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We derive the two-plateau momentum distribution of final state (FS) quarks produced in deep inelastic scatter-
ing (DIS) off nuclei in the saturation regime. The diffractive plateau, which dominates for small p, measures
precisely the momentum distribution of quarks in the beam photon; the role of the nucleus is simply to provide
an opacity. The plateau for truly inelastic DIS exhibits a substantial nuclear broadening of the FS momentum
distribution. We discuss the relationship between the FS quark densities and the properly defined initial state
(IS) nuclear quark densities. The Weizsäcker–Williams glue of a nucleus exhibits a substantial nuclear dilution,
still soft IS nuclear sea saturates because of the anti-collinear splitting of gluons into sea quarks. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 24.85.+p
The interpretation of nuclear opacity in terms of the
fusion and saturation of nuclear partons was introduced
in 1975 [1] long before the QCD parton model: the
Lorentz contraction of relativistic nuclei entails a spa-
tial overlap of partons with x & xA ≈ 1/RAmN from dif-
ferent nucleons, and the fusion of overlapping partons
results in the saturation of parton densities per unit area
in the impact parameter space. The pQCD link between
nuclear opacity and saturation was considered by
Mueller [2], and the pQCD discussion of fusion of
nuclear gluons was revived by McLerran et al. [3].

The common wisdom is that in deep inelastic scat-
tering (DIS), final-state (FS) interaction effects can be
neglected and the observed momentum distribution of
struck partons in the FS coincides with the initial state
(IS) density of partons in the probed hadron. Based on
the consistent treatment of intranuclear distortions, we
derive the two-plateau spectrum of FS quarks. We find
a substantial nuclear broadening of inclusive FS spectra
and demonstrate that despite this broadening, the FS
sea parton density exactly equals the IS sea parton den-
sity calculated in terms of the Weizsäcker–Williams
(WW) glue of the nucleus as defined according to [4].
We pay special attention to an important point that the
diffractive DIS, in which the target nucleus does not
break, is retained in the ground state, and is responsible
for precisely 50 percent of the total DIS events [5]. We
point out that the saturated diffractive plateau measures
precisely the momentum distribution of (anti-)quarks in
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the q  Fock state of the photon. In contrast to DIS off
nuclei, the fraction of DIS off free nucleons which is
diffractive is negligibly small [6], ηD & 6–10%, and
there is little room for genuine saturation effects even at
HERA. We show how the anti-collinear splitting of
WW gluons into sea quarks gives rise to nuclear satura-
tion of the sea despite a substantial nuclear dilution of
the WW glue.

We base our analysis on the color dipole formula-
tion of DIS [5, 7–10] and illustrate our ideas on an
example of DIS at x ~ xA ! 1 which is dominated by
interactions of q  states of the photon. The total cross
section for interaction of the color dipole r with the tar-
get nucleon equals

(1)

where f(k) is related to the unintegrated glue of the tar-
get nucleon by

(2)

For DIS off a free nucleon target (see Figs. 1a–1d) the
momentum spectrum of the FS quark prior the hadroni-
zation,

(3)
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where p is the transverse momentum and z is the Feyn-
man variable, coincides upon integration over z, with
the conventional IS unintegrated p distribution of par-
tons in the target. Notice that the target nucleon is color-
excited and that there is no rapidity gap in the FS.

In DIS off nuclei, one must distinguish the three
principal processes with distinct unitarity cuts of the
forward Compton amplitude (Fig. 1g): the coherent dif-
fraction dissociation (D) of the photon (Fig. 1h),
quasielastic diffraction dissociation (qel) followed by
excitation and breakup of the target nucleus (Fig. 1i) (in
both of these processes, there is no color flow between
the photon debris and the nucleus), and the truly inelas-
tic (in) DIS with color excitation of nucleons of the tar-

Fig. 1. The pQCD diagrams for (a)–(d) inclusive and (e), (f)
diffractive DIS off protons and (g)–(k) nuclei. Diagrams
(a−d) show the unitarity cuts with color excitation of the tar-
get nucleon, (g) is a generic multiple scattering diagram for
Compton scattering off nucleus, (h) is the unitarity cut for a
coherent diffractive DIS, (i) is the unitarity cut for
quasielastic diffractive DIS with excitation of the nucleus
A*, and (j) and (k) are the unitarity cuts for truly inelastic
DIS with single and multiple color excitation of nucleons of
the nucleus.
get nucleus (Figs. 1j, 1k). Useful guidance for the iso-
lation of different processes comes from the coupled-
channel formalism presented in [11].

We work in the conventional approximation of two
t-channel gluons in DIS off free nucleons, Figs. 1a–1d,
i.e., neglecting the effect of diffractive DIS (Figs. 1e,
1f) on the total cross section on free nucleons, ηD ! 1.
Then, the S-matrix of the quark–nucleon scattering
must be computed to the second order in the QCD
eikonal δ(b), and the S-matrix for the color dipole-
nucleon scattering takes the form

(4)

Here, 〈…〉0 indicates that we must take only the color
singlet component of the two-gluon exchange and we
have introduced special notation ∆(b) = δ(b) for the
color-exchange component of the S-matrix. The color

dipole cross section equals σ(r) = 2 b{1 – 〈S(b + r,

b)〉0}, which relates the QCD eikonal to the gluon struc-
ture function of the nucleon,

(5)

If in the nuclear S-matrix SA({∆}, {δ}; b+, b–) =

(b+ – bj, b– – bj) one puts ∆(b± – bj) ≡ 0, then
it would describe pure diffraction without color excita-
tions in a nucleus. Then, with standard reference to clo-
sure [11], the momentum spectrum of observed FS
quarks for truly inelastic DIS with color excitations in
the nucleus can readily be isolated:

(6)

Here, Ψ is the q -Fock state wave function of the vir-
tual photon and we have suppressed its dependence on
z. The FS spectra in the coherent and quasielastic dif-
fraction are obtained by substituting

(7)
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(8)

for the expression in the curly braces.
The size of color dipoles can be neglected compared

to the radius of heavy nuclei. In the standard approxi-
mation of a dilute gas nucleus, only the color-singlet
terms ∝〈∆ (b1)∆(b2)〉0 would appear in (6), and we find

(9)

where T(b) = nA(z, b) is the optical thickness of a

nucleus at an impact parameter b ≈ b±, . Here, Σ(r) =
σ(r); we use the capital letter to indicate that it origi-
nates from the color excitation processes, whereas the
last two terms in the exponent of (9) describe intranu-
clear attenuation of the q  pair due to color-singlet
exchanges. The diffractive S-matrix elements entering
(7), (8) are readily obtained from (9). For a heavy
nucleus, the quasielastic diffraction is a surface phe-
nomenon and can be neglected for all the practical pur-
poses, see [5]; it vanishes to the considered leading
order (4). If we are interested only in the single particle
spectrum and integrate over p–, then  = b–, and the
diffractive attenuation terms in the exponent of (9)
would exactly cancel the two terms from multiple color
excitation processes in the last line of (9), and

(10)

Evidently, the dependence of nuclear attenuation fac-
tors on r, r' shall distort strongly the observed momen-
tum distribution of quarks.
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In the further interpretation of these results in terms
of the parton model, we resort to the representation [4]
(NSS)

(11)

Driven by a close analogy to (1), (2) in terms of f(k), we
interpret

(12)

as the WW unintegrated glue of a nucleus per unit area
in the impact parameter plane. It is normalized as

(13)

Here,

defines the nuclear opacity, and the j-fold convolutions

(14)

describe the contribution to the diffractive amplitudes
from j split pomerons [4].

A discussion of the nuclear antishadowing property
of the hard WW glue is found in [4]. A somewhat
involved analysis of the properties of the convolutions
(14) in the soft region shows that they develop a pla-
teau-like behavior, with the width of the plateau
expanding ∝ j. The gross features of the WW nuclear
glue in the soft region are well reproduced by

(15)

where the saturation scale  = νA(b)  ∝  A1/3. The

soft parameters  and σ0 are related to the integrated
glue of the proton in the soft region,

Notice the nuclear dilution of soft WW glue, φWW(k) ∝
1/  ∝  A–1/3.
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On the one hand, making use of the NSS represen-
tation, the total nuclear photoabsorption cross section
can be cast in the form

(16)

which has a profound resemblance to (3), and one is
tempted to take the differential form of (16) as a defini-
tion of the IS sea quark density in a nucleus:

(17)

In terms of the WW nuclear glue, all intranuclear mul-
tiple-scattering diagrams of Fig. 1g sum up to precisely
the same four diagrams Figs. 1a–1d as in DIS off free
nucleons. Furthermore, one can argue that the small-x
evolution of the so-defined IS nuclear sea is similar to
that for a free nucleon sea. Although p emerges here
just as a formal Fourier parameter, we shall demon-
strate that it can be identified with the momentum of the
observed final state antiquark.

On the other hand, making use of the NSS represen-
tation, after some algebra, one finds

(18)
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As far as diffraction is concerned, the analogy between
(20) and its counterpart for free nucleons [4, 8, 12] and
nuclear WW glue φWW(k) and f(k) thereof, is complete.
Putting the inelastic and diffractive components of the
FS quark spectrum together, we evidently find the FS
parton density which exactly coincides with the IS par-
ton density (17) such that p is indeed the transverse
momentum of the FS sea quark. The interpretation of
this finding is not trivial, though.

Consider first the domain of p2 & Q2 &  that the
nucleus is opaque for all color dipoles in the photon.

Hereafter, we assume that the saturation scale  is so
large that p2, Q2 are in the pQCD domain and neglect
the quark masses. In this regime the nuclear counter-
parts of the crossing diagrams of Figs. 1b, 1d, 1f can be
neglected. Then, in the classification of [4], diffraction
will be dominated by the contribution from the Landau-
Pomeranchuk diagram of Fig. 1e with the result

(21)

Up to now, we specified neither the wave function of
the photon nor the spin nor the color representation of
charged partons; only the last result in (17) makes

explicit use of the conventional spin-  partons. We also

used the normalization (13). Remarkably, diffractive
DIS measures the momentum distribution of quarks
and antiquarks in the q  Fock state of the photon. We
emphasize that this result, typical of the Landau–
Pomeranchuk mechanism, is a completely generic one
and would hold for any beam particle such that its cou-
pling to colored partons is weak. In contrast to diffrac-
tion off free nucleons [8, 12, 13], diffraction off opaque
nuclei is dominated by the anti-collinear splitting of
hard gluons into soft sea quarks, k2 @ p2. Precisely for
this reason one finds the saturated FS quark density,
because the nuclear dilution of the WW glue is com-
pensated for by the expanding plateau. The result (21)
has no counterpart in DIS off free nucleons because dif-
fractive DIS off free nucleons is negigibly small even at
HERA, ηD & 6–10%.

The related analysis of the FS quark density for truly

inelastic DIS in the same domain of p2 & Q2 &  gives
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(22)

It describes the final states with color excitation of a
nucleus. However, as a function of the photon wave
function and the nuclear WW gluon distribution, it is
completely different from Eq. (3) for free nucleons. The
θ-function simply indicates that the plateau for inelastic

DIS extends up to p2 & . For Q2 ! , the inelastic
plateau contributes little to the transverse momentum
distribution of soft quarks, p2 & Q2, but the inelastic
plateau extends far beyond Q2, and its integral contribu-
tion to the spectrum of FS quarks is exactly equal to that
from diffractive DIS. Such a two-plateau structure of
the FS quark spectrum is a new finding and has not been
considered before.

Now notice that in the opacity regime, the diffrac-
tive FS parton density coincides with the contribution
∝|〈γ *|p〉|2 to the IS sea parton density from the spectator
diagram 1a, whereas the FS parton density for truly
inelastic DIS coincides with the contribution to IS sea
partons from the diagram of Fig. 1c. The contribution
from the crossing diagrams 1b, 1d is negigibly small.

Our results (21) and (22), especially nuclear broad-
ening and unusually strong Q2 dependence of the FS/IS
parton density from truly inelastic DIS, clearly demon-
strate a distinction between diffractive and inelastic
DIS. Our considerations can readily be extended to the

spectrum of soft quarks, p2 & , in hard photons,

Q2 * . In this case, the result (21) for diffractive DIS
is retained, whereas in the numerator of the result (22)

for truly inelastic DIS, one must substitute Q2  
so that in this case dqFS|D ≈ dqFS|in and dqIS ≈ 2dqFS|D.

The evolution of a soft nuclear sea, p2 & , is entirely
driven by an anti-collinear splitting of the NSS-defined
WW nuclear glue into the sea partons.

The early discussion of the FS quark density in the
saturation regime is due to Mueller [14]. Mueller

focused on Q2 @  and discussed neither a distinction
between diffractive and truly inelastic DIS nor a Q2

dependence and broadening (15) for truly inelastic DIS

at Q2 & .

