tlmannot be

Expanding solutiorf1.7) into a power series in the small °rthogonal tou 2(§ee Ref. 20) and(ul ) =0, the minimum
parameterz, and taking into account dependeri@15 in  €igenvalue—(; is determined by the valuk,. Thus, the
the expansion, we obtain the following relation accurate tg°onditional minimum of the functionaF is equal to

within first-order terms inQ/(2¢): A2= —32Q/2<0, and hencd) is real-valued. _
Thus, positive values of) correspond to exponentially
u(z)=(28)"?% cosh Y(ez){1+[Q/(2¢)]tank ¢|z|)}. increasing perturbations, and the soliton solution is unstable.

(3.17 Instability is manifested in an exponential increase in the
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spatially antisymmetric correctiofthe symmetric function smallest root of Eq(3.11). We can prov® that in this case
i, corresponds to the principal eigenvalng). Soliton dy-  (as well as forQ=0), the sign of\ ,;, is determined by the
namics in this case can be presented as follows: quasiparsign of the quantityf(A=0): we have\ ;=0 for f(0)<0
cles are “pumped” from one half-space to another. For largeand a negative ,;, for f(0)>0.
values of time, we cannot solve the problem, but complete For A=0, formula (3.11) can be easily written in the
“pumping” of particles to one half-space will take place; the form f(0)=(u|L; *|u). In order to calculate the value of this
formed soliton “repelled” by the defect will go to infinity.  quantity, it is sufficient to differentiate E¢3.7) with respect
The solution, taking into account small corrections to theto €2 and, using the form of the operatoks andL; (see
form of a soliton forQ>0, is given by (3.5 and(3.6)), to verify the relatiorL ; du/9e? + u = 0. This
gives

f(0)=(u|L; Yu)=—(u|oul9e?)= — (1/2) 9l 3e*(u|u)

1/2
u(z,t)=ug(z,t) +v(z,t)exp —i wt)E[ (E) e cosh 1(e2)

1/2 — _ 2_
+22 _) e sinh(s|z])cost 2(e2) lexp( —iwt) (1/12)N/de“=(1/2) N/ dw, (3.29
e \p whereN is the number of quasiparticles defined by formula
3¢\ 12 (2.5).
+¢£ 7) sinh(ez)cosh ?(ez)exp(t) Thus, the sign of the conditional minimum of the func-
tional F for @ # O is determined by the sign of the derivative
X exp(—i wt) dwloN (i.e., by the sign of the quantity?’E/9N?: the con-
0\ 112 Q ¢ (3812 ditional minimum of the functionalF is positive for
= _) e Cosh—l[s Z—Sg(z) =5— — (_) dwl IN<0, and accordl'ng t63.9), 01°<0. _
B 2e° 2e | ¢ It was proved earliefsee(2.163) that, in the case of

negativeQ and positiveB, the derivativedw/dN<0. This
Jexp(—iwt), (3.23 indicates the absence of exponentially increasing perturba-
tions () is a purely imaginary quantifyand the stability of
whereé<1. (Here we have used the main approximation inthe solution in the approximation linear ianerturbation.
expression(3.3) for the small correction(z,t): A~ fl/f(zo), Thus, antisymmetric corrections to the solutiofe,t) de-
B=0) scribe small oscillations of a soliton relative to the impurity.
Thus, in this approximation the amplitude of the solution ~ Solution(3.1) for Q<0 and3>0 can be reduced to the
does not change, but a synchronous shift towards one of tHerm
centers of two solitons located on different sides of the defect U(z,t)=(2/8) "% cosh {s[z—sgnz)Q/(2s2)

and associated with it takes place:
+ — 2 1/2 _
25 =sgr(2)Q/(262) + (/26 (3B18) M2 exp( Q). (3.24) (&/22)(3p/2) = cod vt liexp(—iwt),
3.3

In order to find the increment of this shift instability 330
Q, we will use formula(3.8) “encased” by the antisymmet- Whereg<1 is a smallarbitrary amplitude of oscillations of
ric function ¢, corresponding to the second level of the op-the center of the soliton relative to the region of localization
erator L;. In the main order in the small parameter Of the impurity, andv=—i) is the frequency of these os-

X exp( Qt)

Q/(2¢), expression(3.9) assumes the form cillations.
R B In order to find the frequency, we use formulg3.25),
Q2= — (| 9l Y ILY ) = wherex,=3¢|Q|/2>0 in our casdsee(3.228]. Thus, the
—)\2/<¢(2°)|L§)°)_1|z//(2°)), (3.25 frequency of oscillations is given by
_ 3,172

where the operatot ") is defined by expressiof8.5), and v=(2|Qle*)™ (3.30
the functiony?) is defined by(3.14. It can easily be verified It should be noted that in the case of a “smeared” im-
that purity, when the region of its localization is much larger than

(3.26 the soliton width, the oscillatory frequency of the soliton in

(0) - i
Lo [cosH{ez)]=2e sinh(e2)/coslt(e2), the external potential fieldJ(z) simulating the impurity

and hence (Q=SU(2)d2) is connected with the intensi® of the po-
tential through the relation
L1000~ [3/(85)] 22/ cosH(s2). 3.27 93 .
Thus, the denominator in formulé3.25 is equal to v=(QUL%™ (332
3/(4¢?), and the increment of instability is given by where L is the characteristic spatial size of the
. . 7 . . . . . .
0=(20e3)12 (3.29 inhomogeneity.’ This is in qualitative agreement with the

result(3.31) obtained for as-shaped impurity, but the role of
The case 0f3>0, Q<0. Since\,>0 in this case, the characteristic linear size is now played by the dizef the
conditional minimum of the functionaF is positive for  defect instead of the soliton width&l/It should be recalled
a=0. For a nonzero Lagrangian multiplier, the condi- that our analysis is valid only when the inequal{8:16) is
tional minimum of the functionaF is determined by the satisfied.
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In Ref. 18, another limiting case was analyzed in detailsign of anharmonism@he sign ofg) in the case of attraction
in the case of the sine-Gordon equation for an attractive imef quasiparticles to the defed&0). In the case of mutual
purity (Q<0): e—|Q|/2<|Q|/2, i.e.,, v —w<wg—w,. It  attraction between quasiparticle8*#0), a nonlinear excita-
was assumed th&®|<1. It can be easily seen from relation tion can be localized at the impurity even in the case of the
(2.5) that the following limitations are imposed on the valuesrepulsive nature of the defecQ¢0).
of parameter®l andQ: N<2|Ql/3, |Q|<1 (the sector with For >0 (attraction between quasiparticleand Q<0
double hatching near the negative semiaQis Fig. 13. It  (attractive impurity, a point defect plays the role of a poten-
was shown in Ref. 18 that in this limiting case a solitontial well for a bound many-particle state, and soliton is lo-
localized at the impurity is stable and performs small oscil-calized near the defect and oscillates near its center at a
lations relative to the center of the impurity at a frequency frequency (2% Q|)¥2 In this case, localized soliton solu-
v=[3(®ma— ) ]2 (3.33  tions are stable.

Taking into account the results obtained by us and in For 5>0 andQ>0, the soliton solution localized near a

Ref. 18, we can assume that nonlinear local excitations arre?pg.ll‘.c’t've." quas!?arttlcdle. of the |mpur|:y IIS unstable.f Th;; In-
stable for all values 0©<0 andN>0. stability is manifested in an exponential increase of antisym-
metric corrections to the solution: quasiparticles are

Let us go over to an analysis of stability of solution |, 4"t half ; h di i
(1.10 describing a nonlinear excitation localized at the im- pumpedirom oné hall-space to another and form a soli-
ton localized on one side of the impurity, which is repelled

purity in the case of negativg and Q. . .

Following the algorithm described above, we can shovam it and goes to infinity. . . .
that for 3<0 andQ<0, the operatoL.; is positive definite. In the case wheng<0 _(repulsmn between quasiparti-
Let us first consider the operatbp. WhenQ,8<0, it as- cles, nonlinear local excitations are pOSS|bIe only for
sumes the following fornisee(3.5)]: Q<0, and the state bound to the defect is stable.

Lo=—d¥dZ?+ &2+ B|u?(2) - |Q| (2), (3.39 This research was partly financed by the International

whereu(z) is defined by(1.10. Solutionu(z) is an eigen- Soros Program Supporting Education in Sciefgent No.
function of the ground state of the operaﬂ06 with zero GSU052252 and by the International Science Foundation
eigenvalugsee(3.7)]. Thus, the operatdr, is nonnegative. (grant No. U21200

The potential energy corresponding to the operatgrhas
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Uo(z)=£2+|Blu?(z)—|Q|8(2). (3.35 *E-mail: kovalev@ilt.kharkov.ua
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Additional symmetric and antisymmetric localized branches of the vibrational spectrum of a

crystal, associated with the presence of intercaldbegbrstitia) planes in strongly anisotropic
crystals, are investigated by using the discrete model and taking into account the interaction
between nearest neighbors. Energy—momentum relations for such vibrations are analyzed, and the
values of parameters for which local vibrations are excited above and below the energy

band in the continuous spectrum of the crystal corresponding to the given value of the wave
vector component in this plane are determined. Special attention is paid to an analysis of the
possibility of formation of well-defined resonant modes of the spectrum, which are located

within the allowed band and are polarized along and across the interstitial plan@99®
American Institute of Physic§S1063-777X97)01002-5

INTRODUCTION to use this approach for an analysis of the spectra of crystals

The analysis of vibrational spectra of crystals with Vari_with two-dimensional defects. An interstitigintercalated
plane can serve as a general form of@ defect for which

ous planar defect§such as phase boundaries, twinnin . . L
: s b gthe two-parametric form of perturbation is significant. An

planes, and intercalated planés an important problem in VSis of vari tigmcluding the vibrational
solid state physics. The existence of special elastic wavedNalysIS ot various proper |e§mcy Ing the vibrational spec-
m) of the intercalated plane in layered crystals is of spe-

propagating near the surface of a medium was predicted fc}rt.ul i : It Iso take int t the st
the first time by Rayleigh.Various types of waves emerging clal importance. T we aiso take into account the strong an-

in the presence of interfaces between different media wer otropy of the gnergy—momentum relation for phonons in
subsequently studied in the theory of elastiaity. these crystals, including the presence of flexural spectral

In the case of the discrete lattice model, a general apr_nodes, we can expect a large variety in the nature of the

proach to an analysis of spectra of crystals with planar de@merging two-dimensional impurity states and in the corre-

fects was proposed by Lifshits and Koseviovho analyzed sponding _energy—momentum relat_lons in such systems.
the possibility of the formation of an additional two- For this reason, we shall consider here the spectrum of

dimensional branch of the spectrum for the simplest type c)}ocalized and resonant vibrational states with different sym-

perturbations. The spectra of vibrational states localized ne etries, Wh'.Ch Is associated W'th the presence of the mterc_:a—
a plane defect in a crystal were studied in many publication :alted plane in layered crystals with arbitrary values of atomic

including those where numerical methods were (is8@pe- masses in this plane and force constants determining the cou-

cial attention was paid to vibrations whose energies are sepg:lmg between the at_oms n t_he plane and the matrlx.. _Con-
rated from the main spectrum by a gap, and the amplitude iderable attention will be paid to an analysis of cgndltlons
decrease exponentially with increasing distance from the d or the emergence of resonant s_pectral modes, their energy—
fect. Moreover, it was noted in Ref. 8 that the impurity momentum relations, and damping.
monolayer at the crystal surface can lead under certain con-
ditions t.o the emergence of resopant modes. It s_hould bﬁODEL OF INTERCALATED PLANE IN A LAYERED
emphasized, however, that a consistent theory which woulgzystal
describe all possible spectral branches of crystals with vari-
ous types of planar defeci{gncluding energy—momentum In the harmonic approximation, the equations of motion
relation and attenuation of resonant modesking into ac- Of atoms in a layered crystal have the form
count a variation of the atomic masses as well as the force
constants for crystals with such defects has not been con- wZXf{N—E Lﬁf',NN'Xf/N':Q 1)
structed yet.

It was shown in Refs. 9-11 by using the two-parametemwhere xp,  is the a-component &=x,y,z) of the displace-
model of an impurity center taking into account the changament of thenth atom in theNth plane and. the dynamic
in masses as well as in force constants that well-defined resoaatrix of the initial crystal. We assume that the initial lay-
nant modes can emerge even in low-dimensiod@ or  ered crystal can be described by the model proposed in Refs.
2D) systems in the case of a weak coupling between ai2 and 13. In this model, the crystal has a hexagonal sym-
impurity and the matrix. Considering that the problem ofmetry, and it is sufficient to take into account only the inter-
determining the vibration spectrum of a crystal with a planaraction of nearest neighbors in the direction perpendicular to
defect is essentially one-dimensiond would be interesting  the layers:
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a/m 0 0 The strong anisotropy of the crystal under investigation
is manifested, in particular, in that the velocity of acoustic

Lonwnea=—| O /M 0, ai<ar, ) iprations polarized in the plane is determined by the maxi-
0 0 ay/m mum coupling parameter:
wherea, and «, are the force constants for noncentral and aza’
central interaction between the planes, respectively. We as- Cj~— =, az>a>ay, )

sume that the above assumptions are valid for a crystal with
an intercalated plane also, but the force constants of its inwherea is the lattice constant of the layers.

teraction with the nearest layers of the crysfar definite- It can be seen from4) that the equations describing
ness, we denote them =0 and 2 have different values: Vibrations with different polarizationswithin the layer(lon-

aj andaj. In this casep|<aj<as, whereay is the con-  gitudinal and transverse vibrations in the long-wave [imit
stant of atomic interaction in the layers of the initial crystal. can be separated. An analysis of these vibrational branches is

In crystals with a two-dimensional defect, the transla-the same so that we can henceforth omit the subspript
tional invariance is violated only in the direction perpendicu-  In this model, the vibrations polarized across the layers
lar to it. For this reason, we seek the solution of this problenflo not interact with other modes. Consequently, for these
in the formy¢ \ = xf(k.)exp(k, - r,), where thez-axis is components of displacements of atoms we can immediately
perpendlcular to the crystal Iayers in the impurity plane,write
k, =kyet+kye , andr, is the radius vector of thath atom
in the layer.

It follows from the symmetry of the system that we can
write three different types of equations of motiail) for @,
displacements of atoms of the intercalated pldBgfor dis- (wz— - wJ_(kJ_)
placements of atoms of the first and zeroth planes(&nfbr

2_2(1 z a2 Z VA
w —?—wl(kﬂ X1t (xZ2t x0) =0,

2, %2, z
=2 (X2t
X0 " (XZ1+x1)

all the remaining planes. From symmetry considerations, it is ayé, [a; Aay| , Aa, |
also convenient to go over to new variables for the compo- =~ — m_ m X0 Ty A1
nents of the displacements of atoms in the plane:
a; , a;
X<1>:M X<2):M (wz— ™ =w(?(k,) &t 3 (XAt x0)=0, (6)
N kJ_ ’ N kJ_ l

whereA a, = a, — a5,; ayanda, (k, ) are the corresponding
_kx§X+ky5y ¢ _k><§y_ky§X 3) force constant and the frequency of vibrations in the planes
Y ok 2k, adjacent to the intercalated plane.

