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Experimental and theoretical studies of the coefficienta of phonon energy transmission from
liquid helium to cubic-symmetry metals~tungsten, copper, and aluminum single crystals
and gold polycrystals! are reviewed briefly. It is shown that the transmission coefficients for single
crystals with a perfect surface are correctly described by the theory of acoustic impedance
mismatch model, taking into account absorption of phonons by conduction electrons. Andreev’s
theory of electron resonant absorption of a Rayleigh wave by the surface of single crystal
with a;1 is confirmed. In a strongly anisotropic copper single crystal, a resonant pseudo-
surface wave absorption peak is also observed. It is shown for aluminum that phonon
dissipation decreases sharply upon a transition from the normal to superconducting state, and the
height of the Rayleigh peak decreases accordingly. It is found that the main mechanism of
phonon scattering in a polycrystal is the Rayleigh scattering at grain boundaries, which is
proportional tov4 and is much stronger than scattering at electrons. The form of angular
dependence of the absorption coefficienta(u) changes significantly. ©1997 American Institute
of Physics.@S1063-777X~97!00105-9#
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In this paper, the latest publications by the author a
her group devoted to the problem of the Kapitza bound
thermal resistance are reviewed briefly.

Kapitza1 discovered a temperature gradientDT emerg-
ing at the boundary between two media with a thermal fl
though the contact and proportional to the flux densityQ̇
with the proportionality factorRK , which is called the ther-
mal resistance of the boundary and which changes with t
perature in proportion toT23:

DT5RKQ̇. ~1!

In order to explain this effect, Khalatnikov2,3 proposed a
theory known as the acoustic mismatch model~AMM !. Ac-
cording to this theory, heat transfer is executed by phon
that are incident at the interface at both sides. Heat transf
strongly suppressed due to mismatch of acoustic impeda
of the media~which differ by a factor of 103) and the small-
ness of the critical angle of incidence for phonons in liqu
helium, starting from which total internal reflection tak
place.

The heat flux from helium to a solid can be written in t
form4

Q̇l→s5
\

~2pc!2
E
0

`

nS \v

T Dv3dvE
0

p/2

w

3~v,u!cosu sin udu. ~2!

Here n is the Planck function,c the velocity of light in
helium, andw(v,u) is the transmission coefficient for a pho
non having a frequencyv and incident from liquid helium to
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we shall consider the quantitya(v,u)5w(v,u)cosu).
In thermal equilibrium, counter fluxes of phonons a

equal, and the resultant thermal flux is equal to zero. If
equilibrium is disturbed, the emerging resultant heat flux
given by

W5
4p5

15

rc

D

T4

~2p\ct!
3
F~h!, ~3!

where r andD are the densities of liquid helium and th
solid, respectively,cl andct are the velocities of longitudina
and transverse waves in the solid,h5cl /ct , andF(h)'1 is
the function of elastic constants for the solid. In the case
smallDT, we obtain

DW5
16p5

15

rc

D

T3DT

~2p\ct!
3
F~h!, ~4!

RK5
15

16p5

DT23

rc
~2p\ct!

3F21~h!. ~5!

In the notation used by Khalatnikov, we have

F5
1

2

D

r S ctc D E
0

p/2

w~u!cosu sin udu5F1~h!1F2~h!,

~6!

where F1(h) determines the contribution from volum
waves~longitudinal and transverse! to the energy flux, and
F2(h) is the contribution from surface waves. Khalatniko
calculated the value ofF2 under the assumption that th
energy of a Rayleigh wave is absorbed by the solid co
pletely, andF1'F2.
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It has been established reliably~see reviews in Refs. 5,6!
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that Khalatnikov’s acoustic theory is valid for the interfa
between liquid helium and a perfect crystal with an ide
surface. The theory correctly describes the experimental
for T,0.3– 0.4 K. Above this temperature, a large set
values of the Kapitza resistance differing from the valu
calculated atT51 K by more than two orders of magnitud
is observed. This can be explained by the fact that, in
case of thermal contact between real media, there e
energy-exchange channels associated with phonon dis
tion and disregarded in the theory, such as the scatterin
phonons at conduction electrons in metals, scattering at g
boundaries in polycrystals, scattering in the surface laye
roughnesses, at impurities, at crystal lattice defects and a
edges of the crystal. Energy dissipation due to scatte
changes the acoustic transmission coefficienta(u), and
hence the Kapitza resistance.

This was noted for the first time by Andreev7,8 who
proved that scattering of phonons at conduction electron
metals leads to resonant absorption of the surface way fo
supercritical Rayleigh angleuR with the energy transmissio
coefficienta;1 for a resonant peak width of the order of a
angular minute. The contribution of Rayleigh waves to t
heat flux is approximately equal to the contribution fro
volume waves. Later, some authors9,10 obtained a similar
pattern for transmission of acoustic phonons by introduc
absorption of sound in the bulk of the solid into the pheno
enological theory of acoustic mismatching. The energy o
Rayleigh wave is localized near the surface of the solid i
layer of thickness 2l; in the case of dissipation, this energ
is transferred to the bulk either by phonons or by conduct
electrons. In the absence of dissipation, the energy store
the solid is emitted to liquid helium.

The phenomenological theory, taking into account ph
non dissipation in a solid, is known as the dissipative the
of acoustic mismatching. The results of this theory were u
in our investigations.

This review contains the results of theoretical and
perimental studies of the coefficienta of phonon transmis-
sion from liquid 4He to metals with cubic symmetry~tung-
sten, copper and aluminum single crystals and g
polycrystals!.

Before describing the results, let us consider briefly
methods of calculations and experimental technique.

2. CALCULATION OF TRANSMISSION COEFFICIENTS

Sincea(v,u) determines the value of heat flux throug
the interface between4He and a solid~and hence the Kapitza
resistance!, it is important to compare the experimental va
ues of transmission coefficient obtained by us with the th
retical values. Analytical formulas derived in Refs. 2–4 a
7–10 describe the interface between4He and an isotropic
solid whose parameters are usually unknown. For this
son, we made measurements on crystals. However, cry
are acoustically anisotropic. In the general case of
helium–crystal interface, the transmission coefficient fo
monochromatic plane wave depends on the plane a
which the crystal is cut, the polar angleu of incidence, and
the directionw of wave propagation.11 In contrast to an iso-
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interface does not exists. Nevertheless, the problem ca
solved numerically on a computer.

In our publications, we used the following general alg
rithm of calculatinga(v,u,w):

~1! the wave equation of an infinite anisotropic medium w
written and solved;

~2! the boundary conditions for a plane boundary of t
semi-infinite anisotropic medium were written;

~3! on the basis of the obtained solutions, a system of lin
equations satisfying the boundary conditions was w
ten.

Let us consider the main stages of calculations based on
an algorithm.

1. For an elastically deformed anisotropic medium~crys-
tal!, the dependence of the stress tensors i j on the strain
tensorukl has the form12

s i j5l i jkl ukl , ~7!

wherel i jkl is the tensor of elastic moduli. Crystals belongin
to the cubic symmetry group have only three nonzero in
pendent moduli of elasticity:l1111,l1122, and l1212. The
anisotropy coefficient is defined as

h5
2l1212

l11112l1122
. ~8!

We assume that an elastic monochromatic wave w
frequency v, wave vector k, and polarization Xj (uj
5 Xj exp@i(kixi 2 vt)# propagates in an infinite medium wit
densityD and elastic modulil i jkl . The wave equation ha
the form

~kikll i jkl2Dv2d jk!Xk50. ~9!

This equation establishes the relation betweenv,k, and
Xk . Since the right-hand side of Eq.~9! is equal to zero,
nontrivial solutionsXk exist only when the determinant i
equal to zero:

det~kikll i jkl2Dv2d jk!50. ~10!

This equation can be regarded as a sixth-degree equatio
the wave vector modulusuku for a fixed frequencyv with the
parametern5k/uku corresponding to the direction of propa
gation of the wave in the crystal. The equation has th
pairs of rootsuku(m)(v,n) corresponding to the one quas
longitudinal and two quasi-transverse modes. Gener
speaking, three different phase velocities of elastic wa
correspond to an arbitrary directionn in the crystal.

2. Let us consider an anisotropic medium with a pla
boundary. We direct thez-axis at right angles to the bound
ary ~liquid helium is over the medium in the positive hal
space! and thex-axis to the sagittal plane. In this case,

kxc5v sin u, ky50, k2c5v cosu, ~11!

whereu is the angle of incidence of sound andc the velocity
of sound in helium.
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The boundary conditions at the interface are reduced to
ct
he

o

e-
t

he

.
if
th

th

he
fa

on
a
t
e
es
-
-
b
g
e

of

h

f

p
rg
th
al
h
n
f

s

ta
ob

ld

the
atic

abi-

ci-
as
er-
e at
ating
-
h.
ns-
-
ted
nal-
y.
-
fol-

at
n
he

gat-
ls.
n

the conservation of the tangential component of wave ve
~Snell’s law! and of the phonon frequency, as well as to t
continuity equation.

For a wave incident on the interface from the side
liquid helium, we have

kx5kx
He, ky5ky

He, v5vHe. ~12!

In this case, thez-component of the wave vector of the r
flected wave is equal to thez-component of the inciden
wave and has the opposite sign:

kzrefl
He 52kz

He, ~13!

while the z-component of waves transmitted through t
crystal are determined from Eq.~10! which is regarded as a
sixth-degree polynomial inkz . From the six roots of Eq
~10!, we choose three roots having a physical meaning:
root is real-valued, the group velocity must be directed to
bulk of the metal~must be positive!, but if the root is imagi-
nary, the wave must attenuate during its propagation to
bulk of the metal~the imaginary component is negative!.

The continuity equation is reduced to the equality of t
normal displacement and stress on both sides of the inter
and to the absence of tangential stresss.

3. These conditions lead to a system of linear equati
from which the amplitude of the reflected wave can be c
culated. The ratio of the amplitude of the reflected wave
the amplitude of the incident wave gives the reflection co
ficient for amplitude, while the square of its modulus giv
the energy reflection coefficienta refl . In this case, the trans
mission coefficienta(u,w)512a refl . We assume that ab
sorption of sound in liquid helium is equal to zero. The a
sorption in the solid was taken into account by introducin
small imaginary component to the elastic tensor of the m
dium l i jkl in the wave equation~9!, namely, by multiplying
the initial tensorl i jkl by the constant (112pi). The dimen-
sionless absorption parameterp can be expressed in terms
the coefficientsg l ,t of bulk absorption of acoustic energy:

pl ,t5g l ,tcl ,t/2v5
l l ,t

4p l l ,t
, ~14!

where g l ,t5(1/x) ln J0 /J, ll,t is the acoustic wave lengt
and l l ,t the characteristic length for energy absorption~the
distance over which the intensityJ decreases by a factor o
e).

The algorithm described above was used to develo
program for calculating angular dependences of ene
transmission for a plane monochromatic acoustic wave at
interface between liquid helium and various single cryst
of cubic symmetry. By way of an example, Fig. 1 shows t
results of calculations for tungsten, copper, aluminum, a
gold crystals cut in the~001! plane for an azimuthal angle o
wave propagationw50°.

The coefficient a(u) vanishes for the angle
u15arcsin(c/cl) andu25arcsin(c/ct), and the Rayleigh peak
corresponds to the angleuR5arcsin(c/cR), wherecR is the
velocity of a Rayleigh wave at the free surface of the me

The results of calculations presented in Fig. 1 are
tained for the absorption parameterp56•1024, anda'1
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for u5uR . Elastic constants for aluminum, copper, and go
at low temperatures were taken from the handbook13 and for
tungsten from Ref. 14~at room temperature!.

3. MEASURING TECHNIQUE

The method of measurements of angular spectra of
energy transmission coefficient for a plane monochrom
acoustic waves propagating from liquid4He to metals is de-
scribed in detail in Refs. 15 and 16.

The measurements were made on a3He–4He dilution
refrigerator with a minimum temperature;25 mK, in which
the measuring chamber filled with4He and containing the
sample and a piezoelectric quartz emitter was cooled.

The setup was mounted in a screened room. At a st
lized liquid helium temperature~with a stabilization level up
to 1mK), the overheating of the samples by phonons in
dent from4He on the crystal surface at various angles w
measured with the help of sensitive semiconducting th
mometers fixed to the sample with a conducting adhesiv
the shadow side. The dependences of sample overhe
DT on the angle of incidenceu were recorded at fixed fre
quencies. The recording time varied from 30 min to 1.5

The method allowed us to measure small energy tra
mission coefficients;0.003–0.005 with an angular resolu
tion up to 18 at temperatures 60–400 mK under satura
vapor pressures at frequencies 10–300 MHz for the sig
to-noise ratio of the order of 100 with a high reproducibilit

The sample overheatingDT is connected with the acous
tic energy transmitted through the sample through the
lowing relation:

DT5
Sexp
Ssample

RKa~v,u!Q̇, ~15!

whereQ̇ is the energy density of the acoustic flux incident
the angleu to the surface,a(v,u) is the energy transmissio
coefficient,Sexp the area of the sample surface on which t

FIG. 1. Energy transmission coefficient for a plane acoustic wave propa
ing from liquid 4He to tungsten, gold, copper and aluminum single crysta
The cut is made along the plane~001!, the azimuthal angle of propagatio
w50°, anda(uR).1 ~the absorption parameterp56•1024!.
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RK the Kapitza boundary resistance. Relation~15! leads to

a~v,u!5
DT

RKQ̇

Ssample

Sexp
. ~16!

In our experiments, we determined only the relati
value ofa(v,u). The absolute value of transmission coef
cient can be obtained either by measuring all the parame
appearing in~16!, or by comparing the experimental value
a(v,u) with the theoretical dependence.

While developing the method of measurements,
found that the following factors are most significant:

~1! helium temperature stabilization in the interv
3•1025–1026 K;

~2! measurement of the angleu with an error smaller than
18;

~3! simultaneous measurement of the temperature of he
and the crystal with sensitive semiconducting thermo
eters whose signals were supplied to low-temperature
bridges and were recorded from the output of the ins
ments in the real time by a computer.

4. DISCUSSION OF RESULTS

4.1. Tungsten Single Crystal

Among metals with cubic symmetry, tungsten is t
most isotropic crystal in the acoustic sense~the anisotropy
coefficienth50.995). The absence of anisotropy simplifi
an analysis of theoretical dependences considerably.

The high-purity tungsten single crystal (R300/R4.2

564000) had the shape of a circular disk of diame
8.6 mm and thickness 1.5 mm. The normal to the elec
lytically polished face surface of the disk formed the ang
23° and 30° with the axes@100# and@101#, respectively. The
roughnesses and deviations from the plane were wi
0.3 mm.

Measurements were made at frequencies 10
30 MHz in the temperature interval 60 mK–0.4 K.15–18,31

The angle of incidenceu of a plane acoustic wave on th
sample varied from220° to120°.

The characteristic curves for 30 MHz are presented
Fig. 2a. Here, the sample overheatingDT ~in mK! relative to
liquid helium is plotted along the ordinate axis to the le
while the acoustic energy transmission coefficie
a(u)5w(u)cosu is plotted along the ordinate axis to th
right. ~For the angle of incidence 6°, the difference betwe
a andw amounts to less than 0.5%.! The magnitude of the
anglea(u) was calculated from the value ofDT after nor-
malization at zero angle at which, according to the acou
theory, the value ofa was assumed to be

a~0!5
4rcDcl

~rc1Dcl !
2
'
4rc

Dcl
51.4•1023. ~17!

It can be seen from Fig. 2a that sound passes from helium
tungsten only in a narrow angular interval close to the n
mal incidence. Foru.66°, sharp peaks of sample overhea
ing are observed.
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Since the peaks are formed symmetrically relative to
normal for both frequencies under investigation and at d
ferent temperatures, and lie in the angular interval cor
sponding to total internal reflection, their formation can
associated with an increase in energy transmission du
absorption of the Rayleigh surface wave excited resona
by the incident acoustic wave, i.e., the effect predicted
Andreev.

The following two peculiarities of experimental curve
are worth noting. The first is that the peaks formed at2uR
and1uR have different heights, which is apparently asso
ated with the nonuniformity of radiation emitted by quartz

The second peculiarity is the presence of small peak
u50° formed at the lowest temperatures. The peaks are
to an increase in energy incident at the interface due to m
tiple reflection of the plane wave between the quartz emi
and the sample.

These peculiarities were subsequently observed for o
samples~copper and aluminum! also. The peaks atu50°
were studied by us in detail for a copper single crystal.

Let us compare the experimental results obtained
a(u) in tungsten with the theoretical dependence presen
in Fig. 1. The spectrum in the figure correctly describes
observeda(u) dependence. However, the critical angles
longitudinal and transverse waves could not be observ
apparently, in view of imperfection of the plane wave em
ted by quartz.

Figure 2b shows a two-dimensional theoretical spectr
of a(u,w) for the interface between liquid4He and tungsten.
The intensity of gray color corresponds to the value ofa

FIG. 2. ~a!Experimental recording of the angular dependence of acou
energy transmission coefficienta(u) ~right scale! in tungsten single crystal
for f530 MHz and three different temperatures; the left scale correspo
to sample overheatingDT by sound. The lower curve is recorded temper
ture of liquid helium andU is the voltage applied to quartz.~b! Two-
dimensional theoretical spectrum ofa(u,w) for the interface between4He
and tungsten in the angle of incidenceu in the sagittal plane vs. the radiu
r ;w is the azimuthal angle between the axis@001# and the sagittal plane.
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An attempt to choose the theoretical peaks correspo

ing to the experimental Rayleigh peaks~Fig. 2a! both in
height and width proved futile mainly due to the fact th
theoretical peaks have extended tails making a contribu
to the integral of transmitted energy up to 30% beyond
critical angle. Such contributions are not observed in exp
ments.

It should be borne in mind that the theoretical analy
was carried out under the assumptions that the plane in
face is infinitely large and the plane wave is perfect, whi
strictly speaking, do not correspond to our experimental c
ditions. In actual practice, the sample has a size of the o
of the characteristic lengthl for 30 MHz, and according to
calculations, diffraction broadeningl/D of acoustic beam in
helium was 6 and 28 for 10 and 30 MHz, respectively.

The minimum width of the experimental Rayleigh pe
for 30 MHz was 258. The reason behind additional pea
broadening beyond the diffraction broadening could be
imperfection of the emitter as well as wavy roughness of
electrochemically polished sample surface.

In spite of a considerable~by an order of magnitude!
broadening of the acoustic beam as compared to diffrac
broadening, we can compare the experimental results
the dissipative acoustic theory by using the invariability
the integral of transmitted energy and estimate the absorp
parameterp ~andg) corresponding to the given sample.

An estimate of the integral*0
2uRa(u)du for experimental

and theoretical values ofa(u) was obtained for 10 and
30 MHz at different temperatures. The experimental cur
were preliminarily normalized atu50°.

The absorption parameters determined in this way v
from ~1.0–1.25!•1024 for 10 MHz to ~2–6!•1024 for
30 MHz, which is in satisfactory agreement with the me
sured value for the bulk acoustic absorption coeffici
(p53•1024).19 The integral of the total energy for exper
mental values is twice as large as the energy integral u
the critical angle, which is in accord with calculations ma
by Khalatnikov and Andreev.

4.2. Copper Single Crystal

Experiments18,20,21were made on a copper single crys
whose properties can be described correctly by the free e
tron theory.

The sample of diameter 10 mm and thickness 1.4 m
was cut from a single crystal by the electric-spark method
that the surface under investigation coincided with the ba
plane~001!. The sample was polished mechanically by d
mond paste and then etched electrochemically. The remo
layer of copper of thickness 10mm was several times large
than the grain size of the coarsest diamond paste. It ca
assumed that the obtained surface contained no mecha
stresses.

Investigations on a Linnik interference microsco
proved that the main part of the surface is smooth to wit
100 nm; scratches of depth up to 200–500 nm were pres
their density being approximately 1 scratch/mm. Thus, s
tering at defects for ultrasonic waves of length up to 1mm
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corresponding to frequency 500 MHz was weak.
The sample surface was smooth to within 10mm over a

length of 100 mm.
Copper is an acoustically strongly anisotropic crys

with the anisotropy coefficienth53.2. The form of angular
absorption spectra is determined by the shape of cons
frequency surfaces of the crystal in the space of wave vec
k. For a strongly anisotropic crystal, constant-frequency s
faces differ from the spherical surface both for the longi
dinal and for two transverse modes. The constant-freque
surface for the slowest transverse mode is not convex,
hence a transition is made from conventional surface wa
to generalized waves.22

Figure 3 shows the results of calculation of acoustic
ergy transmission through the three principal planes of
copper single crystal in the form of two-dimensional pa
terns. The following peculiarities of two-dimensional spec
are worth mentioning. A region of transmission of longitud
nal sound is observed at the center, for angles close to
normal. As a result of anisotropy, the shape of this reg
differs from circular. The region of longitudinal sound
separated from the region of transverse sound by a band
zero transmission coefficient. In the region of transve
waves, the transmission coefficient is slightly larger than
the region of longitudinal waves as in the case of an isotro
medium.

Narrow black bands framing the continuous spectr
correspond to sharp peaks of resonant transmission of so
in the case of excitation of a surface Rayleigh wave.

The distinction of the spectrum of an anisotropic crys
~copper! from that of an isotropic crystal lies in the forma

FIG. 3. The result of theoretical calculation of acoustic energy transmis
through the interface between liquid4He and a copper single crystal cu
along the planes~001! ~a!, ~011! ~b!, and~111! ~c!. The two components of
the angle of incidence of sound at the interface are plotted along the c
dinate axes. The calculations are made for the absorption param
p55•1024. Bold lines show the direction of scanning in experiments, wh
fine lines show equivalent directions for a cubic crystal.
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tion of additional resonant peaks in the continuous spec
region, which correspond to pseudo-surface waves.11 The
term ‘‘pseudo-surface waves’’ is usually applied to wav
which are localized at the surface incompletely, but
coupled only slightly with bulk mode.

In Fig. 3, pseudo-surface peaks in the form of narr
black bands can be seen in the~001! plane in the vicinity of
the @110# direction. In the same directions, the intensity
transmission of Rayleigh waves vanishes. Pseudo-Rayl
peaks can also be seen in the~111! plane and are absent i
the ~011! plane. The velocity of Rayleigh waves is small
than the velocities of the longitudinal and two transve
modes in the crystal; for this reason, Rayleigh peaks alw
lie at the edges of the spectrum.

Solid curves in Fig. 4 present the results of measu
ments of the acoustic energy transmission coefficient i
copper single crystal for the~001! plane and azimuthal di
rectionsw50, 10, 22, 29, 37 and 45°. These results we
obtained during measurements at temperature 140 mK
frequency 39 MHz. The dashed lines in same figures co
spond to theoretical dependencesa(u) calculated for a plane
wave. It can be clearly seen that the experimental and th
retical dependences are in excellent agreement and repe
finest details everywhere except the central region of an
62°. Such an agreement was reached for the first time in
present publication.

In the central region,a(u) has additional resonant peak
at uR/3,uR/5,uR/7, etc. These peaks are larger in absol
value than the theoretical valuea(0)55•1023 by a factor of
2–3. This is due to close spacing of the sample and qu

FIG. 4. ~a! Experimental spectra of phonon transmission to a copper si
crystal~~001! plane! along various azimuthal directionsw50, 10, 22, 29, 37,
and 45° at temperatureT5140 mK and frequencyf539 MHz. Dotted lines
correspond to the results of calculations. The arrows indicate the top
experimental Rayleigh and pseudo-surface peaks.
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between these two surfaces.
As a result of multiple reflections, the spectrum of tran

mission coefficient for anglesuR /n(n is an odd number!
acquires additional resonant peaks associated with excita
of surface Rayleigh waves; as a result, the transmission
ergy increases in the region62°. This is confirmed by
calculations.21 Thus, the theoretical and experimental valu
of a in a specific geometry coincide in the central regi
also.

The pattern asymmetry relative tou50°, which is no-
ticeable in Fig. 4, is due to the fact that the scanning in
given directions is carried out not exactly through the cen
(u50°). Thedeviations measured for six azimuthal angl
lie within 20–408. As a result, the pattern to the left and rig
of u50° corresponds to slightly different azimuthal angle
which was taken into account in the calculation of theoreti
dependences.

An analysis of the experimental curves in Fig. 4 sho
that the overheating of the single copper crystal by soun
observed only in the range of allowed anglesuuu,7° as in
the case of tungsten. In contrast to tungsten,~1! a sharper
interface exists for the critical cone of energy transmission
copper, and~2! the resonant peaks for surface waves
much sharper and higher. The maximum Rayleigh peak
the amplitudea'0.1 ~see Fig. 4a!. The observation of such
sharp and high peaks confirms the predictions of Andree
theory.7

Along with purely surface Rayleigh peaks, Fig. 4 al
shows pseudo-surface peaks. Excellent agreement with
theory should be noted as regards the anglesu for which
resonant peaks are excited as well as the shape of these
~height and width!. The suppression of Rayleigh peaks c
be clearly seen as we approachw545° ~@110# direction!. In
the directionsw537 and 45°, resolved peaks have amp
tudes amounting only to 1/100 of the maximum amplitud

It should be noted that in the region of continuous sp
trum (uuu,6°), minima separating longitudinal (uuu,3°)
and transverse (3°,uuu,6°) modes were observed for th
first time. A minimum between transverse and Raylei
waves was also observed~the critical angle was 6–6.5°). In
the absence of damping (p'0), the transmission coefficien
a50 at the minimau1 andu2, i.e., total internal reflection of
longitudinal and transverse waves takes place. This is
additional evidence in favor of the validity of the acous
theory for the description of heat-transfer processes.

The temperature and frequency dependences are i
trated in Fig. 5. The spectra are repeated exactly both
temperature and for frequency. The attenuation of the sig
upon an increase in temperature is due to absorption of
trasound in helium, which is proportional tovT4, while the
attenuation with increasing frequency is due to the dete
ration of the emitter quality for small wave lengths.

The theoretical dependence of the transmitted energy
tegralI 5 *a(u)du on the azimuthal anglew° on the~001!
surface for various values of the absorption parameterp is
shown in Fig. 6. For purely surface Rayleigh waves~left
curves!, the integral transmission decreases abruptly in
region w'30°, vanishing for the directionw545°. As we
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approachw545°, the Rayleigh peak becomes infinitely na
row ~for a;1), the magnitude of integral transmissionI R
decreasing simultaneously with decreasing peak width. S
the transverse componentkz of the wave vector is real
valued in this case, there is no localization, the wave p
etrates the crystal to a large depth and becomes purely
ume wave forw545°.

The integral transmission of a pseudo-surface w
~right curves in Fig. 6! in the directionsw530–42° does not
depend on absorption since the radiation emission into
solid in this angular interval exceeds the radiation emiss
into the liquid. In the angular range 42–45°,I is a function
of dissipation if its magnitude is smaller than the radiati
emission into the liquid, but larger than the radiation em
sion into the crystal.

4.3. Aluminum Single Crystal

Aluminum is an acoustically weakly anisotropic cryst
with the absorption coefficienth51.22.

FIG. 5. ~a! Experimental spectra of transmission of ultrasound to a cop
single crystal ~~001! plane!: in the direction w529° at a frequency
39 MHz at various temperatures~a! andw537° atT5140 mK for various
frequencies~b!.

FIG. 6. Dependence of the integral energy transmissionI5*a(u)du on the
azimuthal anglew on the~001! surface for various values of the absorptio
parameterp. The integral for a purely surface wave is shown on the left a
for a pseudo-surface wave on the right. The dashed line shows ave
integral transmission for volume waves~longitudinal and transverse!.
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purity metal melt (R300/R4.2540 000). The sample had th
shape of a disk of diameter 18 mm and thickness 2 m
whose free surface was close to the basal plane~001! of the
crystal. The@100# axis was on the free surface, and the~010!
plane formed an angle approximately equal to 2° with
normal to the surface.

As usual, the sample was first mechanically polished
a buffing machine~the grain size in the polishing paste wa
approximately 1mm). Then the sample was subjected
electrochemical polishing as a result of which a layer
thickness 15mm was removed. After such a treatment, t
sample acquired the mirror surface without scratches
with a surface defect size smaller than 0.1mm.

Since the effect of anisotropy was studied in detail e
lier for the copper single crystal, and anisotropy of aluminu
is small, the transmission coefficient for phonons through
basal plane~001! in the given sample was studied only fo
sound propagating along the@100# axis ~the azimuthal angle
w50°).

We were mainly interested in analyzing of the effect
the superconducting phase transition in aluminum on
transmission coefficient.

In order to transform the sample to the normal st
(Tc51.19 K, Hc5100 Oe), the magnetic field
H;1 kOe@Hc of a solenoid was applied in the directio
perpendicular to the surface under investigation foru50°.

The transmission coefficient was measured in the te
perature range 100–300 mK at frequencies varying from
to 91 MHz.18,23

The results of measurements ofa(u) in the normal and
superconducting states at two frequencies~39 and 65 MHz)
atT5140 mK and the theoretical dependences are prese
in Fig. 7.

It can be clearly seen that as for the tungsten and cop
single crystals investigated earlier, sound propagates in
minum inside a narrow cone~with the angle approximately
equal to65°). The region of continuous spectrum~angle
64.3°) with a minimum between the longitudinal and tran
verse waves for the critical angle of incidence62° for lon-
gitudinal waves is clearly outlined. Sharp peaks associa
with resonant absorption of Rayleigh waves excited by
incident sound lie on both sides of the critical angle.
should be noted that experimental curves exactly coinc
with calculated theoretical dependences.

As in the previous experiments with tungsten and co
per, the region corresponding to transmission to longitudi
modes (uuu,2°) contains additional peaks at angl
uR /n(n is an odd number! associated with the excitation o
Rayleigh waves by the sound experiencing multiple refl
tions between the surfaces of the sample and the quartz e
ter ~the separation between these objects was approxima
10 mm.

In the normal state of aluminum, the principal Rayleig
peaks foruR '6 4.5° attain the amplitudea'0.18 for a
width approximately equal to 308, while the absorption pa-
rameterp5(5–8)•1023, which coincides with the results o
direct measurements.24 The absolute values ofa(u) were
determined by normalization of the experimental depende
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to the theoretical dependence in the region of transmissio
the transverse mode~which does not contain distortions a
sociated with secondary Rayleigh peaks!, and the absorption
parameterp was determined from a comparison of the no
malized experimental curve with the theoretical one.

Thus, experiments with aluminum confirm the validi
of Andreev’s theory once again. The experimental angu
spectra for aluminum in the superconducting state~see Figs.
7b and 7d! differ considerably from thea(u) spectra in the
normal state. The Rayleigh peaks become much narro
~their width amounts approximately to 58), and their height
exceeds that in the continuous spectrum region only slig
~for high frequencies!.

The absorption parameterp for the superconducting
state is smaller by a factor of 60–70 than for the norm
state, and the contribution of Rayleigh peaks to the ther
flux is virtually equal to zero.

Besides, in the superconducting state, angular osc
tions of the quantitya(u) ~‘‘crest’’ ! are observed in the re
gion of continuous spectrum~see Fig. 8!, the oscillation fre-
quency increasing in proportion to the frequency of sou
The oscillations ofa(u) emerge due to the finite width of th
plate. The sound transmitted in the plate and reflected m
tiply between its parallel plates interferes in the metal~in
analogy with the Fabry–Perot interferometer!. The calcu-
lated interference pattern for both frequencies~dotted curve
in Fig. 8! coincides to a considerable extent with the expe
mental curve. In the normal state, no oscillations are
served in view of much stronger absorption of sound in
metal.

Thus, it has been proved experimentally that the abso
tion of a Rayleigh wave by conduction electrons in the n

FIG. 7. Angular spectrum for the phonon transmission coefficienta(u) to
aluminum for the normal~a,c! and superconducting~b,d! states at frequen-
cies 39 and 65 MHz atT5140 mK. Solid curves correspond to experimen
and dotted curves to the theory. The arrows indicate the tops of experim
Rayleigh peaks.
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mal state is the dominating dissipation mechanism. In
superconducting state, absorption decrease abruptly an
associated with different scattering mechanisms~mainly,
with the scattering at the sample edges, periodic nonuni
mities and roughnesses!. In this case, the absorption param
eter can be a function of the frequency of incident sou
which was actually observed in experiments at low frequ
cies.

The abrupt decrease in absorption during the transi
to the superconducting state leads to an increase in
Kapitza resistance~approximately two-fold!.

A comparison of experimental angular spectraa(u) for
the three metals investigated by us~tungsten, copper, and
aluminum! shows that the transmission coefficients for ide
monocrystalline samples with a perfect surface are close
are correctly described by the dissipative acoustic theo
The values ofp'3•1024–5•1023 obtained for tungsten
copper, and aluminum coincide with the results of dire
measurements on sound absorption. It should be noted
Andreev’s theory gives narrower resonant peaks fora.1
~of width 4–309) corresponding to smaller parametersp.

4.4. Gold Polycrystal

The analysis of single crystals with perfect surfac
which confirmed the validity of the dissipative acous
theory, provoked the natural question as to what will be
transmission coefficientsa(v,u) for acoustic energy in
polycrystals?

Remarkably, the acoustic properties of the interface
tween4He and a polycrystal have not been investigated u
recently in spite of the fact that most of measurements
Kapitza resistance were made on polycrystalline sample

tal

FIG. 8. Angular oscillations of the transmission coefficienta(u) for super-
conducting aluminum, associated with interference of waves in a fin
thickness plate,T5195 mK. The solid curves correspond to experimen
and dotted curves to the theory.~For both frequencies,a50 on the left of
the Rayleigh peak.!
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high-purity polycrystalline gold (R300/R4.2536 000) pre-
pared from melt.25 The sample was in the shape of a par
lelepiped of the size 1331031.9 mm. In the process o
manufacturing, the sample was rolled through rollers, l
elled under a press with polished quartz plates, and t
annealed in vacuum. The quality of the surface was c
trolled by a Linnik interference microscope; the size
roughnesses and deviations from the plane did not exc
0.5 mm.

According to rings on the Laue diffraction patterns r
corded from two different points of the sample~the lines are
continuous and have the same thickness!, we could estimate
the average size of crystallites:ā<10mm. In addition, after
the experiments the surface was subjected to fine mecha
polishing and etching and was investigated under a mic
scope with a large magnification. A typical size of grai
formed as a result of recrystallization and annealing was
10mm. Each crystallite was a single crystal with strong
anisotropic acoustic properties. The anisotropy coeffici
for gold ish52.85. Figure 1 shows thea(u) spectrum for a
gold single crystal in the directionw50°. It is assumed tha
crystallites in a polycrystal are oriented at random, as a re
of which the acoustic properties of the polycrystal beco
isotropic.

The polycrystalline gold sample described above w
studied by us twice.15,25 The first experiments15 did not lead
to positive results. Only subsequent measurements25 in the
same sample, using a more perfect measuring techni
made it possible to obtain a stable pattern of angular dep
dencea(v,u) for a plane monochromatic wave for thre
frequencies in the range 13–65 MHz.

The main distinguishing feature of the spectra for tra
mission coefficienta(v,u) in a gold polycrystal was that th
overheatingDT for the gold polycrystal by sound was ver
small relative to4He. For the same acoustic flow rate, t
overheating for the gold polycrystal was smaller than
single crystals by a factor of 102–103, which indicated a
small Kapitza resistance in the polycrystalline samp
Rough estimates obtained on the basis of our experim
give RKT

3;80 cm2K4/W, which is close to the value
RKT

3546 cm2K4/W obtained by Folinsbee and Anderson26

for a mechanically polished annealed gold foil of thickne
0.6 mm atT;40–300 K.

Figure 9 shows the experimental curvesa(u) normal-
ized ~by coincidence atu50) for frequencies 13, 39, an
65 MHz in the region of positive anglesu. For u50, we
havea theor52.13•1023.

The form of thea(v,u) spectra for a polycrystal differs
from typical angular spectra for single crystals. For polycr
tals, we do not observe sharp and high peaks of reso
absorption of a Rayleigh wave at the spectral edges, d
minima separating the regions of longitudinal and transve
surface waves, and resolved secondary Rayleigh peaks
zero angle of incidence. The spectra are asymmetric, all
gularities are strongly blurred, and resonant peaks are b
and low.

Beyond the critical coneuc512°, the functiona(u) de-
creases very slowly, tending to zero. The construction of
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instrument did not allow us to investigate the spectra
angles of incidenceu.30–40°.

The form of thea(u) spectra in Fig. 9 indicates stron
absorption of sound in the gold polycrystal. The sound
sorption parametersp can be determined by comparing th
transmitted energy integrals*0

0.5a(u)du for theoretical and
experimental dependences~we assume that the integral o
transmitted energy is conserved!. The shape of the experi
mental a(u) curve can differ from that of the theoretica
curve mainly due to the expansion of the interval of angles
incidence on a rough surface.

It was found that as the frequency changes from 13
65 MHz, the parameterp changes from 2•1024 to 0.15, i. e.
strongly depends on frequency. For the frequencies 39
65 MHz, it is one or two orders of magnitude larger than t
electron absorption parameter (p;1024).27 The increase of
the tails in thea(u) spectrum with frequency beyond th
critical cone also confirms this statement.

Such a strong sound absorption in the gold polycrys
and its increase with frequency are due to scattering of so
at grain boundaries.

It was proved in the theoretical works by Lifshits an
Parkhomovskii,28 Papadakis,29 and Kaganova and
Maradudin30 that scattering takes place at nonuniformities
the elastic medium in view of random orientation of cryst
lites each of which is a strongly anisotropic single crystal.
high frequencies, this absorption mechanism becomes
dominant.

Papadakis29 proved that absorption of sound depends
the average grain sizeā:g5V̄f 4S for low frequencies
(l@ā, Rayleigh scattering! andg5ā f 2S for high frequen-
cies (l!ā), where V̄ and ā are the average volume an
diameter of a grain, andS andS are constant coefficient
characterizing the material and varying insignificantly fro
sample to sample. The boundary between the two region
determined by the conditionlb52pā. In our case,l590,

FIG. 9. Normalized experimentala(u) curves for a gold polycrystal:
f513 MHz,T5150 mK ~curve 1!, f539 MHz,T5200 mK ~curve 2!, and
f565 MHz,T5150 mK ~curve3!.
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30, and 18mm, i.e., we are in the intermediate region for t
grain sizeā55mm.

Figure 10 shows the theoretical straight lineg5V̄f 4S
for the grain sizeā55mm. The values ofS are borrowed
from Ref. 29. The same figure shows the points obtai
from a comparison ofI exp and I theor. The error in the evalu-
ation of integrals is approximately 100%. The maximum
ror is observed in the range of parametersp from 1023 to
1021, in which the integral varies only by 10%. It can b
seen from the figure that satisfactory agreement is obse
between the experimental values ofg and the theoretica
straight limeg5V̄f 4S.29

A virtually complete absorption of sound even at t
frequencyf565 MHz explains the considerable increase
the integral contribution of phonons to the thermal fl
through the boundary of the polycrystal. It increases due
the tail extending from the critical angle top/2, which is in
accord with the dissipative acoustic theory. From this po
of view, the small value of the Kapitza resistance for po
crystalline gold is obvious.

The following peculiarities of thea(u) spectra of the
polycrystal are worth noting.

~1! The overheating of the gold polycrystal by sound re
tive to liquid helium is 2–3 orders of magnitude weak
than that of single crystals, which corresponds to a la
absorption parameterp and a small Kapitza resistance

~2! Thea(u) curves do not exhibit a complete angular sy
metry in view of anisotropy of the polycrystal due
residual preferred orientation after rolling. Individu

FIG. 10. Experimental values of absorption for a Rayleigh wave in a g
polycrystal (f513,39,65 MHz) and the theoretical straight lineg5V̄f 4S29

for the grain size 5mm.
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a Rayleigh wave by groups of crystallites with close o
entation of principal axes.

~3! The height of the gently sloping Rayleigh absorpti
peak atuc increases with frequency, which is typical o
spectra for whichp is a function of frequency. The
maximum transmission (a'1) for polycrystalline gold
apparently corresponds to the frequency reg
f.65 MHz.

~4! Rayleigh peaks have a larger angular width, which c
be explained not only by large values ofp, but also by
the blurring of the incident beam due to imperfections
the surface formed by individual grains~single crystals!
oriented at different angles to the surface.

5. CONCLUSION

The main results can be formulated as follows.

~1! Resonant absorption of sound by the surface of a tu
sten single crystal for a Rayleigh supercritical angle
incidence was observed and investigated for the fi
time at frequencies 10 and 30 MHz,15–17,31thus confirm-
ing Andreev’s theory.7,8 It was established experimen
tally that only bulk longitudinal and transverse wav
with small (;1023) and virtually constant transmissio
coefficients depending weakly on absorption are exci
in the critical cone in an acoustically isotropic sing
crystal. Outside the critical cone, a sharp peak of re
nant absorption of a Rayleigh wave with the wid
;308 and with a;0.01 is observed. The width an
height of the peak are determined by the absorption
sound in the single crystal, which is equal to attenuat
at electrons and holes in the bulk. It is shown that Ra
leigh waves make approximately the same contribut
to the transmitted energy flux as the bulk waves in
subcritical angular range.

~2! The coefficient of acoustic energy transmission throu
the ~001! plane in a copper single crystal is investigat
experimentally at frequencies 10–300 MHz and theor
cally ~by computer calculations methods using t
acoustic dissipative theory! for various azimuthal direc-
tions of propagation.18,20,21It is shown that two resonan
modes are excited on the~001! and~111! surfaces in an
acoustically anisotropic single crystal: A Rayleigh su
face wave and a pseudo-surface wave witha.0.1 and
with peak widths 10–208. At the ~011! surface, only a
Rayleigh wave is excited. Good agreement between
experimental spectra and those calculated accordin
dissipative acoustic theory4,7–10 with a phenomenologi-
cal absorption parameterp;1024–1023 was attained
for the first time. The width of Rayleigh peaks was i
dependent of temperature and virtually independent
frequency. We managed to observe for the first time t
symmetric minima corresponding to critical angles f
longitudinal and transverse waves. For angles of in
dence close to zero, numerous peaks of lower inten
were observed; these are Rayleigh peaks associated
the incidence of ultrasound multiply reflected betwe
the sample and the emitter.

d
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4I. M. Khalatnikov and I. N. Adamenko, Zh. E´ksp. Teor. Fiz.63, 745
~1972! @Sov. Phys. JETP36, 391 ~1972!#.

–
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,

minum single crystal in the normal and superconduct
states was investigated for the first time at frequencies
to 90 MHz.18,23 It was shown that a Rayleigh wave in
deed attenuates at conduction electrons. In the super
ducting state, Rayleigh peaks become vanishingly sm
and make virtually zero contribution to the thermal flu
while in the normal state the height of these peaks is
the same order of magnitude as in copper. Interfere
effects which are absent in the normal state were
served in superconducting aluminum in which the sc
tering at electrons is small.

~4! Angular and frequency dependences of the energy tr
mission coefficient for a plane monochromatic acous
wave propagating from liquid4He to a gold polycrystal
with a crystallite size 5–10mm were analyzed.25 It was
proved that the form of absorption spectra is determin
by the strong attenuation of sound in the polycrystal d
to scattering at the boundaries of strongly anisotro
and randomly oriented grains. The absorption param
at the frequency 65 MHz (p;1021) is 2–3 orders of
magnitude higher than the parameter of absorption
conduction electrons. It was proved experimentally t
the absorption of sound is proportional tov4, i.e., corre-
sponds to Rayleigh scattering in an elastically nonu
form medium.
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Superfluid 3He in the zero temperature limit (Review Article)
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G. R. Pickett

School of Physics and Chemistry, Lancaster University, Lancaster, LA1 4YB United Kingdom1!
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In this paper we discuss some~and only a small fraction! of the interesting properties of
superfluid 3He at the low-temperature limit. We concentrate on the unique behavior and
applications of the very dilute excitation gas at the lowest temperatures. This gas has
been used for among other things, the probing of theA–B phase interface, the detection of low-
energy particle events and in the simulation of the creation of cosmic strings. ©1997
American Institute of Physics.@S1063-777X~97!00205-3#
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We can think of the classes of quantum fluids as exist
in a distinct hierarchy of complexity. The simplest is sup
fluid 4He. Here the starting material of the condensate,
4He atoms are bosons. They have no spin, no charge an
spherically symmetrical, filled-shell, noble gas atoms. In
condensate they offer no labels other than their mass. T
the superfluid component in liquid4He has a wave function
which gives information only on the distribution and motio
of the mass in the system. A distortion of the wave funct
may therefore generate a response only in terms of mas
this case a mass superflow.

The next most complex system in our hierarchy is
superconducting electron gas in a conventional superc
ductor. Here the component particles, the electrons, are
mions and may only contribute to a boson condensate
coupling in Cooper pairs. Here we have the possibility
more structure since a pair may have orbital and spin ang
momentum. However, in conventional superconductors
least, the Cooper pairs choose the simple solution and co
with spins opposed. The total spin is thus zero, and to m
tain the correct symmetry the orbital angular moment
must be even, and also takes the value zero. The Co
pairs in a superconductor are thus also very simple. T
carry mass, and more importantly charge. Therefore, a
tortion of the wave function can lead to a supercurrent~the
associated mass current is unimportant in comparison!. In
more exotic forms of superconductivity, where the pairs m
have nonzero spin, the situation could in principle be mu
more complex. The fact that the Cooper pairs carry a cha
couples the condensate into electromagnetism, yielding
the exotic quantum-electrical properties for which the sup
conductors are valued. Further, on the mundane prac
level, this means that we can examine superconductivity
including the superconducting element under examinatio
a simple electric circuit. Our measurement of the current
voltage then allows us to infer what is happening inside
superconductor. Direct observation of the superconduc
behaviorin situ is much more difficult.

The third class in our hierarchy is exemplified by sup
fluid 3He. Here the starting particles are again fermions,
3He atoms which carry a nuclear spin. However, in this c
the coupling of the pairs yields, not zero spin, but spin 1.
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must be odd and in fact in the ground state is 1. Therefo
the Cooper pairs comprising the condensate are characte
by mass, nuclear spin and orbital angular momentum. Thi!
makes for a much richer structure and b! allows us to exam-
ine the very essence of the superfluidity by providing us w
a window into the internal structure of the condensate its
by NMR.

THE LOW TEMPERATURE REGIME

Experimentalists working with quantum fluids genera
think about the subject in terms of the two-fluid model, t
interplay between the normal fluid and superfluid comp
nents being one of the characteristic features of these un
systems. However, near zero temperature we have a
regime. The normal fluid density is negligible and we are l
with ‘pure’ superfluid. In the case of superfluid3He this turns
out to be a very rewarding region since the condensate it
has such a rich structure. In fact, the behavior turns out to
increasingly interesting as the disturbing interference of
normal fluid is removed with falling temperature.

Some of the most arresting properties of the quant
fluids remain the persistent phenomena, persistent mass
in superfluid4He and persistent currents in the supercondu
ors. In superfluid4He the normal fluid and superfluid com
ponents are coupled together via the mechanism known
mutual friction. Since the normal fluid flow is dissipativ
this coupling acts, in general, to prevent persistent flow
the superfluid.~The process is mediated by vortices whi
carry a circulation of 2p of wave function phase around th
vortex axis. If a vortex can cross the path of the superflo
then 2p of phase is either added or removed from the ph
gradient, thus mediating the decay of the flow.! To see real,
persistent flow phenomena in superfluid4He, we must either
restrict the discussion to low flow velocities or make expe
ments in very restricted geometries, which inhibit the flow
vortices. In the superconductors, on the other hand, the
mal and supercurrents are almost completely decoupled
persistent currents in loops can be maintained for very lo
periods. Which of us has not been impressed when, as
dents, we learned for the first time that currents could
maintained circulating in loops for periods of many years

366/000366-08$10.00 © 1997 American Institute of Physics
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fluid He at the very lowest temperatures are associated
the magnetic behavior of the nuclear spins and with the
lute gas of residual thermal excitations. Unfortunately, m
netic interactions are long range and during dynamic mo
of the spin system, say after an NMR pulse, the magnet
tions associated with the normal and superfluid compon
are very tightly coupled. Under certain circumstances th
can be separated,1 but this is the exception. The possibility o
persistent magnetic phenomena is very interesting. The
straightforward means to observe such behavior is to re
to very low temperatures where the dissipative effect of
normal fluid is so weak as to be negligible on the time sc
of an experiment. We cannot reach this regime yet, but
have approached close enough that persistent behavio
several minutes can be observed, giving us a tantalizing
sight into what might lie in store for us at lower temper
tures. At temperatures close to zero, the quasiparticle ex
tions above the ground state form a fascinating dilute g
Since the excitation dispersion curve is of the ‘‘double mi
mum’’ BCS type, the dynamics of the particles is very unli
that of a conventional ‘‘Newtonian’’ gas where the dispe
sion curve is the familiar,E 5 p2/2m, parabola. This leads to
many non-intuitive properties, as we discuss below.

These two low-temperature properties of superfluid3He
are those which have attracted most of our interest at L
caster. In collaboration with Yuri Bunkov, formerly of th
Kapitza Institute and currently working in Grenoble, we ha
been studying the magnetic properties of the condensa
the very lowest temperatures through NMR. However, w
we are concerned with in this paper is the unique behavio
the extremely dilute gas of the quasiparticle excitations. T
gas not only has very unusual properties in its own right,
also provides a convenient probe for studying other prop

FIG. 1. The excitation dispersion curve in superfluid3He. The minimum on
the curve occurs not at zero momentum, as for a conventional Newto
object, but rather at the Fermi momentum. This means that there are
classes of excitation; quasiparticles~filled circles! with momentum and ve-
locity in the same direction and quasiholes~open circles! with momentum
and velocity in the opposite direction.
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ing the thermal behavior of the superfluid which we belie
can be used as a very sensitive particle detector. Fina
jointly with CRTBT, Grenoble, we have been exploiting th
particle absorption techniques developed earlier for study
the simulation of cosmic string creation, via the Kibb
mechanism, by looking at the formation of vortices after
sudden crossing of the superfluid transition.

THE EXCITATION GAS

We start by considering the properties of the very lo
temperature excitation gas. This is one of the few in natur
which an entire assembly of particles with non-Newtoni
dynamics is completely accessible. There are similar
sembles of excitations in condensed matter physics, bu
most all are trapped in a lattice. The3He excitation gas is
contained only in a superfluid condensate, which for m
mechanical purposes can be treated as a vacuum, and
independent dynamics of the excitations can be studied. T
is especially the case at low temperatures, where the
excitation density ensures that collisions are rare and the
citations behave entirely ballistically.

The unusual behavior of the quasiparticle excitation g
is a result of the double minimum dispersion curve, shown
Fig. 1. This curve is quite different from the Newtonian p
rabola in having the energy minimum not at zero moment
but at the Fermi momentum. Furthermore, this leads to
different types of excitation: quasiparticles with group velo
ity and momentum parallel and quasiholes with group vel
ity and momentum opposed. The gas has rather diffe
properties in the two phases of superfluid3He. However, in
the B-phase the excitation curve is virtually isotropic and
energy gap to the excitation energy minimum is the same
all directions. The curve in Fig. 1 holds also for the A-pha
but in this case the gap is dependent on the direction rela

an
oFIG. 2. When observed in a moving frame, the dispersion curve in Fig.
seen to be canted. Excitations with momenta directed toward the mo
observer have higher energies in this frame and those with momenta
rected away have lower energies.
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two polar nodes of zero gap and a maximum gap around
equator.

In the B-phase the energy gap to the minimum excitat
energy implies at low temperatures an excitation den
dominated by the gap Boltzmann factor exp(2 D/kT). At the
lowest accessible temperatures~about 100mK at zero pres-
sure! the density of excitations is vanishingly small, th
number of unpaired3He atoms being of the order of 1 i
107. The mean free paths of the excitations are theref
very long, orders of magnitude longer than any experime
dimension. Thus we may carry out experiments with bea
of excitations.

Near the minimum in the dispersion curve it can be se
that an excitation may have its group velocity reversed fo
negligible change in momentum. This is the so-called A
dreev reflection, in which a quasiparticle~quasihole! incident
on a region of increasing gap is reflected as a quasihole~qua-
siparticle!. This process was first discussed by Andreev
the context of electron reflection at a norma
superconducting interface. However, in the superfluid3He
context such reflection processes have a very strong in
ence on the dynamical properties, since they permit an e
tation to be reflected with virtually no change of momentu

A further interesting aspect of the dispersion curve
Fig. 1 is the fact that it is not invariant but may be chang
When we move relative to the superfluid3He, in contrast
with a normal gas, the excitation dispersion curve in o
frame of reference assumes a different shape. While
move, excitations with momenta approaching are seen
have increased energies and those with momenta rece
have decreased energies. For a Newtonian particle this
ply translates the energy/momentum parabola. In the su
fluid 3He case, however, the excitation dispersion curve
comes canted, as shown in Fig. 2. The effective gap
approaching excitations increases and that for receding e
tations decreases.

THE VIBRATING WIRE RESONATOR

We can make use of these properties of the disper
curve to create a very sensitive mechanical quasiparticle
tector. The device we use is a vibrating wire resonator wh
is a simple semicircle of very fine superconducting wire,
shown in Fig. 3. The loop has a mechanical resonanc
which the wire moves perpendicularly to the plane by
flexure of the wire legs. If the loop is placed in a magne
field, as shown, then a current at the appropriate freque
through the wire will set it into oscillation from the Lorent
force on the current. The motion of the loop through the fi
sets up a voltage across the loop~from the cutting of the field
lines! which we can monitor to infer the velocity. From th
simple device we can infer the behavior of the excitation
from its damping effect on the motion of the resonator. W
sweep the frequency through the mechanical resonanc
the wire loop and measure the width at half-height of
in-phase signal,D f 2 .

Since the density of the excitation gas at the lowest
cessible temperatures is comparable to that of a modera
good vacuum, one might assume that a mechanical me
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of detection is unlikely to be very effective. Paradoxical
quasiparticle excitations produce a very large mechanica
fect on such a resonator. First, from the shape of the dis
sion curve, the excitations have very large momenta for th
energies compared to ‘conventional’ excitations. Furth
more, when the wire is moving through the excitation gas
dispersion curve in the frame of the wire becomes canted
discussed above. This has a large effect on the dynamic
the response of the gas to the motion of the wire. The sit
tion is illustrated schematically in Fig. 4. The canted disp
sion curve has the effect that for quasiholes approaching
wire from the forward side there are no outgoing hole sta
with similar energies and the quasiholes must be reflected
Andreev processes and thus exchange negligible momen
with the wire. Similarly quasiparticles approaching from t
rear must also be Andreev reflected. This has the effect
even at modest velocities normally scattering processes

FIG. 3. A vibrating wire resonator.

FIG. 4. A schematic diagram of an object moving through superfl
3He-B. For simplicity, a tennis racket is used as the representative ob
since it can be assumed that it does not displace the condensate, bu
reflects the excitations. In the rest frame of the moving racket~in which
scattering is elastic! we see that for excitations approaching from the fro
only quasiparticles~filled circles! may be normally reflected. Quasihole
must be Andreev reflected with virtually no exchange of momentum w
the racket. The converse holds on the opposite side. This multiplies the f
on the racket by several orders of magnitude over that expected for a sim
‘‘conventional’’ excitation gas.
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biased to give a preponderance of quasiparticle scattering
the forward side and quasihole scatterings on the rear s
Both these processes impede the motion of the wire.

This has two effects, first the resistive force opposing
motion of the wire becomes a constant, independent of
locity, above a velocity of2 v 5 kT/pF , which is quite unlike
the behavior in conventional gases. This can be seen in
5, where we plot a typical force-velocity curve.3 Further-
more, at more modest velocities there remains the imbala
of scattering processes of the quasiparticles and quasih
which amplifies the damping effect of the excitations on
wire by many orders of magnitude over the effect of a co
ventional gas of particles with similar energies.2 Taking all
these factors into account, we find that the density of qu
particle excitations in the superfluid is very easy to detect
mechanical methods even at the lowest temperatures.

At low velocities, if we do the full calculation,2 the
damping turns out to be proportional to the gap Boltzma
factor, exp(2 D/kT). This means that we can simply calcula
the width from the known properties of the wire resona
and the temperature. However, we have measured the d
ing against an NMR temperature scale, as shown in Fig
This measurement was made many years ago4 and confirmed
the exp(2 D/kT) dependence of the damping. This variati
of damping with temperature provides us with a very ac
rate thermometer for the lower temperature regions, si
exp(2 D/kT) changes very rapidly with temperature. For e
ample, there is a change of a factor of 16 between 100mK
and 120mK for the B-phase at zero pressure.

QUASIPARTICLE BEAMS

In recent years we have extended our interest to ex
ining the behavior of quasiparticle beams. To do this,
need a spectrometer which has a quasiparticle beam so
and a quasiparticle beam detector. The device we curre
use was developed by S. N. Fisher at Lancaster.5 This is
essentially a blackbody radiator for quasiparticles. The
vice consists of a box immersed in the superfluid B-ph

FIG. 5. The measured force velocity-curve for an object moving in
excitation gas. The velocity-independent force above a velocity ov
5 kT/pF is quite apparent.
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with a small hole in one wall, as shown in Fig. 7. Inside t
box are two vibrating wire resonators. One acts as a th
mometer to measure the temperature~or quasiparticle den-
sity!. The other acts as a heater and makes use of the fol
ing principle. If a resonator is driven at high enough veloci
the liquid can be locally accelerated above the Landau c
cal velocity for pair-breaking. Beyond this velocity the mo
ing wire can create a shower of excitations, both quasipa
cles and quasiholes. In other words we can use a hea
driven resonator as a heater. Such a heater has the
advantage that the heat is generated directly in the liq
This is important, since at the lowest temperatures
Kapitza conductance between the superfluid and solid he
is so poor that thermal contact is too weak for a well-defin
quantity of heat to be emitted into the liquid.

The blackbody radiator is thus a small enclosure
about 0.1 cm3 volume containing a heater and thermomet

e

FIG. 6. The frequency width,D f 2 , of a vibrating wire resonator plotted a
a function of temperature, as measured by Pt NMR. These very old dat
rather poor at the lower temperatures, where the damping becomes
small and we have to measure for many hours in order to determine
frequency width. More modern resonators are made of much thinner w
giving a larger damping, which is much easier to measure.

FIG. 7. A quasiparticle blackbody radiator. The box contains a heater
thermometer vibrating wire resonator. When heated, a beam of therma
citations~quasiparticles and quasiholes! is emitted from the small hole.
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When used as a detector, the flux of excitations incident
the hole can be deduced from the temperature rise inside
enclosure. In emitter mode heat is introduced into the liq
in the enclosure by the heater. This generates a flux of e
tations leaving the small hole. The flux of excitations leavi
the hole is determined by the temperature inside,T, and is
given by

ṅ5AkT exp~2D/kT!,

whereA is a constant.~For simplicity in presenting the ar
gument here, we assume that the temperature of the su
fluid outside the enclosure is zero.! Since the excitations
emerge with a thermal distribution of energies, the me
energy is simplyD1kT, and the energy flux can thus b
written as follows:

W5AkT~D1kT!exp~D/kT!. ~1!

To calibrate the radiator as a quasiparticle source
need to determine the value ofA. This we do by applying a
steady energy input to the liquid via the heater resonator
observing the temperature inside. If we plot the values
Eq. ~1! for such a calibration we find that the experimental
is linear over many orders of magnitude of input hea
power. Furthermore, the lowest detectable power is of
order of 10216 watts or below,6 which means, as we shall se
below, that these devices can be used as particle detect

BEAM EXPERIMENTS; DIRECT OBSERVATION OF
ANDREEV REFLECTION

We have made a number of experiments with such
vices. The two easiest to understand are those designe
allow the direct observation of Andreev reflection and th
designed to probe theB–A phase interface, since these e
periments need only a source radiator. For the observatio
Andreev reflection we set up a radiator which had a sm
paddle in front of the hole from which the thermal beam
emitted. The setup6 is shown in Fig. 8. If we move the paddl
towards the hole, then the backflow around the paddle
sures that the quasiparticles leaving the radiator find
states near the paddle have their energies decreased~since
the liquid is approaching the emitted beam!, while quasiholes
find their energies increased. This means that quasihole
the beam are Andreev reflected by the velocity gradient
are returned along the line of the beam back into the radia
~A feature of Andreev reflection is the almost perfect rev
sal of the group velocity of the excitation so reflected.! The
situation is illustrated in Fig. 9. Since a fraction of the em
ted beam is thereby returned to the radiator, the excita
density inside is increased above the density observed w
the paddle is stationary and there is no Andreev reflect
From the temperature rise we can, in principle, calculate
fraction of the beam Andreev reflected. In practice,
paddle cannot be moved steadily toward the radiator ind
nitely but must be oscillated back and forth. The fracti
reflected must therefore be integrated over a complete c
of the motion of the paddle. When this is done, the rise
temperature inside the box is found to be in good agreem
with a simple one-dimensional model of the behavior.6 A
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plot of the fraction of excitations Andreev reflected as
function of paddle velocity is shown in Fig. 10 along with
calculation of the expected behavior, as discussed in Re
This experiment constituted the first direct observation
Andreev reflection in superfluid3He and provided a much
less equivocal result than similar experiments made in su
conductors.

FIG. 8. The experiment for direct observation of the Andreev reflection.
oscillating paddle faces the blackbody radiator beam hole. When the pa
is moved, the velocity field around it causes the Andreev reflection of e
tations back into the radiator and the temperature inside thus rises.

FIG. 9. A schematic diagram of the Andreev experiment. The flow aro
the paddle causes the Andreev reflection of excitations~in the case illus-
trated the quasiholes are reflected!. Since the Andreev reflection is an accu
rate retroreflection process, the reflected excitations return to the rad
enclosure.
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BEAM EXPERIMENTS; PROBING THE A–B PHASE
INTERFACE

For the experiment to probe the phase interface betw
the two superfluid phases, theB-phase and theA-phase, we
stabilized a small region ofA-phase liquid by applying a
very localized magnetic field.7 The region was arranged to b
directly in front of the beam hole of a blackbody radiator,
shown in Fig. 11. In this case the actual gaps in the liquid
changed by the magnetic field. In theB-phase the gap is
decreased along the direction of a magnetic field, but
excitation spectrum is split according to whether the spin
parallel or antiparallel to the field. The parallel gap in t
A-phase is 15% larger than the undisturbed gap in
B-phase. We can measure these gaps since we have set
up along the beam trajectory. Excitations approaching
region of increasing gap must be Andreev reflected when
effective gap becomes equal to the excitation energy.

FIG. 10. The measured fraction of excitations reflected by the Andr
processes in the blackbody radiator and paddle experiment, as discus
the text. The solid line represents a theoretical estimate using a si
one-dimensional model.

FIG. 11. The experiment used to probe the superfluid3He A-B phase inter-
face. A blackbody radiator has a small solenoid that encloses the beam
It can be used to a create a phase interface across the beam~see text!.
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excitation is thereby returned to the radiator which raises
temperature. A measurement of the temperature in the ra
tor as a function of magnetic field along the trajectory giv
us the value of the maximum gap along the beam. Sinc
the B-phase the gap change depends on the spin value
have to split the calculation into two parts for theB-phase
part of the problem. Thus we can measure both the m
mumB-phase gap as a function of field and theA-phase gap
in the same experiment again by exploiting the unique pr
erties of Andreev reflection. The measured gaps, as show
Fig. 12 turn out to be in good agreement with the accep
values. However, the maximum gaps in an excitation sp
trum have not been readily measurable earlier. In usual s
troscopic methods the minimum gap tends to dominate
response of the system to any input radiation. The pres
method opens up a new range of experiments where qu
particles are used as probes. This pilot experiment on
A–B interface indicates that the method will work and fu
ther sophistication can now be considered. It is of cou
important to remember that theA–B interface in superfluid
3He is unique in that it is a high symmetry interface betwe
two very different but also high-symmetry Bose condensa
This is the most complex high-symmetry interface to whi
we currently have experimental access.

