QUANTUM LIQUIDS AND QUANTUM CRYSTALS

On corrections in the Ginzburg—Landau equations associated with the normal
component flow in a superfluid Fermi liquid with triplet p-wave pairing

A. N. Tarasov

National Science center “Kharkov Physicotechnical Institute,” 310108 Kharkov, UKfaine
(Submitted October 2, 1996
Fiz. Nizk. Temp.23, 243-248, March1997)

The Ginzburg—Landa(GL) equation is derived for the spatially inhomogeneous order parameter
(OP) of the ®He type superfluid Fermi liquidSFL) (composed of electrically neutral

fermions with tripletp-wave pairing for a uniform flow of the normal component of the SFL

with a velocityv,<2T./pg (T, is the temperature of phase transition from the normal

to the superfluid state, ange is the Fermi momentujn The derivation is based on the
integrodifferential equation for OP, which is valid at temperatures figam the absence of strong-
coupling effects. The main results are the corrections for the coefficients of the OP gradients

in the GL equation(caused by the fact that, # 0), which are calculated in the

perturbation theory. These corrections, which indicate the deformation of the OP due to the SFL
flow with the velocityv,,, can be not only comparable for,<2T./pg, but also greater

than the so-called nontrivial strong-coupling corrections to these coefficients, depending on the
value ofv,,, and hence can be of practical importance for descriBitg-B at low

pressures, when the strong-coupling effects are weak19@7 American Institute of Physics.
[S1063-777X97)00103-5

1. INTRODUCTION magnetic field and the SFL flgwon the OP deformation in
superfluid phases ofHe was reported earligisee, for ex-

In this paper, which is a continuation of our the previousample, the monographand the references cited thgre
publication! we consider a superfluid Fermi liquicSFL) In the present publication, we will prove that the SFL
consisting of electrically neutral paramagnetic fermions withflow leads to the emergence of correcting terms to the coef-
triplet pairing. Superfluid phases dHe are examples of ficients of the OP gradients in the GL equation even for flow
such Fermi liquids. We confine our analysis to SFL near thevelocitiesv,, smaller than a certain critical valeamely, for
temperatureT; corresponding to the phase transition to they ,<2T./pg, wherepg is the Fermi momentumAs in Ref.
superfluid state. In contrast to Ref. 1, we assume that the, we are interested in the corrections to the coefficients of
external magnetic field is zero, but we have a spatially uni-only the terms linear in the OP in the GL equatigvithout
form flow of the normal component of the SFL with a ve- writing explicitly the nonlinear terms We will compare
locity v, (the velocityvg of the superfluid component is as- these corrections with the so-called “nontrivial” corrections
sumed to be zejoThe analysis is carried out on the basis ofto the same coefficients associated with the strong-coupling
the Landau method of a Fermi-liquid, which is generalizedeffects®
for SFL in Refs. 2—4. In Sec. 2, we will write the general integrodifferential

Our aim is to derive the Ginzburg—LandéGL) equa- (ID) equation for the OP with a small spatial inhomogeneity
tion for a weakly spatially inhomogeneous order parametefor a SFL with a triplet pairingthe spins of a pair is equal
(OP) of the SFL with a tripletp-wave pairing taking into to unity and the orbital angular momentunof the pair can
account the corrections to the coefficients of OP gradients iassume any odd valyewhich is valid at temperature$
the GL equation. These corrections are due to the flow of thelose toT, (in a uniform external fieldd and in the case of
SFL normal component, which leads to a deformation of théhe normal component flow at a velocity). This ID equa-

OP for high values ob, (a similar effect of an external, tion, which is derived in Ref. 1, is transformed in Sec. 2 to a
moderately strong, magnetic field on the coefficients in thdorm convenient for deriving the required GL equation,
GL equation for the SFL under investigation was studied bywhich will be obtained in Sec. 3 in the casemfvave pair-

us for v,=0). We disregarded the weak interaction betweening (I=1) for v,<2T./pr andH=0. The results which we
the magnetic dipole moments of fermiongmear 3He  obtained will be discussed briefly in the conclusion.
atomg®® and the “strong-coupling effects” which are weak
in He-B under low pressuresee Refs. 7—-10 and the litera-
ture cited therg Consequently, our approach must be appli-
cable above all tHe—B under comparatively low pres-
sures. We will use for the initial equation the ID equation for

The effect of external perturbationsuch as applied the OP of the SFL under investigation of thide type[see

2. INTEGRODIFFERENTIAL EQUATION FOR THE ORDER
PARAMETER
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Eq. (40) in Ref. 1. This ID equation is valid in the general where

case of triplet pairing of fermiongs=1 andl is any odd

number for a pajr at temperaturesT near T., i.e., _ . 4¢.ép
(Te—T)/T,<1 and has the following form in the limit Pap(PLP2) = 5“5[§°(p')+§°(p2)]+go(pl)+§0(p2)
V—o (V is the system volume
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@) whereéq(p) = e(p) — (vp + w), andu isthe chemical poten-
Here tial. We assume that the Fermi liquid obeys the isotropic
energy—momentum relations (p) =&(p) =p?/2m*. The
Aa(le):f d3r exp(—irk)A(R,r), quantitiesé,, appearing in Eqs4) and (5) differ from zero

only in the presence of the applied magnetic fieldand
whereA ,(R,r) is the OP for a SFL with a triplet pairing: ~ depend on the Fermi-liquid exchange interactitsee Sec. 4
in Ref. 1 for details.

We will assume below that the external magnetic fidld
is zero, and hencé,=0. In this caséfor v, # 0,v4=0, and
£,=0), the ID equation1) combined with Eqs(3)—(5) can
be transformed to

A (RN =A,(X1,X2) = 57 TrsA(X1,X2) 020 ,=Lo(|Xg

2i
—Xa|)ga(X1,%2). 2

Here (o, are the Pauli matriceso = 1,2,3); R = (X;

+ X5)/2, andr = x; — X,. The functiong, appearing in Egs.

(1) and (2) are connected with the anomalous distribution

function gslsz(xl ,X») for quasiparticles in the coordinate rep-

resentation through the formula 4(—3 f d3qL(|lk—ql)
Gal(X1,X2) = (1/2)Trs 9(X1,X2) 0204

1
A (RK)=— m J d3*gL,(lk—q))AL(R,q)G(q)

dA(R,q)
IR, m*

and the functiorn., is the anomalous Fermi-liquid amplitude
of interaction(introduced in Refs. 294 which is responsible
for triplet pairing of fermions. While deriving Eql), we
assumed thdt,(|r|) has a sharp maximum for=0, and the
values ofA ,(R,k) change insignificantly over distances of
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the order of the siz&.~hvg/(7kgT.) of a Cooper pair n f d3qL,(|k
(ve=pg/m* is the Fermi velocity andn* the effective 2m* (4m)3 at2
mass of a quasiparticle; hefie=1 andkg=1). Equation(1) 2A (R d
also contains the Dirac delta-functiéP), and the last term —q «(R, ) [ . (@)
in (1) is a nonlinear term writtefwithout taking into account IR IR; déo
the gradients of ,) in implicit form since we will be inter-
ested hergas in Ref. ] only in the linear part of the ID (V@) ( P(@ dp(q)”
equation(see the detailed discussion in the introduction in e(@—p le(@—pn  d
Ref. 1). ) 2
: _ : : qiqi |d°7(q) 2 d7(q)
The ID equation(1) contains the following functions: # ng + o(Q)—p dég
D(p1,p2)= + 2-4¢2, 3
(P1,P2) =[£o(P1) + &o(P2) ] £ (€) ) (voa) d%p(q) . d?r(q)
D, 5(P1,P2) =P op(P2,P1) =[1—N¢)(P1) =Ny e(Q)—p dé& UniUni dé&s
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Equation (6) contains the functions$s(q), 7(q), and
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It should be noted that far,,= 0, the ID equatior(6) is B e(q)—u d&

transformed into the equation derived in Refs. 12, 13 since
&0(d) = éo(—a) = &(A) — 1, p(9) =0,G(q) = (q).
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3. GINZBURG-LANDAU EQUATION FOR A SUPERFLUID _ . +[O(A3(R))]a (11)
FERMI LIQUID WITH p-PAIRING FOR vy # 0 dfo

Proceeding from the general ID equatit8) for a SFL, [cf. the ID equation(45) in Ref. 1, wherev,=0, but
we derive the GL equation for a triplgt-wave pairing H#0].

(s=1,1=1) for v, # 0 in zero magnetic field. For this pur- At temperatures close fb;, we can expand the function
pose, we introduce the SFL order parameter, i.e., the conf3(Q)=G(q,T) [see(7)] into a power series i —T:
plex 3x 3 matrixA,j(R) by the formuld®** 9G(q.T)
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where The value ofT. depends on, and is determined from the

. 5 . linearized integral equation for a spatially homogeneous OP
a=4wf drr2L,(r), b= il f drréLy(r), (100 [seeEqgs(6) and(8) for dA,; /IR, = 0,9%A,;/IR|dR; = 0].

0 3 Jo Thus, assuming that,<2T./pr and retaining the prin-
cipal terms, we obtain froni7), (11), and(12) as a result of

we obtain from(6) the equation for the matriA,;(R) ; X ! -
analytical calculations in the perturbation theory the follow-

bk, (2= ing GL equation for a SFL liquid with thp-wave pairing(of
“'(R) (2 )3 0 dgof_ld(cos o)nin; the ®He type with corrections to coefficients of gradients of
Aaj(R):
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02 1072 equation can be important above all fite—B and indicates
n the OP deformation fas,, # 0.
186/(5) m*uv; (8F>2)< A, 3Aal) Finally, it should be noted that the ID equation derived
T o272 oo |\ T Unl 5n TUnj 5p- by us in the form(1) and (6) is valid in the general case of
49 3) 2 T IR I oR

TL3) 2er ¢ ! triplet pairing (s=1 andl is any odd numbegrand hence

2000 ) i (SF)Z 74(3) {( inclusion of the corrections determined by us in the GL
al T
Te

EF

A, TL(3)vE 930¢(5) mM*v2 [eg)2 cannot be used for deriving the GL equation not only in the
Unl R, 80m2T2 1- 497%L(3) 2er \ T case of p-wave pairing, but also when the effects of
f-pairing (| =3), which can play a significant role in super-
ﬁzAaj Ay 3 fluid phases ofHe (see, for example, Ref. 17are taken into
X TR2 +2&R R +[O(A%)],=0. (13 ccount.
where {(x) is the Riemann zeta function. In E(L3), we The author is grateful to S. V. Peletminskii for his atten-

assume that the chemical potentigh(T)~eg for tion to this research and for fruitful discussions.
T~T.<ep=pZ/(2m*). Forv,=0, Eq.(13) coincides with

the GL equation from Refs. 5, 6, 12, 13, and 15, while for.
v,~2T./pr the perturbation theory is not applicable, and
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A consistent theory of superconductive tunneling in single-mode junctions within a scattering
formulation of Bogolyubov-de Gennes quantum mechanics is presented. The dc

Josephson effect and the dc quasiparticle transport in the voltage-biased junctions are considered.
Elastic quasiparticle scattering by the junction determines the equilibrium Josephson

current. The origin of Andreev bound states in tunnel junctions and their role in equilibrium
Josephson transport are discussed. In contrast, quasiparticle tunneling in voltage-biased junctions is
determined by inelastic scattering. A general expression for inelastic scattering amplitudes is
derived and the quasiparticle current is calculated at all voltages with emphasis on a discussion of
the properties of subgap tunnel current and the nature of subharmonic gap structure.

© 1997 American Institute of PhysidsS1063-777X97)00203-X

1. INTRODUCTION applied to SIS tunnel junctiond' and superconductor-
semiconductor junctior. In the absence of inelastic scat-
The tunnel Hamiltonian modehas for many years been tering the method of using the BdG equation gives the same
a main theoretical tool for investigation of tunneling phe-results as the Green’s function metHfddOne might then

nomena in superconductdr$iowever, interpretation of re- expect that the Josephson effects in superconducting junc-

cent experiments on transmissive tunnel junctionsand tions can be explained on a rather simple quantum-
complex superconductor-semiconductor strucfufesquires  echanical level. Following this idea, the quantum-
more detailed knowledge of the mechanisms of the supers,ochanical approach has been successfully applied to

conductive tll,lnr|1el_infg than the tunnel model is able 10 Pro< g0 jation of the direct Josephson current in different kinds
vide. Particularly informative are experiments on Supercon: ¢ mesoscopic weak link&28 and tunnel junction§9‘3l

:juctlng ?uan(';um po(;n'i contacts with COrI’]ltI’O”ed r:urnbglr OfThis method was applied for the first time to voltage-biased
ransport modes and transparency, stuch as controfiable SJlffnctions by Blonder, Tinkham, and Klapwijk, who consid-
perconducting break junctiohs and gate-controlled

. Qo r iparticle tunneling @BIN junction tterin
superconductor-semiconductor deviéeSince only a few ered quasiparticle tunneling 8IN junctions as a scattering

transport modes with controlled transparency are involved irproblem in BAG quantum mechanitSLater, the quantum-

the tunnel transport; the experiments provide precise and dgjechanlcal approach has been found hel_pful n investiga-
tailed information which can be directly compared with tions of more complex phenomena of quasiparticle transport
theory and ac Josephson effect in voltage-biasadSjunctions®?

The first attempts to develop a theory of superconductivé€SOSCcopIC fIS tunnel junction® and mesoscopic
tunneling beyond the tunnel Hamiltonian modet® were constrictions’ _
made in generalization of methods applied ®NS The quantum-mechanical approach based on the BdG
junctiond**®and superconducting constrictidfié’based on  €guation is adequate for describing the physical situation in
the Green’s function methods. In these theories, the junctiof€soscopic junctions, where the inelastic scattering effects
Green’s functions are directly found from the Green’s func-are weak and most important is the coherent electron dynam-
tion equations which are supplemented by special boundargs. Because of the quantization of transverse electron modes
conditions representing the tunnel barrier or by matching thé mesoscopic junction®;* 1D models for the current
superconductor and insulator Green’s functions at thdransport through the junction may be appropriate.
superconductor-insulator boundaries. In this paper we present a consistent quantum-

In the first studies of the Josephson effect %NS  mechanical theory of superconductive tunneling in a one-
junctiong®another method of calculation, based on expanmode quantum constrictiogFig. 1). We consider the dc Jo-
sion over eigenstates of the Bogolyubov-de Gen(RHG) sephson effect and also dc quasiparticle tunneling in the
equation, has been us&HA similar method has been also voltage-biased junctions. In the latter case we focus attention
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tween superconducting walls, are permanently accelerated by

the static electric field due to sequential electron-hole con-
I versions at thé\ Sinterfaces, similarly to acceleration of the
electrons in an ordinary potential well by a time-dependent
s “ S electric field. Similar arguments can be extended to the tun-

nel junctions®® However, in tunnel junctions the scattering
theory approach is more appropriate because of the quantum
L ~ nature of quasiparticle transmission through the atomic-size
tunnel barrier. This introduces a side band spectrum of scat-
FIG. 1. SIStunnel constriction. tered waves where the side band energies are shifted with
respect to the energy of the incident wave by integer number
of quanta of the scatterer frequentySuch an approach is
on a detailed calculation of the subharmonic gap structur&"‘m'“a.r in th? thepry of guantum .scatt'erlng by oscillating
potential barriers in normal tunnel junctiofsee, e.g., Refs.
(SGS of the tunnel currents .
40 and 41 and the references cited there

Following the Landauer approachwe consider super- ) . :
conducting electrodes as equilibrium reservoirs which emit The tunneling through all the inelastic channgiermal

guasiparticles into the constriction. Scattering by the junctionand Andree_v channe!sonst|tgtes a complete p!cturg of su-
goes into two channelsj) the normal channel in which the perconductive tunneling in biased Josephson junctions—the

outgoing quasiparticles remain in the same branch of th('g'pcoherent part of the side band currents, which correspond

quasiparticle spectrum, andi) the Andreev channel in to the dlrecttquaﬂpirtlcle currer:jt,tar;g th?t5|detpan3 mterr:er—
which quasiparticles change branch due to electron-hole corf:1C€ currents, which correspond 1o the afternating Josephson
current. An important aspect of this picture is that the An-

versions. The current in such a picture results from the im- bound stat ivolved in th ‘1 1

balance of currents carried by scattering states originatin retﬁv O_?chs a Eis a:jre dm\'/(;) VS '3 ti currehn_ hranspor OI-

from the left and the right reservoirs. Here the magnitude o jether wi € extended side band states, which give a mul-
tiparticle character to the superconductive tunneling in the

the current is proportional to the transmission coefficient _ . o -
subgap voltage region. This multiparticle origin of the sub-

of the tunnel barrier. ) ) .
The imbalance of currents in superconducting junctionﬁjp tunz?zel current was first pointed out by Schrieffer and
ilkins.

can be created in two ways: by establishing a difference i

the phases of the order parameters in the left and right elec%.- Tr;ethstructtérle of ths ggper IS as ffot”r? WS. Aﬁelr for.mL:Ia-
trodes or by applying a voltage bias. The basic fact concern:0" Of the problem and discussion ol Ihe quasiciassical ap-
roximation in Sec. 2, we consider the problem of elastic

ing the flow of equilibrium current in the presence of a phasé) N ; . :
difference, which was established by Furusaki andscatterlng in Sec. 3 as a starting point for construction of

Tsukad#® is that a bulk supercurrent is, upon approachingmelaStic scattering states in biased junctions. The solution of
the tunn:al interface, transformed into a; current that flowsthe elastic scattering prob_lem allows us to calculatfe the dc
through the superconducting bound states which appear #Psephson current, Wh'_Ch IS d_one for cpmpleteness n Se_c. 4.
the tunnel interface in the presence of the phase diffefénce n Sec. 5 we construct inelastic scattering states and derive a

and which provide transmission of the Cooper pairs thrc)ugﬁ:ontinued—fraction representation for the scattering ampli-
udes. In Sec. 6 we derive the nonequilibrium current. In Sec.

the tunnel barrier. The balance among currents of differen di th iin of th " | tin th
scattering states is not violated, although the scattering am- We discuss the orgin of the excess tunnet current in the

arge bias limit. In Sec. 8 we present a general analysis of the

litudes d d st I the ph diff .
prtcies fepend sirongly on the phase dirierence subgap tunnel current. Finally, th8 GS is analyzed in

Application of a voltage bias gives rise to more far-
: ; ; n?tec. 9.
reaching consequences than just the imbalance of the elas
scattering modes: the scattering states themselves are modi-
fied in a nontrivial way. This follows from the fact that the
scattering amplitudes, which are phase-dependent at equilib-
rium, become time-dependent in accordance with the Josepg— FORMULATION OF THE MODEL
son relatior?® de/dt=2eV, when voltage is applied. Thus, <
in the presence of a constant voltage the superconducting . . -
: ) ) . We consider a superconducting quantum constriction
junction behaves as an effective nonstationary scatterer,. . ; Y ; .
oo . . with adiabatic geometfy: the cross section varies smoothly
whose transmissivity oscillates. This property of the super- . 7 .
with the coordinatex on the scale of the Fermi electron

conducting junctions gives rise to ac Josephson effect; hOW\ivaveIength 1., and the size of the cross section is com-

ever, it is also significant for dc quasiparticle transport, be- arable with the Fermi electron wavelengffig. 1). The

cause the quasiparticle transmission through such a scatte I%%gthL of the constriction is assumed to be smaller than the

Is inelastic superconducting coherence lengit
The physical mechanism of inelastic quasiparticle trans- P 9
mission through voltage-biased superconducting junctions 1/, _«<| <¢,. (2.1

has been first considered BINSjunctions®? where it has
been explained in terms of multiple Andreev reflections  The Hamiltonian of the constriction is assumed to have
(MAR): the normal quasiparticles, which are confined be-the form
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0= (f)—aZeA(r,t))2+U(r)_M -, i‘//ER:(IBUﬁa'z"'(DL,RO'Z+UpsL,R+AUx)¢E,R 2.7

2m in the left (L) and the right(R) electrodesyy =p/m. The
+[V(X) +ee(r,t)]o,+ A(r,t), (2.2) potentia@lsp_S and® describe the Qistributions of the eIectro—'

_ _ _ _ magnetic field and supercurrent in the electrodes. In the point
where U(r) is the potential which confines the electrons contact geometry these quantities are small due to the effect
within the ConStriCtion;V(X) is the pOtential of the tunnel of Spreading out of the Curremv.45 We will therefore omit
barrier; A(r,t) and ¢(r,t) are electro-magnetic potentials; them, p,=®=0. For the same reason, deviation of the spa-
A(r,t) is the off-diagonal superconducting order parametetial distribution of the module of the order parametefrom

given by the matrix constant value is small in the point contacts; we will there-
0 AdXP2 foreignore it A = const.
N :( i ) (2.3 The functions«pﬁR are matched at the constriction by the
Ae 0 boundary conditioft (see also Appendix A
We assume that the junction is symmetric. The choice of the - +
: Junct AR -
units corresponds to=#%=1. = =V = at x=0, (2.8
R R

It is convenient to eliminate the phase of the supercon- )
ducting order parametey(r,t) in Eq. (2.3 by means of a with a matching matrix/
gauge transformation: r dé a'z(p/2>

expliox/2)H exp(—io,x/2)—H, (2.4 V=1 geriowz

which allows us to introduce a gauge-invariant superfluidrhe quantitiesd andr are the normal electron transmission

momentum,ps=Vx/2—eA, and an electric potentia  and reflection amplitudes due to the barrier. Here and further

=x/2+eq. ¢ is a gauge-invariant difference in the superconducting
There are different scales of change of potentials in Eqphases of the right and left electrodes= yr(0)— x(0).

(2.2): one is an atomic scale over which the confining poten-The matching matrix in Eq(2.9) satisfies the unitarity con-
tial U(r,) and the potential of the tunnel barri&f(x) dition

change. Other scales are related to the changes in the super- . . .
conducting order parameter, the electromagnetic field pen- VV'™=1. (2.10

etration lengths and the length of the contact: all these The poundary condition in Eqé2.8) and(2.9) is analo-
lengths are large in comparison with the atomic length. It isgous to the boundary condition used in the quasiclassical
convenient to separate these two scales by introducing qureen’s function methodsee, e.g., Refs. 11 and 4@ his is
siclassical wave functiorfé,which vary slowly on an atomic a very simple equation for coupling of superconducting elec-

scale, and by including rapidly varying potentials in a bound+gdes, while retaining the main features of the Josephson
ary condition for quasiclassical wave functions. To this endeffect, except for effects of the resonant tunnefifigf 48

we assume that the solutioki(r,t) of the Bogolyubov-de
Gennes equatidh

() =HY (), (2.5 In the absence of time dependence in the phase differ-
with the Hamiltonian of Eq(2.2), has a quasiclassical form ence at the junctionp=0, Egs.(2.7) and(2.8) describe elas-
tic scattering of quasi-particles. The scattering states can be
1 . constructed by using stationary solutions of E2}7), which
= — B 1
vy % Yu(re.x \/;ex 'BJ pdx)w X0, correspond to elementary propagating waves with energy
2.6 |E[>A:

(2.9

3. ELASTIC SCATTERING

where ¢, is the normalized wave function of the quantized wE“=exq—iEt+iﬂa(§/v)x)ué, (3.139
transverse electron motion with the eneigy,

e(‘3)//2
P, ug=(2 COSh)’)_m( e 5«//2), (3.1b
%"’V(U ,X)) b =E (X,
where
W (ry=0,x)=0, |E|+ €&
= A\ z— 2 Y —
and p is the longitudinal momentum of the quasiclassical E=VET-AT e A
— _ V2. o 4 indi s
electronp(x) =[2m(u — E, (x))]"4 B = * indicatesthe di s=signE, a=+. ando=ao. 3.2

rection of the electron motion. We assume that the constric-
tion has only one transport mode; an extension to the case dthe vector functiornug is normalized, ¢,u) = 1; the brack-
several unmixed modes consists of additional summatioets mean that the scalar product is in the electron-hole space.
over all transport modes in the equation for the current. Thén Eq. (3.1 there are four elementary waves, which corre-
coefficients # in Eq. (2.6) describe the wave functions spond to the same energy, as illustrated in Fig. 2, and which
which vary slowly in thex direction and which satisfy the are labeled by quantum numbegs(direction of the Fermi
reduced BdG equation electron momentuimanda=sign(p| — pg) (the electron or
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ticle that comes from the leftight). According to the struc-
ture of the matching matrixEq. (2.9)], the symmetry be-
tween the scattering statgs1 and 2 is

c

o=l o |
b al(_(P)yf

Analogous symmetry exists also for the scattering states
j=3,4. Using the unitarity of the matching matrpEq.
(2.9], we can find the following relation between the scat-
tering stateg=3 and 1:

f
(¢)= ()= C) (—¢). (36
2 2 1

(a) (y.r,d)= °) (= yr*,d%)
b3711 fl ’)" ’ ]

(= r*.d*). (3.7

I
1:3’)/,, bl

These symmetry relations allow us to find all the scattering
FIG. 2. Quasiparticle spectrum and position of the incoming statgs—1  amplitudes if one of the scattering states is known.
r_lole (elec_troﬁ_-like_ qgasiparticle _incident from left; (8)—hole (electron- Let us find the explicit scattering amplitudes for the scat-
llke quasiparticle incident from right. tering statej = 1. After substituting Eqs(3.5) into Eq. (2.8),
it is convenient to split the resulting equation, using the or-
thogonality condition, §*,o,u~)=0, into two independent
hole-like branch of the quasiparticle spectjuithe direction  equations for the normal scattering amplitude$ and for
of propagation of each elementary wave is determined by théhe Andreev scattering amplitudesb:
sign of the probability current. The probability current den-
sity j,, which is defined by the conservation Idtie conti- (u—'gzu—)( 1) :(u‘,oZVu‘)(C) , (3.89
nuity equation d|¢|?/gt+ dj,/dx=0 for the BdG equation 0 ty
[Eg. (2.7)], has the formj,=(i,0,4). For the elementary a A c
waves in Eg. (3.1), we obtain the explicit result (u+’o'zu+)(b> =(u+,gZVu)(f) ] (3.8b
jp=pB6 tanhy. According to this formula, the relation 1 1
6= is satisfied for the waves propagating from left to right,  cajculating the scalar products in E¢8.8), we find the

and the relatiors=—g is satisfied for the waves propagating explicit expression for the Andreev amplitudes in terms of
from right to left. Therefore, the incoming waves from the the normal amplitudes,

left (L) and the righR) have the form o
el p el 5 a| id sin(¢/2) ( f)
L:exp(io(élv)x)ug, Riexg—io(év)x)ug”, (3.3 b . sinh y —cl,
while the outgoing waves have the form
L:exp(—io(&lv)x)ug?, R:exgio(élv)x)ul. (3.4  sink? 5 d sinh y sinh(y+i¢/2)

Correspondingly, the incoming quasiparticle can be scattered €1~ 7+ "1™ 7 '

into four outgoing states: two forward-scattering states and (3.10
two backscattering states. One of the reflected waves belongvsnere

to the samedelectron-like or hole-likg branch of the quasi-
particle spectrum as the incoming wave and constitutes the
normal scattering channel, while the other reflected wave
changes the spectrum branch and constitutes the Andreev
channel. In a similar way, transmitted waves constitute nor- Xsinh(y—ie/2)), (3.11
mal and Andreev channels. The structure of the scattering —| d|2 is the normal electron transmission coefficient of the

(3.9

The solution of the first equation in E¢B.8) is given by

d
Z=- (R sint? y+D sinh y+i@/2)

. a
/ —
doEvxyg +(b

states then becomes tunnel junction, andR=|r|?>=1—D is the normal electron
" 51 . N reflection coefficient. It follows from Eqg3.9) and (3.10
(l//+):(5" .e"”(g/”)XuE, (3.59 that if there is no phase difference across the junction,
R 1.2 i ¢=0, the Andreev scattering channel is closae:b=0. It
o 813\ oterome o [} ioeo is worth mentioning that the Andreev reflection is also absent
(w) =(5_' )é" Y uE+(f>‘e TEUE (3.5b if the normal transparency of the junction is equal to zero,
R 14 i D=0. If, on the other hand, the junction is completely trans-
(for brevity we have omitted the time-dependent factorsparent for normal electron§) =1, there is no Andreev for-
exp(—iEt)). In Egs.(3.5) the indexj =1(2) corresponds to a ward scatteringb=c=0.
hole-like quasiparticle that comes from the (gght), while In the presence of a phase difference at the junction the
the indexj=3(4) corresponds to an electron-like quasipar-quasiparticle scattering is accompanied by the appearance of
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superconducting bound stat¥sOne can establish the exis-

tence of bound states by investigating the poles of the scat- Ig S’
tering amplitudes, Eq3.10, at imaginaryy corresponding

to energies lying inside the gaRg|<A. Assumingy—iy in - N

Eq. (3.11), we have the dispersion equatidiiy)=0 or -~
Sir? y=D sir? ¢/2. (3.12

The bound states correspond to a positive value of ,
siny: A siny=Im &> 0. This condition has two roots: .

y=yo=arcco$\D sin ¢/2), y=m—17, (3.13 A ——/\——

o S
E(¢)==+AI-D si? ¢/2. (3.14 A =N X
The wave functions of the bound states can be constructed '
from elementary solutions of Eq2.7) with |E|<A, which V>0
decay atx= =+ oo:
of R=exp(—iEt—{X/v)ug, (3.153
of | =exp(—iEt+{x/v)ug”, (3.15h A ' E
where \Q:;?,
Leme PTTTTTTTTTTTTTTX
UE:% Ueivy/Z)a -A ‘_\E_/—
é?zlETg, {=JA?—E?, v=Ro. (3.16 V<o

FIG. 3. Spatial configuration of the edges of the superconducting energy
The bound state ansatz has a form similar to the outgobands in a long constrictiorE y,, Emax = £A + pyX)v. A potential well

ing part of the scattering statéEq. (3_5)] with the coeffi- appears in uppeilower) band for electrons moving in a direction opposite
. L. . . to (along the supercurrent.
cients satisfying the homogeneous equation&3iB). These
coefficients are
d sin(y+ ¢/2)

f= W C, (3.173

the constriction due to current concentratidor simplicity

we disregard the effect of suppression of the superfluid elec-
tron densityNg by the supercurrentThe local quasiparticle
spectrum in the presence of supercurrent has an additional
contribution + v £ps(x),2° which gives rise to a shift of the
local energy gapFig. 3. The spatial bending of the gap
edges forms the potential wells Bt 0(E>0) for quasipar-
ticles with electron velocities directed alorigpposite the
current. The bound states in these potential wells are similar
to the Andreev bound states in ti&NS junctions?® The
difference is that here the bound states are caused by the
spatial inhomogeneity of thphaseof the order parameter,

a

b (3.17b

_ dsin(¢/2) ( f)
- siny —-c)’
wherey is given by Eq.(3.12. We note that the bound state
spectrum is nondegenerate. The coefficem Eqgs.(3.17) is

obtained from the normalization condition for the bound
state wave function,

o 1
| o [ axpwe= a7 =1,

which yields while the original Andreev states are caused by the spatial
D sirf(y+¢/2)| 1 inhomogeneity of the modulus of the order parameter. With
c|>=A sin 7(1+§W : (3.189  decreasing length of the constriction, the number of the

bound states in the well decreases. The short Josephson con-
What is the origin of the bound states in a tunnel junc-striction corresponds to an infinitely narrow and deep

tion? According to Eq(3.8), one can regard these states ass-potential well which contains only one Andreev ledl.
resulting from hybridization of the bound states in the short

ballistic constrictioR* due to the normal electron reflection

by the barrier (cf. effect of impurities in the SNS

junctior?>29. Let us consider a smooth constriction with the 4 p|RECT JOSEPHSON CURRENT

length exceeding the coherence length: &,. In such a

constriction the supercurrent density and the superfluid mo- A convenient expression for the tunnel current results
mentum are related by the local equatiordg(x) from statistical averaging of the current operator written in
= (e/m)Ngps(x), and they are both enhanced in the neck ofthe Nambu representatith
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e [ . . ) Egs.(3.17 and(3.18 into Eqg.(4.6), for, e.g., the right elec-
(x,0)=7— [(p—p’)f der, trode, we obtain the following expression for the current of
the bound state:

X[S(r—rHTe(W(r, )W (r' )]t . (4.1 eA2

< > r=r’ Ibounc(E):e(|b|2_|f|2):_ED sSin ¢. 4.9
whereW is a two-component field operator A useful formula for the current of the single bound state,
(1t which allows direct evaluation of the current from the bound

\ir(r t)=( f@((r )) (4.2) state spectrum, is given by equation
1 iﬁl r’t 1
. dE(e)
andTr is a trace in electron-hole space. The angular brackets |(E)=2e do (4.10

in Eg. (4.1) denote a thermal average of the one-particle ) _
density matrix of the superconducfdrAt equilibrium this ~ WhereE(e) is the bound state energy bajiety. (3.14)]. This

matrix has the form formula is derived in Appendix B. Taking into account Egs.
(4.9 and(4.6), we write the total current in the forffr253
<‘if(r)\if+(r)>=§ V(DONe(—EV¥I (), (4.3 | eADsing  A\1-D sif(¢f2)
= an .
2\/1-D sirf(¢/2) 2T
where W, (r) are the eigenstates of the steady-state BdG (4.12)

equation[Eqg. (2. ith the qguantum numbers. We note . . . . :
quation[Eq. (2.5] wi guantum nu Thus, the Josephson direct current in tunnel junctions is

that the definition of Fermi distribution functiam:- here cor- : T
responds to the distribution of holes in the normal metal: inc_arne_d only by th_e bound states, _Wh'Ch is similar to the
situation found in the other kinds of short weak

the ground state all energy levels above the Fermi lekel ( |Iinks 24-262820)¢ follows from Eqs. (4.6) and (4.9) that the

> 0) are occupied, while energy levels below the Fermi Ievenonvanishin total current results from the imbalance of the
(E < 0) are empty(see also the discussion in the next sec- 9 . . i
bound state currents due to a difference in the equilibrium

tion). In the quasiclassical approximatipBg. (2.6)] the av- lati b Creati ¢ ibri |
erage tunnel current calculated at the middle of the junctiorﬁ.)Opu ation numbers. Lreation of a nonequilibrium popuia-
tion makes it possible to control the Josephson

has the form
transport8-31:48

l=—e§ nF<—EX>§ BlyL(0)|2. (4.4

. . 5. INELASTIC SCATTERING
The current in Eq(4.4) can be calculated either at the left or

the right side of the junction, because the equality Let us now discuss inelastic scattering in voltage-biased
12 12| 412 —12 4 junctions. According to our assumptidn = 0, which is ex-
L e U et U el LY 4.9 plained in Sec. 2, the applied voltage drdps confined to

the constriction; in order not to complicate the problem, we
have also disregarded a small time-dependent voltage in-
guced across the junction by the ac Josephson cufsetft
coupling effect?). This implies the following dependence on
time of the phase difference:

due to the unitarity of the matching matrix in Eqg. (2.10,
holds for each eigenstate. The current in Eg4) consists of
contributions from the scattering states and the bound state

) dE|E|
== (-E)S 1) 3 e

E>a 2mE o=@o+2eVt (5.9
X(—E)lpound E), I(E) The appearance of factors with periodic time dependence in
the boundary conditiofiEgs.(2.8) and(2.9)] gives rise to a
=e>, BlYA(E)2. (4.6) more complex structure of the scattering states than in Eq.
B (3.5). In order to satisfy the boundary condition, the outgoing

When calculating the contribution from the scattering statespart of the_scattermg states in E@'S) 1S fo be const_ructed
L . : . from the eigenstates of EqR2.7) with different energieE,,
it is convenient to consider the transmitted current of each . . ;
scattering mode: = E — neVshifted with respect to the energyof the incom-

ing wave with an integer « < n < « (side band structuye

e(|b;[>~ 11,13 =13, - 5 , .
VB el 2l j=24. “ (i&)(o): PR o) e G2
) ],n
The symmetry relationfEgs. (3.6) and (3.7)] yield o S5 c
_|“ + o—iEt - a—iEpt
1(E)=14E), 12(E)=15(E), I,(E)=—1,(E). (4.9 (%)(0)—(5],4 uee e 2 (f)j,nuE“e - 520

The currents of all the scattering states with a given energyror brevity we use the notatian,= ug_. While the incoming
therefore cancel each other at equilibridfnSubstituting state is itinerant, the outgoing states can be either itinerant
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[Eq.(3.1)if |[E,| > Alor bound Eq.(3.16 if |E,| < A]. Itis
convenient to combine the two equations for the functions
u, in a single analytical form:

. 1 eryn/Z )
Uy =——— = yni2] s (5.3
" J2coshr, | on€
E,+
e'Yn: ngn, Fn: Re Vi

\/En_Aza |En|>A!
e (5.4
ioWA2—E?,  |En<A.

To find the scattering amplitudes in E&.2) we consider the
boundary condition Eg2.8). It is important to mention that
this boundary condition was derived without regard for the

energy dispersion of the normal electron scattering ampli- N=2 -A
tudesd andr, which means that now this assumption should n=3
be valid for the entire interval of relevant energigs. Letus =
first discussj =1 (hole-like quasi-particle coming from the
left): FIG. 4. Scattering diagram of voltage-biased superconducting tunnel junc-
tions. Solid (dotted arrows indicate scattering in the normgindreey
1 ~5 4 a + channel. Filled triangles indicate superconducting bound states. Transmis-
0 Up Ono0 b 1nun sion (reflection occurs into side bands with oddven indices.
(o] _ d(1l+o, 0 f _
=] Untsl o0 - lc Un-1 . eXp(¥n— ym)/2) [ coshl',\*?
in z 1n-1 = : , (5.11a9
sinh vy, coshl',
d/1l-o, 0 f) 5.5 1/2
+ = Upyq- 5. exp(— (¥n— vYm)/2) [ coshI’
2 0 1+O'z c 1ni1 n+1 Ur:m: - . n m n
sinh vy, coshT’',
It is convenient to separate the equations for normal and (5.11b

Andreev scattering amplitudes in E&.5) using a procedure As can be seen from Eqé5.6) and (5.9), the inelastic scat-

S'm'lﬁ‘r ;[jo EqH(S.Ei)). The equation for the normal scattering tering possesses a specific asymmetry: the forward scattered
amplitudes then becomes waves have odd side band indices and backward scattered

rcon+(d/2)(Vins1fins1+ Vi 1fin-1)=6no. waves have even side band indices, as illustrated in Fig. 4.
' N ' i ' Correspondingly, bound states with odd or even side band
rf 1+ (d2)(Vons1€1n+1+Van-1€10-1) =0, (5.6) indices are induced either in the right or in the left electrode.
where the coefficients We note that the scattering to any side band consists of nor-
mal and Andreev components.
. _(u;* ,0,21,u) It is instructive to compare the superconducting scatter-
Vam= (U * ,o5uy) (5.7 ing diagram in Fig. 4 with the scattering diagram of normal
o junctions. In the normal limiA =0, all the Andreev ampli-
have the explicit form tudes in Eq(5.9) vanish[U; =0 in Eq.(5.1))] and Eq.(5.6)
v exp — (yo+ ym)/2) [ coshT' | 12 e split because V¥=0 in Eq. (5.8, which yields
= sinh 7. coshl,| (5.8a f,=c,_,=0 foralln # 1. Thus, the side band diagram in

Fig. 4 reduces to the elementary fragment shown in Fig. 5a.

exp((yn+ ym)/2) [ coshT, |2 This fragment corresponds to the scattering dfue hole
sinh 7, coshT,| (5.8b meaning a particle with ;pectruEh=—(p2/2m—,u), ac-

. . _ ~cording to the BAG equation2.2) and(2.5). In the ground

The equation for the Andreev scattering amplitudes is state T = 0, these holes fill all positive energy states> 0,

Vom™= 0n0m

a = (d/2) (U= . .f YU FT ) while the negative energy states are empty. For the electrons,
10=(d2)(UnniafineatUnn-afin-o) the corresponding diagram is sketched in Fig. 5b. In this
B1n=(d/2)(Upni1Cin+1+Unn1C1n-1), (5.9  diagram the chemical potentials in both electrodes are equal,

while the energies of the incident and transmitted states are

where the coefficients are defined as shifted byeV. This difference from the conventional dia-

L (utr o1y gram of normal electron tunneling in Fig. Savhere the
UE,fm, (5.10  chemical potentials in the electrodes are shifted relative to
noreen each other, while the scattering is elastippears after sepa-
and have the explicit forms rating out the superconducting phase in E24); the con-
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br=AU 1 1Cni1+Unn_1Cn1 (5.13h

for n>0. For n<0 it is necessary to make the change
Vin—=Vii_m Upm—UZ,_,.(n, m>0) in the above
equations. The equation far= 0 can then be written as

Cot N (Voif1+Vg_f_1)=1. (5.1309

Let us now turn to the second scattering case in Eg.
(5.2), j =2 (hole-like quasi-particle incoming from the right
According to the symmetry relations of E(.6), the scat-
tering amplitudeg =2 differ from the scattering amplitudes
j=1 by ¢— — ¢, which in our time-dependent case means
FIG. 5. Scattering diagrams of voltage-biased normal tunnel junctions: scatt-hatn + 1—n * 1. Taking into account this symmetry and
tering of normal holes with spectruly, = u — (p?/2m); represents an el- also the property of the scattering amplitudes in Bcf), we
ementary fragment of the diagram in Fig. 4 for= 1 (a); scattering of the  introduce new scattering amplitudes
normal electrons with spectrui, = p%/2m (c); conventional diagram of

elastic electron scattering in biased tunnel junctions; the local chemical po- Ak
tentials in the electrodes are then shiftedeyy(c). 2,+ 2k:T C2k>

AKd* — _
Cox2k+1)T 3R froken), bara=Naixy, (5.19

ventional picture with shifted chemical potential can be re-

stored by means of the gauge transformation of the norma] , . . . . ]
electron wave functiog— exp(— ieVi)y. which satisfy the following equatior(§or n > 0):

When superconductivity is switched oa#0, the in- C_n+)\VrTn+1fn+1+VrTn71fn71:0,
coming quasi-particle consists of both electron and hole __ . e
components, and therefore the scattering diagram is a com- fa=AVons1Cni1— Van_1Cn-1=0, (5.153

bination of the diagrams in Figs. 5,a and 5,b. The electron- __ . —
hole conversion, which leads to the appearance of electron an=AUpniifneatUnnoafog,
and hole components in the upper and lower transmitted

. : ; 4 p=NULLCo+US e )
states, must also be taken into account. Continuation of this bn=AUnns1Cns 1t Unn-1€n-1, (5.159
process creates the whole superconducting scattering dia- ¢ 7\(V31f_1+V5_1E1)=1- (5.150
gram in Fig. 4. . .

