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The Gell-Mann–Low function in QCD β(g) (g = /16π2, where  is the coupling constant in the Lagrangian)
is shown to behave in the strong-coupling region as β∞ gα, where α ≈ –13 and β∞ ~ 105. © 2002 MAIK
“Nauka/Interperiodica”.
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Recently, using an algorithm proposed in [1, 2] for
summing divergent series of perturbation theory, I
determined the Gell-Mann–Low function of ϕ4 theory
[1, 2] and QED [3]. Here, this algorithm is applied to
QCD, for which previous calculations provided ambig-
uous results [4].

1. Information about all terms of the perturbation
series can be acquired by interpolating first terms with
the Lipatov asymptotic behavior [5]. The first four
terms in the expansion of the Gell-Mann–Low function
for QCD are known in the MS scheme [6]:

(1)

where
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Here, Nf is the number of types of quarks and  is the
coupling constant in the QCD Lagrangian
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where , ψf, and ωa are gluon, quark, and ghost fields,
respectively; Ta and f abc are the generators of the fun-
damental representation and structure constants of the
Lie algebra, respectively; ξ is the gauge parameter; and
subscript f specifies the type of quark.

2. The asymptotic behavior in perturbation theory
was discussed for Yang–Mills fields [7–9] and QCD
[10, 11]. However, the results are not quite general.
Below, this deficiency will be partially compensated.1 

The pre-exponential factor of the most general func-
tional integral for QCD involves M gluon, 2L ghost, and
2K quark fields, i.e.,

(4)

where vector indices immaterial for further consider-
ation are omitted. The substitution A  B/  reduces
the Euclidean action to the form

(5)

1 My view on the renormalon contributions was formulated in [3].
The existence of renormalon singularities in QCD was neither
proven nor disproven, and I will assume that they are absent.
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328 SUSLOV
and the integration over the fermion fields yields

(6)

where G and  are the Green’s functions of the opera-

tors  and , and ellipsis means terms with other pair-

ings. It is important that S{B}, G, and  are indepen-
dent of . Functional integral (6) is determined by the
Yang–Mills action, and the asymptotic behaviors of its
expansion coefficients in  are calculated by the Lipa-
tov method [5]. For the saddle-point configuration,  ~
N–1/2, where N is the order of perturbation theory.
Therefore, each field A(xi) in the pre-exponential factor
in Eq. (4) provides the factor N1/2, whereas other fields
do not give N-dependent factors. The dependence of the
expansion coefficients on N is determined according to
[10]; it differs from the result for the quark correlation
function only by the factor NM/2. The Nth-order contri-
bution to ZMLK has the form

(7)

for even M and, with the additional factor , for
odd M (Nc is a number of colors).2 

Using the result for the functional integral and
applying the algebra of factorial series [16], one can

easily obtain the result for any quantity. Let FN  be
the Nth-order contribution to the vacuum integral (M =
L = K = 0). Then, the general term of asymptotic func-

tion (except for a coefficient) has the form NFN  for

the gluon propagator ∆, FN  for the ghost propagator

G and quark propagator Gf, NFN  for the gluon–

ghost vertex γ3 and gluon–quark vertex , N2FN

for the three-gluon vertex Γ3, and N3FN  for the
four-gluon vertex Γ4. In view of the generalized Ward

identities Γ3 ~ γ3G and Γ4 ~ , the leading contribu-
tions to the asymptotic behaviors of Γ3 and Γ4 cancel
each other, and the invariant charge has the general

2 The term M/2 in the argument of gamma function in Eq. (7) is
related to the number of external fields, 4Nc is half the number of
zero modes, and the term 11(Nc – Nf)/6 arises because certain
zero modes are soft, under more rigorous consideration, and must
be nontrivially integrated. For the quark correlation function,
Eq. (6) involves divergences, which were removed in [10, 11] by a
doubtful method [14]. These divergences are absent for M ≥ 1.
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expansion term NFN  or FN  when determining
it from any vertex. The expansion of the β function has

the same form [5]. Since g = /16π2, the coefficients
of series (1) have the form

(8)

This result for Nc = 2 and Nf = 0 agrees with the result
obtained in [7].

