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The remnants of hypernovae, which can correspond to cosmological gamma-ray bursts, are analyzed on the
basis of the Kompaneets equation in the strong explosion approximation. Exact solutions to the Kompaneets
equation are obtained, and the shape of shock-wave fronts from a noncentral point explosion in a medium
whose density decreases quadratically with the distance from the density singularity and tends to a constant at
large distances. The bending of the shock-wave front around a density singularity is discussed. The results are
compared with data on X-ray sources that can correspond to hypernovae. © 2002 MAIK “Nauka/Interperiod-
ica”.
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The discovery of the cosmological nature of γ bursts
[1] means that explosions that are much more powerful
than supernovae (with an energy of about 1053 erg) can
occur in the Universe.1 In its turn, this means that, like
the remnants of supernovae that exist tens of thousands
of years [2], the remnants of hypernovae can exist as
well [3]. In particular, objects NGC5471B and MF83
are now considered as such candidates [4, 5]. The
energy release of a hypernova is so high that the shock
wave, remaining strong, can reach distant stars or dense
clouds of the interstellar gas. In this case, the shock
wave must bend around obstacles (stars and clouds),
which should be manifested in the characteristic fea-
tures in the image of the supposed remnant. As an
example that describes this effect and allows an exact
solution for the shock-wave front in the Kompaneets
approximation [6], we consider a noncentral point
explosion in a spherically stratified medium whose den-
sity decreases quadratically with the distance from the
density singularity (similarly to the peripheral regions
of the solar wind and interstellar gas clouds) and tends
to a constant corresponding to the average density of
the interstellar medium. With this aim, we transform
the solution of the Kompaneets equation from a planar
stratified medium to a spherically stratified medium.

The Kompaneets equations for a shock-wave front
in the planar stratified and spherically stratified

1 The possibility of a collimated jet ejection toward the observer is
also discussed [1]. In this case, the energy of the explosion can be
lower; however, the search for its remnant still remains topical.
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atmospheres have the form

(1a)

and

, (1b)

respectively, and are related by the transformation [7]

(2)

The dimensionless densities ϕ(z) and Ψ(R) are related as

(3)

Correspondence is known between the solutions of the
Kompaneets equation [7, 8] for an exponential density
distribution in the planar case [6] and for a power den-
sity distribution in the spherical case [8]. For our case
of very large distances, this correspondence is insuffi-
cient, and a solution to the Kompaneets equation in a
medium whose density varies exponentially and tends
to a constant for negative z is required. Using Eqs. (2)
and (3) and solutions for a planar stratified medium [9]
with the density distribution2

(4)

2 See also review [10].
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one can obtain solutions for a spherically stratified
medium with the following bi-power dependence of the
density on coordinates:

(5)

Equations (1) involve the Kompaneets “time”

(6)

where V(t) is the volume of the cavity bounded by the
shock-wave front, E is the explosion energy, t is the
time since explosion, γ is the adiabatic index, λ is a phe-
nomenological constant that takes into account the
deviation of the pressure immediately behind the front
from the average volume pressure, and ρ0 is the
medium density at the explosion point. For αz0 = 2, we
obtain the desired coordinate dependence of the density
in the form

(7)

The general integral of Eq. (1a) [for density depen-
dence (4)], which involves an arbitrary function b(ξ), is
constructed as3

(8a)

3 The Kompaneets equation for the shock-wave front has the same
structure as the eikonal equation or Hamilton–Jacobi equation.
Therefore, the general integral is constructed by the same meth-
ods (see, e.g., [11]).
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Fig. 1.
where ξ = ξ(z, y) is the function calculated from the
condition ∂r/∂ξ = 0, i.e.,

(8b)

Integrating under the condition that the waves are
spherical for small y and z (b(ξ) = 0) and applying trans-
formation (3) to the above solutions, we find the follow-
ing parametric expression for the shape of the shock-
wave front with regard to the coordinate dependence of
density (7) (z0 = 1):

(9)

where the upper and lower signs correspond to the
regions

(10)

and

(11)

respectively. The boundaries of the regions R± follow
from the condition that solutions are real and continu-
ous. In the general case,

In the intermediate region R+ ≥ R ≥ R–, the shock-
wave front is described by the solution with b(ξ) ≠ 0,
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are continuous at the boundary R– (cf. discussion in
[7, 9]):

(12)
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Fig. 2. (a) Image of the supposed remnant of the MF83
hypernova [13]; the arrow indicates an object that can cor-
respond to the density singularity. (b) Calculated shape of
the shock-wave front. The origin of coordinates corre-
sponds to the density singularity. The shock-wave front
bends around the density singularity. The cross is the explo-
sion point located at a distance of 500 light years.
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In the case of energies corresponding to a hypernova,
an ultrarelativistic shock wave expanding with the
speed of light arises at the initial stage of expansion.
For this reason, solutions must be joined. This proce-
dure is simple because both the joining fronts are spher-
ical in the uniform area of wave propagation. The initial
expansion is analyzed by using the Blandford–McKee
formula [12], which describes the behavior of the
ultrarelativistic shock-wave front in a uniform medium,
Γ2 = E/ρc2V, where V = (4π/3)(ct)3 is the volume
bounded by the relativistic shock-wave front. In partic-
ular, the time tur taken for the ultrarelativistic stage of
the expansion of the shock wave (Γ2 ≥ 1) is expressed
in terms of the explosion energy; the medium density,

as tur = ; and the total time taken for the
expansion of the shock wave is the sum of the times of
the ultrarelativistic and nonrelativistic stages:

(13)

where yur is the y value at which V(y) = (4π/3)(ctur)3.

Figure 2a shows the presumed remnant of an explo-
sion of a hypernova [4, 5, 13, 14]. Figure 2b shows the
shape of the shock-wave front calculated at an instant
of “time” y = 8.5, which corresponds to the real time
t ~ 30000 years since the explosion that had energy E ~
1048 J and occurred at a distance of 500 light years from
the density singularity. It is seen that the shapes of
shock-wave fronts bending around the singularity,
which can correspond to the interstellar gas cloud with
size R ~ 0.5 light years and density ρ ~ 10–21 kg/m3, are
consistent with each other. Similar structures are also
observed in the left-hand part of Fig. 3.4 

4 The self-intersection of the shock-wave front bending around a
singularity was discussed in [7, 10].
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Fig. 3. Sections of the shock-wave front at three times y.
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Polarized vector-meson production in semi-inclusive electron-nucleon scattering with longitudinally polarized
electron beam has been investigated. A Drell–Yan-like representation for the spin-density matrix elements of a
vector meson that takes into account the leading radiative corrections is derived. The calculations have been
performed for two widely used reference systems, the Gottfried–Jackson and the helicity systems. © 2002
MAIK “Nauka/Interperiodica”.
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1. The investigation of the hadron final states in semi-
inclusive deep-inelastic scattering (DIS) has become of
topical theoretical interest, as diffractive vector-meson
production at high Q2 (Q2 is the negative square of the
virtual-photon 4-momentum) gives information on the
relative contributions of hard and soft processes as well
as on vacuum-exchange dynamics [1]. Measurements
of exclusive vector-meson production in ep scattering
at high energy

(1)

has led to considerable progress towards an understand-
ing of diffraction in terms of QCD [2].

The measurement of spin observables gives very
important information on the structure of strong inter-
actions [3]. The polarization of the vector meson is
experimentally accessible via decay angular distribu-
tions. In recent years, the vector-meson spin-density
matrix elements in reaction (1) have been measured for
the elastic electroproduction of p and φ mesons in the
kinematic range Q2 > 2.5 GeV2 [4]. A discussion of
recent results on the diffractive production of the vector
mesons ρ0, φ, and ω, reported by the H1 and ZEUS col-
laborations at HERA, can be found in [5]. Recently, the
HERMES collaboration has found a significant (≈20%)
double-spin asymmetry in vector-meson electropro-
duction [6]. This result is quite intriguing since it was
not expected within the models of vector-meson pro-
duction processes based on convenient mesonic and
pomeron exchanges.

Standard data analysis requires taking into account
all possible systematic uncertainties. One of the impor-
tant sources of such uncertainties are the electromag-
netic radiative effects caused by the physical processes
that take place in higher orders of the perturbation the-

¶ This article was submitted by the authors in English.

e– k1( ) p p1( ) e– k2( ) V p2( ) X px( )+ + +
0021-3640/02/7603- $22.00 © 20119
ory with respect to electromagnetic interaction. In this
paper, we calculate the model-independent QED radia-
tive corrections (RC) by means of the electron structure
function method [7]. Our approach is based on the
covariant parametrization of the vector-meson spin 4-
vector in terms of the 4-momenta of the particles in pro-
cess (1) [8, 9] and the use of the Drell–Yan-like repre-
sentation [10] in electrodynamics, which allows one to
sum the leading-log model-independent RC in all
orders.

2. We define the cross-section of the process (1),
taking into account RC, in terms of the leptonic Lµν and
hadronic Hµν tensor contraction

(2)

where V = 2k1p1, ε2 (E2) is the energy of the scattered
electron (detected vector meson), and q is the 4-
momentum of the virtual photon. Note that only in the
Born approximation does q = k1 – k2. The hadronic ten-
sor can be expressed via the hadron electromagnetic
current Jµ

(3)

where px is the total 4-momentum of the undetected
hadron system, T is the polarization index of the vector
meson, and the summation is done with respect to all
the possible states in the undetected system X. The
expressions for Hµν(U) (the spin-independent part of
the hadronic tensor) and Hµν(V) (the part of the had-
ronic tensor depending on the vector polarization) can
be found in [9]. The expression for Hµν(T) (the part of

dσ α2

4V 2π( )3
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q4
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d k3
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d p3
2
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the hadronic tensor depending on the quadrupole-
polarization tensor) is given in [11]. Thus, in the gen-
eral case of a longitudinally polarized electron beam
and an arbitrary polarization state of the vector meson
produced, reaction (1) is characterized by 41 real
structure functions. In the case of an unpolarized elec-
tron beam, only the symmetrical (in µ, ν indices) part
of the hadronic tensor, which contains 28 structure
functions (4 structure functions from Hµν(U), 8 from
Hµν(V), and 16 from Hµν(T)), makes the contribution
to the observables.

Let us represent the transition current γ*N  VX
entering into Eq. (3) in the form

(4)

where  is the polarization 4-vector of the vector
meson. We can define the following tensor

(5)

which will be used later for the calculation of spin-den-
sity matrix elements of the vector meson produced in
reaction (1).

The hadronic tensor  must be constructed using
4-momenta p1, p2, 4-momentum of the virtual photon q,
and completely antisymmetric pseudotensor eµνλδ. It
must be gauge invariant in µ, ν indices, and it does not

contain p2ρ, p2σ because of the condition p2ρ  = 0.
The P- and T-invariant form of this tensor satisfying the
hermiticity condition is
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(6)

where m (M) is the vector-meson (target) mass and gi

(i = 1–41) are the real structure functions that describe
in a model-independent way the process of vector-
meson leptoproduction by longitudinally polarized
electron beam. These functions depend, in general, on
four invariants which can be taken as q2, (qp1), (qp2),
and (p1p2).

The hadronic tensors Hµν and  are connected by

the relation Hµν = ρσρ , where ρσρ is the covariant
spin-density matrix for the spin-one particle, which in
our case is

(7)

where sρ is the 4-vector of the vector polarization of the
vector meson (s2 = –1, sp2 = 0) and Qµν is its quadru-
pole-polarization tensor. The parametrization of the

hadronic tensor  is chosen so as to obtain previ-
ously used hadronic tensor Hµν [9, 11] when convolut-

ing hadronic tensor  with tensor ρσρ. At this point,
we follow [12] very closely, where the matrix elements
of the vector meson in reaction e+e–  VX have been
studied.

The model-independent RC exhibit themselves by
means of the corrections to the leptonic tensor. The
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expression for this tensor with regard to RC can be
found in [8].

The spin-density matrix of the vector meson pro-
duced in reaction (1) can be defined as

(8)

where σU is the differential cross section of reaction (1)
for the case of all (except electron beam) unpolarized

particles, and the 4-vectors , m = +1, –1, 0, charac-
terize the production of the vector meson with definite
helicity m (in its rest system). In this system, the vector
meson has three polarization states and its production
can be completely characterized by the spin-density
matrix ρmn, which may be obtained from experiment. It
is convenient to discuss the angular distribution of the
vector-meson decay in two widely used reference sys-
tems which differ in their choice of spin-quantization
axis (z axis): the Gottfried–Jackson system, where the
z axis is the direction of the incident photon in the vec-
tor-meson rest system and the helicity system, where
the z axis is equal to the direction of flight of the vector
meson produced in the overall y*N center-of-mass sys-
tem [13]. Depending on the production mechanism, the
spin of the vector meson may be aligned along the z
axis in one of these systems [14]. Then, the system that
gives the simplest description of the vector meson is (1)
the Gottfried–Jackson system for t-channel helicity
conservation or (2) the helicity system for s-channel
helicity conservation.

Combining equations for the cross-section (2) and
spin-density matrix elements (8) and using the defini-
tions of the radiatively corrected lepton [9] and hadron
tensors, we can write the following representation for
the unpolarized cross section of the process (1) and for
the spin-density matrix elements

(9)

where  = x1k1,  = k2/x2, D is the electron structure
function, index B means that the corresponding quan-
tity is calculated in the Born approximation (for details,
see [9]). In the discussion of the cross section, we omit

the hadron 4-momenta. The cross section  = ( ,

) and ( , ) can be derived substituting δ(x – 1)
instead of both D-functions in the first equation in (9).
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α2
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In theoretical calculations, it is useful to parameter-
ize the polarization state of the particle (specifically, the

4-vectors ) in terms of the particle 4-momenta [8,
9]. In our case, we have four 4-momenta to express any

4-vector  in a such way that

(10)

Let us imagine for a moment that the chosen parametri-
zation on the right side of Eq. (10) is relatively stabi-
lized by the substitution

Later, we will label this stabilized parametrization by
the indices α = l, t, and n. In this case, the expression
for the spin-density matrix elements (taking into
account RC) is just described by Eq. (9).

If the 4-vector  is unstable under the above sub-
stitution, it can be expressed always in terms of a stabi-
lized one by means of some linear combination

(11)

Using the last equation, we can write the master rep-
resentation for the spin-density matrix elements of the
vector meson produced in the process (1) in the follow-
ing form:

(12)

where we bear in mind the summation over indices α,
β = l, t, n.

This representation is the electrodynamical ana-
logue of the Drell–Yan equation, which is well known
in QCD formula [10] and was applied earlier to calcu-
late QED RC for various processes [9]. It is obvious
that in the framework of the leading accuracy one needs
to find adequate parametrizations of the stabilized

4-vectors , calculate the coefficients , and
derive the spin-density matrix elements in the Born

approximation for a given parametrization .

Uρ
m( )

Uρ
m( )

Uρ
m( ) Uρ

m( ) k1 k2 p1 p2, , ,( ).=

k1 k̂1, k2 k̂2,

Uρ
m( ) k1 k2 p1 p2, , ,( ) Uρ

m( ) k̂1 k̂2 p1 p2, , ,( ).=

Uρ
m( )

Uρ
m( ) k1 k2 p1 p2, , ,( )

=  Aα
m( ) k1 k2 p1 p2, , ,( )Uρ

α( ) k̂1 k̂2 p1 p2, , ,( ).

σUρmn k1 k2 p1 p2, , ,( ) Aα
m( )∗ Aβ

n( ) x1 x2dd

x2
2

----------------∫∫=

× D x1( )D x2( )σ̂B
Uραβ

B k̂1 k̂2 p1 p2, , ,( ),

Uρ
α( ) Aα

m( )

Uρ
α( )
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3. The following set of invariant variables com-
pletely describe process (1):

(13)

Therefore, to calculate RC we have to find a set of
stabilized axes and to write them in covariant form in
terms of 4-momenta of the particles participating in the
reaction. Further we will use the following stabilized
set of the 4-vectors [9]:

(14)

One can verify that the set  remains stabilized
under the scale transformation and

Any vector-meson polarization 4-vector  corre-
sponding to a certain helicity m can be expanded over

the stabilized set of the 4-vectors  (α = l, t, n). Let
us define such an expansion

(15)

Then the spin-density matrix elements ρmn (in the helic-
ity representation) can be expressed in terms of the
spin-density matrix elements ραβ (in the representation
of the stabilized set)

(16)

where

The spin-density matrix elements in the Born
approximation can be represented as

z
2 p1 p2

V
--------------, z1 2,

2k1 2, p2

V
-----------------, y

2 p1q
V

------------,= = =

x
q2–

2 p1q
------------, q k1 k2.–= =

Sµ
l( ) z p2µ 2τ2 p1µ–

md1
---------------------------------,=

Sµ
t( ) d1

2k1µ 2z1τ1 z–( )p2µ 2τ2 zz1–( )p1µ+ +
d2

----------------------------------------------------------------------------------------------,=

Sµ
n( ) 2εµλρσk1λ p1ρ p2σ

d3
----------------------------------------,=

d1
2 z2 4τ1τ2, d2

2– Vψd1
2, ψ zz1 τ2– τ1z1

2,–= = =

d3
2 ψV3, τ1

M2

V
-------, τ2

m2

V
------.= = =

Sµ
l t n, ,( )

Sµ
α( )Sµ

β( ) δαβ, Sµ
α( ) p2µ– 0, α β, l t n., ,= = =

Uµ
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Sµ
α( )

Uρ
m( ) Al

m( )Sρ
l( ) At

m( )Sρ
t( ) An

m( )Sρ
n( ).+ +=

ρmn Aα
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n( )ραβ, α β,
α β,
∑ l t n,, ,= =
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α2

4V 2π( )3
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LρσHρσ
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α( )Sν
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q4
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d3k2

ε2
----------

d3 p2

E2
-----------.=
(17)

where the following notations are used
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---------- H1

V
12τ2
----------- H3 3
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2
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2

------ 4xyτ2– z2 z1–( )2–
 
 
 

+




=

--+ 2d1
2H4 4ψ1H5+





,
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d1V2

12d2H1
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ψ1

md1
2

--------- η3H3
η
4
---d1

2V2G3– 
 





=

+
1
m
---- η3H5

η
4
---d1

2V2G4– 
  i ηG2 η3H2+( )+





,

ρln
V3

12md1d3H1
----------------------------- ψ1 ηH3

η3

4
-----V2G3+ 

 




=

+ d1
2 ηH5

η3

4
-----V2G4+ 

  im ηd1
2H2 η3G2–( )+





,

ρtt
1

3H1
---------- H1

ηη 3

8ψ
---------V3G3–

V
12τ2
-----------+
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× H3 3
τ2η3

2

ψd1
2
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d1
2
H4– 2ψ1H5–





,

ρnn
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3H1
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ηη 3

8ψ
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V
12τ2
-----------+ +
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× H3 3
τ2η

2

ψ
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  d1
2
H4– 2ψ1H5–





,
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V3
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4
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2 d1
2η2–( )G3+





=

+ i
ψ
m
----V d1

2G1 ψ1G2+( )




,

ρnt ρtn*, ρnl ρln*, ρtl ρlt*,= = =

H1
2xy
V

---------g1– 1 y– xyτ1–( )g2 z1z2 xyτ2–( )g3+ +=

+ z2 z1 1 y–( ) xyz–+( )g4 λη g5,–

H2 H1 gi gi 13+( ), H3 H1 gi gi 18+( ),= =

H4 H1 gi gi 23+( ), H5 H1 gi gi 28+( ),= =
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where the quantity λ is the degree of longitudinal polar-
ization of the electron beam. One can see that the con-
dition ρll + ρtt + ρnn = 1 is satisfied.

Let us consider the two reference systems men-
tioned above.

The helicity system. The z axis is opposite to the
direction of the system X produced in the vector-meson
rest system (i.e., equal to the direction of flight of the
vector meson in the overall γ*N c.m.s.). Then, the vec-

tor-meson wave functions  with definite helicity m
can be represented as

(18)

G1 –η 2 y–( )g6 z1 z2+( )g8+[ ] λ η 1g7 η2g9+( ),–=

G2 G1 gi gi 4+( ), G3 G1 gi gi 28+( ),= =

G4 G1 gi gi 32+( ),=

η p1 p2k1k2( )[ ] 16

V4
------ p1 p2k1k2( )2,sgn=

p1 p2k1k2( ) eµνρσ p1µ p2νk1ρk2σ,=

16 p1 p2k1k2( )2

V4
----------------------------------- x2y2 4τ1τ2 z2–( )=

+ 2xy z z2 z1 1 y–( )+( ) 2z1z2τ1– 2 1 y–( )τ2–[ ]

– z2 z1 1 y–( )–( )2,

η1 y z2 z1 1 y–( ) xz 2 y–( ) 2x z1 z2+( )τ1+––[ ] ,=

η2 z1 z2–( ) z2 z1 1 y–( )–( )=

+ xyz z1 z2+( ) 2xy 2 y–( )τ2,–

ψ1 z z1 z2–( ) 2yτ2,–=

η3 –yzz1 2z1 z1 z2–( )τ1 ψ1– xy z2 4τ1τ2–( ),–+=

Uµ
m( )

Uµ
0( ) 1

md
------- z z1 z2–+( )p2µ 2τ2 p1 q–( )µ–[ ] ,=

d2 z z1 z2–+( )2 4τ2 y 1 x–( ) τ1+[ ] ,–=

Uµ
1±( ) 1

2
------- Uµ

x( ) iUµ
y( )±( ), Uµ

y( )+−
εµλρσqλ p2ρ p1σ

D
----------------------------------,= =

Uµ
x( ) 1

D1
------ a1 p1µ a2 p2µ a3qµ+ +( ),=

D2 V3

4
------=

× xy z2 4τ1τ2–( ) yz z1 z2–( ) y2τ2– τ1 z1 z2–( )2–+[ ] ,

a1 z1 z2–( ) z z1 z2–+( ) 2yτ2 2x 1–( ),+=

a2 yz 1 2x–( ) y 2τ1+( ) z1 z2–( ),–=
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Then, the coefficients in the expansion of the vector-
meson wave function with definite helicity over the sta-
bilized set of the 4-vectors (see Eq. (15)) can be repre-
sented as follows:

(19)

The wave functions  have the following form in
the vector-meson rest system:

(20)

where q, p1, and px are the momenta of the virtual pho-
ton, the target, and the undetected system X, respec-
tively. Choosing the coordinate axes as follows: z || l,
y || n, and x || t, we get for the wave functions the fol-
lowing expressions:

(21)

The Gottfried–Jackson system. In the Gottfried–
Jackson system, the z axis coincides with the direction
of flight of the incoming photon in the vector-meson
rest system. Then, the vector-meson wave functions

 with definite helicity m can be represented as
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2

D
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y( ) 0 n,( ),= = =

l
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px
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px q×
px q×
-----------------,= =

t
q pxp1⋅ p1 pxq⋅–[ ]
q pxp1⋅ p1 pxq⋅–

------------------------------------------------,=

Uµ
0( ) 0 0 0 1, , ,( ), Uµ

1±( ) 1

2
------- 0 1 i 0,±, ,( ).+−= =

Uµ
m( )

Uµ
0( ) 1

r
--- 2τ2qµ z1 z2–( )p2µ–[ ] ,=

r2 Vτ2 4xyτ2 z1 z2–( )2+[ ] ,=

Uµ
1±( ) 1

2
------- Uµ

x( ) iUµ
y( )±( ), Uµ

y( )+−
εµλρσqλ p2ρ p1σ

D
----------------------------------,= =
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(22)

Then, the coefficients in the expansion of the vector-
meson wave function with definite helicity over the sta-
bilized set of the 4-vectors (see Eq. (15)) can be repre-
sented as follows:

(23)

In the vector-meson rest system, the wave functions

 (22) have the same form as given by Eq. (20). But
for the Gottfried–Jackson system the vectors l, n, and t
are

Choosing the coordinate axes as follows: z || l, y || n, and
x || t, we get for the wave functions in the vector-meson
rest system the form given by Eq. (21).

4. Let us expand the spin-density matrix elements
into the terms according to the polarization state of the
virtual photon. This expansion is the standard proce-
dure when analyzing the cross section and polarization
observables for inelastic lepton scattering. The form of
this expansion for the case of a longitudinally polarized
electron beam is

(24)

Uµ
x( ) 1

R1
----- b1 p1µ b2 p2µ b3qµ+ +( ),=

b1 z1 z2–( )2– 4xyτ2,–=

b2 y z1 z2– 2xz+( ), b3 ψ1,= =
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2 τ2b2
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+ b1 yb3 zb2+( ) b3 z1 z2–( )b2 xyb3–[ ]+ } .
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---------------, At
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---------------,–= =
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4 2τ2D2
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2

2D
-------------±
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An
1±( ) V2

2 2d3

---------------- η
b3

R1
----- i

Vη3

2D
----------+− 

  .±=

Uµ
m( )

l
q
q
------, n

px q×
px q×
-----------------, t

lp1 l⋅ p1–[ ]
lp1 l⋅ p1–

-----------------------------.= = =

σB
Uρmn

B ρmn
U ε 2φ( )ρmn

T ε 2φ( )ρmn
TPsin+cos+=

+ ερmn
L 2ε 1 ε+( ) φρmn

Icos+

+ 2ε 1 ε+( ) φρmn
IPsin λ 1 ε2– ρmn

T P'+

+ λ 2ε 1 ε–( ) φρmn
IP'cos λ 2ε 1 ε–( ) φρmn

I' ,sin+
where ε–1 = 1 – 2( /q2)tan2(θe/2) and θe and qL are the
electron scattering angle and virtual-photon 3-momen-
tum in the laboratory system. The quantity ε represents
the degree of virtual-photon linear polarization. The
angle φ is the angle between the electron scattering
plane and the plane (q, p2) (vector-meson production
plane). This expansion is a consequence of the one-
photon exchange approximation and the validity of the
conservation of the electromagnetic current describing
the γ*N  VX transition and the P-invariance of the
hadron electromagnetic interaction as well. The mean-
ing of the indices is the following: U (L) is determined
by the transverse (longitudinal) current component, T is
caused by the transverse current component and deter-
mines the asymmetry due to the linear polarization of
the virtual photon, I is determined by the interference of
the transverse and longitudinal current components,
and P (') means that this term is due to the vector-meson
(electron beam) polarization.

For the stabilized set of 4-vectors , where α = l,
t, n, we have in the Born approximation

qL
2
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U Nk

3
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(25)
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where W is the invariant mass of the VX system.
To use the Drell–Yan representation, we have to

express all the variables and quantities in both sides of
Eqs. (24) and (25) through invariant variables. The cor-
responding formulae read

(26)

and the azimuthal angle φ can be obtained from the
equation

Note in conclusion that we obtain a rather compact
formula for taking into account the leading-order RC
for the process of semi-inclusive vector-meson electro-
duction. The results obtained do not depend on the par-
ticular choice of model for the process investigated. All
the dynamics of the reaction under consideration is
contained in the structure functions gi.
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The predicted value of the higgs mass mH is analyzed assuming the existence of the fourth generation of leptons
(N, E) and quarks (U, D). The steep and flat directions are found in the five-dimensional parameter space:
mH, mU, mD, mN, mE. The LEPTOP fit of the precision electroweak data is compatible (in particular) with mH ~
300 GeV, mN ~ 50 GeV, mE ~ 100 GeV, mU + mD ~ 500 GeV, and |mU – mD | ~ 75 GeV. The quality of fits dras-
tically improves when the data on b- and c-quark asymmetries and new NuTeV data on deep inelastic scattering
are ignored. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 12.60.Fr; 14.80.Bn; 12.15.Lk 
It is well known that, in the framework of the Stan-
dard Model, the fit of electroweak precision data results
in the prediction of light higgs, the central value of its
mass being lower than the direct lower limit set by LEP
II [1]. One possible way to raise the predicted value of
mH is to assume the existence of the fourth generation
of leptons and quarks [2, 3]. Implications of extra
quark–lepton generations for precision data were stud-
ied in a number of papers [2–7]. Leptons of the fourth
generation (E, N) should be very weakly mixed with the
ordinary ones, while in the quark sector (U, D) mixing
is limited only by the unitarity of the 3 × 3 CKM matrix.
In particular, it was noticed in [2] that the predicted
mass of the higgs could be as high as 500 GeV. That
conclusion was based on a sample of 10000 random
inputs of masses of fourth-generation leptons and
quarks. However, the sets of the lepton and quark
masses were presented independently (see Fig. 7 in
[2]). Thus, it is not clear how they were combined.

In this letter, we try to develop a systematic
approach to the problem by using our LEPTOP code [8]
to find steep and flat directions in the five-dimensional
parameter space: mH, mU, mD, mE, mN. For each point in
this space we perform a three-parameter fit (mt , αs, )

and calculate the χ2 of the fit. It turns out that the 
depends weakly on mU + mD and mH, while its depen-
dence on mU – mD, mE and mN is strong. We limit our-
selves to the values of mN larger than 50 GeV because,
according to the experimental data from LEP II on the
emission of initial state bremsstrahlung photons, mN >
50 GeV at 95% c.l. [9, 10].