It is well known that layered crystals can exhibit flexural
vibrations of the layers due to a strof@s compared to the
interaction between the layeraoncentral interaction of at-
dms in the laye?*15For these vibrations, for small values of

whereé® is the a-component of atomic displacement in the
impurity plane. In these variables, we obtain the following.
equations describing atomic displacements in the plane for
small values ok, andk,:

k, we have
2a1 . aq . . 2 _ 2 214 —_c. >
(wz_ W—wﬁ-(kﬁ)x“)ﬁE(x“)frx%”):o’ w(k,)=c, K2 +Aa%k?, A~c;, Asc,. )
The vibrational frequencies| (k,),®, (k,) of the interca-
, 2ap 0 i lated plane and of the adjacent planes in the matrix are de-
O T “’Ill(ki) +E (x“1tx1) fined by similar expressions with corresponding values of
, , c,,c,,A’, andA. The invariance of the crystal relative to
_ ajéy [a; Aay () Aay G an infinitely small rotation implies that
T Tm T Tm o T X )
a,b
, o @ L =——, (®)
w _W_w\\j(kl) §+_(X ) 0, . .
whereb is the separation between the layers. We can prove
2 2 =2 ~ 2 that the rule of sums is fulfilled when the following relations
(k,)=cik (k )=cik ; :
woij(k)=ciki, - @ik )=ciki, hold for a crystal with an intercalated plane:
12 _ A2 -
@y (ki)_CJ' kL, =12, 20a1=a1>0, a;<2aj, (9)

where c;, "c'j, and cj’ are the squares of the velocities of
sound in the layers of the initial crystal, in the layers adjoin-
ing the defect, and in the intercalated plane itself respec- Eliminating the components of atomic displacements in
tively, m andM are the masses of atoms of the initial crystalthe intercalated plane from the equations of motion, we can
and of the intercalated plane respectively, andeasily find that the two-dimensional matrix of perturbation
Aa,=a;—a,,a; being the second-order force constant forintroduced by the defect and depending on the wave vector
a noncentral interaction of crystal layers closest to this plangs, can be written in the form

Mc| =2m(c, —¢C,). (10)
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H o o 2(ap(mM) ,
Van(@,K; )= (Snot Onz) (Onrot Onra) >m 1= mT 02— o/ %(K,)—2a}IM + (k) —of(k,)
(})?(mM) X (9oo™ Jor)- (19
w?—w{*(k,)—2a;/M The frequencies of antisymmetric vibrations are accordingly
defined by the equations
+ (@7 (ki) — wf(k) Sy (1 @ 280 _, )
:<H_ +EL(kL)_wL(kJ_))(géo_gél)i
for vibrations polarized in the plane and ) ‘ ”
. 1=(@f(k.) = of(K.))(Goo~Gov)- (16
Vi (K1) = (OnoF Ona) (Onrot dr) Using relationg14), we can obtain the following expres-
(ap)?(mM) sions for the matrix elements of unperturbed Green’s func-
L)Z—(wi)z(ki)—Zaé/M tions appearing if15) and(16):
% Aa ok + okt =205 1- T+
+ @2(k)— 0 (k) + HZ— ?2) Sane ! wi,  wi,
\ 960 901 =2(#),.960 ~ 1)/ w1, (17)
o
+—2 (1- 5NN,)} (120 while the diagonal elements of these functions for arbitrary
m 6
values of the parameter; , have the forrk
for V|bra_t|ons polarized across the pIane._ _ . L [sartey ) /—8\\,1_(8\\,1__“’%,2)' £, <0, SII,L>w§,2v
In this case, the frequencies of new vibrations associatedg, = ./\/2—_ 0<en <
with the presence of the defect can be determined form the ey (w1me).), IS w12 19

condition
In the subsequent analysis of the frequencies of vibra-

deli —V*-(w,k, )G (w,k,)) =0, (13)  tions associated with the intercalated plane, we shall consider
A ) . , localized vibrations whose frequencies lie outside the corre-
whereg™" is the unperturbed one-dimensional Green’s func-sponding band of the continuous spectrum of the initial crys-

tion for a layered crystal: tal for given values ok, , and the amplitudes decrease ex-
I ponentially with increasing distance from the defect, as well
ALl 900 Yoi | as resonant vibrations whose frequencies lie within the en-
a5 g9/’ ergy band corresponding to bulk modes of the initial crystal.

]| ]| 1
Oni (@K D) =gy (8L )=\
NN’ NN’ NN SYMMETRIC VIBRATIONS

. z
:i XK ) . We begin the analysis of the vibrational spectra of a
No % &, = w5, sir(kb/2)’ crystal with an intercalated plane with the most interesting
. 2 case of symmetric vibrations. It can be seen frtif) that
g =0~ (K); (14 the impurity plane actively participates in vibrations of this

2 g dN. is th ber of ol in th type of symmetry so that its intralayer parameters and ac-
] ,=4ay /M, andNo Is the number of planes in the Crys- oo qinqiy the frequencies| *(k,) produce an appreciable

tal. Since we take into account here on_Iy the mteracnon_be-effect on the energy—momentum relation of localized vibra-
tween the nearest planes, and the atomic displacements in tHSns associated with the defect

intercalated plane are taken into account in expressib)s In the analysis of vibrations polarized in the plane, we

2nd(12), it Waﬁ SL;fﬂment o confS||der (I?nI;ZQZ-bmaFnces for _neglect(for simplicity) the change in the properties of the
etermining the frequencies of localized vibrations aSSOCIE:rystal layers nearest to the defect. In this case, the following

atedenthhthe w;te:)ca;!ated ?Ig]nei der investiqation. E condition holds@?(k,) = w{(k,), and the second expres-
or the perturbations of the type under investigation, Eq;,, in (15) [on account 0f18)] assumes the form
(13) naturally splits into the symmetric and antisymmetric

components corresponding to inphase and antiphase vibran—Awf(kL)—Zai/M
tions of the adjacent planes. In this case, the equations de- y[¢ —Aw?(k,)]
fining the frequencies of symmetric vibrations polarized

across the layers assume the form &= wi vz 2
|7 , £<0, g>wi,
, , I
ay 2(ay)?(mM) ) ) =1+ 2_ |12 (19
1=|—=+ +o7(k)—wi(k @1 &
m o0k —2aym T Ork) ik ( 18 ) . 0<g <l
I

X (oot 9or)» where
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ay Expression(22) shows that the dependence of the fre-
Awf(k)=w/*(k)—of(k); = 5o <L (200 quency of resonant vibrations on the wave vedtoris de-
! termined only by the magnitude af”’z(kL), i.e., is the same

It should be noted that the expression on the right-hand sidas for an isolated intercalated plane, and does not depend on
of Eq. (19) has a typical one-dimensional singularityiver-  the coupling of this plane with the matrix. Consequently, if
gence at the lower boundarys(;=0) of the band for bulk atoms in the given plane are coupled with one another more
modes corresponding to the given valuekgf and a root strongly than in the layers of the initial crystal
singularity typical of three-dimensional crystals at the uppef A w?(k,)>0], the frequency of a resonant vibration gradu-
boundary é\\:wf)- The absence of one-dimensional singu-ally moves away with increasink, from the lower bound-
larity at the upper boundary in formuldl9) is associated ary of the band corresponding to bulk modes and approaches
with the choice of the model of the crystal and intercalatecthis boundary if the coupling between atoms in the interca-
plane: the atoms from adjacent layers of the crystal and itated plane is weaker than in the matrix.
the impurity plane are located exactly above one another and Using Eq.(19), we can also derive the following expres-
interact only with nearest neighbors. sion for the broadening of the squared frequem@y(ki) of

It follows from Eq. (19) that, for any value of resonant vibrations:
Awﬁ(kl)<0, ie., in.the case when atoms in the impL_Jrity y wi-l—wf(kl)—wf (k)| 22
plane are coupled with one another more strongly than in the Ik )=—— wfr(o 5 ‘ 5 !
matrix layers, a low-frequency branch of local vibrations, ’ 1=y & oj (k) — wj(k,)
which is typical of two-dimensional effects and which was (25
described for the first time in Ref. 5, splits from the unper-  The condition for a resonant vibration to be well defined
turbed band. The frequencies of this branch corresponding tRas the form
a given value ok, lie below the edge of the acoustic band 5 )
(i.e.,£,<0) and tend to zero ds, —0. For the crystal model | @i (k) — o (k) [>T (ky), (26)
with a plane defect considered here, the energy—momentupare,
relation for this branch fok, —0 has the form

ﬁe(kL) are the vibrational frequencies corresponding

to the upper and lower edges of the band for a given value of

(Awf(ki))z k, . Instead of two inequalitie$26), we can write, taking
(21 into account the explicit expressid5) for damping, the

of (k)= wf(k) = CLOL FEIE =
following interpolation criterion:

w3 (m/M)?

Asin Ref. 6, we havef(k,) — of (k,) « k. Itcan be seen Mo, (0)
that the obtained energy—momentum relation does not dcrﬁ[wz (k );wg(k )]3,2[wf+ wﬁ(ki)—wf’r(kl)]*l’%l.
pend on the coupling between the intercalated plane and the" "™+ AL 27
matrix. Such a behavior is quite unexpect@specially in
the case of a weakly bound defecThis question will be Expressiong26) and(27) imply that the necessary condition
analyzed in greater detail below. for the emergence of resonant states is that the intercalated
Apart from the low-frequency branch of local vibrations, plane must be weakly coupled with the matrix. Indeed, in the
the given system can also exhibit resonant vibrations whosease of low-frequency resonant vibratiomﬁ’((OK w?) for
frequenciegfor a given value ok, ) lie in the band of cor- small values ok, we find that condition$26) and(27) can
responding bulk modes of the continuous spectrum of thée reduced to the following inequality for the coupling pa-
unperturbed as well as local vibrations with frequencies lyrameters:
ing above this band. 1
Let us consider in greater detail the possibility of emer- y<(1+M/m)—= (28)
gence of well-defined resonant vibrations. Neglecting theCondition (28) can also be written in the form
second(imaginary term on the right-hand side of E¢L9), 2
we obtain the following expression of the energy— wzr(0)<(m wf- (29)
momentum relation for vibrations polarized in the plane: ’ M

2 _ 2 2 Consequently, fom>M, well-defined resonant states can

k)= k, )+ 0), 22 ) . : .
@ir(k) =y (ki) + i (0) (22 jie at the middle of the continuous spectral band or at its
2a}IM y m upper edge. In the latter case, the criterion for the existence

=— — wi<wi. of resonant states has the form
1_,y 1_’)/M (,()1 wl (23)

ol (0)=

2y _ (0f—0f (0))>wi(M/m)2
Here ] (0) is the square of the limiting frequency of reso-

nant vibrations. According t¢23), the value ofwf,,(O) lies As the resonant vibration branch approaches the bound-
in the energy band of the continuous spectrum when thary of the band corresponding to bulk modes, the expression
parameters of the intercalated plane satisfy the followingon the right-hand side d27) diverges, the conditions for the

condition: existence of resonant vibrations are violated, and the corre-

sponding branch is interrupted. In this case, the broadening

y< 1 (24) of resonant states at the lower edge of the spectrum also
1+m/M”’ diverges,
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ized vibrations polarized in the plane for a given value of
k, is defined by the solution of the equation
2a;

wﬁ,l(ki):wl\lz(kL)"_V

1

X[l—'y

_(w%.(kn—wﬁ(kg—wi)l’z
wﬁl(kl)_wf(kL)

-1
] : (30

Such local vibrations lying above the upper edge of the
band can be either a continuation of resonant spectral
branches, or an independent branch starting,at0. It
should be noted that in contrast to the lower edge, localized
vibrations do not split from the upper edge for arbitrarily
small values of the quantit;kwuz(kL)>0.

The necessary condition for the emergence of a localized
state fork, =0 is that the parameters of the intercalated
plane must satisfy the condition opposite(&). Since the
parameterx; <2a, in view of the conditions of crystal in-
variance to rotations, the masses of atoms from the interca-
lated plane in the case of local vibrations whose frequencies
lie much higher than the energy band corresponding to bulk
modes fork, =0 must be much smaller than the masses of
matrix atoms M<<m). In the general case, the energy—
momentum relation for high-frequency local vibrations of
the given symmetry assumes the form

1,0
clkzlwg

wﬁ,l(ki) = wﬁ|(0)+ w\\,z(kL%
of (0)=2a;/M. (31
FIG. 1. Energy—momentum relationa)( wﬁ,(kl) for symmetric resonant

(curve 1) and w? (k) for local (curve 2) vibrations of a crystal with an Expressiong22) and(31) show that the energy—momentum

intercalated plane described by formyE9) for y=0.1, m/M=6.5, and

c'/c=0.25, and b) wfyl(ki) for antisymmetric local vibrations of the crys-

tal with an intercalatgd planécurve 1) described by(35) for v, =1.5,
(€, —c,)/c,=—0.8, (A—A)/A=—0.85, and Aa’w?2)/c? = 4. The regions
of continuous spectrum of the crystal are hatched.

relation for low-frequency resonant and high-frequency local
vibrations is positive and is determined by the intralayer vi-
brational frequencies only in the intercalated plane itself. In
the intermediate cases, matrix vibrations can also affect the

energy—momentum relation.
It also should be noted that in the case two branches of
such modes are present in all cases when resonant and local-
Let us consider in greater detail the behavior of low-ized vibrations polarized in the plane are excited, . The dif-
frequency of resonant vibrations, for which the conditionference in their frequencies is due to the fact that the quan-
Awi(k,)<0 is fulfiled. As the wave vector increases, the tities w{(k,) andw%(k, ) in expressiong19)—(31) depend
frequencywuz(ki) of such vibrations, which is defined in on the type of polarizatiof. At the same time, the limiting
(22), approaches the lower edge of the unperturbed spectraiequencie&ufJ(O) andwﬁ,(O) do not depend on the index
band and terminates in this region. On the other hand, & so that both these branches converge at the pgirtO.
low-frequency branch of local vibrations is formed for such Let us now consider the vibrations polarized perpendicu-
values owaf(kl) (see above The frequency of these vi- larly to the planes of the crystal. An analysis of the corre-
brations is described by formu{@1) as long as the condition sponding symmetric vibrations is in general similar to that
|Awﬁ(kl)| < wﬁr(O) is satisfied. As the wave vector in- carried out above for the vibrations in the planes of the lay-
creases further, the vibrational frequency of this branch apers. The main differenc@part from the fact that the energy—
proaches asymptotically the continuation of the energy-momentum relations;f(ki), wf(kl), ?{)f(ki) themselves
momentum relation (22) for resonant vibrations[see change significantly is that in formulél5) we cannot in
expression(31) for detaild. The general form of the energy— principle assume théﬁf(kL) = wf(kL) in view of the sum
momentum relation for resonant and local vibrations in therule. As a result, the explicit dependence of frequencies of
case of weakly coupled intercalated plane considered here Iscalized vibrations on the wave vector can change slightly.
presented in Fig. 1a. For example, instead of formul@1), in the case of low-
In the general case, the square of the frequency of locafrequency local vibrations, we obtain
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wf I(ki):wf(kL) region has no physical solutions since the functipn(k,)
' _ does not depend on frequency, i.e., antisymmetric resonant
{c, kK?+a%k*[A(1+2m/M)—A’—A2m/M]}?>  modes do not appear for any polarization.