3. Series (1) is of constant sign, and the familiar
problem arises as to how one can treat the poorly
defined Borel integral. In particular, the principal-value
interpretation of this integral is not necessarily correct
[17]. The gamma function is generally defined as

(9)

where C1, C2, … are arbitrary contours beginning at the
origin and tending to infinity in the right half-plane.
The Borel transformation of series (1) yields

(10)

where b0 is an arbitrary parameter. If the Borel trans-
form B(z) has singularities in the right half-plane, con-
tours Ci are no longer equivalent and cannot be reduced
to the positive semiaxis, as was possible in Eq. (9). For
this reason, the summation result depends on the choice
of γi and Ci.

3 We bypass this problem as follows. For the
power behavior of the Borel transform at infinity, i.e.,
when B(z) ~ zα, we have

(11)

where the exact relation between β∞ and  depends on

the chosen γi and Ci, but β∞ ~  in the general case.
Therefore, index α can be determined and β∞ can be
estimated by summing series (1) at negative values of g.

4. According to the algorithm developed in [1, 2],
the resummation of the alternating series with the coef-

3 Results for different γi and Ci differ by terms similar to exp(–a/g),
and these nonperturbative contributions must generally be added
to the Borel integral. For correctly chosen γi and Ci, these contri-
butions are included in the Borel integral and must not be explic-
itly taken into account.
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GELL-MANN–LOW FUNCTION IN QCD 329
ficients behaving asymptotically as caNΓ(N + b) pro-
vides the convergent series with the coefficients

(12)

whose behavior for large N

(13)

determines the parameters of asymptotic function (11).
The coefficient function is interpolated via the formula

(14)

by breaking the series and choosing the coefficients AK

from agreement with Eq. (2). The optimal parameter-

ization of the asymptotic behavior with  = b – 1/2 is

taken [2], and parameter  is used to control the stabil-
ity of results and to optimize the calculations.

Similar to QED, the parameter c of the Lipatov
asymptotic behavior is unknown, and it was determined
through the interpolation in [3]. In the case under con-
sideration, this procedure gives large uncertainty in the
results, which is not reduced by optimization. For this
reason, interpolation was carried out for a test c value,
which then varied from 10–5 to 1.4 Under this variation,
the results change only slightly compared to other
uncertainties. The results below were obtained for
Nc = 3, Nf = 0, and c = 10–5.

Processing UN in terms of the power law and consid-

ering the dependence of χ2 on , we separate the inter-

val 0.5 &  & 2.0, where the χ2 values are minimal.
This procedure determines the set of interpolations
consistent with the power behavior of UN. The typical
behavior of χ2 and effective values U∞ and α as func-
tions of b0 (Fig. 1) indicates that α ≈ –15. Indeed, U∞
determined by Eqs. (13) changes sign at b0 = –α ≈ 15.5.
For this b0 value, χ2 has a minimum, because the lead-
ing contribution U∞Nα – 1 is equal to zero due to the pole
of the gamma function in Eq. (13), and we have power
behavior UN ~ Nα' – 1 corresponding to the first correc-
tion to the asymptotic behavior of β(g) [we assume that
β(g) = β∞gα + gα' + … for large g values]. The αeff

4 Parameter c is equal to the product of the square of the ’t Hooft
constant cH in the expression for one-instanton contribution [12,

13] (  ~ 10–5 and 10–4 for Nf = 0 and 3, respectively) and the

dimensionless integral of the instanton configuration. The latter
factor can be rather large (characteristic scale is 8π2).
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Ñ

cH
2

Ñ
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value in the first (from large b0) minimum of χ2 is clos-
est to the exact value α ≈ –15, because the leading cor-
rection to asymptotic function (13) vanishes at b0 = –α'.
The results obtained by the above methods of estimat-

ing index α are close only for  values close to the

optimal value  = 1.58 (Fig. 1) but are inconsistent for

 values far from the optimal value.

The result for index α cannot immediately be taken
as final. First, the large index can imitate an exponen-
tial. Second, for α = 0, –1, –2, …, the leading contribu-
tion to the asymptotic behavior of UN vanishes due to
the pole of Γ(α) [see Eq. (13)], and the observed result
can correspond, e.g., to α' rather than to the principal
index α [2]. In view of these circumstances, we analyze

the function W(g) =  and increase integer
parameter ns until the observed index αW = α + ns

becomes positive. The results (Fig. 2a) conclusively
demonstrate that we observe a large negative noninte-
ger index rather than an exponential (if it were α = –n,
we would observe the behavior shown in the insert).
Each point in Fig. 2a is obtained by independent opti-

mization in . The optimal  value decreases mono-

Ñ

Ñ

Ñ

g
nsβ g( )

Ñ Ñ

Fig. 1. Quantities χ2, αeff, and  = U∞Γ(b0 + 2) vs. b0 for

the optimal interpolation with  = 1.58 and averaging

interval 23 ≤ N ≤ 35. Function (b0) for | | < 10 is
shown schematically. The minima at b0 = 15.4 and 15.9 are
treated as the satellites of the principal minimum at b0 =
15.5, because they, together with the principal minimum,
are shifted with varying parameters.