We analyzed Summer 2001 precision data ([1],
which are also given in Table 1 in [3]). Figures 1–4

¶ This article was submitted by the authors in English.
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show  (crosses) and constant χ2 lines correspond-
ing to ∆χ2 = 1, 4, 9, 16, … on the plane mN, mU – mD for
fixed values of mU + mD = 500 GeV, mH = 120 (Figs. 1,
3) and 500 GeV (Figs. 2, 4) and mE = 100 (Figs. 1, 2)
and 300 GeV (Figs. 3, 4). We also performed fits for
mH = 300 GeV.

The above choice of masses is based on a large num-
ber of fits covering a broad space of parameters:
300 GeV < mU + mD < 800 GeV; 0 GeV < mU – mD <
400 GeV; 100 GeV < mE < 500 GeV; 50 GeV < mN <
500 GeV; 120 GeV < mH < 500 GeV. Concerning
quarks, mU + mD is bounded from below by the limit of
direct searches, while from above, by triviality argu-
ments. Since the χ2 dependence on mU + mD is very
weak, our choice of the intermediate value mU + mD =
500 GeV represents a typical, almost general case. For
this choice, |mU – mD| cannot be larger than ~200 GeV
because of the limit of direct searches mentioned
above.

Concerning the charged lepton, its mass is taken
above the LEP II bound. We present fits at two values
of mE (100 GeV and 300 GeV), and one can see how the
fit worsens as mE goes up.

Concerning the value of mH, we vary it from the
lower LEP II limit up to the triviality bound, and, since
the dependence of observables on mH is flat, one can get
the χ2 behavior from two limiting points: mH = 120 and
500 GeV.

For mE = 100 GeV, we have a minimum of χ2 at
mN . 50 GeV and

for mH = 120 GeV:

|mU – mD | ~ 50 GeV, /nd.o.f = 20.6/12;

χmin
2

χmin
2
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for mH = 300 GeV:

|mU – mD | ~ 75 GeV, /nd.o.f. = 20.8/12;

and for mH = 500 GeV:

|mU – mD | ~ 85 GeV, /nd.o.f. = 21.4/12.

Thus, we have two lines (mU > mD and mU < mD) in
the (mU – mD, mH) space that correspond to the best fit
of the data. Along these lines, the quality of the fit is
only slightly better for the light higgs (mH ~ 120 GeV)
than for the heavy one (mH ~ 300–500 GeV).

Note that the nd.o.f. is 12, unlike the case of the Stan-
dard Model, where it was 13 [3]. This change occurs
because in the present paper mH is a fixed rather than fit-
ted parameter (hence, 13 becomes 14), while mN and
mU – mD are two additional fitted parameters (hence, 14
becomes 12). (As is well known, nd.o.f. is equal to the
number of experimentally measured observables minus
the number of fitted parameters.)

χmin
2

χmin
2

Fig. 1. Exclusion plot on the plane mN, mU – mD for fixed
values of mH = 120 GeV, mU + mD = 500 GeV, and mE =

100 GeV.  shown by two crosses corresponds to

χ2/nd.o.f. = 20.6/12. (The left-hand cross is slightly below
mN = 50 GeV.) Borders of regions show domains allowed at

the level ∆χ2 = 1, 4, 9, 16, etc. The plot was based on the old
NuTeV data. The new NuTeV data preserve the pattern of

the plot but lead to /nd.o.f. = 27.7/12. If  and

uncertainties are multiplied by factor 10, we get

/nd.o.f. = 19.1/12 for new NuTeV, and /nd.o.f. =

11.3/12 for old NuTeV with practically the same pattern of
the plot.

χmin
2

χmin
2

AFB
b

AFB
c

χmin
2 χmin

2

For mE = 300 GeV, we have a minimum of χ2 at mU –
mD . 25 GeV and

for mH = 120 GeV:

mN ~ 200 GeV, /nd.o.f. = 23.0/12;

for mH = 300 GeV:

mN ~ 170 GeV, /nd.o.f. = 24.0/12;

and for mH = 500 GeV:

mN ~ 150 GeV, /nd.o.f. = 24.4/12.

Thus, the best fit of the data corresponds to the light
mE . 100 GeV and mN . 50 GeV. The significance of
light mN (around 50 GeV) was first stressed in [5]. An
increase in mE leads to an increase in mN and to the fast

worsening of .

Although the inclusion of one extra generation
improves the quality of the fit (compare χ2/nd.o.f. =

χmin
2

χmin
2

χmin
2

χmin
2

Fig. 2. Exclusion plot on the plane mN, mU – mD for fixed
values of mH = 500 GeV, mU + mD = 500 GeV, and mE =

100 GeV.  shown by two crosses corresponds to

χ2/nd.o.f. = 21.4/12. (The left-hand cross is slightly below
mN = 50 GeV.) Borders of regions show domains allowed at

the level ∆χ2 = 1, 4, 9, 16, etc. The plot was based on the old
NuTeV data. The new NuTeV data preserve the pattern of

the plot but lead to /nd.o.f. = 28.3/12. If  and 

uncertainties are multiplied by a factor 10, we get

/nd.o.f. = 21.2/12 for new NuTeV, and /nd.o.f. =

13/12 for old NuTeV with practically the same pattern of
the plot.
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23.8/13 for the SM from [3] and /nd.o.f. = 20.6/12
from Fig. 1), it remains pretty poor. The poor quality of

the fit is due to the 3.3σ discrepancy in  ≡ sin2θeff

extracted from leptonic decays and from  [11]. If

one multiplies the experimental errors in  and 
by a factor of 10, one gets a good quality SM fit [3, 11]
but with extremely light higgs, having only a small (few
percent) likelihood of being consistent with the lower
limit from direct searches. We prove that the fourth gen-
eration allows one to have higgs as heavy as 500 GeV

with a perfect quality of the fit: /nd.o.f. = 13/12, if
one uses the old NuTeV data (see caption to Fig. 2).

To qualitatively understand the dependence of mU – mD

on mH in the case of mE = 100 GeV at , let us recall
how radiative corrections to the ratio mW/mZ and to gA

and R = gV/gA (the axial and the ratio of vector and axial
couplings of Z-boson to charged leptons) depend on
these quantities [6]:

(1)

where i = m, A, R, while s2 . 0.23. Corrections to other
observables can be calculated in terms of δVi. In the

vicinity of , the third term in brackets is much
smaller than the second one. This fact determines the
smallness of the left–right asymmetry in the plots in

Figs. 1 and 2. Since  ≈ s2 +  ≈ s2, the increase in

mH is compensated by an increase in |mU – mD |, and we

have a valley of .

Captions to Figs. 1 and 2 reflect the recent change in
NuTeV data (from mW = 80.26 ± 0.11 GeV [12] to
mW = 80.14 ± 0.08 GeV [13]), which results in a drastic
worsening of the fit even in the presence of the fourth
generation.

Thus, we see that the 4th family scenario is better
than the Standard Model, because the latter can pro-
duce a good fit only when the mass of the higgs is much
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lower than the lower limit of LEP II, even when exper-
imental data on heavy quark asymmetries and new
NuTeV data are ignored.

Fig. 3. Exclusion plot on the plane mN, mU – mD for fixed
values of mH = 120 GeV, mU + mD = 500 GeV, and mE =

300 GeV.  shown by the cross corresponds to

/nd.o.f. = 23.0/12. Borders of regions show domains

allowed at the level ∆χ2 = 1, 4, 9, 16, etc.

χmin
2

χmin
2

Fig. 4. Exclusion plot on the plane mN, mU – mD for fixed
values of mH = 500 GeV, mU + mD = 500 GeV, and mE =

300 GeV.  shown by the cross corresponds to

/nd.o.f. = 24.4/12. Borders of regions show domains

allowed at the level ∆χ2 = 1, 4, 9, 16, etc.

χmin
2

χmin
2
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Note that the parameters S, T, and U originally intro-
duced in [14] are not adequate for the above analysis,
because they assume that all particles of the fourth gen-
eration are much heavier than mZ, while in our case the
best fit corresponds to mN ~ mZ/2. In paper [2], modified
definitions of S and U were used in order to deal with
new particles with masses comparable to mZ. However,
let us stress that both original and modified definitions
of S, T, and U take into account the radiative corrections
from the “light” 4th neutrino only approximately, while
the threshold effects, which are so important for mN .
50 GeV, can be adequately described in the framework
of functions Vi.

In conclusion, let us stress that, in the framework of
SUSY with three generations, the radiative corrections
due to loops with superpartners also shift the mass of
the higgs upward in the case of not too heavy squarks
(300–400 GeV, see Table 1 in [15]) or light sneutrinos
(55–80 GeV, see [16]).

V.N., L.O., and M.V. were partly supported by the
RFBR grant no. 00-15-96562; V.N. was partly sup-
ported by the INTAS OPEN grant no. 2000-110 as well.
We are grateful to M. Chanowitz for his comments.
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On the Depolarization of Ultracold Neutrons in Traps¶
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Mechanisms of the depolarization of ultracold neutrons in traps reflecting from the trap wall are considered.
One is due to neutron spin-flip elastic or quasielastic incoherent scattering from protons of surface hydrogen
contaminations. According to the second one, significant depolarization may take place because of a sudden
change in the neutron trajectory on reflection from the wall when the neutron moves even at large adiabaticity
parameters in nonuniform magnetic field. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 14.20.Dh; 13.88.+e; 25.40.Dn
1. An investigation of angular correlation coeffi-
cients in neutron beta decay is important for determin-
ing the fundamental coupling constants of weak inter-
actions [1]. It is important to improve the accuracy of
these measurements with the aim of searching for new
physics beyond the Standard Model with increased sen-
sitivity [2]. One of serious difficulties in increasing the
precision of these measurements is the reliable determi-
nation (with a high accuracy) of the polarization of
decaying neutrons.

It was proposed [3] that significant progress can be
made by the use of polarized ultracold neutrons (UCN)
[4] stored in closed volumes or flowing through the
decay region. Neutrons transmitted through a suffi-
ciently high magnetic potential barrier must have a per-
fect 100% polarization in the direction opposite to the
magnetic field. The first experimental data on neutron
depolarization in traps were published in [5]. A surpris-
ingly large depolarization (~10–5 per UCN collision
with the wall) was observed for all tested surface mate-
rials, and it was shown in a special experiment that this
value of depolarization hardly depended on the UCN
loss coefficient, which was changed by additionally
depositing a water layer on the cooled surface. It was
also stated that the depolarization due to the large gra-
dient of the magnetic field was impossible, which was
confirmed by numerical evaluations.

The objective of this paper is to consider the possi-
ble mechanisms of the depolarization of UCN in traps
without having in mind an exact quantitative interpreta-
tion of the existing experimental data.

2. The obvious and trivial reason for UCN depolar-
ization in traps is neutron spin-flip scattering from
hydrogen. The most promising materials for UCN
chambers, namely, Be, C, glass, and fluoropolymers, do
not contain nuclei with a significant spin-flip cross sec-
tion. UCN upscattering from hydrogen contaminations

¶ This article was submitted by the author in English.
1 e-mail: pokot@nf.jinr.ru
0021-3640/02/7603- $22.00 © 20131
of the trap surface is the usual and the main reason for
the abnormally large losses of UCN from the traps [4].
The UCN cross section for upscattering from a bound
proton of a room temperature sample is σups . (4–7)b ×
2200/v  (m/s)[6], depending on the chemical bond of
the hydrogen atom (v  is the UCN velocity). The elastic
(or quasielastic in the case of diffusing protons or/and
in the presence of the hyperfine splitting of the hydro-

gen atom) spin-flip scattering cross section σel .  ×

80b. Therefore, the ratio of spin-flip to UCN–hydrogen
upscattering loss probabilities is ~(1.5–3) × 10–2. In a
trap with UCN, the loss probability due to upscattering
from hydrogen equals ~4 × 10–5 (rather good value),
and the spin-flip probability is ~10–6, which is not quite
satisfactory for the neutron decay correlation coeffi-
cient.

The energy splitting of magnetic sublevels in para-
magnetic atoms is usually much larger than the UCN
energy. Therefore, after spin-flip paramagnetic scatter-
ing, neutrons must leave the storage chamber. Anyway,
the cross section of paramagnetic scattering is of the
order of 1 b, and the probability of spin-flip on reflec-
tion from the wall is ~10–7 even in the case when all
atoms of the wall are paramagnetic. This is hardly pos-
sible for typical wall materials.

3. The effect of magnetic field inhomogeneities on
the spin relaxation of neutral particles with magnetic
moment was considered in [7, 8]. It was assumed in
these works that the applied magnetic field is a super-
position of a weak spatially varying field upon a much
stronger homogeneous field, and the problem was
solved with the use of the perturbation method. Accord-
ing to [3], this is not the case when UCN are polarized
by transmission through a magnetic potential barrier
and then are stored in an experimental chamber. The
fluctuations of the magnetic field for a slow neutron
moving in the chamber are not random and small in this
case, but the adiabaticity parameter—the ratio of Lar-
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mor frequency to frequency of rotation of magnetic
field in the neutron reference frame—can be large
enough, so that the spin relaxation probability for a
freely moving neutron must be exponentially small. It
will be shown here that, nevertheless, the depolariza-
tion may be significant, because the time derivative of
the magnetic field is discontinuous if the wall collision
takes place in a time that is short compared to the period
of Larmor precession.

Let a neutral particle with a magnetic moment (in
particular, an ultracold neutron) move in a nonuniform
magnetic field inside a trap, reflecting from the trap
walls. We place the neutron reference frame at the
reflection point, so that the x axis is along the magnetic
field line.

With constant Hx ≠ 0, Hy = 0, Hz = t ,  > 0 and
following the paper by V.V. Vladimirsky [9], we obtain
the equation for the spin wave function

, (1)

where ω = µHx/", a = µ /", and µ is the magnetic
moment of a neutron.

The equations for each spinor component look as
follows:

(2)

Substituting φ = e–z/2u, χ = e–z/2v, z = –iat2, and introduc-
ing α = ω2/4ia, transform (2) to the confluent hypergeo-
metric equations

(3)

The solutions of these equations are

(4)

and

(5)

where F(α, γ, z) are Kummer functions.
Asymptotics at t  ±∞ are

(6)

Ḣ Ḣ
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Ḣ
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(7)

If the z-component of the magnetic field varies

according to Hz = –t ,  > 0, the equations and solu-
tions for spin components interchange.

On reflection from the surface at t = 0, the particle
suddenly changes its trajectory and then follows on
with a different value of the gradient of the z-compo-
nent of the magnetic field. The condition that this tran-
sition is “sudden” is fulfilled if the reflection time is
much smaller than any characteristic time parameter of
the problem: trefl ! TLarmor. It will be shown below that
the typical value for ultracold neutrons trefl ≈ 10–9 s,
which is sufficient for any practical case.

Now, we match the solutions with different values of
a at t = 0 corresponding to different trajectories of a par-
ticle in a magnetic field before and after the reflection
from the wall. When the signs of dHz/dt are the same,
the matching means φ(α)t = 0 = φ(α')t = 0, when the signs
are different, we use φ(α)t = 0 = χ(α')t = 0. We put
χ(−∞) = 0, |φ(–∞)|2 = 1 (initially, the particle is polar-
ized opposite to the z axis) and obtain the expressions
for |φ(+∞)|2

(8)

for the cases when the signs of the change in the Hz(t)
component of the magnetic field are the same before
and after the particle reflection from the wall, and

(9)

when these signs are different; e.g., the particle returns
after the reflection from the wall to the region of the
magnetic field of the same sign of Hz. In these expres-
sions, α' corresponds to the particle motion after the
reflection.

When in Eq. (8) α = α', we get |φ(+∞)|2 = ,
which corresponds to the result of [9] for the probabil-
ity of spin reversal when the particle moves freely with-
out changing its trajectory. For ultracold neutrons, the
adiabaticity parameter |α| @ 1, |φ(+∞)|2  0 (expo-
nentially small) practically in all cases, and the neutron
spin follows the direction of the magnetic field. The cal-
culation according to Eqs. (8) and (9) show that this is
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not the case when the particle reflects from the wall.
The probability of spin reversal with respect to the
magnetic field increases drastically. Fig. 1 shows the
results of a computation of this probability for different
cases of reflection as a function of |α'|.

In practice, it is difficult to calculate the probability
according to Eqs. (8) and (9) for |α'| @ 1. Using asymp-
totic formulas for the gamma function makes it possible
in this case to obtain for Eq. (8)

(10)

and for Eq. (9)

, (11)

where ξ = 1/24|α|, ξ' = 1/24|α'|.
Figure 2 shows the results of calculations according

to these formulas in terms of the probability of spin
reversal as a function of the gradient of Hz. The neutron
velocity along the z axis was taken to be equal to
300 cm/s, Hx = 5 Oe.

4. The interaction time of a particle reflecting from
a potential wall can be calculated in the spirit of the
Baz’ [10, 11] idea by introducing a fictitious infinitesi-
mal magnetic field in the interaction region and calcu-
lating the rotation angle of the magnetic moment of the
particle due to the interaction. The reflection time in our
case is determined as a ratio of rotation angle to Larmor
frequency of precession of the magnetic moment in this
magnetic field. Let the incident wave polarized in the
x-direction reflect from half-space z ≥ 0, in which the
magnetic field is directed along z axis. The Schrödinger
equation is

(12)

where u0 = 2mU0/"2, U0 is the height of the potential
wall, k is the incident wave vector, and H is the value of
the magnetic field in the half-space z ≥ 0. The incident
wave is

(13)

The reflected wave is

(14)

It follows [10] that

, (15)

and, as it is easy to show, that
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where K = , we obtain from ω = 2µH/" and
ωmkz/"u0K = ω∆t the reflection time

(17)

which at U0 ~ 10–7 eV gives ∆t ~ 10–9 s.
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Fig. 1. Probability of UCN spin reversal on reflection from
the trap wall as a function of the adiabaticity parameter β =
|α'| after the reflection (before the reflection, β = |α| = 10):
(1) the signs of the time dependence of Hz(t) are the same
before and after the reflection and (2) these signs are oppo-
site.

Fig. 2. Probability of UCN spin reversal on reflection from
the trap wall as a function of dHz/dz after the reflection:
before the reflection dHz/dz = 0.1 Oe/cm, (1) signs of the
time dependence of Hz(t) are the same before and after
reflection, (2) these signs are opposite; before reflection
dHz/dz = 1 Oe/cm, (3) signs of time dependence of Hz(t) are
the same before and after reflection, (4) these signs are
opposite; in both cases v z = 300 cm/s, Hx = 5 Oe. 
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A system of two plane traps disposed one above the other and confined atomic Bose condensate is considered.
The possibility of entraining atoms of one of the traps by the atoms of the other trap upon the rotation of the
latter is studied. The average angular momentum induced by the rotation of the first trap is found for the atoms
in the second trap. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Fi; 34.50.Ez
The discovery of the Bose condensation of trap-
cooled atoms [1–3] has motivated the study of a num-
ber of new physical phenomena (see reviews [4, 5]). A
system of two adjacent traps is an interesting physical
object. In particular, this system offers promise for the
Josephson effect, etc. In this work, the effect of atomic
drag in a system of two plane spatially separated traps
situated one above the other and confining the atomic
Bose condensate. We assume that these traps are sepa-
rated by a distance for which the interatomic interaction
in different traps cannot be ignored (vertically coupled
traps). The two-dimensionality of traps signifies that
the separation between the size-quantization levels
("ωz) along the smaller size far exceeds the characteris-
tic energies of a two-dimensional Bose gas such as
chemical potential µ2D, kT, etc. In terms of characteris-
tic lengths, this implies that the characteristic atomic de

Broglie wavelength λ = "/ , where E is the above-
mentioned characteristic energies (µ2D and kT), is larger

than the trap vertical size lz = . The confining
potential in the two-dimensional traps can be written as

(1)

Two drag mechanisms may be considered for two
adjacent traps.

(1) The drag effect, where only the normal compo-
nent in the second trap is entrained by the atomic
movement in the first trap.1

(2) Let the confining potential of the (for definite-
ness) lower trap be anisotropic in the xy plane. Let us
rotate the confining potential of the lower anisotropic
trap (with an angular velocity Ω). Let Ω be so small that
no vortices appear in this trap. Under adiabatic condi-
tions, the atomic density has the symmetry of the rotat-

1 This effect may occur for an arbitrary trap shape and will be con-
sidered elsewhere.
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2 y2

2
-----------------, j+ 1 2.,= =
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ing trap. The essence of the predicted effect becomes
more clear when it is assumed that the confining poten-
tial of the second trap is isotropic. It is shown below
that, due to the interatomic interaction between the dif-
ferent traps, an anisotropic effective confining potential
appears in the upper trap with the same angular velocity
as the lower anisotropic trap. This gives rise to the rota-
tion of the upper atomic system, i.e., to the induced
angular momentum M2z = J21Ω. Our goal is to calculate
the drag coefficient J21 (“mutual moment of inertia”) as
a linear response of the upper trap to the rotation of the
lower trap. Interestingly, both the superfluid and the
normal components should be entrained in the anisotro-
pic case considered.

In this work, we consider the above-mentioned sec-
ond effect, i.e., the effect of entrainment due to the
anisotropy of Bose gas in the first trap and induced
anisotropy in the second trap. Let the Bose gas be
rotated about the z axis in anisotropic trap 1 and the
confining potential in trap 2 is isotropic in the xy plane,
and let the gas in this trap be initially at rest. For a dis-
tance between the traps larger than between the minima
of interatomic potentials, the interatomic interactions
between the different traps can be described by the van
der Waals potential

(2)

For the typical experimental situation of a rarefied
Bose gas at a temperature lower than the Bose-conden-
sation temperature, the number of atoms in the trapped
Bose condensates far exceeds the number of noncon-
densed particles. We also assume that the trapped atoms
obey the Thomas–Fermi approximation.

The Gross–Pitaevski-type equation for the conden-
sate (initially quiescent) in the second trap interacting

U r r'–( )
α6

r r'–( )2 D2+[ ] 3
---------------------------------------.–=
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with the first trap is written as2

(3)

where

(4)

 and ψ1 are the field operators for the first (rotating)
trap, µ2 is the chemical potential, nc is the condensate
density, and  is the density of noncondensed particles.
The effective interaction constant g (and the ground
state) in the two-dimensional Bose gas were studied in
[6, 7]; the value of g is

(5)

where p12 = (p1 – p2)/2 is the relative momentum of two
atoms, a is the s-scattering 3D amplitude, and lz =

. It was shown in [8] that the dependence on
the relative momentum can be ignored in a rarefied
Bose gas and the effective scattering length

(6)

can be introduced.
One can see from Eq. (3) that the influence of atoms

of the first trap (where gas is rotated) on the second trap
is reduced to the appearance of an auxiliary effective
potential U1(r), which, in our approximation, is
reduced to an addition to the confining potential V2ext.
To understand the character of the change in the state of
the Bose condensate in the second trap, one should find
the effective potential in explicit form. In the Thomas–
Fermi approximation, it is written as

(7)

where

(8)

As is seen from the formula for the density nTF, the inte-
gration is over the region V1ext(r, t) ≤ µ, which depends
on t. To calculate this integral, let us pass to the rotating
system of coordinates, where the first trap is at rest. As
a result, the integration region is fixed in time, and the
time dependence transfers to the interaction potential

2 Equation (3) is obtained from the set of two Gross–Pitaevski cou-
pled equations for coupled traps. The influence of the second trap
on the first rotating trap is negligible because the induced anisot-
ropy of the second trap is small compared to its initial value.
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U(r – r'). Equation (7) can be rewritten in the following
form:

(9)

where  = xcosΩt – ysinΩt and  = xsinΩt + ycosΩt.
Since the interaction potential between the traps at a
distance of |r – r' | = D decreases almost by an order of
magnitude: U(0)/U(D) = 8, it can be changed to a more
convenient form, 

(10)

Let the longitudinal size of the rotating trap be larger
than the size of the second trap (in other cases, the
results are qualitatively the same) and D ! Rtr, where
Rtr is the horizontal trap size. By calculating the
induced potential (9), one obtains

(11)

Therefore, we see that the effect of the first trap U1
changes both the chemical potential of the Bose gas and
the effective confining potential in the second trap:

(12)

(13)

As a result, the equation for the Bose condensate in the
second trap takes the form

(14)

Let us study the effective potential  in more
detail. It is quadratic with respect to x and y:

(15)
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where

Let us now consider the potential as a function of trap
parameters.

I. Let both traps be isotropic; i.e., ω2x = ω2y = ω2 and
ω1x = ω1y = ω1. Then, after substituting these parame-
ters in Eq. (15), we obtain

(16)

Therefore, we see that the effective confining potential

is merely deformed as  = . No drag
effect occurs. This is what is expected, because the dis-
tribution of atoms in the rotating Bose condensate is not
anisotropic.

II. If ω1x ≠ ω1y, the effect is basically different. Let
us turn our system of coordinates in such a way that the
cross product disappears. The rotation angle ϕ can be
found from the equation tan2ϕ = b/(c – a). The effective
confining potential in the new system of coordinates
has the form

(17)

where

(18)

Thus,

(19)

where β = (  – )/γ(  – ). Let us consider
two cases.

(a) If ω2x = ω2y = ω2, then β = 0. Then, we obtain the
expressions for the rotation angle ϕ of the system of
coordinates and the angular velocity Ω2 =  of the sec-
ond trap: ϕ = Ωt and Ω2 = Ω. One can then see that, if
the second trap is initially isotropic in the xy plane, then
its effective confining potential (17) is deformed (with

the coefficients  =  and  =

) due to the effect of the first trap, becomes
anisotropic, and rotates with the angular velocity of the
first trap.
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Let us now find the drag coefficient (mutual moment
of inertia) J21. The moment of inertia of a gas, in accor-
dance with the theory of linear response, characterizes

the response to the perturbation –Ω  in the Hamilto-
nian of the system and is determined by the relation

(20)

between the mean angular momentum  and angu-
lar velocity Ω . In [9], it was found that, at small angular
velocities Ω and in the absence of noncondensed
component (i.e., at T = 0), the moment of inertia of the
trap is

(21)

where Θrig = mN〈x2 + y2〉  is the moment of inertia of a
solid body with the trap parameters ωx, ωy. Substituting
into this formula the effective frequencies of the confin-
ing potential of the second trap, we obtain

(22)

At γ ! 1, the mutual drag coefficient is

(23)

(b) If ω2x ≠ ω2y, i.e., the upper (second) trap is ini-
tially anisotropic, then β ≠ 0. This signifies that the
angular velocity Ω2 of the upper trap and the parame-
ters  and  of the effective confining potential
depend on time. Let us consider the possible values of β.

(b1) At β > β0, the motion of the confining potential
of the second trap is oscillatory. The value of β0 is
found from the condition (t) > (t). Hence, β0 =

. The angle of rotation ϕ changes within the limits

(24)

The time dependence of angle ϕ(t) is shown in
Fig. 1. The parameters of the effective confining poten-
tial change in accordance with Eqs. (18). The quantities

(t) and (t) depend on time periodically with the
rotation period of the lower trap T = 2π/Ω (Fig. 2).

(b2) At 0 < β < β0, the motion is more complicated;
the effective confining potential of the lower trap
rotates with a variable angular velocity Ω2(t), and its
parameters (t) and (t) also oscillate (out of
phase) with frequency Ω about their mean values.

Ĵ z
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Thus, one can distinguish four rotation regimes of
the confining potential for the lower trap:

I. β = 0 (the lower trap is initially isotropic); the
atoms in the lower trap rotate with a constant velocity
and time-independent parameters.

II. β ! 1 (weak anisotropy of the lower trap); the
atoms in the lower trap rotate with the angular velocity
Ω2(t) = Ω[1 – βcos(2Ωt)].

Fig. 1. The trap rotation angle as a function of time for dif-
ferent β = 2, 3, and 4.

Fig. 2. The effective frequencies of confining potential as a
function of time for β ~ 4.
III. β @ 1 (strong anisotropy of the lower trap); the
atoms in the lower trap rotate following the law ϕ(t) =

.

IV. Other values of β correspond to the intermediate
regime.

Let us now make numerical estimates for the coeffi-
cient γ. Take Na23 atoms as an example, for which the
s-scattering length is a = 2.8 nm.3 For "ω0 = 7 nK (this
corresponds to the frequency of the confining potential
in the xy plane ω0 = 2π × 145 rad/s) and ωz = 103ω0, the
effective scattering length is  = 0.041. The van der
Waals interaction constant for Na is α6 ≈ 3000 au,

where 1 au = 1 a.e. = e2  = 0.903 × 10–60 erg cm. Then,
the coefficient γ is

(25)

For distances on the order of D ~ 10–5 cm, γ ~ 10–4.
This work was supported by the Russian Foundation

for Basic Research and INTAS.
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The formation of a high-energy (~35 keV) beam of negative hydrogen ions was observed in the expanding fem-
tosecond laser plasma produced at the surface of a solid target by radiation with an intensity of up to 2 ×
1016 W/cm2. The energy spectra of the H+ and H–-ions show a high degree of correlation. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 52.50.Jm; 79.20.Ds; 52.70.Nc
1. In recent years, there has been extensive discus-
sion on the possibility of obtaining high-intensity ion
(primarily proton) beams using laser plasma produced
upon the interaction of femtosecond pulses with solid
targets [1–6]. Such beams can be used for isotope sep-
aration, the initiation of nuclear and fusion reactions,
etc. [7]. The energy of protons accelerated at the
plasma–vacuum boundary equals [1, 7]

(1)

[δ is the hot-electron conversion ratio, Q = Iλ2/(5.48 ×
1018 W/cm2 µm2), λ is the laser wavelength, me is the
electron mass, and r is the radius of focal spot] and can
be as high as 10 MeV for intensities higher than
1020 W/cm2 [2]. Ions with energies of tens of kiloelec-
tronvolts are observed even at “moderate” pulse inten-
sities I < 2 × 1016 W/cm2 [3, 4].