We come to a summary. We reported a derivation of
the FS parton density. Our result (9) summarizes in an
elegant way intranuclear distortions due to multiple dif-
fractive rescatterings and color excitations of the target
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nucleus. In conjunction with the NSS definition of the
WW glue of the nucleus, Eqs. (11) and (12) give an
explicit form of the FS parton densities. The two-pla-
teau FS quark density with the strong Q2 dependence of
the plateau for truly inelastic DIS has not been dis-
cussed before. A comparison with the IS nuclear parton
densities which evolve from the NSS-defined WW
nuclear glue shows an exact equality of the FS and IS
parton densities. The plateau-like saturated nuclear
quark density is suggestive of Fermi statistics, but our
principal point that for any projectile which interacts
weakly with colored partons the saturated density mea-
sures the momentum distribution in the q , gg, … Fock
state of the projectile disproves the Fermi-statistics
interpretation. The spin and color multiplet of colored
partons the photon couples to is completely irrelevant,
what only counts is an opacity of heavy nuclei. The
anti-collinear splitting of WW nuclear glue into soft sea
partons is a noteworthy feature of both diffractive DIS
and IS sea parton distributions. The emergence of a sat-
urated density of IS sea partons from the nuclear-
diluted WW glue is due to the nuclear broadening of the
plateau (15). Because the predominance of diffraction
is a very special feature of DIS [5], one must be careful
with applying the IS parton densities to, for instance,
nuclear collisions, in which diffraction would not be of
any significance.

One can go one step further and consider interac-
tions with the opaque nucleus of the q g Fock states of
the photon. Then the above analysis can be extended to
x ! xA , and the issue of the x-dependence of the satura-

tion scale  can be addressed following the discus-
sion in [9]. We only mention here that as far as diffrac-
tion and IS parton densities are concerned, the NSS-
defined WW glue remains a useful concept, and the
close correspondence between φWW(k) for the nucleus
and f(k) for the nucleon is retained.

This work was partially supported by the INTAS
grants (project nos. 97-30494 and 00-00366) the DFG
grant (project no. 436RUS17/119/01) and by DAAD
and Nordita.
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The coherent final state interaction of an energetic parton produced in AA collisions is studied. This interaction
is due to the change in the cutoff scale and in the running coupling constant when the parton passes from a vac-
uum to a quark–gluon plasma. It is demonstrated that the contribution of this new mechanism to the energy loss
may be of the same order of magnitude as the induced gluon radiation. However, an accurate evaluation of this
medium effect is a difficult task, because there is a strong cancellation between the cutoff and running coupling
constant effects. The uncertainties in the contribution of the coherent final state interaction restrict strongly the
accuracy of jet tomographic analyses of the matter density produced in AA reactions. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 24.85.+p; 25.75.Dw
 1. Introduction. In recent years there has been
much work done on the energy loss of fast partons in a
hot QCD medium due to gluon radiation induced by
multiple scattering (for a review, see [1]). This is of
great importance for understanding the final state inter-
action in hard reactions in high energy nucleus–nucleus
collisions, which are under active investigation at RHIC
and will be studied in future experiments at LHC.

Theoretical calculations show that the energy loss in
quark–gluon plasma (QGP) considerably exceeds that
in hadronic medium [2–4]. Since gluon radiation soft-
ens the parton fragmentation functions of energetic par-
tons produced in hard reactions in the initial stage of AA
collisions it should lead to significant suppression of
the high pT hadronic spectra in AA collisions with
respect to pp collisions (so-called jet quenching) if a hot
QGP is formed [5, 6]. Such suppression was indeed
recently discovered by the PHENIX experiment [7] at
RHIC for π0 spectra at pT & 4 GeV in central Au + Au

collisions at  = 130 GeV. Because the energy loss is
sensitive to the density of the hot medium, it looks quite
natural to use experimental data on high pT spectra for
jet tomographic analysis of the matter density produced
in AA reactions [8–10].

To understand the range of uncertainty in jet tomo-
graphic analyses, it is important to study the other pos-
sible final state interaction effects in jet production.
One mechanism of potential interest is the in-medium
modification of the parton cascade without gluon
exchanges between the fast partons and thermal partons
(I call this mechanism the coherent final state interac-
tion (CFSI)). The reason is evident: jet splitting in vac-
uum is the major mechanism of the energy loss of ener-

 ¶This article was submitted by the author in English.
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getic partons, and if the medium affects the parton cas-
cading, one can expect a significant modification of the
fragmentation functions. For example, such a modifica-
tion should inevitably arise as a mass effect due to dif-
ferent infrared cutoff scales in a vacuum and a QGP.
Another obvious source of the CFSI is the in-medium
modification of the running coupling constant1 αs(k).
Although at large virtualities the running coupling con-
stants in the vacuum and QGP are close to each other,
this should not be the case at low k, where different
background environments in which the gluon
bremsstrahlung occurs can lead to a difference in the
running coupling constants in these two cases. Note
that both these medium effects should lead to transition
radiation very similar to that of photon radiation in
QED. The purpose of the present work is to address the
CFSI for RHIC conditions within a simple model for
gluon radiation, which will be discussed in detail
below.

2. Cutoff scales and running coupling constants.
Let us first discuss the magnitudes of the cutoff scales
for parton splitting in a vacuum and QGP. In a QCD
vacuum, the natural cutoff is the inverse gluon correla-

tion radius  ~ 0.8–1 GeV [11, 12]. At such a virtu-
ality scale, the perturbative cascade stops in Monte
Carlo programs like JETSET, and string fragmentation
takes over. Note also that the introduction of the effec-

tive gluon mass mg, v ~  (hereafter I use the index v
for vacuum quantities, and for the plasma quantities
below I use the index p) allows one to describe the
HERA data on the low-x; proton structure function

1 Note that these CPSI effects differ from the coherent double
gluon exchanges which are usually included in the induced gluon
radiation to insure the unitarity [3].

Rc
1–

Rc
1–
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[13]. The analysis of inclusive radiative decays of the
J/Ψ and ϒ [14] also gives mg, v ~ 0.7–1.2 GeV.

In the QGP phase, the nonperturbative fluctuations
are suppressed, and the natural cutoff for radiation of
transverse gluons, which propagate through QGP as
quasiparticles, is the thermal gluon mass. At high tem-

perature, it reads  = (g2T2/2)(Nc /3 + Nf /6). An
analysis of the results of lattice calculations shows that
in the temperature range T ~ (1–3)Tc (Tc ≈ 170 MeV is
the temperature of the confinement phase transition),
which is of relevance to AA collisions at RHIC, the non-
perturbative effects are still important [15]. Using a
quasiparticle picture with massive gluons and quarks in
the above temperature window, the authors of [15]
obtained mg, p ≈ 0.4 GeV, and mq, p ≈ 0.3 GeV. Thus, I
see that there is a considerable difference in the cutoffs
in a vacuum and a QGP.

Let us recall now the situation with the running cou-
pling constant at low k. There are some indications that
in the vacuum nonperturbative effects stop the growth
of the running coupling constant at k & kc ~ 1 GeV [16–
19]. Phenomenologically, the magnitude of αs, v at k & kc

can be estimated from, say, an analysis of heavy quark
energy losses, which gives [17]

(1)

For the simplest prescription with frozen αs, v at k < kc

(the so-called F-model [17]), using the one-loop
expression at k > kc, one can obtain from Eq. (2)

αs, v(k < kc) =  ≈ 0.7, and kc ≈ 0.82 GeV. These val-
ues are for ΛQCD = 0.3 GeV.

Unfortunately, at present, there is no accurate infor-
mation on αs(k) for gluon emission from a fast parton
in a QGP. Available pQCD calculations are performed
in the static limit (see, for example, [20–22] and refer-
ences therein). The running coupling constant obtained
in [21, 22] has a pole at k/ΛQCD ~ 3 at T ~ 250 MeV.
Thus, in pQCD, even for the static case, the situation
with the k-dependence of the in-medium running cou-
pling constant at low k is unclear. On the other hand, an
analysis of lattice results within the quasiparticle model
gives the thermal αs with a smooth T-dependence, and
at T ~ 250 MeV αs ≈ 0.5 [15]. In the present paper, in
the absence of accurate information on the in-medium
running coupling constant for fast partons, I perform
calculations using the above F-model with different

values of .

3. Evaluation of the coherent medium correction
to the gluon spectrum. Let us now discuss the techni-
cal aspects of our analysis of CPSI. I consider the gluon
radiation from a fast quark (the generalization to the
radiation from a gluon is trivial). I neglect multiple
emission and consider only the leading order splitting

mg p,
2

k
α s v, k( )

π
----------------- 0.36 GeV.≈d

0

2 GeV

∫

α s v,
fr

α s p,
fr
q  gq. This is reasonable, since the effect is domi-
nated by the gluons with small transverse momenta k &
1–2 GeV. Note that I choose the z-axis along the
momentum of the initial fast parton, so for the central
rapidity region in AA collisions our L is the ordinary
transverse distance between the jet production point
and the boundary of QGP.

I consider a fast quark with energy Ei produced at
z = 0, which eventually splits at some z > 0 into a gluon
and a final quark with energies Eg = xEi and Ef = (1 –
x)Ei, respectively. The corresponding matrix element
can be written in the form (below, for simplicity, I drop
color factors)

(2)

where ψi, f (z, r) are the wave functions of the initial and
final quarks, Aµ is the wave function of the emitted
gluon, and r is the transverse coordinate. In Eq. (2), I
do not explicitly indicate the z and k dependence of the
running coupling constant g. I evaluate the matrix ele-
ment in Eq. (2) for small emission angles. Then, at high
energies Ej @ mq, the quark wave functions using the
ordinary light-cone spinor basis can be written as

(3)

where the operator  is 

(4)

Here, χj is the quark spinor (normalized to unity), a =
γ0g, β = γ0, and p = –i∇ ⊥ . The gluon wave function can
be written in a form similar to Eq. (3) (up to an obvious
change of the spin operator). The transverse quark wave
function φj(r, z) entering into Eq. (3) is governed by the
two-dimensional Schrödinger equation in which z plays
the role of time

(5)

A similar equation holds for the gluon wave function.
Without a loss of generality, I can take for the initial

quark the plane wave state in the r-plane and set pi = 0.
Then all the transverse wave functions can be written as

(6)

Eventually, the r-integration in Eq. (2) will give pg +
pf = pi = 0. Note that, since the quark mass is of only
marginal significance (for light quarks) in the gluon
radiation, I will neglect the z dependence of mq and use
the same quark mass in a vacuum and in a QGP. How-

T i z rgψ f r z,( )γµAµ r z,( )ψi r z,( ),d∫d

0

∞

∫=

ψ j r z,( ) iE jz( )Û jφj z r,( ),exp=

Û j

Û j 2E j

ar βmq+

2E j

------------------------+ 
  χ j.=

i
∂φj z r,( )

∂z
----------------------

p2 mq
2+( )

2E j

-----------------------φj z r,( ).=

φj z r,( ) i p jr ξ
p j

2 m j
2 ξ( )+( )

2E j

-------------------------------d

0

z

∫–
 
 
 

.exp=
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ever, for the gluon transverse wave function, I use the
z-dependent gluon mass: mg(z < L) = mg, p and mg(z >
L) = mg, v . Using the above equations for the transition
amplitude and wave functions, with the help of the stan-
dard Fermi golden rule, one can obtain after some
simple calculations for the gluon distribution (below
k = pg)

(7)

(8)

(9)

where  = x2 + (1 – x), r(k) =

. The first term on the r.h.s of (7) is
the gluon spectrum in a vacuum, and the second one
gives the medium correction of interest. In deriving
Eqs. (8) and (9), I neglected the small spin-flip contri-

bution (∝ ).

Recall that the gluon formation length is Lf ~
2Eix(1 – x)/(k2 + µ2) (I do not specify here the medium
index, since µp and µv are of the same order). Thus, it is
seen that the argument of cosine in the r.h.s. of (9) is
~L/Lf. Obviously, at Lf ! L, the rapidly oscillating
cosine as a function of L will vanish upon averaging
over the production point of the fast quark, and one gets
an L-independent correction to the vacuum term. It can
be written in the following physically transparent form

(10)

where the first two terms simply describe the modifica-
tion of the spectrum due to the change in mg and αs (in
an infinite QGP), and the last term is the contribution of
the transition radiation which reads

(11)

dN

dxdk2
--------------- dN 0( )

dxdk2
---------------

dN 1( )

dxdk2
---------------,+=

dN 0( )

dxdk2
---------------

CFα s
v k( )

πx
--------------------- 1 x– x2

2
-----+ 

  k2

k2 µv
2+( )2

-------------------------,=

dN 1( )

dxdk2
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2CFα s
v k( )

πx
------------------------ 1 x– x2

2
-----+ 

 =

× 1
k2 µp

2+( )L
2Eix 1 x–( )
---------------------------- 

 cos–

×
k2r k( ) r k( ) 1–( )k2 r k( )µv

2 µp
2–+[ ]

k2 µp
2+( )2

k2 µv
2+( )

--------------------------------------------------------------------------------------,

µi
2 mq

2 mg i,
2

α s p, k( )/α s v, k( )

mq
2

dN 1( )

dxdk2
---------------

L f  ! L

dN 0( )

dxdk2
---------------

p

dN 0( )

dxdk2
---------------

v

–
dN tran

dxdk2
---------------,+≈

dN tran

dxdk2
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=  
CFα s

v k( )
πx
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2
-----+ 

  kr k( )
k2 µp

2+
----------------- k

k2 µv
2+
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  .
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It can be derived from (2) taking –∞ for the lower limit
of the z integral. Note that the changes in both mg and αs

cause the transition radiation.
On the other hand, for the gluons with Lf @ L,

expanding cosine in (9), one gets the correction ∝ L2

(12)

In this regime one cannot separate the transition radia-
tion. The above relationships demonstrate that the
decrease in the cutoff and that in the coupling constant
in QGP work in opposite directions. One can also see
that the relative contribution of the medium correction
in Eq. (7) is larger for gluons with Lf & L. These facts
are consistent with intuitive expectations.