wa(M/M)? ' In the frequency range where, <0 or &, > w3, Eq.
(33) can be easily solved in explicit form:
}*(k) = wf (k) +(@F (k) - wf(k)2m/M<0. (32 2 (k)
o L . w2 (k)=|1+— =" |02 +w? (k). (35
The limitations on the variation of the velocity of sound [NEALTE 1+21,, (k) @2 @natf):

[see(10)] in layers adjacent to the intercalated plane affect

the energy—momentum relation and attenuation of the correl- ?m((:je V_”bzo_ for \|/|l_3rat|okr)15 polﬁnzed n th(;e pla?er,] only
sponding localized vibrations insignificantly since the condi- ocalized vi ratlons y&ng ahove tf € upp(lelr el ge Of the con-
tion|@2(k,) — w?(k,)| < ay/mis valid in the range of wave tinuous spectrum band can exist for small values of the wave

vectors where a linear energy—momentum relation is opvector. In this case, it is necessary that the intralayer rigidity

served. However, the changes in the spectrum can be strofft the planes nearest to the intercalated plane be higher than

. ~2 _ 2 .
ger for large values of wave vectors for which this condition'” the matrlx[({u” (k_l) wj(k;) > 0]. The corresp(_)ndmg
becomes invalid in view of the possible change in flexuralfrequency of vibrations tends @, ask, —0 according to

rigidity in the planes adjacent to the defect. the same lao, (k,) = of (k) — 0f ki] as for symmetric
It should be noted that the ratios of the parametefs vibrations near the lower band boundairy view of the one-

and a; (which determine the frequencies of localized Vibra_dimension_al n_ature_of the singularity of the unperturbed
tions associated with the presence of the interstitial plame spectrum in this region. I
the corresponding values of the matrix parameters can be For modes polarized across the plane, Iopal V|br_at|ons
arbitrary and generally do not correlate with one another. Fopbove the edge of the energy band can also exist fer0 if

this reason, the three types of localized modes do not neceE~J,1-.e parame?evi>0., .e., when the effectwe_transverse cou-
sarily appeasor disappedrsimultaneously pling associated with the presence of the intercalated plane

becomes tighter the possibility of the emergence of similar
antisymmetric vibrations was indicated earlier in Ref. 6 for
another model of the impurity plapelf, for example, the
ANTISYMMETRIC VIBRATIONS elastic constant remains unchanged upon a transition to the

. . . ) . lane adjacent to the intercalated orne , such local
In the case of vibrations associated with the mtercalate@ ) € @)

lane and transformed according to the antisymmetric repre ibrations appear for arbitrary values of the parametr
P . 9 ymn ep determining the elastic coupling between the intercalated
sentation, the layers nearest to the defect move in antiphas

: . . _plane and the matrix. The dispersion of frequencies
and the atoms of the impurity plane do not participate In82 b q

these vibrations. Localized vibrations in this case can emerg‘éih'(ki) of ﬂ;]e eme(;_g_lng Ioial V|bra2t|okns 'S %IV\_/ays p(;_SI::IIVG.
only due to a change in the parameters of the layers nearest owever, the conditiow; (k, ) » w%( 1) < 0, Is satistied,
o the intercalated plane the value off  (k,) decreases with increasing wave vector
) ' ...k, , and the frequencyw, |(k,) approaches the upper
. Express:‘oins(lpi and (18) ShOW. that the charactens’uc bé)undary of thc(aq allo)\//védl( ér)lergF;/p band. Finallyppfor
d|;f.erher(;c$ 960 ~ o1 dpetvl/eeEn I%t)tliﬁ (?reen S _functflc:ns, f, (k. ) =0, this spectral branch of localized transverse vibra-
which defines, according to Eq4.6), the frequencies of lo- tions disappears. With a further increase in the wave vector

e o e andor 1, (K) < 1), his spectl banch can apper agai b:
bp Y P P ow the allowed energy band. The general form of the

crystgl, corresponding to a g|ve.n valuelaf, whlle'the sin- energy—momentum relation for localized states is presented
gularity at the lower boundary is of the conventional three-in Fig. 1b

dimensional typein contrast to the case of symmetric vibra- Localized transverse vibration can also be excited in the

tions). ase when the parameter is negative 1<w, <0). In

the S)\(/e“rcﬁ??o?m'ﬁ :;gg:rg?/e;rfg%ﬁggot:;gga':;cz fé;coungnis case, the corresponding localized states will be formed
P ' for finite values of the wave vectde, (above the allowed

Eq. (16) can be written in the form spectral band a2 (k, ) — w?(k,) > 0 andf , (k,) > 0. and
below this band fois? (k, ) — w?(k,) < 0 andf, (k,)<—1;

1/2
Eil,L
1=1;.(ky) (—2—_ ) -1y, (33 the latter case can also be realized for vibrations polarized in
I @12 the plane
fr L (K,) +EII,J_(kJ_)_wﬁJ_(kJ_)
— 7
LLABLZ P 0, CONCLUSION

2a,+ ah—2ay The analysis of the conditions for the emergence of ad-

=0, v, =T> —-1. (34  ditional branches of local and resonant vibrations in strongly

anisotropic crystals with an intercalated interstitial plane

In the allowed energy band of the vibrational spectrum for arshows that such spectral branches can exist in a wide and
unperturbed crystal (€@¢ L<wi2), the radical in expres- quite realistic range of the parameters of the system. We can
sion (33) becomes imaginary, and E(BJ) in this spectral assume that these results will also be valid in general for
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weakly anisotropic crystals with an intercalated plane as weltight angles to i split from the lower edge of the energy
as in the case of a substitutional plane. However, thdand for small values ok, if the corresponding values of
energy—momentum relations for localized impurity vibra-frequencies w, (k) are smaller than the frequencies
tions in strongly anisotropic crystals can be much more diw, ;(k,) of the unperturbed crystal, i.e., for a weaker inter-
versified in view of a relatively small width of the allowed planar coupling. As the coupling becomes stronger, symmet-
band for bulk modes in the two-dimensional Brillouin zoneric modes can appear, according to Ref. 17 only above the
(as compared to the maximum frequency of acoustic vibraband edge and for finite values kf . Transverse antisym-
tions). metric modes are on the whole in agreement with the results
It should be noted, however, that some of the obtainedbtained in Ref. 17 for longitudinal vibrations. However, for
results require additional analysis in order to verify their stadongitudinal antisymmetric modes we observe a qualitative
bility in the case of other models. This concerns above all thaifference: the energy—momentum relation for local modes
form of the spectrum of various vibrations near the uppermerging above the band edge upon an increase in the inter-
boundary of the allowed spectral band. Also, we have anaplanar coupling always tends to the upper edge of the energy
lyzed only the energy—momentum relations and attenuatioband fork, — 0 in view of the fulfillment of the sum rule for
of various types of vibrations induced by a planar defect, buthe crystal model under consideration, while in the case of a
the influence of such vibrations on the thermodynamic andveaker coupling such local vibrations can emerge only be-
optical parameters of the crystal being measured require law the band edge and for finite valueslof. It would be

further investigation. interesting to carry out a more detailed comparison of our
This research was carried out under the support of ISresults and the results obtained in Ref. 17 on the basis of the
SEP grant No. 042026. same crystal model.
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Isothermal segregation of an impurity from a finite-size grain to the interface or the external free
surface under predominant mass transfefd@cancy—impurity atojncomplexes is studied

at low temperatures. A modified equation is obtained for an impurity with the effective diffusion
coefficient containing the diffusion coefficients of the impurity and complexes with

different weights. The temporal evolution of the impurity concentration is determined for planar,
spherical, and cylindrical grainsvhich are close in shape to conventional grainsthe

case of a dilute solution at an arbitrary temperature. Simple algebraic equations are obtained for
the impurity concentration at the interface as a function of time. These equations are also

valid for a concentrated solution of the impurity at the interface. The kinetics of impurity
redissolution, i.e., the enrichment or depletion of the interface with the imp(higy

departure of impurity to the bulk of the grairs considered. ©1997 American Institute of
Physics[S1063-777X97)01102-X

INTRODUCTION complex formatioh as well as in subsequent
publicationd“~% were not substantiated rigorously.
Many properties of polycrystalline materials are deter-  In this research, we analyze the conditions under which

mined by the presence of an impurity at the interface bean impurity in complexes plays a significant role in diffusion
tween grains. As a result of segregation, the atomic concerprocesses on account of different time scales in these pro-
tration of impurity atoms at the interface can become mucltesses and at low temperatures. An analysis of such phenom-
higher than in the bulk of a grain. The formation of a con-ena extends the scope of concepts associated with diffusion
centrated solution of the impurity at the interface and theprocesses, which were formulated by Academician I. M. Lif-
emergence of precipitates at the grain boundaries deterioratebits at the beginning of the seventies.

the mechanical properties of the material and can lead to

temper brittleness of the metal.

The theory of segregation is based, as a rule, on the M
Lean approachwhich is applicable if the diffusion length of
the impurity is much smaller than the grain sidee., the Impurity—vacancy or impurity—interstitial atom com-
grain is approximated by a semi-infinite mediunin the  plexes can play a significant role at low temperatufes
case of a fine-grain structure of the substance or a high moF<Q, whereT is the temperature in energy units a@dhe
bility of impurities (e.g., under irradiation the diffusion  binding energy of a complgxThe latter complexes play an
length can become comparable with or larger than the chaimportant role only in materials under irradiation since the
acteristic grain size. In this paper, we consider segregation afumber of such complexes is small under normal conditions.
an impurity from a finite-size grain to the interface. Accord- If the diffusion coefficient for complexes is much larger than
ing to some experimental data, the diffusion rate for an imthe diffusion coefficient for an impurity, the complexes play
purity in a complex with a point defect is much higher thanthe major role in mass transfer.
in the free staté.For this reason, we consider the general Following Ref. 7, we consider here a grain of a typical
case when mass transfer can be accomplished by the diffsize and symmetric shagplane-parallel, spherical, or cylin-
sion of individual impurity atoms as well as impurity atoms drical). Such an approach is justified since similar processes
in a complex with a point defe¢vacancy. Starting from the  occur in all grains in polycrystals, and the grains are under
Girifalco publications’* the latter mechanism was called the identical conditions on the average. This means that we can
“vacancion pump.” However, a number of assumptionsneglect the flows of point defects and impurity atoms
made in Ref. Jsuch as the local equilibrium relative to the through the middle of the interface between the grains, and

8.17 FORMULATION OF THE PROBLEM AND BASIC SYSTEM
OF EQUATIONS
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accumulation of the impurity in the grain is obviously deter- melt, when complexes virtually do not form, and the time of
mined by the flows of impurity atoms to the grain boundary.sample preparation is shorter than the time of a significant
Consequently, both the formation and disintegration of comsegregation of impurity at the grain boundaries under the
plexes must be taken into account in the diffusion equationgiven conditions In this case,

for point defects(vacancies impurity atoms, and com- 0

plexes. Internal sink&islocationg should also be taken into Cslt=0=Cs(0)=Cs, Cyslt=0=0,

account in the case of vacancies.

Let us write the system of diffusion equations for deter-
mining the concentrations, , Cs, andc, of vacancies, im-  \yhere the superscrifit indicates that the value of the quan-
purity atoms, and vacancy—impurity atom complexes, "%ty is taken in the bulk of the grain.
spectively. For this purpose, we must supplement the right- * | & ys determine the boundary conditions for vacancies,
hand side of diffusion equations with sources and sinks Of:omplexes, and impurity atoms. It is well known that the

impurities, vacancies, and complexes. This gives boundaries of the general form for vacancies are powerful

®

_ by _ b
Cli—0=C5, Cgli—0=02(0),

ac, sources and sinks of vacancies. For this reason, the concen-
ot~ Dvlc,+a(ke,s— ¢,Cs) —D,p(c,—Cy), (1)  tration of vacancies at the grain boundary is maintained in
equilibrium;
dCys .
at :DUSACUS_ a(kcvs_ CUCS), (2) Cv|f=Cv ) (6)
Je wheref is an arbitrary point at the grain surface.
—S=DSACS+ a(KCys—C,Cs). ®) We assume that the parameters of the process under in-
Jt vestigation are such that the characteristic t@ig8D re-
We denote quired for an atoms to go over from a grain to the interface
is much shorter than the characteristic titpeof variation of
e=a(ke,s—C,Cy), (4 the impurity concentration in the grain, which will be defined

wherec? is the equilibrium concentration of vacanciegthe — below(it should be noted thgg=D¢/Ds<1, whereDsis the
equilibrium constant relative to disintegration and formationdiffusion coefficient of the last hop of an impurity atom to
of complexesD,, D, and D, are the volume diffusion the interface; ifD¢>Ds, the last but one jump will be a
coefficients for vacancies, impurity atoms, and vacancy— bottleneck,” and hence we must have<Q3<1). This
impurity complexes respectively, adis the frequency with means that the chemical potential of the impurity at the in-
which an impurity atom is combined with a vacancy to formterface and in the bulk of the grain is the same:

a complex:

( ) el 1= pslt - @)
D,+D
a=p Tfs. Henceforth, we shall specify the conditions when the

equilibrium relative to the decay of complexes accompanied

Herea is the atomic spacing a coefficient of the order of by a transition of an impurity to the grain boundary is ob-
unity, andp the density of dislocations in a grain. served to a high degree of accuracy. This means that the

It is well known that the chemical potentials of com- relaxation time(i.e., the timetP, of equalization of the decay
plexes, impurity atoms and vacancies in equilibrium are conand formation rates for compleXess much shorter than
nected through the relatiom,s= us+ u, . If, in addition, we  t,. In this case, we can write the following condition at the
assume that the solution in a grain is dilutecin, ¢, and  grain boundary:
C,s, We obtain

CUCS_k_ex l//vs_ lps_ l//v
=k= —T ,

vS

Poslt= B8]+ mol 1= msl s+ ot - (8

Considering that the impurity concentration at the inter-

face can be high, we find that the chemical potential of the
wherey,s, ¥, andy, are the excess energy of a complex, impurity at the interface has the form
an impurity atom, and a vacancy respectively.