This work reports on the observation of high-energy
negative hydrogen ions from plasma produced at the
surface of an Si target by laser pulses with intensities of
up to 2 × 1016 W/cm2.

2. The experimental scheme is shown in Fig. 1.
Laser radiation (wavelength 616 nm and pulse duration
200 fs) was focused onto a target by lens 1 with F/D ~ 6
providing an intensity of 2 × 1016 W/cm2 [8]. The vac-
uum chamber consisted of two sectors joined together
by a tube: interaction chamber 3 and recording chamber 4.
Residual pressure in the chamber was less than
10−5 torr. The accuracy of focusing laser radiation onto
the target and the temperature of the hot electronic
plasma component were monitored by the hard X-ray
plasma radiation yield using a set of photomultipliers
with a NaJ scintillator [4].

E mec
2π Qδr/λ≈
0021-3640/02/7603- $22.00 © 20139
The plasma ion and electron currents were mea-
sured by an energy-resolving time-of-flight spectrome-
ter [9] placed in the recording chamber normally to the
target surface at a distance of 50 cm. The spectrometer
was a cylindrical capacitor with a deflection angle of
180° and an average radius of 8 cm. The potential dif-
ference U between the capacitor plates was smoothly
varied from –8 to 8 keV, allowing the detection of either
positively or negatively charged particles. The accep-
tance angle was 5 × 10–4 sr. The particle flow pulse
passed through the spectrometer was detected using a
VEU-7 multiplier, whose signal was fed through a load

Fig. 1. Schematic of experimental setup; (1) lens, (2) target,
(3) interaction chamber, (4) recording chamber, (5) spec-
trometer, (6) VEU-7, and (7) photomultiplier set.
002 MAIK “Nauka/Interperiodica”
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of 50 Ω, into a digital oscillograph with a time resolu-
tion of 10 ns. 

The spectrometer was calibrated using an electron
gun emitting a quasi-monoenergetic electron beam.
Measurements were made in the electron-energy range
up to 4 keV and demonstrated that the electron energy
E depended linearly on the voltage U, with the propor-
tionality coefficient

(2)

and the spectrometer resolution was ∆E/2E = 4%.
Therefore, the spectrometer could detect charged parti-
cles with an energy of up to 35Z keV (Z is the particle
charge).

The typical form of a signal recorded in the regime
of measuring positively and negatively charged plasma
components is given in Fig. 2a (E = 2.8Z keV) and
Fig. 2b (E = 3.5Z keV), respectively. It is worth noting
that for the current of negatively charged particles the
voltage on VEU-7 increased from 1.2 to 2.5 keV, which
corresponded to an increase in gain of no less than
103 times. As was expected, at positive values of U, the
signal showed several peaks, each corresponding to
ions with a different charge-to-mass ratio Z/M but the
same energy per charge unit E/Z. Indeed, at a fixed U,
the time between particle arrival and plasma ignition is

k 0.23 0.005 V/eV[ ] ,±=

Fig. 2. Time dependence of the arrival instant for (a) posi-
tively and (b) negatively charged plasma components with
energy of, respectively, 2.8Z keV and 3.5Z keV.
where l is the length of time-of-flight base, M is the ion
mass, Z is the ion charge in units of electron charge. The
first and most pronounced peak appears at times on the
order of 1 µs after plasma ignition. It is formed by pro-
ton current, for which Z/M is maximal. This is con-
firmed by the estimate of the entire ion flight length l
from the arrival time t of the first peak as a function of
potential difference U: l ~ 73 ± 0.7 cm, with the
expected l = 72 cm. The presence of protons in the
expanding laser plasma is due to the presence of hydro-
gen-containing impurities (in particular, water) at the
surface of the silicon target. The next peaks are due to
the heavier Si, O, and C ions of different state of ioniza-
tion. The presence of the O and C ions can be due to the
ingress of organic compounds and oil vapor from the
vacuum pump into the chamber.

As the potential U increases, the number of fast pro-
tons with energies of up to 35 keV becomes noticeable.
To construct the proton energy spectra, we measured
plasma current over a wide range of U values. The
resulting proton maxima were integrated over a peak
and normalized to the absolute transmission energy
width proportional to the deflecting voltage U. The
maximal proton energy was as high as 35 keV and
determined by the spectrometer range. At energies
higher than 3 keV, the proton spectrum is well approx-
imated by the exponential function with a “tempera-
ture” of 8 keV, in accordance with a temperature of
4.5 ± 0.8 keV estimated for hot electrons by measuring
the hard X-ray plasma radiation yield [4]. Therefore,
the proton acceleration is primarily due to the presence
of a hot electron component in plasma. Note that the
estimation of proton energy by Eq. (1) gives 9 keV (δ =
0.01, r = 1.5 µm, Q = 0.0014).

As is mentioned above, the typical signal shape for
negative particles leaving plasma is shown in Fig. 2b.
The first signal, which is at times smaller than 100 ps,
corresponds to the arrival of the electron at the detector.
We also observed the subsequent peaks corresponding
to other negative particles with a delay time longer than
100 ns.

A detailed analysis of the amplitude and time posi-
tion of the second peak as functions of voltage U
(Fig. 2b) suggests that this peak coincides in time with
the proton peak for the same, though positive value of
U. Thus, the Z/M ratio for this peak equals –1; i.e., it is
due to the negative hydrogen ions. At the same time,
with allowance made for an increase in the VEU-7 gain,
the peak amplitude is substantially lower than for the
proton peak. The maximum energy of the negative ions
H–1 was equal to 35 keV, as for protons.

The energy spectrum of negative hydrogen ions, as
obtained by analogy with the proton spectrum, is shown
in Fig. 3. It is characterized by a high degree of corre-
lation with the proton energy spectrum. The tempera-
ture of negative ions is also equal to 8 keV, their maxi-

t l M/Z k/2U ,=
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mal energy is the same, etc. This suggests that the neg-
ative hydrogen ions appear upon the recombination of
rapidly cooled expanding plasma. Note that the ionic
flow of negative plasma particles (Fig. 2b) also shows
peaks corresponding to singly charged silicon, oxygen,
and carbon ions.

The experiments with lower laser intensities demon-
strated that the number of negative ions rapidly
increases with increasing intensity. The negative ions
were not detected by our spectrometer at an intensity of
1014 W/cm2. At the same time, the proton signal was
detected with certainty at this intensity, and the maxi-
mum proton energy was found to be 2 keV.

3. The formation of negative ions in the expanding
laser plasma jet was earlier observed in [10, 11] in
experiments with irradiation of solid targets by nano-
second pulses with an intensity of less than
10 GW/cm2. Under these conditions, the equilibrium
plasma temperature T ≈ 1 eV corresponds to the elec-
tron affinity eA for an atom (for hydrogen, eA ≈ 0.75 eV
[12]) and provides the efficient formation of negative
ions. However, because of the low initial plasma tem-
perature, the kinetic energy of negative ions appearing
in plasma is lower than 4 eV. As the intensity of the
nanosecond laser pulse increases, the kinetic energy of
the negative ions increases and they are formed less
efficiently [10]. The maximal velocity of the negative
ions detected in this interaction regime does not exceed
105 cm/s.

A different situation occurs in plasma formed by a
femtosecond pulse (I ~ 1016 W/cm2). In this case, the
plasma electrons are heated with a rate of 1–10 keV/ps,
whereupon the plasma layer is rapidly cooled as a result
of expansion into vacuum and heat outflow into the tar-
get [13]. In this case, the plasma expansion velocity
may be as high as v a ≈ 5 × 107 cm/s, and the ion kinetic
energy increases to 1–10 keV/nucleon. Since the radius
r of a plasma spot is much greater than its thickness H,
the expansion at the initial stage has a one-dimensional
character. This expansion regime becomes three-
dimensional at times τ = 2r/v a ≈ 10 ps, when the plasma
becomes equilibrium. Calculations with the one-
dimensional model showed [14] that the plasma cools
down in this time interval to a temperature on the order
of 30–100 eV. Thus, the metastable negative ions can
appear only at longer times.

The dynamics of three-dimensional plasma expan-
sion can be described using the self-similar solution for
the adiabatic expansion of a gaseous sphere into vac-
uum [15]. In this case, the particle concentration n at
any time instant is

(3)

where n0 and R0 are, respectively, the initial concentra-
tion and radius of the plasma sphere and R =

t  is its characteristic size (t is time and T0 is

n n0 R0/R( )3,=

2ZT0/M
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the initial plasma temperature). The temperature T
depends on time as

(4)

(γ = cp/cv).

Because we consider the formation of negative ions
in a hot (T0 ~ 100 eV) laser plasma expanding into vac-
uum, the necessary conditions for the formation and
existence of negative ions occur at rather long times
when the plasma temperature drops to several electron-
volts. In turn, the recombination of negative ions is
decelerated because of the low concentration of elec-
trons and positive ions in expanding plasma. For low
plasma temperatures (T ! 2 eV), the recombination
rate in collisions with ions is given by the formula [16]

(5)

where T and eA are in electron-volts, µ is the reduced
mass of colliding ions in units of proton mass, and ni is
the concentration of positive ions. The recombination
rate in electron collisions can be estimated using the
modified Seaton formula for the electron-impact ion-
ization rate [17]

(6)

The dependences of ki and ke on the distance to the tar-
get, as obtained according to Eqs. (3)–(6) on the
assumption that the initial plasma temperature is
100 eV and the initial ion concentration in plasma is 5 ×
1022 cm–3, are given in Fig. 4. The left boundary on the
abscissa axis corresponds to the time instant at which
the plasma temperature becomes lower than 2 eV. One
can see from the figure that the negative hydrogen ions
mainly recombine in the collisions with silicon ions,
and the recombination rate becomes lower than 106 s–1

T t( ) T0 R0/R t( )( )3 γ 1–( )=

ki 7 10 10– ni/ eATµ s 1– ,×≈

ke 2 10 6– Zni
T

eA
2

-----×
eA

T
-----– 

  s 1– .exp≈

Fig. 3. Normalized spectra of (d) protons and (,) negative
hydrogen ions and (solid line) their exponential approxima-
tion with an exponent of 8 keV.
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at distances of 2 × 103R0; for R0 ~ 10 µm, this is equal
to several centimeters.

Therefore, the interaction of a femtosecond laser
pulse with a target surface at a pulse intensity higher
than 1015 W/cm2 gives rise at times on the order of 1 ns
to a plasma jet with ion velocities higher than 107 cm/s,
a plasma temperature on the order of 1 eV, and a nega-
tive-ion lifetime of tens and hundreds of microseconds.
The reasons for the increase in the efficiency of gener-
ating negative ions with increasing intensity may be the
following. At low pulse intensity, the initial equilibrium
plasma temperature is not high, and, hence, the “opti-
mal” temperature for the formation of negative ions is
achieved at the earlier expansion stage with higher elec-
tron and ion densities, when the lifetimes of negative
ions are substantially shorter than 1 µs. By the time
instant when the plasma density becomes sufficiently
low, the temperature becomes lower than 0.1 eV and the
formation efficiency of the negative ions is reduced. A
detailed analysis of the formation of negative ions in an
expanding plasma jet produced by a femtosecond pulse
should be carried out within the framework of a consis-
tent three-dimensional plasma-expansion model taking
into account a number of processes such as the recom-
bination, heat conductivity, etc.

4. In summary, femtosecond laser plasma is a
unique source of fast negative ions. The energy of neg-
ative hydrogen ions can be as high as 35 keV at a laser
intensity of 2 × 1016 W/cm2. The spectra of negative
ions also have singly charged ions of other atoms: oxy-
gen, carbon, and silicon. The effect substantially
depends on the conditions for the formation of a hot
dense plasma, because the negative ions are detected
only at intensities higher than the threshold of femto-
second plasma formation (1015 W/cm2). In this connec-
tion, of great interest is the study of this effect for laser
intensities approaching the relativistic limit 5 ×
1018 cm–3, because the energy of negative ions may
achieve a value of MeV/nucleon. At the same time, the

Fig. 4. Recombination rate of negative ions as a function of
the distance from the target, according to Eqs. (5) and (6).
The solid line corresponds to ki; the dashed line, to ke.
plasma heating, cooling, and recombination dynamics
greatly changes at such intensities; this can also affect
the formation of negative ion beams. It also seems that
the observed effect holds promise for the creation of pri-
mary ion beam in particle accelerators [18] and in the
evaporation of superthin films, nanostructures [19], etc.
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The possibility of controlling the passage (from transmission to absorption) of a hypersound through a low-tem-
perature paramagnet using the resonance electromagnetic pumping of lower frequency is substantiated. The
effect has a quantum nature and is analogous to (though somewhat different from) the optical phenomenon of
electromagnetically induced transparency. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 43.35.Gk; 42.50.Gy
An analysis of the physics of coherent processes
indicates that microwave and optical coherent effects
have found acoustic analogues several years after their
discovery. This conclusion is confirmed, e.g., by quan-
tum acoustic phenomena such as acoustic paramagnetic
resonance (APR) [1] [analogue of electron paramag-
netic resonance (EPR)], phonon echo [2], and acoustic
self-induced transparency [3–5]. Acoustic fields usu-
ally act on electron and nuclear spins at low and super-
low temperatures [6, 7]. At liquid helium temperatures
(T ~ 1 K), the self-absorption of hypersound with a fre-
quency of ~10 GHz due to anharmonicity, defects, etc.,
is appreciably lower than the resonance absorption [1]
and, hence, can be ignored.

The discovery of electromagnetically induced trans-
parency (EIT) [8, 9] consisting in a sharp bleaching of
a three-level resonance medium for a weak optical sig-
nal at the center of absorption line and in an appreciable
decrease in its group velocity in the presence of a pow-
erful optical pumping has given impetus to the vigorous
development of fundamental and applied areas of
research associated with this effect [10, 11].

On the basis of this parallel, one can conclude that a
search for the effect of acoustic induced transparency
(AIT) in a system of electron (or) nuclear spins is also
reasonable. Considering that both EPR and APR transi-
tions can occur between the Zeeman sublevels in an
external magnetic field, one can assume that AIT may
occur upon the combined (electromagnetic and acous-
tic) action on a crystal. Note that, contrary to optical
transitions, the resonance absorption line profile for
Zeeman transitions is mainly due to inhomogeneous
broadening [6]. This fact, in turn, should cause certain
distinctions between AIT and EIT, which will be estab-
lished below.

It is well known that Group VIII paramagnetic ions
with spin S = 1 interact with lattice vibrations the most
strongly [1, 6]. Due to the Zeeman effect in an external
0021-3640/02/7603- $22.00 © 0143
magnetic field B0, a three-level equidistant quantum
state is formed. The equidistance can be eliminated,

e.g., by applying a static strain  along B0 (z axis) [1,
12]. Below, we consider a system of such ions diluted
as impurities in a cubic crystal. Let B0 be directed along
one of the fourfold symmetry axes. In this case, the lon-
gitudinal hypersound signal propagates perpendicu-
larly to B0 (along the x axis, which is also a fourfold
axis) and the electromagnetic microwave pumping pro-
ceeds along B0 (Fig. 1).

Then, the Hamiltonian of a spin interacting with the
acoustic and electromagnetic fields can be written as [1,
3, 6, 12]

(1)

ezz
0( )

Ĥs "ω0Ŝz
3
2
---G11 Ŝz

2
ezz

0( ) Ŝx
2
exx+( )+=

– gµB ŜxBx ŜyBy+( ),

Fig. 1. Geometry of the assumed experiment. (1) Paramag-
netic sample, (2) dielectric material (transparent to the elec-
tromagnetic pumping) producing static strain; u  and
ψ  indicate the propagation directions for the hyper-
sound and electromagnetic pumping, respectively.
2002 MAIK “Nauka/Interperiodica”
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where " is the Planck’s constant, µB is the electron Bohr
magneton, g is the Lande splitting factor, ω0 = gµBB0/"
is the Zeeman frequency in the field B0, G11 is the tensor
component of the spin–phonon interaction connecting
the paramagnetic ion with the longitudinal strain com-
ponent [1, 3, 6], exx = ∂u/∂x is the relative crystal strain
caused by the hypersound, u is the corresponding dis-
placement of lattice sites, Bx and By are the components
of a magnetic field of microwave pumping, and the
expressions for spin matrices in this geometry are

(2)

Note that the spin–phonon interaction that is linear in
spin for S = 1 is one or two orders of magnitude weaker
than the quadratic interaction [6] and is ordinarily
ignored.

Hamiltonian (1) should be supplemented by the
Hamiltonian of classical hypersound field

(3)

where ρ is the average crystal density, a is the velocity
of longitudinal sound in the absence of paramagnetic
impurities, and p is the momentum density of the oscil-
lating crystal sites.

In accordance with the semiclassical approach [12–
14], the equations of motion for the acoustic field can
be written as

(4)

where  = Sp  is the quantum average of 
and  is the density matrix of effective spin with
dimensionality 3 × 3; the summation is over all para-
magnetic ions [the index j in Eq. (1) is omitted]. Here-
after, the partial time derivative is indicated by an upper
dot.

From Eqs. (1)–(4), one finds

(5)
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where Ω = (3G11/4")exx, n =  is the con-
centration of paramagnetic ions, δ(r – rj) is the delta
function, r is the coordinate of the jth ion, and ∆ =

 – ω31 is the detuning of the hypersound frequency

ω31 from the central frequency  of the inhomoge-
neous contour f(∆)for the 1  3 transition.

The dynamics of effective spin will be described
quantum-mechanically using Neumann equation for 
with Hamiltonian (1). In so doing, we use the following
representation:

(6)

Here, u and ψ are the real Rabi frequencies of the lon-
gitudinal hypersound and the circularly polarized
microwave pumping resonant with, respectively, 1  3
and 2  3 transitions; R31, R32, and R21 are the slowly
varying amplitudes (in the standard meaning) of the
respective density matrix elements, k31 is the acoustic
wavenumber for the frequency ω31 close to the fre-
quency ω310 = 2ω0; the pump frequency ω31, according
to the resonance conditions, is close to ω320 = ω0 +

(3G11/2") , and the frequency of the inactive 1  2

transition is expressed as ω210 = ω0 – (3G11/2") .
From Eqs. (6), one can see that the term ρ22 on the right-
hand side of Eq. (5) can be ignored.

In Eq. (6), the electromagnetic wavenumber for the
frequency ω32 is taken to be zero, because the corre-
sponding wavelength λ = 2πc/ω32 ~ lx @ lz, where lx(lz)
is the size of paramagnetic sample across (along) the
magnetic field. Indeed, one ordinarily has in the APR
experiments lx ~ 1–2 cm and lz ~ 3–4 mm [3, 7]. At the
same time, one has for ω31 ≈ 2ω0 ≈ 5 × 1010 s–1 λ ≈
4 cm @ lz.

As a result, one can ignore the relatively rapidly
varying oscillatory terms and arrive at the set of consti-
tutive equations:

(7)
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where Γ = 1/T1 is the relaxation rate of the diagonal ele-
ments of  (for the sake of simplicity, the approxima-
tion of a single longitudinal relaxation rate is used [15];
it is shown below that this approximation is not crucial
in our case); γ32, γ31, and γ21 are the transverse relax-
ation rates for the corresponding transitions; ∆32 = ω320
– ω32, ∆31 = ω310 – ω31, and ∆21 = ω210 – ω31 + ω32 are,
respectively, the detuning between the field and atomic
frequencies; wα (α = 1, 2, 3) are the equilibrium popu-
lations of atomic levels; and the diagonal components
of  are related to one another by the expression ρ11 +
ρ22 + ρ33 = 1.

The induced magnetic dipole transitions 1  2
can be ignored if the Rabi frequency of microwave
pumping is lower than the detuning between the transi-
tions 2  3 and 1  2: ψ ! |ω320 – ω210 | =

(3G11/") . The nonequidistance can be assumed to
be appreciable if |ω320 – ω210 | ~ 0.1ω0. Taking G11 ~
10−14 erg for the Ni2+ ions in a MgO crystal matrix [1, 3,
6], one obtains that the detuning is |ω320 – ω210| ~ 1010 s–1

for the static strain  ~ 10–3, which corresponds to its
elastic limit; then the microwave pumping at ψ ! 1010 s–1

will mainly result in the transitions. Within the frame-
work of this model, the microwave field is a given
dynamic parameter; i.e., its decrease due to the reso-
nance absorption at the 2  3 transition is ignored.
This approach is justified if the pump energy density far
exceeds the energy density absorbed by the resonance

medium: "2ψ2/(4πg2 ) @ n(w2 – w3)"ω0. At T ~ 1 K
and 2ω0 ≈ 1011 s–1, one has, according to the Boltzmann
distribution, w2 – w3 ≈ 0.2. Then, one has ψ @ 107 s–1 for
a diluted paramagnet (n ~ 1017 cm–3 [6]), which corre-
sponds to a microwave intensity I @ 103 W/cm2. On a
decrease in temperature to 0.1 K, the populations of the
second and third levels become negligible and the
microwave pumping is not exhausted for practically
any intensity.

In the steady-state regime (for which the time deriv-
atives can be ignored), one obtains from Eqs. (7) in the
linear approximation in u

(8)

We first consider the case where the microwave
pumping is absent (ψ = 0). Then, from Eq. (8) one has
R31 = –u(w1 – w3)/(∆31 – iγ31). Evidently, ∆31 = ω310 –
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η ~ 10–7 and /γ ~ 103. Hence, the second term in the
square brackets of the dispersion relation is much
smaller than unity, and one obtains the well-known [16]
dependences of the hypersound refractive index
N0(δω)  =  aRek31/ω31 and absorption coefficient
κ0(δω) = Imk31 on the microwave frequency (Fig. 2)

(9)

where κ0(0) = η(w1 – w3) /γa is the absorption
coefficient at δω = 0. Substituting the above-mentioned
parameters for Ni2+ in MgO, one finds κ0(0) ~ 10 cm–1,
which is in good agreement with Shiren’s experimental
data at T ≈ 1.8 K [3].

Let now ψ ≠ 0. As is mentioned above, γ ~ ∆32 ~
∆21 @ γ32, γ21, γ31. In addition, γ32 @ Γ [3, 6]. We also
assume that ψ ≥ γ. Under these conditions, the expres-
sion in braces in Eq. (8) is, with a good degree of accu-
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Fig. 2. Resonance profiles of the (top) absorption coefficient
and (bottom) refractive index in the (dots) absence and
(dashes) presence of resonance electromagnetic pumping.
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racy, w1 – w3 – (w2 – w3)/2 = (3w1 – 1)/2. Let the micro-
wave frequency exactly coincide with the center of the

contour of the 2  3 transition; i.e., ω32 = . Then
∆21 = δω + ∆. Taking this and the above estimates into
account, one obtains for the hypersound refractive
index N(δω) and absorption coefficient κ(δω) in the
presence of pumping

(10)

At T ~ 0.1 K and 2ω0 ~ 1011 s–1, one has to a good
degree of accuracy w2 = w3 = 0. Then, (3w1 – 1)/2 = w1 –

w3 = 1. An analysis of Eq. (10) shows that at ψ < γ/
the curves for N(δω) and κ(δω) are qualitatively the
same as in the absence of the microwave field [see

Eqs. (9)]. At ψ > γ/ , a small dip appears in the center
of resonance absorption line, and if ψ > γ, then both
dependences become qualitatively the same as those
typical of EIT [8, 11] (Fig. 2). True enough, these
curves are smoother because of the inhomogeneous
broadening. Two absorption regions appear, which are
symmetrically shifted on both sides of the contour cen-
ter. The shift is d = ψ (Fig. 2). The half-widths of both
absorption lines do not differ from the halfwidth of the
central line in the absence of pumping and are equal to
γ. Their amplitudes are smaller than the amplitude of
the central line by a factor of 2. The value of κ in the
center of resonance line has a minimum and is equal at
T ~ 0.1 K to κ(0) = κ0(0)[1 + (ψ/γ)2]–1, whereas κ(d) ≈
κ(ψ) = κ0(0)/2. Taking ψ ~ 109 s–1 (this corresponds to
a magnetic component of ~102 Oe and the intensity I ~
107 W/cm2 of the microwave field) and γ ~ 108 s–1, one
concludes that a powerful microwave pumping is capa-
ble of reducing the hypersound resonance absorption
coefficient by two orders of magnitude. For the MgO
crystal with impurity Ni2+ ions, one finds κ(0) ~ 0.1 cm–1.
Therefore, a paramagnetic sample of size ~1 cm [3] that
absorbs the resonance hypersound well at a length on
the order of 1 mm becomes practically fully transparent
to the hypersound in the presence of a powerful micro-
wave pumping applied to the sample perpendicularly to
the hypersound propagation direction. At the same
time, whereas the hypersound frequency in the absence
of pumping lies outside the absorption contour (|δω| @
γ), in its presence (ψ = δω) the absorption coefficient
κ(δω) = κ0(0)/2 ~ 5 cm–1, so that the paramagnetic sam-
ple is no longer transparent to the hypersound.

     ω320
0( )

N δω( ) 1 η
3w1 1–

2
------------------+=

× ω310
0( ) δω2 γ2 ψ2–+( )δω

ψ2 γ2 δω2–+( )2
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From Eq. (10), one finds for the group velocity 
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. This is probably the strongest qualitative dis-
tinction between AIT and EIT, where the ratio 
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the speed of light in vacuum) can be as high as 10
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.
Thus, the microwave field modulates only the

hypersound absorption coefficient. The paramagnetic
sample acts as a gate (filter) controlled by the electro-
magnetic pumping.

The role of static strain plays an important role in
our case. In the absence of strain, 

 

ω

 

210

 

 = 

 

ω

 

320

 

 = 

 

ω

 

0

 

 [3].
Then, the electromagnetic field will excite the 1  2
transition and will be strongly absorbed.

The physical essence of the effect considered in this
work is the same as for the EIT; i.e., it is due to the inter-
ference of “dressed” quantum states [10]. Apart from the
above-mentioned quantitative distinctions, there is a qual-
itative distinction caused by the fact that the signal (probe)
field and the pump are physically essentially different.

This work was supported by the Russian Foundation
for Basic Research, project no. 02-02-17710a.
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The dynamic structure factor S(k, ω) in liquid cesium near the melting point at T = 308 K is studied by means
of Zwanzig–Mori’s memory function formalism. The spectra of S(k, ω) are calculated on the basis of the idea
of time-scale invariance of relaxation processes in liquid metals, which appear on the fourth relaxation level.
The spectra of S(k, ω) obtained are compared with the results of an inelastic neutron scattering measurement.
For the description of memory effects we use the statistical presentation of the non-Markovity parameter ε1(k,
ω). We find that collective excitations at low wave-vector values have a non-Markovian nature. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 61.20.Gy; 61.20.Lc
The study of collective effects in simple liquids has
been the subject of intense interest over the last few
years in Inelastic Neutron Scattering (INS) experiments
[1], Molecular Dynamics (MD) simulations [2, 3], and
different theories [4]. According to these methods, liq-
uid alkali metals have distinct collective excitations in
a wide range of wave-vector values and also outside the
hydrodynamic region. This fact was obtained from a
careful analysis of the dynamic structure factor S(k, ω)
spectra. High-frequency peaks are appreciable in
S(k, ω) for low k values (approximately, up to half the
position of the first maximum of the static structure
factor), and these peaks do not exist in high-k regions.
Understanding the microscopic mechanism responsi-
ble for the propagation and damping of these excita-
tions is still a challenge in liquid metals, where the
dynamics is conditioned by interacting electron gas
effects. So, a recent INS experiment on liquid cesium
near its melting point was carried out by Bodensteiner
et al. in Grenoble [5]. The results of their experiment
have shown that high-frequency collective excitations
exist in this system for wave vector region k < 1.1 Å–1.
MD simulation performed by Kambayashi and Kahl
[2] validated fully the findings of INS in liquid cesium.
The analysis of collective excitations that extend
beyond the hydrodynamic limit is a great contribution
to the development of theoretical models of the liquid
state [6].

For a system composed of N particles of mass m, the

¶ This article was submitted by the authors in English.
0021-3640/02/7603- $22.00 © 20147
density fluctuations are given by

where rj(t) is the coordinate of the jth particle and k is
the wave vector. Then, the main dynamical quantity of
interest is the density–density correlation function F(k,
t) = 〈ρ*(k, 0)ρ(k, t)〉/〈|ρ(k, 0)|2〉 , where 〈|ρ(k, t)|2〉  = S(k)
is the static structure factor. The angular brackets
denote an equilibrium ensemble average at temperature
T and density ρ = N/V with V being the volume of the
system involved. If F(k, t) is known, the dynamic struc-
ture factor follows from

According to the memory function (MF) formalism and
the projection operator method [7], we can find the time
evolution of F(k, t) in the following way:

(1)

Here, we introduce the first general relaxation fre-

quency parameter  and the MF of the first order
M1(k, t). However, by using the same method, we can
define the time evolution of the high order MF M1(k, t),
M2(k, t), …. Thus, a set of interconnected relaxation
processes corresponds to an arbitrary relaxation pro-

ρ k t,( ) N 1– ikr j t( )[ ] ,exp
j 1=

N

∑=

S k ω,( ) S k( )/π[ ] Re F k iω e+,( )[ ] .
e +0→
lim=

F k t,( )d
dt

------------------ Ω1
2 τM1 t τ–( )F k τ,( ).d

0

t

∫–=

Ω1
2
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cess (for example, to a density fluctuations in liquids),
which can be easily taken into account by MF formal-
ism.