4. Numerical results. In numerical calculations, I
take mg, v = 0.4 and mg, v = 0.8 GeV, and for the quark
mass, I take mq, p = mq, v = 0.3 GeV. As was mentioned
above in the absence of accurate data on the in-medium
αs at low k, I perform numerical calculations parame-
trizing it in the same F-model as for αs, v for several

values of . To understand the sensitivity of CFSI to

 I use for it four values: 0.7, 0.5, 0.4, and 0.3. The
first version, corresponding to αs, p = αs, v , is unlikely to
be realistic, since it neglects the in-medium modifica-
tion of αs(k), but it allows one to see the magnitude of
the purely mass effect. The last value is also unlikely to
be realistic. Indeed, the results of the analysis of the lat-
tice data within the quasiparticle QGP model [15] say
that αs ≈ 0.3 occurs for T ≈ 2.2Tc. Since a QGP can have
a temperature above this value only within a short time
interval, in the initial stage of its evolution, the value of

 = 0.3 is probably too small for the evaluation of

the CFSI. The value  = 0.5 seems to be most rea-
sonable. For instance, it is close to the value αs ≈ 0.47
obtained in [15] at T ≈ 1.5Tc ≈ 250 MeV. Of course, it is
not obvious that the thermal αss can be extrapolated
safely to higher energies. However, one can expect that
in the splitting of fast partons, the thermal bath effect on
αs can only be weaker than that for the thermal partons.
If this is the case, the CFSI correction may be larger
than our estimate.

In Fig. 1, I show the x dependence of the ratio R(x) =

/  for several k windows at Ei = 40 GeV aver-

aged over L in the interval [0, 6] fm. As can be seen in
Fig. 1, for αs, p = αs, v the mass effect alone enhances
considerably the probability of gluon emission at low x

and k & 1 GeV. The curves for smaller values of 

dN 1( )

dxdk2
---------------

L f  @ L

CFα s k( )L2

πx
-------------------------- 1 x– x2

2
-----+ 
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×
k2r k( ) r k( ) 1–( )k2 r k( )µv

2 µp
2–+[ ]

4Ei
2x2 1 x–( )2 k2 µv

2+( )
--------------------------------------------------------------------------------------.

α s p,
fr
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fr
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dx
-------------

α s p,
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show that the enhancement of radiation due to the
smaller cutoff in a QGP is strongly compensated by the
effect of the smaller coupling constant in a QGP, and

for the probably unrealistic  = 0.3, there is a kine-
matic region where CFSI suppresses the gluon radia-
tion. Using (9), I also calculated the energy loss,
defined as

α s p,
fr

Fig. 1. The ratio R(x) = /  at Ei = 40 GeV for

 = (a) 0.7, (b) 0.5, (c) 0.4, and (d) 0.3 evaluated using

Eqs. (7)–(9) for the k-windows: [0, 0.5] (solid line), [0.5, 1]
(dotted line), [1, 1.5] (dashed line), and [1.5, 2] (long
dashed line) GeV. The x-distributions were obtained by
averaging over L in the interval [0, 6] fm.

dN
dx
------- dN

0( )

dx
--------------

αs p,
fr

Fig. 2. The quark energy loss ∆E due to the CFSI as a func-

tion of L for  = (a) 0.7, (b) 0.5, (c) 0.4, and (d) 0.3 at

Ei = 10 (solid line), 20 (dotted line), 40 (dashed line), and
80 (long dashed line) GeV.

αs p,
fr
For the limits of the x and k2 integration, I take xmin =

mg/Ei, xmax = mq/Ei, and  = min[ x2, (1 – x)2].
In Fig. 2, I show the results for ∆E as a function of L at

Ei = 10, 20, 40, and 80 GeV. As one can see, for  =
0.7, 0.5, and 0.4, the energy loss is positive, rising with

L and Ei. For  = 0.3 ∆E becomes negative, which
shows that the suppression of the gluon radiation due to
the small coupling constant becomes stronger than the
enhancement caused by the mass effect. This strong
cancellation between the two competing effects makes
it difficult to make definitive predictions for the effect

of CFSI in the region  ~ 0.3–0.4. Note that our ∆E

for  = 0.5 appears to be of the same order of mag-
nitude as the GLV predicted in [8] for the energy loss
due to the induced radiation.

5. Summary. I have shown that the final state inter-
action due to the change in the cutoff scale and in the
running coupling constant when the parton passes from
a vacuum to a QGP modifies the gluon radiation from
fast partons produced in AA collisions. The contribution
of this mechanism to the energy loss can be of the same
order of magnitude as the induced gluon radiation.
However, an accurate evaluation of the CFSI is a diffi-
cult task, since there are strong cancellations between
the mass and running coupling constant effects, and the
results depend strongly on the assumptions on the
k dependence of the in-medium αs(k).

The results of the present paper raise a practical
question of whether the jet tomographic analyses based
on the theory of induced gluon radiation can be used for
extracting the density of a hot QCD medium produced
in AA collisions. At present, one cannot exclude the
possibility that the CFSI may appear to be even more
important than the induced radiation. To clarify the sit-
uation, it is highly desirable to study the influence of
QGP on the running coupling constant for fast partons.

I am grateful to R. Baier and N.N. Nikolaev for dis-
cussions. I am also grateful to J. Speth for the hospital-
ity at FZJ, Jülich, where this work was completed. This
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The nonparaxial dynamics of light pulses consisting of several light-field oscillations in nonlinear media with
dispersion is analyzed. It is shown that the self-action of these extremely short pulses can result in their self-
division. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 42.65.Jx
The investigation of the self-action of light pulses
consisting of several light-field oscillations is at the
front line of nonlinear optics of ultrashort pulses [1].
The envelope concept is physically meaningless for
these extremely short pulses. Being derived in the
approximation of quasi-monochromatic radiation, the
equations of envelope motion [2, 3], which are custom-
ary for nonlinear optics, are invalid for these pulses.
The theory of the nonlinear propagation of extremely
short pulses through various media was developed in
numerous studies and is usually based on equations
describing the dynamics of the pulse field rather than
envelope (e.g., see [4, 5]). In most of these papers, the
nonlinear evolution of the field of an extremely short
pulse with a stationary transverse structure was ana-
lyzed (which is assumed to be true in the first approxi-
mation in waveguides). The papers that consider the
variation of the transverse spatial distribution of the
field of extremely short pulses (in 3D nonlinear media)
are considerably fewer in number. These papers are
usually devoted to the paraxial evolution of extremely
short pulses. In particular, a method for deriving the
paraxial-diffraction equations for extremely short
pulses was formulated in [6], the equations describing
the paraxial dynamics of the field of an extremely short
pulse in a nonlinear dielectric medium with dispersion
were presented in [7], and the solutions of these equa-
tions were simulated numerically in [8]. However, the
consistent theory of the self-action of extremely short
pulses must be nonparaxial. It is reasonable to analyze
the propagation of light pulses whose transverse size is
commensurable with the central wavelength allowing
for possible changes in the transverse structure of the
field on the same scale [8].

In this paper, the nonparaxial evolution of extremely
short pulses is described by the spectral analysis
method. It was this approach that was used in [9] to
derive the truncated equation for the nonparaxial self-
focusing of monochromatic radiation. The spectral
0021-3640/02/7604- $22.00 © 20206
approach proposed in [9] is generalized here to radia-
tion with a wide time spectrum. A new truncated equa-
tion describing the nonparaxial dynamics of the spatial
spectrum of extremely short pulses in a homogeneous
isotropic dielectric medium with an arbitrary spectral
dependence of the linear refractive index and nonreso-
nant electron nonlinearity was derived. We obtain the
solutions of this equation, which demonstrate the self-
division of an extremely short pulse in the process of
the self-broadening of its spectrum.

For light radiation propagating through a dielectric
medium, the Maxwell equations reduce to the form
[10]

(1)

where E is the electric field of a source, P is the medium
polarization, c is the speed of light in vacuum, t is the
time, and ∇  is the gradient operator.

In this paper, we analyze only the scalar problem of
the self-action of a two-dimensional beam of TE polar-
ized radiation. The direction of radiation propagation is
referred to as the z axis, x is the transverse coordinate,
and the y axis is the direction of the linearly polarized
electric field of radiation. The dielectric medium
through which extremely short pulses propagate is con-
sidered as a homogeneous and isotropic medium where
the linear refractive index n(ω) is an arbitrary function
of the frequency ω. The nonlinear component of
medium polarization is taken in the simplest form Pnl =
χE3, where χ is the nonlinear susceptibility. This repre-
sentation of the nonlinear response of a dielectric mate-
rial in the field of an extremely short pulse is well justi-
fied in the first approximation if the response is nonres-
onant and has the electronic origin [5]. The virtually
inertialess character of the nonresonant nonlinearity of
dielectric materials in the field of ultrashort laser pulses
is corroborated by the weak dispersion of their nonlin-

∇ ∇ E×( ) 1

c2
----∂2E

∂t2
--------- 4π

c2
------∂2P

∂t2
---------+ +× 0,=
002 MAIK “Nauka/Interperiodica”



        

SELF-DIVISION OF A PULSE CONSISTING OF SEVERAL LIGHT-FIELD OSCILLATIONS 207

            
ear refractive index in a considerable part of the trans-
parency ranges of these materials [11]. Under the above
assumptions, Eq. (1) for the frequency spectrum of
radiation

can be written in the form

(2)

which, in turn, for the spatial spectrum

,

takes the form

(3)

Equations (2) and (3) describe both the propagation
of light waves in the positive and negative z directions
and their interaction due to medium nonlinearity. Let us
derive the equation of the unidirectional propagation of
radiation.

Linearized Eq. (3) has the solution

(4)

where C1 and C2 are the integration constants. The first
and second terms describe the diffraction of direct and
inverse waves, respectively. Equation (4) indicates that
the nonparaxial diffraction of the direct wave (C2 = 0)
is described by the truncated linear equation

(5)
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Let us generalize Eq. (5) to the nonlinear propagation
of radiation. We will seek the truncated nonlinear equa-
tion in the form

(6)

where N(g) is the unknown nonlinear operator.
The change from linearized Eq. (3) to truncated

Eq. (5) (with lower z derivative) physically means the
change to an analysis of unidirectional-wave diffrac-
tion. A solution of truncated Eq. (5) is obviously a par-
ticular solution of linearized total Eq. (3). In order to
determine the form of the operator N(g) in Eq. (6), we
require that solutions of truncated Eq. (6) are solutions
of total Eq. (3). According to the procedure proposed in
[9], differentiating Eq. (6) in z and expressing ∂g/∂z in
terms of g from the same E, we obtain

(7)

Comparing Eqs. (7) and (3), we arrive at the following
relation for the operator N(g):

(8)

We seek N(g) in the form

(9)

where Φ(kx, ω, mx, nx, α, β) is the unknown function.
Taking into account the fact that, up to the higher orders,
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(10)

one can obtain from Eq. (8) with regard to Eq. (9) that

where

(11)

Thus, the truncated nonlinear equation describing
the nonparaxial dynamics of the spatial spectrum of
unidirectional radiation takes the form

(12)

where ϕ is described by Eq. (11).
With regard to Eqs. (8)–(11), Eq. (12) after the pro-

cedure specified by Eq. (7) reduces to total Eq. (3) up to
terms of the fifth order in g [because of approximation
(10)]. This accuracy is sufficient, because original spec-
tral Eqs. (2) and (3) were derived from Eq. (1) with the
same accuracy.