The termakc,s in Egs.(1)—(4) describes the decay, and b b b S
the term ac,cs the formation of complexes. It should be ~ H#s=¥ +BCs+TIN T —5. C)
noted that in order to find the steady-state flow of vacancies s
to dislocations, we must solve the problem for the entireThe second term on the right-hand side of this expression
ensemble of dislocations since a stationary solution of such takes into account the interaction of impurity atoms at neigh-
problem in an infinite two-dimensional space does not existboring lattice sites, while the third term takes into account a
Such a self-consistent solution, obtained in Ref. 8 for arstrong short-range interaction, i.e., the fact that only one par-
ensemble, leads to the expressigid,p(c,—C;), where the ticle can be at a lattice site. As a rule, the interaction of
coefficientn is of the order of unity. For estimates, we can impurity atoms at neighboring sites is weak as compared to
put n=1. the contribution from the remaining terms (8).

We choose the initial conditions in an obvious way It follows from (7) and (9) that the Langmuir relatioh
(since the sample is prepared, as a rule, by cooling fronmolds at the interface:

b
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cX(t)
1 b

=l (10

= ’st|f= '}/)\(t),

where \(t) is the concentration of impurity atoms at the
interface, y=exp@AG/T) the redistribution coefficient,
AG=(¢s— ¥2)IT, and 2 is the excess energy of dissolu-

tion of the impurity at the interface. Assuming that the solu-

tion at the interface is dilutec§< 1), we obtain the Henry
relation

clli=yCd 1= YA (1). (11)

Integrating(2) and(3) over the entire volume, summing

up the equations, and going over from the volume integral to

wherec, is the equilibrium concentration of impurity, which
can be determined from the conditiér) of equality of the
values of chemical potential at the interface and in the bulk
of the grain, andc, the equilibrium concentration for the
decay of complexes at the interface, which can be deter-
mined from the condition of equilibrium between the decay
and formation of complexes at the interfacgs=c’cs/k. It
should be noted tharl:g and current quantitiesg and ¢,
have the same characteristic time of variatigr{since they
are connected through the conservation law for the impurity
As a rule, the process occurs with a small deviation from
local equilibrium, and hence,s andc, have the same char-
acteristic timet, of their variation.

The first term in Eq(159 for the impurity flow to the

the integral over the surface on the right-hand side of theyerface is the impurity flux to the boundary, while the sec-

dc, dc,
dt

) = fs(js+jvs)d’ S:(js+jvs)|fsa

equation, we arrive at the following relations:
CUS
dt

1

1

=y (12

1
fcvdv, Cos=y f C,sdV,
\% \%

where ¢, and ¢, are the values of the concentrations of
impurity atoms and complexes averaged over the volume.

In relations(12), we have assumed that the grains are - . . . ;
éa}nd the transition of the impurity to the interface occur si-

ﬁnultaneously The second termyKc,s) describes the flow

symmetric, and hence the flow at the interface does not d
pend on the point on the grain surface. The positive directio

of the normal to the surface is the inward direction from the
surface to the bulk of the grain. The law of conservation for

the impurity gives

v |=-as

where 3 is the width of the interface between two neigh-

dc?

dt’

des  dcys
dt | dt

13

boring grains. Consequently, we obtain the following condi-

tion at the boundary fron(12) and (13):
b

o deg
_(va+]s)|f:H d. (14

ond term characterizes the flux from the boundary. The co-
efficientD//a = BDs/a(0 < B < 1) is the effective rate of a
transition of an impurity atom to the grain boundary. While
determining the flux through the interface for complexes, we
take into account in Eq5b) the fact that a vacancy at the
interface overcomes a barrier, and then an impurity atom
goes over to the prepared vacancy. The first tepiac(s) in

Eqg. (15b) describes the flow of complexes to the interface.
As a result of decay, the complexes carry the impurity
through the interfacdi.e., the disintegration of complexes

of complexes from the interface. The difference between the
fluxes in(15b) is absorbed by the boundary. The coefficient
D,/a=pD,/a is the effective rate of transition of a vacancy
through the interface. Thus, if the characteristic tirpéi.e.,

the time during which the substance is supplied to the inter-
face, which is found to equal to the time of variationaf,
andc,), is much longer than the maximum time of the tran-
sition (a?/ 8D, or a?/pD,), the condition of local equilib-
rium is satisfied to a sufficiently high degree of accuracy,
i.e., the boundary condition¥) and(8) are valid and lead to

Cs| f :Es Evslf:EvS: Cgas/k- (16)

2. CHARACTERISTIC TIME t, OF VACANCY

Here we assume that the grain boundary is narrow, and theONCENTRATION TUNING TO ITS EQUILIBRIUM VALUE

diffusion coefficient in the boundary is large, and hence dif-
fusion processes rapidly level out the concentration of impu

rity. This means that? at the interface is a function of time
alone.

Thus, we have obtained a complete system of diffusion

equations(1)—(3) with the initial conditions(5) and bound-
ary conditiong6)—(8), (10), and(14). It should be noted that

if the local equilibrium at the interface cannot be stabilized

over a time much shorter than the duration of the process
under consideration, conditions of a more general form are
satisfied at the interface. In this case, we must write the

boundary condition of the third kind, which has the form

. Ds ~
JsleIB ; (Cs|f_cs)r

(153

. DU ~
JvS|f:p ? k(cvs|f_cvs)v (15b)
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_In Egs.(17)—(19), we go over fromt to 7=(D,/a?)t,
which gives

Jc .

(7: =¢,=a%Ac,+¢&—pa?(c,—c?), (17)
(QCUS_- _Dvs

a7 = US_D_U ACUS £, (18)
(?cs__ —DSA N 19
E—CS—D—U Cst e, ( )
e=KkC,s— CC, . (20

In these equations, the termx~div j are proportional
to the flux of point defectgvacancies, complexes, or impu-
rity atomg from an arbitrarily chosen small macroscopic
volume (physical poin}. It should be noted that these terms
in (17-(19 have the same order of magnitude as
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(a?/D,t)c,, (a%/D,t)c,s, (@%/D,t)cs respectively(taking ot +c*
into account diffusion lengths for the corresponding defects e=k(cg+ci)—(k+ CU)C§| 1+k — e 2
Let us consider the values of time for which the first terms in s
(17)—(19) are smaller than any of the remaining terms of . L
Egs. (17)—(19). In this case, these first terms can be ne- Xfo exp{ fo [k+c,(7")]d7" dT'J

. (25

glected, which actually means that the process can occur in

two stages for such values of time. At the first stage, for -

t,<At<t and on a small time scalénterval, when we can xex;{ - fo [k+c,(7")]d7’
neglect the outflow of point defects from a small macro-

scopic volume, the rearrangement of concentrations of com- Let us prove that,>0 and has a single minimum. In-
plexes and impurity atoms takes place so that their totatleed, if the minimunt,=T¢, is attained forr=7,, we have
number is conserved. In view of the presence of sources, thg, | ,— =0 Denotingc, | ,— 0= C,, Cql ;= 0= 'Cs we obtain
vacancy concentration tends to its equilibrium value, i.e., thérom (23)

processes of formation and disintegration complexes are lev-
elled out, and the concentration of vacancies tends to its
equilibrium value at each point. (26)

It should be noted that he characteristic dizé a physi-  for 7=, # 0. Considering that* + c* >, (since impurity
cal point belongs to the interval/cy®<I<Lp (Lp is the  sources are absenwe obtain the relatioR, /c¢ > pa2/(Ce
impurity diffusion length anda/cZ® the separation between + pa?) from (26). An analysis of this relation shows that the
impurity atomg. Thus, at the first stagésmall time scalg  value ofc, belongs to the interval
the process is described by Eq$7)—(19) without Laplace ~
operators, with certain boundary conditions at the time in- 0<c,=<c,. (27)
stantt, which have the form Using this inequality forc,, we can simplify relation
(25) to a high degree of accuracy. For this purpose, we con-
sider the expression in the brackets(2f). The integral in
where 7 is measured from. (25) acquires its valuéwith an exponential accuragynainly

As a result of relaxationtp<At<t), certain relations at the upper limitr’ =7, and hence
will be established between the quantites c,s, andcs. - o -

These relations virtually do not change in the subsequent (k+cv)f exp[f [k+c,,(7-”)]d7”]dr’sf (k
description of the process, when the exchange between small 0 0 0

Cv|‘r= To 0= k(C: + C:S) _Es(k+Ev) _paz(Ev_ Cle))1

CU|T:0:C: ’ CS|T:0:C: ’ CUS|T:0:C:S’ (21)

macroscopic volumes becomes significant, while the concen- »

tration appearing in these relations change slowly with the +CU(T'))6XP(J (k+ CU[T”)]dT"]dT'
characteristic time of exchange between small macroscopic 0

volumes, which is naturally much longer than the relaxation T

time. :exp[ J'O[k-i-cv(r’)]dr'}—l. (28

Equationg17)—(19) show that, with such a partial relax-
ation, the impurity conservation law is satisfied at an arbi-Taking this relation into account, we can writ@5) in the
trary physical point:cs+c,s=ck+c¥,. In this case,e form
= k(c?¥ + c¥) — co(k + ¢,); &|,—o = kc*s + cc¥ . Taking ;
these expressions into account, we can simplify Efjg.— e=(kcys—c3 cu)exp[ —f [k+ cv(r’)]dr’]. (29
(19) and write them in the form 0
Using this relation fore, we obtain the closed equation for
c

v

¢, =k(ct +c*y)—cy(k+c,)—pa3(c,—cf) _ r
CU:(kC:S_ C:Cv)exf{ - J’ [k+CU(T’)]dT'] —paZ(Cv
0

=g—pa®(c,—cf). (23
Let us write Eq.(22) in integral form: —cy),
4 C: + C:s CU|T:O= C: . (30)
Cs=Ch|ex —f [k+c,(r)]d7" | +k —5— _ _ _
0 Cs Introducing the new variabl& (A=c,—c;), we obtain the
following equation forA:
Xexp{—j [k+CU(T/)]dT’]f ) 7
0 0 A=(kcjs—c§c§)exp{—f [k+cv(r’)]dr’]— pa?
0
><exp< f [k+cu(r”)]df’]dr’ . (24) -
0 +ci ex —f [k+c,(7")]d7r"} |A,
0
Substituting this equation into the expression éorwe ob-
tain Al—o=c; —C;. (32)
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This equation can be slightly simplified:
A=(kc*—ckc®)exp{— (k+T,)}r—[paZ+ct exy

- (k+Ev)}T]Au

1 (-
Alo=ci=cf. &= [ e mor. (32
0

Representing Eq.32) in integral form, we obtain

*
CS

k+c

A=(kci—ck cs)exr{ —pa’r+

v

xexq—(k+c_v)T]HT exd — (k+T,)7 ]
0

*

C _
XeXp{ paZT' — k+SC— exd — (k+ CU)T']}dT’

*

Cs

k+c,

+(ck— cS)exp{ —palr+

xexfd — (k+c,) T]}. (33

Let us analyze this expression. For
k+c,>pa? (39
we have

Ao (kck—ckcl)exp{—pa’r}+(ck —ct)exp —pa’r}.
(39

Here we have taken into account the fact that under the co

a® 1 1
D, k+c, a(k+c,)"

Thus, if k+c,>pa?, the value ofe first tends to zero
over the time J/a(k+c,)], and therc, approaches; dur-
ing the characteristic time 1N, p). If k+c,<pa?, c, is
tuned toc; over the time 1/D,p), and the value of simul-
taneously tends to zero during the tim¢d(k+c,)]. Con-
sequently, the relaxation time fer—0 andc,—c is equal
to 1/(D,p) under condition(34) and to @*D,)(k+c,) !
for (37). Moreover, we can repladéor estimatesc, by c®
under condition(37) if k=c? (i.e., if the decay of complexes
is significan}.

3. REDUCED SYSTEM OF EQUATIONS

After partial relaxation on a large time scal@hen the
exchange of point defects between small macroscopic vol-
umes, viz., physical points, is significantve can use a re-
duced system of equations foy, c,s, andcg, in which the
relation obtained for relaxation time are taken into consider-
ation. This system of equations has the form

c,=cp, (409
e =a(KC,s— CsC%)=0, (40b
J

— (CystCs)=D,sAc,s+DGAcs. (400

ot

Thus, we arrive at a simpler system of equations for the
fdnost important time intervah=t>t, in which the segrega-

dition (34), the integral appearing if83) tends to a constant tion to the grain boundary actually takes place. Relations

as 7—. The obtained expressid35) shows that the time
of relaxation ofc, to c; is given by

To— 1/(pa?), (36)
or, in dimensional units,

t,*1(D,p).

In the case when

k+c,<pa? (37

we take into account the fact that the integra{38) acquires

its value mainly at the upper limit, and the slowly varying
multiplier can be factored out of the integral at the upper

limit. This gives

(kck—ckcd) .
o« —————— exp{— (k+c,) 7} +(c; —cp)

pa
X exp| — pa?r}. (38
In this case, the relaxation time is given by
1 a? 1 1
Tpock+—c—v or tpocD—Uk+C—U= (kT (39

It can be seen fron{29) that the characteristic relaxation

time ¢ has the form

164 Low Temp. Phys. 23 (2), February 1997

(409 and (40b) are approximatéto within the above accu-
racy). Equation (400 is an exact differential equation, in
which we can pute =0 while determining the relation be-
tweencg andc,s (the smallness of is defined as/akc,g
x glacics < 1). If we take into account the fact thadiffers
from zero, Eq(400) acquires the terms giving small correc-
tions to the solution in the zeroth approximation&dn(see
Appendix.

Thus, in the zeroth approximation i, we obtain the
following relations forcg from (400):

kDg+CoD s

Dei=———5—, Cys=
eff k+C5 vs

JdCq
- = DeﬁACs ,

Ce.
at s

Xl o

(41)

Since the system of reduced equatidd®a—(40¢) is
applicable starting not from the initial instant of time, but
from t>t,, we must determine the initial and the boundary
conditions for this system in the zeroth approximatiorein
also. Starting from the moment of time at which the process
is described by the system of reduced equations, a fraction of
impurity atoms goes over to complexes, and no appreciable
segregation to the interface takes place sitee,. In this

casec? = ¢+ /2, c/2 = (c®/k)c.’[see&39)], which gives

_~'0_ 0
Cs|t:0_cs _k+Ce Csv
v
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o € x=1= ¥Cs= YA (D). (47

o= cd, cllico=c2(0). (42)

* k+cy We seek the solution of EQ.(44) in the form
It should be noted that the initial condition foE(O) has not cjéx,t)z(}(x,t)—)\(t).r:n tfhls case, E¢44) and conditions
changed since, by hypothesis, complexes do not exist at th(e ) and(47) assume the form

CvS|t:O: Cl’)

grain boundary, and the impurity concentration does not  4c, 3255 IN

change during the relaxation time. The fluxes at the grain - =Dett o7~ — (48)
boundary in the zeroth approximation énare given byj ¢

= D,sVc,s = (co/k)D,sVcs, js = DVcs. In this case, Eq. To(£1,1)=0, Ty(x,0)=c.’—N(0). (49

(14) assumes the form The solution of Eq.(48) [which obviously should be

dc? sought in the form of a series in ckédl)] has the same form
— DtV Col = et TR as in Ref. 7:
“(=1)n Dt
k T(x,H)=cg(X, 1) —A(1)=2 (—ex — =2
dor=pe7 e & 43 SXH=CXD-AMD=22 o iz kn
. . . t d\ Dgst’
Thus, we have obtained a system of equati@Hs with the % c’o—)\(O)—f == ex 92 K2|dt’
initial conditions(42) and with the boundary conditiori1), s o dt’ | "

(15b), (16), and(43) which describe impurity segregation at
the grain boundary taking into account complexes.