According to the definition, for ergodic processes
the correlation functions M0(k, t) = F(k, t), M1(k, t), …,
Mi(k, t) have the following properties:

(2)

Thus, the correlation functions Mi(k, t) have character-
istic time scales, which can generally be defined at
fixed k by the equation

(3)

Here, Re[…] denotes the real part of […].
These time scales Ti characterize the corresponding

relaxation processes and can have different numerical
values. Nonetheless, on a certain level (for example, on
the ith level), the scale invariance of the nearest inter-
connected relaxation processes can exist. Physically, it
implies the existence of the time-scale invariance (TSI)
of relaxation processes on the nearest ith and (i + 1)-th
relaxation levels. Such an approach allows one to
receive an approximation of the form Mi + 1(k, t) ≈
Mi(k, t), which is actually the closure of the chain of
integro-differential equations similar to 1. As a result,
only the first (i – 1) variables are necessary for the full
description of the system investigated. In the case of
simple liquid metals, by analogy with the hydrodynam-
ics region, we propose that only three variables, namely
local density, local momentum density, and local
energy density, are sufficient to reproduce its spectral
features at the microscopic level. These variables are
implicitly present in F(k, t), M1(k, t), and M2(k, t). From
the above reasoning, one can write the following clo-

Mi k t,( )
t 0→
lim 1, Mi k t,( )

t ∞→
lim 0.= =

τ i Re M̃i 0( )[ ] , M̃i s( ) tMi t( )e st– .d

0

∞

∫= =

Fig. 1. Theoretical (solid line) and experimental (s) values
of the dynamic structure factor for liquid cesium near the
melting point.
sure: M4(k, t) ≈ M3(k, t). By means of the Laplace trans-
formation of the corresponding equations for M0(k, t) =
F(k, t), M1(k, t), M2(k, t), we obtain an expression for
the dynamic structure factor in which the static struc-
ture factor S(k) and general relaxation parameters of the

ith orders  (i = 1, 2, 3, 4) are contained:

(4)

Now, we use the theory proposed above for the eval-
uation of S(k, ω) in liquid cesium near its melting point
at T = 308 K. The quantities needed for the calculation

are S(k) and  (i = 1, 2, 3, 4). The numerical static
structure data were obtained by Bodensteiner et al. [5],
and we use these S(k) data in our calculations. The first

two relaxation parameters  and  are defined as

 = KBTk2/[MS(k)],  =  – , where  =

3 S(k) + N/MV [1 – cos(kr)] u(r). Here,

KBT is the thermal energy, g(r) is the radial distribution
function, and u(r) is the pair interparticle interaction
potential (the z axis is chosen in the direction of the
wave vector k). However, to calculate the second fre-

quency parameter , we use the known Hubbard–

Beeby approximation [8]  = 3 S(k) + [1 –

3sin(x)/x – 6cos(x)/x2 + 6sin(x)/x3] – . Here x = kR0

with R0 = 4.8 Å and the Einstein frequency  is taken
to be 4.12 ps–1, which is the value obtained by Boden-

steiner [5]. The theoretical formulas for  and 
cannot be used in calculations for one reason. The final
result of these calculations has gross errors. Therefore,
these parameters can be defined by comparing theoret-
ical and experimental results. Namely, we found the

third and the forth relaxation frequency parameters (

and ) were found by us from two mutually indepen-
dent conditions: the behavior of S(k, ω) in the points of
central (ω = 0) and side (ω ≠ 0) maximums.

We have calculated S(k, ω) in the low-k region k =
0.4 ~ 0.9 Å–1, where high-frequency peaks were exper-
imentally observed. The results for the representative
wave vectors are shown in Fig. 1. It is clear in Fig. 1 that
our theory describes adequately the collective density
excitations in spectra of S(k, ω) for liquid cesium. For
the investigated wave-vector region, we have achieved
a good agreement with the experiment [5]. In Fig. 2, we
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Fig. 2. Dynamic structure factor calculated on the basis the-
ory for liquid cesium at 308 K.

Fig. 3. Frequency dependence of non-Markovity parameter
ε1(k, ω) for 4 < k < 12 nm–1.
report a set of normalized dynamic structure factors,
S(k, ω)/S(k), as calculated from our theory for the wave
vector region 0.4 ≤ k ≤ 1.8 Å–1. In this figure, one can
see certain changes in the position and altitude of the
central and side peaks at different values of the wave
vector k. As can be seen in Fig. 2, side peaks persist up
to k ~ 1.1 Å–1, i.e., very close to the position of the first
peak in the static structure factor (k ~ 1.4 Å–1). This
again shows that the liquid supports collective excita-
tions for wavelengths comparable with the mean inter-
particle spacing, a distinctive characteristic of liquid
metals [6].

To understand the nature of the collective excita-
tions below k = 1 Å–1, we have studied the behavior of
the frequency-dependent non-Markovity parameter
ε1(k, ω). This parameter was at first entered [9] on the
basis of parameter ε0 = τ0/τ1, where the relaxation times
τ0 and τ1 are calculated by Eq. (3). By this non-Marko-
vity parameter [10], all relaxation processes can be
divided into a Markovian scenario, when ε0  ∞, a
quasi-Markovian scenario at ε0 > 1, and a non-Mark-
ovian scenario at ε0 ~ 1. The generalized parameter
ε1(k, ω) is defined at fixed k by the expression

(5)

Here, µj(ω) is the power spectra of the ith relaxation
level that was introduced. In Fig. 3, we present the
results of calculations for the frequency-dependent
non-Markovity parameter ε1(k, ω) at several values of
wave vectors k. It can be seen in Fig. 3 that the values
of ε1(k, ω) show an alternation of maxima and minima.
In addition, ε1(k, ω) and S(k, ω) maxima in the low-k
region are located on approximately the same frequen-

ε j ω( )
µ j 1– ω( )
µ j ω( )

------------------
1/2
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µ j ω( ) Re tM je
iωtd∫[ ]{ }

2
.=
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cies that are associated with collective excitations in
liquid metal. The amplitudes of these peaks quickly fall
as k increases. This is due to the amplification of non-
Markovity effects. The occurrence of ε1(k, ω) peaks in
the region of collective excitations indicates an essen-
tial amplification of quasi-Markovity on propagation of
ion density fluctuations. High-frequency collective
excitations disappear smoothly with increasing k, and
simultaneously non-Markovity is further enhanced.
Similarly, an increase in ε1(k, ω = 0) means an enhance-
ment of randomness in the thermal motion of particles.
Thus, the frequency behavior of the parameter ε1(k, ω)
observed consists in a consecutive alternation of quasi-
Markovian and non-Markovian relaxation scenarios of
behavior. Such an alternation cannot be received within
the framework of any other theory.

In this Letter, we have presented the theory, based
on Zwanzig–Mori’s MF formalism [7], and the idea of
TSI, which allows one to describe the dynamic struc-
ture spectra in all experimentally investigated regions
of the wave vector. The long-range memory and the
short time correlations have affected the analysis of
non-Markovian properties of the collective dynamics in
liquid cesium. In this way, we are going to establish the
non-Markovian nature of collective excitations in liq-
uid cesium at low k values.

This work was partially supported by the Russian
Foundation for Basic Research (grant no. 02-02-
16146). The authors are grateful to Prof. A.G. Novikov
and Dr. T. Scopigno for stimulating discussions of scat-
tering data and to Dr. L.O. Svirina for technical assis-
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It is shown that Cherenkov radiation can be observed at TESLA in electron collisions with optical laser pulses.
The prospects for it to be observed at SLC, LEP, LHC, and RHIC are discussed. The conclusions are compared
with results for pair production. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 41.60.Bq; 41.75.Ht
The problem of collisions of very-high-energy
charged particles with laser beams is widely discussed
now, mostly in connection with e+e–-pair production
(see latest references [1–4]) at SLC and TESLA X-ray
laser facilities [5–7] and with some other issues of fun-
damental physics.

Spontaneous particle creation from vacuum induced
by a strong external field was theoretically considered
in many papers beginning with [8–10]. However, very
powerful high-frequency lasers are needed for this pro-
cess to be observed. The first observations of this effect
were done at SLC [11, 12].

Here, I would like to note that optical lasers can be
used for studies of Cherenkov radiation. It is crucial for
its observation that the main background process of
Compton scattering does not contribute to the kinemat-
ical region of Cherenkov radiation. The principal possi-
bility of such a process was first mentioned by V. Ritus
in [13]. The results can be, in general, applied to verify
our ideas about the properties of the “photon medium”
in the region where new physics concepts can become
essential and to measure beam energy and laser bunch
parameters.

X-ray lasers have been proposed for use in e+e–-pair
production studies because the quantum energies are
high enough to reach the threshold energy, which in
c.m.s. is equal to m + 2me, where me is the electron mass
and m is the mass of the accelerated particle (equal to
me at SLC, LEP, TESLA, to the proton mass at LHC,
and to the nucleus mass at RHIC). At the same time, for
studies of Cherenkov radiation, other characteristics of
a laser, namely, the ratio F/F0 of the electric field F to

its “critical” value F0 = /e or, equivalently, its peak
power density S, are important. They determine the
index of refraction n of the “photon medium” in laser
bunches. The difference of n from 1 is proportional to
the density of photons in a laser pulse, i.e., to S. It is this

¶ This article was submitted by the author in English.

me
2
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difference that defines the threshold of Cherenkov radi-
ation and its emission angle and intensity.1 The param-
eters F/F0 and S are higher for optical lasers than for the
presently available X-ray lasers. That is why they
would be preferred for Cherenkov radiation studies
nowadays. Besides, the energy limitations also favor
optical lasers for this purpose.

The necessary conditions for Cherenkov radiation to
be observed are an excess of the index of refraction n
over 1, i.e.,

, (1)

and the real emission angle, given by the formula

(2)

where β = v /c =  and m and E are the parti-
cle mass and energy. For small values of m/E and n, one
gets

(3)

Hence, the condition for the energy to exceed the
threshold for Cherenkov radiation ECt is written as

(4)

It is easily seen that the threshold can become very high
for small ∆n.

Equation (3) can be rewritten as

(5)

1An analogous problem was considered in [14] for particles tra-
versing the cosmic microwave background radiation. The den-
sity of relic photons is, however, extremely low and, therefore,
the index of refraction is so close to 1 that the threshold energy
is too high for this effect to be observable.

∆n n 1 0>–=

θcos 1/βn,=

1 m2/E2–

θ 2∆n m2/E2–≈ 2∆n γ 2–– .=

γm E ECt≥ m

2∆n
-------------- γCtm.= = =

0 θ≤ γ2 γCt
2– /γγCt

1
γCt

-------≤ θmax γ ∞( ).= =
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It is seen that the emission angles of Cherenkov radia-

tion increase from 0 at the threshold to θmax =  for
γ  ∞. However, already at E = 2ECt, this angle is
very close to (θ(2ECt) ≈ 0.866θmax).

The number of Cherenkov photons emitted by a sin-
gle particle with the electric charge e in the interval of
frequencies dω from the path length dl is given by the
common expression [15]

(6)

where the fine structure constant α ≈ 1/137. Thus, all
the physical characteristics of the process are deter-
mined by the value ∆n. The intensity of radiation (6)
decreases as the threshold energy (4) increases:

(7)

The value of ∆n is uniquely related to the polariza-
tion operator of γ–γ-scattering. For high energy elec-
trons (protons), the laser field can be considered as the
constant crossed (or null) field. The refractivity index
can be expressed in terms of the photon mass acquired
in such a field. It has been calculated in [13, 16], and its
graphical representation can be found in [17] (for other
approaches see also [18–20]). According to the results
of [13, 16], the value of ∆n depends on the photon mass
µ and its energy ω in the following way:

(8)

The photon mass depends only on the invariant variable

(9)

The value of Reµ2 is negative2 in the region about

(10)

and has a minimum at κ ≈ 5 with Reµ2 ≈ –0.2α .
According to Eq. (8), the refractivity index exceeds 1 in
this region, and, consequently, Cherenkov radiation is
possible at these values of κ. The perturbation theory is
still applicable [13] because ακ 2/3 ! 1.

At a fixed laser intensity, i.e., a fixed ratio F/F0, the
index of refraction does not depend on ω at low ener-
gies

(11)

because Reµ2 is proportional to κ2 at small κ2. Thus, the
ratio F/F0 defines there the main features of Cherenkov
radiation.

The Cherenkov threshold γCt is also completely
determined by this ratio as seen from Eqs. (4) and (11).

2We consider the value for transverse polarized photons. For
other polarizations it differs by a factor less than 2, and this does
not change the general conclusions.

γCt
1–

dN1/dωdl 2α∆n,=

dN1

dωdl
------------ αm2

ECt
2

----------
α
γCt

2
-------.= =

∆n Reµ2/2ω2.–=

κ 2ω
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2

∆n 14αF2/45πF0
2,≈
It is the same for electrons and protons. Therefore, the
threshold energies ECt are approximately 2000 times
higher for protons than for electrons. Equations (3) and
(11) show that, in principle, by measuring the angle θ,
one can get the energy of the particle beam and the
strength of the laser field or its peak power density.

The magnitude of ∆n decreases at higher values of κ
and becomes negative at κ > 15, so that Cherenkov radi-
ation is impossible there.

Even though it can again become positive at extreme
energies where the hadronic channels are important,
this region is completely inaccessible in collisions with
laser beams.

Here, we recall that the energy threshold for the
e+e−-pair production processes in high energy head-on
collisions of a particle of mass m with laser quanta is
given by

(12)

It depends on the energy of laser quanta ωL and is much
lower for X-ray lasers than for optical lasers. It is
approximately 1000 times higher for protons than for
electrons. In particular, the threshold for γγ-collisions
follows from (12) at m = 0.

The condition for Cherenkov radiation threshold to
be below the pair production threshold imposes the
restriction on the laser quanta energies

(13)

The condition (13) differs for electron and proton
beams only by a factor of about 2 in the right-hand side.

For optical and X-ray lasers, according to [2], we
assume, respectively, ωL = 1.2 eV (actually, it varies
from 0.12 eV for CO2-laser to 2.35 eV for Nd:glass
laser) and 3.1 keV, the ratios F/F0 = 3 × 10–4 and 10–5

or, equivalently, the peak power densities S = 3 ×
1022 W/cm3 = 5 × 1016 eV4 and 8 × 1019 W/cm2 (with a
possible goal of 7 × 1029 W/cm2).

At these parameters, the laser field can be treated as
a constant crossed (or null) field because its invariants
(see [13])

(14)

are large. For optical lasers with F/F0 = 3 × 10–4, one
gets x = 125, and at TESLA energies γ = 106, χ = 600.
Thus, the wavelength 1/ωL is much larger than the for-
mation length me/eF.

Electromagnetic processes under these conditions
are extremely interesting. New physics concepts may
be necessary here because the effective expansion
parameter [17, 21, 22] αχ2/3 exceeds 0.5. In particular,
this would indicate that the constant field allows the

Eth me m me+( )/ωL.≈

ωL 2∆nme 1
me

m
------+ 

 < γCt
1– me 1

me

m
------+ 

  .=

x
me

ωL

------ F
F0
-----; χ 2γ F

F0
-----= =
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interaction with field quanta of arbitrarily low energies.
Radiation effects should be reconsidered.

At F/F0 = 3 × 10–4, Eqs. (9) and (10) impose the
upper limit ω < 12 GeV. Only this region of compara-
tively low energies is accessible for Cherenkov quanta
in such strong fields.

Using these characteristics, one also concludes that
condition (13) is satisfied for optical lasers with F/F0 >
3 × 10–5 (S > 3 × 1021 W/cm2) and is not valid for the
presently available X-ray lasers. To satisfy it for X-ray
lasers, one must achieve a peak power density as high
as 1027 W/cm2, which is, nevertheless, within the pro-
claimed goals [2].

It follows from Eqs. (6) and (11) that one should
deal with the most intense laser fields to get a higher
intensity of Cherenkov radiation. Thus, in what fol-
lows, we discuss only optical lasers, briefly referring to
X-ray lasers for some estimates.

The numerical value of ∆n for γ-quanta in the opti-
cal laser field with F/F0 = 3 × 10–4 is given by

(15)

Therefore, the typical angles and threshold γ-factors for
Cherenkov radiation are

(16)

This implies that the energy threshold for Cherenkov
radiation is exceeded at LEP2 and TESLA, since it is

 = 45 GeV and is close to the upper energy of SLC.
Only with a further increase in the laser power would it
be possible to study this process at SLC.

The pair production threshold for optical lasers is
about 430 GeV. Thus, SLC and LEP energies are well
below it, while TESLA is just close3 to the threshold
value.

For proton beams, the Cherenkov radiation thresh-

old  = 83 TeV is too high even for LHC. If optical
lasers with F/F0 > 4 × 10–3 (the peak power density S >
5 × 1024 W/cm2) become accessible, one can hope to
observe this effect there as well. This energy is much
lower than the threshold for pair production at proton
accelerators, which is about 400 TeV.

As to the X-ray laser facilities, the threshold for pair
production (12) is well below the energies accessible at
all the high-energy accelerators.

Now, let us calculate the intensity of Cherenkov
radiation for electron beams and compare it with the
main background process of Compton scattering.4 The
total number of Cherenkov quanta emitted in the energy
interval dω by a particle that collides with the laser

3However, notice the rather wide spread of available wavelengths
for optical lasers mentioned above.

4The final results are valid for any charged particles.

∆n 0.65 10 10– .×=

θmax 1.14 10 5– , γCt× 8.8 104.×= =

ECt
e( )

ECt
p( )
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bunch of the coherent spike length L is

(17)

This is the energy distribution at low energies as given
by Eqs. (6) and (8). It is almost constant at low energies
as demonstrated by Eq. (17) but should decrease
towards the cut-off at κ ≈ 15. For a fixed value of the
ratio F/F0, the energies of emitted Cherenkov quanta
are proportional to κ and limited according to Eqs. (9)
and (10). However, already at κ ≈ 4 the magnitude of ∆n
and, consequently, the intensity (6) are about twice as
low as they are at κ = 0. Therefore, the effective values
of ω, which are important in the distribution, can be
approximately estimated according to Eq. (9) as

(18)

For the values of the ratio F/F0 adopted above, one gets

 < 3.5 GeV for optical lasers and  < 100 GeV
for X-ray lasers. One can use Eq. (9) for an estimate of
∆n in these energy regions. The threshold and effective
energy of Cherenkov quanta decrease, while the emis-
sion angle and the intensity of radiation increase with
an increase in laser fields F.

The absolute intensity can be evaluated according to
Eqs. (6) and (17). For the coherent spike length L ~
1 mm, the number of quanta per 1 GeV is estimated as

(19)

Thus, the emitted energy within the effective interval
should be of the order of 30 GeV per 1 mm.

To proceed with similar estimates for Compton scat-
tering, we consider first its kinematics. This leads to the
following relation between the emission angle θ and
energy ω of the scattered quantum in the laboratory sys-
tem:

(20)

The precise limits imposed by this relation on the
energy of emitted quanta are given by ωL ≤ ω ≤ E. In the
right-hand side of (20), we have taken into account that
the particle beam energy is much higher than the pho-
ton energies E @ ω > ωL. At angles that are typical for
Cherenkov radiation (16), the energy of the backscat-
tered quantum obtained from Eq. (20) is equal to ω ≈
37 GeV, while Cherenkov radiation is much softer
(ωCh < 3.5 GeV) due to the cut-off imposed by the
behavior of ∆n. Such “soft” photons are emitted at
larger angles at Compton scattering. Therefore, there is
no overlap of the kinematic regions available for Comp-
ton and Cherenkov processes. By separating the rela-
tively soft quanta at the angle (16), one would be able
to get rid of the background due to Compton processes.
These processes contribute to completely different
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energy ranges and, therefore, can be easily disentan-
gled.

The multiphoton processes would lead to even
harder quanta in Compton scattering. In other words,

they are effective at larger angles θ > 2 . Thus,
even at high values of x, the usual Compton effect for-
mulas are needed to estimate its intensity at small
angles. Let us also note that these energies are much
lower than the threshold for pair production (12) equal
to 220 GeV for L = 1.2 eV.

The total energy loss due to Compton scattering is
much larger than for Cherenkov radiation (19). It can be
as large as 16/63 of the initial electron energy [13]. This
is determined by the extremely hard backscattered
quanta. The use of different lasers inevitably leads to a
change in the corresponding values of F/F0 and S, and,
consequently, in the threshold energy ECt. Therefore,
one should treat estimates with caution. The practical
feasibility of observing such an effect at high energies
should be considered in close relation to the definite
conditions of a particular experiment. For example, one
cannot use the Nd:glass laser of SLC experiments [11,
12, 23] with F/F0 = 2.3 × 10–6 at TESLA, because the
Cherenkov threshold energy becomes too high. The
optimum choice would be a laser with the highest
power density (see (17)).

Finally, let us note that, in principle, the heavy ion
accelerator RHIC can also be used for pair production
studies with X-ray lasers because the threshold energy
according to (12) is equal to 165 GeV per nucleon that
is available there. The Cherenkov radiation threshold is
the same as for proton accelerators if estimated per
nucleon. It has been discussed above in connection with
LHC and is not reachable at RHIC.

I am grateful to E.L. Feinberg, V.A. Maisheev,
A.I. Nikishov, and V.I. Ritus for discussions and com-
ments.
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A novel mechanism is proposed for magnetization reversal by the current of magnetic junctions with two metal-
lic ferromagnetic layers and thin separating nonmagnetic layer. The spin-polarized current flows perpendicu-
larly to the interfaces between the ferromagnetic layers, in one of which the spins are pinned and in the other
they are free. No domain structure is formed in the ferromagnetic layers. The current breaks spin equilibrium
in the free layer, which manifests itself in the injection or extraction of spins. The nonequilibrium spins interact
with the magnetization of the lattice due to the effective field of s–d exchange, which is current dependent. At
currents exceeding a certain threshold value, this interaction leads to magnetization reversal. Two threshold cur-
rents for magnetization reversal have been obtained theoretically, which are reached as the current increases or
decreases, respectively. Thus, the phenomenon of current hysteresis is found. The calculated results are in good
agreement with experiments on magnetization reversal by current in three-layer junctions of composition
Co(I)/Cu/Co(II) prepared in a pillar form. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Cn; 75.60.Ej; 75.60.Jk
The possibility of affecting the orientation of mag-
netization in a thin ferromagnetic film using a spin-
polarized current was first suggested and discussed in
1996 [1–3]. In recent years, this problem has attracted
increasing interest not only from the theoretical but also
from the applied viewpoint. At present, magnetic junc-
tions are applied for reading information with the use of
the effect of giant magnetoresistance [3]. The experi-
mental detection of a significant influence of a polar-
ized current on the magnetic state would permit us not
only to read but also to write information.

The above effect of current was recently revealed
and experimentally studied [4–8] in three-layer mag-
netic junctions. The polarized current flowed perpen-
dicularly to the layer interfaces. In the literature, vari-
ous possible mechanisms of current effect have been
discussed. It is supposed in [1, 2, 9] that the magnetiza-
tions of layers 1 and 2 are noncollinear; in this case,
charge carriers, when intersecting the boundary of layer
2, should adjust to the new quantization axis. This
adjustment occurs at distances of the order of the quan-
tum wavelength. This results in a torque that acts on the
magnetization and depends on the current. At current
densities exceeding a certain threshold, this torque
leads to magnetization reversal. It is important that the
magnetization reversal threshold in this case is deter-
mined by dissipative processes in layer 2.

Another mechanism, which is called NEXI (non-
equilibrium exchange interaction) by the authors of
0021-3640/02/7603- $22.00 © 20155
[10], consists in the establishment of a strong indirect
exchange interaction of two ferromagnetic layers upon
the passage of a polarized current through these layers.
A specific feature of this mechanism is that the charge
carriers in layers 1 and 2 should have a common spin
wave function. Both mechanisms yield a value of an
order of 108–109 A/cm2 for the threshold current den-
sity.

For “point” junctions with a diameter of the contact
of ~4–50 nm [4, 5], a threshold current density close to
that predicted theoretically was observed in experi-
ments (108–109 A/cm2). However, for metallic pillars of
larger diameters (~60–600 nm), the threshold turned
out to be much smaller, ~107–108 A/cm2 [6, 7]. In addi-
tion, the relation of the measured threshold current with
the spin-dependent scattering of charge carriers from
the boundary of layer 2 and with dissipative processes
in layer 2 still remains doubtful [7]. Thus, the question
of the possibility of other mechanisms of influence of
current on the magnetic state retains its importance.

In this report, we suggest a new, spin-injection
mechanism of current effect on the orientation of mag-
netization in a magnetic junction. We consider a con-
ventional model of a magnetic junction with two ferro-
magnetic layers, 1 and 2, of which one (layer 1) is
pinned and the other (layer 2) is free. The flux of polar-
ized charged carriers from layer 1 into layer 2 injects
spins into layer 2, i.e., breaks spin equilibrium and
increases the degree of spin polarization in this layer.
002 MAIK “Nauka/Interperiodica”
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The nonequilibrium spins interact with the magnetiza-
tion of the lattice due to the effective field of s–d
exchange, which depends on the current. At a suffi-
ciently large current exceeding a certain threshold, the
effective field causes the magnetization reversal of
layer 2.

The current density through the junction depends on
the angle χ between the quantization axes z1 and z2 of
layers 1 and 2. This dependence is universal, is deter-
mined by the rules of transformation of spin wave func-
tions upon rotation of the quantization axis, and has the
form [11]

(1)

where jp, a are the current densities for the parallel (χ =
0) and antiparallel (χ = π) orientations of the magneti-
zations. An external field can change the angle χ, which
leads to the effect of giant magnetoresistance; its mea-
sure is the ratio ρ ≡ (jp – ja)/jp > 0. 

The spin injection in layer 2 can conveniently be
characterized by the function

(2)

where y is the coordinate along the current, n↑ , ↓(y) are
the densities of charge carriers with opposite spins, and
n = n↑(y) + n↓(y) is the total carrier density independent
of the coordinate y in the case of metal because of the
condition of quasi-neutrality. By its meaning, P2(y) is the
degree of spin polarization in layer 2.

We assume that in layer 1 the spins are completely
pinned. Therefore, the degree of spin polarization in
this layer is equal to the equilibrium degree P1 and is
independent of coordinates. The flux of spins in layer 1
is uniform in space and is directed along the current,
i.e., along the y axis. Upon the passage into layer 2,
only the projection of the spin onto the quantization
axis z2 remains unchanged [1, 2]. The flux of this pro-
jection at the interface y = 0 is J1 = ("/2e)jP1cosχ and
continuously passes into the flux of spins in layer 2

(3)

where the partial densities of currents of charge carriers
with opposite spins are

(4)

For simplicity, the drift velocity v  and the diffusion
coefficient D in (4) are assumed to be independent of
spin. In essence, it is the existence of a spin flux at the
interface between the layers that is the cause of the vio-
lation of spin equilibrium in layer 2, i.e., the cause of
spin injection or extraction.

j
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n
------------------------------,=

J2 y( )
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2e
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The partial current densities satisfy the continuity
equations 

(5)

in which  are the equilibrium carrier densities and
τs is the spin equilibration time. Equations (2), (4), and
(5) permit us to obtain the equation for the sought func-
tion P2(y), which has the form

(6)

where P2 denotes the equilibrium value of P2(y). We
seek the solution to Eq. (6) that satisfies the following
boundary conditions: (1) the condition for the continuity
of the flux of spins at y = 0, namely, J1 = J2(y  +0),
and (2) the condition for the restoration of spin equilib-
rium through the thickness of layer 2 equal to Ly, i.e.,
the condition Ly > ls, where ls is the spin relaxation
length. The condition Ly > ls is in principle unimportant
and is imposed here for simplicity. With decreasing Ly,
all further formulas stop being dependent on the thick-
ness of layer 2, and for estimation we can merely
assume Ly = ls in them.

The explicit expression for the relaxation length ls is
determined by the relationship between the contribu-
tion of diffusion and drift to the current (4). The most
important contribution comes from currents that are not
too high, when

(7)

at which diffusion is dominating. Indeed, D ~ ,
where the Fermi velocity is vF ~108 cm/s, the time of
relaxation of the momentum is τp ~ 3 × 10–15 s, τs ~
10−13 s, and n ~ 1022–1023 cm–3. Then, we obtain jD ~
5.4 × 1010 to 5.4 × 1011 A/cm2. Later in this paper,
we will consider much smaller currents, so that condi-
tion (7) is always well fulfilled. In this case, the length
ls is determined only by diffusion and can be estimated

as ls =  ~ 17 nm.