From a mathematical point of view, Eq&.6) and(5.9)  Equations(5.195 differ from Eqgs.(5.13 by
for the scattering amplitudes are second-order difference \/=_ = y+_,y~, (5.16
equations which cannot be solved exactly, except in special _ _ . _ .
cases, e.g., a fully transparent constrictiors 0), where Eq. In the case of electron-like quasi-particles incoming

(5.6) reduces to a binary relatiofi.In general, it is possible from the left,j =3, the symmetry of Eq3.7) involves trans-

to find asymptotic solutions using a small parameter. In thdormationy— — v, which means transformation of the coef-
present case of a tunnel junction, there is a natural smaficientsV=— — ooV, U*— — 0,0U™ in EQs.(5.6)
parameter—the transparency of the tunnel barier< 1. and(5.9). This transformation allows us to relate the scatter-
However, a straightforward perturbation expansion with reing amplitudes of this case to the solutions of E@s5):

spect to this parameter gives rise to divergences, which are AK

similar to the difficulties encountered in of the multiparticle Az +2k=="5 O +2kCx2k»

tunneling theory(MPT).*?°7*8|n order to formulate an im- r

proved perturbation procedure, it is convenient to rewrite Kd _
Eqgs.(5.6) and (5.9 in terms of the parameter=D/4R, the D3« ok 1)=— SR o= 2kr1)
true small parameter of the theory, as will be seen later.
Accordingly, we introduce new scattering amplitudes C3+2k= N0 @x o, (5.17
AK AKd* AKg* _
Cr=ak=7 Cxaks fl,t<2k+1>:ﬁ faiarrn)s f3skrn=— o O+ (2k+ )P+ 2k 1) -
a — kg b _@ b (5.12 In a similar way the scattering amplitudes of electron-like
L2k A Gx2ko MLr@krl) ™ g B2kl : quasi-particles incoming from the righjt=4, are related to
: . . th lutions of Eq9(5.13:
which satisfy equations e solutions of Bqsi5.13
_ AK
1
Cht 7\Vnn+1fn+1+VrTn—1fn—1:01 b4,i2k:r_* O+ 2kCx ok s
fa=AVii1Cni1—Vano1€n-1=0, (5.133 Nk
an=AUj o fneat U fnot, x2k+1)T T HR O+ k) f k1)
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f + :)\ O 4o+ , 2677n+1
e a2k b,=—e " 1-\ —) (5.28
AKd* Sinh yn4 12411
Caxk)™ = O+ 2kt )P 2K+ 1) - (5.18 In a similar way, one can express the solution of Ex15
. . ) forn > 0 in the form
According to the symmetry of the coefficients in Egs. |
5.13 and(5.15), — e 7 1
49 (a9 | n|2:cosh 1Zo|? e”freoshly] ] |Z, sinh y,|?’
o+ L% . L% =1 |
Vi (—E)=V*_(E), Ui (-E)=U*_ (E), Yol€o I ST
(519 N 2eh+1 R
= —@a’n _—
all scattering amplitudes with positive and negative incoming by=—e7r| 1+A Sinh ¥ 41Zn41 o (.29
energies are related by the relation
o where
a,(—E)=a_,*(E), (5.20 .
imi R - anansa
and similarly for the other amplitudes. Z,=1+N —,
Let us now formally solve Eq(5.13 for n > 0 in the Znt1
form>® _ -
— ag a; aga’,
2k+1 Zo=1+A\ = +A i (5.30
fac1=(—D [ Sco, (5.21) L -1
=0 We note that Eqs(5.29 and (5.30 differ from Egs.(5.27)
where the quantitie§, are defined as and(5.28 by y,— — v, everywhere.
Equations for the scattering amplitudes with negative
Sy=— Cak 1= Faria (5.22 side band indices) < 0, can be derived in a similar way, and
for—1’ ey the result differs from the above equations for positive side
and satisfy the recurrence relations band indice§Egs.(5.25—(5.30] by the substitution
\Vas Yn—= = Y—|n|» n#0, (5.31
Sy 2k, 2k—1 o —
K1+ N which is introduced everywhere except4g andZ,,.
Vok+1,x 6. QUASIPARTICLE CURRENT
Sk =TT . (5.23 _ o
2K+ 1,2+ 252K +2 In the nonstationary problem under consideration, the
The quantityc, in Eq. (5.27 is given by density matrix determining the cgrrequ. (4.1] is time
dependent, and its dynamic evolution can be described by an
1 equation similar to Eq4.3
= = . 5.2 "
O T A (Vo S+ Ve 151 (529 o
+ _ +
It is convenient to express the functioBgs in Eqg. (5.23 in ((r.Hw (r,t))—; EAUDUN N 6.0

terms of the relatior§,=V,, . 1/Z,, where the denomina-

torsZ,(n # 0) satisfy the recurrence relation V¥, are now solutions of the time-dependent problem, Eq.

(2.5, whose initial conditions correspond to the eigenstates
anan.q . e™n of the initial Hamiltonian with the eigenvalues and occu-
EZM7 (5.29 pation numberd, of these initial states. We consider the

. inelastic scattering statd€gs.(2.6) and(5.2)] as the propa-
(* corresponds to even/odd, and to defineZ, as the de-  gatorsw, (t) in Eq. (6.1) with A corresponding to the com-

Z,=1+\

Zn+l

nominator ofco, Eq. (5.24: plete set of the incoming stataés=(E,j); according to the
aia; aga, assumption about local equilibrium within the electrodes, the
Zo=1+A\ OZ +A OZ — (5.26 incoming states possess the Fermi distribution of occupation
1 -1

numbersfg;=ng( — E). Thus the currenttEq. (4.1)] takes
Using the above notation, we can express the coeffithe form
cients of the normal forward scatterind,|2, in the form

s}

70 n 1 |(t):_ef dE_|E|nF(_E) E gNevt
|f |2=—e encoshl', ] =———— E>a 2mE N=
" coshyg| Zg|? "4 |Z, sinhy|? "
(5.27 Xn;w % B(WHE ), Y (E.N+n)). (6.2)

The equation for the coefficients of the normal backward

scattering,|c,|?, differs from Eq.(5.27 by exp(,)—exp  The current in Eq(6.2) consists of a time-independent part,
( — T'p). The relation between the amplitudes of the AndreeN=0, which is formed by incoherent contributions from all
and normal forward scattering in E¢5.13 taking into ac- the side bandsthe quasiparticle curreneind from a time-
count Eqgs(5.22, (5.23, and(5.25, has the form dependent parlN # 0, which results from interference among
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the different side band&losephson alternating currgnthe

-1
difference between the side band indid¢ss an even num- -1
ber since the side band index is either even or odd, depend- -1
ing on the electrode; therefore, the time-dependent current 0
oscillates with the Josephson frequeney: 2eV. Y
In this paper we concentrate on an analysis of the time- 0 1
\ > 1 !

dependent quasiparticle current. By analogy with &q7), A
we calculate the current using the transmitted states, -A ] + 1

Le ae Sl n—p) i e 2=

= —_— — — n — - -
2 Jig>a £ NS a b ¢
FIG. 6. Three kinds of processes that contribute to the tunnel current at large
2 2 2 2
X 2 (|fjn| _|bjn| )+Z (lajnl _|Cjn| )| biaseV > A: creation of a real excitation across the gap by forward scatter-
=13 =24 ing (a); excitation of the Andreev bound state due to creation of a real
(6.3) excitation via backward scatteriridashed arroyv(b); imbalance of ground

state modes due to creation of a real excitation via backward scatteying
Using the scattering amplitudes introduced in the previougxcess current is caused by processeartd 9.

section through Eqs(5.12, (5.14), (5.17), and (5.18, we
express the current in E¢6.3) in the form

e |E| — A main simplification in this case is that the side band
= |E|>AdE & Ne(— E)% (Kn=Kp), 6.4 currentsK,, andK,,, |[n| > 1 diminish when the bias voltage
increases. This follows from an estimate of the transmission
where amplitudes in Eqs(5.27—(5.29, which contain products of
Kn:)\|n\(R*1|fn|2_ |b,|?), factors |sinhy/ 2 which are small at large voltages,
_ _ |sinhyd =2 ~ (AleV)?, because of the large interval of involved
Kn=A"(R™f 2= |bp|?) = Kn(— 7). (6.5  energiesE ~ eV. Furthermore, inspection of the amplitudes

The factor of 2 appears in E(6.4) because of equality of the f_, andf; shows that they are also small due to the factors
currentsl; andl, and the current$, andl; in Eq. (4.8, €XP(— Y — 71); therefore, the nonvanishing part of the current
which hold also in the nonstationary case. However, there i§Ed. (6.6)]in the limiteV > A becomes

no balance between the currents of these two pairs any more. o

The symmetry of Eq(5.20 allows us to reduce the interval =— f dE — tanh— (Ki—K_y). (7.2

of integration in Eq(6.4) to the semiaxi€ > 0,

e (= The essential fragments of the scattering diagram in the large
I=— L dE~+ tanh— z (Kn—Kp) (6.6 pias limit are shown in Fig. 6.
The structure of the current in E@7.2) is essentially
The side band current§, in Eq. (6.5) are proportional to the  determined by the presence of a gap in the spectrum of the
powers of the small parameter K, ~ \I". Therefore, Egs. side banch=1: this causes different analytical forms of the
(6.6) and (6.5 present a perturbative expansion of the cur-currentk, in the regiongE| < A and|E| > A. We note that
rent, which is convenient for analysis in the limit of low the spectrum of the side bami=—1 possesses no gap:

barrier transparency. In the following sections we carry oute_, > A for E > A. Accordingly, we divide the integral in
such an analysis of the structure of the current in Bcf). Eq. (7.2) into three parts:

7. EXCESS CURRENT AT LARGE BIAS [=1o+1y+1s.

To make some useful observations for analysis of theThe first part corresponds to the current of the states in the
subgap current, it is instructive first to discuss the simpleiside bandh = 1, which lie below the gap; < —A. The
case of large biasV > A, which has been studied exten- second part corresponds to the current of the states of the
sively in literature!?17-2we derive at the same time the same side band which lie inthe gapA < E; < A. The third
explicit analytical expression for the current in this limit, part combines contributions from the remaining states of the
which is valid in the whole range of the junction transpar-side banch = 1, A < E;, and from all the states of the side
ency, 0< D < 1. The asymptotic expansion of the current bandn = — 1. Making use of the approximations
with respect to the small parametgfeV has the form’

\ |Z0|2=1Z0| 2~ |1+ 2ME+ §)/ €%,
e-DV

A
+HedD)+0| 5y (7.2

|Z_12=(2,2=Z,?=]Z_,[?~1, (7.3
where the first term is the tunnel current of the normal junc- — —

\ ere tne nirst te S eu_ el curre 0 € normal junc |21|2:|Z 1|2=|Z_2|2=|22|2~1/R2,

tion and the second term is a voltage-independent excess

current which represents the leading superconducting corred-is possible to express the integial in the form (we re-
tion. strict the analysis to the limit=0):

190 Low Temp. Phys. 23 (3), March 1997 Shumeiko et al. 190



e evV—A E 8e\ eV/2 E 1&A)\2R D2 1+\/§
|<=—f dEEKlz_Rf =72 | oxc= 1- In ,
™ Ja m §25 m 2(1+R)JR  1-R

(7.10

B 2e\ de (E=9) 1—4nR E 74 which is valid in the whole interval of junction transparency
R Ja 520? €/ 74 o<p=1 Asymptotics of this expression coincide with the

o o _ results presented in literatut&?® both in the limit of fully
where the limit of integration in the last term is extended tOtransparent = 1) constrictions| .. = 8eA/3, and in the

infinity since the main contribution to this integral comes |jyit of low-transparency D < 1) tunnel junctions,|
from the energieE ~ A < eV. Separating out the normal _ gAp2/ .

junction current, we can express Ed@.4) in the form
_e’DV ge)? F dE
- A Zg¢

E(E-¢) E-¢

+(2R+1) T"r‘m

exc

The above calculation reveals an important difference
EA2 between the structure of the current in normal and supercon-
AR ? ducting junctions. In normal junctions, the current, e.g., in
the right electrodésee Fig. 5¢results from scattering states
that lie above the local chemical potential> w — eV, while
. (7.9 contribution from the energy intervel < u — eVis equal to
zero due to mutual cancellation of currents of the scattering
We note that this current is always smaller than the normaétates incident from the left and from the right Fig. 5a the

<
T T

current. It is convenient to express the intedralas current-carrying energy region corresponds to negative ener-
e [eviA E 16eN2 (A A2 gies,E;, < 0). Thus, the total current coincides with the cur-
ly=— = K= f dE =, (7.6 rent of real excitations emitted from the contact, which is
T Jev-a & 0 |€Z,|

consistent with the nonequilibrium origin of the current in
which is found from the relations between the functighs the voltage-biased junctions. In superconducting junctions,

[which result from their definition in Eq5.25] only “across-the-gap” current_ is clearly related to the
— real excitations emitted at the right side of the junction where
Z(E+eV)=Z,_4(E), the current is calculate@ig. 63: the dissipative character of
e the currents], andl- , is not obvious. However, the cre-
Zo(B+eV)Zy(E+eV)=2o(B)Z_4(E). 7.7 ation of real excitations at the left side of the junction via
Inspection of the equation fdr. , backscattering into the side bane=2 should be taken into
account(Figs. 6b and 6c Although the current of this side
e (=« E e ([« E— . . . . .
lo=— dE — K;— — f dE — K_g, (7.9 band exists only at the left side of the scattering diagram, it
T JeV+A £ T JA 3

should have an effect at the right side due to continuity of the
shows that the two integrals diverge at the upper liit current at the interfackEqg. (4.5] and th_erefore it should be

= », which means that the states lying far from the Fermidistributed among the states of the side bandl. As our
level formally contribute to the current, while the quasiclas-calculations show, this “kick” current partially flows
sical approximation of Eq(2.6) assumes that all relevant through the Andreev bound states, which involve the current
states lie close to the Fermi level. To eliminate this formalla (Fig. 60 and which convert this current into a supercur-
divergence, the variable is commonly shifted &Y in the ~ Fént outside the junction. It is also partially distributed
first integral in Eq.(7.8). Using again the relationg.7) we ~ @mong the scattering states with positive energ@srent

express this integral in the form |-, Fig. 69 in the form of imbalanced ground state currents.
de\ Joo . E +8e)\2 w EE(E—g)
7R Ja EZ02 4 T Ja 5220? ' 8. SUBGAP CURRENT

where the first term has the same analytical form but the N this section we discuss the tunnel current in the sub-
opposite sign compared to the divergent term in the secon8@P regioneV < 2A. A basic property of the subgap current

integral in Eq.(7.8), is the presence _of temperature-independent structures on the
|-V characteristics—the subharmonic gap struct{863.
_den " e E . 2eN (= _(E—=§) The SGS in tunnel junctions was discovered in experiments
7R Ja §20Z2 4 @R )a gzg ' by Taylor and Burstei? and the first theoretical explanation

was given by Schrieffer and Wilki%in terms of multipar-
ticle tunneling(MPT). Recently, the SGS has been observed
in many experiments on transmissive tunnel junctibrigl-

E) though SGS in planar junctions can be attributed to normal

After elimination of the divergent terms, the integral in Eq.
(7.8 takes the form
2eN (= (E-§)
>R 57 (1+4>\R s (7.9 shorts, the observation of SGS in superconducting control-
T A Ezo 5 . . . .. . g
lable break junctiofsprovided convincing confirmation of
The positive currents in Eq7.9) and Eq.(7.6) overcompen- the existence of SGS in the true tunnel regime.
sate the missing part of the current in E@.5). Collecting The existence of SGS in tunnel current can be estab-
Egs. (7.9, (7.6), and (7.9, we find after some algebra the lished within the MPT theory by means of rather simple
following explicit equation for the excess current in Eq. perturbative argumenfé:>’~% Assuming a small perturba-
(7.2): tive coupling between electrodes, we can calculate, on the
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basis of the tunnel Hamiltonian model, the probability of en+1z¥ . ern+1 |2
tunneling innth order of perturbation theory. Such a prob- Gn+1:|zn+1|2_Re( sinh )—)\ snh ’ .
ability is proportional to a product of filling factors of the Yn+1 Yn+1 (8.2

initial and the final statesi-(E)[1 — n(E — neV)]. At zero
temperature this factor is equal to zero outside the interval  Substituting Eq.(8.2) into Eq. (8.18, we find that the
A < E < neV— A, which selects the quasiparticle transitions second term in the equation f&t,, which is proportional to
across the gap, i.e., the processes of creation of real excita"?, has analytical structure similar to the first term in the
tions relevant for the tunnel current. Such a restriction placesame equation, proportional ¥d', namely, it consists of the
the threshold of thenth order current aeV=2A/n, and a  probability of normal scattering to then(+ 1)th side band
sequence of current onsets of D" at the voltageseV  [cf. Eq.(5.22] and it does not include the contribution of the
= 2A/n forms the SGS of the tunnel currefit® side band states that lie inside the gHp,..| < A. This

In our approach, the filling factors of final states do notallows us to associate this term with the effective contribu-
enter the equation for the current £§.6), and the existence tion of the nearestvenside band.
of SGS is therefore not obvious, although the side band cur- A similar transformation of the functio®,, in EQ.
rents[Eq. (6.5 ] gradually decrease with increasing side band(8.2) yields the recurrence relation
index. However, attribution of the nonequilibrium tunnel

current in biased junctions to the current of real excitations is _ E 2 _ a2 1
. . . n+1— G(En+1 A )
a general physical argument which should be automatically R tanh yp1
met in any correct theory. In fact, the true tunnel current, as exp(— ) |2
we can see from the discussion of the previous section, is — ¢ Frio. (8.3
hidden in Eq.(6.6): it results from partial cancellation of SinA ¥n11Zn+2

large contribution of different scattering modes. The cancel—Combining of Eqs(8.14—(8.3) shows that the next term of
lation is nontrivial because of mixture of currents of dlfferentthe current<,,, which is proportional to"*2, has the same

side bands, the odd side bands containing information abOlé%aIytical structure as the leading term in the curkent,, of

the currents O_f _the even S'_de bands _and vice versa. Th'r‘ﬁe next odd side band, and therefore it can be regarded as a
means that a finite perturbation expansion of @) is not

tisfact d will not ad tel d 1o th ; renormalization of that current.
satistactory and will not adequately correspond fo the pertur- Continuing this procedure by systematic use of the re-

bative structure of the true tunnel current. To reveal such . rrence relation¢8.2) and (8.3), we obtain the following
structure one must rearrange the series in(Bd). expansion for the ciJrrerK in.Eiq 6.5
To this end, we consider a general teikm, n > 0 in Eq. 4 A

(6.6). It follows immediately from the explicit form of the 2N _ n+1 5 )
normal and Andreev transmission coefficiefi&s. (5.27) Kn=—fg O(ER=A9Qn+ —g— 0(E 1~ A%
and (5.28)] that the leading term with respect ¥oin K, is

n+2

proportional to a factof(1 — exp(X',)], which is equal to
zero if|[E,| < A. Having made this observation, we express
the quantityK,, in the form

xe I'ncoshl' Q41+ = 6(EZ, ,—A?)

n+3

xXexp —I'y+2I, . 1)coshl’ Q.o+

2
Kn== A"0(E2—A?)e™ " sinh y,|f,|?
=R MNOETAD ol ol X O(E2, 3— A% exp(—T'n+2I,,1— 2T, »)cosh
fn |2 X +
+4)\"+1g 2T, > n Frit, (8.13 I'nQnsst..., (8.9
n+l where we have introduced the quant)y, defined for alln
as
e "n+ IZ:Jr 1 e "n+1 2
Fn+1:|zn+l|2+Re( sinh —A sinh I . eYo . " 1
Yn+1 Yo+t Q,=———=— sinh y, coshl’ ——.
1b " coshyo|Zo|? " =1 |Z) sinhy[?
(8.9

In Eq. (8.13 the first term represents the main contribution
of the nth side band to the current: it is proportional to the
probability of normal scattering to theth side band and it ) St :
does not contain the contribution of the side band states IyinEXpa”d'”g each term of the series in £§.6) with use of
inside the gapE,| < A. Using the recurrence relatidf.25 q. (8.4 and collecting the terms with the same facidt
and recalling thah = D/4R, after some algebra the function We can finally express the series in the form

F, in Eg. (8.1b becomes

Similar expansions can be derived for the currel?gs
and for the currents of the side bands with negative 0.

> (Kn—Kp) = > (Kn—Kp). (8.6
e,yn 2 [o] n

tanh 'yn_)\ Sinh ynZns 1| G

1
Fo=g O(E2—A?)

n+1»

(8.29

The last summation is done over all oddd everninteger

n, and the renormalized coefficients have the form
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Kn=N"0(E2—A2)(4Q,/R)[(1/2) +coshl,_,
xXexp(—I',_,+2I',_1)+coshl',_,
Xexp(—p_g+20,_ 53— 2T 2+20_;)
+...+coshl'y exp(—T'1+2I',—2T53+...
+200-1)] (8.7a

for oddn > 0 and the form

Kn=\"0(E2—A2)(4Q,/R)[coshl,_ e Tn-1
+coshl',_gexpg(—T'p_3+2I_»—2",_1)+...
+coshl'y exp(—I'1+20N,—203+...— 2, _1)]
(8.7b

for evenn>0.
The representation of Eq$8.6) and (8.7) is exact. A

general term of the series can be regarded as an effective

renormalized current of theth side band. In fact, this effec-

tive current consists of the contributions of all side bands

with odd indices smaller tham. An important feature of this
representation is the presence of thieinction in the general
term, which allows us to separate out in £6.6) that part of
the current which is obviously responsible for the SGS,

e
ISGSZE —f
n=1 T

A

neV—A E ~

E -
dEEtanhﬁ(Kn—Kn). (88)

One might expectcf. Ref. 55 that Eq.(8.8) represents the

[ S S
\ >
124
-A \_>1 2(-.‘ \_)3
a b ¢

FIG. 7. Scattering processes that contribute to the subgap current: single-
particle scattering into the side band= 1 gives the main contribution at

eV > 2A (a); excitation of the Andreev bound state € 1) due to backward
scattering into the side bamd= 2 gives the main contribution atv > A (b);
single-particle scattering into the side bam@ 3 and simultaneous excita-
tion of the Andreev bound state in the side band= 1 gives the main
contribution aeV> 2A/3(c).

|ses(Va)\):n§1 In(V,N),

e neV—A E
I”(V')‘)_;L dEE
The partial current-voltage characteristiggV,\) are simi-
lar to each other, and it is convenient to analyze them inde-
pendently.

According to Eq.(9.1) the partial current,, starts with
an onset at the threshold voltayg=2A/en. In the limit
A—0 the onset is infinitely sharp and its magnitude is

(Kn—Kp). 9.1)

n2n

[(Vh , A—0)=eAD" 2201 W

9.2

subgap tunnel current at zero temperature and that the re-

maining part of the current in E¢6.6),

l=1—I —% © F dEEtanhE(iZ K,)
r SGS_n:1 w neV+A f 2T : "
deEE he (KK 8.9
+ A Etan ﬁ( —n n)v ()

The jumps of the current at the thresholds result from the
singular denominators in Eq$5.27) and (5.29, which are
related to the singular density of states at the side band en-
ergy gap edges, sinjy = 0. Accumulation of these singulari-
ties in the high-order scattering amplitudes leads to a huge
increase of the partial currents well above the corresponding
thresholds—this causes the failure of multiparticle tunneling
theory®’=*°In our theory, the singularities are regularized by

corresponds to the current of thermal excitations. Howevelye factors
this separation is not exact. An analysis shows that the cur-

rent in Eq. (8.9 does not vanish completely d=0, but

contributes a small residual part. An important property of

n
Pn=kljo 12,2 (9.3

this residual current is that it does not contain any structure- . . .
less component but demonstrates behavior similar to the cuf? the denominators of the scattering amplitudes, (B7.

rentlsgsin Eq. (8.8), thus resulting in a small correction to
Eqg. (8.9.

9. SUBHARMONIC GAP STRUCTURE

The explicit analytical expression8.8) and (8.9) pro-

vide a basis for numerical calculation of the subgap current

for small\ (low transparencywith any desirable accuracy.

However, they are also convenient for qualitative discussion

These factors are expressed in terms of the continued frac-
tions Z,, [Eq. (5.25], which therefore should be calculated
with sufficient accuracy to preserve the singular partZ of
which provide regularization of the integrals.

The first-order current; in Eq. (9.1 corresponds to di-
rect one-particle scattering to the side bandl (Fig. 73.
The explicit form of the current; is

E+¢ E—g)
+—=].
Py Py

26)\ ev-A |E1|
= dE —
331

= 9.4
17TRA ©4

of the SGS. In this section we will analyze the SGS at zerdn the limit A— 0 this current coincides with the quasiparti-

temperature on the basis of E§.8).
The current-voltage characteristiggdV) in Eq. (8.8

cle current of the tunnel Hamiltonian mod&(®° At finite A
the threshold onset of the current\&at V, is washed out. To

has a complex form consisting of a sum of renormalized sidevaluate the width of the onset we truncate the continued

band current$,(V,\):
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P.~|(1+Naga_,)(1+\a;a,)+\aga; | (9.5

The functionP, has a similar form. The regularization effect
of the threshold singularity is provided by the most singular
term\ag a; in Eq.(9.5. Keeping this term, we obtain in the
vicinity of the thresholde(V — V,) < A, the result

L (V)= 2eAN [eV—eV;
t(2) Fde sir” 0 9.6
0 (sin 6+ 1/z) E 32+, 0" E b

According to this formula the onset width &V — V;) 3A / 1" -
~NA S L

The second-order currehf corresponds to the creation 2 / \K v
of a real excitation during quasiparticle backscattering into L. e
the side band=2 (Fig. 7b and appears as the current of A / / ]; ( —
transmitted states of the side bane 1 (cf. the excess cur- \?V:;Vz Vi v

rent in Sec. Y. In the vicinity of the thresholdy, < V
< V4, this current exists only m_the form of currents through FIG. 8. g Density of states/(E) =| E,/&,| of the side bands anf,, E;,
the bound states and therefore it is co_mpletely converted intg,4 E, at applied voltage/ > V, (right), position of singularities of the
a supercurrent far away from the junction. At larger voltagesside-band density of states plotted as function of the applied voltage for the
V > V,, the side banth=1 extends outside the energy gap currentl, (left), 1°:E, = + A, 2":E, = —A. b) Density of states of the side
(see Fig. 83 which also makes the curreht partially con- ~ PandsSe. Ei, E;, andE; at applied voltag¥/, < V <V, (right), position of

ist of contributions from extended states. The explicit ex_smgularmes of the side-band density of states plotted as a function of the
SIS . - : p applied voltage for the currerity (left), 1°:E; = *A, 2%:E, = *A,
pression for the second-order current is 37 :E;=—A.

4eA3\? fzeva |E,|
= d

l,= = E 5
A
4 §62léil Regularization of the integral, which is provided by the sin-
e 701 gro—T1 gular terms\aj;ay and\a;a, in Eq. (9.8) at the lower and
Xcoshl'y P + b, (9.7 the upper integration limits, respectively, yields
2 2
Omitting theh-dependence dP, in Eq. (9.7), we obtain the (V) 1
two-particle tunnel current of Schrieffer and Wilkif’s>’ To (Vy) e

keep the singular terms iR, one has to truncate the contin-

ued fractions in Eq(5.29 assumingZ_,=Z3=1, which Further analysis shows that the current reaches a maximum

yields value slightly above/=V, after which it rapidly decreases
P,~|(1+Xa”,ay)(1+\aja,) (see Fig. 9. At voltagesV > V; the singular pointt;=0
L A remains within the integration region, which increases the
+haga; (1+haya3)[% (9.8 current by a logarithmic factor in comparison with the value

The threshold singularity results from the small productOf the current near the threshoit,

&€, in the denominator of Eq9.7). However, in Eq.(9.8) SANZ N X

there are no singular terms proportionalaga, among the | (V>Vy)~ —————

terms linear in\. Such terms are quadratic i and they R

provide, along with the termsag and\a,, the width of the

onsete(V — V,) ~ \2A. This onset is sharper than the onsetAt large voltagev >V, the current , forms the excess cur-

of the currentl; . rent[Eq. (7.10]. It is interesting to note that in this limit the
The threshold singularity in the curreht is typical of  logarithmic factor is compensated for by the currgnfEq.

all higher-order currenta > 1. The appearance of the first (8-9], which yields thex?-dependence of the excess current.

side band outside the energy gap\étV, is manifested The third-order currenits at vpltages close to the thres.h—

through a spike in the curren. Indeed, ifV~V,, the 0ld V3 results from the combination of one-particle tunneling

nodes ofé; overlap the nodes of and &, at the lower E  into the side banch=3 and excitation of the transmitted
(9.7), respectively(see Fig. 8a This singularity yields an Probabilities of these two processes are related as 1:2 at

states of the side bands=1 and 2 outside the energy gap at

vz V=V, andV=V; (Fig. 8b gives rise to the current peaks.
eV,—V) -~ The currentl ; has the explicit form:

9.9

|2~eA)\2
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2eA°\3 [3ev-a E I/eA; I
I3= J dE |—3|2 A - j1/
7R Ja E&3| €16 S g
2
e"0(1+2 coshI';e F'1722) A L ;
% AL N
. r 5 I .
e "(1+2 coshI';e'17212) / P W E 3 (.
+ — (9.10 Yar e o
P3 Vi 'y ; £ ) 14 PR
with the regularization factor
Vs Vo3 V% Vi
Ps~|(1+Nal;ay)(1+Naja,)(1+Nazay,)
n )\ag aI (1+ )\a; a§)|2. (9.12) FIG. 9. Schematic diagram of the partigl— V characteristics.

The current peak af =V, results from the overlap of nodes

of £ and &, at E=A and nodes off; and & at E=2A, in partial currentd,,. They result from the overlap of singu-
similarly to the peak of the currert. These singularities larities of the side band density of states. It is easy to see that
yield again an increase in the current inversely proportionathe singularities of only two side bands can overlap. The
to the square root of the departure from the voltagel;  condition of the overlap fomth andkth side bands have the

— eA%2\3/[e(V, — V)]¥2 However, since the factét; [Eq.  form

(9.11] contain's neither the' term\{:loa? nor .the term E—keV=A, E-meV=—A. (9.14)
Aa,ag, regularization of the singularity is provided, e.g., at o

E = A, by the terms\a, or Aa,, which gives rise to a more This condition is met at voltagesV=2A/(m — k) for all

pronounced peak with magnitude integer Osk<m=n. The magnitude of the current peakS
depends on whether the overlapping side bands are neigh-
I3(Va) 1 9.1 bors or not, and whether the side band index is inside or at
I3(Vg) M- .12 the edge of the interval (®).

hat th itude of thi Ki bl h I.m — k=1,m=n ork=0: edge-type singularity, neigh-
We nqtet at the magnitude of this peak is comparable to thfq ije pands. This type of singularity forms the peak of the
magnitude of the onset of the currdat The second peak at currentl, at the main threshol®/,. The magnitude of the
V=V, results from the overlap of the nodes &fand &, at current peakisl,) o ~ AN /R

max "

E=3A, which increases the currehf near the voltage/ Il.m— k> 1,m=n ork=0: edge-type singularity, non-

= V4 which is inversely proportional to the first power of the neighbor si : . . ,
. i L \3A2 B . ghbor side bands. This type of singularity forms the first
distance to this voltagé; ~ A°A</(V, — V). The divergence peak of the current,, n > 2 at voltageV,, ;. The magni-

is regularized by the terma,az in Eq. (9.11), which results tude of the current peak i$ {) o ~ EAN"™ YR
. . max "
in a peak of magnitude lll. m—k=1,m< n, k> 0:internal singularity, neighbor

I3V 1 side bands. This type of singularity forms the last peak of
Y )Nx- 9.13 each current,,, n > 2 at voltageV,. The magnitude of the
s current peak isl(,) max ~ €AN""YR.
Thus the heights of the two peaks of the curdgnare of the IV.m— k> 1,m<n, k> 0: internal singularity, non-
same order in, although the peak at ~ V, is sharper. neighbor side bands. This type of singularity forms all inter-

In a similar way, all of the high-order currents in the mediate peaks of each currdnt, n > 3. The magnitude of
vicinity of their thresholds are attributable either to the An-the current peaks aré ) nax ~ €AN""%/R.
dreev bound state currentsvenn) or to a combination of
Andreev bound state currents and the current of a single re%l
excitation(odd n). The number of excited Andreev states is
correspondingiyn/2 or (n — 1)/2. Singularities similar to the In this paper we have considered superconductive tun-
singularity of the currenit; at the voltagd/ ~ V, existinall  neling as a scattering problem within the framework of
high-order currents, where they cause even more pronounc&bgolyubov-de Genne@BdG) quantum mechanics. An es-
current peaks because of the absence of term&, ., ; in sential aspect of this problem is that the scatterer consists not
the corresponding smearing functioRs . Because of this only of the potential of the tunnel barrier but also of the
property, the heights of such peaks exceed the thresholdiscontinuity of the phase of the order parameter. At equilib-
value of the corresponding current by two orders ofrium (zero bias, Josephson direct curdeitie scattering
N (1) max— €AN"Z/R. problem iselastic The peculiar feature of the elastic scatter-

The above discussion reveals the current peaks to bieg problem in short junctions, which is considered here, is
essential features of the SGS of tunnel current in addition tehat the balance of currents of the scattering modes is not
the current onset&Fig. 9) (these peaks are seen also in theviolated: the supercurrent flows only through the supercon-
numerical results of Refs. 34 and)3% allows us to estab- ducting bound stateor a more general discussion, see Ref.
lish a general classification of singularities that cause peak48). In the presence of voltage bias the scatteringeédastig

ONCLUSION
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because the time dependence of the component of the scatclude a contact potential difference in the potentigk),
terer is related to the superconducting phase difference. lwhich implies that this potential may have nonvanishing
general, the currents of all inelastic channels, taken collecasymptotic values at infinityd ( — «) # U(e) # 0. If the
tively, constitute the components of the tunnel current thajunction has more than one transverse transport mode, we
flows through the biased junction. The quasiparticle currenassume that these modes are not mixed.
corresponds to the incoherent part of the inelastic side band A one-dimensional quasiclassical wave function of a
contributions, and the Josephson alternating current corregiven transverse channel in the right electrode has the form
sponds to the interference of the side band contributions. [Eg. (2.6)],

There are three distinct components of the quasiparticle
tunn_el curren.t at zero temperatuf@: the cn_J_rrent of quasi- \IfR(x,t)=Z i eXF(Wf prdx
particles excited above the ground stafi) the current Jor
trough Andreev bound states converted to a supercurrent out- ) s
side the junction, andiii) the imbalance current of the Xexpli o xrl2) PR(X,1), (A1)

ground state modes. At large bias voltag¥,> 2A, the first  with a similar expression for the left electrode. The quanti-

component corresponds to a single particle current of th@es & are slowly varying two-component wave functions
normal junction, while the other components cause excesgn the scale of bk, where pr(X)=[2mg(x — Ug

current. When voltage is decreased, redistribution of current- E, r(x))]¥2 This equation is valid over the distange
among the components gives rise to subharmonic gap struss 1/p,, from the junction, and in the spatial regiorp/<< x
ture (SGS in the form of current onsets and current peaks.< ¢, the functionsyf are almost constant.

Within the voltage intervals 2/n < eV < 2A/(n — 1) with From another point of view, at large distance from the
even n, the tunnel current consists entirely of currentsjynction,|x| > 1/pr.. , the functior¥ can be expressed in the

through the Andreev bound statepmponent(ii); e.g., Fig.  form of a linear combination of the scattering states at the
7b]; the states of all side bands with odd indices smaller thaqrermi level,

n contribute to the current. If is odd, a real excitation
current of the side band [component(i); e.g., Figs. 7a, and

V=Cyix1+Cox> (A2)

7c] is also present in the tunnel current. Opening of new (1/\/U_L)[ép|_x+refip|_x:|, x<0,

channels of tunneling of real excitations gives rise to current X1=| _ (A3a)

structures. Thus, SGS reveals the discrete nature of the side (1\or)dePrY, x>0,

band spectrum. The structure becomes more pronounced (o[ P+ Te PRy, x>0

with decreasing transparency of the junction. zz{ R ' ’ (A3b)
Since each Andreev state provides transfer of one (1o de P, x<0.

Cooper pair through the junction for every incident q“aSi'Comparing Egs(A2) and (A3) with Eq. (A1) in the region
particle, n particles will tunnel in the interval 2/n < eV 1lpe <| x| < &, we have

<2A/(n-1). , ,

The participation of a large number of bound Andreev ~ Ci1=€72W2y" | C,=e 2%y,
states in the current transport at low voltages is surprising: it o2
appears to contradict the fact that subgap current diminishes rCy+dC,o=e %y,
at zero bias. After all, the probability of the scattering into  gc, +7C,=e /2y | (A4)
side bands does not depend on the bias and is proportional to ] N
powers ofD. This paradox can be solved by increasing theWhich yields the boundary condition

compensation of currents between the normal and Andreev oAyt
channels in each side band with decreasing voltage, which (l/,+ =V( ¢‘)’ (A5)
gives the required voltage dependence of the total current. ) )
with the matching matrix
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APPENDIX A: BOUNDARY CONDITIONS

The quasiclassical boundary condition in E{&8) and ,
(2.9 has been derived in Ref. 31 by using the method of Ref.APPENDIX B: BOUND STATE CURRENT
21. Here we present simple arguments which lead to this Equation(4.10 for the current of a single bound state
boundary condition. We consider the more general case afan be derived directfy from the Bogolyubov-de Gennes
asymmetric junction, using an asymmetric version of theequations(2.5 and (2.2). The derivation is valid for junc-
Hamiltonian of Eq.(2.2) with the same restriction imposed tions with an arbitrary nonsuperconducting region between
on the length of the nonsuperconducting regiors &,. We  the superconducting electrodes. We assume for simplicity
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The effect of pressure and silver impurity on the superconducting properties
of the HTS YBa ,Cu,Og
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The effect of uniform compression is studied on the superconducting transition temperature of
the HTS ceramics YB4Cu, _,AQg,) 405+ s(x=0, 0.05, 0.1, 0.15). It is shown that the

pressure effect in these compounds differs considerably from that in the system
YBa,(Cu, _,Ady)307_ 5. The observed peculiarities are discussed on the basis of the van Hove
anomaly in the electron energy spectrum of oxide cuprates. The correspondence of the
superconducting properties of the-2—4 and 1-2-3ystems under pressure with certain models
of high-temperature superconductivity is discussed. The nature of nonlinearity of the
temperature dependence of the electrical resistance df-tBe-4system in the normal state and
the effect of substitution of silver for copper on it are studied. The corresponding phase
diagram is constructed. The correspondence of the observed increase in crossover temperature
with the Nagaoza—Lee theory is discussed. 1897 American Institute of Physics.
[S1063-777X97)00303-4

INTRODUCTION compounds also serve as an important source of information
about the nature of high-temperature superconductivity. This
Several investigations of high-temperature superconexplains the rising interest in certain peculiar properties of
ducting cuprate oxides have shown that different atomic subthe 1—2-4system above the superconducting transition tem-
stitutions in them affect significantly the sign and the mag-perature. It is well known that the temperature dependence of
nitude of the pressure derivative df,. This quantity is the resistance of YB&u,Og- 5 reveals departures from the
usually found to be a nonlinear function of the concentrationlinear R(T) dependence in the normal region which is typi-
x of the substituting element even for small valuesxoFor  cal of high-temperature superconductbrsiccording to the
example, a partial replacement ofions by P#* ions in  results obtained by a number of authors, these properties
the compound YBgCu;0;_ 5 results not only in a monotonic may throw light on the very nature of the high- temperature
decrease i with increasing praseodymium concentration supreconductivity mechanism. Hence it is extremely interest-
X, but also in a strong variation in the nonlinear dependencéng to find out whether atomic substitutions affect the pecu-
of T, on pressure in the intenfaD<x=<0.5. An identical liarities of normal conductivity ofl—2—4compounds.
nonlinear effect in the dependencdT/dP)(x) was ob-
served in the compound YB@u,Og- s upon a partial re-
placement of ¥* ions by C&" ions (0<x=<0.3). The su-
perconducting transition temperature increased and attained 1. We studied the superconducting and normal states of
a maximum valug in contrast to the compound the ceramic samples YBECu,_,Ag,),Os- s in the concen-
Y, «Pr,BaCu;O;_5. In both cases, the nonlinear depen-tration range 6x=<0.15 by using the following
dence ofdT./dP on x was treated as a manifestation of thetechnique. = Compounds of nominal composition
singularity in the electron density of states caused by a&'Bay,(Cu;_43A043)307_s (X = 0; 0.05;0.1; 0.15) were
change in the number of carriers as a result of substitution dirst synthesized by using the standard ceramic technology,
yttrium. These results serve as an important argument in fahen powdered to a grain size ofuin and mixed with
vor of the recently established concepts associated with thequimolecular amounts of copper oxide CuO. Parallelepiped
van Hove approach to the high-temperaturesamples of size 82xX20 mm were compressed from the
superconductivity’. On the other hand, it is known that sub- obtained mixture, fritted in air at a temperature of 950 °C for
stitution of copper by its close chemical analog silver in theseveral hours, and then cooled with the furnace. The samples
1-2-3structure leads to a slight change in the transitionwere then placed in a high-pressure chamber and annealed in
temperature and a different type of the dependencexygen amosphere near the upper limit of stability of the
(dT./dP)(x).? The well-known difference in the pressure 1-2—4phase for about one hundred hours at a temperature
effects in1-2—-3 and 1-2—4ystems is attributed to the sin- of 800 °C under a pressurB=16 atm, and then cooled
gularity of thel—2—-4crystal structure, viz., the presence of slowly. Silver contacts were formed on the samples for mea-
double copper—oxygen chains rather than single chains isuring electrical resistance.
1-2-3crystals. Hence it should also be interesting to com-  The x-ray diffraction studies of the obtained samples re-
pare the effects of substitution of silver for copper in bothvealed them to be single-phake2—4structures in the entire
structural modifications. range of variation ok. The magnitude of orthorhombic dis-
Studies of the peculiarities of normal properties of HTStortion (b—a)/(b+a) decreased slightly with increasing
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FIG. 1. Dependence of the orthorhombicity distortion parameter on silvefFIG. 3. Dependence of the superconducting transition temperature of a
concentration. YBay(Cuy 95Adg 09 405 s Polycrystal on temperature.

concentration of AgFig. 1). Note that this dependence of The inset in Fig. 2 shows the typical superconducting transi-
the distortion parameter anis strongef than for the com- tion curves for a YB&(Cup 9520005 40s+ 5 Sample without
pound YBa(Cu, _,Ag,);0;_ s and the region of its signifi- pressure and &=0.48 GPa. The transition width remained
cant variation is displaced towards lower valuescof nearly constant with pressure and amounted to about

The samples were subjected to hydrostatic compressioh—8 K.
in a beryllium—bronze bomb up to 0.7 GPa in the supercon- Under pressure up to 0.7 GPa, the transition temperature
ducting transition region. The pressure in the bomb was deincreased linearly in the entire range of variationxofBy
termined by measuring the electrical resistance of a mangavay of an example, Fig. 3 shows the displacemert ofvith
nin probe, while the temperature in the cryostat wagpressure for the same sample. The indicated values of the
determined from the reading of a standard germanium resisslope of the straight lines correspond to the onset, middle,
tance thermometer. The superconducting transition was reéand end of the transition. It can be seen that the quantity
corded from the temperature dependence of the electrical rélT./dP does not depend significantly on the method by
sistance which was measured by the four-probe technique byhich T, is determined.
passing constant current of 1 and 5 mA through the sample.

