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SUPERCONDUCTIVITY, HIGH TEMPERATURE SUPERCONDUCTIVITY

On competition between s - and d -symmetry types of the order parameter in high-
temperature superconductors
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It is shown that strong anisotropy of the quasi-two-dimensional electron spectrum in high-
temperature superconductors and the competition between attraction and repulsion in the
electron–electron interaction can lead either to anisotropics-, or d-type of Cooper pairing
depending on the system parameters. In the case when attraction prevails on the entire Fermi
surface~e.g., due to electron–phonon interaction!, the sxy- or s* -symmetry in the
superconducting order parameter is advantageous from the energy point of view. At the same
time, thedx22y2-symmetry of the gap is observed in the case of repulsion in the entire
Brillouin zone ~which is typical, for example, of the electron–magnon interaction! as well as in
the case of effective attraction on the regions of Fermi surface with the maximum density
of states. In the latter case, the superconducting transition temperatureTc is always higher than
in the former case, indicating the important role of additional attraction in the mechanism
of high-temperature superconductivity. ©1997 American Institute of Physics.
@S1063-777X~97!00202-8#

1. Experimental data on the observation of spontaneousentire Fermi surface~FS!, thesxy symmetry in the supercon
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Josephson currents in SQUID-type systems with two tun
junctions at mutually perpendicular faces of Y~123! single
crystals1–3 as well as the generation of half-integral magne
flux quanta observed in superconducting~SC! rings made of
Y~123! and Bi~2212! films with an odd number of weak
links4,5 speak in favor of thedx22y2-type symmetry in the SC
order parameterDd(k);(coskx2cosky) in high-temperature
superconductors. New results of experiments on photoe
tron spectroscopy with angular resolution~ARPES method!,
which were reported recently,6,7 refute previous conclusion
drawn by these authors8–10 on the sxy-type symmetry of
Ds(k);coskx cosky and confirm thedx22y2-symmetry in
Bi~2212! single crystals.

It should be emphasized, however, that t
dx22y2-symmetry of the SC gap does not indicate unambi
ously a specific mechanism of Cooper pairing of charge c
riers. For example, it cannot serve as a proof of the mag
mechanism of high-temperature superconductivity~HTS!
due to exchange by virtual quanta of collective spin-den
excitations~by paramagnons! in a nearly antiferromagnetic
Fermi liquid, in which the electron–electron repulsion pr
vails in the entire volume of the Brillouin zone~BZ!.

In this paper, we prove that a strong anisotropy of
quasi-two-dimensional electron spectrum in hig
temperature superconductors14,15 combined with a competi-
tion between the attraction~e.g., due to the electron–phono
interaction~EPI! and repulsion of the Coulomb or magno
origin! can lead either to the anisotropics-, or thed-type of
Cooper pairing depending on the electron–electron inte
tion constants. In the case of prevailing attraction on
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ducting order parameter or thes -symmetry of
Ds(k);(coskx1cosky) is advantageous from the energ
point of view. At the same time, thedx22y2-symmetry of the
gap is observed in the case of repulsion in the entire volu
of the BZ as well as in the case of effective attraction on
FS regions with the maximum density of states~DS!. In the
latter case, the superconducting transition temperatureTc is
always higher than in the former case, indicating the imp
tant role of additional attraction in the HTS mechanism.

2. It was proved in Refs. 16 and 17 that the strong h
bridization of overlapping wide and anomalously narro
2D energy bands in the electron spectrum of a layered c
tal leads to the formation of extended saddle regions wh
were observed in ARPES experiments with a high ene
resolution.14,15 As a result, the anisotropic cylindrical F
splits into four pairs of ‘‘electron’’ regions and four ‘‘hole’’
regions in the case when the Fermi level~FL! lies above the
bottom of the saddles~see Fig. 1!. The curvature]2E/]k'

2 of
the spectrum in these regions~the ‘‘transverse’’ effective
mass! is accordingly positive or negative.1! It is important for
further analysis that these regions have essentially diffe
densities of states and characteristic energy scales~see be-
low!. In this case, the DS on quasi-one-dimensional~flat!
‘‘electron’’ regions has a Van Hove root singularity, whic
might facilitate the enhancement of the electron–electron
teraction and elevate the superconducting transition temp
tureTc .

15,18

It should be noted that the presence of an anomalou
narrow band with a high DS near the FL facilitates the em
gence of the electron–plasmon interaction~EPI! due to ex-
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change of virtual quanta of low-frequency~LF! collective
charge-density excitations~acoustic plasmons!.19

Bearing in mind the possibility of FS splitting into re
gions with essentially different properties, we shall use
model of anisotropic superconductor with a multicompon
SC order parameter, which was developed in Refs. 16
and 20. In this case, the equation for the superconduc
order parameter can be presented in the form

D i j ~k,v!5T(
v8

E d2k8

~2p!2 (
l ,m

Wi j ,lm~k,k8,v

2v8!Flm~k8,v8!, ~1!

wherev andv8 are discrete Matsubara frequencies,Wij ,lm

FIG. 1. ~a! The structure of an anisotropic superconducting gap in the c
of the sxy-symmetry of the order parameter. The cross section of the cy
drical Fermi surface in a layered Bi~2212! single crystals in the first Bril-
louin zone~bold curves correspond to ‘‘electron’’ regions with a positiv
curvature and dashed curves to ‘‘hole’’ regions with a negative curvat
~b! The gap structure in the case of thedx22y2-symmetry of the order pa-
rameter.
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action,Flm anomalous Green’s functions, and the subscri
i and j label different regions on the FS.

If we disregard ‘‘cross’’ Cooper pairing of electron
from different regions of an anisotropic FS and putD i j50
for iÞ j , the system of equations~1! for the gapsD i5D i j

assumes the following form after averaging over mome
~within each region on the FS!:

D i~v!52T(
v8

E dj(
j

n j~j!W̃i j ~v2v8!F j j ~j,v8!,

~2!

wherej is the electron energy measured from the comm
FL, andn j andW̃i j are the values of DS and matrix elemen
Wii , j j describing the retarded electron–electron attract
near the FS due to the EPhI as well as due to screened
lomb repulsion, which are averages over area of thej th sur-
face element of the FS foriÞ j , W̃i j defines the probability
of virtual two-particle transitions between different regio
of the FS. Naturally, such an approach cannot lead to
explicit angular dependence of the anisotropic gapD(u), but
reflects the basic symmetry properties of the order param
taking into account only the mean values of the magnitude
the gap and its signs on different regions of the FS depend
on interaction constants~see below!.

If we neglect the violation of theCn4 symmetry in the
initial spectrum, which can be associated, for example, w
the formation of a superlattice in theG–Y direction in a
Bi~2212! single crystal,8 the system of equations~2! for a
multicomponent order parameter has the following types
solutions:

~1! in all ‘‘electron’’ regions of the FS, the gapsD1 have the
same magnitude and sign, while the gapsD2 are smaller
thanD1 in the ‘‘hole’’ regions and can have either th
same sign asD1 , or the opposite sign; this solution co
responds to thes-type of symmetry of the SC order pa
rameter~Fig. 1a!;

~2! in mutually perpendicular ‘‘electron’’ regions of the FS
the gaps have the same absolute values, but oppo
signs, while in the ‘‘hole’’ regions~along the diagonals
of the BZ!, the gaps are equal to zero; this solution co
responds to thedx22y2-wave Cooper pairing~Fig. 1b!.
Besides, adxy-type solution withDd(k);sinkx sinky is
also possible, but it has a low probability in view of
low DS in the ‘‘hole’’ regions.

In the first case~s-pairing!, the system of equations fo
the gapsD1 andD2 in the BCS approximation can be re
duced to

D15D1~l1112l118 1l119 !L112D2~l121l128 !L2 ; ~3!

D25D2~l2212l228 1l229 !L212D1~l211l218 !L1 , ~4!

where

L15
1

2 E
2EF1

EF1 dj

Aj21uD1u2
S EF1

j1EF1
D 1/2tanhAj21uD1u2

2T
;

e
-

e.
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Aj21uD2u2
tanh

Aj21uD2u2

2T
; ~5!

EF1 and l11 are the Fermi energy and the dimensionle
coupling constant in the quasi-one-dimensional ‘‘electro
region of the FS with a root singularity of the DS,15,17Ṽ and
l22 are the cutoff energy of interaction and the coupli
constants in the ‘‘hole’’ regions of the FS,l i i8 andl i i9 are the
constant of interaction between different ‘‘electron’’ (i51)
and ‘‘hole’’ ( i52) regions, andl i j andl i j8 are the constants
of cross interaction (iÞ j ) between ‘‘electron’’ and ‘‘hole’’
regions of the FS. We assume that the Fermi energy in
‘‘hole’’ regions is EF2.Ṽ so that the constantsl22, l228 ,
andl229 contain, along with the EPhI and EPI, the Coulom
pseudopotential:

mc*5
mc

11mc ln~EF2 /Ṽ!
, ~6!

while l11, l118 , andl119 contain the nonrenormalized con
stantmc.mc* of Coulomb repulsion sinceEF1,Ṽ. Figure 2
shows schematically electron–electron interactions in dif
ent regions of the FS corresponding to different coupl
constants.

Equations~3! and~4! show that in the case of prevailin
attraction in the entire volume of the BZ owing to stron
EPhI and EPI, when all the coupling constants are positiv
quasi-isotropic solution of thes-type with the same sign
~phases! of the parametersD1 andD2 is advantageous from
the energy point of view. On the other hand, for negat
values of cross constantsl i  and l i 8 with iÞ j ( i , j51,2),
the solution with opposite signs of the gapsD1 andD2 is
realized~e.g.,D1.0 andD2,0!, which corresponds to the
sxy- or s-type symmetry.

FIG. 2. Cross section of a cylindrical FS centered at theX ~or Y! point of
the BZ. The arrows indicate the interaction between electrons from diffe
regions of the FS, corresponding to different coupling constants,l i i , l i i8 and
l i i9 ( i51,2), andl i 8 ( i Þ j ).

103 Low Temp. Phys. 23 (2), February 1997
s
’

e

r-
g

a

e

In the latter case~d-pairing!, we obtain a single equation
for the gap modulusD1 in the saddle~‘‘electron’’ ! regions of
the FS:

15~l1122l118 1l119 !L1 . ~7!

It should be noted that the magnon mechanism of C
per pairing11–13corresponds to negative signs of all consta
(l11,0, l118 ,0, l11119 ,0) so that a SC transition can tak
place only for a strong anisotropy of interaction, when t
magnitude of the coupling constant along a BZ diagonal s
isfies the inequality (ul118 u.1/2(ul11u1ul119 ). On the other
hand, if the electron–electron attraction due to the EPhI
EPI dominates in the ‘‘electron ’’ regions of the FS, whe
l11.0, while Coulomb repulsion between electrons fro
neighboring regions dominates~l118 ,0 and l119 ,0!, the
d-pairing can take place under a much less stringent co
tion(l1112ul118 u2 ul119 u).0.

3. A comparison of the superconducting transition te
peraturesTc

s andTc
d calculated on the basis of relations~3!–

~5! on one hand and~7! on the other hand allows us to fin
the ranges of the parameters for which eithers- or
d-symmetry of the gap is observed. Such a comparison
be carried out analytically by using a simple model of t
BCS type without taking into account the root singularity
the DS inL1 and for the same values of cutoff interactio
energyṼ, whenL15L2 for T→Tc . In this case, relations
~3!, ~4!, and ~7! lead toTc

s,d5Ṽ exp(21/Ls,d), where the
effective coupling constantsLs andLd are given by

Ls5
L111L22

2
1S ~L112L22!

2

4
1l̃12l̃21D 1/2,

Ld5L1124l118 , ~8!

where

L i i5l i i12l i i8 1l i i9 l̃i j52~l i j1l i j8 !, ~ i , j51,2!.
~9!

Figure 3 shows the surface defined by the condit
Ls5Ld which can be reduced to the form

nt

FIG. 3. Interface between the regions withs- andd-types of Cooper pairing
in the space of the parametersl̃11 , l̃22 andl118 for l̃12 l̃2150.04.
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2
2S ~ l̃112l̃22!

2

4
1l̃128 l̃21D 1/2. ~10!

This surface separates the regions ofs- andd-pairing in the
spaceof parametersl̃11[ (l111 l119 ), l̃22[ L22andl118 for a
fixed value of the constants of cross interaction betw
‘‘electron’’ and ‘‘hole’’ regions of the FS, i.e., l̃12
l̃2150.04.

The region ofd-pairing in whichTc
d.Tc

s lies below this
interface, while the region ofs-pairing in whichTc

s.Tc
d lies

above the interface. A region in which neithers- nor
d-pairing is observed exists above the darkened region of
surface~corresponding to the planel̃1152l118 in which Tc

d

vanishes! in the rangel̃11, 2l118 , (l̃12l̃21/l̃222 l̃11). Nu-
merical calculations show that the inclusion of the root s
gularity of the DS in the expression forL1 @~see Eq.~5!# in
the ‘‘electron’’ regions of the FS does not lead to qualitati
changes in the structure of regions ofs- andd-pairing.

It can be seen thatd-pairing is possible only for negativ
values of the constantl118 describing the interaction betwee
neighboring ‘‘electron’’ regions of the FS with the tran
ferred momentumq'p&/a. In this case, a weak repulsio
between electrons from different regions (l118 ,0) is suffi-
cient for the emergence ofd-pairing even in the case o
attraction between electrons in the same quasi-o
dimensional~saddle! region of the FS due to the EPhI an
EPI ( ; l̃118 .0). Such a repulsion can be a consequence
the electron–magnon interaction~EMI! or of an incomplete
compensation of Coulomb attraction due to the EPhI a
EPI.

On the other hand, in the case of prevailing repulsion
the saddle region (l̃11,0), d-pairing is possible only for
large in absolute value negative values of the coupling c
stant l118 , which corresponds to anisotropic interaction
charge carriers with paramagnons.11–13

Figure 4 shows the dependences ofTc
s andTc

d on l118 ,
calculated on the basis of Eqs.~3!–~5! and ~7! for various
values of l̃11 for l̃2250.5l̃11 and l̃12 l̃2150.04. It can be

FIG. 4. Dependences ofTc
s and Tc

d on l118 for l̃2250.5l̃11 and l̃12
l̃2150.04 for various values ofl̃11 : 1 ~curves1!, 0.5 ~curves2!, 0 ~curves
3!, 20.5 ~curves4!, and21 ~curves5!. The dashed curves show continu
ations of curves1 and 2 to the region where the corresponding values
Tc
s andTc

d are smaller than the maximum value ofTc .
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constantl118 in which Tc andTc are equal to zero~curves4
and5!. At the same time, attraction in ‘‘electron’’ regions o
the FS (l̃11.0) leads to elevation ofTc as compared to the
case of the EMI for whichl̃11,0 even against the back
ground of repulsion forming thed-symmetry of the gap
(l118 ,0).

Thus, the existence of additional attraction in the
regions with a high DS, which facilitates the attaining
high values ofTc irrespective of the type of Cooper pairin
and gap symmetry, is important for the HTS. It should
noted that the values of coupling constants can change
nificantly with the concentration of doped charge carrie
this follows from the strong concentration dependence
Tc in cuprate metal oxide compounds~see, for example, Ref
21!. This means that in the course of doping in hig
temperature superconductors, a transition from one type
the order parameter symmetry to another can occur in p
ciple. It should also be noted that the violation of the init
symmetryCv4 of the electron spectrum@due to the formation
of a superlattice in Bi~2212! in the direction of one of the
diagonals of the BZ8 or due to the ordering of chains i
Y~123!# leads to a more complex anisotropic structure of
SC gap20,22,23and to an anomalous temperature depende
of the gap,16,24which differs radically from the standard de
pendenceD(T) in the BCS theory.

This research was carried out under the project No. 2
561 of the Ukrainian State Foundation on Fundamental S
ies.

*E-mail: pashitsk@physics.kiev.ua
1!These regions coincide approximately coincide with the regions on the
characterized by a positive and negative curvature~see Fig. 1!.
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Residual low-temperature resistivity and peculiarities of infrared absorption of

the
YBa2Cu3O61x superconductor as manifestations of the long-distance potential relief

V. V. Eremenko, I. S. Kachur, V. G. Piryatinskaya, A. M. Ratner, and V. V. Shapiro

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted July 9, 1996; revised September 16, 1996!
Fiz. Nizk. Temp.23, 146–158~February 1997!

Various physical phenomena connected with long-distance potential relief created by negative
oxygen impurity ions in a conducting plane are considered. The long-distance potential
generates a secondary electron structure responsible for these phenomena. The relation between
the residual low-temperature resistivity and the secondary structure is established
experimentally. The high sensitivity of the residual resistivity to photoillumination, modifying
the long-distance potential, and its increase with decreasing temperature suggest the low-
temperature localization of holes in long-distance potential wells. Optical transitions between
energy levels of the secondary structure differing from other optical transitions in a
much higher probability and a high sensitivity to the shape of the long-distance potential well are
analyzed. The results of analysis are in qualitative agreement with the available data on
optical absorption spectra. ©1997 American Institute of Physics.@S1063-777X~97!00302-2#
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The electron properties of the copper-oxide superc
ductor YBa2Cu3O61x are determined to a considerable e
tent by its structural peculiarity associated with the spa
distribution of the oxygen acceptor impurity.1–3 The O22

impurity ions supplying holes to the conducting CuO2 plane
are located in a parallel plane of CuOx separated from the
CuO2 plane by a comparatively long distance in the condu
ing plate 4.15 Å. For this reason, impurity charges cre
Coulomb potential wells in the conducting plate with a wid
much larger than the atomic spacing in the lattice. Such
tential wells bend the bottom of the band of hole carri
moving in the conducting plane and create a long-dista
secondary potential relief for these carriers~the primary, or
fundamental potential of the conducting plane with the
riod of the lattice is taken into account in terms of the effe
tive mass!.

The secondary potential relief with a modulation dep
significantly exceeding the Fermi energy of holes~;1 eV!
affects the electron properties of the superconductor. Th
manifested in the conductivity anisotropy that is enhan
upon an increase in the oxygen index, together with ani
ropy in the secondary relief,2,4 as well as in anomalies o
Raman scattering.2,5 The correlation interaction~Van der
Waals attraction! of holes moving at adjacent minima of th
secondary relief can be sufficient for the formation of a
perconducting gap having a width of the order of severa
even tens of millielectronvolts.2

The form of the long-distance relief is determined by t
oxygen indexx. With increasingx, the average length o
copper–oxygen chains formed in the CuOx plane increases
while the fraction of oxygen impurity contained in the pla
in the form of isolated O22 ions decreases. The negativ
charge of the chain plane per oxygen impurity ion increa
~in magnitude! in this case. The charge of this plane does
change with the emergence of an isolated O22 ion in it since
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contrary, the attachment of an ion O22 to a chain changes th
charge of the chain plane by21.2,6

It follows from what has been said above that the nu
ber of holes in the conducting plane~which is equal in mag-
nitude to the negative charge of the chain plane! increases
even for a fixed oxygen index if the average length
copper–oxygen chains increases as a result of a certain
ternal effect~e.g., photoillumination!.2,7 The long-distance
potential relief increases simultaneously~and even to a large
extent!. This makes it possible to control experimentally t
superstructure, viz., the long-distance relief easily. Suc
possibility was used in Ref. 1 for establishing experimenta
the relation between the superconductivity mechanism
the long-distance potential.

Thus, the electron properties of the superconduc
YBa2Cu3O61x are determined to a considerable extent
the long-distance potential relief. New manifestations of t
relief are considered in this article.

In Sec. 1, the residual low-temperature resistivity of
superconductor, displaying a high sensitivity to photoillum
nation, is studied. Such a clearly manifested photoindu
effect is incommensurate with a small photoinduced cha
in the number of charge carriers and can be attributed on
more significant photostimulated changes in the lo
distance relief. The observed increase in the residual re
tance upon a decrease in temperature and during photo
ulated deepening in the minima of the long-distance poten
suggests a blurred low-temperature transition to the insu
ing phase with the localization of holes at these minima.

In Sec. 2, spectroscopic manifestations of the secon
electron structure, i.e., the energy levels of the long-dista
potential, are considered. The frequencies of optical tra
tions between these levels correspond to the near infr
region. It will be proved below that transitions between t
energy levels of the secondary structure differ from ot
optical transitions in the same crystal in a much higher pr

10620106-10$10.00 © 1997 American Institute of Physics
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ability and in a high sensitivity to the shape of the lon
distance potential relief. The experimental data8 confirm this
conclusion qualitatively.

1. RESIDUAL LOW-TEMPERATURE RESISTIVITY AND ITS
RELATION TO THE LONG-DISTANCE POTENTIAL
RELIEF

1.1. Experiment

The objects of investigations were three YBa2Cu3O61x

epitaxial films with various extents of phase homogene
The measurements were made by using the high-sensit
four-probe technique. The temperature dependences o
resistanceR of the samples are presented in Fig. 1. The

FIG. 1. Temperature dependence of the resistance of samples~films! mea-
sured with a low sensitivity over a wide temperature interval: sample N
~a!, 2 ~b! and 3~c!.
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dependence reflect the presence of two phases with diffe
oxygen indices and accordingly with different supercondu
ing transition temperaturesTc in samples No. 1~Fig. 1a! and
No. 2 ~Fig. 1b! ~Tc1.90 K, Tc2.83 K for sample No. 1 and
Tc1.90 K, Tc2.65 K for sample No. 2!. The characteristic
R(T) for sample No. 3 is typical of a one-phase mater
with the superconducting transition temperatureTc580 K
~Fig. 1c!.

The high-sensitivity measurements have made it poss
to observe a weak residual resistivity in samples No. 1 an
below the critical temperaturesTc2 down toT51.8 K ~the
R(T) dependence for sample No. 1 measured in the hi
sensitivity mode is shown in Fig. 2a!. For sample No. 3, we
can indicate the temperature~;56 K, Fig. 2b! below which
zero resistance is observed within the sensitivity of our m
surements.

The temperature dependence of the residual resista
R for sample No. 1~see Fig. 2a! is an ascending curve with
a plateau in the interval from 20 to 75 K. In the interval fro
5 to 20 K, the resistanceR increases linearly, while nea
80 K its sharp increase preceding a transition to the nor
state in the low-temperature phase~Tc2.83 K! is observed.
The dependence of voltage on current densityJ ~Fig. 3a! is
also characterized by a monotonic increase of the derivat
indicating a noticeable resistivity for sample No. 1 even
very low temperatures.

The residual resistance of sample No. 2 proved to

1

FIG. 2. Temperature dependence of the resistance of samples~films! mea-
sured with a high sensitivity in a temperature range belowTc : sample No.
1 ~a! and 2~b!.
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smaller by 3–4 orders of magnitude; it is characterized by
anomalously decreasing temperature dependence and a
cillating dependence on current. Figure 3b shows a serie
current–voltage characteristics~IVC! for sample No. 2, mea
sured at various temperatures. It can be seen from the fi
that the residual resistivity decreases upon an increas
temperature in the interval from 1.8 to 15 K. Below 15 K a
for a precritical current of 200 mA~I cr .300 mA!, the volt-
age across the sample is 0.2mV, which corresponds to the
sample resistance of 1mV, i.e., to the resistivity of the orde
of 10211 V•cm.

It can be seen that the dependence of voltage on
transport current density at low temperatures is nonmo
tonic ~Fig. 3b!. The current–voltage characteristics conta
broad regions of negative dynamic resistance. In the form
‘‘spectrum’’ of resistivity bands, the band width decreas
while the amplitude increases with decreasing temperat
At T53 K, two bands with abscissas~values of transport
current! of the peaksI 1545 mA and I 2581 mA can be
singled out. With decreasing temperature, the peaks of
bands become higher and are displaced towards smaller
rents, while below 2.07 K the ‘‘spectrum’’ does not chan
qualitatively.

FIG. 3. Current–voltage characteristics of films measured for fixed temp
tures below the superconducting transition temperature: sample No.~a!
and 2~b!.
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resistive parameters of the film, we used a wide-band xe
lamp DKSSh-150 as a light source. Electric contacts of
films were thoroughly protected from illumination. The e
posure dose did not exceed 5•1021 photons per square cen
timeter of the film area. Such doses do not cause irrevers
structural changes in the sample~it was established by us
earlier1 that the transport characteristics of the film relax
ter illumination to their initial values!. It can be seen from
Fig. 4 that the peaks of the current–voltage characteris
are intensified, become narrower, and are shifted tow
smaller transport currents as a result of photoilluminati
These changes are persistent~the relaxation time at room
temperatures is of the order of several hours!.

1.2. Relation between residual resistivity and the long-
distance potential and its possible mechanism

The peculiarities of the current–voltage characterist
for sample No. 2~see Figs. 3b and 4! allow us to draw
certain conclusions on the mechanism of residual resistiv

It can be seen from Fig. 4 that the maximum resistan
~corresponding to the first, most intense peak on the IVC! is
approximately doubled as a result of illumination for half
hour. This effect is opposite in sign to the effect of meta
zation of films~increase in their conductivity! under photo-
illumination, which was investigated earlier.1,7Moreover, the
increase in the amplitudes of resistivity bands is incomm
surate with the photoinduced increase in the number of h
carriers. Indeed, an increase in the number of holes i
YBa2Cu3O6.5 sample induced by the same radiation do
was approximately 2%,1 while in sample No. 2 with a large
x ~x50.75, judging from the superconducting transition te
peratureTc2.65 K! it must be smaller since the photoin
duced effect in YBa2Cu3O61x is suppressed with increasin
x.7

Thus, the photoinduced change in residual resistiv
cannot be explained by the change in the number of cha
carriers. According to some indications, this change is du
photoinduced ordering of the long-distance secondary po
tial relief.

The long-distance potential relief of the conductin
CuO2 plane changes due to photostimulated elongation
copper–oxygen chains in the CuOx plane. We now prove
that the chain length changes more strongly than the num
of charge carriers. If we measure the chain length by
numbern of oxygen ions contained in it, the chargez in-
creases with the chain length according to the law2,6

z'n21. ~1!

Since the number of holesnh in the conducting plane is
equal to the total negative charge of the chain plane,
arrive at the following relation between the relative chang
in the number of holesnh and the average lengthn̄ of the
chain for a fixed amount of oxygen in the chain pla
(Sn5const):

dn̄/ n̄'n̄dnh /nh ~ n̄@1!. ~2!

In the metal phase~outside the narrow neighborhood o
the concentration metal–insulator transition!, the average

a-
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length of chains isn̄@1. Consequently, it follows from~1!
and~2! that the width and depth of a long-distance poten
well increase as a result of illumination of the supercond
tor at a much higher rate than the number of charge carr
This circumstance, in combination with clearly manifest
photoinduced changes in the residual resistance, serves
additional argument in favor of a decisive role of the lon
distance potential relief.

Residual resistivity, which is manifested most clearly
the helium temperature range~see Fig. 3b! and is enhanced
upon photoillumination together with the minima of the se
ondary potential relief~see Fig. 4!, can be naturally ex-
plained under the assumption concerning a partial lo
temperature metal–insulator transition. In the insula
phase, holes as localized at broad minima of the secon
relief, which corresponds to a small energy scale of the ph
transition and its low temperature~according to Fig. 3b, this
temperature is 7–8 K for sample No. 2!.

Since hole carriers in a strictly periodic potential are
delocalized band states even at zero temperature, we
associate the low-temperature localization of holes with
periodicity of the long-distance potential, which is in qua
tative agreement with the well-known Anderson mechanis

It is natural to assume that the low-temperatu
insulator–metal phase transition associated with the irreg
nature of the long-distance potential is blurred to a consid
able extent. This is manifested in that the effective massm of
hole carriers increases, but not to infinitely large valu
while the numbern of holes decreases, but not to zero. A
cordingly, the Fermi energy of holes decreases, and the
perconducting gap becomes narrower, which must lead
decrease in critical current to a certain small valueI c* .

Figure 3b shows that residual resistivity appears
T51.8 K for a current exceeding 50 mA. This value can
conditionally identified withI c* . The value ofI c* is an order
of magnitude smaller than the ordinary critical current o
served outside the temperature range of residual resistiv

FIG. 4. Current–voltage characteristics of sample No. 2 measured at
before ~curve 1! and after photoillumination for 10~curve 2! and 30 min
~curve3!.
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1.3. Can IVC oscillations be explained by inclusions of
normal phase?

Under the assumptions made above, we could expe
monotonic increase in resistance with currentI at helium
temperatures forI.I c* . In actual practice, the voltageV
increases with current only up toI c** 580 mA, where the
derivativedV/dI changes its sign. The nonmonotonic depe
denceV5V(I ) can be attributed to sample heterogenei
i.e., microscopic inclusions of the normal phase in the sup
conducting phase, or to a current-induced rearrangemen
the electron state of the superconductor. The analysis ca
out below shows that each version is fraught with cert
difficulties. Let us first consider the possible role of norm
inclusions.

A thin layer of a normal substance~of thicknessLn! in
contact with superconducting layers~of thicknessLs! can
double its resistance as a result of a superconducting tra
tion due to Andreev’s reflection of normal charge carriers
the superconductor, which leads to interference of their w
functions.9 If the superconducting layer thicknessLs is small,
the resistance of the compound conductor~Fig. 5! decreases
as a result of degradation of the superconducting states since
interference phenomena disappear in the absence of a s
conductor.

For this reason, a descending region on the depende
V(I ) can be obtained in the compound superconductor p
sented in Fig. 5 if the critical currentI S of the superconduc-
tor S exceeds the critical currentI s in a thin layer of the
superconductors. We increase the currentI in the interval
I 1,I,I 2(I 2,I S) containing the pointI s . As the value of
current passes through the pointI s , the voltage decrease
together with the resistance of internaln-s-n inclusion since
the resistance of the remaining part of the conductor rem
unchanged and equal to zero.

Unfortunately, this mechanism can hardly explain t
shape of the IVC curves presented in Fig. 3b. In order
have such a mechanism, the inclusion of the normal s
stance must cover the superconducting channel of diam
D. The three dimensions of the inclusion must be of t
same order of magnitude asD. For the resistivityr;1023

V•cm of the normal phase, the resistanceR5r/D of the
inclusion is of the order of 50V or more~if the width of the

K

FIG. 5. ~a! Compound conductor whose resistance decreases upon a tr
tion of the short superconducting parts into the normal state.9 ~b! Super-
conductorS containing inclusions of typea, whose superconducting part i
characterized by a small critical current.
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cm of the superconducting film, we must putR5r/d!. Thus,
the resistance of the normal inclusion exceeds the maxim
ratio V/I observed in the low-temperature range by six
ders of magnitude~it can be seen from Fig. 3b that th
resistance is 5•1025 V for sample No. 2!. The resistance o
an inclusion can approach this value if it has the shape
layer whose thickness is 5–7 orders of magnitude sma
than other dimensions of the inclusion. Apparently, suc
situation is hardly possible.

Under our experimental conditions, oth
mechanisms10,11 leading to a decrease in the dynamic res
tance of a heterogeneous superconductor upon an increa
current cannot be manifested either. Mitinet al.10 explained
a similar effect observed at low temperatures and for a
tential difference of the order of 10 V across the junctions
the Josephson tunneling of charge carriers between su
conducting granules separated by a thin layer of the nor
phase. The Josephson tunneling starts when the potentia
ference between adjacent granules increases to a value
parable with the superconducting gap width which is n
smaller than 1 meV~the critical temperature of supercon
ducting inclusions must be higher than the sample temp
ture!. The IVC peculiarities presented in Fig. 3 are observ
at a much smaller~by 2–3 orders of magnitude! potential
difference across the junctions and hence cannot be
plained by Josephson tunneling.

In our experiments, the mechanism of resistance d
due to oxygen redistribution over a heterogeneous sam
under the action of current could not be manifested eithe11

The change in resistance obtained in this way is virtua
preserved for an indefinitely long time at room or lower te
peratures, and the current–voltage characteristics show
Fig. 3 are successfully reproduced without any hysteresi

1.4. Can current stimulate a change in electronic properties
leading to a decrease in voltage upon an increase in
current?

At first sight, such an interpretation of oscillations
low-temperature IVC~see Fig. 3b! contradicts the very smal
value of voltage~;4•1022 K! across the superconducto
The energy of an electron or hole accelerated by such a
~5•1022 K! is two orders of magnitude lower than the tem
perature of the insulator–metal transition, which determi
the energy scale of the spectrum rearrangement accompa
by metallization.

Let us prove, however, that even insignificant change
electron properties corresponding to a low applied volta
can be manifested in noticeable IVC oscillations.

If the secondary long-distance potential were strictly p
riodic ~with a period ã!, the secondary electron structu
would be characterized by a periodic energy–momentum
lation with a quasi-momentum period 2p\/ã. Our analysis
is based on the assumption that the irregularity in the s
ondary potential is not manifested very strongly, and the
riodicity of the secondary energy–momentum relation is
proximately preserved.

The extent of metallization in the case of a blurr
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characterized by the parameter

m5mnh* /m* nh , ~3!

wherenh andm are the number of charge carriers and t
effective mass in the secondary potential relief. These
rameters correspond to the metal phase away from the p
transition temperature~T.15 K!. The asterisk marks the
same parameters in the region of blurred phase trans
(T;2 K!. In the region of the low-temperature phase tran
tion, the parameterm is regarded as very small; this corre
sponds to a low Fermi energy of holes and a small wi
D* of the superconducting gap. In turn, the narrow gap le
to a small critical currentI c* amounting to;50 mA for
T51.8 K ~see Fig. 3b!.

We now interpret the IVC presented in Fig. 3b, confi
ing ourselves to the most clearly manifested insulator ph
(T51.8 K!. In the supercritical region (I.I c* ), the voltage
differs from zero and increases with current up toI c** 580
mA, at which the derivativedV/dI changes its sign due to
certain rearrangement of electron properties. Such a r
rangement can be associated with a limited value of cur
density for a small number of carriers and a large effect
mass. In order to impart a preset velocityv*5I /Sn* of di-
rectional motion to a system of holes~S is the cross-sectiona
area!, we must transfer the directional momentum comp
nent

P*5m* v*5m* I /Snh*5mI/mSnh , ~4!

~to the holes here and below, we use atomic units!.
However, the value ofP* in relation ~2! cannot exceed

p/2ã. This leads to the following constraint on current:

I,Imax5pnhSm/2ãm. ~5!

Substituting nh;1021 cm2351.5•1024 at. units,
S;1025 cm253.6•1011 at. units, ã.40 at. units, and
m.5 into ~5!, we obtainImax'm•4•105 at. units5m•3•103

A.
Identifying Imax with the position of the first voltage

peak I c** 580 mA ~see Fig. 3b,T51.8 K!, we obtain the
estimatem.2•1025. This means, for example, that the e
fective mass of the secondary hole band increases by
orders of magnitude as a result of transition to the insula
phase, and the number of charge carriers decreases in
same proportion.1!

The above estimate of the quantityImax itself is valid
both for the normal and for the superconducting state. A
cording to Fig. 3b, however, such a small value ofm can be
attained for the substance under investigation only in
helium temperature range, i.e., at temperatures much lo
thanTc .

A similar mechanism of limitation of current density
known for semiconductors with a low charge carrier conc
tration. When the current approaches the upper boundar
the allowed interval, the resistance increases until the app
electric field becomes strong enough for the rearrangem
of the electron structure~for example, new energy valley
with a smaller effective mass are filled!.
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the
ua-
electron properties accompanying a decrease in effec
mass is associated with a considerable deformation of
momentum distribution for charge carriers, which is induc
by the transport current. At first sight, the applied poten
difference of a few microvolts is too small to cause such
rearrangement of the electron properties of a supercondu
However, the rearrangement corresponding to IVC peak
T51.8 or 2 K ~see Fig. 3b! can be induced even by a ver
weak field since it is connected with a very small increase
the metallization parameter~3!. Indeed, the position of the
first voltage peak identified with the valueImax before the
rearrangement and the position of the second peak co
sponding toImax after the rearrangement differ by a factor
two. If we take into account~5!, this means that the metalli
zation parameterm is doubled as a result of rearrangeme
i.e., changes byDm.2•1025 ~from the initial value
2•1025 to 4•1025!. Complete metallization correspondin
to an increase inm by 4–5 orders of magnitude takes plac
according to Fig. 2a, at a temperature of the order of 10 K
after recalculation for the applied voltage, forV;1023 V. A
partial ~very weak! rearrangement corresponding to the vo
age peaks in Fig. 3b is observed forV.4•1026 V. The
difference between these values~which amounts to 2–3 or
ders of magnitude! is in qualitative agreement with the sma
scale of variation of the metallization parameterm for the
observed rearrangement.

In order to illustrate what has been said earlier, we w
the metallization factor in the simple form as a function
voltage, using its parity and presuming its analytic nature

m~V!5m~0!1m totf ~V
2/Vtot

2 !, ~6!

wherem tot; 1;Vtot; 1023 V andm(0) ; 2 • 1025 ~the sub-
script ‘‘tot’’ corresponds to total metallization!, and the ana-
lytic function f (z) satisfies the relations

f ~0!50, f ~1!51, f 8~z!;1 for 0,z,1.

Expanding~6! in the vicinity of the pointV50, we ob-
tain the following expression for the first IVC minimum co
responding to partial metallization:

m~Vpart!2m~0!;~Vpart/Vtot!
2;1025 ~7!

which is in qualitative agreement with the above estimate
Dm.

Thus, energy considerations do not rule out the interp
tation of IVC oscillations on the basis of rearrangement
electron properties due to a small change in the metalliza
parameter~3!.

1.5. Macroscopic heterogeneities of sample as a possible
reason behind the instability of residual resistivity

It was shown in Sec. 1.3 that the IVC peculiarities f
sample No. 2 can hardly be explained by the presence
alternating superconducting and normal regions in the b
of the sample. Nevertheless, the macroscopic heteroge
of the sample can affect significantly the manifestations
the physical mechanism considered in Sec. 1.4. It has b
tacitly assumed in the above analysis that the lo
temperature metal–insulator phase transition and the ch
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rent occur nonuniformly in the entire sample volume. Ho
ever, the observed physical pattern is preserved if we ass
that the same physical phenomena occur in a small par
the volume which covers the sample cross sections c
pletely. The role of such a volume can be played by a t
interlayer between macroscopically homogeneous reg
~domains! differing, for example, in the orientation of axe
~the existence of such domains in single crystals is conne
with twinning!. In the case of films, these can be islets
homogeneous superconducting phases with different va
of Tc . Irrespective of the physical origin of such a macr
scopic heterogeneity, a microheterogeneity leading to irre
larity in the secondary potential~which is sufficient for the
Anderson localization of charge carriers! can be formed in
the transition layer between domains. The macroheterog
ity of the type under investigation, which leads to residu
resistivity, is probably due to the two-phase nature of
sample~it should be recalled that samples No. 1 and 2 e
hibiting residual resistivity contain two superconductin
phases with different values ofTc!.