Ũ∞

Ñ

Ũ∞ Ũ∞
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Fig. 2. (a) Index αW obtained by summing the series for

function W(g) = β(g) vs. ns for various averaging inter-
vals Nmin ≤ N ≤ Nmax: (.) for Nmin = 22 + ns and Nmax =
35 + ns and (j, m, d, h, n, s, e) for sequentially increasing

Nmin by one unit; (b) parameter  as a function of ns.

g
ns

β∞

Fig. 3.

Fig. 4.

lo
g

tonically with increasing ns. Uncertainty in the results
is primarily attributed to the dependence at the lower
bound of averaging interval Nmin ≤ N ≤ Nmax. The upper
points in Fig. 2a correspond to small Nmin and to χ2 ~
106 in the minima. As Nmin increases, α decreases
monotonically until χ2 reaches a value of ~103 (lower
points). With a further increase in Nmin, the pattern of χ2

minima becomes indistinct, and the uncertainty of the
results increases considerably. We admit a certain small
decrease in α until the required values χ2 ~ 10 are
reached, which is taken into account when errors are

estimated. The uncertainty in parameter  is of sev-
eral orders of magnitude (Fig. 2b), but the most proba-
ble value is ~105, which is consistent with the basic
array of data. Thus, we have for Nf = 0 

(15)

For Nf = 3, one has α = –12 ± 3 and the same most prob-

able value  (whereas the total scatter is  = 1–107).
The stability in the results against a change in the sum-
mation procedure testifies that their uncertainty is ade-
quately estimated. Some underestimation of the error is
possible due to the nonlinear effects [3] and because the
asymptotic behavior is reached slowly.

Large uncertainty in  corresponds to compara-
tively small uncertainty in the β function: we found that
the one-loop law β2g2 was matched with asymptotic

function (11) in characteristic scale g* ~ 2, and 
changes by four orders of magnitude as g* changes by

a factor of two. The sign of  is indeterminate in neg-
ative αW region, because error in α is large and the fac-
tor Γ(α) in Eq. (13) is alternating, but this sign is defi-
nitely negative in positive αW region (large ns values).
Figure 3 shows (solid line) the behavior of β function
for g < 0 and (dashed line) the analytic continuation to
positive g values, where the behavior is qualitatively the
same, but the sign of asymptotic function (11) can
change.5 Nevertheless, the behavior of the effective
coupling constant as a function of the length scale L is
definite (Fig. 4). As is known, g(L) in the one-loop
approximation has a pole at L = L0 = 1/ΛQCD (dashed
line in Fig. 4). For the resulting β function (Fig. 3), g(L)
increases near L0 up to ~g* and then either (for β∞ > 0)
becomes constant or (for β∞ < 0) increases as (lnL)0.07,
which is close to a constant.

In the weak-coupling region, interaction V(L)
between quarks is described by he modified Coulomb

law /L, and the sharp increase in  near L = L0
testifies to the tendency to confinement. In the strong-
coupling region, the relation between V(L) and  is

5 In particular, β∞ = cos(πα) when the Borel integral is treated
as the principal-value integral.

β∞

α 13– 2, β∞ 105.∼±=

β∞ β∞
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β∞

g2 L( ) g L( )

g L( )
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GELL-MANN–LOW FUNCTION IN QCD 331
unknown, but Wilson [17] obtained the following result
for the lattice QCD version:

, (16)

where a is the lattice constant. From the condition that
the result is independent of a, the β function in the
strong-coupling region is estimated as β(g) ~ glng [18],
which is, however, incorrect. The cross size of the
string in the region a @ 1/ΛQCD is equal to ~a, which is
considerably higher than its actual physical size
~1/ΛQCD. Therefore, the lattice introduces strong distor-
tions, and there is no reason to expect that the result is
independent of a. These reasons exist in the region a !
1/ΛQCD, where, however, the coupling constant 
becomes small, and Eq. (16) does not apply. Thus,
Eq. (16) is meaningful only for a ~ 1/ΛQCD. In the satu-

ration region,  ~ 20, and, because of
a sharp increase in g(L) near L = L0 (Fig. 4), the condi-
tions a ~ 1/ΛQCD and  @ 1 are compatible, which
likely justifies the applicability of Eq. (16) to actual
QCD.