The superconducting transition temperature corresponded @SCUSSION
a twofold decrease in the electrical resistance in the transi-
tion region.

2. All investigated samples revealed a metal-like tem-
perature dependence of electrical resistivity before the ons
of the superconducting transitigfig. 2); the resistivity de-
creased monotonically with increasing silver concentration

1. The data obtained from the measurementTofof
YBay(Cu; _,Ag,) 405+ s under pressure and foP=0 are
shown in Fig. 4 together with the values B{T) in normal
eé‘iate for various degreasof substitution of copper by silver.

It can be seen that the effect of replacement of copper in this
system differs significantly from that in the-2—3systen?

In the first place, the initial descent in tfiig(x) dependence
becomes much steeper as a result of substituitonve 1).

R.HQ '.v" This correlates with the difference in the nature of variation
0.003r4 P=0 f‘,‘v"ﬁ Xx=0u." of the distortion parameter ih—2—-3 and 1-2—-4ystems in
L, 'j' j."" the same range. Second, the difference is manifested in the
c 7/ ,048GPa J nonmonotonic dependencg,(x) in the 1-2-4systems,
do 0,002}, J". '.4"' which is not observed in th&—-2—-3system. The difference
- 70 80 g - in the properties of two structural modifications and in ex-
< - T.K ',:" 0,05,.+ il periments under pressure is equally significant. Indeed, the
',v’ ,,.«*’” dependencedT./dP)(x) in the 1-2—4system is nonlinear
0,001r - 0,10 . cewme and has a peak at=0.1(curve2 in Fig. 4), and the variation
/’,r"" __01 g’ - of the quantity ¢IT./dP)(x) is about an order of magnitude
iﬂ,....---;a g 60590 09 larger than  the  corresponding  variation  in
s g A YBa,(Cu; _,Ady)307_5. On the other hand, this also re-
Y 100 200 300 veals a qualitative resemblance with the pressure effect in the

same structur&—2—4 inwhich Y is replaced by Ca, and the
FIG. 2. Temperature dependence of the electrical resistiyityof (dTC/d P)(X) dependence shows a minimdit can be as-
YBa,(Cu; _,Ag,)40s- 5. The inset shows the displacement of the supercon-sumed that the. Observelc_l peak is a Consequ'ence of the
ducting transition curve under pressure. electron-topological transitiofvan Hove anomaly in the en-

200 Low Temp. Phys. 23 (3), March 1997 Kleiner et al. 200



150 18 :
BE -J+- a-123/Pr o
100 3 —=—"1d140 5 a-123/Ag .
i + _3- IR . .-124/Ag .
90 +”’ 190 § oGt model
- - I -
X i ’_3 o 121 Cyrot's mode 3
+© - 120 £ .
80_+\ ~ 1 ,+- 2 gl T~
- ~
B *_\+\ -— +- — i 110 .—9 s ‘~ o 3
c ~ .
1 L ] 14 = 6 . N8
0% 0.05 0,10 5,18 0" © S %o
X 1.0k a ~ -
[ 3l-| &8 i RN
S b 2/-+\ 0,5 1 L1 = ~ \’: I
< ~ 0 o 2% 1 }'-
£ oL N 50 60 70 80 90 100
S / T Te . K
o
2 // FIG. 5. T vs.d In T./d In V diagram for1-2—-3 and 1-2—-4ystems with
;E‘,’ 7 _/ different substituent impurities.
6 (') 0105 0'10 0115 the expression obtained in this model for the transition tem-

x perature

U
T.=ts exp( -7 5),

wheret is the hopping integralg is the number density of

ergy spectrum of electropslue to a change in the number of carriers, andJ is the Coulomb repulsion energy, neglecting
carriers upon replacement of yttrium or coppefhe elec- the volume dependence bf, we can obtain for the above-
tron transition may be caused directly by the change in thénentioned set of data for YB€Cu,_,Ag,)s0;—s and
number density of carriers associated with the valency of the/ 1-xPxBa&CusO7_ s quite reasonable values of the deriva-
substituent element or, which is less likely, by a distortion oftives d Int/dInV=-0.77 and d In §dInV=5.5 (corre-
the crystal lattice as a result of substitution or an externagponding to~3%/GPa. However, the same model gives for
mechanical agency affecting the electron energy spectrum, épe ~ 1-2-4  system  [Y;_,CaBaCu0g.s and
by both these factors simultaneously. YBay(Cu - ,AQ,)40g+s] @  positive!)  value  of

The effect of pressure on the Superconductivity of SyS-d Int/dInV=+1.5 and a very Iarge value of the derivative
tems of various compositions can be analyzed convenientl¢l In &/dIn V=27(=19%/GPa), which apparently suggests a
by studying theT, vs. d In T./d In V dependence. For the lack of agreement.
system investigated by us, this dependence is shown in Fig. 5 Another property of the volume dependenceTof is
(we use the valuB= 142 GPa for the bulk modulus of the obtained from the Labbe—Bok model of a two-dimensional
1-2—4system.* The same figure also shows the data cor-superconducting lattice:** In this BCS-type model, which
responding to thd—2—4structure of ¥,_,CaBa,Cu,0q.; ©xplicitly takes into consideration the contribution of the
(Ref 2 as well as the results for th&#—2—-3 structure of |OgarithmiC Singularity to the denSity of states of the half-
YBay(Cu,_,Ag)s0;_ s (Ref. 2 and Y, ,PrBa,CuO, , filled band, the superconducting transition temperature is de-
(Ref. 1. A considerable difference is observed between thdined by the expression
diagrgmg for the_ systenis-2-3 an_d 1-2-4. Theecrease in T.=D exg — 1/\5)'
T, with increasingd In T./dInV is much slower for the
1-2—-4structures whose composition is far from optimal aswhereD is the “width” of the singularity. The expression
shown by the diagram. Strictly speaking, however, the actudPr the volume dependence &t has the form
value of this difference cannqt pe determined in the _apsence dinT, dinD 1 dinx
of data on the effect of substitution on the compressibility in = + i
1—2—45y3tem3. dinV dinV 2\/X dinV
~The existing models of high-temperature superconduc- e |jinear relation betweed In To/dInV and InT,,
tivity allow a quantitative analysis of th_e correlatlon_ betweenhich follows from these relations
the values ofT; andd In T./d In V for different atomic sub-
stitutions. For the structur&—2-3,this dependence with a
T, peak is in good agreement with Cyrot's modelsing

FIG. 4. DependencesT (x) and Tg{x)(a), and the dependence
(dT./dP)(x)(b).

dinT,

S f_ain Tt ay;
dInV aln c a21
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1dIinh dInD

a=—s—v: =7 —a,InD T.K
1 2dinV’ 2" dinhv ' 100 140 180 2'20 260

holds reasonably well for YB#&Cu, ,Ag,),Og-s and
Y;_CaBaCu,0z. s (Fig. 5. However, the very steep
slope of the straight line accounts for an extremely strong
dependence of the interaction parameter on the volume,
which corresponds tod In N/dInV=—(112-143) (the
spread in this quantity is associated with the choice of the
value of the bulk modulus fol-2-4 between 110 and
142 GPa by different authors.

The linear relation betweenl In T./dInV and InT,
mentioned above follows from the expression for the transi- v
tion temperature obtained by Abrikoset al..*® UL X ha '."9,05

150 ¢ @, ™

E x Fo-’-o-—_B "’""
TC=? exp(—1/\n), - o 0
100 ™

where E is the characteristic electron energy .--T'E,.-..,.- —ex
~1eVn=vlvy,v is the density of electron states associated I 0)
with the contribution from the van Hove anomaly, anglis 50 0 0'05 0‘10 0‘15
the “background” density of states. Neglecting the volume TTx )
dependence of E, we obtain the relation
d Inn/dIn V+dIn MdIn V=(60-70) for the relative deriva- FIG. 6. Temperature dependence of the derivatipédT of the system
tives which characterize the corresponding volume depentBax(Cu;_,Agy)4Og- ;. The inset shows the—x phase diagram.
dences. Assuming that the main contribution comes from the
first component, the large value dfIlnn/dInV could be
treated as the result of a very sharp change in the density afre are characterized by the presence of three well-defined
states near the singular point. In any case, such an assumgegments corresponding to the rise in the valuel@fdT
tion seems to be more justified than the strong dependence wfith increasing temperature up to values indicated by arrows
the interaction parametex on volume following from a in Fig. 6, followed by a region of almost constant value of
comparison with the Labbe—Bok model. Another indicationthe derivative and a region of subsequent decrease in
of the importance of variation of the density of electrondp/dT with increasing temperature.
states is provided by the above-mentioned correlation be- The existence of kinkgécrossover poinjson the depen-
tweenT.(x) and the distortion parameter. It is known that dencep(T) in the normal conductivity region has already
orthorhombic distortion of a two-dimensional lattice splits attracted the attention of many researchers. According to the
the van Hove critical point. The gap between the criticaltheory proposed by Nagaosa and f.ead based on resonant
energies, and hence the density of states, becomes extremefglence bond2,a spin gap appears in the elementary excita-
sensitive to factors affecting the distortion paramétékc-  tion spectrum of thd—2—4system upon a decrease in tem-
cording to our resultgFig. 1), the orthorhombic distortion perature. This must lead to a decrease in the contribution to
parameter indeed varies significantly upon replacement dahe resistance from electron scattering at spin fluctuations
copper in thel—2-4system(this was observed earlier also and hence to a more rapid decrease in resistance as the tem-
upon replacement of yttrium by calcidim Apparently, this  perature falls below the crossover point. The existence of the
leads to an effective variation in the density of states at thepin gap is also confirmed by the NMR dafdt can be seen
Fermi level. An analogous effect for the case of uniaxialclearly from thedp/dT curves in Fig. 6 that at the points
compression of HTS single crystals was observed, for exT,,{x) marked by dark arrows, the regions with increasing
ample, in Ref. 8. derivative are replaced by regions with a nearly constant
Nevertheless, the obtained values of these parameters aralue of dp/dT, as indeed must be observed during cross-
hard to explain physically and the quantitative agreemenover between states with a spin gap and the region of linear
between the above models and the superconducting propatependence(T) typical of oxide cuprates. Thus it can be
ties of thel—2—4system can hardly be treated as satisfac-assumed that the indicated points correspond to the crossover
tory. line in temperature-vs.-carrier density coordinates. Accord-
2. Let us now consider the normal properties of theing to Ref. 6, the shape of thig,{n) curve must be related
system under consideration. The curves of the temperatuiguite definitely to the variation of the superconducting tran-
dependence of the normal state resistiyify) presented in sition temperatur@d .(n) as a result of doping, and this cor-
Fig. 2 show that the departure from linearity relation must also exist on thE-vs.x diagram to the same
observed in YBgCu,Og. 5 (Ref. 4 is also preserved in extent to which the numbar of charge carriers depends on
YBay(Cu; _,AQ,) 405+ s (X=<0.15). This nonlinearity can be the degreex of substitution of silver ions for copper. In other
seen clearly upon a numerical differentiation of the data orwords, the increase iff g, with varying x (Fig. 48 must
p(T) (Fig. 6). All the (dp/dT)(T) curves shown in the fig- correspond to a decreaseTip and vice versa. It can be seen

dp/ dT , arb.units
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from Fig. 6 that the value of the crossover temperature in- system is observed. For a very low degree of substi-

creases upon an increase in the silver concentration in tution, there exists a correlation between the super-
samples, and hence the above-mentioned correlation between conducting transition temperature and crossover
Tc(x) andT4,{X) is indeed observed, at least fo<0.1(see temperature, as predicted by the Nagaosa-Lee
curvesl and 3 in Fig. 4). Hence the behavior of.(x) and model on the basis of the resonant valence bond
TgadX) in the system YBgCu, ,Ag,)40s- 5 is in accord model.
with the Nagaosa—Lee theSrfor very low concentration of (3) Like pure YBaCu,Og-s,YBay(Cu;_,AQy) 4055
silver ions. also displays a transition from linear temperature de-
Finally, it should be mentioned that the linear depen- pendence of resistance to its saturation upon an in-
dencep(T) for YBa,Cu,O;- 5 (Fig. 6, curve corresponding crease in temperature. This corresponds to the phase
to x=0) is transformed into a dependence with saturated diagram in which the region of linear growth of
resistance at temperatures above 17@H€se points are in- p(T) separates the regions of spin gap and resistance
dicated by dashed arroyvsSuch a region of negative curva- saturation.

ture was observed in—2-4systems by other authors also This research was supported by Grants from the Soros
(see, for example, Ref.)5For x>0, thedp/dT curves in 4 ndation and INTAS.

Fig. 6 show that the saturation region fofT) is preserved

even as copper is replaced by silver. It should be emphasized

that as shown by thep/dT curves, a transition to saturation E-mail: kfti@rocket kharkov.ua o

region from the linear dependence region occurs over a Ver))/The spectroscopic data obtained in a recent publickpoint towards the

. | hich th d . h existence of a van Hove anomaly in the2—4electron spectrum corre-
narrow temperature interval which thus determines the g,,nqing to the saddle point on the Fermi surface.

boundary between the linear growth regidtl) and p(T) INaturally, the irregularity in the arrangement of Ag atoms at crystallo-

saturation regior(IV) on the T—x phase diagranisee the g_raphic _positions Cul anq Cu2 must cause a qurrin_g of the van Hove

inset in Fig 6. which also shows the superconductivity re- singularity. Apparently, this explains the nonlinearity in the dependence
. 0 . . T.(x) even for small values of.

gion (I) and the spin gap regiofil )). 9
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Thermal conductivity of anisotropic HTS crystals YBa 2Cu30;_, and Bi,Sr,CaCu,0g,
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The results of measurements of thermal conductixitgnd resistivityp of some superconducting
crystals of YBaCu;O;_, and B,Sr,CaCyOg, , in the ab plane(«2® and p??) and along

the ¢ axis («° andp®) are presented. The magnitudes and temperature dependences of the thermal
conductivity of Y- and Bi-crystals are found to be close and to vary less significantly than

the resistance of samples of the same composition. In contrast to the predictions of the electron
heat transport theory in HTS cuprate crystals, the relative height of the peaks in
«k®(T)/k?®(T,) curves becomes equal to two in highly anisotropic Bi-samples, and the peak is
displaced toward lower temperaturég<<0.4T. with increasing value of this ratio, as

well as in Y-crystals which have a lower anisotropy. All these facts indicate that in theoretical
calculations of the thermal conductivity of layered HTS crystals inaheplane at

temperatures beloW., the possibility of an increase in the electron and the phonon components
of thermal conductivity must be taken into consideration, as in calculations of thermal
conductivity of perfect crystals of conventional metallic superconductors. In the direction
perpendicular to the layers, the thermal conductiwify< «2° and decreases monotonically with
temperature. The contribution from the electron componenrt°toan be disregarded.

© 1997 American Institute of Physid$1063-777X97)00403-9

1. INTRODUCTION cesses, while “neutral currents” like Hall current and ther-

. mal flux are controlled by slow processes. Hence the esti-
As a superconductor undergoes a transition from the nor-

mal state to the superconducting state, the thermal condurgjcitjr;i) cannot claim a higher than order-of-magnitude
tivity « of the sample remains finite, in contrast with, say, It ch'reIation betweern. and «. in the normal state at
the electrical resistivity or thermo-emf. Hence, by measur- e “p

T ¢ ) )
ing the thermal and electrical conductivities, we can estimatér Tc is known, a comparison of the experimental depen

the contributionk, of the electron component ang, of the dencex(T) in the superconducting state with the tempera-

lattice (phonon component to the total thermal conductivity ture dependence_s following from various theore_tlt_:al models
of the sample of heat transport in HTS crystals can lead to definite conclu-

sions about the applicability of a certain model, and hence
K=KeT Kp (1) about the peculiarities in the interaction between quasiparti-
gles in HTS cuprates.

in the normal and the superconducting state. The latter i hall di h its of fth
especially interesting for the case of hi§h-superconduct- We shall discuss the results of our measurements of the
hermal and electrical conductivities of some relatively per-

ors, since the mechanism of interaction between quasiparj— - i
cles leading to pairing of charge carriers in HTS material ect crystals of YBaCu;O;— and BpSr,CaCyOg.y with a
has not been established unambiguously so far.

The value ofx, in the normal state, and hence the rela- _
tion betweenk, and «x, for T=T., can be estimated from |
the measured value of the electrical resistiyitpy using the -
Wiedemann—Franz law:

ke=LT/p, (2

wherel = Ly = 2.4% 10~ 8 W.-Q/K? the(Lorentz numbeif
the electrical and thermal resistance in the electron system
are determined by the same elastic scattering of carriers in
the bulk. In the case of inelastic scattering, for example, the
inelastic electron—phonon scattering or scattering at freshly
introduced defects at low temperatures, the coefficient is
L<Lgy and depends on temperatusee, for example, Ref.
1).

According to Colemanet al,? at least two different o o

FIG. 1. Schematic diagram for measurements of the thermal conductivity of

transport relaxation times associated with electron exmtaérystalsin theab plane(a and in thec.direction (b): sample(1). heater(?).

tions are ObserV?d ir_‘ HTS (_:UprateSTat’Tc_: the eleCFrical copper cold duct3), thermocoupleg4, 5), and Ge or Pt reference thermom-
current attenuation is dominated by rapid relaxation pro-ter(s).
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TABLE |. Basic parameters of YB&u;O;_, samples whos&(T) curves are presented in Figs. 2 and 6.

Sample Direction of Characteristic k(120 K), p(120 K), k(120 K),
(curve No) measurements size, mm T., K AT, K W/(m-K) mQ-cm W/(m-K)
Y-21 (1) ab-plane 1.70x 0.94x 0.030 925 0.5 7.3 0.07 4.2
Y-25 (2) ab-plane 1.65x1.00X 0.135 92.5 2 11.0 0.26 1.1
(2% c-axis - - - 3.2 10.6 0.027
Y-cer[6] (3) 20.0X2.0x 2.5 90.5 3 4.3 0.44 0.66
Y [7] (%) a-axis 0.6<0.6x0.025 90.5 ~1 10.2 - -
(x®) b-axis . - - 14.9 -
Y [8] («2) ab-plane 12X 1 90.5 - 10.9

transition temperatur&.>82 K in the temperature interval the temperature difference between the sample and the plati-
10—150 K. A distinguishing feature of our research is thathum or germanium thermometers attached to the sample.
the entire cycle of measurements of thermal conductivity and he use of chromel—-constantan thermocouples with a wire
resistance in the cuprateb-plane (x®° and p®°) and along 12 um in diameter set a lower limif>10 K on the range of
the c-axis at right angles to itx® and p®) was completed on thermal conductivity measurements. The thermocouples and
the same sample, which is quite significant in view of thethe heater were attached to the sample by IBM lacquer which
large spread in the values of electrical conductivity of HTShas a very high thermal conductivity and can be easily re-
crystals even for samples taken from the same batch. Th@oved in a solution consisting of equal amounts of methanol
directions of the heat flux and electrical current coincidedand toluene. The same adhesive was used for attaching the
during measurements &f andp, thus enabling us to elimi- sample to the cold finger. This made it possible to remount
nate systematic errors in estimates of the relation betweelfie sample during investigations and to carry out the entire
ke 10 K, Which creep because of a strong anisotropy of thecycle of measurements on the same sample.
crystals and are unavoidable in measurements ahdp in Initially, we measured the resistance in tie-plane and
different samples. determined the superconducting transition temperafiire
Crystals of YBaCu,O;_, were grown at the Institute of After this, the temperature dependence of the resistjfty
Solid State Physics, Russian Academy of SciericBae  along thec axis was measured in some samples. The sample
Bi,Sr,CaCyOg, , crystals were grown at the Moscow Insti- Was then remounted for measuring thermal conductivity in
tute of Steel and Alloy§.Some of the results of measure- the ab plane. Finally, the setup was changed for measuring

ments of the properties of Bi crystals in thd-plane were thermal conductivity along the-direction. As a rule, the
reported in our earlier publicatioh. sample could not be removed without damage after all these

measurements.

2. EXPERIMENTAL PROCEDURE

. . o 3. RESULTS OF MEASUREMENTS
The measuring technique for thermal conductivity of

crystals in theab plane and along the axis is shown sche- Tables | and Tables Il show the main parameters char-

matically in Fig. 1. The resistance measurements were cagcterizing the properties of the investigated samples.

ried out by using the standard four-point potentiometer tech- The temperature dependences of the thermal conductiv-

nigue in a constant current. The contact areas were formeity « of the samples studied by us are presented in Figs. 2

on the sample by applying silver paste, and copper leadand 3 on logarithmic scale. The insets show the same depen-

50 um in diameter were attached to them. dences on linear scale. The results of measurements of the
The thermal conductivity was measured by the steadyresistivity p(T) of the same samples are presented in Figs. 4

state heat flux technique. The temperature difference alongnd 5.

the crystal was measured by a chromel—constantan thermo- The light trianglesl and square2 in Fig. 2 show the

couple. An identical thermocouple was used for measuringlependences®’(T) of Y-21 and Y-25 crystal§see Table)l

TABLE II. Basic parameters of Bér,CaCyQOg_, samples whos&(T) curves are presented in Figs. 3 and 7.

Sample Direction of Characteristic (120 K), p(120 K), k(120 K),
(curve No) measurements size, mm T., K AT, K W/(m-K) me-cm W/(m-K)
Bi-6 (1) ab-plane 0.96x0.58x0.016 89 3.5 15 0.63 0.47
Bi-4 (2) ab-plane 2.00X0.59x 0.050 86 15 10.5 0.22 1.3
(2% c-axis - - - 1.25 - -
Bi-3 (3) ab-plane 2.3%x1.20X0.020 82 4 5.4 0.28 1.05
(3% c-axis - - - 1.08 - -
Bi-cer [10] (6) 20.0x 2.0 2.5 105 3 1.52 1.47 0.16
Bi [12] (4) ab-plane - - - ~5.1 ~0.11 ~2.6
Bi [11] (5) ab-plane 2X1x0.01 89 - ~55 ~0.18 ~1.6
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Bi, Sr, CaCu,0g,,
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FIG. 2. Temperature dependences of thermal conductivity of ’ 10 100

YBa,Cu;0;_,: samples Y-21(curve 1) and Y-25 (curve 2) in the

ab-plane and Y-25curve Z) in the c-direction. The curves?®, «°, and T, K

«3" are plotted according to the results obtained in Refs. 7, 8, c8rve

corresponds to the results of measurements for the cefabdshed curves  FIG. 3. Temperature dependences of thermal conductivity of

1., 2, 2;, and3, correspond to contributions to the thermal conductivity Bi,Sr,CaCyQg,,: samples Bi-6curvel), Bi-4 (curve2), and Bi-3(curve

of the electron component for Y-21 and Y-25 crystals and the ceramic3) in the ab-plane, and Bi-4(curve Z) and Bi-3 (curve 3) in the

calculated from the results of electrical conductivity measurements. c-direction. Curvest and5 are plotted according to the results obtained in
Refs. 11, 12, curvé corresponds to the results of measurements for the
ceramict® dashed curves,, 2., 4., 5., and6, correspond to contributions

in the ab plane. The thermal conductivity®(T) of the to the thermal conductivity of the electron component for2, 4 and5 _

sample Y-25 at right angles to tlado plane is shown by dark crystals anq t_he ceramic respectively, calculated from the results of electri-
. . cal conductivity measurements.

squares 2 The solid curve3 was plotted for a ceramic

sample from the data of Ref. 6. The dashed curvgs?2.,

2¢, and 3 describe the electron component contribution toT>T, obtained by other authdr8 since no information is

the measured thermal conductivity of the samples, deteravailable about the magnitude and temperature dependence

mined from the known value of the electrical conductivity of of the electrical resistance of these samples in the same di-

samples along the same direction as per fornigla rection.

To complete the picture, the data available in literature ~ The behavior of the thermal conductivity of the Y-25
on the thermal conductivity of samples with maximum val- crystal along thec axis (curve %) is in accord with the
ues of k*° below T, are also presented in Fig. 2. The dot- available data in the literatufelt should be also observed
dashed curves show the temperature dependence of the thérat the temperature dependence of the thermal conductivity
mal conductivity of a crystal studied in Ref. 7 along the «®®' of the molten ceramiccurve 3) is close to the depen-
directionsa (curve«?) andb (curvex®) in theab plane. The  dencex?®(T) of crystalline samples. Consequently, the main
dotted curve below these curves describes the thermal cowgentribution to the thermal conductivity in a homogeneous
ductivity «3° of the sample, as studied in Ref. 8. It can bemolten ceramic consisting of arbitrarily oriented microrystals
seen that in the normal state Bt-T., the thermal conduc- comes from heat transport in tlad plane.
tivity of our samples is close to that of the best crystals  Figure 3 shows the temperature dependence of the ther-
investigated earlier. However, the maximum value of themal conductivity of Bi samples in thab plane(curvesl- 3
thermal conductivity of our samples is slightly lower, and thefor samples Bi-6, Bi-4 and Bi-3, respectivelsnd along the
peaksT,, are displaced toward lower temperatures. ¢ axis (curves Z and F for samples Bi-4 and Bi-3, respec-

The spread in the values and thermal conductivitiegively). The solid curve6 is reproduced from our earlier
«®(T) of our samples is much smaller than the difference inpublicatiot® and describes the thermal conductivity of a
the behavior of their resistivity?®(T) (Fig. 4), and hence of molten ceramic Bi sample witif,=105K. The dashed
the electron componemgb(T) of thermal conductivity, de- curves 1, 2, and 6, correspond to theoretical dependences
scribed by Eq(2). Unfortunately, it is not possible to com- of the electron thermal conductivity componeai(T) for
pare the relation between the total thermal conductivity andhe same sample.
the contribution from the electron component for crystals at  The data on thermal conductivity of Bi crystals are much

206 Low Temp. Phys. 23 (3), March 1997 V. B. Efimov and L. P. Mezhov-Deglin 206



osh Bi, Sr, CaCu, O,
<3
B 410

£ 5 12
é}’ 0,4f a
2 £
Q 15 <

0.2} 1

4
0 i R e L Y . 1 0 N 1 0
50 100 150 200 250 300 50 100 150 200 250 300
T, K T, K

FIG. 4. Temperature dependences of resistivity of Y-samples. Notation ig|G. 5. Temperature dependences of resistivity of Bi-samples. Notation is
the same as in Fig. 2 and in Table . the same as in Fig. 3 and in Table Il.

more scarce in the literature. Hence, to complete the picturd«.) and lattice ¢,) components of thermal conductivity
Fig. 3 shows the dependenced®(T) for crystals investi- and comparing theoretical predictions with the experimental
gated in Refs. 11 and 1@urves4 and5, respectively. The  results, care must be taken to ensure that the experimental
electron componenk®(T) of thermal conductivity of the data pertain to the same sample and even have the same
same crystals, calculated by us from the data presented in tigirection of heat flux and electric current in highly aniso-
same works, are shown by dashed curvgsdd 5, respec- tropic crystals.
tively.

The temperature dependences of the electrical resistivity piscussION OF EXPERIMENTAL RESULTS
of Y- and Bi-samples irab plane and along the axis are
shown in Figs. 4 and 5, respectively. The notation on th
plots is the same as in Figs. 2 and 3 and in Tables | and Il.  As the HTS samples undergo a transition from the nor-
The large spread in the magnitude and temperature depemal state to the superconducting state, the slope of the curve
dencesp?(T) of crystals having the same composition may «2°(T) changes abruptly: below,, the thermal conductiv-
be due to a slight difference in the degree of doping ofity increases with decreasing temperature and passes through
samples with oxygefthe spread in the values ©f does not a maximum. This can be seen quite clearly in Figs. 6 and 7,
exceed a few degregsr to different degrees of perfection of in which the temperature dependence of thermal conductivity
crystals. As a rule, thinner crystals are found to be mords plotted in  normalized coordinates 2Kt)
perfect. The temperature dependence of the resis@éftyof = «2°(t)/x2%(T,), wheret=T/T,. The curve numbers and
perfect HTS crystals al>T, is close to metallic depen- notation of the points are the same as in Figs. 2 and 3. The
dencep?”(T) = T. The resistance of the less perfect crystalsdashed curves.t4, show the relative contribution from the
depends weakly on temperature, or even increases in the uwectron component to the total thermal conductivity above
cinity of T (semiconductor-type conductivity T., i.e, the ratio

The lack of correlation between the dependences
p?°(T) and x2°(T) for samples of the same corelposition Ke(t) = ke(T)/ 1(Te) = LoT/px(To). ®)
may be due to a change in the electron structure of the crystal Normalized coordinates are used frequently for compar-
as a result of uncontrollable variation in the oxygen concening theoretical results with the results of measurements. A
tration, or to different efficiencies of scattering of normal transition to normalized coordinates makes it possible to
electron excitations and phonons at the same microscopigliminate systematic errors in the absolute valuex @&fnd
defects like charged impurities in the bulk of the sample. Thep which inevitably creep in during experiments with small
difference in the anisotropy of thermal and electrical conducsamples, as well as in estimates of numerical factors in the-
tivities along thea andb axes in theab plane may turn out oretical computations of the kinetic coefficients of crystals.
to be quite significant in different samples. Hence, while It can be seen from Figs. 6 and 7 that in all Y-samples,
discussing the peculiarities in the behavior of the electrorthe electron component &)=<0.5K(t) in the normal state

e4.1. Thermal conductivity of crystals in the ab plane
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“freezing out” of normal electron excitations fot<<1,

2.2 s ~, YBa.Cu.0 which confine the largest phonon mean free paths in the bulk
2,0r ‘.‘ 277377 of the sample at temperatures above the maximum thermal
[ \ k2 conductivity pointT,,. The electron componentKof ther-
L N S mal conductivity of dirty metals decreases nearly exponen-
1.6- " ‘.\ tially for t<1.
! 3 \ oA Such a “phonon” approach for explaining the nature of
1,4 147 ca B 5 peaks on thec®®(T) curves was used in the review by Uber
E i £ \:.‘-\ and has been applied for discussing the experimental results
= 1»2_'é \ in several current publicationsee, for example, Ref.)8
= 4ok o An alternative(“electron”) approach for explaining the
oA | R nature of the peaks was first proposed in Ref. 7 following the
" 08¢ 2° T discovery of a manifold increase in the rf conductivity of
r \ a gas of normal electron excitations beldw in studies of
0,6 S-- ~_1_e__ - the absorption of electromagnetic microwave radiation in
o4l T HTS cuprates.
! It was assumed in Ref. 7 that the increase in thermal
0,2h fe . conductivity in the superconducting state is due to a mani-
/3 28 2f == fold increase in the electron component
A i . L8 P PP
0 0,5 1,0 1,5 2,0 ke(T)=o¢loT at T<T,. 4
T/T¢ Hence it was concluded in Ref. 7, and later in Refs. 12

- ‘and 15 also, that the electronic properties of HTS cuprates
rF'dG' 6. demf(fL"’:t‘”e ?\leﬁztr.‘dﬁr.‘scetﬁ 0‘;;??”;""' .f]"'r:‘f’”c;‘”ty of Y-samples igjiffer considerably from those of conventional metallic su-
educed coordinates. otation 1S the same as in Fg. £ perconductors described by the familiar BCS mddél**In

addition, the strong electron—electron interacti@wave

for t>1. In other words, the lattice component pairing mechanism is more suitable for describing the be-

Kp(t)=Ke(t) for t>1. With the exception of sample 4 from havior of Ke(t) ando(t) in the superconducting state.

Ref. 11, K>K, for all Bi crystals. By analogy with the .T'he fundamental dlﬁerenge in the approach used for ex-
known behavior of thermal conductivity of superconductingP!&ining the nature of peaks in Refs. 7 and 9 shows that a
crystals of “dirty” metals or alloys(see, for example, Refs. detailed investigation of the relation betwe_er_l phonon and

13 and 14, it could be naturally expected that the observedel€ctron components of the thermal conductivity of a crystal

increase in the thermal conductivity &(below T, is asso- N the normal and superconducting states is essential for a

ciated with the increase in the lattice component: the effecProper choice of the model describing correctly the behavior
tive phonon mean free path, increases as a result of of the kinetic coefficients of HTS crystals. We shall consider

2,0

Bi, Sr, CaCu, Og,,

- - - -
-

- -
- -

this approach in greater detail.
4.1.1. The phonon hypothesis

As was done earlier in Ref. 9, we assume that the ther-
mal conductivity of a sample is defined &s- x,+ k. The
thermal resistivityW,= Krjl for the phonon subsystem and
W=k, ! for the electron subsystem is the result of scatter-
ing of quasiparticles by one another, impurities, and defects

tively, and so o Upon a transition from normal to super-
conducting state, the relative concentratiop of normal

1’6: in the bulk, as well as by the grains on the surface of the
L polycrystalline samplfe
12} 2° Wy = Kpp + Kpe + K ®)
s | A inor gt We= Ko+ Ko+ Kai (6)
® [ The dual indices in these formulas point toward the type of
~ 08F . . . .
- 5 quasiparticle and the scattering mechanigmp stands for
< - 5e phonon—phonon scatteringe andpi represent phonon scat-
0.4 /T ; """ tering by electrons and impurities of various types, respec-

lone e ie—cmm== electron excitations in the sample decreases rapidly. This
) 65 * ‘1 0 15 20 leads to a decrease in the second terrtbjrand a change in
’ ‘i‘/Tc ' ' all three terms in(6). In the framework of the BCS model

(electron—phonon pairing®*the thermal conductivity of a

FIG. 7. Temperature dependence of thermal conductivity of Bi-samples in dirty” or imperfect metallic superconducting crystal at
reduced coordinates. Notation is the same as in Fig. 3.
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sity n, of normal electron excitations, since the heat capacity  For such a numerical fitting of theoretical curvestX(
of a gas of normal excitationS, « Tn., while the effective  with the experimental dependences presented in Figs. 6 and
mean free path of normal excitations in the bulk7 (disregarding the change in the electron component contri-
Nej=const; i.e., bution), the numerical values of the paramegefor Bi- crys-
tals will be =2, i.e., slightly higher than the valugs~1.7
Kei ™ Celei™ Thehei- () obtained earlier for the best Y-crystals. A separate theoretical
In perfect high-purity metallic crystals, mutual electron— analysis is required to study the possibility of a nearly 1.5-
phonon scattering dominates in the vicinityTf, and hence fold increase in the cofactoy as compared to metals with a
the effective mean free pathe, of normal electron excita- strong electron—phonon coupling in the electron—phonon
tions depends strongly on temperature belbw We shall ~ pairing model for carriers.
discuss the behavior of the electron component in perfect While discussing the peculiarities of the behavior of lat-
metallic crystals belovl, in the following section. It is as- tice component, mention must also be made of the article by
sumed under the phonon hypothég;mt)\e in the supercon- Bondarenkaet aI.,” in which they discuss the effect of phO-

ducting state is constant, and henggdecreases with tem- non spectrum peculiarities in layered superconductors on the
perature. temperature dependeneg(t) in a wide temperature range.

The thermal resistance of a metallic crystal lattice in the ~ The maximum values of the normalized thermal conduc-
normal state is mainly determined by phonon—electron scativity K(t) of the best Y-crystal investigated by (surve 1
tering the[second term in(5)]. The effective phonon mean in Fig. 6) are close to the thermal conductivity of the cry%tal
free path corresponding to it Pspe~T*1, so that the value in the a-direction, or of the sample studied in Ref. 8. How-
of Ky~ Kpe~CpApe™ T2 decreases with decreasing tempera-ever, the peak is displaced toward lower temperatures. In the
ture of the crystal abov&, (here,Cp~T3 is the lattice heat phonon approximation, this can be attributed to a higher con-

capacity. In the superconducting state BT, the effec-
tive phonon mean free paiy,e, which is restricted by scat-

centration of point defects in our crystals.
In contrast, the maximum values of thermal conductivity

tering at normal electron excitations, increases rapidly, an@f the Bi-crystals investigated by us are several times the

hence the lattice thermal conductiviky also increases with
decreasing temperature:

Kpe~T2Ne~T2 exp A/T)~12 exp(glt), (8)

where A is the band gap of the superconducféor t<1,
A(0)=gT.]. In superconductors with a weak electron—
phonon couplingBCS mode), g=ggcs=1.76.

The exponential increase k), predicted by formuld8)

values available in the literatulé!? and the position of the
peak T, is displaced toward lower temperatures with in-
creasing relative height of the peakti((Fig. 7). This may

be due to a lower concentration of extended defects like dis-
locations or twin boundaries in our samples, which might
confine the maximum values of the phonon mean free path in
the bulk for small values ofi,.

was observed most prominently while studying the thermal

conductivity of perfect crystals of pure lediwhich is a
superconductor with a strong electron—phonap)( cou-
pling (9= x9gcs, Where the multipliery~1.4).