The transition layer with a lower electrical conductivit
which covers the sample cross section and generates res
resistivity, is apparently macroscopically heterogeneo
within this cross section. The electrical properties of t
sample are obviously determined by the transition layer
gion with the minimum resistance. In the case of seve
contacting layers connected in series in the circuit, the
differing from other layers by the highest resistance of
above-mentioned layer will be manifested in experimen
Consequently, we can expect that the properties of a v
small region, which can easily be changed due to oxyg
diffusion caused by thermal cycling, photoillumination, pa
sage current, or annealing, will be manifested in the resid
resistance. This explains the experimental fact that sam
No. 2 subjected to not very long cycle of low-temperatu
measurements loses its peculiar properties and beco
similar to sample No. 1 as regards its current–voltage ch
acteristics.

The above analysis shows that the current–voltage c
acteristics of the residual resistance observed for differ
samples are different as a rule. The reproduction of the s
dependence of voltage on current and temperature on di
ent samples is accidental and has a low probability. For
reason, the accumulation of experimental statistics is
quired to confirm and refine the concept developed here

2. PECULIAR PROPERTIES OF INFRARED ABSORPTION
CORRESPONDING TO TRANSITIONS BETWEEN
ENERGY LEVELS OF SECONDARY STRUCTURE

2.1. Two types of optical electron transitions differing in
sensitivity to secondary relief

Hole are real quasiparticles in the valence band tha
filled almost completely with electrons. For this reason,
subsequent analysis will be carried out in terms of hole q
siparticles, which are described as electrons for brevity.

The electron structure of the CuO2 plane ~shown sche-
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matically in Fig. 6! includes the elements of the prima
structure realized in a strictly periodic lattice~in the absence
of the long-distance potential! as well as the elements of th
secondary structure described by the Schro¨dinger equation
with the long-distance potential and the primary effect
mass.

The primary electron structure can be considered in
strong-coupling approximation. The wave function of a ho
with the two-dimensional wave vectork can be expanded in
the orthonormal atomic basisx j (r2n):

ck j~r !5N21/2(
n

exp~ ik–n!x j~r2n!. ~8!

Here n is the radius vector of a plane lattice site, runni
throughN values, and the subscriptj labels atomic states an
corresponding energy branches of the primary structure.
the lowermost branch (j50), the effective massm* and the
position of energy minimumk0 are introduced.

Let us consider the actual electron structure of
CuO2 plane modified by the long-distance potential modu
tion. The normalized wave function of a hole can be rep
sented in the form

ck ja~r !5(
n

exp~ ik–n!Ga~n!x j~r2n!, ~9!

(
n

uGa~n!u251

FIG. 6. Optical transitions of various types in the CuO2 conducting plane:
transitionA between the energy levels of the secondary structure, belon
to the lowermost primary branch and lying on different sides of the Fe
level, and transitionB between the states, belonging to different branches
the primary energy–momentum relation.
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well!. The cofactorGa(n) takes into account the long
distance potential and varies over its characteristic lengtL
which is much larger than the lattice constanta.

Let us write the matrix element of the dipole momentM
between the initial statei corresponding to the lowermos
primary branch (j50) and a certain final statef :

M i f5(
n

exp$ i ~k f2k i !–n%Gi* ~n!Gf~n!E x i* ~r

2n!erx f~r2n!dr , ~10!

~e is the electron charge!. This expression is written in the
zeroth approximation in the overlapping of atomic functio
x centered at neighboring sites. The initial statei is pre-
sented in the effective mass approximation so thatk5k0 ,
andGi(r ) is the eigenstate of the Schro¨dinger equation with
the effective massm* and the long-distance potential whic
serves as potential energy.

Figure 6 shows schematically the transitions betwe
hole energy branches of various types. In all cases, the in
state i of the transition belongs to the energy level of t
long-distance potential well, which can be expanded int
subband by overlapping hole states of the secondary st
ture, which are localized at neighboring wells. TheA-type
transitions occur, by definition, between different energy le
els ~1 and 2! of the long-distance well within the same low
ermost primary branch. The final level~3! for B-type transi-
tions belongs to another primary branch lying much high
and distorted slightly by the long-distance potential reli
Optical transitions of typeB (1→3) belonging to the visible
region were analyzed by Fugol’et al.13 who called them in-
traband transitions. TheA-type transitions (1→2) belong to
the near infrared region~the depth of a long-distance poten
tial well is 1–2 eV, while the most intense transitions b
tween two-dimensional analogs of thes- and p- states are
characterized by the energy 0.3–1 eV!. In Fig. 6, different
hole branches of the energy–momentum relation do
overlap; actually, they cover a wide energy interval co
pletely, viz., the common valence band whose width is;7
eV.2,12 The low-density filling of this band with holes i
characterized by the Fermi energyEF.0.2 eV.

Let us prove thatA-type transitions (1→2) differ in
nature from theB-type transitions (1→3). This follows
from the structure of the matrix element of the dipole m
ment ~10!.

We start fromA-type transitions between the energy le
els of a long-distance potential well corresponding to
same lowermost primary branch. The quasimomentak i and
k f coincide with its lower point and do not satisfy relatio
~10!. The atomic functionsx i andx f also coincide so that the
integral in~10! becomes equal toen. Thus, forA-type tran-
sitions expression~10! assumes the form

M i f ~A!5(
n
Gi* ~n!Gf~n!en. ~11!

The functionsGi andGf have a clear physical meanin
in the opposite limiting casesEres!DE andEres@DE, where
Eres is the resonant energy associated with overlapping
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potential, whileDE is the characteristic value of rando
shift of the energy level due to its transition from a lon
distance potential well to a neighboring well. IfEres!DE,
the quantityGi or Gf in ~11! has the meaning of the state
an individual long-distance well. In this case, we can wr
the total probability of transitions from a fixed statei of the
well (Ei,EF) to all its statesf (Ef.EF) under the action of
incident light having a uniform spectral density and pol
ized in the directionj:

PA~ i→all f !C(
f

uDi f ,ju2~Ef2Ei !. ~12!

HereDi f is the matrix element of the dipole moment betwe
the states of a long-distance potential well,j the direction of
polarization of incident light, andC denotes a certain coef
ficient containing the light intensity and having the sam
value forA- andB-type transitions.

Relation~12! can also be obtained from~11! in the op-
posite limiting case whenDE!Eres, and the long-distance
potential is almost periodic. Relation~12! is obviously ob-
served~to within an order of magnitude! in the intermediate
case also.

Let us now considerB-type transitions from the sam
statei belonging to the lowermost primary branch to all t
states f belonging to the remaining primary branches.
view of orthogonality of the functionsx0(r ) andx f(r ), the
integral in~10! can be reduced to the atomic dipole mome
di f . Using relation~10!, we can find the total probability o
transition from the statei to all the final statesf :

PB~ i→all f !5Cb(
f

udi f ju2~Ef2Ei !, ~13!

b5N( uGi~n!u2uGf~n!u2.1. ~14!

~N is the number of sites in a planar lattice!. The summation
in ~13! is carried out over atomic states, while the summat
over the wave vectorsk of the final state is carried out with
out taking into account the dependence ofGf on k ~this
actually boils down to the conservation of the quasimom
tum in the electron transition!. Since the depth of the long
distance potential modulation is small as compared to
energy of the final statef , its envelopGf is almost constant
which justifies this approximation from the physical point
view @which leads to the estimate~14!#. It should be noted
that a weak deviation from the quasimomentum conserva
law for an allowed direct transition cannot lead to a sign
cant change in the integral intensity of absorption.

Expressions~12! and ~13! give the values of areas o
absorption bands of typesA andB. These expressions can b
used to derive a relation between the absorption coeffici
kA andkB at the maxima of these bands considering that
width of each band coincides in order of magnitude with
position of its maximum:

kA /kB;~Lj /a!2. ~15!

Here a is the atomic spacing andLj the width of a long-
distance potential well in the direction of light polarization
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A-type transition actually corresponds to the secondary e
tron structure, and its dipole moment is determined by
width L of the long-scale potential well. AB-type transition
is actually associated only with the primary structure and
characterized by the atomic dipole moment.

Relation~15! leads to the following conclusions.

~1! The intensity of infrared optical absorption of the typ
A ~Fig. 6! exceeds significantly the intensity of absor
tion of the typeB occurring within the valence band an
corresponding to the visible region of the spectrum. T
probabilities of transitions of both types are proportion
to the number of holes in the valence band; con
quently, the oxygen content affects relation~15! only
through the shape of the long-distance potential well@es-
timate ~15! does not take into account interband tran
tions with a nonzero probability and in the absence
holes; interband transitions are limited to the spec
region\v.1.8 eV#.13

~2! The A-type absorption is much stronger for th
y-polarization of light along the copper–oxygen chai
~i.e., parallel to the crystallographic axisb! than for the
x-polarization ~the xy plane coincides with the CuO2
conducting plane!; this follows from the relation
Lx!Ly for the dimensions of the potential well.

~3! TheA-type absorption is much more sensitive~as com-
pared to theB type! to the controllable variation of the
copper–oxygen chain length, which can be achiev
through photoillumination of the sample,1,7 heating,8,14

or by passing a strong current.11 Indeed, theb-type ab-
sorption in all these processes changes only due to
insignificant change in the number of charge carri
nh , while theB-type absorption is proportional to th
square of the width of a long-distance potential we
which changes much more strongly thannh according to
~2!.

2.2. Qualitative comparison of the theory with experimental
data

Conclusions 1–3 drawn in the previous section are c
firmed by the experimental data on the absorption spect
of polarized light in a wide range from 0.05 to 2 eV.8 Widder
et al.8 obtained the absorption spectrum of a single crys
from the reflection spectrum by using the Kramers–Kron
relation.

Figure 7 shows the absorption spectrum of a monocr
talline YBa2Cu3O6.5 spectrum for the polarizationa perpen-
dicular to the direction of copper–oxygen chains as well
for the polarizationb parallel to the chains. Two curves co
responding to sample temperatures 293 and 423 K were
tained for each polarization. Figure 8 also shows the data
a sample with a higher oxygen index~6.6! corresponding to
a higher value of the average length of chains.

It can be seen from the figures that the absorption sp
trum for each sample and each temperature changes sig
cantly upon a transition through a certain frequen
\vc.0.8 eV. If we identify the spectral intervalv,vc with
a region of predominant transitions of theA-type and the

113Eremenko et al.
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interval v.vc with the regions ofB-type transitions, the
experimental data presented in Figs. 7 and 8 completely c
firm the conclusions 1–3 drawn in Sec. 2.1. Let us comp
these conclusions with the experimental results in gre
detail bearing in mind that the region of purely intraba
absorption is bounded from above by the dielectric g
width13 Eg.1.8 eV ~in the region\v.Eg , interband tran-
sitions can make a significant contribution to light abso
tion!.

~1! It can be seen from Figs. 7 and 8 that the absorpt
coefficient at the maximum of the infrared band~to the
left of the point\vc.0.8 eV! is 3–6 times larger than
the absorption coefficient observed in the regi
\vc,\v,Eg.1.8 eV for all samples, temperature
and polarizations. According to~15!, the ratio of these
values ofk must be equal to (L/a)2.20; actually, it can
decrease due to the additive contribution of the~Drude!
plasma absorption covering a broad spectral region
well as due to the errors in the Kramers–Kronig tran
formation using the reflection spectrum measured i
finite frequency range.

~2! Anisotropy of the infrared absorption of theA-type is
confirmed qualitatively in experiments: the absorption
approximately doubled upon a transition from t
a-polarization perpendicular to the chains to t
b-polarization parallel to the chains. This ratio decrea
with the average length of the chain and amounts to o
1.2 for a lower oxygen index of 6.5 and at temperatu
423 K ~the chain length decreases with decreasing o
gen index and increasing temperature!. It should be

FIG. 7. Absorption spectrum of the YBa2Cu3O6.5 single crystal, recon-
structed in Ref. 8 according to the reflection spectrum for two values
temperature and two directions of polarization parallel to the conduc
plane.
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noted that, according to Figs. 7 and 8, absorption of ty
B in the region\vc,\v,Eg is almost isotropic in the
ab plane.

~3! It can be seen from Figs. 7 and 8 that a decrease in
chain length upon sample heating is manifested in a c
siderable suppression~by a factor of 2 and more! of the
type A absorption band. This effect is incommensura
with a small change in the number of charge carrie
which does not exceed a few percent even in a wi
temperature interval 300–800 K.15 According to~2!, the
average length of the chains changes several times m
strongly, leading to a significant change in theA-type
absorption in proportion toL2.

As regards the intraband absorption of typeB, it changes
with temperature in proportion to the number of charge c
riers by not more than a few percent in the absence of t
perature phase transitions~see Fig. 7!.13 Temperature varia-
tion of theB-type absorption shown in Fig. 8 are apparen
associated with certain temperature phase transitions or
errors in calculations based on the Kramers–Kronig form
near the boundary of the measuring interval.

The results obtained by Widderet al.8 were interpreted
from the point of view of plasma oscillations. In order
explain absorption anisotropy, the authors of Ref. 8 had
assume that the chain (CuOx) and conducting (CuO2) planes
make comparable contributions to plasma absorption. S
an interpretation is fraught with significant difficulties. Firs
the charges in the chain plane in the case of oxygen ind
0.5 or 0.6 close to the insulator–metal transition point
localized, and their direct contribution to the optical condu
tivity is negligibly small. Second, plasma absorption i

FIG. 8. The same as in Fig. 7 for YBa2Cu3O6.6 ~according to the results
obtained in Ref. 8!.
f
g
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the infrared region decreases. Plasma absorption is ap
ently manifested in the absorption spectrum, but does
make a dominating contribution~predicted in Ref. 8! to it,
only smoothing the manifestations of the mechanism con
ered above and leading to the dependence of absorptio
temperature and polarization.

Taking into account what has been said above, the t
A infrared absorption band can be used for diagnostics of
average length of copper–oxygen chains in the process o
controllable variation.

CONCLUSIONS

The electron properties of the superconduc
YBa2Cu3O61x are associated with the long-distance pote
tial relief created in the CuO2 conducting plane by charge
located in the parallel CuOx plane. It was proved by us ea
lier that the motion of holes in long-distance potential we
affects the transport properties.1–3

Electron transitions between energy levels of a lon
distance potential well are manifested in the near infra
absorption spectrum in the form of a significant contributi
depending on the shape of the potential well and are se
tive to temperature, light polarization, and photoilluminati
which determine the well width.

A decrease in the temperature of a superconductor
few kelvins can result in a blurred transition to the insula
phase due to localization of holes at the minima of the lo
distance potential. This is manifested in residual resistiv
existing at temperatures much lower thanTc ; apparently,
this effect is of the Anderson nature and is very sensitive
structural inhomogeneities, which can be used for their di
nostics.

The manifestations of long-distance potential relief a
characterized by sensitivity to photoillumination leading to
slight increase in the number of charge carriers and t
much stronger increase in the potential well widths. If t
115 Low Temp. Phys. 23 (2), February 1997
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much greater than the corresponding change in the num
of charge carriers on the relative scale, a given phenome
is apparently associated with the long-distance potential.
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1!On account these circumstances, the estimate obtained in Sec. 1.5 c
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Magnetic properties of Ba 12xKxBiO31y single crystals near Tc

on
S. N. Barilo, V. I. Gatalskaya, and S. V. Shiryaev

Institute of Solid State and Semiconductor Physics, Academy of Sciences of Belarus, 220072 Minsk,
Belarus*

M. Baran, H. Szymczak, and R. Szymczak

Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
~Submitted May 20, 1996, revised July 31, 1996!
Fiz. Nizk. Temp.23, 159–166~February 1997!

Reversible magnetization and hysteresis loops of electrochemically grown Ba12xKxBiO31y single
crystals (x50.34,0.37) are studied in the vicinity ofTc . The results of measurements of
reversible magnetizations are used to construct the temperature dependences of the magnetic
penetration depthl and the critical fieldHc2 . Thel(T) dependences are described by
the BCS theory more successfully than by the two-fluid model. The peak effect observed in
these isotropic superconductors on magnetic hysteresis loops is associated with the presence of
superstoichiometric oxygen regions. The behavior of the irreversibility lineH irr(T) for both
single crystals is approximated successfully by the flux creep model. ©1997 American Institute
of Physics.@S1063-777X~97!00402-7#
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Single crystals of Ba12xKxBiO31y ~BKBO! with
Tc.30 K and a simple cubic structure characterized by
absence of magnetic ions in the lattice, a large cohere
length, and a number of some interesting physical proper
are excellent objects for experimental and theoretical inv
tigations aimed at determining the magnetic penetra
depth, upper critical field, and other important characte
tics. These data lead to the conclusion concerning the m
nitude of the coupling constant, and hence the mechanism
pairing in high-temperature superconductors.

It has been established that the irreversibility li
H irr(T) separating the reversible and irreversible regions
magnetizationM intersects theH–T phase diagram of high
temperature superconductors in the mixed state. Above
H irr(T) line, the phase diagram displays a sharp decreas
critical current and a rapid relaxation of the diamagnetic m
ment. It should be noted that in spite of intense studies,
nature of the irreversibility line has not been established
~see, for example, Ref. 1 and the references cited ther!.
An analysis of isothermal curvesM (H) nearTc in the region
of reversible magnetization makes it possible to determ
the London penetration depth for a magnetic field2

since HTS

materials are characterized by a wide range of magnetic fi

Hc1!H!Hc2 in which the reversible magnetization depends linearly on

logarithm of magnetic fieldH:

4pM5~w0/8pl2!ln~Hc2b/H !, ~1!

wherew0 is the magnetic flux quantum,b.1, Hc2 is the
upper critical field, andl the magnetic penetration depth.
the case of accessible magnetic fields, relation~1! is appli-
cable in a bounded temperature range close toTc of an iso-
tropic superconductor free of vortex lattice pinning. T
magnitude and temperature dependence of the magnetic
etration depth in the BKBO system have been studied in
ficiently. In Ref. 3, thel(T) dependence was determined f
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and dynamic susceptibility in a varying field for the BKB
powder.

The irreversible component of magnetizationM (H)
measured at various temperatures can be used to extrac
formation on vortex lattice pinning~in particular, on the
critical current densityj c and the irreversibility lineH irr! and
on the anomalous behavior of magnetization in BKBO sin
crystals in intermediate fields.4 Here we consider the result
of studies of reversible and irreversible magnetization
BKBO single crystals nearTc with various concentration o
potassium.

2. SAMPLES AND EXPERIMENTAL TECHNIQUE

BKBO single crystals were grown electrochemicall5

and have the superconducting transition tempera
Tc529–30 K depending on the potassium concentrati
The concentration of potassium was determined by th
methods: from x-ray measurements of the crystal lattice
rameter according to the calibration curve,6 from neutron ac-
tivation analysis, and from the measurement of natural rad
activity of the isotope40K. The typical size of the crystals is
23231 mm. The magnetization was measured nearTc
with the help of a vibrational magnetometer in fields up
6 T and SQUID magnetometer~Quantum Design, MPMS-5!
in fields up to 5 T.

3. DISCUSSION OF RESULTS

3.1. Reversible magnetization range

An analysis of the hysteresis loopsM (H) measured for
Ba12xKxBiOy single crystals withx50.34 and 0.37 in the
high-temperature range showed that theM (ln H) depen-
dences are straight lines and are successfully describe
relation~1! in the field and temperature regions under inve

11620116-06$10.00 © 1997 American Institute of Physics
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tigation ~Fig. 1!. Figures 2 and 3 show the values ofl(T)
calculated for both crystals as well as the approximation
the experimental data by the BCS formula

l~T!5l~0!@12~T/Tc!#
20.5, ~2!

which gives a better agreement with the experimental d
than the Gorter–Casimir two-fluid model

l~T!5l~0!@12~T/Tc!
4#20.5. ~3!

The corresponding values ofl(0) in expression~2!
amount to;924 Å (x50.34) and;935 Å (x50.37). The
value ofTc is of the order of 26.5 K for both samples. Th
value corresponds to 90% of the temperatureTc

H correspond-
ing to the onset of the transition in weak magnetic fie
H55 Oe under ZFC conditions.

Expression~1! contains the upper critical fieldHc2(T)
which is required for calculating the temperature dep
dencesj(T) andk(T)5l(T)/j(T) of the coherence length

FIG. 1. Field dependence of magnetization at various temperature
BKBO crystals withx50.34 ~a! and 0.37~b!.
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and of the order parameter.7 The values ofHc2(T) measured
for the two crystals nearTc are shown in Figs. 3 and 4. Th
temperature dependences ofHc2 nearTc are described by a
linear law, which is in accord with the Ginzburg–Landa
theory: Hc2(T)525(12T/Tc)

1.13(x50.34) and
Hc2(T)519.3(12T/Tc)

1.04(x50.37). The values of
dHc2 /dT near Tc amount to20.78 and20.65 Tl/K for
x50.34 and 0.37 respectively. Using the WHH formalis
Hc2(0)520.693Tc (dHc2 /dT),

8 we can estimate the valu
of Hc2(0) for the crystals under investigation
Hc2
(0)515.7 Tl (x50.34) and 13.1 Tl (x50.37). The coher-

ence lengths j(0) calculated from the relation
Hc25w0 /(2pj2) are 46 Å (x50.34) and 49 Å
(x50.37). On the other hand, the linear extrapolation wh
is in accord with the Ginzburg–Landau theory led to a co
siderably larger values ofHc2 :25 Tl (x50.34) and
19.3 Tl (x50.37), which correspond to coherence leng
36 Å (x50.34) and 41 Å (x50.37) atT50 K. The upper
critical fieldHc2(0) for our crystals is much smaller than th
values of paramagnetic critical fieldHpar51.84Tc (.55 Tl
for x50.34 withTc530 K and.53 Tl ~for x50.37 with
Tc529 K!, which means that the ‘‘paramagnetic effect’’ o

of

FIG. 2. Temperature dependence of penetration depthl for BKBO crystals
with x50.34 ~a! and 0.37~b!. Solid curves describe the approximation b
the BCS theory.
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Cooper pair breaking by the magnetic field is insignifican
The estimates obtained for coherence length, magn

penetration depth, and upper critical field are in good agr
ment with the results of resistive and magnetic measu
ments on poly- and monocrystalline BKBO samples.3,9–11

For example, the value ofHc2 for single crystals grown
electrochemically9 amounts to 30 Tl~at T52 K!, which is
twice the value ofHc2 calculated according to the WHH
theory. The coherence lengthj(0) corresponding to
Hc2530 Tl is 33 Å. The order parameterk(T) is equal to
35 (x50.34) and 26 (x50.37) forT522 K. Using the re-
lation Hc1 /Hc25(ln k)/(2k2), we find that for this tempera

FIG. 3. Temperature dependences ofHp , Hc2 , andH irr for crystals with
x50.34 ~a! and 0.37~b!.
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ture Hc1570 and 100 Oe forx50.34 and 0.37, respec
tively. The theoretical values ofHc1 are in satisfactory
agreement with the experimental values ofHc1 for BKBO
single crystals.12

3.2. Irreversible magnetization range

The peak effect in Ba12xKxBiO31y single crystals
(x.0.33) was observed for the first time by us earlier4 and
investigated over a wide temperature range (4.2 K–Tc) in
intermediate fieldsHc1,Hp,Hc2 . The shape of additiona
peaks on hysteresis loops depends on the temperature, w
the magnitude of the peak fieldHp decreases with increasin
temperature. Figure 4 shows fragments of hysteresis lo

FIG. 4. Fragments of hysteresis loops for crystals withx50.34~a! and 0.37
~b! at various temperatures.
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for single crystals withx50.34 and 0.37 for temperatures

iz
.

lu
o
he
a

n
-

in
o
b
um

ta

tr
als
c-
ca
po

on

in

o

m
s
of

e

i
f

e

,

s
C

,

c

and 0.77(x50.37); m51.45 (x50.34) and 1.22(x50.37).
ct in
ys-
the

re

ct
eld

iated
to a
atic
ys-
-
ag-
ear
ur-
n-
e
-

on
s-
wo
in
s of
se
m-
the

e
ced
r-

-
or
-
es.
tial
nearTc . The values ofj c (T520 K) calculated according
to Bean’s model were of the order of 5•103 A•cm22. We
analyzed the reproducibility of theHp(T) andH irr(T) depen-
dences for crystals with the same concentrationx of potas-
sium as well as the effect of thermal treatment, sample s
and potassium concentration on the shape of the curves
insignificant spread in the values ofHp and a shift of the
H irr(T) line are observed for crystals having the same va
of x and grown in the same experiment. The same was
served for a crystal before and after its cutting. On the ot
hand, sample annealing in oxidizing and reducing media
fects the values ofHp andH irr significantly even if the varia-
tions ofTc as a result of thermal treatment are small.

4 At the
same time, an increase in the potassium concentratio
crystals leads to a sharp decrease inHp and to a more mono
tonic decrease inH irr . Such a dependence ofHp andH irr on
potassium concentration is obviously connected with the
tial structure of the defects, e.g., with different distribution
oxygen in the crystals. Although the peak effect was o
served only in BKBO crystals with an elevated potassi
content (x.0.33), we concluded4 that this effect should be
attributed to its nonuniform distribution since the crys
structure of Ba12xKxBiOy with x.0.33 is strictly cubical
and does not exhibit a phase separation into stoichiome
phases withx50.08 and 0.28 as in the case of polycryst
with 0.2,x,0.28.13 At the same time, single crystals a
quire additional oxygen in the course of electrochemi
deposition, the intensity of this process increasing with
tassium concentration.5

An analysis of the behavior of irreversible magnetizati
in the temperature range close toTc confirms our conclu-
sions that the peak effect in BKBO is due to the presence
regions with nonstoichiometric oxygen concentration
crystals with values ofHc2 and Tc smaller than for the
matrix.14 The models of peak effect such as anisotropy
electron properties15 and the 3D–2D phase transition in a
vortex lattice16 are inapplicable to an isotropic cubic syste
like BKBO. The model of commensurability of the period
of a vortex lattice and a lattice of defects in the vicinity
the field corresponding to an additional peak on theM (H)
curve15 presumes the absence of the temperature depend
of Hp , which contradicts our results~see Fig. 3!. It is appro-
priate to mention a relatively recent publication17 in which
an attempt was made to attribute the peak effect
YBa2Cu3O72d ~YBCO! single crystal to the formation o
irreversible regions with values ofH irr differing from that of
the matrix on the basis of coincidence of temperature dep
dencesHp(T) andH irr } (12T/Tc)

m. In order to verify the
possibility of application of this model to the BKBO system
we analyzed the temperature dependencesH irr(T) obtained
from the hysteresis loops for YBCO and BKBO single cry
tals. Our results of measurements of magnetization of YB
single crystals4,18 give close values for theHp(T) and
H irr(T) curves nearTc :m51.7 and 1.8. According to Fig. 3
the temperature dependenceHp(T) for BKBO single crystals
is described by the relationHp(T)5A(12T/Tc)

n, while ir-
reversibility lines are described by the dependen
H irr(T)5B(12T/Tc)

m ~where n,m!: n50.59 (x50.34)
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Thus, there are no grounds for associating the peak effe
BKBO with the emergence of reversible regions in the cr
tal as a result of the passage of the magnetic field through
threshold valuesH irr for regions with a nonstoichiometric
oxygen concentration~we assume that such regions a
present!. Moreover, the values ofA andB in the temperature
dependence ofHp andH irr are different: the ratioB/A56 for
crystals withx50.34 and 4 for crystals withx50.37.

The model of the ‘‘dynamic’’ nature of the peak effe
presumes the existence of a mirror relation between the fi
dependences of the critical current densityj c(H) and the
magnetization relaxation rateS(H),19 for which the emer-
gence of an additional peak on hysteresis loops is assoc
with a decrease in the magnetization relaxation rate due
change in the form of flux creep. The measurements of st
magnetization and magnetic relaxation in BKBO single cr
tals (x50.46) revealed20 that the field dependence of relax
ation rateS(H) has a peak corresponding to the applied m
netic fieldH5Hp/2. Besides, the peak effect does not app
in the field dependence of the density of actual critical c
rent for this composition, which is obtained by using a ge
eralized inversion scheme.21 These results indicate that th
‘‘dynamic’’ interpretation of the peak effect plays a signifi
cant role in BKBO single crystals (x50.46).

A systematic analysis of the pinning force as a functi
of magnetic field and temperature for the BKBO single cry
tals (x50.34,0.37) carried out by us showed that at least t
different mechanisms of pinning play a significant role
these compositions. Figure 5 shows experimental value
the normalized pinning force in single crystals with the
compositions as functions of reduced field at different te
peratures as well as their processing according to
formula22

Fp /Fp~max!5A~b* !p~12b* !q, ~4!

whereb*5H/H irr is the reduced field in the sample,A the
numerical parameter, andp and q characterize the pinning
mechanism in the superconductor.23

The processing mentioned above givesp51.95 and
q51.52 forx50.34 atT519–22 K,p50.48 andq51.7 at
T525–27 K; for x50.37, p54.6 and q53.1 at
T520–22 K, andp50.43 andq53.2 atT525–27 K. It
should be noted thatq.p for most HTS materials.24 How-
ever, for BKBO single crystals (x50.34, 0.37!, we obtained
the opposite relation (q,p) at low temperatures. It can b
seen from Fig. 5 that the experimental values of redu
pinning force are satisfactorily approximated by two diffe
ent curves having a peak, according to~4!, for Hmax corre-
sponding to

bmax* 5p/~p1q!. ~5!

It was found that bmax* 50.56(0.22) for x50.34 at
T519–22 K (24–28 K), while bmax* 50.6(0.12) for
x50.37 atT520–22 K (25–27 K). Thus, two contribu
tions to irreversible magnetization which obviously exist f
BKBO (x50.34, 0.37! are manifested in a significant differ
ence in scaling over the field at low and high temperatur
This means that the peak effect in single crystals with spa
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oxygen nonstoichiometry can be a consequence of the c
petition between two pinning mechanism each of wh
dominates in its own temperature region. Comparing the
sition of the peak of reduced pinning force with the theore
cal predictions,23 we can assume that pinning centers hav
two-dimensional rather than three-dimensional geometry
that both mechanisms of pinning~the so-calleddTc- and
d l -pinning! are important. In this case, the peak effect can
due to the crossover between two mechanisms of flux
ning associated with applied magnetic field and/or tempe
ture.

It was mentioned above that complete understanding
the origin of irreversibility line has not yet been attained. It
assumed thatH irr defined as the field for which the hysteres
of theM (H) curves disappears can be due to flux cree25

vortex lattice melting,26 or the formation of a new thermo

FIG. 5. Normalized pinning forceFp /Fp(max) as a function of the reduced
field H/H irr for crystals withx50.34 ~a! and 0.37~b!.
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dence of the irreversibility field in BKBO single crysta
which do not exhibit any peak effect~including those sub-
jected to electron bombardment! was investigated by us in
Refs. 12, 28, and 29. For fields above 0.1 Tl, theH irr(T)
dependence was approximated by the functionH irr5H irr(0)
3(12T/Tc)

3/2 with H irr(0).17 Tl for the initial state. The
flux creep model25 presumes a similar dependenceH irr(T)
nearTc with m53/2, namely,

H irr~T!;$Hc
2~0!j~0!w0%~12T/Tc!

3/2, ~6!

For BKBO crystals withx,0.34,12,28,29 the behavior of
H irr(T) corresponds to this model. If, however, theH irr(T)
curve is due to vortex lattice melting, the irreversibility fie
nearTc is described by the following relation:25,30

H irr;$cL
4w0

5/4pm0
2kB

2l4Tc
2g2%~12T/Tc!

2, ~7!

wherecL is the Lindemann criterion andg the anisotropy
parameter equal to (mc /mab)

1/2. It should be noted that the
quadratic dependence~7! tends to a linear dependence up
an increase ing on account of quantum fluctuations of th
vortex lattice.31,32 It follows from Fig. 3 that the values o
m in the temperature dependenceH irr(T) decrease with in-
creasing potassium concentration~m51.45 and 1.22 for
x50.34 and 0.37, respectively!. It should be noted that the
model of vortex lattice melting correctly describes the e
perimentally obtained dependenceH irr(T) for an isotropic
superconductor Rb3C60 nearTc .

33 The fact thatm52 in this
case unambiguously confirms the presence of a first-o
phase transition of the type of vortex lattice–liquid.

If we apply the model of lattice melting to two HTS
systems~isotropic BKBO and anisotropic YBCO!, the irre-
versibility line for YBCO must lie above the irreversibility
line for BKBO for the same reduced values of temperat
and field, and the ratio of reduced irreversibility fields mu
be of the order of 25~g51 and 5 for BKBO and YBCO,
respectively!. In actual practice, our measurements28,29

showed that this ratio amounts to 0.3–0.5. It follows hen
that the irreversibility line is still not associated with th
lattice melting~at least for a YBCO single crystal!. The pos-
sibility of using the model of superconducting vortex glas27

with the temperature dependenceH irr(T) } (12T/Tc)
4/3 re-

quires additional verification.
Since the behavior of irreversible magnetization in fie

smaller thanH irr is closely connected with the critical curren
density of the superconductor and depends on vortex pinn
at the defects, it is natural to assume that the irreversib
line is also connected with pinning centers. Electron bo
bardment (E54 MeV) makes it possible to introduce poin
radiation defects into the crystal which serve as additio
pinning centers. The results of our measurements of resi
magnetization in BKBO single crystals exposed to fluen
up to 2•1018 cm22 indicate28,29that critical currents increas
by a factor of two, and the irreversibility line is shifted to
ward strong fields. The values ofH irr(0) amount to 20 Tl,
but the nature of temperature dependenceH irr(T) remains
unchanged, i.e., is determined by the simple activat
model.25 These results can be explained by a stronger p
ning of vortex lattice in a crystal by radiation defects.
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is directly related to the effective pinning force,and hence
the difference in vortex lattice pinning in crystals with di
ferent potassium concentrations~Fig. 5! can be explained
for example, by the difference in the values ofHc(0). In-
deed, using the values of the order parameterk determined
from the measurements of reversible magnetization, we
that Hc(0)50.93 Tl for a crystal withx50.34, while for
x50.37 the fieldHc(0)50.74 Tl. This is in accord with
stronger pinning properties of the crystal withx50.34 as
compared to those of the crystal withx50.37: the irrevers-
ibility fields are higher for the former crystal. According t
~4!, the values ofH irr are proportional toHc(0), but the
value ofHc(0) in this case decreases simultaneously w
the superconducting transition temperatureTc which, in turn,
decreases in our case upon an increase inx ~Tc530 and
29 K for x50.34 and 0.37, respectively!. Thus, the flux
creep model explains successfully the position of the ir
versibility line in the (H,T) plane for BKBO crystals.

4. CONCLUSION

We analyzed the reversible and irreversible magnet
tions of Ba12xKxBiOy single crystals with different potas
sium concentrations nearTc . The values of the critical cur
rent densityj c determined in Bean’s model from hysteres
loops for the given system are of the order
5•103 A•cm22 at T520 K in zero magnetic field. The
peak effect observed in an isotropic high-temperature su
conductor is associated with the presence of regions w
superstoichiometric oxygen in the crystal. The reason beh
the peak effect can be associated with the crossoverdTc- and
d l -pinning mechanisms caused by the external magn
field and/or temperature. The position of the irreversibil
line H irr in the (H,T) plane indicates a strong pinning of th
vortex lattice in BKBO and is described satisfactorily by t
flux creep model. The isotherms of reversible magnetiza
nearTc were used to estimate the most important charac
istics of the superconductor:Hc2(0), l(0), j(0), k(0),
Hc(0), Hpar(0). More detailed measurements of magnetiz
tion of BKBO single crystals in the reversible and irreve
ible regions of hysteresis loops are planned in order to de
mine the electron–phonon interaction constant and to cla
the mechanism of the peak effect.

This research was partly supported by the Polish S
Committee on Scientific Research, grant No. KBN 2P 3
11407.
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Effect of magnetic flux trapped in intergranular space on magnetic field dependences

nc-
of rf absorption in HTS materials
G. V. Golubnichaya, A. Ya. Kirichenko, I. G. Maksimchuk, and N. T. Cherpak

Institute of Radiophysics and Electronics, National Academy of Sciences of the Ukraine, 310085 Kharkov,
Ukraine
~Submitted April 29, 1996; revised July 1, 1996!
Fiz. Nizk. Temp.23, 167–172~February 1997!

Dependences of rf absorption in HTS ceramic samples on a magnetic fieldH,Hc1g ~Hc1g is the
lower critical field for granules! have been investigated. Some features of these dependences
cannot be described by the standard model of critical states, taking into account magnetic flux
trapping only in granules. A new electrodynamic model, taking into account qualitatively
the magnetic flux trapping both in granules and in the intergranular space is proposed. The
modified model makes it possible to explain all the currently observed peculiarities in
the magnetic-field dependences of rf absorption both forH.Hc1g and forH,Hc1g . © 1997
American Institute of Physics.@S1063-777X~97!00502-1#
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Electrodynamics of ceramic or polycrystalline hig
temperature superconductors~HTS materials! is usually
studied by using models, taking into account the coexiste
of two coupled electrodynamic subsystems, viz., superc
ducting granules~grains, or crystallites! and weak links be-
tween them. Both these subsystems are manifested in
hysteresis dependences of critical current density, magn
susceptibility, magnetoresistance, magnetization, and e
tromagnetic absorption.

Even in the first publications in this field,1,2 the irrevers-
ibility of the dependences of critical current densityJc on the
magnetic fieldH was explained by magnetic flux trapping
grains ~first subsystem!. Upon a decrease in the extern
magnetic field, the magnetic field of the trapped flux co
pensates the action of the applied field on intergranular li
~second subsystem!. In Ref. 2, a detailed model of the for
mation of the local magnetic-field in the intergranular spa
was developed on the basis of the model of critical st
applied to granules. This model explained qualitatively
magnetic field penetration and magnetic flux trapping
HTS samples as well as the main peculiarities in
magnetic-field dependence of the critical current density
HTS samples cooled in zero magnetic field at a fixed te
perature~ZFC mode!.

However, subsequent analysis of the magnetic-field
pendences of HTS samples cooled in a magnetic field~FC
mode!3,4 revealed a number of peculiarities which could n
be explained by the model proposed in Ref. 2. In this c
nection, it was necessary to study local magnetic fields in
intergranular space in greater detail, taking into account t
compression in order to modify slightly the model propos
in Ref. 2. Independent analysis carried out by Mishraet al.5

confirmed that local fields in the intergranular space exp
ence stronger compression in the ZFC mode than in the
mode.

In order to explain the hysteresis behavior of the criti
current density upon a change in magnetic field, a numbe
other physical models of formation of the local field in th
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tions were later proposed. Among these models, we m
mention above all the model taking into account the effec
Abrikosov vortices at the banks of a Josephson junction6 and
the model taking into account the magnetization of in
vidual granules and demagnetization factor.7 In spite of the
fact that, in contrast to the model proposed in Refs. 2 an
these models lead to not only qualitative, but sometimes a
a quantitative coincidence of the results of calculations w
experimental data, the physical pattern of the processes
curring in the intergranular medium is sometimes blurre
and~which is most important! the fields trapped in the inter
granular medium are ignored completely in this model.

At the same time, the magnetic flux trapping in fiel
H,Hc1g was established even in the first publications
HTS ceramics,8 and the influence of the magnetic field on th
hysteresis behavior of critical current was studied in Ref
(Hc1g is the field determining the onset of penetration
Abrikosov vortices in granules!.