PARTICLE DETECTION IN SUPERFLUID 3He

The work with the calibration of the blackbody radiato
with its very high energy resolution, led us to think that th
device might provide a possible particle detector. We h
suggested long ago8 that superfluid3He would provide an
ideal working material for the detection of low-energy rec
interactions. The ‘‘working fluid’’ is simple, consisting onl

v
d in
le

le.

FIG. 12. The A- and B-phase gaps, as measured in theA–B phase interface
experiment~see text!.
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of the superfluid ground state and the dilute gas of exc
tions. The excitations have energies comparable to that o
superfluid energy gap,D 5 1.43 1027 eV, which is virtually
the lowest which we can currently utilize. Finally, the on
significant impurity in superfluid3He is 4He. Extrapolation
of the known high-temperature solubility of4He in liquid
3He to 100mK suggests that4He is only soluble to one par
in 102000. The purity of the working fluid is thus absolute.

Our first attempt at such an experiment was to take
blackbody radiator used for the Andreev reflection expe
ment described above and monitor the temperature inside
enclosure while exposing the cryostat to the output of
AmBe neutron source. What we would expect to see wo
be as follows: a particle interacts inside the box, heats
liquid ~i.e., increases the excitation density!, causing a sud-
den fall in the amplitude of the thermometer resonator. T
excess excitations in the radiator enclosure so-produced
sequently diffuse out of the hole and the amplitude recov
exponentially. The time constant for the quasiparticles
leak out of the box is governed by the geometry and the h
size and in a typical experiment is a few tenths of a secon
the lowest temperatures.

The size of the jumps in the thermometer trace can
calibrated in terms of deposited energy by the application
a short known pulse of heating to the heater wire in
enclosure. When exposed to a source, the events can th
calibrated and presented as a spectrum in the usual
Figure 13 shows spectra for a gamma source, a neu
source, and a background spectrum for comparison take
this way.9 The neutron spectrum shows a very promine
peak at about; 800 keV, which arises from low-energy neu
trons undergoing the nuclear reactionn1 2

3He→p1 1
3H. This

process releases an energy of 764 keV into the liquid.
When we used the device to monitor the backgrou

radiation level, we found that we could resolve events rele

FIG. 13. Spectra of particle events measured in a blackbody radiato
superfluid3He. The top spectrum is that taken with a neutron source,
middle is that taken with a gamma-ray source, and the bottom is a b
ground spectrum. The large peak in the neutron spectrum can be se
about 800 keV, which represents the neutron capture process~see text!.
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mance for a device which was neither optimized nor
tended for these experiments. With various improveme
we are convinced that we could improve the performance
many orders of magnitude and have proposed a dark m
detector based on this principle.9

SIMULATION OF COSMIC STRING CREATION

An interesting further application of the blackbody r
diator has been in the simulation of the creation of cosm
strings via the Kibble mechanism. This mechanism was fi
proposed by Kibble10 to describe the creation of topologica
defects during the series of phase transitions which the U
verse is thought to have undergone shortly after the big ba

There are profound analogies between the structure
superfluid3He and the structure of the metric of the Un
verse. Because of the spin and orbital angular momen
properties,3He shows a superposition of broken spin ro
tion, broken orbital rotation and broken gauge symmetr
which provide a close approximation to the superposition
broken rotational and gauge symmetries used to describe
Universe. Similar types of linear defects~vortices!, point de-
fects ~monopoles! and textures may be generated in sup
fluid 3He, by analogy with the various types of defects whi
may have been created~some of which may survive to the
present! in the structure of the Universe.

The background of this experiment11 depended on a cer
tain level of serendipity. Fisher, working with Bunkov an
Godfrin in Grenoble, built an experiment similar to that us
in Lancaster for the detection of neutrons,9 which described
above. However, the hole in the enclosure was made m
smaller than that used in the Lancaster experiment.
smaller hole made this experiment less effective as a par
detector but allowed a much more accurate energy cali
tion to be made since the time constant of the system
much longer than that of the earlier version.

When a neutron interacts inside the blackbody enclos
of the Grenoble experiment via the exothermic neutron c
ture process, the better calibration allows us to ascertain
the energy taken up by the superfluid as thermal excitati
is significantly lower than 764 keV, which is known to b
released by this process. We know that some of this energ
released as ultraviolet photons which are lost to the heliu
However, even after this fraction is taken into account th
is still a significant ‘‘missing energy.’’ We found that thi
energy has gone into producing topological defects in
liquid, in this case, vortices. The defects are formed when
liquid cools through the superfluid transition. The interacti
of a neutron with a3He atom in the cold superfluid lead
initially to the creation of a very energetic proton and tritiu
nucleus. These particles rapidly lose this energy to crea
small volume of the liquid~a few microns in extent! which is
heated above the transition temperature of 0.94 mK. As
liquid cools back through the transition, fluctuations in t
temperature mean that many regions of the cooling ‘‘fi
ball’’ independently become superfluid and since these
gions of superfluid are nucleated independently, the or
parameter is random. As the regions grow and coale
grain boundaries in the order parameter are formed. Th
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may relax to some extent by the bending of the order par
eter but along every line around which there is a 2p circula-
tion of the order parameter angle there is no possibility
relaxation and a vortex remains. The various domain c
tacts thus relax to form a vortex tangle. Since the backgro
liquid is much colder than the transition temperature~about
100 mK compared with the transition temperature of 9
mK!, the vortex tangle is rapidly cooled through the regi
near the transition and reaches a temperature regime w
the lifetime becomes very long. This process is shown sc
matically in Fig. 14.

Zurek12 has translated the Kibble mechanism for app
cation to phase transitions in quantum fluids. Zurek’s s
nario allows us to predict the density of topological defe
as a function of the cooling rate and the characteristic time
the superfluid medium. We can independently estimate
typical distance separating the topological defects, since
know the energy deposited in the liquid~the 764 keV re-
leased by the capture process!. We can estimate from the
liquid heat capacity what volume is heated above the tra
tion and from the ‘‘missing energy’’ the length of vortex lin
can be calculated. When these two numbers are compare~of
the order of 1 to 10 coherence lengths in both cases!, the
agreement is found to be remarkably good.11

FIG. 14. Simulation of the creation of cosmic strings in superfluid3He. A
small region of the liquid is heated by a neutron capture process. This l
to the heating of a small volume of the liquid above the transition temp
ture. As this volume cools, independently nucleated regions of the super
are created. The order parameter in each ‘‘grain’’ is also independent. W
the regions coalesce, the mismatch of the order parameters leads t
formation of a vortex tangle.
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Much interest in the quantum fluids has been direc
toward the behavior at higher temperatures, where the o
parameter is rapidly changing with temperature and the pr
erties are dominated by the interaction between normal
superfluid components. For the ‘‘structureless’’ superflu
such as liquid4He and the conventional superconducti
electron gas the low-temperature regime might be though
as of lesser interest since the condensate is very simple.
tainly in the case of superfluid3He the very low-temperature
regime reveals many interesting properties which have m
implications for other areas of physics.
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Neutron scattering study of liquid helium. Analysis of new data

ess-
N. M. Blagoveshchenskii, A. V. Puchkov, and A. N. Skomorokhov
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A new analysis of neutron scattering data obtained earlier for liquid4He is presented. The
experiments were made on the time-of- flight spectrometer DIN-2PI in the pulsed reactor IBR-2.
The results are analyzed by using a consistent data processing technique including the
representation of the dynamic structural factorS(Q,v) with a constant wave vectorQ. The one-
phonon component ofS(Q,v) is approximated by using the damped harmonic oscillator
function taking into account the instrumental resolution. It is shown that the experimental values
of S(Q,v) are in good agreement with the fitting model, i.e., have a simple one-
component structure. The presented results indicate a peculiarity in the temperature dependence
of S(Q,v) for liquid helium in the wave vector region 0.5–0.8 Å21. Various explanations
of such a peculiarity are discussed. ©1997 American Institute of Physics.
@S1063-777X~97!00305-8#
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The results of analysis of liquid helium by using th
inelastic neutron scattering method were reported by
earlier.1 The experiments were carried out on the time-
flight direct geometry spectrometer DIP-2PI2 ~reactor IBR-2,
Dubna!. An important feature of the method used is that t
measurements are made at a constant scattering angle
under the conditions when the transferred momentum is
strictly constant within the measuring spectrum. In Ref.
we made an attempt to obtain preliminary qualitative res
on the structure of the helium excitation spectrum witho
taking into account these changes in the momentum. In v
of inaccuracies emerging in this case, we approximated
spectrum of scattered neutrons by using the simplest fit
model in which the helium excitation lines and resoluti
functions have the Gaussian shape. Under these assump
the excitation spectrum of liquid helium acquired a comp
structure. Such an approach made it possible to analy
large body of experimental data in the range of the wa
vectorQ from 0.08 to 1.6 Å21 for initial energies of neu-
tronsE052.08, 2.45, and 3.5 meV at liquid helium temper
tures ranging from 0.44 to 2.25 K.1 The spectral structure
obtained as a result of such an analysis did not contradic
semiphenomenological theory3,4 predicting a complex struc
ture of the excitation spectrum for liquid helium.

As the simplified method of spectral analysis leads
considerable errors, we carried out a new, more consis
experimental data processing taking into account the pe
liarities of the time-of-flight technique~transition of spectra
to the scale withQ5const, taking into account momentu
indeterminacy, etc.! and using the real resolution functio
and a physically substantiated fitting model for the on
phonon component ofS(Q,v) ~the so-called damped ha
monic oscillator function!.

In this paper, we report on the results of new analysis
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ing is carried out for several typical values of the transfer
momentum, for which a complete set of data required for
application of the data processing method described belo
available.

EXPERIMENTAL DATA PROCESSING

The basic microscopic parameter of a substance, wh
can be extracted from neutron experiments, is the dyna
structural factor~or scattering law! S(Q,v) which is directly
connected with the fundamental parameters of the sys
such as the dynamic susceptibility function and the rad
distribution function. Using model concepts, we can obt
from S(Q,v) the information on the structure of the excit
tion spectrum of the system and on relaxation characteris
of excitations. The dynamic structural factorS(Q,v) can be
presented as a superposition of the one-phonon part of
scattering law, which corresponds to scattering of a neut
accompanied by the generation of an excitation, and the m
tiphonon part corresponding to neutron scattering with
generation of two or more excitations in helium. In this com
munication, we analyze the one-phonon part ofS(Q,v). The
separation of these components of the scattering law
complicated problem involving a number of assumptions a
conjectures. The doubly differential scattering cross sec
used in experiments is connected withS(Q,v) through the
well-known relation

d2s

dVdv
5N

s

4p\

kf
ki
S~Q,v!,

whereN is the number of atoms in the system,s the cross
section of scattering at a bound nucleus, andki andkf are the
values of the wave vectors of the incident and scattered n
trons, respectively.

374/000374-05$10.00 © 1997 American Institute of Physics
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In order to obtain the dynamic structural fact
S(Q,v) for liquid helium from experimental spectra me
sured on the time-of-flight scale at a constant scattering a
u, we carried out the following standard operations. First,
scattering lawS(u,t)uu5const at a constant angle and on th
time-of-flight scale was transformed to the representa
S(u,v)uu5const. Second, the phonon component was tak
into account, for which we used the procedure of backgro
subtraction in accordance with the expression

I5~ I s2I 0 f !2B~ I 02I 0 f !, ~1!

whereI s and I 0 are the flux-normalized spectra of neutro
scattered by the container with and without helium, resp
tively, I 0 f is the time-independent background of fast ne
trons, andB the correction for container screening by h
lium. Third, the spectra ofS(u,v)uu5const were transformed
by interpolation to the scattering lawS(Q,v)uQ5constwith a
constant transfer of wave vector.

The experimental spectraS(Q,v) obtained in this way
were approximated by convolution of the model dynam
structural factor for liquid helium with the spectrometer res
lution functionR(E0 ,v):

S~Q,v!5S1~Q,v! ^R~E0 ,v!. ~2!

For the model of the one-phonon component of the
namic structural factor for liquid helium, we chose the fun
tion of an attenuating harmonic oscillator

S1~Q,v!5
@~1/p!ZQ#@nB~v!11#4vvQGQ

@v22~vQ
2 1GQ

2 !#21@2vGQ#2
, ~3!

whereZQ is the intensity of one-phonon scattering,GQ the
peak half-width at half-height points,vQ the excitation en-
ergy,v the transferred energy, andnB(v) the Bose factor.

The spectrometer resolution function was calculated
using the Monte Carlo method, taking into account t

FIG. 1. The dependence of the half-width of resolution function on
transferred momentumQ, taking into account the indeterminacydQ in the
wave vector transfer (d) and without it ~solid curve!; light circles corre-
spond to the values of experimental peak width atT50.44 K.
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energy-momentum relation for energy excitations in liqu
helium. For systems with a strong dispersion, the resolu
function is usually determined not only by the energy re
lution of the spectrometer, but also by the momentum- tra
fer resolutiondQ which depends on the energy–momentu
relationE(Q) for the scatterer.5 The scale of this contribu-
tion to the resolution function in our case, when the su
stance under investigation is liquid helium, is clearly se
from a comparison of the curves in Fig. 1 showing the valu
of the half-width of theoretical resolution functions, takin
into accountdQ and without it. It can be seen from the figur
that this contribution is close to zero in the maxon regio
where gradvQ50, i.e., in the absence of dispersion of e
citations, and becomes significant for larger and smaller v
ues ofQ upon an increase in the dispersion of excitation

The correctness of the values of resolution function c
culated by the Monte Carlo method can be verified by co
paring them with the real neutron scattering spectrum
helium at a low experimental temperature for which the
trinsic excitation line width in helium can be neglected
compared to the resolution function width. Such a compa
son was carried out for the lowest temperature 0.44 K
tained in our experiments, at which the intrinsic excitati

e

FIG. 2. Comparison of the shape of resolution function calculated by
Monte Carlo method (d) with the experimental dependencesS(Q,v) re-
corded at liquid helium temperatureT50.44 K(s) for three values of the
wave vectorQ. The solid curve describes the result of approximation
calculated and experimental values ofS(Q,v) by a Gaussian function.
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FIG. 3. Experimental spectra ofS(Q,v)uQ5const for liquid helium at various temperatures. Solid curve describes the result of approximation of spec
formula ~2! for the values of wave vectorQ50.37 ~a!, 1.00 ~b!, and 1.50 Å21 ~c! ~the spectra are in relative units! and forQ50.55 Å21 ~the spectra are
normalized in area!.
width is apparently smaller than 2meV,6,7 while the resolu-
g

e
r

s
d
se

For an analysis of experimental spectra recorded at higher
ons
ution

tor
tion function width in the region of elastic scatterin
amounts to;120 meV ~Fig. 2!. The solid curve in the fig-
ure corresponds to the Gaussian approximation of the th
retical and experimental curves. It can be seen that fo
wave vector transfer of 0.37 Å21, the Gaussian function
correctly describes both dependences. For large value
wave vector transfer, the low-energy parts of the curves
viate considerably from the Gaussian curves in both ca
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temperatures, a superposition of two Gaussian functi
were used as an adequate representation of the resol
function taking into account its asymmetry.

RESULTS

Figures 3a–3d show theS(Q,v) spectra for liquid He in
the temperature interval 1.41–2.21 K for the wave vec

376Blagoveshchenskii et al.
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valuesQ50.37,0.55,1.0, and 1.5 Å21 for characteristic re-
gions on the dispersion curve for liquid helium. It can
seen that experimental one-phonon peaks are described
rectly by expression~2!. Thus, the above approach to expe
mental data processing does not suggest a complex stru
of the one-phonon component of the dynamic structural f
tor S(Q,v) following from the results of earlier analysis1

Figure 4 shows the temperature dependence of the
phonon peak width. It can be seen that the peak width
creases exponentially with temperature for all values of
wave vector. The obtained results are in good agreem
with the data obtained by other authors~dark symbols!. The
excitation energy weakly depends on temperature to wi
the experimental error in the entire range of temperature
der investigation, including thel-transition region. The
high-energy wing of the peak atT>1.73 K contains an ad
ditional low-intensity contribution, which is observed for a
values of wave vector exceptQ51.5 Å21. This additional
contribution is manifested most clearly forQ50.55 Å21,
i.e., in the transition region between the phonon and ma
regions on the dispersion curve. The effect is observed
T51.45 K, has the maximum intensity at 2.05 K, and
preserved atT52.21 K, i.e., above the temperature corr
sponding to thel-transition.

Let us consider this effect in greater detail by compar
our data with the results obtained in Refs. 8 and 9 for th

FIG. 4. Temperature dependence of the one-phonon peak width for se
values of wave vectorQ ~light symbols!. Solid curve describes the approx
mation of experimental values forQ50.37,0.55, and 1.00 Å21 by an ex-
ponential function. Dark symbols correspond to the results obtained by o
authors~in Ref. 8 ~j! and in Ref. 9~dark triangles!! for close values of
wave vectors. The dashed curve is the Landau–Khalatnikov theore
curve for rotons.
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values of wave vector~Fig. 5!. It can be seen that the mai
part of multiphonon scattering at temperatures 1.3–1.45
corresponds to higher values of energy than the one-pho
peak and the observed singularity. The additional contri
tion to intensity observed in our experiments correspond
the energy range 1.2–1.4 meV and exhibits a strong t
perature dependence. It should be noted that our data a
good agreement with the results obtained in Refs. 8 an
especially atT52.05 and 2.21 K, for which the results ob
tained in Refs. 8 and 9 are presented after the procedur
‘‘simple subtraction of multiphonon component’’~SSM!.10 It
should be emphasized that our data and the results in Re
and 9 were obtained on different spectrometers and for
ferent initial energies. This allows us to suggest that the s
gularity observed inS(Q,v) has a physical origin.

It is difficult to propose an unambiguous explanation
the observed phenomenon on the basis of the available
perimental data at present. We shall indicate some of
possible interpretations of the effect.

The additional contribution to intensity can be associa
with interference between one-phonon and multiphon
scattering. According to the predictions of the theory, t
contribution to scattering associated with these processes
comes significant forQ50.5 Å21.11 It should also be ob-
served that such a contribution should be manifested star
from the energy of one-phonon excitation.

ral

er

al

FIG. 5. Comparison of experimental dependencesS(Q,v) obtained by us-
ing different spectrometers forQ50.55 Å21 and close temperature values
our results (s) and the results obtained by Andersenet al.8 (d). The spec-
tra are normalized in area. The solid curve describes the results of app
mation of our results by formula~2!.
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of
tal

ens-
to intensity at energies above that corresponding to the o
phonon peak in experiments on liquid helium under press
These authors attribute the emergence of this peak
damping mode of zeroth sound in accordance with the res
obtained by Glyde and Griffin.3 While the singularity ob-
served by us is associated with this mode, the singularit
Ref. 12 was observed for values of energy and momen
shifted as a result of applied pressure.

Finally, the effect under investigation can be due to tw
phonon processes in the low-energy range ofS(Q,v). The
theory11 predicts an increase in the intensity of these p
cesses with temperature.

Thus, the available experimental data do not allow us
interpret unambiguously the nature of the observed singu
ity. We believe that this publication will arouse interest a
stimulate further theoretical and experimental investigat
of the behavior ofS(Q,v) in the phonon–maxon transitio
region.

In conclusion, the authors express their deep gratitud
Henry Glyde for fruitful discussions at Dubna, to Ke
Andersen for providing the experimental data, and to Se
Pupko who created the program for calculating the resolu
function by the Monte Carlo method.
378 Low Temp. Phys. 23 (5–6), May–June 1997
e-
e.
a
lts

in
m

-

-

o
r-

n

to

ei
n

ence and Technology program ‘‘Modern Trends in Phys
of Condensed Media’’ under the project ‘‘Neutron Studies
Matter’’ and the Ukrainian State Foundation of Fundamen
Studies.

1N. M. Blagoveshchenskii, I. V. Bogoyavlenskii, L. V. Karnatsevichet al.,
Phys. Rev. B50, 16550~1994!.

2A. V. Abramov, N. M. Blagoveshchenskii, B. K. Blinovet al., Atomnaya
Energiya66, 316 ~1989!.

3H. R. Glyde and A. Griffin, Phys. Rev. Lett.65, 1454~1990!.
4H. R. Glyde, Phys. Rev. B45, 7321~1992!.
5R. Grevecoeur, I. de Shepper, L. de Graafet al., Nucl. Inst. Meth. A356,
415 ~1995!.

6F. Mezei and W. G. Stirling, in75th Jubilee Conf. on Helium-4~ed. by
Y. G. M. Armitage!, World Scientific, Singapore~1983!.

7K. H. Andersenet al., Phys. Rev. Lett.~to be published!.
8K. H. Andersen, W. G. Stirling, R. Schermet al., J. Phys: Cond. Matter6,
821 ~1994!.

9K. H. Andersen and W. G. Stirling, J. Phys: Cond. Matter6, 5805~1994!.
10A. Miller, D. Pines, and P. Nozieres, Phys. Rev.108, 1452~1962!.
11H. Glyde,Excitations in Liquid and Solid Helium, Clarendon Press, Ox-
ford ~1994!.

12R. M. Grevecoeur, H. E. Smorenburg, I. M. de Schepper, and E. C. Sv
son, Czech. J. Phys.46, 257 ~1996!.

Translated by R. S. Wadhwa
378Blagoveshchenskii et al.



Structure and superfluidity of 4He films on plated graphite

ost
J. Nyéki,a) R. Ray, G. Sheshin,b) V. Maidanov,b) V. Mikheev,c) B. Cowan,
and J. Saundersd)

Millikelvin Laboratory, Department of Physics, Royal Holloway University of London, Egham, Surrey,
7W20 OEX, United Kingdom
~Submitted January 20, 1997!
Fiz. Nizk. Temp.23, 515–526~May–June 1997!

The results of an experimental study using torsional oscillators of the superfluidity of4He films
adsorbed on hydrogen plated graphite are reported. The evolution of superfluidity with the
growth of the film shows considerable structure arising from the atomic layering of the film. There
is evidence that the superfluidity of a single fluid layer is strongly suppressed, possibly due
to the influence of the periodic potential arising from the underlying solid layer. The behavior of
two fluid layers is quite distinct, but shows similarities to that of thicker films on
heterogeneous substrates; we suggest that the usual theory of the superfluidity of two-
dimensional4He should be extended to account for superfluid onset temperatures in such a film.
© 1997 American Institute of Physics.@S1063-777X~97!00405-2#
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In this paper we give a brief review of one aspect of t
results of a research collaboration between scientists f
the B. I. Verkin Institute for Low Temperature Physics a
Engineering, Kharkov and Royal Holloway University o
London. This has been made possible by the support of
Royal Society~London!, and the Engineering and Physic
Sciences Research Council~United Kingdom!. The low-
temperature experiments reported here were cooled usi
cryogenic cycle, sorption pumped, dilution refrigerator of t
type pioneered by Professor Eselson and his group. This
initially constructed in Kharkov, modified and developed
Royal Holloway, and provided an excellent low mechani
noise environment for these studies involving sensiti
high-Q, mechanical oscillators. Further developments a
the commercialization of this refrigerator technique are
scribed elsewhere in this volume. This paper is intended
tribute to the memory of Professor Eselson and the tradi
of low-temperature helium research at Kharkov, to which
contributed so significantly.

1. INTRODUCTION

The superfluid transition of a thin4He film on a planar
surface is understood in terms of a Kosterlitz–Thouless~KT!
two-dimensional phase transition.1 Above some critical tem-
perature, vortex-antivortex pairs become unbound, the
cannot support a superflow and the superfluid density dr
discontinuously to zero. Clear confirmation of these ide
was primarily due to the experiments of Reppy and
workers, at Cornell.2 They adsorbed the helium film on
sheet of mylar which was contained inside a torsional os
lator. Associated with the superfluid transition of the film is
shift in the period of the oscillator, resulting from the drop
its effective moment of inertia as the film decouples from
substrate. This method was a development of a method
used by Andronikashvili3 to determine the superfluid densi
of bulk liquid 4He. The key features of the Cornell torsion
oscillators were their high-quality factor,Q>105, and a typi-
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vibrational noise on a typical cryostat. This technique
lowed the resolution of the small period shifts due to t
superfluid transition in the film~typically of the order of ns,
compared to a period of the order of 1 ms!, as well as a
characteristic dissipation peak at the superfluid transiti
The discontinuous period jump predicted by KT is somew
rounded by the finite frequency at which the superfluid
sponse is measured. However, it was possible to confirm
universal relation for the jumprs(Tc)/Tc52m2kB /p\2. A
comparison of the results with the dynamic KT theory can
found in Agnolet, McQueeney and Reppy~AMR!.4

The mylar substrate used in this early work is extrem
heterogeneous, i.e., the substrate is disordered due to at
scale roughness. One consequence of this is that up to s
threshold coverage the helium film is localized and no sup
fluid transition is observed. This threshold coverage is co
monly known as the ‘‘dead layer’’ or ‘‘inert layer.’’ It has
been suggested that superfluid onset, as a function of co
age atT50, may be regarded as a transition between
insulating, disordered~Bose glass! phase and the superfluid5

Recently, attention has turned to the study of4He films
adsorbed on the basal plane of graphite using these sens
torsional oscillator methods. The first such study of super
idity in this system was performed by Crowell and Rep
~CR!,6 while Mohandaset al.7 concentrated on submono
layer films and found no evidence for superfluidity in the
Exfoliated graphite substrates were used to provide a s
ciently large surface area to allow measurements of adeq
sensitivity. It is well established that this substrate consist
atomically flat crystallites of typical dimension a few hu
dred angstroms and thus provides a homogeneous bin
potential for the adsorbate. Residual heterogeneity, at
crystallite edges, localizes about 2% of the first helium lay
and so is a relatively weak effect. The important point is th
the film on this substrate is atomically layered; clear perio
structure has been seen in the compressibility of the film
determined from vapor pressure adsorption isotherms,8 as
well as in the heat capacity8,9 and third sound velocity.8 Lay-
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film structure. Thus, in contrast with heterogeneous su
strates, the structure of the film is, in principle, well define
This structure turns out to have a profound influence on
development of superfluidity. Exfoliated graphite substra
have been widely used in the study of adsorbed gases.11 In
principle, it is possible to modify the surface binding pote
tial, in a reasonably controlled and well characterized w
by preplating with either an inert gas or hydrogen. The o
jective is to coat the graphite with an integral number
atomic layers of the preplating gas and to provide a comp
ite substrate of weaker binding potential. This binding pot
tial can be varied from that of bare graphite to that of t
preplating material for a sufficiently thick film, so long as
wets the graphite surface. This is the method used by us.
have plated the graphite with a bilayer and a trilayer of H
Here we used HD rather than H2 or D2 because of the ab
sence of any ortho-para conversion and associated heati
ultralow temperatures.

Our use of hydrogen plating has also been motivated
part, by previous studies of the superfluidity of4He on hy-
drogen films. The expected advantage of using a thick
drogen film as a substrate was to avoid solidification of
first 4He layer, offering the prospect of observing superfl
idity in a submonolayer4He film. Brissonet al.12 studied
third sound propagation in helium films adsorbed
hydrogen-plated glass, while Mochel and co-workers,13 Ad-
ams and Pant14 have investigated helium on metallic surfac
plated with thick hydrogen films using third sound and to
sional oscillators, respectively. These last two studies ind
give evidence of submonolayer superfluidity of the4He film.
In addition, Mochel and Chen13 found evidence for a secon
transition below the superfluid transition and also obser
two third sound modes under certain conditions. Althou
these experiments rely on the formation of a uniform hyd
gen film, it is in fact not clear that hydrogen wets metal
substrates. Indeed, there is some clear experimental evid
to the contrary.15 Thus, the philosophy behind the prese
experiment was to start with well characterized thin hyd
gen films, up to three atomic layers, adsorbed on graph
The structure of such films has been investigated by neu
scattering and their density determined.16 It was established
that they wet the surface. The goal to grow a thick hydrog
film on graphite remains a challenge for the future. The fi
study of the superfluidity of4He on hydrogen-plated graphit
was the third sound measurements of Zimmerli, Mistura,
Chan8 ~ZMC!. Heat capacity measurements have also b
performed by Vilches and co-workers,17 providing valuable
insights into the structure of the4He film.

One disadvantage of the exfoliated graphite substrat
that, on length scales greater than of the order of 1mm it is
extremely disordered. This results in a tendency for the
perfluid film to be entrained by the oscillator, so that the f
period shift due to the onset of superfluidity is not observ
This effect is parameterized by a quantity, conventiona
referred to as thex factor, which reflects the fraction of th
superfluid which does not decouple from the surface.
mylar4 x;0.14, while for Grafoil CR6 x50.989, which re-
flects the poor connectivity of the surface. The present w
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Sec. 3.4 for more details#. However, although thesex factors
are relatively close to unity, tending to reduce the obser
period shifts due to superfluidity, this is compensated for
the large specific surface area of the substrate.

A broad overview of the growth of helium films o
graphite is as follows. The submonolayer film has a r
phase diagram that has been characterized by heat capa18

and neutron scattering measurements.19 At the coverage at
which a second layer begins to form~second layer promo-
tion! the first layer consists of an incommensurate solid o
triangular lattice.20 At third layer promotion the second laye
is also solid at sufficiently low temperatures.9 Subsequent
layers are fluid; thus only two layers solidify on bare grap
ite. In the present work we have preplated the graphite b
bilayer and a trilayer of HD. In contrast to bare graphite,
appears that in this case only one helium layer solidifies
to the weaker binding potential of the preplated graphite s
face. Note that, as previously mentioned, it is believed t
for a bulk hydrogen surface the binding potential is we
enough to prevent solidification of the first helium layer.21

A further important detail concerns the evolution of th
fluid layers. Consider the second layer on bare graph
which at low densities is fluid~the layer begins to solidify a
about 5.5 nm22!. Theory predicts that, at sufficiently low
temperatures, this fluid is self condensed22 with a density of
roughly 4 nm22, which is supported by measurements of t
heat capacity.9 On cooling, at second layer coverages of le
than 4 nm22, it is therefore expected that the second lay
fluid first phase will separate into a low density ‘‘gas’’ and
high density ‘‘fluid’’. ~At T50 the density of the ‘‘gas’’
component vanishes and that of the fluid is of the order
4 nm22.! Following phase separation, the superfluid tran
tion subsequently occurs in the high density liquid comp
nent. Thus, superfluid onset in this case is controlled by
intersection in the temperature-coverage plane of the bou
ary of the 2D gas-liquid coexistence region and the line
superfluid transitions of a uniform fluid film.23,24 Intrigu-
ingly, Clementset al.25 found such a coexistence region
each of the first three fluid layers on bare graphite, or la
by layer condensation. The possible interplay between s
phase transitions in the film and its superfluidity is an imp
tant factor in the interpretation of these experiments.

The organization of this paper is as follows. A bri
description of the experimental method is given in Sec.
including details of the torsional oscillator, thein situ pres-
sure gauge for sample characterization and the metho
data collection. Section 3 contains the main experimen
results together with their interpretation. Although the o
served behavior is rich in detail, we believe the systema
of the interplay between superfluidity and film structu
emerge quite clearly. For clarity this section is split into
number of subsections dealing with~i! the method adopted to
preplate the graphite with a bilayer or trilayer of HD,~ii ! the
characterization of the growth of the4He film on these pre-
plated substrates by vapor pressure adsorption isothe
Next is the longest subsection~iii ! which describes the evo
lution of the superfluidity in the first two fluid layers. Thes
results appear to show that a periodic potential strongly s
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fluid layers is no longer described by Kosterlitz-Thoule
theory in its simplest form. In subsection~iv! we discuss our
determination of thex factor of the substrate. A number o
further interesting experimental observations are collecte
~v!, including features which may signify the layer by lay
condensation in the film, the observation of periodicity of t
third sound speed and a coverage dependence of the v
dynamics. Section 4 summarizes the main conclusions of
paper, with suggestions for future work.

2. EXPERIMENTAL METHOD

The torsional oscillator is of conventional design, co
sisting of a stycast 1266 shell, with internal diameter 18 m
and height 12 mm, packed with Grafoil and mounted on
hollow BeCu torsion rod. The torsion mode or floppy mo
are driven and detected capacitatively. The frequencies
1056 and 605 Hz, respectively. The device is operated
self-resonant oscillator circuit, at constant drive voltage, w
the torsional oscillator as the frequency determining elem
The period of the oscillator is measured with a HP533
counter. The response of the oscillator is preamplified,
then lock-in detected. The oscillation amplitude is prop
tional to the quality factor of the oscillator, and is calibrat
by observing the ring down of the oscillator on removing t
drive. The Grafoil sample is in the form of disks 0.15 mm
thickness, providing a total surface area of 65 m2. It was
baked in vacuum at 1100 °C to remove impurities, bef
loading it in the cell. It is necessary to measure the ba
ground period and dissipation~both are smooth with no
anomalous features! of the oscillator as a function of tem
perature between 12 K and 20 mK. When the adsorbed
is not superfluid, the torsional oscillator simply acts as
sensitive microbalance, with a period shift proportional
the coverage~mass! of the adsorbed film. For our oscillato
the sensitivity with respect to the areal density of the4He
film is 26 ns•nm2.

The cell is attached via a massive vibration isolator t
cell plate, which in turn is connected to the mixing chamb
of a cryogenic-cycle, sorption-pumped dilution refrigerato26

via a weak thermal link. This enables the temperature of
cell to be swept slowly, using a heater attached to the
plate, to accumulate period and dissipation data. The sw
rate is such that there is negligible hysteresis between
taken on warming and cooling. The temperature is measu
by a 470-V Speer resistor and a GaAs chip resistor,27 cali-
brated by a3He melting curve thermometer between 0.
and 0.8 K and by a calibrated germanium resistance t
mometer between 0.3 and 4 K.

An in situ pressure gauge similar in design to that us
by Zimmerli28 and Crowell6 was connected to the cell an
mounted on the cell plate. The deflection of the gold-pla
kapton membrane was detected capacitatively and yield
pressure resolution of 5 nbar. The reference volume of
gauge was connected by a capillary to room temperature
rough evacuation, a small graphite pelletplaced inside
reference volume ensured a good vacuum at low temp
tures and provided a better reference pressure than sim
connecting one side of the diaphragm to the vacuum can~in
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the 1-K pot!. The gauge was calibrated against the vap
pressure of liquid4He ~actually a thick4He film of 20 layers
in the torsional oscillator!, in the temperature range 0.75
1.25 K. This gauge was used for vapor pressure adsorp
isotherms to characterize the growth of the HD preplat
film and the4He film. In addition, the in situ gauge mon
tored the vapor pressure of the film during collection of p
riod data, enabling corrections to be made to the oscilla
period due to desorption of the film at higher temperatur
The system was also equipped with a room-temperature
roscientific pressure gauge.29 The cell fill line was equipped
with a series of heaters, which were used for preplating
graphite with hydrogen during the performance of isother
~at 12 K and 10 K! and when cooling the cell to 4.2 K, to
ensure that the cell is the coldest point, thus avoiding
formation of bulk hydrogen in the fill line. The period of th
torsional oscillator, which effectively acts as a microbalan
is an extremely sensitive detector of any unwanted loss
hydrogen from the cell.

3. RESULTS

3.1. Preplating with HD
Measurements on4He films were made with preplating

of a bilayer and a trilayer of HD. The procedure for dete
mining these preplatings is as follows. The surface area
the sample is determined by a 4.2 K4He isotherm, taking
point B18 as the indicator of first layer promotion. We us
this as the reference for all surface densities in this pa
The density of H2 and D2 films on graphite~one, two and
three layers! has been measured by neutron scatterin16

With this information and the bulk molar volume, we gene
ate the density per layer as a function of the reciprocal nu
ber of layers. These data can be interpolated to estimate
values for HD films, with a precision of about 2%~18.3 and
27.1 nm22 for bilayer and trilayer, respectively!. Scaling the
dose for 4He monolayer completion by the ratio of thes
densities and the neutron scattering density of a comple
4He monolayer20 (11.25 nm22), gives the required estimate
dose for a bilayer or trilayer of HD. Further, we have o
tained a HD vapor pressure isotherm at 12 K and 10 K a
found compressibility minima in good agreement with the
estimates~corresponding to densities 18.9 and 27.2 nm22 for
the bilayer and trilayer!. The preplating coverages which w
chose were those corresponding to these compressib
minima.30 Following these procedures, we can be confid
that the chosen preplatings are very close to exactly two
three layers.

3.2. Characterization of4He film
For each HD preplating case a helium isotherm was u

to characterize the growth of the film, locating the layer p
motions. Results for the bilayer and trilayer preplating
isotherms at 940 mK are shown in Fig. 1. Layer promotio
were determined from compressibility minima, and a4He
coverage scale was defined. These coverages are referr
the 4.2 K4He isotherm on bare graphite, for which first lay
promotion is taken as 11.4 nm22. For the bilayer preplating
these promotions occur at 7.3, 12.5, 18.7 and 25.2 nm22.
The last three values are 20% smaller than those obtaine
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ZMC for 4He on graphite preplated by a bilayer of hydroge
Thus, our coverage scales are consistent within a cons
scaling factor. For the trilayer preplating we found shift
compressibility minima at 5.65, 10.3, 16.7, 24.0 nm22. Most
of the coverage offset between these two isotherms for
ferent preplatings is attributable to a significantly lower de
sity of the first4He layer for the trilayer preplating. For bot
preplatings no superfluid signature is observed from the
4He layer fluid, at lower coverages. This layer is believed
be solid on completion. The low density of second lay
promotion for the trilayer preplating may arise from a reg
tered structure which resists compression. In the follow
we assume that the first layer is solid; the second and t
layers are thus the first and second fluid layers. The de
opment of superfluidity in these fluid layers is discussed
the next subsection.

We should note that CR detected superfluidity in t
second layer of4He on bare graphite prior to solidification
the period shifts associated with superfluidity have
anomalous temperature dependence. According to the p
diagram of Greywall,9 these superfluid transitions occu
when the film is a coexistence of gas and liquid. This may
responsible for the anomalous behavior observed. For
present case of HD preplated substrates we currently be
that the observation of superfluidity in the first4He layer is
precluded by the solidification of the film, which in this ca
occurs at lower second layer coverages. On the basis o
periments on3He films on a HD bilayer preplated graphi
substrate, we expect to enter a commensurate solid-fluid
existence region at 4.8 nm22, in the low-temperature limit.31

3.3. Evolution of superfluidity in the first two fluid laye
The results for the period shift due to the superfluid tra

sition and the associated dissipation peak are shown in F
2 and 3 for a selection of lower coverages for the trilay
preplating.32 The temperature dependence of the period s
for the three highest coverages, after formation of the sec
fluid layer, are most characteristic of a KT transition. T
dissipation peak associated with the transition is relativ

FIG. 1. 4He vapor pressure isotherms, taken at 940 mK, for graphite pl
with a bilayer~open circles! and trilayer~closed circles! of HD. Inset shows
detail for bilayer preplating, near first layer promotion. Structure is belie
to arise from solidification of film, followed by promotion at 7.3 nm22.
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narrow, with the temperature half-width of about 30 mK. F
each coverage these data allow us to determine the tota
riod shift due to the onset of superfluidity,DP(0). This
quantity is the difference between the estimatedT50 limit
of the period and the period immediately above the sup

d

d

FIG. 2. Period shift due to superfluid transition for trilayer preplating. Co
erages; 7.02, 7.50, 8.15, 8.47, 9.11, 9.35, 9.61, 9.74, 10.16, 10.60, 1
12.58, and 13.11 nm22.

FIG. 3. Dissipation peaks at the superfluid transition, with trilayer prep
ing. Coverages are the same as for Fig. 2. Data we displaced for clarity.
inset shows data for the first four coverages on an enlarged scale.
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fluid transition, after applying the vapor pressure correcti
These data are plotted as a function of the total4He coverage
in Fig. 4. The values ofTc , here defined as the temperatu
of the dissipation maximum, are shown in Fig. 5.

a) First fluid layer
It can be seen that the behavior is rather similar for

two preplatings, apart from a coverage shift referred to e
lier, and is attributed to difference in densities of the fi
solid layer. The behavior in the second4He layer~first fluid
layer! is very similar to that observed in the third layer~again
first fluid layer! by CR on bare graphite. We interpret th
break in the coverage dependence ofDP(0) and Tc part
through filling of the fluid layer as due to the two
dimensional condensation~‘‘puddling’’ ! of that layer at
lower coverages, as previously proposed by CR. Thus, u
a total coverage 10.8(9.3) nm22 for the bilayer~trilayer! pre-
plating, the fluid layer separates on cooling into a lo
density ‘‘gas’’ and high-density ‘‘liquid.’’ The superfluid
transition observed is that of the high-density ‘‘liquid’’ com
ponent. The break then corresponds to the point in
T–n plane at which a line of superfluid transitions emerg
from the two phase coexistence regime. These results
broadly consistent with the third sound measurements

FIG. 4. Total period shift as a function of coverage. Upper plot~open
circles!; bilayer preplating. Lower plot~filled circles!; trilayer preplating.
Vertical dashed lines indicate coverages of layer promotions, inferred f
vapor pressure isotherms. Dotted line is a linear fit to period shift data in
third layer ~second fluid layer!.
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ZMC8 on H2 plated graphite, which also find superfluidity i
the second4He layer.

Recent heat capacity measurements on this syste17

with preplatings slightly in excess of exact bilayer and trila
ers of hydrogen, also provide evidence of such a layer c
densation, with a critical temperature of 0.8 K. From o
data, for both preplatings, we estimate the minimum den
of the second layer fluid, at which a uniform fluid is stable
T50, to ben25460.5 nm2, where the error largely come
from uncertainties in the precise density of the first so
layer. This is in reasonable agreement with theory.22,25

Examination of the period shift curves for the four coverag
studied below the break for the trilayer preplating~Fig. 2!
shows that ‘‘superfluid onset,’’ now defined as the tempe
ture at which a shift in period is first resolved, occurs at t
same temperature,;0.4 K, at each coverage. Similar beha
ior is seen for the bilayer preplating. This observation su
ports the model of a superfluid transition occurring
puddles of condensed liquid, whose density remains cons
as a function of coverage. Note that the values ofTc plotted
in Fig. 5 are the temperatures of the dissipation maxim
which show a coverage dependence in this regime. Thi
clearly attributable to changes in the temperature width
the superfluid transition. The decrease in width of the tran
tion as the coverage is increased may be associated with
increasing size of the puddles or with the effects of perco
ing superflow between puddles.

We cannot be sure of the morphology of these superfl
puddles but our results suggest that they decouple from
substrate. Either the high-density component forms in
single patch, perhaps at the edge of a Grafoil platelet or
not necessary for superfluid patches to percolate in orde
slip relative to the surface. Thus, while it is clear that perc
lation is necessary for dc superfluid mass transport, it mi
be expected that a torsional oscillator will continue to det
superfluidity, even if the liquid separates into a set of no

m
e

FIG. 5. Temperature of dissipation peak, used to locate superfluid trans
temperature, as a function of coverage. Open circles; bilayer prepla
Closed circles; trilayer preplating.
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percolating patches.
At higher fluid layer coverages above the break in

regime where we expect a uniform fluid layer, there is
rapid increase inTc andDP(0). For both preplatings, this
continues until the formation of a second fluid layer. At th
point ~the third layer promotion!, there is a second break i
the coverage dependence. Similar behavior was seen on
graphite by CR.6 We interpret this data immediately befo
the third layer promotion~formation of second fluid layer! as
follows. If in Fig. 4 the line of period shifts~following the
break indicating emergence from the coexistence region! is
extrapolated to zero, this determines the density at which
onset of superfluidity might be expected for a uniform flu
layer. The line of transition temperatures extrapolates to
sentially the same coverage. They are 10.5 nm22 and
8.5 nm22 for the bilayer and trilayer, respectively, and w
interpret them as the ‘‘dead layer’’ prior to the third lay
promotion. Clearly, superfluid onset as a function of cov
age is not directly observable because of the interventio
2D condensation. This is schematically illustrated in Fig.
We believe that this suggests that superfluidity is suppres
in the uniform two dimensional fluid. For both preplating
the extrapolated fluid density, which corresponds to
‘‘dead layer’’ coverage, is 3 nm22.

This value is comparable to that obtained from th
sound measurements on a~nominally! thick hydrogen film
by Shirron and Mochel13 ~this gives a dead layer o
3.9 nm22, after scaling their surface densities by a fac
1.67, as suggested by Chenget al.33!. Torsional oscillator
measurements on a thick H2 film

14 give a dead layer of abou
1/2 ‘‘layer.’’ Note that in the present experiment we have
high degree of confidence in the quality of the surface. In
present measurement, for the bilayer and trilayer preplati
the apparent inert layer corresponds to about 0.6 of the d
sity of the fluid layer at promotion plus the first solid laye
One might call the fluid component of this inert layer as t
‘‘nontrivial’’ component. The results of CR on bare graphi
are consistent with these observations.

In the coverage range under consideration, which co
sponds to a uniform fluid layer before the promotion, t

FIG. 6. Schematic diagram to illustrate proposed interaction of superflu
and 2D condensation phenomena. Layer promotions occur atn1 , n2 , n3 . At
n1 the first layer is solid. Forn1,n,nc the second layer consists of
self-condensed fluid - gas coexistence. Fornc,n,n2 the second layer is a
uniform fluid. After promotion to a third layer atn2 the third layer fluid is
also self condensed, as suggested in Ref. 25. The critical temperature o
gas-liquid coexistence regions isT0 , probably of the order of 0.8 K. A line
of superfluid transition temperaturesTc is also shown;Tc is constant in the
coexistence region and on entering the uniform fluid phase increases
coverage faster than the KT slope, extrapolating to zero atn0 ~dead layer!.
There is a break in the coverage dependence ofTc at promotion,n5n2 .
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KT line, Tc50.156n(K•nm ). This relation assumes
rs(Tc)50.82rs(0). It also assumes the bare mass of t
4He atom. The width of the dissipation peak temperature
the superfluid transition also decreases rapidly with incre
ing coverage. The origin of this strong suppression of sup
fluidity and the rapid increase inTc with increasing coverage
remains an open question. It may arise from residual het
geneity of the surface; however, the observed behavio
similar for the two preplatings reported here and for ba
graphite. The observations may indicate that the periodic
tential of the underlying solid layer influences the superflu
onset. The rapid increase inTc may stem from the fact tha
the film become more delocalized normal to the surfa
theory suggests25 that such an effect can occur at a covera
significantly lower than that of the layer promotion.

Note that, although we refer to this fluid layer as bei
uniform, we expect on the basis of Monte Carlo simulatio
of a 4He monolayer on hydrogen34 that the local density will
show structure arising from the periodic surface potent
These simulations show an effective4He mass up to twice
that of the bare mass and a 20% suppression in the super
density, as well as condensation below 4.6 nm22.

From the above discussion, it appears that there is o
all consistency between this and previous experiments, w
evidence for a strong suppression of superfluidity in a sin
fluid layer at lower coverages. In the present case this s
pression is small at third layer promotion, when a seco
fluid layer forms@see more detailed discussion in the follow
ing section~b!#. In our opinion, theoretical work on the in
fluence of the periodic potential on the superfluidity of
single fluid layer, taking into account the delocalization
the film normal to the substrate, would be of great intere

b) Two fluid layers
At a coverage of 12.5(10.3) nm22 the third layer forms

for the bilayer~trilayer! preplating. We now have two fluid
layers above a solid4He layer above the preplated graphi
substrate. The coverage dependence of bothTc andDP(0)
show a sharp break at this third layer promotion for bo
preplatings. As the third layer~second fluid layer! grows, the
total period shiftDP(0) increases linearly with coverage to
good level of accuracy. The quantityDP(0) is a measure of
the mass of the film participating in the superfluidity in th
T50 limit. A linear fit to this period data in this coverag
range extrapolates to zero at a coverage of 6.7 (4.8) n22

for the bilayer~trilayer! preplating. In both cases this value
close to, but slightly smaller than, the coverage at wh
second layer promotion was observed: 7.3 (5.65) nm22.
This is powerful evidence that in the low-temperature lim
the film now consists of two superfluid layers above a so
4He layer. All of the fluid participates in the superfluidity
the ‘‘dead’’ layer is merely the first solid layer. This con
trasts with the nontrivial dead layer we have argued for in
first fluid layer and is clear evidence for a shift in the dens
of the inert layer as a function of the coverage of the film

If a line of transitions with the KT slope is drawn in Fig
5, Tc50.156 (n2ndead) with ndead56.7 (4.8) nm22 for the
bilayer ~trilayer! preplating, the transition temperature
closest to that observed just at third layer promotion, as

ty

oth

ith
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second fluid layer forms. Indeed, for the trilayer preplating
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the line almost coincides with the data at this point. T
suggests, therefore, that at third layer promotion the fi
fluid layer is completely superfluid, in marked contrast w
the situation at slightly lower coverages. The behavior
4He on bare graphite as a second fluid layer forms~corre-
sponding to fourth layer promotion in that system! is some-
what more complex.~Clearly, in comparing the evolution o
superfluidity in the two systems it is the number of flu
layers that is important: it isl22 for bare graphite and
l21 for preplated graphite, wherel is the total number of
layers.! The results of CR forTc andDP show a plateau in
the vicinity of third layer promotion, which is possibly a
tributable to a reconstruction of the film. We see a simi
feature at fourth layer promotion for the bilayer preplati
@see section 3.5.#. The absence of such an effect in th
present experiment as the second fluid layer forms simpl
the interpretation.

It is interesting to compare the coverage dependenc
Tc with that observed for4He on mylar.2,4 In this case the
‘‘dead layer’’ is typically in the range 25–30mmol•m22. A
simple picture is that this is in the form of an amorpho
coating of the substrate, which screens the heterogen
substrate potential in such a way that additional4He atoms
are delocalized. These fluid atoms undergo a superfluid t
sition via the KT mechanism; the data of Bishop and Rep2

show a linearT2n dependence, which is well described b
the KT relationT50.156n (K•nm2). AMR4 report data over
a wider coverage range. In this case the dead laye
28mmol•m22; the initial T2n relation is again reasonabl
consistent with the KT line. However, at abo
40mmol•m22, which corresponds to a fluid density o
7 nm22, the slope of theT2n line decreases. Above
40mmol•m22 AMR found the slope of theT2n line to be
0.071 Knm2. This behavior is reminiscent of the sharp d
crease indTc /dn as a result of formation of a second flu
layer in the present hydrogen preplated graphite experim
In all cases this occurs atTc;0.8 K. It is intriguing, and we
believe significant, that for both preplatings we have inv
tigated Tc increases linearly with coverage as the seco
fluid layer fills with a slope quite close to that seen on my
~0.084 Kn•m2 and 0.060 Kn•m2 for trilayer and bilayer pre-
plating, respectively!. This suggests that the transition in b
havior is a direct result of the formation of two fluid layer
According to this view, the coverage dependence ofTc
above promotion is an intrinsic feature of the superfluid tr
sition in two coupled fluid layers. On the mylar substrate
film is not so highly layered. Therefore, in this case a sh
kink in the T2n curve is not observed. Rather a mo
gradual but still pronounced change in slope occurs.

In contrast, below this feature, for just one fluid laye
the behavior is entirely different for the two substrates. T
mylar substrate, which is screened by the4He inert layer,
provides a disordered potential. There is no 2D condensation
of the fluid, and the transition temperature follows the K
line. In contrast, the atomically flat plated graphite substr
provides a periodic potential. At fluid coverages below
about 4 nm22 the uniform fluid is unstable at sufficiently low
temperatures and 2D condensation occurs. Above this co
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age there is a strong suppression of both the superfluid t
sition temperature and the superfluid density, possibly
cause of the influence of the periodic potential due to
solid underlayer. These results challenge our understan
of superfluidity in helium films and hopefully will stimulate
more theoretical work.

3.4. Determination of thex factor
Let us now discuss measurements of thex factor of the

surface. It is obtained from an isotherm of the oscillator p
riod as a function of coverage, taken at the same time as
vapour pressure isotherm. This filling curve data refers
fully annealed films; this procedure was possible becaus
the good long-term stability of the cell period.~An alterna-
tive is to fill the cell at a constant temperature, which c
lead to nonuniform coverages.! The results for the trilayer
are given in Fig. 7. In this case the superfluid transition te
perature at the temperature of the measurement is a
12 nm22. A linear fit to data below 11 nm22 ~normal film at
this temperature! gives a mass sensitivity of 26.01 ns•nm2.
For coverages above 13 nm22, for which the film is super-
fluid, a linear fit gives a slope of 25.014 ns•nm2. This gives
a x factor of 0.9617. For the bilayer preplating we obtain
normal mass sensitivity of 26.00 ns•nm2, in excellent agree-
ment with the trilayer result. In this case thex factor is
0.9519. With this data the expected slopes of
DP(0)-vs-n lines after third layer promotion are 1.2
(0.995) ns•nm2 for the bilayer ~trilayer! preplating. These
values compare quite well with those obtained from Fig.
1.176 (0.949) ns•nm2. It is possible that the superfluid frac
tion atT50 is suppressed in these films, but this cannot
measured directly since it cannot be separated from the
fects represented by thex factor. CR report ax factor of
0.989 for4He on bare graphite. For our Grafoil sample wi
no preplating we findx50.956, a result obtained from
filling curve on bare graphite in the same cell following th

FIG. 7. Determination of thex factor. 4He filling curve at 940 mK~for
trilayer preplating!, showing change in the period as a function of covera
Circles; nonsuperfluid coverages. Squares; superfluid coverages. Line
to each of these sets of data are shown. The results in the vicinity
superfluid transition are omitted from analysis.
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same procedures. It seems, therefore, that the preplating
not have a big effect on thex factor. It is likely that most of
the difference between our result and that of CR stems f
the substrate quality or from the effects of different he
treatments.

3.5. Other experimental features
In the third layer~second fluid layer! for bilayer preplat-

ing we find a set of small steps in the period data, which
associated with small, sharp peaks in the dissipation.
cause we have studied a large number of closely spaced
erages, we can follow the evolution of this feature. The lo
in theT2n plane, shown in Fig. 8, is suggestive of that o
two-phase coexistence region or layer-by-layer fluid cond
sation, as predicted by Clementset al.25 Thus, in this region
the second layer would be a uniform fluid and the third la
is puddled. The width of the coexistence region is 4 nm22

and the critical temperature of 0.8 K is close to that fou
from the heat capacity measurements in the second layer
emphasize that this attribution is extremely tentative. W
should point out that in this coverage regime the period s
and amplitude data suffer from contamination by third sou
resonances.35 They could be eliminated in an oscillator wit
a lower operating frequency. Driving the oscillator in i
floppy mode helps separate out third sound resonan
However, we can exploit the observed mode crossin
whose most pronounced signature is a dramatic decrea
theQ factor of the torsion mode, to trace the evolution of t
third sound velocity. For the bilayer preplating the tempe
ture of the mode crossing exhibits a maximum
16.7 nm22; this arises from a compressibility minimum i
perfect agreement with that determined from the vapor p
sure isotherm that locates the third layer promotion, as
pected. In contrast, the measurements of ZMC8 show a cov-
erage offset between the maxima in the third sound velo
and the compressibility minima. This may arise because
measurements are dominated from different graphite surf

FIG. 8. Locus inT2n plane of the features in the oscillator~small period
step, sharp peak in dissipation! tentatively associated with puddling trans
tion in third layer.
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HOPG~highly oriented pyrolytic graphite! crystal, while that
for the vapor pressure is dominated by the graphite fo
ballast in the same cell. Above fourth layer promotion~for-
mation of the third fluid layer!, the bilayer preplating period
shift data show a plateau of width 2.5 nm22. Additional
4He atoms added to the film appear not to contribute to
superfluidity. This most likely arises from a reconstruction
the film, which involves an increase in the density of the fi
solid layer. A similar plateau of comparable width was se
by CR, also at fourth layer promotion, which in this ca
corresponds to the formation of the second fluid layer. Th
authors suggested a number of possible explanations for
a structure in the period shift isotherms, including that
film reconstruction just mentioned. It seems that the abse
of a plateau in these data above third layer promotion sho
impose additional constraints on the possible explanation
such features. On the one hand, it appears to favor
strongly the model of Zimanyiet al.,36 who calculated the
superfluid density in Bose–Hubbard model. On the ot
hand, we do not believe that the plateau can arise from p
dling, one of the possibilities suggested in Ref. 6 and
Clementset al.,25 since we observed a linear dependence
DP on coverage in the second fluid layer. Puddling is p
dicted in this layer, and as discussed, we have signature
the torsional oscillator response, which can tentatively
attributed to the onset of puddling.

Another striking feature of the evolution of superfluidi
concerns the width of the dissipation peak at superfluid
set. It should be sensitive to the vortex dynamics in the fi
For both preplatings the data show a rather similar cover
dependence~Fig. 9!. Following the end of the second laye
puddling, the peak half-width decreases dramatically throu
third layer promotion. As the next fluid layer~third layer!
fills, the dissipation exhibits a minimum, near 0.3 layer fi
ing, followed by a maximum, near 0.7 layer filling for bot
preplatings. Since as the third layer fills the superfluid tra
sition temperature exceeds 0.8 K above the critical temp
ture for gas-liquid coexistence, the second and third fl
layers should be uniform fluids at superfluid onset, and the
fore there should be no effect of puddling on the dissipat
near the onset.

4. CONCLUSIONS

The present experiment and the previous results
Crowell and Reppy reveal a wealth of new phenomena
atomically layered superfluid4He films on graphite. Varying
the substrate potential by preplating has proved to be a v
able tool to extract ‘‘universal’’ features of the behavior
this system.

On the hydrogen bilayer and trilayer preplated surfa
we have studied there is no evidence for superfluidity in
first 4He layer. The second layer appears to condense in
2D liquid at sufficiently low temperatures for a layer fillin
below 4 nm22. At higher coverages in this layer we believ
it to be a uniform fluid. There is a rapid increase in t
superfluid signal andTc with coverage, much faster than th
expected from KT theory. This may indicate a strong infl
ence of the periodic substrate potential on superfluid
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which by extrapolation would completely suppress the sup
fluidity of a uniform fluid layer at a layer filling of about 0.6
However, upon completion of the second layer~first fluid
layer!, the transition temperature is close to the KT line, w
a dead layer corresponding simply to the first solid layer

On formation of the third layer, the period shift da
show that the system consists of two superfluid layers ab
an inert layer, which is assumed to be solid for both prep
ings. The increase of the superfluid transition tempera
with coverage is now significantly slower than the KT lin
but similar to the behavior observed on mylar substrates.
superfluid transition temperature of the film would only a
pear to fit the expectation from KT theory at essentially o
coverage, third layer promotion, for which the4He film con-
sists of a single fluid layer atop a single solid layer above
preplated substrate.

We believe that more theoretical study is required
understand the superfluid transition of a single fluid la
subject to a crystalline potential. It would also appear that
system of two fluid layers of4He would merit further study.
To what extent are the layers, in particular, the vortic
coupled? There are possible analogies with high-Tc materials
here. A future experimental objective is to attempt to grow
thick hydrogen film and to study the expected submonola
superfluidity with torsional oscillator techniques.

FIG. 9. Coverage dependence of the width of the superfluid transition. T
perature half-width of the dissipation peak at superfluid transition plotte
a function of coverage. Open~closed! circles are for bilayer~trilayer! pre-
plating.
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Quantum nucleation of cavities in a liquid helium at low temperatures

ds,
S. N. Burmistrov and L. B. Dubovskii

Department of Superconductivity and Solid State Physics, Kurchatov Institute, Moscow 123182, Russia1)

~Submitted November 18, 1996!
Fiz. Nizk. Temp.23, 527–536~May–June 1997!

The rate of the quantum cavitation in normal fluid3He and superfluid4He at temperatures down
to absolute zero has been studied. The effect of energy dissipation due to viscosity and the
effect of the finite compressibility of a fluid are incorporated into the calculation of the quantum
cavitation rate. Because of the dissipative processes, the kinetics of the quantum cavitation
in 3He and4He proves to be qualitatively different. In normal3He it corresponds to the dissipative
tunneling through a potential barrier. In contrast, in superfluid4He the effect of dissipation
is of minor importance. In both liquids the role of the compressibility of a fluid enhances
significantly for the small critical nuclei, which have several interatomic distances and can
provide us the nucleation rates sufficient for the experimental observation of the homogeneous
cavitation in the quantum regime. ©1997 American Institute of Physics.
@S1063-777X~97!00505-7#
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Considerable theoretical discussion on the macrosc
quantum nucleation has recently been focused on the
temperature cavitation in liquid helium at negati
pressures.1–4 Some intriguing problems, such as the tens
strength of liquid helium, i.e., the magnitude of the negat
pressure required to produce nucleation of cavities, and
critical pressure at which liquid helium becomes thermo
namically unstable against the density fluctuations, h
aroused special interest. Various cavitation experiments h
also been performed.5–7

According to the first estimates8 of the rates at which
bubbles nucleate in a liquid4He, it is expected that quantum
nucleation should dominate over the thermally activa
nucleation at temperatures below'0.3 K and that in this
temperature range the pressure providing the notice
nucleation rate or the tensile strength should be aboutP'
215 atm. Later, Maris and Xiong2 pointed out the possibil-
ity that, before this pressure can be attained, the liquid4He is
unstable against the long-wavelength fluctuations of den
since the square of the sound velocity becomes negative.
extrapolations of the sound velocity into the negative pr
sure range and some numerical calculations suggest tha
sound velocity at pressureP goes to zero as

c~P!}~P2Pc!
n. ~1!

Here the exponentn is close from 1/3 to 1/4. The critica
pressurePc , i.e., the pressure at the lability point, is es
mated to bePc52(829) atm at absolute zero. For liqui
3He, it is expected thatPc52(223) atm.2

In order to find the tensile strength, one needs a the
on the nucleation of cavities in the liquid. So far all th
calculations of the nucleation rate and tensile strength in
region of the quantum tunneling regime have been p
formed within the framework of the Lifshitz–Kagan theor9

of first-order phase transitions. However, in this well-know
theory there were several assumptions that reduced its
eral validity. In particular, metastable liquid phase was
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sound velocity in the liquid is infinite. Clearly, a more rea
istic theory of the quantum cavitation should involve t
effect of the finite compressibility, especially in the close
vicinity of the instability point at which the sound velocit
vanishes.

As follows from the recent studies involving the effe
of finite compressibility on the quantum decay rate of
metastable phase, the ratio of the nucleus growth rateṘ to
the sound velocityc is a physical parameter which govern
the magnitude of the compressibility in the case of thr
dimensional nucleation.10 In turn, for the decay of low-
dimensional metastable systems the involvement of nonz
compressibility of a medium in the calculation of the dec
rate is of principal importance since the approximation of
incompressible medium has no applicability.11 Furthermore,
compared with the standard theories9,12 based on the model
of an incompressible medium, in which the decay kinetics
a metastable phase has a dissipationless character, the s
retardation due to the finite velocity of sound propagat
produces qualitative changes in the quantum decay, wh
becomes completely analogous to the dissipative quan
tunneling through a potential barrier. The mechanism of
ergy dissipation is associated with the emission of sou
during the growth of the stable phase. On the whole, t
leads to the time nonlocality of the effective Euclidean act
and, as a result, to the appearance of the explicit tempera
dependence for the nucleation rate in the quantum tunne
regime.