Finding a solution to Eq. (6) and averaging it over
the thickness of layer 2, we obtain

(8)

where jc = enLy/τs. 

The injection term proportional to current in (8) is
small, since jc = (Ly/2ls)jD @ |j |. Therefore, the contribu-
tion that is proportional to current to the average mag-
netization of layer 2, which is equal to  ≡ M2 +

1
e
---

∂ j↑ ↓, y( )
∂y

-------------------
n↑ ↓, y( ) n↑ ↓,

e–
τ s

--------------------------------,–=

n↑ ↓,
e

∂2P2 y( )

∂y2
------------------

v
D
----

∂P2 y( )
∂y

----------------
P2 y( ) P2–[ ]

Dτ s
-----------------------------–– 0,=

j  ! jD 2en D/τ s,≡

v F
2τp

Dτ s

P2
1
Ly

----- P2 y( ) yd

0

Ly

∫≡ P2 P1 χcos P2–( ) j/ jc( ),+=

M2
JETP LETTERS      Vol. 76      No. 3      2002



SPIN-INJECTION MECHANISM 157
µBn  where µB is the Bohr magneton, should also be
small. The energy of magnetic anisotropy and the Zee-
man energy in an applied magnetic field H are deter-
mined by the magnetization . Therefore, the contri-
bution of the current and spin injection to these energies
should also be negligible. The situation with the energy
of the s–d exchange interaction is different. The aver-
age density of this energy (integral of the energy den-
sity over the volume of the layer referred to volume)
can be represented in the form

(9)

Energy (9) is proportional to the product of the mag-
netizations of the lattice and free carriers; the dimen-
sionless coefficient α that characterizes the efficiency

of exchange is estimated as α ~ Aa3/ . A typical value
of the parameter A is 0.1–10 eV [12]. The parameter a
is of the order of the lattice parameter. We take a value
a3 ~ 10–23 cm–3 for the estimation. Then, we obtain α ~
1.8 × (104–106) @ 1. It is precisely due to the large value
of the coefficient α that the spin injection caused by the
polarized current substantially affects the exchange
energy and, through it, the magnetic state of layer 2.

The substitution of Eqs. (1) and (8) into Eq. (9)
yields the angular dependence of the energy density of
the s–d exchange in the form

(10)

where

(11)

(12)

(13)

Let the easy axis lie in the plane of layer 2 and make
an angle β with the quantization axis z1 of layer 1. Then,
the anisotropy-energy density in layer 2 is

(14)

where K is the anisotropy constant.
If the external magnetic field is applied in the same

plane at an angle α to the axis z1, then the Zeeman-
energy density in layer 2 is

(15)

where  = M2 + µBnP2 is the equilibrium magnetiza-
tion of layer 2 produced by localized spins and free
charge carriers. The total magnetic energy of the layer
is equal in this case to the sum

(16)
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and can be considered as a function of the angle χ at
given a α and β. 

It can be seen from a comparison of (10) with (14)
and (15) that the s–d exchange energy is equivalent to
the appearance of an additional magnetic field H ' =

Bs−d/ , which is parallel to the z2 axis, and that of an
additional anisotropy with an anisotropy constant K ' =
Cs–d and an anisotropy axis parallel to the z2 axis. It is
known that changes in the field or in the anisotropy con-
stants can lead to reorientation phase transitions in the
film. We show below that the polarized current, chang-
ing the field H' and the constant K', also leads under cer-
tain conditions to the magnetization reversal of layer 2.

Consider the simplest (and, apparently, the most
important [6, 7]) case where α = π and β = 0. We com-
pletely neglect the dissipative processes in the magnetic
subsystem of layer 2. Then, this subsystem under sta-
tionary conditions can be in a state of partial equilib-
rium in spite of the presence of a dc constant current.
The equilibrium angle χ is determined from the condi-
tions of the minimum of energy (16)

(17)

After calculating the derivatives in (17) with Eqs. (10)
and (14)–(16) taking into account, we find that the mag-
netic state is determined by the current-dependent
parameter

(18)

At |χ| < 1, two equilibrium angles exist, χ = 0 and χ = π;
at χ > 1, there is only one equilibrium angle, χ = π; and
at ξ < –1, there also is only one angle, χ = 0.

The establishment in the junction of this or that
value of the angle χ depends on the history of the mag-
netization process. Let first the current be j = 0 and a
sufficiently large (in absolute magnitude) field be

present (|H | > 2K/ ). According to (18), such a situa-
tion corresponds to ξ > 1, and the angle χ = π. Let now
the current increase in the positive direction, i.e., j/jc > 0.
Then, the charge carriers are injected into layer 2 and
increase, in accordance with (8), the degree of spin
polarization in this layer. According to (12), the coeffi-
cient Bs–d increases, whereas the coefficient Cs–d ~ (jp – ja)
is relatively small. In this case, the parameter ξ
decreases and falls into the interval |ξ| < 1. In this range,
the value of the angle χ = π is equilibrium and, there-
fore, remains unaltered. This situation is retained until
we, with a further increase in the current, fall into
another interval, ξ < –1. At the boundary of this inter-
val, the equilibrium angle should change abruptly to the
value χ = 0. Thereby, at this boundary, a discontinuous
reorientation of the magnetization occurs (magnetiza-
tion reversal). The threshold current density for such a
process, ja → p, can be found from the condition ξ = –1

M̃2

∂Etot χ( )
∂χ

------------------ 0,
∂2Etot χ( )

∂χ2
-------------------- 0.>=

ξ
Bs–d M̃2H–
2 Cs–d K+( )
----------------------------.–≡

M̃2
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and, with Eqs. (12) and (13) taking into account, is
equal to

(19)

where

As the current changes to the opposite direction, we
again fall into the interval |ξ| < 1, but now we have χ = 0.
Since this angle is the equilibrium angle in this interval,
it will be conserved. As the current decreases further,
the value j = 0 is reached and then the current changes
its sign. According to (8), this means that now the
extraction of spins occurs and a decrease in the degree
of spin polarization in layer 2. This continues until we
pass into the region ξ > 1. At the boundary, the equilib-
rium angle returns abruptly to the initial value χ = π. In
other words, a second magnetization reversal to the ini-
tial orientation occurs at this boundary. The threshold
current density jp → a for this process is found from the
condition |ξ| = 1, which yields

(20)

Comparing formulas (19) and (20) with one another,
we see that the threshold currents do not coincide. This
or that threshold current can be obtained depending on
in which direction a change in the current occurs. In
other words, we obtained a current hysteresis. Note that
such a situation was observed experimentally in [6–8]
upon the investigation of pillar magnetic junctions of
composition Co(I)/Cu/Co(II). In this connection, we
perform a more detailed comparison of our calculations
with the results of the above works.

It is convenient to represent the calculated depen-
dence of the differential resistance dV/dj on the current
density j, where by V we mean the voltage of the current
source. The result, naturally, will depend on the mech-
anism of conductivity in the junction (ohmic conductiv-
ity, ballistic transport, effects of heating, etc.). For sim-

ja p→ j0 1 ρ–( )
h hk+

2P1 ρ 3P1 P2+( )–
---------------------------------------------,=

h
H

4πM̃2

--------------, hk
K

2πM̃2
2

--------------, j0 jc
8πM̃2

2

αµBnM2
---------------------.= = =

jp a→ j0

h hk–
2P1 ρ P1 P2–( )+
----------------------------------------.=

Current dependence of the differential resistance dV/dj: (a)
upon the antiparallel and (p) parallel orientations of the
magnetizations in layers 1 and 2. Arrows show the possible
directions of current changes.

a

p

jp → a ja → p
plicity, we will assume that the conductivity is ohmic.
Then, dV/dj = R + r(χ), where R is the internal resis-
tance of the source, and r(χ) is the resistance of the
junction depending on the angle χ. These dependences
for two values of the angle χ (χ = π and χ = 0) are
shown in the figure. Arrows indicate the character and
the direction of the change in the resistance depending
on the current. Jumps of resistance related to magneti-
zation reversal are seen. Qualitatively, this dependence
completely corresponds to experimental data [6–8].

For quantitative estimation, we will use the above-
cited numerical values of some parameters and addi-
tionally take the following parameters for Co films
[13]: M2~ 0.1 T, K ~ 0.4 J/cm3, n ~ 1022 cm–3, α ~ 1.8 ×
105, P1 = P2 = 0.38, and Ly = ls = 17 nm. The earlier-
introduced parameter of the magnetoresistance ρ can
be written as ρ = (r(π) – r(0))/(R + r(π)). Since in [5–7]
the relation R @ r(χ) ≥ r(0) was fulfilled, the parameter
ρ was very small. Therefore, upon the estimation of
threshold currents by formulas (19) and (20), we
assume ρ = 0. Then, we obtain (at h = 0) ja → p = –ja → p ~
3.4 × 107 A/cm2, which approximately corresponds to
the experimental estimate of the threshold currents. We
emphasize that, as in experiments, the threshold cur-
rents have different signs at h = 0 and coincide in abso-
lute magnitude. It is seen from our calculations that the
magnitude of these currents is mainly determined by
the magnetic anisotropy rather than by the dissipative
processes in layer 2. In complete accordance with
experiments, the threshold currents are shifted in the
positive direction upon the application of the magnetic
field h, and the symmetry in the location of the two
thresholds with respect to the point j = 0 is violated (see
figure). It is interesting that the theory predicts the dis-
appearance of one of the thresholds, namely, ja → p = 0,
at h = hk. At given values of the parameters and anisot-
ropy constant K, this should correspond to a field
H ≈ 0.8 T.

In conclusion, we consider our supposition on the
absence of a domain structure in layer 2. The character
of the domain structure in such cases and the effect of
the polarized current on this structure have been dis-
cussed in our previous papers [14, 15]. According to
[14], no domains should arise in very thin films, when
Ly ≤ δ, where δ is the width of a domain wall (typically,
δ ~ 5 nm [16]). It is precisely this relation that was ful-
filled in experiments [6–8], where Ly ≈ 1.5–10 nm. Note
that, according to [15], no current hysteresis arises in
the presence of a domain structure, and the switching
from the current ja to the current jp and vice versa occurs
gradually rather than abruptly.
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The field dependence of the magnetic moment of square (100 × 100) SNS-type Josephson junction arrays was
studied by a SQUID magnetometer. A considerable difference in the behavior of this dependence was revealed
for the cases of the entry of magnetic flux into the array and its exit from it. The branches of the curve obtained
with increasing field strength had the form of regular periodic dependences with peaks corresponding to integer
and half-integer numbers of flux quanta per cell. The curves obtained with decreasing field strength had no
noticeable features and, in particular, no periodic structure. Magnetic flux avalanches were not observed in the
SNS-type arrays, although the critical parameter of the system was sufficiently great (LIC/Φ0 @ 1) to satisfy
the necessary condition of the self-organized criticality. The quasi-hydrodynamic flux motion in the array
was explained by the considerable viscosity characterizing the vortex motion through the Josephson junctions.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Cn; 74.80.Fp; 74.50.+r; 74.25.Ha
The dynamics of magnetic vortices in regular arrays
of Josephson junctions attracted the attention of
researchers years ago [1, 2] and has been intensively
studied in recent years with a view to obtaining a nar-
row-band coherent submillimeter radiation from a
Josephson junction array (JJA) with a large number of
junctions [3]. Despite the fact that the vortex dynamics
in JJAs is the subject of numerous theoretical publica-
tions, e.g., [4, 5], direct experimental studies of the
magnetic properties of JJAs are only represented by our
publication [6], which reports on the observation of
avalanches of tens or hundreds of flux quanta in Nb–
NbOx–Pb JJAs and the realization of a self-organized
criticality [7]. The presence of the latter in chaotic JJAs
was predicted in 1994 [8]. It should be noted that the
possibility of the appearance of such avalanches dem-
onstrating the realization of the self-organized critical-
ity in the magnetization of a regular JJA was predicted
by none of the theoretical publications (see, e.g., [4, 5]).
After the aforementioned publication of our results,
Ginzburg and Savitskaya showed that, in ideal JJAs, the
self-organized critically is impossible, and the ava-
lanches observed in our experiment could be caused by
a slight violation of the array periodicity. The scatter in
the array cell dimensions that is sufficient to cause such
an effect is about 5% [9], which is within the technolog-
ical scatter of the parameters of our JJAs.

The purpose of the study described below was the
observation of the magnetic flux motion in the JJAs
with SNS junctions and, specifically, the detection of
the manifestations of the self-organized criticality, such
0021-3640/02/7603- $22.00 © 20160
as the formation of avalanches, as in the SIS-type JJAs
[6]. Taking into account that, in SNS junctions, one can
obtain large critical currents (and large values of the
critical parameter), we expected to obtain large ava-
lanche amplitudes with these devices. However, the
behavior of the magnetic flux in SNS-type arrays
proved to be noticeably different from that in arrays
with SIS junctions.

In our experiment, we studied square JJAs fabri-
cated using the same masks as in the previous study, but
in this case the arrays consisted of Nb–Cu0.95Al0.05–Nb
junctions of the SNS type. Each junction had an area of
7 µm2, a normal layer thickness of 200 nm, a normal
resistance Rn ~ 10–3 Ω , an inductance per cell L ~ 2 ×
10–12 H, and a critical current IC ~ 1.5 mA at T = 4.2 K
(the corresponding critical parameter was LIC/Φ0 ~
9.3 @ 1, where Φ0 is a magnetic flux quantum). The
array consisted of 100 × 100 cells whose size was a2 =
20 × 20 µm2 (a piece of the array is schematically rep-
resented in Fig. 1).

The measurements were performed by a SQUID
magnetometer with a sensitivity of 10–13 A m2. The
magnetometer was designed in our laboratory, and its
characteristics are briefly described in our previous
publication [6] and also in [10].

The results of measurements are presented in Figs. 2
and 3 displaying the hysteresis loops of the dependence
M(H) for a number of temperatures. Owing to the
adjustment of the astaticism of the receiving coils–sole-
noid system, the curves were recorded with almost
002 MAIK “Nauka/Interperiodica”
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complete compensation of the considerable contribu-
tion made by the superconducting films (banks) of the
Josephson structure under study in the SQUID magne-
tometer. This contribution was proportional to the
external field, and, at a temperature of 7 K in a field of
300 mOe, it exceeded the signal from the JJA by more
than an order of magnitude.

The curves M(H) reflect the specific critical state
arising in a regular Josephson structure. At tempera-
tures below 8 K, one can see pronounced regular peaks
with a temperature-independent period of approxi-
mately 60 mOe in magnetic field. In view of the fact
that the real field in the array region is reduced because
of the partial displacement of the field of the solenoid
by the superconducting film structure, this value corre-
sponds to the flux quantum per array cell ∆H = Φ0/a2 ~
52 mOe. The periodic peaks of the magnetic moment
mean a sharp increase in the critical current of the
fluxon pinning (the depinning current) at integer frus-
trations f, when all cells contain equal integer numbers
of flux quanta and their distribution throughout the
array is most regular and stable. Exactly in the middle
between any two large peaks, one can notice small
peaks that correspond to changes of the magnetic flux
by a half-quantum per cell. Presumably, this situation
also corresponds to the relatively stable distribution of
the added flux quanta over the JJA in a checkered order
[11, 12]. At temperatures from 6 to 7.1 K in the field
interval ±60 mOe, one also can see features corre-
sponding to flux changes by one third of the flux quan-
tum per cell. In the region where periodic peaks are
observed, their shape at λ @ a agrees well with the cal-
culations [4].

The most intriguing fact seems to be as follows: the
sharp regular peaks in the hysteresis loops are observed

Fig. 1. Geometry of a Nb–Cu0.95Al0.05–Nb Josephson
Junction array.
JETP LETTERS      Vol. 76      No. 3      2002
only when the field strength increases while, when the
field strength decreases, they are practically undetect-
able and reappear when the field crosses the zero level.
Since the peaks in the magnetization curve reflect the
ordered filling of the JJA by magnetic flux, their
absence in the descending branch presumably indicates
the absence of ordering in the flux distribution over the

Fig. 2. Magnetization curves of a Josephson junction array
for temperatures between 5.7 and 8 K.
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Fig. 3. Magnetization curves of a Josephson junction array for temperatures between 3.7 and 5.7 K.
Josephson structure in the course of the field decrease.
Thus, the entry of fluxons into the array is accompanied
by the formation of ordered structures in their distribu-
tion, whereas the exit from the array occurs in a random
irregular way. It should be noted that asymmetry of
magnetization was also observed in SIS-type JJAs [6],
but in that case, it was weakly pronounced and there-
fore was ignored in the cited paper. Hence, the asym-
metry can be accepted as a general property of the col-
lective motion of Josephson vortices in JJAs, and this
property is somehow related to the geometry of the sys-
tem but independent of the type of junctions.

Possibly, the asymmetry of the hysteresis loops is to
some extent caused by the boundary potential barrier,
which hinders the penetration of fluxons into the array
and, thus, leads to a difference in the type of their dis-
tribution in the JJA at their entry and exit. The charac-
teristic features of magnetic dynamics may also be
determined by the fact that the profile of the potential
energy of pinning in the cells near the boundary of the
Josephson array is asymmetric due to the edge effects.
In [13], it was shown that the asymmetry of the pinning
potential can lead to an anisotropy of the pinning force,
i.e., a kind of “diode effect,” when the force required for
setting the vortices in motion in one direction is smaller
than the force required for their motion in the opposite
direction. It is natural to expect that the asymmetric
profile of the pinning potential varies along the bound-
ary and that, near the corners of the array, it is notice-
ably different from the profile at the boundary away
from the corners. This may lead to a situation where the
entry and exit of the flux occur through different
regions of the boundary, and hence these are accompa-
nied by different types of flux distribution in the array.
We assume that another important factor was that the
dimensions of the Josephson junctions in our structure
(~3 µm) were fundamentally comparable with the
dimensions of the JJA cells (20 µm). In the theoretical
publications available to us, the modeling of the vortex
dynamics in JJAs was performed by assuming the junc-
tion dimensions to be negligibly small, and this seems
to be the main reason why the asymmetric behavior was
not predicted by the theory.

In Fig. 2, one can notice two fundamentally differ-
ent magnetization curves obtained for a JJA at a tem-
perature of 7.1 K. The lower of these two curves exhib-
its no sharp peaks and no asymmetry observed in all the
other hysteresis loops. The curve was obtained by heat-
ing the JJA above the superconducting transition tem-
perature and then cooling it in a magnetic field of
≈180 mOe. Such a procedure results in the freezing of
Abrikosov vortices in the niobium films forming the
banks of the Josephson junctions. Since the pinning
occurs in this case at randomly distributed defects, a
certain disorder is introduced in the magnetic system.
In the magnetic field range studied in the experiment,
the Abrikosov vortices do not move from their positions
because of the large pinning force in the superconduct-
ing films, but they noticeably affect the flux motion
through the Josephson array. This effect proves to be
greater than the effects of other factors, and therefore
the curve under consideration exhibits no asymmetry
and no sharp peaks at integer frustrations. All other
curves were obtained with the Josephson arrays cooled
in magnetic fields below 1 mOe, which guaranteed the
absence of Abrikosov vortices.

One can distinguish two temperature regions within
which the curves M(H) behave in different ways. In the
first region corresponding to higher temperatures
(Fig. 2), the depth of the field penetration into the array,
λ = Φ0/2πµ0IC, considerably exceeds the array period a.
Every flux quantum (fluxon) with the diameter ~λ is
JETP LETTERS      Vol. 76      No. 3      2002
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distributed over several cells, and their intrinsic fields
of currents are small (the weak pinning region). In this
limit, the magnetic flux is uniformly distributed over
the array. Within this temperature region, sharp peaks
of M(H) are observed in the ascending branches of the
hysteresis loops, every peak corresponding to a state
with an integer number of flux quanta per cell. At lower
temperatures, when λ is much smaller than a (the
strong pinning region), each cell always contains an
integer number of flux quanta, and their behavior can be
described by the discrete dynamics. In this case, the
intrinsic fields of the screening currents flowing in the
JJA are large, which results in a nonuniform distribu-
tion of fluxons over the array and manifests itself as an
increase in the width of the peaks in the magnetization
curves and a decrease in their relative height, as one can
see from Fig. 3. This result agrees well with the conclu-
sions made in [14, 15], where it was shown that the
ratio of the peak amplitudes observed in the magnetiza-
tion curves at integer f (and, hence, the depinning cur-
rent) to the values obtained at intermediate f (at the
“pedestal” level) decreases with decreasing tempera-
ture because of the growing self-field effect with
decreasing λ. For the structure studied in our experi-
ment, the calculated value of the fluxon size 2λ
becomes equal to the structure period a = 20 µm at tem-
peratures of about 6.5 K.

From the half-width of the magnetization hysteresis
loops, one can estimate the fluxon depinning current at
noninteger frustrations on the basis of the assumption
that the currents flow over the array along concentric
square circuits, in which case the half-width of a hyster-
esis loop is directly proportional to the current. For
square lines of current, a simple calculation yields the
following expression for the magnetic moment of the
array: M = IdepN3a2/6, where Idep is the depinning cur-
rent, which is assumed to be constant over the entire
array. One can expect that real lines of current deviate
from square ones by “cutting” the angles, and therefore
the simplest model provides a somewhat underesti-
mated value.

Figure 4 shows the temperature dependence of the
depinning current Idep estimated by the aforementioned
method (on the logarithmic scale). The solid line shows
the theoretical dependence for a square array, which,
according to [12, 14] with allowance for the self-field
effect of currents, yields Idep = 0.1Ic(1 + 1.5a/λ), where
Ic is the critical current of a single junction. The temper-
ature dependence of Ic for an SNS-type junction in the
“dirty” limit is expressed as Ic = 0.1Ic(0)(1 –

T/TC)2 , where Tc = 9.2 K is the superconducting
transition temperature of the Josephson junction banks
(see, e.g., [16]). The coefficient α = 3.6 was determined
from the direct measurements of the critical current
through a single SNS Josephson junction with a normal
interlayer of the same composition. The value of the
factor Ic(0) = 3.6 A was determined by fitting to the

e α T–
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experiment in the temperature region near Tc, and it is
close to the value Ic(0) = 3.9 A obtained from the direct
measurements of the critical current of a single junc-
tion. One can see that above 3.7 K the experimental
data agree well with the theoretical dependence, but at
low temperatures, a noticeable discrepancy is observed.
Presumably, this occurs because of the considerable
curvature of the field lines and their concentration near
the edge of the array. As a result, the magnetic field in
this region considerably exceeds the external field and
can noticeably suppress the critical currents of the junc-
tions. The suppression is strongest for the currents cir-
culating along the edges, i.e., the currents that have the
maximal circuit areas and make the maximal contribu-
tions to the total magnetic moment. When the tempera-
ture is sufficiently high, the critical currents are small,
and the suppression does not manifest itself, because
the magnetic field rather easily penetrates into the
structure, and, hence, no field concentration at the array
edge takes place.

In closing, it should be noted that the study of the
mechanisms underlying the interesting phenomenon of
asymmetry in the magnetic flux dynamics requires
additional experiments with regular Josephson junction
arrays of different types (SIS and SNS) and with differ-
ent junction characteristics, such as critical current den-
sities, junction dimensions, and distances between the
superconducting banks.
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State program “High-Temperature Superconductivity”
(project no. 023-02).
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The crystals of (BEDT-TTF)4K[Fe(CN)5NO]2, representing a quasi-two-dimensional organic metal with con-
ducting layers of bis(ethylenedithio)tetrathiofulvalene (BEDT-TTF) and nonconducting layers containing pho-
tochromic nitroprusside anions [Fe(CN)5NO]2–, were studied by the method of electron spin resonance. Illumi-
nated by light with a wavelength of 514.5 nm, the organic metal crystals feature the formation of localized para-
magnetic centers in the conducting cation layers of BEDT-TTF. The phenomenon of electron localization in the
BEDT-TTF layers is related to the light-induced formation of long-lived metastable states of nitroprusside
anions. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Ac; 71.30.+h
The crystal structure of the quasi-two-dimensional
organic metal ((BEDT-TTF)4K[Fe(CN)5NO]2 [1, 2]),
which is similar to the other conductors and supercon-
ductors based on bis(ethylenedithio)tetrathiofulvalene
(BEDT-TTF) [3], features the alternation of the con-
ducting layers of BEDT-TTF radical cations and the
nonconducting anion layers. The characteristic features
of the given organic metal are related to the fact that the
nonconducting layers contain nitroprusside (NP)
anions [Fe(CN)5NO]2– exhibiting photochromic prop-
erties in a number of salts.

As is known, the NP anions [Fe(CN)5NO]2–,
exposed to the light with a wavelength of 350–540 nm
at a sufficiently low temperature, exhibit a transition to
two long-lived metastable states, MS1 and MS2. It
should be noted that the fraction of NP anions involved
in this transition does not exceed 30–50%. The reverse
transition from MS1 and MS2 to the ground state (GS)
takes place under the action of light with a wavelength
of 620–760 nm or on heating [4–10]. The transition to
the metastable states is accompanied by a reversible
variation of interatomic distances in the NP anion and
by a change in the anion geometry. An X-ray diffraction
study [8] showed that a transition to the MS1 state alters
coordination of the NO group with respect to the central
Fe atom. In both GS and MS1, the atoms of Fe, N, and
O forming a Fe–(N–O) group lie on the same axis, but
Fe atom is bound to nitrogen in the GS and to oxygen
in the MS1 configuration. Based on the X-ray diffrac-
tion data for Na2[Fe(CN)5NO]2 · 2H2O crystals, it was
concluded [8] that the Fe–(N–O) group in the MS2 con-
0021-3640/02/7603- $22.00 © 20165
figuration exhibits bond bending, whereby the Fe–N–O
angle amounts to 82° and both atoms of the NO group
are coordinated to iron. However, the nature of MS2
remains unclear and is still a subject for discussion [7,
8, 11–15]. The light-induced transition of NP anions to
metastable states modifies the optical properties of
nitroprusside crystals [16–18]. For example,
Na2[Fe(CN)5NO]2 · 2H2O crystals exhibit a reversible
change of color. The photochromic properties of nitro-
prusside salts are of interest from the standpoint of pos-
sible applications in light-controlled data storage
devices with high-density recording [17, 18].

The structure of (BEDT-TTF)4K[Fe(CN)5NO]2 is
characterized by short contacts C···O, S···N, and C···N
between BEDT-TTF cations and NP anions, whereby
the interatomic distances are smaller than the sums of
the corresponding van der Waals radii [2]. Therefore,
one may expect that the transition of NP anions to
metastable states in this quasi-two-dimensional organic
metal will modify the electronic properties of conduct-
ing cation layers. Unfortunately, until recently, investi-
gations were restricted to the properties of nonconduct-
ing salts of NP and related anions [9, 19–21]. However,
preliminary DSC data [22] showed evidence of the
formation of metastable states of NP anions in the
(BEDT-TTF)4K[Fe(CN)5NO]2 crystals upon illumi-
nation. The aim of our work was to study the influence
of the light-induced metastable states of NP anions on
the BEDT-TTF conducting system in the
(BEDT-TTF)4K[Fe(CN)5NO]2 molecular metal by the
method of electron spin resonance (ESR).
002 MAIK “Nauka/Interperiodica”
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Measurement procedure. The ESR spectra of sin-
gle crystal samples were recorded at 9.4 GHz on a
Bruker ESP 300 spectrometer equipped with an ESR
900 continuous flow cryostat (Oxford Instruments).
The measurements were performed using a cylindrical
microwave cavity of the ER 4115 OD type intended for
optical experiments. The sample crystal in the cavity
was oriented so that the long axis (corresponding to the
crystallographic axis a) coincided with the constant
magnetic field direction.

The experiments involving irradiation of the
(BEDT-TTF)4K[Fe(CN)5NO]2 crystals were conducted
as follows. A single crystal sample was illuminated
in situ (in the cavity) with the light of an Ar laser at a
wavelength of 514.5 nm and an intensity of
210 mW/cm2. The incident light was polarized so that
the electric field vector was perpendicular to the Fe–N–O
linear bonds of NP anions. As is known, this polariza-
tion favors maximum population of metastable states in
Na2[Fe(CN)5NO]2 · 2H2O [10]. The samples were irra-
diated at 50 K for 150 or 300 min, after which the ESR
spectra were taken at a temperature of T = 3.3, 6, and
10 K and compared to the spectra measured before irra-
diation. Another series of experiments with irradiated
crystals involved cyclic measurements upon annealing
the sample at a gradually increased temperature Ta.
Each cycle consisted in a low-temperature annealing

Fig. 1. ESR spectra (absorption at f = 9.4 GHz) of a
(BEDT-TTF)4K[Fe(CN)5NO]2 crystal measured at T = 6 K:
(1) signal before laser irradiation; (2) additional (difference)
signal D appearing after 300-min irradiation at 50 K;
(3) approximation of the signal D by a sum of Lorentzian
components D1 and D2 (curves 4 and 5, respectively). The
difference spectrum was calculated by formula (1) using the
Lorentzian parameters and the k values determined from
experimental data processed in terms of expressions (1) and
(2). The right-hand ordinate scale refers to curve 1 and the
left-hand scale, to curves 2–5.

H (G)

(a
rb

. u
ni

ts
)

for 2 min at a preset Ta value, followed by the ESR mea-
surements at T = 6 K.