At the same time, a correlation between the magne
field dependence of dynamic magnetic susceptibility a
critical current was established.10,11 An analysis of the hys-
teresis behavior of electromagnetic energy absorption
HTS samples in the microwave range12 and in the rf range13

revealed the coincidence of the main features of
magnetic-field dependences and similar dependence of c
cal current. This made it possible to apply the electrod
namic model proposed in Refs. 2 and 4 in the analysis
magnetic-field dependences of magnetic susceptibility an
absorption also.

According to the results of more detailed investigatio
of the rf absorption in a magnetic fields which do not distu
the Meissner state of granules (H,Hc1g), these depen-
dences display peculiarities which cannot be explained
the basis of the model proposed in Refs. 2 and 4. Th
peculiarities are also responsible for the difference betw
the magnetic-field dependences of rf absorption and
Jc(H) dependence in the same fields. For example, the fi
dependence of rf absorption in HTS samples with trapp
magnetic flux~for H50!, which is obtained during zero-field

12220122-05$10.00 © 1997 American Institute of Physics
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ated with magnetic flux trapping in the intergranul
medium,14,15which are not present on theJc(H) curves.

16,17

Peculiarities in the magnetic field penetration into a holl
cylinder18 or the rf absorption in texturized ceramics19 as
well as in HTS samples upon a change in the orientation
the applied magnetic field forH,20 Oe20,21 cannot be ex-
plained either in the standard model of critical state for gr
ules proposed in Refs. 2 and 4.

Consequently, the electrodynamic model proposed
Refs. 2 and 4 must be modified by taking into account
dynamics of magnetic field penetration and magnetic fl
trapping in the second subsystem~intergranular space! also.
In order to analyze the effect of fields associated with m
netic flux trapping in current loops embracing several gr
ules and including Josephson junctions between granule
their circuit in the intergranular medium, we analyzed t
magnetic-field dependences of rf absorption in external st
fields smaller thanHc1g .

EXPERIMENTAL RESULTS

The rf absorption at a frequency of 2.5 MHz
YBaCuO HTS ceramics was determined in our experime
from the Q-factor of the rf circuit whose inductance wa
loaded by the sample under investigation. The intrin
losses in the circuit were subtracted. The measurements
made at the nitrogen boiling temperature. The measu
technique was described in detail in Ref. 11. The grap
representation of the field dependences of rf absorption in
form of reciprocal absorptionQ(H) facilitates their compari-
son with magnetic-field dependences of the critical curr
density1–6 Jc(H) which are basically similar.

Figures 1a and b show for comparison the dependen
obtained for the samples synthesized according to traditio
ceramic technology~Fig. 1a! and by using partial melting a
a result of sample heating to 1050 °C during 10 min~Fig.
1b!. The figures show three types of magnetic-field dep
dences of absorption:Q(H) in a field increasing to the maxi
mum value of the magnetic fieldH5Hm.Hc1g ~curve 1!,
Q(H) in a field decreasing after the attainment of the va
H5Hm ~curves2 and28!, andQrem(Hm) in the field associ-
ated with the trapped magnetic flux in the sample forH50
~curve3!. The curves2 and28 differ in the value of maxi-
mum magnetic fieldHm . The characteristic values of critica
fields determined from the field dependences of absorptio
the sample with a trapped magnetic flux, i.e., curves3 are
plotted along the abscissa axis~see Ref. 11!: Hc1 j is the
lower critical field for the intergranular medium, andHpj is
the field corresponding to complete transition to the criti
state of the sample for the intergranular medium with
conservation of the Meissner state of the granules.

It is well known that the magnetic-field dependences
rf absorption of granular HTS samples in a decreasing m
netic field are characterized by a lower absorption as c
pared to the values obtained in an increasing field for
same values ofH. However, nearH50 the situation
changes in all cases: the absorption in a decreasing fie
stronger than in an increasing field. A transition from o
situation to the other naturally determines the intersection
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the curves describing the magnetic field dependences in
creasing and decreasing fields at the pointH5Hc . The value
of the external magnetic fieldH5Hex corresponding to the
maximum value of critical current density on the depende
in a decreasing magnetic field normally exceeds the va
H5Hc(Hex.Hc).

1–5 This peculiarity is also observed fo
the magnetic-field dependences of rf absorption.

It is remarkable that the reverse situation, i.
Hex,Hc , is clearly manifested in the experiment9 aimed at
the determination of the effect of the fields trapped in t
intergranular space by closed circular currents embrac
several granules. However, this peculiarity was disregar
in Ref. 9 as well as in other publications.

Figure 1a shows a typical field dependence of
Q-factor in a decreasing magnetic field for a sample synt
sized according to the classical technology~curve 2!. For
Hm5165 Oe, Hex.Hc on this curve. The condition o
equality of absorption in increasing and decreasing fields
H5Hc in the case whenHex.Hc can be easily explained in
the model proposed in Refs. 2 and 4 and taking into acco

FIG. 1. Magnetic-field dependences of theQ-factor andQrem of an rf circuit
loaded with a ceramic sample prepared according to the standard cer
technology~a! and with partial melting~b! in an increasing magnetic field
~curve1! and in a decreasing magnetic field forHm5165 Oe~curve2! and
70 Oe~curve28!, and in a sample with trapped magnetic flux~curve3!.
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the critical state of the subsystem of granules alone. This
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condition can be written in the form

uBu5u2Bgu, ~1!

whereB5mH, m is the permeability, andBg the local value
of the magnetic field in the intergranular space, which
associated with the dissipated field of the magnetic fl
trapped by granules. It should be recalled that, accordin
the concepts of the model,2,4 the magnetic field vectorsB and
Bg in the intergranular space are opposite. The peak on
curve2 observed at the pointHex is determined by the equa
ity of local fields in the intergranular space:

uBu5uBgu. ~2!

However, as the maximum value of the magnetic fie
Hm for which the hysteresis cycle takes place decreases
value ofHc on the magnetic field dependences of rf abso
tion is larger thanHex in some cases~see Ref. 9!. Curve28 in
Fig. 1a obtained forHm570 Oe is a typical example of th
magnetic-field dependence in this case. Moreover, the c
dition Hc.Hex can be also observed for higher values
Hm in the case when the technological conditions of synt
sis of HTS materials are changed. By way of an exam
Fig. 1b shows the magnetic-field dependence of rf absorp
in a decreasing magnetic field~curve2! for an HTS sample
whose synthesis was accompanied by partial melting, wh
made it possible to double the value of critical current d
sity. For this sample, the conditionHc.Hex is also fulfilled
for Hm5165 Oe, which is usually not observed for samp
obtained by the standard method of solid-state synthesis

In the electrodynamic model proposed in Refs. 2 and
the conditions of intersection of magnetic-field dependen
of rf absorption in increasing and decreasing fields canno
formulated forHc.Hex, i.e., in the case when the total loc
valueBeff of magnetic field in the intergranular space do
not change its direction to become antiparallel to the exte
magnetic field. For this purpose, we must modify the mo
of flux trapping2,4 in order to take into account the flux trap
ping in the intergranular space.

DISCUSSION OF RESULTS

Before we take into account the influence of rf abso
tion of the magnetic field determined by the magnetic fl
trapped by stable current loops embracing several granu
let us consider the main features of the electrodyna
model2,4 applied for analysis of magnetic-field dependenc
of critical currentJc . We assume thatJc ~as well as rf ab-
sorption! is mainly determined by the intergranular mediu
which can be often visualized as a network of Joseph
junctions, and the influence of the external magnetic field
Jc ~or absorption! is determined by the magnitude of th
local magnetic fieldBeff in the intergranular space. For th
purpose, we consider the nature of variation of the com
nents of the local magnetic fieldBeff in the intergranular
space as a function of a~decreasing! magnetic fieldH with
the help of schematic diagram presented in Fig. 2. The va
tion of B in the intergranular medium is presented by t
solid curve emerging from the origin, deviating from th
straight line for small values ofH and approaching it asymp
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totically for higher values of the magnetic field. The dot-an
dash line describes the change in the magnitude of the c
ponent Bg of the local magnetic field created by th
dissipative field of the flux trapped by granules. The dire
tion of this component in the intergranular medium is opp
site to the direction of the external field component. Ho
ever, the fieldBg is presented in the first quadrant of th
coordinate system for the sake of visualization of the to
local fieldBeff between granules.

On the diagram under consideration, the effective lo
magnetic fieldBeff acting on the Josephson junctions b
tween granules is determined by the sum of the vectors
sociated with the applied fieldB and the opposite fieldBg .
The variation ofBeff in a decreasing magnetic field is dete
mined by the vertical size of the hatched region between
curvesB(H) andBg(H). Proceeding from this diagram, w
cannot explain the fulfillment of the ‘‘castling’’ condition fo
the values ofHc andHex, which is expressed in the form o
the replacement of the inequalityHex.Hc by the inequality
Hc.Hex ~see Fig. 1b and curve28 in Fig. 1a!.

These peculiarities of the magnetic-field dependence
rf absorption can be explained by introducing additional
cal fieldsBj induced by the magnetic flux trapped in th
intergranular space by stable closed currents passing thro
the system of granules and containing Josephson junction
their circuit. We assume that superconductivity of the int
granular subsystem is weaker~the value of critical current
density for this subsystem is much lower than for the s
system of granules!. However, it is also a type II supercon
ductor which exhibits in static magnetic fields a transition
the critical state described by the simplest Bean’s mod
Naturally, this medium exists in the critical state only in ve
weak fields until intergranular junctions are broken by t
applied field which affects the variation of the local fie
Bj more strongly than the variation of the local fieldBg .

Proceeding from these assumptions, we can pre

FIG. 2. Schematic representation of the dependences of local magnetic
components in the intergranular space on the applied decreasing mag
field H in the field rangeH,Hc1g for Hm.Hc1g, taking into account mag-
netic flux trapping only in grains~according to the model developed in Ref
2 and 4!.
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schematically the pattern of variation of the local magne
field components in the intergranular space in a decrea
field as a function of the applied field~Fig. 3!. The nature of
variation of the local magnetic field componentBj associated
with the trapped magnetic flux in the intergranular space
presented by a segment of the dashed curve with a s
larger than that of the dot-and-dash curve describing
variation of the field componentBg . This curve terminates a
the pointBjm determining complete rupture of intergranul
junctions. The direction of the magnetic field compone
Bj coincides with the direction of the applied magnetic fie
B in the medium.

In contrast to Fig. 2, the solid curve in Fig. 3 shows t
total value of the local fieldsBa(H) in the intergranular me-
dium which coincides in direction with the applied magne
field componentBa5B1Bj , and not the component assoc
ated with the applied magnetic fieldB. However, the com-
ponentBj50 for H.Hjm .

An analysis of the points of intersection of the depe
denceBg(H) with the dependenceBj (H) and the nature of
variation ofBa(H) indicates the possibility of ‘‘castling’’ of
the pointsHc andHex on the magnetic-field dependence. F
small Hm , the following condition is satisfied at the poin
Hc :

uBgu5uBj u, ~3!

which ensures mutual compensation of these fields. The
of the effective local fieldBeff acting on intergranular junc
tions is played, as before, by the component associated
the applied fieldB subjected to a certain compression. If t
inequalityHc.Hex is satisfied, the condition

uBgu5uBau5uB1Bj u. ~4!

is satisfied at the pointHex corresponding to the extrema
point on the magnetic-field dependence of rf absorption i
decreasing field.

FIG. 3. Schematic representation of the dependences of local magnetic
components in the intergranular space on the applied decreasing mag
field H in the field rangeH,Hc1g for Hm.Hc1g , taking into account
magnetic flux trapping not only in grains, but also in the intergranular sp
~modified model!.
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curve describing the variation ofBg(H), the conventional
conditionHex.Hc is satisfied in the case when it does n
intersect with the segment of the dashed curveBj (H) in
accordance with the diagram presented in Fig. 2 and co
sponding to the model2,4 disregarding magnetic flux trappin
in the intergranular space. The effective local field acting
the intergranular medium is determined from the hatch
region as in the diagram in Fig. 2.

The increase in the critical current density is reflected
a decrease in the slope of the dependenceBj (H) and an
increase in the value ofBjm . This leads to an increase in th
value ofHc ~the inequalityHc.Hex being preserved!, lead-
ing to an expansion of the magnetic field range in which
absorption in a decreasing field exceed rf absorption in
increasing field. The validity of the inequalityHc.Hex in
fields up toHm5165 Oe is illustrated by curve2 in Fig. 1b,
which was obtained on YBCO samples with partial meltin
The peculiarities in the reversal of magnetic-field depe
dences of rf absorption in increasing and decreasing fie
observed in Ref. 19 on texturized samples can probably
explained by a large abscissa of the point of intersection
the dependencesBj (H) andBg(H), i.e., by a higher value of
Hc in the inequalityHc.Hex.

The peculiarities in the magnetic-field dependenc
which are manifested in magnetic fieldsH,Hc1g and cannot
be explained in the electrodynamic model2,4 can be easily
explained by taking into account the peculiarities of ma
netic flux penetration and trapping in the intergranular m
dium of the samples. These peculiarities include an ad
tional peak on the field dependence of rf absorption
samples with a trapped magnetic flux upon a change in
direction of the applied magnetic field,14 a manifestation of
the effect of magnetic field orientation on qualitative chang
in the field dependence of absorption20 under the same con
ditions, and manifestation of anisotropy.21 It is also known
that minima and maxima can appear on the virtually horiz
tal dependence Qrem(Hm) in the field interval
Hpj<Hm<Hc1g for samples with a trapped magnetic flu
upon a change in the conditions of thermal treatment of
samples.15 This effect can also be explained easily by attr
uting it to changes in the system of Josephson junctions
determine the peculiarities in the magnetic flux trapping
the intergranular space, which is confirmed by direct m
surements of magnetic flux.22

CONCLUSION

An analysis of peculiarities in magnetic-field depe
dences of rf absorption in HTS ceramic samples of
YBa2Cu3O72x type in magnetic fields lower than the lowe
critical field Hc1g for granules indicates a noticeable influ
ence of the magnetic fields created by the flux trapped in
intergranular space on the electrodynamics of the medi
These peculiarities imply that the standard model of criti
state proposed in Refs. 2 and 4 and taking into account
magnetic flux trapping only in granules is inapplicable a
requires a modification. The conditionHex,Hc serves as the

eld
etic

e
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criterion of manifestation of the effects of the field trapped in
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the intergranular medium on the magnetic-field dependen
of rf absorption.

The model proposed here makes it possible to desc
qualitatively all the peculiarities in the observed dependen
of rf absorption on the external magnetic field both f
H,Hc1g and forH.Hc1g . The model takes into accoun
the possibility of magnetic flux trapping in both subsystem
in grains in the intergranular medium.
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Acoustic transparency of layered conductors
O. Galbova and G. Ivanovski
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The method for investigating the electron properties of metals, which was developed by I. M.
Lifshits under the assumption that the form of the energy–momentum relation for charge
carriers is knowna priori, and for reconstructing the electron energy spectrum from experimental
data is applied for studying acoustoelectronic effects in layered conductors with a strongly
anisotropic conductivity of the metallic type. It is shown that the attenuation of acoustic waves
propagating along the layers can become much weaker in strong magnetic fields. The
conditions for acoustic transparency of layered conductors with a quasi-two-dimensional electron
spectrum are obtained, and the oscillatory dependence of acoustic damping decrement on
the magnetic field is analyzed for various orientations of the acoustic wave vector and the magnetic
field. © 1997 American Institute of Physics.@S1063-777X~97!00602-6#

An analysis of acoustic waves propagating in metals in aconductors decreases with increasing magnetic field.
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magnetic field resulted in the successful solution of the
verse problem of reconstructing of the electron energy sp
trum from experimental data, which was formulated by I.
Lifshits. The concept of quasiparticles, viz., elementary
citations above the ground state of condensed media, is
doubtedly effective in an analysis of physical properties
various conductors, including low-dimensional ones. This
associated with a long lifetime of conduction electrons w
the energy close to the Fermi energy, which makes it p
sible to study in detail the Fermi branch of the energy sp
trum in detail without resorting to specific models of th
energy–momentum relation for charge carriers. Such an
proach developed by I. M. Lifshits1 has made it possible to
investigate thoroughly the electronic properties of laye
conductors with a strong anisotropy in the electrical cond
tivity. Most of these conductors are layered structures of
ganic origin, whose electrical conductivity along the norm
n to the layers is considerably smaller than the conductiv
along the layers. The quasi-two-dimensional nature of
energy spectrum of charge carriers in such conductors le
to a number of specific effects2–9 which are not observed in
ordinary metals. The most impressive effect is associa
with acoustic transparency of layered conductors in a m
netic fieldH, when the radius of curvaturer of the trajectory
of a conduction electron is much smaller than its mean f
path l , but much larger than the acoustic wave length 1k.
The damping decrementG(H) for acoustic waves in metal
in this magnetic field range isl /k times larger thanG(0). On
the other hand, the electron energy absorption for acou
waves propagating along the layers in quasi-two-dimensio
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satisfying the conditionkr5p(n11/4) under whichG(H) is
again proportional tol /r .5

The current interest in low-dimensional structures
mainly due to the need in new superconducting materials
practical applications. However, the specific properties
such superconductors in the normal~nonsuperconducting!
state can undoubtedly be used in various fields of electro
~e.g., acoustoelectronics!. Galvanomagnetic phenomena
layered conductors have been studied experimentally
many authors, but acoustoelectronic effects have not b
investigated experimentally to our knowledge. The prese
of an additional parameter~wave frequency! can undoubt-
edly be used for studying the properties of charge carrier
layered conductors in greater detail and can probably hel
find the reason behind some discrepancies between
theory of galvanomagnetic effects and experiments.

In addition to acoustic wave damping in conductin
crystals, which is associated with the interaction of therm
phonons with coherent phonons having the acoustic
quency v, many mechanisms of electron absorption
acoustic waves also exist. The most significant~deformation!
mechanism10 is associated with the energy renormalizati
for charge carriers under the action of crystal deformatio

d«5l i j ui j . ~1!

In a magnetic field, this mechanism competes with
inductive mechanism, i.e., Joule losses associated with

12720127-05$10.00 © 1997 American Institute of Physics



generation of electromagnetic fields by an acoustic wave.
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These fields can be determined with the help of Maxwe
equations

curl curl E5~4p iv/c2!j ; ~2!

div E54pr8, ~3!

while the relation between the current density

j52~2ph!23E d3pevf ~p,r ,t !, ~4!

and the strain tensorui j5]ui /]xj and the electric field

Ẽ5E1@ u̇3H#/c1mü/e, ~5!

in a concomitant reference frame moving with the velocity
ions u̇5]u/]t can be determined by using Boltzmann’s k
netic equation for the charge carrier distribution functi
f (p,r ,t):

] f /]t1v] f /]r1$e~Ẽ1@v3H#/c2]d«/]r%] f /]p

5Wcol$ f %. ~6!

Herer8 andv5]«/]p are the noncompensated dens
and velocity of charge carriers,c the velocity of light, and
e andm are the charge and mass of a free electron. The
term in formula~5! is associated with the Stewart–Tolma
effect. The collision integralWcol$ f % vanishes upon the sub
stitution of the equilibrium Fermi distribution functio
f 0(«2p•u̇) for charge carriers in the concomitant referen
frame.

Maxwell’s equations and the kinetic equation should
supplemented with the equation from the theory of elastic
taking into account the reciprocal effect of the system
electrons whose equilibrium is disturbed by the crystal
formation on the ionic vibrations. Such a system of equati
in the case of small deformations was obtained for the fi
time by Silin11 for an isotropic metal, by Kontorovich12,13for
an arbitrary energy–momentum relation for charge carri
and by Andreev and Pushkarov14 for arbitrary deformations.

In the case of small ionic displacementsu, it is sufficient
to use only the linear approximation inui j and to assume tha
the deformation potential tensor componentsl i j in Eq. ~1!
are functions of the momentump of a conduction electron
alone, while the magnitudes of these components can ap
ently be assumed to be of the order of the character
energy of charge carriers, i.e., the Fermi energy. In this c
the tensor componentsl i j (p), as well as the electron energ
«(p) in an undeformed crystal, i.e.,

«~p!5 (
n50

`

«n~px ,py!cos~anpz /h!, ~7!

are also strongly anisotropic functions of the momentum
charge carriers. We assume that the coefficients of cosine
expression~7! for «(p) decrease rapidly with increasingn so
that A15hA0!A0 and An11!An , whereAn is the maxi-
mum value of the function«n(px ,py) on the Fermi surface
«(p)5«F .
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electron system by crystal deformation, the kinetic equat
for the functionf 5 f 0(« 2 p • u̇) 2 c(p,r )exp(2 ivt)]f0 /]«
assumes the form

]c/]tH1v]c]r1nc5ev•Ẽ2 ivL i j ~p!ui j , ~8!

wheren5(2 iv11/t); we assume that the wave is mon
chromatic with frequencyv; the collision integral in Eq.~8!
is taken into account in thet-approximation, i.e., as the op
erator of multiplication of the functionf 02 f by the collision
frequency 1/t of conduction electrons, andtH is the time of
motion of a charge in the magnetic field according to t
equation

]p/]t5e@v3H#/c. ~9!

Here and below, the subscript ‘‘H ’’ on t is be omitted,
andL i j (p)5 l i j (p)2 ^l i j &/^1&, where

^g&52~2ph!23E g~p!d3pd~«2«F!. ~10!

The solution of the linearized kinetic equation

c5R̂$L i j ~p!ui j1eẼ•v%, ~11!

whereR̂ is the resolvent of Eq.~8!, makes it possible to find
the acoustoelectric coefficients connecting the electron flu
due to the crystal deformation with the ionic displacementu.

The conditions for the existence of a nontrivial solutio
of the complete system of linearized equations of the pr
lem has the form of the energy–momentum relation betw
the wave vectork and the wave frequencyv. The imaginary
component of the wave vector determines the damping d
rements for the acoustic wave and the electromagnetic w
generated by sound, while the real component of the w
vector takes into account the renormalization of velocity
their propagation associated with the interaction of th
waves with conduction electrons.

However, the acoustic damping decrementG can also be
determined with the help of the dissipative functionQ pro-
portional to the time variation of entropy of the conductor10

Taking into account only the electron energy absorption
acoustic waves, we can write the dissipative function in
form

Q5^cŴcol$c%&, ~12!

while the acoustic damping decrement is defined as

G5^ucu2/ru̇2st&, ~13!

wherer is the crystal density ands the velocity of sound.
Using Maxwell’s equation in the Fourier representatio

we obtain the following relation connecting the electric fie
with the ionic displacement:

$m i j2js i j ~k!%Ẽj5$jkvai j ~k!1m im«mn jivHn /ck
2

2m i jmv2/e%uj ;

j•k50, ~14!

wherej 5 4p iv/(k2c2 2 v2); m i j 5 d i j 2 kikj /k
2; d i j is the

Kronecker delta,« in j the antisymmetric rank-three tenso
(«12351), and the acoustoelectric coefficients
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s i j ~k!5^e2v i R̂v j&, ai j ~k!5^ev i R̂L jn~p!&ujkn /k
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~15!

in the Fourier representation connect the current density

j i~k!5s i j ~k!Ẽj~k!1ai j ~k!kvuj~k! ~16!

with the electric field and the displacement of ions.
Let us suppose that an acoustic wave propagates a

the layers at right angles to the magnetic fieldH
5 (0, H sinu, H sinu). In this case, the solution of Eq.~14!
in the main approximation in the small parameterh has the
form

Ẽy~k!5$12js̃yy~k!%21@ ivuxH cosu/ck2

1jkvãy j~k!uj #; ~17!

Ẽz~k!52 ivuxH sin u/ck21mv2uz /e, ~18!

where s̃ i j (k) 5 s i j (k) 2 s ix(k)sx j(k)/sxx(k) and ãi j (k)
5ai j (k)2ax j(k)s ix(k)/sxx(k).

Equation~18! is valid only for very small values ofh,
whenh2 ! b 5 (vc/v0s)

2/vt, wherev0 is the frequency of
plasma oscillations of the electron gas. In the opposite l
iting case, for determiningẼz we must also take into accoun
the terms depending onh in the power expansion ofj z in the
small parameterh. However, vzEz is always small for
h!1, and the electric field has to be taken into accoun
the calculation of the asymptotic expression for the dissi
tive function only in the cases whenQ vanishes forh50.

In ordinary metals, Joule losses are significant only
the region of strong magnetic fields, when the radius of c
vature of the electron trajectory is smaller than not only
mean free path, but also the acoustic wave length,
th
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carriers not very strongly, so that

1!kr!kl, ~19!

the energy absorption for acoustic waves in metals is ma
determined by the deformation mechanism. In lo
dimensional conductors, the role of electromagnetic fie
generated by an acoustic wave is very significant ove
much wider range of magnetic fields including the magne
fields satisfying condition~19!. This is due to the fact tha
the acoustoelectric coefficientsai j ands i j in such fields for
kr!1/h and r! l experience giant oscillations upon
change in the reciprocal magnetic field. As a result, the
ymptotic behavior of the dissipative function differs signi
cantly from that in ordinary metals, and the inclusion of ele
tromagnetic fields leads to compensation of the deforma
mechanism of energy absorption for acoustic waves,
hence to acoustic transparency of the layered conductor.
asymptote of acoustoelectric coefficients in this range
magnetic fields has the form

s̃yy~k!5~G/kD!~12sin kd!;

ãy j~k!52 i ~GL jx /evkD!coskD, ~20!

whereD5cDp /eH cosu, andDp being the diameter of the
Fermi surface along thepy-axis, v andL jx are the electron
velocity and the value ofL jx(p) at the reference point of the
Fermi surface along the same axispy , and G
54vDpe

2t/ac(2ph)2.
The asymptotic expression for the dissipative functi

for 1!kD!1/h and for the longitudinal polarization of th
acoustic wave assumes the form
eso-
Q5
eHt cosu$g1

2~11sin kD!1g2
2~12sin kD!22g1g2 coskD%

p2h2akvc$11ujsyyu2%
, ~21!

whereg15 L jxujkv, andg25 avvuxeHc
21 cosu. of the layered conductor must be observed between the r
the

ame

iers
tion
of

of
It can be easily seen that the asymptotic form of
electroacoustic coefficientss̃yy ands̃y j changes significantly
for kD52p(n11/4), which leads to a sharp increase in t
dissipative function. However, under nonresonant con
tions, when coskD differs significantly from zero, and ther
is no need to take into account small corrections in formu
~20! for acoustoelectric coefficients, the denominator in f
mula ~21! for the dissipative function increases in proporti
to H2, and the damping decrement

G>~v/v !r / l ~22!

decreases upon an increase in the magnetic field and
mean free path of charge carriers. For the longitudinal po
ization of sound, the tensor componentLxx is obviously of
the order of the Fermi energy, and the value ofg1'g2kD is
much larger thang2 . In this case, acoustic transparency
optimal for the values of magnetic field for whichkD is
close to 2p(n21/4), and anomalous acoustic transparen
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nant values of magnetic field, which are repeated with
period

D~1/H !52pe cosu/cDp , ~23!

~the anomalous acoustic transparency must have the s
period!.

In pure conductors, the mean free path of charge carr
at low temperatures can be so large that the condi
klh@1 is observed. In this case, there exists a range
magnetic fields for which 1/h!kr!kl, and oscillations of
acoustoelectric coefficients are due to a small fraction
charge carriers of the order of (krh)21/2 on the Fermi sur-
face near its cross section by the extremal diameterDp

extr.
The magnetoacoustic resonance fork'H is absent in this
situation, and the acoustic damping decrement

G~H !5$11~krh!21/2 sin~kD02p/4!%v l /vr ~24!
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significant numerical factors of the order of unity are omitt
in formulas~22! and ~24!, andD05cDp

extr/(eH cosu).
Magnetoacoustic resonance fork'H is possible only for

krh!1, and small corrections in the parametersr / l and
1/(kr) must be taken into account in the expression fors̃yy

near the resonant values of the magnetic field. Simple ca
lations lead to the following interpolation formula fo
G(H):

G~H !5
v l /vr

11~ l /kr2!2
, ~25!

and the absorption of acoustic wave energy by conduc
electrons increases with the magnetic field in proportion
H for l!kr2.

Attenuation of transverse waves in a layered conduc
considerably depends on the form of nondiagonal com
nents of the deformation potential tensorL i j (p). In the cases
whenLyx(p) andLzx(p) are much smaller thanLxx in the
region of effective interaction of charge carriers with t
wave, wherek•v5v, the order of magnitude of the acoust
damping decrement changes significantly. However,
shear waves with the polarization in the plane of the laye
periodic alteration of transparency and resonant absorp
of acoustic wave energy is of the same nature as for lo
tudinal waves, i.e., resonant peaks in the dependenc
acoustic damping decrement on 1/H are repeated with period
~23!, although the order of magnitude of acoustic wave
ergy absorption can differ considerably from that in the c
of longitudinal waves.

Acoustic waves polarized along the normal to the lay
attenuate over considerably longer distances if the com
nentLzx is small and vanishes ash tends to zero. In this
case, the asymptotic solution of Maxwell’s equations
u5(0,0,u) has the form

Ẽy5
kvãyz1mv2s̃yz /e

12js̃yy
ju;

~26!

Ẽz5
ãzzkvj1mv2/e

12js̃zz
u.

It can be easily verified that the components of the m
trix ai j as well ass i j do not contain terms linear in th
parameterh if at least one of the indicesi and j coincides
with z. While calculating the dissipative function, we shou
not take into account the electric fieldẼy proportional to
h2 since evzẼz contains the term proportional to the fir
power ofh. As a result of simple calculations, we obtain t
following expression for the dissipative function fo
1!kr!1/h and for arbitrarily smallg:

Q5
v3tu2eH cosu

acsv~2ph!2
ULzx

1
iA1amv

hk~12js̃zz!
cosS aDr

h
tan u D U2~11sin kD!.

~27!
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the first two terms in expression~7! for the energy–
momentum relation for charge carriers. Acoustic transp
ency takes place whenkD is strictly equal to 2p(121/4),
and we must take into account small corrections ing and
1/kr in the expression for the dissipative function. If sinkD
differs significantly from21, attenuation of acoustic wave
increases with magnetic field as in ordinary crystals and
mainly determined by the first term in the brackets in fo
mula ~27!, except in some exotic models of deformation p
tential for whichLzx!h«F . The amplitude of oscillations o
G with period ~23! associated with the periodic dependen
of szz on 1/H, i.e.,

szz5
h2s0

kr F11sin kD cosS aDh tan u D G , ~28!

has an order of magnitude that isv/s times smaller than the
acoustic decrement component varying monotonically w
the magnetic field ifLzx'h«F . In addition to these oscilla-
tions, the damping decrement of acoustic waves oscilla
with a change in the angleu with the period

D~ tan u!52ph/aDp . ~29!

Angular oscillations in magnetic fields satisfying cond
tion ~19! take place over the entire range of angles betw
the magnetic field and the normal to the layers.

If a conduction electron drifts along the acoustic wa
vector ~for example, the sound propagates along
y-axis!, the acoustic damping decrement decreases by a
tor of (klh)2 for r / l!krh!1. The solution of the kinetic
equation in this case has the form

c5$exp~nT1 i k̄• v̄T!21%21E
t

t1T

dt8g~ t8!

3exp$ ik•@r ~ t8!2r ~ t !#%, ~30!

whereg(t)5 vL j i (t)kiuj 1ev(t)Ẽ.
For 1!klh! l /r , the term proportional tok•vT plays

the leading role in the power series expansion of the facto
front of the integral innT andk̄ • v̄T 5 *0

Tdtk • v(t). For this
reason, the termnT in the expression for the dissipativ
function in the case of charge carrier drift alongk with the
velocity v̄y 5 v̄z tanu > hvt tanu should be replaced by
krh tanu. If krh tanu @1, i.e., an electron can move du
ing its mean free time over a distance much longer than
acoustic wave length, we have the magnetoacoustic r
nance predicted and studied theoretically in Ref. 15.@This
resonance is sometimes called in the literature the Dopp
shifted acoustic cyclotron resonance~DSACR!.# The reso-
nance sets in fork̄• v̄T52pn; in contrast to the case o
ordinary metals, the amplitude of resonant oscillations is
termined by the parameterkrh rather than bykr.

The above formulas are valid when cosu@cDp /eHl. If
the value ofu is close top/2, i.e., cosu is so small that an
electron cannot complete a revolution in its orbit in a ma
netic field during its mean free time, the electrical condu
tivity tensor componentss̃yy ands̃zzare close to their values
in zero magnetic field. This is due to the fact that only t
magnetic field component along thez-axis affects the dy-
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namics of charge carriers in a two-dimensional conductor,
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and forh!1 the role of magnetic field componentHy be-
comes noticeable in magnetoacoustic effects only in sm
corrections in the parameterh. For u5p/2, the magnetic-
field dependence of the acoustic damping decremen
present only in the terms that vanish ash tends to zero, and
magnetoacoustic effects are manifested most clearly only
wave propagates with a displacement of ions along the
mal to the layers.

The oscillatory dependence ofG on 1/H takes place for
u5p/2 only for not very weak corrugation of the Ferm
surface, whenkrh@1. The period of oscillations

D~1/H !54pe/kcDDpx , ~31!

of the damping decrement of an acoustic wave propaga
along the normal to the layers can be used to determine
intensity of Fermi surface corrugation to a high degree
accuracy. HereDDpx is the difference between the max
mum and minimum diameters of the Fermi surface along
px-axis for py50.

The damping decrement for an acoustic wave polari
along the normal to the layers in a strong magnetic field
which kr!1 depends considerably on the magnitude a
orientation of the magnetic field relative to the layers, a
the dependence ofG on u acquires sharp peaks or dee
which are repeated with period~29! only for tanu @ 1.

For an acoustic wave propagating along the norma
the layers, Maxwell’s equations have the form

$12js̃xx~k!%Ẽx2js̃xy~k!Ẽy5jãx j~k!uj2~uyHz

2uzHy!iv/c2mv2ux /e; ~32!

2js̃yx~k!Ẽx1$12js̃yy~k!%Ẽy5jãy j~k!uj1uxHziv/c

2mv2uy /e.

If the componentsL iz are proportional toh, to a high
degree of accuracy we can putãa j5aa j and s̃ab5sab ,
wherea,b5x,y, and the energy absorption of the acous
wave propagating along the normal to the layers is ma
associated with Joule losses. In this case, the damping
rement of the wave can be calculated easily. However, m
netoacoustic effects can be manifested only under ra
stringent conditions, whenr! l andkrh@1 simultaneously,
i.e., either in very pure samples, or for not very strong qua
two-dimensionality. Although these conditions can hardly
satisfied in the layered conductor synthesized at present
still write here the explicit form of the acoustic dampin
131 Low Temp. Phys. 23 (2), February 1997
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layers, i.e., orthogonal to the wave vector of sound:

G~H !5
hvt

r
$12~krh!21/2b sin~kcDDp1/2eH

1p/4!%, ~33!

whereDDp1 is the difference between the maximum a
minimum diameters of the section of the Fermi surface
the planepz5const in the direction orthogonal to the ma
netic field. For such an experimental geometry, charge ca
ers do not drift along the acoustic wave vector, and the
cillations of G due to variation of the magnetic field ar
similar to Pippard oscillations,16 but their amplitude is sup-
pressed due to the presence of the small factorb.
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10A. I. Akhiezer, Zh. Éksp. Teor. Fiz.8, 1338~1938!.
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Bose fluctuations and paramagnetic susceptibility of normal 2 D metal with attraction
between carriers: spin gap?

V. M. Loktev and S. G. Sharapov

N. Bogoliubov Institute of Theoretical Physics, National Academy of Sciences of the Ukraine, 252143 Kiev,
Ukraine*
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Fiz. Nizk. Temp.23, 180–189~February 1997!

The paramagnetic susceptibility of a 2D metal with attraction between charge carriers is
obtained, proceeding from the simple theoretical field model. The temperature dependence of the
magnetic susceptibility is calculated for various concentrations of fermions. It is shown that
the paramagnetic susceptibility can be reduced significantly in view of the presence of a finite
number of decoupling fermion pairs in the normal phase. The relation of the proposed
model to the marginal behavior of the Fermi liquid in high-Tc superconductors, in particular,
with the effects associated with the formation of a spin gap, is considered. ©1997
American Institute of Physics.@S1063-777X~97!00702-0#
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Normal properties of high-temperature superconduc
~HTS materials!, including the spin gap manifested in a low
frequency spectral weight of quasiparticle Fermi excitatio
@which is smaller than predicted by the Landau theory
Fermi liquid at temperaturesT exceeding significantly~by a
factor of 1.5–2! the superconducting transition temperatu
Tc ], are undoubtedly one of the most acute and disputa
problems in the HTS theory~see the reviews in Refs. 1–5!.
The decrease in spectral weight is observed most clearl
magnetic measurements~NMR,1 neutron scattering,2 etc.!
and is attributed to the emergence, or opening of a gap in
spectrum ofspin excitations at certain values ofT. Above
this temperature region~i.e., atT.(1.5–2)Tc!, the spin gap
is not manifested~or is closed! according to experimenta
data, and the Fermi subsystem of the HTS material beco
similar to the standard subsystem in many respects. No i
cations of a phase transition are observed in this case ei

Many attempts have been made2,5–9 to attribute the ob-
served behavior of HTS materials to peculiarities of th
magnetic dynamics. Among other things, the authors of th
publications assumed that magnetic anomalies of the no
phase of HTS materials, e.g., the temperature dependen
uniform paramagnetic susceptibility~PMS! x differing from
the Pauli dependence (dx/dT.0), are consequences of in
teraction of quasiparticle excitations of an AFM metal w
overdamped spin waves which strongly attenuate accor
to the Landau mechanism, due to the formation of electro
hole pairs ~see also Refs. 3, 10!. The conclusions of the
theory ~which do not contradict the experiments!1,4,5 are de-
termined to a considerable extent by the charge carrier c
centration: the anomalies for weakly doped compounds
manifested more clearly than for strongly doped samples,
which the Landau theory is more or less applicable.

Even disregarding the magnetism of HTS compounds
such, we can speak of two~equivalent to a certain exten!
physical factors facilitating the ordinary behavior of the no
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number densitynf of delocalized~free! charge carriers. As
regards the second factor, 2D ~and quasi-2D! metals includ-
ing copper-based HTS materials~copper oxides! are clearly
characterized by a parameter separating the regions of
and high values ofnf , i.e., by the energy«b of the bound
two-fermion state formed as a result of attraction of any o
gin ~direct11,12 or indirect13!. For example, if the Fermi en
ergy«F!u«bu, the value ofnf can be regarded as small, an
the behavior of the Fermi system1! differs significantly from
the ordinary behavior14,15 ~e.g., the fermion chemical poten
tial m Þ «F , attaining negative valuesm,0!. A high number
densitynf corresponds to the opposite inequality«F@u«bu
which leads to the ‘‘restoration’’ of the normal properties
the Fermi liquid. Finally, the range of«F*u«bu ~with
m'«F! is known as the ‘‘crossover’’ region in which we ca
expect a noticeable deviation of the temperature depende
of various parameters of a 2D metal from those predicted b
the Landau theory without assuming that its Fermi sphere
the metal is broken~the latter is clearly detected in HTS
materials!.3–5

For this reason, the assumption that the anomalous~in-
cluding magnetic! behavior of the normal phase of HT
compounds~their ‘‘strangeness’’! is probably due to lower
dimensions of their electronic properties and a relatively l
~as compared to ordinary metals! number densitynf rather
than due to the structure of their magnetic ground state
hibiting strong AFM correlations appears quite plausib
The numerical calculations16 ~see also the review in Ref. 17!
made for the 2D Hubbard model with attraction (U,0) at a
lattice site also speak in favor of such an assumption. Th
calculations proved that, in view of fluctuational formatio
of noncorrelated pairs aboveTc , anomalous temperature de
pendences can be traced even for not very large ra
uUu/t ~t is the one-particle hopping parameter!. In this case,
the PMS of fermions and the low-temperature spec
weight measured from NMR signals1,4–6 ~whose decrease
was noted above! behave similarly.