The examination of the compressibility effect on th
quantum nucleation of cavities in a metastable liquid, wh
has not been made yet, is the main topic considered in
paper. In order to investigate quantum-mechanical tunne
between the metastable and stable states of a condense
dium and to calculate the rate at which cavities nucleate,
employ the formalism based on the use of the finite-act
solutions ~instantons! of equations continued to the imag
nary time. ~For review see, for example, Ref. 13.! This
approach14,15 for describing quantum-mechanical tunnelin
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the
dom was used for incorporating the influence of energy d
sipation in a metastable, condensed medium on the quan
kinetics of first-order phase transitions at lo
temperatures.11,16

2. DYNAMICS OF A THIN-WALL BUBBLE IN THE LIQUID

The growth of a bubble in the liquid, as well as th
formation of a bubble, is a very complex process. T
growth of a bubble occurs in a condensed medium repres
ing a system of many particles. As a result, the growth o
bubble is accompanied by nondissipative and dissipative
cesses, including the nonhomogeneous outflow of the liq
from the bubble, the viscosity, the heat conduction, a
sound emission due to the compressibility of the liqu
Thus, even for a spherical bubble that expands uniformly
all directions, the derivation of the general growth equati
which is valid for an arbitrary expansion rate, is a comp
problem. We therefore start from a number of simplifyin
assumptions.

Let us consider a normal fluid, say,3He held at arbitrary
pressureP, either positive or negative. As the next step, w
assume that a spherical bubble of radiusR(t) has been pro-
duced and that its radius is growing at certain rateṘ(t). For
simplicity, we disregard the possible presence of the hel
vapor inside the bubble, since the density of the vapo
much smaller compared to that of the bulk liquid. We c
then consider the bubble within a thin-wall approximati
assuming that the bubble has an abrupt boundary betwe
void and the liquid surrounding the bubble. In other wor
we will describe the liquid-vacuum interface in the terms
the surface energy coefficienta. Of course, this is reasonab
only if the bubble radius is much larger than the interfa
thickness.

The total energy of the system will then be

«5E
r.R~ t !

d3r F12 r~r !v2~r !1r~r !«~r~r !!G
14paR2~ t !, ~2!

where the velocity and density of the liquid at pointr are
v(r ) andr(r ), respectively. The first bulk term represents
sum of the kinetic and internal energies of the liquid, ande is
the internal energy per unit mass. The second term is
surface energy of the bubble. To make the further simp
cation of the bubble growth, we disregard all the heat effe
which, in general, can accompany the growth of a bubb
For this purpose, one should ignore the possible tempera
dependence in the coefficient of surface energya and the
heat transfer due to the viscosity of the medium.

Let us now turn to the derivation of the equation whi
the growth of a bubble obeys. First of all, we note th
according to the conservation of the mass flux across
boundary of a bubble, we have an equality between the fl
velocity and the growth rate atr5R(t), i.e.,

v~R!5Ṙ~ t !. ~3!
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to use the conservation of the momentum density flux acr
the boundary atr5R(t):

P~R!1t rr ~R!1
2a

R
50. ~4!

HereP(R) is the pressure, andt rr (R) is the radial compo-
nent of the viscous stress tensor at the surface of the bub
The viscous stress tensort ik is defined by the standar
expression17 as

t ik52hS ]v i
]xk

1
]vk
]xi

2
2

3
d ik

]v l
]xl

D2zd ik
]v l
]xl

, ~5!

hereh andz are the viscosity coefficients, and the subscri
i , k andl run over the values of 1, 2, and 3 corresponding
the components of the radius vector. The last term in Eq.~4!
takes into account the existence of the Laplace pressure
to the curvature of the surface.

The boundary condition~4! is essentially an equation o
the bubble growth. We must express the pressureP(R) and
the viscous stresst rr (R) in terms of the variables describin
the growth of a bubble, i.e.,Ṙ(t) andR(t). For this purpose
one should employ two equations which govern the mot
of a fluid. The first is the equation of continuity

]r

]t
1¹•~rv!50 ~6!

and the second is the Navier–Stokes equation17

rF]v]t 1~v•¹!vG52¹P1h¹2v1S z1
h

3 D¹~¹•v!. ~7!

We are now in the position to calculate the unknow
quantitiesP(R) andt rr (R), using Eqs.~6! and ~7!, and the
boundary condition~3!. However, the derivation of the gen
eral analytic solution for an arbitrary dependence of
growth rateṘ on time t is unfeasible and we restrict th
analysis to the limit of sufficiently low growth rates,Ṙ→0.
In what follows, only the quantities of the order not small
thanṘ/c!1 will be kept, wherec is the sound velocity. The
time derivatives ofR(t) to third order are also retained. Eac
term of the decomposition has its own physical meaning a
in addition, its relative contribution to the bubble grow
kinetics depends on several factors, including the bubble
dius, growth rate, temperature, and kinetic properties of
liquid near the bubble.

As usual, to solve Eqs.~6! and ~7!, it is convenient to
introduce the velocity potentialw(r t) according to

v5¹w.

In the above approximations the motion of a fluid m
dium can be reduced to the linear equation correspondin
the propagation of sound under damping

¹2w2
ẅ

c2
1

~4/3!h1z

rc2
¹2ẇ50. ~8!

The general solution for the sound that propagates from
bubble and vanishes at infinity can be represented as
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2` 2p r

lv5
v

c S 122igv

c

v D 21/2

, gv5
4h/31z

2rc3
v2, ~9!

wheregv is the sound absorption coefficient due to the v
cosity of a fluid. The unknown functionF(t) must be deter-
mined from the boundary condition~3! setting ]w/]r
5Ṙ(t) at r5R(t). The involvement of first-order time de
rivative alone is sufficient in our approximation; i.e.,

F~ t !'2
V̇~ t !

4p
, V~ t !5

4p

3
R3~ t !, ~10!

whereV(t) is the volume of an expanding bubble. Using t
usual relation for the pressure in a fluid

P~rt !2P52rẇ2r
~¹w!2

2
1S 43 h1z D¹2w

and Eq.~5! for the viscous stress tensor, we obtain for t
equation of the bubble growth

2a

R
1P14h

Ṙ

R
1rSRR̈1

3

2
Ṙ2D2

r

4pc
V̂~R!1...50,

~11!

whereP is the external pressure. In the absence of the
face, viscous, and sound terms the equation for the ra
growth of a bubble was derived for the first time by Lo
Rayleigh. Later, the growth equation was generalized by
Plesset with allowance for the surface tension.

For further analysis, let us rewrite the growth equation
a more general form. Multiplying Eq.~11! by 4pR2, we
obtain

U8~R!1m1~R!Ṙ1m2~R!F R̈1
1

2

m28~R!

m2~R!
Ṙ2G2m3~R!

3F R̂1
3

2

m38~R!

m3~R!
R̈Ṙ1

1

2 S m39~R!

m3~R!
2

m38
2~R!

2m3
2~R!

D Ṙ3G
1...50. ~12!

The expression which we derived essentially represen
general form for lowest terms of the expansion of the eq
tion of bubble growth in a series in the slowness of variat
of the bubble radiusR(t) in time; i.e., expression~12! is a
low-frequency expansion.

The termU8(R) which remains finite atṘ[0 originates
from

U~R!5
4p

3
PR314paR2. ~13!

Accordingly,U(R) can be treated as a potential energy
the bubble. Note that for negative pressures the bubbles
radii exceeding the critical size

Rc53a/uPu ~14!

prove to be energetically favorable and cavitation becom
unavoidable.
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drag force, which hinders the growth of a bubble and wh
is completely analogous to the Stokes force, which is prop
tional to the growth rate

m1~R!Ṙ516phRṘ. ~15!

It is obvious that the drag force governs the evolution o
bubble at sufficiently small growth rate when the other ter
which depend on the temporal derivatives, can be dis
garded. As we shall see below, such situation for the qu
tum cavitation is possible provided the critical sizeRc of a
bubble is large enough or, identically, in the limit of sma
negative pressuresuPu→0.

We would like to make an important remark concerni
the behavior of the friction coefficientm(R) as a function of
the bubble radius and temperature. The point is that in
course of deriving the Rayleigh–Plesset equation~11! we
employed the Navier–Stokes equation with the viscous st
tensor~5! in the form of the expansion in the gradients of t
fluid velocity. This implies, however, that the hydrodynam
approximation is satisfied; i.e., the bubble radius should
much larger compared with the mean free pathl (T) of exci-
tations in the medium surrounding the bubble. Since
mean free path increases rapidly at low temperatures, in
ticular, l (T)}1/T2 for 3He, the crossover from the hydrody
namicR@ l regime to the ballistic or Knudsen regime ofR
! l should occur at a certain temperatureTl(R).

In the ballistic regime the friction coefficient is governe
by the interaction of excitations with the surface of a bub
and is proportional to the area of the bubble surface. T
general expression for the friction coefficientm1(R) can be
represented as16

m1~R!516phRf~R/ l !,

f ~x!5H 1, if x@1

ax, if x!1.
~16!

Here f (x) is a dimensionless function of the ratio of th
bubble radius to the mean free path of excitations in
liquid. The numerical factora is of the order of unity and
depends on the particular features of the interaction of e
tations with the bubble surface. It should be noted that in
ballistic regime the friction coefficientm1(R) is independent
of the mean free pathl (T) sinceh;rcl.

The terms with the second derivative and with the squ
of the first derivative in Eq.~12! are standard terms and ca
be described in terms of the variable mass of a bubble:9

m2~R!54prR3. ~17!

These terms can be attributed to the kinetic energy of
fluid that flows away from the bubble.

The other third-order terms are associated mainly w
the finite velocity of the propagation of sound in a mediu
The corresponding coefficientm3(R) is given by

m3~R!5
4pr

c
R4. ~18!

391S. N. Burmistrov and L. B. Dubovskii
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of this term on the growth of a bubble and on the cavitat
kinetics.

To gain further physical insight, we represent the grow
equation in terms of the bubble energy dissipated per
time,

d

dt SU~R!1
1

2
m2~R!Ṙ22m3~R!ṘR̈2

1

2
m38~R!Ṙ3D

52m1~R!Ṙ22
r

4pc
V̈2. ~19!

As one can see, the right-hand side of Eq.~19! is described
by the dissipative function. The first term of the dissipati
function corresponds to the standard ohmic dissipation w
the variable friction coefficient. The second term is exac
equal to the total intensity of the sound emission as the
ume of the body immersed in the fluid changes17 if the wave-
lengthl of the sound emitted is much larger than the size
the body; i.e.,l@R. In our case the latter is identical to th
inequalityR!c.

In conclusion, we would like to emphasize two impo
tant points. First, the growth equation~12! has a limited re-
gion of applicability, which is restricted by the low growt
rates so that the growth time of a bubble would be lon
than the characteristic times of the relaxation processes in
medium surrounding the bubble. Second, the kinetic coe
cientsmn(R), in general, are different in various media, f
example, in the normal or superfluid liquid.

3. QUANTUM NUCLEATION RATE

In this section we shall estimate the thermal-quant
crossover temperature and calculate the rate at whic
bubble nucleates at zero temperature. The quantum ca
tion problem is treated within the approach elaborated
describing the decay of a metastable state in the presen
energy dissipation14,15and used for the analysis of the qua
tum nucleation processes during first-order ph
transitions.16 This approach is based on finding the ext
mum values of the effective Euclidean action determined
imaginary time and on using one-to-one correspondence
tween the classical equation of growth in real time and
Euler-Lagrange equation for the effective action due to
principle of the analytic continuation (uvnu→2 iv) into
imaginary time.

The rate of the quantum nucleation can be written as

G~T!5G0~T!exp~2S~T!/\!, ~20!

where the preexponential factorG0 is the rate of cavitation
per unit volume and unit time. According to the gene
theory of the nucleation kinetics, the factorG0 can be evalu-
ated approximately as the attempt frequencyn0 multiplied by
the number of centers at which the independent cavita
events can occur.

In turn, the exponentS is the extremum value of the
effective Euclidean action

SeffuRtu5E
2b\/2

b\/2

dtFU~Rt!1
1

2
m2~Rt!S dRdt D 2G
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4p 2b\/2
1 t

2g1~Rt8!#
2

~pT!2

\2 sin2 pT~t2t8!/\

2
1

4p E E
2b\/2

b\/2

dtdt8F]g3~Rt!

]t

2
]g3~Rt8!

]t8 G2 ~pT!2

\2 sin2 pT~t2t8!/\
, ~21!

where b5T21 is the inverse temperature. The pathR(t)
which is defined in imaginary timet satisfies the periodic
boundary conditionsR(2b\/2)5R(b\/2). It should be
emphasized that all the parameters of the effective action
associated unambiguously with the corresponding par
eters in the classical equation of growth~12!. The correspon-
dence can readily be settled with the analytic continuat
(uvnu→2 iv) of the Euler–Lagrange (dSeff /dRt50) equa-
tion for the effective action to real time, which entails th
classical equation of growth. The substitution (uvnu→
2 iv) of the Matsubara frequencies with the real frequenc
must be performed in the frequency representation of
corresponding equations.

It is clear that the first two terms in Eq.~21! can be
attributed to the potential and kinetic energies of a bubb
The other terms, nonlocal in time, are due to the ene
dissipation during the bubble growth. The paramet
g1(R) andg3(R) are determined by the kinetic coefficien
m1(R) andm3(R), respectively,

m1~R!5S ]g1~R!

]R D 2, m3~R!5S ]g3~R!

]R D 2. ~22!

Depending on whether the hydrodynamic or ballistic regi
takes place, as it follows from Eq.~16!, we obtain

g1~R!5H 2

3
A16phR3/2, if R@ l

1

2
A16pah/ lR2, if R! l .

Similar effective actions have been studied in the ap
cation to the general theory of the quantum kinetics of fir
order phase transitions. However, the various authors9,10,16

used the kinetic terms separately. It is interesting to note t
in contrast to the term with the ohmic dissipation which
related to the dissipative function proportional to the squ
of the first-order time derivative, the contribution due to t
finite compressibility of a fluid to the effective action
negative. The latter results in enhancing the quantum nu
ation rate compared with the one calculated in the framew
of the Lifshitz–Kagan model of an incompressible flui
Some hints for such conclusion can be seen from the fact
the finiteness of the velocity of the sound restricts the reg
of the bubble environment that can be disturbed and se
motion. The size of this region is approximatelyL5ct,
wheret is a typical growth time. In a sense, one can say t
the total kinetic energy of the fluid flowing away from th
expanding bubble becomes smaller than in the case o
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formation of the bubble extends instantaneously to infinit
To be closer to what can actually be observed in lo

temperature experiment, we consider only the case of
ballistic Rc@ l regime, when the critical radius is muc
larger than the mean free path of excitations. In fact, at
temperatures,T,1 K, the mean free path increases dras
cally in the normal3He and in the superfluid4He. Hence, the
opposite case of the hydrodynamic regime requires large
ues for the critical bubble radius, which increases progr
sively as the temperature decreases. In addition, the l
critical radius of a bubble results in such negligible nuc
ation rates that the homogeneous cavitation becomes u
servable on the scale of the reasonable experimental time
the quantitative manner, the impossibility of the hydrod
namic quantum regime is expressed by the inequality
Tl(Rc).T0(Rc), where T0(Rc) is the thermal-quantum
crossover temperature.

Eventually, it is convenient to represent the effective
tion in the following way:

Seff@Rt#5E
2\/2T

\/2T

dtF4p

3
PRt

314paRt
212prRt

3Ṙt
2G

1
1

4p E E
2\/2T

\/2T

dtdt8H r

4p
uFA~Rt!

2A~Rt8#
22

r

4pc
@V̇~Rt!

2V̇~Rt8!#
2J ~pT!2

\2 sin2 pT~t2t8!/\
, ~23!

whereA54pR2 is the area of the surface, andV54pR3/3
is the volume of a bubble. The quantityu;h/r l is approxi-
mately the characteristic velocity of excitations in a mediu
For a normal liquid like3He, the order of magnitude of th
velocity u is the Fermi velocity and the possible temperatu
corrections to the zero temperature are associated with
quantities of about (T/TF)

2, whereTF is the degeneration
temperature of the Fermi-like excitations.

In the superfluid4He where the energy dissipation of th
ohmic type is due to the presence of the normal compon
alone, we have a different behavior of the quantityu:

u~T!'crn~T!/r. ~24!

Here rn(T) is the density of the normal component and
low temperaturesT,0.5 K the normal density is determine
mainly by phonons18

rn~T!5
2p2

45

T4

\3c5
.

It should be noted that sinceu;c24, the relative role of this
ohmic term increases in the vicinity of the lability point b
cause of the reduction of the sound velocity.

First, we consider the high-temperature region in wh
there is only a classical extremum path. The path which
isfies the conditionR(t)[R052Rc/3 goes through the
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actionS5\U0 /T resulting in the standard Arrhenius law fo
the nucleation rate,

G5G0 exp~2U0 /T!; U05
16pa2

3uPu2
. ~25!

We begin the study of the low-temperature quantum
havior of the nucleation rate by analyzing the classi
R(t)[R0 extremum path with respect to small oscillatio
about the maximum of the potential energy. For this purpo
we represent an arbitrary path as

R~t!5R01r ~t!.

Next we expand the effective actionSeff@R(t)# in a series in
small powers of deviation ofr (t). Truncating a series in
r (t) at second order and turning to the Fourier represe
tion

r ~t!5
T

\ (
n

r n exp~2 ivnt!,

r n*5r2n ; vn52pTn/\, n50,61,62,...,

we obtain after some calculations the expression

Seff5
\U0

T
1

T

2\ (
n

anur nu2. ~26!

Here the coefficientsan are given by

an5U09116pruR0
2uvnu14prR0

3vn
22

4prR0
4

c
uvnu3.

~27!

As the temperature is lowered, the coefficientsa61 van-
ish first atT5T1 , which is determined by the equation

2a14ruR0
2v11rR0

3v1
22

rR0
4

c
v1
350, T15

\v1

2p
.

~28!

Below the temperatureT1 the classical pathR(t)5R0 be-
comes absolutely unstable against the oscillations of m
r61 .

Depending on the type of the quantum-classical p
transition,16 the genuine thermal-quantum crossover te
peratureT0 coincides with the temperatureT1 if the effective
action matches smoothly the exponent of the Arrhenius
or lies at a temperature slightly higher than the tempera
T1 if the quantum-classical path transition has a disconti
ous, jump-like character, i.e.,T0<T1 . Although the action
~23! we are concerned with refers to the last case and
though the crossover temperatureT0 should be found from
S(T0)5\U0 /T0 , the approximate estimate ofT0'T1 is
fully sufficient for our purpose.

According to Eq.~28!, in the limit of sufficiently large
radiusR0→` or, correspondingly, small negative pressur
uPu→0 we obtain the following estimate of the crossov
temperature:

T0'
\a

8pruR0
2 5

\

32paru
uPu2. ~29!
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growth rateR be smaller than the velocity of excitations an
the sound velocity. Since the characteristic time of the
derbarrier evolution of a bubble is (2pv1)

21, we have

2pv1R0

u
5

pa

2ru2R0
!1. ~30!

Obviously, this inequality restricts the magnitude of the pr
sure

uPu!ru2, ~31!

for which our approximations hold true. If the strong i
equality~30! breaks down, in Eq.~28! we must use terms o
higher orders inv1 , and the estimate~29! of the thermal-
quantum crossover temperature ceases to be valid.

In contrast with normal3He, in superfluid4He the den-
sity of the normal componentrn(T) vanishes asT→0 and
therefore the contribution of the ohmic term in Eq.~28! de-
creases. In order to analyze all the facts of the case, le
rewrite Eq.~28! for temperatureT1 , taking into account Eq
~24! for rn(T)

2a1
R0
2

90p2c4
\v1

51rR0
3v1

22
rR0

4

c
v1
350. ~32!

Of course, the conditionv1R0 /c!1 is assumed to be satis
fied.

As one can see, the dissipative ohmic term linear inv1

has no significant influence on the thermal-quantum cro
over temperatureT0 provided thatR0@R* where the radius
R* is given by

R*'S \2a3

8100p4c8r5D
1/11

. ~33!

For the radiusR0@R* , the thermal-quantum crossover tem
perature is found to be approximately the same, as it follo
from the nondissipative model of the quantum cavitation1,4

T0'
\

2p
A a

rR0
35

\

4p

uPu3/2

Aar
. ~34!

To satisfy the approximation of the low growth ratev1R0

!c, we must impose a restriction on the radiusR0 or on the
negative pressureP:

R0@
a

rc2
oruPu!rc2. ~35!

Numerically, if the physical parameters of4He are measured
at zero pressureP50, we find thatR*'a/rc2. Since
a/rc2'0.5 Å, the validity of the estimate~34! is connected
with the applicability of the macroscopic description, whi
is correct for large bubble radii compared with the interfa
thickness. Note that the condition~35! can be satisfied only
in the range of pressures far enough from the lability poin
which the sound velocity vanishes.

Let us now focus our attention on the low-temperatu
T!T0 behavior of the nucleation rate. First, we consider
case ofu(T)5const, which corresponds to the normal3He.
Since we should remain within the approximation of the lo
growth rate, the main contribution to the effective acti
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in time. The other two kinetic terms can therefore be trea
as perturbations. Accordingly, for temperatureT50 we have
approximately

S~T50!'4pruRc
4F11

a

2ru2Rc
2

u

9c S a

ru2Rc
D 2G

}uPu24. ~36!

This result represents the decomposition of the effective
tion in Ṙ/u!1 if we take into account that the typical tim
of the bubble growth or, identically, the transit time alon
the extremum underbarrier path is about

tc5
ruRc

2

a
. ~37!

In contract with the dissipationless kinetics1,4,9 the en-
ergy dissipation during the bubble growth leads to the eff
tive action in which the kinetic terms depend on temperat
in an explicit form. It is natural therefore to expect
temperature-dependent behavior of the nucleation rate in
quantum tunneling regime below the crossover tempera
T0 . We thus can expect16

DS~T!5S~T!2S~0!'2S~0!~T/T0!
2. ~38!

It is obvious that the temperature correction affects ess
tially the nucleation rate, whileuDS(T)u.\. Introducing the
temperatureT2 at which uDS(T2)u'\, i.e.,

T2'
a

Rc
4 S \

4pruD
3/2

}P4, ~39!

we obtain a noticeable range of temperaturesT2,T!T0 ,
for which the enhancement of nucleation rateG(T) follows
the law of log@G(T)/G(0)#}T2.

Let us turn now to the case of the cavitation in a sup
fluid 4He. In contrast to a normal fluid, where the density
excitations remains finite down to zero temperature, the d
sity of the normal component in superfluid4He vanishes at
zero temperature and the nucleation kinetics is gover
mainly by the well-known nondissipative term, which is r
lated to the kinetic energy of the liquid.1,4,9Using the correc-
tion due to the finite velocity of the sound propagation, w
can describe the effective action atT50 approximately by

S~T50!'
5&p2

16
~ar!1/2Rc

7/2S 12
4

9c
A 2a

rRc
D . ~40!

The order of magnitude of the second term is a ratio of
underbarrier growth rate to the sound velocity. On the who
the model of an incompressible liquid,4,9 as one can see un
derrates the cavitation rate in the quantum regime. As
pressure decreases, the underestimate of the cavitation
increases due to the reduction of the critical radius and
sound velocity. For large critical radii, although the relati
correction to the quantum nucleation rate is small, the ab
lute value of the correction is very large because of an
ponential dependence of the nucleation rate on the effec
action.

To conclude the section, we shall analyze the lowT
!T0 temperature behavior of the nucleation rate. T
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temperature-dependent behavior for the nucleation rate is en-
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tirely due to the terms in the effective action~23!, which are
nonlocal in time and which describe the energy dissipat
processes occurring in the superfluid4He during the bubble
growth.

The temperature correction from the ohmic dissipat
term is governed, initially by the temperature behavior of
normal densityrn(T)

16

DSohm~T!'4pru~T!Rc
454pcrn~T!Rc

4.

This contribution reduces the nucleation rate. In contrast,
temperature correction resulting from the sound emiss
term has a negative sign and increases the nucleation ra10

DSs~T!'
r2Rc

9

ca S T\ D 4.
The temperature dependence of the correction is the sam
for rn(T). The total temperature correction is determined
a sum

DS~T!5S~T!2S~0!'S 8p3\

45c3
2

r2Rc
5

a D Rc
4

c S T\ D 4. ~41!

Note that at least in the immediate vicinity of the labili
point, whenP→Pc andc(P)→0, the correction associate
with the existence of the normal component will domina
over the sound emission mechanism. In contrast, in the ra
of the small negative pressures ofp,23a/R* or large criti-
cal radii,

Rc.R*'S 8p3

45

a\

r2c3D
1/5

, ~42!

the sound emission mechanism governs the temperature
havior of the nucleation rate. If we take the parameters
4He at zero pressure, the numerical estimate gives the v
of about 2.4 Å for radiusR* , which is comparable with the
interatomic distancea. In the whole region of the macro
scopicRc@a approximation the contribution from the ohm
dissipation is therefore negligible and the nucleation r
G(T) should increase with increasing temperature.

Let us now evaluate the temperatureT2 at which the
temperature correction for the exponent becomes signific
i.e., if uDS(T2)u'\. Using Eq.~41!, we obtain

T2'\S \ac

r2Rc
9D 1/4. ~43!

However, the temperatureT2 is smaller than the temperatur
T0 of the thermal-quantum crossover only for the sufficien
large critical radii which exceed a certain radiusR2

Rc.R2'
4p

3 S 16p\c

3a D 1/3. ~44!

The estimate for pressuresuPu'0 yieldsR2'40 Å. Thus,
only for macroscopically large bubbles of radiusRc@a there
is a noticeable range of temperaturesT2,T,T0 where
uDS(T)u.\. For Rc,R2 , the scale of the logG(T)/G(0)
}T4 variation is not large. Note that the radiusR2 decreases
near the lability pointc(Pc)50.
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In this paper we have examined the effect of the dis
pative processes and finite compressibility on the rate
which bubbles can nucleate via quantum tunneling in
normal 3He and superfluid4He at negative pressures an
sufficiently low temperatures. In conclusion, we would lik
to emphasize several important points common and dist
for the kinetics of the quantum cavitation in the normal a
superfluid liquids.

The common feature of quantum kinetics is that the d
sipative processes, which are associated with the viscosit
a fluid, hinder the quantum nucleation of bubbles. The v
cous phenomena have an origin entirely in the spatially n
uniform flow of the fluid which has to spread in the radi
directions away from the expanding bubble.

In contrast, the finite compressibility of a fluid facilitate
the quantum nucleation of the bubbles since it is easie
push the fluid out from the cavity if the medium surroundi
it is light-compressible. This phenomenon is accompanied
the excitation and emission of the sound waves induced
an expanding sphere.

This effect is essential for the negative pressures
about several atmospheres when the critical sizes of
bubbles should be approximately equal to several interato
distances and the rate of tunneling is comparable with
sound velocity. On the whole, these two processes resu
the appearance of the explicit temperature-dependent be
ior of the cavitation rate in the quantum regime.

On the other hand, it is the dissipative processes
make the quantum cavitation kinetics diverse in the norm
and superfluid liquids. In the normal fluid3He, where the
density of excitations does not vanish at low temperatu
the quantum cavitation kinetics corresponds entirely to
dissipative tunneling through a potential barrier in the ov
damped regime. Compared with the calculations1,2,4,9 per-
formed on the basis of the dissipationless models of quan
cavitation, the quantum cavitation rate for the bubbles of
large critical sizes proves to be significantly smaller an
correspondingly, the tensile strength should be also so
what smaller.

In addition, the temperature necessary for observing
quantum tunneling regime instead of thermal activation
creases and should be below about 70 mK. T
log G(T)/G(0)}T 2 behavior for the nucleation rate is ex
pected in the low-temperature limit.

In contrast with the normal3He, in superfluid4He,
where all excitations are frozen out as the temperature te
to absolute zero, the dissipative processes do not play
essential role with the exception of the range of small ne
tive pressures. This range of pressures of aboutP.21 atm
refers to the sufficiently large critical sizes of the bubb
which have an astronomically large lifetime and thereby
not determine the tensile strength of4He under ordinary ex-
perimental conditions.

Although the compressibility and sound excitation e
fects during the nucleation must undoubtedly be involved
the cavitation kinetics of the bubbles of small critical size
the quantum cavitation rateG(T) and therefore the tensile
strength of4He remain, as in the case of the incompressi
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liquid models, nearly independent of the temperature. The
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as
involvement of the compressibility of superfluidHe leads to
the thermal-quantum crossover temperature which is so
what higher than that calculated on the basis of the inco
pressible liquid model. The last two consequences for
quantum cavitation in the homogeneous4He together with
the estimate of the crossover temperature of aboutT0
'0.3 K for the small critical bubbles do not contradict th
recent low-temperature cavitation experiments.19
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Viscosity and ultrasonic attenuation in 4He below 0.6 K
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Through a treatment of three-phonon processes, the wide-angle scattering rates and the
absorption rates of phonons, which characterize viscosity and ultrasonic attenuation, respectively,
are calculated for4He below 0.6 K. These rates are obtained from the collision matrix
which is constructed approximately from an integral eigenvalue equation for the collision operator.
The sequence of the lowest eigenvalues of the collision matrix as the angular momentum
quantum number (l ) increases shows a saturated behavior which has not been reported before.
The calculated viscosity and ultrasonic attenuation are compared with previous theoretical
and experimental results. ©1997 American Institute of Physics.@S1063-777X~97!00605-1#
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Since the anomalous phonon energy spectrum for4He
was proposed,1 its transport properties have been studied
the basis of that spectrum.2–4 For the case of the anomalou
phonon spectrum, the lowest-order phonon processes
three-phonon processes~3PP!, while for the case of the nor
mal spectrum they are four-phonon processes~4PP!. Thus, in
order to investigate the properties of superfluid4He at low
temperatures, we must completely understand 3PP.

Maris5 explained the temperature dependence of the
cosity of 4He below 0.6 K in terms of the eigenvalues of th
3PP collision operator. Later, using a variational calculati
Benin6 obtained similar results. Their fundamental idea
that the relaxation rate characterizing the viscosity is the
genvalue of the 3PP collision operator with angular mom
tum quantum numberl 5 2. Although their results provide a
good explanation for viscosity experimental data,7 in the de-
velopment of their theories oversimplified approximatio
were used for simplicity of the numerical calculation. Mar
for example, used only the linear term in the expression
the anomalous phonon energy spectrum in the matrix
ment calculation, and for the procedure of transforming
integral eigenvalue problem into a matrix form he divid
the range of the integral into a relatively small number
summing points~10–20!. In Benin’s theory, rather rough
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approximations in both theories can be shown in the beh
ior of the sequence of the lowest eigenvalues with increas
l at a given temperature. Maris’s theory3,8 shows increasing
behavior of the sequence withl , i.e., no saturation, and in
Benin’s variational theory this increasing behavior is mo
severe.

In general, asl increases, the angular distanceum be-
tween the maximum point and minimum point of the var
tion of the phonon distribution from an equilibrium valu
decreases inversely withl (um 5 p/ l ). Roughly speaking,
when um/2 becomes smaller than the average value of
scattering angle of 3PP at a given temperature, the low
relaxation rates may be constant, which shows a satur
behavior. We provide our numerical results showing t
saturated behavior in Sec. 3.

For the eigenvalues of the 3PP collision operator, Ma8

obtained a discrete spectrum. According to our calculati
the spectrum of the eigenvalues withl 5 2 is a continuous
spectrum with a finite positive minimum value. This contin
ous property of the eigenvalue spectrum seems to be in
cordance with the theoretical work of Buot9 about the relax-
ation rate spectrum of phonons. For the first-sou
attenuation in4He, a shoulder observed by Roachet al.10

was found to be the result of the restriction of 3PP, wh
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means that the zero-temperature spectrum depends on
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In this paper we obtain, using a similar method to Mar

the integral expression of the eigenvalue problem and c
vert it into a matrix form. From this collision matrix we
calculate the eigenvalues and phonon viscosity for4He be-
low 0.6 K. From the diagonal elements of the collision m
trix, we also give a natural explanation for the shoulder
the ultrasonic attenuation. In Sec. 2 the collision matrix
3PP is constructed. The numerical analysis of the eigen
ues for the matrix is given in Sec. 3. In Sec. 4 we evalu
the viscosity and ultrasonic attenuation, and compare th
with available experimental data. Conclusions are given
Sec. 5.

2. COLLISION MATRIX FOR THREE-PHONON PROCESSES

In the long-wavelength limit the interaction for 3PP
given by

V35Edr F12 m4vs~r !r4~r !vs~r !

1
1

6

]

]n4
Sm4s

2

n4
D r4~r !

3G , ~2.1!

wherem4 is the
4He mass, andvs(r ) andr4(r ) are the local

superfluid velocity and local density variation of4He from
equilibrium densityn4 , which are small quantities. Thes
small variations can be expanded within a volumeV in terms
of phonon annihilation and creation operators,bq andbq

1 , as

r4~r !5(
q

S q2n4
2m4vqV

D 1/2~bqeiq•r1bq
1e2 iq•r !, ~2.2!

and

vs~r !5(
q

S vq

2m4n4V
D 1/2q̂~bqe

iq•r1bq
1e2 iq•r !, ~2.3!

wherevq is the energy of a phonon with momentumq. We
can then obtain the matrix element for 3PP by a straight
ward calculation as

^q8,q9uV3uq&5S T~q,q8,q9!

V D 1/2dq81q9,q , ~2.4!

where

T~q,q8,q9!5S 1

8m4n4
D F S vqvq9

vq8
D 1/2q8q̂•q̂9

1S vqvq8
vq9

D 1/2q9q̂•q̂81S vq8vq9
vq

D 1/2qq̂8
3q̂91s2~2u21!

qq8q9

~vqvq8vq9!
1/2G2, ~2.5!

andu is the Grüneisen constant defined by

u5
n4
s

]s

]n4
, ~2.6!

with a value of12 2.84.
The collision integral due to the 3PP is given by
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3PP 2 (
q8,q9

3 f i q8 q9

1nq!2nq~11nq8!~11nq9!#

1 (
q8,q9

2pu^q8uV3uqq9&u2d~« f2« i !@nq8~1

1nq9!~11nq!2nq8nq9~11nq8!#, ~2.7!

where« i and « f are the phonon energies of the initial an
final states, respectively, andnq is the distribution of
phonons with momentumq. In Eq. ~2.7!, the first term rep-
resents the processq
q8 1 q9 and the second term the pro
cessq8
q1 q9.

If the phonons are in their equilibrium state, i.e.,nq
5 nq

0, wherenq
0 is the equilibrium phonon distribution, th

collision integral vanishes by detailed balance. If we co
sider a small variation from the equilibrium as

nq5nq
01dnq , ~2.8!

then the collision integral can be rewritten to first order
dnq as

I 3PP~q!52
1

2~2p!2
E

~1!
dq8dVq8q82T~q,q8,q9!d~« f

2« i !@dnq~11nq8
0

1nq9
0

!2dnq8~nq9
0

2nq
0!

2dnq9~nq8
0

2nq
0!#2

1

~2p!2
E

~2!
dq8dVq8q82T

3~q,q8,q9!d~« f2« i !@dnq~nq9
0

2nq8
0

!

2dnq8~11nq
01nq9

0
!1dnq9~nq

02nq8
0

!#. ~2.9!

Because of the momentum conservation,q9 5 q 2 q8 in the
first integral andq9 5 q8 2 q in the second integral, which ar
denoted by~1! and ~2!, respectively, in Eq.~2.9!.

The variation of the distribution function from the equ
librium state can be expanded by spherical harmonics as

dnq5qn̄q
0(
l ,m

F lm~q!Ylm~Vq!, ~2.10!

where for simplicity we define

n̄q
0[

]nq
0

]vq
. ~2.11!

Ylm(Vq) is a spherical harmonic, andVq is the solid angle
of q. Using the addition theorem, we transform the spheri
harmonics forq8 andq9 to those forq as follows:

Ylm~Vq8!→Pl~cosu!Ylm~Vq!, ~2.12!

Ylm~Vq9!→Pl~cosu8!Ylm~Vq!, ~2.13!

wherePl is the Legendre polynomial, andu andu8 are the
angles between momenta (q,q8) and momenta (q,q9), re-
spectively.

After performing the angular integration, we obtain th
collision integral as

398Um et al.



I ~q!52qn̄0 Y ~V !

n

e-

e

Since this integral eigenvalue equation cannot be solved
the
of

.
be

ld
. As
nds
ari-
ms,

lable
s is

ig-
the

tent

es,
t
-

3PP q(
l ,m

lm q

3H 1

2~2p!
E

~1!
dq8q82

T~q,q8,q9!

B~q,q8,q9!
F ~11nq8

0

1nq9
0

!F lm~q!2
q8n̄q8

0

qn̄q
0 ~nq9

0

2nq
0!Pl~cosu!F lm~q8!2

q9n̄q9
0

qn̄q
0 ~nq8

0

2nq
0!Pl~cosu8!F lm~q9!G

1
1

2p
E

~2!
dq8q82

T~q,q8,q9!

B~q,q8,q9!
F ~nq9

0

2nq8
0

!F lm~q!2
q8n̄q8

0

qn̄q
0 ~11nq

0

1nq9
0

!Pl~cosu!F lm~q8!1
q9n̄q9

0

qn̄q
0 ~nq

0

2nq8
0

!Pl~cosu8!F lm~q9!G J , ~2.14!

whereB(q,q8,q9), which originates from the delta functio
representing energy conservation through 3PP, is defined by

B~q,q8,q9!5U]~« f2« i !

] cosu U. ~2.15!

If we represent the collision integral in terms of the r
laxation timet l i.e.,

I 3PP~q!52qn̄q
0(
l ,m

Ylm~Vq!F lm~q!

t l
, ~2.16!

we can then obtain the eigenvalue equation for eachl . Be-
cause the different values ofm do not change the form of th
eigenvalue equation, we can suppress the indexm.

The eigenvalue equation for a givenl becomes

1

2~2p!
E

~1!
dq8q82

T~q,q8,q9!

B~q,q8,q9!
F ~11nq8

0
1nq9

0
!F l~q!

2
q8n̄q8

0

qn̄q
0 ~nq9

0
2nq

0!Pl~cosu!F l~q8!2
q9n̄q9

0

qn̄q
0 ~nq8

0

2nq
0!Pl~cosu8!F l~q9!G

1
1

2p
E

~2!
dq8q82

T~q,q8,q9!

B~q,q8,q9!
F ~nq9

0
2nq8

0
!F l~q!

2
q8n̄q8

0

qn̄q
0 ~11nq

01nq9
0

!Pl~cosu!F l~q8!

1
q9n̄q9

0

qn̄q
0 ~nq

02nq8
0

!Pl~cosu8!F l~q9!G5l lF l~q!,

~2.17!

where the eigenvaluel l 5 t l
21.
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analytically, we use a numerical method. If we replace
integral on the left-hand side by a sum over a finite set
points, we obtain a matrix eigenvalue equation

MlF l5l lF l , ~2.18!

whereMl denotes the collision matrix with a givenl sym-
bolically. The diagonal elements of the matrixMl come from
the terms containingF l(q) in Eq. ~2.17!, while the terms
containingF l(q8) or F l(q9) give the off-diagonal elements
The number of eigenfunctions and eigenvalues will then
equal to the matrix sizej m , the number of points to be
summed over.

3. NUMERICAL ANALYSIS OF THE EIGENVALUES

A. Phonon energy spectrum

In order to perform numerical calculations we shou
choose an anomalous phonon energy spectrum to use
will be seen below, the wide-angle scattering rate depe
sensitively on the phonon energy spectrum. Among the v
ous spectra proposed by many authors, we take two for
one suggested by Greywall13 and another by Maris.3 The
phonon energy spectrum suggested by Greywall is

vq5sq~11a2q
21a4q

41a6q
6!, ~3.1!

where

s5237.0 m/s forP50 atm,

s5298.9 m/s forP510 atm,

a251.3020.065 P,

a45210.25a21108.5~s4 /s21!228.44~s5 /s21!,

a6525.0a22434.0~s4 /s21!1177.8~s5 /s21!,

s45247.012.86 P,

s55242.012.20 P.

Heres is the velocity of first sound, andP is the pressure.
Since this spectrum has pressure dependence, it is avai
under arbitrary pressure. Another spectrum given by Mari

vq5spS 11gp2
12~p/pA!2

11~p/pB!2D , ~3.2!

where

s5238.3 m/s,

g51031037 cgs units,

pA /\50.542 Å21,

pB /\50.332 Å21.

Let us test the properties of the above two spectra. F
ure 1 shows the phase velocities of the two spectra and
group velocity of Greywall’s spectrum atP 5 0 atm. The
phase velocity of Greywall’s spectrum atP 5 10 atm is also
presented. It is shown that the phase velocities are consis
with neutron scattering experiments.14 For the case ofP
5 0 atm, the maximum positions of the phase velociti
vp , of the two spectra are almost the same at abouq
5 0.3 Å21, while the maximum value of Greywall’s spec

399Um et al.



-
e

fo
a
t
r
ve

e

we
.
in
rr
a
f
su
e
b
a
d
g
re

va
h

ss,

8°,

be-
r in
de-

lue

is
or-
has
red,
ues
ery
es

lue

s

s f
s
w
’s
trum is larger than that of Maris’s spectrum. ForP
5 10 atm, the range ofvp/s is reduced considerably com
pared to the case ofP 5 0 atm, which is related closely to th
cutoff momentum,qc , above which 3PP do not occur.

For the above spectra we obtain the allowed range
3PP and 3PP scattering angle, using conditions of energy
momentum conservation. Since the 3PP do not change
total momentum and total energy, the momentum and ene
of the initial state equal those of the final state. For con
nience, we denoteq5 q8 1 q9 as the first process andq8 5 q
1 q9 as the second process. For the case of the first proc
for example, the energy and momentum conserve as

q5q81q9, ~3.3!

vq5vq81vq9 . ~3.4!

Using the above equations, we can determine the allo
range for 3PP in theqq8-plane, which is shown in Fig. 2
The lower part of the diagonal line in Fig. 2 is the region
which the first process is allowed, and the upper part co
sponds to the second process. The allowed regions h
symmetry about the diagonal line, i.e., under exchange oq
andq8, as expected. The changes of the range with pres
also are shown. As pressure increases, the allowed rang
3PP becomes smaller, which can be expected from the
havior of the phase velocity with pressure in Fig. 1. We c
see the cutoff momentum,qc , for 3PP, which is represente
by a vertical arrow in Fig. 2. We note that the allowed ran
for 3PP and cutoff momentum from Maris’s spectrum a
larger than those of Greywall’s spectrum.

From the conditions of momentum and energy conser
tion we also obtain the 3PP scattering angle distribution. T

FIG. 1. Phase and group velocities atP 5 0 atm andP 5 10 atm. The solid
lines are the phase velocities of Greywall’s spectrum: the upper curve i
P 5 10 atm and the lower curve forP 5 0 atm. The dashed line is Maris’
phase velocity. The phase velocities of both spectra are consistent
neutron scattering experiments.14 The dotted line represents Greywall
group velocity.
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distribution of the 3PP scattering angle of the first proce
i.e., the angle betweenq and q8, is shown in Fig. 3. The
maximum scattering angle for Greywall’s spectrum is 23.
which is larger than 19.6° for Maris’s spectrum.

B. Numerical calculation of the eigenvalue

The eigenvalues of the 3PP collision matrix withl 5 2,
M2 , are the relaxation rates characterizing the viscosity,
cause they are related to the phonon momentum transfe
the perpendicular direction. We note that the eigenvalues
pend on the matrix sizej m . As we can see in Fig. 4, the
eigenvalue spectrum becomes denser asj m increases. Such
behavior of the eigenvalues indicates that the eigenva
spectrum at infinitej m is continuous, in contrast with the
result of Maris,8 in which a discrete eigenvalue spectrum
obtained. Only the lowest eigenvalue has physical imp
tance, because the corresponding eigenfunction, which
no node, is appreciable in the range of momenta conside
while the eigenfunctions corresponding to the eigenval
just above the lowest one are negligible except for a v
small momentum. A similar argument for the eigenvalu
with l 5 1 was given by Maris.8

The temperature variation of the lowest eigenva
l2(T) with j m is shown in Fig. 5. We see thatl2(T) con-
verges with increasingj m . This fact is different from Maris’s
argument that forj m 5 15l2(T) is independent of the detail
of the mesh to better than 1%.

or

ith

FIG. 2. The allowed range of 3PP for Greywall’s spectrum~solid lines! at
P 5 0 atm andP 5 10 atm and that of Maris’s spectrum~dashed lines!. The
vertical arrows indicate the cutoff momenta. The lower part (q . q8) denotes
the allowed range of the first process and the upper part (q8 . q) that of the
second process.
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We also obtain the lowest eigenvalues for severall , as
shown in Fig. 6. A saturated behavior appears when we
j m 5 100, which means that the phonons relax sufficiently
one collision time. At higher temperatures this saturated
havior may begin to appear at smallerl , since the typical
3PP scattering angle increases due to the higher ave
value of momentum~Fig. 3!. Figure 6 shows this behavio
correctly. On the other hand, the results obtained by Ma8

and Benin6 have no saturated behavior. Their results are v
similar to the casej m 5 10 in our calculation. Butj m 5 10 is
too small to reveal the properties of the anomalous spect
correctly. Therefore, we guess that their results with no s
ration are due to the rough approximations in their numer
calculations.

Using both spectra presented before, we calculate
lowest eigenvaluesl2 as a function of temperature by takin
j m 5 300 and the upper bound of the integral of Eq.~2.17!,
qm 5 0.45 Å21; i.e.,Dq 5 0.0015 Å21. This value ofqm is
enough to cover the effective range of the integral, beca
the cutoff momentumqc at P 5 0 atm is about 0.4 Å21, as
shown in Fig. 2. The results are shown in Fig. 7. Wh
Greywall’s spectrum is used, the values ofl2(T) are larger

FIG. 3. 3PP scattering angle distribution of the first processes. a! Greywall’s
spectrum. b! Maris’s spectrum.
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than those of Maris. This can be understood from the f
that the maximum value of the 3PP scattering angle distri
tion for Greywall’s spectrum is greater than that of Maris
spectrum. Using Greywall’s spectrum withP 5 10 atm, we
obtain a smallerl2(T) than for the caseP 5 0 atm, which is
a trivial result, because the cutoff momentum and 3PP s
tering angle become smaller as a pressure increases.

FIG. 4. Several eigenvalues, including the lowest one, plotted as matrix
j m .

FIG. 5. Convergence of the lowest eigenvalues (l2) as a function of matrix
size j m .
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4. VISCOSITY AND ULTRASONIC ATTENUATION

A. Viscosity

The viscosity is written in terms of the phonon mean fr
path, which characterizes the viscosity3 as

h5
1

5
rpĥ vg&L, ~4.1!

whererph is the phonon mass density defined by

FIG. 6. Lowest eigenvalues versusl .

FIG. 7. Lowest eigenvalues (l2) as a function ofT. a! Greywall’s spec-
trum, b! Maris’s spectrum. The caseP 5 10 atm from Greywall’s spectrum
is also shown.
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rph52(
q

q2

3

]nq
0

]vq
, ~4.2!

and ^vg& is the average of the phonon group velocity

^vg&[2
1

rph
(
q

q2

3

]nq
0

]vq

dvq

dq
. ~4.3!

The mean free path for 3PP is related to the eigenvalue
the collision matrix as

L5
^vg&
l2

. ~4.4!

The results forL are shown in Fig. 8. The dashed lin
denotes the mean free path due to 4PP calculated by La
and Khalatnikov,15 which has aT29 dependence. AtP
5 0 atm, the mean free path from Maris’s spectrum, dra
by the dotted line, shows good agreement with the exp
ment performed on thermal conductivity by Greywall.13 The
mean free path from Greywall’s spectrum appears to
lower than the experimental data. It can be well deduced
least qualitatively, from the higher maximum value of th
3PP scattering angle in Fig. 3 and the larger phase velocit
Fig. 1.

B. Ultrasonic attenuation

At low pressures, the temperature dependence of
high-frequency ultrasonic attenuation~a! is approximately
described by aT4 law as under vapor pressure, whereas
higher pressures~>10 atm! the a(T) curve is significantly
changed, and a shoulder occurs.10 Roachet al.10 suggested
that the shoulder might indicate the existence of a new
laxation mechanism. However, Ja¨ckle and Kehr11 showed

FIG. 8. Phonon mean free path resulting from 3PP. The solid line repres
the result using Greywall’s spectrum, and the dotted line that using Ma
spectrum. The open circles and the triangular marks indicate the experi
tal data on thermal conductivity by Greywall13 and Whitworth,7 respec-
tively. The dashed line shows the theory of Landau and Khalatnikov ba
on 4PP.15
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TABLE I. Phonon spectrum parameters used in the calculation of the sound
attenuation atP5 16.4 atm.
that the formation of the shoulder ina(T) is explained by
assuming that the 3PP is allowed only for very lon
wavelength phonons~‘‘partially allowed 3PP’’! due to defor-
mation of the phonon spectrum under pressure.

Let us now consider the appearance of the shoulder
ing the collision matrix introduced in the previous sectio
The ultrasonic sound mens very long-wavelength phono
which are injected from outside of the system. We can
sume, therefore, that thermal phonons are in equilibrium,
only very long-wavelength phonons have variation fro
equilibrium due to the injected sound phonons.

Let the momentum of sound phonons beq. For thermal
phonons with momentaq8 andq9 in the equilibrium state we
have

F l~q8!50, ~4.5!

F l~q9!50 ~4.6!

in the collision integral of Eq.~2.17!. Only the terms con-
taining F l(q) will then remain. This means that only th
diagonal elements of the collision matrix are nonzero, a
the l -dependence of the collision matrix equation will th
disappear. The absorption rate,Ga(q), of the sound phonon
by a thermal phonon therefore becomes the diagonal pa
the collision matrix.

The attenuation of sound is related to the absorption
as

FIG. 9. Ultrasonic attenuation at 15 MHz and 105 MHz under pressur
16.4 atm. The solid points are the experimental data of Roachet al.10
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a5
Ga~q!

2s
. ~4.7!

Therefore, if we know the phonon energy spectrum un
pressure, the attenuation of first sound can be obtained.
ure 9 shows the results for the attenuation of ultraso
sound. For temperatures below 0.6 K the results show g
agreement with experimental data. The parameters of
phonon energy spectrum used in this calculation are liste
Table I. The maximum scattering angleum and cutoff mo-
mentumqc calculated by these parameters are also listed
Table I. We find that for the case of attenuation of sound,
processq 1 q9→q8 is dominant. This means that the soun
phonons are absorbed by thermal phonons. The scatterin
this case is almost linear since the maximum scattering a
is um 5 0.83°, and only very long-wavelength phonons,q
, 0.0625 Å21, take part in the scattering. The cutoff mo
mentum obtained here shows remarkable agreement with
result of Ja¨ckle and Keher~within 1%!. The rapidly increas-
ing behavior at high temperature,T . 0.6 K, can be ex-
plained by considering the existence of rotons,11 and so for
this temperature range the contribution of rotons is essen

5. CONCLUSIONS

We obtained the wide-angle scattering rates and the
sorption rates of phonons in4He below 0.6 K by solving the
eigenvalue equation for the 3PP collision matrix. The
quence of the lowest eigenvalues of the collision mat
along l shows a saturated behavior, which is different fro
the results given by Maris and Benin. Using Maris and Gre
wall’s phonon spectra, we calculated the viscosity mean f
paths and compared them with experimental data, where
Maris’s spectrum seems to be in better agreement. For
result of ultrasonic attenuation, the phonon spectrum par
eters atP 5 16.4 atm are obtained from a fit, and the cuto
momentum calculated from the parameters is in excel
agreement with Ref. 11.

Since the 3PP are an important phonon-phonon mec
nism in dilute3He–4He mixtures at low temperatures, it i
possible to apply this theory to such mixtures. This study
in progress.
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Orbital anisotropy of magnetically distorted superfluid 3He-B

-
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The orbital anisotropy of the magnetized superfluidB-phase of liquid3He is investigated
theoretically for arbitrary fields and temperatures. The behavior of freely rotatingB-phase under
the action of magnetic field is considered. ©1997 American Institute of Physics.
@S1063-777X~97!00705-6#
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Ultralow-temperature superfluid phases of liquid3He are
ordered states of a Fermi system which have lost the serie
symmetries appropriate to the normal state of3He. The order
parameters of superfluidA- and B-phases are complicate
multidimensional objects with nontrivial topological stru
tures that generate rich properties of the Bose-condensa
Cooper pairs with spinsS51 and internal orbital moment
L51 ~Ref. 1!. Along with the amplitudes that characteriz
the amount of the Bose-condensation energy, the order
rameters of the superfluid phases of3He depend on the Gold
stone variables~overall phase and various angles specifyi
orientation of spin and orbital degrees of freedom of Coo
pairs!.

The external magnetic field has a strong influence on
properties of superfluid phases. Especially susceptible in
respect is the initially isotropicB-phase, which is unable~in
contrast to theA-phase! to adjust to the applied magnet
field at the expense of the reorientation of the Goldsto
degrees of freedom, thereby saving the condensation en
Instead, theB-phase exhibits strong distortion even at mo
erately high magnetic fields that lose part of the condensa
energy~at a given temperature and pressure!: its longitudinal
^^gap&& D i along the direction of the field is suppressed

2,3 and
the superfluid state acquires magnetic anisotropy. It is imp
tant that because of the relative spin-orbit coherence of
B-phase, the appearance of the magnetic anisotropy axĥ
~along the direction of the fieldH! generates uniaxial aniso
ropy of the orbital properties of the magnetized3He-B along
the axisl̂B5ĥRJ , whereRJ is the matrix of 3D rotations of the
spin space with respect to the orbital space. In particular,
energy spectrum of fermionic excitations becomes an
tropic so that the normal~as well as superfluid! component
density exhibits tensor character.

At present, there is a considerable amount of experim
tal information concerning diverse properties of strong
magnetizedB-phase. Acoustic measurements allowed us
observe directly the suppression ofD i by the external mag-
netic field4,5 and to investigate orbital anisotropy of the ma
netized stationary and rotating3He-B.6 The anisotropic na-
ture of magnetically distortedB-phase was observed also b
means of the NMR techniques7,8 and by measuring the ion
mobility.9

There is satisfactory understanding of the properties
3He-B in the case where the anisotropy parameterdB
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netic distortion of theB-phase is very pronounced near th
B to A transition ~at low pressures!, whereD i!D' ~when
the transformation is close to a continuous transformatio!.
In this region there is still a gap in the detailed theoreti
description of the behavior of the3He-B. One of the goals of
this study is the elaboration of the theoretical background
the interpretation of the properties of strongly distorted (dB
&1) B-phase of superfluid3He. In Sec. 2 we consider th
anisotropy of the superfluid density of the magnetiz
3He-B in the (T, H) plane. The results are used to constru
T andH dependences of the dipolar velocityvD in Sec. 3.
The effect of the magnetic-field-dependent orbital anisotro
on the behavior of the freely rotatingB-phase is analyzed in
Sec. 4.

2. ANISOTROPY OF THE SUPERFLUID DENSITY OF
MAGNETIZED 3He-B

Uniaxial orbital anisotropy of3He-B in the flow effects
manifests itself, in the first place, in the tensorial characte
superfluid density~below we drop the subscript atl̂B!:

r i j
~S!5r i

~S! l̂ i l̂ j1r'
~S!~d i j2 l̂ i l̂ j !, ~2.1!

so that in the presence of a superflow with the velocityvS an
l̂-dependent contribution in the kinetic energy density a
pears:

Fflow
~an! 52

1

2
dran

~S!~ l̂vs!
2,

dr~an!
~S! 5r'

~S!2r i
~S! . ~2.2!

Anisotropic contribution~2.2! was extensively used to
interpret peculiar properties of the rotating magnetiz
3He-B.7 In the vortex-free state, which can be eas
achieved before the formation of an equilibrium vortex la
tice, large counterflows of normal and superfluid compone
have a pronounced influence on thel̂-field texture through
the anisotropic interaction~2.2!. After the equilibrium vortex
state is established large counterflows are eliminated but
anisotropic interaction still survives due to the presence
superflows that circulate around individual, quantized, sin
lar vortices~see, for example, Ref. 10!.

Anisotropic part of the superfluid densitydran
(S)(T,H) of

magnetically distortedB-phase is an even function of th
applied magnetic field and in the low field limit is propo
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netic field strongly deformsHe-B order parameter~espe-
cially near theB→A phase transition at low pressures! one
should expect to observe a pronounced deviation ofdran

(S)

from linearity inH2. At the same time, the temperature d
pendence ofdran

(S) for the strong field case must be esta
lished.

Since dran
(S) is an equilibrium property of magnetize

B-phase, its (T,H)-behavior is completely determined by th
structure of the excitation spectrumEks of quasiparticles
with momentumk and spin projection (1/2)s56(1/2)) ~of
course, the Fermi-liquid effects must be incorporated in
proper way!.

We start with a standard expression for the normal co
ponent density tensor~disregarding for the moment th
Fermi liquid corrections!,

r i j
~n!5

1

m (
ks

kikj~2] f /]Eks!5rYi j ~T!, ~2.3!

where f (E) is the Fermi distribution and

Yi j ~T!53^k̂i k̂ jY~ k̂;T!& ~2.4!

with the generalized Yosida function

Y~ k̂;T!5
1

2 (
s

E
2`

`

djk~2] f /]Eks!

5
1

8T (
s

E
2`

` djk
cosh2~Eks/2T!

. ~2.5!

In ~2.4! the angle brackets denote averaging over
position on the Fermi surface and in~2.5! jk5(k2

2kF
2)/2m.
Using ~2.3!, we conclude that

dr~an!
~S! /r5~r i

~n!2r'
~n!!/r

5
3

2

1

8T (
s

E
2`

`

djkK 3~ k̂ l̂!221

cosh2~Eks/2T!L . ~2.6!

We now must use the explicit form ofEks for the magne-
tized 3He-B. The order parameter of this superfluid state
described by the bivectorAm i5DmvRn i exp(iF), where the
uniaxial ‘‘gap’’ tensor is

Dmn5D iĥmĥn1D'~dmn2ĥmĥn!. ~2.7!

The (T,H)-dependence ofD i and D' was extensively
studied theoretically2,3 using the set of Gorkov equations fo
the spin-tripletp-wave superfluid. The fermions excitatio
spectrum of the magnetizedB-phase is given by

Eks
2 5SAjk

21D i
2~ k̂ l̂!21

1

2
sv0D 21D'

2 ~ k̂3 l̂!2

5S ujku1
1

2
sv0D 21uD~ k̂!u21sv0~Ajk

21D i
2~ k̂ l̂!2

2ujku!, ~2.8!

wherev05gH is the Larmor frequency of3He nuclear mag-
netic moments, and
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3~ k̂ l̂!2#. ~2.9!

Inspection of the second and third lines in~2.8! shows
that the influence of the Zeeman slitting on the quasipart
spectrum is twofold: the presence ofv0 , renormalizes the
Fermi energy~via the first term! and changes the character
the dispersion relation~via the last term!. Of course,v0 ,
appears implicitly inuDu2 through the anisotropy paramete
dB5dB(v0). In the low field limit dB is proportional to
v0
2/D0

2 whereD0(T) denotes the energy gap in the excitati
spectrum of the zero-field isotropicB-phase.

Since in all practical casesv0!«F , the field renormal-
ization of the Fermi energy is negligible. If in additionD i

!T, we can use a simple BCS-type dispersion relation,

Eks
2 5jk

21uD~ k̂!u2 ~2.10!

with an anisotropic gap given by~2.9!.
In Ref. 7, dran

(S) was estimated in the low field limi
(v0!D0 , dB!1! using the approximate expression~2.10!
for Eks . As we have seen above, this consideration is ju
fiable for the case withD i!T. More generally, an exac
dispersion relation~2.8! should be considered. For the lo
field case the expansion ofY( k̂;T) to the lowest order in
dB andv0

2 gives

Y~ k̂;T!5Y~T!1a~T!~ k̂ l̂!2, ~2.11!

where the anisotropic contribution is described by

a~T!5dBZ~T!1~v0
2/D0

2!Z̃~T! ~2.12!

with

Z~T!5~D0/2T!2E
2`

` tanh~Ek
0/2T!djk

cosh2~Ek
0/2T!Ek

0 , ~2.13!

Z̃~T!5
1

4
~D0/2T!4E

2`

` 3 tanh~Ek
0/2T!21

cosh2~Ek
0/2T! S TEk

0D djk
Ek
0 ,

andEk
05Ajk

21D0
2. Finally, from ~2.3! and ~2.4! it follows

that in the low magnetic fields

dran
~S!/r5

2

5
@dBZ~T!1~v0

2/D0
2!Z̃~T!#. ~2.14!

When using the dispersion relation~2.10! the
Z̃-contribution todran

(S) is lost. Although nearTc(D0!T)
this term is negligible (Z̃!Z), on lowering the temperature
it becomes increasingly important. This fact was noticed
Ref. 8, wheredran

(S) was calculated for the low field limit for
the magnetic energy density

Fmag
~S! 5

1

2
xmn

~S!HmHn , ~2.15!

where xmn
(S) is the tensor of the magnetic susceptibility

3He-B in the presence of superflow with velocityvs . Be-
cause of above-mentioned spin-orbit coherence of3He-B,
the presence of preferred direction in orbital space alongv̂s
5vs /vs induces a uniaxial magnetic anisotropy:
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xmn
~S!5x i

~S!ŝmŝn1x'
~S!~dmn2 ŝmŝn!, ~2.16!
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where ŝm5Rm i• v̂si . As a result, an anisotropy contributio
appears in~2.15!:

Fmag
~S! 52

1

2
dxan

~S!~ ŝH!252
1

2
~dxan

~S!H2!~ ĥmRm i v̂si!
2,

~2.17!

with dxan
(S)5x'

(S)2x i
(S) . One the other hand, conceptual

the same contribution to the spin-orbit anisotropy ene
density is contained in Eq.~2.2!, from which

Fflow
~an! 52

1

2
~dran

~S!vs
2!~ ĥmRm i v̂si!

2. ~2.18!

Equation~2.17! and ~2.18!, we find the relation

dran
~S!5~H2/vs

2!dxan
~S! , ~2.19!

which is an alternative way to calculatedran
(S) . Using~2.19!,

it can be shown~see Ref. 8! that in the lowest order inH2

dran
~S!/r5

1

2 S v0
2

D0
2D F S 12

3

5

Z5
Z3

D S Z32 3

2
Z5D1

6

5 S Z5
2
5

4
Z7D G , ~2.20!

where

Zn~T!5pT(
v

D0
n21

~v21D0
2!n/2

. ~2.21!

In ~2.20! we have dropped the Fermi-liquid correctio
for simplicity of presentation. The sum in~2.21! is taken
over ^^odd&& Matsubara frequencies. It can be shown~see the
Appendix! that Eq. ~2.20! is completely equivalent to ou
expression~2.14!. The result~2.20! can be obtained by usin
the expressions forr i

(S) andr'
(S) given in Ref. 11.

Returning to the general expression~2.6! for dran
(S) and

using Eks from ~2.8!, we calculate numerically the
(T,H)-dependence ofdran

(S) for arbitrary magnetic fields and
arbitrary temperatures.

In order to take into account the Fermi-liquid effects w
must introduce the Landau molecular fields in a stand
way. We will therefore use the following expression f
dran

(S)(T,H):

dran
~S!/r5

~111/3F1
S!~Yi2Y'!

~111/3F1
SYi!~111/3F1

SY'!
, ~2.22!

where

Yi5
1

2 (
s

1

4T E
2`

`

djkK 3~ k̂ l̂!2

cosh2~Eks/2T!L ,
Y'5

1

2 (
s

1

4T E
2`

`

djkK 3/2~12~ k̂ l̂!2!

cosh2~Eks/2T!L . ~2.23!