Results and discussion. The ESR spectrum of an
unirradiated crystal contains a single symmetric line
the position of which corresponds to g = 2.009. At room
temperature, the line width (determined as the distance
between peaks of the absorption derivative signal) is
∆Hpp = 34 G. As the temperature decreases, the line
width monotonically decreases (to ∆Hpp = 1.0 G at
3.5 K). The room-temperature magnetic spin suscepti-
bility calculated using the integral intensity of the ESR
line is 6.5 × 10–4 emu/mol, which falls within the limits
typical of BEDT-TTF based conductors. The suscepti-
bility remains virtually unchanged when the tempera-
ture decreases down to 100 K (Pauli type of susceptibil-
ity). This behavior agrees with the metal-type character
of the temperature dependence of the conductivity of
(BEDT-TTF)4K[Fe(CN)5NO]2 crystals [1] and indi-
cates that the ESR signal observed is due to the spin res-
onance of conduction electrons in the BEDT-TTF cat-
ion layers. As the temperature decreases from 60 to
3.5 K, the magnetic susceptibility monotonically
decreases approximately by a factor of 3.

The laser irradiation of a sample led to very small
changes in the ESR spectra. It must be noted that the
penetration depth of the light with a wavelength of
514.5 nm in a (BEDT-TTF)4K[Fe(CN)5NO]2 crystal is
as small as 0.3 µm [23], which is significantly smaller
than the sample thickness (13 µm). For this reason, the
ESR spectrum of a sample upon irradiation can be pre-
sented as

(1)

where k ≈ 1, Sbi is the spectrum before irradiation and D
is the difference spectrum. The difference spectrum
was approximated by a superposition of two Lorentzian
lines,

(2)

where H is the constant magnetic field; A1, H1, and ∆H1
are the integral intensity, the resonance field, and the
full width at half maximum (FWHM) of the first
Lorentzian, respectively; and A2, H2, and ∆H2 are the
analogous values for the second Lorentzian. The coef-
ficient k and the parameters of approximating Lorentz-
ians were determined by least squares.

Figure 1 shows the spectrum of an unirradiated sam-
ple and the difference spectrum D = Sirr – kSbi obtained
for the ESR measurements at T = 6 K after laser irradi-
ation for 300 min at T = 50 K. The difference spectrum
can be interpreted as containing additional signal com-
ponents arising due to the irradiation. Dashed lines 4, 5
in Fig. 1 present the two Lorentzian lines, the superpo-
sition of which is used to approximate the difference
signal D. The half-width (FWHM) of the spectrum of

Sirr kSbi D,+=

D D1 D2+≈ 2A1/π( ) ∆H1/ 4 H H1–( )2 ∆H1
2+( )( )=

+ 2A2/π( ) ∆H2/ 4 H H2–( )2 ∆H2
2+( )( ),
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the unirradiated sample measured at T = 6 K is ∆H =
3.3 G, while half-widths of the additional signal com-
ponents D1 and D2 arising after a 300-min laser irradia-
tion amount to 7 and 10 G, respectively. The intensities
of the D1 and D2 signals increase with the irradiation
time.

One of the Lorentzians (e.g., that denoted by D1) is
characterized by the same resonance field as that of the
conduction electron spin resonance (CESR) (see
Fig. 1). When the constant magnetic moment is ori-
ented along the a axis, the g value corresponding to the
D1 signal component is 2.009, while the value corre-
sponding to D2 is g = 2.004. Coincidence of the reso-
nance field of the additional signal D1 and CESR was
also observed when the constant magnetic moment was

Fig. 2. Evolution of the additional (difference) signal D in
the ESR spectrum of a sample irradiated for 300 min at
50 K and sequentially annealed at various temperatures Ta
(indicated next to the curves). The spectra were measured at
T = 6 K and the signal D was calculated by formula (1).

H (G)
JETP LETTERS      Vol. 76      No. 3      2002
oriented along the b axis, which is evidence that the D1
signal is due to electrons of the cation layers of BEDT-
TTF. Elucidation of the nature of the second signal
component (D2) requires additional investigation.
However, we can point out that the results of ESR [12]
and magnetic susceptibility [21] measurements for var-
ious nitroprussides show that the [Fe(CN)5NO]2–

anions are diamagnetic in both ground and metastable
states.

Figure 2 shows the evolution of the additional (dif-
ference) signal D for the sample irradiated for 300 min,
observed in the course of a sequential increase in the
annealing temperature Ta. The ESR spectra were mea-
sured at 6 K and the difference signal intensity was cal-
culated by formula (1). As can be seen, the additional
signal varies rather slightly for the sample annealed at
Ta < 90 K; after annealing at Ta = 280 K, signal D dis-
appears. Figure 3 shows plots of the A1 and A2 values,
representing the intensities of the additional signal
components D1 and D2, respectively, versus the anneal-
ing temperature Ta. In the interval of 90 K < Ta < 130 K,
a decrease in A1 is accompanied by an increase in A2;
the latter component disappears in the interval of
130 K < Ta < 280 K. The presence of two signals from
paramagnetic centers characterized by significantly dif-
ferent thermal stability is probably explained by the
existence of two metastable states of NP anions in
(BEDT-TTF)4K[Fe(CN)5NO]2 crystals, which are pop-
ulated in the course of illumination.

Here and below, we imply by MS1 and MS2 the
metastable states of NP anions possessing lower and
higher thermal stability, respectively. A decrease in the
D1 signal intensity upon annealing at Ta ≥ 90 K can be
explained by the decrease in the MS1 concentration. An

Fig. 3. Variation of the A1 and A2 values (integral intensities
of the additional signal components D1 and D2, respec-
tively) for a sample irradiated for 300 min at 50 K and then
subjected to stepwise annealing at a gradually increasing
temperature Ta. The ESR spectra were measured at T = 6 K
and the A1 and A2 values were determined from the experi-
mental data processed in terms of expressions (1) and (2).
The curves are drawn for illustration.

Ta
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increase in intensity of the D2 signal at the expense of
decreasing the D1 signal indicates that (i) at least a part
of MS1 converts into MS2 and (ii) a metastable state of
lower energy (MS2) possesses a higher thermal stabil-
ity than the state of higher energy (MS1). In most nitro-
prussides, a two-stage character of the thermoactivated
transition MS1 MS2 GS is usually not detected
because the rate of the second stage (MS2 GS) is
much greater than that of the first stage (MS1 MS2).
Previously, the thermoactivated MS1 MS2 transi-
tion was revealed by IR spectroscopy in a photochro-
mic osmium mononitrosyl complex Na2[Os(CN)5NO] ·
H2O [20].

The results of our ESR measurements indicate that
MS1 possesses a lower thermal stability in (BEDT-
TTF)4K[Fe(CN)5NO]2 than in Na2[Fe(CN)5NO]2 ·
2H2O (the MS1 lifetime of the latter complex at T =
140 K exceeds 104 s [5]). The lower thermal stability in
the former case is apparently related to the interaction
between NP anions and BEDT-TTF cations, which
results in the distance between Fe and N atoms in the
nitroprusside anion of (BEDT-TTF)4K[Fe(CN)5NO]2
[2] being significantly different from that in
Na2[Fe(CN)5NO]2 · 2H2O [8].

Figure 4 shows the temperature dependence of the
integral intensities A1 and A2 of the additional ESR sig-
nal components D1 and D2, respectively, in a sample
irradiated for 150 min. As can be seen, the character of
this dependence differs from that of the CESR signal
measured before irradiation. The observed behavior of

Fig. 4. The temperature variation of the A1 and A2 values
(integral intensities of the additional signal components D1
and D2, respectively) for a sample irradiated for 150 min at
50 K; symbols represent the experimental data, straight
lines correspond to the Curie–Weiss law for magnetic sus-
ceptibility. The A1 and A2 values were determined from
experimental data processed in terms of expressions (1)
and (2).
A1 and A2 (proportional to the corresponding magnetic
susceptibilities) agrees with the Curie–Weiss law. This
temperature dependence of the magnetic susceptibility
is evidence that the D1 and D2 signals are due to local-
ized spins rather than the spins of conduction electrons.
The concentration of these spins can be estimated from
the additional signal intensity. Assuming that the D1
and D2 signals are produced by spins S = 1/2 occurring
within the light penetration depth, we obtain 3% per
formula unit for a crystal irradiated for 300 min at
T = 50 K and 10% for the same exposure followed by a
single low-temperature annealing (30 min at 100 K).
Coincidence of the g value, corresponding to the D1 sig-
nal assigned to the localized magnetic moments, with
the g value for the CESR signal from BEDT-TTF cation
layers shows evidence for the localization of electrons
taking place in the conducting layers of the (BEDT-
TTF)4K[Fe(CN)5NO]2 organic metal.

A possible reason for the transition of conduction
electrons to the localized state may be the appearance
of a fluctuating potential (Anderson’s localization) in
the BEDT-TTF layers that is related to the transition of
a part of NP anions to the metastable state as a result of
the laser irradiation. At present, it is still unclear
whether a metal–insulator transition actually takes
place in the (BEDT-TTF)4K[Fe(CN)5NO]2 crystals
within the light penetration depth. However, it is highly
probable that the illumination at low temperatures may
lead to reversible changes in the optical properties and
conductivity of this organic metal due to electron local-
ization in the BEDT-TTF layers.

The authors are grateful to R.P. Shibaeva and
S.S. Khasanov for fruitful discussions of the results and
to I.S. Grigor’ev and G.G. Grigoryan for their help in
creating an optical attachment to the ESR spectrometer.
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for Basic Research (project no. 00-03-2200 NTsNI)
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Electric Field Dependence of the Thermal Conductivity 
of a Granular Superconductor: Giant Field-Induced 

Effects Predicted¶
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The temperature and electric-field dependence of the electronic contribution to the thermal conductivity (TO)
of a granular superconductor is considered within a 3D model of inductive Josephson junction arrays. In addi-
tion to a low-temperature maximum of zero-field TC κ(T, 0) (controlled by mutual inductance L0 and normal
state resistivity Rn), the model predicts the two major effects in the applied electric field: (i) the decrease in the
linear TC and (ii) the giant enhancement of the nonlinear (i.e. ∇ T-dependent) TC with ∆κ(T, E)/κ(T, 0), reaching
500% for parallel electric fields E . ET (ET = S0|∇ T | is an “intrinsic” thermoelectric field). The possibility of
experimentally observing the predicted effects in granular superconductors is discussed. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 74.25.Fy; 74.50.+r; 74.80.Bj
1. INTRODUCTION

Inspired by new possibilities offered by cutting-
edge nanotechnologies, the experimental and theoreti-
cal physics of increasingly sophisticated mesoscopic
quantum devices (heavily based on Josephson junc-
tions and their arrays) is becoming one of the most
exciting and rapidly growing areas of modern science
[1–3]. In addition to the traditional fields of expertise
(such as granular superconductors [2]), Josephson
junction arrays (JJAs) are actively used for testing prin-
cipally novel ideas (e.g., topologically protected quan-
tum bits [3]) in a bid to solve probably one of the most
challenging problems in quantum computing. Though
traditionally the main emphasis in studying JJAs has
been on their behavior in applied magnetic fields,
recently special attention has been given to the so-
called electric field effects (FEs) in JJs and granular
superconductors [4–9]. The unusually strong FEs
observed in bulk high-Tc superconducting (HTS)
ceramics [4] (including the substantial enhancement of
the critical current, reaching ∆Ic(E)/Ic(0) = 100% for
E = 107 V/m) have been attributed to a crucial modifi-
cation of the original weak-link structure under the
influence of very strong electric fields. This hypothesis
has been corroborated by further investigations, both
experimental (through observation of the correlation
between the critical current behavior and type of weak
links [5]) and theoretical (by studying the FEs in SNS-
type structures [6] and d-wave granular superconduc-
tors [7]). Among other interesting field-induced effects,

¶ This article was submitted by the author in English.
0021-3640/02/7603- $22.00 © 20170
one can mention the FE-based Josephson transistor [8]
and the Josephson analogue of the magnetoelectric
effect [9] (electric field generation of Josephson mag-
netic moment in zero magnetic field). At the same time,
very little is known about the influence of electric fields
on thermal transport properties of granular supercon-
ductors. In an attempt to shed some light on this inter-
esting and important (for potential applications) prob-
lem, in this letter we present a theoretical study of the
electric-field and temperature dependence of the elec-
tronic contribution to the thermal conductivity (TC) κ
of a granular superconductor (described by a 3D model
of inductive JJAs). As we shall see below, in addition to
a low-temperature maximum of zero-field TC κ(T, 0)
(controlled by the mutual inductance L0 and normal
state resistivity Rn), the model predicts unusually strong
(giant) field-induced effects in the behavior of nonlin-
ear (i.e. ∇ T-dependent) TC. In particular, it is estimated
that the absolute values of the TC enhancement ∆κ(T,
E)/κ(T, 0) can reach up to 500% for relatively low (in
comparison with the fields needed to observe a critical
current enhancement [4, 5]) applied electric fields E
that match an intrinsic thermoelectric field ET = S0|∇ T |.
The estimates of the model parameters suggest quite an
optimistic possibility of observing the predicted effects
in granular superconductors and JJAs.

2. THE MODEL

To adequately describe the thermodynamic behavior
of a real granular superconductor for all temperatures
and under the simultaneous influence of arbitrary elec-
tric field E and thermal gradient ∇ T, we consider one of
002 MAIK “Nauka/Interperiodica”
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the numerous versions of the 3D JJAs models based on
the following Hamiltonian

(1)

where

(2)

is the well-known tunneling Hamiltonian,

(3)

accounts for the mutual inductance Lij between grains
(and controls the normal state value of the thermal con-
ductivity, see below) with Φij(t) = ("/2e)φij(t) being the
total magnetic flux through an array, and finally

(4)

describes the electric field induced polarization contri-
bution, where the polarization operator

(5)

Here, ni is the pair number operator and ri is the coor-
dinate of the center of the grain.

As usual, the tunneling Hamiltonian *T(t) describes
the short-range interaction between N superconducting
grains arranged in a 3D lattice with coordinates ri =
(xi, yi, zi). The grains are separated by insulating bound-
aries producing the temperature-dependent Josephson
coupling Jij(T) = Jij(0)F(T) with

(6)

and Jij(0) = [∆(0)/2](R0/Rij), where ∆(T) is the tempera-
ture-dependent gap parameter, R0 = h/4e2 is the quan-
tum resistance, and Rij is the resistance between grains
in their normal state that is assumed [10] to vary expo-
nentially with the distance rij between neighboring

grains; i.e.,  = exp(–rij/d) (where d is of the
order of an average grain size).

As is well-known [2, 10], a constant electric field E
and a thermal gradient ∇ T applied to a JJA cause the

time evolution of the initial phase difference  = φi – φj

as follows:

(7)

Here, ωij = 2e(E – ET)rij/", where ET = S0∇ T is an
“intrinsic” thermoelectric field with S0 being a zero-
field value of the Seebeck coefficient.
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p t( ) 2e ni t( )ri.
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0 ωij E ∇ T,( )t.+=
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3. LINEAR THERMAL CONDUCTIVITY 
(FOURIER LAW)

We start our consideration by discussing the temper-
ature behavior of the conventional (that is, linear) ther-
mal conductivity of a granular superconductor in an
arbitrary applied electric field E, paying special atten-
tion to its evolution with a mutual inductance Lij. For
simplicity, in what follows we will limit our consider-
ation to the longitudinal component of the total thermal
flux Q(t) which is defined (in a q-space representation)
via the total energy conservation law as follows:

(8)

where  = ∂*q/∂t with

(9)

Here, v  = 8πd3 is the properly defined normalization
volume, and we made a usual substitution

   valid in the long-

wavelength approximation (q  0).
In turn, the heat flux Q(t) introduced above is related

to the appropriate components of the linear thermal
conductivity (LTC) tensor καβ as follows (hereafter,
{α, β} = x, y, z):

(10)

where

(11)

Here, V is a sample’s volume, τ is the characteristic
Josephson time for the network, and 〈…〉  denotes ther-
modynamic averaging over the initial phase differ-

ences 

(12)

with an effective Hamiltonian

(13)

Here, β = 1/kBT, and Z =  is the parti-

tion function. The averaging procedure defined above
allows us to study the temperature evolution of the
system.
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Taking into account that in JJAs [11] Lij ∝  Rij, we
obtain Lij = L0exp(rij/d) for the explicit r-dependence of
the weak-link inductance in our model. Finally, in view
of Eqs. (1)–(13) and making use of the usual “phase-
number” commutation relation [φi, nj] = iδij, we find the
following analytical expression for the temperature and
electric field dependence of the electronic contribution
to the linear thermal conductivity of a granular super-
conductor:

(14)

where

(15)

with

(16)

and

(17)

Here, κ0 = Nd2S0Φ0/VL0, βL(T) = 2πIc(T)L0/Φ0 with
Ic(T) = (2e/")J(T) being the critical current (we neglect
the possible field dependence of Ic because, as we shall
see below, the characteristic fields where the thermal
conductivity exhibits the most interesting behavior are
much lower than those needed to produce a tangible

change of the critical current [4]), e ≡ 
with eα = Eα/E0, and E0 = "/2edτ is a characteristic elec-
tric field. In turn, the “order parameters” of the system
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Fig. 1. Temperature dependence of the zero-field linear
thermal conductivity κL(T, 0)/κn for different values of the
dimensionless parameter βL(0).
introduced above, η(T, e) ≡  and ν(T, e) ≡

, are defined as follows:

(18)

and

(19)

where

(20)

Here, J(T) = J(0)F(T) with J(0) = (∆0/2)(R0/Rn) and
F(T) given by Eq. (6); In(x) stand for the appropriate
modified Bessel functions.

3.1. Zero-field effects. Turning to the discussion of
the results obtained, we start with a more simple zero-
field case. The relevant parameters affecting the behav-
ior of the LTC in this particular case include the mutual
inductance L0 and the normal state resistance between
grains Rn. For the temperature dependence of the
Josephson energy (see Eq. (6)), we used the well-
known [12] approximation for the BCS gap parameter,
which is valid for all temperatures, ∆(T) =

∆(0)  with γ = 2.2.

Despite the rather simplified nature of our model, it
seems to describe quite reasonably the behavior of the
LTC for all temperatures. Indeed, in the absence of an
applied electric field (E = 0), the LTC is isotropic (as
expected), καβ(T, 0) = δαβκL(T, 0), where κL(T, 0) =
κ0[η(T, 0) + 2βL(T)ν(T, 0)] vanishes at zero temperature
and reaches a normal state value κn ≡ κL(Tc, 0) = (π/2)κ0
at T = Tc. Figure 1 shows the temperature dependence
of the normalized LTC κL(T, 0)/κn for different values
of the dimensionless parameter βL(0) = 2πIc(0)L0/Φ0.
As is clearly seen, with an increase in this parameter,
the LTC evolves from a flatlike pattern (for relatively
small values of L0) to a low-temperature maximum (for
higher values of βL(0)). Notice that the peak tempera-
ture Tp is virtually insensitive to the variation of the
inductance parameter L0, while being at the same time
strongly influenced by resistivity Rn. Indeed, the curves
presented here correspond to the resistance ratio rn =
R0/Rn = 1 (a highly resistive state). It can be shown that
a different choice of rn leads to quite a tangible shift of
the maximum; namely, the smaller the normal resis-
tance between grains Rn (or the better the quality of the
sample), the higher the temperature at which the peak
is developed. As a matter of fact, the peak temperature
Tp is related to the so-called phase-locking temperature
TJ (which marks the attainment of phase coherence
between the adjacent grains in the array and always lies
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below the superconducting temperature Tc of a single
grain), which is usually defined via an average (per
grain) Josephson coupling energy as [13] J(TJ, rn) =
kBTJ. In particular, for T . Tc, it can be shown analyti-
cally that TJ(rn) indeed increases with rn as TJ(rn)/Tc .
rn/(1 + rn).

3.2. Electric field effects. Turning to the discussion
of the LTC behavior in an applied electric field, let us
demonstrate first its anisotropic nature. For simplicity
(but without losing generality), we assume that E =
(E, 0, 0) and ∇ T = (∇ xT, ∇ yT, 0). Such a choice of the
external fields allows us to consider both parallel
κxx(T, E) and perpendicular κyy(T, E) components of the
LTC corresponding to the two most interesting config-
urations, E || ∇ T and E ⊥  ∇ T, respectively. The inset in
Fig. 2 demonstrates the predicted electric field depen-
dence of the normalized LTC κL(T, E)/κL(T, 0) for both
configurations taken at T = 0.2Tc (with rn = 1 and
βL(0) = 1). First of all, we note that both components of
the LTC decrease as the field E/E0 increases. Secondly,
the normal component κyy decreases more slowly than
the parallel one κxx, thus suggesting some kind of
anisotropy in the system. In view of the structure of
Eq. (14), the same behavior is also expected for the
temperature dependence of the field-induced LTC; that
is, ∆κL(T, E)/κL(T, 0) < 0 for all fields and temperatures.
In terms of the absolute values, for T = 0.2Tc and E = E0,
we obtain [∆κL(T, E)/κL(T, 0)]xx = 90% and [∆κL(T,
E)/κL(T, 0)]yy = 60% for the attenuation of LTC in an
applied electric field.

4. NONLINEAR THERMAL CONDUCTIVITY: 
GIANT FIELD-INDUCED EFFECTS

Let us turn now to the most intriguing part of this
paper and consider the nonlinear generalization of the
Fourier law and the very unusual behavior of the result-
ing nonlinear thermal conductivity (NLTC) under the
influence of an applied electric field. In what follows,
by the NLTC we understand a ∇ T-dependent thermal

conductivity (T, E) ≡ καβ(T, E; ∇ T), which is
defined as follows

(21)

with  given by Eq. (11).

Repeating the same procedure as before, we obtain
finally for the relevant components of the NLTC tensor

(22)

where

(23)
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with

(24)

and

(25)

Here,  = eα – , where eα = Eα/E0 and  = /E0

with  = S0∇ αT; the other field-dependent parameters
(η, ν, B, and fαβ) are the same as before but with e  eeff.

As expected, in the limit ET  0 (or when E @ ET),
from Eq. (22) we recover all the results obtained in the
previous section for the LTC. Let us see now what hap-
pens when the “intrinsic” thermoelectric field ET = S0∇ T
becomes comparable with the applied electric field E.
Figure 2 (main frame) depicts the resulting electric field
dependence of the parallel component of the NLTC ten-

sor (T, E) for different values of the dimensionless
parameter eT = ET/E0 (the other parameters are the same
as before). As is clearly seen in this picture, in sharp
contrast to the field behavior of the previously consid-
ered linear TC, its nonlinear analogue evolves with the
field quite differently. Namely, NLTC strongly
increases for small electric fields (E < Em), reaches a

pronounced maximum at E = Em = , and eventually

declines at higher fields (E > Em). Furthermore, as
directly follows from the very structure of Eq. (22), a
similar “reentrant-like” behavior of the nonlinear ther-
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Fig. 2. Electric field dependence of the nonlinear thermal

conductivity /  for different values of

the applied thermal gradient eT = S0|∇ T |/E0 (eT = 0.2; 0.4;
0.6; 0.8; 1.0, increasing from bottom to top). Inset: Electric
field dependence of the linear thermal conductivity κL(T,
E)/κL(T, 0) for parallel (E || ∇ T) and perpendicular (E ⊥ ∇ T)
configurations. 
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mal conductivity will occur in its temperature depen-
dence as well. Even more remarkable is the absolute
value of the field-induced enhancement. According to
Fig. 2 (main frame), it is easy to estimate that near the
maximum (with E = Em and ET = E0) and for T = 0.2Tc

one gets ∆ (T, E)/  . 500%.

5. DISCUSSION

To understand the rather unusual results obtained
above, let us take a closer look at the field-induced
behavior of the Josephson voltage in our system (see
Eq. (7)). Clearly, strong heat conduction requires the
attainment of a quasi-stationary (that is nearly zero-
voltage) regime within the array. In other words, the
maximum of the thermal conductivity in an applied
electric field should correlate with a minimum of the
total voltage in the system, V(E) ≡ ("/2e)〈∂φij(t)/∂t〉  =
V0(e – eT), where e ≡ E/E0 and V0 = E0d = "/2eτ is the
characteristic voltage. For linear TC (which is valid
only for small thermal gradients with eT ≡ ET/E0 ! 1),
the average voltage across an array VL(E) . V0(E/E0)
has a minimum at a zero applied field (where LTC
indeed has its maximum value, see the inset in Fig. 2),
while for nonlinear TC (with eT . 1) we have to consider
the total voltage V(E), which reaches a minimum at E =
ET (in good agreement with the predictions for the NLTC

maximum, which appears at E = , see the main

frame in Fig. 2).
To complete our study, let us estimate the order of

magnitude of the main model parameters. Starting with
applied electric fields E needed to observe the nonlinear
field effects in granular superconductors predicted
above, we notice that, according to Fig. 2, the most
interesting behavior of NLTC takes place for E . E0.
Taking d . 10 µm and τ . 10–9 s for typical values of
the average grain size and the characteristic Josephson
tunneling time (valid for conventional JJs [14] and HTS
ceramics [10]), we get E0 = "/(2edτ) . 2 × 10–2 V/m for
the characteristic electric field (which is surprisingly
lower than the typical fields needed to observe a critical
current enhancement in HTS ceramics [4, 5]). On the
other hand, the maximum of NLTC occurs when this
field nearly perfectly matches the “intrinsic” thermo-
electric field ET = S0|∇ T | induced by an applied thermal
gradient, that is, when E . E0 . ET. Using S0 .
0.5 µV/K for the zero-field value of the linear Seebeck
coefficient [10, 14], we obtain |∇ T |E . E0/S0 . 4 ×
104 K/m for the characteristic value of an applied ther-
mal gradient.

Finally, taking as an example [15] granular alumi-
num films with phonon-dominated heat transport (with
κph(T) . 2 × 10–7 W/mK at T = TJ . 0.2Tc), let us esti-
mate the absolute value of the zero-field electronic con-
tribution predicted here κe(T) ≡ κL(T, 0) at T = 0.2Tc.
Recalling that within our model the scattering of nor-

κ xx
NL κ xx

NL T 0,( )

3
2
---ET
mal electrons is due to the presence of the mutual
inductance between the adjacent grains L0, and using
L0 . µ0d . 4π × 10–12 H and V . Nd2l (l is the thick-
ness of a film), we obtain κe(T = 0.2Tc) . βL(0) ×
10−7 W/mK as a rough estimate of the electronic contri-
bution to the inductance-driven effect discussed here.
Correspondingly, we get κe(0.2Tc)/κph(0.2Tc) . βL(0)/2
for the ratio, where βL(0) = 2πIc(0)L0/Φ0. Thus, depend-
ing mainly on the value of the critical current Ic(0) and
the mutual inductance between adjacent grains L0, the
thermal conductivity of specially prepared granular
alumina films will be dominated by either the phonon
(for small βL(0)) or electronic (for large βL(0)) contribu-
tion. Undoubtedly, the above estimates suggest quite a
realistic possibility of observing the predicted nontriv-
ial behavior of the thermal conductivity in granular
superconductors and artificially prepared Josephson
junction arrays. We hope that the results presented here
will motivate further theoretical and experimental stud-
ies of this interesting problem.
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In experiments on single-domain magnetic films with uniaxial in-plane anisotropy, a new homogeneous ferro-
magnetic resonance peak was observed in a planar magnetic field oriented at an angle to the easy magnetization
axis and directed opposite to the magnetization projection onto the field direction. The peak was observed in
fields smaller than the magnetization reversal field of the film, and the origin of the peak was found to be related
to the metastable state of the magnetic moment. A good agreement was obtained between phenomenological
calculations and experimental data. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Ak; 76.50.+g
Previous studies [1] of thin magnetic films possess-
ing induced uniaxial in-plane anisotropy by a scanning
ferromagnetic-resonance spectrometer [2] revealed a
narrow peak of microwave absorption that was accom-
panied by an abrupt increase in the magnetic suscepti-
bility. The peak was observed in a constant magnetic
field H oriented normally to the easy magnetization
axis (EMA). Its position corresponding to the uniaxial
magnetic anisotropy field Hk was independent of the
pumping frequency f. The peak was shown to be caused
by the nonlinear static magnetic susceptibility; how-
ever, it was clearly distinguished at high and microwave
frequencies. This paper describes experiments per-
formed on permalloy films with a uniaxial magnetic
anisotropy, in which an additional absorption peak was
revealed in the ferromagnetic resonance spectrum.
Unlike the peak of the static susceptibility, the new
peak was observed in a wide range of angles between
the direction of the scanning constant magnetic field
and the EMA. The new peak exists in the fields H < Hk,
and its position strongly depends on both the pumping
frequency and the angle between the scanning field and
the EMA.