4.1.2. The electron hypothesis

Let us first discuss the behavior of thermal conductivity

It was assumed in Refs. 8 and 9 that the increase if Y-crystals. It is assumed in Ref. 7 that peaks on

thermal conductivityx®® of Y-samples belowl is due to an
increase in the phonon componerﬁb(T)~er(T). It was
also assumed that the remaining termg5ih and (6) vary

weakly. Neglecting the contribution of the electron compo-

nent, we find from Eqs(5) and(6) that the thermal conduc-
tivity in normalized coordinates K| must increase for
t<1 as follows:

K(t)~ er(t)% er(t)er(Tc)NtzneNtz exp(g/t), (9)

i.e., the value of the parametgrcan be estimated from the
slope of the curve K. It should be recalled thgg=1 in
BCS superconductors with a weak coupling,

curves emerge as a result of multiple increase in the electron
component below ;. It is significant that while constructing
the “experimental curves’k(T)/ke(T.) by measuring the
thermal conductivity of Y-crystals along the directiom&nd

b in theab plane, the authors of Ref. 7 assumed that below
Tc, the phonon component, is nearly constant, or de-
creases monotonically like the thermal conductivity of crys-
tals in thec-direction(see curves with indeg in Fig. 3 and

4). The values of3(T.) and KE(TC) were determined from
the differencex,(T.) = «(T¢) — ke(Tc). The electron com-
ponents«&(T.) and Kg(TC) were calculated with the help of

while formula(2) using the data available in literature on the resis-

x=1.2-1.4 in superconductors like Nb or Pb with a strongtivity of perfect Y-crystals alon@g andb directions.

electron—phonon coupling, for which= yAgcs (and hence
9=Xxggce- "

The “experimental curves’xq(T)/k¢(T.) constructed
in this way are in fairly good accord with the theoretical

It follows from the computations made in Refs. 9 and 10dependenceg, = Tonl(T)/Teon(Te), whereow(T) is the

that the experimental dependence®(t) of perfect HTS
crystals YBaCu;O;_, (like those shown by dot-dashed

conductivity of a gas of normal excitations in a given direc-
tion in the ab plane according to the results of high-

curves in Fig.  and homogeneous ceramics may be defrequency measuremerfsThis leads to the conclusion that

scribed by expressions of the ty® under the assumption
that the value ofy may vary for different samples in the
interval 1.4-1.7.
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the electron componenktf;b in the superconducting state in-
creases manifold upon a decrease in temperature, and hence
neither the temperature dependenc®(T) = «k¢(T), nor the
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dependence(T), can be described by the BCS model, andmeasurements. It was mentioned in Ref. 2 that Y-crystals
the strong electron—electrone{e) interaction (D-wave  With a metal-type conductivity®® o T aboveT display two
pairing) is preferred. different transport relaxation times for charge carriers which

However, one cannot be certain about the possibility ofdiffer not only in magnitude, but also in their temperature
neglecting the variation of the phonon component in calcudependencéin ep scattering in a metal, the relaxation time
lations of ko(T), as well as the accuracy in the estimation of determining electrical conductivity is smaller than the time
ke from the results of measurements of dc resistance abov@haracterizing the Hall current or heat fluXhe reason be-

T. and rf conductivity belowT ., which were carried out in hind this phenomenon has not been established unambigu-
other samples. It can be seen from Figs. 2 and 6 that theusly. The assumption that the relaxation in both cases is
relation betweenx, and x, may vary sharply from one determined by the peculiarities of mutual interaction of qua-
sample to another even if they belong to the same batch. F&iparticles(ep or ee interaction) raises a whole range of
example, ke~k, below T, for the sample Y-21, while questions: which relaxation time determines the behavior of
ke~ 0.1k, for the sample Y-25. If we assume, in accordancexep (OF ke in the normal state How does the interaction of
with Ref. 7, thatk,=const belowT, peaks can emerge on normal electronic excitations with phonofm with one an-

the curves«®®(T) only if the ratio xo(T)/xo(T) at the peak othep vary as the superconductor is cooled bel6y? How
increases in both samples to about thrice its value, irrespe&ignificantly does the behavior af,(T) below T, depend
tive of the magnitude and temperature dependence dn the variation of the temperature dependepe&(T) in
p2P(T) in the normal state, which seems to be quite unlikely.samples of nearly identical composition for-T.? The an-

Moreover, the results of measurements of thermal Halpwers to these questions may considerably influence the
effect made in Ref. 19 on analogous Y-crystals show thaghoice of the modelep or ee interaction suitable for de-
Kgbwo_lkgb nearT. as in our sample Y-25. At the thermal scribing the observed dependene®(T), i.e., the nature of
conductivity peak Tm—0.4T7,), the ratio the interaction leading to pairing of carriers beldy.
keo(Tm)! ko(T¢) ~6, but the phonon component also increases A specific mechanism of electronic heat transport in
below T([kp(Tm)/kp(Te)~1.3]. Although the electronic HTS cuprates, viz., heat transport by Bose-type collective
component of thermal conductivity increases much moreelectron modegacoustic plasmongormed in the crystal be-
rapidly that the phonon component, the value «gf near low T, was proposed in Ref. 21. In order to determine the
T, is more than twice the value of,. Obviously, the in- applicability of this model for describing the observed de-
crease in the phonon component cannot be disregarded Rendencesc®®(T) in Y- and Bi-crystals, we must find out
calculations of thermal conductivity of Y-crystals in tag  how the variations in the magnitude and dependences of
plane under these conditions. p3P(T) affect the properties of acoustic plasmons.

The increase in the electronic component of thermal con-  The peculiarities of the thermal conductivity of
ductivity of a superconductor beloil, does not contradict Bi>S,CaCyOg, Crystals have not been studied so inten-
the predictions of the BCS mod&t!* as was assumed in sively. It follows from variational computatiofrsof the elec-
Ref. 7. For example, it was shown in subsequentronic thermal conductivity of anisotropic HTS crystdthe
computation® that the ratiokep(T)/ kep(Te) in pure metals ~ ee interaction was considered for the caseSefor D-wave
with a weak electron-phonon coupling increases by a factopairing based on the conclusions drawn in Ref. 7 and the
of about 2.4 as the temperature decreases td.0.3he  results of measurements made in Refs. 11 and 12 that for the
value of k., decreases only as a result of an exponentiasame concentratioN~0.05-0.1 of ionized impurities in the
decrease in the concentratiog of normal electron excita- bulk, the maximum values of the ratiq(T)/«.(T;) must be
tions. The increase iR, in metallic superconductors in the smaller in Bi-crystals with a higher anisotropy-(.5-2.5)
vicinity of T, indicates that the effective mean free paththan in Y-crystals -5-7), and the peaK, in Bi-crystals
\ep Of normal electronic excitations, which was restricted inmust ~ be  displaced toward higher  temperatures
the normal state by scattering of carriers at phonons in théT,,/T.~0.6—0.7) as compared to Y-crystals of the same
bulk of an ideal crystal and hence increases\gg = T3, quality (T,,/T.~0.4). As in Ref. 7, the variation of the lat-
increases much more rapidly thag* upon a transition to tice component was neglected while calculating the total
the superconducting state right up Te~0.3T, (scattering thermal conductivity of the crystal. In other words, it was
can occur only at phonons with an energy higher than th@ssumed that(T) = «x¢(t) + «p(T). Taking into account the
superconducting gap contribution  of «k, in normalized coordinates

It was mentioned in the introduction that the effective K(t)=«(T)/«(T;), the theoretical values of the peaks on
mean free pathi., of carriers in pure metals, which deter- the curves K{) in Bi-crystals (K¢, ~1.3) were found to be
mine the behavior of thermal conductiviimomentum relax- much smaller than for Y-crystals (K{)~2). The calcu-
ation is significant as well as the energy relaxatjonay turn  lated peak positions were also displaced accordingly
out to be much smaller than the transport mean free pathg,,~0.6—0.7 and 0.4 But this is in contradiction with our
Nep Which determine the behavior of electrical conductivity measurementérigs. 3 and ). Curves4 and5 in these fig-
(momentum relaxatidi. In this case, the parameterap- ures, describing the results of measurements obtained in
pearing in Eq.(2) is much smaller thah, and depends on Refs. 11 and 12, nearly coincide with cur®én Fig. 3 above
temperature. For HTS crystals, it is even more important tol .. Hence it is natural to assume that the difference in the
determine the range of applicability of the Wiedemann—behavior of thermal conductivity of different materials below
Franz—Lorentz relation for calculating, from resistivity T, is associated with the degree of their imperfection;
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i.e., measurements in Refs. 11 and 12 were made on lesharge carrierénormal electron excitationsas well as at the

perfect crystals. ionized impurities and other defects in the bulk of the crystal
Using Eq.(2), we obtaink,< 0.1« for our sampled and  under investigation.
2 in Fig. 3. This means that the lattice componegt< k|, The absence of correlation in the valuesxofind p in

dominates in the vicinity ofT.. At the same time, the ab plane is quite understandable, since the transport
ke~0.4k, in sample 5, while our estimates show that mean free pathi, of phonons and. of electrons may be
ke~ Kp IN sampled. Moreover, it can be seen from Figs. 3 restricted by various scattering mechanisms. For example,
and 5 that the electrical conductivity of our sampleand2  electrons are strongly scattered by ionized impurities
is just a fraction of the conductivity of sampldsand 5. Nej=consth; (n; is the impurity concentrationwhile the
Hence, in the framework of the “electron hypothesis,” the phonon mean free paths,; increase with decreasing tem-
multiple increase in the electrical conductivity of the normalperature upon scattering by the same impuritigsint de-
component belowl . must be manifested more strongly just fectg at temperatures below the Debye temperatige as
in samples4 and>5. In order to attribute the peaks on curves (T/®p)  ™/n;, where the exponenm tends to 4 for
1 and?2 to the increase in the electron component, it should T/®)<1 (Rayleigh scattering
be assumed that the ratia,(T,,)/ xe(T¢) ~10 in sample2, It is natural to assume that the phonon approximation is
and ~ 100 in samplel. Obviously, this is much higher than applicable for describing heat transport in the lattice along
the theoretical estimatés.Such a strong disparity between the ¢ axis. in contrast withx?®, the value of«® does not
theory”® and experiment indicates the dominance of the phochange upon a transition of the sample to the superconduct-
non component below, (like in the Y-sample in Ref. 19  ing state; i.e., the contribution of phonon—electron interac-
All the remarks made above about the applicability of thetion to the thermal resistivity of the lattice in the
“electron hypothesis” only while discussing the thermal c-direction can be neglected in comparison with the
conductivity of Y-crystals remain valid. phonon—phonon scattering and scattering by impurities and
defects in the bulk of the sample. In the Debye approxima-
tion, the lattice thermal conductivity in theedirection can be
4.2. Anisotropy in the thermal conductivity of crystals along estimated by using the relation:
and at right angles to the cuprate layers 2
kC~(13)Cp ey, (10

Our measurements show that the thermal conductivity of . - . . _ o
the Y-25 crystal varies more weakly than the electrical conwherer, ™ = 7, + 7,¢ + 7,75 Cp IS the heat capacity,s is
ductivity upon a transition from the plarab to the direction  the velocity of sound in the-direction, andry,,, 7, < 7,c are

of the ¢ axis (see Fig. 2, i.e., k5> k¢, and the contribution the corresponding relaxation times in the phonon system.
of the electron component te® can be disregarded in the While the main contribution to the thermal resistance along

working temperature interval. and across the layers comes from the same scattering mecha-

The electrical conductivity anisotropy of Bi crystals is nism in the bulk, i.e.73°~ 7S, the anisotropy in the thermal
much higher than the thermal conductivity anisotropy. Atconductivity «, is due to the anisotropy of the velocity of
T~T., the resistivity p° is several orders of magnitude sound along and across the cuprate layacsording to the
higher tharp?® (p® is not shown in the figute The tempera- data presented in Ref. 22, the ratie®/v°® in Y-crystal was
ture dependencep®®(T) and p¢(T) also differ radically, =~(5.6/3.1~1.8  for  longitudinal ~ sound  and
thus pointing toward different mechanisms of charge move=(3.6-2.3)/2.2-1.1-1.6 for transverse soupdrhis does
ment in the crystalband motion in theab plane and the not contradict the observed value of the ratd® «¢ for
hopping diffusion of localized carriers along thexis). This ~ Y-samples in the normal state. It can be seen from Figs. 2
confirms the assumptiSrthat the behavior of the thermal and 3 that the anisotropy of the lattice thermal conductivity
conductivity k¢ of HTS crystals at right angles to the cuprate COmponent, in Bi-samples is higher than in Y-samples of
layers is mainly determined by the lattice componept the same quality.

Analyzing the results of measurements of thermal con- ~ Some conclusions concerning the role of different pho-
ductivity <2° in the ab plane of Bi samples, the authors of nhon scattering mechanisms in thedirection can be drawn
Refs. 12 and 15 concluded that heat transport in the lattice dfy comparing the thermal conductivigf of the crystals and
Bi crystals in theab plane and along the axis occurs the thermal conductivity«®" of homogeneous ceramic
through incoherently vibrating atoni&instein’s model ap- samples(Figs. 2 and B
plicable for describing transport of heat in highly disordered At temperatures for which the contribution to the ther-
structurey, and not by traveling sound wave@honon mal resistivity x 1 from mutual scattering or scattering of
mode$, as in ordinary crystals. In this case, the values ofquasiparticles at point defects in the bulk is much larger than
x, must be essentially reproduced for all samples, irrespedhe contribution due to scattering at the grain surface of a
tive of the orientation of the crystals. However, the observedine-crystalline sample, the thermal conductivity of a micro-
multiple increase in the lattice componed}® as we go over ~ crystalline sample can be estimated from the equation
from samples3, 4, and5 to samplesl, and2 in Fig. 3, as cer_/ a. b _c\1/3

. , : . ~ (k%K k%)™, (11
well as the change irj, with the orientation of the heat flux,
indicates that heat transport in the lattice of these crystals iwhere k®~ x> «° is the bulk thermal conductivity of an
carried out by phonons whose effective mean free pathanisotropic crystal im-, b- andc-directions. This estimate is
Ap(T) may be restricted by mutual scattering, scattering byin good accord with the results of measurementsGf(T)
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at temperatures higher than, or of the order of, the peak pointon mean free paths in crystals at low temperatures
Tm. Equation(11) is not applicable belowl,,, when the T=<0.2T, are much larger than the characteristic grain size in
transport mean free paths of phonons in ceramics with smalkeramics and are apparently restricted by scattering at micro-
size grains are restricted due to scattering at the grain surfaceopic defects whose concentration between planes is cer-
(or, say, at the twin boundaries in graink can be seen from tainly much higher than in thab plane. In detailed calcula-
Figs. 2 and 3 that the thermal conductivity of a ceramic istions of «%(T), we must also take into account the
higher thank® at T>T,, and is comparable with the thermal peculiarites of phonon—phonon interaction in layered
conductivity in thec-direction only when the temperature crystals'’

decreases td<0.2T.~0.060 (0,=300K is the Debye We believe that further experimental studies of transport
temperature of the crysjalConsequently, the effective pho- phenomena in more prefect crystals fb=T., as well as
non transport mean free paths in crystals at these tempertieoretical computations of the behavior of electron and lat-
tures are much longer than the transport mean free paths intige components of thermal conductivity, taking into account
ceramic in theab plane and along the axis. Computations thee-e, e—p, andp—p interactions in layered HTS crystals

of A, from known value of«® using Eq.(10) give a lower atT<T,, appear to be quite promising.

estimate ofA 1" However, it can be estimated even in this ) ,
approximation that at = 10 K(~ 1/300), xpzlo—f’ cm is The authors are indebted to G. A. Emel'’chenko and

much larger than the separation between planes, i.e., is cof: S Nigmatullin for kindly supplying the samples, to N. S.

fined from below by scattering at microscopic defects and>idorov for help in sample preparation, and to E. Gmelin,
probably, phonon—phonon scattering. B. Veal, A. A. Abrikosov, and E. A. Pashitskii for their

interest and useful discussions.
5. CONCLUSIONS This research was supported in part by DAAD, ISF
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LOW-TEMPERATURE MAGNETISM

Magnetooptical effects in ferroelectric materials
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An expression for high-frequency susceptibility of a ferroelectric material in a constant magnetic
field Hy parallel to the direction of spontaneous polarizatignhas been derived. The

reflection and transmission of light through the ferroelectric is considered for the normal incidence
at the surfacgalong the normab to the surface It is shown that the polarization plane in

reflected light should be rotated through an angle proportional to the prégtigt. For HgL v,

the angle of rotation of the polarization plane of transmitted light is a periodic function of

the optical path, its amplitude being proportionaRgH,. In the H||» geometry, a weak gyration
effect proportional tdPgH, is observed in transmitted light, in addition to the Faraday

effect. This effect does not depend on the optical path, and is canceled during backward
transmission, in contrast with the Faraday effect. The effect is apparently similar to
“magnetopolarization gyration,” but the estimates give a much smaller magnitude of the effect.
The above magnetooptical effects can be observed not only in ferroelectric crystals of any
symmetry, but also in insulators in constant electric and magnetic fields19%7 American
Institute of Physicq.S1063-777X97)00503-3

Magnetooptics of crystals is a well-developed branch ofthe ferroelectric surface for the transmitted light, in addition
solid state physics. Nonreciprocal optical phenomena, antb the Faraday effect, a much weaker rotation of the polar-
especially Faraday’s effect, were studied extensively in magization plane proportional to the produByH,, which is
netically ordered media in magnetic as well as in electricsimilar to the effect of “magnetopolarization gyration” re-
fields (see, for example, Ref)1However, the optical prop- ported in Ref. 2, was also observed. The predicted effects are
erties of ferroelectric crystals in a magnetic field have beerinore general in nature and are possible not only in ferroelec-
investigated insufficiently, and their existence has not bee#fics, but also in ordinary insulators to which constant elec-
accepted generally. For example, in a series of publicationdric Eo and magnetidi, fields are applied simultaneously.
the observation of a new “magnetopolarization” gyroeffect ~ In the optical region of the spectrum, the electric polar-
manifested in the rotation of the polarization plane of lightizability is mainly created by electrons; for this reason, we
propagating along the magnetic field and the optical axis owill henceforth consider only the electron density of the di-
the crystal through an angle proportional to the product of Pole magnetic momerR(r), which is due to electrons from
the first powers of electrical polarizatidt and the magnetic Outer shells which are bound least strongly to the nucleus.
field Ho(@ o PyH,) was reported. In contrast to Faraday's The role of ionic skeleton in our model reduces to the cre-

effect, the doublgforward and backwandpassage of light ation of an internal electric field as a result of displacement
compensated for the above-mentioned “magnetopolarizan ions from positions with a symmetry center during a ferro-
tion” effect. Pisared noted the controversial nature of the electric transition. This field deforms the electron shells and

interpretations of the observed effect proposed in Ref. 2 anlf2ds to the emergence of an equilibrium electron component

stated that ferroelectric crystals can exhibit only second®f the dipole momenP, = E,. The electron component of
order effects. the Hamiltonian of an axial ferroelectric crysi@h which z

In the present research, the high-frequency susceptibilitﬁﬁ an easy alx)s;n a consttgntf_eféewal magnetlgtl‘léiﬂ)_ art'g
of a ferroelectric material in a magnetic field parallel to the@ Varying electromagnetic hiele, h can be written in the
spontaneous polarization is obtained phenomenologicall;}.Orm

We analyze the normal incidence of light in a crystal in the ) Ci~. Cp oy - . a “Z 2

cases wherel, andP, are either normal to the surface of the He= f [7 P2+ > (P2+ Pf,)— EP+ > | ox )

ferroelectric or lie in the surface plane. The rotation of the !

polarization plane of the reflected line through an angle a, algx 2 (9P \2] 2 ~

¢ PoH, is predicted. The angle of rotation of the polariza- + > o + (&_xy + o7 —\P[7H]dV,
I I

tion plane in transmitted light in the case whetg and P,
are parallel to the surface depends on the periodically tra- E=E +e, H=Hy+h. (1)
versed optical path with an amplitude proportional to the o

productPyH,. In the case wherél, andP, are normal to Here == (r) is the operator of the electron momentum
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density, andg, o« P, whereP, is the dipole moment of the
ionic skeleton. We assume that the vectBysand Hy are
directed along the easy axis It will be shown below that
the constant€,; andC, are proportional to the components
of reciprocal electron static susceptibility. The last term in

95PoHo( @2+ 0§ —ggH?)

Eq. (1) corresponds to the electron polarization energy in the

field created by the motion of electrons under the action of

magnetic field. It is well knowr(see, for example, Ref.)4
that an electron moving at a velocityin a magnetic fieldH
creates an effective electric field of strengl=(1/c)
X[vXH]. For this reason, the interaction constant in &g.
has the form\ =vy(mc) 1, wherem is the effective elec-
tron massp is the unit cell volume, and is the velocity of
light. The value of the constarftin (1) is of the order of
mval.

The density operatod(r) and g(r) satisfy the commu-
tation relation

[Pi(r), i (r)]=iqAu d(r—r"),

whereq=efiv, ', ande is the electron charge.

The equilibrium value of the electron polarizatid,
can be determined from the condition of energy minimum
corresponding to the operat(t), Po:Cl’lEo. A

Small deviations from the equilibrium values Bfand
7, which describe the linear response of the system to th
electromagnetic field, satisfy the quantum-mechanical equ
tion of motion for the operators which have the following
form in the linear approximation:

2

Py=ah [~ Lir— N(Pohy— HoP,)1,
Py=ai {11, N (HoP,—Poh,) ],

P,=qfi~ 17, ,

—qfi(CyPy—a,AP,—e,— NHqy),

Ty

- _qﬁ_l(Czﬁy_azAﬁy_ey‘l‘)\Ho%x),

Ty

—qh~Y(C,P,—a;AP,—e,). 3)

Tz

em em
Xxx = Xyy = — '
xx vy (wz—wi)(wz—wg)

2 2
@@
O fht fug’

. 2, 242 2

Xem:X*me:'wgopo(wo+goHo_w )
Xy AyX (wz—wi)(wz—wg) '

wh=wy(Cy+ak?),
w15= wo*=goHy,

wi=w5(Ci+ak?).

4

In expression$4), w, is the component of oscillations of the
polarization componen®, along the easy axis. The excita-
tions of transverse componerfg and P, of electric polar-
ization in zero magnetic field are also oscillations having the
same frequencw,. The magnetic field removes this degen-
eracy(the Zeeman effegtand as a result the electric dipole
moment in the spectral branches and w, precesses about
the direction of the magnetic field in opposite direction,
Py/Py==i. The order of magnitude of the frequency
wo~ (€2/mvg) Y2 for vy~10"22 cm® and m~mg(m, is the
mass of a free electroris wo~10'° rad- s . Settingw=0

fh xS, and x5, and taking into account the smallness of

oH, as compared ta,, we can easily verify that the con-

stantsC; '~ x2,(0) andC, '~ x£,(0).

Expressiong4) obtained for the high-frequency magne-
toelectric(ME) susceptibility naturally differs from the ex-
pressions for the ME susceptibility of magnetically ordered
media obtained earlier in the frequency and parametric de-
pendence. This difference is not only due to different condi-
tions of the problem(a ferroelectric crystal in a magnetic
field in our case and a magnet in an external magnetic field
in earlier investigations but also due to the fact that the ME
interaction in our case is of dynamic rather than static origin.
This is the ME energythe last term in(1)] which is scalar,
i.e., does not depend on the crystal symmetry. It can be seen
from expression$4) that a constant magnetic field induces in
the ferroelectric the ME susceptibility components

Going over in these expressions to Fourier components, we  Xxx=Xyy ~PoHo, X%y ~iPo,

obtain the expressions for high-frequency electriggl and
magnetoelectrigfy" susceptibilities defined as

Pi(k,0) = x{i(k, ) ex(k, 0) + XK, @) (K, ),

where
—2 2 242 2

o= _ wg(wp—goHp— 0°)

=XyyT T 2 2 2 2o
A (= w)) (0~ w))

—

N A—
zz— 2 27

we—

L2

e _ _wxe_ 2|(1)(1)OgoH0
Xxy™ Xyx = 2

(w —w%)(wz—wg) '
Jo=\gh '=e(mc) L,
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as well as the nondiagonal dielectric susceptibility compo-
nent xy,~iHo.

It is well known that, in general, the electricl) and
magnetic(b) inductions are connected with the elect(@

and magnetigh) fields through the relations
di=siectaihe, b= pih+age.

In the case under investigatioBg||H|z, and these relations
have the form

dy=¢g16—lie'e,— yoh,—iyihy,
by=hy—v26x—iv1€y,
dy=ieg’'e,+ e +iyh,—yhy,
by=hy+iy,e— .8y,
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dZ: 8262 y
b,=h,,

where

©)

81:1+47TX§X' 82=1+477)(§Z, 8’=47Ti)(§y,

71:47TiX§;/n- Yo=—A4T Xy -

We will now consider the properties acquired by light
incident from vacuum on a semi-infinite medium with induc-
tion given by(5).

Using relationg5), we obtain from Maxwell’'s equations
the following dispersion relation for waves in the medium:

n?ey(nf+ n§)+32n§]—2y§n§n§— 2e5(e1— y)N2
_(n>2<+n§)[(81+ e2)(e1—¥D) Tervs—(s’
—y172)* 1+ 82l (81— ¥5)?—&'2]=0. (6)

Here n=cw/k. Equation(6) is a special case of a more
general dispersion relation for the ME media.

Let us consider the normal incidence of light on the sur-

face of a ferroelectric crystak| »,v is the normal to the
surface in different cases.
1. The vectorsPy,H,, and the wave vector of an inci-

Lyubimov® predicted the rotation of the polarization
plane of reflected light for media whose symmetry permits
the linear ME effectME medig. The angle of rotation of the
polarization plane is proportional to the ME interaction con-
stant, which differs from zero only in crystals with a definite
symmetry. Moreover, reflected light in Ref. 5 preserved a
linear polarization. In our case, no limitations are imposed on
the crystal symmetry, and the ME properties are created by a
constant magnetic field and spontaneous polarizaBgn
and reflected light acquires elliptic polarization.

For a wave traversing a path of lendthin a ferroelec-
tric crystal, we have

& _tan o= (Mot 117Dt ot y,—1AN2
€x Not+1—iy +i(A2+iy;)tan oo’

AwlL ’
Po=" "5 A=g'Ing. (10)

It follows from (10) that the rotational angle of the polariza-
tion plane at the end of the optical path lengths

2c 2(ng+1)?

P=¢ot epy=— (13)

In this expression, the first term is much larger than the sec-

dent wave are directed along the normal to the surface along,, (¢py is the ME gyration angle for the transmitted light

the optical axizz. In the case of propagation of light along

and is proportional to the ratib/\y, wherel is the wave-

the optical axis, birefringence is observed only in a magnetiqength of light. This term is directly proportional to the mag-

field. Let us assume that the incident wave is polarized lin
early, and that its electric field is directed along thexis
and has the amplitud&,. From Eq.(6) we obtain
n§,2:81_7§18'- (7)
In the reflected wave, the electric field components
e,=Aexp—ic 'wz), e,=Bexp—ic lwz)

differ from zero. Taking into account the smallnessyptind

netic field strength4 « Hy) and describes the well-known
Faraday’s magnetooptical effect. The second term is propor-
tional to the producPyH, and does not depend on the op-
tical path length. The latter circumstance means that the ro-
tation of the polarization plane of transmitted light through
the anglegpy, as well as the rotation of the polarization
plane through the angie [Eq. (9)] upon reflection, occurs
near the crystal surface. If light propagates in the opposite
direction, while the chosen system of coordinates as well as

&', we obtain the following expressions in the approximationthe directions ofH, and P, remain constant, the value of

linear in Py andHg:

(ng—1) 2iy,
A=— 0(n0+1) _ng_li nO_\/s—l;
iAg g Y18’
= {—+ +——t.
(no+1>2|no 272ty g+ 1) @®

¢py Changes its sign, while the anglg of Faraday’s rota-
tion preserves its sign. As a result, the contributiorpgf; to

the rotation of polarization plane is compensated for upon
double passage through the crystalthe forward and back-
ward directions. The second term ifill) is apparently as-
sociated with “magnetopolarization gyration?The method

of its measurement in Ref. 2 involved the determination of

The fact that a light wave reflected in a magnetic field be-the difference between the angle of rotation of polarization

comes elliptically polarized is famili&Moreover, it follows
from (8) that the polarization plane of reflected light is ro-

tated relative to the plane of incidence through the angle

o, defined as
2y’ +y(ng—D] 2g5HPo(3w?+ wf)

o (n3—1) w302~ wd)

plane after a single passage and half the angle of rotation as
a result of double passage of light.

2. The vectorsP, andH, lie in the plane of the bound-
ary, k[ 7|ly. In this geometry, from Eq6) we obtain

2 2 -2 2 2.-1
nf=e —yi—&'?ny%, ni=ey(1—yje; ). (12
In zero magnetic field and in the case of spontaneous polar-

ization in the first wavegwith the refractive index;), only

In the case of repeated reflection of light, the angle of rotathe electric field componew, differs from zero, while in the
tion is doubled, and so on. It should be noted that thesecond wavéwith the refractive index,) the only nonzero

uniaxial form of the crystal is immaterial for the obtained component ise,. Spontaneous polarization induces in the
effect (and for subsequent analysignd an equation of the second wave a longitudinal electric component which creates
type (9) remains valid for a crystal of any symmetry. a weak elliptical polarizatiorgy=—iy,&; 'n,e,.
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ForH, # 0 andP, # 0, all the three electric field compo- far away from resonance we obtag~10" 1> PyHy(H, is
nents are present in both waves. In the case of a linearlthe magnetic field strength in galisbor ferroelectric mate-
polarized wave with the vecta directed along thes axis,  rials for which Py~10* CGSE units(e.g., for a uniaxial
the reflected wave acquires a weak elliptical polarizationPlyGe;0;4 crystal studied in Ref. )2 the value of the angle
(ey~iH0P(2)), and its polarization plane is turned through anof rotation[Eq. (9)] of the polarization plane upon reflection
anglep~e,/e,, is ¢~10"'1 H, rad. The angle of rotatiopy (11) and
A_ [Eqg. (14)] have the same order of magnitude. In fields
Ho~10* G, the rotational angle is of the order of
10 7 rad. At the same time, the first term (1) (the Fara-
This angle of rotation, as well as the angle[Eq. (9)], is  day effec} is of the order ofpo~10""Ho(L/No), i.e., is
proportional to the produd®,H, as in the case 1. larger than the ME contribution by a factor of¥{Q/\,). On

Transmitted light also acquires a weak elliptic polariza-the other hand, the values of “magnetopolarization gyra-
tion. The anglep of rotation of the polarization plane de- tion” in Ref. 2 are of the order of a percent of Faraday’s

pends periodically on the optical path length. Over distancegyration. Thus, our estimates give a much smaller magnitude
L>\,, we have of the effect than that given in Ref. 2.

Naturally, the closeness of the frequensyof incident
light to the electron frequency, permits resonant enhance-
ment of the magnetooptical effects under consideration. The
frequency dependence of the ME gyration anglg, in

- 2ny(y1e’ + ye1)
® T eina (Nt 1)(n— 1)

(13

¢=A, cosk,L,

A =V1+&+2¢ cogk;—ky)L,

_ Ny(y18’ +yzeq) _ &tm 14 transmitted light obtained from E¢4), (5), (10), and(11) is
 (gp—e1)e; ong(n,+1)° (14) rather cumbersome. In the vicinity of resonances, when the
. . . . value ofw is close tow;(w<w,), the frequency dependence
Xhe Par:plltude A is modulated inL and is small, of the ME gyration is the same as for Faraday'’s gyration, i.e.,
L~ FolMo-

(PPHN[(wZ_ w%)(wz_ wg)]llz-

" In order to remove the remaining contradictions, it
would be expedient to measure the angle of rotation of po-
Farization plane in reflected light or in the geometry corre-

. sponding to case 2, in which the Faraday effect is absent and

Thus, in both cases a rotation of the polarization plane in . X
. . ence does not mask manifestations of weaker ME effects.
the reflected light through an angle proportional to the prod-

uct of the first powers of magnetic field and electrical polar-  The author is grateful to A. B. Beznosov and N. F.
ization takes place. In the case of multiple reflection, thexharchenko for interest to this research and for fruitful dis-
rotational angle is multiplied accordingly. cussions.

In case 1, the rotation of the polarization plane in trans-  This research was financed by INTAS Grant No. 94-935.
mitted light is determined by the Faraday eff¢thte first
term in(11)] and by the ME effecfthe second term i(l1)],
while in case 2, the Faraday effect does not take place, arf@-mail: chupis@ilt. kharkov.ua
gyration depends periodically of the optical path length with
an amplitude proportional to the produByH, (14). The
magnetooptical effecfg9) and(14)] and the second term in  R. V. Pisarev, Zh. Esp. Teor. Fiz58, 1421(1970 [Sov. Phys. JETBL,
(11) are proportional to magnetic field as well as spontane- ZEil (1$7Q]: IE- 984- ggzhfggsevysv \ghpavlJOé/+ g;‘dssé \{-gsF’isarew zh.
ous polarizationP,, i.e., are magnetoelect'nc. Naturally, Zo.sg: vﬁ)irh, LIJZk.r. Fiz. z(h.zs,a 153203\?198]);;3'0. G. Viokh, |(. S. %]{eludev,
these effects should be observed not only in ferroelectrics, ang v. A. Sergatyuk, Izv. Akad. Nauk SSSR, Ser. @8, 1711 (1984
but also in an insulator in an external electric filgl. In the 0. G. Vlokh and V. A. Sergatyuk, Doklady Akad. Nauk SS3®&1, 832
latter case, these effects are proportional to the producg(Fial93‘3;;2;/@'3hlg’jr-r(?efi:grliessszo(1199138]994
EOHO'_ It should also be noted that we do no_t |mpqse a‘ny“L.. D: Landau‘ and E. M. LifshitzField Th.eory[in Russiar, Moscow
limitations on the crystal symmetry for manifestations of (1960.
these ME effects. Let us estimate the order of magnitude ofV. N. Lyubimov, Kristallografiyal3, 1008(1968.

When the light wave propagates in the opposite direc
tion, the value ofA; changes sign, i.e., no rotation of polar-
ization plane is observed in the transmitted light in the cas
of double passageén the forward and backward directions

these effects.
In Eg. (9), the gyromagnetic ratiogy=e/(mc)
=1.7xX 10" GGSE units. Puttings~ wg~ wo~10rad- s 1,
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L. D. Landau and E. M. LifshitzElectrodynamics of Continuous Media
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

Electron structure of diborides of 3  d metals
G. E. Grechnev and N. V. Ushakova

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukrairfie

P. D. Kervalishvili, G. G. Kvachantiradze, and K. S. Kharebov

Research Institute of Stable Isotopes, 380086 Thilisi, Georgia
(Submitted July 10, 1996
Fiz. Nizk. Temp.23, 296—299(March 1997

The electron energy spectra of diborides of®etals ScB, TiB,, VB,, CrB,, and MnB, are
calculatedab initio. Thermodynamic properties and stability of these compounds are

investigated at low temperatures. An analysis of the low-temperature heat capacity and magnetic
properties of diborides has made it possible to establish a number of parameters of many-
particle interactions. ©1997 American Institute of Physids$1063-777X97)00603-§

Diborides of transition metals with the crystal lattice of states were refined by terminal iterations on a net with 225
the AlB, type form a wide and insufficiently studied class of points.
intermetallic compounds. The mechanical and structural The electron densities of statdfE) calculated by us
properties and the conditions of stability for diboriiésiere  have similar forms for all diborides ofdmetals and differ
studied along with the electric and magnetic properties obnly in specific details and in the position of the Fermi level
these compounds?® Attempts were made to analyze theo- Eg. Figure 1 shows the partial densities of electron states of
retically the electron spectra of TjB>’ CrB,,® and VB,.°  MnB, in the paramagnetic phase. Dashed lines show ener-
The electron structure of diborides is of special interest ingies corresponding the occupancy for the compounds under
connection with the possibility of the emergence of high- investigation. For all diborides, the density of states at the
superconductivity in a compound whose composition is closédottom of the conduction band is formed bystates of bo-
to TiB, (see Ref. 1D ron. These states are separated frerd bands by a mini-

In this research, self-consistea initio calculations of mum on theN(E) curve. As we move to the region of higher
the electron structure and magnetic properties of the comenergies, the band structure of diborides exhibits a noticeable
pounds ScB, TiB,, VB,, CrB,, and MnB, are carried out hybridization of thep-states of boron withs-, p-, and
under a unified approach. The evolution of electron energyl-states of the transition metal. In the energy range close to
spectra in this series of diborides upon a change in the occleg, the density of states of diborides has three noticeable
pancy of the conduction band is studied, the stability of di-peaks. The upper and lower peaks, which correspond to an-
borides of transition metals is analyzed, and their bindingibonding and bonding states, respectively, are formed by
energies are calculated. d-electrons of the transition metal apdelectrons of boron.

The diborides of 8-metals under investigation have a The middle peak, which corresponds to the nonbonding
hexagonal crystal structure of tl&32 type with two boron states and which corresponds approximately to the occu-
atoms and one metal atom in a unit cell; the rati@ of  pancy of VB in Fig. 1, is mainly formed by the-states of
lattice constants is close to unityThe energy spectra of the transition metal.
diborides were calculated by wusing the linearized It can be seen from Fig. 1 and Table | that as we go over
M T-orbital method in the atomic sphere approximation tak-from ScB, to MnB, in the series of diborides under investi-
ing into account scalar—relativistic effects and so-calledgation, the Fermi level passes through a deep minimum in
combined corrections. The exchange—correlation effects the density of state§pseudogap at the occupancy level of
were taken into account in the local approximation of theTiB,) and goes over to the region of high valuesN(fE)
spin and electron density functional thedty? In the pro-  for CrB, and MnB,, which can be accompanied by a de-
cess of self-conformation, only the wave functions of eleccrease in stability of these compounds. Indeed, according to
trons in the conduction band were varied, the states of ioTable |, the experimental values of binding enérgge-
cores being “frozen.” In each iteration, the band structurecreases in the series TiBVB,—CrB,. Our results of direct
was calculated on a net comprising 112 points in the irreducealculations of the binding energy for diborides of
ible part of the Brillouin zone, and the partial densities of 3d-metals in the local electron and spin density approxima-
statesN|(E) (i=B, d-metal, |=s, p, or d is the orbital tion, according to the method developed by Skriteare
qguantum numbegrwere calculated by the method of tetrahe- presented in Table | and are in good agreement with the
dra. The convergence of calculations with respect to the calavailable experimental data.
culated electron pressure and the final form of the density of  Since graphite-like boron layers alternate with metal lay-
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TABLE 1l. Magnetic susceptibility of diborides of @metals
120 F ! (107® emu/mole) and the values of the Stoner factor JN(Eg)/2.
Mn82
Compound P Xsp Xspt Ax Xexp
TiB, 0.04 6 —44 —40
(VTi)B, - 22 -28 —28
80+ VB, 0.37 77 27 21.5
CrB, 0.91 550 500 455
ol CrBz.
[0} 1]
(:) W
- [}
& VB, f{i o
a0k 2, | the computable values of local exchange mtegfﬁhls and
- TiB v d-Mn partial densities of states at the Fermi le(@te Ref. 15
z ScB 2, M
2 ) ] " 1 i i i
e At 1= gy 2 MIERJN(ER). @
~T T ML 1f 1t pe 2o
A <! 1 oim Lt .. i X
0 T e s e Because of the metal-type conductivity of diborides, we

-0,4 -0,2 0 0,2 can assume that their susceptibility is also determined by the
E, Ry spin component to a considerable extent. Table Il contains
the values of spin contribution to magnetic susceptibility cal-

FIG. 1. Partial densities of electron states in the paramagnetic phase ?fulated from Eqs(l) and (2) as well as experimental data
MnB,: the solid curve corresponds to tbepartial density of states of Mn

atoms and the dashed curve to theartial density of states of B atoms. The Obtam?d n R(_efs. _3 and 5. It Car_] be S_een frpm Table Il that

vertical dashed lines indicate the occupancy levels for the compounds undéf€ Spin contribution to susceptibility is decisive for GrB

investigation. For other compounds, the discrepancy between the calcu-
lated spin contributiongs, and experimental valuege,, is

) ] o ) apparently due to a significant orbital contributi@mcluding
ers in the hexagonal crystalline structure of diborides, it waggnic contribution to the magnetic susceptibility. Using the

proposed that the coupling between the layers is weak, anghiculated densities of states for Find VB,, we esti-
that the crystal lattice stability is determined by the “metal— nated the spin susceptibility for the §\Tiy <) B, alloy in the
metal” and ‘boron-boron” bond$! However, the results iryal crystal  approximation: ~22% 10" ¢ emu/mole.
obtained by us and indicating a strong hybridization of thegjnce Xexg=—28X 1076 emu/molepfor this compound, we
p- and d-states of the transition metal with thestates of  can estimate the magnitude of the orbital contribution
boron show that the coupling between the layers is Importanta y ~ —50x 10~ ¢ emu/mole). Taking this value as a rough
for understanding the physical properties of diborides. estimate for TiB, VB,, and CrB and summing up y and

According to the current theory, the magnetic propertie§ne calculated spin contributions, we reach a satisfactory
of transition metals are mainly determined by Pauli paramagagreement with the experimental valyes, (see Table .

netismxp of conduction electrons, which is proportional to ~ According to the results of calculations of the electron
N(Eg) to the first approximation. The susceptibility ob- sty cture in the paramagnetic phase, the Stoner criterion of
served for many transition metals is noticeably higher thaf?nagnetic instability, viz.,e=1, virtually holds for the
the Pauli susceptibility, which can be explained by exchanggsrg, compound[to within the errors in the calculations of
enhancement of spin paramagnetism: the parameters and N(Eg) in the case where the Fermi
MEN(EF) level is located on the steep slope of the peak on the density
Xsp= Sxpzﬁ, (1) of states; see Fig. ]1 For the paramagnetic phase of
MnB,, the Stoner criterion obviously hold&=3. In order
whereS=(1—a) ! is the Stoner factorr = IJN(E()/2; xp to determine the possibility of transition of MpEnd CrB
= ,uéN(EF); andJ is the exchange interaction parameter forto the magnetically ordered state, we also calculated the
conduction electrons. In the local electron and spin densitgpin-polarized band structure of these compounds by using
approximation, the parametércan be calculated by using the local electron and spin density approximatiancording
to Refs. 11 and 12 For MnB,, the ferromagnetic ground
state with the valuéM~2ug of spontaneous magnetic mo-
ment localized in the atomic sphere of manganese has been
Binding energy, established. Strong exchange splitting in the electron spec-
Ry/atom Nex(Er) N(Eg) trum of ferromagnetic MnBleads to a noticeable difference
in the densities of states for subbands with “up” and
“down” spins, which are presented in Fig. 2. The total den-
ScB, - 0.45 - 13.79 - sity of states for both spin subbands in this case forms a deep

TABLE |. Thermodynamic parameters of diborides af-getals.