Equation (12) allows the analysis of the nonlinear
evolution of light radiation, whose time and spatial
spectra can both be very wide. The superbroadening of
the time spectrum can be described correctly, because

∂
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χω2

4π3c
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Eq. (12) takes into account an arbitrary dispersion of
the linear refractive index of the medium, whereas there
is no considerable dispersion of the nonresonant non-
linearity of the electron origin in a substantial part of
the transparency range of dielectric materials [11]. The
broadening of the spatial spectrum of radiation (e.g.,
due to self-focusing) can be described by Eq. (12) up to
the spectrum width commensurable with the wavenum-
ber. If the spatial spectrum involves frequencies kx

exceeding the wavenumber, the second term in Eq. (12)
is real. These spatial-spectrum components correspond
to the fields that vary exponentially along z and are sim-
ilar to the fields arising at total internal reflection. The
propagation of radiation with such a superbroadened
spatial spectrum must be analyzed with allowance
made for the possibility of generating the inverse wave
[9, 12].

Let us approximately solve Eq. (12) describing the
nonparaxial dynamics of the spectrum. Using the
ansatz

(13)

and applying the Pickard method of successive approx-
imations [13], one can easily obtain the following solu-
tion of Eq. (12) in the first iteration:

(14)

where U0(kx, ω) is the space–time spectrum of radiation
at the entrance to the nonlinear medium (at z = 0).

The figure illustrates the application of solution (14)
to simulate the nonlinear propagation of a pulse of a
titanium–sapphire laser through quartz glass. The input
space–time distribution of an extremely short pulse is
taken as Gaussian

and the dispersion of quartz glass is specified as

(15)

Here, N0 = 1.45; ac  = 0.007; ω0 = 2.4 × 1015 s–1;
τ/T0 = 3, σ/λ0 = 3, where T0 = 2π/ω0 and λ0 = 2πc/ω0;
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and 3πχ /2n(ω0) = 0.0001 has the meaning of a non-
linear addition to the refractive index (for the nonlinear
refractive index of quartz glass n2 = 2.9 × 10–16 cm2/W,
this addition arises at peak intensity I = 0.5 ×
1012 W/cm2).

Although solution (14) is obtained for the spectrum
amplitude U, the figure illustrates the corresponding
solution for the field E. Dynamic equation (12) and its
approximation solution specified by Eqs. (13) and (14)
can obviously be rewritten for the field E. However,
their form for E is more unwieldy than Eqs. (12)–(14).
In particular, linearized Eq. (12) for the spectrum has
the solution in the form of trivial algebraic relation (14),
where U = U0, whereas the dynamics of the field in a
linear medium is described by the integral of the Airy
function [14] even for simple dispersion dependence
(15).

The figure shows an axonometric mapping of the
variation of the transverse distribution of the normal-
ized field E/E0 and its time dynamics as the distance
passed in the glass increases. Since the negative-field
part of the extremely short pulse conserves the symme-
try of the positive-field part of this pulse, the figure
shows only the latter part (the negative-field part is
below the E = 0 plane and is not seen in figure). In addi-
tion, the figure shows the plane images of the space–
time field distribution (light and dark gray strips corre-
spond to positive and negative field values, respec-
tively). It is more difficult to estimate the absolute val-
ues of the field E from these images, but changes in the
radiation phase are more pronounced.

The figure indicates that the dispersion–diffraction
smearing of the extremely short pulse due to medium
nonlinearity is accompanied by the broadening of its
spectrum. The high-frequency components are effi-
ciently generated and separated from the “maternal”
pulse due to dispersion. The extremely short pulse
undergoes self-division. The classical third-harmonic
generation is an analog of this effect for the quasi-
monochromatic pulses. However, the spectrum of the
harmonics, as well as the spectrum of the maternal
extremely short pulse, is superbroadened in the case of
the extremely short pulse. For this reason, it is impossi-
ble to analyze the interaction of continuum-spectrum
components by the usual method of the slowly varying
envelope, which is based on the approximation of
quasi-monochromatic radiation. The formation of
dumb-bell shaped light structures with various spectral
compositions was observed in [8] in the process of self-
focusing of an extremely short pulse. However, this
effect was not treated as the self-division of the
extremely short pulse. Moreover, it was considered in
[8] on the verge of applicability of the paraxial approx-
imation, which was basic in that work.

In summary, the nonparaxial dynamics of light
pulses consisting of several light-field oscillations in
nonlinear media with dispersion has been examined. It

E0
2
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has been shown that the spectral approach to the analy-
sis of the self-action of radiation with wide spatial and
time spectra is more fruitful than the field approach. It
has been demonstrated that the broadening of the spec-
trum of an extremely short pulse in a nonlinear medium
can result in the self-division of the pulse.

The authors are grateful to A.N. Berkovskiœ and
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ommendations concerning the procedure of illustrating
solution (14).
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We discuss crack propagation along the interface between two dissimilar materials. The crack edge separates
two states of the interface, “stick” and “slip.” In the slip region, we assume that the shear stress is proportional
to the sliding velocity; i.e., the linear viscous friction law is valid. In this picture, the static friction appears as
the tile Griffith threshold for crack propagation. We calculate the crack velocity as a function of the applied
shear stress and find that the main dissipation comes from the macroscopic region and is mainly due to the fric-
tion at the interface. The relevance of our results to recent experiments, Baumberger et al., Phys. Rev. Lett. 88,
075509 (2002), is discussed. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 46.50.+a; 46.55.+d; 62.20.Mk
 A few recent experimental observations [1, 2] of the
frictional motion of sheared gels sliding along a glass
surface indicate the existence of self-healing pulses and
inhomogeneous modes of sliding [3]. A regime of peri-
odic stick slip has been observed in a limited range of
small shearing rates [2]. It bifurcates towards stationary
sliding at some critical driving velocity. The slip pulses
traverse the sample with a velocity much larger than the
driving velocity but still much smaller than the speed of
sound.

Slip pulses in gels seem to be very different from
Schallamach waves and “brittle” pulses studied by
Gerde and Marder [4], since no observable interface
separation occurs. In this respect, they are more compa-
rable with self-healing cracks suggested by Heaton [5]
in the context of seismic events.

Recent investigations (see, for example, [6] and ref-
erences therein) point towards an essential importance
of the underlying friction law in the slip state. It has
been proved that the simple Coulomb friction leads to
the so-called “ill-posedness” of the linear stability
problem while discussing small nonhomogeneous per-
turbations of the stress and strain fields in a sliding
mode [6]. Moreover, Caroli [7] has shown that the
existence of slow, periodic slip pulses is incompatible
with the Coulomb friction law.

In this letter, we discuss crack propagation along the
interface between two dissimilar materials. The crack
edge separates two states of the interface, “stick” and
“slip.” We assume that the interface is flat with a strong
adhesion contact. In principle, we could allow for small
wavelength surface roughness, but in this case we con-
sider length scales larger than the longest wavelength
component. In the presence of roughness, the assump-
tion of strong adhesion and full contact at the interface

 ¶This article was submitted by the authors in English.
0021-3640/02/7604- $22.00 © 20211
presumably is only reasonable for “soft” materials with
a relatively small shear modulus. Gels are clearly mate-
rials of this sort.

In the slip region we assume a simple linear viscous
friction law, namely, that the shear stress is proportional
to the sliding velocity. This law, strongly motivated
from the theoretical point of view, is usually not dis-
cussed in the literature, since it does not lead to the so-
called static friction phenomenon observed experimen-
tally. However, we will see that in our description, static
friction appears in a natural way as the usual Griffith
threshold for crack propagation. The important point is
that, before the system goes into a sliding mode, the slip
pulse should traverse the sample. This requires a finite
shear stress, since the stick state of the interface is ener-
getically more favorable.

With the linear viscous friction law, we find condi-
tions for crack propagation and calculate the crack
velocity as a function of the applied shear stress. We
find that the main dissipation comes from a macro-
scopic region and is due to friction at the interface. This
situation is very different from usual crack propagation,
where the main dissipation is localized in the micro-
scopic tip region.

We also briefly discuss frictional shear cracks inside
homogeneous materials. The point here is that in mode
II (and in mode III) cracks, there is no macroscopic
opening. If two surfaces remain in contact, the standard
boundary conditions, namely, vanishing of the normal
and shear stresses at the crack surfaces, are not theoret-
ically motivated. The relative sliding velocity of the two
surfaces should lead to nonzero shear stresses. Finally,
we discuss the relevance of our results to the experi-
mental observations [2].

Consider an elastic solid sliding on a flat rigid sub-
strate. Assume that the elastic solid occupies the space
H > y > 0, and let (x, y, z) be a coordinate system with
002 MAIK “Nauka/Interperiodica”



 

212

        

BRENER, MARCHENKO

                                                                                                  
the plane y = 0 corresponding to the surface of the solid
(see the figure). We discuss the plane strain situation
with uz = 0, where u is the displacement vector. We
assume that the interface can be in two states: “stick”
and “slip.” The boundary between these two states is
described by the crack edge, which moves with a veloc-
ity Vtip in the x direction. In the stick region, the dis-
placements are continuous, and, since we assume a
rigid substrate, the boundary conditions are ux = uy = 0
for x – Vtipt > 0 and y = 0. In the slip region, we assume
that the two solids (for all times) are in contact, uy = 0
for x – Vtipt < 0 and y = 0, while we allow for a finite rel-
ative sliding velocity . This sliding velocity leads to
a frictional shear stress at the interface, where we
assume a linear viscous friction law

(1)

with α being the viscous friction coefficient. It is rea-
sonable to assume that the interface energy in the stick
phase is smaller than the interface energy in the slip
phase, since the adhesion contact in the stick region is
stronger. Let us denote this energy difference by γ. It is
clear that without external loading, the stick phase is
energetically favorable, and a finite shear stress is
required to get the interface into the slip state. Let us
assume that far ahead of the crack tip, the solid is

homogeneously strained with  and stressed with

σxy = 2µ , where µ is the shear modulus. The strain

energy is µ( )2H. Far behind the crack tip, where the
stress is relaxed, only the interface energy γ remains.

The slip state will be realized only if ∆ = µ( )2H/γ > 1.
In this case, the crack should propagate in the positive
direction of x. Otherwise, the crack would propagate
with a negative velocity, and the stick phase will be
restored. Condition ∆ = 1 is nothing but the usual Grif-
fith threshold for crack propagation. On the other hand,
in the context of the friction problem, this condition
may be interpreted as a static friction threshold: a finite
shear loading is required to get the system into the slid-
ing mode.

u̇x

σxy α u̇x,=

uxy
∞

uxy
∞

uxy
∞

uxy
∞

An elastic body sliding on a rigid substrate.
If the whole interface is in the slip state, steady-
state motion of the elastic body is possible with a
velocity

(2)

where S = µ/α is the velocity scale given by the friction
law. We note that this homogeneous sliding mode is lin-
early stable for any velocity with respect to small non-
homogeneous perturbations of the stress and strain
fields localized in the surface region. In this respect, the
viscous friction law is very different from the Coulomb
friction, which leads to a linear instability and ill-pos-
edness of the problem as it has been intensively dis-
cussed in the literature [6].

On the other hand, the homogeneous sliding mode
may be unstable against the resticking pulse (nonlinear
“healing instability”) if the corresponding value of ∆ < 1.
Since, in this case, the strain, which defines the value of
∆ is related to the steady-state sliding velocity by
Eq. (2), we find that the homogeneous sliding is stable
against the healing instability only above the critical
sliding velocity

(3)

Now let us turn to the calculation of the crack tip
velocity Vtip as a function of the dimensionless driving
force ∆. The strategy is as follows: we solve the elastic
problem in the vicinity of the crack tip and then calcu-
late the energy flux into the crack tip and the dissipation
due to the friction at the interface. Finally, using the
energy balance, we find the crack velocity.

Let us start from some qualitative estimates.
Assume that, as in the usual crack problem, the singular
behavior of the displacement vector is given by a
square-root singularity in the vicinity of the crack tip.
Then the dissipation rate at the interface

(4)

depends logarithmically (~lnH/a) on H. Thus, the main
dissipation comes from the macroscopic region. In the
usual crack problem, the main dissipation comes from
the close vicinity of the tip and often requires the intro-
duction of microscopic models. Here we have the
chance to avoid such a detailed microscopic description
by using some microscopic length scale a as a cutoff,
which enters only the logarithm in the final result. In
this small region the used equations break down and an
effective tip dissipation should be introduced. Due to
bulk viscosity, there is an additional contribution η
to the stress tensor. The dissipation rate diverges
strongly at small distances (as 1/r) and correspondingly
decays at macroscopic distances. Thus, this effect can
also be incorporated into the tip dissipation.

Now we solve the elastic problem more accurately,
while still using a quasistatic approximation for the
moment. The generalization to the full elastodynamic
description is straightforward and will be given below.

V 2Suxy,=

Vc 2S γ/µH( )1/2.=

Jd α u̇x( )2 xd∫=

u̇ik
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In the co-moving frame of reference and in the vicinity
of the crack tip, the displacement field for the static
elasticity and the boundary conditions formulated
above is

(5)

Here, z is a complex coordinate z = x + iy, ν is the Pois-
son ratio, and A is a real amplitude. The spectrum of λ
is purely real and given by the following equation:

(6)

with

(7)

In the limit of small values of |ε| for the leading crack
displacement component, we have 2λ ≈ 1 + ε.