To take into account the Landau exchange param
F0
a it is enough to make a substitutionv0→ṽ0 , where the

renormalized Larmor frequencyṽ0 is defined by the equa
tion
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ṽ05
v0

11F0
aF231

1

3
Y~T,ṽ0!G , ~2.24!

whereY(T,v0) is the field-dependent Yosida function~in-
troduction of higher-order exchange parameter require
more complicated procedure2!.

In Figs. 1 and 2 some results fordran
(S)(T,H) are shown.

3. DIPOLAR VELOCITY OF THE MAGNETIZED 3He-B

In addition to the anisotropic part of the flow energ
~2.2!, the dipole-dipole potential also contains terms whi
depend on the orbital anisotropy axisl̂ . Starting from the
expression of the dipolar energy density

FIG. 1. Temperature dependence ofdran
(S) at P50 bar for various values of

the magnetic field~in kGs!.

FIG. 2. Field dependence ofdran
(S) at P50 bar for various values of

T/Tc . Deviation from linearity inH2 is clearly seen atT/Tc50,7.
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F 5
1

x ~V /g!2D22$uTrÂu21Tr~Â1Â!% ~3.1!
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and using an explicit form of the order parameter of t
magnetizedB-phase, it can be shown that~up to a constant
term!

FD5
2

15
xB~VB /g!2~D' /DB!2H 2dB~22dB! l̂ĥ

1F S 2 cosu1
1

2D1dBS 122 l̂ĥD G2J . ~3.2!

In ~3.2! u denotes the angle appearing in the matrixRJ

5RJ (u,n̂) of the relative spin-orbit rotation about the ax
n. At the fixed value ofl̂ĥ5cosb the minimum of the dipo-
lar energy is realized at

cosu052
1

4
@11dB~122 cosb!#. ~3.3!

Combining ~3.2! with the flow contribution~2.2!, we
obtain an expression for the anisotropic part of the bulk
ergy density of the magnetically distorted3He-B:

FB
~an!5FD~u5u0!1Fflow

~an! 52
4

5
A~H !H l̂ĥ

1
1

2
~vs /vD!2~ l̂ v̂s!

2J , ~3.4!

where

A~H !5
1

6
dB~22dB!xB~VB /g!2~D' /DB!2 ~3.5!

and the dipolar velocityvD is defined by

vD
2255dran

~S!/4A. ~3.6!

At the low fields (dB!1,dB}H2) we concludeA(H)
.aH2 and recalling thatĥl̂5cosu01(12cosu0)(n̂ĥ)

2, we
can write the anisotropy energy density in a conventio
form:

FB.2aH2H ~ n̂ĥ!21
2

5
~vs /vD!2~ ĥmRm i~u0 ,n̂!v̂si!

2J
1const. ~3.7!

In Ref. 6, an attempt to measurevD at high fields was
made using an ultrasonic probe. When the rotating ve
with strongly magnetizedB-phase was slowly accelerated
the vortex-free Landau state, a critical angular velocityVc

signaling a textural transition was observed. SincevD defines
a characteristic velocity above which the superfluid coun
flow takes over in the competition with the magnetic anis
ropy ~of the dipole-dipole origin!, it was concluded that the
experimentally observed critical velocityvc5VcR0 ~where
R0 is the radius of the cylindrical container! is directly con-
nected tovD . Although an accurate interpretation ofvD in
terms ofvc needs a detailed knowledge of the textural d
tribution, as a rough estimate we can setvD.vc .
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Using the definition~3.6!, we have calculated numeri
cally the dipolar velocityvD for various fields and tempera
tures. Some of the results are presented in Fig. 3.

4. ANGULAR MOMENTUM OF THE ROTATING,
MAGNETIZED, VORTEX-FREE 3He-B

The amount of the orbital anisotropy of3He-B depends
on the strength of the applied magnetic field. This can
explored, in particular, in experiments with a freely rotati
vessel. Since the angular momentumL of the rotating mag-
netizedB-phase in the vortex-free state strongly depends
the magnetic field~see below!, it would be possible to ob-
serve the variation in the angular velocityV of the freely
rotating sample when chandingH ~due to the conservation o
L !. In the case of the vortex-free rotation the angular m
mentum of a superfluid liquid is

L5Ln5E ~R3Jn!d
3R, ~4.1!

where the mass current of the normal component is

Jn5rJnvn , ~4.2!

wherevn5V3R5(Vr )ŵ. Herer is the radial coordinate in
the plane perpendicular to the angular velocityV, and ŵ is
the unit vector in the circular direction. It is clear that

Jn5~Vr !@r'
~n!ŵ1~r i

~n!2r'
~n!!~ l̂ŵ ! l̂#. ~4.3!

Setting

l̂5cosb ẑ1sin b~cosa r̂1sin aŵ!5cosb ẑ

1sin b@cos~a1w!x̂1sin~a1w!ŷ# ~4.4!

and considering a circular cylindrical vessel in the magne
field oriented along the symmetry axis, we easily see tha
the case of an axially symmetricl̂ -texture @a5a(r ), b
5b(r )# Lx5Ly50 and

FIG. 3. Temperature dependence of the dipolar velocity atP50 bar for
various values ofH ~in kGs!.
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z '

2r'
~n!!sin 2a~r !sin 2b~r !%r 3drdz. ~4.5!

This result is quite transparent,Lz depends on the degre
of the orbital anisotropy of the magnetizedB-phase, but in
the region wherel̂ has no circular component (a50) only
the transverse partr'

(n) of the density tensor is probed.
Introducing the moment of inertiaI zz

(0)51/2rR0
2V of the

normal state3He liquid that fills a cylindrical container o
radiusR0 ~and of volumeV!, Eq. ~4.5! can be rewritten as

Lz /V5I zz
~0!F, ~4.6!

where

F54E
0

1

$r'
~n!/r1@~r i

~n!

2r'
~n!!/r#sin2 a~x!sin2 b~x!%x3dx, ~4.7!

with x5r /R0 . For the isotropicB-phase~realized in zero
magnetic field! F5rn(T)/r, as it should be for the case o
vortex-free rotation. For the magnetized3He-B F
5F(T,H,V) and theV-dependence appears through the t
tural distribution which is sensitive to the superfluid count
flow orienting effects.

Using ~4.6! and referring to the conservation of the a
gular momentum of an isolated system for the case of fre
rotating magnetized3He-B, we conclude that due to th
field-dependent orbital anisotropy one should observe the
pendence of the angular velocity of rotationV on the
strength of the applied field. In particular, if we start with
freely rotating state atV5V0 andH50 and then apply the
magnetic fieldH, the final state will be characterized by a
angular velocity

V~H !5
11@rn~T!/r#B

11F~T,H,V!B
V0 , ~4.8!

whereB is the ratio of moments of inertia of the norm
3He liquid and of the container. It is to be remembered t
the above-mentioned results refer to the case of a metast
vortex-free rotation. When an equilibrium number of vor
ces fill the vessel, the anisotropy is washed out and the
gular momentum in this case isLz5I zz

(0)V ~on the average!.
In order to calculateF(T,H,V) we must know the tex-

tural distribution across the rotating vessel. For a crude e
mate ofF it is instructive to use an approximate descripti
with

sin2 a51,

cosb.H 1, Vr,vD ,

~vD /Vr !2, Vr.vD .
~4.9!

Substituting~4.9! into ~4.7!, we easily find

F5H r'
~n! , V,Vc

r i
~n!/r2@~r i

~n!2r'
~n!!/r#~Vc /V!4~114 ln~V/Vc!!,

V.Vc ,
~4.10!

409 Low Temp. Phys. 23 (5–6), May–June 1997
-
-

ly

e-

t
le,

n-

ti-

vortex-free rotation of He-B, his consideration is valid for
V,vcr /R0 , wherevcr is the critical velocity of the vortex
nucleation.
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APPENDIX

Starting from thev-sum representation of the Fermi di
tribution f (E), which gives

] f /]E5T(
v

E22v2

~v21E2!2
, ~A1!

and using the identity

1

2 F E22v2

~E21v2!2
1

d

dj S j

v21E2D G5
E22jE~]E/]j!

~v21E2!2
,

~A2!

we obtain the useful formula

E
2`

`

~2] f /]E!dj5122T(
v

E
2`

`

dj
E22jE~]E/]j!

~v21E2!
.

~A3!

From ~A3! follows thev-sum representation for the Yosid
function

Y~ k̂;T!512T(
s

(
v

E
2`

`

djk
Eks
2 2jkEks~]Eks /]jk!

~v21Eks
2 !2

.

~A4!

Taking into account that for the spectrumEks given by~2.8!

]Eks /]jk5
jk

Eks
S 11

1

2

sv0

~jk
21D i

2~ k̂l̂ !2!1/2
D ~A5!

and explanding~A4! with respect todB andv0
2/D0

2, we con-
clude that in the low field limit

Y~ k̂;T!.Y~T!1a~T!~ k̂ l̂!2,

where

a~T!52dBS Z32 3

2
Z5D1

3

2

v0
2

D0
2 S Z52 5

4
Z7D . ~A6!

As a final step we must express the anisotropy param
dB5(D'2D i)/D' in terms ofZn(T). Using the equations
for D' andD i , it can be shown that in the low field limit

dB~T,H !.
5

8

v0
2

D0
2 S 12

3

5

Z5
Z3

D . ~A7!

Insertion of ~A7! into ~A6! restores the result~2.20! for
dran

(S) .
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Zero-temperature relaxation in spin-polarized Fermi systems
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The effect of zero-temperature attenuation, which has been recently observed in spin dynamics
of Fermi liquids, on various processes in helium and ferromagnetic systems is described.
A brief review of theoretical and experimental data on zero-temperature attenuation in transverse
spin dynamics of helium systems is followed by a discussion of coupling between
longitudinal and transverse processes, the Castaing instability in3He and3He24He mixtures, and
applications to pure ferromagnetic metals. ©1997 American Institute of Physics.
@S1063-777X~97!00805-0#
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One of the recent developments in physics of Fermi
uids was a discovery of peculiar zero-temperature atten
tion in transverse spin dynamics of spin-polarized Fermi
uids. In contrast to all other dissipative processes in p
Fermi liquids, the transverse relaxation timet' and the co-
efficient of transverse spin diffusionD' do not increase with
decreasing temperature as 1/T2, but saturate and remain fi
nite even atT→0. By transverse dynamics we mean t
dynamics of components of magnetization perpendicula
its equilibrium direction. The transverse processes are
cited, for example, by inhomogeneous tipping of spins
NMR experiments. Longitudinal processes in exchange s
tems, i.e., processes which do not change the directio
polarization, do not exhibit any zero-temperature attenuat
irrespective of spin polarization.

The zero-temperature attenuation in transverse dynam
was predicted first on the basis of general conservation
and symmetry arguments.1,2 This prediction was confirmed
by direct transport calculations for degenerate Fermi gase3–5

and, later, dense Fermi liquids.6 The temperature saturatio
of transverse diffusion and relaxation has been observe
low-temperature spin dynamics experiments in sp
polarized liquid3He↑ ~Ref. 7! and3He↑24He mixtures.8

The transverse zero-temperature relaxation time
t'(T 5 0) ; (NvFs)21(TF /bH)

2 for a system of fermions
with Fermi velocity ~temperature! vF(TF), magnetic mo-
mentb, effective cross sections, and densityN in the ex-
ternal magnetic fieldH. Since the usual temperature-drive
relaxation time ist'(H 5 0) ; (NvFs)21(TF /T)

2, the tran-
sition from the temperature-driven to polarization-driv
transverse attenuation occurs at the temperatureTa ; bH
when the phase space between the spin-up and spin-d
Fermi spheres is comparable to the thermal smearing of
Fermi spheres.

The reason for such an unusual behavior is that the tr
verse relaxation and spin diffusion at low temperatures
determined by collisionless decay of magnons. Spin po
ization of the Fermi liquid opens phase space between
spin-up and spin-down Fermi spheres necessary to a
these decay processes for magnons with finitek ~inhomoge-
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zero-temperature attenuation can be described by a pole
tribution in the transverse component of the interaction fu
tion, and is, in this sense, similar to the Landau damping
collisionless plasma.5

Below we will briefly describe theoretical and exper
mental aspects of this phenomenon, and discuss its co
quences. We are interested in both helium and electron
tems. In spin-polarized helium Fermi liquids, the zer
temperature transverse attenuation can affect other dyna
processes via the magnetic dipole-dipole interaction and n
linear coupling. Electron Fermi liquids with large degree
spin polarization exist in ferromagnetic metals. In itinera
ferromagnets, the manifestations of the zero-tempera
transverse attenuation are similar to those in helium syst
~with spin-lattice coupling to longitudinal modes!. In Heisen-
berg ferromagnetic metals, the analogy is less direct:
Fermi-liquid, zero-temperature, transverse attenuation aff
ferromagnetic properties only via exchange coupling of
calized ferromagnetic spins to spins of conduction electro

In the next section we give a simple theory of the ze
temperature transverse attenuation. In Sec. 3 we highl
experimental aspects of this phenomenon in helium syste
Then, in Sec. 4, we describe the transfer of the ze
temperature attenuation into longitudinal channels by me
of magnetic dipole interaction. Sec. 5 deals with Casta
instability in spin dynamics in an inhomogeneous settin
The last section contains applications to pure ferromagn
metals.

2. THEORY

Usually, the conservation laws restrict all low-energy r
laxation processes in Fermi liquids to a thin layer~with a
relative thicknessT/TF) near the Fermi sphere, where th
occupation numbersn change gradually from 1 to 0. Every
where else there are either no particles~no ‘‘initial’’ states
nin , or all states are completely occupied~no space for ‘‘fi-
nal’’ statesnfin!. The probability of relaxation scattering pro
cesses for the fermions, which is proportional tonin(1
2 nfin), acquires the factor (T/TF)

2 and is very small. As a
result, the relaxation time increases at low temperature

411/000411-09$10.00 © 1997 American Institute of Physics
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different: if the collision flips the spin of spin-up particle i
the region between spin-up and spin-down Fermi sphe
this particle can easily change its energy since all spin-do
states in this area are unoccupied.

Mathematically, this means that the collision integral
the form

E d3p1d
3p2d

3p3d
3p4Wd~e11e22e32e42\v

22b1H !d~p11p22p32p4!@n1↑n2↑~12n3↑!~1

2n4↓!1n1↑n2↓~12n3↓!~12n4↓!# ~1!

does not go to zero atT→0 as (T/TF)
2, but remains finite

and is proportional, at small polarizationbH/TF, to
(bH/TF)

2.
This mechanism of zero-temperature attenuation

quires a spin flip during collision and exists in exchan
systems only in transverse spin channel, i.e., for proce
with changes in direction of magnetization such as s
waves, spin echo, and other NMR effects. The attenua
for exchange longitudinal processes-processes with
changes in direction of magnetization-involves similar co
sion integrals, but with equal numbers of up and down
rows, and vanishes atT→0 as (T/TF)

2.
In general, there should be no dissipative collisions

T 5 0. In Fermi liquids atT 5 0 all incoherent processes, in
cluding the transverse ones, should disappear, and the i
action should be described by the Landau interaction fu
tion, i.e., coherent molecular field. This seems to contra
the existence of zero-temperature attenuation. This con
diction is resolved if one notes that the microscopic equa
for the transverse component of the Landau interaction fu
tion contains the integrals of the form5

s•s8E d3p8

~2p!3 F 12n↓82n1↑8

p21p1
22p822p18

22 i0 sign~p82pF↓!

2P
1

p21p1
22p822p18

2G .
The imaginary~pole! part of this interaction function repro
duces the integral~1!. Therefore, the zero-temperature tran
verse attenuation can be interpreted as the imaginary~pole!
part of the interaction function. In this sense, the ze
temperature attenuation is a direct analog of the Lan
damping in collisionless plasma. Needless to say, this p
part disappears in the absence of polarization or for long
dinal processes.

The above simple theory is directly applicable to lo
density Fermi liquids such as the3He component of
3He↑24He mixtures, or to dense Fermi liquids at low sp
polarization. The situation in dense, highly polarized Fer
liquids is more complicated. Here the molecular fields act
on slightly tilted spin-ups and spin-downs are different b
cause of the large distance between spin-up and spin-d
Fermi surfaces.~This effect is analogous to the well-know
particle-hole anisotropy away from the Fermi surface.! Then
the microscopic equations of transverse spin dynamics,
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tilted spins, have the form of two separate equations for til
spin-ups and spin-downs with different molecular fields. It
not clear how these equations translate into macrosc
equations of spin dynamics, and what are the neces
modifications of the Leggett equation of macroscopic s
dynamics.

The Leggett equation of Fermi-liquid spin dynamics is
closed equation in macroscopic magnetic momentM . This
equation in its original form cannot be applied to high
polarized Fermi liquids: the molecular field term in the e
fective magnetic field inevitably involves integration of th
magnetization distributionm with the Fermi-liquid interac-
tion function f between spin-up and spin-down Ferm
spheres

E f~p,p8!m~p8!@n↑
~0!~p8!2n↓

~0!~p8!#d3p8/~2p\!3. ~2!

Integral~2! can be written via the macroscopic magnetic m
ment

M5Em~p8!@n↑
~0!~p8!2n↓

~0!~p8!#d3p8/~2p\!3 ~3!

only if the interaction function is constant between the Fer
spheres. This is true either for dilute Fermi gases2 or, as in
the original Leggett derivation, at very low polarizatio
when the Fermi spheres almost coincide.

3. EXPERIMENT

Recent experiments at Nottingham8,9 have used the tech
niques of pulsed nuclear magnetic resonance to measure
transverse and longitudinal spin diffusion in a saturated~x3
56.4%! solution of 3He in 4He. The active region of the
experimental cell consisted of a 1-mm-diameter Stycast tu
20 mm in length, around which an rf coil~3-mm radius, two
turns of 0.6-mm-diameter Cu wire! was positioned. A main
field of 8.8 T and a uniform gradient of 80 mT/m were a
plied to the cell, in a direction normal to the axis of the tub
The polarization of the saturated solution in such a field w
a few percent and the Leggett spin rotation parametermM0

had a value of about 4 at the lowest temperatures.
In order to measure the transverse spin diffusion coe

cient au 2 t1 2 180° rf pulse sequence was applied to t
3He spin system resulting in a spin-echo at time 2t1 . The
presence of transverse spin diffusion causes this echo s
to decay with interpulse timet1 . The heighth and phasew of
the spin-echo was fitted to the Leggett-Rice equations

~11m2M0
2 cos2 u!ln~h~ t1!!1

m2M0
2

2
sin2 u~h2~ t1!21!

52
2

3
g2G2D't1

3 ,

w52mM0 cosu ln~h~ t1!!

to obtain values for the spin-rotation parameter,mM0 , and
the transverse spin diffusion coefficientD' .

Longitudinal spin diffusion was measured using a tec
nique similar to that used by Nuneset al.10 By applying a

412Meyerovich et al.
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u 5 180° rf pulse we can invert the magnetization in the
tive region of the cell. A longitudinal magnetization gradie
is thus set up between this region and the remainder of
cell, which results in the diffusion of spins into this region
recover equilibrium. The recovery of the magnetization c
be characterized by harmonics in the wave number of
spin current,k, as

M final2Mz~ t !5(
k
cke

2D ik
2t.

The magnetization is sampled at times,t, after the applica-
tion of the initial 180° pulse using a 21°21 ms2180° pulse
sequence. The resulting recovery profile can then be use
find the longitudinal spin diffusion current,D i .

The measured transverse and longitudinal spin diffus
coefficients are plotted on the same graph in Fig. 1. A cl
deviation ofD' from D i can be seen at temperatures bel
about 30 mK. The longitudinal spin diffusion follows th
expectedT22 dependence of a degenerate Fermi liqu
(TF5417 mK for a 6.4% solution of3He in 4He!, whereas
the transverse spin diffusion approaches a constant valu
T→0 K. The results forD' have been fitted to the theory6 in
the low spin polarization approximation. A value for the a
isotropy temperature ofTa5~1963! mK was obtained. A fit
of the theory to earlier measurements of the transverse
diffusion coefficient in anx3 5 3.8% mixture yields a value
of Ta5~1362! mK for this concentration.

Similar results in pure3He have been obtained by We
et al.7 using the same pulsed NMR spin echo technique
this case, the anisotropy temperatureTa516 mK.

4. DIPOLE EFFECTS AND LONGITUDINAL ATTENUATION

Since the transverse attenuation is the only ze
temperature relaxation mechanism in pure exchange F
liquids for low-frequency low-wave processes, it is intere

FIG. 1. Temperature dependence of transverse~circles! and longitudinal
~diamonds! diffusion coefficients,D' andD i .
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to and affects longitudinal Fermi-liquid processes.
There are two general mechanisms that couple long

dinal and transverse processes in helium: the magn
dipole-dipole interaction and the nonlinearity of equations
motion. We will look only at dipole coupling, which is quit
strong in highly polarized systems,12 although the nonlinear
coupling also leads to interesting effects, especially near
spin-wave~Castaing! instability.

The dipole interaction transfers the zero-temperat
transverse attenuation into the longitudinal channel by t
different mechanisms.11 First, in spin-polarized systems wit
magnetic dipole-dipole interaction the spin-flip processes
the type~1! with dipole vertexW are allowed in the longi-
tudinal channel and enter the collision integral directly. S
ond, the dipole interaction couples the longitudinal modes
~attenuating! transverse spin waves. Then the collision in
gral ~1! enters the longitudinal processes with transverse
change vertexW and dipole interaction in the coupling con
stant.

As a result of direct and indirect dipole processes,
effective zero-temperature attenuation in the longitudi
channelteff(T5 0) should differ fromt'(T 5 0) by an extra
coupling factor (Ed /TF)

2, where the characteristic dipol
energy isb2Z2m3/2TF

3/2/\3, and Z is the microscopic param
eter which describes the difference between the~pole terms
for! Fermi liquids and gases. The transition fro
temperature-driven to polarization-driven zero-temperat
sound attenuation should occur for longitudinal sound
sub-mK region, i.e., at considerably lower temperature th
the recently observed anisotropy temperatureTa , at which
the transverse attenuation loses its 1/T2 dependence.~For
liquid 3He ↑ this corresponds to the temperatures below
superfluid transition when the theory of normal Fermi liqui
cannot be applied directly. Thus the unmodified results
only be applied to liquid3He↑ 2 4He mixtures.!

In order to avoid separate independent calculations
attenuation for different hydrodynamic and high-frequen
longitudinal modes in3He↑ and 3He↑24He mixtures, we
calculated~zero-! sound attenuation in a generic polarize
Fermi liquid. This allowed us to extract the effective, mod
independent, zero-temperature relaxation timeteff(T5 0) and
viscosityneff(T5 0)5 rvF

2teff(11 F1
(s)/3)/5. The effective re-

laxation time could be used in conjunction with standa
hydrodynamic andh f equations2,13 for polarized3He↑ and
3He↑24He mixtures, giving the attenuation of all sound a
h f modes in terms of effectiveheff andteff .

Although the effective zero-temperature longitudinal r
laxation parameters are quite small because of the weak
of dipole interaction, these parameters provide the real z
temperature cutoffs for longitudinal relaxation and transpo
Since liquid helium, in contrast to electron systems, does
have any impurities, one may expect to observe these lim
ing cut-offs at ultra-low temperatures in highly polarize
3He↑ or 3He↑24He mixtures.

A. Dipole collision integral and sound attenuation

Dipole interaction leads to spin-flip collisions even f
longitudinal processes such as sound propagation. As a

413Meyerovich et al.
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sult, one can find zero-temperature terms with the spin st
ture ~1! in the collision integral with the scattering probab
ity

W~p1 ,p2 ,p3 ,p4!5S Ed

TF
D 2F ~p12p3!z

3~p12p3!1

~p12p3!
4

2
~p12p4!z

3~p12p4!1

~p12p4!
4 G2,

where thez axis is chosen along the magnetic field~spin
polarization!, and the dipole energy is

Ed5b2Z2m3/2TF
3/2/\3.

The resulting sound attenuation is11

Im v5
Ed
2

16p5\TF
S bH

TF
D 2I ~s cosu!, ~4!

wheres 5 v/kvF is the~dimensionless! sound velocity, and
the functionI (s cosu) is plotted in Fig. 2 for several value
of s.

B. Coupling between sound and spin waves

Longitudinal and transverse processes are decouple
Fermi liquids with exchange interaction between particl
Weak magnetic dipole-dipole interaction couples longitu
nal and transverse processes. As a result, the z
temperature attenuation in transverse channels can lea
zero-temperature dissipation even for ordinary longitudi
processes.

In spin-polarized Fermi liquids, sound propagation in t
absence of dipole interaction is described by a set of
coupled equations for densitiesn↑ and n↓ of spin-up and
spin-down particles. The coupling of longitudinal dynam
equations forn↑ , n↓ to the transverse equation of motion f

FIG. 2. I (s,x) as a function ofx 5 cosu, Eq. ~4!, for four values ofs, s
5 2; 3; 3.47; 5.
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vided by magnetic dipole-dipole interaction with th
Hamiltonian14,15

4

3
pb2F3~s•q!~s8•q!

q2
2~s•s8!G , q5p2p8. ~5!

This Hamiltonian is responsible for two effects. First,
causes demagnetizing factors which, in an elliptical samp
are equivalent to the demagnetizing fieldHd . The integra-
tion of dipolar interaction, necessary for the calculation
demagnetizing field, is not trivial because of the divergen
at small wave vectors. It is possible to show16–18 that the
demagnetizing field in spherical samples is, with good ac
racy,

Hd54pSH~M•H!

H2 2
M

3 DZ2,
M5~b/2!TrsE sn̂sdG. ~6!

This equation forHd includes both the equilibrium contribu
tion with M0 and the non-equilibrium part withdM .

Second, the dipole interaction changes the effective L
dau interaction function~molecular field!:

d f ab,gd~p,p8!5
4

3
pZ2b2F3~sbg•q!~sad•q!

q2

2~sbg•sad!G , ~7!

where Z is the usual renormalization coefficient in the po
part of the single-particle Green’s function for Fermi liquid
@Note, that Eq.~7! contains only one of the diagrams for th
vertexGv. The other diagram is already included in the ter
with dM in the demagnetizing fieldHd ~6!.# Substitution of
the dipole terms~6! and~7! into the commutator in the equa
tions of motion,

@ n̂,ê #, eag5eag
~0!2bsag•dHd

1Ef ab,gd~p,p8!dndb8 dG8, ~8!

results in coupling of longitudinal and transverse equatio
As a result of this coupling, the sound waves acquire

zero-temperature attenuation11

Im v5
\2~kvF!2

32p2t'
F F0

~s!

F0
~s!2F0

~a!G2 Ed
2

TF
4 S kz2k2 k22kz

2

k2
G1~s!

1
4kz

423k2kz
21k4

3k4
G2~s! D , ~9!

where

G1~s!52s2~s221!
w~s223!21/3

w~s221!21 F2w~3s221!21

11F0
~a!

1s223w~s221!22
7

5G ,
414Meyerovich et al.



G ~s!52s2~s221!
w~s213!21/3

w~s421!2
s2

2
1
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2 w~s221!21 F 3 5G
~10!

w~s!5
s

2
ln
s11

s21
21,

and in the single-harmonic approximationw(s) 5 1/F0
(s) .

The most important difference from~4! is the
k2-dependence of the attenuation~9!, which originates from
the k • v factor in the coupling coefficient. The calculatio
was performed for low frequencies,kvF ! V0 . At higher fre-
quencies, the factor (kvF)

2 should be substituted by th
square of the Larmor frequencyV0 .

C. Effective relaxation and viscosity

The above expressions for sound attenuation allow u
obtain the values of effective relaxation time and viscos
Comparing Eqs.~4! and~9! with the standard expressions fo
~zero-! sound attenuation in Fermi liquids, we immediate
obtain11

1

teff
5
Im v

j~s!
5

Ed
2

16p5\TF
S bH

TF
D 2 I ~s cosu!

j~s!
, ~11!

j~s!5s2
w2~s221!~3s211!12w~s221!21

w~s221!21
,

w~s!5
s

2
ln
s11

s21
21

for direct processes, and

1

teff
5

\2~kvF!2

32p2t'j~s! F F0
~s!

F0
~s!2F0

~a!G2 Ed
2

TF
4 S kz2k2 k22kz

2

k2
G1~s!

1
4kz

423k2kz
21k4

3k4
G2~s! D ~12!

for indirect processes.
The high-frequency attenuation can be obtained by

method similar to that used in calculation of sound atten
tion in Fermi liquids.19 The analysis of the nonvanishin
collision operator of the type~1!, at T 5 0 shows that this
integral is similar to those studied in Refs. 3, 6, and 19 a
that it should reduce to the form

g l f S 11S v

V0/2
D 2D ~13!

~in dense Fermi liquids the Larmor frequencyV0 experi-
ences the usual Fermi-liquid renormalization!, whereg l f de-
termines the low-frequency sound attenuation in Fermi
uids,

g l f5Im k5
j~s!

steffvF
. ~14!

The effective field-driven viscosity atT 5 0,

heff5
1

5
rvF

2teff~11F1
~s!/3!, ~15!

415 Low Temp. Phys. 23 (5–6), May–June 1997
to
.

e
-

d

-

the direction of polarizationz. This anisotropy of the fluid
dynamics in spin-polarized systems with dipole interaction
quite natural.

5. CASTAING INSTABILITY

A. Castaing instability in spin dynamics

Studies of instabilities and nonlinear effects help furth
understanding of spin dynamics in Fermi liquids. One of t
most important spin-wave instabilities—the so-called Cas
ing instability—occurs in spin dynamics of spin-polarize
Fermi liquids in the presence of a gradient of magnetic fi
and/or polarization.

At low spin polarization, the transverse spin dynamics
polarized Fermi liquids is governed by the Leggett equat
~see, e.g., review article2!:

]M

]t
1@gB3M #5

]

]xk
F D'

11m2M0
2 S ]M

]xk
1mFM3

]M

]xk
G D G .

~16!

If the magnetization gradients are small, the last term can
linearized in small deviations from equilibriumdM as
m@M0 3 ]dM /]xk#, and the spin excitations are weakly a
tenuated by circularly polarized spin waves with the sp
trum

v5v01
D'k

2

11m2M0
2 ~ i2mM0!. ~17!

Castaing20 noticed that if the gradient in the magnetizatio
¹M is not negligible, the linearized last term in Eq.~16! is
m@M0 3 ]dM /]xk# 1 m@dM 3 ¹M0#, and the excitation
spectrum changes from~17! to

v5v01
D'

11m2M0
2 ~ i2mM0!~k

22mk•“M !. ~18!

For a sufficiently large gradient~or sufficiently smallk!, the
last bracket and, therefore, the imaginary part of the sp
trum change sign. Instead of attenuation, the perturba
increases with time resulting in instability starting from

kc5mn•¹M , n5k/k. ~19!

The nonlinearity of the Leggett equation of spin dyna
ics, which is responsible for the Castaing instability, leads
a highly inhomogeneous final stationary distribution of ma
netization ~magnetic domains! even in slightly inhomoge-
neous magnetic field.21 Under certain conditions, the domai
wall could become very wide.22 The difference between lon
gitudinal and transverse relaxation will then disappear, a
the total relaxation is determined by the shortest of the tw
i.e., by the field-driven, zero-temperature transverse atten
tion.

B. Observation of the spin-wave instability

This instability is very general, and can be observed
helium systems in different configurations. We will illustra
it using the example of experiments9 in saturated3He24He
mixtures.

415Meyerovich et al.
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We observed an oscillating signal that could be induc
by the application of a single rf tipping pulse of angleu
applied to a small region of the helium in the middle of
1-mm tube.23 Large magnetization gradients were induced
the helium at the edges of this small region. We approxim
these gradients asu¹M u ; M0(12 cosu)/Dx, whereDx is the
distance over which they extend. A typical NMR signal pr
duced by au 5 105° pulse is plotted in Fig. 3.

This long-lived ringing, which we interpret as a sign
instability, was observed only when the tipping angle e
ceeded some critical valueuc . 70°. The frequencies of the
oscillations were determined by Fourier transforming the s
nals; the frequency shiftdv away from the Larmor frequenc
increased with tipping angle. By substituting the express
for the magnetization gradient into the spectrum@Eq. ~18!#,
we find that the frequency,dv 5 v 2 v0 , depends upon tip-
ping angle asdv } cosu 2 cosuc , whereuc is the critical
angle, i.e., the angle for which the last bracket of the sp
trum is equal to zero~Fig. 4!. Our estimate gives the valu
kc ; 600 cm21. This implies that the large magnetization gr
dient is over a distance of the order of 0.05 cm, consis
with the scale of our experimental setup.

These ringing signals possess several features w
support an explanation in terms of an instability. There i
cutoff in tipping angleuc , below which no signals were
observed. This circumstance, together with the fact that th
was no ringing signal at higher temperatures whenmM0 is
small, confirms the threshold nature of the phenomenon.
long-time scale of the signals and the initial increase in a
plitude ~Fig. 3! are also characteristic of an instability. Th
frequencies of the oscillations scale as the cosine of the
ping angle, cosu 2 cosuc . The presence of two frequenc
peaks on the Fourier analysis of the spectrum suggests
the signals are coming from regions on either side of the
coil where the magnetization gradients are slightly differe
No such signals were observed during experiments on s
tions with lower 3He concentrations. HeremM0 is of the
same magnitude but negative, so that the instability pro

FIG. 3. The ringing signals observed after au 5 105° pulse.
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gates in the opposite direction, away from the receiv
NMR coil.

Similar instabilities have been observed by Nunes10 and
Dmitriev et al.24 The ringing continued for extremely lon
times, leading to conclusions about the existence of a m
stable state~precessing spin domains!21 after the instability
develops. In our experiment we did not see such a long-t
behavior due to the different setup. Only a small fraction
the spins in the lower chamber was tipped and the long
dinal spin diffusion coefficientD i was large, so that the in
stability was quickly suppressed by diffusion of up-spins in
the coil.

C. Dipole effects in Castaing instability

The nonlinear coupling between longitudinal and tran
verse channels is enhanced close to the instability in s
dynamics ~see, e.g., Ref. 23 and the bibliography cit
there!. We analyzed11 the dipole effects near the onset
Castaing instability. Without the dipole effects, the instab
ity occurs atkc @Eq. ~19!#. The dipole interaction makes th
instability anisotropic by adding terms of the formkz

2,
mkz¹zM , (m¹M )2, and (m¹zM )2 to Eq. ~19!. However,
these terms contain a small factorEd /TF ~we will not give
here the cumbersome coefficients!. These anisotropic correc
tions do not have any fixed sign so that it is impossible to
whether the onset of instability occurs earlier in certain
rections.

Although this instability exists in transverse spin dyna
ics, one of its features is thatm in Eq. ~19! is proportional not
to the transverse relaxation timet' , but to the longitudinal
timet i , m 5 V it i /M . Sincet i } 1/T2, the onset of instability
k2 5 mki¹ iM occurs with decreasing temperature at larg
and larger wave vectors. The usual derivation of the insta
ity condition assumes that the gradient of the longitudi
magnetization leads to a large longitudinal diffusion curre
and not to longitudinal oscillations, i.e., that 1/t i @ kvF .

FIG. 4. The frequency shift as a function of the tipping angle. The line i
fitd f 5A(cosu2cosuc).
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range in which the instability can be observed to

TF@T@TF~aa/L !1/4/x1/3, ~20!

wherea is the degree of spin polarization,x is the molar
density of the Fermi liquid, andL is the spatial scale of the
polarization gradient.

The dipole coupling between longitudinal and transve
channels leads to a substitution oft i by teff and lifts this
temperature limitation. At zero temperature, the instabi
occurs atk2 5 meffki¹iM,meff 5 Viteff /M under the condition
1/teff @ kvF . The compatibility of these equations requir
high polarization with small gradient,

Ed@TF~a/a3L !1/4.

As a result, the instability exists even at zero temperat
but occurs at extremely small values ofk.

6. APPLICATION TO PURE FERROMAGNETIC METALS

Ferromagnetic metals can be roughly separated into
groups: itinerant ferromagnets with ferromagnetism of c
duction electrons, and metals with ferromagnetic ordering
inner, localized electrons~with Heisenberg interaction!. The
zero-temperature transverse attenuation in the former
tems seems similar to helium systems, while in the la
group such effects appear only as a result of exchange
pling between the localized ferromagnetic electrons and
Fermi liquid of conduction electrons. In addition, the sp
lattice relaxation, absent in helium, presents a strong c
pling mechanism between longitudinal and transverse ch
nels for both types of ferromagnetic systems.

A. Itinerant magnetism

The theory of transverse spin dynamics in electron Fe
liquid in itinerant ferromagnets should be similar to that
spin-polarized helium. To a large extent this is correct, es
cially well below the transition temperature. Close to t
transition temperature the Fermi-liquid description is not
plicable~see, e.g., Ref. 25!. It is known26 that the spin wave
spectrum in ferromagnetic metals is similar to the spectr
of Silin spin waves in Fermi liquid. Careful analysis of th
spectrum26 shows that this spectrum contains the ze
temperature attenuation: the expression for the spectrum
cludes the integral between the spin-up and spin-down Fe
spheres,

E •••@n↑2n↓#dG,

which, as any integral not localized near the Fermi surfa
should contain a large imaginary part. However, this integ
tion deep into the Fermi spheres makes the derivation26 not
self-consistent; a consistent-derivation should be based
the microscopic equations.6

Apart from the zero-temperature attenuation, these eq
tions have another interesting feature, namely, the spin-
spin-down asymmetry. This effect is similar to a well-know
particle-hole asymmetry in Fermi liquids away from th
Fermi sphere. In itinerant ferromagnets the radii of the Fe
spheres for spin-up and spin-down particles differ by a la

417 Low Temp. Phys. 23 (5–6), May–June 1997
e

e,

o
-
f

s-
r
u-
e

u-
n-

i

e-

-

-
in-
i

e,
-

on

a-
–

i
e

liquid functions! for quasiparticles near these Fermi surfac
This means that the frequencies of inhomogeneous pre
sion in the effective field for tipped spin-up and spin-dow
particles are different.

In general, the transfer of the microscopic equatio6

from Fermi liquids polarized by an external magnetic field
ferromagnetic Fermi liquids is rather straightforward, and
will not dwell on this matter here. Instead, we will mentio
another interesting aspect of microscopic equations.
spin-up–spin-down anisotropy of the effective field can g
credence and microscopic justification27 to the concept of
reaction field suggested by Onsager28 for ferroelectric sys-
tems~this concept for ferromagnetic systems was discus
in Ref. 29!.

B. Heisenberg systems

The above zero-temperature dissipation mechanism
inherent to Fermi liquids and, in its original form, does n
exist in a solid-state magnetic system of localized spins w
Heisenberg interactionJ. However, this unique Fermi-liquid
dissipation mechanism should lead to some residual atte
ation of magnons in pure ferromagnetic metals with Heis
berg interaction. We want to emphasize that in this sect
we are interested not in itinerant magnetism, for which
manifestation of Fermi-liquid effects is natural, but in a
exchange magnetic system of localized electrons.

This fairly straightforward effect is based on exchan
coupling of localized ferromagnetic spins~e.g., 3d electrons!
to conduction~e.g., 4s! electrons. This exchange couplin
results in small polarization~not to exceed several percen!
of conduction electrons of the orderJ1^S&/TF , whereJ1 is
the exchange coupling constant between localized ferrom
netic electrons with spinsSand spins of conduction electron
s. Polarization of spins of conduction electrons ensures
propagation of Silin spin waves in this system with fini
zero-temperature attenuation, t'(T50);(NṽFs)21

3(TF /J1^S&)2. The exchange coupling between these
tenuating Silin spin waves and ferromagnetic Heisenb
magnons transfers the zero-temperature attenuation to
magnon system resulting in the effective relaxation timet'

*
; t'(J1 /J)

2. The competing processes that lead to the m
non attenuation are, obviously, scattering on impurities a
spin-lattice processes studied long ago~see, e.g., Ref. 30!.
The former processes are small in pure metals, while
latter are suppressed at low temperatures.

The equilibrium energy of conduction electrons has
form

« i
e5« i

o2b1
esi•H2J1s i•^S&/2, ~21!

while the Hamiltonian of localized electrons is

« i
l52b lSi•H2

1

2
J0^s&•Si2J(

a
~Si1ax

1Si1ay

1Si1az
!•Si . ~22!

The effective parameters for conduction electrons are alre
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renormalized by their Fermi-liquid interaction,b1
e 5 be/(1
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not
1 F0 ), J1 5 J0 /(11 F0 ), while theaverages

^S&5( SiNi ,

^s&5( s ini5pFm~b1
eH11/2J1^Sz&!/p2\3. ~23!

The Fermi-liquid term in the energy of conduction electro
has the usual form,

d«ab
e 52

1

2
Jsab•dS

1E f aba8b8~p,p8!dnb8a8~p8!dG8, ~24!

with the Landau Fermi-liquid function

pFm

p2\3 f aba8b8~p,p8!5F ~s!~p,p8!dabda8b81F ~a!

3~p,p8!sab•sa8b8 . ~25!

Often, in ferromagnetic systemsJ0^Sz& @ J0^sz&, bH,
and V0 @ v0 . In this approximation, the analysis of th
coupled equations of motion for localized and delocaliz
spinsS ands with the Hamiltonian~21!–~25! yields, after
some algebra, the following expression for the attenuation
ferromagnetic magnons:31

Im v52
b lH

6J0^Sz&

^sz&

^Sz&

k2vF
2t'~11F0

~a!!~11F1
~a!/3!

11@t'V0~11F1
~a!/3!/~11F0

~a!!#2
.

This equation is valid only forb lH @ J^Sz&k
2a2 and formally

yields zero atH 5 0. In smaller fields the attenuation does n
vanish, but becomes proportional tok4, in accordance with
the general result.32

The strength of the effect depends on the exchange
teractionJ0S•s between spins of ferromagnetic and condu
tion electrons. In free atoms thes2d exchange is of the
scale of 1 eV. In metals, screening weakens this exchang
about one or two orders of magnitude. There is also an
hancement factor, which is related to the Kondo-like log
rithmic divergence of the effective field. The localized ele
trons create the~transverse! coherent exchange field fo
conduction electrons:33

Lcoh5
ip

2\V
@dS1~n↑2n↓!2ds1^Sz&N#F4t2

1E d3p8

~2p\!3
P

1

e82e
~2Nt1t21t2

2~n↑2n↓

1N!!G .
The exchange field for localized electrons is similar. He
t1 and t2 are the bare direct and exchange interaction c
stants, andN is the density of localized spins. If the pola
ization of conduction electrons is low, the direct interacti
t1 disappears from the results. The above integral, as o
similar integrals in the theory of metals, diverges logarithm
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lowing renormalization of the bare interaction:

J05t2S 118pt2nF ln
TF~11F0

~a!!

beH1t2^Sz&/2
D ,

wherenF is the density of states on the Fermi surface. A
result of this large logarithmic enhancement of the inter
tion, J0 can reach several hundred K and the polarization
conduction electrons can exceed one percent. Then the z
temperature attenuation for conduction electronst' can be-
come shorter than 10210 sec, andt* can reach 1027 sec.

7. CONCLUSIONS

The zero-temperature transverse attenuation in s
polarized Fermi liquids, which was observed recently in s
dynamics of3He↑ and3He↑-4He mixtures, is the only low-
frequency dissipative process in Fermi liquids atT 5 0. This
effect can have much broader implications than a sim
low-temperature saturation of transverse transport par
eters in polarized helium systems. We highlighted severa
such effects.

The dipole coupling between longitudinal and transve
spin dynamics processes in spin-polarized Fermi liqu
leads to the transfer of zero-temperature transverse atte
tion into longitudinal channels. This transfer is responsi
for the zero-temperature dipole contribution to the sound
tenuation in a generic Fermi liquid described by the effect
mode-independent longitudinal relaxation time and viscos
These effective parameters provide the low-temperature l
for dissipation of various hydrodynamic and high-frequen
modes in helium systems.

The zero-temperature attenuation processes have i
esting implications for ferromagnetic metals. Of course,
direct manifestations of this Fermi-liquid anomaly can
observed in itinerant ferromagnets. Here the most interes
effect is, probably, not the zero-temperature attenuation
self, but a pronounced spin-up—spin-down asymmetry
the effective field which could manifest itself in the form
tion of a peculiar Onsager reaction field.

In metals with ferromagnetism of localized Heisenbe
spins, the effects of the zero-temperature Fermi-liquid int
action are indirect. In this case, the exchange coupling
localized and conduction electrons results in low resid
polarization of spins of conduction electrons. This, in tu
leads to the propagation of Silin spin waves with small ze
temperature attenuation in the system of conduction e
trons. The coupling of these spin waves to the spin wave
the system of localized Heisenberg electrons transfers
zero-temperature attenuation to ferromagnetic magnons.
mechanism is responsible for the residual attenuation of
romagnetic magnons in pure ferromagnetic metals.

Another important peculiarity of spin dynamics in spi
polarized Fermi liquids is the spin-wave instability in inh
mogeneous setting~Castaing instability!. We presented and
analyzed experimental data confirming the existence of
instability, and discussed some further experimental optio
As a result of dipole transfer of zero-temperature attenua
into longitudinal channels, the Castaing instability does
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disappear at ultralow temperatures, although its observation
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would require a relatively large experimental installation.
addition, the dipole interaction makes all the processes,
cluding the instability in spin-polarized Fermi liquids, high
anisotropic.

The nonlinearity of the Leggett equation of spin dyna
ics, which is responsible for the Castaing instability, resu
in a highly inhomogeneous final distribution of magnetiz
tion even in almost homogeneous magnetic field. In th
conditions, the difference between longitudinal and tra
verse relaxation disappears, and the overall relaxation is
termined by the shortest of the two. Then the overall lo
temperature relaxation is similar to the field-driven, ze
temperature, transverse attenuation in homogeneous sys
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Finite temperature effects in the Fermi liquid theory of the diffusion of 4He in 3He
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The diffusion coefficientD and the thermal diffusion ratiokT for dilute
4He in liquid 3He are

calculated from Fermi liquid theory. The collision integral assumes a scattering amplitude
a34 expanded in scalar combinations of the quasiparticle momenta. AsT→0, D varies as 1/T and
kT /c, wherec is the concentration, approaches a constant. As shown previously, the limits
for DT andkT /c are determined by thermodynamic properties, the4He effective mass and partial
volume, and properties of pure3He. We have decreasedkT /c by a few percent, by
including the effect of¹T on the3He distribution function. The temperature dependence ofDT
andkT /c is linear and related to the coefficients in the expansion ofa34. Two coefficients
can be found from thermodynamics. A conjecture about the remainder suggests thatDT may have
a maximum between 0 and 0.5 K. ©1997 American Institute of Physics.
@S1063-777X~97!00905-5#
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In this paper we calculate the diffusion coefficientD and
the thermal diffusion ratiokT for very dilute solutions of
4He in normal~nonsuperfluid! liquid 3He. The quantitiesD
and kT are defined1 by the equation for the impurity mas
current i in terms of the gradients of the4He mass concen
tration,c5N4m4 /(N4m41N3m3), and the temperatureT:

i52rD@¹c1~kT /T!¹T#. ~1.1!

When the total mass currentrv is zero,i is simply the4He
mass current; otherwise,1 the 4He current isrcv1 i and the
3He current is (12c)rv2 i. When there are no current
(¹c)/c52kT /c(¹T)/T.

The low temperature behavior ofD andkT is determined
by Fermi liquid theory from the Boltzmann transport equ
tion of Zharkov and Silin.2 In the dilute limit, the diffusion
coefficientD is proportional3 to 1/T andkT /c tends to a
constant whenT→0. As shown in Ref. 4,kT /c andDT tend
to values determined solely by thel50 forward scattering
amplitude5,6 a0

34, which can be obtained from thermody
namic measurements. The limit forDT is4

DT5D0

\

m4*

m3*

m4*
S v3v4* D

2

TF ; D050.4461... . ~1.2!

Herem4* andm3* are the
4He and3He quasiparticle effective

masses, andTF is the 3He Fermi temperature, given b
kBTF5pF

2/2m3* . Equation ~1.2! uses the relation betwee
a0
34 and thermodynamic properties derived by Saam
Laheurte:5,6

a0
345~v4* /v3!/n~0!. ~1.3!

In ~1.2! and ~1.3!, v4* is the partial volume of a4He atom
dissolved in liquid3He. The3He atomic volume isv3 and
n(0)53/(2v3kBTF) is the

3He density of states.
The limit for kT /c was given as 0.3823 in Ref. 4, but w

find a value a few percent smaller. We include the effect
the temperature gradient on the3He distribution function
which was neglected in Ref. 4. The correction, which d
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from known properties of pure liquidHe. The limit for
DT is unchanged.

Equation ~1.2! implies a 4He collision time,2 t
53m4D/(2kBT), that varies as 1/T2. For Fermi liquid
theory to be valid, the energies of the4He quasiparticle state
must be well defined; this implies\/t!kBT, which is
equivalent toD@2\/(3m4). This criterion is well satisfied
provided T!TF .

As noted in Ref. 4, a measurement ofkT /c or a com-
parison between measurements of the limit forDT and Eq.
~1.2! would provide a stringent test of the underlying Fer
liquid theory. In this respect,4He in 3He is qualitatively dif-
ferent from other applications of the theory. For example,
relate the kinetic coefficients to the thermodynamic prop
ties in pure3He or 3He in liquid 4He, some assumption
about the dependence of the3He–3He scattering amplitude
on the momentum transfer are necessary.7 For 4He in 3He at
low T, because the4He is dilute, only4He–3He collisions
need to be considered. Since the4He obeys Boltzmann sta
tistics, the4He momentum and energy are small compared
the Fermi momentum and energy. In addition, the Pauli p
ciple excludes large energy or momentum transfer from
3He. Therefore, asT→0, the 3He is restricted to forward
scattering, which is determined bya0

34.
Although measurements8,9 of D and kT /c have been

made above 0.5 K, experiments to test the theory mus
made at temperatures where pure3He obeys Fermi liquid
theory, which is below 0.1 K and above the3He superfluid
transition. Here the solubilitycsat(P,T) is very small,10 less
than 500 ppm below 0.1 K. The thermodynamic quantities
the expression forD, v4* , andm4* can be obtained by ana
lyzing measurements ofcsat(P,T). Solubility data by Naka-
mura et al.10 below 0.1 K and a preliminary
measurement11,12 of D indicate that such experimental tes
are feasible.

In the present paper we find the solution of the4He
Boltzmann equation with a momentum-dependent scatte
amplitude. We prove the assertion, made in Ref. 4, that

420/000420-08$10.00 © 1997 American Institute of Physics



momentum dependence produces terms inDT and kT /c
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which are of the order ofT/TF , so that onlya0 appears in
the limiting values ofDT and kT /c. Since the Fermi tem-
peratureTF of liquid 3He is approximately 1.77 K at zer
pressure,13 terms of orderT/TF are expected to be sma
below 0.1 K, where Fermi liquid theory is valid. However,
Sec. 7 we show that the temperature dependence ofDT
could be measurable. In Sec. 2 we deal with the symm
and parametrization of the scattering amplitude; the solu
to the Boltzmann equation is given in Secs. 3–6. In Sec
and 7 we give the numerical results, and in Sec. 7 we s
marize the paper.

As in Ref. 4, we assume that the4He quasiparticle spec
trum has the conventional, particle-like formE52E43

1q2/2m4* , rather than the alternative, roton-like, ‘‘bubb
spectrum’’ ~Ref. 2! E52E431(q2q0)

2/2m4* . HereE43 is
the binding energy of one4He atom in liquid3He in the
ground state. A microscopic calculation14 shows that the
conventional spectrum is correct, withm4* /m4'1.21 at zero
pressure. In Ref. 15, a fit to thecsat(P,T) data of Nakamura
et al.10 gavem4* /m45(1.110.4/20.1).

2. MOMENTUM DEPENDENT SCATTERING AMPLITUDE

In general, the scattering amplitude depends onp andq,
the initial momenta of the3He and4He quasiparticles, and
the momentum transferk5p82p5q2q8. It is also true that
the inverse collision must have the same amplitude to wit
a phase factor:16

ua34~p, q, k!u5ua34~p8, q8, 2k!u. ~2.1!

This symmetry has a simpler form whena34 is written as a
function of the mean momentaqm5q2k/2 and pm5p
1k/2

ua34~pm ,qm ,k!u5ua34~pm ,qm ,2k!u. ~2.2!

We expanda34 in terms of the lowest-order scalar function
of qm , pm , and k, using the symmetry in~2.2!. Keeping
terms up to and including the second power in the sm
momentaqm andk, the results are equivalent to expandi
ua34u:

ua34u5a0
34F11a1S pm2pF221D 1a2

pm•qm
pF
2 1a3

qm
2

pF
2

1a4

~pm•qm!2

pF
4 1•••1a5

k2

pF
2 1a6

~pm•k!2

pF
4 1•••G .

~2.3!

The real coefficientsa i , like a0
34, depend on the pressur

We shall find thata6 only produces terms of higher orde
thanT/TF , so that it does not appear in our results forDT or
kT /c.

The forward scattering amplitude corresponds toa34

with zero momentum transferk. In this case,pm5p and
qm5q. Saam derived a relation5 between the forward scat
tering amplitude and the thermodynamic Landau interac
function f 34. The forward scattering amplitude and the La
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multiple scattering events. Saam’s equations, which
analogous to a similar set for the3He–3He amplitude,7 link
the two functions through the coefficients of their expansio
in Legendre polynomials ofp̂•q̂,

$a34~k50!% l5$ f 34% l /@11Fl
s/~2l11!#. ~2.4!

The Fl
s are the symmetric Fermi liquid factors13 for pure

liquid 3He.
Using Galilean invariance17 and invariance with respec

to the reference system,5,6,15 some properties of the Landa
function f 34 have been directly related to thermodynam
quantities such asv4* andm4* . As a result, we find the fol-
lowing relations betweena0

34 anda i and the corresponding
known coefficientsf 0

34, a18 , anda19 in a similar expansion
for f 34 in Ref. 15

a0
345

f 0
34

~11F0
s!

5
v4*

v3n~0!
5
2

3
kBTFv4* ,

a25
3a18

~31F1
s!

pF
2

a0
3453

v3
v4*

S 12
m4

m4*
D , ~2.5!

a35
a19

~11F0
s!

pF
2

a0
345

3

2

v3
v4*

m3*

m4*
1

~11F0
s!

d log~m4* !

d log~v3!
.

The first relation is the same as~1.3!. Since (11F0
s)'10.6

in liquid 3He at zero pressure,13 and since14,15m4'm4* , both
a2 anda3 are smaller than one. The rest of thea i are unde-
termined. In Sec. 7 we find that thea5k

2 term ina34 has the
largest effect on the temperature dependence ofDT and
kT /c.

3. THE 4He BOLTZMANN EQUATION

In setting up and solving the Boltzmann equation, w
follow the work of Zharkov and Silin,2 Leggett and ter
Haar,3 Dandacheet al.,18 and Geilikman and Chechetkin.19

The notation is nearly the same as in Ref. 4. According
Zharkov and Silin, the linearized4He Boltzmann equation in
the dilute limit ~negligible 4He–4He scattering! for small
temperature and concentration gradients andv50 has the
form

ni0~q/m4* !•@~“c!/c1~q2/2m4* kBT23/2!~“T!/T#5Ji f ~q!.
~3.1!

Here ni0 is the equilibrium4He quasiparticle occupation
number:

ni05~rc/m4!~2p\/m4* kBT!3/2 exp~2q2/2m4* kBT!,
~3.2!

whererc/m4 is the
4He number density. The collision inte

gral is2,18

Ji f ~q!5~2p/\!E ua34u2nf0~12nf08 !ni0~ci2ci81wf

2wf8!d~«1E2«82E8!~2/h6dpdq8!. ~3.3!

The factor of 2 multiplyingdp allows for the sum over the
initial 3He spin states. In Refs. 18 and 19 we have a facto
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4, which implies that the3He quasiparticle may change its
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Sinceua34u in ~2.3! is written in terms ofpm , qm , andk, we
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spin orientation during aHe– He collision. As explained in
Ref. 4, we think this is incorrect. Our equation agrees w
the original formulation by Zharkov and Silin.

In the collision integral,p8 is related to the other mo
menta by conservation of momentum:

p82p5q2q85k. ~3.4!

The Fermi functionsnf0 andnf08 are the equilibrium occupa
tion numbers for the initial and final3He states which have
energies« and«8. The initial and final4He energies areE
and E8, so that the delta functiond(«1E2«82E8) en-
forces conservation of energy.

In ~3.3!, the quantities ci52dni /ni0 and ci85
2dni8/ni08 are the negatives of the small fractional deviatio
from the equilibrium4He distribution function. Because the
are linear in the concentration and temperature gradie
ci andci8 depend onq andq8 according to the equation2

ci~q!5ac~q!q•“c1aT~q!q•“T. ~3.5!

The functionsac(q) and aT(q) are found by solving the
4He Boltzmann equation~3.1!.

The deviations from equilibrium of the3He occupation
number are related tow f and w f8 in ~3.3! by dnf5
2w fkBT]nf0 /]«. They are determined from the know
solution7 of the Boltzmann equation for a temperature gra
ent in pure3He. The effect of the4He onw f is negligible,
because in the dilute limit the number of3He at the Fermi
surface and available for scattering is much larger than
number of4He. When“T50, as in the calculation of the
diffusion coefficient,w f andw f8 are negligible. In previous
studies2,18,19,4w f andw f8 were incorrectly omitted in the cal
culation ofkT .

We divide the collision integral~3.3! into two contribu-
tions. The first,Ji(q), is from the term proportional to (c i

2c i8), the deviations from equilibrium in the4He distribu-
tion function. The second,Jf(q), is from the term in (f f

2f f8).

4. CALCULATION OF THE COLLISION INTEGRAL J i(q)

We first evaluateJi(q). This is all that is needed to
calculate the diffusion coefficientD. We set“T50 and,
using ~3.5!, Ji(q) becomes

Ji~q!5C•E @qac~q!2q8ac~q8!#J~q,q8!dq8, ~4.1!

where

J~q,q8!5E ua34u2nf0~12nf08 !d~«1E2«82E8!dp

~4.2!

and

C5~8p2/h7!ni0“c. ~4.3!

To calculatekT /c, we set“c50 andJi(q) has the same
form as~4.1! except thatac is replaced byaT and the vector
C has“T instead of“c.

In J(q,q8) the energy transferE–E85(q22q82)/2m4*
and momentum transferk5q2q8 are fixed byq and q8.
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transform the integral in~4.2! by replacingdp by dpm . We
choose an axis along k and write dpm
5pm

2 dpmd cosumdwm. Thewm50 plane contains the vecto
qm .

The integration with respect towm is elementary and
performed first. Using

«85«5kpm cosum /m3* ~4.4!

in the delta function, we integrate over cosum:

J~q,q8!52pm3* /kE ^ua34u2&nf0~sm2D/2!@12nf0~sm

1D/2!#pmdpm . ~4.5!

Here ^ua34u2& is ua34u2 averaged over all values ofwm . The
Fermi functionnf0(s) is (e

s11)21, andsm5«m /kBT. The
mean energy«m5(pm

2 1k2/42pF
2)/2m3* is measured from

the Fermi energy. To orderT, the Fermi energy is the sam
as the3He chemical potential. Note thatD5(E2E8)/kBT
does not depend onpm . The integration over the delta func
tion gives cosum a definite value that depends onpm :

cosum5m3* ~E2E8!/~pmk!. ~4.6!

Thus, the factors ofpmcosum in ^ua34u2& are simply functions
of q andq8.

The right-hand side of~4.6! is of the order ofq/p or
(T/TF)

1/2. This means that the momentum transferk usually
is very nearly perpendicular top and pm . From ~4.6!, the
condition21<cosum<1 gives the lower limit forpm in the
integral ~4.5!:

pm>um3* ~E2E8!/ku5u~m3* /m4* !qm• k̂u. ~4.7!

WhenT!TF , so thatq and k are small compared topF .
Replacing this lower limit by zero has an exponentially sm
effect on the integral, of order exp(2TF /T). Therefore, we
evaluateJ(q,q8) using the relation

E
2`

`

nf0~sm2D/2!@12nf0~sm1D/2!#dsm5D/~12e2D!.

~4.8!

As in Ref. 4, the replacement of the lower limit~4.7! by
zero is the crucial approximation in finding the collision i
tegral. Since the integrand in~4.5! is always positive, by
usingpm>0 ~or sm>2`! instead of~4.7!, we have overes-
timated the effect of collisions with largek. Becauseq is
small at lowT ~due to the Boltzmann distribution!, largek
corresponds to large negative values ofD, and thereforeq8
must be large ifk is large. The collision rate, which is pro
portional to ~4.8!, is very small whenD!21, so the ap-
proximation is self-consistent.

The final result forJ(q,q8), to second order inq and
q8, is
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TABLE I. The functionsgi(x,y) andhi(x,y) in Eq. ~4.14!, and the integral*x
`(x2y)@12ey2x#gi(x,y)dy for Pi(x) in Eq. ~5.4!. The Riemann zeta function

z(3)51.2020...
y<x y>x

i (x/y)1/2gi(x,y) (x/y)1/2hi(x,y) gi(x,y) hi(x,y) *x
`(x2y)@12ey2x#gi(x,y)dy

0 1 y/3x 1 1/3 p2/6
1 x1y/3 2y/31y2/15x y1x/3 2y/31x/15 2z(3)12p2x/9
2 x15y/3 y13y2/5x y15x/3 y13x/5 2z(3)14p2x/9
3 x2y y2y2/x y2x y2x 2z(3)
34 2
D ~q2q8!2

c

5. SOLUTION OF THE BOLTZMANN EQUATION

ich

or
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al
e

e
ne-

.

y

re
J~q,q8!52p~m3* a0 ! kBT k~12e2D! F11g1 pF
2

1g2

~q1q8!2

pF
2 1g3

~q22q82!2

~q2q8!2pF
2 G , ~4.9!

where

g152a52a1/2,

g25a3/21a4/41a2
2/8,

g35~m3* /m4* !a2/22a4/42a2
2/8. ~4.10!

As noted in Sec. 2,a6 does not appear in~4.10!; it does not
affectDT or kT /c to orderT/TF .

From symmetry, the vector integral in~4.1! is parallel to
q. Therefore, we choose a new axis alongq, so that the
collision integral~4.1! becomes

Ji~q!5C•q̂E @qac~q!

2q8 cosu8ac~q8!#J~q,q8!q82dq8d cosu8dw8,

~4.11!

whereu8 is the angle betweenq andq8.
After integrating overw8 and then cosu8, and introduc-

ing the dimensionless variablesx[q2/(2m4* kBT), y
[q82/(2m4* kBT), we obtain

Ji~q!5ni0~q/m4* !•~¹c!/cE
0

`

F~x,y!dy, ~4.12!

where

F~x,y!5F0~x,y!1~m4* /m3* !~T/TF!(
i51

3

g iFi~x,y!,

~4.13!

Fi~x,y![~x2y!/~12ey2x!@gi~x,y! f ~x!

2hi~x,y! f ~y!#; i50,...,3. ~4.14!

The function f (x) is a dimensionless form ofac(q)
5 f (x)/cC1 , where the constantC1 is

C15~m3*m4* kBTa0
34!2/~2p3\7!. ~4.15!

The quantitiesgi(x,y) andhi(x,y) are the simple algebrai
functions ofx andy, shown in Table I.
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After substituting~4.12! in ~3.1! we obtain a dimension-
less form of the Boltzmann equation for the case in wh
¹T50,

E
0

`

F~x,y!dy51. ~5.1!

Equation ~5.1! is a one-dimensional integral equation f
f (x)5cC1ac(q).

In the same way the integral equation for the situat
where¹c50 becomes

E
0

`

F~x,y!dy5x23/22b3~x!. ~5.2!