Compound exp theor state Ryell N

\T/i§2 g-igg g-ig 2‘;-;2 lz-‘é::’) %)5572 minimum in the vicinity of the Fermi level, leading to a
CrB, 0418 0.42 78.32 41.44 0.89 considerable decreaseN(EF)_(see Table)l On the whole, _
MnB, _ 0.38 25.62 14.98 071 the calculated thermodynamic parameters of ferromagnetic

MnB, are in accord with the experimental d&ta.
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Nexo(EF), we can find the corresponding values of the con-
stant\ (see Table)l The large value ok for TiB, can be
attributed to a strong electron—phonon interaction in this
compound(see Ref. 1D An increase im\ upon a transition
from VB, to magnetically ordered compounds is apparently
associated with increasing contribution of the spin-
fluctuation termh ;.

In this research, we have analyzed the change in the
band structure in the series of compounds SdBnB,
which differ significantly in their physical properties by us-
ing a unified theoretical method based on the local electron
and spin density approximation. The analysis shows that the
electron structure calculated for diborides af-Metals is in
satisfactory agreement with the available experimental data.
Such an analysis provides rich information on the electron
energy spectrum of diborides, including the parameters of
many-particle interactions. The band structure and the esti-
mates of the electron—phonon interaction parameter for
TiB, do not suggest a peculiar value for the superconducting
transition temperature in compounds close in composition to

FIG. 2. Electron densities of states in the ferromagnetic MniBe dashed

curve corresponds to states with spin “up” and the solid curve to states withl 1B2.

spin “down.” The vertical line indicates the position of the Fermi level.

We with to thank I. V. Svechkarev for interest in this

research and for useful discussions.

An analysis of neutron diffraction in a CgBsingle
crystaf has made it possible to establish a complex helicoi-
dal magnetic structure aE<T\=86 K with the magnetic
moment 0.5:0.1ug, localized at chromium atoms. The
analysis of the electron structure for such a noncollinear’
magnetic phase involves considerable difficulties. Our analy-
sis of the electron structure of the collinear ferromagnetica
phase of CrB led to the value 0,85 for the magnetic mo-
ment, which is close to that established experimenfally.

In conclusion, let us compare the experimental results ony
the low-temperature electron heat capacity with the theoret-
ical values. The densities of states at the Fermi level calcu?
lated by us differ significantly from the corresponding values ,
of Nex(Ef) determined from the data on electron heat capac-
ity of diborides** (see Table)L This discrepancy is usually ¢
explained by the renormalization of the one-electron spec:.
trum:

Nexp(EF)=(1+)\)N(EF),

where the constant includes additively the effects of many- *
particle interaction(the electron—phonor\.,, the spin- a
fluctuation\ ¢, and the electron—electroing, interactions.

Comparing the calculated valuesfE) with the values of

5

11

(3) 12

13
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Effect of electron—phonon relaxation on longitudinal electron focussing in metals
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Feasibility of spectroscopy of the electron—phonon interadil) is substantiated by the

method of longitudinal electron focusin@EF) in thin metal plates. It is shown that the LEF
makes it possible to obtain information on the differential function of the EPI characterizing

the relaxation of charge carriers with a strictly definite momentum on phonons, which cannot be
gained by using other methods. €97 American Institute of Physics.

[S1063-777X%97)00703-2

In 1965, Sharvih proposed a method for studying the Although the feasibility of LEF in a metal was
Fermi surfacdFS) e,= ¢ (e is the Fermi energy which is demonstratedsoon after the publication by Sharvirthis
based on the observation of longitudinal electron focusingeffect has not found an application as a method of fermiol-
(LEF) by a magnetic fieldH in thin metal films whose thick- ogy since the same information concerning the FS can be
ness is much smaller than the mean free path of charge cambtained in technologically simpler experiments on observa-
riers. The LEF experimental geometry is shown in Fig. 1. Antion of Sondheimer oscillations of magnetoresistance of thin
electron starting from poirfE lying on a sample surface can plates®* However, the idea of injection of nonequilibrium
arrive along a ballistic trajectory to poir€ lying on the electrons with the excess energy determined by the ap-
same field line on another surface only if the timgeof its  plied voltage in a conductor with the help of a point contact
motion is a multiple to the Larmor periotl . proved to be very useful. For example, it was fouriat

In a real experiment, the current-carrying point contactLEF can be used to determine the energy dependence of the
(emitterE) and the measuring potential point contémillec-  electron—phonon relaxation length. An analysis of nonlinear
tor C) naturally have finite sizes, and electrons arriving fromcurrent—voltage characteristics of point contacts subse-
one point contact to the other have the momentum compaguently led to the development of an extremely effective
nentspy from a small interval near the value satisfying the method of point-contact spectroscopy of the electron—

equality phonon interactiodEPI).%’
The study of phenomena which enable one to take both
— ck 45 dvant f thi thod, i It trolled izi
L=Kug(er,pn) =kvpTu=— —, k=1,2,..., (1) advantages of this method, i.e., voltage-controlled energizing
eH dpy of electrons and a decisive role of a small region on the FS in

the effect, with the help of LEF is undoubtedly promising.

whereL is the separation between poir@sandE, v, and X . X
e will analyze below the role of the EPI in LEF and will

py are the electron mean velocity and momentum along th S ) - .
direction of the vectoH, S(er,py) is the area of the FS Prove that in view of the above-mentioned potentialities, this

cross section by the planpy=const, andTy=(c/eH) method can be used for obtaining more detailad com-
X (39Sl deg) pared to other methoglsnformation on the interaction of

The signalU being measured obviously has singularitiesCharge carrierg Wit_h phonon excitations in a metal.
at the values of the magnetic field, for which the phase vol- _1he potential difference between the collectdt and a

ume corresponding to the above-mentioned electrons attaig"Phery point of the sam_ple, which is measm_Jred b_y a V.Olt'_
its maximum value, i.e., conditiofL) is satisfied for charge meter, can be expressed in terms of the semiclassical distri-

carriers with an extremal value of the quantit§/dp,, . The butiqn function fpr conduction e’Iect'roﬁ'sNhich m.ust bg de-
derivative 9S/dp,, has extrema in the cross sections termined by using Boltzmann_§ kinetic equatlon Wlth the
Pu=Poq CoOrresponding to the extremal displacememcorrespondlng_boundary condl_tlons._V\/_e will not write hgre
Uo(#F » Pexy) OF an electron along the vectét over a period the results of rigorous calculat|or_15 S|mllar to '_[he calc_ulatlon
(aZS/apﬁ=0 for py=Pe), as well as at the elliptic refer- of the transverse electron focussing sidraald give the final

ence (edg8 PoiNts Puy= P, at WHich 95/ ap,a=27 K result for the component of the signAl at the collector,

(K is the Gaussian curvature of the FS at the poinﬁNhiCh depends nonmonotonically on the magnetic field and

Du=Pma). Consequently, the observation of the system ofS due to electrons moving in strictly ballistic trajectories:
m . [

LEF peaks periodic in the field makes it possible to deter- Y
ming the Gaussian curvature and extremal values of the de- AU(L):(e<Un®(Un)>)_lf P e
rivative 9S/dpy for the FS.

eF

220 Low Temp. Phys. 23 (3), March 1997 1063-777X/97/030220-05%$10.00 © 1997 American Institute of Physics 220



Expression(2) for the ballistic component of the LEF
'—@— signal can be interpreted by using simple physical consider-
ations. The value otJ measured by the voltmeter is the
electric potential far away from a contact in the bulk of the
collector, where the electron distribution functidy is in

E
’ ( \ equilibrium:
d
L fo="fo(e+el). (6)
\ The electron distribution function for the emitter acquires a

3

c nonequilibrium correction 5f* to the Fermi function
fo(ep). In the absence of scattering in the bulk, this nonequi-
librium component is transferred by charge carriers along
ballistic trajectories to the collector. The distribution func-
tion for electrons arriving at the collectgwith v,,>0) has
the form

FIG. 1. Schematic diagram of the setup for observation of longitudinal
focussing of conduction electrons by a magnetic fidlih a plate!

fo="fo(sp+ee(L))+8f* (L~ ARe Sp), @)

< 8t*v,0(v,) 0(R—AR€e Sp) wheree(L) is the value of electrical potential in the plane of
the collector aperture, the functighreflects the fact that the
t function f,, differs from the Fermi function only for a small
Xexp[ _J' vp(t/)dt']> , 2 group of electrons arriving from the emitter. Assuming that
0 R the voltmeter is ideal, we can write the condition of zero

whereeV>0, the vectorl = (R,d) connects the centers of current through the conta@ by using relationg6) and(7):

the contactsd is the sample thickness,, is the velocity

component perpendicular to the plane of the aperSg®f f dev(O(—v,)foleptep(L)+eU)+0(vy)[folep
the collector,®(v,) is the Heaviside(unit step function, 0
of* is the nonequilibrium component of the electron distri- +ep(L))+6f*6(L—ARe Sg)]),=0. (8

bution function in the plane of the emitter aperture,

Se=1/47a? (a is the contact diameterd(R e Sg) is the  Linearizing the right-hand side of this equation th and
unit function differing from zero for values d® belonging ©¢ under the assumption thalJ, ep<e¢ and considering

to Sg,AR(e,t,py) is the displacement of charge carriers in athat nonequilibrium electrons belong to the energy interval
plane parallel to the boundaries over the titges,t,py) of  [er.er+eV]for T—0and— dfy/dep, = 5(e — &) we ob-
motion from contact to contact,is the “time” of motion of ~ tain Eq.(2), in which the exponential function is the prob-

an electron in the trajectory, ability of motion of charge carriers in the sample without
| | scattering.
ETEE . . .
,,p(s):J gp(@)dw 3) _The asymptotic calculation of the mean val& in E_q.
(2) is based on the smallne®er n=a/L<1) of the region

“cut” by the @-function on the constant-energy surface
gp,=¢ near the linepy=p, specified by the equations

gp(w):Z“ <Wp—p’,a§(w_wp—p',a)>sv (4) kc ﬁS(S,pH) _

| R o el g, T,

is the EPI differential function characterizing the interaction

of electrons having a momentupwith phonons. In relation The approximation of the step functi@R e Sg) by the

(4), W, , is the square of the modulus of the matrix elementcontinuously differentiable function ekp(R)?/(a/2)?} for

of the EPI,wq, is the frequency of a phonon with the wave a/L—0 makes it possible to find the asymptotic value of
vectorg, the summation is carried out over the phonon specAU by the Laplace methotf.Retaining the main term of the
trum branches, antl=1. The angle brackets denote the av-asymptotic series, we can write the ballistic component of
eraging over the direction of momentum on the constantthe LEF signal amplitude in the form

energy surface,=e, which is assumed to be closed:

1 (egteV *
_ 2eH J’pmaxd JTHd AU= E f dSkZI:( A(S,pO)
<-“>S_N(8)(27T)3C PH 0 SRR (5) &F 0

is the frequency of electron—phonon relaxation, and

L, k=1,2,.... (9

Pmin R
xXexpl—kTyv(e, of*, 10
HereN(e) is the electron density of states. d H¥(e.Pol} -

In order to avoid cumbersome formulas, in the deriva-wherek(e,pg) = [L/ug(e,po)] + 1 and[x] is the integral
tion of relation(2) we assumed that the temperattire 0. If ~ part of the numbex. Here and below, the bar above the
T<eV, this leads only to an insignificant broadening of LEF letter indicates the value of the corresponding function aver-
peaks. aged over the periodly:
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o 1, In real experiments, the inelastic mean free paths for
V(sapH):ﬁfoHdth(t)(s)- electronsl ;= min(lgp,Vlepli) (I; andle, are the mean free
paths for elastic and electron—phonon collisjoris the
The functionA(e,py) has the meaning of the partial sample and in the contact can differ significantly in view of
contribution from electrons with the energyand the mo-  a strong contamination of the contact region. Accordingly,
mentum componenpy to the LEF signal. Its amplitude of the contacts with a small elastic relaxation length are char-
the cross sectioS(e,py), corresponds to the satisfaction of acterized by two contributions to the LEF signal, which are
the focussing conditior9). nonlinear inV. One of these contributions is associated with
If the derivative 9°S/dpf; and the velocity component the EPI at the contact and the other with inelastic relaxation
v, perpendicular to the vectoH differ from zero for  of electrons moving from the emitter to the collector.
PH=Po, We have We assume that the current-carrying contact is ballistic,
—1 i.e., a<l;, and that the value df,, is comparable with the
2m* (viw 1) | (95/3py) | (11  separatiorL of the contacts. In this case, the functiofi*
(vn®(vy)), (aZS/apﬁ)\p o can be regarded as independent of energy. Differentiating
nere expression(10) with respect to the emitter voltage, we obtain
In the case wherpo= pnax, the reference pointhe bound-  the following expressions for the ratio of the second and first
ary point corresponding to the maximum of the derivativederivatives of the amplitud& U™ of thekth LEF line in the

A(e,po)=m\m

dSldpy) at whichv, =0 anddS/dpy=27/\K, we have main approximation in the paramete¥/sp<1:
22Pal (U3) (i Y (ky™ (PPAUR™ V)
_ 203 HOL ) N ok _ekTugleV. 14
Ae,Pma) =7 <Un®(vn)>s KM23 " (12 ((?AUE]aX/(?V) ekTyg(eV,pe), (14)

Hereky = ky Sir? 9 + kycof 9; K = Jkik,, M = 1/2(k;  Where

+ k) are the normal, Gaussian, and average curvatures of Pe=Prra 0 . (Prad = 0)

the surfaces,=¢ at the reference poirfina,, Ry=k; * and e FmattLiiEma ’

R,=k,' are the principal radii of curvature, and Of

O=2mtITy. _ 20/ 92
For electrons having the extremal displacement along Pe= P 7S/ 7P =0).

the magnetic field over a period 33S/dp3=0 for  For the values of magnetic field corresponding to the focus-

PH= Po= Pext), We obtain sing peaks for electrons from_ the neighborhood of a refer-
e ence point of the FS, the quantity _(w) = g(@,Pmay) does
Ale )= 2 I'(1/4) 2m* w(vyv, ™) not depend on the phase on the cyclotron trajectory, and
'Pextd) =7 2va  (vn®(vy)), hence expressiolil4) contains the local value of the EPI

function. It should be noted that point-contact spectroscopy
can be used to determine the EPI function which is averaged
over the FS and which contains the geometrical form fattor,
and the observation of nonlinear transverse electron focusing
It should be noted that since the paramejera/L<1,  makes it possible to determine the functigg(w) (4) inte-
the functionA, according to relationg11)—(13), has two grated along the line connecting the ends of the extremal
systems of peaks periodic in the magnetic field. One of thesdiameter on the F&
systems is associated with focussing of electrons from refer- Relation(14) demonstrates the possibility of reconstruct-
ence points at the collector, while the other is associated witing the EPI differential function by measuring the LEF signal
electrons corresponding to extremal values of the derivativéor various mutual arrangement of the contacts. In this con-
dS/dpy of the cross sections of the surfacg=e¢. nection, it is appropriate to mention the recent experinténts
The characteristic interval e, over which the change in on the observation of anisotropy of electron flows in a thin
the quantity ofA as a function of energy is significant, is of metal plate’® In these experiments, a focused laser beam,
the order of per. For eV<neg, the amplitudeA can be which could be displaced along one of the surfaces of the
taken on the FS, and its extrema determine the position gblate, was used instead of a point contact for creating a local
the LEF signal peaks on the magnetic field scale. As th@onequilibrium state in the electron system, while the mea-
nonequilibrium band widtkeV increases, the difference in suring conventional point contact located at the other surface
the Larmor radii of the trajectories of electrons having dif- remains stationary. It should be noted that although the ratio
ferent energies, but the same displacement along the vect@t4) remains finite fol .,— 0, it can be determined in actual
H over a period becomes comparable to the contact diamet@ractice as long ag,(eV)<L. In bismuth-type semimetals,
a. This is the reason behind the nonlinear dependence of thbe electron—phonon relaxation length is relatively large
amplitude of LEF lines oV and the change in their shape as (I¢p~ 1072-10" % cm) even for excess electron energies
well as the values of the fieldl, (V) for which the signal eV>wp (wp is the Debye energy of phongnsvhich makes
attains its maximum valuB.The dependence of the second it possible to use relatively thick plates in such experiments.

(9Slapy) | M2

sty "

PH=Po=Pextr

and third cofactors in the integrand of E40) on ¢ associ- In the opposite limiting case, when the EPI on a ballistic
ated with the EPI is manifested at energie¥) of the order  trajectory is insignificantl(/l,>1), but the contact size is
of the Debye energwp for phonons. comparable to the inelastic relaxation length in it, the non-
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linearity of the LEF signal is due to the energy dependence N

o6f* (&) of the distribution function for charge carriers in- 6f*(s)~2 Af (e)O(ep—¢), (18)
jected in the metal. n=0
The determination of the nonequilibrium distribution en=sp+eV—nwy, n=0,1,2,.N, (19

function for electrons in a contact, taking the EPI into ac-
count, forms an independent problem which was considered €eV—Nwy<wy,

by many a“tthors in CO””]?C“O” Wiﬂl‘ ”‘t‘; pmb'etm |°ftf)°i”_t'whereAfn(s) — 5t*(s¢ + €V — 0) is the jump in the distri-
contact spectroscopisee, for example, the spectral atlas in bution function at the boundary of the nonequilibrium band.

Ref. 16 and the references cited thesdthough the explicit We do not write here cumbersome expressit Ref. 1B
form of the functionsf* is sensitive to the emitter geometry, for the functionAf, whose explicit form is immaterial for

%ubsequent analysis. It should only be noted that the ampli-
tion between the contact sizeand the length, . In the case ; 4 y P

: . ) tude of jumps depends on the parametér, . In the limit of
of a weak inelastic electron relaxation, the EPI can be take Jump P P ¢

int Cin th turbation  th d the functi eak electron—phonon relaxatioa/{,<1), the maximum
'”S account in the perturbation theory, an € func Ionjump of the distribution function is equal taf,, and suc-
5f* can be written in the forfi

cessive phonon repetitions of this jump are proportional to
22 e powers of the parametera(l,)?>. The highest probability
Sf*=f,+1, _[ f F dog(w) corresponds to one-phonon processes described by the distri-
veli bution function (15). In the opposite case of strong EPI
(a/l,>1), the number of nonequilibrium electrons decreases

egteV—e
+f ] da)g(w)}; l,<a<l,, (150  exponentially upon an increase in their energy, and the mag-
0 nitude of the jumpAf,, increases accordingly with the num-
. bern.
whereg(w) = (gp(®)),; 1, f2 = constg), andve is the Substituting the functiodf* [Eq. 18 into Eq. (10) and

Fermi velocity. Setting v=0 in expression (10) for

. ) - ) differentiating the result, we obtain
L/l¢p>1, we obtain the following expression for the “inelas-

tic” correction 6U for the LEF signal: ouU =X
V=2 2 APo.en)Afy. (20
2 k=kg n=0
a egpteV e—ep
oU=f, H f de fo dog(w) In magnetic fields satisfying relatiaf®), the derivative(20)
eF

has peaks for energies, (19). The condition of their obser-

* vation is the requiremené/L>wqy/eg, under which the

Xka [A(e,po) —Al(e —w,po)]. (16)  separation between neighboring extrema on the magnetic
0 field scale is larger than the linewidth.

Thus, for large emitter voltageg, LEF can serve as a
method of EPI spectroscopy. In the case where relaxation at
a ballistic trajectory dominateaKL<lI,p), the second de-
rivative of the LEF signal at the maximum formed by elec-

= A trons from the reference poipt=pax 0N the FS is propor-
E —) eVgeV);, eV<egr. tional to the “differential” EPI functiongpmax(w) (4), which
ko JeF 1 characterizes the interaction of electrons having a momen-
(17) tum ppax With phonons. By varying the position of one of the

Note the absence of a form factor in the EPI function whichcontacts and changing the roles of the current-carrying and
is determined by the method of electron focusing, which apM&asuring contacts, we can reconstgyct () on the entire
pears in the point-contact Spectrosc&r}?_This can be ex- FS from the derivative’”?U ™. Similar analysis of non-
plained by a considerably weaker dependence of the LEFNnear voltage dependence of the amplitudes of peaks associ-
signal on the contact geometry as compared to the contagf€d with electrons corresponding to FS cross sections with
resistance. extremal values of the derivativ@S/dpy makes it possible

If the electron mean free path in inelastic collisions isto determine the functiog(w, py) averaged over a cyclotron
comparable with the size of the emittdr, £ a), the pertur-  trajectory. If, however, electron—phonon relaxation directly
bation theory in the electron—phonon collision integral is in-in the emitter contact dominates/( <I,/l¢y), the deriva-
applicable, and it is impossible to obtain an explicit exprestive 7?AU/4V? in the case of weak EPlal,) contains a
sion for 6f* (¢) under arbitrary assumptions concerning thecorrection proportional to the functiag(w) =(gp(w)),, av-
EPI functiong,(w). The model considered in Ref. 13 takes eraged over the FS, which coincides with the EPI thermody-
into account the interaction of electrons with phonons havinghamic function(Eliashberg functiohin the main approxima-
a certain frequencyw,= wy. Such a model successfully de- tion in the small parametea/L. It is important that the
scribes, for example, inelastic relaxation of charge carrierfrequencywq of dispersionless phonons at which electron
by optical and intervalley phonons in semimetals. In thisrelaxation leads to the emergence of a system of peaks on the
case, the functionsf* has jumpsAf, for discrete energy first derivative of the LEF signal foa/L<wg/er can be
values® determined easily with the help of LEF.

According to this result, the second derivative of the LEF
signal amplitude is proportional to the E@liashberg func-
tion averaged over the FS:

98U . a?
a(eV)? Zugl;
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Surface energy relaxation of conduction electrons in bismuth using transverse electron
focusing technique
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The position of the first and second lines of transverse electron focusing on the scale of magnetic
fields is analyzed to determine the loss of excess energy of conduction electrons in bismuth

as a result of collisions with the crystal boundary upon normal incidence as well as the shape of
the functional dependence of this quantity on the initial excess energy. It is found that

beginning from relatively low values of excess energy3(meV), a sharp drop in energy occurs
upon reflection of electrons at the boundary. 1®97 American Institute of Physics.
[S1063-777X97)00803-7

INTRODUCTION . 2cp,r

; 1
The focusing of conduction electrons in metals with the 0" eL @)

help of a transverse magnetic fitltas earlier used mainly wherep,  is the Fermi momentum component and thaxis
for studying the interactidnof extremely low excitation en- is directzed at right angles to the surface.

ergy electrons with the surface. This method provides infor- | he EF technique, some electrons injected into the
. oy . ’5 1
mation about the probability of 'specuﬂacor intervalley metal have an excess enerdy (relative to the Fermi energy
surface reflection of electrons incident normally at the crystaLF) due to the voltage/ applied to the point contact. Since
boundary, as well as about the possibility of Andreev reflecihq electrons being injected have an enesgy- S¢, p, be-
1 z

tion of quasiparticles at the normal metal—superconductO(ongs to the constant energy surfaget+ ¢, and hence the
interface®’ This information was obtained from the ratio of field H'>H'O' '

amplitude of the first two electron focusifgF) lines for a

slight nonequilibrium of carriers. H,_ZCPZ @)
In this work, we shall show that by using the EF tech- el

nique in bismuth for a considerable excess energy of elec- 112

trons injected in the crystal, the position of the first two EF _ 1+ ﬁ 3

. S . . Pz=PzF ©)

lines can provide information about the magnitude and na- eF

ture of loss of a part of the excess energy due to interaction  The second EF line is formed by electrons that are re-

of normally incident electrons with the surface. flected once from the surface during their movement along
the ballistic trajectory. The peak signal for the second EF
EF TECHNIQUE line is formed in a fieldH" in which electrons reach the

. , collector after interacting with the surface upon normal inci-
In order to realize transverse electron focusing, two 9 P

point contacts are formed at the surface of a single crystal igence. In the absence of energy losses during reflection at the

such a way that the separatibnbetween them is smaller surface, the following exact relation must be satisfied for
. .such electrons:

than the electron mean free path in the metal. Current i$

passed between one point contéanitte) and a distant pe- H'=2H". (4)

ripheral contact. The emitter is used for injecting electrons

into the metal. The measurable quantity is the potetdial The ratio of the amplitudes of the second and first EF

. . lines is determined by the coefficieqtof specular reflection
across the second point contéeollectop relative to another at the surface. The interaction of an electron with the surface

peripheral point. The magnetic field is directed in the for g=1 is assumed to be totally elastic, and the absolute

plane of th? metal surface at right angles to the line conr?ecbalue of the normal component is conserved upon a reversal
ing the point contacts. The electrons leaving the emitter

move in ballistic(cyclotron trajectories in a magnetic field of its sign.

and some of them reach the collector and create a potential

on it. Upon a change in the magnetic field, the potenitial MEASURING TECHNIQUE

characterizes the number of electrons leaving the emitter at The standard technique of electron focusing by a trans-
different angles and reaching the collector. The maximunverse magnetic fiefdvas used for analyzing the position and
signal (first EF ling is formed in a magnetic fiel, in  amplitude of the first and second EF lines in bismuth for
which the electrons belonging to the extremal diameter of thalifferent values of the excess electron energy. Sharpened tips
Fermi surface reach the collector. For low excitation energyf copper wire, attached to the trigonal face of a bismuth
of electrons, the fieldHy, is defined by the expression single crystal separated by a distarice 0.2 mm were used
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28 - bismuth. By way of an example, Fig. 1 shows the depen-

- et dence of the magnetic field for firstH() and secondH")
=== H', H" (theor) el EF lines on the applied voltagé across the emittefcurves
241" o n', K (exp) -7 1 and 2. It would appear that this voltage must ensure an
,/' excess electron energV. The dashed curves show the an-
A 2H P ticipated variation in the values of the magnetic fidttisand

H'" as functions oV in accordance with the focusing con-
dition (2) and relation(4).

However, these relations are violated. First, the experi-
mental curveH'(eV) andH"(eV) are lower than the theo-
retical curves. Second, the experimental cu2ver the sec-
ond line lies lower than curve plotted according to relation
(4) from the experimental curve for the first line. There is a
factor capable of altering the position of the EF line on the
scale of magnetic fields upon the passage of strong currents
through the emitter. This is the intrinsic magnetic field of the
current in the point contact, viz., the region of its maximum
concentration. It has its highest value along the perimeter of
the point contact and decreases rapidly with increasing dis-
A ! 1 1 tance from the emitter in the plane of the external metal

0 100 200 boundary. In the bulk of the metal, the emitter current pro-

0¢, mev duces virtually no magnetic field. Thus, the magnetic field of

the emitter current can affect the electron trajectory in the

FIG. 1. Change in the position of the peak of the filgtand second2) EF initial segment, i.e., the emitter region 0n|y, and does not

lines on the scale of magnetic fields as a function of the excess electron L .
g affect the ballistic movement in the bulk of the metal. The

energy determined by the voltage applied to the emitter point contact™’ ' . ) )
Curves3 and 4 show the theoretical dependences as per Efjsand (4). displacement of the first EF line toward higher magnetic
Curve5 corresponds to the expected variation in the position of the secondields was recorded for currents50 mA. Note that the in-
line when Eq.(4) is satisfied relative to the experimentally observed depen—trinsic magnetic field of the emitter current must lead to a
dence for the first line. . - . . .
simultaneous unidirectional displacement of both the first

and second EF lines, i.e., it cannot be responsible for a de-

as the emitter and the collector. Microscopic contact welding'€2S€ in the separation between them. In order to eliminate
of the wires was carried out by using a battery supplying he possible gﬁect of the |ntr_|nS|c magne_tl_c field of the cur-
constant voltage of 100V across a ballast resistance Jent we con_fmed our analysis to the pos_|t|on of the first and
1 MQ directly in liquid helium. The contact diametdrwas ~ S€COnd EF lines for currents not exceeding 50 mA.
determined from Vexler's formufa(d~5 um for a point The first pl)ecullarlty of Fig. 1, viz., a departure_ of the
contact resistance=10). A small value of the ratiod/L ~ dependencesi’(eV) from the theoretical curve described by

ensured a very sharp EF lifélhe magnetic field was pro- Eq. (2)', was mentioned. by us earlier in Refs. 10 an_d 11
duced by Helmholtz coils, thus ensuring a high uniformityAccording to our analysis, the most probable explanation for
and smoothness of the field being applied. The orientation otp's deviation is that the actual excess energy of the injected

the contact line, crystallographic axes, and magnetic ﬁel&lectrons is lower thaeV. This decrease is apparently due

corresponds to the standard recording of the EF line fo the relaxation process occurring in the emitter redfon.

nl|Cs, L||C,, HL L. The EF curves were recorded at liquid- The actual excess e_nergie of |nje<_:ted electrons_ can be

helium temperatures in the interval 1.5-4.2 K, the requirecf@/culated by comparing the theoretical and experimental de-

temperature was attained by pumping helium vapor pendences for given values of the magnetic field. The actual
In addition to the potentiall .(H) across the collector, excess energy of electrons can be determined analytically.

the potential derivative with respect to the emitter current>NCe, according t¢1) and (2),

dU./dlg(H) was also recorded in a number of cases by H' p,

modulating the emitter current with a low-amplitude alternat- H_o = a

ing current ¢-0.5 mA) and recording the collector signal at

the modulation frequency. TheU, /dI4(H) recording has andp, is determined by E¢(3), we obtain the dependence of
the advantage of Sharper extrema than Om@e{) record- the actual excess ener@ﬁl on the pOSitiOﬂ of the first EF
ing. The displacement of extrema of the first and second EHine H' for nonequilibrium electrons relative td:

lines on thedU./dl (H) relative toU.(H) can be easily H'\ 2

taken into consideration. Se1=¢€g H_o> -1

: ®

The second peculiarity in Fig. 1, viz., the departure of
the dependenci' (eV) from Eq. (4) relative to the experi-

It was found that Eq(4) is violated as a result of in- mental curve for the first line, indicates the loss of a part of
creasing of the excess energy of electrons being injected intine excess electron energy during interaction with the sur-

EXPERIMENTAL RESULTS
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face. Considering that the first part of the ballistic trajectory
prior to the collision with the surface is traversed by an elec-
tron with an excess energi, and the second part of flight
up to the collector is traversed with an excess engkgywe
obtain a relation for determiningde,. Indeed, setting
L=L,+L,, we obtain

2c -

L=ggr (PatPz), (6) 2
wherep,; corresponds to the energy + ¢, andp,, to the \N
energyeg+ de,. Using Eq.(3) for p,; andp,, as well as g
Eg. (1), we obtain

H||_H| 2
582:8|: ( ) —1|. (7)
Ho

Figure 2 shows two examples of constructing the depen-
dences of the ratide,/dg4 on S, in the range of variation

of the initial excess energy up toe50 meV. The dependence -

U.(H) is recorded in one casea) and the dependence L ) . . . ,
dU;/dl¢(H) of the derivative in the other casd). The 0 20 40 60 80
results were found to coincide in both cases. It can be seen de,, mev

that even for low values ofe;~3—4 meV, a sharp decrease

is observed in the excess energy due to interaction with the
surface. The dependences obtained in our experiments can b
described analytically by a function of the form

Se,=AdsX, (8)

where k=1/2. For de;~¢eg, the excess electron energy
de, after interaction with the surface decreases to
~(0.25—-0.30pe,. On the whole, the curves presented in
Fig. 2 describe the change in the intensity of an inelastic
process involving the collision of electrons with the surface
upon normal incidence. The probability of inelastic interac-
tion of electrons with the surface can be characterized in
terms of the difference + 6e,/d¢4 as a function obe .

The coefficient of specular reflection at the surface, ob-
tained from the ratio of amplitudes of the second and first EF
lines, decreases with increasing excess electron er{eigy
3), but this decrease is not so strong and sharp as the loss o
electron energycf. Fig. 2. A somewhat unusual picture is L
observed: the interaction of normally incident electrons with

682 /681

the surface becomes markedly inelastic even for small values bk R L
of the excess energy, but the high value of the specular re- 0 20 40 60 80
flection coefficient is preserved. It can be assumed that elec- 581 , meV

trons incident normally at the bismuth surface are reflected
from the surface potential, and the emergence of tangenti@G. 2. Ratio of the excess electron enerdy, after collision with the

components of quasimomentum is obviously not necessarsurface to the initial excess enerdy; as a function ofse, . The data were
for such a process. obtained by recording the EF signdll (H)(a) and the derivative
dU, /d1(H)(b).

DISCUSSION

Beginning from relatively small values of the initial ex- the collector with respect to the emitter voltaged the cor-
cess energye, , the most probable explanation for the sharpresponding function which characterizes the interaction of
decrease in the ratife, / 5¢4 is the excitation of the surface electrons with surface vibrations.
vibrations of the lattice during reflection of electrons at the  Apparently, the interaction of normally incident elec-
surface. The possibility of studying inelastic surface scattertrons with the surface may lead to the excitation of a surface
ing of electrons by electron focusing was mentioned for theelastic wave in which the displacement of atoms occurs in a
first time in Ref. 12, where a relation was obtained betweerplane perpendicular to the surfa¢Rayleigh-type waves
the signal being measuréderivative of the potential across We are not aware of the characteristics of such waves in
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FIG. 4. Dependences @i, on s .
FIG. 3. Change in the specular reflection coefficigrf electrons incident

normally at the boundary of the Bi crystal as a function of the excess
electron energy.

experimental data deserves attention. The dependence of the

bismuth. In order to evaluate the possible limiting frequencyEXCess electron energy , after collision with the surface on
range for surface phonons, we must use the available infofl€ initial excess energe, is characterized by reproducible
mation on the bulk phonons in bismuth and, above allnonmonotonicities which are clearly manifested in the de-
phonons with transverse polarization. Transverse acoustRe€ndence obbs; on ds, (Fig. 4. This dependence reveals
phonons in the bulk of bismuth, propagating along the trigo-Sight dips at energies-18 and~25 meV. Hence, in addi-
nal axis, are characterized by a limiting energy 4.8 mey tion tc_) the exmtaﬂop of surface V|brat|9ns as a result of in-
while the longitudinal acoustic phonons have an energ};eractlon of nonequilibrium electrons with the surface or dur-

7.5meV. The energy of transverse optical phonons lies iind their motion in the bulk of the crystal, there exists
the interval 9.2-12.6 meV, while longitudinal optical another relaxation process involving a decrease in the above-
phonons have an energy 12.6—13.5 mé\0Only longitudi- m_ent|0ned characterl_stlc val_ues of energy. We believe thgt
nal phonons exist in the direction of the binary axis. Accord-thiS process is associated with the excitation of plasmon vi-
ing to the results of investigations of the phonon spectrum oPrations. According to Ref. 16, the plasmon excitation fre-
bismuth using the slow neutron scatterfdgransverse opti- duencies in bismuth correspond to the following energy val-
cal phonons do not give a clearly manifested peak in th&!€S: 19.6 meV for polarization perpendlcular to the trigonal
phonon density distribution function. axis Qg_and 23.2 meV for polarization glor@s. The_ char-

It was shown for the first time in Ref. 15 that surface acteristic values of energy corresponding to the dips on the
waves correspond to discrete frequencies that are lower th4lfPendence oe, on e, are close to these values.
the limiting frequencies for bulk waves. In the case of bis-
muth, these frequencies must be lower than the above values
for transverse phonons in the bulk. It follows from the ex-
perimental data presented in Fig. 2 that there exists a certailoNCLUSIONS
threshold value fobe, at which the energy loss in electrons
commences upon reflection at the surface. However, it is An analysis of the relative position of the first two EF
hard to find the exact value of this quantity. An analysis oflines on the scale of magnetic fields upon a change in the
the dependences presented in Fig. 2 give3—5meV for  excess electron energy in bismuth has opened new prospects
the ratio de,/8¢,=1. An analogous result is obtained by for the transverse focusing technique. This technique has
constructing the dependenc®;— e, as a function of made it possible to detect and determine the drop in excess
de1. These dependences are found to be straight lines thanhergy of electrons as they collide with the surface. Such a
intersect the abscissa axis &t,~4 meV. Note that these process begins for low values of the excess electron energy
estimates are quite rough. (~3-5meV) and is apparently accompanied by the excita-

Another result obtained by us from an analysis of thetion of surface waves.
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The electron transport through a microscopic constriction in a two-dimensional quantum channel
in an alternating transverse electromagnetic field is considered. A general expression is

derived for the photoconductivity as a function of elements of a multichannel scattering
S-matrix. This expression generalizes the Landauer formula for the conductivity Df baflistic

point contact(BPC) to the case of inelastic processes of interaction of ballistic electrons

with alternating electromagnetic field. The relation between the symmetry &-thatrix of

electrons and the transport properties of the BPC in a nonstationary field is considered.

The photoconductivity of a BPC with an adiabatic geometry is obtained in the semiclassical
approximation. ©1997 American Institute of Physid$§1063-777X97)00903-1

1. The fundamental concepts concerning the nature oélastic scattering processes induced by a varying field on the
electron transport through narrow ballistic point contactsbasis of the main assumptions of the Landauer theory. Such
(BPO) are based on the well-known Landauer condefite  an analysis is also important in connection with recent ex-
physical assumptions underlying this concept can be formuperiments on the measurement of photoconductivity of point
lated as follows: contacts in ® semiconducting structurés.

. . . 2.In order to derive a general expression for the conduc-
(1) voltage _drop takes place_ onI)_/ n th_e point-contact r€910Mivity of a 2D BPC, we will proceed from the Schamger
(2) the m-otu.)n qf electroqs in this region |s-ba_II|st|c; equation with the time-dependent Hamiltonian
(3) the distribution function for electrons incident on the
point contact is determined by only two completely in- 2
dependent reservoirébanks”) which are in thermal H(t) == 5 Ayt UXy) + V(X y)coset,

equilibrium. . . . . . . :
in which U(x,y) is the effective potential which determines

These assumptions are apparently valid for the descrithe point-contact geometry and which varies alongxiaeis
tion of narrow channels which connect the reservoirs anénly in the contact region —L<x<L, so that
have a length smaller than the phonon mean free path fag(x,y)=U(y) for |x|>L (at the same time, the potential
electrons, but a width large enough for the number of transincreases unlimitedly along the axis, thus ensuring the fi-
verse quantization modes to be much larger than the numbeiteness of the motion of a particle in this directipand
of transverse modes propagating through a channeV(x,y) is the effective potential of the external alternating
Landauet proved that under the conditions formulated field. Because of these conditions, the electron spectrum out-
above, the problem of determining the steady-state conducide the point contact region in zero alternating field has a
tivity in the case of elastic scattering at a BPC is essentiallyvell-defined band structure of a multimode one-dimensional
reduced to a purely dynamic problem of calculation of thesystem, i.e.,
S-matrix of potential scattering of ballistic electrons. The 212
Landauer theory successfully describes the results of numer- ¢ (k)= —— +E,,
ous experiments on conductivity of point contacts in@ 2 2m
electron gas of semiconducting heterostructures and is gen-
erally accepted. On the other hand, a unified consisteRfhere “the transverse” energies, are eigenvalues of the
theory for the case of inelastic scatterers in the BPC regiogperator
has not been developed yet.

This research aims at obtaining a general expression for __
describing the conductivity of a BPC in the presence of in- Yo 2m* gy?

k2 52
+U(y);
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k is the wave vector in the direction of tixeaxis, andn* is ~ We can prove that the asymptotic forms of the solutions of
the electron effective mass. Eq. (4), which are normalized to thé-function and which

It is convenient to carry out the analysis of the dynamicsdescribe the scattering of plane waves incident on a BPC,
of a system in a field varying periodically with time in the have the following form in ther(,!,x)-representation:
guasi-energy representation of the wave function

I
W0t = W, (x,nhex]—i(lot+et/h)], (1) PR
| & Sodiu +RIN(Kl,0)
where the functionsV (x,n,I) are solutions of the time- 1 . _ o
independent Schdinger equatioH¥, = ¥, with the ef- N xexf —iokn(en (K))X]; ox<—L;

T k|, o) exdioky(en (K))X];  ax>L,
(5)

fective Hamiltonian

ﬁ - ﬁo*‘W, L.
where o= sgn(<) It should be noted that the coefficients
~ h Crolls RL, and T, in expressiong5) are connected directly with
Ho= 2m* ax2 +Eq| S —fwl |00 the elements of the multichannBimatrix of scattering
W=U+V; AE(E(|k|,+1) §(|k|,+1)). o1 ©)
. = t(k[,—1) r(lk[,—1))’
U= J dyen(Y)U(X,Y) @n(Y) —EnSnn | 6117 .
through the expressions
L[ (en(K)]M2
V=5 { f_wdyqon<y>V<x,y>sonf(y>}<5|_1,.f+mm; ta([kl, o {T Tou(IK],0); ()
2
Kni(eni (k)]
IL _ [ P“nIVENL IL
Here ¢,(y) are the real-valued eigenfunctions of the opera- Fon([Kl.o) = K| Run(lkl o). ®)

torHy. In accordance with Eq$1), (7), and(8), the solutions of

The wave functior? .(x,n,l) is multiple-valued due to time-d dent Schdim i ted by th
the quasi-energy representation, which is manifested in thg1e ime- epen ent Scimger equation generated by the
tates| W{;)) have the form

fact that if ¥ .(x,n,l) is an eigenvector of the operatbr
with the eigenvalue:, then the function
lI’a-%—fia)l’(x!nal)E‘;[,s(xinvl_I,) (3)

is also an eigenvector, which, according to Ref. 1, generates
the same solution of the time-dependent problem.