Having defined the displacement field, we can cal-
culate the energy flux Ji = σik  and the local energy
release into a small semicircular region with some
microscopic radius a around the crack tip,

(8)

The dissipation rate due to the interface friction with
exclusion of the small region of size a close to the tip is
given by Eq. (4):

(9)

Here,  = f(ν)H, with f being an undetermined yet
function of the Poisson ratio; H is a thickness of the
sample. This function can be found by solving the elas-
tic problem for given geometry and all boundary condi-
tions. As we will see the tip velocity does not crucially
depends on the actual value of the factor f, which is of
the order of unity.

On the other hand the local energy release into the
crack tip J0 must compensate the surface energy differ-
ence: J0 = γVtip. Note that here we have neglected the
dissipation at the tip in comparison with the energy
release γVtip, which is reasonable at small tip velocities
compared to the velocity of sound. Finally, using the
global energy conservation law,

(10)

we find

(11)

Since ε is given by Eq. (7), this result is a compact rep-
resentation of the crack velocity as a function of the

ux ARe yzλ 1– i 3 4ν–( )zλ /λ–[ ] ,=

uy ARe iyzλ 1–[ ] .=

i2πλ( )exp
1 iπε/2+
1 iπε/2–
----------------------,–=

ε 1
2π
------3 4ν–

1 ν–
---------------

V tip

S
--------.=

u̇k

J0 2πµ 3 4ν–( ) 1 ν–( )V tipA2aε.=

Jd α 3 4ν–( )2A2V tip
2 ε 1– H̃

ε
aε–( )=

=  J0 H̃/a( )ε
1–[ ] .

H̃

J∞ J0 Jd+ µ uxy
∞( )NV tip,= =

ε ∆ln

H̃/a( )ln
-------------------- ∆ln

H/a( )ln
--------------------.≈=
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driving force ∆ = µ( )H/γ. Note that ∆ = 1 corre-
sponds to Griffith equilibrium. Equation (11) is valid
for small |ε|. The explicit expression for the crack
velocity reads

(12)

In the case of small ∆ – 1, we obtain

(13)

This result corresponds to a small dissipation rate com-
pared to the total energy flux, Jd ! J∞, and can also be
obtained using perturbation theory: we solve the elastic
problem neglecting friction (σxy = 0 at the interface) and
then calculate the dissipation rate (4) using this solution
as zero order displacement field.

Up to now, we have used the static approximation.
The tip velocity should be small compared to the sound
velocity. The elastodynamic generalization is straight-
forward. Using the standard approach to the singular
solutions near the crack tip [8], we find the displace-
ment field u

(14)

with  = 1 – (Vtip/Cd)2 and  = 1 – (Vtip/Cs)2, where
Cd and Cs are dilation and shear wave speed. The spec-
trum of λ is still given by Eq. (6) but now ε reads

(15)

Thus, elastodynamic effects lead to a redefinition of ε
in the main result, Eq. (11), which remains valid. For
small velocities, Eqs. (14) and (15) reduce to Eqs. (5)
and (7), respectively.

The most serious problem with large velocities
arises in connection with a self-consistent description
of the dissipation at the tip. This part of kinetics cannot
be considered macroscopically for arbitrary tip veloci-
ties. One can only treat the case of small velocities,
Vtip ! Cs in a model independent way, by introducing
the tip kinetic coefficient. For higher velocities the so-
called velocity dependent fracture energy γ(Vtip) is
introduced. This function contains information about
the usual surface energy γ and tip dissipation and
reduces to the surface energy in the static limit. The
main dissipation in our approach arises from the fric-
tion between both sides of the crack and can be treated
macroscopically. Note that this part of the dissipation
can be described by the velocity independent friction
coefficient α even at large tip velocities in the case of
small sliding velocities.

uxy
∞

V tip 2π 1 ν–
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--------------- ∆ln
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Up to now, we have discussed shear cracks along the
interface between two dissimilar materials (the case of
a rigid substrate). We also present the result for the case
of frictional shear cracks inside homogeneous elastic
materials. Such cracks can propagate under the shear
loading in amorphous materials, or along grain bound-
aries in crystals (in single crystals the well known dis-
location mechanism of plasticity should be favorable).
The boundary conditions on the crack surfaces, which
remain in contact, are the following: continuous normal
displacement and continuous normal and shear
stresses. The shear stress is also given by Eq. (1) with

 being the relative sliding velocity of two crack sur-
faces. We note that these boundary conditions are quite
different from the standard boundary conditions of
mode II (and III) cracks: zero normal and shear stresses
on the crack surfaces [8]. In our case, for the frictional
shear crack, we find the following expression for ε
which enters the general result, Eq. (11):

(16)

Now let us discuss the relation of our results to
experimental observations of Baumberger, Caroli, and
Ronsin [2]. They performed experiments of a gel slid-
ing on a glass plate. The driving velocity was given and
the shear force and thus the average shear stress was
deduced from the spring elongation. Above some criti-
cal driving velocity Vc ≈ 125 µm/s, steady sliding was
observed. At velocities smaller than the critical one,
periodic stick slip sets up (see figures in [2]). Upon
increasing the driving velocity V, no hysteresis of the
transition was detected. In the stick slip regime, they
observed the propagation of self-healing pulses with no
opening, nucleated periodically at the trailing edge of
the sample. The propagation velocity of these cracks
was about 60 times larger than the critical sliding veloc-
ity, yet still much smaller than the shear wave speed.

The existence of a critical sliding velocity, where
stationary sliding is stable against the healing instabil-
ity, appears naturally in our description and is given by
Eq. (3). The characteristic value of the shear strain in
the sliding mode near the critical velocity experimen-
tally was about uxy = 0.04. Thus, we can estimate from
Eq. (2) the characteristic velocity S = 1.5 mm/s, and
from Eq. (3), we find that the characteristic difference
between the interface energies in the slip and stick
states is γ = 0.1 J/m2. One would expect that for ordi-
nary elastic materials, the velocity S should be of the
order of the speed of sound. However, for gels the shear
modulus µ is much smaller than for ordinary materials.
The shear wave speed Cs = (µ/ρ)1/2 is only 2 m/s. The
velocity S = µ/α is linear in µ and should be even
smaller. This is a possible explanation for a relatively
small value of S compared to Cs.

In the stick-slip regime, which exists below Vc, the
nucleation of a slip pulse takes place at the trailing edge

u̇x

ε 4
π
---

α s 1 α s
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4αdα s 1 α s
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-----------------------------------------
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of the sample and requires overshooting above the Grif-
fith threshold according to the experiment. This over-
shooting is not small, and in order to estimate the crack
velocity, we can use Eq. (12) since the velocity is still
much smaller than the speed of sound. Because of the
week logarithmic parameter dependence, we conclude
that Vtip is of the order of S and essentially independent
of the driving velocity in agreement with experimental
observations. After the slip pulse traversed the sample,
the stress drops below the Griffith threshold and,
resticking takes place via propagation of a healing
pulse. Its velocity is still described by Eq. (12) with ∆ < 1.
This periodic stick slip regime bifurcates towards sta-
tionary sliding at V = Vc, where stresses are always
above the Griffith threshold. For driving velocities
slightly below Vc, characteristic values of ∆ for restick-
ing are close to 1. Since the velocity of the resticking
crack is small and comparable with the driving velocity
in this range, a complicated collective behavior of self-
healing pulses is observed [2].

While our results are in qualitative agreement with
experimental observations, we still underestimate the
crack velocity, which is a few times smaller than in the
experiment. On the other hand, the geometry of the
experiment is such that the total macroscopic friction of
the sliding sample obviously depends on the processes
taking place at the edges of the sample. The stresses
here are highly inhomogeneous, and the kinetic phe-
nomena should be considered with a great care.

The observed nonlinear behavior of the stress with
the velocity for relatively high sliding rates (the so-
called shear-thinning rheology) can be in principle
incorporated into a more sophisticated version of the-
ory presented here. Another subject of future investiga-
tions should be the collective behavior of self-healing
pulses in the spirit of [7]. Further theoretical and exper-
imental investigations are needed to shed light on this
phenomenon, where two intriguing problems, crack
propagation and friction, come together.

Discussions with S.V. Iordauskii, B.N.J. Persson,
and D.E.Temkin are greatly appreciated. V.M. thanks
Forschungszentrum Jülich for its hospitality.
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The transformation of magnetic structure under hydrostatic and quasi-hydrostatic pressures up to 4 GPa was
studied for iron borate FeBO3 by the neutron diffraction method. Under quasi-hydrostatic conditions, the ori-
entation of iron magnetic moments changes at pressures P ≥ 1.4 GPa. Under hydrostatic conditions, no changes
in the magnetic structure of iron borate were observed up to 2.1 GPa. This behavior is caused by the influence
of the inhomogeneity (in magnitude and direction) of elastic stresses on the configuration of magnetic sublat-
tices. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.80.+q; 62.50.+p; 61.12.Ld; 75.30.Kz
Structural and magnetic studies of iron borate
FeBO3 are of interest because of the magnetic phase
transitions occurring in it with a change in temperature
and pressure [1–8]. Under normal conditions, FeBO3
has rhombohedral structure, in which the magnetic
moments of iron ions are oriented perpendicular to the
crystallographic axis (111) and are nearly antiparallel.
The angle between them is β ~ 0.9°, so that the resulting
weak ferromagnetic moment lies in the basal plane [2].

Interest in rhombohedral antiferromagnets has been
renewed because of the methodological advances in
high-pressure solid-state studies with the use of neutron
and synchrotron radiation.

Earlier, the pressure-induced transformations of the
magnetic structure of iron borate were studied by neu-
tron diffraction in [3, 4]. It was established that, as was
predicted in [5], the spin-orientational phase transition
resulting in a change in the angle ϕ between the mag-
netic moments of Fe ions and the crystallographic axis
(111) occurs at P ~ 1.7 GPa. However, in more recent
hydrostatic synchrotron-radiation and Mössbauer stud-
ies of FeBO3 single crystals, this phase transition was
not observed. At higher pressures (P ~ 44 GPa) and
room temperature, the transition from the antiferro-
magnetic state to the nonmagnetic state was observed
in FeBO3 [6], and, on further increase in pressure (up to
P ~ 53 GPa), the isostructural phase transition was
observed, which was accompanied by the abrupt
change in the volume of unit cell [7]. Therefore, the
neutron and Mössbauer data have come into conflict
with each other. It is the purpose of this work to reveal
the possible reasons for this contradiction.

According to [8], the inhomogeneity of internal
stresses may strongly affect the spin-reorientational
0021-3640/02/7604- $22.00 © 20215
phase transition in weak ferromagnets. This fact has
motivated us to study the influence of high pressure on
the magnetic structure of FeBO3 under the hydrostatic
and quasi-hydrostatic experimental conditions.

Experiments were performed with a DN-12 spec-
trometer on the pulsed high-flow IBR-2 reactor at the
Joint Institute for Nuclear Research (Dubna). Polycrys-
talline FeBO3 samples with a volume of 2.5 mm3 were
placed in a high-pressure cell with sapphire anvils [9].
The hydrostatic pressure was produced using special
“Fluorinert” fluid. Under quasi-hydrostatic conditions
(without the transmitting medium), experiments were
conducted below 4 GPa, and under hydrostatic condi-
tions, below 2.1 GPa, above which Fluorinert crystal-
lized, and hence, the hydrostatic conditions were bro-
ken in part. The pressure in the chamber was deter-
mined from the shift of the ruby luminescence line with
an accuracy of better than 0.05 GPa. The measuring
time for one spectrum was 20 h on the average. The
experimental data were processed using the “MRIA”
[10] and “Fullproof” [11] programs based on the stan-
dard Rietveld method [12]. While processing the dif-
fraction spectra, the parameters of hexagonal rhombo-
hedral unit cell (a and c axes), the positional parameter
x of oxygen atoms, the iron magnetic moment M, and
the angle ϕ between the crystallographic axis (111) and
the vectors of iron magnetic moments were refined.
Refinement was made using the standard models (space

group ) [1, 2].

One can see from the diffraction spectra of FeBO3
presented in Fig. 1 that the intensity of magnetic peak
(111) decreases with increasing pressure, while the
intensity of magnetic peak (100) virtually does not
change. This fact indicates that the orientation of iron

R3c
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magnetic moments about the crystallographic axis
(111) changes. In principle, the explanation based on a
two-phase model of FeBO3 borate under pressure
should not be ruled out. With the buildup of pressure,
the volume with weak ferromagnetism in the sample
decreases, while the volume of a purely antiferromag-
netic phase increases. A change in the intensity of mag-
netic peak (111) under hydrostatic pressure is apprecia-
bly smaller.

The pressure dependence of angle ϕ between the
magnetic moment and the crystallographic axis (111) is
shown in Fig. 2. Under hydrostatic pressure, the angle
ϕ changes only slightly, whereas it decreases from 90°
to 42° upon the buildup of pressure to 4.0 GPa. The
pressure dependence of the hexagonal parameters a and
c is shown in Fig. 3. With an increase in pressure, the
ratio c/a decreases from 3.123(5) to 3.110(5).