13220132-08$10.00 © 1997 American Institute of Physics
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Returning to model~1!, we write the uniform PMS
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demonstrate the nature of and the reason behind the d
tions in the behavior of the normal phase of a 2D metal from
the predictions of the Landau theory as well as the temp
ture T at which these deviations are observed have not
been carried out. For this reason, we shall make an atte
here to calculate the static PMS of a 2D electron system with
attraction between particles. On one hand, the calculatio
x for the normal phase has the simplest form for such a g
and on the other hand, it allows a tracing of the comp
dynamic processes occurring in a fluctuating lo
dimensional system. We deliberately disregard the contr
tion to the PMS from the magnetic subsystem proper wh
obviously plays a significant role in the case of copper
ides. It should only be noted that the Hubbard model w
U,0 was investigated in recent publications,18,19 through
the solution of self-consistent equations for theT-matrix
with the help of the method of moments~in the two-pole
approximation, taking into account the two Hubbard su
bands!, and it was proved that such a model gives anot
example of the behavior differing from that typical of a La
dau Fermi liquid.

We shall consider the field model of a 2D Fermi system
with attraction~which is closer to an ordinary system! with-
out presuming strong correlations between charge carr
We proceed from a physical situation3 in which strong cor-
relations form the ground state of an HTS material and
not affect significantly free charge carriers appearing due
doping. Nevertheless, the spectrum of a low-dimensional~in-
cluding 2D! systems contains~see above! an additional dis-
crete state~energy«b! or ~depending onT! a continuum of
such states which makes a significant contribution to the
served properties of the system.

2. MODEL AND GENERAL DISCUSSION

The simplest field Hamiltonian of a 2D Fermi system
with a local attraction in an external magnetic fieldH has the
form

K52E d2r H cs
1~r !S ¹2

2m
1m Dcs~r !

1Vc↑
1~r !c↓

1~r !c↓~r !c↑~r !1mBH@c↑
1~r !c↑~r !

2c↓
1~r !c↓~r !#J , ~1!

wherem is the effective mass of a particle,V.0 the attrac-
tion constant,mB the Bohr magneton, and it is assumed th
\5kB51. In accordance with the problem formulate
above, we have omitted in~1! the vector potential which is
known to be associated with diamagnetic susceptibility.2! It
should be noted that model~1! was considered long ago b
many authors~see, for example, Ref. 20!, but only the super-
conducting phase (T,Tc) of a 3D system in strong fields
~the PM limit! was studied comprehensively for large valu
of nf ~which, in other words, corresponds to the BC
theory!.
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which can be expressed in terms of the thermodynamic
tentialV(v,m,T,H) ~v is the volume!:

x52
1

v
]2V

]H2U
H50

. ~2!

In the approximation taking into account Gaussian fluct
tions of the order parameter~which is equal to zero in the
normal phase!, we can obtain, by using the functional inte
gration formalism,21 the following expression for the thermo
dynamic potential:

V~v,m,T,H!52T~Tr Ln G0
212Tr Ln G21!, ~3!

in which

G0~ ivn ,k,H!5
~ ivn1mBH ! Î1j~k!tZ
~ ivn1mBH !22j2~k!

exp~ idvntZ!,

d→10 ~4!

and

G21~ iVn ,K ,H!5
1

V
2
1

2 E dk

~2p!2
@j~k1K /2!1j~k

2K /2!2 iVn#
21H tanh 1

2T
@j~k

1K /2!1mBH#1tanh
1

2T
@j~k

2K /2!2mBH#J ~5!

are the temperature Green’s functions~GF! of an ideal Fermi
gas and of fluctuations of the order parameter in the exte
field. Green’s functions~4! and~5! are written in the follow-
ing notation: tZ is the Pauli matrix,Î is the unit matrix,
j(k) [ k2/2m2 m; vn [ (2n1 1)pT andVn [ 2npT. We
assume that the energy–momentum relation is quadratic,
hencenf5m«F /p for 2D metals. The chemical potentia
can be determined from~3! according to the relation

nf52
1

v
]V

]m
, ~6!

whose role increases as the value of«F approachesu«bu, and
accordingly the difference between the value ofm and «F
increases.3,17

Taking into account the explicit form of~3!, we obtain
the following equation from~6! for the number of particles
~we putH50 in it!:

nf5nF~m,T!12nB~m,T!, ~7!

where

nF~m,T!5T (
n52`

` E dk

~2p!2
tr@G0~ ivn ,k,H50!tZ#

~8!

and
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nB~m,T!5T (
n52`

E
~2p!2

G~ iVn ,K ,H50! ~9!

are the effective average numbers of fermions and compo
bosons~fluctuating pairs! for givenm andT. After the sub-
stitution of the GF~4! into expression~8! for the number of
unpaired fermions, the latter expression can easily
summed overvn

22 and integrated overk:

nF~m,T!5E dk

~2p!2
nF@j~k!#

5
m

p
T ln@11exp~m/T!#, ~10!

sincenF(v) [ @exp(v/T) 1 1#21 is the Fermi distribution
function.

In analogy with~7!, we can also split the expression fo
the PMS so that

x~m,T!5xF~m,T!2xB~m,T!, ~11!

i.e., we have two contributions: the fermion contribution

xF~m,T!5xPauli@11exp~2m/T!#21;

xPauli[mB
2m/p ~12!

and the boson contribution

xB~m,T!5xb~m,T!nB~m,T!, ~13!

in which

xb~m,T!5xPauli

1

8T2 E2m/2T

`

x21 sinh x cosh23 xdx

~14!

describes the contribution from the compound boson. It
be seen that the fluctuating Bose component makes a fi
~and negative! contribution to PMS. It should be noted, how
ever, that the quantitiesnB(m,T) defined by~6! and~9! gen-
erally do not coincide@the PMS~13! is associated with~9!#.
However, in the case considered below, when the role of
~7! becomes significant indeed, these definitions are ide
cal.

Boson fluctuations taken into account in~3! can corre-
spond to relatively stable as well decaying~short-lived! com-
pound particles. In the general case, their lifetime depend
the relation between«F and «b , but for largenf ~i.e., for
«F@u«bu!, it depends on the relation betweenm'«F and
Tc ~see below!, which is more convenient and natural to us
~It should only be noted that expressions~13! and~14! can be
obtained most easily by expanding~5! in powers ofH; the
corresponding expansion contains only even powers s
compound singlet bosons do not perceive the direction of
field.!

As a result, the calculation of PMS for various densit
of fermions can be reduced to an analysis of the s
consistent system of equations~7! and ~11!, the actual case
of relatively high values ofnf corresponding to the forma
substitutionm→«F or to the solution of only one~second!
equation. Even such a simple~at first sight! problem is actu-
ally complicated in view of a complex frequency
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temperature distribution of fluctuations. It should be noted
this connection that although potential~3! was obtained by
taking these fluctuations into account, we used the low
~Gaussian! approximation in which the interaction betwee
fluctuations is neglected. This approximation is complet
identical to the one used in Refs. 23 and 24, where the eq
ity m5«F was not presumed, and Eq.~7! was solved to-
gether with another equation, viz., the so-called Thoul
condition. In the case of 3D systems, such an approach h
made it possible to trace directly the crossover from the lo
pair mode to Cooper pairing.

On the other hand, an attempt was made14 to use the
same approach for analyzing the normal phase of 2D sys-
tems. Among other things, them(T) dependence for differ-
ent initial charge carrier concentrations was determined fr
the solution of Eq.~7!, and an astonishing conclusion wa
drawn that the system always contains a finite number
stable bound fermions forT.Tc irrespective ofnf .

One way or another, we encounter here the problem
Tc of 2D systems. Indeed, phase fluctuations of the or
parameter disturb long-range correlations so that eit
Tc50,25 or this temperature is much lower than its mea
field valueTc

MF ,26 if we identify with this value the tempera
ture TBKT corresponding to the establishment of algebr
order27,28 due to confinement of vortices.

All these stimulated the authors of Refs. 15 and 29
revise the justification of the Gaussian approximation in
case when fluctuations are taken into account. It was fo
that the existence of stable pairs aboveTc depends onnf :
there exists a critical concentrationnf

cr separating3! the
Fermi-like (nf.nf

cr ,m.0) and Bose-like (nf,nf
cr ,m,0)

behavior of the system. In other words, a new~Fermi-like!
class of solutions, which did not exist in Ref. 14 and f
which it is meaningless to speak of real bosons aboveTc,
was obtained in Refs. 15, 29.

At the same time, it was found in Ref. 29 thatTc Þ 0 in
the Gaussian approximation, which, strictly speaking, can
be regarded as a satisfactory result since, as soon as w
beyond this approximation~or take fluctuations into ac
count!, the result Tc50 for 2D systems is restored
immediately.30 Thus, we have to decide whether we can c
culate the PMS for an idealized 2D system or we must take
into account the fact~on the basis of purely physical consid
erations! that real so-called 2D metals are actually quasi
2D systems~as in the case of HTS compounds! and that a
transition to the three-dimensional case~taking into account
the coupling between conducting layers! always stabilizes
Tc .

31,32

We will stick to the second alternative and will henc
forth assume that, on one hand, real densities are such
m'«F in actual practice, and on the other hand,Tc'Tc

MF for
some reason or another. This allows us to calculate con
tently ~naturally, under the assumptions made above! the
contribution of Gaussian fluctuations to the PMS of
strongly anisotropic~2D in the limit! metal with high values
of nf . Moreover, we must admit that such assumptions
common for virtually all publications on the HTS theory, b
as a rule, they are not formulated explicitly.
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3. GREEN’S FUNCTION FOR COMPOUND BOSONS
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If we continueiVn→v1 i0 analytically to the GF~5!,
we arrive at the retarded GF for bosons:

G21~v,K ![G21~v1 i0,K ,H50!

5
1

V
2
1

2 E dk

~2p!2
@j~k1K /2!1j~k2K /2!

2v2 i0#21F tanh 1

2T
j~k1K /2!

1tanh
1

2T
j~k2K /2!G , ~15!

which is more convenient for analysis. Expression~15! was
written for the first time in the pioneering work by Aslam
zov and Larkin33 ~see also Ref. 34! devoted to investigation
of fluctuation effects in 3D superconductors. In spite of it
long history and apparent simplicity, a comprehensive an
sis of the boson GF for arbitraryv, K , m, andT has not
been carried out yet. Such an analysis normally presume
standard BCS mode in whichTc /«;1024, the fluctuation
range is narrow~i.e., uT2Tcu!Tc!, and v and K are so
small that the lowest expansion in derivatives in t
Ginzburg–Landau effective potential is valid.

The attempts to study this GF for arbitrary~including
negative! values ofm were made in Refs. 15, 21, and 35;
was proved, for example, that the following expansion ho
in the region of smallv andK :

ReG21~v,K ![a1b
K2

4m
2cv, ~16!

whose coefficients in the 2D case can be represented by t
formulas21

a5
m

4p F ln pT

u«bug
2E

0

1

dx x21tanh
m

2T
xG ; ~17!

b5
m

8pm F tanh m

2T
1

m

2T

1S m

2TD 2E
2m/2T

`

dxx22 tanh2 xG ; ~18!

c5
m

8pm E
1

`

dxx22 tanh
m

2T
x ~19!

and lng50.577 is the Euler constant. In contrast
ReG21(v,K ), we can obtain the following closed expressi
for Im G21(v,K ):

52
m

4
tanh

v

4T F12 f S v12m2
K2

4m
,
K2

4mD GuS v12m

2
K2

4mD , ~20!

where
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p 0

3
cosh~Axy cos•w/T!21

cosh@x1y22m!/2T]1cosh~Axy cosw/T!
,

~21!

which, however, virtually cannot be used in such a gene
form and also requires approximations.

In this case, the conditiona50, or the equation

ln
pTc

MF

u«bug
5E

0

1

dxx21 tanh
m

2Tc
MF x ~22!

for the critical line is just the implicit dependenceTv
MF(m)

for all values ofm. If, however, we consider the availabl
experimental data on HTS materials~see Refs. 1, 4, and 5!, it
can be easily seen that peculiarities of the problem are
flected in the possibility of expanding the range ofT up to
T2Tc*Tc rather than in the knowledge of the behavior
G21(v,K ) for an arbitrarym.

Indeed, the relations m/«F&1 and Tc /«F
.(1–3)•1022 are fulfilled for most of investigated HTS
materials in the region of optimal doping.36 These relations
~especially the second one! imply that, even if a mode close
to the BCS conditions is realized in an HTS material, it ca
not be regarded as standard~this was emphasized more tha
once!. In our opinion, it is important indeed that it is obv
ously insufficient to use the expansion of ImG21(v,0) in v
as well as the expansion of ReG21(v,K ) ~16! in order to find
nB(m,T) @see Eqs.~9! and~15!# in the range ofT values far
from Tc([Tc

MF) since it would ultimately be equivalent t
the application of the Ginzburg–Landau theory which can
be used directly37,38 in view of a large contribution of short
wave and high-frequency fluctuations forT2Tc;Tc . Con-
sequently, a correct description of fluctuations~including
those under consideration! can be obtained by taking into
account the dependence of the GF~15! onv andK with the
maximum possible accuracy. For this purpose, it would
expedient to use first of all a more accurate expression
Im G21(v,K ) ~expression~16! being preserved!, which is
physically due to dynamic decay processes for compo
bosons, which are intense forT.Tc and strongly affect the
properties of the 2D system. The parameters of this dec
are mainly determined by ImG21(v,K ). It is also important
that the approximate expression for ImG21(v,K ) proposed
below for calculating PMS is within the limits of applicabi
ity of representation~16!.

Thus, whenm is indistinguishable from«F and simulta-
neously much larger an the actual values ofT, the solution of
Eq. ~22! has the form

Tc
MF5

g

p
A2u«bu«F'Tc , ~23!

which immediately leads to the following relation for th
corresponding actual values ofnf :

«F
Tc

5
p

&g
A «F

u«bu
. ~24!
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This relation allows us to describe the extent of deviation of
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the behavior of the system from the predictions of the B
theory by using the value ofTc which is more accessible fo
direct measurements than the energy«b . As regards expres
sions~17!–~19!, they can be simplified significantly, for ex
ample, for the regionm/T*10 and assume the form

a5
m

2p
ln

T

Tc
; b5

m

2p

7z~3!

~2p!2
m

T2
;

c5
m

2p

1

4m
~25!

@z(x) is the zeta-function#. It follows hence that when
T2Tc;Tc , the approximate nature of the definition
Tc5Tc

MF used in~23! becomes immaterial. Moreover, usin
~25!, we can transform~16! to

ReG21~v,K !5
m

2p S ln T

Tc
1aK22

v

4m D ;
a[

1

4m

7z~3!

~2p!2
m

T2
, ~26!

while the coefficientm/2p in fact specifies the density o
2D fermion states. To within the factor 2/3 in the coefficie
a, which is associated with the 2D nature of the system
expression~26! coincides with that derived by Aslamazo
and Larkin38 ~it should be noted that they considered only t
region close toTc , replacing the quantityT by Tc ; in our
case, the retaining of current values ofT anda is of funda-
mental importance!.

It should also be noted that the termv/4m in ~26! is
associated with the absence of complete electron–
symmetry39 in the model under investigation; this term d
scribes the undamped component of the boson GF. In
33, this term was omitted since the value ofv was regarded
as small, while, on the contrary, the ratiom/Tc was assumed
to be large. In our case, this term is not small and affects
behavior and value of PMS considerably.

We complete the calculation of ImG21(v,K ) by deriv-
ing an expression for the region of small frequencies a
momenta defined by the inequalitiesv,T and
K2/4m!(T/m)T. In this case, we obtain from~20! and~21!

Im G21~v,K !52
m

4
tanhS v

4TD ~12dK2!u~v

12m!u~12dK2!, ~27!

whered[(1/16m)(m/T4). Using formulas~26! and~27!, we
can write the sought GF for compound bosons appearin
~9! as well as its imaginary component used by us:

Im G~v,K !

52
Im G21~v,K !

S ln T

Tc
1aK22

v

4m D 21S p

2 D 2~12dK2!tanh2S v

4TD ,
~28!

which is proportional to the boson spectral density. This
pression differs basically from that obtained form the exp
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per se, which corresponds to the suppression of the con
bution from short-wave Bose fluctuations. It should be no
that earlier such a cutting was introduced artificially40 in or-
der to expand the temperature~fluctuation! region of appli-
cability of the Ginzburg–Landau approach.

The form of ImG21(v,K ) given above allows us to us
analytical calculations virtually to the end and to carry o
numerical integration only at the last stage, which is ve
important in view of lack of analytical results. It should on
be noted that henceforth we will have to use expression~28!
in the region ofv;m also, i.e., beyond the above-mention
limits where this expression@as well as~27!# holds directly.
Nevertheless, the concordance between this algorithm
the approach developed in Ref. 40 indicates that the inac
racy introduced by us is rather of quantitative than of qua
tative nature.

4. TEMPERATURE BEHAVIOR OF PARAMAGNETIC
SUSCEPTIBILITY

The summation over frequencies in~9! is carried out
after the substitution of the spectral representation~28! into
this expression:

nB~m,T!5
1

p E
2`

`

dvE dK

~2p!2
nB~v!Im G~v,K !,

~29!

wherenB(v) [ @exp(v/T) 2 1#21 is the Bose distribution
function.

Before analyzing the behavior ofnB(m,T) ~29! for rela-
tively large values ofnf , we write for comparison the solu
tion of Eq. ~7! in the case of smallnf , when m,0 and
umu/T@1 ~the limit of local compound pairs!. The required
solution is the valuem'2u«bu/2; it follows directly from
formulas~11!–~14! that x(m,T)5O@exp(2u«bu/T).# The ob-
tained result has a simple meaning: the contribution fr
fermions to the total PMS is exponentially small in view
their absence; the contribution from compound sing
bosons is suppressed by the large binding energy and
spin @xb(2u«bu/2,T).0; see~14!# in spite of the fact that
their number is relatively large@nB(2u«bu/2, T)'nf /2#.
Among other things, this simple physical situation is impo
tant because it can be considered analytically, altho
Bose-like Fermi systems are apparently of theoretical inte
only.

As regards PMS in the region of optimal concentratio
we can write@see~14!#

xb~m,T!52xPaulia
m

«F
, ~30!

wherexPauli anda are defined in~12! and~26! respectively,
and we assume, as before, that«F /T@1. Integrating~29!
with respect toK and using~28!, we obtain
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~2p!2

5
1

2am
u~v12«F!

1

11k2t2~v!

3H arctan
1

kt~v!
2arctan

1

kt~v!

3F 12
11k2t2~v!

kS 1k 1 ln
T

Tc
2

v

4«F
D G

2
kt~v!

2
lnU S 1k 1 ln

T

Tc
2

v

4«F
D 2

S ln T

Tc
2

v

4«F
D 21t2~v!

UJ , ~31!

where t(v)[(p/2)tanh(v/4T), and the paramete
k[d/a5p2/7z(3).1.18 can be used as a fitting parame
in view of the approximate nature of~27!.

In order to complete the derivation of the expression
the densitynB(«F ,T), we must substitute~31! into ~28!, but
before that we consider its another representation, i.e.,

nB~«F ,T!5
1

p E
0

`

dv E dK

~2p!2
@ Im G~v,K !

2Im G~2v,K !#nB~v!

2
1

p E
0

`

dvE dK

~2p!2
Im G~2v,K !. ~32!

This simple division is actually not formal, but has a certa
physical meaning. Indeed, the first integral in~32! is singular
atT5Tc in view of the presence of the functionnB(v) in it,
while the second integral remains finite at this point. T
means that the first integral corresponds to thermally exc
decaying bosons which become coherent and stabilize in
form of Cooper pairs atT5Tc ~if we proceed from the re-
gion T.Tc!. On the contrary, the second integral describ
incoherent metastable Bose particles whose number is
ways finite.

The simplest estimates of the dependences on«F indi-
cate that the order of magnitude of the first term in~32!, or
the boson density component depending onT, is propor-
tional to T/«F ; in the range ofnf under investigation, this
term is small if the value ofT is not close toTc . The esti-
mation of the second term givesO(1), i.e., the contribution
of compound bosons to PMS is always negative and can
comparable with the fermion contribution even if the ferm
ion density in the system is large, and the fraction of co
pound bosons is relatively small. In other words, a fin
number of short-lived@in view of the relatively large value
of Im G21(v,K )# and noncorrelated Bose particles, which d
pends onTc weakly @only through ImG21(v,K )#, is always
present in the normal phase of 2D Fermi systems with at-
traction between charge carriers irrespective of«F . Their
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correlation between these particles and their number incre
as we approach the critical temperature. It should be born
mind that the above statement concerning the large bo
contribution to PMS is determined to a considerable ext
by the dimensionality~2D in our case!. For 3D systems, the
situation is different. For example, taking the same value
Im G(v,K ) ~which coincides17 with that for a 2D system
only for small v and K , but is much smaller for
v;22«F!, we can find thatnB(«F ,T);(T/«F)

1/2 only due
to the root dependence of the density of states on ene
This means that the boson contribution to the PMS of 3D
systems decreases with increasing«F , instead of being con-
stant as in the 2D case.

In order to obtain the required temperature depende
of PMS, we integrated expression~31! numerically with re-
spect tov. The corresponding results are shown in Fig.
The calculations were made forx(«F ,T) determined from
~11!, where we assumed thatxF(«F ,T)'xPauli, and on the
whole confirmed the above estimates. For example,
T*2Tc , the main contribution toxB(«F ,T) indeed comes
from the second@see ~32!# term, and the dependenc
x(«F ,T) on T is close to linear. The contribution from th
first term becomes significant in the regionT&2Tc ; it can
be seen that this contribution for«F /Tc.10 is naturally
larger than for«F /Tc.50.

A comparison of theoretical curves with experimen
dependences~see, for example, Refs. 1 and 5! indicates that
they are close qualitatively. For example, two characteri
temperature intervals are usually distinguished on the exp
mental temperature dependences of PMS: the first inter
where PMS decreases linearly, and the second inter
wherex(«F ,T) decreases more rapidly. In the case of HT
materials, this is explained by the formation of a gap in th
spin excitation spectrum. The regionT*&T&Tcr corre-
sponds to the first interval and the regionTc&T&T* to the
second interval; hereTcr andT* are some empirically deter
mined temperatures~see Fig. 1!. Although we could not es-
timate the values of these temperatures, it can be seen

FIG. 1. Behavior of PMS as a function ofT: «F /Tc510 ~curve 1! and
«F /Tc550 ~curve2!. Characteristic temperaturesT* andTcr are indicated
approximately, and the intersection of the curves is due to the coeffici
a, b, andc used in the form~25!, for which the inequalitym/T.10 used for
calculating curve1 is violated with increasingT.
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demonstrates the same behavior. In our opinion, this cas
shade of doubt on the theories and models in which suc
behavior of PMS is attributed exclusively to the magne
ground state of an HTS materials or to the magnetism
their cuprate planes, while the role and properties of
Fermi subsystem of a lower dimensionality is actually n
glected. We believe that the latter can also be manifeste
experiments~at any rate, its role cannot be disregarded!.

CONCLUSION

The results of above calculations confirm the pecu
properties of 2D Fermi systems with attraction between pa
ticles. We considered direct nonretarded attraction by us
the BCS model, but in all probability, the indirect interactio
in a 2D system will necessarily lead to the same behavio
PMS, although this statement requires additional verificat

An interesting physical result obtained by us is the d
covery of a significant role of noncorrelated fluctuating Bo
pairs aboveTc . They are responsible for the anomalous b
havior of the normal phase associated, for example, with
formation of a pseudogap in it. A decrease inT leads to the
emergence of correlations, and the behavior of the sys
nearTc is determined to a considerable extent by ordin
superconducting fluctuations like those in the Aslamazo
Larkin theory. The conclusion that the presence of the Fe
surface does not rule out a peculiar behavior of the Fe
system if its electron properties have lower~quasi-2D! di-
mensionality also appears to us as important. In the theo
with real ~and not virtual! local pairs~e.g., in the form of
bipolarons!, the Fermi surface does not exist.41 The problem
of the presence or absence of pairs aboveTc can be solved if
we assume that the pairs are not stable, but decaying fo
tions whose role is especially important in systems with
lower dimensionality.

At the same time, our calculations did not reveal a te
dency of PMS to the Pauli susceptibility atT.2Tc upon an
increase in the ratio«F /Tc . We can assume that this is du
to the fact that we actually analyzed a 2D rather than quasi-
2D model since it was shown that the required behavior
PMS is observed for 3D systems. For this reason, a gene
alization of the model considered here to this more reali
~quasi-2D! case would be undoubtedly interesting~not to
mention the inclusion of intrinsic magnetic subsystem, v
localized spins in the model! in order to find out with the
maximum possible certainty whether a spin gap is actu
present in HTS materials, or the temperature behavior
their PMS can be described proceeding only from the p
ence of holes moving over cuprate layers and experien
attraction according to a certain mechanism.

The authors are grateful to E` . V. Gorbar and V. P. Gusy
nin for numerous stimulating discussions of the proble
considered here and for valuable remarks.

Addendum made in proofs

In the publications appearing after this article was s
mitted ~including A. C. Loesteret al., PhysicaC203, 208
~1996!; H. Ding et al., Phys. Rev. Lett.76, 1533~1996! and
Nature382, 51 ~1996!; D. S. Marshallet al., Phys. Rev. Lett.
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166, 213~1996!!, the results of measurements of one-parti
photoemission spectra with angular resolution~ARPES! for
cuprates are reported. These results indicate that the gap
served aboveTc ~to be more precise, a pseudogap as c
rectly indicated in these publications!, is transformed more
of less smoothly into a superconducting gap. Both gaps
hibit anisotropy, but their relation to the magnetism of HT
materials is not discussed.

In our opinion, these measurements confirmed qual
tively ~and quite reliably! the pattern described above, a
cording to which compound bosons exist in low-dimensio
metals not only belowTc , but also at temperatures consi
erably higher than critical. The only difference lies in th
lifetime and correlation of these particles: aboveTc , the
former is very short~bosons are overdamped!, and the latter
is absent~in the global sense!. However, the indirect nature
of fermion–fermion attraction, or, in other words, the incl
sion or delay effects in the model, is an important circu
stance which should be consistently taken into account in
model in order to compare~at least semiquantitatively! its
physical properties with experimentally observed para
eters. In this case, the formation of a gap~see Ref. 13! as
well as a pseudogap under BCS-type conditions will ob
ously occur predominantly at the expense of ‘‘corrosion’’
fermions just in the ‘‘phonon~magnon, etc.! strip’’ near the
Fermi surface, which is observed in experiments.

*E-mail: vloktev@gluk.apc.org
1!In this case, it would be more appropriate to refer to it as a Bose sys
since all the fermions are coupled in individual~local! pairs, and the Fermi
surface is absent~i.e., the spectral weight of quasiparticle Fermi excitatio
is equal to zero!.

2!It can easily be seen that when the fieldH lies in the plane, the diamagneti
contribution to the total magnetic susceptibility is excluded altogether.

3!This quantity is in complete agreement with the criterion formulated
Introduction, the only difference being that the value ofnf

cr obtained in
Ref. 15 corresponds to finite values ofT.

4!For this reason, expression~27! is valid within the limits of applicability of
expansion in momenta used for deriving~16!.
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PHYSICAL PROPERTIES OF CRYOCRYSTALS

ed
Crystal phase formation and growth in rare-gas clusters
S. I. Kovalenko, D. D. Solnyshkin, E. A. Bondarenko, and È. T. Verkhovtseva

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted July 24, 1996!
Fiz. Nizk. Temp.23, 190–196~February 1997!

The structure of clusters formed in supersonic jets of heavy rare gases is studied by the methods
of electron diffractometry. It is found that a crystalline fcc structure with ‘‘deformation-
type’’ stacking faults~SF! is formed in aggregates consisting ofN>2•103 atoms/cluster. The SF
density is a linear function ofN21/3. The number of ‘‘defective’’ planes does not depend
on the cluster size and is equal to four in all cases. Such a number of intersecting SF leads to the
formation of nonvanishing atomic steps ensuring a rapid and subsequently defectless growth
of the cluster on all densely packed planes facing the cubooctahedron. The obtained results confirm
experimentally the important role of the kinetic factor in the formation of the atomic
structure of a cluster. ©1997 American Institute of Physics.@S1063-777X~97!00802-5#

The interest of fundamental science in the structure anddiffraction study of argon, krypton, and xenon clusters aim
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physical properties of clusters is due to their intermedi
position between individual atoms~molecules! and a macro-
scopic system~solid or liquid!. The information on the prop
erties of clusters is also important for solving problems in
physics of phase transitions, surface, and surface proce
The mechanisms of formation of cluster structure, kinetics
cluster growth, and the establishment of stages at which
formation of a certain property of a solid is completed are
considerable interest.

In recent years, experiments on clusters free of s
strates and formed as a result of homogeneous nucleatio
a gas jet expanding at constant entropy became very pop
At the last stage of growth, such clusters have a high te
perature, facilitating a high rate of relaxation processes
the attainment of the equilibrium state.

The maximization of the binding energy of particle
forming a cluster served as the main criterion in the choice
the optimal model of cluster structure until recently. Van
Waal1 constructed the diagram of the dependence of
structure of a cluster consisting of Lennard-Jones particle
its sizeN on the basis of vast theoretical material obtained
using this approach. According to this diagram, icosahed
is most advantageous from the energy point of view
N<1.5•103 atoms/cluster, while decahedron is advantage
for largerN. The minimum size of a stable cubooctahed
fcc cluster must exceed 105 atoms/cluster. However, electro
diffraction studies2–4 confirmed the formation of an fcc
structure even forN;103 atoms/cluster. Van de Waal1 pro-
posed a considerable effect of kinetic processes~such as ag-
gregation growth! on the structure formation and prove
theoretically that a less advantageous fcc structure can
realized in argon clusters in the presence of stacking fa
~SF!, facilitating a rapid and defectless aggregation grow
Preliminary experimental data confirming this assumpt
for argon clusters were reported by us in a br
communication.5 The present research is a detailed elect
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at detection, identification, and determination of the num
of SF in small crystalline aggregations of heavy rare gase
detailed description of some methodical aspects of these
vestigations is also included.

EXPERIMENTAL TECHNIQUE

The experiments were carried out on a setup consis
of a generator of the supersonic cluster beam and an elec
diffractometer EMR-100M. A detailed description of th
setup was given in Ref. 4 The supersonic gas jet was cre
by a conical nozzle with the critical cross section diame
0.34 mm, the cone angle 8.6°, and the ratio of the inlet a
critical cross sectional areas 36.7. The gas flow was co
mated with the help of a conical diaphragm of diame
1.09 mm. The distance between the end face of the no
and the diaphragm was 5 mm. The point of intersection
the cluster jet and the electron beam was separated from
nozzle exit section by 110 mm. The size distribution
clusters, and hence the average sizeN̄ were determined by
the gas pressureP0 at the nozzle entrance at a constant te
peratureT05200 K. The value ofP0 was varied from 0.027
to 0.6 mPa. The construction of the electron diffractome
allowed us to record diffraction patterns both electrome
cally, and photographically. In the former case, a consid
able fraction of incoherently scattered electrons could be
moved by a counterfield, which improved the accuracy
determining the shape of diffraction peaks significantly. T
photographic recording was used for precision measurem
of the diameters of diffraction rings. A typical electron di
fraction pattern from coarse crystalline clusters of inert ga
is shown in Fig. 1. The diffraction pattern was obtained fro
an argon cluster jet formed under pressureP050.6 mPa at
T05150 K. The positions and relative intensities of diffra
tion peaks correspond to an fcc structure of aggregatio
Reliable detection, identification, and calculation of packi
defect density involves the precision measurement of the

14020140-05$10.00 © 1997 American Institute of Physics
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strumental widthb0 of the electron beam and the instrume
constantLeffl, whereLeff is the effective distance from th
sample to the electron collector andl the electron wave
length. These quantities were determined by using a stan
island thallium chloride film deposited on a substrate tra
parent for electrons. The values ofb0 andLeffl were mea-
sured before the gas jet was exhausted to vacuum. The
dard film was fixed in the region of intersection of the clus
and electron beams, and the value ofb0 was determined
from the half-width of diffraction peaks of the standard. T
correctness of such a method of measurement ofb0 was
ensured by a large size of coherent scattering regions~CSR!
for thallium chloride. According to electron-microscop
observations,6 its value ranges from 400 to 500 Å. Th
value ofLeffl was determined according to the experimen
technique described in detail in Ref. 7.

Peculiarities of the problems considered here require
only precision measurements of the positions of the cen
of gravity in diffraction peaks, but also an analysis of th
shape in order to eliminate instrumental factors~such as the
gap diaphragm widthH relative to which the diffraction pat
tern is scanned! as well as the intensityI 0 of the electron
beam forming the diffraction pattern, which affect the pe
width and profile. In order to determine the value
H5Hk below which a change in the gap width of the e
trance diaphragm does not affect the shape of the peak
dependence of half-widthBhkl of diffraction peaks onH was
recorded. The gap width varied from 0.02 to 0.5 mm. T
results are presented in Fig. 2a, where the gap width is p
ted along the abscissa axis and the half-width of~220! and
~311! peaks on the diffractogram from an argon cluster
with N̄.2•104 atoms/cluster along the ordinate axis. It c
be seen from the curves that the values ofBhkl are virtually

FIG. 1. Electron diffraction pattern for an argon cluster bea
N̄.2.5•104 atoms/cluster,s54p sinQ/l, whereu is the Bragg angle.
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independent ofH for H,Hk50.4 mm. As diffraction peaks
become blurred, the value ofHk is shifted toward higher
values, and vice versa. In the case of the sharpest peaks
electron diffraction patterns from the TlCl standard film
Hk50.3 mm. For this reason, the gap width in our expe
ments did not exceed 0.25 mm. In Fig. 2b, the intensity
the primary electron beam is plotted along the abscissa
and the half-widths of the~220! and ~311! peaks for ArN
along the ordinate axis. The maximum value ofI 0 satisfied
the requirements of reliable detection of diffraction pea
with intermediate intensity. It can be seen from the curv
that the half-width of diffraction peaks are virtually indepe
dent of the intensity of the primary beam for reasonable v
ues ofI 0 .

The determination of the average size of clusters con
tutes a central problem in the physics of cluster jets. Here
determined the characteristic average sized;N̄1/3 of crystal-
line clusters with the help of the Selyakov–Scherrer~SS!
relation from the results on complete broadening of diffra
tion peaks as well as broadening caused by stacking fa
The correctness of application of the SS relation for crys
line clusters with the fcc structure and average sizeN̄.103

atoms/cluster was based on the calculations carried ou
Ref. 8. In addition, we compared the size of CSR obtain
by two independent methods, i.e., electron diffractometry
ing the SS relation and electron microscopy. Reference m
surements were made on gold island films obtained by th
mal evaporation of Au in a high vacuum followed by i
deposition on an amorphous carbon substrate film. The
ues ofd obtained by the two methods were in good agre
ment. The difference was smaller than 10%, i.e., did
exceed the error in the measurements ofd by electron dif-
fraction method.

According to the theory of x-ray scattering,9 the charac-
teristic size of clusters was calculated by the formula

:

FIG. 2. Dependences of half-widths of diffraction peaks~220! and~311! on
the electron diffraction patterns for an argon cluster be
(N̄.2•104 atoms/cluster) on the scanning gap width~a! and on the inten-
sity I 0 of the primary beam~b!.

141Kovalenko et al.
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whered* is the effective size determined from the total d
fraction peak broadening with the help of the SS relati
and 1/ds is the broadening due to SF. According to t
theory, we have

dd5
d111

1.5a1b

1

j cosw
, ~2!

whered111 is the separation between densely packed lay
j cosw the parameter typical of a given family of plane
a the density of a SF of the ‘‘deformation’’ type, andb the
density of twin~growth! SF.

The presence of stacking faults of the ‘‘deformation
type in fcc clusters can be determined from a certain re
larity in the displacement of diffraction peaks relative to th
position in a defect-free crystal.9 In addition, the blurring and
considerable displacement of certain closely-spaced p
toward one another leads to their poor resolution. This ref
for example, to~111! and ~200! peaks as well as~331! and
~420!. The presence of twinned SF does not cause a displ
ment of diffraction peaks and only leads to their insignifica
asymmetric broadening. An analysis of the obtained diffr
tion patterns did not reveal any asymmetry of the pea
which implies a low density of twinned SF. The value ofb
was determined as follows. In the case of an isomeric clu
~this assumption is justified for an aggregation formed in
expanding gas jet!, the difference in complete broadenings
two diffraction peaks (hkl) and (h8k8l 8) according to rela-
tions ~1! and ~2! is C(1.5a1b), where

c5Leffl@~ j cosw!hkl2~ j cosw!h8k8 l 8#/d111.

Since the value ofa can be found from independent me
surements of the position of diffraction peaks, this differen
determines the value ofb unambiguously. Our experiment
proved that the density of SF of the ‘‘twinning’’ type wa
equal to zero to within experimental error for all the cas
under investigation. The value ofa was calculated from the
displacement of the centers of gravity of diffraction pea
relative to their position in a defect-free crystal. The value
this quantity was determined by using a standard diffract
ring ~311! of the object under investigation, whose diame
did not change in the presence of SF. The values ofa were
calculated by using the Patterson formulas.10 In the case of
diffraction of fast electrons, these formulas can be tra
formed, in view of the smallness of Bragg’s angles, to11

DDSF/D5Gja* /2, ~3!

whereDDSF/D is the relative change in the diameter of
diffraction ring under the effect of SF,G is a constant quan
tity for a given family of planes$hkl% averaged over all the
groups of (hkl) planes with the same displacement,j the
fraction of planes of the family$hkl% affected by SF, and
a* the parameter connected with the SF density through
relation

a*5
4p

3)
F122

3

2p
arctan)~122a!G . ~4!
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In order to find the value ofa, the diameters of diffrac-
tion rings~111! and~220! were measured with the help of
precision comparator IZA-2. The relatively high intensi
and sharpness of the chosen peaks ensured a quite admi
precision of measurements. In most cases, the relative e
in the measurements ofa did not exceed 20%.