Wyk(n,x,t)=

1
V2w

In view of the local nature of the perturbatioi in the exgikx—ien(K)]8ant+ > RU(K|,0)
coordinatex, the complete set of eigenfunctions of the op- !
eratorH can be constructed on the basis of the scattering< Xexg —ioky(@)x—iwt/h]; ox<-—L;
state$W () (N=1,2,....L =0, 1,+2,...;— o <k <), ©)
which are solutions of the Lippmann— Schwmger equation 2 TL Nk o) exdioky (@) x—i@Bt/A]; ox>L

WG = DL+ G (en (KWW, (@)

where and describe inelastic scattering of an electron with the
Dy, x)=(2m) " Yk 8 transverse quantum numbbr and the wave vgctok at a
microscopic constrlctlon'cb = gn(K) + fiwl). Inthis case, the
enc(k)=en(k) —frol coefficientsT! , = T'9 andR., = R!3, determine the scatter-
ing probability amphtudes for an electron in a state with the
transverse quantum numhemwith the absorption of energy
quantafi w. Obviously, these solutions are important for cal-

are the eigenstates and eigenvalues of the opelﬁigpr
Gg (g) = (e — Ho + iv) L. Using the explicit expression for

the unperturbed Green's function culating the nonstationary ballistic transport through a BPC.
_ Onn , 3. While deriving a general expression for current
Gg (8)=i exfdifiky (e)|x|]; :
0l&)= nit& ' through a contact, we will use the generally accepted Land-

auer approach, according to which the electron distribution
D= — ko i(&): function away from a microscopic constriction is in equilib-
i TR rium and is defined as
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wherefy(e) is the Fermi functionY is the voltage across the energye +7%wl after its passage through the BPC. The indi-
point contact, and the sig# (—) corresponds to the region cesN and n label the scattering channels, and the entire
to the left (right) of the BPC. In this case, the one-particle process under investigation can be regarded as an inelastic
density matrix y(t) which ensures the satisfaction of thescattering of particles from channillto channein.
boundary conditions, according to which the flux incidenton 4. The inclusion of the symmetry factors simplifies Eq.
the BPC from the lefright) is determined by the equilib- (13) considerably. One of these factors, i.e., the reversibility
rium functionfo(en(k) — 1/2 eV) and on the right by the of scattering in time, is directly connected with the real-
functionfy(en(K) + 1/2 eV), which explicitly takes into ac- valuedness of the operat¥v=U +V. According to defini-
count the assumption on the absence of electron correlationn (3), this operator is real since the functiopg(y) are
of reservoirs, can be constructed on the basis of the waveral-valued. Under these conditions, t&enatrix is known
functions(9) as follows: to be symmetricS=ST (see, for example, Ref)3Thus, by
definition (6), the matricesr (k,+1) of the “backward”
y(t)= % fﬁ(k)\PN,|k|,0(n,x,t)\If§"k‘]a(n,x,t). (20 scattering amplitudes are also symmetric. Accordingly, the
N[kl matricest(k,=1) of “forward” scattering amplitudes are
The period-averaged current through the cross section at connected through the relation

point X, is defined as ik, +1)=1"(k,—1).
| —e w0 ZW/wdtZ h i_ i Taking into account the latter circumstance, it can be easily
oo T 2a Jo no[2m*i \ox  ox’ verified that in zero alternating field, WhethN(s,il)=O
for | # 0, the first term in the brackets of E(L.3) vanishes,
2 , while the second term coincides with the Landauer formula
X Yo (XX, A for static conductiviyG — (262/h) S|t ()2 of a mul
X=X! =%, or static conductivityG = (2e*/h)Z . |t, . (x)|* of a mul-

tichannel system. In the general case of inelastic processes,

and is naturally independent of the choice of the cross segne amplitudes of “forward” scattering from left to right and
tion (this fact follows directly from the continuity equation qom right to left are connected, according to the detailed

[(alax)ly = ltZ,yan(X,X,1)]. Consequently, the point of balancing principle, by the relation
observationx, can be displaced, for example, to a region

: . ! I e
separated by large distance from the microconstriction, |tan(e,—1)=[toy (e +hal,+1)],

where the asymptotic expressiof® are valid. The substi- [see Eq(3)]. Using this relation, the first term if13) can be
tution of these expressions infth1) and simple calculations eqyced to the form

give! )
e (e ]
e 1 I =—j de >, [fole)—fole+hwl)] > th (e)]2.
== fo(wk)——eV)IT'n°N<|k|,1>|2 AL R o ()
™ Nk T 2 (14)
0 ) This expression shows that an alternating field localized in
o en(k)+ 5 eV (|Ran([k[, — 1) the BPC region generally can induce a steady-state current

for zero potential difference applied to the banks. Such a
photovoltaic effect was considered in Refs. 4 and 5 for a
quantum contact of special geometty.

5. We will consider below symmetric scattering potential
W(—x)=W(x). In this case, the forward scattering ampli-
tudes satisfy the relation

|t|l\|n(8:+1)|:|tll\ln(81_1)|-

~ 6nndio) [Uni(en(k)). 12

Taking into account relation&) and (8), and the equality
2 Llta((Kl, = D)2+ |rn(Ik, - D)) =1

(@ consequence of the unitary nature of Benatrix), and  Ag 5 result, of which the photocurrefit4) is equal to zero

also assuming that\>eV and the temperature is equal 10 5ccording to(13), and the conductivity at =0 is defined as
zero, after the replacement of summation over the momen-

tumk by integration with respect to the energy of an imping- _ 2¢? [ 2
ing electron, we obtain the expression G= h §|: E’ [ton (1)1 (15

e (= | 5 1l ) This formula generalizes the Landauer result to the case
25 fo defo(e)([tan(e, D"~ [tan(s, ~ D)%) of electron transport through a symmetric BPC, taking into
account the inelastic processes in a varying applied field. It
should be noted thatm, contains contributions from elastic
and inelastic processes for 0 andl # 0. The contribution
from the latter processes can be separated by introducing the
T-operator 7 of electron scattering by the varying field,
which is formally defined as

1= >
N,n,l

e?V
+ - Ut D2 [t = DI |, (13

where u is the Fermi energy. The quantity'n,\,(s,a)

= tLON[kN(s,a)] is the scattering probability amplitude for an
electron with energy and the transverse quantum number o
N to the state with the transverse quantum nuntband the 7=V+VG,T,
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where the Green’s funCtiOGS=(s—|:|S+iv)_l describes 4me?
the scattering at the potentidl(x,y); i.e., Cp=—3 2 E AR TO(En— ) O(pn—Ept+iol)

|:|s=(|:|0+0—ﬁw|)5”r .

+ 0(En— ) 0(En—fio— u)]— A0
Using the relation between the matrix elements of the scat-
tering operator and the elements of Benatrix, as well as ~EnO(Ey—fol —p)+ 6(n—En) 0(p—E,
the universal relations between the scattering operator and +hol)]), (20)
the Green'’s functior{see, for example, Ref.)9we can ex-

press the amplitudaé\,n in (15) in terms of the matrix ele- where
ments of the operator: A =D, (#+ﬁw|)|7 D kN<u>>|2
| __gst ~
tan(e,0) =ton(g,0) b In this case, we have used the relation for the operator
2i (D(Jr) A0* _ (DH
- < n, Uk s+hw|)|T|(I)N ke ) (16 (Py, kn(e) )| 7oy kN<8)>
wheretpy and|<I>n ok (=) are the scattering amplitudes and =27 > |<q)l(’l._o),kn(s+hwl)|T(I)|q)(+) 2

J,o=*1
states of the Hamlltonlahis, which are determined by the e

Corresponding Lippmann_SChwinger equation_ USGH]@), which follows from the generalized Optical theorérESti'

we can write expressioril5) in the form G=G¢+G,, mating the semiclassical matrix el_emeﬁt&ﬁ])" in (20), we
where G is the static conductivity component, a@}, is can verify that in the Born approximation for small ampli-
photoconductivity: tudes of the varying field, the contribution to photoconduc-
tivity comes only from the first terms in the brackets of
4”8 2 E 2 Eq(20):
|< no—k ,u+hw|)|T |(Dn ,ok /(,u)>|
47re? (+),| bl
O o P2 0(En—p) 0 —Eq+hol)
2 [tnn'(ﬂ)]*<‘bn,ukn(m|7' |q)nf,gkn,(m> )
—Am“mu—EmwarhM—un. (21)
17

The first term describes the motion of an electron through a
where7 =7 nn, Equation(17) expresses photoconductivity BPC, which is induced by its scattering from the reflecting
of a BPC in terms of the matrix elements of the operatormode to the one propagating after absorption| ofield
1, calculated from the scattering states in the static potenquanta. The second term, in contrast, corresponds to scatter-
tial. ing from the propagating mode to the reflected one with the
6. We will use the general expressidi7) obtained radiation of the field and reduces the value of the conductiv-
above for calculating photoconductivity in the most impor-ity. Expression21) coincides completely with the result ob-
tant (from the point of view of experimental applications tained in Ref. 11 in the framework of the consistent theory of
case of a BPC with an adiabatic geometry, i.e., with aperturbations in varying field.
smooth variation of the potentialU(x,y) along the Thus, the general expressi€li) obtained for photocon-
x-direction in the scale of the de Broglie wavelength forductivity in terms of the matrix elements of a multichannel
electron. It is well knowf that in this case the motion oc- S-matrix of scattering generalizes the Landauer formula for
curs with the conservation of transverse quantum numbethe conductivity of a ® BPC to the case of inelastic pro-
and hence the matrix of the amplitude:%, is diagonal and  cesses of interaction of ballistic electrons with an alternating

can be presented in the form electromagnetic field. Equatidf21) gives the photoconduc-
tivity of a BPC with an adiabatic geometry in the semiclas-
th, = 0(e—E o), 0. (18)  sical approximation.
Here xa(¢) is the phase factor. The statiab") ok (s)) in the This research was supported, in part, by the INTAS

adiabatic case are described by semmlassmal wave functioggant No. 94-3862.
which are related by
(-) —pH) —ioxn(e) — (+) *
D, (e,0)=D, " (g,0)e 7 0(e —E,) + P (e, E-mail: borovikov@ilt.kharkov.ua
Cixe(e—0 YHere we also take into account the factor 2 which appears in the summa-
—o)e e 0(En—e). (19 tion in the electron spin degrees of freedom.

. . . 2|t should be noted that in some publicatiofsee Refs. 6 and)the for-
In these expressions, thiefunctions for a fixedn separate mulas for current similar t¢12) include, in addition tof5(e,—€eV/2), an

semiclassical electron states into those propagating through @qgitional factof 1— fo(s,+ % wl +€V/2)], in analogy with the method of
BPC without reflectior] e >E,=maxE(x)] and those that  tunnel Hamiltonian, assuming that this factor reflects the Pauli exclusion
are reflected from the BPC completelg <E,). In zero princ_ip_le. Such an artificial application of the circuit_ which is suitable i_n
varying field, this leads to fundamental quantization of con- t_he limit of_small tlfansparency is extremely_ d_oubtful in the case of descrip-
L . . . tion of ballistic point contacts and was criticized more than ofsee, for
ductivity of the adiabatic BPE Using Eqs-(16)' (18), and example, the review by Landayérin the problem under investigation, the
(19), we can present expressi¢hy?) in the form terms linear in the distribution function are omitted completely in the ex-
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A new effect, viz., the oscillatory dependence of the collector current on the diameter of the
diagram confining the electron flow from the emitter to the collector, is considered. Such a
dependence is due to a change in the position of conducting subbands of the diaphragms

upon a change in its diameter. It is also shown that the collector current contains a noticeable
interference componeigassociated with the Aharonov—Bohm effect and corresponding

to the mixing of conduction channels of the quantum diaphpjagnthe case of a strong
mismatching of electron states outside and inside the diaphragnl9% American Institute of
Physics[S1063-777X97)01003-7

INTRODUCTION passage of an electron through the contact region differs sig-
o _ _ nificantly in these models. For example, in an adiabatic con-
Ballistic electron transport in mesoscopic systemas tact a reflectionless matching of electron states in the left and

become an object of interest in connection with the poss'b'l'right banks is observeld.in this case, each electron state can

it_y Of. experimental crt_eation of controllable structures Whosebe unambiguously attributed to a certain conducting subband
size is comparable with the electron wavelengi) on the o{ the junction. Interband transitions associated with nona-

one hand, and due to the fact that the quantum-mechanicg baticity of th tact sh fl distard ith
(wave nature of charge carriers is manifested in such struc- labalicity ot the con a_c shape a ) ong _'S ances wi
the presence of scattering centers in the junétionly lead

tures on the macroscopic level, on the other. ) ) )
This is manifested most clearly in the conductivity of {0 Small corrections for the conductance of the microscopic

two-dimensional ballistic point contacts in the form of a nar-Structure. A different situation takes place for contacts with
row bridge(whose widthd is comparable witi\g) connect-  an abrupt geometry. Mismatching of the electron states in the
ing two regions in a two-dimensional electron dase Fig. banks leads to a strong scattering of the electron wave in the
1). It was shown experimentally in Refs. 2 and 3 that theregions of conjugation of the junction with the banks. The
conductancé of such a junction is quantized in the units of “backward” Sca_ttering leads to the mu|tip|e passage of the

92 ; e fatiam i . N - .
Go=2e"/h. The reason behind this is a restriction in the contact region by the electron wave, which is manifested in
transversérelative to the contact axisnotion of electrons in the form of the resonant structure in th&(d)

the microscopic constriction region, and consequently th%ependencé‘.g The “forward” scattering leads to the exis-

quantization of the transverse momentum of particfes. tence of several channels of transition from a certain $#tate

Each quantization levek,=(wnA/d)?/2m (n=1,2,...) . . .
corresponds  to  the  one-dimensional subbandf the left bank to a certain state of the right bank(via

en(Py) = p>2</2m+sn (thex axis is directed along the contact Fhfferent st-ates in the !unctlon; see Fig.)ldnd (sge b-elov)/

axi9 with the conductanc&,=G,. The numbeN of con- 1S responsible for the interference term appearing in the ex-
ducting subbands is determined by the magnitude of th@ression for the transition probabilityi | (ty - is the el-
Fermi energysr of electrons in the bankéx— *o; the ement of the transition matrix of the contacBoth these
junction coordinatex=0) and by the contact widtd which  processes lead to a strong interband mixing, It should be
limits the separation between transverse guantization levelsioted that no resonant structure on ) dependence was
The subband is conducting under the conditionobserved in the experimertts.This is probably due to the
en<ert+egq(d) [¢(d) is the potential emerging between the fact that the contacts used in these experiments have a
junction and the bangs? According to the multichannel  smooth shape in view of the electrostatic nature of the po-
generalization of the Landauer formdféthe conductance of (aptial barrier that forms the microscopic constriction. Ac-

the junction isG=NG,. As the diameted of the junction is cording to Castano and Kirczendfvthe G(d) dependence

varied, the separation between energy levels, and hence the . . .
. for nonadiabatic contacts with a smooth shape does not con-
number of conducting subband changes. Consequently, the

G(d) dependence has the shape of a ladder with steps of tﬁgin a resonant structure either. These authors emphasized a
same heighG,. significant role of interband mixing in such contacts.

Quantum contacts are usually described by using one of AMONg other things, the universal nature of quantization
the two models: the model of a junction with a smooth ge_of conductance and its relative insensitivity to details of elec-
ometry (adiabatic contagt®!! or the model of a junction tron scattering in the contact is due to the fact that conduc-
with an abrupt geometrd.° The calculations based on either tanceG is determined by all electron states of the left and
of these models lead to a step dependeBgd), but the right banks. The expression f& has the form
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FIG. 1. () Model of a quantum contact of length and widthd, which
connects P regions of widthD; k andk’ are the electron wave vectors
before and after the passage through the contact, respectieifPhase

trfljectories of an electron moving through a contagty;(1<i<N), and  collector (Fig. 2), the collector current for a fixed value of
e e i ooy ' H s proportional to the transition probabilf | k cor-
responds to an electron moving from the emitter to the dia-
phragm, and’ to an electron moving from the diaphragm to
22 2g2 the collectoy. The collector current.(d) in such a situation
G=TTf(tt+)eF=T; 2 |t (8)[2. (1) oscillates depending on the diaphragm diameder The
k peaks on the.(d) dependencéFig. 3) correspond to quan-
The coefficients of transition matriby.: themselves contain tjzation levels of transverse motion of electrons in the region
more detailed information on electron scattering. of microconstriction. Moreover, it is predicted that contacts
In the present paper, we will show that the value ofyn 5 sharp geometry are characterized by a significant in-

2 . . .
|tw|* can be determined by a method similar to the method (o once contribution td., which is associated with the
of transverse electron focusitg realized in a two- ;
Aharonov—Bohm electrostatic effet.

dimensional electron gd§.1t was shown theoretically in
Ref. 19 that an analysis of the dependence of the collector
currentl ;. on the magnetic fieldd makes it possible to re-

construct the angular distribution of electrons leaving the

emitter. If we place a diaphragm between the emitter and the
1. TRANSITION MATRIX FOR A CONTACT WITH SHARP

GEOMETRY

We consider a model of a two-dimensional ballistic con-
tact in the form of a rectangular channel of widthand
lengthL, connecting two broad regioi3>d (Fig. 18. The
L, electron mean free pathis assumed to be larger than the
DH characteristic size of the contadt{L,d). We will describe
the propagation of an electron wave through the contact by
d,—+ the method developed in Ref. 4.

Let us consider an electron having an energy
£p= p2/(2m) and momentunp=7%k moving through the
contact (Fig. 1) from left to right (we denotek,=« and
ky=0). We can write the electron wave functioh, in the
FIG. 2. Schematic diagram of mutual arrangement of the contacts. form

a-—
T

' L‘l Ll
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The solution of the system of equatio(® can be ob-
tained only by numerical methods and requires a consider-
able computer time. However, Szafer and Sfamged simi-
lar calculations to substantiate a method of approximate
determination of coefficients,, andr,,, (the mean-field ap-
proximation), lying in the replacement of the exact expres-
sion for the coefficients,, by the approximate expression

([ Wi(x<0)=xq(y)exp(ixx)

+E Mk Xqr (Y)EXp(—ik'x),
k!

{ WO0<x<L)=2 gn(y)[ thn XRlixrX)
+r i exp—ikpx) ],

Wi(L<X)= 2 Tiger X (Y)EXP(i k' X).
<

)

)

d
ain=5 [6(a=dn-1) = 6(d=dns1)];
\ D
Here x4(y) and ¢n(y) are the transverse wave functions in In this case, the coefficients,, must satisfy the complete-
the broad band and in the channel, respectively, which argess conditior® ;aq,aqm= dam- It can easily be verified that
normalized to unity. The summation is extended to all theusing definition(7), we can assume to a sufficiently high

states  satisfying the energy conservation lawdegree of accuracy that

sp=sp,=sn+hzxﬁ/2m [in this paper, we do not consider Uns1

the effect of, the electrostatic potentia(d)]."* In addition, > KagnBqm= Onm > k=8,m(Ky+idy). (8
x>0 and «'>0. In order to define the coefficientsy,,, k 9=0n—1

Nen» Tk andry, we use the continuity of the wave func-

tion (2) and of its derivative fox=0 andx=L. After simple

Substituting(8) into (3), we can determine the coefficients
tyn @andr,,. Substituting the obtained expressions i,

transformations, we obtain the following system of equations o ~an find the expression for the coefficientg: in the

for the quantitieg,, andr,:

p
> ; K’ 8qinag | tm EXPi kL)
k/

+ I m exXp—ixgl) :Kn[tkn exp(iknl)
{ —Ign €XP(—ik,l) |,

z E K,aq’naq’m(tkm"' Mm)

k’ m

()

\ :ZKaqn_ Kn(ten=Tkn) -

Here aqnzfgdy)(q(y)qan(y) is the overlapping coefficient

for transverse wave functions. The solution of this system of

equations determines the coefficientg, :

7'kk’:e_iKle aq’n(tkneiKnL+rkne_iKnL)- 4
n
Calculating the quantum-mechanical currérnhrough a
contact with a voltageeV<er applied across the banks in
the standard way, at zero temperature, we obtain
2e? K’
Vv Ek > (k) 6(x") " | 7 2.

k=Ke Kk’'=kg

I= (5

Here 6(x) is the unit stegHeaviside function. Each term in

mean-field approximation:
N

T = 2, 2Knk@qndqnZy - eXp—ik'L—6,), (9
n=1
where
Zﬁ:4KﬁKﬁ+[(Kn+Kn)2+J§][(Kn_Kn)z
+32]sir(knL + @), (10)
tan ¢, =2J,kn(K2— K2+ 3271, (11)

23,k €OS kL) — (K2+ k2— J2)sin( kL)
2K, [k, cog kL) +J,, sin(k,L)]

(tan 6,) =
(12

Expression(9) shows that the amplitude of transmitted
wave (r) consists ofN terms corresponding to the exis-
tence ofN possible channels through a contact, namely, to an
electron transition to a certain conducting subband of the
contact(see Fig. 1b (for L/Ag>1, the contribution of at-
tenuating modes>N can be neglected The contribution
from each possible channel of the transition is proportional
to the product of the overlapping coefficierdgn,aq . It
should be noted that the mean-field approximati@nand
(8) can be applied only for solving the system of equations

expression(5) is the current passing through the contact(3)_ The quantityd, is the phase shift of the electron wave

upon a transition of an electron from the statén front of
the contact to the state’ behind it. Comparing the expres-
sion for the conductanc&=1/V obtained from(5) with ex-

during its passage through the contact in the subband with
the numbern. For deep energy levelgactually for
n<N-1), we have

pression(1), we can determine the relation between the ele-

ments of the transition matrik,. and the coefficientsy

defining the amplitude of the wave function after the passage

through the contact:

tkk’: \/K’/KTkk/ .

| 2

(6)
The quantity]ty-

intensity of the flux of electron in the stakeincident at the
contact.

237 Low Temp. Phys. 23 (3), March 1997

0,=—(1—(n\g/2d)?)Y2KeL. (13

The motion in the subband can be regarded as the mo-
tion in the region with the potential energy
en=(mnA/d)?/(2m). Thus, a multichannel analog of the
Aharonov—Bohm electrostatic effect is realized in this situa-

determines the intensity of electron flux tion.
in the statek’ after the passage through the contact for a unit

While calculating the value of quantities quadratic in
T [such as the curren®)], we encountered interference
terms associated with the splitting of the electron wave en-
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tering the channel and with subsequent interference of trangactort(«, 8) outside the integral sign if15) and using14),
mitted waves emerging from the chanf&te Fig. 1h Inter-  we can obtain the following expression for the voltage across
ference is possible in the absence of inelastic processdbe collector:

which destroy the coherent electron state, which we are as-

. d T T
suming here. Ve=IeRe ~—5 1+Cot(a+— 1+c0t(,8+— F,
Further, substituting9) into (6), we obtain an expression 16L1 4 4
for the quantitiedt,,|? in the form (16)
N N n-1 where a=gB=arccosl;V2ry)—a/4. Since k=Kkg cosa,
tuo|2= D Arlkk'a.a’, Z7242> D Akykmkk’ g=kg sina, k' =kg cosB, andq’' =k sin 3, we find that
e e e . the expression foE = Fy+ F; has the form
X Qg ndqma mZn *Zmcoq 6, O,). (14) N
o manamane e o Fo= 3, 2éx2kEZ,2¢(n,n). (17)
The first term corresponds to the additive contribution of the n=1
conducting subbands to the transition probability, while the N n-i
second is the interference term. Its sign is determined by the  _ 4 K2Z-17-1 o (n.m)cog 6. — 0
difference in the phase lead in different subbands as well as ' nEZ &y A8KnknkE Ly L #(N.M)COS by~ bm).
by the phase jump at the entrance and at the exit of the (18

channel, i.e., by the signs of the quantitags, .
In the next section, we will consider the schematic dia-
gram of an experiment which makes it possible to determinavhereé = 2d/\¢ ; x, = k(1 — (n/£)?)? and

the CoefﬁCier":étkk/|2 directly. van Sir[ﬂ_g(sin a—sin an)]

an(a)=—mp - - , (20)
si? a—sir?

2. COLLECTOR CURRENT IN THE PRESENCE OF A e @ %n

QUANTUM DIAPHRAGM wherea, = arcsin (\g/2d).

@(n,m)=an(a)an(a)a(B)am(B)cos a cos B, (19

Let us consider the ballistic propagation of electrons
from the emitter to the collector separated by a diaphragm in pEPENDENCE OF THE COLLECTOR CURRENT ON THE
a weak magnetic fielgsee Fig. 2 The diaphragm was in the pjAPHRAGM DIAMETER
form of a quantum contact with the elements of transition
matrix t,,., , while the collector and the emitter were classi-  Figure 3 shows the dependence of the quarktityhich
cal point contacts. When the currelptwas passed through appears in expressio(i6) and which defines the voltage
the emitter, a fraction of nonequilibrium electrons scatteredc across the collectofor the collector current;=V¢/R.)
by the diaphragm reaches the collector creating the collectd?n the diaphragm diameteir The presence of peaks on the
current!, (we assume that electrons cannot move directlyl <(d) [accordingly, V¢(d)] dependence is mathematically
from the emitter to the collector For the mutual arrange- due to the vanishing of the denominator of the overlapping
ment of the contact shown in Fig. 2, the expression for theoefficienta,(«) (20). The physical origin of these phenom-

collector current can be written in the form ena is as follows. The quantitp,(a) has a peak for
a= a,, which corresponds to the coincidence of transverse
|c:|efaldajﬁld,3 cosa cosBlt(a,B)|2 (15 Wwave vectorgy,=7n/d in the contact(in the nth subbany
ap B2 and q=kg sin« outside the contact. A change in the dia-

_ ) phragm diameted leads to a change in the position of quan-

Heret(a, ) = (D/\e)tuc; tization levels in the microscopic constriction, and the con-
ay ;= arcco$[ 1+ (1Fd/2L )2V /2r ) — arcco$[ 1 dition q=q,, is observed for a certaiti=d,,. At this instant,

(AT d2L,)?] 1 the resonant mode of electron passage through the microcon-
1 ' striction is realized in thath subband, leading to an increase

B1,=arcco§[1+(1F do/2L )21V ,/2r 4} —arcco$[ 1 in the collector current. The positions of the peaks are deter-

B mined by the expression

+(1Fd./2L,)%] Y3,

2L 4 is the separation between the contactss cpe/(eH) is d,

the cyclotron radius, and andd. are the diameters of the

diaphragm and the collector, respectively. We assume that The fine structure of the peaks is associated with two

the following conditions are satisfieldr; > L; > d; d.>d  effects: the intraband and interband interference. The inter-

= A (d; is the diameter of the emitter ference of electron waves in a conducting subband is associ-
In experimentgsee, for example, Ref. 18the voltage ated with “backward” scattering at the channel edges, which

V. which must be applied to the collector for the total col-is responsible for multiple passage of the electron wave

lector current to be equal to zefq.—V./R.=0, whereR.is  through the region of microscopic constriction. This effect is

the resistance of the collecids usually measured. It should described by the quantity, (10) in expressiong17) and

be noted that in the case of a linear resporeé.e¢), the  (18) and is manifested in the form of a resonant structure on

value ofl, does not depend on the voltage across the collecthe G(d) dependence for contacts with a sharp siapeA

tor. For a small value of the ratid/L, andd./L,, we can peculiar feature of this effect is that the resonant structure is

Ne N
T2 sina’

(21)
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FIG. 4. Collector currentl~F) in the case of large diaphragm diameter
for «=B=60°, L/Ng=5. The dashed curve corresponds to the quantity
Fo (17). The curves are compressed along the vertical by a factor of 3.

determined by the contribution from the upper conducting
subband alone since thé,(d) dependence is smooth for

n<N. It follows from (21) that the numben of a resonant 2F I-B
level is connected with the numbBi=[2d/\¢] in the con-

tact through the relatiodl=[n/sin a] (the brackets indicate F1
the integral part of a numbgert can be seen from Fig. 3 that 0 VS \/\/_‘/\/\
n=N for a= /2, i.e., the main contribution to the collector

] 1

current comes from the upper conducting subband; for this .
reason, the peak is strongly jaggé€r L/d>1). As the 3 4 5 6 7

anglea decreases, the peak is smoothed since the main role 2d/Ng

is played by deeper energy levels.

The ConmbUt_lon of interband |n’Ferferen§:e t.O th_e C(_)”eC-FIG. 5. Dependence of the collector curremt~F) on the diaphragm
tor current is defined by Eq18). This contribution is sig-  giameter fora==60°, L/xz=5 at various temperature¥=0 (a) and
nificant when a large number of subbands in the microconT=0.0ls¢ (b). The curves are displaced along the vertical by 0.1 and 3 rel.
striction are conducting. However, forx=1/2, this units, respectively, and compressed by a factor of 3.
contribution is insignificant since the separation between
guantization levels in the vicinity of the upper conducting
subbandwhich determines the main contribution to the cur-
rent in the given caseis large, and the product We have considered the conductivity of a ballistic mi-
an(@)ay(a)(n # m) is small. Figure 4 shows the depen- croscopic structure consisting of an emitter, a collector, and a
dence of the quantitiefs, F, andF; on the contact diameter quantum diaphragm. It is shown that the current in such a
in the regiond>\g/2. It can be seen that the contribution system oscillates with a change in the diaphragm diameter.
from interband interference processes considerably affecthis is due to the resonant passage of an electron through the
the shape of the curve. microconstriction in the case where the transverse momen-

In the regiond~\¢/2, the peculiarities associated with tum of an impinging electron coincides with the momentum
the two effects are superimposéfig. 5. If, however, we  corresponding to one of the quantum energy levels in the
take into account the effect of temperatdrgei.e., microconstriction.

It should be noted that the contribution from electrons
reflected from the confining surfaces is not taken into ac-
count in expressiofil5). This contribution is small in weak
magnetic fieldgis absent foH =0) and is manifested in the
[f(e,T) is the Fermi distribution functiop the peculiarities form of a smooth background on th&(d) dependence.
associated with the intraband interferences are smoothed The scattering of an electron wave at the entrance and
even forT=0.01s¢ (Fig. 5. the exit of the microconstriction(*forward” scattering

CONCLUSIONS

|tkk’(T)|2:_fde,(eaT)|tkk’(8)|2 (22

239 Low Temp. Phys. 23 (3), March 1997 M. V. Moskalets 239



leads to the emergence of a coherent state corresponding . Kirczenow, Phys. Re\B39, 10452(1989.
the passage of the contact over all Conducting subbm 6]. B. Levinson, Pis'ma Zh. Esp. Teor. Fiz48, 273(1988 [JETP Lett48,
Fig. 1b. The interference of transmitted waves affects the 301 (1988].

. . L. Escapa and N. Garsia, J. Phys. Condens. Mat{e2125(1989.
collector currenfsee(18)]. In this case, the phase shift of the s - "o Marel and E. G. Haanappel, Phys. FR89, 7811 (1989

wave §,=—L(ki—(mn/d)?)* is different for different 9 m. zagoskin and I. O. Kulik, Fiz. Nizk. TempL6, 911(1990 [Sov. J.
subbands and depends on the contact diantet&his effect Low Temp. Phys16, 533(1990)].

is a multichannel ana|og of the Aharonov—Bohm e|ectr0_lOL. I. Glazman, G. B. Lesovik, D. E. Khmel'nitskii, and R. I. Shekhter,
static effect Pis'ma Zh. Hsp. Teor. Fiz48, 218(1988 [JETP Lett.48, 238 (1988].
" 11

. . . . A. Kawabata, J. Phys. Soc. J@8, 372 (1989.
We have investigated a diaphragm with rectangulazy \ ‘vioskalets, Pisma zh. Esp. Teor. Fiz62, 702(1995 [JETP Lett.

edges. Collector current oscillations should be present, how-g2, 719(1995].
ever, in the case of an adiabatic contguaying the role of a  **M. Biittiker, Y. Imry, R. Landauer, and S. Pinhas, Phys. R&$1, 6207
diaphragm also. The only difference lies in the absence of (1985.

. - b . . 1A, Yacoby and Y. Imry, Phys. Re\B41, 5341(1990).
interference contributions, which is manifested in a smoothe[SA. M. Zagoskin and R, I. Shekhter, Phys. R@E0, 4900 (1994,

shape of the peaks. 18E. Castano and G. Kirczenow, Phys. RBM5, 1514(1992.
17y. S. Tsoi, Pis'ma Zh. Esp. Teor. Fiz19, 114(1974 [JETP Lett.19, 70

LY. Imry, in Physics of Mesoscopic Systems: Directions in Condensed Mat- (1974].
ter Physics(ed. by G. Grinstein and G. Mazen¢aVorld Scientific, Sin-  *®H. van Houten, C. W. J. Beenakker, J. G. Williamsanal, Phys. Rev.

gapore(1986. B39, 8556(1989. i
2B. J. van Wees, H. van Houten, C. W. J. Beenaldteal, Phys. Rev. Lett.  '°M. V. Moskalets, Pis’'ma Zh. Esp. Teor. Fiz63, 604 (1996 [JETP Lett.
60, 848(1988. 63, 639(1996)].

3D. A. Wharam, T. J. Thornton, R. Newbust al, J. Phys.C21, L209 20y, Aharonov and D. Bohm, Phys. Ret15 484 (1959.
(1988.
4A. Szafer and A. D. Stone, Phys. Rev. L2, 300(1989. Translated by R. S. Wadhwa

240 Low Temp. Phys. 23 (3), March 1997 M. V. Moskalets 240



Experimental and theoretical study of the optical properties of crystalline and
amorphous TiSi , films

V. N. Antonov, Yu. V. Kudryavtsev, Yu. N. Makogon, V. V. Nemoshkalenko,
A. Ya. Perlov, and T. T. Silakova

Institute of Metal Physics, National Academy of Sciences of Ukraine, 36 Vernadsky str., 252680 Kiev-142,
Ukraine*

(Submitted June 17, 1996; revised July 30, 1996

Fiz. Nizk. Temp.23, 327-333(March 1997

Optical properties of amorphous and polycrystalline Tiims have been studied experimentally

in a wide spectral range (0.5-5.0 eV). The structures in the optical conductivity spectrum

of polycrystalline TiSj sample are explained on the basis of comparison of the experimental data
and the calculated data. Theoretical spectra were obtained within the local-density
approximation using the semirelativistic linear-muffin-tin-orbital metfoBITO). It is shown

that the transition of crystalline Tigto the amorphous state leads to significant changes

in the optical properties. €997 American Institute of Physid$§1063-777X97)01103-1

1. INTRODUCTION spectra of the optical conductivity tensor components are
presented, discussed, and compared with the calculated ones.
The compound TiSiis a representative of refractory
metal silicides, which are growing in popularity because of;. cRYSTAL STRUCTURE AND COMPUTATIONAL DETAILS
their use in large-scale integrat€WLSl) technology. Be- o ) ) ) )
cause of its high conductivity, high-temperature stability, and ~ 11>l2 crystallizes in two different orthorhombic phases:
resistance to degradation, TiS6 a promising material for e metastable base-centered struct(Ca9, space group

use as gate electrodes and interconnectors. It would be natGM¢M and the equilibrium face-centered structu@54,
iagpPace groug-ddd). Both phases have two TiSformula

units per primitive cell. The lattice constants are3.62 A,
J1=13.76 A, andc=3.605 A (Ref. 2 for the C49 phase and
a=8.236 A,b=4.772 A, andcc=8.516 A for theC54 phas¢€.
b'[he Brillouin zones(BZ) for C54 andC49 structures are

features of their electronic energy structygeEsS.

The first stages of most of the technological processes
growing of the disilicides involve formation of metastable
amorphous phases of corresponding compounds. Equili Lo )
rium stoichiometric crystalline disilicides are formed as ashown in Figs. 1 and 2, respectively.

result of annealing of the metastable amorphous phases. It is | V\llet. perfor][nfhd f|r|st-;§r|nc_|ple£s, stelf—con§|ste§1ﬁD,Al_)MTo
interesting to study the influence of the transition of the crys—Ca culations of Ihe electronic Swucture ‘using the -
ethod, including the so-called combined correction t&tm.

talline phase to the amorphous phase on the EES of titani . 2 " . .
ine p phous p franid detailed description of the LMTO method, including its

disilicide. . .
application to the electronic structure of compounds, has

It is well known (see., e.g., Ref.)lthat optical spectros- . . )
copy is a sensitive tool for study of the EES of solids. Thebeen given elsewhefé. We only.glve some detglls Of. t.he'
alculations here. The calculations were semi-relativistic,

practical use of this experimental technique is complicateife all relativistic effects were taken into account except for
by the difficulties in interpretation of the experimental spec-,; """ . . . P!
. . . . the spin-orbit coupling. The angular momentum expansion
tra. To reveal the main features in the formation of the opti- . . oo
o . of the basis functions was up te-3 for titanium and =2 for
cal spectraab initio calculations of the band structure and . . . ) .

. L . . silicon The Tif orbitals have a minor effect on the energy
optical conductivity spectra of crystalline TiShave been bandsEX: however, it is necessary to include them, because
performed using the self-consistent, scalar-relativistic LMTO e ' Y '
method within the local spin-density approximation. Such thed—f oscillator strength usually is much larger than that
combination of experimental and theoretical approaches o p—d or s—p transitions. Thek integrated fun;tlons
. L . . were evaluated by the tetrahedron metffodn a grid of
investigation of the electronic structure of solids also opens

new possibilities to study EES of the disordefedy., amor- mhore than étl)OO<dpom:js 't:] the |rredl_JC|bIe part of BZ. ITrOIIn d
phous solids. the energy bands and the LMTO eigenvectors, we calculate

In this paper we study the optical properties and electotal and orbital () projected DOS functions and the optical

) . 2 functions(R, o, £,, ande,).
tronic §tructure of am_orphous and crystalline FjSboth The energy band structures of TiSor C54 andC49
theoretically and experimentally.

. . : . structures are shown in Figs. 3 and 4, respectively. The
This paper is organized as follows. Theoretical back- 9 P g y

ground and methods of calculation of the band structure anggree well with previous results of Mattheiss and Hersel.
frequency dependence of the conductivity tensor are reé CALCULATED OPTICAL PROPERTIES
viewed in Sec. 2. Calculated optical propertiesG¥4 and '

C49 phases of TiSiare described in Sec. 3. In Sec. 4, the  The linear response of a system to an external electro-
experimental details are briefly described and the measuradagnetic field in the long-wavelength limit is determined by
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C54

FIG. 3. Self-consistent energy-band structure and total density of states
N(E) [number of stategtell-eV)] for the C54 phase of TiSi

FIG. 1. The Brillouin zone for th€54 phase of TiSi

Having evaluatedl), we calculate the real part of the
the imaginary parts ,(w), of the complex dielectric function dielectric functione(w) using the Kramers-KronigKK)
‘e. We have calculated the dielectric function for frequenciegelation
well above those of the photons and, therefore, we consid- ("2 2 (0" o' do’
ered only electronic excitations. We used the random-phase  gv7(g)=1— P~ 4+ = pf g2A® O 7O

approximation and disregarded local-field and finite life-time w® ™

effects* The dielectric function is a tensor. However, by anhere P stands for the principal value. The second term of
appropriate choice of the principal axes we can diagonalizgnjs equation describes the intraband contribution to the

it, which aIIows.us to consider on'ly the diagonal.ma.trix ele-¢. (w). We disregard this contribution ,( ) according to
mentse”’(w) with v=x,y,z. The interband contribution t0  the perfect-crystal approximatidthe defects and lattice os-
the imaginary part of the dielectric function is given by cillations are absent

g 22 Unoce oo The plasma frequency is given by

> > fBZ|P:n,<k>|25<Eﬁ—EE,

R (2

w —w

gy (w)=

m2w2 ’ ’ € 2
men <w”>2=(— S | auoEyraE-g). @
&K P mh) % Jez

—fhw) 2mn® D We also calculated the optical conductivityw) and the

, . o _ reflectivity R(w) using Egs(1)—(3) and the relations
where P, (K) is the projection of the momentum matrix

elements (k) along thev direction of the electric fieldE, U(w):is (@) 4
andEK are the one-electron energies. 4o T30
and
2
-1
: R(w):‘@ ®)
C49 Je+1
4
] M C49
B B') 4 —
- 4
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FIG. 4. Self-consistent energy-band structure and total density of states
FIG. 2. The Brillouin zone for th€49 phase of TiSi N(E) [number of stategell-eV)] for the C49 phase of TiSi
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FIG. 5. The calculated(w) (a), £1(w) (b), £2(w) (c), and reflectivity(d) spectra for theC49 andC54 phases of TiSi

We first calculate directly the imaginary part of dielec- peak in the low-energy part of the specttias ~ 0.2 eV and
tric function(1) in a wide energy range from 0 to 30 eV. The £, ~ 0.34 e\). Both maxima originate from the transitions
real part of the dielectric function and the other optical func-from the 12th to 13th energy band. The maximumfat
tions were then calculated using the above formulas. Figure. 5 5 ov/ exists only foiElla and comes from the 1213
5a shows the optical conductivity of TiSfor three light transitions. There are three peaks in the energy range at

polarizationsE|a, Ellb, andE|c in the energy range from O ho ~ 3.2, 3.5, and 4.9 eV. These pronounced peaks for the
to 7 eV for the two phases. Both phases exhibit strong an- o . .
isotropy in the main absorption band, which is located in theoolanzatlonEllc are due to _the interband trans_|t_|ons»&4,
energy range 2.5 e¥hw<5.5 eV. This absorption is due to /14 and the superposition of the transitions-88,
the transitions from the strongly hybridizedstates of Siand 817, 7—16, and 9~ 19, respectively. _ _
d states of Ti in the valence band to the unoccupied states, N comparison with th€49 phase the optical absorption
primarily to Ti d-states which have an admixture pfchar- ~ of C54 phase in the infrared range is weaker. The gégat
acter. hw ~ 0.2 eV comes from the transition £412. Two broad
For the C49 phase all three polarizations exhibit a no- maxima atiw ~ 0.8 eV and 1.4 e\(ll) are due to the tran-
ticeable dispersion 0f,(w) and o(w). There is a double sitions(12— 13, 14, respectively. The peakll) for Ella at
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TABLE |. Parameters of the heat treatment and structure of, E&inples.