The magnetic structure of iron borate consists of
two magnetic sublattices of Fe atoms with oppositely
directed magnetic moments. According to [2], the ther-
modynamic potential for this system can be written as

(1)

where Φml is the energy of magnetoelastic interaction,
Φl is the elastic energy, and Φst is the energy of external
stresses.

In the presence of an applied external pressure, the
expression for the energy of external stresses has the
following form for a polycrystalline sample:

(2)

where σij are the stress tensor components and Uij is the
strain tensor components.

It follows from Eq. (2) that the configuration of sub-
lattice magnetic moments in a polycrystalline sample

Φ Φm Φml Φl Φst,+ + +=

Φst P Uii

i( )
∑ σijUij,

i j,( )
∑+=

Fig. 1. Portions of diffraction spectra of FeBO3 measured at
0, 1.4, 2.0, 2.8, and 4.0 GPa and normalized to the effective
neutron flux. Scattering angle 2θ = 45.5°.
under quasi-hydrostatic pressure is a function not only
of pressure P but also of the external elastic stresses σik

[8]. Moreover, the stress-induced transformations may
be quite significant because of the strengthening effect
of exchange forces [5]. Therefore, the spin-orienta-
tional phase transition observed in [3, 4] can be treated
as a change in the configuration of magnetic sublattices
induced by external elastic stresses.

As for the single-crystal samples, it was predicted in
[13] that the external pressure is “switched off” in
rhombohedral antiferromagnets in the sense that, if the
pressure is applied along the z axis (as in [6]), then the
magnetic system does not “feel” the pressure, irrespec-
tive of its magnitude, while, for the pressure applied in

Fig. 2. Pressure dependence of the angle ϕ between the iron
magnetic moments and the crystallographic axis (111).

Fig. 3. Pressure dependence of the parameters (1) a and
(2) c of the hexagonal unit cell. Solid lines are linear extrap-
olations of the experimental data. The errors of experimen-
tal bars do not exceed the symbol sizes.
JETP LETTERS      Vol. 76      No. 4      2002



        

TRANSFORMATION OF THE MAGNETIC STRUCTURE 217

                                                       
the perpendicular direction (along the y axis), the spin-
reorientational transition pressure is minimal (0.2 and
0.6 GPa for Fe2O3 and FeBO3, respectively). Hence, the
absence of the transition in the Mössbauer single-crys-
tal experiments and its presence in the polycrystalline
neutron experiments may be considered as the experi-
mental confirmation of the effect predicted in [13]. As
for the transitions at higher pressures (up to 50 GPa),
for which the purely hydrostatic conditions cannot be
produced in practice, the influence of elastic stresses on
the configuration of magnetic sublattices may be appre-
ciable. This may be the reason why the experimental
(53 GPa) and theoretical (23 GPa) transition pressures
differ for FeBO3 under high pressures [14].

This work was supported by the Russian Foundation
for Basic Research (project no. 00-02-17077) and the
Ministry of Industry, Science, and Technologies of the
Russian Federation (state contract no. 40.012.1.1.1148
and grant for the support of unique Russian plants).
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The Kaiser effect was observed in the measurement of acoustic emission (AE) during the course of uniaxial
compression of the bulk samples of metallic glasses Zr41Ti14Cu12.5Ni10Be22.5 and Zr52.5Ti5Cu17.9Ni14.6Be22.5.
The field-ion microscopy study of bulk Zr41Ti14Cu12.5Ni10Be22.5 shows that this glass has a polycluster struc-
ture. This fact allows one to reveal the nature of AE appearing during the course of deformation of metallic
glasses and to interpret the observed Kaiser effect. The dislocations generated at the intercluster boundaries and
moving through the glass bulk are the sources of AE. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.65.+k; 61.43.Fs
The Kaiser effect [1, 2] appears in the testing of
samples in the repetitive loading and unloading regime
and lies in the fact that the acoustic emission (AE)
appears in every subsequent loading only from the
instant of time when the stress exceeds its maximal
value achieved in the preceding loading. In crystalline
materials, the Kaiser effect is explained by the disloca-
tion glide and pinning processes. As to metallic glasses,
the Kaiser effect in these systems and its nature still
remain to be understood.

The Kaiser effect (in the extension of strip samples
with a thickness of 100 µm) in fast-quenched amor-
phous alloys was first mentioned in [3], although no
data of measurements were reported there. The nature
of this effect, as well as the nature of AE appearing
before the formation of shear bands, remains to be clar-
ified [4].

The assumptions about the structure of metallic
glasses and the structural defects as sources of plastic
strain are in many respects contradictory and controver-
sial [5–11]. Today, the free-volume model, the disloca-
tion–disclination model, and the polycluster model are
the most popular structural models of metallic glasses.
In the polycluster model, contrary to the other models,
the diffusion and slip at the intercluster boundaries play
the main role in the plastic deformation processes.

In the free-volume model [9–11], the AE-generating
inelastic structural rearrangements occur in the vicinity
of large interatomic voids or micropores. According to
this model, an additional free volume may appear with
increasing tensile stress, eventually giving rise to the
shear bands and the crack extension accompanied by
the AE generation. Qualitatively, these considerations
could be used to interpret the AE appearing upon the
strip tension. One can assume that these AE sources
0021-3640/02/7604- $22.00 © 20218
arise in the course of deformation because of the
appearance of an additional free volume. However, the
generation of free volume is suppressed in the case of
uniaxial compression of bulk samples (this is practi-
cally impossible for thin strips), because a uniform
compression component arises in this case.

To explain the plastic deformation processes in the
free-volume model, one assumes that they are caused
by the cooperative rearrangement of atomic groups in
the local regions with a higher content of free volume.
It is thought that the rearranged atomic groups are com-
paratively small (~10–20 atoms) [10] and uniformly
distributed in glass. For this reason, no effective sources
of ultrasonic radiation appear in this model, at least at
the initial deformation stage prior to the formation of
shear bands.

It was conjectured in [12] that the dislocationlike
defects serve as AE source in metallic glasses, but the
structure of these defects was not determined.

In [6, 5], a polycluster model of amorphous solids
was proposed. Simultaneously, the theory of polyclus-
ter plastic deformation was developed, the structural
defects (including dislocations) in glass were
described, and the conditions were determined under
which the defects can move at large (compared with the
cluster size) distances.

According to the polycluster model, metallic glasses
consist of noncrystalline clusters, i.e., of clusters whose
atomic structure is translationally noninvariant (see
[5]). In the low-temperature range (at temperatures
lower than the vitrification temperature by 200 K), the
slip at cluster boundaries and the dislocation motion
through the clusters are the main mechanism of plastic
002 MAIK “Nauka/Interperiodica”
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strain. These processes at their initial stages are sche-
matically illustrated in Fig. 1.

The formation of bulk metallic glasses opens up new
possibilities of studying this effect, because it allows
the study of AE in bulk samples, in which one can
achieve a higher total AE intensity upon compression.

The Kaiser effect appears because the AE-inducing
inelastic rearrangement upon unloading is irreversible.
The initial structural state is not regained, because the
process has activation character and, hence, is sup-
pressed at low temperature. Our investigations show
that the Kaiser effect in the experiments with repetitive
compression and unloading of bulk metallic glasses is
observed prior to the formation of shear bands (see
below). The slip processes, schematically illustrated in
Fig. 1, are the most probable reason for this effect.

To check the validity of this statement, we studied
the structures of metallic glass Zr41Ti14Cu12.5Ni10Be22.5
by field-emission microscopy. Measurements were

Fig. 1. Schematic representation of the slip at the interclus-
ter boundary and the propagation of a dislocation generated
at the intercluster boundary into the cluster. (a) Slip gener-
ated by the external forces F and F' at the intercluster
boundary (shown by thick line) and blocked by the neigh-
boring clusters at the triple joints. (b) Movement of the dis-
location, generated at the intercluster boundary, into the
cluster in the presence of shear stresses exceeding shear
strength for the boundaries. The vectors b and b' indicate
the orientation of Burgers vectors.

b'

F'
JETP LETTERS      Vol. 76      No. 4      2002
made in a two-chamber field-ion microscope with cool-
ing to 53–78 K. Needlelike samples capped by elliptic
paraboloids were prepared by electrochemical etching
at a constant voltage of 5–15 V in a 10% solution of per-
chloric acid and ethyl alcohol. The minor and major
radii of principal curvature at the apex of knifelike sam-
ples were in the range 3–10 and 50–500 nm, respec-
tively. In the presence of intrinsic interfaces in the sam-
ples, saddlelike microgrooves were formed in the
course of polishing the surface of nonaxisymmetrical
points by low-temperature field evaporation, and, as a
consequence, banded contrast appeared in the ion-
microscopic images [13].

The ion-microscopic data showed that the field-
emission images of knifelike samples with a thickness
on the order of 10 nm were characterized by the pres-
ence of bright contrast bands that were retained in the
course of field evaporation (Fig. 2). In the analysis of
the banded contrast, the angular dependence of the
local linear magnification was taken into account. In
particular, the contrast bands along the normal to the
foil plane in Fig. 2 dominated because the local magni-
fications in the principal cross-sectional planes of the
apices of nonaxisymmetrical samples were different.
The separation between the bands was within 5–15 nm.
The thickness of the evaporated layer was estimated
with an accuracy of 50% by measuring the working
stress. Within this accuracy, it coincided with the aver-
age distance between the contrast bands. The thin-foil
field-ion microscopic study of the banded contrast at
the interfaces in the knifelike samples showed [14, 15]
that the bands appear due to the developed network of
internal two-dimensional interfaces in fast-quenched

Fig. 2. Contrast bands of enhanced brightness in the field-
ion microscopy image of bulk amorphous
Zr41Ti14Cu12.5Ni10Be22.5 alloy.
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amorphous alloys. The presence of bright contrast
bands is due to the local variations of magnification in
the vicinity of the outcrops of internal interfaces. An
analysis of the banded contrast and its evolution during
the process of field evaporation indicates that the bulk
Zr41Ti14Cu12.5Ni10Be22.5 alloy contains internal inter-

Fig. 3. Dependence of the AE parameters on the grip dis-
placements (∆l) in the course of uniaxial compression of the
bulk samples of metallic glass at room temperature.
(a): (1) Loading and (2) AE activity. (b) Total number of
pulses. (c) Mean amplitude of pulses.

Fig. 4. Time dependences of pulse activity in the course of
uniaxial compression. (a) First compression and (b) second
compression.
faces (intercluster boundaries) whose average density is
on the order of 106 cm–1. The characteristic cluster sizes
lie in the range 5–15 nm.

The AE was studied on equipment consisting of a
universal testing machine 1958-U10 and a multichan-
nel acoustic system M400. The AE gauge was fabri-
cated from lead zirconate–titanate piezoelectric ceram-
ics and had a resonance frequency of 180 kHz.

The samples were compressed with a rate of 10–3 s–1

at room temperature. The acoustic parameters were
measured in synchronism with the measurement of
mechanical characteristics.

Experiments were performed using samples with
diameter d0 = 3 mm and height h0 = 4 mm. The samples
were cut from a 100-mm-long rod by the electric-spark
method.

The results of measuring the AE upon uniaxial load-
ing of a bulk sample of metallic glass
Zr52.5Ti5Cu17.9Ni10Al10 up to its damage are presented in
Fig. 3, and the results for the repetitive loading below
the damage threshold are presented in Fig. 4. The
mechanical properties of this metallic glass were stud-
ied in [16] for various deformation regimes (various
temperatures and deformation rates).

It is remarkable that, after unloading, no measurable
plastic strain was observed in the sample; i.e., the
microscopic plastic deformation processes did not gen-
erate macroscopic plastic strain in the sample. This sig-
nifies that the AE-generating sources are isolated and
are small compared to the sample size. The slip arising
at the intercluster boundaries and thereupon propagat-
ing into the clusters seems to be the natural AE source
in the course of deformation of glass with structure
shown in Fig. 2.

We also observed the recovery of the Kaiser effect;
i.e., the AE was restored upon subsequent loading after
the short-time (5–7 min) annealing of the sample at a
temperature of ~670 K (30° lower than the vitrification
temperature). The results of these measurements will
be reported elsewhere.