In this case, f (x)5TC1aT(q). The ‘‘driving’’ terms, x
23/2 and 1 on the right-hand sides of~5.2! and ~5.1! come
from the left side of the Boltzmann equation. The addition
driving termb3(x) in ~5.2! is the dimensionless form of th
collision integralJf(q). The calculation ofJf(q) and the
derivation ofb3(x) are described in Sec. 6.

The numerical solution of the integral equations~5.1!
and~5.2! atT50, disregarding the term inb3(x), is given in
Ref. 4. AtT50, substitution from~4.13! and ~4.14! in ~5.1!
gives

f ~x!P0~x!2E
0

`

M0~x,y! f ~y!dy51, ~5.3!

where we have defined the functions

Pi~x![E
0

` x2y

12ey2x gi~x,y!dy,

Mi~x,y![
x2y

12ey2x hi~x,y!.

i50,...,3 ~5.4!

In Ref. 4, Eq. ~5.3! and the similar one for¹c50 were
solved in terms of the variablest and t8 defined byt5exp
(2x/g), t85exp(2y/g), whereg;3 is a dimensionless scal
factor. The equations were discretized over a o
dimensional lattice ofN points evenly spaced int. As a
result,f andP0 became vectors andM0 a square matrix. The
integral forP0 from y50 to x was evaluated numerically
The other part, fromy5x to infinity, is listed in Table I, with
the companion formulas forP1 , P2 , andP3 . Rather than
invertingM0 , the equations were more efficiently solved b
iteration. An approximate form was used forf (y), giving a
new estimate forf (x), and so on. Accurate solutions we
obtained withN5100 or 200, iterating up to fifteen times.

423Hjort et al.



At all temperatures, the impurity currenti, and thus the

e

t

Using the functions defined in~5.4!, the f i
1(x) are the solu-
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diffusion coefficientD and thermal diffusion ratiokT /c, are
found from the appropriate integration over the4He occupa-
tion number. As explained in Ref. 4, we calculatei from the
4He particle current:

i5m4E dni~q/m4* !dq/h3. ~5.5!

In this equation,q/m4*5¹qE is the4He quasiparticle veloc-
ity. Previous authors2,18 have usedi5*dniqdq/h

3, the mo-
mentum density associated with the4He. The two formulas
differ by a factor ofm4 /m4* . Using ~5.5! and ~3.2!, the ex-
pression forD0 in ~1.2! in terms of the functionf (x) for
¹T50 is

D0516/~3p3/2!E
0

`

f ~x!x3/2e2xdx. ~5.6!

If the f (x) for ¹c50 is calledf T(x), thenkT /c is given by

kT /c5E
0

`

f T~x!x3/2e2xdxY E
0

`

f ~x!x3/2e2xdx. ~5.7!

To obtainD0 andkT /c at finite temperature, we use th
fact that (m4* /m3* )(T/TF) in ~4.13! is a small quantity.
Therefore, the solutions to the integral equations~5.1! and
~5.2! may be expanded in the form

f ~x!5 f 0~x!1~m4* /m3* !~T/TF! f 1~x!1... . ~5.8!

Here f 0(x) is the solution of the integral equation atT50.
The term inf 1 gives the finite temperature correction tof 0 to
order T/TF . As a result of~5.8!, we may write theFi in
~4.14! as

Fi~x,y!5Fi
0~x,y!1~m4* /m3* !~T/TF!Fi

1~x,y!1... ,
~5.9!

where Fi
0(x,y) means Fi

0(x,y)5(x2y)/(12ey2x)
3@gi(x,y) f

0(x)2hi(x,y) f
0(y)#, etc. Substituting in~5.1!

and retaining terms up toT/TF gives the following expres-
sion for¹T50:

E
0

` H F0
0~x,y!1~m4* /m3* !~T/TF!FF0

1~x,y!

1(
i51

3

g iFi
0~x,y!G J dy51. ~5.10!

The integral equation for the situation where¹c50 is the
same as~5.10!, except that the driving function on the righ
side is x23/22b3(x).

When the solution forT50 is subtracted from~5.10!,
the result is

E
0

` FF0
1~x,y!1(

i51

3

g iFi
0~x,y!Gdy50. ~5.11!

From this equation we see thatf 1(x) is the sum of three
contributions, each linearly proportional to one of theg i :

f 1~x!5(
i51

3

g i f i
1~x!. ~5.12!
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tions of the three integral equations

f i
1~x!P0~x!2E

0

`

M0~x,y! f i
1~y!dy

52 f 0~x!Pi~x!1E
0

`

Mi~x,y! f 0~y!dy; i51,2,3.

~5.13!

These equations differ from theT50 equation@Eq. ~5.3!#
only in the driving term on the right side. This is obtaine
from theT50 solution. We have solved~5.13! numerically
by the method used forT50 in Ref. 4. The results are give
in Sec. 7.

6. CALCULATION OF THE COLLISION INTEGRAL J f(q)

In this section we evaluateJf(q), the part of the colli-
sion integral produced by the temperature gradient in
solvent3He and equal to the term proportional to (w2w8) in
~3.3!. Jf(q) is needed to calculate the driving term2b3(x)
on the right side of the4He Boltzmann equation~5.2!:

Jf~q!5~2p/\!E ua34u2nf0~12nf08 !ni0~w f2w f8!d~«

1E2«82E8!2dpdq8/h6. ~6.1!

Using the notation of the review paper by Baym a
Pethick,7 we find w f52tC(s)(p•¹T)/(m3*T), wheres is
the reduced energy«/kBT, and« is measured from the3He
chemical potential. The quantityt is a characteristic relax
ation time, defined more precisely below. The dimensionl
function C(s) is odd7 in s, C(s)52C(2s). Although it
may be calculated exactly from an infinite series,20,7 it is
simpler to use the approximate expression due to Emery
Cheng:7,21

C~s!52s/~p21s2!115slK /~32lK!/~2p2!. ~6.2!

This formula is accurate enough21 to give the3He thermal
conductivity to about 1%. The pressure-dependent num
lK in ~6.2! is a measure of the angular dependence of
3He–3He scattering amplitude.7 For s-wave scattering,lK is
unity:

lK5^W&21E d cosudwW~u,w!~1

12 cosu!/cos~u/2!,

^W&5E d cosudwW~u,w!/cos~u/2!. ~6.3!

HereW(u,w) is the 3He–3He scattering probability at the
Fermi surface averaged over spin.7 The angleu is between
the initial quasiparticle momenta and, because of conse
tion of momentum, between the final momenta as well. T
collision rotates the plane containing the momenta byw. The
characteristic relaxation timet is determined by the mea
scattering probabilitŷW&:
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t5
8p4/\6

m3*
3^W&~kBT!2

. ~6.4!

Thes- andp-wave approximation22 giveslK in terms of
the Landau parameters. The value oft can also be found22

from this model; however, the exact equations~1.2.113a! and
~1.2.113c! in Baym and Pethick7 relatet to the thermal con-
ductivity andlK . Figure 1 showslK and the producttT

2 in
the s- andp-wave approximation, as well astT2 calculated
from Greywall’s thermal conductivity data.23 The tT2 from
thes- andp- wave approximation agrees quite well with th
exact formula. The Landau parameters,m3* , v3 , and the
specific heat, needed in these calculations were taken f
the review article by Halperin and Varoquaux.13

In integrating~6.1! we neglected the momentum depe
dence of the4He–3He scattering amplitudeua34u and re-
placed it witha0

34. This simplification is justifiable becaus
the effect ofb3(x) on kT /c turns out to be small, a decreas
of about 0.01 or 2.5% ofkT /c. The momentum dependenc
of a34 would produce an effect of the order ofT/TF , which
we consider negligible.

To integrateJf(q), we replacedp by dpm and choose an
axis alongk with ¹T in thexz plane. The integral overwm is
done first and then the integral over cosum. The delta func-
tion causes cosum to be replaced bym3* (E2E8)/(pmk), as
in ~4.6!. Using the same arguments as in Sec. 4, the lo
limit for sm5«m /kBT is replaced by2`. The result is

Jf~q!5~8p2/\h6!ua0
34u2ni0tm3* E ~¹kBT!•knf0~1

2nf08 !~C82C!~E2E8!/k3dsmdq8. ~6.5!

Defining a new axis alongq, and replacingdq8 by
q82dq8d cosu8dw8, one can integrate overw8 and cosu8
analytically. We write the final result in terms of2b3(x) on
the right side of~5.2!:

FIG. 1. Plot of the dimensionless factorlK and the producttT
2, wheret is

the characteristic3He–3He relaxation time, versus pressure in pure3He. The
dot-dot-dashed curve islK , the solid curve istT2 calculated from Grey-
wall’s thermal conductivity data and the dashed curve is from thes- and
p-wave approximation.
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m

er

b3~x!5c3~P!E
0

`E
D50

x

nf0~12nf08 !~C82C!~1

2D/x!1/2~D/x!dDdsm , ~6.6!

where

c3~P![
4p

\

m4*

m3*

ua0
34u2

^W&
. ~6.7!

The 4He–3He scattering amplitude is weak compared to t
3He–3He amplitude. Consequently,c3(P) is much smaller
than one. At zero pressure,c3(P)'0.03.

To calculateb3(x), we integrated~6.6! numerically, us-
ing the Emery-ChengC(s). The Emery-Cheng formula
~6.2! is the sum of two terms; the first terms, which does n
depend onlK , and the second term, which is linear
lK /(32lK). Since f (x) in the integral equation~5.2! is
linear in the driving terms, the effect of each term was eva
ated separately. The results give the correction to theT50
value ofkT /c as

~kT /c!T5050.38232c3~P!@0.104510.391lK /~32lK!#.
~6.8!

The result of using~6.7! to calculatekT /c at T50 as a
function of pressure is shown in Fig. 2. The functionc3(P)
is uncertain because it containsm4* andv4* , which are not
accurately known, especially at high pressures. Based o
analysis15 of the data of Nakamuraet al., we assumed in Fig
2 thatm4*'m4 . Laheurte’s results24 for v4* at T50 were
extrapolated above 15 atm.

7. RESULTS AND CONCLUSIONS

The finite temperature correction toDTwas calculated
by solving~5.13! for f 1

1(x), f 2
1(x) and f 3

1(x). The results are
shown in Fig. 3b as a function of the reduced4He momen-
tum x1/2. The physically important parts of these functio
are in the region where the Maxwell distributionxe2x,

FIG. 2. Plot of the predicted thermal diffusion factor for4He in liquid
3He, kT /c, versus pressure asT→0. The solid curve is calculated using th
3He–3He relaxation timet from the thermal conductivity data of Greywal
while the less accurate dashed curve usest from thes- andp-wave approxi-
mation.
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shown in Fig. 3a, is large. From thef i
1(x) and ~5.6!, ~5.8!,

and ~5.12!, the diffusion coefficient in the Fermi liquid re
gion below 0.1 K is given by

DT5~\/m4* !TF~v3 /v4* !2$0.4461~m3* /m4* !2~T/TF!

3@2.127g111.479g210.337g3#%, ~7.1!

where theg i are defined in terms of thea i in ~4.10!. As
noted in Sec. 2,a2 anda3 are smaller than 1. Thea most
likely to be important isa5 , the coefficient ofk2 in ua34u.
This also has by far the largest coefficient in~7.1!: it appears
as 2a5 in g1 .

If ua34u is regarded as the Fourier transform of
distance-dependent potentialv(r ), a plausible length scale in
v(r ) would be;\/pF . This implies ana5 of ;1. Setting
a551 in ~7.1! gives a decrease inDT of about 15% between
0.05 and 0.1 K. Such a small variation would be quite di
cult to measure. On the other hand, if the length scale w
as large as 2p\/pF , a5 would be 4p2. TheT dependence
of DT below 0.1 K would then be so large as to requ

FIG. 3. ~a! The equilibrium Maxwell-Boltzmann distribution,xe2x, plotted
against the reduced4He quasiparticle momentum,x1/25q/(2m4* kBT)

1/2. ~b!
The solutions to the integral equations~5.3! and ~5.13!. The function
f 0(x) is theT50 solution of the reduced4He Boltzmann equation~5.3! for
an isothermal concentration gradient. The functionsf 1

1(x), f 2
1(x), and

f 3
1(x) give the corrections tof 0(x) at finite temperature.~c! The same as~b!,
but for a temperature gradient at constant concentration.
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Moreover, terms higher thanT/TF would probably be appre
ciable at 0.1 K.

We note that a large positive value ofa5 is plausible
because it would indicate thata34 increases at large momen
tum transferk toward the much larger3He–3He amplitude.
With a positivea5 , DT decreases with temperature towa
the measurements ofDT by Vvedenski and Peshkov8 at 0.5
K. They are;5 times smaller than theT50 Fermi liquid
predictions.4

On the other hand, we may comparea34 to the
3He–3He interaction in dilute solutions of3He in superfluid
4He. The original ‘‘BBP’’ interaction25 has the formV(k)
52V0 cos(kd/\) with the lengthd'3.16 Å. The quantity
V0 is similar in magnitude toa0

34, although the interactions
are opposite in sign;V0'60 K cm3/mol as compared toa0

34

'30 K cm3/mol, both at zero pressure. Ifa34 had the same
dependence onk asV(k), expanding the cosine would giv
a552(pFd/\)2/2'23.1. If a5 were this negative, the
T/TF term would increaseDT by 30% between 0.05 and 0.
K. Since the measurements ofDT by Vvedenski and Pesh
kov at 0.5 K are smaller than theT50 Fermi liquid predic-
tions, there would be a maximum inDT between 0 and 0.5
K. This effect would be measurable.

Similar conclusions apply to the temperature variation
kT /c in the Fermi liquid region. The results forf 0(x),
f 1
1(x), f 2

1(x), and f 3
1(x), when¹c50 are shown in Fig. 3c.

When used to calculatekT /c, the result is

kT /c5~kT /c!T502~m3* /m4* !~T/TF!@2.194g1

11.057g220.055g3#, ~7.2!

where the value atT50 is given in~6.8! and illustrated in
Fig. 2. The numerical coefficients in theT/TF term were
calculated without the2b3(x) term in the integral equation
for f 0(x). This means that they are subject to a sm
pressure-dependent error of;2.5%.

The dominant effect in theT/TF term in ~7.2! is, again,
due toa5 andg1 . We expect a decrease inkT /c with tem-
perature ifa5 is positive. The thermal diffusion ratio ha
been measured by Dandache and Laheurte9 between 0.6 to 2
K. This value is well outside the Fermi liquid region bu
kT /c is negative, about210 for c;2%, consistent with a
positive a5 or a maximum inkT /c between 0 and 0.6 K
Using arguments from irreversible thermodynamics, Da
dache and Laheurte have linked the negativekT /c at high
temperatures with the dependence of the thermal condu
ity on the4He concentration.

In summary, solutions of4He in liquid 3He have a
simple relation between the low-temperature limits for t
kinetic coefficientsD andkT and the thermodynamic prop
ertiesv4* andm4* . The limit for DT and its finite tempera-
ture corrections are given in~7.1!, while kT is predicted in
~6.8! and~7.2!, and shown in Fig. 2. If one can overcome th
experimental difficulties in making measurements at su
ciently low temperatures, where the solubility of4He ap-
proaches a few parts per million,10,15,12,26 these results
present a unique opportunity to test Fermi liquid theory.
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Diffusion in liquid and solid solutions 3He–4He
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An exact expression for diffusion time, which depends on the interaction rates for particles of
not only different, but also of the same species, has been derived from the system of
kinetic equations. The result is valid for particles with arbitrary statistics and energy–momentum
relations. The derived general relations are valid for investigating diffusion in liquid and
solid 3He–4He mixtures. The contribution of interaction between quasiparticles of the same type
to the diffusion coefficient and effective thermal conductivity of superfluid solutions is
analyzed. The calculated values are compared with experimental data. The calculated diffusion
coefficient of3He–4He solid solutions differs from the previous theoretical results. A
comparison of the obtained diffusion coefficient with experimental data makes it possible to
determine the numerical value of the energy band width for impurity quasiparticles. ©1997
American Institute of Physics.@S1063-777X~97!01005-0#
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The determination of diffusion coefficient is a tradition
problem for mixture of classical gases and condensed m
for which the quasiparticle description is applicable. In ord
to calculate the diffusion coefficient, we must solve the s
tem of kinetic equations by using various approximations
view of the complexity of this system. As a result, the diff
sion coefficient is usually a function of the time of intera
tion between particles of different species only and does
contain the equilibrium stabilization time in the solutio
components. The method developed here makes it pos
to obtain a compact exact solution for the problem form
lated above. The expressions for diffusion coefficient o
tained by us depend on the time of interaction between
ticles of the same and different species. The inclusion of
latter particles affects significantly the value of diffusion c
efficient in some cases. The obtained general expressio
valid for particles with an arbitrary statistics and energ
momentum relation. This allows us to use the obtained
sults for mixtures of classical gases as well as for quant
mechanical quasiparticle systems.

In this research, the general relations are used for
analysis of diffusion in liquid and solid solutions of heliu
isotopes. The theory of quantum diffusion in crystals w
constructed by Andreev and Lifshits.1 Quantum diffusion in
3He–4He solid solutions was observed for the first time
Esel’sonet al.2–4

1. SOLUTION OF KINETIC EQUATIONS

Let us consider a stationary nonequilibrium state of t
componentsa andb of a gas mixture in which the numbe
densities of quasiparticles are functions of the coordinatez.

428 Low Temp. Phys. 23 (5–6), May–June 1997 1063-777X/
ia
r
-
n

ot

ble
-
-
r-
e

is

-
-

n

s

cal potential is zero, this situation is realized by creating
constant temperature gradient.

In the state under investigation, the existing steady-s
gradients of partial pressures of the components lead to
siparticle fluxes

j k52 (
l5a,b

rk
r
dkl¹Pl ,~k5a,b!, ~1!

where

j k5E pkf kdGk ~2!

is the flux density for thekth component of the mixture,

Pl5
1

3 E pl•vl f ldG l ~3!

the partial pressure of quasiparticles,

rk52
1

3 E pk
2f k8dGk ~4!

the density of the kth component, r5ra1rb ,
f k85] f k /]«k is the derivative of the energy distribution func
tion, dGk the element of the phase volume, an
vl5]« l /]pl the velocity of quasiparticles of thel species. In
the steady state, the sumPa1Pb of the partial pressures i
assumed to be constant. It should be noted that express
~3! and ~4! are universal for a gas of thermal excitations
well as for quasiparticles with a nonzero chemical potent
For quasiparticles with arbitrary energy–momentum re
tions and chemical potentials, formulas~3! and ~4! lead to
the generally accepted relations.

A relation between the matrix of diffusion timesdkl and
diffusion coefficientsD can be derived by comparing for

428/000428-10$10.00 © 1997 American Institute of Physics
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definitions are different for different physical systems a
will be considered below for various cases.

The diffusion coefficient for all existing physical sys
tems can be written in the form

D5uD
2 tD , ~5!

whereuD is the characteristic velocity whose analytic e
pression is determined by the energy–momentum relation
particles in the mixture and by their statistics, andtD is the
characteristic diffusion time. It will be shown below that th
latter quantity can be written in the general form for gas
with arbitrary statistics, energy-momentum relations, a
chemical potentials.

According to formulas~1! and ~2!, the expression for a
diffusion coefficient can be obtained from the solution of t
system of kinetic equations, which can be written for a s
tionary state in the form

vk
] f k
]r

5 (
l5a,b

Jkl~ f k , f l !, ~6!

whereJkl( f k , f l) is the collision integral, which is a func
tional of the distribution function.

For definiteness, we consider below the diffusion in
system with a conserved number of particles. A general
tion to the case of excitations will be made at the end of t
section.

We seek the solution of system~6! in the form

f k5 f 0k1d f k , ~7!

where f 0k is the locally equilibrium distribution function fo
thekth component whose chemical potentialmk is a function
of the coordinatez, andd f k is a small correction which can
be represented in the form

d f k52 f 0k8 gk . ~8!

Linearizing the system of equations~6!, we obtain the
following system of linear integral equations in the soug
quantitiesgk :

vk
¹Pk

nk
5Jkkgk1Jkl~gk1gl !,

k,l5a,b; kÞ l . ~9!

Herenk is the number density of particles of thekth species
andJkl are the linearized collision operators for particles
the same component (k5 l ) and of different components (k
Þ l ). The action of these operators on the arbitrary funct
of momentumc(pk,l) is determined by the form of the co
lision integral. For a binary collision integral with the tran
sition probability densitywkl(pk ,pl upk8 ,pl8), for k Þ l we
have

Jklc~pk,l !5E wkl~pk ,pl upk8 ,pl8! f 0l~pl !

3$16 f 0k~pk!%
21$16 f 0k~pk8!%$16 f 0l~pl8!%

3$c~pk,l8 !2c~pk,l !%dG ldGk8dG l8 ;

for k5 l , we have
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kk k kk k k 0k 0k k

3$16 f 0k~pk8!%$16 f 0k~p8!%$c~pk8!1c~p8!

2c~pk!2c~p!%dGdGk8dG8.

The plus and minus signs correspond to bosons and fe
ons, respectively. According to~3!, the partial pressure gra
dient for quasiparticles with a nonzero chemical potentia
given by

¹Pk5nk¹mkuT,m l
. ~10!

It is convenient to write system~9! in a compact matrix
form

(
k5a,b

uwk&
]Pk

]z
5 Ĵug&, ~11!

where

uwa&5Uvazna
21

0 L ;uwb&5U 0
vbznb

21L ;
g5Ug1g2L . ~12!

are two-dimensional ket vectors, and

Ĵ5Ŝ1 Î ~13!

is the operator matrix which can be conveniently presen
as the sum of the matrix

Ŝ5S Jaa 0

0 Jbb
D ~14!

of collision operators for particles of the same type and
matrix

Î5S Jab Jab

Jba Jba
D . ~15!

of collision operators for particles of different types.
The scalar product of arbitrary two-dimensional bra ve

tor ^cu 5 ^ca(pa);cb(pb)u and ket vectorsux& is defined as

^cux&5 (
k5a,b

1^ckuxk&152 (
k5a,b

E ck* xkf 0k8 dGk ,

~16!

where the subscript ‘‘1’’ on the vector indicates that it h
only one component.

System~11! is a system of nonhomogeneous linear in
gral equations. The sought solutionug& must be orthogona
to the solution of the system of corresponding homogene
equations:

Ĵuw1&50. ~17!

The solution of system~17! normalized to unity can be writ-
ten in the form

uw1&5
1

Ar
Upaz

pbz
L . ~18!

429Adamenko et al.



The vectoruw1& corresponds to the momentum of a two-
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component system of quasiparticles. The physical mean
of solution ~18! boils down to conservation of the total mo
mentum of the two-component system of colliding quasip
ticles. It should be noted that the role of a solution of E
~17! can be played by other vectors corresponding to law
conservation: of the number of quasiparticles~with a non-
zero chemical potential!, of energy, and of thex- and
y-components of the momentum. However, these vectors
be disregarded since, according to~11!, the sought solution
ug& contains only thez-components of the vectorp.

It is convenient to write the formal solution of syste
~11! so that the orthogonality condition

^guw1&50 ~19!

be contained in the expression of the solution. For this p
pose, we introduce the projector operatorP n to the subspace
orthogonal to the vectoruw1&:

P n512P c , where P c5uw1&^w1u. ~20!

Then the formal solution of Eq.~11! can be written in the
form

ug&5P n~ Ĵ
21!P n (

k5a,b
uwk&

]Pk

]z
. ~21!

Substituting solution~21! into expression~2! for flux density,
taking into account relations~7! and ~8!, and comparing the
obtained result with definition~1!, we obtain the following
expression for the diffusion time matrix:

daa5
rb

ra
tD ; dab5dba52tD ; dbb5

ra

rb
tD , ~22!

where

tD52^w2uĴ21uw2& ~23!

is the characteristic diffusion time and

uw2&5
1

Arrarb

U rb paz

2ra pbz
L ~24!

the diffusion vector orthogonal to the vectoruw1&.
For the sake of definiteness, all calculations were m

for quasiparticles with a nonzero chemical potentialm. Simi-
lar calculations for the diffusion component of flux~1! for
quasiparticles with an arbitrary chemical potential~m50 or
m Þ 0! give the same results~22!–~24!. Thus, formulas~1!
and ~22!–~24! for the diffusion component of flux are vali
for quasiparticles with any statistics and any chemical pot
tial.

2. EXACT AND LIMITING EXPRESSIONS FOR DIFFUSION
TIME

In order to obtain an exact expression for the mat
element~23!, we introduce the complete system of orthono
mal two-dimensional vectorsuwn& ~here n51,2,3,...). We
take ~18! as the first vector and~24! as the second vector
The remaining vectors can be constructed by using the s
dard procedure~see, for example, Ref. 5! taking into account
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of vectors constructed in this way, the exact solution for

tD52H 21

~ Î1Ŝ!
J
22

~25!

can be reduced to the form

tD52H I 222 (
n,n853

`

I 2n~$ Ĩ1S̃%21!nn8I n82J 21

. ~26!

Here the square matricesĨ andS̃ contain the matrix element

~ Ĩ !nn85I nn8 ; ~S̃!nn85Snn8 , ~27!

where

I nn85^wnu Î uwn8&; Snn85^wnuŜuwn8&. ~28!

While deriving expression~26!, we took into account rela-
tion ~17!.

Matrices~27! are infinite-dimensional and nondiagona
Consequently, the exact solution~26! does not lead to an
explicit analytic expression fortD . However, solution~26!
makes it possible to analyze various limiting cases, to fi
the minimum (tD min) and maximum (tD max) values of
tD , to obtain correct interpolation formulas, and to carry o
computer calculations for specific physical problems.

For example, in the case of rapid stabilization of eq
librium between particles of the same species, when the
equalities

Snn8@I nn8 , ~29!

are satisfied, from relation~26! we obtain

tD[tD min52
1

I 22
5@tab

~0!21
1tba

~0!21
#21, ~30!

where

tkl
~0!52^Jkl&k

21; k,l5a,b; kÞ l . ~31!

Here and below, the normalized mean value of an arbitr
operatorR is denoted by

^R&k5
1

rk
1^pkzuRupkz&1 ; k5a,b.

According to the momentum conservation law, for collisio
we can write

tab
~0!21

5
rb

ra
tba

~0!21
. ~32!

Proceeding from the fact that the operatorsŜ and Î are her-
mitian and negative definite, we can prove that

tD>tD min . ~33!

In the opposite limiting case of slow stabilization o
equilibrium between particles of the same spec
(Snn8→0), tD attains its maximum value

tD max5^w2u Î21uw2&. ~34!
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relatively low (ra!rb) and the time of interaction betwee
particlesa is large (Jaa→0), we obtain from~26!

tDu0,̀ 5tab
~`! , ~35!

where

tab
~`!52^Jab

21&a . ~36!

It should be noted that we average frequency in~31! and
time in ~36!. According to the Cauchy–Buniakowski in
equality, the time defined by~31! is always smaller than the
time defined by~36! for any momentum dependence
Ja,b . In the case whenJa,b does not depend on the mome
tum pa , tab

(`)5tab
(0) , while tD5tD min . If, however, the op-

eratorJa,b depends onpa , the stabilization of equilibrium
between particles of different species depends on the ra
equilibrium stabilization between particles of the same s
cies. In this case, the situation is similar to that in a phono
impuriton system of superfluid solutions of helium isotope6

and in phonon systems of solids.7

In these systems, a two-stage mechanism of relaxa
between particles of different species operates. At the
stage, particlesb mainly interact only with those particlesa
for whose momenta the operatorJab assumes the maximum
value. At the second stage, the stabilization of equilibrium
the mixture is determined by the interaction between p
ticlesa. This is due to the fact that it is more advantageo
for particlesa for which the value ofJab is minimal to
interact not with particlesb, but with those particlesa which
are already in equilibrium with theb-component.

As a rule, the calculation oftab
(0)21 does not involve any

difficulties. As regards the evaluation oftab
(`) , we must de-

termine the operator inverse to the integral operatorJab ,
which can be done only by using certain approximations.
example, in the case of a Lorentz gas,8 when particlesb are
stationary, and the scattering of particlesa is elastic, the
action of the operatorJab is reduced to the multiplication by
the expression

Jab52uvaus tnb , ~37!

where s t is the transport cross section of scattering o
particlea by a particleb. Approximation~37! makes subse
quent calculations trivial.

3. RELAXATION TIME APPROXIMATION

The exact expression~26! makes it possible to propose
model form of the operatorĴ leading to an interpolation
formula for the diffusion time~23!, which contains the re-
sults for all of the known limiting cases.

For the collision integralJkk for particles of the same
species, we propose the following model of a corr
t-approximation, taking into account the momentum dep
dence of the interaction timetkk5tkk(pk) between the par-
ticles of typek:

Jkk52tkk
211tkk

21rk
21/2upkz&1tkk

~0!
1^pkzurk

21/2tkk
21, ~38!

where
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The correctness of thet-approximation~38! ensures the ful-
fillment of the momentum conservation law in collision
according to which

Jkkupkz&150.

Relation~38! contains only thez-component of the momen
tum since, according to~11!, the sought solutionug& contains
only thez-component of the vectorp.

The diagonal elements in matrix~15! can be replaced by
the corresponding frequencies of collisions of particlesk
with particlesl :

Jkl52tkl
21~pk!; k,l5a,b; kÞ l . ~40!

The functionstkk
21(pk) and tkl

21(pk) are defined by the
operatorsJkk andJkl, respectively. The following definition
of collision frequency fork Þ l andk5 l is most convenient:

tkl
21~pk!5

nkl~pk!

^nkl&k
tkl

~0!21
, ~41!

wherenkl(pk) is the transport collision frequency which ca
be written in the standard way by using the collision integr
For example, for a binary collision we have

nkl~pk!5E S 12
pk•pk8

pkpk8
Dwkl f 0l~pl !@16 f 0k~pk!#

21@1

6 f 0k~pk8!#@16 f 0l~pl8!#dGk8dG ldG l8 . ~42!

It should be noted that the relaxation time approximat
describes all the limiting cases~30!, ~34!, ~35!, and~37! fol-
lowing from the general solution~26! only with such a
choice of collision frequency~41!.

The nondiagonal operators of matrix~15! acting on the
functions of momenta of particles of the same species g
functions of momenta of particles of the other type. In co
trast to relation~40!, this does not allow us to replace th
nondiagonal operators of matrix~15! by multiplication op-
erators.

We propose here the following model expression
nondiagonal collision operators:

Jkl5tkl
21~pk!upkz&1rk

21tkl
~0!

1^plzut lk
21~pl !. ~43!

Relations~40! and ~43! for the operator matrix~15! give

Î5S 2tab
21 tab

21upaz&1ra
21tab

~0!
1^pbzutba

21

tba
21upbz1rb

21tba
~0!

1^pazutab
21 2tba

21 D .
~44!

It should be noted that expressions~38! and ~44! for the
operator matrix~13! satisfy the total momentum conserv
tion law ~17! for collisions of particles in the mixture.

The model expressions~38! and ~44! for the operator
matrix ~13! allow us to obtain the diffusion timetD as a
function of the times of interaction between quasiparticles
the mixture proceeding from definition~23!. Carrying out
calculations similar to those presented in Ref. 9, we obta

tD5tD min1
rb

r
~tab2tab

~0!!1
ra

r
~tba2tba

~0!!, ~45!
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tkl5^Rk&k1^Rktkk
21&k

2^Rktkk
21tkl

21&k
21;

Rk5~ tkk
211tkl

21!21. ~46!

In contrast totkl
(0) , the timetkl depends on the frequenc

tkk
21 of interaction between particles of typek. According to

~45!, such a dependence can only increase the diffusion t
tD . This becomes obvious if we write relation~46! in the
form

tkl5tkl
~0!1^~12tkl

~0!tkl
21!2Rk&k

1^~12tkl
~0!tkl

21!Rktkk
21&k

2^Rktkk
21tkl

21&k
21. ~47!

Expression~45! leads to all the limiting cases~30!, ~34!
and~35! considered above. If the timetab is independent of
momentum, relation ~45!, as well as ~26!, gives
tD5tD min .

In the limit of low density of one of the componen
~e.g., ra!rb!, formula ~45! leads to the following expres
sion corresponding to the approximation used in Ref. 7:

tD5^Ra&a1^Rataa
21&a

2^Rataa
21tab

21&a
21. ~48!

If taa is independent of momentum, andtbb→0, formula
~45! leads to the result obtained in Ref. 6:

tD5
^Ra&a

^Ratab
21&a

. ~49!

Thus, formula ~45! generalizes the result obtained
Refs. 6 and 7 and leads to the expression following from
exact solution~26! in all the limiting cases.

4. DIFFUSION AND EFFECTIVE THERMAL CONDUCTIVITY
OF SUPERFLUID SOLUTIONS 3He–4He

According to the Landau–Pomeranchuk theory,10 the ki-
netic properties of superfluid solutions3He–4He are deter-
mined by a three-component gas of weakly interacting q
siparticles: phonons, rotons~thermal excitations!, and
impuritons~3He quasiparticles in the solution!.

Khalatnikov and Zharkov11 formulated the fundamental
of the theory of solutions in 1957. At the time when th
theory11 was constructed, the required set of experimen
data on superfluid solutions3He–4He had not been accumu
lated, and some of the results available at that time prove
be incorrect. For example, the first results on the effec
mass of a roton and the assumption concerning the nond
nature of the phonon spectrum of solutions were errone
For this reason, the theory11 did not provide, for example, the
time of three-particle phonon processes ensuring rapid
gitudinal relaxation in the phonon system, and the diffus
coefficient for a solution was determined in the Lorentz g
approximation~37!. In this case, rotons were regarded
stationary particles. However, subsequent experiments
voted to an analysis of the roton spectrum12 proved that the
average thermal velocity of rotons is even higher than
thermal velocity of impuritons. For this reason, the agr
ment between the theoretical and experimental values in
first theory11 constructed in analogy with the kinetics of ra
efied gases was attained by introducing a number of fit
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of the theory and a number of its results remain valid ev
today. They formed the basis of subsequent theoretical p
lications.

For example, Baym and Ebner13 developed a kinetic
theory of 3He–4He solutions in the low temperature regio
in which the roton contribution can be neglected. This the
did not take into account the interaction between phono
and its results described experimental data only for conc
trated solutions.

Subsequent experimental and theoretical inve
gations6,14–16made it possible to describe kinetic phenome
in the phonon–impuriton system of superfluid3He–4He so-
lutions to a high degree of accuracy. The kinetic theory
solutions was developed further in Refs. 9 and 17, wh
relaxation processes in a three-component gas of quasip
cles ~phonons, rotons, and impuritons! were investigated.

In this section, we shall derive expressions for diffusi
coefficients and effective thermal conductivity of superflu
3He–4He solutions proceeding from the general relations~1!,
~22! and~45!, compare the theoretical values with those o
served in the entire experimental temperature range, and
lyze the contributions from interaction of quasiparticles
the same type to the diffusion coefficients of superflu
3He–4He solutions.

For further analysis, it is convenient to single out thr
temperature regions in which the physical processes de
mining diffusion in the solution are different. In the low
temperature region (T,0.6 K), in which the contribution of
rotons can be neglected, the thermal conductivity of so
tions is determined by diffusion in the phonon–impurito
system. According to the results obtained in Ref. 1, the
fective thermal conductivity in this temperature range
given by

keff5D iphSSph rph1ri
rph

D 2 1

ni
1k i . ~50!

Here D iph is the diffusion coefficient of impuritons in the
phonon gas,Sph the entropy of the phonon gas,rph andr i are
the densities of the phonon and impuriton gases defined
~4!, ni the number density of3He atoms in the solution, and
k i the thermal conductivity of the impuriton gas. The expre
sion for D iph follows from relations~1! and ~22!, and the
definition of the diffusion coefficient for a superfluid solutio
~see, for example, Refs. 18 and 19!:

Diph5
2

3

1

mi

1^« i u1&1

1^1u1&1

rph
rph1r i

tD
~phi ! , ~51!

where« i5pi
2/2mi is the kinetic energy of an impuriton, an

tD
(phi ) is defined by formula~45! in which the subscriptsa
andb must be replaced by the subscripts ‘‘i ’ ’ ~impuriton!
and ‘‘ph’’ ~phonon!. For nondegenerate solutions, we hav

2

3
1^« i u1&1

1^1u1&1
5T.

432Adamenko et al.



rin
on

ec

ra
n

m
rm
um
ve
a

u
a

n
th

s
t
ce
ti

th

s
be
nder
ns

es

r-
-
ted

er-
ons

on

-

-

ion
e
re
ec-

of

b
a of a

by
stan-
ntal
Let us consider the relation between the times appea

in ~45!. According to Refs. 13 and 20, the phonon–impurit
interaction time is defined as

tphi513.6n4 /cxpph
4 , ~52!

wherex 5 ni /(ni 1 n4) is the solution concentration, andc
andpph are the velocity and momentum of a phonon, resp
tively. A noticeable dependence of time~52! on the phonon
momentum necessitates the inclusion of the time of inte
tion between quasiparticles of the same type. The impurito
impuriton interaction timet ii ; x21 and is much smaller than
tDmin
(i ph) .21 For this reason, relaxation in the impuriton syste
can be regarded as instantaneous, and the second te
expression~45! can be omitted. The decay phonon spectr
permits three-particle phonon processes, ensuring relati
rapid stabilization of equilibrium for phonons moving in
given direction with the time21

tph ph515r4c
4/p3~u111!2T4pph, ~53!

where r4 is the density of4He in the solution, andu1
5r4]c/c]r4 .

The relation between the times~52! and ~53! is deter-
mined by the solution concentration and temperature. Fig
1 shows the values of effective thermal conductivity of
solution withx51.39•1024 calculated by formula~50! and
measured in Ref. 22. The contribution ofk i for such a solu-
tion can be neglected. In this case,tD

i ph virtually coincided
with tDmin

(i ph) , which indicates rapid relaxation in the phono
system of the solution. As the concentration increases,
time ~52! decreases, and the finiteness of the time~53! be-
comes significant.

Figure 2 shows the observed and calculated value
effective thermal conductivity for solutions with differen
concentrations. It can be seen from Fig. 2 that as the con
tration increases in the temperature range under investiga
(T,0.6 K), the values ofkeff with tD

( i ph)5tDmin
(i ph) ~dashed

curves! deviate from the values calculated by formula~45!
taking into account the finiteness of the relaxation time in

FIG. 1. Temperature dependence of the effective thermal conductivity
solution with the concentrationx51.39•1024. The contributions to the ef-
fective thermal conductivity from diffusion in the impuriton–phonon~curve
1!, roton–phonon~curve2!, and impuriton–roton~curve3! systems. Curve
4 corresponds to the effective thermal conductivity values calculated
taking into account contributions from all quasiparticles; experimental d
obtained in Ref. 22 are presented byh.
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phonon system~solid curves!. In this case, the solid curve
are in better agreement with experimental data. It should
noted that the reduced results in the temperature range u
investigation are in accord with the results of calculatio
and conclusions drawn in Refs. 6, 15, and 16.

In the region of intermediate temperatur
(0.7 K,T,1 K), in which the impuriton contribution is
small, the effective thermal conductivity is mainly dete
mined by diffusion in the gas of thermal excitations. Diffu
sion in a two-component phonon–roton gas was investiga
for the first time in Ref. 24. Subsequently, it was proved19

that this process leads to heat transfer in view of the diff
ence between the energy–momentum relations for phon
and rotons. An analysis based on formulas~1!, ~22! and~45!
and similar to that in Ref. 19 gives

keff'kD
~rph!5

1

T

rphr r
rph1r r

HSphTrph
2
SrT

r r
J 2tD~rph! . ~54!

HereSr andr r are the entropy and the density of the rot
gas, andtD

(r ph) is defined by formula~45! in which the indi-
cesa and b should be replaced by ‘‘r’’~roton! and ‘ph’’
~phonon!. Expression~54! is transformed to the result ob
tained in Ref. 19 if we make the timestph ph and t rr in ~45!
tend to zero.

In analogy with ~52!, the phonon–roton collision fre
quencytph r

21 depends strongly on the phonon momentum:18

tphr
21;pph

4 .

However, the characteristic phonon–phonon interact
time defined by ~53! is considerably smaller than th
phonon–roton interaction time in the given temperatu
range. Hence we can neglect the contribution from the s
ond term in~45!.

a

y
taFIG. 2. Temperature dependence of the effective thermal conductivity
solution with different concentrationsx51.39•1024 ~curve 1!, 1.32•1023

~curve2!, and 1.36•1022 ~curve3!. The results of calculations taking into
account the contributions from all types of quasiparticles are depicted
solid and dashed curves. The latter correspond to calculations in the in
taneous relaxation approximation in the solution components; experime
results obtained in Refs. 22 and 23 are presented byh andL.
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According to Khalatnikov,18 the phonon–roton collision
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frequencytph r is assumed to be independent of the rot
momentum, which allows us to omit the last term in~45!
also. As a result, the phonon–roton diffusion timetD

(ph r ) is
determined by its minimum value

tD
~phr !5tDmin

~phr !5~tphr
~0!21

1t rph
~0!21

!21. ~55!

Curve2 in Fig. 1 is the result of calculations based o
formula ~54!, which indicates the existence of a wide tem
perature region in whichkD

(r ph) must be taken into accoun
In this region, the value ofkD

(r ph) determines the effective
thermal conductivity completely. This proves that diffusio
between thermal excitations must be taken into considera
in an analysis of thermal conductivity of condensed med

At high temperatures (T.1 K), the kinetic properties of
superfluid solutions are mainly determined by rotons and
puritons. According to Khalatnikov,18 the effective thermal
conductivity in this region is given by

keff5Dir SSr r r1r i
r r

D 2 1

ni
1k i1k r , ~56!

wherek r is the thermal conductivity of the roton gas. Pr
ceeding from relations~1! and~22!, and the definition of the
diffusion coefficient of a superfluid solution~see, for ex-
ample, Ref. 19!, for the diffusion coefficient of an impuriton
in a roton gas we have

Dir5
r r

r i1r r

T

mi
tD

~ ir ! , ~57!

where the timetD
( ir ) is defined by~45! in which the indicesa

andb must be replaced by the indices ‘‘i ’ ’ and ‘‘ r ’ ’ , re-
spectively.

Relation ~57! is transformed into the result obtained
Ref. 19 if we make the timest i i and t rr in ~45! tend to zero.

According to the results obtained in Ref. 25 and defi
tion ~41!, the frequency of impuriton–roton collisions can b
written in the form

t ir
21~pi !5A2nr S E

0

`

exp S 2
mv r

2

2T D dv r D 21

3E
0

`

exp S 2
mv r

2

2T D E
21

1 1

2
sin2 uS m

2
~v r2v i !

2

1
pi
2

2mi
sin2 u D 1/2d cosudv r , ~58!

whereA is the amplitude of impuriton–roton scattering.
In the temperature and concentration ranges under in

tigation the relaxation time obeys limiting expressions wh
are determined by the absence of equilibrium in the imp
ton gas9,21 (t i i@t ir ) and by rapid relaxation in the roto
gas9,18 (t rr!t ri ). Under these conditions, the general expr
sion ~45! gives

tD
~ ir !5tDmax

~ ir ! 5^t ir & i . ~59!

The results of calculations of effective thermal condu
tivity for solutions with x51.39•1024 on the basis of for-
mula ~57! are presented in Fig. 1~curve3!. In this case, the
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neglected. The inclusion of finiteness of the timest i i and
t rr increases the calculated value by approximately 10
thus improving the agreement between the theory and
perimental results. It should be noted that a relatively sm
difference betweentmin

(ir ) and tmax
(ir ) is due to a weak depen

dence of frequency~58! on momentum. Dashed curves
Fig. 2 correspond to the results of calculations w
tD5tDmin , while solid curves correspond to the values
tD calculated by formula~45!.

It would be undoubtedly interesting to measure the d
fusion coefficient for superfluid3He–4He solutions with dif-
ferent concentrations up to very high values for which t
time t i i becomes comparable tot ir . A comparison of such
experimental data with the results presented here would
to the dependence oft ir on the relaxation rate in the impu
riton gas.

5. DIFFUSION IN 3He–4He SOLID SOLUTIONS

A phenomenological theory of quantum diffusion
3He impurity atoms in solid solutions of helium isotopes w
proposed for the first time by Andreev and Lifshits.1 These
authors regarded impurity atoms as delocalized quasip
cles which move virtually freely through the crystal. Thu
quantum diffusion of impuritons in3He–4He solid solutions
was predicted in Ref. 1. Subsequent theoretical invest
tions were carried out in Refs. 26–30, in which special
tention was paid to an analysis of the phonon–impuri
interaction. This interaction leads to a strong temperat
dependence (T29) of diffusion coefficient. Such a depen
dence was observed for the first time in Refs. 2–4 and m
it possible to carry out a quantitative comparison with t
theory.

In this section, we calculate the diffusion coefficient f
solid solutions proceeding from the general technique
scribed in Sec. 1. The expressions obtained for diffusion
efficient differ in form from the results of previous publica
tions and contain parameters that can be determined f
other experiments. The method proposed in Secs. 1–3 m
it possible to compare the parameters determined from
ferent experiments.

Let us consider a stationary nonequlibrium state o
3He–4He solid solution in which the numbern↑ and n↓ of
impuritons with different spin projections per unit volum
are functions of the coordinatez. In this case, the total num
ber densityn5n↑1n↓ and temperature are constant.

By definition,12 the diffusion coefficientDs for impuri-
tons with the given spin projection↑ is defined by the rela-
tion

u↑52Ds

¹n↑
n↑

, ~60!

where

u↑5 j ↑r↑
21 ~61!

is the average rate of diffusion flow of impuritons with th
spin ↑, j ↑ the diffusion flux density, whose function depe
dence onf ↑ is defined by formula~2! with k5↑, andr↑ the
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fined by the general expression~4!. The relation between
Ds and the matrix of diffusion times is defined by formu
~1! in which the indicesa and b must be replaced by th
indices↑ and↓, and we must take into account the fact th
¹n↑52¹n↓ .

At a constant temperature and in the absence of a de
dence of interaction of quasiparticles on the direction of sp
the phonon system is in the equilibrium state. Consequen
in order to find the diffusion coefficientDs as a function of
impuriton–impuriton and impuriton–phonon collision fre
quencies, we must solve the system of only two kinetic eq
tions. This system can be obtained from equations~11! by
introducing the terms describing collisions of impurito
with equilibrium phonons into the right-hand sides of equ
tions ~11!. As a result of solution of this system of equatio
according to the algorithm proposed in Secs. 1 and 2, for
diffusion coefficient of an impuriton with the spin↑, we have

Ds5
2

3
1^« i u1&1

1^1u1&1

1

mi
tS . ~62!

Here« i5pi
2/2mi is the kinetic energy of the impuriton, an

tS is defined by relation~25! in which

Î5S J↑↓1J↑ph J↓ph

J↑ph J↓↑1J↓ph
D ; ~63!

Ŝ5S J↑↑ 0

0 J↓↓
D . ~64!

Considering that phonons interact identically with impu
tons having different spin projections and assuming that
momentum dependence of the frequency of collisions
tween impuritons is weak, we obtain

tS5@t i i
211t iph

~0!21
#21, ~65!

where

t i i
2152^J↑↓&↑2^J↓↑&↓ . ~66!

is the frequency of collisions between impuritons and

t iph
~0!21

52^J↑ph&↑52^J↓ph&↓ : ~67!

the frequency of collisions of impuritons with phonons.
For dilute solutions in the region of relatively high tem

peratures, the impuriton–impuriton collision frequencyt i i
21

in ~65! can be neglected. In this case,Ds is mainly deter-
mined by the diffusion of impuritons in the gas of phono
with the coefficient

Diph
~s!5

2

3
1^« i u1&1

1^1u1&1

1

mi
t iph

~0! . ~68!

While calculating the scalar products appearing in~62!
and~68!, we evaluate the integrals within the impuriton ba
width D!T. Ultimately, relation~68! gives

Diph
~s!5

2

5

D

mi
t iph

~0! . ~69!

This result differs from the diffusion coefficient~51! for
the phonon– impuriton system of liquid3He–4He solutions.
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solid solution leads to the replacement ofT by D for
D!T.

Second, expression ~51! contains the factor
rph /(rph1r i), which determines the temperature depe
dence ofDi ph to a considerable extent. Such a factor can
due to dissipative flow of phonons directed towards the d
fusion flow of impuritons so that the total momentum
equal to zero.

Third, in contrast tot i ph
(0) in ~69!, the timetD

( i ph) in ~45!
is a function of the frequency of collisions between partic
of the same type~t i i andtph ph!. The difference in the contri-
butions from the impuriton–phonon interaction to the ma
and spin diffusion coefficients of liquid solutions3He–4He
was described for the first time in Ref. 19.

Let us consider the temperature dependence of the
fusion coefficientD i ph

(s) . For this purpose, using the mome
tum conservation law, we writet i ph

(0) in the form

t iph
~0!5tphi

~0!r i /rph. ~70!

According to the general expression~4!, we have here

r i5
2

5

D

T
nimi , ~71!

rph5
2p2

15

T4

u5
, ~72!

whereu is the averaged velocity of longitudinal and tran
verse sounds in solid helium. Substituting~70! and~71! into
~69!, we obtain

Diph
~s!5

4

25

D2

T

ni
rph

tphi
~0! . ~73!

The timetphi
(0) has the dependenceT24 typical of Ray-

leigh scattering, whilerph is proportional toT
4 in accordance

with ~72!. Ultimately, according to~73!, we haveDi ph
(s)

;T29.
Such a strong temperature dependence was obtaine

the first time in Ref. 1 proceeding from phenomenologic
considerations. According to~69!, the temperature depen
dence ofDi ph

(s) is determined only byt i ph
(0) . It follows from

~70!–~73! that in this case eight powers of temperature
associated with phonons~the normal phonon densityrph
; T4 and the frequency of collisions of phonons with imp

ritonstphi
(0)21

; T4), and one power is associated with the no
mal density of impuritons~71!.

Expressions~69! and ~73! differ in the form of notation
from the results presented in Ref. 1 and 26–30. Relation~73!
contains parameters which can be determined experim
tally.

For example, the timetphi
(0) appearing in~73! can be de-

termined from the thermal conductivity data for solid sol
tions 3He–4He.31 The contribution of the phonon–impurito
interaction to the effective thermal conductivity is dete
mined by the first term on the right-hand side of equal
~50!. According to~45!, for dilute solutions withx<1023,
the time tD5tphi

(0) in ~50!. Using the experimental result
obtained in Ref. 31, we have
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tphi
~0!58.96•10211T24x21. ~74!

The normal phonon frequency can be calculated fr
the velocities of longitudinal and transverse sounds. Th
the right-hand side of~73! contains only one unknown pa
rameterD.

We can obtain the numerical value ofD by using the
experimental results obtained in Refs. 2–4 for t
impuriton–phonon diffusion coefficient in solutions wit
x56•1025. Taking into account~65!, we can write the ex-
pression forDs in the form

Ds5~Diph
~s!21

1Dii
21!21. ~75!

where Dii is the temperature-independent contribution
impuriton–impuriton interaction to spin diffusion, which, a
cording to Ref. 12, is given by

Dii52.67•1027 cm2/s. ~76!

Figure 3 shows the experimental2 and theoretical values
of the diffusion coefficient calculated by formulas~72!–~76!.
The agreement between the observed and theoretical va
is attained for

D53.5•1024 K. ~77!

The obtained value refines the results presented in R
26 and 33 which give only order-of-magnitude estimates

CONCLUSION

The exact solution~26! obtained for the diffusion time
determines the diffusion coefficient for mixtures of particl
with arbitrary statistics and energy–momentum relations
follows from the limiting cases~30!, ~34!, and~35! that dif-
fusion coefficient can depend strongly on the interaction
tween particles of the same type. The correct approxima
~44! of relaxation time proposed for a two-component s
tem makes it possible to write the diffusion time~45! as a
function of the times of interaction between particles. T
obtained general results are used for investigating diffus
in superfluid3He–4He solutions. The contribution of the dif

FIG. 3. Dependence of the diffusion coefficientDs on reciprocal tempera-
ture for a solution with the concentrationx56•1025; the experimental re-
sults obtained in Refs. 2–4 are represented byh; the solid curve is calcu-
lated on the basis of relations~72!–~77!.
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termined by taking into account intrinsic times over in t
entire temperature range for which experimental data
available. The theoretical results are compared with exp
mental data~see Figs. 1 and 2!.

The general results obtained in Secs. 1–3 made it p
sible to calculate the diffusion coefficient for3He–4He solid
solutions. The obtained expression~73! differs in form from
the results of previous theories and contains parameters
can be found from other experiments. A comparison of
theoretical results with experimental data2–4 allowed us to
determine the numerical value of the impuriton energy ba

The authors are grateful to V. N. Grigor’ev for fruitfu
discussions of a number of problems associated with di
sion in solid solutions of helium isotopes.

*E-mail: berezhnoy@pem.kharkov.ua
** E-mail: tgeorge@uwsp.edu

1A. F. Andreev and I. M. Lifshits, Zh. E´ksp. Teor. Fiz.56, 2057 ~1969!
@Sov. Phys. JETP29, 1107~1969!#.

2V. N. Grigor’ev, B. N. Esel’son, and V. A. Mikheev, Pis’ma Zh. E´ksp.
Teor. Fiz.18, 289 ~1973! @JETP Lett.18, 169 ~1973!#.

3V. N. Grigor’ev, B. N. Esel’son, V. A. Mikheevet al., J. Low Temp.
Phys.13, 65 ~1973!.

4V. N. Grigor’ev, B. N. Esel’son, and V. A. Mikheev, Zh. E´ksp. Teor. Fiz.
66, 321 ~1974! @Sov. Phys. JETP39, 153 ~1974!#.

5J. Ferziger and H. Kaper,Mathematical Theory of Transport Processes
Gases, North Holland, Amsterdam~1972!.

6I. N. Adamenko, E` . Ya. Rudavski�, V. I. Tsyganok, and V. K. Chagovets
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QUANTUM CRYSTALS

ese
The properties of vacancies in solid 4He as studied by pressure measurements

P. Remeijer, S. C. Steel, R. Jochemsen, and G. Frossati

Kamerlingh Onnes Laboratorium, Leiden University, P.O. Box 9506, 2300 RA Leiden, The Netherlands*
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Physics Department 0319, University of California at San Diego, 9600 Gilman Drive, La Jolla, CA 92037,
U.S.A.
~Submitted November 29, 1996!
Fiz. Nizk. Temp.23, 586–597~May–June 1997!

The temperature dependence of the pressure at a constant volume in solid4He in the low-density
hcp phase has been measured. The measurements are analyzed in terms of a localized
vacancy model and the free Bose gas model of vacancies in solid helium. The results agree
better with the free Bose gas model. On the basis of this model the effective mass of the vacancies
was determined to be 3–5 times the bare mass of a4He atom, which corresponds to a
bandwidth of 1.3–2.1 K. ©1997 American Institute of Physics.@S1063-777X~97!01105-5#
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There has always been much interest in vacancie
both solid 3He and 4He. Because of the large zero poi
motion in helium, a vacancy or free lattice site will have
high probability of tunneling to adjacent lattice sites. Th
distinguishes helium from other solids in which the vaca
cies are localized at low temperature. When the energy
formation of a vacancy is positive, the vacancies are th
mally activated and will vanish exponentially at low tem
perature.

Theoretical studies suggest the possibility that in qu
tum solids, vacancies may still exist at absolute z
temperature.1 Because of the large mobility of the vacancie
they will not have a single energy of formation but occupy
band of energy states; the energy of formation is in the ce
of the band. The lower limit of the band can become ne
tive, which results in a nonzero vacancy concentration
zero temperature. In4He, these so-called zero-point vaca
cies behave like bosons and are expected to Bose cond
thus giving the crystal superfluid-like properties.

Most experiments seeking evidence for Bose conden
tion of the zero-point vacancies concentrated on superfl
mass flow.2–5 No positive proof of vacancy flow was found
This has mainly been attributed to an extremely low criti
speed or a very lowTc .

Van de Haaret al.6 made an attempt to find the zero
point vacancies without depending on the critical velocity
measuring the pressure between 1.5 mK and 120 mK.
vacancies, which are expected to behave as an intera
Bose gas will contribute to the pressure in the solid a
reveal themselves by a finite]P/]T value at very low tem-
peratures. A superfluid transition would be observed b
kink in the pressure. An upper limit to the zero-point v
cancy concentration,xzpv<631027, was determined and
no sharp kinks were found, indicating aTc lower than 1.5
mK, the lowest temperature obtained during the experim

In this work we concentrate on the properties of th
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vacancies is clear, their properties are not. A large collec
of experiments has been carried out, involving cha
mobility,7–11 X-ray scattering,12 NMR,13–15 heat capacity,16

and sound attenuation17 measurements. Large discrepanc
exist between the vacancy densities and activation ener
that are extracted from the various experiments, altho
Burns et al.18 showed that better agreement can be fou
when the data are interpreted under the assumption tha
vacancies occupy a wide energy band~free boson model!
instead of a narrow band.

We have measured the pressure of solid4He as a func-
tion of temperature for samples with molar volumes in t
range of 20.908 cm3 and 20.981 cm3 and temperatures be
tween 0.3 K and the melting temperature of the crysta
From the data we were able to establish the existence
thermally activated vacancies and we could, within t
framework of the free Bose gas model, extract the effect
mass and the activation energy of the vacancies.

2. THEORETICAL MODELS ON VACANCIES IN 4He

We will give an overview of two common models tha
have been proposed to describe the vacancies. The
model presented treats the vacancies as localized pheno
or classical lattice defects with an activation energyF. The
second model describes the opposite case of completely
localized vacancies. In this case, the vacancies will beh
like a free Bose gas with effective massM . Finally, the
contribution of the phonons to the pressure will be discuss

2.1. Localized vacancies

When looking at vacancies from a classical point
view, we can visualize them as being static crystal defe
which are localized in the lattice. The~configurational! en-
tropy will then be given by the possible configurations
puttingn vacancies in a lattice ofN 4He atoms,

438/000438-10$10.00 © 1997 American Institute of Physics



S 5k • ln
~N1n!!

, ~1!

ini

s
ac

m
-
n

ro
y
en

un
o

su

e
te

in
.

e
an
of

large compared to the temperature, the vacancies will behave
is

f
-
er

ef-

re-

is
(
ss
es
ous

to
and
sure.
-

c B S N! •n! D
which can be simplified by using Stirling’s formula

Sc5kB•Fn• lnSN1n

n D1N• lnSN1n

N D G . ~2!

The equilibrium number of vacancies can be found by m
mizing the free energy of this system.

F5F01n• f2T•Sc , ~3!

whereF0 is the free energy of the lattice without vacancie
and f is the free energy of a single vacancy. Using the f
thatN is of the order of Avogadro’s constant andn ! N, we
find

x5
1

ef /kBT21
'e2 f /kBT, ~4!

wherex 5 n/N is the vacancy concentration, and the last si
plification is true only for temperatures which are low com
pared to the free energy of the vacancy. With further defi
tion of

f5F2T•s ~5!

wheres is the entropy change of the crystal due to the int
duction of a single vacancy, the vacancy creation energ
activation energyF has been related to the vacancy conc
trationx. In practice, this nonconfigurational entropys turns
out to be rather small,12 meaning thatf andF are virtually
equivalent.

Since in our experiments we measure pressure as a f
tion of temperature, it is necessary to know the pressure c
tribution of the vacancies. The total pressure of a system
given by

P52S ]F

]VD
T

. ~6!

In our case we can calculate the vacancy part of the pres
by using the vacancy free energy part ofF, which yields

Pvacancies52n•S ] f

]VD
T

52N•S ]F

]V
2T

]s

]VD •e2F/kBT

3es/kB. ~7!

The volume dependence of the activation energy has b
studied by Lenguaet al.17 From their data one can calcula
for the molar volumes of interest here that

N•S ]F

]V D'24.53108 Pa. ~8!

Consequently, this model provides a means of determin
the activation energy and the vacancy formation entropy

2.2. The free Bose gas model

The large quantum behavior of4He has the consequenc
that the tunneling probability for a vacancy to hop to
adjacent site is large. This mobility will lead to a band
energy states. In the case that the width of the band~D! is
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like a free Bose gas. The great canonical partition function
given by

J5 (
N50

`

(
k

1

N!
e~mN2Ek!/kBT. ~9!

The dispersion relation in the caseD @ T is equal to the dis-
persion relation of free bosons with an activation energyF
and is given by

Ek5F1
\2k2

2M
. ~10!

Here the vacancy activation energyF is sometimes called
the gap of the energy band, andM is the effective mass o
the vacancies. The sum over allk values in the great canoni
cal partition function may be replaced by an integral ov
E. Using the density of states

r~E!5
V

~2p!2 S 2M\2 D 3/2~E2F!1/2, ~11!

we then find for the vacancy concentration

x5
1

N
kBTE

F

` r~E!

eE/kBT21
dE

5
V

N S M

2p\2D 3/2~kBT!3/2g3/2~e
2F/kBT! ~12!

and for the pressure due to the vacancies

P5
2

3V E
F

` Er~E!

eE/kBT21
dE

5S M

2p\2D 3/2~kBT!5/2g5/2~e
2F/kBT!, ~13!

where the polylog functiongs is defined as

gs~z!5
1

G~s!
E
0

` xs21

z21ex21
dx. ~14!

As one can see, the model provides direct access to the
fective massM and the activation energyF. In the tight-
binding approximation, the effective mass is directly cor
lated with the band widthD of the energy spectrum by

M5
6\2

a2D
, ~15!

wherea is the atomic distance. If the activation energy
large compared to the temperature and the band widthF
@ kBT,D), the free Bose gas model with the effective ma
replaced by the band width, according to Eq. 15, becom
equivalent to a narrow band model, as described by vari
authors.19,20

2.3. The phonon contribution

In order to be able to study the vacancy contribution
the pressure, it is necessary to calculate the magnitude
temperature dependence of the phonon background pres
The thermodynamic properties of solid4He have been exten
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sively studied by Gardneret al.16 and we will use their re-
sults to make an estimate of the phonon contribution to
pressure. They found that the constant volume heat capa
Cv can be described with very good approximation by
DebyeT3 term supplemented by aT7 term.

The Grüneisen parameterg links the heat capacity to th
pressure by

a

Cv
5g

B

V
, ~16!

wherea is the expansion coefficient,B is the bulk modulus,
andV is the volume.

Using the reciprocity theorem, we obtain

S ]P

]T D
V

52S ]V

]TD
P

•S ]V

]PD
T

21

5
a

B
, ~17!

which in combination with Eq. 16 yields

S ]P

]T D
V

5g
Cv

V
5

g

V
•~AT31CT71...!. ~18!

In the low-temperature limit~T ! QD , where QD

> 27 K for 4He! the Grüneisen parameter is only slightl
temperature dependent, which means that simple integra
of the last expression yields a pressure term that depe
only onT4 andT8 terms. Using the coefficientsA andC of
Gardneret al.,16 converted to SI units, andg>2.8, we obtain

P50.07
A~Vm!

Vm
T410.035

C~Vm!

Vm
T8. ~19!

3. EXPERIMENTAL SETUP

A copper platform~10 cm in diameter, thickness 0.6 cm!
served as a single temperature mounting plate on which
cell, a germanium thermometer, a fixed point device
heater, and a carbon resistor thermometer~CRT! were
placed. This platform was attached to the mixing cham

FIG. 1. The constant-volume cell placed on the copper platform. The p
and capillary heaters can be seen near the top.
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cold plate using Vespel SP21 rods,21 with a heat leak of less
than 2.5mW to the mixing chamber, with the platform hel
at a temperature of 1 K.

A thermal link was provided by means of a careful
calculated copper wire~B2.0 mm, length 45 mm, standar
electrolytic quality! which was connected between the pla
form and the mixing chamber cold-plate. It was chosen
such a way that 5 mW of heating power would maintain
temperature of 1 K on theplatform.