&
Film structure 7
No. of Annealing Gas according to x-ray or
sample temperature, K medium analysis ¥
Ao
1 293 (as depos. - amorphous ‘o” 2
2 770 vacuum amorphous -10 % : 3
3 770 hydrogen amorphous .’° o 4
4 870 vacuum amorphous t 34 a 5
5 1070 vacuum crystallin@49+ C54 -0l ° ° 6
6 1270 vacuum crystallin€54 °
-
1 1 i ]
0 1 2 3 4
how ~ 2.4 eV comes from the 9, 1013 transitions. In the Energy, eV

energy range 3 e¥fiw<4eV g,(w) for Elc exhibits a
double peak structure. The same peaks may be seen for thes. 6. Experimentat(w) spectra for amorphousamples 1-¥and poly-
other polarizations, but owing to optical transition matrix crystalline(samples 5 and)6TiSi, films.
elements their intensity is weaker. The maximum/#ab
~ 3.22 eV (IV) originates from the transitions 1016,
9—15, 914, 8-14, and 114 and one maximum at
ho ~ 3.8 eV comes mainly from the transition-815. There
is a wide maximuntV) atZw =~ 4.75 eV for all polarizations
originating from the 7-15 and 9- 15 transitions.

These structures ia,(w) and o(w) curves are reflected
in a rather complicated way in the;(w) and reflectivity
spectra(see Fig. 5¢ and 5d

and of films annealed under different conditions were studied
at room temperature in the spectral range 250-2 500 nm
(5.0-0.5 eV at a fixed incidence angle of 73° by the pola-
rimetric Beattie techniqu&

The experimentak (), £5(w), and o(w) spectra for
polycrystalline and amorphous TiSlilms are presented in
Figs. 6—8. The experimental;(w) and o(w) spectra for
x-ray amorphous TiSifilms (samples 1-Yare shown in
Figs. 8 and 9. We see that the experimental optical conduc-
4. EXPERIMENTAL PROCEDURE, RESULTS, AND tivity spectra for the crystalline Tigifilms, which were ob-
COMPARISON WITH THE THEORETICAL DATA tained by annealing at 1270 Kamples § have the same
structures, and are situated exactly at the same energies, but
étgey have lower intensities. According to Ref. 12, this de-
crease of the optical conductivity is caused by surface oxi-
dation. Because sample 5 has a cleaner surface, it will be
ﬁsed as a crystalline sample for further discussion. The ex-

TiSi, films with total thickness of 300 nm have been
prepared by magnetron sputtering of the corresponding targ
onto the(111) monocrystalline Si substrates at 620 K. The
target for sputtering of Fiz35ip 57 CONteNt was prepared by
means of a powder metallurgy technique—cold pressin
with subsequent sintering. The background argon pressu

. -y | 71 P h . ’ )
during deposition was 5.0 a and the deposition rate near 3.9 eV, and some featur@bsorption peaksin the

was 0.33 nm per second. According to structure analyses, t ow-energy shoulder, which are marked by arrows and letters
as-deposited films were in the amorphous state. To form the ™ _ T :
P P ﬁ B, C, andD (see Fig. 8 There are two possible expla-

stoichiomentric polycrystalline Tigifilms, annealing at dif- . . : ; e
ferent(770—1270 K temperatures was carried out in vacuum nations for the s.trong' increase in the optical conductwﬂy in
or in flowing hydrogen. The duration of the heat treatmentthe near IR. reg|or_1A IS a shoulde_r of an absorptlon peak,
was 0.5 hour. In this work we obtained and investigated avvhose maximum is siuated outside the experimentally in-
series of TiSj samplegsee Tablg
The structure and phase composition of the as-deposited

and annealed Tigfilms were studied using x-ray diffraction 2
in Cu K, andK radiation. It was shown earli€rthat the -

*
*
gas media influences greatly the kinetics of the amorphous- 5ol ’.
°0
CJ

erimental optical conductivity spectrum for polycrystalline
iSi, film exhibits a strong absorption peak with maximum

sample

to-crystalline phase transition and the perfection of the crys-
talline structure. The common feature of these processes is -
that annealing in vacuum leads to a total crystallization with 30k
a lower rate and at a higher temperature than in thenkd-
dia. It is necessary to note that after annealing at 1070 K in [
vacuum (sample % the crystalline film consists mainly of 10+
equilibrium, orthorhombic face-centered54-phase and a
small amount of metastable orthorhombic base centered 0
C49 phase. After annealing at 1270(Kample 6 only C54

is presented in TiSifilms.

The optical propertiegthe reale; and imaginarye, FIG. 7. Experimentat,(w) spectra for amorphousamples 1-¥and poly-
parts of the dielectric functigrof the as-received Tigfilms crystalline(samples 5 and)6TiSi, films.

Energy, eV
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FIG. 8. Experimentab(w) spectra for amorphousamples 1-#and poly-
crystalline(samples 5 and)6TiSi, films. The curve for sample 5 is shifted
up to 510 ¥s ! and the curve for sample 1 is shifted down to
5.10 gL
vestigated spectral range. This conclusion agrees with the ENaY
results of the theoretical calculations. The other explanation e——-Elb
is thatA is an intraband Drude-like contribution to the opti- | &/ .. N
cal conductivity spectrum of the crystalline TjSiThe be- /
havior of thes;(w) curve in this region suggests that there 0 l l L
exists a considerable intraband contribution to the optical 2 4 6 8

conductivity in the NIR region of the spectrum. This conclu- Energy, eV

sion is confirmed by the results .Of th? I‘eSIlSZtIVIty measure_FIG. 9. Comparison of the experiment&) and calculatedb,0) o(fiw)
ments of amorphous and crystalline Tislims™ and by the o0 .5 of Tis;
absence of a noticeable intraband contributioa(®) for the
amorphous as-received film.
The overall shape of the optical conductivity spectrum ofThese effects are in good agreement with the theoretical data
the polycrystalline TiSi film is in good agreement with the (see Fig. 9b,c
results of the theoreticalb initio calculations; however, the A noticeable shift of the main theoretical peak from its
experimental spectrum is slightly shifted to the low energiesxperimental position & 0.8 eV) may arise from the failure
by 0.8 eV(see Fig. 5 We can therefore relate the absorption of the local density approximation. Another reason may be
peakA in the experimental spectrum to the absorption bandhe inadequate averaging procedure. Figure 9¢ shows the the-
| in the theoretical spectrum, peadB—to peak IlI, peak oreticalo(w) for theElc. As can be seen, these curves agree
C—to Ill, peakD—to IV, and peake—to V and the corre- much better with the experimental curves.
sponding electron transitions. As was mentioned above, we studied four x-ray amor-
To compare theoretical and experimental data we simuphous sampleésamples 1-#
lated the lifetime effects by broadening the calculated spectra The loss of the translation invariance in the amorphous
with a Lorentzian of width6=0.1 eV, whereé is the in-  state leads to noticeable changes in the optical properties of
verse relaxation time. Since the experimental samples ar€iSi, (Figs. 6—8: significant decrease in the intensity of
polycrystals, we carry out the averaging of all three polarizapeakE in the o(w) spectrum and its shift to the lower ener-
tions. Naturally, such averaging ignores the possibility thaies side; considerable changes become apparent in the
experimental samples may possess some texture. e,(w) spectra aliw < 2.0 eV. It should be noted, however,
Figure 9a shows the experimental optical conductivitythat all the features which are typical of the optical conduc-
spectra for the pur€54 phase and for the mixture @54  tivity spectrum of the polycrystalline Tigifilms are shown
andC49 phases. It is easy to see that the admixtur€4® in the o(w) spectrum for amorphous as-received Fifim.
phase to th&€54 phase leads to an increase in the absorptiohis means that the short-range order inherent to crystalline
in the IR range of the spectrum. In addition to this increaseC54 phase does not change significantly on transition to the
the main absorption peak diminishes and shifts to the leftamorphous phase.
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The heat treatment of amorphous Ti8ims at 770 and  of the short-range order in both phases are conserved.
870 K in vacuum leads to certain changes in their optical 3. Simultaneous analyses of thg{w) and o(w) spectra
properties in the comparison with as-received amorphoumake it possible to record slight changes in the short-range
sample. These changes are as follows: the high-energy wideder in TiS} films, which are caused by heat treatment.
maximum in theo(w) spectrum located at 3.0-3.4 eV is 4. Gas media influence strongly the kinetics of
shifted to higher energies by about 0.5 eV and is split inttamorphous-polycrystalline transition and the quality of the
two distinct maximap andE on curves?2 and3. Even more  surface of the film.
pronounced influence of the heat treatment is manifested by . o o
the &,(w) spectra, especially in the near IR regi@ee Fig. _ Th_e research described in this publication was mad_e pos-
6). Of the TiSj, amorphous films which we studied sample 3, S|b_le, in part, by_Grant No. U42200 from the International
which was exposed to a heat treatment at 770 K in flowing>ciénce Foundation.
hydrogen, must be set aside. We recall that this is an x-ray
amorphous sample. We séf€igs. 6 and & however, that its  *£_mail: anton@d24imp.kiev.ua
optical properties strongly differ from the other amorphous
samples. Moreover, the overall shapes of i) and
e1(w) spectra of sample 3 are very similar to those of thelB' P. Voznyuc, R. Gontarz, J. Dubowik, Yu. V. Kudryavtsev, and N. A.

. . . . Lesnik, Fiz. Tverd Tel&82, 694 (1990.

crystalline samples. Thls_ reS.UIt Conflrms_the conclusion Of2W. B. PearsonA Handbook of Lattice Spacings and Structures of Metals
Ref. 12, that the annealing in the, Hnedia allows us to and Alloys Pergamon, New York1967, Vol. 2.
obtain better crystalline structure in TjSilms with a shorter L. F. Matheiss and J. C. Hencsel, Phys. Re\8® 7754(1989.

4 i
annealing time. Thus the amorphous Ti8ims, which are Y- Barth, and L. Hedin, J. Phys. & 2064 (1971.
9 P b 50. K. Andersen and O. Jepsen, Phys. Rev. 1581.2571(1984; O. K.

|nd|st|ngU|shabI¢ by the tradltlon.al X-ray strgctural analy§|s, Andersen, Z. Pawlowska, and O. Jepsen, Phys. R4, B253 (1986.
possess essentially different optical properties. These differso. K. Andersen, O. Jepsen, and D. &, in Highlights of Condensed-
ences, in our view, are caused by S||ght differences in the Matter Theory F. Bassani, F. Fumi, and M. P. Tdsids), North-Holland,

short-range order of different amorphous states, which Can-7u/e""RYfrkLglrSS?e'cht and O. K. Andersen, Phys. Re\a 3438(1986

not be determined by the traditional techniques. 80. K. Andersen, Phys. Rev. B2, 3060(1975.
9H. L. Skriver, The LMTO MethodSpringer, Berlin(1984.
5 SUMMARY 10(Pl.9IS—:;;DB['cchI, 0. Jepsen, and O. K. Andersen, Phys. Rev93 16223

1. Polycrystalline-amorphous phase transition in JiSi EH Ehrenreich and M. H. Cohen, Phys. R&l5 786 (1959.
films leads to significant changes of the optical properties. ~ = E; Kachurina, Yu. N. Makogon, and S. 1. Sidorenktetally, No 2, 67
2. On the basis of the similarity of the main features of1s; g geattie and G. K. Conn. Philos. Me.235 (1955.

the. optical CondUCt.iVi.t_y .SPGCtra for amorphous a_nd POlyCryS-his article was published in English in the original Russian journal. It was
talline phases of TiSiit is concluded that the main features edited by S. J. Amoretty.
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The excited triplet states of shallod+traps in neat single crystals of 4;dichlorobenzophenone

were studied at liquid helium temperature by luminescence spectroscopy and magnetic

resonance with optical detection. The vibrational phosphorescence bands, the polarization of
phosphorescence spectra, and the triplet zero-field splitting parameters of these traps have been
analyzed. A specific model of the structure def@cmolecule is turned by 180° on its long

axig has been considered in organic crystals of benzophenone type which consist of molecules
whose dipole moments compensate each other in a unit cell. The calculated depth of such

a dipoleX-trap for triplet excitons in 4,4dichlorobenzophenone crystals at the account of a defect
molecule relaxation upon its slewing was found to be comparable with the experimental one.

© 1997 American Institute of Physid$$1063-777X97)01203-4

1. INTRODUCTION 2. EXPERIMENTAL

The electron excitation energy transfer by excitons in 4,4 -dichlorobenzophenone was recrystallized and zone
real organic crystals can be interrupted because of the exisefined. Single crystals were grown by the Bridgman
tence of trapping centers. Those centers are formed by thmethod. Plates about 1 mm thick were cleaved along the
structure defects and impuritié$.In pure crystals the trap- bc-plane for measurements. Measurements were carried out
ping centers, the so-calletttraps, are mainly attributable to in a liquid-helium cryostat at 1.4 and 4.2 K. The crystals
the lattice imperfection$.Of great interest is to study the were excited with the emission of a 500-W mercury-
nature ofX-traps. In organic crystals consisting of moleculesdischarge lamp which was filtered at 366 nm. The phospho-
with a large dipole moment the structure defects can induceescence was monitored at right angles to the excitation path
the appearance of so-called dipole trips. with a double-grating, 0.8-m DFS-12 scanning spectrometer.

In the present paper we will examine the nature of  The spectral slit widths of the spectrometer were 0.5
X-traps of a 4,4dichlorobenzophenonéDCBP) molecular cm™ 1. Signals were detected by a cooled FEU{39) pho-
crystal (the molecular and crystal structuté€sare shown in  tomultiplier in a standard photon-counting scheme with long
Fig. 1) by luminescence spectroscopy and magnetic rescsignal averaging. A similar optical scheme was used to
nance with optical detectiofODMR). We studied the low- record the magnetic resonance spectra with optical detection
temperature phosphorescence spectra and their polarizaticfQDMR) in the zero field. The crystals were placed in a helix
as well as microwave transitions between spin sublevels ofvhich was connected to a microwave sweep oscillator oper-
the excited triplet states of-traps in a zero magnetic field. ated at 1-6 GHz, 5 mW, via a coaxial line. The positions of
A particular model of the structure defect is studied in or-resonance frequencies were determined within accuracy of 3
ganic crystals which consist of molecules with a dipole mo-MHz. For polarization measurements the phosphorescence
ment. The electronic levels of the correspondiyraps are  was analyzed with a film polarizer and a depolarizer was
calculated. placed in front of the spectrometer entrance slit.
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FIG. 1. The arrangement of 4dlichlorobenzophenone molecules in a crys-
tal unit cell C5
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3. RESULTS AND DISCUSSION

Phosphorescence spectra
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The DCBP crystal phosphorescence spectra at 1.4 armlG. 3. Phosphorescence spectra of a'-@i¢hlorobenzophenone single
4.2 K are shown in |:|g 2. The spectral pOSItIOI’l of the 0—(crystal at 1.4 K: 0-0 bandsolid curve, top axis of the abscigs@-1 bands

band of the triplet exciton emission’iz=24 245 cm?!
(wherew is wavenumber The exciton origin of the band is

(dashed curve, bottom axis of the abscissa

confirmed by the temperature measurements: In contrast with

the exciton emission, the emission of shall@wraps is ab-
sent at 4.2 K due to detrapping to the exciton b&he inset

the polarization within the accuracy of 3° the defect
molecule dipoles are directed along the crystallographic

in Fig. 2). The same vibronic structures of the exciton phos-b axis.

phorescence and of the tragBig. 3) serve as the most

convincing evidence which confirms that the radiating traps

for triplet excitons are th&-traps In each case the vibronic
mode at 1670 cm', which is characteristic of the carbonyl
groups® gives rise to the progression. Since the triplet

ODMR spectra in the zero field of excited triplet states of
X-traps at 1.4 K

Absolute values of the triplet zero-field splittingFS)

emission is strictly polarized along the carbonyl axis andparameters D and®Hor different traps(Table ) were de-
along the crystab-axis? the polarization of triplet emission fined using the experimental resonance microwave frequen-
bands ofX-traps were studied in order to define possiblecies (Fig. 4). It can be shown that because of the way in
deviation of the carbonyl axis of defect molecules from thewhich the molecules are packed in the DCBP crystal lattice,
crystalb-axis. A thorough study shows that while measuringthe triplet exciton ZFS parameters nearly coincide with the

1,2 5
! 0.02
v
2 0.01
c
=_ 0,8 - t
‘g 24 200 ,'\24 250
- : 2 I
g 0,4 ’ ' 5
8 O4r ; 0 4 9
= : ro @
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FIG. 2. Phosphorescence spectra of a'-@jéhlorobenzophenone single A
crystal at 4.2(solid curve and at 1.4 K(dashed curve The inset scale up
the phosphorescence spectrum at 4.2 K in close vicinity to the 0—0 band o€

triplet exciton emission.
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molecular parameters. Our resonance frequencies for traps
are close to those for excitof3As is well known® splitting

of the excited triplet in the zero field reflects the electron
density distribution over a molecule and therefore is an indi-
vidual feature of a molecule. As can be seen from Table |,
the ZFS parameters for different radiation centers are similar.
It can therefore be stated that shallow trapping centers in the
crystal under study arg-traps. It was shown earlier that ZFS
parameters are fairly sensitive to the distortion of the shape
of such nonrigid molecules as benzophenori&n the basis

of our data it can therefore be inferred that rotation and

TABLE I. Resonance microwave frequencies ( v,) and ZFS parameters
(ID| and|E]) in the excited triplet states of 44lichlorobensophenone single
crystal X-traps(A—trap depth.

D E A
v " o] E
GHz cm?t
3.687 5.129 0.14843 0.02447 16
B 3.722 5.127 0.14897 0.02365 37
3.662 5.060 0.14683 0.02353 65
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molecule in the cell. Let us label the defect molecule by
D] - €] iD| + |E| O0a® (=0, a=a").

The trap depth due to the electrostatic interaction can be
calculated as
‘\ EgP.=Dg,.— DI, (6N

whereDg,- is a change in the energy of the dipole-dipole
interaction of a defect molecule with the remaining mol-
ecules following electronic excitation, ar2i®® is a similar
value for a nondefect molecule. In the calculation we took
into account that the dipole moment is localized at the car-
bonyl C=0 bond and that at the reorientation the dipole
position characterized by the vectgy,- changes to the vec-

Ly L tor p,.. We can then write
3.5 3.7 39 5.0 5.1 5.2

w°

Intensity

A
B
C

F3
~

Frequency , GHz DIP= > V(AP,: ,lo4iPg.Fmp), (2
mpB+#0a®
FIG. 4. ODMR signals in the excited triplet states of differatraps in a
4,4 -dichlorobenzophenone single crystal at 1.4 KD|-|E| and Do o= 2 V(= AP, 1
|D|+|E]microwave transitions for A, B, and C traps, where D and E are the 0a® miT0a® a®r’0a®s
ZFS parameters.
P00 Pg 00 1P mp)s €)
displacement of a molecule in a crystal are responsible fowhere
the structure defects which lead to the appearance of 1 (P,P,)
X-traps. V(Py,r1;Por2)= —r——73
el[ri—ra
Model of the dipole X-trap _ 3(Py[ry— rZ])(PZS[rl_ ral) ()
[ri—rol '

The dipole moments of individual molecules in a DCBP
crystal are directed along the carbonyl axes. They are comHere AP, is an additional dipole moment which a molecule
pensated for a unit ce{Fig. 1), and the dipole moment of a with a numberx gains at the transition to the excited state,
unit cell is zero. is the crystal static dielectric constant, and the vectgy

Let us consider a simple model of a structure defect: Apasses through the dipole centers of all the nondefect mol-
nondefect molecule is turned on the carbonyl axis by 180%®cules. The coordinates of nondefect molecules are taken
and is then reflected in the plane that passes through ttfeom data of the known crystal structure of DCBP.
centers of molecules phenyl rings and normal to the crystal- It can be shown that the calculated values of trap depths
lographicb-axis. Thus, the dipole moment of a defect mol- are strongly dependent on the relaxation position of a defect
ecule is fixed opposite to that of a nondefect molecule. Thenolecule. The relaxation position was determined by the
reorientation of the defect molecule dipole leads to a changatom-atom potentials. To determine the minimum energy,
of the interaction energy with the remaining crystal mol-the defect molecule is moved in three directions along the
ecules. As a resuliX-traps for an exciton appear. The struc- crystallographica, b, and c-directions and is rotated about
ture defects of the above type were detected experimentallhe carbonyl axis of the €0 bond. The surrounding mol-
in dibenzfuran crystal¥ The trap depth was calculated in ecules are regarded as fixed molecules. In the relaxation po-
accordance with the theory developed in Ref. 4, taking intcsition a defect molecule is displaced by the ve®awith the
account the defect molecule relaxation. coordinates 0.164% 0.064b, 0.272k, wherea, b, andc

Let us consider the traps for triplet excitons. Bands forare the lattice constants, and the molecule is rotated about the
such excitations are quite narraie.g., the width of one of carbonyl axis by about 3° with respect to the initial position.
the triplet exciton bands in a DCBP crystati8 cm ®. It It was used for the calculations of the distribution of charge
can therefore be assumed that the electronic excitation i®r a benzophenone molecuté.
localized at a separate molecule. Since a DCBP molecule The dipole sums(2) and (3) were calculated by the
has a dipole moment in the ground state and since thEvald—Kornfeld point dipole lattice summatidn.Taking
dispersion interaction energy decreases with the distandato account the relaxation of a defect molecule in a crystal
much faster than the dipole-dipole interaction energy, it isand the specific parameters of the DCBP cryStdl
expected that the main contribution to the trap depth is fron{|P,|=2.7D, |AP,| = 0.8D, the direction of the vector
a change in the energy of the dipole-dipole interaction of aAP,, is opposite toP,, ande=3), the calculated depth of a
defect molecule with the remaining crystal molecules upordipole trap is 93 cm®, which is comparable to that of a
excitation. pronouncedX-trap (65 cm %) (Fig. 2, trap G.

Let us label the molecules in a crystal by, wheren is The accuracy of calculation of the dipole trap depth can
the number of the unit cell, and is the number of the be improved by taking into account the contribution from
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the interaction between dipoles, which are located alonde-mail: avdeenko@ilt.kharkov.ua
the C—ClI bonds(the dipole moment of this bond s

1.7 D) of a defect molecule, and the remaining molecules of

a crystal.

Because the disturbance of the crystal molecules nearest
to a defect is weak, the energy spectrum exhibits a set of M. Pope and C. E. Swenberglectronic Processes in Organic Crystals
levels connected with these molecuté$® An energy funnel Zﬁ'alfegdon PVESS{/OIX“S”(” (k)XfOFd ;Jf'ulveTfsg Press, New meg- f
s therefore formed? 2> This energy funelinduces trapping 1Y 3265740, Y. | Suskor ana 1. - Sopsiecoacon of efects
of a triplet exciton by a defect molecule after nonradiative | ondon(1993.
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LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

The structure, slip systems, and microhardness of C 60 Crystals
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The structure and microplasticity of high-purity fulleritgdhave been investigated
comprehensively. The crystalline structure, lattice parameters, and phase transitions have been
studied by x-ray diffractometry in the temperature range 30—293 K. It is found that the
temperature corresponding to the orientational order—disorder phase transifigh260 K. A
considerable number of regions with stacking faults discovered in the samples leads to

blurring of the fce~sc phase transition in the temperature interval-3 K. The a(T)
dependences of the lattice parameter display peculiarities at the following characteristic
temperaturesT, at which the lattice parameter jumya/a=3.3x10 2 is observed, and the
temperaturesT =155 K, andTy;=95 K which are associated with the beginning and end of
molecular orientation freezing. It is shown that the formation of orientational glass is
accompanied by a considerable increase in the width of x-ray reflections. The slip geometry and
the temperature dependence of microhardhkésare studied in the temperature interval

81-293 K. It is shown that a system of th&l1}(110 type is the only slip system in the fcc

and sc phases. The value léf, depends on the indentation planéi'>>H1®. Below

T., the microhardness increases abrugly approximately 30% The temperature interval of

this anomaly decreases after annealing of the crystal in vacuurh<At,, the Hy(T)

dependence becomes much stronger. It is shown that the hardnegsnofri@alized to the elastic
shear modulus is higher than the hardness of typical molecular crystals at comparable
homologic temperatures. @997 American Institute of Physids$$1063-777X97)01303-0

1. INTRODUCTION the orientational subsystem must influence the temperature
dependence of the structural and other physical characteris-
Fullerite G, is a typical simple molecular crystal in tics of fullerite crystals.
which peculiarities of lattice properties such as polymor-  The high-temperature fcc phase of fullerite, which is
phism are associated with the thermal activity of rotationaldominated by central van der Waals molecular interaction,
degrees of freedom of their molecules. The phase transitiosan be formally treated as a “plastic crystal” according to
observed afl ;=260 K (which is a first-order phase transi- the classification and criteria proposed by TimmermaAs.
tion according to some indicationdoes not change the sym- transition to the orientationally ordered SC phase is accom-
metry of spatial arrangement of the centers of gravity ofpanied by an enhancement of the role of the off-central com-
molecules that form the fcc lattice. A decrease in lattice symponent in molecular interaction, and must increase the lattice
metry fromFm3m (fcc) to Pa3 (so upon cooling is due to rigidity. Moreover, a change in the lattice symmetry due to
partial orientational ordering of molecul&s® Neutron dif-  such a transition can lead to a change in the crystallography
fraction studie$* have revealed that the molecules in theof plastic slip® Hence, in addition to structural studies, in-
low-temperature phase are in two orientational states that amestigations of the parameters of plastic deformation and slip
nonequivalent from the symmetry point of view, but havesystems of g, crystals as well as their variation in the vicin-
close energy values. These states are called pentagonal aid of the fcc—sc phase transition, orientational glass-
hexagonal configurations and correspond to global and locdbrmation temperaturd j=90-100 K, and other points on
energy minima of the noncentral part of molecular interacthe temperature scale at which anomalies in physical proper-
tion. They are separated by the energy gap~@.25 eV. ties have been observed also acquire a considerable signifi-
The number of less advantageous hexagonal configuratiortsance.
decreases upon cooling, but so does the rotational frequency Intense studies of the mechanical properties of fullerite
of molecules. Hence the orientational glass phase is forme@g, are being carried out at present by several groups. Static
even at a fairly high temperature 90 K.24-® variations in  or dynamic indentation technique are used for mechanical
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TABLE I. Values of melting temperatur@&,,
relative microhardnesd,, /. andH,, /E for fullerite C5y and materials with

other types of bonds in the lattice.

elastic modulix and E,

volume up to 8.5 m™),2® as well as larger crystals with the
size 5x3x 3 mm>2° which are suitable for various investi-
gations, can be obtained.

“ E The most interesting effects observed in microplasticity
Substance T K T/T GPa 16Hy /. 10°Hy /E investigations for fullerite & are associated with low-
m» m . . .
temperature structural transformations in this crystal. How-
Ceo 1400°  0.08 284 32 123 ever, x-ray diffractio®® and acoustic studi&s proved that
[14] o0.21 2022] 26 10 " ; . i
‘ 3770 008 20 50 20 the nature of phase transitions is determined to a consider-
Graphite [15] [17] able extent by various defects in regl,Crystals, such as the
90.7 0.22 11 3.45 1.3 inclusions of Gy, amorphous phase, and other impurities
CH, . : ,
[16] (18] inherited during the crystal growth or transformed as a result
Ar [186?'8 0.12 [19]1'56 2.37 0.9 of thermal treatment. This is mainly manifested in the broad-
115.8 0086 183 164 06 ening of.the temperature interval of orientational transition
Kr [16] [19] and its displacement toward lower temperatures, as well as in
NH 196  0.39 3.04 40.5 15.6 a considerable variation of temperature dependences of
3 . .
[16] [20] structural and thermodynamic parameters gf i@ the tran-
NaCl 1[275? 0.27 [211]5'5 [21?8'7 3 28 sition region®®3! First measurements of the temperature de-
1336 022 27 78 8.3 3.2 pendence of microhardness of@Refs. 8—10 and )zhave
Au [15] [15] [15] also revealed qualitative difference for samples synthesized

in different ways. It was found that the value bfy, for
olycrystalline samples grown from solution and containing
Impurities of G, and other phases increases monotonically
without noticeable anomalies as the temperature decreases
from 600 to 81 K132 More perfect crystals grown from the
gaseous phase clearly manifest the-fcgc phase transiton at
T.=260 K,'~3while the microhardness of such single crys-
tals displays a discontinuity in the region ®f (Refs. 8 and
testing in most cases because of the small size of the crystal®) and a noticeable kink af,=155 K, which correlates
being grown. The first and only stress-strain curve obtaineavith a weak anomaly on the temperature dependence of the
as a result of compression of a sample with a cross sectiolattice parametel? Above T, the hardness of these crystals
~0.5 mnt at a constant strain rate is given in Refs. 9 andis virtually constant in the temperature range
10. 260-300 K81912 At high temperaturesT>370 K, an
Weak van der Waals interactions between molecules aranomalous growth of the value &f,, with increasing tem-
responsible for low values of Vickers microhardnesgand  perature is observet.
the yield stressrg for fullerite Cg crystals. At room tem- Considerable influence of the surrounding medium on
perature, the typical value dfly=0.2 GPa®"!2 while the  the mechanical properties of fullerite;g3vas noted in Refs.
ratio Hy/oy=20.21%13 As regards microhardness, fullerite 9, 10, and 32 and investigated partially by the nanoindenta-
Ceo Crystals are comparable to graphite, plastic fcc metals ofion technique in Ref. 33. It was shown that the strain-
the gold type, or NaCl crystals. Table | gives a more detailechardening was the strongest when the crystals were held in
information on fullerite hardness as compared to other cryargon or oxygen due to implantation of Ar atoms aor i9ol-
ocrystals. It can be seen that for comparable values of homacules in octahedral voids in the fcc lattice of,C® For
logical temperature, the relative microhardness of fullerite isexample, the microhardness and the Young modulus of a
higher than the hardness of typical molecular crydakeept  crystal placed in Ar atmosphere after 45 h of holding at room
ammonium in which the orderde2,3 structure is preserved temperature increased by a factor-el00. Subsequent an-
up to the melting point fcc metallic and alkali-halide crys- nealing led to restoration of the initial characteristics.
tals. The high relative hardness of ammonium and fullerite  Finally, another important phenomenon was obsefied:
Ceo in this series of molecular crystals is obviously due toa change in microhardness as a result of irradiation of a
much larger contribution of the noncentral component ofCgqq crystal with green light X=514 nm). The magnitude
forces to the molecular interaction, leading to the formationand sign of the effect were determined by the gaseous me-
of an ordered sc phase ofg{below the phase-transition dium: the crystal was strain-hardened in oxygen atmosphere,
temperature. while in argon its hardness decreased. This peculiar photo-
The physical and mechanical properties gf Crystals  plastic effect is associated with the formation of apex
depend significantly on the past history of the samples: th€—-0, bonds upon the implantation of oxygen molecules in
purity of the initial raw material, the method of obtaining the crystal and with the polymerization og{molecules in
(either from solution or from the gaseous phaske time of  the chains in the argon atmosphere. This effect differs from
holding in the gaseous medium and its composition, and ilthe photoplastic effects studied comprehensively for semi-
lumination. The crystals grown from the gaseous phase areonducting crystaf$® and in irradiated alkali-halide
distinguished by higher purity and structural perfection. Atcrystals® and obviously requires further investigations.
present, high-quality crystals with a mass up to 14 (augd Chemical and thermal etching of the crystal surface in

*The estimate is based on the method of nonsymmetrized self-consiste
field** T/T,, is the temperature of measuring the microhardness reduced t
the melting point of the material: we assume that the mouind « are
connected through the relatipgn= E/2(1 + v), in which the Poisson coef-
ficient v = 0.3. The microhardness measurements were made qn’€H
Ar, 24 Kr, % NHj, 28 graphite®1° Au,?” and NaCl(this publication.

252 Low Temp. Phys. 23 (3), March 1997 Lubenets et al. 252



the vicinity of the indentation revealed that the plastic defor-

mation of fullerite G, crystals is of dislocation origift’>8 .

This means that the peculiarities of the temperature depen- 1000 A

dence ofH,, must be attributed to a change in the mobility of _.'

dislocations: the high-temperature anomaly can be due to the - 2
L
1)

f

L

o« 0 0
—
-k
b
-
=

interaction of dislocations with impurity molecules that dif-
fuse in the crystdl, while the enhancement of the,(T)
dependence in the sc phase below 155 K is associated with
the relaxation of orientational ordering of@©molecules in
the elastic field of moving dislocatiortd. However, the slip X St TN &
crystallography as well as the structure of dislocations in 201% 0 ' st : 11'0 '.""1—1' 5
these crystals have been studied incompletely. ! ! 20, deg ’ !

This research is devoted {@) a more detailed descrip- !
tion of the results of studies of the temperature dependenagc. 1. The profile of the(111) x-ray reflection of fullerite G, at room
of the lattice parameters and microplasticity of pugg €ys-  temperature. The arrow indicates the position of pseudo-Bragg diffraction.
tal, which were briefly discussed in Ref. 12) an analysis
of slip crystallography in the fcc and sc phasés,the study
of microhardness anisotropy, at#) an analysis of the effect 10"%-10"° mm. Sample homogeneity and quality were
of crystal annealing on the microhardness anomaly in thenonitored from the profile and width of diffraction reflexes.

600 |-

I, arb. units

region of the fce-sc transition. In the course of measurements, the samples were perma-
nently in vacuum and were protected from illumination.
2. MATERIAL AND EXPERIMENTAL TECHNIQUE Structural studies were carried out in ®y-radiation on an

The samples were obtained from commercial fulleriteau'[Omated DRON-type diffractometer in the temperature
range 30—-293 K by wusing an original liquid-helium

having a purity of~99.5% by double sublimation in Ar. The 0 )
cryostat!?® The sample temperature was measured with a

initial material was placed in a quartz boat of the sublimation~ 7 ) X
column: argon was blown under a pressure-df atm in the platinum resistance thermometer. The error in temperature
' stabilization was*+ 0.05 K, and the error in determining the

direction of temperature growth;gwas heated approxi- ) ; .
mately to 920 K during several hours; sublimated fullerite!attice parameters did not exceedd.001 A. The errors in

was returned to the column, and the process was repe‘,ﬂ,[e%t_eterminin(‘_:] the quewidth and intensity for x-ray reflexes are
According to the results of high-sensitivity liquid-phase Presented in the figures.
chromatography, the purity of the obtained fullerite was
higher than 99.9%. In addition to fine-disperse fraction with3, piISCUSSION OF RESULTS
a grain size 10'-10 2 mm, the powder contained isolated
crystals of size-2xX1x0.3 mm. Some of the crystals had a
larger plane parallel to thgl11} direction, some others were An analysis of x-ray diffraction pattern obtained at room
of the{100} type, while the edges, as a rule, had an orientatemperature has proved that the process of dispersion and
tion (110). Because of the uncontrollable growth, the facet-subsequent annealing did not lead to contamination of the
ting of individual crystals deviated from the crystallographic sublimated material with any impurities. X-ray diffraction
direction. Islets with specular surfaces of th&l11} or  patterns contained only reflections from the cubic fcc phase
{100 type, which are convenient for slip crystallography, of fullerite Cgs. The value of the lattice parameter
were observed at the faces of the crystals. a=14.161 A averaged over several measurements is in good

The morphology of the surface of initial and indented agreement with the data for single crystdté!“?However,
samples was studied with the help of an optical microscopeliffraction for the crushed material was characterized by an
The microhardness measuring technique in the temperatuenhanced general background and by the emergence of ad-
range 81—300 K was described in Ref. 39. All experimentditional pseudo-Bragg diffraction in the form of asymmetry
were made in atmosphere, nitrogen vapor, and in liquid aior an “arm” in the (111) reflection profile(Fig. 1). The latter
(T=81 K) on the samples not protected from natural illumi- can be due to violation of the stacking order in atomic layers
nation. The spread in data was reduced by multiple measuré111) of the fcc lattice, which lower the symmetry of defec-
ments on the same sample. A thin layer of the surface beintive regions of the crystal to the hexagonal symmetry. The
indented was removed between measurements by sampdéfect of various types of stacking faults on the diffraction
polishing with chamois leather impregnated with benzenepattern for fullerite G, crystals is considered in detail by
The relative error in determining the average value of microVaughanet al#* Such structural inhomogeneities in fullerite
hardness did not exceed 2%. Here we present the averageystals can lead to a number of anomalies in the physical
values of microhardness calculated from the results of megproperties in the region of orientational phase transition: the
surements of 10—20 indentations. formation of the second heat-capacity pEaind to a notice-

In the case of x-ray diffraction studies, the coarse-graimable “blurring” of this transition detected by x-ray diffrac-
sublimated powder was crushed and annealed in vacuum féion techniquesee below.
1 h at 500 K. Such a procedure of annealing made it possible X-ray studies in the temperature range 30—293 K con-
to obtain samples free of macrostresses with a crystallite sizirmed, in general, the existing concepts concerning struc-

3.1. X-ray studies
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TABLE Il. Angles and experimental values of intensities of x-ray reflections in fulleriga€32 K.

No. 20, lexp hkI 20 A(20°)
100 6.360
110 9.000
1 11.03 1000 111 11.028 ~0.002
200 12.741
210 14.252
211 15.621
2 18.07 925 220 18.056 -0.014
300 19.161
310 20.208
3 21.21 720 311 21.206 ~0.004
4 22.17 200 222 22.161 ~0.009
320 23.078
330 27.228
5 28.02 60 331 27.989 -0.031
6 28.76 75 420 28.731 -0.029
421 29.456
332 30.166
7 31.53 86 422 31.541 0.011
430 32210
510 32.865
8 33.53 76 511 33510 -0.020
520 34.767
600 38.886
9 39.48 52 610 39.445 -0.035
611 39.997
620 41.082
10 41.56 32 540 41.616 0.056
11 42.19 23 541 42.144 -0.046
12 42.65 25 533 42.667 0.017
13 4321 390 622 43.185 -0.025
630 43.698
444 45.209
14 45.74 58 632 45.704 -0.036
15 46.17 35 550 46.195 0.025
16 46.71 95 551 46.681 ~0.029
640 47.164
722 49.524
17 49.93 74 730 49.987 0.064
18 50.46 280 731 50.446 -0.014
650 51.355
820 54.451
19 54.86 60 821 54.883 0.023
653 55.313
664 62.723
20 63.17 29 850 63.120 -0.05
21 63.47 34 930 63.514 0.044
931 63.908
961 74.121
22 74.82 57 1042 74.852 0.032
1100 75.218

*Structural reflections which belong to a space symmetry group lowerRia8n

tural transformation occurring during the cooling of,€rys- Table Il also contains the experimental values of the inten-
tals. The fce>sc phase transition is accompanied by thesities (I, of the observed reflections in relative units, nor-
emergence of superstructural reflexes on diffraction patternghalized to the intensity of the strongest reflectiddd ).
corresponding to a decrease in the total symmetry of thdhe first column of Table Il contains the number of observed
crystal as a result of orientational ordering of moleculesreflections, while the last column shows the difference
Most of the observed superstructural reflexes are identified id(20°) between the theoretical and experimental diffrac-
the space groupa3. A part of experimental diffraction pat- tion angles. For large diffraction angles, several superstruc-
tern atT=32 K is presented in Table I, together with the tural reflections of théhk0) type with oddh andk (marked
theoretically calculated reflexes for the lattice parameteby asterisks in Table )] which do not belong t&®a3 sym-
a=14.043 A. In addition to the experimental @®2,) and  metry and whose intensity is comparable with that of the
theoretical (B, values of the reflectionhkl) angles, main structural reflections in this range of diffraction angles,
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FIG. 2. Temperature dependence of the lattice parameter for the fullerit€lG. 3. Temperature dependence of the half-wiitof (111) x-ray reflec-
Cso: T, is the temperature of orientational phase transition{fsc, T, and tion.