DISCUSSION OF RESULTS

It was mentioned above that our task was the detec
and measurement of the SF density in crystalline cluster
rare gases. The primary stage in the solution of this prob
was the determination of the range of pressuresP0 under
which the cluster beams are predominantly formed by cr
talline aggregations. For this purpose, we used the follow
arguments. According to the calculations8 confirmed by the
results of electron diffractometry,3,4 a transition from a fcc
structure to an icosahedral structure causes a strong broa
ing of diffraction peaks, followed by a change in the form
the dependence of the peak half-width on the size of sca
ing aggregations. Figure 3 shows the dependence of the
fective radiusd* /2 of the clusters on pressureP0 plotted on
the basis of an analysis of obtained diffraction patterns
the three gases under investigation. The values of th
quantities are plotted on the logarithmic scale. It should
recalled that the value ofd* was determined on the basis o
the SS relation from the half-width of diffraction peak
(d* } Bhkl

21). It can be seen from the figure that above a c
tain pressure range, the experimental points obtained
ArN , KrN , and XeN clusters fit to a straight line correspond
ing to the dependenced* } P0

0.61. For lower values ofP0 ,
d* decreases rapidly~more rapid peak blurring!, indicating,
according to Ref. 4, the predominance of icosahedral ag
gations in the cluster beam. Subsequent experiments w
made with pressuresP0 under which crystalline clusters ar
preferentially formed.

Figures 4a, b, and c show diffraction patterns of Ar,
and Xe cluster beams respectively. The diffraction patte
observed experimentally for all the three types of clus
beams display peculiarities typical of fcc structures w
‘‘deformation’’ stacking faults: displacement of~111! and
~220! peaks toward large diffraction angles, and poor reso
tion of ~111! and ~200! as well as~331! and ~420! peaks
associated with their broadening and displacement tow

FIG. 3. Dependence of the effective radiusd* /2 of clusters on the pressur
at the nozzle entrance (T05200 K): ArN(d), KrN(3), and XeN(s).

142Kovalenko et al.



FIG. 4. Electron diffraction patterns for ArN ~a!, KrN , ~b! and XeN ~c! clusters. The insets show the calculated positions of peaks for defect-free clusters~solid
lines! and experimentally observed positions~dashed lines!; s54psinu/l.
each other. The insets on these figures give an idea as to the
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magnitude and nature of these displacements: solid l
show the positions of diffraction peaks for defect-free f
clusters, while dashed lines indicate the experimental val
It can be seen from the figure that as the average siz
clusters increases, the discrepancy between the calcul
positions of peaks for defect-free aggregations and the
perimentally observed peaks decreases, and the splittin
~111! and ~200! peaks increases. It should be noted tha
decrease in the average size of crystalline clusters incre
the contribution to the diffraction pattern both from the su
face, and from the quasi-crystalline structure. However, p
sible changes in the intensity distribution of diffracted bea
initiated by these contributions do not affect the peculiarit
which makes it possible to detect and identify SF. The res
of observations were subsequently used for determining
true ~taking into account SF! radiusd/2 of crystalline clus-
ters. The results obtained for ArN , KrN , and XeN are shown
in Fig. 5. The values ofd/2 are plotted along the ordinat
axis and the values ofP0 along the abscissa axis on th
logarithmic scale. The scales of pressure for different r
gases are shifted relative one another according to the la
‘‘corresponding jets.’’12 It can be seen from the figure tha
the experimental points corresponding to ArN , KrN , and
XeN clusters fit to the same straight line with the slope eq
to 0.61. The same slope was obtained in Refs. 12 and 13
argon clusters in a wide range of average size by using
acoustic nozzle and with the same object for superso
nozzle.4,14An analysis of the curves in Figs. 3 and 5 show
that crystalline clusters prevail in cluster beams with an
erage radius of aggregations exceeding 26–30 Å~its value
depends on the gas!. This means that crystalline clusters pr
vail in atomic beams withN̄>2•103 atoms/cluster. It should
be noted in this connection that the valueN.800 atoms/
cluster, for which crystalline aggregations prevail in arg
cluster beams according to our earlier results4 is underesti-
mated since we did not take into account stacking faults

143 Low Temp. Phys. 23 (2), February 1997
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crystalline cluster is shown in Fig. 6. It can be seen from
figure that the value ofa for clusters of all the gases unde
investigation fits to the same straight line to within expe
mental error, and the SF density decreases monotonic
with increasing size of crystalline aggregations, and he
the total numbern of densely packed planes. If we consid
that

a5nSF/n, ~5!

where nSF is the number of stacking faults, the observ
regularity indicates that the value ofnSF remains constant o
changes insignificantly during the cluster growth.

In order to determinenSF, we will use relation~5! as
well as the fact that

n53d/d111. ~6!

This gives

FIG. 5. Dependence of the true radiusd/2 of clusters on the gas pressur
P0 at the nozzle entrance at a constant temperatureT05200 K: ArN(d),
KrN(3), and XeN(s).
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nSF53)ad/a, ~7!

wherea is the crystalline cluster lattice constant for the co
responding inert gas. Figure 7 shows the results of calc
tion of thenSF(d) dependence by formula~7!. According to
the figure, clusters of different sizes contain the same num
of stacking faults, equal to 4. The obtained result is valid
all the gases under investigation and indicates that SF
formed at early stages of formation of fcc clusters who
subsequent growth is defectless.

Thus, the analysis of the obtained results shows tha
fcc structure with stacking faults of the ‘‘deformation’’ typ
is formed in clusters of heavy rare gases with a s
N>2•103 atoms/cluster (d/2>26–30 Å). Stacking faults
can be regarded as small regions of the hcp phase intru
into the fcc structure. The formation of the fcc phase is
parently facilitated by a vanishingly small difference b
tween hcp and fcc packings in the case of rare gas ato
Moreover, the calculations taking into account only pair
interaction between particles15 predicted a higher stability o
the hcp structure for solidified rare gases. According to th
retical analysis,16 local cluster regions with a fifth-order sym
metry can serve as sources of intersecting SF. The resul
calculations show that the number of stacking faults does
depend on the size of the atomic complex and is equa
four in all cases. Such a number of intersecting stack
faults piercing the entire volume of a cluster leads to lead
the formation of nonvanishing steps of the same type a
the case when a screw dislocation emerges at the surfac
all densely packed planes facing a cubooctahedron. A fur
growth of the cluster does not require the formation of n
nuclei on densely packed faces since it occurs due to t
ping of newly arriving atoms by the formed steps. The reg
larity of atomic packing is not violated in this case, whic
rules out the formation of new stacking faults. As a res

FIG. 6. Variation of the SF density with the cluster size: ArN(n),
KrN(s), and XeN(h).
144 Low Temp. Phys. 23 (2), February 1997
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the SF density decreases as the aggregation grows. Thus
results of observations indicate a significant role of the
netic factor in the formation of the cluster structure and se
as a convincing experimental proof of the hypothesis
forth by van de Waal.1 The obtained experimental resul
also indicate the important role of stacking faults in the fo
mation of the crystalline structure of the cluster. The reali
tion of an fcc structure in solidified heavy inert gases is a
parently determined to a considerable extent by the prese
of intersecting SF which can ensure a rapid and subseque
defectless crystal growth only in the fcc~but not in the hcp!
lattice.
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DYNAMICS OF THE CRYSTAL LATTICE

Dynamics and stability of localized modes in nonlinear media with point defects
M. M. Bogdan and A. S. Kovalev
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The soliton states localized at a point defects are investigated by using the nonlinear Schro¨dinger
equation for various signs of the nonlinearity and for different types of defects. The
quantum interpretation of these nonlinear localized modes is given in terms of bound states of a
large number of Bose particles. The dynamic properties and stability of these states for
different types of interaction between elementary excitations with one another and with the defect
are investigated. The boundaries of the region of existence and stability of ‘‘impurity’’
solitons are determined depending on the ‘‘intensity’’ of the defect, and the frequency of small
oscillations of a soliton near the defect is calculated. ©1997 American Institute of
Physics.@S1063-777X~97!00902-X#
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The states localized near an impurity were studied
the first time 50 years ago by I. M. Lifshits.1,2 In recent
years, this problem was considered on a new, ‘‘nonline
level. New experimental data on low-temperature diffus
and internal friction served as an impetus for theoretical
vestigations of local vibrational states in ideal and defect
anharmonic elastic media.3–10 Such excitations were consid
ered for the first time in Refs. 11 and 12 in which long-live
vibrational states of molecules were studied in simple m
lecular crystals. The stability of such localized vibratio
was associated with anharmonism of intramolecular osc
tions. The frequencies of these oscillations lie outside
continuous spectrum band and depend on the amplitud
vibrations.

On the other hand, a medium with defects can also
hibit local vibrations~which, however, are localized near a
impurity! even in the linear limit. The frequency of thes
vibrations is fixed and is determined by the sign and ‘‘inte
sity’’ of the defect ~e.g., by the sign and magnitude of th
mass defect!. For this reason, it would be interesting to an
lyze local vibrations, taking into account anharmonisms a
defects simultaneously. Zavt and Reitman13 were the first to
study this problem by considering the effect of anharm
isms on the behavior of an isotopic defect in quantum cr
tals ~the emergence of local vibrations with low frequenc
in the case of a heavy impurity!.

In Refs. 14 and 15, this problem was considered in
one-dimensional model using the soliton approach. In
case of an isotropic impurity in an anharmonic chain, soli
solutions whose frequencies lied above as well as below
continuous band spectrum of linear waves were found by
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to the formation of specific local modes in crystals with d
fects even for the defect sign for which local vibrations a
absent in the linear limit. In these publications, however,
stability of local modes of various types was not discuss
and the semiclassical interpretation of these states was
used. Semiclassical quantization of self-trapped elastic vib
tions in an ideal~defect-free! one-dimensional anharmoni
chain was carried out in Ref. 16, where the concept of ela
solitons of the envelope as a bound state of a large numbe
phonons was formulated~see also Ref. 17!.

Later,18 a somewhat different model~sine-Gordon equa-
tions! was used for semiclassical quantization of sma
amplitude nonlinear oscillations localized near an impur
for a fixed sign of anharmonisms and for a certain sign of
defect, and a hypothesis concerning the nature of stability
local modes of various types was formulated. Finally, t
interaction of a soliton with an impurity was considered
Ref. 19 in the model described by a nonlinear Schro¨dinger
equation with ad-shaped potential simulating the defect.

Here we will analyze excitations localized near po
defects of various signs by using a one-dimensional non
ear Schro¨dinger equation~NSE! with an arbitrary sign of
anharmonisms and carry out the semiclassical quantiza
of all types of obtained solutions. It will be shown that th
result can be interpreted in terms of quasiparticles interac
with one another and with a defect.

Following the technique described in Ref. 20, we sh
carry out a stability test for the obtained soliton solutions a
show that the presence of an attracting impurity is a fac
stabilizing a soliton. In this case, a soliton exists and is sta
both for attraction between quasiparticles, and for their

14520145-08$10.00 © 1997 American Institute of Physics



pulsion. In the former case~attraction!, the vibrational mode
is
. I
t
u

lf-
n
e

lit
o
a

ry
u
re
e

’’
i

r

um
t

el

n

x-

o

e

]u/]zu105]u/]zu201Quu0 . ~1.5!

e

-

n:

ny
in

ed

e

,
he

per
the
e

g

eater

-

ing

to
of the soliton center of gravity relative to an impurity
present in the spectrum of small excitations of the soliton
the latter case~repulsion!, such an ‘‘intrinsic mode’’ does no
exist, and we have only the continuous excitation spectr
corresponding to free quasiparticles.

A repulsive impurity does not disturb a soliton se
trapped due to attraction between quasiparticles, but o
deforms and repels it. This process is described by a lin
mode of the unstable soliton.

Thus, we shall carry out a complete analysis of stabi
of a soliton localized at a defect for an arbitrary type
interaction of quasiparticles with one another and with
impurity.

The application of our results is not limited to the theo
of anharmonic crystals since NSE with attraction and rep
sion are widely used in the theory of magnetically orde
media, nonlinear optics, dynamics of superfluid liquid h
lium, etc.

1. SOLITON SOLUTIONS OF NONLINEAR SCHRÖ DINGER
EQUATION IN THE PRESENCE OF IMPURITY

In the theory of a crystal lattice, the term ‘‘local defect
is applied to a defect whose size is of the order of atom
spacing. In an analysis of soliton solutions whose size
determined by the soliton frequency and can vary ove
wide range, it is natural to apply the term local~or point!
defect to a perturbation of the characteristics of the medi
which is concentrated over distances much smaller than
soliton width.

In the presence of a point defect, the NSE for the fi
variableu has the form

i ]u/]t1]2u/]z22v0u1buuuu25Qd~z!u, ~1.1!

whereb is the interaction constant for elementary excitatio
~b.0 corresponds to their mutual attraction andb,0 to
repulsion!, v0 is the minimum frequency of elementary e
citations in the linear system, andQ the characteristic of the
magnitude of the defect~its ‘‘intensity’’ !. ForQ.0, elemen-
tary excitations are ‘‘repelled’’ by a defect, while forQ,0
they are effectively attracted to it.

In the linear limit forQ,0, vibrations localized at an
impurity atom are present in the system. The frequency
these vibrationsv l5v02Q2/4. ForQ.0, such local vibra-
tions are absent.

The equation of motion~1.1! is the Euler equation for
the Lagrangian with the following density:

L5&@u* ]u/]t2u]u* /]t#2u]u/]zu22v0uuu2

1~b/2!uuu42Qd~z!uuu2. ~1.2!

The solution of Eq.~1.1! is reduced to the solution of th
homogeneous equation

i ]u/]t1]2u/]z22v0u1buuuu250 ~1.3!

in the regionsz.0 andz,0 with the following boundary
condition forz50:

uu105uu20 , ~1.4!
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We will seek steady-state solutions of Eq.~1.3! in the
form

u~z,t !5u~z!exp~2 ivt !, ~1.6!

whereu(z)→0 for uzu→`. As a result, forb.0 we obtain
the following expression for the solution satisfying th
boundary conditions:

ũ~z,t !5~2/b!1/2« cosh21$«~ uzu2z0!%exp~2 ivt !,
~1.7!

where the parameter«[(v02v)1/2 characterizes the excita
tion frequency, while the parameters« andz0 are connected
through the relation following from the boundary conditio

2« tanh~«z0!5Q. ~1.8!

It can be seen from this relation that sgn(z0)5sgnQ, and
the maximum possible frequency of the solution with a
sign ofQ coincides with the frequency of local vibrations
the corresponding linear system:

v l5v02Q2/4, ~1.9!

and the interval of admissible frequencies is not bound
from below.

In the case of negative values of the parameterb, the
solution satisfying the boundary conditions has the form

ũ~z,t !5~2/ubu!1/2« sinh21$«~ uzu2z0!%exp~2 ivt !.
~1.10!

In this case, the quantityz0 can assume only negativ
values, and the relation between the parameters« andz0 now
has the form

2« coth~«z0!5Q. ~1.11!

Thus, the quantityQ for b,0 can only be negative, i.e.
the bound state localized at an impurity exists only in t
case of an attracting defect.

The interval of admissible frequencies now has the up
and lower boundaries: the minimum value corresponds to
frequencyv l of local vibrations of the linear system, whil
the maximum value corresponds to the boundaryv0 of the
linear wave spectrum.

Thus, nonlinear localized states exist for the followin
relations between the parametersb and Q: ~1! b.0,
Q,0; ~2! b.0,Q.0, and~3! b,0,Q,0. Let us consider
the structure of these solutions in these three cases in gr
detail.

~1! For b.0, Q,0, the maximum of the vibration am
plitude is at the point of location of the impurity (z0,0),
and the solution has the form presented in inset1 to Fig. 1a.
In the small-amplitude limit, whenv l2v!v l , the param-
eterz0 tends to infinity@z0'2Q21 ln(vl2v)#, and the am-
plitude of a local excitation depends on frequency accord
to the law typical of solitons:

u~z50!uv→v l
'~2/b!1/2~v l2v!1/2. ~1.12!

Forv5v l , the nonlinear local mode is transformed in
conventional vibrations in the linear theory.
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s

n
te
a

e

-
y:
f

-

is

di
al

in

The limiting transition to the frequency valuev5v0 is

ic

f
ing
nce
le,
e-

s
are
n,
es
les
-
is
rti-
w,

n-
ti-

ve
tion,

.,
a

-
re
as

es
lo
In the opposite limiting casev→2`, the parameter
z0 tends to zero (z0'2Q/v), and the solution become
singular.

~2! For b.0, Q.0, the vibration amplitude maximum
does not coincide with the point of location of the defect, a
the local excitation is a bound state of two solitons loca
symmetrically on both sides of the defect with the centers
points7z0 ~see inset2 to Fig. 1a!. In this case, the limit
v→2` virtually coincides with the previous case, but th
form of the solution at the maximum possible frequencyv l

is essentially different. Forv l2v!v l , the separation be
tween the bound solitons tends to infinit
2z0'22Q21 ln(vl2v), and the vibrational amplitude o
the defect tends to zero in accordance with~1.12!. However,
the amplitude of solitons tends to a finite quantity

Auv5v l
5~2/b!1/2Q/2, ~1.13!

and this limit is not a small-amplitude limit.
~3! In the caseb,0,Q,0, the localized excitation pro

file has approximately the same shape as forb.0, Q,0
~case~1!!, and the maximum of the vibrational amplitude
at the point of location of the defect~see inset3 to Fig. 1b!,
but the frequency range of the local mode is completely
ferent. In the case~1!, the frequency changes in the interv
2`,v,v l , while in the present casev l,v,v0 .

The linear limit corresponds to the transitionv→v l , for
which the parameterz0 tends to infinity as in the case~1!:
z0'2Q21 ln(v2vl), and the amplitude tends to zero
analogy with~1.12!:

u~z50!uv→v l
'~2/b!1/2~v2v l !

1/2. ~1.14!

FIG. 1. Regions of existence of nonlinear localized states~hatched! for
different types of nonlinearity:b.0 (a) andb,0 (b). Double hatching
marks the regions of applicability of perturbation theory in the stability t
for solutions. The insets show characteristic profile of the envelope of
calized soliton states.
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more interesting. In this case,«→0, and relation~1.11! im-
plies that the parameterz0 tends to a finite valuez052/Q,
while the solution~1.10! is transformed into a function with
power asymptotic forms at infinity, i.e., into an algebra
soliton ~see inset38 to Fig. 1b!

ũ~z,t !5~2/ubu!1/2$uzu12/uQu%21 exp~2 ivt ! ~1.15!

with the impurity vibration amplitude

u~z50!uv→v0
5~2/ubu!1/2uQu/2. ~1.16!

It is well known17 that the possibility of existence o
power solitons is associated with the inclusion of compet
nonlinearities in the evolution equations or with the prese
of many-particle interactions of various types. For examp
the inclusion of paired repulsion of particles and their thre
particle attraction~i.e., of the terms of theuuuu4 type in Eq.
~1.1! with b,0! leads to the formation of algebraic soliton
at the edge of the linear wave spectrum. Such solitons
unstable.21 In the case of an impurity under consideratio
the situation is similar in many respects: we have two typ
of interactions, viz., the paired interaction between partic
described by the termbuuuu2, and the one-particle interac
tion of elementary excitations with an inhomogeneity. In th
case, paired solitons exist for paired repulsion of quasipa
cles and their attraction to the defect. It will be shown belo
however, that these solitons are stable.

In order to clarify the physical origin of the states co
sidered above, we will carry out their semiclassical quan
zation.

2. INTEGRALS OF MOTION AND SEMICLASSICAL
QUANTIZATION OF SOLITONS

Equation~1.1! describes the dynamics of a conservati
system, and hence possesses an obvious integral of mo
viz., the total energy

E5E
2`

1`

«~z!dz, ~2.1!

whose density has the form

«~z!5u]u/]zu21v0uuu22~b/2!uuu41Qd~z!uuu2. ~2.2!

Moreover, it has an additional integral of motion, viz
the total number of elementary excitations, of field quant15

N5E
2`

1`

n~z!dz5E
2`

1`

uuu2dz, ~2.3!

wheren(z) is the number density of quasiparticles.
Till now, we characterized a soliton solution by its fre

quencyv. In order to clarify the quantum-mechanical natu
of the soliton, it is convenient to go over from frequency
a dynamic characteristic to the numberN of excitations
bound in the soliton.

Let us first consider the case whenb.0. We express the
integrals of motionE andN in terms of frequency~or the
parameter« associated with it!. Using the explicit form of

t
-
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the solution ~1.7! in formulas ~2.1!–~2.3! and taking into
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account the dependencez0(«) @see~1.8!#, we obtain the fol-
lowing relations:

E5b21@24«3/314«v012Qv02Q3/6#, ~2.4!

N54b21@«1Q/2#. ~2.5!

It should be noted that for a small intensityQ of the
defect and for small values of the parameter«, expression
~2.4! leads to the following relation for energy:

E54v0b
21~«1Q/2!, ~2.6!

which is similar to the energy of a local vibration of a poi
isotopic impurity in a one-dimensional crystal~see Ref. 15!.

For b,0, we substitute solution~1.10! andz0(«) from
relation ~1.11! into formulas~2.1!–~2.3! and obtain the de-
pendencesE5(v) and N5N(v) which are completely
identical to formulas~2.4! and ~2.5!.

The positiveness of the integral of motionN implies that
«.2Q/2 for positive values ofb, while the boundary con-
dition ~1.8! leads to a more stringent inequality determini
the range of the solution:

«.uQu/2 for b.0. ~2.7!

For b,0 ~when the solution exists only forQ,0!, the
positive value ofN @or relation~1.11!# means that the param
eter« must satisfy the following condition:

0,«,uQu/2 for b,0. ~2.8!

The critical value of«5uQu/2 corresponds to the fre
quencyv l of the local linear mode.

Using relations~2.5! and ~2.7!, we find that all positive
values ofN are admissible for positiveb andQ,0, while
for Q.0 the following constraint is imposed onN:

N.4Q/b for Q.0, b.0. ~2.9!

The valueN*52Q/b corresponds to the frequencyv l

at which a local vibration splits into two solitons separat
by infinitely large distances from the impurity and incorp
rating 2Q/b bound elementary excitations in each. F
Q,0, the minimum value ofN is zero, which corresponds t
zero amplitude of the solution at the frequencyv l . In Fig.
1a, the region of existence of the solitons in the plane
parameters (N,Q) for b.0 is hatched.

In the case of negativeb, relations~2.5! and ~2.8! lead
to the following constraint on possible values ofN:

N,2uQu/ubu for Q,0, b,0. ~2.10!

In this case, the critical valueN052uQu/ubu corresponds
to a power soliton at the frequencyv0 . The minimum value
N50 is attained at the frequencyv l . The region of admis-
sible values of parameters (N,Q) for b,0 is hatched.

Using expressions~2.4! and ~2.5! and eliminating the
parameterv, we find the following relation between the tot
energy and the number of bound excitations:

E~N!5Nv02NQ2/42b2N3/481bQN2/8

5Nv l2b2N3/481bQN2/8. ~2.11!
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obvious. The first term in~2.11! describes the energy ofN
noninteracting elementary excitations and corresponds to
description of the system in the linear approximation. In t
case, the intrinsic energy of these excitations changes
result of their interaction with the impurity
v0→v l5v02Q2/4. The frequencyv l corresponds to the
frequency of linear local impurity vibrations. The secon
terms in~2.11! describes the energy of interaction of eleme
tary excitations in a soliton and has the same form as in
case of solitons in a homogeneous medium. Finally, the
term describes the interaction of bound particles through
impurity. It should be noted that the sign of the defect~the
sign ofQ! determines only the last term: forQ,0, the en-
ergy decreases, i.e., the impurity ‘‘attracts’’ the particles a
the soliton as a whole, while forQ.0 the presence of im-
purity increases the soliton energy, i.e., the impurity ‘‘r
pels’’ the soliton.

Expression~2.11! implies that the energy at the bound
ary of the region of existence of nonlinear localized vibr
tions isE 5 2(N0v0 2 b2N0

3/48) forb.0, withN052Q/b,
i.e., is equal to doubled energy of a soliton withN0 bound
elementary excitations. It is interesting to note that,
b,0, the relationE 5 N0v0 2 b2N0

3/48 coinciding with the
expression for a soliton in a homogeneous medium is sa
fied at the boundary of the region of existence of localiz
solutions~for N052uQu/ubu! for power solitons at the impu
rity. ~For ordinary power solitons, we haveE5Nv0 , i.e., the
binding energy of quasiparticles vanishes.!17

Expression~2.11! also shows that the energy per e
ementary excitation in a local state is lower than the ene
of a free quasiparticle:

E/N5v02~Q/22bN/8!22b2N2/192,v0 . ~2.12!

This relation makes it possible to interpret a soliton s
lution as a bound state of a large number of element
excitations.17

Differentiating expression~2.11! with respect toN and
using relation~2.5! for N(«), we can easily verify the ful-
fillment of the conventional relation

]E/]N5v, ~2.13!

which takes place for solitons in conservative nonlinear s
tems with the quantityN as an integral of motion.

Thus, the frequency of a nonlinear local vibration pla
the role of chemical potential for elementary excitatio
bound in it.

We shall use relation~2.11! to write the explicit expres-
sion for frequencyv:

v5]E/]N5v02~b2/16!~N22Q/b!2. ~2.14!

ForQ50, this expression is identical to the dependen
v5v(N) for a soliton in a homogeneous system.

Since the inequality]2E/]N2 5 ]v/]N , 0 usually de-
fines the region of stability for soliton solutions, we sha
calculate the derivative]v/]N. According to~2.14!, in our
case we have

]v/]N52~b2/8!~N22Q/b!. ~2.15!

148Bogdan et al.
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It hence follows that the inequality

]v/]N5]2E/]N2,0 for b.0, ~2.16a!

holds for positive values of the parameterb in the entire
region of existence of nonlinear localized states, while in
case of negative values ofb, the opposite inequality holds

]v/]N5]2E/]N2.0 for b,0. ~2.16b!

Usually ~in spatially-homogeneous nonlinear system!,
dynamic solitons are modulation-stable for the negative s
of the derivative]v/]N and unstable for the positive sign o
the derivative.17,20,22 It will be shown below that for
spatially-heterogeneous systems with defects, the situatio
different: a soliton solution localized at a defect is sta
only for Q,0 ~for any sign ofb! and unstable forQ.0.

The dependencev5v(N) ~2.14! for various signs of
Q andb is shown in Fig. 2. Curve1 corresponds to case~1!
(b.0,Q,0), curve2 describes thev5v(N) dependence
in case~2! ~b.0, Q.0!, and curve3 corresponds to nega
tive values ofb @case~3!#.

The dot-and-dash curves in same figure show
v5v(N) dependences for a solitary soliton in an ideal m
dium ~curve4!:

v5v02b2N2/16, ~2.17a!

and for two noninteracting solitons separated by an infinit
large distance from one another~curve48!:

v5v02~b2/16!~N/2!2. ~2.17b!

At the pointv5v l , N*54Q/b, curves2 and48 inter-
sect, i.e., bifurcation of thev5v(N) dependence is ob
served: forN5N* , the dependence2 for a solution local-
ized near the impurity splits from curve48 for two
noninteracting solitons, i.e., two solitons are ‘‘coupled
through the defect.

FIG. 2. Dependencesv5v(N) for various types of nonlinear localize
states:b.0,Q,0 ~curve1!, b.0,Q.0 ~curve2!, andb,0,Q,0 ~curve
3!. The curves4 and48 describe the dependencesv5v(N) for a soliton and
two noninteracting solitons in an ideal system free of defects.
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Let us analyze the stability of the obtained solutio
relative to small perturbations of amplitude and phase.
shall solve this problem by following the algorithm propos
in Ref. 20.

Representing the solution of Eq.~1.1! in the form

u~z,t !5ũ~z,t !1u~z,t !5u~z!exp~2 ivt !

1v~z,t !exp~2 ivt !, ~3.1!

where ũ(z,t) is the solution of Eq.~1.1! for a stationary
soliton anduu(z,t)u!uũ(z,t)u, we linearize Eq.~1.1! in small
correctionsv(z,t) and obtain the following equation fo
v(z,t):

i ]v~z,t !/]t1]2v~z,t !/]z22«2v~z,t !12bv~z,t !u2~z!

1bv* ~z,t !u2~z!5Qd~z!v~z,t !. ~3.2!

Writing the solution of Eq.~3.2! in the form

v~z,t !5~A~z!1 iB~z!!exp~Vt !, ~3.3!

we obtain the following system of two ordinary linear diffe
ential equations for the functionsA andB:

L0B5VA,

L1A52VB, ~3.4!

where the operatorsL0 andL1 are defined as

L052d2/dz21«22bu2~z!1Qd~z!, ~3.5!

L152d2/dz21«223bu2~z!1Qd~z!, ~3.6!

and the functionu(z) ~in the notation introduced above!
must satisfy the equation

L0u~z!50. ~3.7!

Eliminating the functionB from the system of equation
~3.4!, we arrive at the following eigenvalue problem:

L0L1A52V2A. ~3.8!

It should be noted that although the operatorL0L1 is not
Hermitian, the real-valuedness of its eigenvaluesV2 can be
proved easily by reducing the initial eigenvalue proble
~3.4! to an equivalent problem for the Hermitian operat
L2L1L

1W52V2W, where L656d/dz1(du/dz)/u,
W5L2B andL05L1L2.

Since the functionu does not vanish anywhere, the
exists a positive-definite operatorL0

21 inverse to operator
L0 on the subspace of functions orthogonal tou. Conse-
quently, we can apply the variational principle to Eq.~3.8!,
according to which the minimum eigenvalue2V0

2 is given
by

2V0
25min@^wuL1uw&/^wuL0

21uw&#, ^uuw&50. ~3.9!

In this case, the problem can be reduced to an analys
the conditional minimum of the functionalF5^wuL1uw&.

Using the Lagrangian method of undeterminate multip
ers, we can obtain the following equation for the functi
c minimizing the functionalF for ^uuc&50:

L1c5lc1au. ~3.10!
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Substituting the expression obtained foru(z) into for-
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ble.
the
value ofl for which Eq. ~3.10! has a solution. Taking into
account the condition̂uuc&50, we obtain from~3.10! the
following equation forl ~see Ref. 20!:

a (
n51

`

Cn
2/~ln2l!5a f ~l!50, ~3.11!

whereCn5^u0ucn&, andcn and ln are the eigenfunctions
and the eigenvalues of the operatorL1, respectively.

Let us first analyze the stability of solutions for a po
tive parameterb ~cases~1! and ~2!!.

In the absence of a defect, the stability test for solut
~1.7! corresponds completely to the scheme described in
20. In this case, the operatorL1 is defined as

L1
~0!52d2/dz21«226«2 cosh22~«z!. ~3.12!

The eigenfunction of the ground state of this opera
and the corresponding eigenvalue have the form

c1
~0!5~3«!1/2 cosh22~«z!/2, l1

~0!523«2, ~3.13!

while the eigenfunction and the eigenvalue of the next s
are given by

c2
~0!5~3«/2!1/2 sinh~«z!cosh22~«z!, l2

~0!50. ~3.14!

It is well known that, in the absence of impurity, th
soliton solution of the NSE is stable. The presence of a
fect complicates the analysis of the stability of the solut
since in this case the operatorsL0 andL1 have a more com-
plex form than in the case whenQ50. Let us prove, how-
ever, that for values of«uz0u!1, the operatorL1 has the
form L15L1

(0)1ĥ, whereĥ is a perturbation linear in sma
corrections. In this case, we can take into account the va
tion of eigenfunctions and eigenvalues of the operatorL1

(0) in
perturbation theory.

If the inequality«uz0u!1 is satisfied, it follows from the
boundary condition~1.8! that

«z0'Q/~2«!, «@uQu/2. ~3.15!

In this case, formula~2.5! leads to the relation betwee
the parametersN andQ, which determines the region on th
plane (N,Q), where the solution of the above-formulate
problem in the perturbation theory exists:

N@2uQu/b. ~3.16!

This region is shown by double hatching in Fig. 1a~the
sector near theN-axis!. It should be noted that the smallne
of the soliton amplitude is generally not required, and
role of small perturbation is played by the defect whose ‘‘
tensity’’ plays the role of the expansion parameterQ/(2«).

Expanding solution~1.7! into a power series in the sma
parameter«z0 and taking into account dependence~3.15! in
the expansion, we obtain the following relation accurate
within first-order terms inQ/(2«):

u~z!5~2b!1/2« cosh21~«z!$11@Q/~2«!#tanh~«uzu!%.
~3.17!
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mula ~3.6! and taking into account the terms of the order n
higher that the first power ofQ/(2«), we obtain the expres
sion for the operatorL1 :

L152d2/dz21«226«2 cosh22~«z!1@Q/~2«!#

3$212«2 sinh~«uzu!cosh23~«z!12«d~z!%

[L1
~0!1ĥ, ~3.18!

whereh̄ } Q/(2«) is the perturbation of the operatorL1
(0) .

In perturbation theory, we obtain the following corre
tions to eigenvalues of the operatorL1

(0) :

ln
~1!5hnn5^cn

~0!uĥucn
~0!&5E

2`

1`

dzcn
~0!* ĥcn

~0! . ~3.19!

In this case, the eigenfunctions of the operatorL1 as-
sume the formcn 5 cn

(0) 1 z(z), wherez(z);Q/(2«) is a
correction of the same parity as the functioncn

(0) .
The correction to the eigenvalue corresponding to

ground state of the operatorL1
(0) has the form

l1
~1!5Q/~2«!~3«/4!E

2`

1`

dz cosh22~«z!

3$212«2 sinh~«uẑu!cosh23~«z!

12«d~z!%cosh22~«z!

52~3«/4!Q, ~3.20!

while the correction to the eigenvaluel2
(0) of the next level is

given by

l2
~1!5Q/~2«!~3«/2!E

2`

1`

dz sinh~«z!cosh22~«z!

3$212«2 sinh~«uzu!cosh23~«z!

12«d~z!%sinh~«z!cosh22~«z!

52~3«/2!Q. ~3.21!

Thus, taking into account the expressions forl1
(0) and

l2
(0) , we obtain approximate~to withinQ/«! expressions for

eigenvalues of the two lowest states of the operatorL1 :

l1523«223«Q/4, ~3.22a!

l2523«Q/2. ~3.22b!

It can be seen thatl1,l1
(0),0 andl2,0 for Q.0;

l1
(0),l1,0 andl2.0 for Q,0. In view of different signs

of the eigenvaluel2 for Q.0 andQ,0, these cases must b
considered separately.

The case ofb.0,Q.0. Fora50 ~see Eq.~3.10!!, c is
an eigenfunction of the operatorL1 , while l coincides with
one of its eigenvalues. Since the eigenfunctionc1 cannot be
orthogonal tou ~see Ref. 20!, and^uuc2&50, the minimum
eigenvalue2V0

2 is determined by the valuel2 . Thus, the
conditional minimum of the functionalF is equal to
l2523«Q/2,0, and henceV is real-valued.

Thus, positive values ofQ correspond to exponentially
increasing perturbations, and the soliton solution is unsta
Instability is manifested in an exponential increase in
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spatially antisymmetric correction~the symmetric function
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c1 corresponds to the principal eigenvaluel1!. Soliton dy-
namics in this case can be presented as follows: quasip
cles are ‘‘pumped’’ from one half-space to another. For la
values of time, we cannot solve the problem, but comp
‘‘pumping’’ of particles to one half-space will take place; th
formed soliton ‘‘repelled’’ by the defect will go to infinity.

The solution, taking into account small corrections to t
form of a soliton forQ.0, is given by

u~z,t !5u0~z,t !1v~z,t !exp~2 ivt !>F S 2b D 1/2« cosh21~«z!

1
Q

2« S 2b D 1/2« sinh~«uzu!cosh22~«z!Gexp~2 ivt !

1jS 3«

2 D 1/2 sinh~«z!cosh22~«z!exp~Vt !

3exp~2 ivt !

>S 2b D 1/2« cosh21H «Fz2sgn~z!
Q

2«2
2

j

2« S 3b

« D 1/2
3exp~Vt !G J exp~2 ivt !, ~3.23!

wherej!1. ~Here we have used the main approximation
expression~3.3! for the small correctionv(z,t):A'jc2

(0) ,
B.0.!

Thus, in this approximation the amplitude of the soluti
does not change, but a synchronous shift towards one o
centers of two solitons located on different sides of the de
and associated with it takes place:

z0
6>sgn~z!Q/~2«2!1~j/2«!~3b/«!1/2 exp~Vt !. ~3.24!

In order to find the increment of this shift instabilit
V, we will use formula~3.8! ‘‘encased’’ by the antisymmet
ric functionc2 corresponding to the second level of the o
erator L1 . In the main order in the small paramet
Q/(2«), expression~3.9! assumes the form

V2>2^c2
~0!uĥuc2

~0!&/^c2
~0!uL0

~0!21uc2
~0!&5

2l2 /^c2
~0!uL0

~0!21uc2
~0!&, ~3.25!

where the operatorL0
(0) is defined by expression~3.5!, and

the functionc2
(0) is defined by~3.14!. It can easily be verified

that

L0
~0!@z/cosh~«z!#52« sinh~«z!/cosh2~«z!, ~3.26!

and hence

L0
~0!21c2

~0!5@3/~8«!#1/2z/cosh~«z!. ~3.27!

Thus, the denominator in formula~3.25! is equal to
3/(4«2), and the increment of instability is given by

V>~2Q«3!1/2. ~3.28!

The case ofb.0, Q,0. Sincel2.0 in this case, the
conditional minimum of the functionalF is positive for
a50. For a nonzero Lagrangian multipliera, the condi-
tional minimum of the functionalF is determined by the
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~as well as forQ50!, the sign oflmin is determined by the
sign of the quantityf (l50): we havelmin>0 for f (0)<0
and a negativelmin for f (0).0.

For l50, formula ~3.11! can be easily written in the
form f (0)5^uuL1

21uu&. In order to calculate the value of thi
quantity, it is sufficient to differentiate Eq.~3.7! with respect
to «2 and, using the form of the operatorsL0 and L1 ~see
~3.5! and~3.6!!, to verify the relationL1]u/]«2 1 u 5 0. This
gives

f ~0!5^uuL1
21uu&52^uu]u/]«2&52~1/2!]/]«2^uuu&

52~1/2!]N/]«25~1/2!]N/]v, ~3.29!

whereN is the number of quasiparticles defined by formu
~2.5!.

Thus, the sign of the conditional minimum of the fun
tionalF for a Þ 0 is determined by the sign of the derivativ
]v/]N ~i.e., by the sign of the quantity]2E/]N2: the con-
ditional minimum of the functionalF is positive for
]v/]N<0, and according to~3.9!, V2,0.

It was proved earlier~see~2.16a!! that, in the case of
negativeQ and positiveb, the derivative]v/]N,0. This
indicates the absence of exponentially increasing pertu
tions ~V is a purely imaginary quantity! and the stability of
the solution in the approximation linear in perturbatio
Thus, antisymmetric corrections to the solutionũ(z,t) de-
scribe small oscillations of a soliton relative to the impurit

Solution~3.1! for Q,0 andb.0 can be reduced to th
form

u~z,t !>~2/b!1/2« cosh21$«@z2sgn~z!Q/~2«2!

2~j/2«!~3b/«!1/2 cos~nt !#%exp~2 ivt !,

~3.30!

wherej!1 is a small~arbitrary! amplitude of oscillations of
the center of the soliton relative to the region of localizati
of the impurity, andn[2 iV is the frequency of these os
cillations.