This work was supported by INTAS (grant no. 99-
1070), the Russian Foundation for Basic Research
(project no. 00-02-17129), and the Russian Foundation
for Support of Science.
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We conducted an experiment on radiative neutron beta decay on an intensive cold-neutron beam at ILL during
April and May 2002. This work is dedicated to the analysis of the methodology and the results of the study. The
main outcome of this experiment is the branching ratio (BR) for the rare neutron-decay mode in the gamma-
ray quanta energy region from 35 to 100 keV. The limit obtained is BR < 6.9 × 10–3 (90% C.L.), which is only
a few permilles greater than the theoretical BR value calculated within the standard weak-interactions model.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 13.30.Ce; 13.40.Hq; 14.20.Dh
1. Introduction. This experiment is the first step in
a research for radiative neutron beta decay, where,
along with the usual three particles (i.e., electron,
antineutrono, and proton), another particle is created,
namely, a gamma-ray quantum:

n  p + e +  + γ.

It is necessary to note that this decay branch is the most
intensive of all the rare elementary-particle decay
modes and is therefore well investigated for practically
all elementary-particle decays where charged particles
are formed in the final state. However, this branch is yet
to be discovered for the neutron [1]. Calculations of the
gamma-ray quanta spectrum were conducted in the
framework of standard electroweek theory, and the
branching ratio (BR) for this decay mode as a function
of the gamma energy threshold was given in [2, 3].

The experiment was conducted in the radiative
gamma-ray quanta energy region from 35 to 100 keV,
and for this region the theoretical BR value is about one
permille [2, 3]. It is not such a difficult task to measure
this relatively large value, as a rather significant back-
ground could be overcome with the help of triple elec-
tron, gamma quanta, and recoil proton coincidences.
The presence of such a coincidence will be the factor
used to identify a radiative neutron decay event. An
ordinary neutron beta decay is then defined by the dou-
ble coincidences of electron and recoil proton. This
double coincidence scheme has already been used in
measuring the emission asymmetry [4, 5] of the decay
electron by the joint group of physicists from PNPI

¶This article was submitted by the authors in English.

ν

0021-3640/02/7606- $22.00 © 20332
(Gatchina) and RSC Kurchatov Institute (Moscow).
The setup used in those experiments is upgraded now
for the conduction of the experiment on radiative neu-
tron decay suggested here.

This upgrade was realized by placing an additional
gamma-ray quanta detector in the existing vacuum
chamber, the size and geometry of which allowing to do
so. However, the simple addition of a third gamma-ray
quanta detector to the two detectors for the decay elec-
trons and recoil protons would not suffice by itself. The
point is that in this experiment, besides the noncorre-
lated background, there is also a correlated background
of bremstrahlung gamma-ray quanta which fully simu-
lates the desired fundamental process. It is therefore
necessary to concider this problem in more detail.

Indeed, when measuring the BR, a correlated back-
ground will occur, which is impossible to decrease even
with triple coincidences of the electron, the photon, and
the proton. This background is connected with
bremsstrahlung emission of the electron traveling
through the plastic scintillator, which completely simu-
lates the events of radiative neutron decay and is quite
significant even when the thickness of the plastic scin-
tillator is only 3 mm. The idea of diminishing this cor-
related background centers around using the spatial res-
olution. If a sectioned e-gamma detector is used and
electron and gamma-ray quanta are registered in differ-
ent sections, then the background can be overcome
completely, because the bremsstrahlung emission
occurs only in the section that registers electrons.
Within the electroweak interaction model, calculations
demonstrate one important particularity of radiative
emission for the rare neutron mode being studied: it is
002 MAIK “Nauka/Interperiodica”
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not forward directed, as the bremsstrahlung, but
achieves the maximum intensity of radiative gamma-
ray quanta emission at an angle of 35 degrees with
respect to the electron takeoff direction. It was this par-
ticularity of radiative neutron decay that we had real-
ized in the methodology of this experiment, having
placed the gamma detectors at 35 degrees to the elec-
tron detector. In this case, part of the statistics are lost,
of course, but, as can be seen from [3] and Fig. 4, this
is only a small fraction.