Note in conclusion that our studies of the structure
of bulk metallic glasses and the AE generated upon the
low-temperature compression show that these glasses
have the polycluster structure and that the slip at the
intercluster boundaries and inside the clusters is the
most probable AE source. Slip generates the Kaiser
effect at low temperature, which prevents back relax-
ation.
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Cyclotron Resonance in the InAs/GaSb Heterostructure 
in an Inclined Magnetic Field
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The mechanism of cyclotron resonance line splitting in the InAs/GaSb heterostructure in an inclined magnetic
field has been studied experimentally and theoretically. It is shown that the admixing of electron and hole states
leads to anticrossing of the Landau levels and, hence, to splitting of the cyclotron resonance line. In the case of
an inclined magnetic field, the splitting is not observed, which is explained by the suppression of the admixing
of electron and hole states due to the occurrence of an additional barrier for electrons and holes given a longi-
tudinal magnetic field component. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.70.Ak; 76.40.+b; 71.70.Di
The valence band top of GaSb in the InAs/GaSb het-
erostructure lies higher in energy than the conduction
band bottom of InAs, which leads to the possibility of
the admixing of electron and hole states [1]. Studying
cyclotron resonance (CR) in such structures reveals
splitting of the CR line [2]. In early publications, this
effect was related to the Coulomb interaction of elec-
trons and holes in the heterostructure [3, 4]. However,
such a mechanism, acting simultaneously with the
admixing of electron and hole states, makes no conspic-
uous contribution to the CR spectrum. In the frame-
work of this work, the splitting of the CR line is
explained by the admixing of electrons from InAs and
holes from GaAs [5, 6]. This admixing, as is shown
below, leads to the anticrossing of the Landau levels of
electrons and holes. The optical transitions to the anti-
crossing level are allowed, which results in the splitting
of the cyclotron absorption line. The experiments on
observing CR in an inclined magnetic field point to the
absence of the splitting of the cyclotron absorption line
at angles of order 60°. Previously, the splitting of the
CR line in an inclined magnetic field was observed in
[7]; however, no explanation of this effect has been
available in the literature so far.

In this work, a mechanism of suppressing the split-
ting of the CR line in an inclined magnetic field is pro-
posed and investigated. The absence of the splitting is
explained by suppressing the admixing of electron and
hole states on increasing the longitudinal magnetic field
component because of the occurrence of an additional
potential barrier for electrons and holes. As a result, the
magnitude of the anticrossing of the Landau levels sig-
nificantly decreases, and along with it the splitting of
the CR line.
0021-3640/02/7604- $22.00 © 20222
Experiment. The samples under study were grown
by the MBE technique and consisted of a single quan-
tum well 200 Å thick separated from the GaSb layer by
the AlSb barrier. The barrier thickness for various sam-
ples was 0, 6, and 20 Å. Magnetooptical measurements
in the far infrared region were performed with the use
of a Fourier spectrometer and a gas light-pumped laser
in magnetic fields up to 23 T. Detectors of two types
were used: a silicon bolometer and a GeGa photocon-
ductive detector. The measurements were performed at
a temperature of about 2 K.

Figure 1 shows two series of CR line in a transverse
(α = 0°) and inclined (α = 60°) magnetic fields for a
sample with an AlSb barrier 6 Å thick. Both spectra are
shown near the values of the transverse magnetic field
component Hcosα of order 7 T, which corresponds to
the condition of strong admixing of two (electron and
hole) Landau levels. The CR spectrum was approxi-
mated by two Lorentzians CR1 and CR2. In the case of
the transverse magnetic field (Fig. 1a), the CR2 curve
becomes conspicuous at fields on the order of 6.5 T. Its
peak lies at higher than the peak of CR1, and its half-
width exceeds the half-width of CR1 several times. As
the magnetic field increases, the peak amplitude of the
second curve (CR2) increases, whereas the intensity of
the first curve (CR1) decreases. As the field further
increases, the CR1 curve disappears and the CR line is
approximated well by CR2. A plot of transition energies
vs. magnetic field for CR1 and CR2 lines is displayed in
Fig. 2. The transition energies related to CR1 depend
linearly on the magnetic field with an effective mass of
0.04m0. The CR2 line also depends linearly on the mag-
netic field; however, it is displaced with respect to CR1
by 1.5 meV. As the CR1 line disappears, the second line
becomes broader and occupies its position in energy.
002 MAIK “Nauka/Interperiodica”
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The splitting of the CR line is observed only in the
vicinity of broadening, which confirms the admixing of
electron and hole states. Similar features of the CR line
were observed in a sample that contained no barrier
between InAs and GaSb. In this case, the energy gap
was 3.5 meV rather than 1.5 meV for a sample with an
AlSb barrier 6 Å thick, which is explained by the
decrease in mixing as the barrier width increases. Thus,
the experiment proves the connection between the
observed features of the CR line and the admixing of
electron and hole states.

Additional information on the nature of mixed states
was obtained on observing CR in an inclined magnetic
field. The CR spectrum for the inclination angle α = 60°
(Fig. 1b). It is clearly seen that the spectrum in this case
is described well by one Lorentzian, and its position

Fig. 1. Cyclotron resonance spectrum in an InAs/GaSb het-
erostructure in (a) a transverse magnetic field and (b) in an
inclined magnetic field.
JETP LETTERS      Vol. 76      No. 4      2002
coincides with the CR1 line in a transverse field. In this
case, the longitudinal magnetic field component elimi-
nates only the upper line, leaving the lower one
unchanged. Note that, simultaneously with the disap-
pearance of the splitting of the CR line, strong oscilla-
tions of the amplitude and the absorption line width
studied previously [8, 9] disappeared as well. This fact
indicates that admixing disappears in the presence of a
sufficiently strong longitudinal magnetic field compo-
nent. Figure 2 also demonstrates the dependence of the
absorption peak energy on the magnitude of the mag-
netic filed for a sample with a barrier thickness of 20 Å,
which coincides with the position of the CR1 line. The
admixing of electron and hole states in this sample is
strongly suppressed, and absorption occurs on transi-
tions between purely electronic states.

Thus, the results point to distinctions between the
nature of the upper CR2 and lower CR1 CR lines. This
is confirmed by the following facts. First, the CR2 line
is always wider than CR1. Second, the CR2 peak is not
symmetric with respect to the line passing through the
origin of coordinates. Third, the longitudinal magnetic
field component differently affects the CR1 and CR2
line, so that only CR2 becomes suppressed. Thus, the
results demonstrate that in a narrow range of fields, a
CR2 line shifted in energy is added to the purely elec-
tronic CR1 line. The half-width of the former line
exceeds the half-width of CR1 several times. The given
line should be assigned to transitions between purely
electronic and mixed states.

Theory. In order to analyze the experimental
results, it is necessary to determine the spectrum and
wave functions of carriers in the InAs/GaSb hetero-
structure. To describe the spectrum accurately, we will
use the four-band Kane model. Within this model, the

Fig. 2. Dependence of the optical transition energy in an
InAs/GaSb heterostructure on the strength of the external
magnetic field.
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wave functions of carriers represent a superposition of
s-type electronic states and p-type hole states

where |s〉  and |p〉  are Bloch functions with angular
momenta of 0 and 1, respectively; and U(r) and V(r)
are smooth envelopes of the spinor Bloch functions. In
the presence of an external magnetic field, the system
of equations for envelopes in the vicinity of the Γ point
takes the form [10]

(1)

Here, γ is the Kane matrix element, mh is the mass of
heavy holes, δ = ∆so/3, ∆so is the spin–orbit coupling
constant, Ec and Ev are the energies of the conduction
band bottom and the valence band top, s = (σx, σy, σz)
are the Pauli matrices, m = –(g0/2)µBs is the magnetic
moment of an electron, µB is the Bohr magneton, g0 is

the g-factor of a free electron,  = –i∇  – (e/c"A) is the
generalized wave vector of a particle, and A is the vec-
tor potential of the field.

The system of equations (1) consistently takes into
account the spin–orbit interaction, which essentially
affects the spectrum of carriers in a magnetic field.
When solving the Kane equations for the InAs/GaSb
heterostructure, we approximated the quantum wells

ψ U s| 〉 V p| 〉 ,+=

Ec mH E––( )U γK̂V+ 0,=

γK̂U Ev δ– mH– "
2K̂
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Fig. 3. Approximation of the potentials and the scheme of
energy levels of electrons and holes in an InAs/GaSb het-
erostructure. Arrows indicate the allowed optical transitions
between the Landau levels. The inset presents schematically
wave functions of mixed states.

Z (Å)
for electrons and holes by a rectangular potential. The z
axis is directed perpendicular to the heteroboundaries;
the quantum well for electrons is located in the region
|z | < a, and the quantum well for holes, in the region
a < |z | < b. The geometry of the system described above
and the qualitative pattern of energy levels for the case
of a transverse magnetic field are displayed in Fig. 3.

In the case when the magnetic field is directed at an
arbitrary angle to the heteroboundary plane, it is conve-
nient to orient the x axis perpendicular to H. Let us
select the vector potential in the following form:

(2)

where α is the angle between the direction of the mag-
netic field and the z axis, and H = H(0, sinα, cosα).
This allows one to separate the variables and to reduce
the problem to a two-dimensional one. In this gauge,
the quantum number kx is conserved. The complete sep-
aration of variables is possible in the cases of transverse
(α = 0) and longitudinal (α = π/2) directions of the
magnetic field H.

For a transverse magnetic field, the vector potential,
according to Eq. (2), depends only on the y coordinate:
A = (–yH, 0, 0) (Landau gauge). The solution of the
Kane equations (1) is a superposition of l↑  and ((l + 1)↓
states corresponding to different spin directions. Here,
the quantum number l is a sum of the angular momen-
tum and the Landau level number. In particular, for the
purely electronic states of the |s〉-type, l coincides with
the magnetic quantization level number.

In the approximation taken here for the heterostruc-
ture potential, the quantum wells for holes are located
symmetrically with respect to the quantum well for
electrons. In this case, the wave functions for electrons
are separated by parity, depending on the spin direction.
The boundary conditions at z = 0 for solutions differing
in parity have the following form:

(3)

(4)

At |z | = b points, the boundary conditions are reduced
to the vanishing of the Vx, Vy , and Vz components of the
wave function. The hole states have no symmetry,
which leads to significant mixing of the l↑  and ((l + 1)↓
states.

In the absence of electron–hole admixing, an
approximate spectrum of carriers can bee obtained ana-
lytically. In this case, the spectrum is weakly nonpara-
bolic, which is favored by the monotonic decrease in
the g-factor with the magnetic field. The sign of the
g-factor remains unchanged with increasing field.
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The spectrum of carriers calculated with taking into
account the admixing of electron and hole states differs
from that described above, and qualitative effects (anti-
crossings) arise in the vicinity of the points of intersec-
tion of various nonperturbed curves E(H). Note that the
magnitude of anticrossing (the energy gap between the
electron and hole bands) depends on the behavior of
curves E(H) corresponding to electron and hole states
and also on their spin composition. The behavior of
curves is determined by their inclination (g-factor) and
depends on the magnitude of the magnetic field. The
variation of the g-factor with increasing field is essen-
tial for the heavy hole states because of admixing of the
light and heavy hole states [10].

A portion of the plot of the energy of states vs. mag-
netic field is given in Fig. 4 for the following values of
quantum numbers: l = 3, s = ±1/2. Curves with s = –1/2
are shown in solid lines, and those with s = +1/2, in
dashed lines. The curves going down in energy corre-
spond to two branches of heavy holes, which are degen-
erate at H = 0. In this case, both electronic and hole
curves correspond to the ground size-quantization state
of. It is evident in Fig. 4 that the anticrossing of the Lan-
dau levels of electrons and holes occurs at a certain
value of the magnetic field. This means that strong
admixing of electron and hole states exists at this value
of the magnetic field. The magnitude of anticrossing
(energy gap) for each pair of electronic and hole curves
is in agreement with experimental data, and the accu-
rate value is determined by the quantitative relationship
between the |s〉  and |p〉  wave-function components of
the electron and hole states corresponding to anticross-
ing curves. The range of magnetic fields ∆H ≈ 0.5 T in
which the curve E(H) transforms from the electronic to
hole type is also in agreement with experiment. The
precise width of this range is also determined by the
specific relationship between the wave-function com-
ponents. The shape of wave functions near the anti-
crossing is qualitatively depicted in the inset in Fig. 3.
Here, by s and p we mean the sets of the corresponding
two and six wave-function components. On passing
through the anticrossing region, the wave function
steadily transforms from the electronic to hole type.
Similar calculations for a transverse magnetic field in a
somewhat different model were performed in [11].

The results observed in CR experiments are associ-
ated with optical transitions between various energy
states. To accurately determine the transitions that
occur experimentally, it is necessary to know accurately
the potential and the Fermi level in the heterostructure
under consideration. However, even within the frame-
works of the model in hand, one may infer that the
observed effects are associated with the coexistence of
transitions between an electron (or hole) state and two
close mixed states. The shape of the CR line in this case
is a superposition of two Lorentzians I(E) = CR1 + CR2
and is transformed from CR1 to CR2 within a certain
range of fields. Quantitative calculations demonstrated
JETP LETTERS      Vol. 76      No. 4      2002
a good agreement between the anticrossing magnitude
and the experimental data (3–4 meV).