It should be noted that the impurity can be in the free
state with a probabilityvg or in a complex with the prob- Kn=m
ability w, s, wst+w,s=1. The ratio of the probabilities is the
ratio of the corresponding relaxation timge., the lifetimes ~ Substituting this expression intd5), we obtain
in the corresponding states7s and 7,5, where

X coskg(x/1),

! 50
n+§. ( )

= € = i el dcg - Dert
7s=1/(ac,), T,s= 1/(aK). In this case, _:22 e F{— — K [c’o—)\(O)
We/W,s= 75/ T,s=kIc®, whence we=k/(k+c®), w,s Der dt 70 e
= c;/(k + c;). In terms of probabilities, the effective diffu- ¢ dh Dt
sion coefficient assumes the fobBy = wDs + w,D,s. It has - = eXF{ e;f kﬁ dt’] ) (51)
the form of a superposition of the diffusion coefficients of o dt '

impuriFy atoms and complexes wi_th diffgrent weig_hts, COIMe-|ntegrating(51) between 0 and and changing the order of
sponding to the probability of the impurity occupying a defi- integration in the double integral, we obtain
nite state.

As k—0, the diffusion coefficienD 4—D,s (i.e., the  def
complexes in the system do not disintegrate, and all of free|
impurity atoms in a grain become coupled in complexes after ¢ da
a certain timg o N _ =[cg°—x(0)]8(t)—f — S(t—t")dt, (52)

For k—«, the diffusion coefficienD+—D,s (i.€., the o dt
lifetime of complexes tends to zero, and a formed complex

[c2(t)]—c2(0)]

decays immediately, so that complexes do not exist. Thu ()= i 2 1—ex;{ _ Dt kz} 53
complexes dominate in mass transfer under the condition o K2 1z '
Def>Ds. . .

It should be noted that a further analysis is similar to that"t€grating by parts the last term {62), we find that
in Ref. 7. Using the system of equatio@l) derived above of o . o t aS(t—t’)
for ¢4 derived abovdin the zeroth approximation i), we T [cs(t) —cs(0)]=cq S(t) + fo)\(t') —dt.
consider the diffusion of an impurity atom for a plane- (54)
parallel grain with the characteristic sikze=2l. In this case,
we have The function appearing in the integrand(6#) contains

two cofactors, one of whichA(t’)] is smooth, and the other

JCs [0S(t—t")/at")] attains its maximum value at the upper

—=DeACs, A=3%9x?, 44 7 : e
at efia.Cs X “4 limit, and 9S(t — t’)/dt’|ys_;— . The main contribution to
b the integral comes from the region of large values$'aflose
DVe —d E (45) to t; consequently, we replace the smoothly varying function
eff ¥ vsix==17""efl "q¢ A(t") by its value at the upper limit. As a result, we obtain
, L . instead of the integral equation, an ordinary algebraic equa-
with the following initial and boundary conditions: tion
Celi—o=C4= K c2li—o=c2(0)=yA(0), (46) et - by b /0
sli=0=Cs =jrge G Celimo=Cs(0)=7M0), [0 —c2(0)]1=[c{’~ A (D]S(D). (55)
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It should be noted that if—«, in equilibrium we have whereR is the grain radius ankl,= 7n.

)\(00)=C3(00)=c'§(oo)/y and After similar transformations, we obtain
o 2 _< 2 detr - 1 b 0
= = = = — [cA(t)—c2(0)]=[c.”—N(0)]S(t
SOl-==S(0)= 2 (2= 2 27 =1 R [Cs(D)=c5(0)]=[cs’~N(0)IS¥(1)
. t dA
In this case, Eq(55) leads to - | 57 S(t—t')dt’. (61)
0

de

= [c2()—c2(0)]=

b
Co(
cl0— () , (56) . . _ _
s y Here the quantityd.; is defined by(43), whered is the

half-width of the interface, i.e., the width of the spherical

or, taking into account the equalitie§()/y = ¢«(), ¢.”  Jayer absorbing impurity atoms, and the quant(t) is

= (K/(k+cf))cg, defined in analogy with{53):
k+cS[ k w
b _ b — vii_ " A0_ 2 D fft
dlcg() —es(0)]= — r e Cs cs()[l. (57 ssf(t)=nz1 I(—ﬁ[l—exp(— F§2 kﬁ) :

Considering thaf(k + cf)/K]cs(=) = cs(*) + Cy5(*), We  ysing simple argumentéhe same as in the case of a planar
obtain (as expectedthe exact law of impurity conservation grain), we obtain

for t—oo:
defr
d[eg(=2) —c3(0)] =[5 —cq() —C,s(=) 1. (68 & [ci(t)—cg(0)]
It should be noted that E@55) is written in the general ,
form for an arbitrary relation between and cg irrespective =[c%—\(1)]S%(t)= - cg—)\(t))ss(t). (62
of its complexity. For the Henry conditiofll), we obtain, k+c,
using (59, In the case when the Henry condition holds, we have
sy b 10_ b )
Cs(t)_cs(0)+[7Cs Cs(o)] n+ S(t) Cg(t):Cg(0)+[’sto—Cg(0)] m
S(t) K S(t)
_ b 0_ b
=Cs(0)H Y k+c® Cs—Cs(0) n+S(t)’ =c20)+| y it ce c3—c2(0) TS0’
(59)
_ deﬁ7 —d k Z , '}’deff (63
T k+ce 1 7' ="R

Formula (59) describes segregation of impurity to the  The solution of Eq(62) satisfies the law of conservation
interface at any instant of time for the known diffusion co- of the amount of impurity fot— co:
efficients of impurities, their equilibrium concentrations, ini-
tial concentrations and the coefficients of redistribution be-  3d[ca(%) —c2(0)]=[cI—c() —C,s(=) IR, (64)
tween the intgrface anc.i.the grain. The values of th?sgince, according to Ref. 7, we have
phenomenological quantities must be known from other in-
dependent experiments. We can also assume that these quan- 2 Z
tities are parameters and, using the array of experimental Ss(t—“’o):Z K2 Z
curve (plotted at the same temperature, but for different val- "=t Bl
ues of initial concentrations and indifferent time interyals and \ () =c4(®)
select the parameters in the obtained formula so that experi- o ) ) .
mental curves fit to the theoretical dependence to the re- L€t Uus carry out a similar analysis for a grain of a cylin-
quired degree of accuracy. The values of these quantities c&ffical shape, assuming that the condition along its axis are
be regarded as the values of the corresponding parameter&!Niform. Using the results obtained in Ref. 7, we can write
In the case of segregation in grain of an isotropic shapeln€ solution of Eq(44), whereR is the radius of the cylinder,
it is convenient to use the spherical grain approximation&nd the Laplacian is written in polar coordinates:

o

2

N

1
3

2

Taking into account the results obtained in Ref. 7, we can _ 1 D gt
write the diffusion equation in the form cs(r,t)zzg c exp{ - R kﬁ}(cgo—)\(O)
n n
_ * _1 n+1 D t ,
cy(r,)=22, % exp{ - F‘;f kﬁ}(c;"—x(m _[rOh ) Pt 2] ) Joke XER)
n=1 n o dt’ RZ T Jiky)
t d\ Dest’ 2 , sin(k,Xr/R) (65)
-, Wexp‘ R kn}dt ) R

wherek,, are the zeroth of the zeroth-order Bessel function
(600  Jo(k,)=0, andJy(k,) is the first-order Bessel function.
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After calculations, we obtain farg(t) an equation simi-
lar to Eq.(61), where the quantitg appearing irndg, is the
half-width of the boundary, i.e., of the cylindrical layer in

which the impurity segregation from the grain takes place,

and instead of°(t) we have

D it

l-exp — =7 ﬁ) . (66)

2
S0=2 &

boo)| — b k(Ty) bl _ A0 1
Co()|r,=C3(0)]r,+| ¥(Ty) KTy Ty Cs|™ S| ™| Tr Ty
_ [k(To) +c5(To) Vk(To) +[¥(To)dl/l— k(Ty)

1+ 7(To) k(Ty)+c5(T)

Y(T1)C2(0) |7, 7(To) + €27, Y To)K(To)/[K(To) +€5(To)]
7(To) T+ 9(Ty) '

(70

The summation is carried out over the zeroth of the function

Jo(k). As in the case of a plane-parallel grabb), we can
easily obtain the following equation fan*S’(t):

d%“ [e3() = c2(0)]=[c’~ N (D)]S*(t)

(67)

0_
i ce Cs )\(t))Sc(t).

Under Henry's condition, this relation assumes the form

by _ b /0 b S5(t)
Cs(t)_cs(0)+[7Cs _Cs(o)] 7’],+Sc(t)
SE(t)
_ b 0_ b
=cg(0)+| vy i ce c;—Cg(0) TS (68)

In order to satisfy the law of conservation of the amount of

impurity for t—oo, i.e.,
2d[c2(e) —c2(0)]=[cI—cq() — Cys(*) IR,

the following relation must hofd S°(t— ) = Ekn2/kﬁ =1/2
and\ () =cg(°).
It should be noted that expressiof&9), (63), and (68)

Here we consider that the initial impurity concentration
c|;. at T, includes the total amount of impurity.e., impu-
stly

rity atoms in the free form and in complexecsgh1

:Cs(w)|T0+Cus(w)|To)-

In addition, if we change the temperature frdmagain
to Ty, expression(70) is transformed intd69) after the cor-
responding relaxation time.

Reducing both sides of relatigh9) to the common de-
nominator, we obtain a very simple relation which exactly
corresponds to the impurity conservation law in any state
(both in the free form and in complexes

d b d b 0
TCS(OO) +Cs(°°)|T+Cus(°°)|T:|_Cs(O) +CS|T'
T T
(71)

It should be noted that the obtained formula is valid for an
arbitrary temperature.
Using formula (59) (and knowing all the parameters

for the impurity concentration at the interface describe they k, c®, 4, andc?), we can predict the time interval after
’ ’ v 1 ’

process of depletion of a grain with impurity and its emer-

which the impurity concentration at the interface attains the

gence at the interface as well as the inverse process of tra’aéngerous limitas regards the strength of the materifit

sition of impurity from the interface to the grain under cer-
tain conditions. As in Ref. 7, the specific process is

determined by the value of the redistribution coefficient
and the values ok andc’ at a given temperature.

In the case of constant temperatdig, the system with
the initial value och(O) # 0 evolves to the equilibrium state.
Considering tha(t)|;_...= 1, we obtain from(59)

Tol

(69

k(TO) 0

b -
cs(0) k(To) +cE(To)

c()|r,= 7,7(To) + ¥(To)

X[1+7(To)] .

If we change the temperature from, to T,, the equi-
librium is violated, and one of the following processes take
place, depending on the relation betwégnandT:

for To>T, [i.e., y(To)<7y(T;)], and additional transi-
tion of impurity to the boundary takes place;

for To<T, [i.e., ¥(To)>y(T,)], a fraction of impurity

was high at the initial instant. This means that after this time
interval, the material cannot be used. It can be seen from
(59), however, that the direction of impurity segregation can
be reversed by elevating the temperature since in this case
the redistribution coefficient decreases, and a new equilib-
rium state will be attained as impurity atoms move from the
interface to the bulk of the grain.

Moreover, formula(59) can be used to determine the
time after which the impurity concentration at the interface
attains the safety limit. It is important to note that, since the
impurity diffusion coefficient increases significantly with
temperature, the time over which the impurity concentration
at the interface decreases and reaches the safety limit is much

S

shorter than the service life of the material after which the

concentration at the interface attains the dangerous limit.
By way of an example, let us estimate the change in

temperature for which the service lifg, is 1000 times

ions leaves the interface and is dissolved in the grain agaidonger than the time,. of recovery of the safety concentra-

In this case, the new equilibriurtat T,) level of impurity
concentration is

167 Low Temp. Phys. 23 (2), February 1997

tion of impurity. The ratio of these times can be estimated to
a high degree of accuracy as the ratio of the corresponding

Slezov et al. 167



effective diffusion coefficient® & andD % (it is well known This research was partly financed by ISSEP, grants No.
that the preexponential factor weakly depends on temperaSPU042062V. V. Slezoy and No. PSU0520940. A. Os-
ture). Considering thak > ¢ andD ¢ = (¢?/K)D,s < Dg/k, we ~ Maey.

obtain
oy & D%k e @/Tex e UlTee APPENDIX
1. D D®k. e /e AlMex : ;
re eff efffex Let us write the system of equatiof®8), (39), and(41)
taking into account the terms containisgand having the
Qp—Qx AT - .
~ex —_—, following order of smallness:
Tex Tex
. . acs de
whereAT=T.,—T,., andQp andQ, are the activation en- — =DsACs— e e D,sAe],
ergies for diffusion and decay of a complex respectively. at a(k+c,) [ dt
On the other hand,,/t,.=10% and hence we can take ce e
the characteristic value Qp—Qi)/Tex=15-20 for esti- Cus:f Cot — . c,=c?, (A1)
mates. ConsequenthAT/T.~=1/2—1/3, i.e., the recovery
temperature must differ by 25—50% from the operation temwhere
perature. Using the above estimate and the experimental val- o
ues oftey, te, AT, andT,,, we can estimate the difference ﬁ:sz+ €,Dys
Qp— Q. Using the values of diffusion activation energy for € k+cg

specific materials, we can estima@g, and hence the con-
stantk of equilibrium relative to the decay and formation of
complexes also.