T, are the temperatures corresponding to the beginning and end of the

formation of the orientational glass, respectively.

which the information is controversiaf was detected by us

are observed. Since powder samples contained a large numore clearly. It should be noted that some other parameters
ber of regions with stacking faults with a symmetry lower of fullerite have certain peculiarities just in the vicinity of
than that of fcc, it can be naturally assumed that the orientathis temperaturéthis problem was discussed, for example, in
tionally ordered structure has a symmetry lower tRa8 in  the review in Ref. &
these regions also. This circumstance can be responsible for The peculiarities on the temperature dependence of some
the emergence of additional superstructural reflections gthysical parameters at<160 K are associated by David
T<T,. It should be noted that the intensity of such reflec-et al>* with the retardation of rotation of 4 molecules
tions must increase with the volume of defective regionsabout{111) axes, which is manifested in an increase in the
However, we could not verify much an increase. lifetime of orientational defectéhexagonal configurations of

The temperature dependence of the lattice paranseter pairs of neighboring moleculgsipon a decrease in tempera-
(Fig. 2) contains regions corresponding to three characteristure. Subsequent cooling leads to virtually complete freezing
tic temperatures. The feesc phase transition is accompa- of the rotational motion and to the formation of orientational
nied by a jump in the lattice parameter whose relative deglass atT<95 K (with a fixed relation between pentagonal
creasdAa/a=0.33%) as a result of the transition is in good and hexagonal configurations ofggCmolecule$. This ex-
agreement with the results obtained in Refs. 2 and 42. Thplains the increase in the half-width of x-ray reflections in
temperature variation of the lattice parameter in the highthe regionT,<T<T,;=155 K observed in our experiments.
temperature phase corresponds to the available experimentithe results of measurement of the half-widttof the profile
data®>*42 The obtained phase-transition temperatureof one of the main reflectionévhich are structural in the
T.=260 K which we obtained virtually coincides with the case of an fcc lattideare presented in Fig. 3. As the tem-
temperature typical of single-crystal sampié$.Detailed perature decreases from 155 K to the glass-transition point,
analysis of x-ray patterns revealed the coexistence of the fcihe half-width of the reflection profile undergoes an overall
and sc phases in the vicinity of the phase transition temperaariation of 10-12%. A similar diffraction involving the
ture T.=3 K. The presence of two phases in such a signifi-variation of the reflection profile half-width was observed
cant temperature interval during an orientational phase trarearlier in solid solutions of simple molecular crystal
sition is apparently due to dispersion in the values of phaseN,—Ar*® and G—Ar*® during the formation of orientational
transition temperature in defective regions of the crystal. Thglass in them. However, the glass-formation process in these
regions of short-range orientational order in the parts of thesystems was accompanied by a more significant broadening
crystal with stacking disorder nedr, is characterized by a of reflections(by more than 70% We believe that the freez-
smaller correlation radius of the orientational interaction asng of molecules in random orientations leads to their non-
compared to the rest of the crysfdland hence by a lower uniform static displacements from lattice cites. The magni-
phase-transition temperatufe. According to the results on tude of displacements, and hence the broadening of
inelastic x-ray and neutron scatteriffithe regions of short-  diffraction reflections, are determined by the contribution of
range orientational order in perfectgdCsingle crystal in  anisotropic forces to the lattice energy. In contrast to this
which translational disorder of the stacking fault type is noteffect, the noticeable increase in the profile half-width of the
observed have a correlation length of the order of 40af  (111) reflection neafl . (Fig. 3 is due to the superposition of
T=265 K). reflections from two coexisting phases with a small differ-

At Tg=95 K, thea(T) dependence has a clearly mani- ence in molecular volumes, while the shape of the tempera-
fested kink(see Fig. 2, this anomaly is also well known ture dependence of the half-width of tkEl1) reflection in
from previous structural studiés? The peculiarity in the the two-phase region characterizes the change in the concen-
behavior ofa(T), which is observed af,= 155 K and about tration of phases upon a transition through.
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600 fullerite Gy, crystals?® The width of the twins varied from
5-10 um to tens of micrometers. The effect of growth twins
S on microhardness was not studied, but it would hardly be
o fofe significant for a low density of twin boundaries. However,
~ twins do play a noticeable role in the formation of cracks.
-.'-".-.4 3 Indentation in the vicinity of twin boundaries always leads to
N X the formation of cracks along the latter. We did not observe
400 LS O the formation of deformation-induced twins under the action
of a concentrated force, but it cannot be ruled out that
- strongly distorted regions of the crystal can contain a large
number of deformation-induced stacking faults in the vicin-
200 360 ity of indentations.
T.K The cubic lattice of fullerite g, as well as the familiar
habitus of the crystals make it possible to determine unam-
biguously the slip systems in the high- and low-temperature
phases from an analysis of the pattern of slip traces in de-

We have not discovered any anomalies on the temperd®'med regions in the region of indentatitfig. 6). Itis well
ture dependences of the intensity of structural reflections ifnown that a slight slippage in fcc crystals can easily be
the entire temperature range of investigation. As the temt€@lized along the octahedral syst¢ai}}(110. For crys-
perature decreases, their intensity increases monotonicallS With a sc lattice, the systems00(100 or {110
(Fig. 4 mainly due to a change in the Debye—Waller factor(100 might turn out to be advantageous from the energy
as a result of the decrease in the amplitude of mean-squaR9int of view?® Proceedlng from the;e considerations, let us
displacements of the molecules. A decrease in temperatuf®mpare the pattern of slippage stripes on the sample surface
below T, leads to an anomalous retardation of the growth of#ith the directions of traces of crystallographic planes
intensity I(T) (see Fig. 4 Since the peculiarities on the {111}, {100}, and{11G on the habitus plane€l1l) and
temperature dependences of the physical properties of fullef100 of the Crys'tal. . '
ites are mainly determined by the behavior of its orienta- ~ Clearly manifested slippage planes were formed in the
tional subsystem, it would be interesting to study the temYicinity of an indentation for loads exceeding 0.1-0.2 N.
perature dependence of the intensity of superstructuraine stripes formed on thél1l) plane under a loading of
reflections. Superstructural reflections typical of Be3 lat-  0-2N (T=290 K) can be seen in Figs. 6a and 6at
tice were studied in detail for & single crystalg>#4’-*°The =~ T<Tc, the pattern is similar Repeated indentation under
results described in these publications show that a retardatidh® same loadFig. 6b only led to a more intense slippage
of the growth of [(T) similar to that shown in Fig. 4 is and elongation of the stripes formed as a result of the previ-
typical of most of superstructurd?a3 reflections upon a ©OUS indentation. Figure 6d shows that the traces of the three
transition to a glass-like phase. types of the plane$111}, {100}, and{11G on the (111)
plane of the sample have the safdd0 direction. Planes of
the{110 type can have thé112) direction also. These two
sets of traces can be identified only if the crystallographic

The polished surface of crystals displayed plane-paralletiirection of at least one of the crystal edges is known. The
stripes aligned along th€l10) directions, which were pre- triangles of traces turned relative to one another reflect con-
served after multiple polishing. One of such stripes Observederging and diverging slip systems along which the transfer
on the{10Q plane is shown in Fig. 5. Such stripes are ap-of matter is accomplished in the vicinity of the indentor to
parently growth twins corresponding {6411}(112) systems the surface of the sample and to its bulk. This explains dif-
typical of fcc crystals. They become visible because of seferent(black and whitg contrasts of parallel slippage stripes
lective etching of twinned planes and their boundaries undeih Figs. 6a and 6b. In the case of tfi10,(100) system, the
the action of benzene. Growth twins are typical defects inraces in thé112) direction correspond to the three slippage
planes (01), (110), and (101) from the{11G family,
which intersect the(111) surface of the sample at right
angles. Naturally, an analysis of the plastic shear patsim
steps on the{111} plane alon& does not lead to an unam-
biguous conclusion about slip crystallograptespecially at
temperatures below the phase-transition point

Figure 6¢c shows the microscopic structure of the de-
formed region of the sample indentedTat 81 K at the sur-
face that deviates slightly from thel00 plane. It can be
seen from Fig. 6e that the pattern of the traces of the

FIG. 5. The growth twin detected on th&00 plane of the G, crystal as a : :
result of its mechanical and chemical polishing with chamois leather im-{llj}’ {100}' and{llO} planes intersecting thel00) plane

pregnated with benzene. The direction of twin boundaries coincides with théS €xtremely simple. Remarkably, only the slippage planes of
(110 direction. the{111(110 can be either converging or diverging, form-

500 |

1, arb. units
.
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FIG. 4. Temperature dependences of the intensiiil bf) x-ray reflections.

3.2. Growth twins and slip crystallography
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FIG. 6. Slip stripes bear the impression of the indenter on(1i4) (a,b and (100 (c) planes and schematic diagrams of possible slip pldaéd),
(100, and {110} on habitus planes of thesxcrystal: the first and repeated indentatiorPat 0.2 N andT =290 K(a,b); and indentation aP=0.35 N and
T=281 K(c); the (111) plane, the direction of trac€410 and(112)(d), the (001 plane, the direction of trac€400) and(110)(e).

ing parallel traces on th€l00) plane. The{110(100 sys- Although such a conclusion was made earlier in Refs. 12 and
tem with the Burgers vector lying in thgl0G plane natu- 38, crystals of two orientations were used only in Ref. 12 and
rally is not seen. A deviation of the sample surface fromin the present work for its verification.
(100 leads to the emergence of nonparallel tradgg. 60. The conservation of slip i{111}-type planes during
Different optical contrasts of steps on the surface and theifcc—sc phase transition is a phenomenon that has been stud-
nonparallelism indicate that the pairs of slippage planesed well in ordered alloys Gyu and NgMn.° It is possible
marked by arrows and forming small angles with one anothethat like in these alloys, slip if111 planes in the ordered
belong to different familie§111}(100). sc-phase of g, occurs through the motion of partial disloca-
Thus, our microstructural observations of slippagetions accompanied with the formation of low-energy out-of-
stripes and their geometrical analysis lead to the unambiguyhase boundari€€.The microscopic nature of conservation
ous conclusion that only the octahedral slip systgil} of slip systems in g, crystals upon a fcersc transition is
(110 is active at temperatures in the interval 81—-300 K.undoubtedly interesting and deserves further investigations.
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FIG. 7. Lens-shaped shear region formed as a result of indentation of the
(100 plane in the G crystal atT=290 K andP=0.7 N: metallographic
microscope(@) and interference microscopgb). 0,1 0.2 0.3

P,N

3.3. Localization of slip FIG. 8. Dependence of the square of the impression of the indenter on the
. ) o (100 plane of the G crystal on the load applied to the indenter at
The deformation of g crystals by indentation is char- T-=290 Kk (curve 1) and T=81 K (curve 2). The upper inset shows the
acterized by noticeable localization of plastic shear straingnpression of the indenter on th&00 plane atP=0.25 N andT=81 K.
leading to the formation of clearly manifested steps upon théhe diagonal of the impression is directed aldig1]. The lower inset
emergence of a slip stripe at the surfaBeg. 7a,b. A lens- ?TZV;OHE '{;Erﬁsrsi'z?nst;f(}ﬂgc'ggﬁ?;e;;?;ﬁ’goéapllgfe forP=0.05 N and
shaped shear region is formed as a result of indentation under
a large load applied to the indenter. It resembles a twin in
shape, but the height of a step at the surface turns out to be o )
smaller than in the case of a twin in the fcc lattice by a factor9s down t0~0.14 N, while in Ref. 28 the microhardness
of 2.5. The lens-like shape is due to deceleration of a sliger the same plane decreased significantly upon an increase
strip at cracks restricting its elongation on both sides. in load to~0.2 N and only after that it remained unchanged
It is well known that slip localization upon indentation is UP 0 P=0.8 N. The existence of a wide range of loads for
enhanced upon an increase in rigidity of the crystal, for exWhich Hv(P)=COHSfI obvu_)usl_y indicates the homogenen.y. of
ample, as a result of doping, irradiation, or coolfigrhis  the crystals under mvestlgatlon.due to favorab!e cqndltlons
phenomenon should not be typical of pure molecular crystal8f their growth. The reason behind a decrease in microhard-
(at least in their high- temperature phab@he Gy crystals Ness and increasing loadmpression depth observed in
investigated by us were initially saturated with Ar atomsRefs. 9 and 10 could be the concentration gradient of impu-
which, according to Halusket al,> can lead to a significant "ities diffusing through the sample surface. o
strain-hardening and a decrease in plasticity even in an ori- Microhardness anisotropylhe anisotropy of plastic slip
entationally disordered state. is manifested in experiments on microindentation gf C

crystals in experiments on microhardness first in different
values of microhardness for different indentation planes for
the same values & andT, and second, in a dependence of
Dependence of t1on the load applied to the indentor the impression shape on the direction of the indentor diago-
The dependences of the square)2of the impression di- nal. It can be seen from Fig. 8 that the impressions are con-
agonal on loadP, obtained on(100) plane at 81 and cave if the indentor diagonal is oriented along #¥l0)
290 K, are shown in Fig. 8. The linear relation betweendirection and convex if the diagonal is oriented along
(2a)? and P corresponding to the constancy ldf,(P) was  (100). This is due to the displacement of the material ejected
observed only for loadsP<0.1N at 290 K and during the intrusion of the indenter in the slip direction as for
P<0.075 N at 81 K. At higher loads on the indentor, the other cubic crystaR (in the case of fullerite &, this is the
material was broken. Cracks in the vicinity of impression(110) direction; see the schematic diagram in Fig).6ae
had no clearly manifested crystallographic direction like inshould be noted that the preservation of the shape of the
the case of brittle crystals, but tH@10) direction can be impression upon a change in temperature of indentation is an
indicated as a preferred direction of their propagation. Atindication of preservation of the slip system igy@uring the
nitrogen temperatures, crack formation was more intensphase transition.
(see the inset in Fig.)8nd started at lower loads. At all temperatures, the value of microhardness mea-
The absence of thél(P) dependence for th¢111l}  sured in thg111) plane was higher than that measured in the
plane was observed in Ref. 8 at room temperature for load-100 plane(Fig. 9. The ratio of the values dfl, for these

3.4. Microhardness of C ¢ crystals
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correlate with the observed anomalies on the temperature
dependence of the lattice paramdtse Fig. 2. Note that an
increase in microhardness in the sc phase can be partly due
to an increase in the elastic moduli for fullerite: the increase
in Young's modulus during a phase transition s8%,
while the cooling from room temperature to 6 K causes its
increase by 40%? At the same time, the step dhy, in the
transition region amounts to 30—50842 while the micro-
'Y °\ *_i\ hardness increases approximately by a factor of two in the
2 o

400

H,. MPa

f temperature range 290—81 K. The main contribution to the
0.0 O o ¥ increment ofHy, during cooling is undoubtedly associated
% \¢ with a considerable effect of thermally activated processes
N3 N S . . h
- oQg P24 on the sllp. klnetlcs(r.noblllty. of dislocations. Among ther .
'}9\08 things, an increase in the size of the deformation region with
200L ﬁ?‘og 3 well-developed slip stripes upon an increase in the holding
"\ time under loading indicates the activation nature of slip evo-
*0-e] lution (Fig. 6b).
1 1 1 Two types of relaxation processes occurring in the elas-
100 200 300 tic field of a dislocation moving in the sc phase of fullerite
T.K Ceo Were analyzed in Ref. 13. It was shown that these pro-
FIG. 9. Temperature dependences of microhardness obtained as a result fSSES are due to dynamic interaction of dislocations with
indentation of habitus plan€400) (curvel) and(111) (curves2 and3) for rotational degrees of freedom ofs{Cmolecules. Each such
three different G crystals. process can make a significant contribution to dislocation
drag. In the immediate vicinity of ., the dominant role is
played by the relaxation losses accompanying the interaction
planes is~1.25-1.5 in the region of room temperatures, of the elastic field of dislocations with the field of the order
which is in good agreement with the results obtained in Refparameter which corresponds to this transition. According to
11; as the temperature decreases, this ratio becomes smallgk estimates obtained in Ref. 13, the proposed mechanism
and a_ttains the value 1.1_at 81 K. The anisotr_opy of ha_rd- can explain the stepwise increaseHry below T,. In the
ness is prpbably due to_dlfferent values qf stral_n hardening Ofemperature range of 160 K, the main role is played by
the material under the indentor, whose intensity can depengynamic |osses of the dislocation, which are associated with
on the direction of indentatio(l11) or (110 (see the sche- o thermally activated relaxation in the system of pentago-

matl_(r: diagram in Elgs. 6(? and Bf icrohardnéssord nal and hexagonal molecular configurations, whose equilib-
emperature dependence of micronardnessorder 10—, s yiolated by the elastic dislocation field. This drag

analyze the temperature. dependence of m!crohgrdness, ¥fechanism can be used to explain the beginning of a signifi-
used a load~0.05 N, which ensures the satisfaction of the . . : :
cant increase irH,, upon a decrease in temperature in the

conditionH,,(P)=const in the entire temperature interval of region of orientational vitrification of fullerite.

interest. .
Figure 9 shows threkl(T) dependences obtained as a It should be observed that Fhe relax-a.uon .Of the order
parameter as well as the activation transitions in the system

result of indentation of th€100) plane (curve 1)!? and the \ :
(111) plane (curves2 and3). The absolute values of micro- of pentagonal and hexagonal configurations affect the acous-
tic properties of the fullerite g quite significantly. Hence

hardness at room temperaturéHi°=170 MPa and o ) i ©  closely related phvsical
H1-210-250 MPhare close to those obtained by other '€ @coustic anomalies must )¢ closely re ated physically to
the Hy(T) anomalies belowvi ..

author101128The spread in the values of, for different : & , _
samples of the crystals with the same orientation was Effect of impurities on the microhardness anomaly in the
~20%. The same spread was also observed in Ref. 8. fcc— sc transition region.The stepwise increase in micro-

The main peculiarities of the temperature dependence d}é}rdne_ss associated WiFh the phase transition occurs over a
microhardness can be reproduced for all the samples, af@irly wide temperature interval between 10(Refs. 8 and
insensitive to the orientation of the indentation plane, and aré2 and 20 K or more(Figs. 9 and 10 The H\(T) depen-
obviously associated with specific structure of fullefifg®  dences obtained during cooling and heating of the sample are
The first of these peculiarities is the athermal naturelgin  identical to within the measuring error. It is known from
the high-temperature phase ofs@&ven when impurity dif-  Structura®**%acoustié">***and NMR studies’*’as well
fusion processes leading to the fixation of dislocations ar@s the data on heat capacfty® that the width of the phase
included® This feature is typical of the mechanical propertiestransitionAT and the behavior of thermodynamic properties
of high- symmetry crystals and can indicate that the fcc ful-of fullerites in the vicinity of T, depend significantly on the
lerite belongs to plastic molecular crystéls. presence of impurities in the sample. A significant concen-

Two anomaliegnamely, the step-wise variation of mi- tration of the interstitial impurities of the &ype molecular
crohardness in the region of the fesc transition and the fragments, N or O, molecular components or other compo-
kink on theH\/(T) dependence in the region & 155 K, nents of air may not only lower the superconducting transi-

300
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gions of the crystal is detected in the fesc transition.
300} Along with superstructural reflections typical B3 lattice,
o a number of fik0) reflections with oddh andk correspond-
ﬁc;_ow oe ing to a lower symmetry of the orientational ordering of
250 . T"T\ molecules are observed in the low-temperature phase of ful-
lerite. This symmetry can be realized in crystal regions with
stacking faults.
3. The temperature dependence of the lattice parameter
N a manifests three distinct features: the jump
A“\ N Aa/a=3.3x10"2 in the parameter at the phase-transition
200+ A“rﬁ 1 temperatureT., weakening of thea(T) dependence at
To=155K, and a kink aff4=95 K, which are associated
with the beginning and termination of molecular orientation
150 260 2&.;0 300 freezing. It is shown that the formation of orientational glass
T K is accompanied by a considerable increase in the half-width
of structural reflections. Anomalous deceleration of the in-
FIG. 10. Temperature dependences of microhardness in the region of tierease in the intensity of structural reflections with decreas-

fcc—sc transition obtained on the samg,@rystal subjected to different ing temperature is observed in the region corresponding to
treatment: the initial crystal polished before the measuring microhardness,,; :
e P g Brientational glassT<T).

(curve 1, light triangleg, the same crystal polished after annealing in . . .
vacuum(the annealing mode is given belpand holding in air for five days 4. Microscopic observations of the surface and crystal-

(dark trianglek the crystal polished and annealed in @ i0orr vacuum  lographic analysis of the patterns of plastic shears in the
for 24_ h at 400 K(curve 2; the symbolsO and @ correspond to different (111) and (100 planes lead to the unambiguous conclusion
experiments concerning the activity of the only slip system of tfEl1}
X(110 type in the fcc and sc phases.
tion temperaturel, but also considerably increase the in- - The temperature dependence of microhardhissf
terval AT (up to ~10 K or more.® Ceo cCrystals is studies in the temperature range 81—-293 K.
The extended step on thé,(T) dependence during a The hardness of the fcc phase normalized to the elastic
transition throughT, may also be due to the molecular im- Modulus turns out to be higher than the hardness of typical
purities trapped by the sample surface from the surroundingolecular crystals at comparable homological temperature
air or during mechanical and chemical polishing. In order tovalues. This fact as well as considerable localization of slip-
verify this assumption, we annealed a sample in a vacuum d¥age indicates that the crystals studied in this research cannot
102 Torr at 400 K for 24 h. Figure 10 shows that annealingbe classified as plastic crystals in view of the presence of
leads to an abrupt narrowing of the temperature interval ohardening impurities in them.
variation of microhardness. 6. The microhardness increases stepwise by approxi-
In our opinion, atmospheric oxygen is the most probablenately 30% upon a transition througfi;, while at
trapped impurity. In contrast to noble gases, oxygen molT<160 K theH,(T) dependence becomes stronger. These
ecules affect significantly the intermolecular forces inanomalies are regarded as consequences of dislocation drag
fullerite’®® and determine the peculiarities of the fesc  due to relaxation losses during the interaction of the elastic
phase transition to a certain extéff The high mobility of ~ field of dislocations with the field of the orientational order
oxygen in Gg, which is due to a low diffusion activation parametefthe T, region and with the system of pentagonal
energy of 0.24 e\f? is a factor facilitating the saturation of and hexagonal configurations of4Inolecules whose equi-
the surface layers of the sample with oxygen as well as theiibrium is violated by a moving dislocatiofthe region of
purification in a moderate vacuum at a low temperatureT=160 K).
(T~400 K). The details of the effect of impurities on the 7. The increase in the value &f,, during the fce-sc

Hv’ MPa

.o_.o_ 2

u
u

A
&4
250+ &\A

phase transition in £ require further investigations. transition is observed in the temperature interval larger than
10 K. The width of this interval decreases as a result of
CONCLUSIONS annealing in vacuum, which is apparently due to the purifi-

1. The crystal structure, the lattice parameters, the halfgatlon of surface layers from gaseous impurities saturating

width and intensity of x-ray reflections of fulleriteggare the ;rylsatlzll S?izrlggfgf;;%;ang?r:n alz:.r stals is anisotropic
studied by the method of x-ray diffractometry in the tem- ' bo Cry pIc,

perature range 30—293 K. It is shown that the temperatur@'hICh is manifested, for example, in the dependence of the

: ; : P lue of Hy on the direction of the indentation plane:
corresponding to the orientational phase transition in highY2 v
P g b g M= (1.25-1.5H{™ at T=293 K.

purity fullerite isT.=260 K and that it nearly coincides with H
the value typical of single crystals. This research was carried out under financial support of

2. It is found that the samples under investigation conthe Ukrainian State Committee on Science, Engineering, and
tain a noticeable number of regions with stacking faults. Alndustrial Policy(project No. 09.01.01/033-92 “Materia)”
two-phase region with an interval of blurring af3 K due to  and was supported in part, by the Soros International Science
dispersion of the of transition temperatures in defective reFoundation.
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SHORT NOTES

Theory of magnetoelastic vibrations in spin glass
I. A. Akhiezer,Y D. P. Belozorov, and Z. A. Spol'nik

National Science Center “Kharkov Physicotechnical Institute,” 310108 Kharkov, Ukraine
(Submitted November 15, 1996
Fiz. Nizk. Temp.23, 352—354(March 1997

The spectra of magnetoelastic vibrations in spin glass are determined in the absence and in the
presence of an external magnetic field. Various cases of magnetoacoustic resonance are
considered. ©1997 American Institute of Physids$1063-777X97)01403-3

Magnetoelastic oscillations and magnetoacoustic reso- ), ={(s?—25?) 8y 8m+ SX( 8t SumT SimSk)}; (3
nance(see Ref. 1were studied in detail for substances with . ) . _ )
a long-range spatial magnetic ordeuch as ferromagnets, andL’ is the Lagrangian descnblng the interaction of the
antiferromagnets, and ferrimagneti this communication, Subsystems. Here is the angular variabley is the displace-
we consider magnetoacoustic phenomena in magnetically off€Nt vectory;; is the strain tensor, ; are the velocities of
dered substances without any long-range spatial magnet/@ngitudinal and transverse soungsjs the static magnetic
order, viz., spin glassés. susceptibility,H is the magnetic field strength, is the gy-

We will describe excitations of spin glass proceedingfomagnetic ratiogf.n is the rigidity of the spin systenp is
from the well-known hydrodynamic model which character- the density, andy is the local magnetic anisotropy constant.
izes spin glass as a nondissipative continuous medium whod&'e magnetization is related to the angular variablsy the

state is determined by three angles of spin rotations specifietjandard relation
at each point:* Such a description of spin glass is apparently
valid only for low temperatures and small characteristic M=y
times(high frequencies which is primarily due to the struc-
ture of the phase space of spin glass, namely, due to the Let us first consider a crystal without an inversion cen-
presence of a large number of valleys which are separated ¢r. In this casel.’ can be chosen in the form
high barriers and which correspond to different metastable

- Epx dej du;
states of the spin system. At low temperatures, the system |'=2"2= f Aijim T = ds3
exists in the vicinity of a given metastable state for a long Y 9% MXm
time, experiencing only small deviations; this forms the baSiSNhereg is the dimensionless magnetoelastic coupling con-
for a hydrodynamic description of spin glass as a nondissistant, andA;j,, is a tensor(for simplicity, we henceforth
pative system. It should be noted, however, that a decrease §xsume thath; = a3 Sim). In the order of magnitude,
temperature leads to a further factorization of the phasgocs?«s?os?«10(cm/sy; as regards the parametér it
space of the spin system into smaller and smaller vafleys must be proportional tou/c)* in the case of ideal spin glass
the factorization process continuing down to absolute zergike the magnetic anisotropy constaherev is the electron
temperature. In this case, the dynamics of the system at lowelocity, andc the velocity of "gm_e By varying (1), we can
temperatures is determined by the existence of degrees ehsily obtain coupled equations for the vectgrandu and
freedom which make the main contribution to thermodynam-determine the spectra of magnetoelastic waves. We will give

H+E?> 4
gk 4

X, (5

ics. _ _ _ _ _ here only the final results.
. Assuming that spin glass.|s a continuous medium, we  |n the absence of magnetic anisotropy and external mag-
will proceed from the Lagrangian netic field, spin glass can transmit coupled magnetoelastic

waves with the linear energy—momentum relatiorr s k

L=Lntlatl’, @ andw=s/k, wheres/=s, ,s/,=s_, and

whereL, is the Lagrangian of the magnetic subsysfefh:

2x (|~ I
L.=—% 2_ 2| T
m ,yz [‘P sm( (9Xj

2 2
Csitsy 1

%5 V(si—st)+ E2a. (6)

We note that the velocity of spin waves and velocity of

st

2
+ye(H+[H,¢])

sound have the same order of magnitude; the velogijty
— wig? d3x, (2)  depends significantly on the magnetic impurity concentration
C, and temperaturd@ (vanishing at the spin-freezing pojnt
L, is the Lagrangian of the acoustic subsystem: The resonant relatiosy,= s; (or s,=s;) can hold in principle

for certain values ot,, and T. In resonance, the coupling
L _P f (02— Ny Uiy 3K between the magnetic and elastic systems increases sharply
) thlm™ik=mf =% (the coupling constant is proportional instead of&?).
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According to Eq.(6), the resonance sets in not for a certaintated relative to the initial system through an infinitely small
value of the wave vector, but for all valueslofthe situation angle® and noting that such a rotation corresponds to the
is similar to that studied in Refs. 9 and 10 for antiferromag-strain tensowu; /dx,= &j; »;, we find that the energy of the
nets. system is supplemented with the quantitk ;. On the

In the presence of an external magnetic figldd also in  other hand, a transition to the rotated system of coordinate
the case where magnetic anisotropy is taken into accountioes not change the energy of the system; Ae=,0.

i.e., for wg=sk), spin waves have the frequencies, (for In summary, the magnetoelastic interaction can play a
the longitudinal and transverse waves, respectjalaccor-  significant role, as was demonstrated above, only in crystals
dance with Ref. 6, where without an inversion center, where it leads to the emergence

of a magnetoacoustic resonance and the formation of
coupled magnetoelastic waves for all values of the wave vec-
w?=Jw?+(yH/2)2= yH/2. (7)  torkin the absence of magnetic anisotropy and in zero mag-

. , ~netic field.
In this case, magnetoacoustic resonance accompanied by

aln at.)rUpt Increase I.n thle coupllngl between the T}‘agnetlc ar1q‘his article was written on the basis of I. A. Akhiezer’s archives.

e aStI.C subsystems is also possible. Howgver, the resonansene magnetoelastic interaction in disordered media is considered in Ref. 2.
sets in not for all values dk, but for certain values of the
wave vector which is defined by one of the equations

w|2= wg-l- Srznkz,

1A 1. Akhiezer, V. G. Bar'yakhtar, and S. V. Peletminskipin Wavesin

— — — — Russian, Nauka, Moscow(1967).
=5k, or=sk, o=sk,  o=sk. (8) 2V. V. Men’shenin, I. F. Mirsaev, and G. G. Taluts, Fiz. Metal. Metalloved.

If we disregard, following Ref. 6, magnetic anisotropy, %% 451(;933- ek _ "
the invariants appearing in’ in the presence of an inversion gh;éASs;;ii\r/];;dz\lﬂ(lighgggc enko, Usp. Fiz. NaligQ 39 (1980, [Sov.
center in the crystal always contain higher—ordgr derivafciveSAK_ Binder and A. P. Young, Rev. Mod. Phys8, 801 (1986.
as compared to Eq(5), and the magnetoelastic coupling °V. S. Dotsenko, Usp. Fiz. Nauk63 1 (1993 [Phys. Usp.36, 155

turns out to be very wealproportional tofa’k?, wherea is 6;’1933;- . 7h Ksp. Teor. Fiz74, 786(1978 [Sov. Phys. JETAT
the lattice constait At the same time, Rusékchose the ;7 ilgr;ar]eev’ - sp. feor. izl oV FIYS. ’
invariant ’D. V. Volkov, A. A. Zheltukhin, and Yu. P. Bliokh, Fiz. Tverd. Tela
- (Leningrad 13, 1668(1971) [Sov. Phys. Solid Stat&3, 1396(1977)].
Uine=A¢ curl u 9 8D. V. Volkov and A. A. Zheltukhin, Fiz. Nizk. Temp5, 1359 (1979

as the energy density of the magnetoacoustic interactiongE/SOé' Jé;?%llﬁg:p'MPh/XﬁéZf/irgtalg]'and V. V. Tarasenko, ks

which leads to a significant coupling between spin waves and teor. Fiz.49, 94 (196 [sic].

elastic waves for crystals with an inversion center. Such &°l. A. Akhiezer, A. E Ginzburg, L. N. Davydov, and Z. A. Spol'nik, Zh.
choice appears as doubtful. Indeed, let us consider a homgEksp. Teor. Fiz63, 1444(1972) [sic].

geneous state characterized by a constant value of the angu’- RuSek J- Phy<€16, 1687(1983.

lar variable o= ¢,. Going over to a coordinate system ro- Translated by R. S. Wadhwa
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LETTERS TO THE EDITOR

Positive Hall effect in a transition-metal-free amorphous alloy
V. M. Kuzmenko and V. |. Melnikov

National Science Center “Kharkov Physicotechnical Institute,” 310108 Kharkov, Ukraine
(Submitted October 17, 1996; revised December 4, 1996
Fiz. Nizk. Temp.23, 355—-357(March 1997

The Hall effect of homogeneous amorphous Be films of thickness 25—100 nm stabilized with
hydrogen impurity is investigated at 10T <50 K. The value of Hall coefficient

estimated aR, = + (1.1 0.2)x 10”1 m%C is found to be independent of temperature and

sample thickness. This is the first consistently repeatable observation of positive Hall effect in a
homogeneous nontransition amorphous metal. The observed effect contradicts the

predictions of the theory that the Hall effect in nontransition amorphous metals must be negative.
© 1997 American Institute of Physid$S§1063-777X97)01503-X]

We investigated the Hall effect in the amorphousterval 25-100 nm. In the course of crystallization at
beryllium—hydrogen [a-(Be(H)] system. Homogeneous T=T,, the value ofRy increases more than fourfold, while
a-Be(H) amorphous films of thickness 125—-100 nm wereR,~7x10 " 1°m%C (at 13 K) after sample heating to
obtained by low-temperature condensation in ultraltiglall ~ T~650 K and is close to the value & for a bulk poly-
components of ajrvacuum under a partial hydrogen pres- crystalline berylliun
sure of 4.6k 10 ° Pal According to our estimates, the According to modern conceptsthe wave vectok is
films contained~1 at.% of hydrogen. The superconducting still a good quantum number and the Fermi surface can still
transition temperaturd@, for these films was-10 K.Y The  be determined if the electron mean free phktim an amor-
transition widthA T determined from the change in electri- phous metal is large enough so tkat>1. Since the amor-
cal resistance from 10 to 90% of its value in the normal statgohous metal has no preferred symmetry axes, the Fermi sur-
was 0.1-0.3 K. The transition &-Be(H) to the stable hcp face must be spherical, and the properties of the metal must
phase occurs as a result of sample heating to the temperatuve described by the theory for free electrons. In this case, the
T,=60-70 K and is virtually completed at=100 K. Hall coefficient must be determined by the classical expres-

Among amorphous metal alloys not containing a transi-sion
tion metal,a-Be(H) films possess one of the highest values
of resistivity p=250*+ 30 w{)-cm (at 13 K). In the classical 1
theory, this val ds to the elect free path "M~ ne’ @)

y, this value corresponds to the electron mean free pa ne
| of the order of atomic spacing.® With such a strong
scattering, strong deviations from the theory of the Hall ef-wheree is the electron charge,=2z/(}, z is the valence, and
fect based on Boltzmann’s concepts should be expected. () is the atomic volume.

We analyzed the Hall effect according to classical tech-  Indeed for nontransition low-resistivitp<<50 u{)-cm),
nigue. The magnetic field with inductid® up to 1.6 T was liquid and solid amorphous metafalloys), the experimen-
created by a superconducting solenoid and was applied &lly determined Hall coefficients are negative and corre-
right angles to the plane of a rectangular filBl j, wherej spond to Eqs(1) almost exactly:® Deviations are observed
is the measuring current densityrhe polarity of the electric only for liquid® or solid amorphodsmetals, for which the
field potentials in the direction of the vectprand the Hall value ofl is comparatively smal(the smaller the value of
electric fieldEy (in the direction perpendicular to the vectors |, the stronger the deviations obserydithe scattering is so
j and B) was determined directly on each sample with thestrong thatl~a, and the Fermi level is in the pseudoband
help of a tester. In all the cases, the vectgr&,, andB gap(pseudogal the Hall coefficient can be successfully de-
form a right-handed system of rectangular coordingfég.  scribed in some cases by the Friedman forn{ate Ref. 3
1), which corresponds to the positive sign of the Hall coef-
ficient Ry (sinceEy=Ry[B,j]). The Hall voltageU,; was 07
measured with the help of a potentiometer P-363. The values H_n_eg’
of the Hall coefficient was calculated from the formula
Ry=Uyd/(BIl), whered is the film thickness, and the  where 0.3<g<1 characterizes the depth of the pseudogap in
measuring current. an amorphous semimetal. However, all the corrections intro-

It was found that for homogeneowsBe(H) films the  duced into the classical expression for the Hall coefficient
value of Ry=+(1.1+0.2)x10 1 m*C and does not de- alter only its value, but do not change its negative sign.
pend on temperaturén the interval fromT, to T.,), mag- At present, the positive Hall effect, which was first ob-
netic field (from 0 to 1.6 T, and layer thicknesén the in-  served in liquid and amorphoifstransition metals, and sub-

@
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obtained when the electron—phonon coupling is disregarded.
Ey The electron—phonon coupling increases the density of states
at low temperatures by a factor of {I\), where\ is the

electron—phonon coupling parameter. This is the “dressed”
L-—d

density of state$! Since \~0.5 for a- Be(H)!? the
f—_——————— - “dressed” density of states will be about
- 1.5x107 3 1m™3 This is close to the value
/ + 1.63x10* J°t.m3, obtained earlier by dsfor the same
a-Be(H) films from the upper critical magnetic fielih the
Ginzburg-Landau—Abrikosov—Gorko GLAG) theory].?
The closeness of the values of the density of states obtained
from two independently determined physical parameters,
viz., the Hall coefficient and the upper critical magnetic field,
sequently was also detected in most of high-resistivity amorapparently speaks in favor of the one-band mofheid
phous alloys containing a transition metdias received the Eqs(3) and(4)] for the amorphous beryllium—hydrogen sys-
following explanation. tem. So far, a proper explanation for the negative value of
The Hall coefficient for nonmagnetic metals with a the electron group velocity foEr has not been obtained in
spherical Fermi surface and isotropic scattering can be dehis system.

FIG. 1. Arrangement of vectors B and Ey in the a-Be(H) film, corre-
sponding to the emergence of positive Hall effect in it.

scribed by the formuf4 In conclusion, it should be noted that the positive value
of Hall effect for pure low- temperature beryllium conden-
o .
Ry=—, (3)  sates was observed earlier al$d? However, these conden-
ne sates were inhomogeneous and contained, in addition to the
where amorphous phase, hcp beryllium whose concentration in-
J9E 9Bl -1 creased with film thickness. Hence the value of the Hall co-
= — ‘_‘ (4) efficient for such films increased sharply with thickness, ap-
ok | ok proaching the value d&y, for hcp beryllium. In this case, the

According to Egs(3) and(4), the sign of the Hall coefficient Much interest.
for free electrons is opposite to the sign of the group velocity
for electrons. . . . YFor crystalline hcp berylliumT,=0.026 K.
The explanatlon of the positive Hall effect in the case sz)For such a definition of density of states, the electron—phonon coupling is
liquid and amorphous transition metals was obtained from antaken into account, in contrast M(Ef)r,,
analysis ofs-d hybridization of the electron structu?évlost
of successful explanations of the positive Hall effect were
obtained by taking into account the effectot hybridiza- 'V. M. Kuzmenko, V. I. Melnikov, T. P. Chernyaeva, and V. V. Bryk, Fiz.

; ; s Metal. Metalloved. No. 8, 411990.
tion on the dynamics of a modifiestband. It was showh ?R. L. Falge, Phys. LetiA24, 579 (1967,

that s-d hybridizgtion must Iead. .to as-shaped energy— 3N. Mott and E. Davis, Electron Processes in Noncrystalline Materials, vol.

momentum relatiorE(k) for modified s-states so that the  1[Russian trans), Mir, Moscow (1982.

velocity of an electron group is negative for the Fermi en- :E- S. Borovik, Zh. &sp. Teor. Fiz23, 83 (1952. .

ergyEr, and hence the Hall coefficient is positive according \1/62'32'36'(‘155765" A. A. Andreev, and V. Ya. Prokhorenko, Usp. Fiz. Nauk

to (3) _and(4). Howe_\_/er, such an ex_planation_is not valid for g gergmann, z. Phy255 76 (1972.

explaining the positive Hall effect in-Be(H) films that do  7G. Busch, H.-J. Gatherodt, H. U. Knzl et al, J. Phys(Parig 35, Suppl.

not contain a transition metal. For this reason, the mechaé\’\/lom5vKC4'329(k19§9-G ) VoL Melnik 4 AL Sudovisor. Zh
. . . . e e . . M. Kuzmenko, b. . Lazarev, V. I. Melnikov, an . 1. Suaovtsov, .

nism of the positive Hall effect in high-resistivity nontransi- Eksp. Teor. Fiz67, 801 (1974 [Sov. Phys. JETR0, 396(1974].

tion amorphous metalthomogeneous amorphoasBe(H)  °m. A. Howson and B. L. Gallagher, Phys. Refi0, 265 (1988.

films are the first example of such mejatemains unclear iZJ.-P. Jan, J. Phy80, 497 (1962.

and calls for further evolution of the theory. G. Bergmann, Phys. Re@7, 4850(1973.

12 . .
V. M. Kuzmenko, D.Sc thesis, Kharkov, Ukrair&992.
In the one-band model, the averaged value of the HallgB. G. Lazarev, V. M. Kuzmenko, A. |. Sudovtsov, and V. |. Melnikov,

coefficient for a-Be(H) films (+1.1x10°°m%C) corre- Fiz. Metal. Metalloved33, 984 (1972.
sponds to about 0.5 charge carrier per beryllium atom, and HK. Yoshihiro and R. E. Glover, if\bstracts of Papers to XlII Int. Conf.
density of statetN(Eg)g,~1.0x10* J-*m~2 (for both di- Low Temp. PhysColorado, USA(1972.

rections of spil This value is the “bare” density of statfs  Translated by R. S. Wadhwa
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