The film samples of thickness 500 Å were fabricated
by the thermal vacuum deposition of permalloy with
the composition Ni75–Fe25 characterized by a relatively
small positive magnetostriction constant. The films
were deposited on glass substrates 0.5 mm thick with
dimensions 25 × 10 mm. The substrates were heated to
200°C, and the rate of deposition was 10 Å/s. The
uniaxial magnetic anisotropy in the plane of a magnetic
film was induced along the short side of the substrate by
a constant magnetic field of 30 Oe applied during the
deposition in the corresponding direction. To increase
the anisotropy field, a uniaxial compression was
0021-3640/02/7603- $22.00 © 0175
applied to the films through a slight bending deforma-
tion of the substrate during the deposition [3]. Owing to
the elastic stress, the anisotropy field in the middle of
the film increased by a factor of more than 3, as com-
pared to a stress-free sample, and reached the values Hk

> 15 Oe. Simultaneously, the coercive force, which was
measured by the magnetization reversal along the
EMA, increased by almost an order of magnitude and
reached the values Hc > 4 Oe [4]. The presence of a
large anisotropy field in the samples was necessary to
reduce the angular dispersion of the magnetic moment,
while the increase in the coercive force (as will be
shown below) was necessary to “hold” the magnetic
moment of the film in the metastable state.

The experiment was performed with an automated
scanning ferromagnetic resonance spectrometer [2]
whose locality of measurement S ≈ 1 mm2 was deter-
mined by the diameter of the measuring aperture in the
microwave head. The vectors of the external magnetic
field H and the orthogonally oriented microwave pump-
ing field h of frequency f = 1.034 GHz lay in the film
plane (Fig. 1). The ferromagnetic resonance spectra
were recorded within a local area of a thin magnetic
film under investigation for different angles of the
EMA orientation θn. Before each measurement run, the
sample was magnetized along the EMA by the field H =
300 Oe. Then, the field was reduced to zero, the
required angle θn was set, the magnetic field direction
was switched to the opposite, and, finally, two ferro-
magnetic resonance spectra were recorded in a given
range of the scanning field. The first spectrum was
recorded during the direct run of the scanning field H
(the dashed lines in Fig. 2), and the second spectrum
(the solid lines) was recorded after the sample magne-
2002 MAIK “Nauka/Interperiodica”
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tization by the field H = 300 Oe without changing the
angle θn during the reverse run.

Evidently, at the beginning of the direct run of the
scanning field H, the projection of the saturation mag-
netization vector Ms onto the field axis (see Fig. 1) is
directed opposite to the field, and, hence, the magnetic
moment of the film area under investigation is in some
metastable state until the magnetization reversal field of
the film area under study is reached. Note that, owing to
the presence of a low-frequency modulating magnetic
field in the ferromagnetic resonance spectrometer [2]
and the relatively small size of the film area under
study, the magnetization reversal of this area occurs in
a single Barkhausen jump. Therefore, the magnetiza-
tion reversal field is the coercive force Hc of the given
area of a thin magnetic film [4]. From Fig. 2, one can
see that, at “small” angles θn, the amplitude of the fer-
romagnetic resonance signal in the stable state (i.e.,
ground state) is higher than in the metastable state,
while at “large” angles, the situation is reversed. Note
that the signal amplification factor achieved in record-
ing the spectra for the angle θn = 25° was an order of
magnitude greater than in the case of θn = 10°.

Figure 3 shows the angular dependences of the mea-
sured fields of the homogeneous ferromagnetic reso-
nance HR(θn) in the ground state of the magnetic
moment (the full circles) and in the metastable state
(the empty circles) for the central part of a film sample
with the anisotropy field Hk = 16.6 Oe and the effective
saturation magnetization Ms = 980 G. In the same fig-
ure, the empty triangles show the angular dependence
of the magnetization reversal field Hc(θn) of the film
area under study. In the case of film magnetization nor-
mal to the EMA, the magnetization reversal field
almost coincides with the anisotropy field, but it rapidly
decreases with an increase in θn. The full triangles in
Fig. 3 show the measured resonance fields for the inter-

Fig. 1. Model of a magnetic film with a uniaxial anisotropy.
Fig. 2. Derivatives of the absorption lines for the ground
state (the solid lines) and the metastable state (the dashed
lines) of the magnetic moment of a thin magnetic film.

Fig. 3. Angular dependences of the resonance fields and the
magnetization reversal field of a magnetic film. The dots
represent the experimental data and the lines show the
results of calculations (details are in the main body of the
paper).
JETP LETTERS      Vol. 76      No. 3      2002
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val of angles θn where the amplitude of the ferromag-
netic resonance signal observed in the ground state of
the magnetic moment is smaller than the amplitude
observed in the metastable state. In this interval, an
increase in θn is accompanied by a decrease in the res-
onance field and a monotone decrease in the amplitude
of the ferromagnetic resonance signal, which gradually
vanishes in noise. Figure 3 shows that the resonance
field observed for the magnetic moment in the metasta-
ble state also monotonically decreases with increasing
θn, but this field can be measured only when Hc > HR.

To reveal the origin of the resonances observed in
the experiment, we consider the model of a boundless
single-domain magnetic film possessing a uniaxial in-
plane magnetic anisotropy with the EMA directed at an
angle θn to the x axis (Fig. 1). As is known, in a planar
magnetic field H applied at an arbitrary angle to the
EMA, when the strength of this field is lower than that
of the anisotropy field Hk, two thermodynamically sta-
ble positions of the magnetic moment vector exist in the
film [5]. These two states are separated by a barrier
whose height is determined by the value of Hk, and the
region of existence of the two states is bounded by the
curve described by the cycloid equation

(1)

Thus, in addition to the ground state of magnetization
with the equilibrium angle θM1 (see Fig. 1) correspond-
ing to the absolute energy minimum, the second, meta-
stable, position is present with the equilibrium angle
θM2 corresponding to the local energy minimum. This
fact, in particular, gives rise to a hysteresis and makes it
possible to observe a ferromagnetic resonance for the
two aforementioned states.

For the thin magnetic film model shown in Fig. 1, by
solving the Landau–Lifshits equation in the absence of
damping, it is easy to obtain (e.g., following [6]) the
expression for the eigenfrequency of the magnetization
precession ω0;

(2)

where

γ is the gyromagnetic ratio; and the equilibrium angle
θM for the magnetization vector Ms is determined from
the equation

(3)

which is obtained from the condition of the minimal
free energy density of the film, including the Zeeman
energy, the anisotropy energy, and the energy of
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2/3 Hy

2/3+ Hk
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demagnetizing fields. Equation (3), depending on the
magnetic field strength and the orientation of the EMA,
yields either one value of the equilibrium angle θM or
two different values corresponding to the ground and
metastable states of the magnetization vector.

In Fig. 3, the solid lines show the angular depen-
dences of the resonance field that were obtained from
Eqs. (2) and (3) for both states of the magnetic moment
of the film under study. One can see a good agreement
between theory and experiment for both ground state
and metastable states. However, the formulas obtained
above do not describe the angular dependence of the
peak position observed in the experiment for θn > 10°
(the full triangles in Fig. 3). The origin of this peak can
be explained by the field dependence of the component
χxx of the dynamic magnetic susceptibility tensor. For
the film model under consideration (see Fig. 1), this
component is easily calculated by solving the Landau–
Lifshits equation with the damping parameter α
involved in the dissipative term in the Hilbert form:

(4)

Separating this component into the real and imaginary
parts and setting α2 ! 1, we obtain

(5)

(6)

(7)

Evidently, the change in the electromagnetic energy
absorption in the magnetic film during the magnetic
field scan is determined by the field dependence of the
quantity  with the absorption maxima correspond-

ing to the conditions d /dH = 0 and d2 /dH2 < 0.
It can be easily shown that, in addition to the main
absorption maxima observed at the ferromagnetic reso-
nance in the fields HR when the pumping frequency is
ω = ω0, one more maximum is observed in the field
where the condition

(8)

is satisfied. The angular dependence of the position of
this maximum was calculated from Eq. (7) for the
pumping frequency used in the measurements (f =
1.034 GHz). This dependence is shown in Fig. 3 by the
dashed line and, as one can see, it also agrees well with
the experiment.
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The additional susceptibility maximum can be
observed only in a limited range of variation of the
angle θn, and calculations show that the lower bound of
this range is determined by the pumping frequency and
tends to zero when ω  0. It should be noted that the
susceptibility peak revealed in our experiment exists
only when the pumping frequency satisfies the condi-
tion ω < ω0. Therefore, this peak cannot be considered
as a ferromagnetic resonance. In fact, this peak charac-
terizes the microwave absorption that occurs in the
magnetic film when the ferromagnetic resonance fre-
quency approaches the pumping frequency in the
course of the field scan and then moves away from it.

These conclusions are supported by the computa-
tional results shown in Fig. 4. The upper part of this fig-
ure presents the eigenfrequencies of homogeneous
oscillations of magnetization in the magnetic film
model under study as functions of the constant mag-
netic field. These dependences were calculated by
Eq. (2) for different directions of the EMA. The solid
lines show the ferromagnetic resonance frequencies for

Fig. 4. Field dependences of the ferromagnetic resonance
frequency and the equilibrium angle of magnetization for
several directions of the easy magnetization axis. The solid
lines correspond to the ground state of the magnetic
moment and the dotted and dashed lines correspond to the
metastable state.

ω
0/

2π
 (

G
H

z)

the ground state, and the dotted and dashed lines, for
the metastable state. In the calculations, we used the
parameters presented above for the magnetic film area
under investigation. The horizontal dot-and-dash line
indicates the pumping frequency used in the measure-
ments. One can see that, owing to the nonmonotonic
dependence ω0(H) observed at certain angles, e.g., at
θn = 15°, the resonance frequency first approaches the
pumping frequency and then moves away from it dur-
ing the field scan. Therefore, the position of the maxi-
mum in the field dependence of the microwave absorp-
tion by the film coincides with the position of the min-
imum in the dependence ω0(H) [see Eqs. (2) and (8)].

It was found that, for the frequency θn = 0, as the
angle θn increases, the ferromagnetic resonance field
HR for the metastable state of the magnetic moment of
the film first decreases reaching its minimal value HR =
Hk/2 at θn = 45° (see Fig. 4) and then increases to the
maximal value HR = Hk. Note that, when θn = 0, the fer-
romagnetic resonance frequencies for the metastable
and ground states observed in the fields H < Hk fully
coincide. The lower part of Fig. 4 shows the field
dependences of the equilibrium orientation angles of
the saturation magnetization. The curves were obtained
by Eq. (3) for several values of θn. As one would expect,
these dependences prove to be noticeably different for
the ground state (the solid lines) and for the metastable
state (the dotted lines).

Thus, on specially prepared samples of thin mag-
netic films, we observed a ferromagnetic resonance in a
specific metastable state of the magnetic moment. We
studied the dispersion dependences of the ferromag-
netic resonance field in the phenomenological approxi-
mation and obtained a good agreement between theory
and experiment. We showed that, in the metastable
state, the ferromagnetic resonance field can be mea-
sured only in conditions when this field is smaller than
the field of magnetization reversal of the magnetic film
sample under study. In other words, the effect revealed
in our experiments can be observed in films with a suf-
ficiently high coercive force.

In addition, we have found that the microwave
absorption peaks observed in the experiment for the
ground state of the film in a certain interval of angles of
the EMA orientation result from the nonmonotonic dis-
persion dependence of the ferromagnetic resonance
field. Despite the fact that, in the spectrum records,
these peaks manifest themselves as ferromagnetic reso-
nances, they are observed at frequencies below the fer-
romagnetic resonance frequencies and, hence, are of
different origin. Namely, in this case, the change in the
microwave absorption observed during the magnetic
field scan is caused by the approach of the resonance
frequency to the pumping frequency and its subsequent
change in the opposite direction. The width of these
absorption peaks is much greater than the width of the
ferromagnetic resonance line. In principle, such peaks
JETP LETTERS      Vol. 76      No. 3      2002
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can be observed in any materials, including massive
ones, in which a nonmonotonic behavior of the fre-
quency dispersion of the resonance field takes place.
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The magnetooptical method was used to investigate the penetration of a magnetic flux into a single crystal of a
high-temperature superconductor (Bi0.84Pb0.16)2.2Sr2CaCu2O8 in crossed magnetic fields. It is shown that at low
temperatures the penetration of the magnetic flux is anisotropic: the flux moves preferentially along the mag-
netic field applied in the plane of the sample, and the anisotropy grows as the temperature increases. At a tem-
perature Tm = 54 ± 2 K, there occurs a sharp change in the character of penetration of the magnetic field into
the superconductor; the direction of the flux ceases be dependent on the direction and magnitude of the mag-
netic field applied in the plane of the sample. In this case, the transition temperature Tm is independent of the
applied magnetic field. The effect is interpreted in terms of the concepts of a phase transition in the system of
vortices, which is related to a sharp decrease in the correlations in the position of vortices in various CuO planes,
i.e., with the transition from three-dimensional to two-dimensional behavior of the vortex structure. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Dw; 74.60.-w; 74.72.Hs
The dynamics of a magnetic flux in high-tempera-
ture superconductors (HTSCs) with a high anisotropy
and in isotropic or weakly anisotropic superconductors
can differ markedly [1, 2]. The differences are clearly
seen in magnetooptical observations of the penetration
of a magnetic flux into a superconductor in crossed
magnetic fields [3]. Thus, magnetooptical images dem-
onstrate a strong effect of the longitudinal (applied in
the plane ab) magnetic field Hab on the penetration and
distribution of the transverse (oriented along the c axis)
magnetic flux in HTSCs such as YBCO. At the same
time, in layered systems with a strong anisotropy (e.g.,
Bi2212), the penetration of the magnetic flux oriented
along the c axis is independent of the intensity and
direction of Hab. Such a difference in the penetration of
the magnetic flux is due to the fact that the magnetic
flux penetrates into superconductors with a weak
anisotropy in the form of three-dimensional Abrikosov
vortices, whereas into the layered HTSCs it penetrates
in the form of two-dimensional vortices with a weak
coupling between the vortices located in different CuO
planes [3].

The problem of the existence of a transition between
the two above-described types of magnetic structures
and the nature of this transition has been discussed in
the literature for more than a decade [1]. To observe this
transition by the magnetooptical method, it is natural to
use single crystals with an anisotropy that is greater
than that in the 1-2-3-type systems but lower than that
in Bi2212. As is known [4], doping Bi2212 with lead
0021-3640/02/7603- $22.00 © 20180
decreases the anisotropy of the superconducting prop-
erties, and the single crystals of the HTSC Bi222:Pb are
suitable candidates for such an investigation.

In this work, we used the magnetooptical method to
study the penetration of a perpendicular magnetic field
Bz into single-crystal plates of the HTSC Bi222:Pb
placed in a longitudinal magnetic field. It is shown that
at temperatures below Tm = 54 ± 2 K the transverse field
penetrates into the plate chiefly in the direction of the
applied longitudinal field Hab. At a temperature T = Tm,
there occurs a sharp change in the character of penetra-
tion of the magnetic flux: the direction of its motion
ceases be dependent on Hab. It is also shown that at tem-
peratures T < Tm the anisotropy of penetration of the
transverse flux increases with increasing temperature
and field Hab.

The single crystals of (Bi0.84Pb0.16)2.2Sr2CaCu2O8 + δ
were grown from a solution in the melt using a seed
grown from the same melt. The critical temperature of
the transition (Tc ≈ 91 K) and the width of the supercon-
ducting transition (∆Tc ≈ 1 K) were determined by the
inductive technique. The preparation of the samples
was described in detail in [5]. Prior to measurements,
the samples were polished chemically in ethylenedi-
aminetetraacetic acid. A flat single crystal was obtained
with a shape close to a triangle with a long side
(3.4 mm) oriented along the diagonal between the
planes ac and ab and a side equal to 2.4 mm coinciding
with the ac plane. The thickness of the sample was
approximately 70 µm. The microstructure of the single
002 MAIK “Nauka/Interperiodica”
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crystal was studied by X-ray topography (angular scan-
ning method). Defects that are typical of the Bi2212:Pb
crystals were detected: a twin structure (twins located
in the ab plane almost perpendicular to the long side of
the single crystal) and a lamellar structure (lamellae
parallel to the ac plane and one of the sides of the single
crystal).

Magnetooptical measurements were performed in a
temperature range from 12 K to Tc. The magnetic field
Hz parallel to the c axis was generated by a solenoidal
coil and could be varied from 0 to ±1200 Oe. The dc
field Hab was produced by Helmholtz coils with a spe-
cial core that ensured a field uniformity of about 1% in
the site where the sample was placed. The field Hab was
varied from 0 to 1800 Oe and could be rotated in any
direction. Both regimes, the cooling of the sample in
the field Hab from a temperature above Tc (FC) and the
magnetization of the sample in the field Hab at the tem-
perature of observation (ZFC) were used in the experi-
ments.

The distributions of the transverse component of the
magnetic field Bz were studied using a standard magne-
tooptical method described in [6]. As the indicator of
the magnetic field, we used a garnet film with an
in-plane anisotropy of 2000 Oe, which permitted us to
perform observations in sufficiently high magnetic
fields. Using the magnetooptical patterns obtained with
the help of a digital camera with a fixed sensitivity, we
constructed profiles of the distribution of the magnetic
flux along various directions. The calibration of the
image brightness corresponding to given magnitudes of
a magnetic field was performed at the same camera sen-
sitivity at T > Tc (in the temperature range 12–150 K,
the sensitivity of the indicator film remained unaltered).

Figure 1a displays a typical picture of the penetra-
tion of the transverse magnetic flux at Hab = 0. Such
behavior of the magnetic flux was observed over the
whole temperature range from 12 to 54 K. Note that the
magnetic field begins penetrating into the sample in
those sites where twins enter onto the edge of the crys-
tal. This effect is observed at all temperatures T < 54 K
and is reproduced upon repeated measurements. The
distribution of the magnetic flux at T < 54 K was settled
in in times of 1 to 3 min, after which it remained almost
unaltered. At temperatures above 54 ± 2 K, the picture
of the penetration of the field sharply changes. The flux
begins to penetrate through a weak site and occupies
the whole sample in a time less than 1 s, as is usually
observed in Bi2212 single crystals that have not been
doped with lead [3]. At T < 54 K, we recorded the pro-
files of magnetic induction Bz(r) near the weak site in
various directions to the edge of the crystal. The profile
consists of two regions of characteristics. Near the cen-
ter of the volume occupied by the magnetic flux, the
distribution of the field only weakly changes in space.
At the periphery of the spot, there exists a region in
which there occurs a sharp and almost linear decrease
JETP LETTERS      Vol. 76      No. 3      2002
in Bz(r). The profiles of the magnetic flux depend on the
angle, and the spot of the ingoing flux has a maximum
size approximately along the laminar structure. The
ratio kJ of the maximum magnitude of ∂Bz/∂r to the
minimum one does not exceed 2.

Figure 1b shows a typical picture of the penetration
of the magnetic flux into the sample after cooling in a
magnetic field Hab (FC mode) at T < 54 K. It can be seen
from Fig. 1b that the magnetic flux chiefly propagates
along the direction Hab, which is shown by an arrow.
Such a picture of the penetration of the magnetic field

(a)

(b)

(c)

Fig. 1. Penetration of perpendicular magnetic flux into the
sample: (a) Hab = 0, Hz = 60 Oe, and T = 30 K; (b) Hab =
1800 Oe, Hz = 60 Oe, and T = 30 K; and (c) Hab = 1800 Oe,
Hz = 60 Oe, and T = 56 K. Arrows show the directions of the
applied field and motion of the magnetic flux.
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is observed in the temperature range from 12 to 54 K.
Note that such a mode of the penetration of the
magnetic field is analogous to that observed for single
crystals of YBCO [3]. The anisotropy of the penetration
of the magnetic flux is larger, the higher the intensity
of Hab.

If the temperature exceeds Tm, then, as in the case
where Hab = 0, the picture of the penetration of the flux

Fig. 2. Profiles of the perpendicular magnetic field in the
sample at Hab = 650 Oe, Hz = 60 Oe, and T = 36 K. Profile
1 was recorded in the direction Hab between weak sites;
profile 2, in the same direction in the band corresponding to
the penetration of the magnetic flux; profile 3, in the same
band in the direction perpendicular to Hab near the maxi-
mum of Bz.

Fig. 3. Dependences of ∂Bz/∂x and ∂Bz/∂y on Hab at T =
36 K.
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changes sharply (Fig. 1c). The magnetic field pene-
trates through weak sites and rapidly occupies the
entire sample. In this case, the direction of motion of
the flux is independent of the direction of the magnetic
field Hab (see arrows in Fig. 1c). Note that in the range
of fields studied (Hab = 0–1800 Oe and Hz = 0–300 Oe),
the temperature of the crossover Tm = 54 ± 2 K remains
unaltered.

Figure 2 displays three profiles of the magnetic
field. Profile 1 was recorded in the direction of the field
Hab (x axis) between weak sites, where the penetration
of the magnetic flux is screened by the Meissner cur-
rent. Profile 2 was recorded in the same direction but in
the band corresponding to the penetration of the mag-
netic flux near a weak site. Here, a slight dip caused by
the Meissner current can also be seen. In the bulk of the
sample, the profile of the penetrating magnetic field has
a variable slope similar to that observed at Hab = 0. Pro-
file 3 was recorded in the same band of the penetrating
magnetic flux but in the direction perpendicular to the
applied magnetic field (y axis) near the maximum of Bz.
This profile also consists of a slowly sloping part and
two peripheral regions with sharp (almost linear)
slopes. The peripheral slope ∂Bz/∂y is significantly
greater than ∂Bz/∂x. The dependences of the derivatives
∂Bz/∂x and ∂Bz/∂y on Hab are shown in Fig. 3. It is seen
that the screening currents along the x axis increase
with increasing magnetic field, whereas the currents
along the y axis decrease. Both these currents decrease
with temperature. However, their ratio kJ =
(∂Bz/∂y)/(∂Bz/∂x) increases with temperature, saturat-
ing at T = 25–30 K. The kJ(T) curve is shown in Fig. 4.
The picture of the penetration of the magnetic flux is
almost the same in the FC and ZFC regimes.

The anisotropy of the penetration of the magnetic
flux into superconductors in crossed magnetic fields
has been studied in much detail [3, 7, 8]. Upon the
motion perpendicular to the field Hab, the screening
currents are directed along Hab (force-free configura-
tion). Upon the motion of vortices along Hab, the
screening currents flow perpendicular to Hab (force
configuration). The density of the screening currents in
the case of the force-free configuration is greater; this
leads to a preferential propagation of the magnetic flux
along the applied field. Moreover, if during the motion
the transverse vortices intersect vortices that are located
in the ab plane, then the cores of the latter are additional
centers of pinning that hinder transverse motion and
only slightly affect the longitudinal motion. With
increasing temperature, the density of the screening
currents decreases, as was observed in our experiments
as well, but the anisotropy of penetration increases for
YBCO because of the increase in the coherency length
ξc and a corresponding increase in the interplane corre-
lation of the order parameter. Such an increase is also
observed in our experiments (Fig. 4). In the force-free
configuration, the screening currents increase with
JETP LETTERS      Vol. 76      No. 3      2002
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increasing magnetic field; the effective pinning also
increases with increasing Hab. Correspondingly, ∂Bz/∂y
increases with Hab. Thus, the results of our observations
at T < Tm are qualitatively similar to analogous results
for HTSCs of the YBCO type and can be explained in a
natural manner in terms of the concepts of vortices with
a strong interplane correlation (a 3D-type vortex struc-
ture).

The disappearance of coupling between longitudi-
nal and transverse magnetizations in HTSCs with a
strong anisotropy is ascribed to the disappearance of
correlation between two-dimensional (2D) vortices
located in different CuO planes [3, 8]. The magnetic
flux produced by the field Hab is concentrated between
these planes and the currents that screen the transverse
flux flow in the CuO layers. It is obvious that no effec-
tive interaction between the longitudinal and transverse
magnetic fluxes exists in this case. It is natural that,
upon the transition into the phase of uncorrelated 2D
vortices, the creep of the flux increases, the efficiency
of pinning at defects decreases, and, correspondingly,
the density of screening currents decreases as well [2].
Thus, it is natural to ascribe the transition observed at
T = Tm to the transition into the phase of uncorrelated
2D vortices. The parameter that characterizes the
anisotropy of penetration of the magnetic flux, kJ,
increases with temperature, saturates, and then the
character of penetration changes discontinuously. Such
behavior speaks in favor of a phase transition of the
melting type, which was repeatedly discussed for
strongly anisotropic HTSCs [1, 2]. Indeed, with
increasing temperature, the interplane correlation of the
order parameter first increases due to the growth of
ξc(T); then, thermal fluctuations begin to compete with
them, the kJ(T) dependence saturates, and a phase tran-
sition occurs.

In such a phase transition, the vortex lattice melts
and the columnar structure of isolated vortices disap-
pears [1, 2]. The transition temperature may be esti-

mated from the relation kBTm = aLC66 dc where aL ! 1
is the Lindemann constant, C66 is the shear modulus of
the vortex lattice, a0 is the lattice parameter of the vor-
tex lattice, and dc is the effective correlation length of
vortices along the c axis. For 3D systems, dc ~
a0(C44/C66)1/2, where C44 is the flexural modulus of the
vortex lattice. For multilayered structures with Joseph-
son coupling between layers, dc is equal to the thickness
of the corresponding superconducting layer. Since in
the main approximation we have C66 ∝  B, C44 ∝  B2, and

a0 ∝  1/  [1, 2], then dc and, consequently, Tm are
independent of the magnetic field in both the first and
second cases, which agrees with our measurements. In
the theory of dislocation melting, it is assumed that aL =
1/4π. Then, substituting the corresponding values of

a0
2

B
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C66 and a0 into the expression for Tm, we obtain [1]

(1)

where φ0 is the quantum of the magnetic flux and λab is
the London penetration depth in the ab plane. For the
estimation, we assume that λab(0) = 300 nm. Then, we
obtain from Eq. (1) that Tm ~ 50 K if dc ~ 1–1.5 nm,
which is close to the distance between the CuO planes
in the crystal lattice of Bi2212:Pb [4, 5].

The anisotropy parameter Γ = ξab/ξc of Bi2212:Pb is
much larger than that of YBCO [4]. It is natural to sup-
pose that for YBCO the parameter dc characterizing the
interplanar correlation of vortices along the c axis also
is larger. Then, according to Eq. (1), the transition point
Tm for YBCO corresponds to higher temperatures than
in the case of Bi2212:Pb and it is even possible that
Tm > Tc. At the same time, the anisotropy of Bi2212 is
much larger than that of Bi2212:Pb [4]. Then, the value
of dc in Bi2212 is smaller than that in Bi2212:Pb and,
correspondingly, the transition point Tm is shifted
toward lower temperatures. We can suppose that it is for
these reasons that the magnetooptical observations do
not reveal the phase transition in these systems. In some
works (see [9] and references therein), the transition of
the type of melting of a vortex lattice is attributed to
specific features of the variation of the resistance and
magnetic moment, which are observed, e.g., in Bi2212
single crystals in a temperature range from 45 to 85 K.
In this case, the transition temperature substantially
depends on the magnetic field. However, similar effects
cannot represent direct evidence in favor of the disap-
pearance of three-dimensional correlations in the sys-
tem of vortices. Possibly, they are due to the change in
the mode of pinning [10]. At the same time, magne-
tooptical measurements in crossed fields appear to be
more direct evidence for the development of a phase
transition of the 3D–2D type in the vortex system.

kBTm φ0
2dc/32 3π2λab

2 Tm( ),=

Fig. 4. Temperature dependence kJ(T) at Hab = 1800 Oe.
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Possible Mechanism of Superconductivity
in the CuO–Cu Interface

I. I. Amelin
Mordovian State University, Saransk, 430000 Russia

Received May 13, 2002; in final form, July 8, 2002

Apparently, a two-dimensional CuO lattice is formed on the surface of copper oxide in the CuO–Cu interface.
This lattice consists of Cu2+ and O1– ions, which form a narrow, partially filled two-dimensional band. In this
case, local electron pairs (LEPs) can form in the oxygen subsystem as a result of the fulfillment of the Shubin–
Vonsovskii conditions. A crude estimate of the formation temperature of LEPs gives T* ~ 104 K. At the con-
centration in the interface layer n ~ 1.6 × 1020 cm–3 and the effective mass of carriers m* ~ me, the onset tem-
perature of Bose–Einstein condensation may take a value of Tc ~ 1000 K. The estimate obtained for the tem-
perature Tc corresponds to the experimental value by an order of magnitude. © 2002 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 74.80.Dm; 74.20.-z 
The temperature dependence of the electrical con-
ductivity and the current–voltage characteristics of Cu
films deposited by thermal evaporation on natural faces
CuO single crystals as a substrate were investigated in
[1]. It was shown that the electrical conductivity of Cu
films measured in the film plane increases in some sam-
ples after electrothermal annealing by a factor of sev-
eral tens, several hundreds, or even more than 150 hun-
dred. The results obtained are explained by the forma-
tion of a layer in the CuO–Cu interface with an
electrical conductivity that significantly exceeds the
electrical conductivity of copper. It was suggested that
the high electrical conductivity of the layer can be
explained by the formation of some regions in this layer
that possess high-Tc superconductivity with a critical
temperature Tc that significantly exceeds 400 K. The
nature of the high electrical conductivity of the layer is
presently unclear. The experimental estimate of 2∆,
where ∆ is the band gap, comprises 120 mV, and the
estimate of the temperature is Tc ≈ 800–1100 K [2]. The
complicated character of the temperature dependence
of the magnetic susceptibility in nanocrystalline sam-
ples of the low-dimensional CuO antiferromagnet is
explained by the presence of paramagnetic Cu2+ ions.
The Cu2+ ions localized in the surface layers of nanoc-
rystals are noninteracting and behave as a paramagnetic
impurity because of the loss of 3D periodicity and the
breaking of exchange coupling. The importance of the
surface states of Cu ions increases as the crystallite size
decreases. From the given experimental facts, it can be
inferred that a two-dimensional lattice is likely formed
on the CuO surface, in which the Cu2+ and O2– ions
form a narrow two-dimensional band.
0021-3640/02/7603- $22.00 © 20185
It was found experimentally [4] that localized super-
conductivity with high Tc is observed only in such cop-
per–oxide systems that exhibit a paramagnetic charac-
ter of the temperature dependence of magnetic suscep-
tibility. The presence of an impurity paramagnetic
phase (or fragments) in antiferromagnetic copper oxide
is a necessary condition for the occurrence of impurity
localized superconductivity with high Tc. Strong spin
correlations and antiferromagnetic order, for example,
in monoclinic CuO prevent the occurrence of supercon-
ductivity.