The constant-volume cell, shown in Fig. 1, was made
rigid as possible. To obtain this rigidity, the body was ma
of a 1-cm-thick stainless-steel cylinder. The low end w
closed with a copper cap containing the silver sinter. T
stainless-steel top cap contained the Straty-Adams pres
gauge. The4He volume formed in this manner measur
B2 cm3 4 cm, 12 cm3. The cell was clamped onto the cop
per plate with a brass nut.

The sinter was made with 7.6 grams XRP-5 powder,22 of
which the surface area is estimated to be23 0.76 m2.

A Straty–Adams24 strain gauge was incorporated in
the cell to measure pressure. The thin stainless-steel top
of the cell served as the flexible membrane for the gau
One of the capacitor electrodes of the gauge was glued to
post connected to this membrane using Stycast 2850F25

The second electrode was glued in position while rest
against the bottom plate, with the cell pressurized to
MPa. This procedure guarantees a very small spacing
tween the plates for pressures lower than 2.7 MPa, the ‘‘g
ing pressure,’’ thereby giving a high sensitivity. Electric
connections to the electrodes were fed through small hole
the cell wall. Coaxial cables were used to minimize str
capacitance effects.

The gauge was calibrated at 1 K against a Degranges &
Huot dead-weight tester.26 The standard deviation of the fi
to the calibration points was less than 50 Pa. The rand
error in the pressure, introduced through the capacita
measurement of the strain gauge, is smaller than 2 Pa w

t-

FIG. 2. The4He melting curve. The inset shows the region of the minimu
The temperature at which this minimum occurs is 780 mK and the dept
approximately 800 Pa.
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using the Andeen Hagerling AH2500 capacitance bridg27

The pressure of the4He melting curve minimum,Pmin

5 2.53081 MPa, was reproduced within 100 Pa.
To ensure a homogeneous growth of the crystals

needed to have a vertical temperature gradient in the
where the bottom was the coldest part. We therefore set
system in which the post of the flexible membrane could
heated. Because of limited space near this post, the hea
metal film resistor, was placed outside the cell, while
thermal contact between the post and the heater was
vided by a copper wire.

FIG. 3. The capacitance of the pressure gauge as a function of time b
averaging, for crystal 5 during the second warmup and the third cooldo
The capacitance~pressure! increase between the two measurements is du
a shift of the plug.
e
ll,
a
e
r, a
e
ro-

is possible that the filling line could be blocked with a so
when its temperature is close to 780 mK. To overcome t
undesirable effect, a second heater was connected to
4He filling line.

Another heater was placed on the platform. It consis
of 50-cm manganin wire wound on a copper cylinder~10
mm in diameter! on which a carbon resistor thermomet
was placed.

Three thermometers were placed on the platform,
SRM-767 fixed-point device and a germanium and carb
resistor thermometers. Another carbon resistor thermom
was thermally anchored to the post that connects the top
of the cell to the pressure gauge electrode. It was use
measure the temperature of the top of the cell~Fig. 1!.

The germanium thermometer was calibrated against
SRM-767 fixed-point device.28 The maximum deviation ex-
pected for this thermometer is 5 mK. A consistency che
was made by carefully measuring the minimum of the4He
melting curve. Our thermometers read 78263 mK at the
minimum, which agrees quite well with earlier measur
ments by Grilly.29

For controlling the temperature we used the carbon
sistor thermometer, which was located on the platform
combination with the platform heater, to form a PID~Pro-
portional Integration Derivative! feedback loop. The brain o
this regulator was a Hewlett Packard HP9000/300 Unix co
puter in combination with a DAC~Digital Analog Converter!
to drive the heater and an ADC~Analog Digital Converter!
to read the temperature. Both the ADC and the DAC w
contained in a Hewlett Packard HP35650. The setup w
able to maintain the temperature constant within 0.05%~pro-
grammable!, which greatly simplified the slow process o
working through the whole temperature region.

re
n.
o

is good for
FIG. 4. The pressure of crystals 3 and 4 plotted as a function of temperature. The reproducibility between a cooldown and a subsequent warmup
crystal 4 but rather poor for crystal 3. The latter could be caused by inhomogeneities in the crystal which are introduced during its growth.
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Since vacancies have the tendency to bind to impuritiesmental setup, however, were made after the first run. T

FIG. 5. Continuation of Fig. 4. The pressure as a function of temperature for crystals 5, 6, 7, and 10. All crystals show good reproducibility. The c
pressure for crystal 5 is due to a change in density at high temperatures.
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and defects in the crystal, it is important to remove them
much as possible. Commercial4He is contaminated with
3He, which is typically of the order of 1 ppm. We used t
heat flush effect to purify the4He gas.30,31A mass spectrom-
eter check showed that the3He impurity content is signifi-
cantly below 1 ppm, but on the basis of the experience
other workers who used the same technique, it is more lik
that the concentration is~far! below 1 ppb.

4. MEASUREMENTS OF THE P–T RELATION OF SOLID 4He

All data presented here have been acquired during
cool-downs of the cell. Major improvements to the expe

442 Low Temp. Phys. 23 (5–6), May–June 1997
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data from the first run are therefore included mainly for co
pleteness.

4.1. Growing the crystals

All crystals were grown in the temperature range 1.
1.4 K. As one can see from Fig. 2, the melting curve sho
a positive slope in this temperature region. While growi
the crystals, the temperature of the platform and the
pressure were held constant. The cell pressure was chos
coincide with the4He melting pressure which correspond
to the platform temperature. A vertical gradient was intr
duced by using a heater connected to the top of the
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TABLE I. Summary of all good quality crystals that were used for fitting.
Each item indicates aP 2 T curve taken upon cooling or warming. Also

o

~post-heater!. Slowly decreasing the vertical temperature g
dient across the cell therefore caused the solid to grow f
the bottom up, and the filling line, which was located at t
peak of the cell, would block last.

After growing the crystal, the volume of the cell wa
closed by increasing the pressure a few bars above
growth pressure, thereby blocking the filling line. Subs
quently, all crystals were annealed by leaving them sligh
below their melting temperature during a period of 6 hou

A total of eighteen crystals of very pure4He were pre-
pared during the two runs. Several crystals proved to
badly grown, the telltale sign being anomalous superhea
below the melting curve, sudden pressure shifts, or irrep
ducibility upon warming and cooling. We believe that th

FIG. 6. The coefficient of theT4 term for the various crystals and fits. W
clearly see the improvement as a function of crystal number indicating b
growth conditions. Also shown are the converted data~see text! by Gardner,
indicated by the two solid lines.

shown are the crystal number and an index for future reference. The m
volumes were estimated from the limiting low-temperature pressure~see
text!.

Warming

Crystal No. Cooling Cycle No. Index Vm, cm
3

3 w 1 3w1 20.981
4 c 1 4c1 20.908
4 w 1 4w1 20.908
5 c 2 5c2 20.944
5 c 3 5c3 20.940
5 w 1 5w1 20.954
5 w 2 5w2 20.944
5 w 3 5w3 20.940
6 c 1 6c1 20.947
6 w 1 6w1 20.947
7 w 1 7w1 20.936
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stability during growth. After thermally cycling the crystal
the reproducibility of theP-T relation always improved sig
nificantly, indicating that this method, in fact, is a bett
annealing method than the one that was described be
This conclusion was also reached by Iwasaet al.32 for solid
3He crystals.

4.2. Results

The P–T curves were measured by making small te
perature steps~6 40 steps over the whole temperature ran
0.2 K–1.4 K! and allowing the crystal to equilibrate at eac
temperature. This procedure is shown in Fig. 3.

We used the stability of the pressure reading as the e
librium condition. The time to reach equilibrium was typ
cally 5 to 10 minutes, after which approximately 50 da
readings were taken. Averaging reduced the noise contr
tion to the pressure reading by a factor 7 to 0.4 Pa. A sin
sweep through the temperature region would take appr
mately 7–10 hours. Also visible in Fig. 3 is the pressure s
occurring between a warmup measurement and a subseq
cooldown. This shift occurs due to a slow shift of the plug
the filling line, resulting in an increase of pressure and
decrease in molar volume. Therefore, only cooldowns w
accompanying warmup measurements will be at equal m
volume. All useful samples along with their melting tem
perature and molar volume are summarized in Table I. T
P–T relations are shown in Figs. 4 and 5. Despite t
smoothness of theP–T relation of crystal #10, we could no
use the curve for fitting because of its limited temperat
span. The molar volumes of all samples were estimated f
the limiting pressure at low temperature, using molar volu
and compressibility data on HCP4He from Grilly.29

4.3. Analysis

The data were analyzed by fitting the functions rep
senting one of the models described earlier. In addition,
compared the results with two ‘‘phonons only’’ fits to se

erFIG. 7. The average data points of aP-T measurement, with phonon-fit
and a Bose gas fit subtracted, are shown. The powers ofT that are used in
the phonon fits~see text! are also indicated.

lar
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whether including a vacancy contribution would indeed i
prove the description of the data by phonons alone. The
fitting functions which we used are

P5P01a1T
41a2T

61a3T
8, phonons, ~20!

P5P01a1T
41a2T

81a3T
10, phonons~Gardner!,

~21!

P5P01a1T
41a2e

2a3 /T, localized vacancies, ~22!

P5P01a1T
41a2T

5/2g5/2~e
2a3 /T!, free vacancies.

~23!

As one can see, we chose to use the same number
parameters in all functions for the obvious reason tha
greater number of parameters will increase the degree
freedom and automatically lead to a better fit, which ma
quantitative analysis of the fit deviations impossible.

4.3.1. Phonons

The first and second coefficient of all fits~P0 and a1!
show basically the same values, regardless of the type o
This is indicative of the intrinsic meaning of these coef
cients; hereP0 is the limiting zero-temperature pressure, a
a1 is the Debye-type phonon contribution. As a consisten
check, we compared theT4 phonon contribution to the spe
cific heat measurements by Gardneret al.16 Their coeffi-
cients for the heat capacityA ~as seen in Table I of the
article! can be converted to ourT4 coefficienta1 by using
Eq. ~19!

a157.03105
A~Vm!

Vm
@Pa/K4#, ~24!

whereA is given in J/mole K4, and the molar volumeVm is
given in cubic centimeters. Thea1 values for the various
crystals and fits is shown in Fig. 6. The solid lines repres
theA values by Gardner for the molar volumes of our cry
tals. The scatter in oura1 coefficient is too large (. 5%) to
determine a molar volume dependence, which only con
tutes a 1% change ina1 .

FIG. 8. The standard deviation of a vacancy~free boson! fit and different
phonon fits are summarized in a bar graph. A large improvement ga
from using vacancy fits is clearly seen. Note the logarithmicy scale.

444 Low Temp. Phys. 23 (5–6), May–June 1997
-
ur

fit
a
of
s

t.

y

t
-

ti-

The values for crystals 3 and 4 are much lower than
expected values, because of the poor growing conditions
these early crystals. The conditions for the later crystals
proved as we became more skilled in controlling the press
during growth.

For the remaining crystals the agreement with the h
capacity data is good, considering a scatter of 5%. An in
esting observation is the fact that the fits which do not
clude a vacancy contribution are systematically below
two expected lines, while the fits, that do include a vacan
term, only show random scatter.

4.3.2. Vacancies

Besides the phonon contribution, we expect to find
vacancy term in the pressure. As we have already indica

dFIG. 9. A comparison between the standard deviation of localized and
localized vacancy~free boson! fits. No clear difference can be seen, a
though the delocalized vacancy fit seems to be slightly better.

FIG. 10. Activation energy (a3) as a function of crystal number for the
localized and delocalized~free bosons! cases. The addition of theT8 term
decreases the coefficients by a small amount but increases the scatte
nificantly.
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TABLE II. The fit parameters for the localized and delocalized models~Bose gas! from Eqs.~24! and~25!. The lowest row shows the average values for the
last two coefficients.
Localized vacancies Delocalized vacancies~free bosons!

No. P0 , a1 , a2 , a3 , P0 , a1 , a2 , a3 ,
MPa MPa•K24 MPa K MPa MPa•K24 MPa•K25/2 K

3w1 2.5316 2.8533103 2.731 7.608 2.5316 2.7883103 0.2217 5.056
4c1 2.6227 3.3263103 7.467 10.54 2.6227 3.2873103 0.2830 7.090
4w1 2.6227 3.3093103 4.957 10.27 2.6227 3.2813103 0.2005 6.912
5c2 2.5780 3.6733103 125.4 14.15 2.5780 3.6673103 5.838 11.000
5c3 2.5824 3.6033103 12.87 11.14 2.5824 3.5883103 0.5914 7.972
5w1 2.5660 3.5683103 2.306 9.334 2.5660 3.5513103 0.1251 6.341
5w2 2.5780 3.6203103 81.17 10.74 2.5780 3.6033103 0.3720 7.558
5w3 2.5824 3.6113103 6.561 10.39 2.5824 3.5903103 0.3036 7.218
6c1 2.5742 3.7893103 3.562 9.685 2.5742 3.7263103 0.2141 6.821
6w1 2.5742 3.5853103 2.676 9.308 2.5742 3.5663103 0.1459 6.326
7w1 2.5874 3.6333103 3.025 9.971 2.5874 3.6183103 0.1389 6.787
Avg. – – 7.355 9.83 – – 0.246 6.77
it is possible that the phonon contribution, which can have
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T6, T8, and evenT10 terms, in addition to the usualT4 term,
is indistinguishable from the exponential-like vacancy co
tribution. It is for this reason that we first compared fits w
four free parameters containing only phonon terms~T4, T6,
T8, andT4, T8, T10! and the limiting zero temperature pre
sure term (P0) with other fourth-order fits combining th
lower-order pressure and phonon terms (P0 ,T

4) with a va-
cancy contribution~free bosons!.

It was found that for all crystals the standard deviati
would be at least a factor of 2, but mostly an order of ma
nitude smaller when fitting vacancies to the experimen
data. This means that our experimental precision clearly
cides in favor of vacancies. More important, the deviation
the phonon fits from the data proved to be systematic, w
the deviation of the vacancy fits showed only random sca

This can be clearly seen in Figs. 7 and 8. Figure 7 sho
deviations up to 200 Pa for the phonon fits, with a press
resolution of. 0.4 Pa. The largest deviations are seen at
highest temperatures, where the vacancy contribution is l
est. Figure 8 shows the standard deviation for several fit
TABLE III. The same table as before, but now theT8 phonon term has been in
row contains average values for the vacancy coefficients.
-

-
l
e-
r
le
r.
s
re
e
g-

son was made between the localized model and the free B
gas model. The standard deviation from the data is show
Fig. 9. The models fit the data well, but within the expe
mental precision it is difficult to make a selection.

We must also bear in mind that, although a combinat
of aT4 phonon term with a vacancy contribution fits the da
better than aT4, T8 phonon term, the data of Gardneret al.
suggest the presence of higher-order phonon terms, w
they proved by showing that the heat capacity followed
universal function of T/Q for all molar volumes. It is pos-
sible, however, that a small part of theT7 term is still due to
vacancies. This could be within the experimental err
which is especially close to the melting temperature of
samples, where the data deviate considerably from the
versal function. This implies that a fit containing bothT4,
T8 phonon and vacancy terms should be used, and tha
magnitude of the higher-order terms need not be as larg
found by Gardneret al.16
cluded. This term lowers the vacancy terms and increases the scatter. The lower
Localized vacancies Delocalized vacancies~free bosons!

No. P0 , a1 , a2 , a3 , P0 , a1 , a2 , a3 ,
MPa MPa•K24 MPa K MPa MPa•K24 MPa•K25/2 K

3w1 2.5316 2.8293103 2.292 7.525 2.5316 2.7683103 0.1873 4.976
4c1 2.6227 3.2423103 2.046 9.747 2.6227 3.2163103 0.0788 6.283
4w1 2.6227 3.2333103 7.385 9.042 2.6227 3.2153103 0.0305 5.658
5c2 2.5780 3.5843103 5349 19.89 – – – –
5c3 2.5824 3.5413103 10.72 11.87 2.5824 3.5353103 0.4943 8.703
5w1 2.5660 3.5123103 0.2751 8.106 2.5660 3.5013103 0.0149 5.065
5w2 2.5780 3.5543103 4.091 11.06 2.5780 3.5493103 0.1900 7.891
5w3 2.5824 3.5463103 2.529 10.25 2.5824 3.5383103 0.1198 7.101
6c1 2.5742 3.6923103 1.827 10.02 2.5742 3.6883103 0.1124 7.180
6w1 2.5742 3.5333103 0.6505 8.634 2.5742 3.5243103 0.0367 5.680
7w1 2.5874 3.5583103 0.0151 5.971 – –
Avg. – – 4.467 9.54 – – 0.126 6.49
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TABLE IV. The average physical properties as derived from the fit coefficients for localized and delocalized models.
Localized Delocalized~free bosons!

s/kB , K F/kB , K M /M 4He D, K F/kB , K

T4 24.1160.18 9.8360.32 5.1960.7 1.3160.17 6.7760.25
T4,T8 24.6160.33 9.5460.55 3.5860.9 2.0560.47 6.4960.43
4.4. Discussion
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We will now discuss the merits of each model and t
validity of the parameters that can be distilled from the
coefficients. Because it is evident that the phonon part
cludes aT8 term, we extended the vacancy fits to incorpor
this term as well. In order to restrict the number of free
parameters, we determined the ratio of theT4 and theT8

coefficients from Gardner’s data, thereby giving an up
limit on the phonon contribution.

The effect of introducing this additional term is illus
trated in Fig. 10, where the activation energy is plotted for
crystals. Including theT8 term decreases the magnitude
the energies but increases the scatter.

The fit coefficients for the two models are summariz
in Table II and Table III. The first and second coefficien
P0 anda1 were discussed before. For the localized model
third and the last coefficients represent

a25NS ]F

]V
2T

]s

]VDes/kB, ~25!

a measure of the nonconfigurational entropy, and

a35F/kB , ~26!

the activation energy, respectively. Using the calculated
ues as shown in Table II, in combination with the data
Lengua and Goodkind17 for N • ]F/]V, we find for the non-
configurational entropys 5 24.11kB . In that case, the va
cancy concentration at the melting temperature of the c
tals will be approximately 93 1026. Compared to the
phonon entropy, which is. 3 3 1023kB per atom, such a
large negative entropy per vacancy seems rather unphys
In addition, the extremely low concentration is in clear d
agreement with other work in which concentrations as h
as 0.1 to 1 percent were found.12,17This leads us to conclud
that the localized model does not seem to be appropriate
the description of our results.

For the free Bose gas model the third coefficient can
interpreted as

a25kB
5/2S M

2p\2D 3/2, ~27!

from which we can calculate the effective mass M of t
vacancies by

M

M 4He
51.3242531023

•a2
2/3. ~28!

The last coefficient

a35F/kB ~29!

will again yield the activation energy. Table IV summariz
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The calculated values for the effective masses are la
than those of a bare4He atom. This is to be expected sinc
the vacancy will not be able to move freely but will fe
some interaction with the surrounding atoms. This inter
tion will reveal itself by the larger mass.

In the tight binding approximation (D @ T), the band
width can be determined from the effective mass with E
15. From Table IV it can be seen that the band width is
the order of 1.3–2.1 K, which again indicates that the vac
cies are only partly delocalized. This also means that a
scription in terms of free bosons is not completely val
since the conditionD @ T has not been quite met.

In the limit where the activation energy is much larg
than the temperature and the band width (F @ D,T), a con-
dition which is satisfied in our case, the free Bose gas mo
with the effective mass replaced by the band width, acco
ing to 15, is equivalent to a band model.19,20 The values for
the band width given in the table for the tight binding a
proximation are therefore equal to the values that would h
been obtained using this band width model.

Lengua and Goodkind17 determined the molar volume
dependence of the activation energy. On the basis of t
data we expectF54 K for the molar volumes investigate
by us, which is much lower than the values we actua
found. The discrepancy can be explained by the fact that
crystals grown by Lengua and Goodkind may have contai
a much lower concentration of dislocations than ours. Si
dislocations or strains in the crystals will have a localizi
effect on the vacancies, this will yield an increase of t
effective mass and the energy of formation.

Another source of error could be the assumptions
have to make on the phonon contribution. This might se
worse than it actually is because we only assumed a ce
functional behavior~T4 andT8!. The magnitude of the pho
non contribution is still fitted and determined within our e
periment. For this reason, we expect these errors to b
minor importance.

5. CONCLUSIONS

We have shown that it is possible to detect the prese
of vacancies by measuring theP–T relation of a crystal. It
was found that the phonon contribution to the pressure i
good agreement with heat capacity measurements by G
ner et al.16 The additional vacancy term proved to be qu
small and its magnitude depends on the assumptions one
to make on the phonon contribution. Within the framewo
of the free Bose gas model we have determined the effec
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mass of the vacancies, which was 3–5 times the bare mass
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chu-
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of a He atom, corresponding to a band width of 1
22.1 K.

It was found that the crystal quality can be improv
more by thermal cycling than by isothermal annealin
Higher activation energies than those measured by other
thors indicate that our samples may contain a high conc
tration of dislocations. Improved measurements of, for
ample, the heat capacity combined with simultaneo
pressure measurements, and ultrasound measuremen
consider crystal quality, would clarify these conflicting r
sults.
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Exchange and spin relaxation in solid 3He
B. Cowan and M. Fardis1)
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Spin relaxation measurements in solid3He in the temperature region where exchange dominates
the behavior are reviewed and reanalyzed. A model which brings together the complex
exchange modulation of the dipolar interaction into a single correlation time is adopted. This
may be regarded as introducing an effective pairwise exchange Hamiltonian. On the
basis of this model new procedures are proposed for obtaining mathematical expressions for the
dipolar autocorrelation function and the spectral density functions, which determine the
relaxation times. By the appropriate treatment of short-time and long-time asymptotic behavior,
together with a method for taking into account the mid-range behavior, it is possible to fit
the experimental data extremely well. The success of this procedure seems surprising in the light
of multiple spin exchange in solid3He. It is an indication that the dominant exchange
processes scale with density in a similar way. This conclusion is supported by path-integral
Monte Carlo calculations. Some consequences and implications of this conclusion are discussed.
© 1997 American Institute of Physics.@S1063-777X~97!01205-X#
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Although Thouless1 pointed out the importance of mu
tiple spin exchange in solid3He some time ago, it was onl
with the discovery of low-temperature, spin-ordered pha
that its real significance was appreciated.2 Certainly, thermal
capacity and magnetization measurements in the param
netic phase exhibited some deviations, but the existenc
the uudd phase was simply incompatible with pairw
Heisenberg exchange. In retrospect, it is surprising that
pairwise exchange model was found to be so successfu
the explanation of the higher-temperature NMR behavior
solid 3He. This question is addressed in the present pap

Traditionally, NMR proved to be a particularly usefu
tool for the study of exchange in solid3He. The use of NMR
provides a fairly direct probe of spin behavior through t
measurement of spin susceptibility, spin relaxation tim
and spin diffusion. In the temperature region of about 1
the spin relaxation is determined solely by internuclear
change. Here the temperature is high enough for the
change ‘‘bath’’ to be tightly coupled to the lattice, while it
low enough to account for thermal excitation of the vaca
cies. Historically, this was seen in spin relaxation tim
which were found to be independent of temperature,
which varied rapidly with density.3

2. SPIN RELAXATION–THE FORMALISM

Spin relaxation in solid3He in the vicinity of 1 K is
caused by the exchange modulation of the internuclear d
lar interaction. The relaxation timesT1 andT2 for this sys-
tem are given by

1

T1
5J1~v!14J2~2v!, ~1a!

1

T2
5
3

2
J0~0!1

5

2
J1~v!1J2~2v!, ~1b!
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transform of the corresponding dipolar correlation functio
Gm(t):

Gm~ t !5
Tr$Dm~ t !Dm~0!%

\2 Tr$I z
2%

~2!

andDm are the components of the dipolar Hamiltonian

Dm5
m0\

2g2

4pA5 (
i , j

~21!m
Y2

2m~V i j !

r i j
3 Ti j

m .

The spin part of the interaction is contained in the seco
order spin tensor operatorsTi j

m :

Ti j
05I i I j23I z

i I z
j ,

Ti j
15A3

2
$I z

i I1
j 1I1

i I z
j %52~Ti j

21!1,

Ti j
252A3

2
I1
i I1

j 5~Ti j
22!1,

where the indexm denotes the total induced spin flip.
The exchange interaction originates in the large ze

point motion of the3He atoms, which results in the move
ment of atoms among the lattice sites. The crucial point
multiple spin exchange is that the hard cores of the ato
can favor the coherent exchange of more than two particl1

However, since3He is a spin 1/2 fermion, an equivalen
description of this motion is possible in terms of a spin e
change Hamiltonian. This may be written as

Hx52(
n

~21!nJnPn
s , ~3!

wheren labels the number of particles in each cycle,Jn is
the exchange frequency forn particle exchange, andPn

s is
the generator of the permutation ofn spins.

448/000448-07$10.00 © 1997 American Institute of Physics



In the bcc phase the dominant 2-, 3-, and 4-spin ex-
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change frequencies are of similar order of magnitud
( ; 107 Hz). However, since the exchange of an odd num
of particles is ferromagnetic, while the exchange of an e
number is antiferromagnetic, the resultant exchange can
small: a consequence of inexact cancellation of the ferrom
netic and antiferromagnetic tendencies. Thus we have a f
trated system and there is noa priori reason to expect the
observed behavior to be ferromagnetic or antiferromagne
Indeed, different properties of such a system can exhibit
ferent characteristics. This is particularly striking in tw
dimensional solid3He films, which will be discussed fo
comparison in Sec. 11.

The lattice structure of the bcc solid means that ne
nearest-neighbor exchanges should also be considered.
together with the variety of multiple spin-exchange cycl
leads to a complex dynamical system, although there
simplification which follows since three spin exchanges c
be expressed as a superposition of pairwise exchanges.
withstanding these complexities, we shall start by consid
ing a simplified and idealized model. In this paper we w
analyze initially, in detail, the consequences of the pairw
Heisenberg exchange Hamiltonian. We will show that t
model is consistent with spin relaxation measurements! H
ing done this, we will then attempt to explain the reasons
this apparent success in the light of the current understan
of multiple spin exchange. For now, therefore, the excha
Hamiltonian to be considered is

Hx522J(
i, j

nn

I i I j , ~4!

wherei and j label the spin sites, and the sum is taken o
nearest neighbors.

We now have a well-defined problem for solution. Usi
the expression for the exchange Hamiltonian, we can w
the time evolution of the dipolar components as follows:

Dm~ t !5expS iH xt

\ DDm expS 2
iH xt

\ D ,
which, from Eq.~2!, gives the dipolar autocorrelation func
tion. Fourier transformation then gives the spectral den
functions and we can find the relaxation times from Eq.~1!.
Unfortunately, as is common in systems of this complex
the problem does not have an analytic solution. Thus ef
must be made to approximate methods. In the following s
tions we will review the traditional approaches, before d
scribing an improved treatment in Sec. 7.

3. MOMENT EXPANSIONS

At short times, the dipolar autocorrelation function m
be expanded in powers of time as

G~ t !5
1

3 HM22
1

2
M4t

21...J . ~5!

The coefficients expressed in this way correspond to the c
ventional moments of the absorption lineshape. The imp
tant point about such an expansion, as first noted by Wal4

is that such moments can be calculated exactly without
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evaluation of higher-order moments becomes increasin
difficult, but by diligent application and/or with the aid of
computer meaningful results may be obtained. For our s
tem, the second and fourth moments have been evalua
The second moment is

M25
9C

20

g2\2

a6
,

wherea is the lattice spacing, andC is a constant which
depends on the crystal lattice:

C512.25 for a bcc lattice,

C514.45 for a hcp lattice.

And the fourth moments are evaluated to be

M4522.8M2J
2 for a bcc lattice,

M4542.0M2J
2 for a hcp lattice.

Note that, as expected, the second moment is independe
motion, here parametrized byJ, while the fourth moment is
strongly dependent onJ. Armed with very little else, the
conventional approach at this point is to choose an appro
ate functional form forG(t), which is consistent with these
values ofM2 andM4 .

4. TRADITIONAL TREATMENT

Experimentally it can be seen fromT1 measurements on
solid 3He that the spectral density functionJ(v) is reason-
ably approximated by a Gaussian in the hcp phase and
decaying exponential in the bcc phase. Thus, the hcp co
lation function G(t) should be approximately Gaussia
while that for the bcc phase should have a Lorentzian pro
In the conventional treatment of exchange-induced rel
ation in solid 3He the calculatedM2 andM4 are fitted to
these functions. Using the Fourier transform then yields
pressions for the spectral density functions, from which
relaxation times may be found as a function ofJ:

G~ t !5
M2

3

bcc

1

11M4t
2/2M2

, G~ t !5
M2

3

hcp

expS 2
M4

2M2
t2D .

But sinceM4 is known in terms ofM2 andJ, we have

G~ t !5
M2

3

1

1111.4J2t2
, G~ t !5

M2

3
exp~221J2t2!.

Using the Fourier transform yields

J~v!5
0.31M2

J
expS 2

v

3.38JD ,
J~v!5

0.05M2

J
expS 2

v2

84J2D ,
from which may be found the relaxation times as a funct
of exchange frequencyJ and Larmor frequencyv.

These spectral density functions make definite pred
tions about the frequency dependence of the relaxation tim
in particular, that ofT1 . In practice, these are not quite co
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sistent with the extensive experimental data available. Since
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these expressions have a single frequency parameterJ and
since the coefficient ofv/J is fixed by the short time expan
sion, while the functional form of the high-frequency beha
ior might be correct, it is not possible to ensure precise
merical agreement, because there is no free parameter
which to scale the frequency. This casts doubt on the va
of J inferred from these analyses. A previous attempt to
prove these functional expressions has been made by G
et al.5

The problem is to obtain a plausible approximation
the spectral function on the basis of limited information. P
another way, this means making the best possible use o
information available. Thus far, we have considered kno
edge of the short-time behavior of the autocorrelation fu
tion. In the next section we see that information is availa
about its long-time behavior. In Sec. 6, we see that so
thing may even be said about intermediate behavior as w
All information is drawn together in Sec. 7, where ‘‘im
proved’’ expressions for the spectral density/correlat
function are obtained.

5. SPIN DIFFUSION

The flip-flip nature of the exchange interaction mea
that any excess magnetization in a part of the specimen
gradually become distributed uniformly. This diffusive pr
cess is very much slower than that found in fluids, but it m
still be observed by the technique of spin echoes in a fi
gradient.6

SinceJ is the rate at which theu↑↓& spin configuration
changes to theu↑↓& configuration, a simple counting argu
ment implies that the order of magnitude of the diffusi
coefficient for the magnetization will be' Ja2. Once again,
exact calculation of this relation, to find the numerical co
ficient is impossible. However, a moment method
approximation7 may be used, and it is actually possible
place bounds on the value of the coefficient.8 The best esti-
mates are found for the two lattices:

D50.655Ja2 for a bcc lattice,

D50.860Ja2 for a hcp lattice.

These relations are well-supported by spin ec
measurements.8,9,10

Diffusion is a hydrodynamic process whose validity
limited to the long wavelength, long time limit. At shorte
times and distances the precise details of the atomic mo
become important. So far as spin relaxation in solid3He is
concerned, this has the implication that both the long-ti
behavior ofG(t) and the low-frequency behavior ofJ(v)
are determined by the spin diffusion.12We therefore have the
asymptotic expansion

G~ t !;
\2g4aAp

60&D3/2
t23/21..., ~6!

where a is the spin density. This diffusive hydrodynam
behavior has its corresponding effect in the frequency
main. We therefore have
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In both these expressionsD may be eliminated in favor of
J. From Eq.~7! the behavior ofJ(v) at short frequencies
provides another means of measuring the spin diffus
coefficient.12 This makes it possible to observe smaller v
ues ofD, which may be further extended throughT1r mea-
surements. Note thatJ(v) is not analytic at the origin, in
contrast to the exponential and Gaussian functions discu
in the previous section.

In Sec. 3 we obtained an expression for the short-ti
behavior of the dipolar autocorrelation functionG(t). In this
section we have obtained an expression for its long-time
havior. Any approximation function should satisfy both the
conditions.

6. UNIVERSALITY AND THE T1 MINIMUM

It is well-known that a minimum inT1 occurs as the
correlation time of the motion varies at a given Larmor fr
quency. The frequency at which the minimum is observ
gives an order-of-magnitude estimate of the velocity. T
minimum in T1 is related to the behavior of the spectr
density function in the middle range. In this section we sh
formalize these ideas.13 This will allow us to augment the
long- and short-time behavior ofG(t) with further informa-
tion which any approximation function would accept.

Within the framework of the Heisenberg pairwise e
change model there is a single microscopic timet ; J21,
which characterizes the dynamical behavior of the sp
From it a number of general interferences can be made a
the relaxation in such cases. This can be illustrated as
lows. Let us write the autocorrelation functionG(t) as the
product of its initial valueG(0) and a normalized shap
functiong:

G~ t !5G~0!g~ t/t!.

The shape functiong(t/t) is unity att 5 0 and its dimension-
less argumentt/t indicates thatt is the characteristic time o
this system; it is the natural time unit in terms of which t
dynamical behavior of the system scales. Note that for s
plicity we are considering a rotationally invariant system
thatG(t) need not be encumbered by a spin-flip subscrip

The spectral density functionJ(v) is found from the
Fourier transform ofG(t):

J~v!5E
2`

`

G~0!g~ t/t!exp~ ivt !dt,

which, after changing the integration variables throughx
5 t/t, can be written

J~v!5G~0!t j ~vt!,

where j (z) is the Fourier transform of the shape functio
g(x).

For simplicity let us start with a simplified expressio
for T1

1

T1
5J~v!,
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where the double frequency term is disregarded. It is a
io
al
a

le

re

-

i-

a
a

o-

th
be

si
nc

o

on
and

lid
ec-

re-
f

by
is

ri-

The
ime
nd-
tral
straightforward matter to show that the use of this express
does not detract from the validity of our gener
conclusions13 by subsuming the double frequency term into
compositeJ(v) function. The simplified expression forT1 is
now

1

T1
5G~0!t j ~vt!.

If we divide this expression byt or multiply it by v, then the
resulting expressions 1/(T1t) and v/T1 will depend onv
andt only through the productvt:

1

T1t
5G~0! j ~vt!, ~8!

v

T1
5G~0!vt j ~vt!. ~9!

This means thatT1 , which is measured at a fixedt by vary-
ing v, andT1 , which is measured at a fixedv by varyingt,
will be universal functions ofvt for a given system.14 The
data plotted in this manner will therefore fall on sing
curves. This will be seen in Sec. 8. For now, our concern
to discuss theT1 minimum.

In general,@except in very unusual circumstances whe
j (0) diverges# j (z) starts fromj (0) and initially is a slowly
decreasing function of its argument, as in Eq.~7!. The prod-
uct z j(z) starts from zero, whenz is zero, and initially grows
linearly. However, for large values ofz the decay ofj (z)
outweighs the linear growth of thez prefactor and the prod
uct decreases. Somewhere in between, whenz is of the order
of unity, say, atz 5 z8, z j(z) must accordingly have a max
mum.

Looking at the expression forT1 as a function oft ~at a
fixed frequency! @Eq. ~9!#, we see that the existence of
maximum inz j(z) tells us that there must necessarily be
minimum inT1 as the characteristic time is varied. The ‘‘p
sition’’ of the T1 minimum is given byv0t 5 z8 or

tmin5z8/v0 .

Thus, when a minimum is observed, within a constant of
order of unity, the characteristic time of the motion may
estimated by the Larmor period. The value ofT1 at the mini-
mum may be written, from Eq.~9! as

1

T1
min5

G~0!z8 j ~z8!

v0

or, sinceG(0) 5 M2/3, and denoting the numberz8 j (z8) by
K21, we can write

T1
min53K

v0

M2
.

We see that at the minimum the value ofT1 is proportional
to the Larmor frequency. The numberK depends on the
shape of the autocorrelation function or the spectral den
function. Thus, for example, for a Gaussian correlation fu
tionK 5 0.657, while for an exponentialK 5 1. The value of
K for a given system may be found from observations
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T1 minima over a range of frequencies. This informati
may be used in the approximation of the spectral density
autocorrelation functions.

7. APPROXIMATING G(t ) AND J(v)

Let us now consider specifically the bcc phase of so
3He. We proceed to the construction of an approximate sp
tral density function, which is consistent with i! the short-
time microscopic moment expansion ofG(t), ii! the spin
diffusion in the hydrodynamic limit, and iii! the K value
characterizing the mid-range region of theT1 minima. In
order to find the value ofK we have collectedT1 minimum
observations which we have plotted against Larmor f
quency in Fig. 1. TheT1 data were divided by the square o
the molar volume to remove the small dependence onM2 ,
which is present when the characteristic time is varied
changing the density. The straight line through the data
given by

T1
min ~ in ms!

Vm
2 ~ in cm6!

52.82631022
v0

2p
~ in MHz!.

This ‘‘fit’’ to the data takes into account the larger expe
mental error in the data points at 50 MHz.

The functional form adopted to approximateG(t) is
given by

G~ t !

G~0!
5

a1
~11b1

2J2t2!4
1

a2
~11b2

2J2t2!3/4
,

where the parametersa1 , a2 , b1 , and b2 were chosen in
such a way as to satisfy the above-mentioned criteria.
second term of this expression gives the correct long-t
behavior, while its Fourier transform leads to the correspo
ing short-frequency form. The expression for the spec
density function can be written in analytic form as

J~v!

G~0!
5

a1p

96b1J
H S v

b1J
D 316S v

b1J
D 2115S v

b1J
D

FIG. 1. T1 minima at different Larmor frequencies for bcc
3He. s Richard-

son, Hunt, and Meyer~1965!, h Richards, Hatton, and Giffard~1965!, d

Reich~1963!, L Chapellier, Bassou, Devoret, Delrieu, and Sullivan~1985!.
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1
a2
21/4

A2

p
GS 14D 1

b2J
S v

b2J
D 1/4K1/4S v

b2J
D .

~10!

The parameter values are

a150.840, a250.160,

b151.768, b252.736,

G is the gamma function, andK is a Bessel function. We
have also included a factorj by which the lattice sum value
of M2 is renormalized as a result of the zero-point moti
that averages the interparticle spacinga.14We find a value of
j 5 0.787; further discussion of this matter is deferred to S
9.

The adiabatic part ofT2 is given in terms of the zero
frequency value ofJ(v):

1

T2
50.270

M2

J
,

which is the quantitative manifestation of the qualitative
sultT2

21 5 M2tc . In other words,tc 5 0.270/J; we see that
J21 is a measure of the characteristic time for the exchan
but now with a precise numerical multiplier.

8. UNIVERSAL PLOT OF RELAXATION DATA

In Fig. 2 we show a plot of all publishedT1 measure-
ments on3He in the bcc phase presented in ‘‘reduced’’ form

We know, in general, from the discussions in Sec. 6 t
for a given systemT1 /J is a single-valued function o
v0 /J. Since the exchange frequencyJ is proportional to the
frequency at which theT1 minimum is observed, it follows
that the same universal behavior will be displayed when p
ting T1 divided by the frequency of the minimum again

FIG. 2. Reduced plot ofT1 data for bcc
3He together with the ‘‘theoretical’’

curve.s Richardson, Hunt, and Meyer~1965!, h Richards, Hatton, and
Giffard ~1965!, n Thomlinson, Kelley, and Richardson~1972!, , Bernier
and Guerrier~1983!, L Chapellier, Bassou, Devoret, Delrieu, and Sulliv
~1985!, d Reich ~1963!, 3 Kirk and Adams~1972!, 1 Beal, Giffard, Hat-
ton, Richards, and Richards~1964!.
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curve we have plotted in Fig. 2, where theT1 values were
also divided by the square of the molar volume to acco
for the variation ofM2 @and thusG(0)# with density.

The experimental points, as we can see, fall very well
a single curve. At higher frequencies there is some disce
ible deviation from the universal behavior, which we a
tribute to different crystal orientations; in the analysis w
make the assumption that we have a polycrystalline sam
taking averages over the crystal orientation. In the lo
frequency region we see that the data of Richardset al. fall
consistently below the other points. It is believed that this
a consequence of inaccuracies in the determination of
molar volume of the crystals.

Presenting the relaxation data in this manner facilita
the testing of proposed ‘‘theoretical’’ forms for the spectr
density functionJ(v). We have the proposed function in E
~10!. For this function the relation between the exchan
frequency and the frequency of the minimum is found to

v0
min52.42J.

Use of this expression enables Eq.~10! to be plotted on the
graph of experimental data. The solid line in Fig. 2 sho
this plot. We conclude that Eq.~10! does indeed provide a
good approximation of the functional form of the spect
density function.

The result of all these considerations is that the excha
frequency can be deduced in a consistent manner from
measurements made at each molar volume. The best fi
our analysis yields

J

2p
514.08SVm~cm3!

24 D h

MHz, ~11!

where the exponenth 5 18.3. This compares favorably wit
the results obtained by other mean.16

9. T1 SUM RULES AND MOMENTS

Moments were introduced originally in the study
transverse relaxation. However, since there is a close con
tion between the moments and the autocorrelation func
G(t), as we have seen in Eq.~5!, and since the spin lattice
relaxation is related toJ(v), which is the Fourier transform
of G(t), it follows thatT1 and the moments must be relate
We shall investigate such relationships in this section.

Starting from the expression for the dipolarT1 , Eq.~1a!,
after changing the variables in the Fourier integral for t
double frequency term, we can write

1

T1
5E

2`

` HG~ t !12GS t2D J exp~ ivt !dt.
Again we have assumed rotational invariance for simplic
but the generalization to distinctG1(t) andG2(t) functions
is straightforward. Inverting this Fourier integral, we obta

G~ t !12G~ t/2!5
1

2p E
2`

` exp~2 ivt !

T1
dv,

and then expanding in powers of time leads to
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n50

`
G~n!~0!

n!
tn12(

n50

`
G~n!~0!

n! S t2D
n

5
1

2p E
2`

`

(
n50

`
~21!nvntn

n!T1
dv.

Equating the powers of time then gives, since for evenn the
integral is symmetric,

E
0

` vn

T1
dv5~21!npS 11

1

2n21DG~n!~0!,

which leads to a set of frequency sum rule expressions
T1 for increasingn. The sum rules can be expressed in ter
of moments, using the relations established in Eq.~5!. In this
way, forn 5 0,2,4, for example, we obtain

E
0

` dv

T1
5pM2 ,

E
0

` v2dv

T1
5

p

2
M4 ,

E
0

` v4dv

T1
5
3p

8
M6

in the case of rapid motion.
If one has a set ofT1 data taken over a range of Larmo

frequencies, then the natural inclination is to interpol
smoothly between the points while extrapolating in an int
ligent way beyond the end points. Relations such as the
rules above provide a test of the validity of such procedu
One can immediately tell if all the area ofJ(v) has been
exhausted or if there is some unforseen behavior hiding
tween or beyond the experimental points.

In the present context theM2 sum rule may be used fo
a determination of the renormalization factorj alluded to in
Sec. 7. The area under the ‘‘universal’’ plot ofT1 data in
Fig. 3 gives the renormalized value forM2 and the line
shown corresponds to our spectral density function of
~10!, with j 5 0.787.

SinceM4 5 const3 M2J
2, it follows thatM4 will be

renormalized by the same factor. The area under the ‘‘u

FIG. 3. Second moment sum rule for bcc3He.
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versal’’ plot ofT1 data in Fig. 4 gives the renormalized valu
for M4 and the line corresponds to the spectral density fu
tion of Eq.~10!, with the chosenj 5 0.787. The fit of the line
through the experimental data is not so good in this ca
particularly whenf 0 / f 0

min . 1. This plot enhances the high
frequency discrepancies inT1 ; what we are seeing here is
magnified version of the high-frequency deviations in Fig.

10. MULTIPLE-SPIN EXCHANGE

The reality of the situation is that pairwise Heisenbe
exchange is not adequate to describe the zero point motio
the bcc phase of3He. This becomes evident at lower tem
peratures. Thermal capacity and magnetic susceptibility m
be analyzed on the basis of pairwise exchange, and the
ical expressions for these properties may be obtained
power series in inverse temperature. At lower temperatu
where higher-order terms are important, the experime
data are not consistent with the simple Heisenberg mo
Even lower temperatures there is a phase transition to a c
plex, antiferromagnetic, spin-ordered phase, which definit
requires multiple spin exchange for its explanation.

This being the case, it seems then paradoxical that
scaling treatment of relaxation works so well and, in partic
lar, that the data can be ‘‘reduced’’ so as to fall so well
the universal curve in Fig. 2. The high quality of this reduc
data plot implies that so far as NMR relaxation is concern
the system can be understood in terms of a single correla
time that characterizes the motion. In the context of
above discussion, the system may be regarded, equivale
as having an effective pairwise exchange interaction. T
effective pairwise exchange frequency will be some fun
tional combination of the frequencies of the various int
change processes. Matsumotoet al.17 have calculated the
fourth moment for a restricted subset of two-, three-, a
four-particle exchanges. We thus find the effective pairw
exchange frequency determining the NMR relaxation tim
to be the combination

Jeff
2 5Jnn

2 214JnnJt16.7JnnKp161Jt
2254JtKp118Kp

2,

FIG. 4. Fourth moment sum rule for bcc3He.
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whereJnn is the pairwise exchange frequency,Jt is the fre-
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quency of the three-particle exchange, andKp is the four-
particle exchange frequency for interchanges in a plane.

The reduced data plots incorporate measurements m
over a range of molar volumes, where the exchange va
over some two orders of magnitude. The quality of the
duced data plot then indicates that the interchange freq
cies of the various exchange cycles scale with density
similar manner, as Eq.~11!. Ceperley and Jacucci have in
vestigated this18 using path-integral Monte Carlo calcula
tions. They obtained the frequencies for a variety of tw
three-, four-, and six-spin exchanges~planar 5-spin exchang
has also been calculated19!. They found that the largest ex
change frequencies scale with density in a similar man
theexponentsarehnn5 19.0,h t 5 19.8, andhp5 17.6. There
is, however, noa priori reason to expect these domina
exchange processes to vary with density in the same w
indeed, it is a surprise that they do. One is led to wond
with Cross,20 if multiple spin exchange might be no mor
than a descriptive construction rather like the planetary e
cycles of Ptolemy, and that there may be a more elemen
physical origin of the atomic motion. Currently there is n
satisfactory, first-principles, theoretical explanation, but it
likely that vacancy-interstitial formation is the fundamen
process out of which all exchange cycles are built.19 The
different trajectories taken by the vacancy before reunit
with its interstitial would then correspond to differe
multiple-spin exchange cycles, the exponenth reflecting the
probability for the creation of the pair. The elucidation
this problem remains one of the unsolved problems in
theory of solid helium.

11. SOLID 3He FILMS

Further insights into the nature of exchange in bulk so
3He may be found from a consideration of two-dimensio
films of 3He. In submonolayer films the observed spin rela
ation behavior is similar to that in three dimensions. T
relaxation data may be analyzed21 in a manner similar to tha
described above. Again, the data may be scaled onto a s
curve, implying that here also the various exchange frequ
cies scale with density in the same way. When expresse
a function of interparticle spacing, the variation in two a
three dimensions is similar.

The situation is very different, however, when consid
ing multilayer films of 3He. Here the main experimenta
tools have been measurements of spin susceptibility
thermal capacity. Starting with a submonolayer film, as
adsorbate density increases, a 2D triangular close-pa
solid is formed. Increasing the density further, upon comp
tion of the monolayer, there is promotion of atoms to t
second layer. It is initially a fluid, but as the density is i
creased, the second layer solidifies. The first paramagn
layer plays a very small part in the observed spin behav
this has been confirmed by analyzing the two-compon
NMR line profiles and by replacing the first layer with
monolayer of4He.22

When it forms, the second solid layer exhibits antiferr
magnetic exchange. However, when the density is increa
further, the third fluid layer is formed. This fluid overlaye
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the antiferromagnetic to the ferromagnetic state. Simu
neous thermal capacity and magnetization measurem
have been made.23 These measurements indicate that t
changeover becomes manifest in these two properties at
ferent densities. A ferromagnetic thermal capacity can co
ist with an antiferromagnetic spin susceptibility! This can
understood in terms of the different combinations of e
change frequencies which enter into the expressions for t
mal capacity and spin susceptibility. The fluid overlay
shifts the balance of the different exchange processes
contrast with the bulk solid, in 2D the various exchange f
quencies can be varied in different ways; here one has
facility to continuously tune the frustrated spin exchange.24,25

The rich variety of phenomena in bulk solid3He is therefore
likely to be exceeded dramatically in solid3He films.
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Spin–lattice relaxation in phase-separated 3He–4He solid solution

lid
N. P. Mikhin, A. V. Polev, È. Ya. Rudavskii, and V. A. Shvarts

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted November 14, 1996!
Fiz. Nizk. Temp.23, 607–614, May–June~1997!

The spin–lattice relaxation time in a3He–4He solid solution with the initial concentration
3.18%3He is measured during phase separation by using the pulsed NMR technique. The
relaxation time in a concentrated bbc phase formed as a result of phase separation is
found to be independent of temperature over the entire range of its existence and is determined
by the Zeeman-exchange interaction mechanism. In the dilute hcp daughter phase, the
spin–lattice relaxation time increases on cooling according to the lawT1 ; x2n, where
n50.8860.12, andx is the3He concentration. The values ofT1 in this phase coincide with the
values corresponding to a homogeneous~nonseparated! solution of the same concentration.
© 1997 American Institute of Physics.@S1063-777X~97!01305-4#

INTRODUCTION the most interesting features of magnetic relaxation in so
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B. N. Esel’son was one of the first scientists who star
in the fifties the systematic experimental investigations1 of
3He–4He solid solutions which proved to be a very rich a
interesting quantum system. At the beginning of seventie
new fundamental phenomenon, viz., quantum diffusion
3He impurities, was discovered in this system. At low te
peratures, these impurities are not localized, but form a
of quasiparticles moving over a4He crystal.2

Large amplitudes of zero-point atomic vibrations
crystals of helium isotopes lead to overlapping of wave fu
tions. In the case of3He, exchange processes associated w
tunneling of neighboring atoms take place. Exchange p
cesses determine not only spin diffusion, but also the m
netic properties of the system, and above all, the spin–la
relaxation.

Spin–lattice relaxation processes in pure solid3He were
studied in detail experimentally and theoretically~see, for
example, Refs. 3–5!. It was found that the temperature d
pendence of spin–lattice relaxation timeT1 is complex and
nonmonotonic. This is due to the face that, according to
Garvin–Landesman model, solid3He can be regarded as
system consisting of three~Zeeman, exchange, and lattic!
subsystems, and the energy between individual subsyste
transferred in diverse ways.

At high temperatures, the Zeeman subsystem assoc
with interaction between nuclear spins and the applied m
netic field transfers its energy to the lattice due to fluct
tions of the local dipole field induced by thermally activat
vacancion diffusion of atoms. Thus, the Zeeman subsys
relaxes directly to the lattice, and the functionT1(T) passes
through a minimum when the characteristic diffusion tim
becomes of the order of the reciprocal Larmor frequency

The thermally activated diffusion flow of3He atoms is
suppressed upon cooling and ultimately stops affecting
dipole–dipole interaction of nuclear spins. Under these c
ditions, the interaction between the Zeeman subsystem
the lattice occurs through the exchange subsystem as lon
the latter has the lattice temperature. All this leads to one
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He, i.e., the existence of a wide region in which the tim
T1 does not depend on temperature~the region of exchange
plateau!.

As the crystal is cooled further, the number of vacanc
in it becomes insufficient not only for a direct thermal co
tact between the Zeeman subsystem and the lattice, but
for interaction between the exchange subsystem and the
tice. In this region, the relaxation of nuclear magnetization
determined by the exchange–vacancion interaction.
analysis ofT1 proved that the spin–lattice relaxation time
this case increases with decreasing temperature, which
accord with experimental data.3–5

In this temperature range,4He impurities in a3He crystal
can affect the spin–lattice relaxation processes significan6

Such impurities behave as mobile point defects~delocalized
atoms! moving with the tunnel frequencyJ43 which is of the
same order of magnitude as the tunnel frequencyJ33 charac-
terizing the 3He–3He exchange. In the region of the ex
change plateau,4He impurities virtually do not change th
time T1 , while at lower temperatures their influence b
comes significant. In this region, the processes of pho
scattering by4He atoms can also make a contribution to t
temperature dependence ofT1 .

3–5

Another temperature-independent relaxation proc
controlled by the concentrationx4 of 4He impurities was
observed by Bernier and Deville6 in the low-temperature re
gion. It was found that the corresponding spin–lattice rel
ation timeT1D varies withx4 asT1D ; x4

23. In the frame of
the proposed phenomenological model, these authors
plained the process by diffusive energy transfer from
Zeeman and exchange subsystems to relaxation centers
sisting of 4He clusters. This region on the temperature d
pendence ofT1 is often referred to as the diffusion platea
Later, Bernier and Guerrier5 also considered a possible ro
of dislocations in spin–lattice relaxation in the region of t
low- temperature~diffusion! plateau and obtained an agre
ment with experimental data under the assumption that
energy is transferred from the Zeeman and exchange

455/000455-06$10.00 © 1997 American Institute of Physics
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the lattice strongly.
Magnetic relaxation in3He–4He solid solutions was

studied in Refs. 7–10 over a wide temperature range,
was not completed as in the case of pure3He. Miyoshi
et al.,7 who studied solutions with the concentratio
x51.94–32.1%3He, observed a Zeeman–exchange plat
both for the bcc and for the hcp phase as in the case of
3He. They believed that the exchange interaction in the
lution does not depend on the3He concentration, and th
concentration dependence of the spectral density functio
only due to the dependencevE ; x1/2, wherevE is the ex-
change frequency.

The experiments7 were subsequently extended to the
gion of more dilute solutions of3He in 4He ~down to
0.2%3He!,8 and the obtained results were interpreted by
authors under the assumption that the main tunnel motio
the mutual exchange between neighboring3He and4He at-
oms. This temperature independent process is determine
the3He concentration and the molar volume of the crystal
a 3He atom is surrounded byz 4He atoms, the characteristi
time

t345~zJ34!
21 ~1!

of the process is determined by the tunnel frequencyJ34 of
exchange for the3He–4He pair. In this case, the experiment
data could be described by using a single fitting param
t34, and the concentration dependence of the spin–lat
relaxation time corresponded to thex21 law. The same con-
centration dependence was also recorded by Richardset al.,9

where the timeT1 was measured in the concentration ran
0.01–0.24%3He.

Hirayoshi et al.10 studied magnetic relaxation in solu
tions containing from 0.22 to 7.2%3He in the region of the
tunnel ‘‘plateau.’’ In contrast to the previous model, th
assumed that the contribution to the spectral density func
comes from both tunnel motions3He–3He and 3He–4He.
They also succeeded in explaining the obtained results on
basis of the proposed model with a single fitting parame

Thus, a single approach to the description of spin–lat
relaxation in3He–4He solid solutions has not been worke
out. Magnetic relaxation in phase-separated solutions
which disperse inclusions of the concentrated phase
formed as a result of isotopic phase separation in the ma
of the dilute phase has also been studied insufficiently. T
phenomenon was mentioned only in Ref. 8 in connect
with the measurements of relaxation time.

This research mainly aims at an analysis of spin–lat
relaxation in a solution containing 3.18%3He over a wide
temperature range. The main attention is paid to magn
relaxation in daughter phases formed as a result of isot
phase separation. Thus, the solid solution under investiga
was transformed from the initial hcp phase to the mixture
a concentrated bcc phase and dilute hcp phase, which
lowed us to study relaxation in such a complex and inter
ing system.

EXPERIMENTAL TECHNIQUE

We studied several samples of3He–4He solid solutions
grown from the initial mixture with the concentratio

456 Low Temp. Phys. 23 (5–6), May–June 1997
ut

u
re
o-

is

-

e
is

by
f

er
e

e

n

he
r.
e

in
re
ix
is
n

e

tic
ic
on
f
al-
t-

technique. In order to eliminate possible gradients of pr
sure and concentration, the samples were annealed nea
melting point for 24 h. We used the experimental setup
scribed in Ref. 11 and containing a cylindrical NMR ce
prepared from the epoxy composite Stycast 1266 and c
nected with the nuclear stage through a thermal switch.

The samples were in the form of cylinders of diamete
mm and length 20 mm, and measurements were made u
a pressure of 3.7 MPa which was recorded by a capaci
pickup in situ. The sample in the cell was cooled through
silver stem with a silver heat exchanger. Measurements w
made in the temperature range from 700 mK down to 1 m
i.e., included the range of the homogeneous solution as
as the range of isotopic phase separation. Cooling to
region of decomposition was carried out in ste
(;10 mK) followed by temperature stabilization lasting f
many hours. Such a technique was used earlier to ob
information on the equilibrium phase-separation curve
solutions12 and on the kinetics of isotopic phase separation13

The spin–lattice relaxation timeT1 was measured by
using the pulsed NMR technique at a frequen
v0/2p5250 kHz. The system was subjected to the action
a sequence of pulses 90–t–90, and the longitudinal magne
tizationM (t) of the system returned to its equilibrium valu
M0 according to the law

M ~t!5M0~12e2t/T1!. ~2!

After each pulse, the amplitudeU of the experimentally ob-
served free induction signal is proportional to magnetizati
Consequently, in the general case when the solution cont
two phases in equilibrium after decomposition, we have

U~t!

U0
5
U0
b

U0
~12e2t/T1

b
!1

U0
h

U0
~12e2t/T1

h
!, ~3!

where the indicesb and h correspond to the bcc and hc
phases, respectively.

The obtained experimental results were processed by
least-squares method with an approximating function of
form ~3!; typical results for several temperatures are p
sented in Fig. 1. Each point in the figure is the result
five-fold averaging. It can be seen from the figure that rec
struction of magnetization undergoes evolution: the cu
has a one-exponential form with a spin–lattice relaxat
time typical of the initial homogeneous solution at high te
peratures~above the phase-separation temperature!, while at
low temperatures the curves can be approximated by
exponentials indicating a heterophase structure of the s
tion. The valuesT1

h and T1
b of spin–lattice relaxation time

determined in this way are characterized by an error not
ceeding 10%.

TEMPERATURE DEPENDENCE OF SPIN–LATTICE
RELAXATION TIME

Figure 2 shows the values of spin–lattice relaxation ti
obtained during cooling of the solution. It should be not
that each point was obtained after a long temperature st
lization and corresponds to thermodynamic equilibrium. T
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FIG. 1. Reconstruction of the longitudinal magnetization of the sample after the application of a 90° pulse at a constant temperatureT. Before phase
separation:T5221 mK, ~a! after phase separation:T5179 mK ~b! andT5139 mK ~c!.
is confirmed by the fact that the data on the phase-separation
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the
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curve in the same experiment are in accord with the res
obtained during sample heating without any noticeable h
teresis effects.

The temperature dependence of the timeT1 presented in
Fig. 2 has three branches corresponding to the initial solu
with the hcp structure (T1

0) and two daughter phases, viz
the concentrated bcc phase (T1

b) and dilute hcp phase (T1
h).

The branching temperatureTps on this dependence corre
sponds to the beginning of phase separation of the in
solution ~marked by arrow!.

It should be noted that a qualitatively similar behavior
spin–lattice relaxation time during isotopic phase separa
was also recorded by Greenberget al.8 who investigated a
solution with the initial concentration 2%3He. They pre-
sented only the values ofT1 for concentrated phase, and
strong decrease in the value ofT1 near the phase-transitio
temperature was recorded in a wider temperature range
in Fig. 2. This can be due to incomplete thermodynam
equilibrium under the conditions of measurements of
spin–lattice relaxation time in Ref. 8.

The timeT1 in the concentrated phase is virtually ind
pendent of temperature, while in the dilute phase the valu
T1 increases with decreasing temperature significantly. R
able values ofT1 for the dilute phase were obtained only
the temperature range above;100 mK since the hcp phas
at lower temperatures contains a very small amount
3He, which makes the NMR signal from the dilute pha
comparable to the noise level.

The different forms of the temperature dependence
spin–lattice relaxation time for different phases of the so
tion under investigation illustrated in Fig. 2 correspond
different physical processes responsible for magnetic re
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mechanisms separately for each phase.

MAGNETIC RELAXATION IN THE CONCENTRATED PHASE

The independence of the spin–lattice relaxation ti
T1
b of temperature in the concentrated phase suggests tha

main mechanism of magnetic relaxation in this case is c
nected with the Zeeman–exchange interaction. It is w
known that exchange processes in3He cause the motion o
neighboring atoms with antiparallel spins, which is equiv
lent to rotation of atoms around the center of mass of a p
of atoms with the angular frequencyvE . Under these con-
ditions, the relaxation mechanism is determined by the c
nection of the Zeeman system with the motion of3He atoms

FIG. 2. Temperature dependence of the spin–lattice relaxation time in
initial solution (T1

0) and in two daughter phases: concentrated (T1
b) and

dilute (T1
h). The arrow corresponds to the phase-separation temperatur
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responding pair correlation function for the Gaussian
proximation is taken in the form14

g~ t !; exp~20.5vE
2 t2!. ~4!

In this case, the spectral density functionJ1(v/vE) describ-
ing the spin–lattice relaxation under modulation of the
pole interaction by the exchange of two3He atoms and being
the Fourier transform of the correlation functiong(t) has the
form

J1~v/vE!5
~2p!1/2M2

3vE
exp~2v2/2vE

2 !, ~5!

wherev is the Larmor frequency andM2 the second van
Vlek moment, which is connected with the molar volum
V of the crystal through the following relation:4

M25
22.8•1010

V2 ~s1!. ~6!

It should be noted that along with the Gaussian correla
function ~4!, magnetic relaxation is sometimes analyzed
using the Lorentz correlation function leading to the follo
ing expression for the spectral density function:4

J1~v/vE!5
~2p!1/2M2

3vE
exp~2v/vE!. ~7!

The quantityvE appearing in~5! and ~7! is proportional to
the exchange integralJ33:

vE5bJ33, ~8!

where the constantb53.36 if g(t) is approximated by the
Lorentzian function andb54.76 if the approximation is car
ried out by using the Gaussian function.

In the approximation of pair exchange between nea
neighbors, the rate of energy relaxation from the Zeem
system to tunnel excitation is determined by t
expression3–5

~T1
b!215J1~v/vE!14J1~2v/ve!. ~9!

Sincev!vE under the given experimental conditions, t
exponents appearing in expressions~5! and~7! for the spec-
tral density function are equal to unity to a high degree
accuracy. In this case, formula~9! for spin–lattice relaxation
time does not depend on the type of approximation and
quires the form

~T1
b!215

9.5•1011

vEV
2 . ~10!

Since the concentrated bcc phase contains almost
3He, we can use for the molar volumeV523.95 cm3/mole
the value of the parameterJ3350.7•1023 K corresponding
to the bcc of 3He.4 In this case, formula~10! gives
T1
b50.2760.1 s, which is in good agreement with the e

perimental results~see Fig. 2!.
Thus, the experimental values of spin–lattice relaxat

time obtained for the concentrated phase of the decomp
solution in the entire temperature range under investiga
are in quantitative agreement with the time of relaxation
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should be noted, however, that this relaxation mechanism
pure 3He is manifested at not too low temperatures~above
0.4–0.5 K!, while the region of the temperature dependen
of T1 characteristic of the exchange ‘‘plateau’’ for the co
centrated phase under given experimental conditions co
sponds to the temperature interval from 0.2 K down to
lowest temperatures investigated by us.