In order to describe the evolution of ande, we use Egs.
(A1) and(3) with the following initial and boundary condi-
tions (while writing the boundary conditions, we must con-
sider a grain of a definite shape; here we analyze a plane-
parallel grain of size&.=2I). It was proved in Sec. 3 and in
Ref. 7 that an analysis of spherical or cylindrical grains is
CONCLUSIONS carried out similarly. We choose the system of coordinates
(1) The kinetics of impurity segregation at grain boundariesso that its origin coincides with the center of the grain. It
is studied at low temperatures under conditions whershould be noted that all the conditions at the grain bound-
vacancy—impurity complexes play a significant role in aries (i') are identical, and hence the fluxes from the left
Segregation dominate in mass transfdre Comp|exes and from the rlght are equal, while the fluxes at the center of
can increase or decrease the mobility of an impurity ~ the grain &=0) are absent in view of the symmetry of the
(2) A modified equation is obtained for an impurity with the problem, and henc&c|,—,=0. While deriving the condi-
effective diffusion coefficient containing the diffusion tions fore, we must substitute int®) the initial and bound-
coefficients for the impurity and complexes with differ- ary conditions forcs andc,s:
ent weights. The temporal evolution of the impurity con-

centration for planar, spherical, and cylindrical grains at  c¢;—o=c.’, % =0, Cgy=i=A\(1); (A2a)
an arbitrary temperature is traced in the case of a dilute x=0
solution. Je

(3) An analysis of the kinetics of impurity segregation can gli=o=0, —| =0, e&|y-;=0. (A2b)
provide additional information on the chemical equilib- X -0

rium constank (in fact, an analysis of the effective dif- Carrying out the substitutior,=C.+\(t), we transform

fusion coefficient shows that this constant is determinedcgs (A1) and (3) into equations with homogeneous bound-
by two energies of diffusion activation and not by ane 4y conditions:

(4) A simple algebraic equation describing the enrichment

as well as depletion of the interface with an impurity 5_?3'5: ~ de oA
(depending on external conditions obtained for the at DerACs a(k+cy) | ot Dyshe at’ (A3
segregation of the impurity in a complex as well as in a 7 N

free form at the grain boundary. s_ DAt e — —. (A3b)

(5) It is important to note that the obtained basic algebraic  dJt at
equation does not depend on the form of chemical PO+
tential of impurity at the interfacéi.e., is valid for a
dilute as well as a concentrated solution at the interface; Cg|,—;=0, Es|t:0=cg°—)\(0), (A4)
this problem will be considered in a separate arjicle

(6) A similar approach can be used in the case of irradiate
materials, when radiation-induced point defects form
mobile complexes with impurity atoms with a high prob-

ability.

he initial and boundary conditions fax become

a/vhile the conditions fo remain unchanged.

In order to find solutions of Eq€A3a) and (A3b), we
first solve the corresponding homogeneous equations. Taking
into account the boundary conditions, we can write these
solutions in the form
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_ _ The condition|\ ,|t<1 implies thaty<1 (indeed,
C=2, T S(t)coskyx, &=, en(t)cosk,x,  (AD)

n n \n t 1

= —-oC <
wherek,= (7/1)(n+ 1/2). SubstitutingA5) into the homo- I alicr c)t alk+ct

geneous parts dA3a) and(A3b) and integrating them with
corresponding cosines, we obtain

11

since we consider the system not from the beginning of seg-
regation, but starting from the time intervig=t>1/(ac’)
which is most important for segregation, and starting from

Ch=—DerkiC 7 - w(kTcd) (£n+D,skaen), (A6a)  which the system of diffusion equations is simplified signifi-
v cantly; this characteristic time is longer than the time of an
ES=—DK2C S+ep,. (A6b)  individual diffusive jumpt g~ 1/(act)=a?Dy). In addition,

the conditiony<<1 implies thatC<1. Solving the quadratic
equation (A12) and taking into account the condition for
To=A, exp\t);  e,=B, exp\pt). (A7) C, we obtain the roots

As usual, we have

Substituting(A7) into (A6a) and (A6b), we obtain D, kD2
QA7) Into (A88) and (ABD) yP=-C or \V=—| 224D k2|, (AL3)
. , a(k+cy)
Ayt Dork®) + ——— (A, +D,k2)B,=0, (A8a)
(Aot Derky a(k+cy) (A Duskn) By P=—1 or \P=—a(k+c?). (A14)
An(An+Dgk?)—B,=0. (A8b)  While determiningy®, we neglect the terr® as compared

to —1. It can be seen fromMA14) that the second solution
corresponding to the roOtEf’ gives an exponentially small
quantity of the order of eXp-a(k+c)t]. Consequently, we
have only one solution with ) which has a finite value.

Let us prove that fof\,|t<1 andt>1/(ac?), the terms
appearing in the expression fbﬁl) have different orders of
smallness, i.e) (Y= —Dq4k?2. Indeed,

Using the initial condition forc,, we determineA,(0)
[note thafC ;;—o=A,(0)]:

2
An(0)=(c’=N(0)) = (=)™ (A9)

Using (A9), we can easily find3,(0) from (A8b):

n

From the homogeneous systéABa) and (A8b), we obtain

(—1)"(Ds—Dep[c®~A(0)].  (AL0) DyskaDeki 1 D,Dg Derkit
a(k+c?) Degkd  DZ¢ a(k+cdt

Bn(o) =

D,sDs 1
N (Ds+D,o)ka D, sk3kaDy “ DT atkroot L
a(k+c) a(k+cy) " a(k+c))
, It should be noted that
+ Dggki=0. All
et =0 A pp, DD,
This expression shows that al,<0 (since we are dealing Dzﬁ « (D/D, o+ c%/k)2"
€ v v

with a quadratic equation with positive coefficient€onse-

quently, in the general solutiog®5), only the terms satisfy- Testing this expression for extremum, we find that it attains
ing the condition\,|t<1 at any instant of time are signifi- its maximum value forDs/D,s=cy/k. Substituting the
cant. These terms determine solutiofd5) with an  maximum value, we arrive at the following expression:

exponential accuracy. The values)yf satisfying the condi- c®/k 1 1

tion |\ |t=1 make an exponentially small contribution to — o <
c o a o ac

(A5). (c,/k+c,/k)* a(k+c,)t  4ac;t

Let us determine the time Stal’ting from which the termSCOnsequenﬂy, for timeé> 1/(0[(:5), we can neg|ect the first

appearing in Eq(A11) have considerably different order of term as compared to the second term in the expression for
smallness. Estimating the terms of E411) and taking into  \(1) je

account the conditiof\,|t<1 (we compare the third and

fifth terms: M= —Dekd. (A15)
(Dg+D, k2Nt 1 1 It can be seen from the conditidi.,|t<1 that the main
k+c5t (D k) o pc <1 contribution to the solution for a set of values)df) comes
“« v efffn) %y from the values ofn satisfying the conditionD k2t<1,
for |\pt<1, D¢<D,s), we find that for a time>1/(ac;), while the remaining terms make an exponentially small con-
Eqg. (All) assumes the form tribution.
Y24y +C=0, (A12) The total solution of the systeid3a) and (A3b) is the

sum of the solutions of the homogeneous equation obtained
where above and of the nonhomogeneous equation with the right-
N D k22D D_k2 hand side for zero initial conditiong@nd for characteristic
—_" . c=-__vsmm7s efftn time t>1/(ac;)). Using the standard approach of variation
a(k+cy)’ [a(k+c;)]?  a(k+cy) of an arbitrary constant, we obtain

y
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01

. 2N
; coskyXAq(t)ent+ —- (A16a)

cosk X[ A, (t)eMnt+ A (1) e nt+ DA, (1) ntk2
> X[ An( a(DXq Al ;

2N
— B+ — =0 (A16b)
From (A16a) and(A16b), we obtain
— "D e 2 qpnare A17
i Il B T (=1)"dt’, (Al79)
Bh=A,(An+Dck?). (A17b)
Finally, B, is given by
2k, ton
Bhn=—"— (_1)n(Ds_Deﬁ) _f -7 € Mtdt .
| o ot
(A18)

The total solution(A5) taking into account(A9), (A10),
(Al7a), and(A18) assumes the form

[

>

n=0

Cs= c’=\(0)

2 n
m(—l)

LN ,

—f — g Mt dt’}eknt coskpX, (A19a)
o dt

52k

o= 2 <~ (~1)"(Ds~Dey)| c°~\(0)

t gN ,

—| g Mt dt’}eAnt cosk,X. (A19b)
0

Estimatinge from (A19b) (here we take into account the fact
thatD— D g o Deg @and\ ;= — D gk?), we obtain

o2
gx >, — (—1)"\,| c®—\(0)
n=0 Ikn
t I\ ,
— | = et dt’}e"nt cosk,X. (A20)
o ot

It can be seen fronfA20) and (A19a) that the differen-
tiation of C with respect to tim¢wherec,=c¢+ \ ()] gives
the following relation accurate tD¢/D o4<1:

170 Low Temp. Phys. 23 (2), February 1997

dcs Cs

ex— == (A21)

It will be shown below that, for a timé<t,, the parameter
C, is described by a power function of time to a high degree
of accuracy. Fot~t, (i.e., for a time of the order of that
corresponding to the end of segregajiothe value ofcg
depends on a small number of terfsee(A19a)), and the
derivativedc,/dt « — cg/ty. The same result can be obtained
directly from (3) by using Eqg.(Al1). Thus, using Eq(Al)
and the estimat¢A21) for &, we can easily prove that all
terms in EqQ. (Al) with & contains a small parameter
[a(k+ cg)t]‘1<1 as compared to the terms containitg
Indeed, the Laplacian o 1/Dgt; & « Cg/t; deldt = cg/t?;
9Cs/ It < Cg/t; DogAAe * C5/t2 Equation(Al) leads to

Cs Cg 1
T T e
t t akt+c))

CS CS
2 e

Cs
t

T akr oot

Consequently, we obtain a closed equationdpaccu-
rate to terms of the order ¢fa(k+cf)t] ! as compared to
unity, and Eq.(3) definese. Therefore, we can replace the
second equation by the conditier=0 to within small terms
indicated above.

Indeed,e = cg/t—elcg o« 1 or elactcs « llact < 1,
(akc,s— actey) (actces) o (actt) 1<,
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Dedicated to the memory of I. M. Lifshits

SHORT NOTES

The role of long-wave longitudinal phonons in kinetics of insulators
R. N. Gurzhi and A. V. Yanovskil

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraitie

(Submitted July 10, 1996

Fiz. Nizk. Temp.23, 233-235(February 199y

It is shown that long-wave longitudinal phonons considerably affect heat transfer in most of
existing crystals in spite of symmetry degeneracy of transverse vibrational branches. This is
because of close values of phase velocity of transverse phonon modes in these crystals.

Such effects are most pronounced in phonon hydrodynamics and in the propagation of second
sound. It is shown that the thermal conductivity of bulk samples is a nonmonotonic

function of the parameter characterizing the difference between the velocities of transverse
modes. ©1997 American Institute of Physid$§1063-777X97)01202-4

1. Three-phonon processes involving at least one longivectorf. These substances are close in their properties to an

tudinal partner can exist in the following two form) col- isotropic elastic mediunsee Table |; metals can be of inter-
lisions|+t«—l, l«~t+t (I is the longitudinal and=t, ,are  est in the superconducting state
transverse vibrational modei®m which the mean free path of In such crystals, the energy of transverse phonons par-

long-wave longitudinal phononé LP) increases with de- ticipating in the processes-t; »—t, ; is considerably higher
creasing frequency in proportion tow ™ * irrespective of  (by a factor of§~1) than the energy of longitudinal phonons
the symmetry of the crystal lattice, an(b) collisions according to the conservation laws;, ~ w;,~ 5 to>w,.

| +1t; »—~t5 ;1 in which the mean free path of LLP is propor- Consequently, the Herring mechanism has a threshold for
tional tow™". Depending on crystal symmetry, the value of high frequencies since the number of corresponding trans-
n can be equal {02, 3, or 4:n=2 corresponds to the tan- verse phonons with energy, >T is exponentially small

gency of transverse branches at the point of symmetry dégy , > 5T.5 We can write the reciprocal relaxation time for
generacyn= 3 to their intersection, and=4 to the absence | | p in such processes in the form oT 1)

of degeneracy or, on the contrary, to complete coincidence of

transverse modeghe model of isotropic elastic mediym 1 71 x25~ 1 X< 6
The processes in which the mean free g4th) of LLP Th (X)=sly7(X)~ X85 4exp{—x5~1), s<x=1.
increases forw—0 in proportion tow™ " with n=3 alone )

cannot ensure a finite thermal conductivity. In this case, the

thermal conductivityk~ [ w2l (»)dw diverges(the so-called It is usually assumed that~1, and hencer; *(x) ~x2.

Pomeranchuk problen? The Rayleigh scattering at impuri- 2. In bulk samples, the processest; —t,, remove

ties does not help either sintew) « ™% in this case. the divergence in thermal conductivity, confining the integra-
However, most crystals accessible to experimental intion domain(lower limit) to the cutoff frequencyn, which

vestigations have a symmetfand elastic propertigsfor ~ can be determined from the equation

which the processekt+t; »—t, 4 are allowed; in this case, B B B

n=2, and it may appear that the problem does not exist. It is IH (%) = (I +17HX5,  Xo=woT %

usually assumed that the kinetic properties of insulators

low temperaturegexcluding very dirty samplgsare mainly

determined by phonon In this connection, it is appropri-

ate to mention the fact underlying the subsequent analysis: i

most crystals, the transverse modeandt, differ insignifi-

al£|ereINocT*5 andl;«xT~* are the mean free paths for ther-
mal phonons relative to scattering at one another and at “im-
Rurities” respectively’

Under the conditions when the LLP contribution domi-
nates, and truncation takes place above the threshold for the

cantly: Herring mechanism, we obtain the following expressions in
the Callaway approximation:
|st, ()= s, ()]
S=max————<1, 5 é
i Sylf) k=Csi(ly+17 ) g 1= 7 (RyP+R, %) -+ 2
0

where St, 1, are the phase velocities of the corresponding " |_|

) o Xot+...|;
transverse modes depending on the direction of the wave In
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TABLE |. Values of parametes for some materials.

Substance
Some
quasi-
“He NaF LiF H D, cds Al Bak crystals w
5 1/5 17 1/8 0.1 0.1 0.1 <0.1 51072 2:10°2 2:10°3
el (o) the linear function of this parameter. As a result, the left
Xo=~6 In R Re) ; (2)  inequality in(3) is violated. For dirty samples, this leads to a
: N nonmonotonic dependence of thermal conductivitpn &.
N Indeed, according to (2), for X,<6 we have
58<xg<min| —1]. )k 1~5In(573), while for xo< 8, k~ 52 according to cal-

d culations(see Fig. 1

Here C=T? is the heat capacityR; , are the main radii of 3. In the case of hydrodynamic heat transfer, LLP in
curvature of the surface defined by the equationsamples with a finite size are manifested in a different way:
p(f):6*13(1|st1(f)—st2(f)| at the point corresponding 0 | <d< /I,
the maximum value op (p is the radius in the spherical (a) For thin samples, a specific nonlocal hydrodynamics
system of coordinates; by definitiod, p.,=1). is manifested. In this case, the interaction between the pho-

The obtained result can be interpreted easily: if the maimon gas layers moving with different velocities is realized
contribution to thermal conductivity comes from phononsthrough LLP whose mean free path is comparable with the
with a frequency wo<T, we have size of the system.
k~Csly(xo)x3=Cs(Iy +1; 1) "x, %, where x3 reflects Let us consider the conditions required for this effect
the statistical weight of LLP. Hence, it follows that, for which have not been analyzed earlier and which are obtained
6<1, the thermal conductivity is anomalously large from the requirement of smallness of the first corrections to
(Xo<<1) and has a peculiar dependence on temperdtared  thermal conductivity determined by the solution of the inte-
point defect concentration. For pure sampled &1y), the  gral equation in nonlocal hydrodynamitsee Ref. btaking
thermal conductivity o« T~2 (in a conventional analystSye  into account relatiorl):
havex « T~ 15~1), while for dirty samplesl(<Iy) we have
kLT g In(Tys~3) (normally, k~ 2 T25%2) B |t should be [dI~Y(x)1"=[dIyxg1 <1, (4)
noted that for 6=1/5, the contributions from thermal
phonons to LLP are generally of the same order of magniwhere
tude.