In order to find the frequencyn, we use formula~3.25!,
wherel253«uQu/2.0 in our case@see~3.22b!#. Thus, the
frequency of oscillations is given by

n5~2uQu«3!1/2. ~3.31!

It should be noted that in the case of a ‘‘smeared’’ im
purity, when the region of its localization is much larger th
the soliton width, the oscillatory frequency of the soliton
the external potential fieldU(z) simulating the impurity
(Q5*U(z)dz) is connected with the intensityQ of the po-
tential through the relation

n5~ uQu/L3!1/2, ~3.32!

where L is the characteristic spatial size of th
inhomogeneity.17 This is in qualitative agreement with th
result~3.31! obtained for ad-shaped impurity, but the role o
characteristic linear size is now played by the sizeL of the
defect instead of the soliton width 1/«. It should be recalled
that our analysis is valid only when the inequality~3.16! is
satisfied.
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In Ref. 18, another limiting case was analyzed in detail
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in the case of the sine-Gordon equation for an attractive
purity (Q,0): «2uQu/2!uQu/2, i.e., v l2v!v02v l . It
was assumed thatuQu!1. It can be easily seen from relatio
~2.5! that the following limitations are imposed on the valu
of parametersN andQ: N!2uQu/b, uQu!1 ~the sector with
double hatching near the negative semiaxisQ in Fig. 1a!. It
was shown in Ref. 18 that in this limiting case a solit
localized at the impurity is stable and performs small os
lations relative to the center of the impurity at a frequenc

n>@3~vmax2v!#1/2. ~3.33!

Taking into account the results obtained by us and
Ref. 18, we can assume that nonlinear local excitations
stable for all values ofQ,0 andN.0.

Let us go over to an analysis of stability of solutio
~1.10! describing a nonlinear excitation localized at the i
purity in the case of negativeb andQ.

Following the algorithm described above, we can sh
that forb,0 andQ,0, the operatorL1 is positive definite.
Let us first consider the operatorL0 . WhenQ,b,0, it as-
sumes the following form@see~3.5!#:

L052d2/dz21«21ubuu2~z!2uQud~z!, ~3.34!

whereu(z) is defined by~1.10!. Solutionu(z) is an eigen-
function of the ground state of the operatorL0 with zero
eigenvalue@see~3.7!#. Thus, the operatorL0 is nonnegative.
The potential energy corresponding to the operatorL0 has
the form

U0~z!5«21ubuu2~z!2uQud~z!. ~3.35!

It is significant that in contrast to the case whenb.0
andQ,0, the correction to thed-shaped potential is now
positive. The potential well~3.35! contains the only discrete
level corresponding to the ground state of the operatorL0 ,
while the next energy level coincides with the lower boun
ary of the continuous spectrum band.

The potential energy corresponding to the operatorL1

now has the form@cf. ~3.6!#
U1~z!5«213ubuu2~z!2uQud~z!. ~3.36!

Thus, in contrast to case~1! with b.0 andQ,0, when
the inequality

E U0~z!dz.E U1~z!dz,

holds, forb,0 we have

E U0~z!dz,E U1~z!dz. ~3.37!

Consequently, upon a transition from the operatorL0 to
the operatorL1 , the entire system of eigenvalues is shift
upwards, which indicates the absence of negative eigen
ues and a second discrete energy level for the operatorL1 .
Hence we can draw a conclusion on the stability of
bound state forb,0 andQ,0 in the entire range of its
existence and the absence of an intrinsic vibrational mod
this nonlinear localized excitation.

CONCLUSION

It has been proved that the states localized at an impu
in a nonlinear medium with point defects are possible for a
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of quasiparticles to the defect (Q,0). In the case of mutua
attraction between quasiparticles (b.0), a nonlinear excita-
tion can be localized at the impurity even in the case of
repulsive nature of the defect (Q.0).

For b.0 ~attraction between quasiparticles! andQ,0
~attractive impurity!, a point defect plays the role of a poten
tial well for a bound many-particle state, and soliton is l
calized near the defect and oscillates near its center
frequency (2«3uQu)1/2. In this case, localized soliton solu
tions are stable.

Forb.0 andQ.0, the soliton solution localized near
repulsive quasiparticle of the impurity is unstable. This
stability is manifested in an exponential increase of antisy
metric corrections to the solution: quasiparticles a
‘‘pumped’’ from one half-space to another and form a so
ton localized on one side of the impurity, which is repell
from it and goes to infinity.

In the case whenb,0 ~repulsion between quasipart
cles!, nonlinear local excitations are possible only f
Q,0, and the state bound to the defect is stable.
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Localized vibration spectra of crystals with intercalated plane
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~Submitted April 16, 1996; revised June 24, 1996!
Fiz. Nizk. Temp.23, 208–217~February 1997!

Additional symmetric and antisymmetric localized branches of the vibrational spectrum of a
crystal, associated with the presence of intercalated~interstitial! planes in strongly anisotropic
crystals, are investigated by using the discrete model and taking into account the interaction
between nearest neighbors. Energy–momentum relations for such vibrations are analyzed, and the
values of parameters for which local vibrations are excited above and below the energy
band in the continuous spectrum of the crystal corresponding to the given value of the wave
vector component in this plane are determined. Special attention is paid to an analysis of the
possibility of formation of well-defined resonant modes of the spectrum, which are located
within the allowed band and are polarized along and across the interstitial plane. ©1997
American Institute of Physics.@S1063-777X~97!01002-5#
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The analysis of vibrational spectra of crystals with va
ous planar defects~such as phase boundaries, twinni
planes, and intercalated planes! is an important problem in
solid state physics. The existence of special elastic wa
propagating near the surface of a medium was predicted
the first time by Rayleigh.1 Various types of waves emergin
in the presence of interfaces between different media w
subsequently studied in the theory of elasticity.2–4

In the case of the discrete lattice model, a general
proach to an analysis of spectra of crystals with planar
fects was proposed by Lifshits and Kosevich,5 who analyzed
the possibility of the formation of an additional two
dimensional branch of the spectrum for the simplest type
perturbations. The spectra of vibrational states localized n
a plane defect in a crystal were studied in many publicatio
including those where numerical methods were used.6–8Spe-
cial attention was paid to vibrations whose energies are s
rated from the main spectrum by a gap, and the amplitu
decrease exponentially with increasing distance from the
fect. Moreover, it was noted in Ref. 8 that the impuri
monolayer at the crystal surface can lead under certain
ditions to the emergence of resonant modes. It should
emphasized, however, that a consistent theory which wo
describe all possible spectral branches of crystals with v
ous types of planar defects~including energy–momentum
relation and attenuation of resonant modes! taking into ac-
count a variation of the atomic masses as well as the fo
constants for crystals with such defects has not been
structed yet.

It was shown in Refs. 9–11 by using the two-parame
model of an impurity center taking into account the chan
in masses as well as in force constants that well-defined r
nant modes can emerge even in low-dimensional~1D or
2D! systems in the case of a weak coupling between
impurity and the matrix. Considering that the problem
determining the vibration spectrum of a crystal with a plan
defect is essentially one-dimensional,5 it would be interesting
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with two-dimensional defects. An interstitial~intercalated!
plane can serve as a general form of a 2D defect for which
the two-parametric form of perturbation is significant. A
analysis of various properties~including the vibrational spec
trum! of the intercalated plane in layered crystals is of sp
cial importance. If we also take into account the strong
isotropy of the energy–momentum relation for phonons
these crystals, including the presence of flexural spec
modes, we can expect a large variety in the nature of
emerging two-dimensional impurity states and in the cor
sponding energy–momentum relations in such systems.

For this reason, we shall consider here the spectrum
localized and resonant vibrational states with different sy
metries, which is associated with the presence of the inte
lated plane in layered crystals with arbitrary values of atom
masses in this plane and force constants determining the
pling between the atoms in the plane and the matrix. C
siderable attention will be paid to an analysis of conditio
for the emergence of resonant spectral modes, their ene
momentum relations, and damping.

MODEL OF INTERCALATED PLANE IN A LAYERED
CRYSTAL

In the harmonic approximation, the equations of moti
of atoms in a layered crystal have the form

v2xn,N
a 2( Lnn8,NN8

ab xn8N8
b

50, ~1!

wherexn,N
a is thea-component (a5x,y,z) of the displace-

ment of thenth atom in theNth plane andL̂ the dynamic
matrix of the initial crystal. We assume that the initial la
ered crystal can be described by the model proposed in R
12 and 13. In this model, the crystal has a hexagonal s
metry, and it is sufficient to take into account only the inte
action of nearest neighbors in the direction perpendicula
the layers:

15320153-07$10.00 © 1997 American Institute of Physics
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Lnn,NN1152F 0 a1 /m 0

0 0 a2 /m
G , a1!a2 , ~2!

wherea1 anda2 are the force constants for noncentral a
central interaction between the planes, respectively. We
sume that the above assumptions are valid for a crystal
an intercalated plane also, but the force constants of its
teraction with the nearest layers of the crystal~for definite-
ness, we denote them byN50 and 1! have different values
a18 anda28 . In this case,a18!a28!a3 , wherea3 is the con-
stant of atomic interaction in the layers of the initial cryst

In crystals with a two-dimensional defect, the trans
tional invariance is violated only in the direction perpendic
lar to it. For this reason, we seek the solution of this probl
in the formxn,N

a 5 xN
a(k')exp(ik' • rn), where thez-axis is

perpendicular to the crystal layers in the impurity plan
k'5kxex1kyey , andrn is the radius vector of thenth atom
in the layer.

It follows from the symmetry of the system that we c
write three different types of equations of motion:~1! for
displacements of atoms of the intercalated plane,~2! for dis-
placements of atoms of the first and zeroth planes, and~3! for
all the remaining planes. From symmetry considerations,
also convenient to go over to new variables for the com
nents of the displacements of atoms in the plane:

xN
~1!5

kxxN
x 1kyxN

y

k'

, xN
~2!5

kxxN
y 2kyxN

x

k'

,

j15
kxj

x1kyj
y

k'

, j25
kxj

y2kyj
x

k'

, ~3!

whereja is thea-component of atomic displacement in th
impurity plane. In these variables, we obtain the followi
equations describing atomic displacements in the plane
small values ofkx andky :

S v22
2a1

m
2v i j

2 ~k'! Dx21
~ j ! 1

a1

m
~x22

~ j ! 1x0
~ j !!50,

S v22
2a1

m
2ṽ i j

2 ~k'! Dx0
~ j !1

a1

m
~x21

~ j ! 1x1
~ j !!

52
a18j j
m

1S a18

m
2

Da1

m Dx0
~ j !1

Da1

m
x1

~ j ! ,

~4!S v22
2a18

M
2v i j8

2~k'! D j j1
a18

M
~x0

~ j !1x1
~ j !!50,

v i j
2 ~k'!5cjk'

2 , ṽ i j
2 ~k'!5 c̃ jk'

2 ,

v i j8
2~k'!5cj8k'

2 , j51,2,

where cj , c̃ j , and cj8 are the squares of the velocities
sound in the layers of the initial crystal, in the layers adjo
ing the defect, and in the intercalated plane itself resp
tively,m andM are the masses of atoms of the initial crys
and of the intercalated plane respectively, a
Da15a12ã1 ,ã1 being the second-order force constant
a noncentral interaction of crystal layers closest to this pla
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is manifested, in particular, in that the velocity of acous
vibrations polarized in the plane is determined by the ma
mum coupling parameter:

cj;
a3a

2

m
, a3@a2@a1 , ~5!

wherea is the lattice constant of the layers.
It can be seen from~4! that the equations describin

vibrations with different polarizationsj within the layer~lon-
gitudinal and transverse vibrations in the long-wave lim!
can be separated. An analysis of these vibrational branch
the same so that we can henceforth omit the subscriptj .

In this model, the vibrations polarized across the lay
do not interact with other modes. Consequently, for th
components of displacements of atoms we can immedia
write

S v25
2a2

m
2v'

2 ~k'! Dx21
z 1

a2

m
~x22

z 1x0
z!50,

S v22
2a2

m
2ṽ'

2 ~k'! Dx0
z1

a2

m
~x21

z 1x1
z!

52
a28jz
m

1S a28

m
2

Da2

m Dx0
z1

Da2

m
x1
z ,

S v22
2a28

M
5v'8

2~k'! D jz1
a28

M
~x1

z1x0
z!50, ~6!

whereDa2 5 a2 2 ã2 ; ã2 andṽ'(k') are the corresponding
force constant and the frequency of vibrations in the pla
adjacent to the intercalated plane.

It is well known that layered crystals can exhibit flexur
vibrations of the layers due to a strong~as compared to the
interaction between the layers! noncentral interaction of at
oms in the layer.14,15For these vibrations, for small values o
k' we have

v2~k'!5c'k'
21Aa2k'

4 , A;cj , A@c' . ~7!

The vibrational frequenciesv'8 (k'),ṽ'(k') of the interca-
lated plane and of the adjacent planes in the matrix are
fined by similar expressions with corresponding values
c'8 , c̃' , A8, andÃ. The invariance of the crystal relative t
an infinitely small rotation implies that

c'5
a1b

2

m
, ~8!

whereb is the separation between the layers. We can pr
that the rule of sums is fulfilled when the following relation
hold for a crystal with an intercalated plane:

2Da15a18.0, a18,2a1 , ~9!

Mc'8 52m~c'2 c̃'!. ~10!

Eliminating the components of atomic displacements
the intercalated plane from the equations of motion, we
easily find that the two-dimensional matrix of perturbati
introduced by the defect and depending on the wave ve
k' can be written in the form
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NN ' N0 N1 N80 N81 F2m
1

~a18!2/~mM!

v22v i8
2~k'!22a18/M

1~ṽ i
2~k'!2v i

2~k'!!dNN8G ~11!

for vibrations polarized in the plane and

VNN8
'

~v,k'!5~dN01dN1!~dN801dN81!

3F ~a28!2/~mM!

v22~v'8 !2~k'!22a28/M

1S ṽ'
2 ~k'!2v'

2 ~k'!1
a28

m
2

Da2

m D dNN8

1
Da2

m
~12dNN8!G ~12!

for vibrations polarized across the plane.
In this case, the frequencies of new vibrations associa

with the presence of the defect can be determined form
condition

det~ l̂2V̂',i~v,k'!ĝ',i~v,k'!!50, ~13!

whereĝ',i is the unperturbed one-dimensional Green’s fu
tion for a layered crystal:

ĝ',i5S g00',i g01
',i

g10
',i g00

',i D ;
gNN8

',i
~v,k'![gNN8

',i
~«',i![gNN8

',i

5
1

N0
(
kz

exp~ ikzr NN8
z

!

«',i2v2,1
2 sin2~kzb/2!

;

«',i5v22v',i
2 ~k'!; ~14!

v1,2
2 54a1,2/m, andN0 is the number of planes in the crys

tal. Since we take into account here only the interaction
tween the nearest planes, and the atomic displacements i
intercalated plane are taken into account in expressions~11!
and~12!, it was sufficient to consider only 232 matrices for
determining the frequencies of localized vibrations asso
ated with the intercalated plane.

For the perturbations of the type under investigation,
~13! naturally splits into the symmetric and antisymmet
components corresponding to inphase and antiphase v
tions of the adjacent planes. In this case, the equations
fining the frequencies of symmetric vibrations polariz
across the layers assume the form

15S a28

m
1

2~a28!2/~mM!

v22v'8
2~k'!22a28/M

1ṽ'
2 ~k'!2v'

2 ~k'! D
3~g00

' 1g01
' !,

155 Low Temp. Phys. 23 (2), February 1997
d
e

-

-
the

i-

.

ra-
e-

S m v22v i8
2~k'!22a18/M

i ' i ' D
3~g00

i
1g01

i
!. ~15!

The frequencies of antisymmetric vibrations are accordin
defined by the equations

15S a28

m
2
2Da2

m
1ṽ'

2 ~k'!2v'
2 ~k'! D ~g00

' 2g01
' !,

15~ṽ i
2~k'!2v i

2~k'!!~g00
i

2g01
i

!. ~16!

Using relations~14!, we can obtain the following expres
sions for the matrix elements of unperturbed Green’s fu
tions appearing in~15! and ~16!:

g00
i ,'1g01

i ,'52g00
i ,'S 12

« i ,'

v1,2
2 D 1

2

v1,2
2 ,

g00
i ,'2g01

i ,'52~« i ,'g00
i ,'21!/v1,2

2 , ~17!

while the diagonal elements of these functions for arbitr
values of the parameter« i ,' have the form16

g00
i ,'5H sgn~« i ,'!/A« i ,'~« i ,'2v1,2

2 !, « i ,',0, « i ,'.v1,2
2 ,

i /A« i ,'~v1,2
2 2« i ,'!, 0,« i ,',v1,2

2 .
~18!

In the subsequent analysis of the frequencies of vib
tions associated with the intercalated plane, we shall cons
localized vibrations whose frequencies lie outside the co
sponding band of the continuous spectrum of the initial cr
tal for given values ofk' , and the amplitudes decrease e
ponentially with increasing distance from the defect, as w
as resonant vibrations whose frequencies lie within the
ergy band corresponding to bulk modes of the initial crys

SYMMETRIC VIBRATIONS

We begin the analysis of the vibrational spectra of
crystal with an intercalated plane with the most interest
case of symmetric vibrations. It can be seen from~15! that
the impurity plane actively participates in vibrations of th
type of symmetry so that its intralayer parameters and
cordingly the frequenciesv i8

2(k') produce an appreciabl
effect on the energy–momentum relation of localized vib
tions associated with the defect.

In the analysis of vibrations polarized in the plane, w
neglect~for simplicity! the change in the properties of th
crystal layers nearest to the defect. In this case, the follow
condition holds:ṽ i

2(k') 5 v i
2(k'), and the second expres

sion in ~15! @on account of~18!# assumes the form

« i2Dv i
2~k'!22a18/M

g@« i2Dv i
2~k'!#

511H 2S « i2v1
2

« i
D 1/2, « i,0, « i.v1

2,

i S v1
22« i

« i
D 1/2, 0,« i,v1

2,

~19!

where
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It should be noted that the expression on the right-hand
of Eq. ~19! has a typical one-dimensional singularity~diver-
gence! at the lower boundary (« i50) of the band for bulk
modes corresponding to the given value ofk' and a root
singularity typical of three-dimensional crystals at the up
boundary (« i5v1

2). The absence of one-dimensional sing
larity at the upper boundary in formula~19! is associated
with the choice of the model of the crystal and intercala
plane: the atoms from adjacent layers of the crystal and
the impurity plane are located exactly above one another
interact only with nearest neighbors.

It follows from Eq. ~19! that, for any value of
Dv i

2(k'),0, i.e., in the case when atoms in the impur
plane are coupled with one another more strongly than in
matrix layers, a low-frequency branch of local vibration
which is typical of two-dimensional effects and which w
described for the first time in Ref. 5, splits from the unp
turbed band. The frequencies of this branch correspondin
a given value ofk' lie below the edge of the acoustic ban
~i.e.,« i,0! and tend to zero ask'→0. For the crystal mode
with a plane defect considered here, the energy–momen
relation for this branch fork'→0 has the form

v i ,l
2 ~k'!'v i

2~k'!2
~Dv i

2~k'!!2

v1
2~m/M !2

. ~21!

As in Ref. 6, we havev i
2(k') 2 v i ,l

2 (k') } k'
4 . It can be seen

that the obtained energy–momentum relation does not
pend on the coupling between the intercalated plane and
matrix. Such a behavior is quite unexpected~especially in
the case of a weakly bound defect!. This question will be
analyzed in greater detail below.

Apart from the low-frequency branch of local vibration
the given system can also exhibit resonant vibrations wh
frequencies~for a given value ofk') lie in the band of cor-
responding bulk modes of the continuous spectrum of
unperturbed as well as local vibrations with frequencies
ing above this band.

Let us consider in greater detail the possibility of em
gence of well-defined resonant vibrations. Neglecting
second~imaginary! term on the right-hand side of Eq.~19!,
we obtain the following expression of the energy
momentum relation for vibrations polarized in the plane:

v i ,r
2 ~k'!5v i8

2~k'!1v i ,r
2 ~0!, ~22!

v i ,r
2 ~0!5

2a18/M

12g
5

g

12g

m

M
v1
2,v1

2. ~23!

Herev i ,r
2 (0) is the square of the limiting frequency of res

nant vibrations. According to~23!, the value ofv i ,r
2 (0) lies

in the energy band of the continuous spectrum when
parameters of the intercalated plane satisfy the follow
condition:

g,
1

11m/M
. ~24!
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quency of resonant vibrations on the wave vectork' is de-
termined only by the magnitude ofv i8

2(k'), i.e., is the same
as for an isolated intercalated plane, and does not depen
the coupling of this plane with the matrix. Consequently,
atoms in the given plane are coupled with one another m
strongly than in the layers of the initial crysta
@Dv i

2(k').0#, the frequency of a resonant vibration grad
ally moves away with increasingk' from the lower bound-
ary of the band corresponding to bulk modes and approac
this boundary if the coupling between atoms in the inter
lated plane is weaker than in the matrix.

Using Eq.~19!, we can also derive the following expres
sion for the broadening of the squared frequencyv i ,r

2 (k') of
resonant vibrations:

G i ,r~k'!5
g

12g
v i ,r
2 ~0!S v1

21v i
2~k'!2v i ,r

2 ~k'!

v i ,r
2 ~k'!2v i

2~k'!
D 1/2.

~25!

The condition for a resonant vibration to be well defin
has the form

uv i ,r
2 ~k'!2v i ,e

2 ~k'!u@G i ,r~k'!, ~26!

wherev i ,e
2 (k') are the vibrational frequencies correspondi

to the upper and lower edges of the band for a given valu
k' . Instead of two inequalities~26!, we can write, taking
into account the explicit expression~25! for damping, the
following interpolation criterion:

Mv i ,r
4 ~0!

m@v i ,r
2 ~k'!2v i

2~k'!#3/2
@v1

21v i
2~k'!2v i ,r

2 ~k'!#21/2!1.

~27!

Expressions~26! and~27! imply that the necessary conditio
for the emergence of resonant states is that the intercal
plane must be weakly coupled with the matrix. Indeed, in
case of low-frequency resonant vibrations (v i ,r

2 (0)!v1
2) for

small values ofk' we find that conditions~26! and~27! can
be reduced to the following inequality for the coupling p
rameters:

g!~11M /m!21. ~28!

Condition ~28! can also be written in the form

v i ,r
2 ~0!!S mM D 2v1

2. ~29!

Consequently, form@M , well-defined resonant states ca
lie at the middle of the continuous spectral band or at
upper edge. In the latter case, the criterion for the existe
of resonant states has the form

~v1
22v i ,r

2 ~0!!@v1
2~M /m!2.

As the resonant vibration branch approaches the bou
ary of the band corresponding to bulk modes, the expres
on the right-hand side of~27! diverges, the conditions for the
existence of resonant vibrations are violated, and the co
sponding branch is interrupted. In this case, the broaden
of resonant states at the lower edge of the spectrum
diverges,
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Let us consider in greater detail the behavior of lo
frequency of resonant vibrations, for which the conditi
Dv i

2(k'),0 is fulfilled. As the wave vector increases, th
frequencyv i

2(k') of such vibrations, which is defined i
~22!, approaches the lower edge of the unperturbed spe
band and terminates in this region. On the other hand
low-frequency branch of local vibrations is formed for su
values ofDv i

2(k') ~see above!. The frequency of these vi
brations is described by formula~21! as long as the condition
uDv i

2(k')u < v i ,r
2 (0) is satisfied. As the wave vector in

creases further, the vibrational frequency of this branch
proaches asymptotically the continuation of the energ
momentum relation ~22! for resonant vibrations@see
expression~31! for details#. The general form of the energy
momentum relation for resonant and local vibrations in
case of weakly coupled intercalated plane considered he
presented in Fig. 1a.

In the general case, the square of the frequency of lo

FIG. 1. Energy–momentum relations (a) v i ,r
2 (k') for symmetric resonant

~curve 1! andv i ,l
2 (k') for local ~curve 2! vibrations of a crystal with an

intercalated plane described by formula~19! for g50.1, m/M56.5, and
c8/c50.25, and (b) v',l

2 (k') for antisymmetric local vibrations of the crys
tal with an intercalated plane~curve 1! described by~35! for n'51.5,
( c̃'2c')/c'520.8, (Ã2A)/A520.85, and (Aa2v2

2)/c'
254. The regions

of continuous spectrum of the crystal are hatched.
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k' is defined by the solution of the equation

v i ,l
2 ~k'!5v i8

2~k'!1
2a18

M

3H 12gF1
2S v i ,l

2 ~k'!2v i
2~k'!2v1

2

v i ,l
2 ~k'!2v i

2~k'!
D 1/2G J 21

. ~30!

Such local vibrations lying above the upper edge of
band can be either a continuation of resonant spec
branches, or an independent branch starting atk'50. It
should be noted that in contrast to the lower edge, locali
vibrations do not split from the upper edge for arbitrar
small values of the quantityDv i

2(k').0.
The necessary condition for the emergence of a locali

state for k'50 is that the parameters of the intercalat
plane must satisfy the condition opposite to~24!. Since the
parametera18,2a1 in view of the conditions of crystal in-
variance to rotations, the masses of atoms from the inte
lated plane in the case of local vibrations whose frequen
lie much higher than the energy band corresponding to b
modes fork'50 must be much smaller than the masses
matrix atoms (M!m). In the general case, the energy
momentum relation for high-frequency local vibrations
the given symmetry assumes the form

v i ,l
2 ~k'!5v i ,l

2 ~0!1v i8
2~k'!,

v i ,l
2 ~0!52a18/M . ~31!

Expressions~22! and~31! show that the energy–momentu
relation for low-frequency resonant and high-frequency lo
vibrations is positive and is determined by the intralayer
brational frequencies only in the intercalated plane itself.
the intermediate cases, matrix vibrations can also affect
energy–momentum relation.

It also should be noted that in the case two branche
such modes are present in all cases when resonant and l
ized vibrations polarized in the plane are excited, . The d
ference in their frequencies is due to the fact that the qu
tities v i

2(k') andv i8
2(k') in expressions~19!–~31! depend

on the type of polarizationj . At the same time, the limiting
frequenciesv i ,l

2 (0) andv i ,r
2 (0) do not depend on the inde

j so that both these branches converge at the pointk'50.
Let us now consider the vibrations polarized perpendi

larly to the planes of the crystal. An analysis of the cor
sponding symmetric vibrations is in general similar to th
carried out above for the vibrations in the planes of the l
ers. The main difference~apart from the fact that the energy
momentum relationsv'

2 (k'), v'8
2(k'), ṽ'

2 (k') themselves
change significantly is that in formula~15! we cannot in
principle assume thatṽ i

2(k') 5 v i
2(k') in view of the sum

rule. As a result, the explicit dependence of frequencies
localized vibrations on the wave vector can change sligh
For example, instead of formula~21!, in the case of low-
frequency local vibrations, we obtain
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2
$c'k'

21a2k4@A~112m/M !2A82Ã2m/M #%2

v2
2~m/M !2

,

v'8
2~k'!2v'

2 ~k'!1~ṽ'
2 ~k'!2v'

2 ~k'!2m/M,0. ~32!

The limitations on the variation of the velocity of soun
@see~10!# in layers adjacent to the intercalated plane aff
the energy–momentum relation and attenuation of the co
sponding localized vibrations insignificantly since the con
tion uṽ'

2 (k') 2 v'
2 (k')u < a28/m is valid in the range of wave

vectors where a linear energy–momentum relation is
served. However, the changes in the spectrum can be s
ger for large values of wave vectors for which this conditi
becomes invalid in view of the possible change in flexu
rigidity in the planes adjacent to the defect.

It should be noted that the ratios of the parametersa18
anda28 ~which determine the frequencies of localized vibr
tions associated with the presence of the interstitial plane! to
the corresponding values of the matrix parameters can
arbitrary and generally do not correlate with one another.
this reason, the three types of localized modes do not ne
sarily appear~or disappear! simultaneously.

ANTISYMMETRIC VIBRATIONS

In the case of vibrations associated with the intercala
plane and transformed according to the antisymmetric re
sentation, the layers nearest to the defect move in antiph
and the atoms of the impurity plane do not participate
these vibrations. Localized vibrations in this case can eme
only due to a change in the parameters of the layers nea
to the intercalated plane.

Expressions~17! and ~18! show that the characteristi
difference g00

i ,'2g01
i ,' between lattice Green’s functions

which defines, according to Eqs.~16!, the frequencies of lo-
calized antisymmetric vibrations, has a root divergence at
upper boundary of the spectral band for the unpertur
crystal, corresponding to a given value ofk' , while the sin-
gularity at the lower boundary is of the conventional thre
dimensional type~in contrast to the case of symmetric vibr
tions!.

Over the entire frequency range, and taking into acco
the explicit form of lattice Green’s functions~17! and ~18!,
Eq. ~16! can be written in the form

15 f i ,'~k'!F S « i ,'

« i ,'2v1,2
2 D 1/221G , ~33!

f i ,'~k'!5n i ,'1
ṽ i ,'
2 ~k'!2v i ,'

2 ~k'!

v1,2
2 ,

n i50, n'5
2ã21a2822a2

2a2
.21. ~34!

In the allowed energy band of the vibrational spectrum for
unperturbed crystal (0,« i ,',v1,2

2 ), the radical in expres-
sion ~33! becomes imaginary, and Eq.~33! in this spectral
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does not depend on frequency, i.e., antisymmetric reso
modes do not appear for any polarization.

In the frequency range where«',0 or «'.v2
2, Eq.

~33! can be easily solved in explicit form:

v i ,',l
2 ~k'!5S 11

f i ,'
2 ~k'!

112 f i ,'~k'!
Dv1,2

2 1v i ,'
2 ~k'!. ~35!

Sincen i50 for vibrations polarized in the plane, onl
localized vibrations lying above the upper edge of the c
tinuous spectrum band can exist for small values of the w
vector. In this case, it is necessary that the intralayer rigid
in the planes nearest to the intercalated plane be higher
in the matrix@(ṽ i

2(k') 2 v i
2(k') . 0#. The corresponding

frequency of vibrations tends tov1 as k'→0 according to
thesame law@v i ,l

2 (k') 2 v i
2(k') 2 v1

2} k'
4 # as forsymmetric

vibrations near the lower band boundary5 in view of the one-
dimensional nature of the singularity of the unperturb
spectrum in this region.

For modes polarized across the plane, local vibratio
above the edge of the energy band can also exist fork'50 if
the parametern'.0, i.e., when the effective transverse co
pling associated with the presence of the intercalated p
becomes tighter the possibility of the emergence of sim
antisymmetric vibrations was indicated earlier in Ref. 6 f
another model of the impurity plane!. If, for example, the
elastic constant remains unchanged upon a transition to
plane adjacent to the intercalated one (ã25a2), such local
vibrations appear for arbitrary values of the parametera28
determining the elastic coupling between the intercala
plane and the matrix. The dispersion of frequenc
v',l
2 (k') of the emerging local vibrations is always positiv

If, however, the conditionṽ'
2 (k') 2 v'

2 (k') , 0, is satisfied,
the value off'(k') decreases with increasing wave vect
k' , and the frequencyv',l(k') approaches the uppe
boundary of the allowed energy band. Finally, f
f'(k')50, this spectral branch of localized transverse vib
tions disappears. With a further increase in the wave ve
~for f'(k'),21), this spectral branch can appear again
low the allowed energy band. The general form of t
energy–momentum relation for localized states is presen
in Fig. 1b.

Localized transverse vibration can also be excited in
case when the parametern' is negative (21,n',0). In
this case, the corresponding localized states will be form
for finite values of the wave vectork' ~above the allowed
spectral band forṽ'

2 (k') 2 v'
2 (k') . 0 andf'(k') . 0. and

below this band forṽ'
2 (k') 2 v'

2 (k') , 0 andf'(k'),21;
the latter case can also be realized for vibrations polarize
the plane!.

CONCLUSION

The analysis of the conditions for the emergence of
ditional branches of local and resonant vibrations in stron
anisotropic crystals with an intercalated interstitial pla
shows that such spectral branches can exist in a wide
quite realistic range of the parameters of the system. We
assume that these results will also be valid in general
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as in the case of a substitutional plane. However,
energy–momentum relations for localized impurity vibr
tions in strongly anisotropic crystals can be much more
versified in view of a relatively small width of the allowe
band for bulk modes in the two-dimensional Brillouin zo
~as compared to the maximum frequency of acoustic vib
tions!.

It should be noted, however, that some of the obtain
results require additional analysis in order to verify their s
bility in the case of other models. This concerns above all
form of the spectrum of various vibrations near the up
boundary of the allowed spectral band. Also, we have a
lyzed only the energy–momentum relations and attenua
of various types of vibrations induced by a planar defect,
the influence of such vibrations on the thermodynamic a
optical parameters of the crystal being measured requi
further investigation.

This research was carried out under the support of
SEP grant No. 042026.

Remark. After this manuscript had been submitted, t
editorial board kindly acquainted the authors with the arti
‘‘Acoustic shear waves localized near a plane defect in a
crystal’’ prepared for publication by A. M. Kosevich, E. S
Syrkin, and A. V. Tutov,17 in which similar problems are
considered. In both papers, the vibrational spectra of
crystal with a planar defect are considered on the basis o
discrete ~atomic! model. The main difference lies in th
types of crystal lattice~a layered crystal of hexagonal sym
metry! and in the method of analysis of vibrations, in whic
the law of decrease in the vibrational amplitude with incre
ing distance from the defect was not specified by us befo
hand. This allowed us, for example, to determine
energy–momenta relations for not only local, but also re
nant oscillations. Moreover, we considered the spectra
longitudinal as well as transverse vibrations with the com
nents of the wave vector with arbitrary directions and w
small magnitudes. Nevertheless, some qualitative results
tained by using these two approaches are similar. The clo
case for comparison is that considered in Sec. 1 of Ref.
where the role of the defect is played by the change in fo
constants for two adjacent planes of the crystal. In our an
sis, this corresponds to the limiting case of zero values of
parametera8 ~i.e., in fact, the absence of an intercalat
plane!, but the parametersã are generally assumed to b
other thana. As in Ref. 17, the branches of symmetric v
brations~however, polarized not only in the plane, but also
159 Low Temp. Phys. 23 (2), February 1997
e

i-

-

d
-
e
r
a-
n
t
d
a

-

e
c

e
he

-
e-
e
-
of
-

b-
est
7,
e
y-
e

t

band for small values ofk' if the corresponding values o
frequencies ṽ',i(k') are smaller than the frequencie
v',i(k') of the unperturbed crystal, i.e., for a weaker inte
planar coupling. As the coupling becomes stronger, symm
ric modes can appear, according to Ref. 17 only above
band edge and for finite values ofk' . Transverse antisym
metric modes are on the whole in agreement with the res
obtained in Ref. 17 for longitudinal vibrations. However, f
longitudinal antisymmetric modes we observe a qualitat
difference: the energy–momentum relation for local mod
emerging above the band edge upon an increase in the i
planar coupling always tends to the upper edge of the ene
band fork'→0 in view of the fulfillment of the sum rule for
the crystal model under consideration, while in the case o
weaker coupling such local vibrations can emerge only
low the band edge and for finite values ofk' . It would be
interesting to carry out a more detailed comparison of
results and the results obtained in Ref. 17 on the basis of
same crystal model.
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Isothermal segregation of an impurity from a finite-size grain to the interface or the external free
surface under predominant mass transfer by~vacancy–impurity atom! complexes is studied
at low temperatures. A modified equation is obtained for an impurity with the effective diffusion
coefficient containing the diffusion coefficients of the impurity and complexes with
different weights. The temporal evolution of the impurity concentration is determined for planar,
spherical, and cylindrical grains~which are close in shape to conventional grains! in the
case of a dilute solution at an arbitrary temperature. Simple algebraic equations are obtained for
the impurity concentration at the interface as a function of time. These equations are also
valid for a concentrated solution of the impurity at the interface. The kinetics of impurity
redissolution, i.e., the enrichment or depletion of the interface with the impurity~the
departure of impurity to the bulk of the grain! is considered. ©1997 American Institute of
Physics.@S1063-777X~97!01102-X#
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Many properties of polycrystalline materials are det
mined by the presence of an impurity at the interface
tween grains. As a result of segregation, the atomic conc
tration of impurity atoms at the interface can become mu
higher than in the bulk of a grain. The formation of a co
centrated solution of the impurity at the interface and
emergence of precipitates at the grain boundaries deterio
the mechanical properties of the material and can lead
temper brittleness of the metal.

The theory of segregation is based, as a rule, on the
Lean approach1 which is applicable if the diffusion length o
the impurity is much smaller than the grain size~i.e., the
grain is approximated by a semi-infinite medium!. In the
case of a fine-grain structure of the substance or a high
bility of impurities ~e.g., under irradiation!, the diffusion
length can become comparable with or larger than the c
acteristic grain size. In this paper, we consider segregatio
an impurity from a finite-size grain to the interface. Accor
ing to some experimental data, the diffusion rate for an
purity in a complex with a point defect is much higher th
in the free state.2 For this reason, we consider the gene
case when mass transfer can be accomplished by the d
sion of individual impurity atoms as well as impurity atom
in a complex with a point defect~vacancy!. Starting from the
Girifalco publications,3,4 the latter mechanism was called th
‘‘vacancion pump.’’ However, a number of assumptio
made in Ref. 3~such as the local equilibrium relative to th
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In this research, we analyze the conditions under wh
an impurity in complexes plays a significant role in diffusio
processes on account of different time scales in these
cesses and at low temperatures. An analysis of such phen
ena extends the scope of concepts associated with diffu
processes, which were formulated by Academician I. M. L
shits at the beginning of the seventies.

1. FORMULATION OF THE PROBLEM AND BASIC SYSTEM
OF EQUATIONS

Impurity–vacancy or impurity–interstitial atom com
plexes can play a significant role at low temperatures~at
T,Q, whereT is the temperature in energy units andQ the
binding energy of a complex!. The latter complexes play a
important role only in materials under irradiation since t
number of such complexes is small under normal conditio
If the diffusion coefficient for complexes is much larger th
the diffusion coefficient for an impurity, the complexes pla
the major role in mass transfer.

Following Ref. 7, we consider here a grain of a typic
size and symmetric shape~plane-parallel, spherical, or cylin
drical!. Such an approach is justified since similar proces
occur in all grains in polycrystals, and the grains are un
identical conditions on the average. This means that we
neglect the flows of point defects and impurity atom
through the middle of the interface between the grains,

16020160-11$10.00 © 1997 American Institute of Physics
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mined by the flows of impurity atoms to the grain bounda
Consequently, both the formation and disintegration of co
plexes must be taken into account in the diffusion equati
for point defects~vacancies!, impurity atoms, and com
plexes. Internal sinks~dislocations! should also be taken into
account in the case of vacancies.

Let us write the system of diffusion equations for det
mining the concentrationscv , cs , andcvs of vacancies, im-
purity atoms, and vacancy–impurity atom complexes,
spectively. For this purpose, we must supplement the rig
hand side of diffusion equations with sources and sinks
impurities, vacancies, and complexes. This gives

]cv
]t

5DvDcv1a~kcvs2cvcs!2Dvr~cv2cv
e!, ~1!