Although the reason behind such a difference rema
unclear, we note some factors which can influence sp
lattice relaxation in a phase- separated solution. First,
concentrated phase formed in the process of isotopic ph
separation contains a large amount of4He which can
strongly affect magnetic relaxation at temperatures below
region of the exchange plateau typical of pure3He. In this
region, the coupling between the exchange system and
lattice becomes weaker than between the Zeeman and
change systems, and the value ofT1 must first increase
abruptly upon cooling, and then attain a new~diffusion!
‘‘plateau’’ ~see above!.

It was proved by Bernier and Deville6 that the energy
transfer from the Zeeman subsystem to the lattice occ
through diffusion to clusters formed by4He impurity atoms.
Since the value ofT1D is inversely proportional to the cub
of the concentrationx4 of

4He in 3He ~see above!, we can
expect that for a certain value ofx4 , the diffusion plateau is
‘‘lowered’’ to the values ofT1 corresponding to exchang
plateau. According to estimates based on the results obta
in Ref. 6, such an effect is possible under the given exp
mental conditions for4He concentrations amounting to on
a few tens of percent.

Another possibility associated with the difference of t
concentrated phase of the phase-separated solution from
bcc3He is also worth noting. The concentrated phase can
presented as dispersive inclusions of3He in the hcp matrix
formed by the dilute solution of3He in 4He. In this case,
relaxation of the Zeeman system at low temperatures oc
at the boundary of bcc phase inclusions. The spin–lat
relaxation time is proportional to the square of the radiusR
of inclusions~under the assumption that they are spheric!
and inversely proportional to the spin diffusion coefficie
within inclusions. According to estimates, the values ofT1 in
the region of diffusion plateau and the exchange plateau
have the same order of magnitude forR;1024 cm owing to
such a ‘‘size’’ effect. Although the shape and size of3He
inclusions in the4He matrix as well as possible low dimen
sionality of this structure remain disputable, all these fact
can noticeably affect the processes of spin–lattice relaxat

It should be noted that the boundaries of inclusions p
a significant role in this process. At these boundaries, ra
relaxation due to coupling of the tunnel motion of3He atoms
with the vibrational motion of dislocation lines occurs
view of a large number of edge dislocations.5

RELAXATION IN DILUTE SOLUTIONS OF 3He IN 4He

It was noted above that the temperature dependenc
spin–lattice relaxation time presented in Fig. 2 has two
gions corresponding to dilute hcp solutions of3He in 4He.
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Let us first consider the region corresponding to the initial
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solution with the concentration 3.18%He. The value of
T1 in this region is independent of temperature within t
experimental error. Hence it is natural to assume that sp
lattice relaxation occurs through a direct interaction betw
the Zeeman and exchange systems in this case also.

According to Miyoshiet al.,7 we can estimate the valu
of T1 expected for a solution of3He in 4He by using rela-
tions ~5!–~10!. It was assumed in Ref. 7 that the concent
tion dependence of the spectral density functionJ1(v/vE) is
connected withvE , wherevE ; x1/2. Moreover, it was as-
sumed thatM2(x)5xM2(1). If we also take into accoun
the fact that the quantities appearing in~5!–~10! for the hcp
phase under investigation with the molar volum
V520.3 cm3/mole have the valuesM2 5 22.6• 1010/V2 s21;
b 5 6.48;J335 1.5• 1025 K, the spin–lattice relaxation rat
calculated in this way must be almost two orders of mag
tude smaller than the observed values. In such an appro
the predicted concentration dependence has the formT1
; x21/2, which also contradicts the experimental results~see
below!.

Another approach to the analysis of magnetic relaxat
processes in3He–4He solutions was used by Greenbe
et al.8 on the basis of the Torrey theory.15 It is well known
that 3He impurities in a4He quantum crystal form quasipa
ticles ~impuritons! which have the band widthDE5z\J34.
In this case,3He and4He atoms can change places throu
tunneling with the frequencyJ34 and the exchange ratet34

21

which depends on the number of4He atoms surrounding a
3He atom in accordance with formula~1!. According to the
theory,15 the spin–lattice relaxation time in a3He–4He solu-
tion with the concentrationx in the exchange ‘‘plateau’’ re-
gion is described by the formula

T1
2152.29M2 /~v2t34!. ~11!

The quantityt34 was defined in Ref. 8 as a fitting paramet
to the theory15 describing the spin–lattice relaxation time
solutions withx51% and 2%3He. It was proved that the
time t34 depends on molar volume and is virtually indepe
dent of concentration. If we use the value oft34 obtained in
Ref. 8 for the given experimental condition
(t34

21/2p53•103 s21), the calculations based on formu
~12! give T1;0.8 s, which is in accord with the experime
tal data. In this model, the concentration dependence oT1
has the formT1 ; x21.

It should be noted that the value ofT1 measured for the
initial solution is also in agreement with the experimen
results obtained in Ref. 10 if we normalize them to the f
quency used by the formulaT1 ; v2. Such an agreemen
indicates that the spin–lattice relaxation processes in an
solution can be also described by taking into account b
tunnel movements of3He–3He and3He–4He as it was done
in Ref. 10. A fitting parameter is used in this case also.

The concentration dependence of the spin–lattice re
ation time in hcp3He–4He solutions can be investigate
from an analysis of the third branch in Fig. 2 correspond
to the dilute phase of the phase-separated solution. Sinc
measurements in this case were made along the equilib
phase-separation line, the temperature dependence ofT1 can
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be reconstructed into the concentration dependence show
Fig. 3 by taking into account the phase diagram obtained
Ref. 12. An analysis shows thatT1

h ; x2n, where
n50.8860.12, which speaks in favor of the approach dev
oped in Refs. 8 and 14.

In addition to experimental data obtained by us, Fig
also presents the results of measurements7–10made for a ho-
mogeneous~single-phase! dilute hcp solution of3He in
4He. According to Fig. 3, these results are in accord with
values ofT1 obtained by us for the dilute phase formed as
result of phase separation to within the overall experimen
errors. This means that spin–lattice relaxation processe
homogeneous and phase-separated solutions of the
concentration are similar.

CONCLUSION

The experimental investigation indicates that t
Zeeman–exchange interaction is the dominating process
termining the spin–lattice relaxation time in a phas
separated3He–4He solid solution.

Spin–lattice relaxation in the dilute phase of a pha
separated solution occurs in the same way as in a hom
neous solution of3He in 4He. The spin–lattice relaxation
time in the concentrated phase in the exchange region of
phase-separated solution coincides with the correspon
time for pure3He, but in contrast to3He, the region of the
exchange plateau embraces almost the entire temperatur
gion of existence of the concentrated phase.
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Melting of 3He in a phase-separated solid 3He–4He mixture

the
R. P. Haley and E. D. Adams

Department of Physics, University of Florida, Gainesville, FL 32611-8440, USA*
~Submitted November 19, 1996!
Fiz. Nizk. Temp.23, 615–618~May–June 1997!

The melting pressure of the3He-rich phase, which is formed after phase separation of a mixture
of 0.6%3He in 4He, has been studied in the temperature range 1–150 mK, below the phase-
separation temperatureTps , at pressures between 2.78 and 3.56 MPa. Measurements were made
with the mixture confined in a silver sinter, and also in an open volume for comparison.
An elevation of the melting pressure relative to pure3He of up to 60 kPa in the sinter cell and
20 kPa in the open-volume cell was observed. Hysteresis between the freezing and melting
temperatures was found for both cells, similar to that observed for pure3He in small pores. The
results of Schrenket al. for heat capacity measurements on a similar system are discussed.
© 1997 American Institute of Physics.@S1063-777X~97!01405-9#
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A homogeneous solid mixture of3He–4He decomposes
into separate phases when cooled to the phase-separ
temperatureTps . For low

3He concentrations, at tempera
tures well belowTps , the

4He-rich hcp matrix contains clus
ters or droplets of almost pure3He ~see Refs. 1 and 2 and th
bibliography cited there!. Schrenket al.1 have reported a de
pression of the melting pressure of the3He droplets relative
to that of pure bulk3He. Furthermore, they have observed
history-dependent magnetic ordering in the droplets at p
sures as low as 700 kPa below the melting pressure of p2
3He. A possible explanation for these results might be
confined-geometry effect of the small droplets. Pure3He in
small glass pores has an elevated melting pressure,3 while a
depression of the melting pressure has been reported
3He on a MgO substrate.4

We have studied melting and freezing in a 0.6%3He
mixture confined in a silver sinter cooled belowTps ~ap-
proximately 200 mK! at pressures from 2.78 to 3.56 MPa
order to determine the melting curve of the3He droplets.5

We have also made measurements on the same mixture
tained in an open volume in order to assess whether
silver sinter plays any role other than providing an effect
means of cooling. Hysteresis and the effect of thermal h
tory on the transition were investigated in both cells. T
implications of our observations on the results of Schre
et al.2 are discussed, and possible explanations are given
some of the effects that they reported.

2. EXPERIMENTAL METHOD

The sinter cell contains a thin disk of silver sinter
particle size 500–1000 Å and packing fraction 50%. T
disk of radius 25 mm and thickness 2.5 mm was packed
silver cell with one wall forming the flexible diaphragm of
capacitive pressure transducer.6 The open volume cell is
similar in design, with the sample forming as a solid disk
radius 17 mm and thickness 1.3 mm. These geometries
vide a short path for pressure transmission, thereby minim
ing pressure gradients in the sample. The resolution of e
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same fill-line, with a junction in the line at the experiment
stage on which the cells were mounted.

Samples were formed at various pressures by
capillary-blocking technique, and it was intended that bo
the open-volume and sinter cells would contain sample
the same pressure, since they were connected to the s
fill-line. However, the sinter cell samples consistently soli
fied at higher pressures than the open cell~by approximately
0.3 MPa!. We attribute this to a larger degree of disorder
the sinter cell since there is a larger surface area on whic
few atomic layers of amorphous solid4He form. After for-
mation the samples were either quenched or annealed
below the solidification point. Phase separation in the sin
and open-volume cells was observed as an increas
sample pressure of approximately 15 kPa with a time c
stant on the order of 10 hours for the sinter cell and 20 ho
for the open-volume cell. The absence of a sinter in the op
volume cell did not significantly affect the cooling/warmin
rate of the sample. After the phase separation and fur
cooling, samples were then warmed through the freez
transition and cooled back through melting, taking care
keepT , Tps . In some cases, several such cycles were p
formed. Temperatures were measured precisely with a3He
melting pressure thermometer7 mounted on the same exper
mental platform as the cells. The temperature was regula
by using the signal from the thermometer bridge to cont
the current to a heater on the experimental stage. All th
strain gauges were calibrated with the same Paroscien
quartz transducer.

In order to ensure that the data were taken at equi
rium, the desired thermometer bridge value was set on
temperature control system, the samples cooled/warme
the new temperature, and then held at that temperature
the pressure in the cells reached equilibrium. In the freez
transition of the open-volume cell, equilibration could ta
up to 20 hours.

3. RESULTS AND DISCUSSION

In both the sinter and open-volume cells, melting of t
3He droplets was observed at sample pressures from 3.1

461/000461-03$10.00 © 1997 American Institute of Physics
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3.45 MPa. At 3.48 MPa the3He remained solid down to th
lowest temperature~1 mK!, and at 2.96 MPa melting was no
observed, presumably because the droplets formed as a
uid. Upon melting, the pressure of the sample in the sin
cell increased on the order of 1 kPa, and on the order o
kPa in the open-volume cell.

Figure 1 shows typical cooling/warming cycles displa
ing the hysteresis seen in every sample in which melt
occurred in the sinter cell. The numbers by the curves in
cate the time sequence; curves4 and5 illustrate the effect of
reversing the direction of temperature changes in mid-cy
Figure 2 shows a typical warming/cooling cycle in the ope

FIG. 1. Typical cooling~curves1, 3 and5! and warming~curves2 and4!
cycles for the melting/freezing of3He in the droplets in the sinter cell~see
text!.

FIG. 2. Typical warming and cooling cycles for the freezing/melting
3He in the open-volume cell. The solid line shows the melting pressur
bulk 3He. Temperatures are given for the points indicated.
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volume cell, which also shows hysteretic behavior. In t
figure the pressure in the cell is plotted relative to the pr
sure in the melting curve thermometer. Since the cells w
calibrated against the same pressure standard, this elimin
uncertainty in the temperature and shows precisely the p
tion of the transition relative to the bulk melting curve. Pr
viously hysteresis was observed for pure helium in poro
glasses and appears to be a characteristic of melting
freezing in confined geometries.3 In that experiment the tran
sitions occurred at pressures above that of the bulk mel
curve, as one would expect for homogeneous nucleation
new phase in a confined geometry.

The temperatures for the sharp kinks in the cooling a
warming curves such as in Fig. 1 are almost the same and
pressure differences are small. These are shown in Fig.
single points for samples formed at different pressures al
with the pressure indicated by the pure3He melting pressure
thermometer. For the sinter cell we found all melting tran
tions to be on or above the bulk melting pressure, eleva
by as much as 60 kPa. The precision of the points in Fig.
much better than would be indicated by the ‘‘scatter’’, whi
is possibly related to the thermal history of the sample a
the droplet size.8 However, we have not been able to corr
late the size of the pressure elevation with the thermal
tory.

We have measured the pressure minimum of essent
pure3He in the sinter plated with 1%4He as a substrate an
found an elevation of the melting pressure in the sinter
63.9 kPa.

For the open-volume cell, it is clear from Fig. 2 that th
onset of melting in the droplets is elevated above the b
melting curve ~by 20 kPa!, and that the melting/freezing
transition is broadened relative to a bulk3He isochore. We
attribute this behavior to differences in droplet size betwe
the sinter cell and the open cell. In the open volume cell,
suggest that the3He forms in a range of different-sized clus
f

FIG. 3. The bulk3He melting curve~solid line! and the melting points of
3He droplets, taken from sinter cell data.
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pore size of approximately 100 nm limits the size of a clus
which can grow from the3He contained inside the pore
Thus, the larger droplets in the open-volume cell cont
3He which is less confined and one would, therefore, exp
a smaller elevation of the melting pressure. This accounts
the broadening of the melting transition for the open c
with the onset of smaller droplets at a high elevation.
comparison, the sinter cell melting transitions are shar
and more elevated, suggesting that a high percentage o
3He in a pore is contained in a single cluster, which is limit
in size only by the3He available within that pore. The cluste
size would be approximately 20 nm if it contained all t
3He within a pore.

The fractional change in volume in the droplets on me
ing Dv/v can be calculated from the change in pressure
melting such as that shown in Figs. 1 and 2,~assuming that
the molar volume change of3He in the droplets in the sam
as in bulk!. We find this to be only about 8% of that for pur
3He in a typical sinter cell measurement, and 40% in
open-volume cell. This indicates that a large fraction of
3He remains solid at pressures well below the bulk melt
curve. A volume change less than that for bulk3He would be
expected if surface layers of the3He droplets do not mel
because of the influence of the adjacent higher-density
4He. As a result of the van der Waals attraction to the4He
surface, the density of the solid in the droplet would
higher at the interface than in the interior. The higher-den
3He solid layers will melt at progressively colder tempe
tures. Evidence for these density gradients can be foun
data such as those shown in Fig. 1, curve5, where the pres-
sure continues to increase upon cooling well below the sh
melting transition. The initial pronounced increase in pr
sure would then be due to the material in the center of
droplets, indicating that the high-density hcp4He affects
only the outer layers of the3He in the cluster. The large
fractional volume change in the open-volume cell reinforc
the assertion that it contains larger droplets, so that a lo
proportion of the3He is directly affected by its proximity to
the 4He matrix. It should be emphasized that this continu
pressure increase is not attributable to the continued p
separation since the sample was held at a temperature b
Tps and above the melting transition temperature until
pressure remained constant with further lowering of tempe
ture, before the onset of melting~Fig. 1, curve1!.

The existence of density gradients in the outer layers
the droplets can account for effects reported by Schr
et al.2 relating to magnetic ordering of3He droplets in solid
4He contained in a silver sinter. Their observations, based
the heat capacity, include higher magnetic ordering temp
tures,TN , at pressures as low as 2.8 MPa, 700 kPa below
melting pressure of pure3He, and a history-dependent tra
sition temperature. As discussed above, the existence of
3He at pressures below the bulk melting curve appears to
a consequence of confining the droplets within a higher d
sity 4He matrix. The history dependence ofTN they report is
that samples cooled to lower minimum starting temperatu
Tmin , appear to give lower transition temperatures in the h
capacity data taken during warming. The transitions that t
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those measured by Greywall and Buschin bulk He. These
are well-known effects of density gradients in the samp
The peak that they observed does indeed appear at a h
temperature ifTmin is higher, although it is not clear that thi
peak actually indicatesTN . In fact, the broadening of the
peak due to the density gradients means that the sam
with higher values ofTmin are not cooled all the way throug
the ordering transition, so that for successively higher val
of Tmin , less of the solid

3He contributes to the heat capacit
If the droplets were cooled all the way through the order
temperature, then there would be a decrease in entropy~ex-
trapolated toT 5 0! of R ln 2, whereR is the gas constant
Their data for a sample at 3.4 MPa withTN 5 0.92 mK actu-
ally shows a greater contribution to the entropy reduction
cooling from 2 mK to just aboveTN than that found by
Greywall and Busch in bulk, probably indicative of a broa
ening of the transition in the droplets. Greywall and Bus
report an entropy reduction of 0.41R ln 2 in going through
the transition alone. However, even including contributio
from 2 mK down toTmin , the entropy reduction of Schren
et al. is only 0.32R ln 2 for Tmin 5 783mK and 0.22R ln 2
for Tmin 5 837mK. This suggests strongly that all of the sol
in the droplets was not cooled throughTN , as would occur
for a transition broadened by density gradients.

4. CONCLUSIONS

Melting of 3He droplets contained in a matrix of4He
occurs at higher pressures than bulk3He and has a hysteres
characteristic of melting in confined geometries. The sm
volume change on melting indicates that much of the3He in
the droplets does not undergo melting, and remains soli
pressures below the bulk melting curve due to interact
with the surrounding hcp solid4He. Comparison with a mix-
ture in an open-volume indicates that containing the solid
a sinter has the effect of limiting the size of the3He clusters,
and the smaller droplets give rise to a larger elevation of
melting pressure. We intend to use NMR to measure
droplet size, the relative amounts of liquid and solid, and
study solid ordering.
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Growth kinetics of 4He crystal with a low 3He impurity concentration
V. L. Tsymbalenko

Russian Science Center ‘‘Kurchatov Institute,’’ Institute of Superconductivity and Solid State Physics,
123182 Moscow, Russia*
~Submitted November 12, 1996; revised February 12, 1997!
Fiz. Nizk. Temp.23, 619–623~May–June 1997!

The kinetic growth coefficient is measured for an atomically rough surface of a helium crystal
grown from a solution with a low3He impurity concentration~x58•1025 and 2•1024!.
The impurity does not affect the growth rate of the surface in the temperature range from 1.2 to
1.4 K. A comparison of the experimental results with the theory leads to the conclusion
that the additional contribution of impurity diffusion to the growth kinetics is equal to zero.
© 1997 American Institute of Physics.@S1063-777X~97!01505-3#
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The growth kinetics for4He crystals was studied in
tensely during the last fifteen ears following the theoreti
prediction1 and experimental observation2 of the quantum
nature of this process~see the review in Ref. 3!. According
to the model considered by Andreev and Parshin,1 the
growth rate for the crystal–liquid interface is determined
the mobility of elementary defects~steps! of the surface
structure. In turn, the mobility of steps in pure helium
limited by scattering at quasiparticles, leading to an expon
tial temperature dependence of the growth rate in the reg
dominated by rotons and to a power dependence at lo
temperatures. The introduction of3He impurity leads to an
additional scattering of steps at3He atoms and, as a result,
a decrease in the growth rate. Analyzing this mechani
Parshin4 determined an additional contribution to the grow
coefficient K associated with impurity: K3;1/(xv3)
;1/AT, wherex is the solution concentration andv3 the
thermal velocity of3He atoms. A similar estimate was ob
tained by Castainget al.5 A numerical comparison of the
magnitude of this contribution for a concentrationx;1024

with experimental values of the kinetic growth coefficient f
pure helium indicates that impurities start playing a sign
cant role below;0.6 K.

The model considered by Parshin presumes that the
purity concentration near the surface remains unchanged
ing the growth. The experimental phase-equilibrium curv6

show that the equilibrium concentrations of impurity in t
crystal and in the liquid are different in the general ca
During the crystal growth, the solution near the interface w
be depleted or enriched, leading to the emergence of d
sion flows and additional dissipation in the solution, whi
reduces the growth rate. Considering this mechanism, B
mistrov and Dubovski�7 proved that the presence of an ev
small amount of impurity at the level ofx3;1024 reduces
significantly the kinetic growth coefficient at high temper
tures;1.4 K.

In this communication, the results of measurements
the growth coefficient for two impurity concentrations a
presented with a view to determine the contribution from
diffusion mechanism of the growth.
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For a low concentration of the solution, when the effe
of impurity is weak, as well as at a high temperature, wh
the role of quantum effects is insignificant, the change in
chemical potentialm4 of the solvent is proportional to the
impurity concentration8:

m4~T,x!5m4~T,0!2Tx. ~1!

Equating the chemical potentials of the liquid and so
phases, we obtain the following expression for the displa
ment of the phase-equilibrium point on the pressure sc
Dp5T(xl2xs)/(v l2vs), wherexl ,s is the impurity concen-
tration in the liquid and in the crystal andv l ,s the volume per
atom.8 Transforming this expression, we obtain the relati
defining the ratio of the impurity concentrations in the crys
and in the liquid in terms of the shift in the phas
equilibrium point:

xs
xl

512
DVmDp

RTxl
, ~2!

whereDVm is the difference in the molar volumes of th
crystal and the liquid andR the gas constant.

Phase-equilibrium curves for low concentrationsx were
not measured directly. Figure 1 shows the temperature
pendencies of impurity distribution, plotted for solution
with a high impurity concentration~0.99–8.9%!.6 It can be
seen that the results obtained in the temperature range
1.4 K in which our experiments were made coincide to
high degree of accuracy for all concentrations. Therefore,
can assume that the same impurity distribution among ph
is also preserved at lower concentrations. It should be no
that the impurity concentrations in the phases atT51.4 K
are identical. This means that the effect considered by B
mistrov and Dubovski�7 is absent at this temperature, and t
crystal growth rate in the solution must coincide with t
growth rate for pure helium. According to the theory,7 the
growth rate in the solution at a lower and at a higher te
perature must be lower than the growth rate in pure heli
since the additional dissipation is proportional to the squ
of the difference in concentrations.

464/000464-04$10.00 © 1997 American Institute of Physics
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Let us estimate the contribution from the diffusio
mechanism numerically. In Ref. 7, a simplified situation o
steady-state growth of the plane surface of a crystal
considered without taking into account the difference in
densities of the liquid and solid phases. In this case, the v
of the diffusion kinetic growth coefficientKD is defined as

KD5
2D

~~c2c8!2]Z/]c!2
DF

L
,

whereD is the diffusion coefficient,c and c8 are the con-
centrations of impurity per unit mass in the liquid and so
phases,Z5m3 /m32m4 /m4 , ]Z/]c'T/(m3c) for dilute so-
lutions,DF is the difference between the chemical potenti
of the liquid and solid phases, andL the characteristic
growth length. It will be shown below that the crystal in th
experiments grows nonuniformly, relaxing to the equilibriu
position under the action of hydrostatic pressure gradi
For this reason, and also due to the simplifications mentio
above, this expression should be regarded as an orde
magnitude estimate of the effect. In our experiments,DF
5 Dr/r lrsDp 5 Dp/rsgL, wherer l ,s is the density of solid
and liquid helium,Dr5rs2r l , and g is the acceleration
due to gravity. Substituting these expressions into the
mula from Ref. 7, we obtain the following expression for t
reciprocal growth coefficient:

1/KD5
1

2 S Dx

x D 4 rs
Dr

1

Dg SRTM3
cD 2.

HereM3 is the mass of a gram-atom of3He. The concentra-
tion per unit mass is connected with the atomic concentra
through the relationc'3x/4. The observed growth coeffi

FIG. 1. Impurity distribution between the liquid and solid phases, calcula
according to phase-equilibrium curves for solution6 by using formula~2! for
various concentrationsx, % 0.99 ~s!, 2.77 ~n!, 5.03 ~h!, and 8.9~L!.
Dashed lines indicate the temperature region presented in Fig. 2. The
line is plotted by processing the entire body of experimental data in
range using the least square method.
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cientK is now given by the formula 1/K 5 1/K0 1 1/KD ,
whereK0 is the growth coefficient for pure helium.

The obtained expression shows that the temperature
pendence of the kinetic growth coefficient is mainly det
mined by the temperature variation of the concentration
ferenceDx/x. In the narrow temperature range 1.2–1.4
under investigation, the remaining parameters change in
nificantly. For example, the diffusion coefficient increas
upon a decrease in temperature approximately twofold. F
ure 2 shows the theoretical dependencies of the total gro
coefficient for two concentrations~x50.02 and 0.008%! and
for the following values of parameters:r/Dr'10,
g510 m/s,D58•1024 cm2/s, Dx/x'0.53(1.42T). It can
be seen that, if the effect under consideration exists,
growth coefficient must change insignificantly.

3. EXPERIMENTAL TECHNIQUE

The crystal was grown in an optical container9 whose
photograph at the moment of measurement is shown in
3. A tip emitting electrons is located at the center of the fie
of vision with diameter 10 mm. Under the action of electr
static pressure exerted by electrons, the surface of the he
crystal ‘‘sagged’’ by 0.5–1 mm. Then the voltage at the
was switched from the negative value of;1 kV to a positive
value of the order of several hundreds volts. The crystal s
face relaxed to its equilibrium position at a rate determin
by the hydrostatic pressure gradient and the kinetic gro
coefficientK. The relaxation process was photographed, a
the number of the shot was printed in the frame.10 A math-
ematical analysis of the indentation contours distinctly v
ible on the photographs led to the functiony5 f (x,t) for the

d

lid
is

FIG. 2. Temperature dependence of the kinetic growth coefficient. P
helium: the data obtained in Ref. 11~s! and our results~n!. Growth coef-
ficients for solution withx58•1025 ~dark triangles! and 2•1024 ~dark na-
blas!. The dashed and dot-and-dash curves correspond to the growth
ficient calculated by the formulas from Ref. 7 for the concentrations 0.
and 0.02%, respectively.
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family of such contours. The electron pressure on the sur
was used earlier by Leidereret al.11 for measuring the kinetic
growth coefficient for pure helium crystal.

We describe the time variation of crystal contour by u
ing the equation for the evolution of crystal contour of
arbitrary shape,12 introduced by us earlier and defined by t
implicit function F(x,y,t)50:

]F

]t
1vF S ]F

]x D 21S ]F

]y D 2G1/250, ~3!

where v is the crystal growth rate. This rate is connect
with the kinetic growth coefficient and the difference
chemical potentials through the following expression:

v5KDm5K
Dr

r lrs
F2r lgy2

r l
Dr S ã1

R1
1

ã2

R2
D G , ~4!

where r l ,s is the density of liquid and solid helium
Dr5rs2r l , ã1,2 is the surface rigidity, andR1,2 are the

FIG. 3. Photograph of the crystal in the process of relaxation of the sur
to the equilibrium value atT51.414 K. The time interval between the sho
is 2.8 s. The crystal occupies the lower part of the container. The crys
liquid interface in transmitted light can be seen from the difference in
brightness of the image. The grey spot at the center of the field of visio
formed as a result of nonuniform illumination.
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obtain the equation for the vertical displacement of the c
tour:

] f

]t
1v F11S ] f

]xD
2G1/250. ~5!

Using the experimental dependencef (x,t), we can deter-
mine only one radius of curvature. For this reason, we m
an assumption which is justified by visual observations of
crystal surface, according to which the shape of the inde
tion is almost axially symmetric. In this case, we assume t
R1'R2 , ã1'ã2 , and ] f /]x50 at the lower point of the
contour and obtain the equation of motion of the cent
point of the indentation:

] f

]t
5K

Dr

rs
gS 2 f12a2

]2f

]x2D , a5S ã

gDr D 1/2, ~6!

wherea is the capillary constant,a'1.1 mm. The surface
rigidity was assumed to be the same as for pure helium,
ã'0.2 erg/cm2, since the adsorption of impurity at the su
face is small in the given temperature range and changes
surface energy insignificantly.13 It should also be noted tha
surface relaxation took place in the constant volume of
crystal in the container so that the edges of the indenta
were lowered slightly~by Dy! as the central part rose. Thi
sets a limit on the applicability of Eq.~6!: u f u@Dy. The
overall error in determining the kinetic growth coefficient
rather large~of the order of 50%!. Nevertheless, it will be
shown below that this accuracy is sufficient for determini
the contribution of impurities to the surface growth kinetic

4. RESULTS

Figure 2 presents the results of measurements of kin
growth coefficient for two impurity concentrations. Th
dashed curves in the figure correspond to the total kin
growth coefficients calculated by using the formulas fro
Ref. 7. It can be seen that even for such low concentratio
the theoretical kinetic growth coefficient must change ra
cally, decreasing by a factor of 10–30 atT51.2 K. This
effect can be observed even for the low accuracy of
experiments. The curves show, however, that the cry
growth rate in the solution coincides~to within the experi-
mental error! with the growth rate of a pure crystal, i.e., th
correction to the kinetic growth coefficient due to dissipati
associated with the diffusion of impurity is small.

It should be noted that such a low impurity concentrati
nevertheless affects the kinetic growth coefficient at low
temperatures. For example, crystallization waves which
be easily generated by shaking the cryostat at a tempera
;0.45 K in pure helium were not excited in the solution
the same temperature. This leads to the estim
K21.0.01 m/s for the kinetic growth coefficient at this tem
perature, which is in accord with the estimate obtained
Parshin.4

The absence of the effect of impurities on the grow
kinetics indicates that additional dissipation associated w
diffusion does not take place in the liquid. This is possible
the impurity concentration in the crystal is close to the co
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librium conditions. This situation differs from that consid
ered in Ref. 7, in which it was assumed that t
concentrations in both phases are close to the equilibr
concentration. Another possibility is connected with the si
plifications made in Ref. 7. It can be seen from Fig. 1 that
impurity concentration in the crystal below 1.4 K at whic
the measurements were made is higher than in the liquid,
diffusion flows must be directed towards the crystal surfa
Burmistrov and Dubovskii7 disregarded the difference be
tween the densities of the liquid and solid phases, altho
the density of the crystal is actually higher than the den
of the liquid, and its growth is accompanied by liquid flow
the crystal boundary. This flow coincides in direction wi
the diffusion flow, facilitating the transport of impurity to th
crystal and suppressing diffusion, dissipation, and the ef
of impurity on the growth kinetics. However, the oppos
effect associated with the transport of impurity by the cr
tallization heat flow from the crystal surface also exists. T
conclusions concerning the absence of a diffusion contr
tion to the growth kinetics cannot be made reliably befo
the creation of a theory which would take into account
these factors.

Another circumstance is also important in the interpre
tion of the obtained results. The theoretical calculatio
whose results are presented in Fig. 2 were made on the b
of the data on the impurity distribution between the liqu
and the crystal, which are discussed in Sec. 2~see Fig. 1!.
However, the theory of dilute ideal solutions8 implies that
the derivativedp/dT of the phase-equilibrium curve for th
solution coincides with the slope of the phase diagram
the pure substance, i.e., the phase-equilibrium curve is
placed without a change in shape along the pressure sca
Dp which does not depend on temperature. In this case,
impurity distribution between the phases is also independ
of temperature. This conclusion does not agree with exp
mental results of measurements of phase-equilibrium cu
for solutions,6 which were investigated starting from the co
centration;1%. Thus, the applicability of the extrapolatio
of the results on the impurity distribution between t
phases, presented in Sec. 2, to lower concentrations;1024

used by us remains disputable.
A decrease in the kinetic growth coefficient under t

action of impurity was observed earlier at a very low co
centration (5–50)•1029 below 0.5 K by using the method o
crystallization waves.14,15 Leidereret al.16 reported recently
467 Low Temp. Phys. 23 (5–6), May–June 1997
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rough surface of helium crystal in a solution with the co
centration (5–10)•1026 in a narrow temperature rang
;0.8 K by the same method as that used in Ref. 11 for p
helium. In this temperature range, the impurity reduces
growth rate by a factor of 2–3, i.e., the temperature dep
dence does not change after the introduction of impurities
these experiments, an anomalously strong effect of impu
on the growth rate was not observed either.

Thus, the introduction of an impurity with a concentr
tion 1025–1024 does not lead to a significant change in t
kinetic growth coefficient in the temperature range 1.2–
K and becomes noticeable only at lower temperatures.

The author is grateful to S. N. Burmistrov and L. B
Dubovskii for numerous fruitful discussions in the course
research work and to A. Ya. Parshin for valuable discuss
of the results.
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ELECTRONIC SYSTEMS OVER LIQUID HELIUM
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Reconstruction of a charged helium film on a metallic substrate
V. Shikin

Institute of Solid State Physics, Russian Academy of Sciences, 142432 Chernogolovka, Russia*

P. Leiderer

Universitat Konstanz, Postfach 5560 M 675, D-78434 Konstanz, Germany
1!

~Submitted July 1, 1996; revised November 20, 1996!
Fiz. Nizk. Temp.23, 624–628~May–June 1997!

Peculiarities of the reconstruction of a charged helium film surface on a metallic substrate are
considered. Instability evolution in this case resembles the generation of a solitary wave
in hydrodynamics of a free liquid surface and leads to the formation of charged solitons under
certain conditions. Basic characteristics of such solitons are obtained in the one-
dimensional approximation under the conditions of weak nonlinearity of the problem. ©1997
American Institute of Physics.@S1063-777X~97!01605-8#
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methods of introduction of charges into it are immateri!
possesses peculiar deformation properties. In the linear
proximation, we are dealing with a considerable~‘‘Cou-
lomb’’ ! rearrangement of the vibration spectrum of the fr
surface of such liquids. Ultimately, the spectrum of surfa
vibrations of the liquid loses its stability upon a monoton
increase in the surface charge. This phenomenon, which
become known mainly in connection with the decay of hea
nuclei, was studied by many authors~see, for example, Ref
1!. Most successful experiments were carried out with a
uid helium surface charged with electrons or ions,2 for which
the loss of stability by the surface can be traced in detail,
the main predictions of the theory can be confirmed.

The problem on the behavior of a charged liquid surfa
is important in the supercritical region also. For example,
reconstruction of the helium surface takes place for se
infinite helium, for which the loss of stability is observed f
the first time for finite wave numbers of ripplon spectrum~at
the so-called capillary wave length! in the supercritical re-
gion. Instead of a plane boundary of the liquid, a periodica
deformed structure is obtained with a period close to
capillary wave length and the modulation amplitude which
a complex function of supercritical parameters. The theory
this effect is presented in Refs. 3–5, while experimental
vestigations were carried out by the authors of Refs. 6–8

As we go over to a liquid film of thickness smaller tha
the capillary length, the form of instability changes quali
tively. The most ‘‘vulnerable’’ mode in this case is that wi
zero wave vector. This circumstance, which had been r
ably established theoretically,9–11 was not proved in direc
experiments in view of technological difficulties in operatio
with thick liquid films. Only indirect evidences12 of the cor-
rectness of theoretical predictions are available, e. g.,
observed decrease~as compared to the bulk value! in the
critical charge density leading to the loss of stability. T
evolution of instability of a charged liquid film surface in th
supercritical region also remains unclear. Formally, the pr
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vector in the case of stability loss. As a result, it rema
unclear which nonlinear reconstruction~periodic or nonperi-
odic! of the liquid boundary should be sought.

In this communication, we prove that the evolution
instability of the charged surface of a thick helium film~or
other conducting liquid! can follow a scenario resemblin
the formation of a solitary wave in hydrodynamics of th
free surface of a neutral liquid.13 As in the case of a semi
infinite liquid, the transition to the instability region is ac
companied by the emergence of periodic solutions of
deformation equilibrium equation. The period of this stru
ture increases as we move further in the supercritical reg
tending asymptotically to infinity. The deformation state
the charged helium film surface formed in this case is sim
to an isolated soliton. The formulas describing the shape
one-dimensional soliton will be derived in the weak nonli
earity approximation introduced below.

In addition to these original results, we shall refine so
details of definition of critical conditions for the loss of st
bility in a charged helium film, which is important in view o
the ambiguity of these definitions in Refs. 9–11.

1. Let us consider a charged helium film on a metal
substrate under the conditions of complete compensatio
the electric field over the film. The relative position of th
upper electrode, which is always present in problems o
charged helium surface, is immaterial~the separation be
tween the electrode and the surface must only be larger
the film thickness!. For simplicity, we assume that the po
sible deformation of the film surface is a function of th
coordinatex alone. Thus, the initial equilibrium equation ha
the following structure:

rgj2a
j9

@11~j8!2#3/2
1

V2

8p~d1j!2
5const,

2L<x<1L, ~1!

j8ux5050, ~2!

468/000468-04$10.00 © 1997 American Institute of Physics
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V5const, 2 l<x<1 l , ~3!

j95d2j/dx2, j85dj/dx.

Here j(x) is the strain of the helium surface in the regio
2L<x<1L in the presence of various forces acting on t
film surface: gravity, surface tension, and the forces of e
tric origin, which are proportional to the potential differen
V between the charged helium surface and the metallic s
strate@j(x)→0 asV→0#, r andg are the density of helium
and the acceleration due to gravity,a is the surface tension
d the equilibrium thickness of the helium film forV→0, and
2l the size of the control electrode in thex-direction. The
meaning of the constant on the right-hand side of Eq.~1!
depends on the relation betweenl andL. The corresponding
versions are given below. Requirement~2! is conditional and
indicates in the long run that the solutions of Eq.~1! we are
interested in have the form of standing waves. For the s
of definiteness, the origin of coordinates coincides with
extremum of one of such waves.

The electric component of Eq.~1! is written under the
assumption that the solid substrate possesses perfect me
properties. In addition, we assume that the total numbe
electrons on the helium film is not fixed~the potential differ-
enceV is preset!. The origin of the coordinates lies on th
metallic substrate. Thez-axis is directed vertically upwards
The schematic diagram of the experimental cell is shown
Fig. 1.

Returning to the definition of the constant in Eq.~1!, we
consider first the case whenl,L. In this case, a piecewise
smooth solution can be obtained forj(x). Indeed, we neglec
in Eq. ~1! the gradients~in the general case, the reasoni
remains asymptotically correct ifL. l@k21, wherek is the
capillary constant for helium!. Only the gravitational term
competes with the electric term of the problem. The to

FIG. 1. Schematic diagram of experimental cell with incomplete cover
of the film surface with metallic electrodes~a! and with the film surface
covered completely with metallic electrodes~b!: 2l is the size of the elec-
trodes, 2L the size of the cell,d the film thickness,j0 the film strain under
the electrodes,j1 the film strain outside the electrodes, andjp is the helium
film strain.
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interval 2l will be conserved if the strainj1 of the film
thickness changes sign relative toj0 within this interval.This
process is shown schematically in Fig. 1a. The value of
constant in Eq.~1! must be equal torgj1 so that

rgj01
V2

8p~d1j0!
2 5rgj1 ; j0l1j1~L2 l !50. ~4a!

From the condition of conservation of the total volume of t
liquid, we obtain

j152j0
l

L2 l
. ~4b!

HereL is the total length of helium film in thex-direction.
Introducing the definition~4b! of j1 into ~4a!, we obtain

rg* j01
V2

8p~d1j0!
2 50, 2 l<x<1 l ,

g*5gS 11
l

L2 l D . ~4c!

In the limit L@ l , the renormalization ofg* becomes insig-
nificant, i.e.,

g*→g, if L@ l . ~4d!

The situation changes whenl>L. The uniform electric
pressure in the interval2L<x<1L leads to bulk compres
sion of helium. Naturally, we have the strainjp of helium in
this case also, but now its magnitude is controlled not by
gravitational term as in~4a!, but by the helium compressibil
ity ]P/]v. Neglecting gravitation in~1! and assuming, on
the contrary, that the constant is equal to the term contain
]P/]v, we have~see also Fig. 1b!

V2

8p~d1jp!
2 52

]P

]v
LxLyjp . ~5!

HereLx andLy are the dimensions of the helium film in th
x- and y-directions. Naturally, the value ofjp is much
smaller thanj0 from ~4a!.

2. Having analyzed expressions~4a! and ~5! for static
strain, we consider the existing criteria of the loss of stabi
in a charged helium film.

The conventional formulation of the problem on stabili
of a charged helium surface presumes that the size of the
in thex-direction is unlimited. Obviously, the lengthsL and
l cannot be varied in this case so that we can speak onl
the version~5! of static strain. The equation for the sma
correctiondj(x) to static strain, which contains informatio
on stability, can be written, according to~1! and ~5!, in the
form

j~x!5jp1dj~x!, E
2`

1`

dj~s!ds50, ~6a!

Frg2
V2

4p~d1jp!
3Gdj

2adj91
3V2

8p~d1jp!
4 dj250. ~6b!

e
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right-hand side of Eq.~6b! changes sign at the point

4prg~d1jp!
35Vcr

2 . ~7!

This criterion corresponds to the loss of stability of the h
mogeneous state of a charged helium film. Neglecting
quantityjp in this expression as compared tod, we arrive at
the definition of the stability boundaries given in Refs 9 a
10.

If l Þ L, the situation changes:

4prg* ~11j0!
35Ucr

2 . ~8a!

Hereg* andj are taken from~4c!, and we cannot neglect th
quantity j0 in ~8a! since j0@jp . Let us suppose, for ex
ample, that the following relation is satisfied exactly:

V5Ucr . ~8b!

Moreover, using relations~4c!, ~8a!, and~8b!, we obtain

j0
cr52d/3. ~9!

In other words, the uniform strain from~4a!–~4c! at the criti-
cal point is comparable to the initial film thickness, and
disregard in the definition ofUcr is not justified. The correc
expression forUcr taking into account~8a! has the form

Ucr
252Vcr

2g* /3g, Vcr
254pr gd3. ~10!

Hereg* is taken from~4c!, andVcr is the critical potential
~7! from Refs. 9 and 10.

The possible effect of static deformation on the critic
field of a thin film was noted for the first time in Ref. 11. Th
result obtained in Ref. 11 coincides with~10! if g* /g51.
However, an analysis of the conditions under which suc
renormalization appears was not carried out in Ref. 11.
this reason, it was erroneously assumed in Ref. 11 that
definition ~7! of the critical potential is not correct. In actua
practice, both definitions of the critical potential~~7! and
~10!! are justified under appropriate conditions.

3. Let us describe the reconstruction of a charged hel
film. This problem is formulated in the simplest form for th
version withl5L to which our analysis will be confined. In
this case, we proceed from Eq.~6b! with the boundary con-
ditions

dj8~x50!50, ~11!

E
2`

1`

dj~s!ds50. ~12!

The reconstruction of the film is naturally possible on
in the region

V.Vcr . ~13!

Under these conditions, the first integral in Eq.~6b! has
the form

@dj~x!/dx#25q3@2gdj21dj31c#, ~14a!

where

p25k2F V2

4p~d1jp!
3rg

21G , q35
V2

4p~d1jp!
4a

,
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k being the capillary constant for liquid helium.
Let us assume, in accordance with~11!, that

dj8(x)50 at a certain pointdj0 , and

dj0.0. ~15a!

These requirements lead to the following value of the c
stantc in Eq. ~14a!:

c5gdj0
22dj0

3. ~15b!

A periodic ~or soliton! solution of Eq. ~14a! exists if, in
addition to the pointdj0 , there exist some additional point
with dj(x)/dx50. Thus, the problem on reconstruction bo
down to an analysis of the properties of the roots of
equation

dj32dj0
32g~dj22dj0

2!50. ~16!

This equation has only one rootdj5dj0 . Consequently, for
the rootsdj Þ dj0 , expression~16! is simplified:

dj21dj~dj02g!1dj0~dj02g!50. ~17!

The solution of Eq.~17! has the form

2dj652~dj02g!6A~dj02g!224dj0~dj02g!.
~18!

For the rootsdj6 to be real-valued, the following condition
must be satisfied:

~dj02g!224dj0~dj02g!>0 or

~3dj01g!~g2dj0!>0. ~19!

Using ~14a!, we can draw the conclusion that the solutio
dj6 exist if

dj0<g. ~20!

From the two versions ofdj6 , we must use only the roo
dj2 for the condition~12! to be satisfied.

In the limit dj0!g, we have

dj2.2dj0 . ~21a!

If, however,dj0→g, we have

dj2.22Adj0~g2dj0!. ~21b!

The periodT of the deformation structure formed can b
determined from the relation

T

2
5

1

qAq
E

dj2

dj0 ddj

Ac1dj32gdj2
. ~22!

Together with~12! and ~17!, this expression defines the re
lation betweenT andg. In the limit dj0!g, when relation
~21a! is valid, and hence condition~12! is satisfied automati-
cally, relations~17! and ~22! lead to

T52p/p. ~23!

In the opposite limiting case of the maximum amplitu
dj0→g, the periodT→`, and the periodic solution is trans
formed into a soliton solution. The soliton profile can b
obtained from the equation
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E
dj djAg2dj

5qAqx ~24!

or

dj~x!5g@12tanh2~px/2!#, ~25!

wherep andg are taken from~14a!.
The rootdj2 in this limit has the form~21b!, while for

dj0→g it tends to zero.
Analyzing the results~21!–~25!, we note that the period

T is a nonmonotonic function of the supercritical parame
According to ~23!, T→` as p→0. The behavior ofT for
dj0→g is similar. This nonmonotonicity probably has
physical meaning. However, it is more natural to deal w
the monotonic dependenceT(p), the more so that the ampli
tude ofj(x) does not depend on the supercritical parame
for small p ~condition ~12! is satisfied automatically!. The
nonmonotonicity in the behavior ofT(p) can be removed by
introducing the procedure of subtraction

T*

2
5

1

qAq F E
dj2

dj0 ddj

Ac1dj32gdj2
2

p

p G .
In this definition,T* tends to zero asp→0 and increases
monotonically withp, approaching the value ofT defined by
~22! in the regiondj0→g.

Thus, a transition of a charged helium film to the sup
critical state leads to the formation of solitons of the fo
~25! on its surface.
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Quantum magnetotransport in a highly correlated two-dimensional electron liquid

n

on a superfluid helium surface
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The theoretical concept of the inelastic quantum magnetotransport of highly correlated surface
electrons on superfluid helium is presented. The low-temperature magnetoconductivity
data are obtained from the damping of the edge magnetoplasmons. It is shown that the temperature
and magnetic field dependences of the magnetoconductivity can be perfectly described by
the inelastic many-electron theory as the interplay of two kinds of Landau level broadening
produced by scatterers and by mutual Coulomb interaction. ©1997 American Institute
of Physics.@S1063-777X~97!01705-2#
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In the presence of a strong magnetic fieldB oriented
normally the surface electrons~SE! on superfluid helium
provide a unique possibility for studying quantum transp
phenomena in a highly correlated, two-dimensional (2D)
electron liquid. At typical electron densitiesn;108 cm22

and temperaturesT,0.5 K the Coulomb coupling paramete
~the mean Coulomb energy over the mean kinetic ene!
G5e2Apn/(kBT) attains unusually large values (G;100).
Since the Fermi energy of the SE is much less thankBT, the
ultra-quantum limit~\vc@kBT wherevc is the cyclotron
frequency! is easily achieved and at typical helium tempe
tures nearly all electrons populate the ground Landau le

A 2D electron gas in a magnetic field is a singu
system—the electron energy spectrum becomes disc
therefore, the usual Born approximation fails to describe
quantum magnetotransport. The conventional way to t
this system is the self-consistent Born approximat
~SCBA!,1 in which the effects of level broadening caused
scatterers are taken into account. For SE on the super
helium the level broadening is the smallest energy par
eter:G!kBT. Therefore, at\vc@kBT the SE are confined
to a very narrow energy space of the ground level. In
limit G→0, the elastic and inelastic scattering processes
sult in the different analytical behavior of the magnetoco
ductivity: sxx}1/G→` for the elastic scattering from impu
rities, whereassxx→0 for the inelastic scattering within th
ground level. It means that the correct result forsxx should
be crucially dependent on the relationship between the
small parameters, the energy exchanged at a collisionDv,
and the Landau level broadeningG. It may be far away from
the result of the usually used elastic approximation~the non-
linear breakage of the elastic approximation was recently
cussed in Ref. 2!.

The first zero-field conductivity measurements,3–5 have
shown that in spite of the high Coulomb correlations, in t
low temperature~LT! range down to the Wigner solid tran
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ideal 2D electron gas. The cause of this behavior is that
wavelength of thermal electrons is much shorter than
Coulomb correlation length.6 In a magnetic field the energ
scale of the SE density of states~G! is usually much less than
thermal energy and the many-electron effect can be m
pronounced.

The SE scattering arises from capillary wave quanta~rip-
plons! and helium vapor atoms. In the vapor atom scatter
regime (T.1 K) the quantization of the electron motio
caused by the magnetic field leads to unexpected Hall eff
the Hall angle decreases with the magnetic fieldB in the
ultra quantum limit, since the effective collision frequen
n(B) increases faster withB than the cyclotron frequency.7,8

It was shown that the effect and the experimental data ca
perfectly described by the extended SCBA theory7 up to 20
T. In this regime the many-electron effect is usually sm
with the exception of the narrow temperature range aroun
K, where the magnetoconductivity becomes density dep
dent if the magnetic field is weak.9,10 It should be pointed out
that under such conditions the energy exchanged at a c
sion is of the same order of magnitude asG and the inelastic
effect of the electron-atom scattering which is neglected
Refs. 9 and 10, should be additionally analyzed.

In the ripplon scattering regime (T,0.7 K) the experi-
mental and theoretical situations are much more com
cated. The experimental magnetoconductivity data p
formed by different experimental groups contradict ea
other. According to Ref. 11 and 12, the SE magnetocond
tivity sxx has a minimum atT'1 K and increases slowly
down to T.0.5 K, while in Ref. 13 the SE resistivityrxx
and, consequently,sxx decrease with decreasing temperatu
to 0.4 K. Therefore, any alternative experimental method
studying the quantum magnetotransport at LT is welcom

At LT small deviations from the axial symmetry of th
experimental cell spoils, in our view, the conventional ana
sis of the data due to the excitation of low frequency ed
magnetoplasmons~EMP!. At the same time, the EMP exci

472/000472-08$10.00 © 1997 American Institute of Physics
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magnetotransport. As was shown in a rather gener
way,15,16at strong magnetic fields the damping of the EMP
proportional to the longitudinal conductivity. Therefore, t
EMP damping measurement can be an alternative wa
determining the SE magnetoconductivity.

The electron-ripplon scattering is analogous to the e
tron scattering by acoustic phonons in solids. There is, h
ever, a substantial difference in the SCBA treatment of
due to the unusual ripplon dispersion,vq5(a/r)1/2q3/2 ~here
a is the surface tension andr is the liquid helium mass
density!. In the semiconductor 2D electron systems the
acoustic phonon scattering is usually treated
quasi-elastic17 since the typical phonon energies are mu
smaller thanG. Previous theories of the ripplon-induce
quantum magnetotransport, the single-electron the
~Saitoh18!, and the many-electron theory~Dykman and
Khazan~DK!19!, which were organized in a much more com
plex way than the conventional SCBA theory, were based
the quasi-elastic approximation. It can be shown that for
electron-ripplon scattering the inelastic parameterd
5\vq /G increases with the magnetic field due tovq}q

3/2

}B3/4 ~usually G}AB!. Additionally, d increases with de-
creasingT and soon becomes larger than unity. Therefo
the theory of the LT quantum magnetotransport of SE sho
be initially formulated as an inelastic quantum transp
theory.

In this paper we report the theoretical concept of
inelastic quantum magnetotransport of the SE on superfl
helium for electron-atom and electron-ripplon scattering, a
the LT magnetoconductivity data obtained from the damp
coefficient of the EMP. The many-electron effect which
important at rather weak magnetic fields is taken into
count by means of the Coulomb correction to the broaden
of the single-electron density of states,GC . The theory based
on the extended SCBA reproduces the results of the prev
approaches as the opposite limiting cases, if the inela
effect is ignored and if the Landau level broadening is s
cessively reduced to the ripplon-induced broadeningG→G r

(GC50; the single electron Saitoh’s theory! and to the Cou-
lomb broadeningG→GC ~G r50; the DK theory!. Under real
experimental conditions,G transforms continuously from
GC to G r with the increase of the magnetic fieldB and the
inelastic effect substantially affects the quantum mag
totransport of SE, reducing bothG and sxx . The new LT
data of the SE magnetoconductivity as a function ofT and
B are in good agreement~without any adjusting paramete!
with the presented theory of inelastic quantum magnetotra
port. The same approach applied as a test to the elec
atom scattering describes previously measuredsxx data, in-
cluding the effects caused by the electron-elect
interaction.

THEORETICAL CONCEPT

Our intention is to describe the quantum magnetotra
port of an electron liquid of which the mean potential ener
is approximately one hundred times larger than the m
kinetic energy. Under such condition the conventional
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tion can scarcely be used. As was shown in Ref. 7, it
natural to assume that the highly correlated electron liqui
in equilibrium in the center-of-mass frame moving along t
surface with a drift velocityud in crossed magneticB and
electricE fields. In this case the substantial simplification
the mathematical formalism appears to be possible, since
conductivity of SE can be expressed in terms of the equi
rium dynamic structure factor of the 2D electron liquid.7,8

Effective collision frequency

We start with the interaction Hamiltonian which allow
one to describe the inelastic magnetotransport induced
vapor atoms and ripplons in a similar way:

H int5 (
j5a,r

(
q
Ujn2q

~el!Aj ,q ,

nq
~el!5(

e
exp~2 iqre!. ~1!

Here we usej to distinguish the electron-atom interactio
( j5a) from the electron-ripplon interaction (j5r ) and in-
troduce the notation

Ar ,q5bq1b2q
1 , Aa,q5(

k
hk(

K8
aK82K

1 aK ,

Ur5VqA \q

2rvq
, Ua5

2p\2s

m
, hk5^1ueikzu1&, ~2!

nq
(el) is a 2D Fourier transform of the electron density;bq

1

andaq
1 are the creation operators of ripplons and4He atoms;

~1i1! means the average over the ground surface le
R5$r ,z%; K5$q,k%; Vq is the electron-ripplon coupling;20

s is the electron-atom scattering length, andm is the free
electron mass.

According to Refs. 7 and 8, the quantum magnetotra
port can be described by the elementary expressions for
conductivity tensor with the field- and density-dependent
fective collision frequencyn(B,n). For a highly correlated
2D electron liquid we have

n5
1

2mkBT
(
q
q2HUr

2Nq
~r !S0~q,vq!

1
1

2
Ua
2(

k
uhku2(

K8
NK8

~a! ,S0~q,Dva!J , ~3!

whereNq
(r ) andNK8

(a) are the distribution functions of ripplon
and vapor atoms;

S0~q,v!5Ne
21E eivt^nq

~el!~ t !n2q
~el!~0!&dt

is the equilibrium dynamic structure factor;\Dva5«K8
(a)

2«K82K
(a) is the energy exchanged as a result of the electr

atom collisions, andNe is the total number of electrons. I
this treatment, the main problem is to find the appropri
approximation forS0(q,v).
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It should be pointed out that Eq.~3! would still contain
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the many-electron effect even if we would use the sing
electron approximation for the dynamic structure factor

S0~q,v!5
2\

p2Nel
2 E dE f~E!@12 f ~E1\v!#

3 (
N,N8

JN,N8 Im GN~E!Im GN8~E1\v!.

~4!

Here l is the magnetic length (5A\c/eB); f (E) is
the Fermi-distribution function; JN,N85u^N,Xuexp(iqre)
3uN8,X2qyl

2&u2, andGN(E) is the single-electron Green’
function. In this approximation the theory is the quantu
analog of the semi-classical treatment of highly correla
electrons by means of the drift-velocity-shifted distributi
function f k5 f (E2\kud).

6,21

Following the general idea of Ref. 22, we take additio
ally into account the many-electron effect as a Coulomb c
rection to broadening of the single-electron density of sta
GC . In this picture an electron feels the fluctuation field
others electrons as a random potential, since the density
tuation has spectral intensities at very low frequenc
Im GN(E) is therefore assumed to have a semielliptic sha

Im GN~E!52
2

GN
A12@~E2EN* !/GN#2, ~5!

whereEN* is the central position of the Landau level. Th
level broadeningGN is formed by all the present interaction
including the mutual interaction of the SE. Thus, here
many-electron effect is finally taken into account in two m
jor respects: first, high Coulomb correlations form the eq
librium dynamic structure factor included in Eq.~3!; sec-
ondly, the mutual interaction affects the single electr
density of states.

Equation~3!–~5! establish the relationship between t
effective collision frequency and the level broadening. In
ultraquantum limit~N50, G0[G! we have

S0~q,v!5
32\

3pG
expS 2

q2l 2

2 DxS \v

G D ,
x~d!5

3

4 E
21

12d
A12x2A12~x1d!2dx. ~6!

The function x~d! describes the inelastic effect. Fo
small values of the energy exchanged as a result of a c
sion,\v!G, the quantum magnetotransport can be cons
ered as quasielastic,x→1. At \v;G, as it is shown in Fig.
1, the inelastic effect substantially reducesS0(q,v) and con-
sequentlyn(B,n).

In general, the inelastic effect is difficult to describe f
the electron-vapor atom scattering because of additiona
tegrations overk and K 8 which appear in Eq.~3! if Dva

Þ0. In this case we can therefore substantially simplify
problem as follows. Usually,q8,k8@q,k, and Dva

.\(qq81kk8)/M ~hereM is the helium atom mass!. First,
we disregard the term proportional toq, since it is important
only in the range of strong magnetic fields where the ine
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tic effect can be ignored. Taking into account that atB
,10 T there is nearly no difference betweensxx calculated
for the Gaussian and semielliptic shapes of the density
states,8 we use the more simple Gaussian shape for desc
ing the inelastic effect of the electron-atom scattering:

n~a!5n0
~a!

16

3p E
0

` dy

~11y2!3A11da
2y2/2

,

da5
4\g

G
AkBT

M
. ~7!

Hereda is the inelastic parameter for the electron-atom sc
tering,

n0
~a!5

ApvcGa,0
2

4GkBT
expF2S G

4kBT
D 2GcothS \vc

2kBT
D , ~8!

g is the parameter of the SE wave function^1uz&}z
3exp(2gz), which increases with the holding electric fie
E' . As usual, we combined the interaction parameters i
Ga,0 , which is equal to the Landau level broadening caus
by the electron-atom interactions only, Ga,0

5\A(2/p)vcn(0). It should be pointed out, however, th
hereGa,0 does not originate from the density of states, a
differs from G due to other interactions. In this form, th
effective collision frequency has the required analytical b
havior atG→0 (n}1/G→`), which proves additionally the
importance of the self-consistent broadening of the Lan
levels.

In the case of the electron-ripplon scattering, the inel
tic parameter is of a very simple form,d r5\v0 /G @here
v0
2523/2a/(r l 3)# and n (r ) has no additional integration

typical of the electron-atom scattering. Therefore, Eq.~6! can
be directly insert into

FIG. 1. The dynamic structure factor vs. the inelastic parameter for
semielliptic~solid! and Gaussian~dashed! shapes of the density of states i
the ultraquantum limit.
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Landau level broadening

According to general rules of the many-partic
physics,23 if the Coulomb interaction is neglected, the S
self-energy can be written as

SN~E!5 i(
q

(
N8

JN,N8E dv

2p
GN8~E

2\v! (
j5a,r

U j
2Dj~q,v!. ~10!

Here we introduced the correlators

Di~q,t2t8!52 i ^T@Aj ,q~ t !Aj ,2q~ t8!#&,

which are similar for the two kinds of electron scatteri
( j5a,r ).

It is easy to see that in the limit\v!E, Eq. ~10! re-
duces toSN51/4GN

2GN(E) and the broadening can be foun
self-consistently by using Dyson’s equation. In this ca
Im GN(E) has a semielliptic shape, with the level broaden
G5(Ga,0

2 1G r ,0
2 )1/2. Here Ga,0 is the usual vapor-atom

induced broadening, andG r ,0 is the ripplon-induced, quasi
elastic broadening, which is twice as large as a result of
qualitative analysis of Ref. 24:

G r ,0
2 5

L0
2kBT

pa l 4
I * , I *5E

0

`

W2~x!e2xdx/x. ~11!

Here we use the notation

W~x!5xvS x

2g2l 2D1
eE'l

2

L0
; L05

e2~«21!

4~«11!
;

w~y!52
1

12y
1

1

~12y!3/2
lnF ~11A12y

Ay G ;
« is the dielectric constant. Since the elastic broadenin
caused by ripplonsG r ,0}AT, the effective collision fre-
quencyn}1/G r ,0 reproduces the result of the previous sing
electron theory:18 sxx}1/AT.

In Eq. ~8! the term proportional toE'
2 has a logarithmic

divergence for smallq. We should cut it off at wave vectors
for which the approximations made above fails~for instance,
it can beq'Apn!. Still, in the LT limit which we are con-
sidering the only low electron densities,n,5•107 cm22, are
important and this term can be neglected atB.1 T.

In the inelastic theory the situation is much more co
plicated. ImGN(E) is nonetheless assumed to be of a sh
semielliptic shape with the level broadening defined asGN

522 ImSN(EN* ). Usually,Nq
(r )@1; in this case the ripplon

Green’s functionDr(q,v) andDa(q,v) have similar struc-
tures:

Dr~q,v!522p iNq
~r !@d~v2vq!1d~v1vq!#,

Da~q,v!522p i(
k

uhku2(
K8

NK8
~a!d~v1Dva!. ~12!
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GN52(
q

(
N8

JN,N8E dv

2p
Im GN8~E

2\v! (
j5a,r

U j
2 Im Dj~q,v!. ~13!

From this equation it can be seen that the mixing of
Landau levels can be ignored (N85N) if GN!\vc ~which
we assume!. At the same time, it follows that the inelast
effect changes the level broadening if\v;GN .

In the presence of the Coulomb correction to the bro
ening of the single-electron density of statesGC , the self-
consistent equation for the total level broadeningG can be
written as

G25GC
21Ga,0

2 Ya~da!1G r ,0
2 Yr~d r !. ~14!

Hereda andd r are the inelastic parameters for the two kin
of electron scattering;

Ya~d!5
16

3p E
0

` dy

@11y2#3A11d2y2
;

Yr~d!5
1

I * E
0

`

e2xA12d2x3/2W2~x!u~12d2x3/2!
dx

x
;

and u(x) is the unit step function. Since the parametersd r
and da depend onG, Eq. ~14! is a transcendental equatio
whose solution as a function of basic parametersT, B, and
n should be found numerically.

Regarding the Coulomb broadening, we will use the
sults of Refs. 9 and 19 (GC5\/te5eEf l ), where the fluc-
tuating electric fields were calculated

Ef.0.84S 4pkBTn
3/2

« D 1/2.
Since the ripplon or vapor-atom-induced broadening

creases with the magnetic field~which is approximately pro-
portional toAB! while GC}1/AB, the Coulomb correlations
affect the quantum magnetotransport only at weak magn
fields and high electron densities.