2. Experimental setup. The experimental setup is
shown schematically in Fig. 1. The intense cold neutron
beam passes through a rather long neutron guide in
which is installed a collimation system made of LiF
diaphragms placed at regular distances of 1 m. The neu-
trons enter the vacuum chamber (1) through the last
diaphragm (10), which is located directly before the
decay zone. This zone is observed by three types of
detector: the microchannel-plate (MCP) proton detec-
tor (3), the electron detector (14) consisting of a 7-cm-
diameter and 3-mm-thick plastic scintillator, and six
gamma detectors (12) that are located on a ring cen-
tered around the electron detector and which consist of
photomultiplier tubes each covered with a layer of
CsI(Tl) scintillator. The thickness of these 7-cm-diam-
eter CsI(Tl) scintillators is 4 mm and has been selected
so as to have a 100% detection efficiency for photons
with energies up to 100 keV. The six gamma detectors
surround the electron detector (see [3]) at an angle of
35° and are shielded from it by 6 mm of lead (13).

By requiring a coincidence between the electron
detector and any of the gamma detectors, the
bremsstrahlung background can in principle be over-
come completely, because bremsstrahlung emission
occurs only in the section that registers the electron. In
this case, part of the statistics are lost, of course, as can
be seen from [3] and Fig. 4. However, the neutron-beam
intensity of 1012 n/s in our experimental chamber is suf-
ficiently high to still allow for a good count rate. Recoil
protons, formed in the decay zone, pass through a cylin-
drical time-of-flight electrode (7) in the direction of the
proton detector (3) and are focused onto this detector
with the help of spherical focusing electrodes (2). The
focusing electrostatic field between the high-voltage
spherical and cylindrical electrodes (2) and (7) is cre-
ated by the grids (5) and (6) at one side and by the pro-
ton detector grid (4), at ground potential, at the other
side. It is important to note that the recoil protons take
off isotropically from the decay point. In order not to
lose half of the protons emitted, an additional grid (11)
is added on the other side of the decay volume. The
potential difference between the grid (11) and the grids
and electrodes at the other side of the decay volume in
principle assure a 4π solid-angle coverage for the recoil
protons. At present this 4π solid angle coverage is not
realized due to the presence of the plastic collimator (8)
with a hole of diameter 70 mm, i.e., the diameter of the
decay zone, on the side of the proton detector. For
future measurements, this collimator will therefore be
JETP LETTERS      Vol. 76      No. 6      2002
Fig. 1. Schematic layout of the experimental setup: (1) vac-
uum chamber, (2) spherical electrodes to focus the recoil pro-
tons on the detector (at 13–20 kV), (3) proton detector, (4) grid
for proton detector (at ground potential), (5) and (6) grids for
time-of-flight electrode, (7) time-of-flight electrode (at 13–
20 kV), (8) plastic collimator (5 mm thick, diameter 70 mm)
for recoil protons, (9) plastic collimator (5-mm-thick, diame-
ter 70 mm) for beta electrons, (10) LiF diafragms, (11) grid to
turn the recoil proton backward (at 22–26 kV), (12) six photo-
multiplier tubes for the CsI(Tl) gamma detectors, (13) lead
cup, and (14) photomultiplier tube for the plastic scintillator
electron detector.

Fig. 2. Timing spectrum for e–p coincidences. Each channel
corresponds to 25 ns. The peak at channel 17 corresponds to
the prompt (momentary) coincidences. The coincidences
between the decay electrons and delayed recoil protons
(e−p coincidences) are contained in the large peak centered
at channel 30.
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removed, which will increase the proton count rate by
about a factor 50.

The start signal that opens the time windows for all
detectors is the signal from the electron, registered in
the electron detector. For an event to be considered as a
radiative neutron-decay event simultaneous signals
from the electron detector and one of the gamma detec-
tors, followed by a delayed signal from the proton
detector, are required. Besides these triple coinci-
dences, electron–proton coincidences, signaling a neu-
tron decay event also are monitored.

It is important to note here that, thanks to the LiF
ceramics diaphragm system which was installed in the

Fig. 3. Timing spectrum for triple e–p–g coincidences (peak
centered at channel 35). Each channel corresponds to 25 ns.