]cvs
]t

5DvsDcvs2a~kcvs2cvcs!, ~2!

]cs
]t

5DsDcs1a~kcvs2cvcs!. ~3!

We denote

«5a~kcvs2cvcs!, ~4!

wherecv
e is the equilibrium concentration of vacancies,k the

equilibrium constant relative to disintegration and formati
of complexes,Dv , Ds , andDvs are the volume diffusion
coefficients for vacancies, impurity atoms, and vacanc
impurity complexes respectively, anda is the frequency with
which an impurity atom is combined with a vacancy to for
a complex:

a5p
~Dv1Ds!

a82
.

Herea is the atomic spacing,p a coefficient of the order o
unity, andr the density of dislocations in a grain.

It is well known that the chemical potentials of com
plexes, impurity atoms and vacancies in equilibrium are c
nected through the relationmvs5ms1mv . If, in addition, we
assume that the solution in a grain is dilute incv , cs , and
cvs , we obtain

cvcs
cvs

5k5expH cvs2cs2cv

T J ,
wherecvs , cs , andcv are the excess energy of a comple
an impurity atom, and a vacancy respectively.

The termakcvs in Eqs.~1!–~4! describes the decay, an
the termacvcs the formation of complexes. It should b
noted that in order to find the steady-state flow of vacanc
to dislocations, we must solve the problem for the en
ensemble of dislocations since a stationary solution of su
problem in an infinite two-dimensional space does not ex
Such a self-consistent solution, obtained in Ref. 8 for
ensemble, leads to the expressionhDvr(cv2cv

e), where the
coefficienth is of the order of unity. For estimates, we ca
put h51.

We choose the initial conditions in an obvious w
~since the sample is prepared, as a rule, by cooling fr
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sample preparation is shorter than the time of a signific
segregation of impurity at the grain boundaries under
given conditions!. In this case,

csu t505cs~0!5cs
0, cvsu t5050,

~5!
cvu t505cv

e , cs
bu t505cs

b~0!,

where the superscriptb indicates that the value of the quan
tity is taken in the bulk of the grain.

Let us determine the boundary conditions for vacanc
complexes, and impurity atoms. It is well known that t
boundaries of the general form for vacancies are powe
sources and sinks of vacancies. For this reason, the con
tration of vacancies at the grain boundary is maintained
equilibrium:

cvu f5cv
e , ~6!

where f is an arbitrary point at the grain surface.
We assume that the parameters of the process unde

vestigation are such that the characteristic timea2/bDs re-
quired for an atoms to go over from a grain to the interfac9

is much shorter than the characteristic timet0 of variation of
the impurity concentration in the grain, which will be define
below~it should be noted thatb5Ds8/Ds,1, whereDs is the
diffusion coefficient of the last hop of an impurity atom
the interface; ifDs8.Ds , the last but one jump will be a
‘‘bottleneck,’’ and hence we must have 0,b,1!. This
means that the chemical potential of the impurity at the
terface and in the bulk of the grain is the same:

ms
bu f5msu f . ~7!

Henceforth, we shall specify the conditions when t
equilibrium relative to the decay of complexes accompan
by a transition of an impurity to the grain boundary is o
served to a high degree of accuracy. This means that
relaxation time~i.e., the timetvs

p of equalization of the decay
and formation rates for complexes! is much shorter than
t0 . In this case, we can write the following condition at th
grain boundary:

mvsu f5ms
bu f1mvu f5msu f1mvu f . ~8!

Considering that the impurity concentration at the int
face can be high, we find that the chemical potential of
impurity at the interface has the form

ms
b5cb1b̃cs

b1T ln
cs
b

12cs
b . ~9!

The second term on the right-hand side of this express
takes into account the interaction of impurity atoms at nei
boring lattice sites, while the third term takes into accoun
strong short-range interaction, i.e., the fact that only one p
ticle can be at a lattice site. As a rule, the interaction
impurity atoms at neighboring sites is weak as compared
the contribution from the remaining terms in~9!.

It follows from ~7! and ~9! that the Langmuir relation11

holds at the interface:
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cs
b~ t !

5gc u 5gl~ t !, ~10!
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where l(t) is the concentration of impurity atoms at th
interface, g5exp(DG/T) the redistribution coefficient
DG5(cs2cs

b)/T, andcs
b is the excess energy of dissolu

tion of the impurity at the interface. Assuming that the so
tion at the interface is dilute (cs

b!1), we obtain the Henry
relation

cs
bu f5gcsu f5gl~ t !. ~11!

Integrating~2! and~3! over the entire volume, summin
up the equations, and going over from the volume integra
the integral over the surface on the right-hand side of
equation, we arrive at the following relations:

VS dc̄sdt
1
dc̄vs
dt D5E

S
~ j s1 j vs!d•S5~ j s1 j vs!u fS,

c̄s5
1

V E
V
cvdV, c̄vs5

1

V E
V
cvsdV, ~12!

where c̄s and c̄vs are the values of the concentrations
impurity atoms and complexes averaged over the volum

In relations~12!, we have assumed that the grains a
symmetric, and hence the flow at the interface does not
pend on the point on the grain surface. The positive direc
of the normal to the surface is the inward direction from t
surface to the bulk of the grain. The law of conservation
the impurity gives

VS dc̄sdt
1
dc̄vs
dt D52dS

dcs
b

dt
, ~13!

where 2d is the width of the interface between two neig
boring grains. Consequently, we obtain the following con
tion at the boundary from~12! and ~13!:

2~ j vs1 j s!u f5
dcs

b

dt
d. ~14!

Here we assume that the grain boundary is narrow, and
diffusion coefficient in the boundary is large, and hence d
fusion processes rapidly level out the concentration of im
rity. This means thatcs

b at the interface is a function of tim
alone.

Thus, we have obtained a complete system of diffus
equations~1!–~3! with the initial conditions~5! and bound-
ary conditions~6!–~8!, ~10!, and~14!. It should be noted tha
if the local equilibrium at the interface cannot be stabiliz
over a time much shorter than the duration of the proc
under consideration, conditions of a more general form
satisfied at the interface. In this case, we must write
boundary condition of the third kind, which has the form

j su f5b
Ds

a
~csu f2 c̃s!, ~15a!

j vsu f5p
Dv

a
k~cvsu f2 c̃vs!, ~15b!
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can be determined from the condition~7! of equality of the
values of chemical potential at the interface and in the b
of the grain, andc̃vs the equilibrium concentration for the
decay of complexes at the interface, which can be de
mined from the condition of equilibrium between the dec
and formation of complexes at the interface:c̃vs5cv

ecs /k. It
should be noted thatcs

b and current quantitiescs and cvs
have the same characteristic time of variationt0 ~since they
are connected through the conservation law for the impuri!.
As a rule, the process occurs with a small deviation fro
local equilibrium, and hencec̃vs and c̃s have the same char
acteristic timet0 of their variation.

The first term in Eq.~15a! for the impurity flow to the
interface is the impurity flux to the boundary, while the se
ond term characterizes the flux from the boundary. The
efficientDs8/a 5 bDs /a(0 , b , 1) is the effective rate of a
transition of an impurity atom to the grain boundary. Wh
determining the flux through the interface for complexes,
take into account in Eq.~15b! the fact that a vacancy at th
interface overcomes a barrier, and then an impurity at
goes over to the prepared vacancy. The first term (gkcvs) in
Eq. ~15b! describes the flow of complexes to the interfac
As a result of decay, the complexes carry the impur
through the interface~i.e., the disintegration of complexe
and the transition of the impurity to the interface occur
multaneously!. The second term (gkc̃vs) describes the flow
of complexes from the interface. The difference between
fluxes in ~15b! is absorbed by the boundary. The coefficie
Dv8/a5pDv /a is the effective rate of transition of a vacanc
through the interface. Thus, if the characteristic timet0 ~i.e.,
the time during which the substance is supplied to the in
face, which is found to equal to the time of variation ofc̃vs
andcs!, is much longer than the maximum time of the tra
sition ~a2/bDs or a

2/pDv!, the condition of local equilib-
rium is satisfied to a sufficiently high degree of accura
i.e., the boundary conditions~7! and~8! are valid and lead to

csu f5 c̃s c̃vsu f5 c̃vs5cv
ec̃s /k. ~16!

2. CHARACTERISTIC TIME t p OF VACANCY
CONCENTRATION TUNING TO ITS EQUILIBRIUM VALUE

In Eqs. ~17!–~19!, we go over fromt to t5(Dv /a
2)t,

which gives

]cv
]t

5 ċv5a2Dcv1«2ra2~cv2cv
e!, ~17!

]cvs
]t

5 ċvs5
Dvs

Dv
Dcvs2«, ~18!

]cs
]t

5 ċs5
Ds

Dv
Dcs1«, ~19!

«5kcvs2cscv . ~20!

In these equations, the termsDc'div j are proportional
to the flux of point defects~vacancies, complexes, or impu
rity atoms! from an arbitrarily chosen small macroscop
volume ~physical point!. It should be noted that these term
in ~17!–~19! have the same order of magnitude
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«5k~c*1c* !2~k1c !c* 11k
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into account diffusion lengths for the corresponding defec!.
Let us consider the values of time for which the first terms
~17!–~19! are smaller than any of the remaining terms
Eqs. ~17!–~19!. In this case, these first terms can be n
glected, which actually means that the process can occu
two stages for such values of time. At the first stage,
tp!Dt!t and on a small time scale~interval!, when we can
neglect the outflow of point defects from a small mac
scopic volume, the rearrangement of concentrations of c
plexes and impurity atoms takes place so that their t
number is conserved. In view of the presence of sources
vacancy concentration tends to its equilibrium value, i.e.,
processes of formation and disintegration complexes are
elled out, and the concentration of vacancies tends to
equilibrium value at each point.

It should be noted that he characteristic sizel of a physi-
cal point belongs to the intervala/cs

1/3! l!LD ~LD is the
impurity diffusion length anda/cs

1/3 the separation betwee
impurity atoms!. Thus, at the first stage~small time scale!,
the process is described by Eqs.~17!–~19! without Laplace
operators, with certain boundary conditions at the time
stantt, which have the form

cvut505cv* , csut505cs* , cvsut505cvs* , ~21!

wheret is measured fromt.
As a result of relaxation (tp!Dt!t), certain relations

will be established between the quantitiescv , cvs , andcs .
These relations virtually do not change in the subsequ
description of the process, when the exchange between s
macroscopic volumes becomes significant, while the conc
tration appearing in these relations change slowly with
characteristic time of exchange between small macrosc
volumes, which is naturally much longer than the relaxat
time.

Equations~17!–~19! show that, with such a partial relax
ation, the impurity conservation law is satisfied at an ar
trary physical point:cs1cvs5cs*1cvs* . In this case,«
5 k(cs* 1 cvs* ) 2 cs(k1 cv); «ut50 5 kcvs* 1 cs* cv* . Taking
these expressions into account, we can simplify Eqs.~17!–
~19! and write them in the form

ċs5«5k~cs*1cvs* !2cs~k1cv!, ~22!

ċv5k~cs*1cvs* !2cs~k1cv!2ra2~cv2cv
e!

5«2ra2~cv2cv
e!. ~23!

Let us write Eq.~22! in integral form:

cs5cs* FexpH 2E
0

t

@k1cv~t8!#dt8J 1k
cs*1cvs*

cs*

3expH 2E
0

t

@k1cv~t8!#dt8J E
0

t

3expH E
0

t8
@k1cv~t9!#dt9J dt8G . ~24!

Substituting this equation into the expression for«, we ob-
tain
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3E
0

t

expF E
0

t8
@k1cv~t9!#dt9Gdt8J

3expF2E
0

t

@k1cv~t8!#dt8G . ~25!

Let us prove thatcv.0 and has a single minimum. In
deed, if the minimumcv5 c̃v is attained fort5t0 , we have
ċvut5t0

50. Denotingcvut5t0
5 c̃v , csut5t0

5 c̃s we obtain
from ~23!

ċvut5t0
505k~cs*1cvs* !2 c̃s~k1 c̃v!2ra2~ c̃v2cv

e!,
~26!

for t5t0 Þ 0. Considering thatcs*1cvs* . c̃s ~since impurity
sources are absent!, we obtain the relationc̃v /cv

e . ra2/( c̃s
1 ra2) from ~26!. An analysis of this relation shows that th
value ofcv belongs to the interval

0, c̃v<cv . ~27!

Using this inequality forc̃v , we can simplify relation
~25! to a high degree of accuracy. For this purpose, we c
sider the expression in the brackets of~25!. The integral in
~25! acquires its value~with an exponential accuracy! mainly
at the upper limitt85t, and hence

~k1cv!E
0

t

expH E
0

t8
@k1cv~t9!#dt9J dt8>E

0

t

~k

1cv~t8!!expH E
0

t8
~k1cv@t9!#dt9J dt8

5expH E
0

t

@k1cv~t8!#dt8J 21. ~28!

Taking this relation into account, we can write~25! in the
form

«5~kcvs* 2cs* cv!expH 2E
0

t

@k1cv~t8!#dt8J . ~29!

Using this relation for«, we obtain the closed equation fo
cv :

ċv5~kcvs* 2cs* cv!expH 2E
0

t

@k1cv~t8!#dt8J 2ra2~cv

2cv
e!,

cvut505cv* . ~30!

Introducing the new variableD(D5cv2cv
e), we obtain the

following equation forD:

Ḋ5~kcvs* 2cs* cv
e!expH 2E

0

t

@k1cv~t8!#dt8J 2Fra2

1cs* expH 2E
0

t

@k1cv~t8!#dt8J GD,
Dut505cv*2cv

e . ~31!
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This equation can be slightly simplified:
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Ḋ5~kcvs* 2cs* cv
e!exp$2~k1 c̃v!%t2@ra21cs* exp$

2~k1 c̃v!%t#D,

Dut505cv*2cv
e , c̄v5

1

t E
0

t

cv~t8!dt8. ~32!

Representing Eq.~32! in integral form, we obtain

D5~kcvs* 2cs* cv
e!expH 2ra2t1

cs*

k1 c̄v

3exp@2~k1 c̄v!t#J E
0

t

exp@2~k1 c̄v!t8#

3expH ra2t82
cs*

k1 c̄v
exp@2~k1 c̄v!t8#J dt8

1~cv*2cv
e!expH 2ra2t1

cs*

k1 c̄v

3exp@2~k1 c̄v!t#J . ~33!

Let us analyze this expression. For

k1 c̄v@ra2 ~34!

we have

D}~kcvs* 2cs* cv
e!exp$2ra2t%1~cv*2cv

e!exp$2ra2t%.
~35!

Here we have taken into account the fact that under the c
dition ~34!, the integral appearing in~33! tends to a constan
ast→`. The obtained expression~35! shows that the time
of relaxation ofcv to cv

e is given by

tp→1/~ra2!, ~36!

or, in dimensional units,

tp}1/~Dvr!.

In the case when

k1 c̄v!ra2 ~37!

we take into account the fact that the integral in~33! acquires
its value mainly at the upper limit, and the slowly varyin
multiplier can be factored out of the integral at the upp
limit. This gives

D}
~kcvs* 2cs* cv

e!

ra2
exp$2~k1 c̄v!t%1~cv*2cv

e!

3exp$2ra2t%. ~38!

In this case, the relaxation time is given by

tp}
1

k1 c̄v
or tp}

a2

Dv

1

k1 c̄v
5

1

a~k1 c̄v!
. ~39!

It can be seen from~29! that the characteristic relaxatio
time « has the form
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Dv k1 c̄v a~k1 c̄v!

Thus, if k1 c̄v@ra2, the value of« first tends to zero
over the time 1/@a(k1cv)#, and thencv approachescv

e dur-
ing the characteristic time 1/(Dvr). If k1cv!ra2, cv is
tuned tocv

e over the time 1/(Dvr), and the value of« simul-
taneously tends to zero during the time 1/@a(k1cv)#. Con-
sequently, the relaxation time for«→0 andcv→cv

e is equal
to 1/(Dvr) under condition~34! and to (a2/Dv)(k1cv)

21

for ~37!. Moreover, we can replace~for estimates! c̄v by cv
e

under condition~37! if k>cv
e ~i.e., if the decay of complexes

is significant!.

3. REDUCED SYSTEM OF EQUATIONS

After partial relaxation on a large time scale~when the
exchange of point defects between small macroscopic
umes, viz., physical points, is significant!, we can use a re-
duced system of equations forcv , cvs , andcs , in which the
relation obtained for relaxation time are taken into consid
ation. This system of equations has the form

cv>cv
e , ~40a!

«5a~kcvs2cscv
e!>0, ~40b!

]

]t
~cvs1cs!5DvsDcvs1DsDcs . ~40c!

Thus, we arrive at a simpler system of equations for
most important time intervalt0>t@tp in which the segrega-
tion to the grain boundary actually takes place. Relatio
~40a! and ~40b! are approximate~to within the above accu-
racy!. Equation ~40c! is an exact differential equation, in
which we can put«50 while determining the relation be
tweencs andcvs ~the smallness of« is defined as«/akcvs
} «/acv

ecs ! 1!. If we take into account the fact that« differs
from zero, Eq.~40c! acquires the terms giving small corre
tions to the solution in the zeroth approximation in« ~see
Appendix!.

Thus, in the zeroth approximation in«, we obtain the
following relations forcs from ~40c!:

]cs
]t

5DeffDcs , Deff5
kDs1cv

eDvs

k1cv
e , cvs5

cv
e

k
cs .

~41!

Since the system of reduced equations~40a!–~40c! is
applicable starting not from the initial instant of time, b
from t@tp , we must determine the initial and the bounda
conditions for this system in the zeroth approximation in«
also. Starting from the moment of time at which the proce
is described by the system of reduced equations, a fractio
impurity atoms goes over to complexes, and no apprecia
segregation to the interface takes place sincet@tp . In this
case,cs

0 5 cs8
0 1 cvs8

0, cvs8
0 5 (cv

e/k)cs8
0 @see~39!#, which gives

csu t505cs8
05

k

k1cv
e cs

0,
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c u 5c805
cv
e

c0, cbu 5cb~0!. ~42!

t t
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tio

ha

e-

cs
bux5 l5gcs5gl~ t !. ~47!

f

r
r

ion
in
ua-
vs t50 vs k1cv
e s s t50 s

It should be noted that the initial condition forcs
b(0) has not

changed since, by hypothesis, complexes do not exist a
grain boundary, and the impurity concentration does
change during the relaxation time. The fluxes at the gr
boundary in the zeroth approximation in« are given byj vs
5 Dvs¹cvs 5 (cv

e/k)Dvs¹cs , j s 5 Ds¹cs . In this case, Eq.
~14! assumes the form

2Deff¹csu f5deff
dcs

b

dt
,

deff5
k

k1cv
e d. ~43!

Thus, we have obtained a system of equations~41! with the
initial conditions~42! and with the boundary conditions~11!,
~15b!, ~16!, and~43! which describe impurity segregation
the grain boundary taking into account complexes.

It should be noted that the impurity can be in the fr
state with a probabilityws or in a complex with the prob-
ability wvs , ws1wvs51. The ratio of the probabilities is th
ratio of the corresponding relaxation times~i.e., the lifetimes
in the corresponding states! ts and tvs , where
ts51/(acv

e), tvs51/(ak). In this case,
ws /wvs5ts /tvs5k/cv

e , whence ws5k/(k1cv
e), wvs

5 cv
e/(k 1 cv

e). In terms of probabilities, the effective diffu
sion coefficient assumes the formDeff 5wsDs1wvsDvs. It has
the form of a superposition of the diffusion coefficients
impurity atoms and complexes with different weights, cor
sponding to the probability of the impurity occupying a de
nite state.

As k→0, the diffusion coefficientDeff→Dvs ~i.e., the
complexes in the system do not disintegrate, and all of f
impurity atoms in a grain become coupled in complexes a
a certain time!.

For k→`, the diffusion coefficientDeff→Dvs ~i.e., the
lifetime of complexes tends to zero, and a formed comp
decays immediately, so that complexes do not exist. Th
complexes dominate in mass transfer under the condi
Deff@Ds.

It should be noted that a further analysis is similar to t
in Ref. 7. Using the system of equations~41! derived above
for cs derived above~in the zeroth approximation in«!, we
consider the diffusion of an impurity atom for a plan
parallel grain with the characteristic sizeL52l . In this case,
we have

]cs
]t

5DeffDcs , D5]2/]x2, ~44!

2Deff¹csux56 l5deff
dcs

b

dt
~45!

with the following initial and boundary conditions:

csu t505cs8
05

k

k1cv
e cs

0, cs
bu t505cs

b~0!5gl~0!, ~46!
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We seek the solution of Eq.~44! in the form
c̃s(x,t)5cs(x,t)2l(t). In this case, Eq.~44! and conditions
~46! and ~47! assume the form

] c̃s
]t

5Deff

]2c̃s
]x2

2
]l

]t
, ~48!

c̃s~6 l ,t !50, c̃s~x,0!5cs8
02l~0!. ~49!

The solution of Eq.~48! @which obviously should be
sought in the form of a series in cosk(x/l)# has the same form
as in Ref. 7:

c̃s~x,t !5cs~x,t !2l~ t !52(
n50

`
~21!n

kn
2 expF2

Defft

l 2
kn
2G

3H cs802l~0!2E
0

t dl

dt8
expFDefft8

l 2
kn
2Gdt8J

3coskn~x/ l !,

kn5pS n1
1

2D . ~50!

Substituting this expression into~45!, we obtain

deffl

Deff

dcs
b

dt
52(

n50

`

expF2
Defft

l 2
kn
2G H cs802l~0!

2E
0

t dl

dt8
expFDefft8

l 2
kn
2Gdt8J . ~51!

Integrating~51! between 0 andt and changing the order o
integration in the double integral, we obtain

deff
l

@cs
b~ t !#2cs

b~0!]

5@cs8
02l~0!#S~ t !2E

0

t dl

dt8
S~ t2t8!dt8, ~52!

S~ t !5 (
n50

`
2

kn
2 H 12expF2

Defft

l 2
kn
2G J . ~53!

Integrating by parts the last term in~52!, we find that

deff
l

@cs
b~ t !2cs

b~0!#5cs8
0S~ t !1E

0

t

l~ t8!
]S~ t2t8!

]t8
dt8.

~54!

The function appearing in the integrand of~54! contains
two cofactors, one of which@l(t8)# is smooth, and the othe
@]S(t2t8)/]t8)] attains its maximum value at the uppe
limit, and]S(t 2 t8)/]t8u t8→t→`. The main contribution to
the integral comes from the region of large values oft8 close
to t; consequently, we replace the smoothly varying funct
l(t8) by its value at the upper limit. As a result, we obta
instead of the integral equation, an ordinary algebraic eq
tion

deff
l

@cs
b~ t !2cs

b~0!#5@cs8
02l~ t !#S~ t !. ~55!
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It should be noted that ift→`, in equilibrium we have
b 7

n

l
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a

whereR is the grain radius andkn5pn.

al

ar

n

n-
are
ite
,

ion
l(`)5cs(`)5cs(`)/g and

S~ t !u t→`5S~`!5 (
n50

`
2

kn
2 5 (

n50

`
2

p2~n11/2!2
51

In this case, Eq.~55! leads to

deff
l

@cs
b~`!2cs

b~0!#5Fcs802
cs
b~`!

g G , ~56!

or, taking into account the equalitiescs
b(`)/g 5 cs(`), cs8

0

5(k/(k1cv
e))cs

0,

d@cs
b~`!2cs

b~0!#5
k1cv

e

k F k

k1cv
e cs

02cs~`!G l . ~57!

Considering that@(k 1 cv
e)/k#cs(`) 5 cs(`) 1 cvs(`), we

obtain ~as expected! the exact law of impurity conservatio
for t→`:

d@cs
b~`!2cs

b~0!#5@cs
02cs~`!2cvs~`!# l . ~58!

It should be noted that Eq.~55! is written in the genera
form for an arbitrary relation betweenl andcs

b irrespective
of its complexity. For the Henry condition~11!, we obtain,
using ~55!,

cs
b~ t !5cs

b~0!1@gcs8
02cs

b~0!#
S~ t !

h1S~ t !

5cs
b~0!1Fg

k

k1cv
e cs

02cs
b~0!G S~ t !

h1S~ t !
,

~59!

h5
deffg

l
5d

k

k1cv
e

g

l
.

Formula ~59! describes segregation of impurity to th
interface at any instant of time for the known diffusion c
efficients of impurities, their equilibrium concentrations, in
tial concentrations and the coefficients of redistribution
tween the interface and the grain. The values of th
phenomenological quantities must be known from other
dependent experiments. We can also assume that these
tities are parameters and, using the array of experime
curve~plotted at the same temperature, but for different v
ues of initial concentrations and indifferent time interval!,
select the parameters in the obtained formula so that exp
mental curves fit to the theoretical dependence to the
quired degree of accuracy. The values of these quantities
be regarded as the values of the corresponding paramet

In the case of segregation in grain of an isotropic sha
it is convenient to use the spherical grain approximati
Taking into account the results obtained in Ref. 7, we c
write the diffusion equation in the form

c̃s~r ,t !52(
n51

`
~21!n11

kn
expH 2

Defft

R2 kn
2J S cs802l~0!

2E
0

t dl

dt8
expH Defft8

R2 kn
2J dt8D sin~kn3r /R!

r /R
,

~60!
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After similar transformations, we obtain

deff
R

@cs
b~ t !2cs

b~0!#5@cs8
02l~0!#Ss~ t !

2E
0

t dl

dt8
Ss~ t2t8!dt8. ~61!

Here the quantitydeff is defined by~43!, where d is the
half-width of the interface, i.e., the width of the spheric
layer absorbing impurity atoms, and the quantitySs(t) is
defined in analogy with~53!:

Ss~ t !5 (
n51

`
2

kn
2 F12expS 2

Defft

R2 kn
2D G .

Using simple arguments~the same as in the case of a plan
grain!, we obtain

deff
R

@cs
b~ t !2cs

b~0!#

5@cs8
02l~ t !#Ss~ t !5S k8

k1cv
e cs

02l~ t ! DSs~ t !. ~62!

In the case when the Henry condition holds, we have

cs
b~ t !5cs

b~0!1@gcs8
02cs

b~0!#
Ss~ t !

h81Ss~ t !

5cs
b~0!1S g

k

k1cv
e cs

02cs
b~0! D Ss~ t !

h81Ss~ t !
,

~63!

h85
gdeff
R

.

The solution of Eq.~62! satisfies the law of conservatio
of the amount of impurity fort→`:

3d@cs
b~`!2cs

b~0!#5@cs
02cs~`!2cvs~`!#R, ~64!

since, according to Ref. 7, we have

Ss~ t→`!5 (
n51

`
2

kn
2 5 (

n51

`
2

p2n2
5
1

3

and l~`!5cs~`!

Let us carry out a similar analysis for a grain of a cyli
drical shape, assuming that the condition along its axis
uniform. Using the results obtained in Ref. 7, we can wr
the solution of Eq.~44!, whereR is the radius of the cylinder
and the Laplacian is written in polar coordinates:

c̃s~r ,t !52(
kn

1

kn
expH 2

Defft

R2 kn
2J S cs802l~0!

2E
0

t dl

dt8
expH Defft8

R2 kn
2J dt8D J0~kn3r /R!

J1~kn!
,

~65!

wherekn are the zeroth of the zeroth-order Bessel funct
J0(kn)50, andJ1(kn) is the first-order Bessel function.
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After calculations, we obtain forcs
b(t) an equation simi-
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cs
b~`!uT15cs

b~0!uT11Fg~T1!
k~T1!

e cs
bUT12cs

0UT1G 1
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-
to
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lar to Eq.~61!, where the quantityd appearing indeff , is the
half-width of the boundary, i.e., of the cylindrical layer
which the impurity segregation from the grain takes pla
and instead ofSs(t) we have

Sc~ t !5(
kn

2

kn
F12expS 2

Defft

R2 kn
2D G . ~66!

The summation is carried out over the zeroth of the funct
J0(k). As in the case of a plane-parallel grain~55!, we can
easily obtain the following equation forcs

b(t):

deff
R

@cs
b~ t !2cs

b~0!#5@cs8
02l~ t !#Sc~ t !

5S k

k1cv
e cs

02l~ t ! DSc~ t !. ~67!

Under Henry’s condition, this relation assumes the form

cs
b~ t !5cs

b~0!1@gcs8
02cs

b~0!#
Sc~ t !

h81Sc~ t !

5cs
b~0!1S g

k

k1cv
e cs

02cs
b~0! D Sc~ t !

h81Sc~ t !
. ~68!

In order to satisfy the law of conservation of the amount
impurity for t→`, i.e.,

2d@cs
b~`!2cs

b~0!#5@cs
02cs~`!2cvs~`!#R,

the following relation must hold7: Sc(t→`) 5 (kn
2/kn

2 5 1/2
andl(`)5cs(`).

It should be noted that expressions~59!, ~63!, and ~68!
for the impurity concentration at the interface describe
process of depletion of a grain with impurity and its em
gence at the interface as well as the inverse process of
sition of impurity from the interface to the grain under ce
tain conditions. As in Ref. 7, the specific process
determined by the value of the redistribution coefficientg
and the values ofk andcv

e at a given temperatureT.
In the case of constant temperatureT0 , the system with

the initial value ofcv
b(0) Þ 0 evolves to the equilibrium state

Considering thatS(t)u t→`51, we obtain from~59!

cs
b~`!uT05F csb~0!UT0h~T0!1g~T0!

k~T0!

k~T0!1cv
e~T0!

cs
0U
T0
G

3@11h~T0!#
21. ~69!

If we change the temperature fromT0 to T1 , the equi-
librium is violated, and one of the following processes tak
place, depending on the relation betweenT0 andT:

for T0.T1 @i.e., g(T0),g(T1)], and additional transi-
tion of impurity to the boundary takes place;

for T0,T1 @i.e., g(T0).g(T1)#, a fraction of impurity
ions leaves the interface and is dissolved in the grain ag
In this case, the new equilibrium~at T1! level of impurity
concentration is
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n

f

e
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s

in.

k~T11cv~T1! 11h~T1!

5
@k~T0!1cv

e~T0!#/k~T0!1@g~T0!d#/ l

11h~T0!

k~T1!

k~T1!1cv
e~T1!

3
g~T1!

g~T0!

cs
b~0!uT0h~T0!1cs

0uT0g~T0!k~T0!/@k~T0!1cv
e~T0!#

11h~T1!
.

~70!

Here we consider that the initial impurity concentratio
cs
0uT1 at T1 includes the total amount of impurity~i.e., impu-
rity atoms in the free form and in complexescs

0uT1
5cs(`)uT01cvs(`)uT0!.

In addition, if we change the temperature fromT1 again
to T0 , expression~70! is transformed into~69! after the cor-
responding relaxation time.

Reducing both sides of relation~59! to the common de-
nominator, we obtain a very simple relation which exac
corresponds to the impurity conservation law in any st
~both in the free form and in complexes!:

d

l
cs
b~`!U

T

1cs~`!uT1cvs~`!uT5
d

l
cs
b~0!U

T

1cs
0uT .

~71!

It should be noted that the obtained formula is valid for
arbitrary temperature.

Using formula ~59! ~and knowing all the parameter
D, k, cv

e , g, andcs
0!, we can predict the time interval afte

which the impurity concentration at the interface attains
dangerous limit~as regards the strength of the material! if it
was high at the initial instant. This means that after this ti
interval, the material cannot be used. It can be seen f
~59!, however, that the direction of impurity segregation c
be reversed by elevating the temperature since in this c
the redistribution coefficient decreases, and a new equ
rium state will be attained as impurity atoms move from t
interface to the bulk of the grain.

Moreover, formula~59! can be used to determine th
time after which the impurity concentration at the interfa
attains the safety limit. It is important to note that, since t
impurity diffusion coefficient increases significantly wit
temperature, the time over which the impurity concentrat
at the interface decreases and reaches the safety limit is m
shorter than the service life of the material after which t
concentration at the interface attains the dangerous limit

By way of an example, let us estimate the change
temperature for which the service lifetex is 1000 times
longer than the timet re of recovery of the safety concentra
tion of impurity. The ratio of these times can be estimated
a high degree of accuracy as the ratio of the correspond
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se
that the preexponential factor weakly depends on temp
ture!. Considering thatk @ cv

e andDeff } (cv
e/k)Dvs}Ds/k, we

obtain

tex
t re

5
Deff
ex

Deff
re 5

Deff
exkre

Deff
re kex

'
e2QD /Tex

e2QD /Tre

e2Qk /Tre

e2Qk /Tex

'expH QD2Qk

Tex

DT

Tex
J ,

whereDT5Tex2Tre, andQD andQk are the activation en
ergies for diffusion and decay of a complex respectively.

On the other hand,tex/t re.103, and hence we can tak
the characteristic value (QD2Qk)/Tex.15–20 for esti-
mates. Consequently,DT/Tex.1/2–1/3, i.e., the recovery
temperature must differ by 25–50% from the operation te
perature. Using the above estimate and the experimental
ues oftex, t re, DT, andTex, we can estimate the differenc
QD2Qk . Using the values of diffusion activation energy f
specific materials, we can estimateQk , and hence the con
stantk of equilibrium relative to the decay and formation
complexes also.

CONCLUSIONS

~1! The kinetics of impurity segregation at grain boundar
is studied at low temperatures under conditions wh
vacancy–impurity complexes play a significant role
segregation dominate in mass transfer~the complexes
can increase or decrease the mobility of an impurity!.

~2! A modified equation is obtained for an impurity with th
effective diffusion coefficient containing the diffusio
coefficients for the impurity and complexes with diffe
ent weights. The temporal evolution of the impurity co
centration for planar, spherical, and cylindrical grains
an arbitrary temperature is traced in the case of a di
solution.

~3! An analysis of the kinetics of impurity segregation c
provide additional information on the chemical equili
rium constantk ~in fact, an analysis of the effective dif
fusion coefficient shows that this constant is determin
by two energies of diffusion activation and not by one!.

~4! A simple algebraic equation describing the enrichm
as well as depletion of the interface with an impur
~depending on external conditions! is obtained for the
segregation of the impurity in a complex as well as in
free form at the grain boundary.

~5! It is important to note that the obtained basic algebr
equation does not depend on the form of chemical
tential of impurity at the interface~i.e., is valid for a
dilute as well as a concentrated solution at the interfa
this problem will be considered in a separate article!.

~6! A similar approach can be used in the case of irradia
materials, when radiation-induced point defects fo
mobile complexes with impurity atoms with a high pro
ability.
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APPENDIX

Let us write the system of equations~38!, ~39!, and~41!
taking into account the terms containing« and having the
following order of smallness:

]cs
]t

5DeffDcs2
1

a~k1cv
e!

F]«

]t
2DvsD« G ,

cvs5
cv
e

k
cs1

«

ak
, cv>cv

e , ~A1!

where

Deff5
kDs1cv

eDvs

k1cv
e .

In order to describe the evolution ofcs and«, we use Eqs.
~A1! and ~3! with the following initial and boundary condi
tions ~while writing the boundary conditions, we must co
sider a grain of a definite shape; here we analyze a pla
parallel grain of sizeL52l !. It was proved in Sec. 3 and in
Ref. 7 that an analysis of spherical or cylindrical grains
carried out similarly. We choose the system of coordina
so that its origin coincides with the center of the grain.
should be noted that all the conditions at the grain bou
aries (6 l ) are identical, and hence the fluxes from the l
and from the right are equal, while the fluxes at the cente
the grain (x50) are absent in view of the symmetry of th
problem, and hence¹cux5050. While deriving the condi-
tions for«, we must substitute into~4! the initial and bound-
ary conditions forcs andcvs :

csu t505cs8
0,

]cs
]t U

x50

50, csux5 l5l~ t !; ~A2a!

«u t5050,
]«

]xU
x50

50, «ux5 l50. ~A2b!

Carrying out the substitutioncs5 c̃s1l(t), we transform
Eqs.~A1! and ~3! into equations with homogeneous boun
ary conditions:

] c̃s
]t

5DeffD c̃s2
1

a~k1cv
e!

S ]«

]t
2DvsD« D2

]l

]t
, ~A3a!

] c̃s
]t

5DeffD c̃s1«2
]l

]t
. ~A3b!

The initial and boundary conditions forc̃s become

c̃sux5 l50, c̃su t505cs8
02l~0!, ~A4!

while the conditions for« remain unchanged.
In order to find solutions of Eqs.~A3a! and ~A3b!, we

first solve the corresponding homogeneous equations. Ta
into account the boundary conditions, we can write the
solutions in the form
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c̃ 5 c̃ s~ t !cosk x, «5 « ~ t !cosk x, ~A5!

-

to

m
f

The conditionulnut<1 implies thaty!1 ~indeed,

eg-

m
fi-
an

r

l

ins

t
for

on-

ined
ght-

n

s (
n

n n (
n

n n

wherekn5(p/ l )(n11/2). Substituting~A5! into the homo-
geneous parts of~A3a! and~A3b! and integrating them with
corresponding cosines, we obtain

c8 n
s52Deffkn

2c̃ n
s2

1

a~k1cv
e!

~ «̇n1Dvskn
2«n!, ~A6a!

c8 n
s52Dskn

2c̃ n
s1«n . ~A6b!

As usual, we have

c̃ n
s5An exp~lnt !; «n5Bn exp~lnt !. ~A7!

Substituting~A7! into ~A6a! and ~A6b!, we obtain

An~ln1Deffkn
2!1

1

a~k1cv
e!

~ln1Dvskn
2!Bn50, ~A8a!

An~ln1Dskn
2!2Bn50. ~A8b!

Using the initial condition forc̃s , we determineAn(0)
@note thatc̃ n

su t505An(0)]:

An~0!5~cs8
02l~0!!

2

lkn
~21!n. ~A9!

Using ~A9!, we can easily findBn(0) from ~A8b!:

Bn~0!5
2kn
l

~21!n~Ds2Deff!@cs8
02l~0!#. ~A10!

From the homogeneous system~A8a! and ~A8b!, we obtain

ln
2

a~k1cv
e!

1S 11
~Ds1Dvs!kn

2

a~k1cv
e!

D ln1
Dvskn

2kn
2Ds

a~k1cv
e!

1Deffkn
250. ~A11!

This expression shows that allln,0 ~since we are dealing
with a quadratic equation with positive coefficients!. Conse-
quently, in the general solution~A5!, only the terms satisfy-
ing the conditionulnut<1 at any instant of time are signifi
cant. These terms determine solution~A5! with an
exponential accuracy. The values ofln satisfying the condi-
tion ulnut>1 make an exponentially small contribution
~A5!.

Let us determine the time starting from which the ter
appearing in Eq.~A11! have considerably different order o
smallness. Estimating the terms of Eq.~A11! and taking into
account the conditionulnut<1 ~we compare the third and
fifth terms:

~Ds1Dvs!kn
2lnt

a~k1cv
e!t

1

~Deffkn
2!