To analyze the suppressing of the effects associated
with electron–hole admixing in an inclined magnetic
field, consider the limiting case of a longitudinal field
direction (α = π/2). The vector potential, according to
Eq. (2), depends only on the z coordinate, A = (zH, 0, 0).
The energy of the states under consideration in a longi-
tudinal field is summed up of two parts connected with
size and magnetic quantization. These energies can be
separated analytically only in the cases kz/kH @ 1 or
kH/kz @ 1 (weak and strong magnetic fields). In our
problem, an intermediate case is of interest. The bound-
ary conditions in the case of a longitudinal magnetic
field require the continuity of the same quantities as in
the transverse case. However, the boundary conditions
at z = 0 differ from the case of a transverse field. The
wave functions are also even or odd functions of the
coordinates; however, the parity of the state corre-
sponds to even and odd size-quantization levels rather
than different spin directions.

The effective potential for electron and hole quan-
tum wells in a longitudinal magnetic field is summed
up from the rectangular component and an additional
potential associated with the presence of an external
field. In the parabolic approximation, the effective val-
ues Ec and Ev have the following coordinate depen-
dence:

,Ec z( ) Ec

"
2kH

2

2mc

----------- z z0–( )2 αsin
2

+=

Fig. 4. Dependence of the energy of mixed states on the
strength of a transverse external magnetic field.
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where m* = (mh, ml) are, respectively, effective masses
for the heavy and light holes; z0 are the centers of the
electron and hole wells. The appearance of an addi-
tional potential in the form of an addition to Ec and Ev

quadratic in z leads to a decrease in admixing of elec-
trons and holes, because the barrier height increases
much faster than the increase in the energy of states
with increasing longitudinal magnetic field.

Thus, in the case of large inclination angles at which
the longitudinal field component cannot be neglected,
the effects associated with electron–hole admixing
decrease significantly. This fact is explained by the
occurrence of an additional parabolic barrier for elec-
trons and holes due to the longitudinal magnetic field
component, which hinders the admixing of carriers. In
this case, the magnitude of anticrossing must monoton-
ically decrease with increasing α. In particular, calcula-
tions showed a decrease in the magnitude of anticross-
ing by two orders of magnitude in passing from the
transverse to longitudinal direction of the field. Experi-
mentally, these effects disappear at angles α of order
60°.
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A system of vortices in a quasi-two-dimensional HTSC plate with periodic pinning is considered. The magne-
tization curves are calculated by the Monte Carlo method for different values of an external magnetic field and
different temperatures. It is shown that the vortex system with periodic pinning may crystallize with an increase
in temperature. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.60.Ge; 74.76.Bz; 74.80.Dm
The physics of the vortical state demonstrate a high
diversity of phase transformations [1]. The nature of
various phase states of vortex systems and the transi-
tions between them have been the subject of extensive
studies, both theoretical and experimental. It was estab-
lished that, at low temperatures, the vortex system
forms a triangular lattice. The temperature fluctuations
can destroy the vortex crystal in HTSC and induce tran-
sition to the vortex liquid phase. Defects and impurities
have a sizable effect on the HTSC phase diagram. The
defects can often lead to new phase states of the vortex
system. It was shown in [2, 3] that the introduction of
even a small amount of defects gives rise to a new phase
with orientational melting of vortex lattice.

Recently, considerable progress has been achieved
in the methods of creating artificial defects (see, e.g.,
[4]). Modern techniques allow the creation of pinning
centers with the predetermined parameters. The artifi-
cial creation of pinning centers allows the study of the
influence of defects on the HTSC phase diagram with
fully controlled parameters of defect structure.
Recently, special interest has been shown in the prob-
lem of periodic pinning. The presence of a pinning cen-
ter lattice gives rise to the effects associated with the
correspondence between the number of vortices and
defects. These effects cause the formation of ordered
configurations in the vortex system, which are substan-
tially different from the familiar triangular lattice [5]. In
turn, experiments show that the ordering in the vortex
system gives rise to the singularities in the magnetiza-
tion curves M(H) and in the magnetic-field depen-
dences of critical current and electrical resistance [4, 5].

In this work, we present new results of Monte Carlo
modeling the vortex system with periodic pinning. It is
shown that the magnetization curves have singularities
that are caused by the influence of the periodic lattice of
pinning centers. The vortex distribution patterns are
obtained for different points on the M(H) curve.
0021-3640/02/7604- $22.00 © 20227
We have found that the vortex system with periodic
pinning becomes ordered with an increase in tempera-
ture (inverse crystallization effect). Such an unusual
behavior rarely occurs in nature. The inverse crystalli-
zation was observed in some magnetic materials [6]
and polymer systems [7]. Recently [8], the inverse crys-
tallization of a vortex system was observed in the case
of chaotic pinning. The nature of inverse crystallization
in the presence of periodic pinning, which is predicted
in this work, is basically different from the chaotic case.

We consider a three-dimensional bulk HTSC sam-
ple having layered structure in the xy plane. The sample
has a finite thickness in the x direction and is infinite in
the y and z directions. It is placed in a magnetic field
aligned with the z axis to eliminate the demagnetization
effects. We assume that the interlayer interaction in
HTSC is weak and consider only a quasi-two-dimen-
sional xy plate with thickness d to model a supercon-
ducting layer; i.e., we “cut out” a layer with thickness d
along the z axis and consider it in our calculations. The
sample boundaries in the x direction are the vortex
sources, and the Meissner currents flow at a penetration
depth. The thermodynamic Gibbs potential of the vor-
tex system in the plate has the form

(1)

It includes the energies U(rij) of pair interaction
between vortices, the energies Up(ri) of interaction
between vortices and pinning centers, the energies
Um(ri) of interaction between vortices and Meissner
currents, the self-energy Uself of the vortex system, and
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the interaction Usurf of the vortex system with the
superconductor surface (see model in [9]).

The calculations were carried out by the method
based on the Monte Carlo algorithm for grand canoni-
cal ensemble. This method allows one to determine the
equilibrium distribution of vortex density for fixed
external parameters (magnetic field H, temperature T,
distribution of pinning centers, and their type) and cal-
culate the magnetization M and magnetic flux density B
for the resulting distribution. Therefore, the method can

Fig. 1. Magnetization curves for a triangular lattice of point-
like pinning centers with concentration nd = 5.7 µm– 2 at
different temperatures: T = (1) 1, (2) 5, and (3) 10 K. Arrow
indicates the magnetic field corresponding to the inverse
crystallization of the vortex system.

Fig. 2. Temperature dependence of the structure factor S6

for the (1) triangular defect lattice with nd = 5.7 µm–2,

(2) chaotic defect arrangement with nd = 5.7 µm–2, and
(3) pure superconductor.
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be used for obtaining both the integral superconductor
characteristics and the visual magnetic-flux distribution
pattern. This approach has a number of fundamental
distinctions as compared to the conventional calcula-
tions, namely, the highly precise accounting of the
influence of plate boundaries, wide temperature range
0 < T < Tc, and the possibility of considering any distri-
bution for defects of any type. The method of calcula-
tion and the model were described in detail in [9, 10].

The modeling was carried out using the parameters
of a layered Bi2Sr2CaCu2O8 superconductor: d =
0.27 nm, λ0 = 180 nm, ξ0 = 2 nm, and Tc = 84 K [11].
The pinning depth was taken to be sufficiently large to
exclude the temperature depinning. The calculations
were performed for plates with size 5 × 2.25 µm over
the range of external fields 0 ≤ H ≤ 0.1 T. The maximal
range of external field H was limited only by the com-
puter power and, hence, by the CPU time.

We calculated the magnetic-field dependences of
magnetization for various temperatures and the triangu-
lar lattice of pointlike pinning centers with concentra-
tion nd = 5.7 µm–2. One can see from Fig. 1 that the
curves show a number of clearly-defined features at low
temperatures T = 1 and 5 K. These features are due to
the correspondence effect between the numbers of vor-
tices and defects. At certain ratios between the number
Nv of vortices and the number Nd of defects, ordered
configurations appear in the vortex system. For exam-
ple, the triangular vortex lattice shown in Fig. 3b corre-
sponds to the case where the number of vortices is four
times larger than the number of defects, Nv /Nd = 4. It
should be noted that the vortex lattice is not formed at
an arbitrary integer value of the Nv /Nd ratio. It was dem-
onstrated in [12] by the molecular dynamic study that
the ordered configurations for the triangular lattice of
pinning centers appear at the following ratios between
the numbers of vortices and defects: Nv /Nd = 1, 2, 3, 4,
7, 9, 12, 13, 16, 19, 21, 25, and 28. In this work, the fea-
tures in the magnetization curves were observed at
Nv /Nd = 2, 3, and 4. The higher order features lie
beyond the range of magnetic fields used in our calcu-
lations.

As the external magnetic field increases, the “rigid”
vortex lattice prevents the penetration of new vortices
into the sample, and the magnetization increases. On
further rise in magnetic field, additional vortices can
enter the sample to destroy the ordered vortex structure
and reduce the magnetization. To proceed, it should be
emphasized that the ordered configurations are
observed not at the point corresponding to the local
magnetization maximum but at the base of the ascend-
ing portion of magnetization curve.

With an increase in temperature, the Meissner
superheating field decreases and the magnetization
curves run lower. The peaks shift to lower fields, and
their magnitudes decrease. On further rise in tempera-
ture, the features fully disappear. An analysis of the vor-
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(a) (b) (c)

Fig. 3. Vortex density distribution in the field H = 0.062 T at different temperatures for the triangular defect lattice with nd = 5.7 µm–2;
T = (a) 1, (b) 5.2, and (c) 30 K.
tex density distributions indicates that the peaks disap-
pear because of the melting of the vortex lattice.

Inasmuch as the peak positions undergo shift with
changing temperature, a situation is possible where the
descending portion at low temperature corresponds to
the peak base at a higher temperature (e.g., the descend-
ing portion following peak 2 at T = 1 K and the peak
base at T = 5 K in Fig. 1). Thus, the transition from the
disordered to ordered configuration may occur with an
increase in temperature. The peak widths in the magne-
tization curve strongly depend on the potential well
depth of defects. Note that the ascending portion after
the minimum goes almost at an angle of 45°, indicating
a nearly “Meissner-type” behavior, and the breaking
point corresponds to the “break” of the first vortex
through the blockade produced by the fields of vortices
that are already pinned and form regular lattice. The
larger the pinning strength, the larger the breaking field
(an analog of the Meissner superheating field). For this
reason, one can provide favorable conditions for the
effect by choosing the appropriate range of the defect
depths.

To verify this assumption, we calculated the config-
uration of vortex system at a fixed field H = 0.062 T and
various temperatures. The following situations were
considered: a triangular lattice of point defects with
nd = 5.7 µm–2; the chaotic distribution of point defects
with nd = 5.7 µm–2; and a pure sample. To characterize
the degree of ordering in the system, the structure factor
S6 was calculated,

(2)

Here, Zi is the coordination number of the ith vortex and
θij is the angle between the nearest neighbors. The tem-
perature dependences of S6 are shown in Fig. 2. In the
case of periodic arrangement of pinning centers, S6
increases at temperatures T = 1–5.8 K; i.e., the vortex
system becomes more ordered with an increase in tem-
perature. At T = 1 K (Fig. 3a), the vortex system
becomes disordered, in spite of the low temperature,
because the number of vortices is not a multiple of the
number of defects. As the temperature incenses, new
vortices enter the sample, and a new commensurable
stable ordered configuration arises (Fig. 3b), which

S6
1
Zi

---- e
i6θij.

j 1=

Z j

∑
i 1=

Nv

∑=
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again melts upon further rise in temperature (Fig. 3c).
Thus, in the case of periodic arrangement of defects, the
vortex system can crystallize upon an increase in tem-
perature. This is accompanied by the appearance of sin-
gularities in the derivative of magnetization with
respect to temperature; the recrystallization points can
be derived from these singularities. For the chaotic
defect distribution and in a pure sample, the structural
parameters gradually decrease with increasing temper-
ature over the entire temperature interval studied
(Fig. 2).

It should be noted that the inverse crystallization
was experimentally observed in [8] in a system with
chaotic pinning. In the case of chaotic defect arrange-
ment, the vortex system becomes ordered, because the
pinning weakens with increasing temperature, while
the interaction of vortices leads to a triangular lattice.
As was mentioned above, we assume that the pinning
centers are sufficiently deep for the temperature-
induced depinning to be excluded. For this reason, the
inverse crystallization in our case has a basically differ-
ent physical nature. The system becomes ordered with
a rise in temperature due to the correspondence
between the numbers of vortices and defects.

In summary, we have reported the results of Monte
Carlo modeling the vortex system with periodic pin-
ning. It has been shown that the periodic arrangement
of defects gives rise to the singularities of various
nature in the magnetization curves. The temperature
behavior of the system with periodic pinning has been
analyzed. It has been shown that, in this case, the vortex
system can undergo ordering upon an increase in tem-
perature, as a result of the penetration of new vortices
and formation of the stable configuration.

The inverse crystallization of vortex system can be
visualized in superconductors with periodic arrange-
ment of artificial pinning centers using the magneto-
optical techniques or high-resolution scanning magne-
tometry.
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