An increase in electrical conductivity by six to seven
orders of magnitude is observed in Mg1 – xCuxO sys-
tems at x = 0.15–0.20, which may indicate that Cu2+

ions are acceptors with a comparatively small activa-
tion energy, that is, are located relatively close to the
top of the oxygen valence band (according to the sign
of the thermoelectric coefficient, the charge carriers in
Mg1 – xCuxO are holes). Another characteristic property
of electrical conduction in Mg1 – xCuxO is the occur-
rence of electrical instabilities observed in some sam-
ples, namely, sharp drops in electrical resistance at
230–270 K. Such instabilities may point to the exist-
ence of a superconducting impurity in the samples. The
authors of [4] came to the conclusion that a localized
superconducting layer of the interface type forms in the
layer of Mg1 – xCuxO contacting copper. Thus, the
Mg1 − xCuxO solid solutions (0 ≤ x ≤ 0.20) with the NaCl
crystal structure studied in the temperature range 5–550 K
are paramagnetic semiconductors of the p-type. Evi-
dently, a two-dimensional lattice composed of Cu2+ and
O2– ions, which form a narrow two-dimensional band,
is formed in this substance on the surface as well.
002 MAIK “Nauka/Interperiodica”
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When Cu atoms are deposited on this surface, elec-
trons will be transferred from O2– anions of the two-
dimensional layer to Cu atoms. The Cu atoms near the
surface will tend to the 3d104s2 state. This excludes the
participation of the deposited Cu atoms in supercon-
ductivity. In support of the transfer of electron density,
ionization potentials of atoms and anions can be con-
sidered. The ionization potentials of Cu and O are,
respectively, 7.72 and 13.62 eV [5]. However, the ion-
ization potential of the O1– anion is already equal to
3.55 eV, whereas the ionization potential of the O2–

anion equals approximately zero. The transfer of elec-
tron density will proceed until the p and d energies of
the O1– and Cu1– anions become equal. Because copper
at the CuO surface occurs in the paramagnetic Cu2+

state at high temperatures at which a superconducting
state is observed, the Cu2+ ions of the 2D plane will
indirectly participate in the formation of the supercon-
ducting state. Evidently, oxygen anions have a domi-
nant role in the formation of the superconducting state.
Thus, the Cu–CuO interface will apparently contain a
2D CuO lattice composed of Cu2+ and O1– ions, which
form a narrow, partially filled 2D band. In this case,
local electron pairs (LEPs) can form in the plane in the
oxygen subsystem as a consequence of the fulfillment
of the Shubin–Vonsovskii conditions. The states of Cu
ions deposited on the CuO surface are located near the
Fermi level of the 2D lattice, which, evidently, will allow
LEPs to move along the surface and to form a supercon-
ducting Bose–Einstein condensate with high Tc.

Shubin and Vonsovskii showed [6] that, if the condi-
tion

ZV > I, (1)

where Z is the number of the nearest neighbors, I is the
energy of electrostatic interaction between two collec-
tivized (former valence) electrons on one crystal lattice
site, and V is the energy of electrostatic interaction
between two collectivized electrons of two neighboring
lattice sites, is fulfilled in a narrow half-filled metallic
band with one electron per site, a polar state arises
(referred to in the literature as a charge-density-wave
(CDW) state) with the order parameter m = 2. The
parameter m equals the difference in electron density
on neighboring sites. The value m = 2 corresponds to
the formation of LEPs in the system. It was shown in
[7] that condition (1) is fulfilled in the CuO2 planes of
the YBa2Cu3O7 crystal. These conditions are the reason
for the formation of CDW in the anionic p subsystem.
In this approximation, the maximum formation temper-
ature of LEPs is estimated by the value T* ≈ 150 K. In
the proposed model of the formation of a high-Tc super-
conducting state, given an insignificant increase in the
number of holes t1 and a decrease in the number of
holes t in the p and d states of the Cu and O ions of the
CuO2 planes, the temperature T* is bell shaped and cor-
responds to the experimental dependence Tc(δ) of the
YBa2Cu3O6 + δ crystal. Based on the given mechanism
of electron pairing, recommendations were given in [8,
9] on obtaining high-Tc superconductors containing
carbon, nitrogen, and oxygen anions. Such substances
should have partially filled AK anion states near the
Fermi level of a not-too-wide hybridized conduction
band (about 1 eV) with a sufficiently large concentra-
tion of carriers. These substances should have super-
conducting monolayers (planes) of anions A and metal
ions with more strongly open valence shells as com-
pared with the Cu ions and O anions of the CuO2 planes
in the high-Tc superconductor. In this case, it is possible
that there exist the parameters t1 = 1 and t = 1, and hence
T* assumes a large value compared to T* in cuprate
high-Tc superconductors [7]. The second necessary
condition of the occurrence of LEPs and the supercon-
ducting state in new high-Tc superconductors is the
existence of a narrow conduction band in these materi-
als. This can be achieved only in deposited monolayers
(planes), in which the AK– anions should have a small
number of closest neighbors. In order to create partially
filled states of AK– anions near the Fermi level, the
superconducting layers should be surrounded by layers
of carbon, oxides, or metals with high electronegativity.
The case in point is the creation of substances that are
similar in structure with layered high-Tc superconduc-
tors. Evidently, the conditions listed above are fulfilled
in the Cu–CuO interface.

The value of T* of the surface layer of CuO can be
estimated as follows. The CuO oxide belongs to the ten-
orite structure type, which represents a monoclinically
distorted type of the NaCl structure. The lattice cell
parameters are a = 4.684, b = 3.425, c = 5.129 Å, and
β = 99.46° [10]. The interatomic distances in the xy
plane will be equal to Rx = 2.342 Å along the x axis and
Ry = 1.712 Å along the y axis. The oxygen anion will
have four neighboring Cu ions. From atomic calcula-
tions it follows that the Coulomb interaction energy of
two electrons equals I0 = 17.98 eV for the O1– anion and
I0 ~ 13.46 eV for the O2– anion. The Coulomb interac-
tion of two d electrons in the Cu atom can be estimated
at ICu = 6.26 [7]. The Coulomb interaction energy VAB
of two p electrons located on atoms A and B was
crudely estimated by the Ohno equation [11], which is
used in quantum-chemical calculations by the CNDO
method

(2)

where c = 14.3986/2–1(IA + IB) and RAB is the internu-
clear distance between atoms A and B in Å. In the xy
plane, the O1– anion will have two neighboring Cu ions
at the distance Rx and two Cu ions at the distance Ry. It
was shown in [12] that the energy E = ZV – I corre-
sponds to the electron pair formation energy in a
square-planar lattice with the parameter m = 2. It is
known that the Coulomb potential in metals is

VAB RAB( )
14.3986

RAB
2 c2+

------------------------ eV( ),=
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described by the screened potential ϕ = qexp(–λr)/r.
Then, the I and V(R) values should be multiplied by
exp(–λr). If it is taken that the concentration n ~
1020 cm–3 for the metal planes of CuO, then 1/λ ~ 1 Å
[13]. The diameter of the p shell of the O1– and O2–

anions equals, respectively, 2.12 and 2.92 Å. The diam-
eter of the d shell of the Cu atom equals 1.4 Å. If there
are holes t in the d shell and holes t1 in the p shell, the
energy E = kT* takes the form

(3)

In the calculation of the formation temperature T* of
LEPs in the subsystem of O1– anions, the following
parameters should be taken: d = 2.12 Å, I = 17.98 eV,
I0 = 17.98 eV, ICu = 6.26 eV, t1 = 1, and t = 1. In this

case, one obtains  = 16138 K. As the number of

holes t in the Cu2+ d shell decreases, the temperature 
proportionally decreases, and  ~ 0 at t = 0.61. It is
not inconceivable that LEPs are also formed in the cop-
per subsystem of the Cu2+ ions in the plane. However,
as it was noted above, the Cu2+ ions occur in the para-
magnetic state at T ~ 300–400 K, and the superconduct-
ing state must be in the plane. The formation tempera-

ture  of LEPs in the subsystem of Cu2+ ions can also
be calculated. To do this, one should take d = 1.4 Å, I =
6.26 eV, t1 = 1, and t = 1 in Eq. (3). The formation tem-

perature of LEPs in this case equals  = 23269 K.
With decreasing number of holes t1 in the O1– p shell,

the temperature  decreases. At t1 = 0.44,  ~ 0.

Consider the possibility of the formation of LEPs in
the subsystem of O2– anions at the CuO surface without
the presence of deposited Cu atoms. CuO is a p-type
semiconductor with a band gap width of ~ 0.6 eV. CuO,
in which the Cu ions have the d9 structure, is an antifer-
romagnet with an effective magnetic moment 0.6 µB
[10]; that is, t = 0.6 in the d shell. In this case, the num-
ber of holes in the O2– p shell will equal t1 = 0.4; that is,
the electron configurations of oxygen are close to the
configuration of O2–. Hence, the following parameters
should be taken in Eq. (3): d = 2.92 Å, I = 13.46 eV, I0 =
13.46 eV, ICu = 6.26 eV, t1 = 0.4, and t = 0.6. For this
case, the parameter m < 1 and kT* ~ Em/2 [7]. At m ~
0.5, Eq. (3) gives T* ~ 200 K. For t1 ≈ 0.36, the param-

eter  ~ 0. From here, it follows that the formation of
CDW in the oxygen subsystem at the surface of CuO is
unlikely for common values of parameters. A similar
situation takes place in the copper subsystem.

The Neel temperature TN (antiferromagnet–para-
magnet transition) for CuO was determined to be
230 K, and a very broad maximum centered at ~ 540 K
was observed in the temperature dependence [14]. A

E t1t 2 V Rx( ) Rx–( )exp(×=

+ V Ry( ) Ry–( )exp ) I d–( ).exp–

T0
*

T0
*

T0
*

TCu
*

TCu
*

TCu
* TCu

*

T0
*
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reasonable explanation for this fact was given in [15],
where an agreement between experimental data and
theory was obtained within the model of the formation
of Cu2+–Cu2+ pairs with a shortened internuclear dis-
tance below TN and an increased distance above TN.
This consideration of the reasons for antiferromag-
netism in CuO is confirmed experimentally by the facts
that the temperature dependence higher than 700 K of
the susceptibility of CuO obeys the Curie–Weiss law
and the effective magnetic moment equals 1.9µB, which
is larger than that for the pure spin state. From here, it
follows that the state of Cu ions in CuO at high temper-
atures tends to decrease its d electron density. In this
case, the parameter I = ICu can be increased from 6.26
to 7–8 eV. Substituting this value into Eq. (3) gives the

estimate  ~ 0. Hence, as the temperature increases
up to 700 K and above, the formation of LEPs in the
copper subsystem of the boundary CuO plane in the
Cu–CuO interface becomes unlikely.

Thus, a crude estimate of the formation temperature
of LEPs in the oxygen subsystem at the CuO surface in
the Cu–CuO interface gives T* ~ 104 K. It was shown
in [16–18] that a system of LEPs can pass into a super-
conducting state [19]. In this model, with regard to the
interaction of the nearest neighbors, the area of super-
conductivity is bounded by the inequality [20] K < Kc ~
t/ν (where K = N/B, N is the number of LEPs, B is the
number of sites, t is the hopping integral, and ν is the
Coulomb repulsion of LEPs on neighboring sites). At
K > Kc, the system of LEPs is ordered by a charge den-
sity wave. With the assumption of the occurrence of a
narrow band at the CuO surface, the value t ~ 0.4 eV
can be taken for this band [21]. In this case, the critical
value Kc ~ 0.04 for ν ~ 10 eV. In common bivalent met-
als, the ratio N/B ~ 1 and the concentration of carriers
n ~ 5 × 1022 cm–3, whereas the concentration of carriers
at Kc ~ 0.04 in the Cu–CuO interface should be n ~
1020 cm–3 for the formation of a Bose–Einstein conden-
sate. Actually, if the concentration in the interface layer
equals n ~ 1.6 × 1020 cm–3 and the effective mass of car-
riers m* ~ me, the estimation of the onset temperature
of Bose–Einstein condensation gives the value Tc ~
1000 K [22]. The obtained estimate of Tc corresponds to
the experimental value.
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The band structure of new layered (AlB2 type) Ca(AlxSi1 – x)2 and Sr(GaxSi1 – x)2 superconductors is studied by
the first-principle full-potential LMTO method. It has been shown that the superconducting properties of ter-
nary silicides are due to the high density of (Ca,Sr)d states at the Fermi level, whereas the growth of TC in going
from Sr(GaxSi1 – x)2 to Ca(AlxSi1 – x)2 is associated with the increase in phonon frequencies due to the decrease
in atomic masses. Simulations are performed for the electronic properties of hypothetical (11,11) and (20,0)
CaAlSi and SrGaSi nanotubes. In going from the crystalline to the nanotubular state, the silicide systems retain
metal-like properties. The template and “film rolling” techniques can be used for obtaining silicide nanotubes.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Jb; 71.20.Ps; 73.21.-b
Among new superconductors with a wide range of
potential applications in various areas of materials sci-
ence and technologies, two groups of materials have
attracted particular attention in recent years. One of
them contains quasi-one-dimensional (1D) nanotubular
systems. Their best known representatives are carbon
nanotubes [1, 2], for which a superconducting transi-
tion has been revealed recently (TC ~ 0.55 K) [3, 4] and
theoretically interpreted [5].

The second group of promising superconducting
materials comprises quasi-two-dimensional (2D) oxy-
gen-free phases, whose investigations were stimulated
by the discovery in 2001 [6] of the critical transition in
MgB2 (TC ~ 40 K). It was found (reviews [7, 8]) that the
hole-type 2px, y bands in the planes of graphite-like net-
works of boron atoms play a decisive role in the mech-
anism of pairing. This fundamental result determined
the main line of the current search for new supercon-
ductors, which is performed among layered (AlB2 type)
systems.

It is known that the vast majority of non-carbon nan-
otubes have been synthesized (and predicted) for sub-
stances or compounds that, like carbon, have 2D crys-
talline modifications (review [9]). Therefore, AlB2-type
phases can in their turn become the ground for creating
a new class of inorganic nanotubes that are potential
superconductors. This possibility was emphasized in
[10], where the structural and energy parameters of a
number of nanotubes of MgB2 and ZrB2 were simulated
by the molecular mechanics MM+ method. The elec-
tronic structure of a series of MgB2, AlB2, ScB2, TiB2,
and LiBC nanotubes and a composite (6,6)AlB2 and
(12,12)MgB2 tube was investigated in [11].
0021-3640/02/7603- $22.00 © 20189
One of the remarkable recent results is the synthesis
of the first representatives of a new class of layered
superconductors, ternary Sr(GaxSi1 – x)2 (TC ~ 3.5 K)
[12] and Ca(AlxSi1 – x)2 (TC ~ 7.7 K) [13] silicides isos-
tructural with the MgB2 superconductor. Their hexago-
nal sublattice is composed of alkaline-earth metals
(AEM = Ca, Sr), and the graphite-like networks are
composed of (Ga, Si) or (Al, Si) atoms. Magnetization
and electrical conductivity measurements showed that
these silicides are type II superconductors [12, 13].

In this work, we report the results of comprehensive
investigations of band structure parameters responsible
for the superconducting properties of new AlB2-type
ternary silicides and the results of simulations of their
hypothetical 1D modifications, whose electronic prop-
erties are analyzed using nonchiral armchair (11,11)
and zigzag (20,0) nanotubes.

Crystalline silicides were studied by the scalar rela-
tivistic full-potential LMTO method [14, 15]. The
Sr(GaxSi1 – x)2 (x = 0.375, 0.5, and 0.625) and
Ca(Al0.5Si0.5)2 compositions were considered within the
framework of 12-atomic supercells. The band structure
of nanotubes of the Sr(Ga0.5Si0.5)2 and Ca(Al0.5Si0.5)2 for-
mal stoichiometry was studied by tight-binding band-
structure calculations with matrix elements parameter-
ized according to extended Hückel theory [16].

Energy bands and densities of states (DOS) of sili-
cides are given in Figs. 1 and 2. We will discuss their
features using Ca(Al0.5Si0.5)2 as an example. Its valence
band (VB) is determined by (Al,Si)3p states, which
form four σ(3px, y) and two π(3pz) bands, significantly
differing in their dispersion relations E(k). The disper-
sion E(k) for 3px, y bands reaches a maximum in the kx, y
002 MAIK “Nauka/Interperiodica”
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Fig. 1. Energy bands: (1) Ca(Al0.5Si0.5)2 and
(2) Sr(Ga0.5Si0.5)2. FP LMTO calculations.
(Γ–K) direction. These bands reflects the 2D distribu-
tion of (Al,Si)3p states in graphite-like networks and
form pseudoplanar areas in the kz (Γ–A) direction. The
2px, y bands make a contribution to DOS over the entire
VB width with a maximum at ~2.6 eV below EF.
(Al,Si)pz states (responsible for interlayer bands)
exhibit a significant dispersion in the kz (Γ–A) direc-
tion. The σ(3px, y) and π(3pz) bands intersect at the Γ
point of the Brillouin zone (BZ). It is important that the
(Al,Si)3p bands are located below EF and do not con-
tain hole states as well as those in aluminum diboride,
which is isoelectronic to the Ca(Al0.5Si0.5)2 silicide
(electronic concentration (EC) = 9 electrons per for-
mula unit) and is not a superconductor [7, 8].

The main contribution to the Ca(Al0.5Si0.5)2 DOS at
the Fermi level N(EF) is made by the Ca3d states
(~59%), which determine both the structure of the
upper VB edge and the conduction (electronic type) of
the given phase. The contributions to N(EF) of
(Al,Si)3p states do not exceed ~9 and 10%, respec-
tively, Table 1.

With the general similarity of the band structures of
Ca(AlxSi1 – x)2 and Sr(GaxSi1 – x)2, their distinctions are
associated with a change in the type of intra- and inter-
layer interactions and are revealed in (i) an increase in
the dispersion of the σ and π bands in the A–L–H direc-
tions, (ii) the energy separation of these bands at the Γ
point, and (iii) the appearance of new occupied states of
a mixed Sr4d–Ga4p–Si3p type in the vicinity of the BZ
Fig. 2. Total (above) and partial densities of states of Ca(Al0.5Si0.5)2 and Sr(GaxSi1 – x)2 for x = (1) 0.375, (2) 0.5, and (3) 0.625.
JETP LETTERS      Vol. 76      No. 3      2002
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K, Γ, and A points (Fig. 1). The total Sr(GaxSi1 – x)2 VB
width increases by ~1.4 eV. The AEM d states make the
main contribution to N(EF).

Thus, the band structure of the AlB2-type silicides
has a number of principal distinctions from supercon-
ducting MgB2, which are as follows: (i) the filling of the
bonding px, y bands and the absence of hole σ states,
(ii) the growth of covalent interactions between the
(Al,Si) or (Ga,Si) and metal layers (due to hybridiza-
tion of the p–d states), and (iii) a change in the orbital
composition of N(EF), where the AEM d states make

Table 1.  Total and orbital densities of states at the Fermi
level (N(EF), 1/eV) for Ca(Al0.5Si0.5)2 and Sr(GaxSi1 – x)2, FP
LMTO calculations

Orbital Ca(Al0.5Si0.5)2

Sr(GaxSi1 – x)2

x = 0.375 x = 0.5 x = 0.625

Ca(Sr)-s 0.030 0.060 0.051 0.059

Ca(Sr)-p 0.096 0.041 0.010 0.124

Ca(Sr)-d 0.662 0.782 0.516 1.208

Al(Ga)-s 0.023 0.033 0.025 0.016

Al(Ga)-p 0.101 0.076 0.059 0.297

Al(Ga)-d 0.033 0.029 0.015 0.030

Si-s 0.023 0.097 0.026 0.010

Si-p 0.116 0.208 0.086 0.162

Si-d 0.044 0.052 0.034 0.040

Total 1.128 1.378 0.822 1.946
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the main contribution. The last mentioned fact is char-
acteristic of a wide range of low-temperature metal-like
superconducting compounds of p and d elements (NbN,
V3Si, etc.) [17] for which the values of TC can be
described by the McMillan equation Tc ≈ 〈ω〉 exp{f(λ)},
where 〈ω〉 is the averaged phonon frequency (inversely
proportional to the atomic mass of M) and λ is the elec-
tron–phonon coupling constant (λ = N(EF)〈I2〉/〈Mω2〉 ,
〈I2〉  is the electron–ion matrix element, 〈Mω2〉  does not
depend on mass and is determined by force constants).
According to [12, 13], TC(Ca(Al0.5Si0.5)2) = 7.7 K >
TC(Sr(Ga0.37Si0.63)2) = 3.5 K. The values of N(EF) that
we obtained for silicides close to each other in compo-
sition turn out to be comparable (vary over ~18%) but
are in an opposite relationship N(EF)(Ca(Al0.5Si0.5)2) <
N(EF) (Sr(Ga0.375Si0.625)2) (Table 1). It may be supposed
that the higher values of TC are obtained for the
(Ca(AlxSi1 – x)2) silicides, which contain easier atoms,
because of the growth of phonon frequencies.

Introducing electron or hole dopants is a widely
used technique for modifying the superconducting
properties of complex systems, and the result is often
predicted based on the rigid-band model [7, 8]. Calcu-
lations for Sr(GaxSi1 – x)2 with a variable Ga/Si ratio
showed that, as EC increases from 8.75 (for x = 0.375)
to 9.25 electrons per formula unit (x = 0.625), the DOS
profile at the Fermi level sharply changes (mainly, on
account of the Sr4d states, Fig. 2), which results in a
nonmonotonic dependence N(EF) with a minimum at
x = 0.5. Hence, attempts to optimize the superconduct-
ing properties of the Sr(Ga0.37Si0.63)2 phase obtained in
[12] by its electron doping (at least, up to the
Table 2.  Diameters (D, Å), total band energies (Etot, eV), Fermi energies (EF, eV), and interatomic bond indices (COOPs, e)
for (11,11) and (20,0) CaAlSi and SrGaSi nanotubes. Tight-binding calculations

Nanotube D** –Etot –EF

COOPs***

X–X X–M M–M

(11,11)AlSi 25.427 8.450 0.440 – –

(11,11)GaSi 25.137 8.739 0.451 – –

(11,11)GaAlSi(I)* 21.028 2403.34 6.492 0.480 0.003 0.181

(11,11)GaAlSi(II) 29.826 2386.62 6.356 0.473 0.034 0.106

(11,11)SrGaSi(I) 20.337 2493.50 6.845 0.493 0.0 0.220

(11,11)SrGaSi(II) 29.937 2479.16 6.863 0.489 0.006 0.178

(20,0)AlSi 26.691 9.046 0.879 – –

(20,0)GaSi 26.387 9.116 0.884 – –

(20,0)CaAlSi(III) 22.292 4401.57 6.347 0.894 0.0 0.118

(20,0)CaAlSi(IV) 31.090 4386.73 6.221 0.888 0.0 0.066

(20,0)SrGaSi(III) 21.587 4577.07 6.447 0.917 0.0 0.121

(20,0)SrGaSi(IV) 31.187 4572.45 6.614 0.910 0.0 0.099

    * Type of tube configurations: the metal cylinder (II, IV) “outside” or (I, III) “inside” the (AlSi) and (Ga, Si) tubes (Fig. 3).
  ** Diameters of “pure” (AlSi) and (Ga, Si) tubes and CaSr cylinders for the CaAlSi and SrGaSi nanotubes of various configurations.
*** Bond populations between pairs of atoms: X–X in (AlSi) and (Ga, Si) tubes, M–M in metal tubes, and X–M between these tubes.
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I III

II IV

Fig. 3. Models of configurations: (I, II) (11,11) and (III, IV) (20,0) CaAlSi and SrGaSi nanotubes; the metal (Ca, Sr) cylinder is
located (I, III) “inside” or (II, IV) “outside” the (Al,Si) and (Ga,Si) tubes.
Sr(Ga0.5Si0.5)2 composition) will be unproductive, and
the application of the simplified rigid-band model to the
description of the given systems is unacceptable.

The tubular forms of silicides were studied using as
an example nonchiral (11,11) and (20,0) nanotubes
with the formal stoichiometry Ca(Al0.5Si0.5)2 = CaAlSi
and Sr(Ga0.5Si0.5)2 = SrGaSi. The nanotubes consist of
two coaxial cylinders formed on the rolling of two
neighboring (in the crystal) planar Ca–(AlSi) or Sr–
(GaSi) networks. Two possible nanotube configurations
were considered: the metal cylinder is arranged either
“outside” or “inside” the (AlSi) or (GaSi) tubes (Fig. 3).
The interatomic distances were taken equal to the intra-
and interlayer distances in the 2D phases [12, 13]. Cal-
culations for the (11,11) and (20,0) nanotubes were per-
formed using 66- and 120-atomic cells; one-layer nan-
otubes of (AlSi) and (GaSi) monolayers were also cal-
culated (Table 2).

The total DOS of nanotubes presented in Fig. 4
demonstrate that these retain metal-like properties
inherent in 2D silicides. However, depending on the
geometry and composition of nanotubes, their DOS at
the Fermi level sharply change up to the appearance of
a pseudogap for the (11,11)SrGaSi nanotube. Estima-
tions of the total band energies (Etot) of nanotube con-
figurations (I–IV, Fig. 3) indicate that the structures
containing the metal cylinder “inside” the nanotube of
(AlSi) and (GaSi) monolayers are more stable, which
can be qualitatively explained by the stronger inter-
atomic bonds for nanotube configurations I and III
(Table 2).

An analysis of crystal orbital overlap populations
(COOPs) showed that (i) bonds in (AlSi) and (GaSi)
nanotubes of CaAlSi and SrGaSi tubes are stabilized
with respect to relatively “pure” one-layer tubes
through partial Ca (AlSi) and Sr (GaSr) electron
transfer; (ii) the main bonds are those in (AlSi) and
(GaSi) nanotubes, and comparable bonds are those in
Ca and Sr tubes; and (iii) the covalent bonds between
coaxial cylinders are very weak. Bonds of certain types
depend on the composition and structure of nanotubes.
For the tubes of the same type (armchair (11,11) or zig-
JETP LETTERS      Vol. 76      No. 3      2002
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zag (20,0), the X–X and M–M bonds are stronger for
the SrGaSi tubes; for armchair (11,11) or zigzag (20,0)
nanotubes of a particular composition (CaAlSi or
SrGaSi), the bonds in the SrGaSi tubes are significantly
stronger, Table 2.

Thus, the analysis of the band structure of new ter-
nary silicides showed that their superconducting prop-
erties are associated with the high density of AEM d
states at the Fermi level, and the growth of TC in going
from Sr(GaxSi1 – x)2 to Ca(AlxSi1 – x)2 is evidently due to
the growth of the frequencies of the phonon spectrum
as a result of the decrease in the atomic masses of the
system components. The spectra of Sr(GaxSi1 – x)2 vary
nonlinearly as a function of the Ga/Si ratio; an increase
in the silicon content (electron doping) will lead (at
least, up to Ga/Si = 1) to a deterioration of the super-
conducting characteristics of the silicide.

Ternary CaAlSi and SrGaSi silicides in the tubular
form retain their metal-like properties. The main bonds
in nanotubes are those due to “intratubular” interac-
tions, and the “intertubular” bonds are weak as well as
those in multilayer carbon nanotubes (of van der Waals
type [1, 2]). The configurations of silicide tubes con-
taining AEM layers “inside” the (AlSi) or (GaSi) tubes
are more stable; in their turn, the tubes of SrGaSi are
more stable than those of CaAlSi.

Experimental data on the synthesis of nanotubes
based on AlB2-type phases have not been reported so

Fig. 4. Total densities of states for (1) (11,11) CaAlSi,
(2) (11,11)SrGaSi, and (3) (20,0) SrGaSi nanotubes; tight-
binding calculations.
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far. With regard to the current practice of obtaining
inorganic nanotubes (review [10]), it may be expected
that the most probable methods for creating CaAlSi and
SrGaSi nanotubes will be the template technique (dep-
osition of the surface of carbon nanotube matrices) or
the film rolling technique. The first GeSi/Si and
InGaAs/GaAs tubes have been obtained recently by
this technique [18, 19].

This work was supported by the Russian Foundation
for Basic Research, project nos. 01-03-32513 and 02-
03-32971.
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