It is instructive to plot the inelastic parameters as fun
tions ofT for different values of the magnetic field, as it
done in Fig. 2. For the electron-atom scattering it follow
~Fig. 2,a! that at temperatures of about 1 K, where the ma
electron effect is usually studied,9,10 the Coulomb correla-
tions substantially reduce the inelastic parameter. Still,
single-electron approximation~dashed curves! and many-
electron theory~solid curves! give da;1. According to Fig.
1, at suchda we could expect a large decrease inG and
n (a). Regarding the level broadening and effective collisi
frequency induced by the electron-atom interactions, the
elastic effect nonetheless turns out to be less important
to the additional integrations overk andK 8 in Eqs.~3! and
~12!. As it is shown in Figs. 3 and 4, the many-electron effe
and the contribution of ripplons to the level broadening p
vent a strong decrease inG andn (a) at weak magnetic fields
andT,1 K.
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ory
FIG. 2. The inelastic parametersda ~a! andd r ~b! vs. temperature forn53.5•107 cm22 and the two values of the magnetic field: the many-electron the
~solid!; the single-electron theory~dashed!.
The situation is different for the electron-ripplon scatter-

-
u
se

in Fig. 2,b. In this case there is no additional integration

f-
the

:

ing whereGC andG r ,0 have the sameT-dependences:GC ,
G r ,0}AT. The inelastic parameterd r increases with decreas
ing temperature and the many-electron effect cannot s
press the increase at strong magnetic fields, as is clearly

FIG. 3. The Landau level broadeningG as a function of the magnetic field
the many-electron theory~solid!; the single-electron theory~dashed!.
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p-
en

except for the integration overq @Eq. ~9!#. Therefore, the
inelastic effect should crucially affect the quantum cially a
fect the quantum magnetotransport of SE, which changes
T-dependences ofG andsxx at LT.

FIG. 4. The temperature dependence of the inelastic factorn (a)/n0
(a) for two

values of the magnetic field: the many-electron theory~solid!; the single-
electron theory~dashed!.

476Monarkha et al.



EXPERIMENTAL METHOD
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As was stated in the introduction, our experimen
method of determiningsxx is based on the general theore
cal conclusions of Refs. 15 and 16 that at strong eno
magnetic fields the damping coefficient of EMP is prop
tional to the longitudinal conductivity~usually it is valid at
B.0.5 T!. In this case the proportionality constant can
considered as a geometrical factor which is independen
B andT. Therefore, at fixedn the EMP damping can be use
for determining temperature and magnetic field dependen
of the SE magnetoconductivity. The edge phenomena for
are smoothed over large distances, which assures tha
data correspond to the real SE conductivity.

To study EMP damping we will use the convention
experimental technique which is similar to the one descri
in Ref. 25. The electron sheet employed in the present w
has a circular geometry with a diameter of 30 mm, which
shaped by an electrode assembly. The electron asse
consists of a circular disk of 10 mm in diameter and fo
surrounding arc-shaped outer electrodes. The total diam
of the assembly is 30 mm. The electrodes were immerse
liquid helium, 1.0 mm under the surface. The width of t
edge of the electron disk was estimated to be 0.3 mm.
resonance curve was obtained by sweeping the frequenc
an ac excitation voltage, which was applied to one of
four surrounding electrodes. The output signal from the
posite electrode was analyzed by a two-phase lock-in.
magnetic field and temperature were held constant during
measurement of each resonance curve. The electron de
was fixed atn53.5•107 cm22.

Since the first mode was contaminated with a lo
frequency tail and unfavorable noise, the second mode w
higher wave number was used to obtain the damping co
cient by fitting to the Lorentzian. Above 1 K the magnetic
field dependence of the damping coefficient was found to
the same as theB-dependence of the previously studied lo
gitudinal conductivity of SE. Therefore, we have determin
the geometrical factor which gives the relationship betwe
the damping coefficient andsxx at T51.1 K, where the
magnetoconductivity is well understood, both theoretica
and experimentally, while the ripplon contribution and i
elastic effect~according to Fig. 4! can be disregarded. Thi
factor was then used in the ripplon scattering regime.

It should be noted that the driving amplitude had to
kept low in order to avoid the nonlinear distortion of th
EMP line shape.

RESULTS AND DISCUSSION

To check that the many-electron effect is taken into
count correctly in the theory presented above, we must
apply the theory to the high-temperature regime,T51.2 K.
The many-electron theory~solid curve! and the single-
electron theory~dashed curve! results are shown in Fig. 5 fo
two electron densities. It can be seen that the many-elec
effect can be ignored at low densities (n,0.5•108 cm22).
At substantially higher densityn53.2•108 cm22 and B
<5 T, the Coulomb correction to the Landau level broad
ing affects the field dependence ofsxx . The experimental
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data of Ref. 26 for the SE conductance measured fon
53.2•108 cm22 at T51.2 K are plotted in Fig. 5. The con
ductance is proportional tosxx with the numerical factor of
the order of unity unknown for the experiment. We ha
chosen the proportionality constant to fit the experimen
data at extremely high magnetic fields (B520 T), where the
many-electron effect can be neglected. The data and
theory will then still in good agreement in the magnetic fie
range where the many-electron effect validity of the appro
mation made for the dynamic structure factorS0(q,v) of a
highly correlated 2D electron liquid. It is instructive to note
that in the high temperature range andB>1 T, the quantum
magnetotransport of SE can be described by using the sim
many-electron correction to the level broadeningG5(Ga,0

2

1GC
2 )1/2 in a single-electron expression forn(B) presented

in the form of Eq.~8!.
In the ripplon scattering regime, the magnetic field d

pendence ofsxx is shown in Fig. 6 for different approache
It follows that the single-electron approximation (GC50)
fails to describe the field dependence ofsxx obtained from
the damping coefficient of EMP~solid squares!. At the same
time, the many-electron DK theory results~curve3! cannot
be fitted to the data. The theory presented here reprod
theB-dependence of the DK theory, if the ripplon contrib
tion to the level broadening and inelastic effect are ignor
G→GC , d r→0. Still, in this case, our theory givessxx val-
ues which are approximately 2.6 times higher than the re
of the DK theory. This is attributable to another way of trea
ment of the magnetoconductivity of the highly correlat
electron liquid used here. It should be pointed out that
factor 2.6 is very important for describing the experimen
data. Indeed, it is impossible to fit the data and the D
theory by just replacingGC[\/te by G5(G r ,0

2 1GC
2 )1/2 in

the final conductivity equation, since it would reducesxx

}1/GC from the data. Therefore, we conclude that t

FIG. 5. sxx(0)/sxx(B) vs. B for n50.5•108 cm22 ~1! and n53.2
3108 cm22 ~2! at T51.2 K. The lines show the many-electron theo
~solid! and single-electron theory~dashed!. Data ~open squares! are taken
from Ref. 26.
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method proposed by us is a more adequate way of trea
the conductivity of highly correlated 2D electron liquid.

The solid curve in Fig. 6 calculated on the basis
theory of this paper without a fitting parameter is in go
agreement with the new experimental data. In the wide ra
of magnetic fieldssxx has a very weakB-dependence be
cause of the interplay of the different contributions~GC and
G r ,0! to the level broadening. The deviation from the da
seen atB<1 T is beyond the validity of the approximation
used by us~at such fields the mixing of the Landau leve
becomes important!. The curve approaches the singl
electron curve~curve 1! in the limit of strong magnetic field
since GC}1/AB→0. This is reasonable despite the lar
value of the Coulomb coupling parameterG'60, since the
typical wave vectors in the dynamic structure factorq}AB
are much larger thanApn @according to Ref. 27, in this limit
S0(q,v) is nearly the same as that of an ideal electron g#.

The agreement between the theory and thesxx data
looks even more convincing in Fig. 7, where the results
plotted as a function of temperature for three different val
of the magnetic field used in the experiment. The increas
sxx with decreasing temperature to 0.2 K is consistent w
the prediction of the quassielastic theory~Saitoh18!: sxx

}1/AT. At lower temperaturesT<0.2 K, the many-electron
theory curves~solid! and the data deviate from the result
the quasielastic approximation—the stronger the magn
field, the more SE magnetoconductivity deviates due to
inelastic effect. With the increase of the magnetic field,
curves and the data gradually approach the single-elec
curve ~dashed! plotted for the strongest magnetic field us
in the experiment. The high-temperature deviation of
weak-field curves from the data might be caused by the
crease of the population of higher Landau levels, which w
disregarded in the electron-ripplon scattering.

The temperature dependence ofsxx is the most decisive
factor for the electron-ripplon scattering regime. Therefore
is important to compare the previously measuredsxx(T)
data with the data reported here. It should be noted that

FIG. 6. The magnetoconductivity of SE vs.B at T50.3 K: the single-
electron approximation~1!; the many-electron theory reported~2!; the DK
many-electron theory~3!. Solid squares are the experimental data fou
from the EMP damping.
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temperature dependence observed in Ref. 12 atT.0.5 K is
similar to the one shown in Fig. 7. Still, the minimum o
sxx was situated at higherT'1 K, and it was necessary t
substantially reduce the level broadeningG→Ga,0 to fit the
data. Regarding therxx(T) data reported in Ref. 13~rxx and
consequentlysxx decrease with decreasingT!, they are in
contradiction with available theories of ripplon-induce
magnetoconductivity including the DK theory.

CONCLUSIONS

We have investigated the inelastic quantum mag
totransport in a highly correlated 2D electron liquid of SE on
superfluid helium. The theoretical concept presented and
magnetoconductivity data obtained from the damping of
EMP show that the usually used quasielastic approxima
is valid only in a limited temperature range which narrow
with increasing magnetic field. The inelastic effect which
important at LT drastically reduces the Landau level bro
ening and magneto-conductivity. The many-electron the
reported here reproduces the results of previous quasiel
theories18,19 as the opposite limiting cases which cannot
separately applied to the real experimental situation.

We have shown that the EMP damping method of m
suring the SE magnetoconductivity at LT can be an alter
tive to the conventional methods based on measuring
electron response to the ac voltage by means of the cap
tive coupling techniques.

The perfect agreement achieved between the theory
experiment in the wide range of temperatures~including the
vapor atom scattering regime! and magnetic fields support
the idea of the Coulomb correction to the broadening of
single-electron density of states and provides important c
about the behavior of highly correlated (G;100) 2D elec-
tron liquids in quantizing magnetic fields.

FIG. 7. sxx vs.T for three values of the magnetic field:B51.84 T@curve1,
s#; B53.67 T @curve 2, l#; B56.4 T @curve 3, h#. The many-electron
theory ~solid! and the single electron theory~dashed;B56.4 T! have no
fitting parameters.
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Possibility of ripplon-induced weak localization

A. J. Dahm

Department of Physics, Case Western Reserve University, Cleveland, OH 44108
~Submitted December 24, 1996!
Fiz. Nizk. Temp.23, 639–641~May–June 1997!

Ripplon-induced weak localization is proposed for electrons on a liquid-helium surface. Ripplon
scattering is quasi-elastic, the ripplons are quasi-static relative to the electron velocity, and
the relative change in occupation number of the ripplon state in a scattering event is small.
Conditions for the observation of ripplon-induced weak localization are calculated.
© 1997 American Institute of Physics.@S1063-777X~97!01805-7#

Electrons bound to a liquid-helium surface form an idealWEAK LOCALIZATION BY RIPPLONS
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two-dimensional system. Electron motion along the surf
in a weak perpendicular field,E' , is metallic with scattering
occurring only from ripplons at temperatures below 0.5
The formation of a ripplonic polaron, consisting of an ele
tron self-trapped in a dimple in the helium surface,
predicted1 to occur in the presence of a sufficiently stro
perpendicular field. A recent claim has been made for
observation of this state.2

Localization effects for electrons on helium films ha
been discussed only in terms of this ripplonic polaron. W
present an alternate route to localization of electrons on
lium films. Our suggestion is that electrons are weakly loc
ized, and possibly strongly localized on a short time scale
quasi-elastic ripplon scattering. When temporal strong loc
ization occurs, a dimple or a precursor will form beneath
electron even if the polaronic state is not bound. We prop
that as the holding field is increased to enhance elect
ripplon scattering, the system will traverse the regimes, w
localization to strong localization to the bound polaron sta

WEAK LOCALIZATION

Weak localization is the term applied to the cohere
backscattering of electrons by elastic scattering from a r
dom set of potentials. It is a precursor to strong localizati
Excellent reviews on this topic exist.3–5 Let us consider a se
of fixed random potentials. Electrons can backscatter by
versing a circuit of scatters in clockwise~forward! or coun-
terclockwise~time reversed! directions. A diagram is shown
in Fig. 1a. In zero magnetic field with only elastic scatteri
the difference in phase shift along the two paths,Dw, van-
ishes. The amplitudes for forward,Af , and time-reversed
Ar , paths are additive. The probability of returning to t
origin is

P5uAf1Ar u25uA@11cos~Dw!#u254uAu2 ~1!

compared to 2uAu2 for scattering in other directions. Thi
enhancement of back scattering leads to an increase in r
tivity. In a magnetic field the additional phase sh
@(e/\)*Adl# differs for the two paths and coherence is d
stroyed at fields;F0 / l

2. HereF0 is a flux quantum andl is
the elastic mean free path. This leads to a negative ma
toresistance at low fields.

480 Low Temp. Phys. 23 (5–6), May–June 1997 1063-777X/
e

.
-

e

e
e-
l-
y
l-
e
e
n-
k
.

t
n-
.

a-

is-

-

e-

We argue that weak localization should occur from r
plon scattering. Ripplon scattering differs from scatteri
from fixed random potentials in the following ways.

1! Scattering is quasi-elastic. The dominant electro
ripplon scattering events involve the absorption or emiss
of ripplons with wave vectors,q, ;the thermal wave vecto
of the electron,kT . For 1-K electrons the energy of ripplon
which dominate the scattering is\vq;1022 K. Thus, the
change in the electron wave vector,k, in a single scattering
event is ,1%. The total phase change;5 kl for l
;100 nm is;20 radians, andDw is ;0.2 radians.

2! Ripplons are quasi-static in the reference frame of
electrons. The velocity of ripplons withq5kT is ;3
31023 of the electron velocity. The positions at which sca
tering occurs on the two paths are nearly the same. Th
illustrated in Fig. 1b. The total change in phase is nea
unaffected by the motion of slow ripplons.

3! The percentage change in the occupation numbe
ripplons in a scattering event involving the absorption
emission of a ripplon of one quantum is small. The occu
tion number is;T/\vq;100 at 1 K. Electrons on the for
ward and time-reversed paths scatter from ripplons of
same amplitude to within 1%.

We conclude that the total phase change for electr
which traverse the two paths is nearly the same, and the
in coherence for back scattering is very small. The rea
may be inclined to make an analogy with phonon scatter
which dephases the electrons in other two-dimensional
tems. This analogy is incorrect. Phonon scattering occur
energies\v;\skF;1 K, wheres is the sound velocity and
kF is ;108 m21. Electron-phonon scattering is not quas
elastic, and the occupation number is approximately un
Thus, a phonon of one quantum absorbed on one path
not exist for the time-reversed path. A good analogy
ripplon-induced weak localization is weak localization b
quasi-elastic scattering from helium atoms which has b
observed.6,7

STRONG LOCALIZATION BY RIPPLONS

Electron localization by ripplons or substrate scatter
is complicated by the formation of a dimple under the ele
tron. This dimple forms if an electron is temporarily loca
ized even though no bound polaron state exists. The dim

480/000480-02$10.00 © 1997 American Institute of Physics
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impedes the motion of the electron. Nevertheless, we ex
ine the possibility of strong localization by ripplons.

Strong localization occurs for short elastic mean fr
paths. The amplitude of the electronic wave function fro
successive scatterings will add constructively in some reg
of space where the electron becomes localized, and des
tive interference will occur in other regions of space. T
wave function decays as exp(2r/j), wherej. l is the local-
ization length. In fixed random potentials, conduction occ
via variable-range tunneling from one localized state to
other with the absorption or emission of a therm
excitation.8 There is interference between different tunneli
paths. A magnetic field suppresses destructive interfere
along critical links in the hopping network. This results in
giant negative magnetoresistance.9

The situation is much more complicated for the case
electrons on helium. Consider a mean free path of 50
The change ink for each scattering is;61%. The change
in w is ;1 radian after;100 scattering events which occu
in about 1 nsec. Also, ripplons move a distance; l /10 in
;1 nsec. Thus, a localized state can survive for at mo
nsec. This is also the time for a dimple of size; l to form
under the electron. We propose that in the absence of bo
polarons, electrons will be relocalized at another site in
time;1 nsec or will tunnel to another site in a shorter tim
The mobility, given by the Einstein relation and a diffusio
constantD; l 2/t(t;1 nsec), is;1021 m2/V.s.

POSSIBILITY OF EXPERIMENTAL REALIZATION

We estimate the mean free path required to ins
cos(Dw).0.7 is l,400 nm. This requiresE';250 kV/m,
although a small negative magnetoresistance may be
served at lower fields. All other sources of scattering
absent on a bulk surface, and weak localization effects
be attributed to ripplons. However, the charged bulk surf
is unstable at this value of field, and weak localization m
best be observed on helium films. In this case scattering f
substrate roughness may interfere. A low density of electr
is required to insure that localization is not a result
electron-electron interactions. The advantage of using e
trons on a helium surface to study the transition from we
to strong localization is that the electron mean free path
be varied, in situ, by changing the holding field. Further,
electron-electron interaction can be altered by changing
density.

FIG. 1. Diagram illustrating forward and reversed paths.~a! fixed scatterers;
~b! quasistatic scatterers.
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We have some data that support our suggestion. In Fi
we show the resistivity versusB2 for electrons on a
a;30-nm-thick helium film. At low fields there is a larg
negative magnetoresistance, more characteristic of stron
calization. At higher fields the resistivity fits the Drude fo
mula, r;@11(mB)2#. The mobility, m, is 1.5 m2/V.s, l
;50 nm, andE';600 kV/m. The field at which the mini-
mum occurs is consistent with this value ofl . Scattering
from substrate imperfections may occur here, but the th
retical ripplon scattering rate accounts for;40% of the total
scattering. We argue that since every other scattering e
involves ripplons, localization effects could not be observ
if ripplon scattering dephased the electronic wave functio

Localization of electrons on a helium surface is an e
ample of classical weak localization. This has been stud
both theoretically10,11 and experimentally6,7,12 in other sys-
tems. A search for ripplon-induced localization is underw

The author wishes to thank H. W. Jiang for taking t
data shown in Fig. 2. This work was supported, in part,
NSF grant #DMR 94-02647.
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Mobility and localization of charge carriers in a quasi-one-dimensional electron system

in
over liquid helium
V. A. Nikolaenko and Yu. Z. Kovdrya

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine1)
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The conductivity and mobility of charge carriers in a quasi-one-dimensional electron system over
liquid helium is measured in the temperature range 0.5–1.8 K in confining electric fields up
to 2.5 kV/cm. The system of quasi-one-dimensional channels is constructed by using high-quality
optical diffraction gratings arranged at a certain heighth over liquid helium which fill the
grooves of the gratings, thus creating one-dimensional liquid channels. It is shown that the electron
mobility decreases with increasingh, the value of the mobility being smaller than the
corresponding value for bulk helium. As the temperature decreases, the mobility increases, passes
through a peak, and then decreases. The observed effects can be explained by localization
of charge carriers in quasi-one-dimensional electron systems. ©1997 American Institute of
Physics.@S1063-777X~97!01905-1#

INTRODUCTION In this research, we investigated the electron mobility
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The study of one-dimensional and quasi-on
dimensional electron systems is one of the most interes
problems in the physics of low-dimensional structures. S
systems are usually formed in thin metal wires and semic
ducting structures. It should be interesting to obtain a o
dimensional electron system of surface electrons~SE! over
liquid helium in view of the fact that the SE layer over liqu
helium is characterized by extremely high purity and hom
geneity. A method proposed in Ref. 1 for obtaining such
system employs the surface curvature of the liquid filling
parallel grooves of an insulating substrate mounted at a
tain heighth over the liquid helium surface under the actio
of capillary forces. The confining electric fieldE' displaces
electrons to the bottom of a liquid channel, their moti
across the channel being quantized, while the motion al
the channel is quasi-free. It was proved that the energy
responding to the motion of particles across the channe
defined as

«n5n\v0 , v05S eE'

mr D 1/2, ~1!

wheren51,2,3, . . . ;\ is Planck’s constant,e andm are the
electron charge and mass, andr is the radius of curvature o
the liquid helium surface in the channel, which is determin
by the heighth.

Such a structure was created recently in experiments2–4

It was shown that the electron conductivity in this system
strongly anisotropic, its value being a complex nonmon
tonic function of the number density of charge carriers a
the confining electric field. According to estimates,2–4 the
mobility of electrons moving along the channels for sm
h is close to~but smaller than! the electron mobility over
bulk helium.
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a quasi-one-dimensional electron system over liquid heli
in the temperature range 0.5–1.8 K at frequencies 100
and 1.1 MHz in confining electric fields up to 2.5 kV/cm
Two types of optical diffraction gratings with different sep
rations between the grooves were used. First results on
measurements of electrical conductivity and mobility of ele
trons in such systems were reported earlier.5,6 This paper
contains more complete data and a detailed analysis of
obtained results.

EXPERIMENT

A quasi-one-dimensional electron system was created
using high-quality optical glass gratings without metal co
ing. The profile, the arrangement of gratings near the liq
helium surface, and the shape of electrodes are show
Figs. 1a and 1b. The separation between the grooves w
mm in grating 1, 1.25m in grating 2, the depth of the groove
in both gratings being 0.2–0.3mm. The profile of grating 1
was measured by an electron microscope. It had the sh
shown in Fig. 1a, and its thickness was 0.8 mm, while gr
ing 2 was in the form of a glass disk of diameter 30 mm a
had a thickness 3 mm~Fig. 1b!. Grating 1 was made of glas
alone, while the surface of grating 2 was coated with a na
thagen film on which grooves were engraved. The na
thagen film with grooves had the shape of a disk of diame
20 mm.

Experimental cells I and II in which gratings 1 and
were contained are shown in Figs. 1c and 1d. Liquid heli
was at a distanceh from the upper plane of the gratings
ElectrodesA, B, andC of grating 1 were kept at zero po
tential, while a negative potential creating the electric fie
confining electrons at the surface of helium film wetting t
grating was applied to the upper electrode D~Fig. 1c!. Elec-
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s
FIG. 1. Grating 1, its profile and arrangement relative to helium; the direction of grooves is indicated by arrows~a!. Grating 2, the directions of grooves i
indicated by dashed lines~b!. Experimental cell I: optical grating~1!, exciting and receiving electrodes~B and C!, confining electrode~D!, filament~F! ~c!.
Experimental cell II: exciting, separating, and receiving electrodes~1,2,3!, copper holder~4!, nut ~5!, guarding ring~6!, optical grating~7!, electrode~8!,
insulating gasket~9!, copper insert~10!, filament~11!, and spring~12!. ~d!.
trodeA was used for measuring anisotropy of the electron
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imaginary (Gi) components of the conductance of the cell
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conductivity along the grooves and at right angles to the6

and was not employed by us in this work. In the experim
tal cell containing grating 2, the upper measuring electro
1, 2, 3were at zero potential, while a positive potential r
quired for confining the electron charge was applied to
lower electroded which had the shape of a disk of diamet
25 mm. Electrodes1, 2, 3of grating 1 were 2 mm above th
substrate surface. The voltage from the generator was
plied to electrodesB and1, while the signal passing throug
the experimental cells was registered from electrodes C
3. With such a method of supplying voltage, the electric fie
was directed along the grooves of the substrate. Electro2
was earthed relative to ac voltage.

DISCUSSION OF RESULTS

We measured in experiments the variationsDU andDw
of the amplitude and phase of the signal passing through
experimental cells during their charging with electrons.
measurements at frequency 100 kHz, an ac bridge with
output leads connected to an amplifier was used. Meas
ments at frequency 1.1 MHz were made by using the hi
frequency phasemeterFK2-12. The data on the values o
DU andDw made it possible to determine the real (Gr) and
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and to find the real (r r) and imaginary (r i) components of
the resistance of the electron layer.

The quantitiesGr andGi are connected with the rea
r r and imaginaryr i components of the resistance of th
electron layer through the following relations:7

gr52nse
2(
qx

lq

nse
2v2r r

~mṽp
22nse

2vr i !
21~nse

2vr r !
2 , ~2!

Gi52nse
2(
qx

Lq

v~mṽp
22nse

2vr i !

~mṽp
22nse

2vr i !
21~nse

2vr r !
2 1g0 .

~3!

Herens is the average electron number density in the surf
layer,v the cyclic frequency,ṽp the plasma frequency, an
g0 the conductance of the cell in the absence of electrons
the case of a quasi-one-dimensional system, plasma w
cannot propagate across the electron spot, and the summ
in formulas is carried out over the values of the wave vec
determined by the lengthLx of the electron spot:

Lx :qx5pnx /Lx ,

wherenx 5 1, 2, 3,... . In ourcalculations we usually took
three terms, which was sufficient for obtaining results w
an error not exceeding 10%. The coefficientLq depends on

483Nikolaenko et al.



the cell geometry; in the case when the rectangular geometry
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is used for a quasi-one-dimensional system in which cha
carriers can move only in one direction, this coefficient c
be written in the form

Lq5
2Ly
Lx

sinh2qx~h02d!

sinh2qxh0
cosqxLx sin

2 qxAx . ~4!

HereLy is the width of the electron spot,Ax is the length of
the exciting and receiving electrodes,h0 the separation be
tween the upper and lower electrodes, andd the distance
from the electron layer to the receiving and transmitting el
trodes.

While processing experimental results, we assumed
the plasma frequency for the system of conducting chan
of the gratings is close to the plasma frequency for a tw
dimensional electron layer of the corresponding concen
tion. For grating 2, this assumption was observed with
large margin since the separation between the grooves
;1024 cm, which is approximately equal to the avera
separation between electrons. However, the situation w
grating 1 is more complicated. Nevertheless, we can ass
that the plasma frequencies are quite large in both ca
Under these conditions, we can omit in formulas~2! and~3!
the terms containing the imaginary component of the re
tance of the electron layer. Using the simplified form of e
pressions~2! and~3!, we can determine the values ofr r and
ṽp as fitting parameters from the measured values ofGr and
Gi . In the case of grating 2, the electrodes having the sh
of semicircles~see Fig. 1b! were replaced by rectangula
electrodes of the same area. Such a substitution appar
could not lead to a considerable error since the magnitud
the signal is mainly determined by the area of the receiv
and transmitting electrodes.

In order to find the electron mobility in a quasi-on
dimensional electron system, we must know the numbe
mobile electrons over the bulk liquid in the channels. For t
purpose, we calculated the electron density distribution o
the optical gratings. The calculations were based on the c
dition that the potential at the charged surface of the liq
wetting the gratings is constant. It turned out that, as a re
of the action of image forces, the electron density over
thin helium film formed on the plane surface or above
protrusions of the gratings was higher than the value ab
the bulk liquid. For example, forh51 cm, the ratio of the
electron density over the plane surface or the protrusion
the grating to the electron density over the bulk liquid w
;3.

It is well known that electrons over a thin helium film
are localized and have a low mobility.8,9 The magnitude of
the mobility is determined by frequency and amounts
;1024 m2/V•s at a frequency of 20 kHz.9 For frequencies
used by us in this research, no data on the SE mobility in
film are available. However, it was shown in check expe
ments carried out by us that no signal from SE electrons
observed in smooth insulating substrates for the valuesh
used in a wide range of electron concentration. It follo
hence that the conductivity of the system is determined o
by electrons in the grooves.
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Andrei9 proved that the low-frequency mobility of elec
trons increases sharply for liquid layers of thickne
*700 Å. This allowed us to determine the number of mob
electrons for both gratings and to calculate the average e
tron density in the grating grooves proceeding from the to
surface area of the bulk helium. It should be emphasiz
however, that the condition of constant potential at the s
face of a charged liquid is valid only for a high electro
density. Unfortunately, such calculations are not quite ac
rate for the electron densities used. Nevertheless, we
apparently assume that they reflect the nature of the
scribed phenomena.

Figure 2 presents the results obtained in experime
with grating 1. It shows the dependence of the electron m
bility m in conducting channels onh. The experiments were
made at 1.7 K at a frequency of 100 kHz. It can be seen
the value ofm decreases approximately by an order of ma
nitude as the value ofh increases from fractions of millime
ter to 15 mm. Figure 3 shows typical temperature dep
dences of electron mobility obtained for grating 2 f
different values of h. Curves 3 and 4 correspond to
h50.55 and 5 mm, respectively. The figure also shows
comparison the temperature dependences of the mobilit
surface electrons for bulk helium, corresponding to differe
electron densities and borrowed from Refs. 10–12~curves1
and2!.

In order to compare the results obtained for the two gr
ings, we carried out check experiments for grating 2 at te
perature 1.7 K. An analysis shows that the electron mob
ties for gratings 1 and 2 corresponding to the sa
temperature and heighth coincide approximately to within
30%. This means that the parameters of the quasi-o
dimensional system under investigation are virtually ind
pendent of the properties of the substrate. It should be no
that the measurements for the two gratings were mad
different frequencies.

It follows from Figs. 2 and 3 that as the heighth in-
creases, the electron conductivity and mobility decrease
nificantly. According to the results of theoretical calcul
tions, such a dependence should not be observed for a pe
liquid channel.

FIG. 2. Dependence of electron mobility in quasi-one-dimensional chan
on heighth for grating 1,T51.7 K, f5100 kHz.
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Figure 3 shows that the value ofm increases with de-
creasing temperatureT, attains a maximum, and then eith
decreases upon a further decrease inT ~curve4!, or becomes
virtually independent of temperature~curve3!. The arrow on
curve3 indicates the temperatureTm of transition to the crys-
talline state in the two-dimensional system, which cor
sponds to the average electron concentration in liq
grooves. Naturally the temperature of crystallization~if it
takes place! in the quasi-one-dimensional case realized in
experiments can differ from the crystallization temperat
for a two-dimensional layer. Nevertheless, it can be seen
curve 3 in Fig. 3 exhibits no singularities associated wi
possible ordering in the quasi-one- dimensional electron
tem over the entire temperature range under investigatio

Chaplik13 predicted theoretically the possibility of orde
ing in a quasi-one-dimensional electron system, dur
which the electron chain aligned along the channels is r
ranged into a zigzag structure. According to estimates ba
on the results obtained by Chaplik,13 the ordering tempera
ture must be;1 K for a chain length;1 cm ~which corre-
sponds to the average length of channels in the grat
used! and for an average distance between electr
;3•1025 cm. Strictly speaking, however, this result is val
for a solitary channel. In our case, when the interaction
tween electrons in different channels is quite strong, it wo
be more correct to speak of Wigner crystallization of ele
trons in a system of parallel conducting strips separated
strips with localized electrons. Crystallization in such a s
tem can be more complicated, and the crystallization te
peratureTm should not necessarily coincide with the value
Tm for a two-dimensional electron layer with the same av
age number density. It was mentioned above that the t
perature dependence of mobility does not exhibit any sin

FIG. 3. Temperature dependence of electron mobility in quasi-o
dimensional channels for grating 2,f51.1 MHz. Curves1 and2 correspond
to bulk helium for electron number densities 5.5•108 and 13.8•108 cm22

respectively,10–12 curve 3 corresponds toh50.55 mm, and curve4 to
h55 mm,ns513.8•108 cm22. The arrow indicates the temperature of tra
sition to the crystalline state, corresponding to the average electron con
tration in liquid channels.
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larities that could be ascribed to possible ordering
crystallization of electrons. It should also be noted that
electron mobility in a quasi-one-dimensional electron syst
is lower than for bulk helium~see Fig. 3!.

The behavior of the quantityṽp defined as a fitting pa-
rameter in expressions~2! and~3! is quite interesting. Figure
4 shows the dependence ofṽp on heighth for grating 1. It
can be seen that the value ofṽp increases withh from the
value;300 MHz, which approximately corresponds to th
plasma frequency of the electron layer of a given concen
tion for bulk helium, to the value;800 MHz for
h515 mm. A similar dependence is also observed for gr
ing 2. The fact that the frequencyṽp of plasma oscillations
for h→0 approximately coincides with the plasma frequen
vp for bulk helium indicates a strong interaction betwe
electrons in neighboring conducting channels. It should
noted, however, that this aspect is not quite clear and
quires further investigation.

Analyzing the obtained results, we must bear in mi
that the electron system in our experimental conditions w
not strictly one-dimensional. Forh55 mm and the field
E'51.25 kV/cm,the separation between energy levels
particles moving across the channels isDE50.15 K, while
for h50.55 mm we haveDE50.05 K. In both cases, the
value ofDE is much smaller than the experimental tempe
ture. In this case, electrons occupy not only the ground le
but also higher energy levels. If we take into account the f
that the experiments were made under the conditions
charge saturation, the pattern becomes even more com
cated. Nevertheless, it should be noted that even in this
the electrons move within a narrow strip;1–1.5mm of the
bulk liquid filling the grooves, which is reflected, amon
other things, in a strong anisotropy of conductivity observ
for various gratings.2,4 It would be more appropriate to refe
to such a system of electrons as quasi-one-dimensional.

According to Ref. 1, the electron mobility in a one- d
mensional electron system can be written in the form

m5
6a\

meE'
2 , ~5!

-

n-

FIG. 4. Dependence ofṽp on height h for grating 1, T51.7 K,
ns54.5•108 cm22.
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fining electric fieldE'51.25 kV/cm corresponding to th
curves in Fig. 3, this expression leads to the mobi
m'102 m2/V•s. The experimental value of mobility for thi
confining field amounts to;10 m2/V•s, which is an order of
magnitude smaller than the theoretical value.

The electron mobility in quasi-one-dimensional electr
systems was calculated by Sokolovet al.14 taking into ac-
count electron scattering between sublevels both in the o
electron approximation and under the condition of compl
control, when the interaction between electrons was ta
into consideration. The value of mobility forT50.75 K and
E'51.25 kV/cm was;90 m2/V•s in the one-electron ap
proximation and;45 m2/V•s under the condition of com
plete control. These values are slightly lower than the va
obtained by using formula~5!, but still higher than the ex-
perimental values of electron mobility in a quasi-on
dimensional system. It should be noted that the value om
obtained in Ref. 14 at 0.5 K in the one-electron approxim
tion is higher than the value ofm given by formula~5!.

It was noted above that the electron mobility in qua
one-dimensional conducting channels decreases significa
upon an increase inh. This fact cannot be explained in th
theories describing the electron mobility in one-dimensio
and quasi-one-dimensional electron systems over liquid
lium. This effect is probably associated with electron loc
ization in a quasi-one-dimensional electron system. The
that the value ofṽp increases withh also speaks in favor o
this assumption. In the absence of localization and in
case of free motion of charge carriers, the value ofṽp must
coincide with the plasma frequencyvp of the electron sys-
tem, which corresponds to the stabilization of stand
plasma waves in the experimental cell. In the case of elec
localization, the plasma spectrum acquires a new term co
sponding to the natural electron frequencyva in potential
wells: ṽp

25va
21vp

2 . If the depth of potential wells in which
electrons are localized is large, the value ofva can increase
considerably. Thus, the experimentally observed increas
ṽp indicates the localization of charge carriers in the qua
one-dimensional system.

Such a localization was also observed for electrons o
a helium film,8,9 but it took place for helium film thicknesse
<700 Å. In this case, the depth of the channels along wh
electrons move amounts to;2500 Å, i.e., corresponds to th
case of bulk helium.

The reason behind the localization of charge carri
over bulk helium in our case is probably associated w
variations of potential in which charge carriers move in
quasi-one-dimensional electron system. The effect of lo
ization is apparently connected with a peculiar charging
profiled substrates wetted with helium. Charging of su
substrates begins at regions coated by a thin helium fi
Electrons are localized in these regions and make no co
bution to the conductivity of the system. During subsequ
charging, electrons also appear above deep liquid channe
which they can move along the grooves. However, this m
tion occurs at a random potential associated with the p
ence of stationary localized electrons in the immediate vic
ity of a liquid channel. According to estimates, localiz

486 Low Temp. Phys. 23 (5–6), May–June 1997
e-
e
n

e

-

-

-
tly

l
e-
-
ct

e

g
n
e-

in
i-

er

h

s
h

l-
f
h
.
ri-
t
in
-
s-
-

channel with an amplitude of the order of several kelvin
and hence can lead to complete or partial localization
charge carriers. The decrease in the mobility of charge
riers with temperature at low temperatures is probably du
this effect. The decrease in the number of mobile electr
which can be observed upon a decrease in temperature d
a change in the relative population density of electrons
liquid channels or regions where the film is thin cannot
ruled out completely either. The effect of localization c
also explain a decrease in the electron mobility with incre
ing heighth. As the value ofh increases, the radius of cur
vature of the surface of the liquid decreases, and the reg
of thin film in which electrons are localized comes closer
the center of the liquid channel. The variations of potentia
which charge carriers are moving increases, while the mo
ity decreases. We also cannot rule out the influence of g
ing defects~such as inhomogeneity of grooves and vario
surface defects! on the emergence of potential variations.

Thus, the conductivity and mobility of charge carriers
a quasi-one- dimensional electron system over liquid heli
have been measured for the first time. The obtained res
show that the type of transport in such systems is determ
by localization of charge carriers in liquid channels in a ra
dom potential, which is caused by the influence of station
electrons charging the regions with a thin helium film on t
substrate. The processes occurring in quasi-one-dimens
electron systems over liquid helium are obviously very co
plicated and require further investigations.

The authors are grateful to V. N. Grigor’ev for his inte
est in this research and for discussion of the results.
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Mobility of electrons in a quasi-one-dimensional conducting channel on the liquid

helium surface in the presence of a magnetic field

S. S. Sokolov,1,2 Guo-Qiang Hai,1 and N. Studart1

1Departamento de Fı´sica, Universidade Federal de Sa˜o Carlos, 13565-905 Sa˜o Carlos, São Paulo, Brazil*
2B. I. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of Ukraine, 310164 Kharkov, Ukraine
~Submitted December 20, 1996!
Fiz. Nizk. Temp.23, 649–654~May–June 1997!

The influence of the transverse magnetic field on the electron mobility in a quasi-one-
dimensional channel along the liquid-helium surface is investigated. The mobility calculations
are carried out by using the Boltzmann kinetic equation and the criteria for the validity
of this approach, which are different from those for two-dimensional systems, are established.
Two different limiting regimes corresponding to different roles of the electron-electron
interaction in the quasi-one-dimensional electron system are considered. The mobility is shown
to be a decreasing function of the magnetic field. It is shown that the temperature
dependence of the mobility in the presence of the magnetic field, as in the case of zero field, is a
nonmonotonic function. ©1997 American Institute of Physics.@S1063-777X~97!02005-7#

In the last decades the investigation of low-density elec-where
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tron systems localized on the liquid-helium surface beca
one of the developing directions in the physics of syste
with reduced dimensionality. In addition to the well-know
features such as purity and homogeneity, these system
very attractive because of their ability to vary their propert
through external fields or constraints. The influence o
magnetic field is especially interesting because it drastic
affects the energy spectrum of electrons and the charact
their motion. In the case of a quasi-two-dimensional (2D)
system of surface electrons~SE! over the flat surface of bulk
helium, the energy spectrum in the presence of a magn
field B along thez axis ~electrons are located in thexy plane
parallel to helium surface! is given by the Landau levels (n
1 1/2)\vc , wherevc 5 eB/mc, in addition to the quantized
energiesD l along thez direction.1

In the last years quasi-one-dimensional (Q1D) electron
systems over the liquid helium surface were predicted th
retically and realized experimentally.2 In such aQ1D system
formed due to the finiteness of the curvature radiusR of
liquid helium either along parallel channels on the surface
dielectric substrate with linear grooves or between two
electric polymer sheets meeting at a sharp angle, elect
are confined across the channel near its bottom due to
holding electric fieldE' normal to the channel axis with
confinement frequencyv0 5 (eE' /mR)1/2. In the presence
of a transverse magnetic field~along thez direction! the
energy spectrum of the electron in theQ1D channel can be
written as3

En,l5
\2kx

2

2m*
1~n11/2!\V1D l , ~1!

wherekx is the wave number along thex direction, the hy-
brid frequencyV 5 (v0

2 1 vc
2)1/2, and the effective mass i

m* 5 mV2/v0
2. The electron wave function is given as

Cn,l ,kx
5

1

Lx
1/2 exp~ ikxx!wn~y!x l~z!, ~2!
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wn~y!5
1

~2nn!p1/2l c* !1/2
expS 2

~y2Y!2

2~ l c* !2 DHnS y2Y

l c*
D .

~3!

Here the effective magnetic length is (l c* )
2 5 \/mV, and

Y52\vckx /mV2 is the y coordinate of the center of th
electron orbit;Hn(x) is the Hermite polynomial, andLx is
the size of the system along thex direction.

The energy spectrumEn,l(kx ,B) for electrons localized
in the Q1D channel reveals interesting peculiarities in t
electron transport coefficients. Our aim in the present wor
to calculate the electron mobility along theQ1D channel in
the presence ofB and to analyze the applicability of th
Boltzmann kinetic approach in the same manner as the
thors performed in Refs. 4 and 5. To begin with, we der
the criteria for the applicability of this approach in the ca
of Q1D electrons in magnetic fields. Here the equilibriu
distribution function of the electron in thenth subband is
approximated by the Boltzmann factor given by

f n,0}expS 2
\2kx

2

2m*T
2
n\V

T D . ~4!

Note, however, that in the presence of magnetic fields th
are constraints to be imposed onkx due to the structure o
wn(y) given by Eq.~2!. The magnetic field mixes electro
motions along thex andy directions and they coordinate of
the center of electron orbit depends explicitly onkx . The
electron which moves along they axis can therefore escap
at some values ofkx , from the region of the applicability of
the parabolic confinement. This can modify significantly t
conditions for the normalization of the distribution functio
f n,0(kx) and for the wave functionwn(y) in comparison with
the case ofB 5 0 considered in Refs. 4 and 5. To clarify th
situation let us assume that they coordinate of the electron
satisfies the conditionuyu , Ly , whereLy is the size of the
system along they axis. In order to make reliable the appl
cability of a parabolic-potential approximation for the ele

487/000487-05$10.00 © 1997 American Institute of Physics
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the inequalityLy ! R. The conditionuYu , Ly must be also
satisfied. We must therefore impose the upper boundukxu
, mV2Ly /\vc in order to perform thekx integration of the
Boltzmann factor. However, only the values ofkx which
satisfykx

2 , kT
2 5 2m*T/\2 contribute substantially andkT

plays the role of the maximumkx in the integral off n,0 . If
kT is significantly smaller than the upper bound ofkx , then
that condition does not affect the integration off n,0 over kx
because the effective cutoff takes place at significantly lo
wave numbers than the limiting value ofkx . The standard
normalization off n,0 with infinite limits in the normalization
integral is therefore valid if the condition 2m*T/\2

! (mV2Ly /\vc)
2 is satisfied. By substituting the value o

m* , which appears in Eq.~1!, this inequality can be easily
transformed into

T!\VS v0
2

2vc
2D S Lyl c* D 2. ~5!

Assuming that the above condition is satisfied, we can w
the normalizedf n,0(T) as

f n,0~T!5S 2p\2

m*TLx
2D 1/2 1

Zn
expS 2

\2kx
2

2m*T
2
n\V

T D , ~6!

where

Zn5 (
n51

`

expS 2
n\V

T D5
1

2 F11cothS \V

2T D G .
The quantityLy must be larger than the scale of the electr
localization across theQ1D channel, which is of the order o
the effective magnetic lengthl c* . As shown in Ref. 3,l c* is
always smaller than the scale of the electron localizationy0
5 (\/mv0)

1/2 in the case ofB 5 0. Fory0 > 1026 cm ~Ref.
4!, the inequalityl c* , y0 ! Rwill than be well satisfied. This
assures the validity of the approximation of a parabolic c
finement potential along they axis fory ! R. For this reason,
Ly
2/( l c* )

2@1.
Another problem stems from the normalization

wn(y). Considering the conditions under which the finitene
of the system along they axis ~finite value ofLy! does not
influence the integration, we see from Eq.~3! that the range
of y, which is relevant to the integration of (wn(y))

2, is
limited by the conditionuy 2 Yu < l c* . Sincel c* ! Ly , the ef-
fective cutoff in the integral takes place at values ofy sig-
nificantly smaller thanLy if, in turn, the conditionuYu ! Ly is
satisfied. This can be easily seen if the integrand is rewri
in terms of the variableuy 2 Yu/ l c* , after which the depen
dence of the normalization integral onY moves into the lim-
its of the integration. As a result, lower and upper limits
the integral can be extended to6 `. AssumingY(kT) & l c*
! Ly , we obtain the inequality which is formally the same
Eq. ~5! but without the large factorLy

2/( l c* )
2 on the right-

hand side. If the inequality

T,
\Vv0

2

2vc
2 ~7!
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is satisfied, then Eq.~5! is also satisfied and we obtain from
Eq. ~7! the following condition by substituting the expressio
of the hybrid frequencyV:

vc,Av0 , ~8!

where the coefficientA depends on the temperature and t
frequencyv0 as

A2~T,v0!5
1

8 S \v0

T D 2H 11F1116S \v0

T D 22G1/2J . ~9!

The Eq.~8! should be satisfied in order to have reliable e
pressions ofwn(y) and f n,0 . The inequality~8! gives the
estimate of the upper value ofvc , and consequently ofB,
under which we can employ the usual Boltzmann transp
equation, as developed in Refs. 4 and 5. Note that inD
electron systems the transition from the quantum limit wh
vc @ T/\ to the classical regimewherevc ! T/\ comes from
the change in the occupation of the Landau levels with
temperature. In theQ1D charged system with parabolic
potential confinement across the channel, limitations for
applicability of the standard classical approach given by
condition ~8! are based on other grounds, i.e., due to
constraints imposed on the normalization procedure of
electron wave function and the Boltzmann distribution fun
tion. The inequality~8! relates the upper bound of the cyclo
tron frequency which is given not only as a function of t
temperature, as in the 2D case, but also a function of th
confinement frequencyv0 across the channel.

The range of values of the magnetic field and the clam
ing electric field, which satisfies the conditionvc , Av0 for
the validity of the classical Boltzmann approach to the el
tron mobility, is shown in Fig. 1, where the coefficientA was
evaluated for the curvature radiusR5 5 • 1024 cm. Note that
for limited values ofvc the separation\V between the en-
ergy subbands is always larger than\v0 in the caseB 5 0. It
was shown in Ref. 4, that\v0 is comparable toT for all
reasonable values of holding electric fields. For this reas
theQ1D electrons in the presence of a magnetic field s

FIG. 1. Dependence of the magnetic field on the holding electric fi
B(E'), defined by the equationvc(B) 5 Av0(E'), for three temperatures
The curves show the region of the validity of the classical Boltzmann
proach to the calculation of the electron mobility along theQ1D channel,
given by inequality~8!.
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all subbands in the calculations of the electron mobility.
We have calculated the electron mobility in theQ1D

channel in the single-particle approximation~SPA! and in
the complete control approximation~CCA!, where the influ-
ence of frequent two-electrons collisions is taken into
count in the structure of the electron distribution function
the presence of a driving electric fieldEi along thex axis.
The procedure is straightforward and the formulas are q
similar to those in Ref. 4 with few replacements due to
introduction ofV andm* . The calculation gives the follow
ing expression for the electron mobility in theQ1D system
within SPA:

m~T,V!5
2e

Apm*Zn~T,V!
S \v0

2

TV D 3/2(
n50

`

3expS 2
n\V

T D E
0

` Axe2\v0
2x/VTdx

ner
~n!~x!1neg

~n!~x!
, ~10!

wherener
(n)(x)@neg

(n)(x)# is the collision frequency of an elec
tron in the nth subband due to electron-riplon@electron-
atom# scattering.

We assume in the complete control approximat
~CCA! that the electron system can be characterized b
drift velocity u, when the frequency of electron-electron co
lisions is nee

(n) @ ner
(n) ,neg

(n) . Under this regime, the electro
momentum is efficiently redistributed between the carrie
which leads to a shifted distribution function.6,7 The advan-
tage of the CCA is that the kinetic equation can be used
the calculation of electron mobility in the case of stro
enough electron-electron interaction without using an
plicit form of such an interaction. The role of electro
electron collisions in theQ1D system with a more compli
cated nature of the electron motion is not well establishe
this time. One can hope, however, that this approximat
would display the main features of the electron mobility
the correlatedQ1D system in some range of the electro
densities. Note that forB 5 0, the mobility calculated in CCA
differs from the one-electron mobility, both qualitatively an
quantitatively, since it is nearly three times smaller atT
, 1 K.4,5We also calculate the electron mobility in the CC
in the presence ofB.

The results of numerical calculations of the magne
field dependencem(B) in SPA are plotted in Fig. 2 forT
5 0.6 K and for some values of the holding fieldE' . As can
be seen from Fig. 2, them(B) is a decreasing function o
B at a low enough electric fieldE' . With an increase in
E' , the mobility at the high electric field becomes insen
tive toB. It is a consequence of the fact that, as we incre
E' , the frequencyV 5 (vc

2(B) 1 v0
2(E'))

1/2 tends tov0 and
m(B) for fixed T becomes negligible and coincides with th
mobility calculated forB 5 0. In the region where the in
equality is satisfied one can estimate thatB cannot exceed
1000 Gs, and the corrections to the mobility due to the m
netic field are significant forE' , 500 V/cm.

Figure 3 shown the temperature dependence of mob
m(T) in SPA, calculated for two values of the magnetic fie
and forB 5 0. We see thatm(T) is qualitatively the same a
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in the case ofB 5 0, even though the values of the mobilitie
become small with increasingE' . At higherE' , the differ-
ence in the curvesm(T), calculated for differentB, becomes
small for the same reason as that described before. We
serve that maximum points appear in the curves ofm(T) for
T , 0.2 K. The reason for this nonmonotonic temperature
pendence of the mobility and the maximum inm(T) are
discussed in detail in Ref. 4 for zero field.

The low-temperature expansion of Eq.~10! can be writ-
ten as

FIG. 2. Electron mobility slotted as a function of the magnetic field calc
lated in the one-electron approximation. The curves are numbered 1 thr
4 corresponding to the clamping electric fieldsE' 5 500 V/cm ~1!, 1000
V/cm ~2!, 2000 V/cm ~3!, and 3000 V/cm~4!. The temperature isT
50.6 K.

FIG. 3. Temperature dependence of the electron mobility forB 5 0 ~solid
line!, B 5 1000 Gs~dashed line!, andB 5 2000 Gs~dotted line! at E'

5 500 V/cm~1!, 1000 V/cm~2!, 2000 V/cm~3!, and 3000 V/cm~4!.
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m05m'F6 v0
2

V2 1
64

p S v0
2T

\V3D 1/2G , ~11!

wherem' 5 a\/meE'
2 ~a is the surface tension of liquid

helium!. This result explains the increase ofm(T) starting
from zero until it reached the point where the contribution
the excited levels withn . 0 becomes dominant and leads
a decrease ofm(T) with increasingT. As one can see, in
creasingB causes both the mobility atT 5 0 @the first term in
Eq. ~11!# and the temperature-dependent coefficient of
second term to become decreasing functions ofV and,
hence, ofB. For this reason, for higher values ofB, the
mobilities m(T) reach lower values and the peak becom
broader. Such a behavior ofm(T) is observed in Fig. 3.

In Figs. 4 and 5 we present our results form̃(B) and
m̃(T) in the CCA. As one can see, the curvesm̃(B) and
m̃(T) are qualitatively similar to those shown in Figs. 2 a

FIG. 4. The same as in Fig. 2 but in the complete control approximati

FIG. 5. The same as in Fig. 3 but in the complete control approximati
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than those ofm(T) and forT , 1 K the values ofm(T) are
nearly three times smaller than the values ofm(T) for a
given B. The maximum on them̃(T) curve occurs at tem-
peratures higher than those at which the maximum occur
them(T) curve. The reasons for the maximum onm̃(T) are
the same as in SPA. The mobility in the CCA at a very lo
temperature is given by

m̃05m'F2 v0
2

V2 1
8

p S v0
2T

\V3D 1/2G . ~12!

Equation~12! gives the lower limit of the mobility atT 5 0
@the first term in Eq.~12!# for m̃(T), which is three times
smaller in comparison with the lower limit in SPA. The co
efficient of the second term in Eq.~12! is eight times smaller
than that in Eq.~11!. As a result, the maxima inm̃(T) are
significantly smoother than inm(T).

In conclusion, we have investigated theoretically the
fluence of a magnetic field on the mobility of electrons l
calized in aQ1D channel on the liquid-helium surface. Th
dependence of the mobility on the magnetic field and te
perature are calculated by using the classical Boltzmann
proach in the framework of the usual SPA and by introdu
ing the CCA, which takes into account the electron-elect
interaction in an indirect way. The influence of the electro
electron interaction on the electron mobility seems to
more relevant in theQ1D case due to the more restricte
nature of the electron motion. We hope, however, that
CCA would make it possible to describe the electron mob
ity under certain conditions. According to the results o
tained in this study and in those of Refs. 4 and 5,m(T) in the
Q1D electron system in the complete control regime m
differ both quantitatively and qualitatively from those cond
tions, under which the electron-electron interaction can
considered negligible. We should emphasize that the res
obtained in our study can become invalid in the case o
sufficiently large magnetic field, for example, when the co
dition given by inequality~8! is not satisfied. In addition to
the experimental studies,2 the study of the electron mobility
in a wide range ofB andT is very desirable. The experimen
tal evidence for the deviation of the calculated mobiliti
obtained by us allows us to confirm the region ofB andT
where the classical regime of electron system is reached
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SUPERLOW TEMPERATURE TECHNIQUES

m

Ultralow temperatures in a transport vessel: A dilution refrigerator to achieve 30 mK
by continuous adsorption pumping

G. J. Batey, J. P. White, W. D. Duncan, A. F. Simpson, and V. A. Mikheev

Oxford Instruments Scientific Research Division, Old Station Way, Eynsham, Witney, Oxon, OX8 1TL,
England*
~Submitted November 18, 1996!
Fiz. Nizk. Temp.23, 655–658~May–June 1997!

A novel design of dilution refrigerator~DR! is described for continuous operation inside a
transport dewar with a neck diameter more than 51 mm. The time required for cooling the mixing
chamber from room temperature to 30 mK is 3.5–4.5 h. Warming up to 300 K requires
0.5–1.0 h. The cooling power achieved is 40 at 100 mK. The DR is fitted with 6-mm line-of-
sight access down to the mixing chamber. A distinguishing feature of this refrigerator is
the absence of a conventional gas-handling system, which makes it easy to transport in a small
car and quickly commission in a new laboratory within a few hours. ©1997 American
Institute of Physics.@S1063-777X~97!02105-1#

Many refrigerators which use the process of dilution of
3 4

installed into the neck of the most common 100-liter heliu
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He in He to obtain ultralow temperatures have been
signed in the last 30 years. The majority of them use a roo
temperature3He circulation system, where one or mo
vacuum pumps pump3He from the still and return exhaus
3He gas to condense in the insert. A modern DR has a
sonable cooling power, is typically supplied with more th
24 wires to the experimental region, often allows sam
rotation and can be fitted with coaxial cables for high f
quency signal pickup. All these features make it a very po
lar tool among physicists~and not only physicists!.

It is worth emphasizing that up to now the majority
DR were made as stationary devices. Figure 1 shows an
ample block diagram of a typical dilution refrigerator fro
the popular Kelvinox family produced by Oxford Instru
ments. The main components of this type of standard DR~as
shown in Fig. 1! is the refrigerator itself, a special dewar,
gas-handling system mounted in a frame, gas purifica
system including a cold trap and one or more vacu
pumps. Some of the pumps are required to be hermetic
sealed for pumping3He. The development of an intelligen
gas handling system~IGH in Fig. 1! provided with computer
control, makes the life of the experimentalist much eas
because to operate the DR one should only fill the de
with liquid 4He and ‘‘click’’ on the cooldown button on the
computer screen.

A few years ago the problem arose of how to quick
change the sample and cool it down to the millikelvin te
perature range. This was solved by the top-loading desig
DR1 and more recently by the development of dilution r
frigerators which are insertable directly into liquid heliu
~see, for example, Ref. 2!. The further development of low
temperature physics of metals, semiconductors, and e
cially mesoscopics has created an interest in a portable
tion refrigerator, with a fast sample turnaround time.

This paper describes a novel dilution refrigerator, with
50-mm diameter vacuum jacket, which allows it to be eas
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transport dewars in Europe and worldwide. The general v
of the DR is shown in Fig. 2. It is easy to see that it has
conventional gas-handling system. The only external conn
tions are to the3He/4He mixture dump and to the 1-K po
pump by two flexible lines. Only one rotary pum
(16 m3/h) is used to pump the 1-K pot and the sorb he
exchangers. Special microprocessor-controlled electro
have been developed to monitor and control the operatio
the refrigerator. Fully automated cooldown is possible, wi
out the need for a computer. The operation of this DR
based on adsorption pumping by cold activated charc
This was first successfully realized by B. N. Eselson and
colleagues in the early 1960’s for cooling liquid4He3 and
3He.4 It is worth mentioning the growing popularity of thi
pumping method because of the high pumping speed, pu
and absence of vibrations. Many papers have been publis
about using this method in the design of dilutio
refrigerators.5–9

The DR described here uses a cryogenic circulat
cycle with a collector,6 which was first realized at FTINT
Kharkov.7 Further testing of the cryogenic cycle dilution re
frigerator was done in J. Saunders’ group at Royal Hollow
University of London~Great Britain!. This proved the feasi-
bility of this method down to below 10 mK.10 This success
convinced us to design a novel and very compact DR on
basis. All existing similar DR are fitted with external ga
handling systems~see, for example, Ref. 2 and Refs. 7–10!.
They also need large electronic systems for automatic c
trol and for stable operation. It was necessary to recons
many details of the cryogenic cycle in order to minimize t
mass and size of the components, with the aim of arrang
all the essential parts of the DR in the cold zone and avo
ing a standard gas-handling system.

The design consists of a vacuum jacket with appro
mately 47-mm internal diameter. All the elements of the
frigerator are situated inside it, including the 1-K pot with

492/000492-04$10.00 © 1997 American Institute of Physics
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FIG. 1. Block diagram of a typical dilution re-
frigerator. As an example, the figure shows
Kelvinox 400 DR and its accessories.
collector, sorbs, still and mixing chamber~see Fig. 2!. There
fo
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still. This picture has been taken at an early stage of the test.
the
ot

s-
is also a 6-mm line-of-sight access to the mixing chamber
experimental services. The refrigerator is fitted with a slid
seal to allow the insert to be loaded safely into the dew
The total length of the DR from sliding seal down to th
bottom of vacuum jacket is 1600 mm but it can easily
reduced to 1200 mm, which corresponds to the length o
typical transport dewar. To achieve more space in
vacuum jacket, the liquid4He supply to the 1-K pot and sor
heat exchangers enters through a tube at the bottom o
vacuum jacket with a filter and PTFE seal. This design
lows us to avoid a standard cold flange with indium sea
4.2 K and make a simple room-temperature clamp conn
tion of the vacuum jacket at the top of the insert.

Development of the cryogenic cycle and the use of el
tronics for control helped us to simplify the gas-handli
system and to eliminate almost all the valves and man
eters. As a result, to warm up the refrigerator one only ne
to pull the insert out from the dewar over approximately
min. The relief valves ensure that the expanding mixture
safely directed into the storage dump. To prepare the ref
erator for operation after loading it into the dewar, it is on
necessary to open fully two relief valves and close th
again when the mixture is sufficiently adsorbed from t
dump into insert~by observing a pressure gauge on the m
ture storage dump!. Refrigerator operation can then b
started by simply pressing a button on the electronics b
The electronics can control and monitor all of the key op
ating systems of the refrigerator. During operation more th
ten parameters of DR can be recorded simultaneously, s
as the temperatures of the sorbs and the liquid levels in
collector and still, using capacitance level gauges. Figur
shows typical diagnostic records for three parameters of D
the temperature of the two sorbs and the level of liquid in
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As can be seen, the level in the still was variable during
cycles, which was caused by some instability of 1-K p
operation at that time.

FIG. 2. General view of the new 50-mm dilution refrigerator for the tran
port dewar.
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One of the remarkable features of the sorbtion pum
DR equipped with a collector is the ability to produce ‘‘ve
long’’ single-shot temperatures down to 10 mK without t
use of silver step heat exchangers.10 Figure 4 shows the ca
pacitance data of a3He melting curve thermometer, fitted o
the mixing chamber base during a cooldown and single s
On part AB of the curve, one can see ordinary continuo
cooling at a flow of approximately 70 micromole/sec fro
250 mK down to 30 mK, in less than 1 h~B point!. Between
points B and C, all the3He was collected in the mixing
chamber, which slightly increased the temperature to 45 m
Further cooling to 18 mK was achieved by pumping the s
with both sorbs and the flow rate between points D and
was 13 micromole/s. The3He was used at point E, when th
refrigerator quickly warmed. Experimentally it takes 1 to 1
h to return to continuous operation from single-shot mod

It is worth noting that the given result is similar to th
described earlier in Ref. 10, and that it was achieved wit
much smaller mixing chamber and total mixture volum
This can be very useful for quick tests of samples with sh

FIG. 3. An example of the diagnostic data recorded with the dilution ref
erator in continuous mode. The cycle time is approximately 30 minutes.
lower curves show the time evolution of sorb temperatures during
cycles. The upper curve shows the level in the still.

FIG. 4. The primary capacitance data of the3He melting curve thermom-
eter, showing the typical cooling of the mixing chamber during single-s
operation. The temperature ranges from 250 mK~point A! to 18 mK ~line
DE!.

494 Low Temp. Phys. 23 (5–6), May–June 1997
d

t.
s

.
l
E

a
.
rt

the residual heat leak to the mixing chamber from sin
short results:11

Qm584 n3Tm
2 , ~1!

whereQm is the residual heat leak~watts!, n3 is the circula-
tion rate~moles/s!, andTm is the lowest achieved tempera
ture for given circulation rate (K). The residual heat leak to
the mixing chamber of the new DR is about 0.3mW from
Eq. ~1! and the measurements shown in Fig. 4. Because
lowest achievable temperature in single-shot mode is a fu
tion of the circulation rate, it is clear that theth length of
single shots for two different temperatures and3He flows is
given by the ratio

~T1 /T2!
25n3~T2!/n3~T1!5th~T1!/th~T2!. ~2!

Based on the data from Fig. 4 one can expect to get 14
for more than 1 h and 10 mK for about 30 min!

During continuous operation, the maximum circulatio
rate achieved was about 100 micromoles/s, with a coo
power of 40mW at 100 mK. The continuous base temper
ture was below 30 mK and the still temperature was less t
0.75 K.

The test results of this dilution refrigerator, calle
‘‘Kelvinox AST Minisorb,’’ allows us to draw the following
conclusions:

—The portable dilution refrigerator, which has been d
veloped for operation in a transport dewar, is conv
nient for a number of experiments. It has a 6-m
line-of-sight access port down to the mixing chamb
An experimental space 30-mm diameter and 80 m
long is provided. A total of 24 constantan wires fo
electrical measurements are fitted~with a similar
quantity for the refrigerator diagnostics! and a few
coaxial cables can be fitted for high-frequency me
surements.

—The base temperature for continuous operation is
low 30 mK. Cooling power at 100 mK exceeds 4
mW.

—The use of sorbtion pumping strongly increases
cooling power, which is normally achieved with suc
a dilution unit, reduces the vibration levels on the i
sert, and completely eliminates the possibility
blockages.

—The single-shot operation demonstrates the ability
the DR to maintain temperatures below 20 mK for
reasonably long time.

—The dilution refrigerator and mixture dump can b
easily demounted with the help of a portable cry
genic pump. As a result, this type of dilution refrig
erator can be accommodated inside the boot of a sm
car and transported to any other cryogenic laborato
Since the commissioning of the refrigerator takes o
a few hours, research can be quickly started in a n
location.

The authors are very grateful to A. Adams and T. Ja
away for the incredible efforts and skills they displayed d
ing the construction and testing of this refrigerator.
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