}
1

acv
et

!1

for ulnut<1, Ds!Dvs!, we find that for a timet@1/(acv
e),

Eq. ~A11! assumes the form

y21y1C50, ~A12!

where

y5
ln

a~k1cv
e!
; C5

Dvskn
2kn

2Ds

@a~k1cv
e!#2

1
Deffkn

2

a~k1cv
e!
.
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s

yn5
ln

a~k1cv
e!

t

t
}

1

a~k1cv
e!t

!1,

since we consider the system not from the beginning of s
regation, but starting from the time intervalt0>t@1/(acv

e)
which is most important for segregation, and starting fro
which the system of diffusion equations is simplified signi
cantly; this characteristic time is longer than the time of
individual diffusive jumptdif'1/(acv

e)5a2/Ds!. In addition,
the conditiony!1 implies thatC!1. Solving the quadratic
equation ~A12! and taking into account the condition fo
C, we obtain the roots

yn
~1!52C or ln

~1!52FDvskn
2Dskn

2

a~k1cv
e!

1Deffkn
2G , ~A13!

yn
~2!521 or ln

~2!52a~k1cv
e!. ~A14!

While determiningyn
(2) , we neglect the termC as compared

to 21. It can be seen from~A14! that the second solution
corresponding to the rootln

(2) gives an exponentially smal
quantity of the order of exp@2a(k1cv

e)t#. Consequently, we
have only one solution withln

(1) which has a finite value.
Let us prove that forulnut<1 andt@1/(acv

e), the terms
appearing in the expression forln

(1) have different orders of
smallness, i.e.,ln

(1)52Deffkn
2 . Indeed,

Dvskn
2Dskn

2

a~k1cv
e!

1

Deffkn
2 5

DvsDs

Deff
2

Deffkn
2t

a~k1cv
e!t

}
DvsDs

Deff
2

1

a~k1cv
e!t

!1.

It should be noted that

DvsDs

Deff
2 }

Ds /Dvs

~Ds /Dvs1cv
e/k!2

.

Testing this expression for extremum, we find that it atta
its maximum value forDs /Dvs5cv

e/k. Substituting the
maximum value, we arrive at the following expression:

cv
e/k

~cv
e/k1cv

e/k!2
1

a~k1cv
e!t

}
1

4acv
et

!1.

Consequently, for timet@1/(acv
e), we can neglect the firs

term as compared to the second term in the expression
ln
(1) , i.e.,

ln
~1!52Deffkn

2. ~A15!

It can be seen from the conditionulnut<1 that the main
contribution to the solution for a set of values ofln

(1) comes
from the values ofn satisfying the conditionDeffkn

2t<1,
while the remaining terms make an exponentially small c
tribution.

The total solution of the system~A3a! and ~A3b! is the
sum of the solutions of the homogeneous equation obta
above and of the nonhomogeneous equation with the ri
hand side for zero initial conditions~and for characteristic
time t@1/(acv

e)!. Using the standard approach of variatio
of an arbitrary constant, we obtain
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cosk xȦ ~ t !elnt1
]l

50, ~A16a!

ct

«}
]cs>2

cs
. ~A21!

ee
t

d

l
r

e

.

ll-

.

1

(
n

n n ]t

(
n

cosknx@Ȧn~ t !e
lnt1An~ t !lne

lnt1DsAn~ t !e
lntkn

2

2Bne
lnt#1

]l

]t
50. ~A16b!

From ~A16a! and ~A16b!, we obtain

An52E
0

t ]l

]t8
e2lnt8

2

lkn
~21!ndt8, ~A17a!

Bn5An~ln1Dskn
2!. ~A17b!

Finally, Bn is given by

Bn5
2kn
l

~21!n~Ds2Deff!S 2E
0

t ]l

]t8
e2lnt8dt8D .

~A18!

The total solution~A5! taking into account~A9!, ~A10!,
~A17a!, and~A18! assumes the form

c̃s5 (
n50

`
2

lkn
~21!nFcs802l~0!

2E
0

t ]l

]t8
e2lnt8dt8Gelnt cosknx, ~A19a!

«5 (
n50

`
2kn
l

~21!n~Ds2Deff!Fcs802l~0!

2E
0

t ]l

]t8
e2lnt8dt8Gelnt cosknx. ~A19b!

Estimating« from ~A19b! ~here we take into account the fa
thatDs2Deff } Deff andln52Deffkn

2!, we obtain

«} (
n50

`
2

lkn
~21!nlnFcs802l~0!

2E
0

t ]l

]t8
e2lnt8dt8Gelnt cosknx. ~A20!

It can be seen from~A20! and ~A19a! that the differen-
tiation of c̃s with respect to time@wherec̃s5cs1l(t)] gives
the following relation accurate toDs /Deff!1:
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]t t

It will be shown below that, for a timet,t0 , the parameter
cs is described by a power function of time to a high degr
of accuracy. Fort't0 ~i.e., for a time of the order of tha
corresponding to the end of segregation!, the value ofcs
depends on a small number of terms~see~A19a!!, and the
derivative]cs /]t }2 cs /t0 . The same result can be obtaine
directly from ~3! by using Eq.~A1!. Thus, using Eq.~A1!
and the estimate~A21! for «, we can easily prove that al
terms in Eq. ~A1! with « contains a small paramete
@a(k1cv

e)t#21!1 as compared to the terms containingcs .
Indeed, the LaplacianD } 1/Defft; « } cs /t; ]«/]t } cs /t

2;
]cs /]t } cs /t; DeffD« } cs/t

2. Equation~A1! leads to

cs
t

}
cs
t

2
1

a~k1cv
e! F2

cs
t2

2
cs
t2G} cs

t F11
2

a~k1cv
e!tG .

Consequently, we obtain a closed equation forcs accu-
rate to terms of the order of@a(k1cv

e)t#21 as compared to
unity, and Eq.~3! defines«. Therefore, we can replace th
second equation by the condition«'0 to within small terms
indicated above.

Indeed,« } cs /t→«/cs } 1/t or «/acv
ecs } 1/acv

e ! 1,
(akcvs2acv

ecs)(acv
ecs)

21}(acv
et)21!1.
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Dedicated to the memory of I. M. Lifshits

an
SHORT NOTES

The role of long-wave longitudinal phonons in kinetics of insulators
R. N. Gurzhi and A. V. Yanovski 

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted July 10, 1996!
Fiz. Nizk. Temp.23, 233–235~February 1997!

It is shown that long-wave longitudinal phonons considerably affect heat transfer in most of
existing crystals in spite of symmetry degeneracy of transverse vibrational branches. This is
because of close values of phase velocity of transverse phonon modes in these crystals.
Such effects are most pronounced in phonon hydrodynamics and in the propagation of second
sound. It is shown that the thermal conductivity of bulk samples is a nonmonotonic
function of the parameter characterizing the difference between the velocities of transverse
modes. ©1997 American Institute of Physics.@S1063-777X~97!01202-4#

1. Three-phonon processes involving at least one longi-vector f. These substances are close in their properties to
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tudinal partner can exist in the following two forms:~a! col-
lisions l1t↔ l , l↔t1t ~l is the longitudinal andt[t1,2 are
transverse vibrational modes! in which the mean free path o
long-wave longitudinal phonons~LLP! increases with de-
creasing frequencyv in proportion tov24 irrespective of
the symmetry of the crystal lattice, and~b! collisions
l1t1,2↔t2,1 in which the mean free path of LLP is propo
tional tov2n. Depending on crystal symmetry, the value
n can be equal to1 2, 3, or 4:n52 corresponds to the tan
gency of transverse branches at the point of symmetry
generacy,n53 to their intersection, andn54 to the absence
of degeneracy or, on the contrary, to complete coincidenc
transverse modes~the model of isotropic elastic medium!.

The processes in which the mean free pathl (v) of LLP
increases forv→0 in proportion tov2n with n>3 alone
cannot ensure a finite thermal conductivity. In this case,
thermal conductivityk;*v2l (v)dv diverges~the so-called
Pomeranchuk problem!.2 The Rayleigh scattering at impur
ties does not help either sincel (v) } v24 in this case.

However, most crystals accessible to experimental
vestigations have a symmetry~and elastic properties! for
which the processesl1t1,2↔t2,1 are allowed; in this case
n52, and it may appear that the problem does not exist.
usually assumed that the kinetic properties of insulators
low temperatures~excluding very dirty samples! are mainly
determined by phonons.3,4 In this connection, it is appropri
ate to mention the fact underlying the subsequent analysi
most crystals, the transverse modest1 andt2 differ insignifi-
cantly:

d5max
f

ust1~ f!2st2~ f!u

st1 ,t2~ f!
!1,

where st1 ,t2 are the phase velocities of the correspond
transverse modes depending on the direction of the w
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isotropic elastic medium~see Table I; metals can be of inte
est in the superconducting state!.

In such crystals, the energy of transverse phonons
ticipating in the processesl1t1,2↔t2,1 is considerably higher
~by a factor ofd21! than the energy of longitudinal phonon
according to the conservation laws:v t1

;v t2
;d21v l@v l .

Consequently, the Herring mechanism has a threshold
high frequencies since the number of corresponding tra
verse phonons with energyv t1,2

.T is exponentially small
for v l.dT.5 We can write the reciprocal relaxation time fo
LLP in such processes in the form (x5vT21)

tH
21~x![sl l H

21~x!; H x2d21,
x5d24exp $2xd21%,

x!d;
d!x<1.

~1!

It is usually assumed thatd;1, and hencetH
21(x);x2.

2. In bulk samples, the processesl1t1,2↔t2,1 remove
the divergence in thermal conductivity, confining the integ
tion domain~lower limit! to the cutoff frequencyv0 which
can be determined from the equation

l H
21~x0!5~ l N

211 l i
21!x0

4, x05v0T
21.

Here l N}T25 and l i}T
24 are the mean free paths for the

mal phonons relative to scattering at one another and at ‘‘
purities’’ respectively.1!

Under the conditions when the LLP contribution dom
nates, and truncation takes place above the threshold fo
Herring mechanism, we obtain the following expressions
the Callaway approximation:

k'Csl~ l N
211 l i

21!21x0
21F12

5

4
~R1

221R2
22!

d

x0
1S 2

1
l i
l N

D x01...G ;
17120171-03$10.00 © 1997 American Institute of Physics
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TABLE I. Values of parameterd for some materials.
el21~d! the linear function of this parameter. As a result, the l

Substance

4He NaF LiF H2 D2 CdS Al BaF2

Some
quasi-
crystals W

d 1/5 1/7 1/8 0.1 0.1 0.1 ,0.1 5•1022 2•1022 2•1023
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x0'd lnFd4~ l i
211 l N

21!G ; ~2!

5d!x0!minS l Nl i ,1D . ~3!

HereC}T3 is the heat capacity,R1,2 are the main radii of
curvature of the surface defined by the equat
r(f)5d21st

21ust1(f)2st2(f)u at the point corresponding t
the maximum value ofr ~r is the radius in the spherica
system of coordinates; by definition,d,rmax51!.

The obtained result can be interpreted easily: if the m
contribution to thermal conductivity comes from phono
with a frequency v0!T, we have
k'Csl l tr(x0)x0

3'Csl( l N
211 l i

21)21x0
21, where x0

3 reflects
the statistical weight of LLP. Hence, it follows that, fo
d!1, the thermal conductivity is anomalously larg
(x0!1) and has a peculiar dependence on temperatureT and
point defect concentrationh. For pure samples (l i@ l N), the
thermal conductivityk } T22 ~in a conventional analysis,3we
havek } T21h21!, while for dirty samples (l i! l N) we have
k21}Th ln(Thd23) ~normally,k21}T3/2h1/2!.8 It should be
noted that for d51/5, the contributions from therma
phonons to LLP are generally of the same order of mag
tude.

It follows from ~1! and ~2! that with increasingd, the
cutoff frequencyv05x0(d)T increases at a lower rate tha

FIG. 1. Thermal conductivity of dirty samples as a function of the param
d reduced to the contribution from thermal phononskT5Csl l i for
l N / l i51000 ~a! and 100~b!.
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inequality in~3! is violated. For dirty samples, this leads to
nonmonotonic dependence of thermal conductivityk on d.
Indeed, according to ~2!, for x0!d we have
k21;d ln(d23), while for x0,d, k;d1/2 according to cal-
culations~see Fig. 1!.

3. In the case of hydrodynamic heat transfer, LLP
samples with a finite size are manifested in a different w
l N!d!Al Nl i .

~a! For thin samples, a specific nonlocal hydrodynam
is manifested. In this case, the interaction between the p
non gas layers moving with different velocities is realiz
through LLP whose mean free path is comparable with
size of the system.5

Let us consider the conditions required for this effe
which have not been analyzed earlier and which are obta
from the requirement of smallness of the first corrections
thermal conductivity determined by the solution of the in
gral equation in nonlocal hydrodynamics~see Ref. 5! taking
into account relation~1!:

@dl21~x0!#
7/45@dlN

21x0
4#7/4!1, ~4!

where

x0.d lnF elN
d4l H~d!G , l ~x!5 l Nx

24.

~b! For samples with a larger thickness, peculiar loc
hydrodynamics with the viscositym5sl l eff , where
l eff'x0

3l(x0)5lNx0
21, is realized for 1,x0

24!dlN
21 . The vis-

cosity is determined by LLP with the mean free pa
l (x0)@ l N ~the factorx0

3 reflects the number of such phonon
l (x0)!d!. As a result, ford<1/5, we determine notl N ~as
usually assumed!, but a larger quantityl eff'lNx0

21 from ex-
periments on Poiseuille flow of a phonon gas.

Similar considerations are applicable for the problem
attenuation of second sound whose wavelength plays the
of d in this case.

Finally, it should be noted that nonlocal hydrodynami
is most suitable for determining the role of LLP since co
dition ~4! contains the small parameterx0 to the seventh
power, whilex0 appears in condition~3! only to the first
power.

*E-mail: gurzhi@ilt.kharkov.ua
1!The divergence can be removed if we take into account the finiteness o
lifetime of longitudinal thermal phonons, i.e., the Simons mechanis6

which makes thel1 l↔ l processes involving LLP allowed. However, ac
cording to calculations,7 the corresponding mean free pathl S is apparently
too large:l S'104T22l N for solid hydrogen andl S'4•106T22l N for NaCl,
whereT is measured in degrees Celsius.
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LETTERS TO THE EDITOR

iF
Electron paramagnetic resonance measurements of static magnetic susceptibility
F. G. Cherkasov, I. V. Ovchinnikov, A. N. Turanov, S. G. L’vov, and V. A. Goncharov

Kazan’ Physicotechnical Institute, Russian Academy of Sciences, 420029 Kazan’, Russia*

A. Ya. Vitols

Riga Technical University, LV-1656 Riga PDP, Latvija
~Submitted October 28, 1996!
Fiz. Nizk. Temp.23, 236–239~February 1997!

It is shown that the total volume magnetic susceptibility of a substance can be measured in
principle with the help of electron paramagnetic resonance~EPR!. For this purpose, the
conventional EPR technique can be used along with a known reference compound with a
very narrow resonant absorption line. The accuracy of absolute susceptibility measurements is
comparable to that of classical methods. ©1997 American Institute of Physics.
@S1063-777X~97!01302-9#

Classical methods of measurement of static magneticsusceptibility. The reference sample was in the form of a L
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susceptibility have become conventional in everyday labo
tory experiments. In recent years, high-sensitivity~SQUID!
magnetometers are being used widely in the study of ma
scopic properties of materials. At the same time, informat
on a nontraditional approach to the determining of volu
magnetic susceptibility appeared in the literature. This
proach is based on analysis of chemical shifts of prot
(1H) in the nuclear magnetic resonance~NMR! spectra and
is intended for studying liquid media.1,2 We propose that
electron paramagnetic resonance be used for this purpo

The volume susceptibilities of paramagnetic materi
can be measured with the help of a conventional station
EPR spectrometer. The detecting element of such a s
trometer plays the role of a magnetometer if we use the
called reference compounds with a narrow high-intens
EPR line1! in our measurements~the arrangement of the ref
erence sample and the substance under investigation
measuring ampule for specimens will be given below!. In the
presence of the substance under investigation, a splittin
the narrow line of the reference material was observed
expected, this splitting was proportional to the volume s
ceptibility of the substance under investigation. As a res
the procedure of experimental determining the susceptib
was reduced to the recording to the spectrum of the refere
specimen. The EPR signals from the materials under inv
tigation did not hamper the measurements since these sig
actually were not detected in the mode for observation of
narrow line.2! Thus, we propose here a resonant method s
able for absolute measurements of the volume magnetic
ceptibility of solid, liquid, and liquid-crystal materials.

EPR spectra were measured in the 3-cm wavelen
range3! on the radiospectrometer BER-418S at room te
peratures and under conventional requirements for cor
recording of very narrow EPR signals.3,4 The samples were
placed in coaxial cylindrical glass or quartz ampules of
ameter 5–6 mm. The objects under investigation w
weakly magnetic substances with a low and high volu
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crystal with very small high-purity particles of metalli
lithium.5,6 Such particles with a typical size 0.6–1mm were
obtained in LiF single crystals exposed to a high-intens
neutron beams~after thermal annealing and tempering in li
uid nitrogen!. Such particles were also formed in LiF durin
solid-phase electrolysis. After irradiation~or electrolysis!,
the crystals were crushed and used for measurements in
form of granules with a diameter 0.1–0.2 mm. Any of su
granules was characterized by a solitary symmetric EPR
~on conduction electrons! with a peak widthDHpp~300 K!
.40–70 mG. The signal was strong enough even at
levels of microwave power (P;1024 W) in the resonator
for a magnetic field modulation depth 10–30 mG. Precis
measurements of theg-factor revealed that it is isotropic an
differs from the value g0 for a free electron by
dg5g2g05(2364)•1026 ~where g052.00229! in the
temperature range 9–400 K. The magnetic susceptibility
the irradiated reference sample including the diamagn
contribution from the LiF matrix and the paramagnetic co
tribution from coloring centers and the metal i7

xn520.88•1026 at 20 °C.4! The volume susceptibilityxc

of the sample obtained electrolytically is determined by
diamagnetic susceptibility in LiF and is close to the val
21.07•1026 ~20 °C!; consequently, such a sample is mo
convenient for susceptibility measurements in the tempe
ture range from 4.2 to 800 K. The resonant properties of
with metallic Li and the prospects of its application in ma
netic studies are considered in Refs. 5 and 6.

The method of magnetic susceptibility measuremen
based on the measurement of splitting of the narrow E
line for the reference sample in the case of the transve
orientation of the axis of the measuring ampule relative
the external constant magnetic fieldH0 ~in the resonator of
the spectrometer!. The ampule geometry and the observ
EPR spectra are shown schematically in Fig. 1. The E
spectrum of the reference sample contained a single na
line for any arrangement of the sample in the ampule. If

17420174-03$10.00 © 1997 American Institute of Physics



r

e

e

e
is
a

FIG. 1. Construction of the ampule fo
samples~a,c! and the observed maximum
splitting d of the EPR signal for the angles
of rotation 0 and 90° ampule of the relativ
to the applied fieldH0 for a pointlike refer-
ence sample~b! and for an arbitrary position
of the ampule for an annular referenc
sample~d!; central tube~1!, outer tube of the
ampule~2!, reference sample (R), and the
substance under investigation (S); the
change in the magnetic flux density in th
presence of a paramagnetic material
shown schematically in the lower part of
~on the right!.
place a substance~in the form of a powder, single crystal, or
d
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tru
se
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netic susceptibilities are most suitable and reliable. In this
e
for
ith a

etic
the
liquid! with unknown susceptibility into the inner tube an
fix two granules of the reference sample in the annular pl
of the ampule as shown in Figs. 1a and b, the EPR spec
will contain two narrow lines instead of one. In the ca
when a ‘‘continuous’’ annular reference sample was us
the EPR signal was smeared and had the form of a o
modulated line~see Figs. 1c and d!. In both cases, the signa
‘‘splitting’’ occurs due to the nonuniformity of the magnet
field created by the substance under investigation and
pends linearly on the susceptibilityx of the substance:

d5H0~a1bx!, ~1!

where the coefficientsa and b are different for different
configurations of experiment and are determined by the g
metrical parameters of the ampule and by the susceptibil
of the reference sample and the ampule material1,8 ~b;4p
in the CGSM units and of the order of unity in the SI units!.
For substances under investigation with susceptibili
(1–2)•1025, the average splittingd.0.5 G for a pointlike
reference sample is measured with an error 0.01–0.02
view of inaccuracy in the fixation of the ampule~to within
62.5°!. Consequently, the relative error in the determinat
of susceptibility on the basis of formula~1! is 2–3%. For
substances with a high susceptibility, this error is acco
ingly smaller. It should be noted that the application of sm
reference samples makes it possible to operate with a
small amount of substance (;10–20 mg), and the ampul
with an annular reference sample~Fig. 1c! is more conve-
nient for measuring the temperature dependences ofx.

The EPR measurements which make it possible to de
minex from the gauge data for substances with known m
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case, the coefficientsa and b can be regarded as gaug
constants which can be estimated from susceptibility data
two or three standard substances by using the ampule w
pointlike or annular reference sample~see Figs. 1a and c!. It
can be seen from Fig. 2 that a linear dependence ofd(x) is
observed for most of paramagnetic materials. The magn
susceptibilities of these substances were measured by

FIG. 2. Dependence of the splittingd of the EPR signal on the volume
susceptibility x for some paramagnetic materials: CuSO4•5H2O ~1!;
NiSO4•7H2O ~2!; Cr2~SO4!3•18H2O ~3!; HgCo~CNS!4 ~4!; FeCl3:C2H2OH
~5!; Fe2~SO4!3•9H2O ~6!; MnSO4•7H2O ~7!; Gd2O3 ~8!.
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Faraday method to within 1%. The values ofd were mea-
nc
de
lle

u

o

n
m
n
d
v
th
o
am

a
lity
y
o

V
d

th

*E-mail: fred@dionis.kfti.kcn.ru
1!The absorption line characterized by the peak widthDHpp,0.1 G is ob-
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sured with the help of an ampule with an annular refere
sample of height 5–6 mm. It should be noted that pow
samples were investigated in the form of pressed pe
since the accuracy in the measurements ofx was determined
to a considerable extent by the homogeneity and reprod
ibility of ampule filling with the sample.

It should be noted in conclusion that the potentialities
an EPR magnetometer are determined to a considerable
tent by the parameters and properties of the refere
sample. At the present time, the EPR measurements for
tallic lithium in LiF at frequencies up to 550 GHz, i.e., i
magnetic fields of strength up to 195 kG, can be regarde
feasible; such experiments will make it possible to impro
the accuracy of EPR measurements of susceptibility with
help of the given~Li–LiF ! reference sample. It would be als
practical to use this sample for studying the magnetic par
eters of substances in the temperature range from 2
800 K. In this connection, the resonant method can be
plied, for example, in the analysis of the total susceptibi
of metals and superconductors and for studying anisotrop
the magnetic susceptibility and orientational dynamics
paramagnetic liquid crystals.9

The authors are grateful to G. B. Teitelbaum, Yu.
Yablokov, and N. N. Garif’yanov for fruitful discussions an
valuable comments.
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Russian Foundation of Fundamental Studies~Grants Nos.
96-02-18255 and 96-03-32725!.
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served in substances with a spin concentration of 1020 spins/cm3 and
higher.3,4 HereDHpp is the separation between nearest experimental po
on the absorption curve.

2!The only exception is metal–ammonia solutions and other substances
a very narrow EPR line.4

3!That is, at a frequency of 9.4 GHz in a constant magnetic field of the o
of 3.4 kG. The natural nonuniformity of the magnetic field in the volum
;1 cm3 did not exceed 0.03 G/cm.

4!All values of susceptibility are given in the CGSM system of units.
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QUANTUM LIQUIDS AND CRYSTALS

f

Reflection and transformation of acoustic waves at the interface in superfluid 3He-A
Sh. E. Kekutiya and N. D. Chkhaidze

Institute of Cybernetics, Georgian Academy of Sciences, 310086 Tbilisi, Georgia
~Submitted November 9, 1995; revised September 2, 1996!
Fiz. Nizk. Temp.23, 135–139~February 1997!

The reflection and transformation of acoustic waves in3He-A and3He-A1 is considered in two
cases:~1! at the boundary of a solid impermeable wall for an arbitrary angle of incidence,
and ~2! for a normal incidence of waves at the interface between a free liquid and a system of
periodic plane-parallel capillaries filling the half-space. In the first case, the reflection
coefficient of first and second sounds, spin and spin–temperature waves, and the coefficients of
mutual transformation of these waves are calculated. It is shown that a longitudinal spin
wave is not transformed into other waves and experiences instead the total reflection at the solid
wall. The angle of incidence for which the energy attenuation coefficient of first sound
attains its maximum value is calculated as well as the angular interval corresponding to attenuation
and total internal reflection of second sound. In the second case, the coefficients of excitation
of fourth sound and of a magnetoacoustic wave by the first and second sounds, the
reflection coefficients for the first and second sounds and for a longitudinal spin wave, the
coefficient of transformation of first sound into second sound and vice versa, and the coefficient
of reflection of fourth sound at the interface between the capillary system and the free
liquid, and the coefficient of excitation of a longitudinal spin wave in free helium by the same
wave in a capillary are calculated. ©1997 American Institute of Physics.
@S1063-777X~97!00102-3#

At temperatures of the order of millikelvins, quasiparti-
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Superfluid phases of3He can transmit various types o
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/0
cles in liquid He in the triplet state with the relative orbita
angular momentumL51, experience Cooper pairing leadin
to a transition to the superfluid state. In zero magnetic fie
liquid 3He exists in two superfluid phases known as theA-
andB-phases. In a strong magnetic field, another superfl
phase3He-A1 exists in a certain temperature range betwe
normal3He and3He-A.

We shall consider here the3He-A phase in zero magneti
field as well as the phase3He-A1 . In both phases, the un
vector l determines the direction along which the orbital a
gular momentum of Cooper pairs has a componentLz51.
The superfluid liquid3He-A is a coherent mixture of two
superfluid components characterized by Cooper pairing
the spin configurationssz561 along the unit vectors, while
3He-A1 contains Cooper pairs in the single spin statesz51.

The MNR method is a powerful tool for studying th
properties of superfluid3He. However, rich and valuable in
formation on the properties of3He can also be extracte
from an analysis of oscillations propagating in it.

Wave processes can be described by a system of hy
dynamic equations. Since the phases under investigation
anisotropic liquids, the phenomenological coefficients
pearing in these equations are tensors. In order to simp
calculations, we shall not take into account this anisotro
explicitly. Moreover, the equilibrium texture of the vectorsl
ands is uniform in the problems under consideration. Co
sequently, we can use hydrodynamic equations given in
1. It should be noted here that the vectorl can be considered
to be rigidly fixed in acoustic processes.2
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waves. Normal acoustic modes in unboundedHe-A are the
first and second sounds as well as a longitudinal spin wa
while in 3He-A1 such modes are first sound and a spi
temperature wave. In the case of complete stagnation of
normal component in capillaries, normal modes are
fourth sound and the longitudinal spin wave in3He-A and a
magnetoacoustic wave in3He-A1 . In addition, a viscous dif-
fuse mode in which only the normal component oscillates~if
we neglect the tensor nature of kinetic coefficients appea
in the hydrodynamic equations! also exists in3He-A and
3He-A1 .

3

In this publication, we analyze the reflection and tran
formation of acoustic waves in3He-A and 3He-A1 in two
different cases:~1! at the boundary with a solid impermeab
wall for an arbitrary angle of incidence of a wave, and~2! for
the normal incidence of waves at the interface between a
liquid and a system of plane-parallel periodic capillaries fi
ing the half-space.

1. REFLECTION AND TRANSFORMATION OF WAVES IN
3He-A AND 3He-A1 AT THE BOUNDARY WITH A SOLID
IMPERMEABLE WALL

The reflection of waves at a solid wall in a superflu
liquid is peculiar since several types of waves can propag
in the liquid. When an acoustic wave is incident at the wa
the reflection of the sound is accompanied by the excita
of other types of acoustic waves as well as a viscous w
which is the main mechanism of acoustic energy dissipa
in the given case.

9720097-04$10.00 © 1997 American Institute of Physics
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and perfectly heat insulating, we obtain the following boun
ary conditions: the equality to zero of the normal compon
~along thex-axis! of the total fluxes of mass, magnetizatio
and heat as well as the ‘‘slippage’’ condition for the veloc
of normal flow~we use the same conditions as in Ref. 4!. In
the case of3He-A, these conditions have the form

vsx50, wspx50, vnx50,

vny52
11P

12P
j

]vny
]x

, ~1!

wherevn is the normal velocity,vs the conventional super
fluid velocity, wsp the superfluid spin velocity,j the slip
length, andP the specular factor of quasiparticles.

We now consider the motion of the liquid as a superp
sition of the incident and reflected waves. In this case,

vn5(
j51

2

¹~Qj1Q̃j !1vtr ,

vs5(
j51

2

Pj¹~Qj1Q̃j !,

~2!
wsp5¹Q31¹Q̃3 ,

P151, P252rn /rs ,

whereQ1 , Q2 , andQ3 are the velocity potentials for inci
dent waves of first and second sounds and of the longitud
spin wave respectively,Q̃1 , Q̃2 , and Q̃3 are the velocity
potentials in reflected waves,vtr is the velocity of th normal
component for the viscous wave generated upon reflect
andrn andrs are the densities of the normal and superflu
components.

In order to obtain quantitative relations between the
tensities of incident and reflected waves, we write the vel
ity potentials for these waves in the form

Qj5cj exp@ i ~kj cosu j x1kj sin u j y2vt !#,

v tr x5
khy

khx
v tr y ,

v tr y5 c̃h exp@ i ~2khxx1khyy2vt !#,

khx
2 5kh

22khy
2 ,

Q̃j5 c̃ j exp@ i ~2kj cosu j x1kj sin u j y2vt !#,

~ j51,2,3!, ~3!

wherec1 , c2 , andc3 are the amplitudes of incident wave
c̃1 , c̃2 , c̃3 , and c̃h the amplitudes of reflected waves,k1 ,
k2 , k3 , andkh the corresponding wave vectors of first a
second sounds, the longitudinal spin wave, and the visc
wave,u1 , u2 , andu3 the angles of incidence and reflectio
of the corresponding waves, andv the acoustic frequency.

Using the boundary conditions~1! and relations~2! and
~3!, we determine the ratio of the amplitudes of reflected a
incident waves which can be used for finding the reflect
coefficientsR11, R22, andR33 of the first and second soun
and of the spin wave respectively as well as the coefficie
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R32, R23, and R31!. These coefficients are defined as t
ratio of energy fluxes in the reflected and incident wav
normal to the surface:

R125R2158
rs
rn

k1
k2

a2 cosu1
~11a1b1g!21~a1b1g!2

;

R115
~11b1g2a!21~b1g2a!2

~11a1b1g!21~a1b1g!2
;

R135R3150; R235R3250; ~4!

R225
~11a2b1g!21~a2b1g!2

~11a1b1g!21~a1b1g!2
;

R3351,

where

a5S rn
2r Dlvk1 sin u1 tan u1 ;

b5S rs
2r Dlv

k1
2

k2
sin2 u1 ;

g5~11P!j/~12P!lv ;

lv is the viscous wave length, and the anglesu1 andu2 are
connected through the relationk1 sinu15k2 sinu2.

It follows from these relations that the longitudinal sp
wave experiences total reflection. According to the ene
conservation law, the energy absorption coefficients for
first and second sounds are defined as

D1512R112R12; D2512R222R21.

For the angle of incidence

u1 max5p/22~rn /r!k1lv~&/2!~12g!,

the absorption coefficient for first sound attains its maxim
value and then decreases rapidly sinceR1lv!1 andu1 max is
close top/2. The larger the value ofg, the closeru1 max to
p/2. The second sound absorption associated with the
cous wave is observed in the angular interval 0,u2,u28
5arcsin(k1 /k2). For u250 andu2.u28 , total internal reflec-
tion of second sound takes place.

In a strong magnetic fieldH, theA-phase is transformed
into the A1-phase near the transition temperatu
Tc.3 mK. In order to obtain homogeneous textures ofl and
s, the magnetic field must be directed along the wall. In t
case, the reflection and transformation of waves at the wa
similar to that in the case of3He-A with the only exception
that, according to hydrodynamic equations,1 the physical
meaning in the case of3He-A1 can be attached not tovs and
wsp separately, but to the sumvs1wsp ; besides, superfluid
fluxes of mass and spin coincide, and the boundary co
tions have the form

vsx1wspx50; vnx50; vny52
11P

12P
j

]vny
]x

, ~5!

while for the velocities we have
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j51

¹~Qj1Qj !1vtr ,

vs1wsp5(
j51

2

Pj¹~Qj1Q̃j !, ~6!

where P151 and P25(2rn /rs) as before. The index
j51 corresponds to first sound, whilej52 to the spin–
temperature wave. We have taken into account the fact
M /Ms!1, whereM is the equilibrium longitudinal magne
tization andMs the magnetization of a completely polarize
liquid 3He.

ForR11, R22, R12, andR21, we obtain the same expres
sions as ~4!, but k2 is the wave vector of the spin–
temperature wave.

2. TRANSFORMATION OF SOUNDS IN 3He-A AND 3He-A1

AT THE BOUNDARY WITH A SYSTEM OF PLANE-
PARALLEL PERIODIC CAPILLARIES

An analysis of waves propagating in a confined geo
etry makes it possible to study simultaneously a complex
acoustic processes. An interesting object of investigation
this respect is a system consisting of a porous medium.
model of a porous medium was chosen in the form of id
tical plane-parallel capillaries of widthd, formed by imper-
meable planes of thicknessD2d, which are perpendicular to
the interface between the free surface and the capilla
filled with superfluid helium.5 We assume thatd is much
smaller than the wavelengthlv and the dipole lengthjd .

Let us consider the incidence of first and second sou
and of a longitudinal spin wave from the free liquid3He-A
on a porous medium filled with the superfluid liquid3He-
A. We assume that sound is incident along the normal to
interface (y50) between the free liquid (x,0) and the sys-
tem of capillaries (x.0) and propagates along thex-axis.
Fourth sound is formed in the capillaries in this case.
addition to acoustic waves uniform iny, nonuniform waves
are also excited when a sound wave is incident at the in
face with the system of capillaries. Since we consider
system of capillary as a model of a porous medium,
periodD of the system of capillaries is much smaller th
the characteristic wavelengths:

k1D!1, k2D!, k3D!1,

ukhuD!1, k4D!1,

wherek4 is the wave vector of fourth sound. Under the
conditions, all nonuniform waves attenuate over distan
much shorter than the characteristic wavelengths, and
take into account only uniform waves. The following boun
ary conditions are observed at the interface between the
liquid and the capillaries: the heat flux continuity, the con
nuity of the normal component of the total mass flux, t
continuity of magnetization flux, the continuity of chemic
potential which is the potential of the retrieving forcevs , and
the continuity of the similar quantity forwsp , which is equal
to (Ms /r)h, whereh is the internal magnetic field. Conse
quently, the boundary conditions for3He-A can be written in
the form

99 Low Temp. Phys. 23 (2), February 1997
at

-
f
in
he
-

es

s

e

n

r-
e
e

s
e
-
ee
-

Dvsx~x,0!5dvsx~x.0!,

Dwspx~x,0!5dwspx~x.0!, ~7!

m~x,0!5m~x.0!,

Ms

r
h~x,0!5

Ms

r
h~x.0!.

while for oscillating quantities we have

vW n~x,0!5(
j51

2

¹~Qj1Q̃j !,

vW s~x,0!5(
j51

2

Pj~Qj1Q̃j !,

wW sp~x,0!5¹Q31¹Q̃3 ,

m~x,0!5 iv(
j51

2

Pj~Qj1Q̃j !,

Ms

r
h~x,0!5 iv~Q31Q̃3!, vW s~x.0!5¹Q48 ,

wW sp~x,0!5¹Q̃3 , m~x.0!5 ivQ48 ,

Ms

r
h~x.0!5 ivQ38 , ~8!

whereQj andQ̃j are the potentials of the velocities of inc
dent and reflected waves,Q48 is the potential of superfluid
velocity of fourth sound excited in capillaries, andQ38 the
potential of the spin superfluid velocity of the longitudin
spin wave excited in the capillaries. These potentials h
the form

Qj5cj exp@ i ~kjx2vt !#,

Q̃j5 c̃ j exp@ i ~2kjx2vt !#, j51,2,3,
~9!

Q385c38 exp@ i ~k3x2vt !#,

Q485c48 exp@ i ~k4x2vt !#.

Using relations~7!–~9!, we can find the ratio of the ampli
tudes of the reflected wave and the wave excited in the c
illaries. Then we can determine the coefficientsA1 andA2 of
excitation of fourth sound by first and second sounds, resp
tively as well as the coefficientA3 of excitation of the lon-
gitudinal spin wave by another spin wave:

A154
d

D
Ars /rS 11

d

D
Ars /r D 22

;

A25
rn
rs

k1
k2

A1 ; ~10!

A354
d

D S 11
d

D D 22

.

99Sh. E. Kekutiya and N. D. Chkhaidze
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R22 for first and second sounds andR33 for a longitudinal
spin wave:

R11512A1 ,

R22512
rn
rs

k1
k2

A1S 11
d

D
Ars /r D ; ~11!

R335
~12d/D !2

~11d/D !2
.

The coefficientsR12 of transformation of first sound into
second andR21 of transformation of second sound into fir
can be written in the form

R125R2154S dD D 2 k1k2 rn
r S 11

d

D
Ars /r D 22

. ~12!

As in the case of reflection of sounds at a solid wall, a lo
gitudinal spin wave is not mixed with other waves. In co
trast to analogous problem for HeII,5 we obtained the value
for A3 andR33.

Analyzing similarly the reflection of fourth sound at th
interface between the system of capillaries filled with sup
fluid helium and the free liquid, the excitation of first an
second sounds by fourth sound in free helium, and the
flection of a spin wave, we find that

R15R11; F15A1 ; F25A2 ;

F35A3 ; R25R33, ~13!

whereR1 and R2 are the reflection coefficients of fourt
sound and of the longitudinal spin wave at the end o
capillary,F1 andF2 are the coefficients of excitation of firs
and second sounds by fourth sound, andF3 the coefficient of
excitation of a longitudinal spin wave in free helium by th
same wave in a capillary.
100 Low Temp. Phys. 23 (2), February 1997
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formation of acoustic waves in the case of superfluidHe-
A1 . The boundary conditions in3He-A1 are imposed not on
vs , m, wsp , and (Ms /r)h separately, but onvs1wsp and
m1(Ms /r)h. The number of these conditions is reduced
three since we have the potentials of the velocities of fi
sound, spin–temperature wave, and magnetoacoustic w
The expressions forA1 , A2 , R11, R22, R12, andR21 remain
the same as for superfluid3He-A, but the index ‘‘2’’ now
corresponds to a spin–temperature wave.

Our calculations were made for homogeneous textu
of l ands in an unbounded volume of helium in capillarie
Naturally, these conditions are observed forD2d!d. We
believe that the results obtained by us are valid for any v
ues ofd andD ~for D much smaller than the characterist
wavelengths!. Naturally, the homogeneity of a texture wi
be violated near the boundary at a distance much sma
than the acoustic wavelengths, but this inhomogene
should not affect the results of calculations.
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