It follows from (1) and (2) that with increasingd, the
cutoff frequencywo=Xy(8) T increases at a lower rate than

ely

5u(5)

Xo=4In , (X)) =1\X

(b) For samples with a larger thickness, peculiar local
hydrodynamics with the viscosity u=s/l, Wwhere
L=l (%) =Ino L, is realized for K x, *<dl . The vis-
cosity is determined by LLP with the mean free path
[ (Xg)>1y (the factorxg reflects the number of such phonons,
I(xg)<td). As a result, for6<1/5, we determine ndty (as
usually assumed but a larger quantity.g~InX, ! from ex-

10 } periments on Poiseuille flow of a phonon gas.

a Similar considerations are applicable for the problem of
attenuation of second sound whose wavelength plays the role
of d in this case.

Finally, it should be noted that nonlocal hydrodynamics
is most suitable for determining the role of LLP since con-
dition (4) contains the small parametap to the seventh
s} power, whilex, appears in conditior{3) only to the first
power.

lc/xT

L T T— L ! *E-mail: gurzhi@ilt.kharkov.ua
0 0,05 0,10 0,15 0,20 YThe divergence can be removed if we take into account the finiteness of the
é lifetime of longitudinal thermal phonons, i.e., the Simons mechafiism,
which makes thé+I|«<1| processes involving LLP allowed. However, ac-
FIG. 1. Thermal conductivity of dirty samples as a function of the parameter cording to calculationéthe corresponding mean free pathis apparently
S8 reduced to the contribution from thermal phonors=Csl; for too large:l s~ 10°T 2l for solid hydrogen antiy~4- 10°T 2|, for NaCl,
Iy /1;=1000(a) and 100(b). whereT is measured in degrees Celsius.
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LETTERS TO THE EDITOR

Electron paramagnetic resonance measurements of static magnetic susceptibility
F. G. Cherkasov, I. V. Ovchinnikov, A. N. Turanov, S. G. L'vov, and V. A. Goncharov

Kazan’ Physicotechnical Institute, Russian Academy of Sciences, 420029 Kazan'}Russia
A. Ya. Vitols

Riga Technical University, LV-1656 Riga PDP, Latvija
(Submitted October 28, 1996
Fiz. Nizk. Temp.23, 236—239(February 199y

It is shown that the total volume magnetic susceptibility of a substance can be measured in
principle with the help of electron paramagnetic resonafiEPR. For this purpose, the
conventional EPR technique can be used along with a known reference compound with a
very narrow resonant absorption line. The accuracy of absolute susceptibility measurements is
comparable to that of classical methods. 1®97 American Institute of Physics.
[S1063-777X%97)01302-9

Classical methods of measurement of static magnetisusceptibility. The reference sample was in the form of a LiF
susceptibility have become conventional in everyday laboraerystal with very small high-purity particles of metallic
tory experiments. In recent years, high-sensitiiilBQUID) lithium.>® Such particles with a typical size 0.6dn were
magnetometers are being used widely in the study of macrambtained in LiF single crystals exposed to a high-intensity
scopic properties of materials. At the same time, informatiomeutron beamgafter thermal annealing and tempering in lig-
on a nontraditional approach to the determining of volumeuid nitrogen. Such particles were also formed in LiF during
magnetic susceptibility appeared in the literature. This apsolid-phase electrolysis. After irradiatiofor electrolysi$,
proach is based on analysis of chemical shifts of protonshe crystals were crushed and used for measurements in the
(*H) in the nuclear magnetic resonan@®MR) spectra and form of granules with a diameter 0.1-0.2 mm. Any of such
is intended for studying liquid medfZ® We propose that granules was characterized by a solitary symmetric EPR line
electron paramagnetic resonance be used for this purpose.(on conduction electronswith a peak widthAH,,(300 K)

The volume susceptibilities of paramagnetic materials=40—70 mG. The signal was strong enough even at low
can be measured with the help of a conventional stationarievels of microwave powerR~10"% W) in the resonator
EPR spectrometer. The detecting element of such a spefsr a magnetic field modulation depth 10—30 mG. Precision
trometer plays the role of a magnetometer if we use the someasurements of thpfactor revealed that it is isotropic and
called reference compounds with a narrow high-intensitydiffers from the value g, for a free electron by
EPR liné in our measurementshe arrangement of the ref- 8g=g—go=(—3%4)-10"° (where go=2.00229 in the
erence sample and the substance under investigation intamperature range 9—400 K. The magnetic susceptibility of
measuring ampule for specimens will be given beldwthe the irradiated reference sample including the diamagnetic
presence of the substance under investigation, a splitting afontribution from the LiF matrix and the paramagnetic con-
the narrow line of the reference material was observed; agibution from coloring centers and the metal s
expected, this splitting was proportional to the volume susy,=—0.88 10 ¢ at 20 °C? The volume susceptibility,
ceptibility of the substance under investigation. As a resultpf the sample obtained electrolytically is determined by the
the procedure of experimental determining the susceptibilitdiamagnetic susceptibility in LiF and is close to the value
was reduced to the recording to the spectrum of the reference 1.07-107° (20 °O); consequently, such a sample is most
specimen. The EPR signals from the materials under invesonvenient for susceptibility measurements in the tempera-
tigation did not hamper the measurements since these signdlgre range from 4.2 to 800 K. The resonant properties of LiF
actually were not detected in the mode for observation of thevith metallic Li and the prospects of its application in mag-
narrow line? Thus, we propose here a resonant method suitnetic studies are considered in Refs. 5 and 6.
able for absolute measurements of the volume magnetic sus- The method of magnetic susceptibility measurement is
ceptibility of solid, liquid, and liquid-crystal materials. based on the measurement of splitting of the narrow EPR

EPR spectra were measured in the 3-cm wavelengthne for the reference sample in the case of the transverse
rang€ on the radiospectrometer BER-418S at room tem-orientation of the axis of the measuring ampule relative to
peratures and under conventional requirements for corre¢the external constant magnetic fidit}, (in the resonator of
recording of very narrow EPR signaté.The samples were the spectrometer The ampule geometry and the observed
placed in coaxial cylindrical glass or quartz ampules of di-EPR spectra are shown schematically in Fig. 1. The EPR
ameter 5—6 mm. The objects under investigation werespectrum of the reference sample contained a single narrow
weakly magnetic substances with a low and high volumdine for any arrangement of the sample in the ampule. If we
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FIG. 1. Construction of the ampule for
samples(a,0 and the observed maximum
splitting & of the EPR signal for the angles
of rotation 0 and 90° ampule of the relative
to the applied fieldH, for a pointlike refer-
ence sampléb) and for an arbitrary position
of the ampule for an annular reference
sample(d); central tubg1), outer tube of the
ampule(2), reference sampleR), and the
substance under investigationS){ the
change in the magnetic flux density in the
presence of a paramagnetic material is
shown schematically in the lower part of a
(on the righf.

place a substand@ the form of a powder, single crystal, or netic susceptibilities are most suitable and reliable. In this
liquid) with unknown susceptibility into the inner tube and case, the coefficienta& and 8 can be regarded as gauge
fix two granules of the reference sample in the annular planeonstants which can be estimated from susceptibility data for
of the ampule as shown in Figs. 1a and b, the EPR spectrutwo or three standard substances by using the ampule with a
will contain two narrow lines instead of one. In the casepointlike or annular reference sampglee Figs. 1a and)clt
when a “continuous” annular reference sample was usedgan be seen from Fig. 2 that a linear dependencé(®) is

the EPR signal was smeared and had the form of a ovewbserved for most of paramagnetic materials. The magnetic
modulated ling'see Figs. 1c and)din both cases, the signal susceptibilities of these substances were measured by the
“splitting” occurs due to the nonuniformity of the magnetic
field created by the substance under investigation and de-
pends linearly on the susceptibilify of the substance:

5=Ho(a+BX), ) g
Vo

where the coefficientsr and 8 are different for different 4 ’
configurations of experiment and are determined by the geo- e
metrical parameters of the ampule and by the susceptibilities 4
of the reference sample and the ampule matetigd~ 47

in the CGSM units and of the order of unity in the Sl ujits
For substances under investigation with susceptibilities
(1-2)-1075, the average splitting=0.5 G for a pointlike
reference sample is measured with an error 0.01-0.02 Gin s
view of inaccuracy in the fixation of the ampul within 4
+2.5°). Consequently, the relative error in the determination 1va . 7~
of susceptibility on the basis of formuld) is 2—3%. For 2 /@.’
substances with a high susceptibility, this error is accord- r—5
ingly smaller. It should be noted that the application of small 3. ) ] ) ]
reference samples makes it possible to operate with a very 0 100 200 300 _5100 500 600
small amount of substance-(lL0—20 mg), and the ampule x-10

with an annular reference samplEig. 10 is more conve- » ]
FIG. 2. Dependence of the splitting of the EPR signal on the volume

nient for measuring the tempergture depe,ndenc,qs of susceptibility y for some paramagnetic materials: CuS&EH,O (1);
The EPR measurements which make it possible to detefiso,.7H,0 (2); Cr,(SO,)5- 18H,0 (3); HYCACNS), (4); FeCk:C,H,0H

mine y from the gauge data for substances with known mag¢s); Fe,(S0y);-9H,0 (6); MnSO,-7H,0 (7); Gd,05 (8).

-aH,, G
A Y
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Faraday method to within 1%. The values &fvere mea- *E-mail: fred@dionis.kfti.kcn.ru
sured with the help of an ampule with an annular referencéThe absorption line characterized by the peak WWH;%p@-l Grﬁis ob-

; served in substances with a spin concentration ins/cm and
sample of height 5—6 mm. It should be noted that powder Hiaher® Here A i th r‘:_  between near tm’ i ental boint
samples were investigated in the form of pressed pellets ' ﬁ' bee. pp 1S IN€ SEparation between nearest experimental pomnts

. . . on the absorption curve.
since the accuracy in the measurementg Wa_ls determined  27he only exception is metal—ammonia solutions and other substances with
to a considerable extent by the homogeneity and reproduc-a very narrow EPR liné.
ibility of ampule filling with the sample. IThat is, at a frequency of 9.4 GHz in a constant magnetic field of the order

It should be noted in conclusion that the potentialities of of 3.4 kG. The natural nonuniformity of the magnetic field in the volume

an EPR magnetometer are determined to a considerable ey - o™ did not exceed 0.03 Glem. .
. All values of susceptibility are given in the CGSM system of units.

tent by the parameters and properties of the reference

sample. At the present time, the EPR measurements for me=———

tallic lithium in LiF at frequencies up to 550 GHz, i.e., in

magnetic fields of strength up to 195 kG, can be regarded as

feasible; such experiments will make it possible to improve k. M. Emsley, J. Feeney, and L. H. Sutclififigh Resolution Nuclear

the accuracy of EPR measurements of susceptibility with the Magnetic Resonance Spectroscopol. 1, Pergamon Press, Oxford

; oy (1965.

help (.)f the glver(L_l LiF) reference Sample' It would .be also 2S. G. Vul'fson, Molecular Magnetochemistrjin Russian, Nauka, Mos-

practical to use this sample for studying the magnetic param- .o, (1991,

eters of substances in the temperature range from 2 téc. P. PooleElectron Spin Resonanc@iley, New York (1967.

800 K. In this connection, the resonant method can be apf‘C. P. Poole and H. A. Faracjandbook of Electron Spin Resonance

: : : T Amer. Inst. of Phys., USA1994).
plied, for example, in the analysis of the total susceptibility SE. G. Cherkasov, G. A Denisenko, A. Ya. Vitok al, in Magnetic

of metals an_d supercondqctors and _for Stqdying aniSOt'mpy iN Resonance and Related Phenomena, Proc. of the 27th Congress AMPERE
the magnetic susceptibility and orientational dynamics of (ed. by Salikhoy, vol. 1, Kazan(1994.
paramagnetic liquid crysta?s. ®F. G. Cherkasov, S. G. L'vov, G. A. Denisenkbal,, in 4th Int. Symp. on

: ESR Dosimetry and Applicatioried. by D. Regulla Munich (1995.
The authors are gra}t’eful to G. B. Teltglbaun_n YU. V. 71" an Den Bosch, Radiat. Effects, 129(1973.
Yablokov, and N. N. Garif'yanov for fruitful discussions and #; Rr. zimmerman and M. R. Foster, J. Phys. Chéfiy.282 (1957).
valuable comments. %1. V. Ovchinnikov, I. G. Bikchantaev, and Yu. G. Galyametdinda-
This research was carried out under the support of the diospectroscopy of Condensed Media Russia, Nauka, Moscow
Russian Foundation of Fundamental Studi{€sants Nos. :

96-02-18255 and 96-03-327R5 Translated by R. S. Wadhwa
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QUANTUM LIQUIDS AND CRYSTALS

Reflection and transformation of acoustic waves at the interface in superfluid 3He-A
Sh. E. Kekutiya and N. D. Chkhaidze

Institute of Cybernetics, Georgian Academy of Sciences, 310086 Thilisi, Georgia
(Submitted November 9, 1995; revised September 2, 1996
Fiz. Nizk. Temp.23, 135-139(February 199y

The reflection and transformation of acoustic wavesHe-A and®He-A; is considered in two
cases{(1) at the boundary of a solid impermeable wall for an arbitrary angle of incidence,

and (2) for a normal incidence of waves at the interface between a free liquid and a system of
periodic plane-parallel capillaries filling the half-space. In the first case, the reflection

coefficient of first and second sounds, spin and spin—temperature waves, and the coefficients of
mutual transformation of these waves are calculated. It is shown that a longitudinal spin

wave is not transformed into other waves and experiences instead the total reflection at the solid
wall. The angle of incidence for which the energy attenuation coefficient of first sound

attains its maximum value is calculated as well as the angular interval corresponding to attenuation
and total internal reflection of second sound. In the second case, the coefficients of excitation

of fourth sound and of a magnetoacoustic wave by the first and second sounds, the

reflection coefficients for the first and second sounds and for a longitudinal spin wave, the
coefficient of transformation of first sound into second sound and vice versa, and the coefficient
of reflection of fourth sound at the interface between the capillary system and the free

liquid, and the coefficient of excitation of a longitudinal spin wave in free helium by the same
wave in a capillary are calculated. @997 American Institute of Physics.
[S1063-777X97)00102-3

At temperatures of the order of millikelvins, quasiparti- Superfluid phases dfHe can transmit various types of
cles in liquid®He in the triplet state with the relative orbital waves. Normal acoustic modes in unboundei-A are the
angular momenturh =1, experience Cooper pairing leading first and second sounds as well as a longitudinal spin wave,
to a transition to the superfluid state. In zero magnetic fieldyhile in He-A; such modes are first sound and a spin—
liquid He exists in two superfluid phases known as ke temperature wave. In the case of complete stagnation of the
andB-phases. In a strong magnetic field, another superfluithormal component in capillaries, normal modes are the
phase®He-A,; exists in a certain temperature range betweerfourth sound and the longitudinal spin wave®ide-A and a
normal®He and®He-A. magnetoacoustic wave fiHe-A; . In addition, a viscous dif-

We shall consider here théle-A phase in zero magnetic fuse mode in which only the normal component oscilldtes
field as well as the phas#ie-A;. In both phases, the unit We neglect the tensor nature of kinetic coefficients appearing
vector| determines the direction along which the orbital an-in the hydrodynamic equationslso exists in®He-A and
gular momentum of Cooper pairs has a comporient 1. *HeA, .

The superfluid liquid®He-A is a coherent mixture of two In this publication, we analyze the reflection and trans-
superfluid components characterized by Cooper pairing ifiormation of acoustic waves ifHe-A and *He-A; in two
the Spin Configurationszz +1 a|ong the unit vectos, while different CaSGSCl) at the bOUﬂdary with a solid impermeable
3He-A, contains Cooper pairs in the single spin stgte 1. Wall for an arbitrary angle of incidence of a wave, a@gifor

The MNR method is a powerful tool for studying the the normalincidence of waves at the interface between a free
properties of superfluidHe. However, rich and valuable in- liquid and a system of plane-parallel periodic capillaries fill-
formation on the properties diHe can also be extracted iNg the half-space.
from an analysis of oscillations propagating in it.

Wave processes can be described by a system of hydrd- REFLECTION AND TRANSFORMATION OF WAVES IN
dynamic equations. Since the phases under investigation arA AND °He-A; AT THE BOUNDARY WITH A SOLID
anisotropic liquids, the phenomenological coefficients ap—''VIPER'V'EABLE WALL
pearing in these equations are tensors. In order to simplify The reflection of waves at a solid wall in a superfluid
calculations, we shall not take into account this anisotropyiquid is peculiar since several types of waves can propagate
explicitly. Moreover, the equilibrium texture of the vectdrs in the liquid. When an acoustic wave is incident at the wall,
ands is uniform in the problems under consideration. Con-the reflection of the sound is accompanied by the excitation
sequently, we can use hydrodynamic equations given in Rebf other types of acoustic waves as well as a viscous wave
1. It should be noted here that the vedt@an be considered which is the main mechanism of acoustic energy dissipation
to be rigidly fixed in acoustic processes. in the given case.
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Assuming that the wall is perfectly rigid, nonmagnetic, of mutual transformation of these wavéR;,, R,;, Ris,
and perfectly heat insulating, we obtain the following bound-R3,, R,3, and Rg;). These coefficients are defined as the
ary conditions: the equality to zero of the normal componentatio of energy fluxes in the reflected and incident waves
(along thex-axis) of the total fluxes of mass, magnetization, normal to the surface:
and heat as well as the “slippage” condition for the velocity

2

of normal flow(we use the same conditions as in Ref. |4 Ry= Rlegﬁ ﬁ a CSS b1 o
the case ofHe-A, these conditions have the form pn ko (Ltat+b+y)*+(atb+y)

Vsx=0, Wgp=0, vpy=0, R _(1+bt+y—a)®+(b+y—a)®

11— 2 2
_1HP oy " (1+a+b+y)*+(at+b+y)

T TIoP S o Ri3=Ra;=0; Ryg=Rg=0; (4)

wherev, is the normal velocityy, the conventional super- (1+a—b+y)%+(a—b+y)?

fluid velocity, ws, the superfluid spin velocity¢ the slip
length, andP the specular factor of quasiparticles.

We now consider the motion of the liquid as a superpo-  R,,=1,
sition of the incident and reflected waves. In this case,

Roo= (Tratbr )2t (atbi 2’

) where
Vo= 2, V(Q Q)+, pn

a= 2

))\Ukl sin 6, tan 64;

2
ve=2, PV(Q+Q), b—(ﬁ)x I(—%sinz 01;
e @ 2l T
Wsp=VQ3+VQs, y=(1+P)&/(1-P)\, ;

P1=1, P2=—pnlps, \, is the viscous wave length, and the anglgsand 6, are

whereQ;, Q,, andQ; are the velocity potentials for inci- connected through the relatidq sin 6,=Kk; sin 6,.

dent waves of first and second sounds and of the longitudinal It follows from these relations that the longitudinal spin

spin wave respectivelyQ;, Q,, and Q; are the velocity wave experiences total reflection. According to the energy

potentials in reflected waves, is the velocity of th normal ~conservation law, the energy absorption coefficients for the

component for the viscous wave generated upon reflectiorirst and second sounds are defined as

andp, andpg are the densities of the normal and superfluid D,=1- Ry~ Ry Dy=1—Ryy—Ryy.

components.
In order to obtain quantitative relations between the in-For the angle of incidence

tensities of incident and reflected waves, we write the veloc-

ity potentials for these waves in the form 01 max= /2= (Pl p)kak, (V2/2) (1= ),

Q,=c; exqi(k; cosdx+k; sin y—wt)], the absorption coefficient for fi_rst sc_)und attains its max_imum
Rk ! S J value and then decreases rapidly sifg@, <1 and6; maxis
Ky close tow/2. The larger the value of, the closerf; .4 t0
U"X:k_,,x Utry /2. The second sound absorption associated with the vis-
_ cous wave is observed in the angular intervat @< 6,
Uy y=C,y X (— KX+ Koyy — ot) ], =arcsink, /k,). For 6,=0 and#,> 65, total internal reflec-
K2 =12 — K2 tion of second sound takes place.
ey In a strong magnetic fieldl, the A-phase is transformed
5] =T, exdli(—k; cos 6,x+k; sin 6;y— wt)], into the A;-phase near the transition temperature
T.=3 mK. In order to obtain homogeneous textures afd
(1=123, (3) s, the magnetic field must be directed along the wall. In this

wherec;,, ¢,, andc; are the amplitudes of incident waves case, the reflection and transformation of waves at the wall is

T1, T, Ca and'E,y the amplitudes of reflected wave,, similar to the_lt in the case o°’|He—A with thg only excep_tion

ko, ks, andk, the corresponding wave vectors of first ang that, according to hydrodynamic equatidnghe physical
iscoyeaning in the case dHe-A; can be attached not tq and

W, separately, but to the sum+w;,; besides, superfluid

fluxes of mass and spin coincide, and the boundary condi-

tions have the form

wave, 6,1, 6,, and d; the angles of incidence and reflection

of the corresponding waves, aadthe acoustic frequency.
Using the boundary conditiond) and relationg2) and

(3), we determine the ratio of the amplitudes of reflected and 1+P vy

incident waves which can be used for finding the reflection  vex+Wspx=0; vn=0; vny=—7-5¢ X

coefficientsR;1, Ry,, andRz; of the first and second sound

and of the spin wave respectively as well as the coefficientsvhile for the velocities we have

®)

98 Low Temp. Phys. 23 (2), February 1997 Sh. E. Kekutiya and N. D. Chkhaidze 98



2 - U(X<0)=0,
Vo=2, V(Q;+Q))+Vy,
=1 Dvg, (x<0)=dvg,(x>0),
2

vs+wsp=j21 PjV(Qj+6j), (6) DWgpd Xx<0) =dWsp(x>0), (7)

_ p(x<0)=p(x>0),
where P;=1 and P,=(—p,/ps) as before. The index

j=1 corresponds to first sound, while=2 to the spin— Mg s
temperature wave. We have taken into account the fact that 7 h(x<0)= 7 h(x>0).
M/M¢<1, whereM is the equilibrium longitudinal magne-
tization andM ¢ the magnetization of a completely polarized While for oscillating quantities we have
liquid 3He. 2

_ ForRi1, Rys, Ryo, gndRZI, we obtain the same expres- 5n(X<0)=E V(Qj+61),
sions as(4), but k, is the wave vector of the spin- j=1
temperature wave. )

I5(x<0)= 2, Pj(Q;+Qy),

2. TRANSFORMATION OF SOUNDS IN *He-A AND 3He-A; =1
AT THE BOUNDARY WITH A SYSTEM OF PLANE- . ~
PARALLEL PERIODIC CAPILLARIES Wsp(Xx<0)=VQ3+VQs,

An analysis of waves propagating in a confined geom- 2 -
etry makes it possible to study simultaneously a complex of ~ #(X< O)Iinl Pi(Q;+Qj),
acoustic processes. An interesting object of investigations in =
this respect is a system consisting of a porous medium. The s . -
model of a porous medium was chosen in the form of iden- " h(x<0)=iw(Q3+Q3), v(x>0)=VQy,
tical plane-parallel capillaries of widttl, formed by imper-
meaple planes of thickne8§s—d, which are perpendicula_r to_ Wi (X< o)zvasy w(x>0)=iwQ},
the interface between the free surface and the capillaries
filled with superfluid heliunt. We assume thatl is much Mg o,
smaller than the wavelength, and the dipole lengt. ra h(x>0)=iwQ3, ®
Let us consider the incidence of first and second sounds .
and of a longitudinal spin wave from the free liquitle-A ~ whereQ; andQ; are the potentials of the velocities of inci-
on a porous medium filled with the superfluid liquithe-  dent and reflected waveg), is the potential of superfluid
A. We assume that sound is incident along the normal to theelocity of fourth sound excited in capillaries, afz the
interface ¢=0) between the free liquidx< 0) and the sys- potential of the spin superfluid velocity of the longitudinal
tem of capillaries x>0) and propagates along theaxis.  spin wave excited in the capillaries. These potentials have
Fourth sound is formed in the capillaries in this case. Inthe form
addition to acoustic waves uniform in nonuniform waves .
are also excited when a sound wave is incident at the inter- Qi = Ci EXHi(kx—wt)],
face with the system of capillaries. Since we consider the = _~ . -
system of capillary as a model of a porous medium, the Q=¢j exli(—kx—wh], j=123,

period D of the system of capillaries is much smaller than Qi=c} exfi(Kex— wt)], ©)
the characteristic wavelengths:
k,D<1, k,D<, ksD<L, Qs=c4 expi(kx—wt)].
k,|D<1, k,D<1 Using relations(7)—(9), we can find the ratio of the ampli-
7] 1 1

_ tudes of the reflected wave and the wave excited in the cap-
wherek, is the wave vector of fourth sound. Under theseiliaries. Then we can determine the coefficieAisandA, of
Condltlons, all nonuniform waves attenuate over d|5tanCEéxcitati0n of fourth sound by first and second SOUndS, respec-

much shorter than the characteristic wavelengths, and Wgyely as well as the coefficiem; of excitation of the lon-
take into account Only uniform waves. The fO”OWing bound'gitudinal Spin wave by another Spin wave:

ary conditions are observed at the interface between the free
liquid and the capillaries: the heat flux continuity, the conti-
nuity of the normal component of the total mass flux, the
continuity of magnetization flux, the continuity of chemical
potential which is the potential of the retrieving foreg and A _Pn ﬁ A - (10)
the continuity of the similar quantity fow,, which is equal 2 L

to (Mg/p)h, whereh is the internal magnetic field. Conse-
quently, the boundary conditions fdiHe-A can be written in
the form

d
A1=4= \pslp

D

d -2
I+5 \/Ps/P) ;

99 Low Temp. Phys. 23 (2), February 1997 Sh. E. Kekutiya and N. D. Chkhaidze 99



We can also calculate the reflection coefficieRg and It is also interesting to consider the reflection and trans-
R, for first and second sounds afty; for a longitudinal  formation of acoustic waves in the case of superffiit-

spin wave: A,. The boundary conditions ifHe-A, are imposed not on
Ry=1-A,, Vs, M, Wsp, and Mg/p)h separately, but ows+wg, and
u+(Mg/p)h. The number of these conditions is reduced to
Ry=1— Pn ﬁ Al 1+ ﬂ @); (11) three sincg we have the potentials of the velocities _of first
ps Ko D sound, spin—temperature wave, and magnetoacoustic wave.
(1-d/D)? The expressions fok;, A,, Ry1, Ry, Ry», andRy; remain

R33=m. the same as for superfluitHe-A, but the index “2” now
corresponds to a spin—temperature wave.

The coefficientRR;, of transformation of first sound into Our calculations were made for homogeneous textures
second andRy; of transformation of second sound into first of | ands in an unbounded volume of helium in capillaries.
can be written in the form Naturally, these conditions are observed B+ d<d. We

d\?ky pp d -2 believe that the results obtained by us are valid for any val-

Rio= R21:4(5) K p (1+ D Vpslp (120 yes ofd andD (for D much smaller than the characteristic

) ) ) wavelengths Naturally, the homogeneity of a texture will
As in the case of reflection of sounds at a solid wall, a lon¢ yiglated near the boundary at a distance much smaller

?|tuttj|tnal splln wave |sbr|10t T'Xe:é;\mh ott)f:e.r W(?\t’ﬁs' ml CON"than the acoustic wavelengths, but this inhomogeneity
rast to analogous probiem for ve obtained the Values - o 4u1d not affect the results of calculations.

for A; andRs;.

Analyzing similarly the reflection of fourth sound at the
interface between the system of capillaries filled with super-
fluid helium and the free liquid, the excitation of first and

second sounds by fourth sound in free helium, and the re; _ o o
. . . G. E. Baramidze, G. E. Gurgenishvili, and G. A. Kharadze, Fiz. Nizk.
flection of a spin wave, we find that

Temp.9, 122(1983 [Sov. J. Low Temp. Phys®, 60 (1983].

Ri=Ry;; Fi=A;; F,=A,; 2G. E. Volovik, Usp. Fiz. Naukl43 73 (1984 [Sov. Phys. Uspekh27,
' ' ' 363 (1984].
F;=A;; R,=Rj3, (13 3Sh. E. Kekutiya, D. G. Sanikidze, and N. D. Chkhaidze, Fiz. Nizk. Temp.

) o 11, 1127(1985 [Sov. J. Low Temp. Phy<1, 619(1985].
where R; and R, are the reflection coefficients of fourth 4sh. E. Kekutiya and D. G. Sanikidze, Fiz. Nizk. Ten, 572 (1985

sound and of the longitudinal spin wave at the end of a [Sov. J. Low Temp. Phyd.1, 312(1985].

capillary,F, andF, are the coefficients of excitation of first °M. I. Kaganov, D. G. Sanikidze, O. G. Tkeshelashvili, and V. Ya.
L L . T . 445 (1970)].

excitation of a longitudinal spin wave in free helium by the (1970]

same wave in a capillary. Translated by R. S. Wadhwa
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