Fig. 4. Timing spectrum for e–p coincidences. Each chan-
nel corresponds to 25 ns. The peak at channel 17 corre-
sponds to the prompt coincidences. The coincidences
between the decay electrons and delayed recoil protons (e–p
coincidences) are contained in the large peak centered at
channel 24.
neutron beam line, the gamma background from the
intense cold neutron beam was significantly sup-
pressed. The background level in the gamma detector
amounted to only about 100 Hz (at a neutron-beam
intensity of 1012 n/s). If the number of the diaphragms
in the neutron guide were doubled, the background of
the gamma detectors could be further reduced by
another order of magnitude, thus becoming comparable
to the noise of the photomultiplier tubes. The count rate
in the electron detector was just about 100 Hz. It is very
likely that most of this count rate is due to electrons
from neutron decay, since the count rate in this detector
almost immediately dropped to zero when the neutron
beam was switched off. The main problem in this
experiment was the proton detector background, which
turned out to be very sensitive to the vacuum conditions
in the experimental chamber. This is discussed in detail
in the next section.

3. Results. The experiment itself could be divided
into two stages. At the beginning of statistics collection,
we immediately discovered a peak of triple coinci-
dences; however, the ratio of the triple electron–pro-
ton–gamma (e–p–g) coincidences to the number of
double electron–proton (e–p) coincidences was about
5 × 10–2, which exceeds the theoretical value by more
than one order of magnitude. At the same time, at the
beginning of the experiment, we had a rather poor vac-
uum and we consitantly registered a very high ion back-
ground in our proton detector. These results at the
beginning of our experiment are best demonstrated in
the time spectra given in Figs. 2 and 3.

Spectra of double e–p coincidences are given at the
Fig. 2, and triple e–p–g coincidences are given at the
Fig. 3. Two peaks can be clearly seen on Fig. 2: the
so-called peak of false or momentary coincidences,
which occurs when the proton detector registers back-
ward-scattered bremstrahlung gamma-ray quanta (see
Fig. 2), caused when the electron gets into the electron
detector, this peak (in the 15 channel area) corresponds
to the physical zero of recoil-proton delay time count-
down. The recoil protons, in turn, form the second peak
(from channels 30 to 40) of electron coincidences with
time-delayed recoil proton (peak of e–p coincidences).
A rather significant ion background can be seen here as
well. In Fig. 3, one can clearly see a peak of triple coin-
cidences of electron, gamma-ray quanta and delayed
recoil proton (from channels 30 to 40, which corre-
sponds to the position of the proton peak at the Fig. 2,
we artificially shifted this peak under the peak of e–p
coincidences; of course, this peak really corresponds to
the position of the momentary coincidence peak). The
numerical analysis of the spectra, shown in Figs. 2 and 3,
gave a BR limit at the level of 5 × 10–2, which exceeds
the theoretical value more than one order. The results
obtained at the first stage of the experiment, when on
one hand we saw this large BR value with a very high
ion background and on the other hand we had poor vac-
uum, forced us to analyze the situation in more detail.
JETP LETTERS      Vol. 76      No. 6      2002
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The analysis showed that our vacuum chamber was
filled with vapors of used oil from our old oil pumping
system, installed on the vacuum chamber. We decided
to replace this system, after which vacuum in the cham-
ber improved, reaching the value of 7 × 10–5 mbar. After
that we started collecting statistics again and found that
it took much longer than the first time to obtain the peak
of triple coincidences and that the ion background in
the proton detector fell by almost two orders of magni-
tude.

The results obtained in the remaining beam time,
with a vacuum of about 7 × 10–5 mbar, are presented in
Figs. 4 and 5. Figure 4 shows the electron–proton coin-
cidence timing spectrum, while the corresponding tri-
ple electron–proton–gamma coincidence timing spec-
trum is shown in Fig. 5. The first peak in Fig. 4, cen-
tered at channel 16, contains the prompt coincidences
between backward-scattered bremsstrahlung gamma-
ray quanta that are generated by electrons penetrating
into the electron detector and are registered by the pro-
ton detector. The central position of this peak corre-
sponds to t = 0 for the detection of the delayed recoil
protons. The second peak (centered at about channel
24) contains the coincidences between electrons and
recoil protons (e–p coincidence peak). The distance
between the momentary coincidence peak and the e–p
coincidence peak in Fig. 4 is less than the distance
between these two peaks in Fig. 2 due to an increase of
high voltage in the electrodes (a sharp fall of the ion
background allowed to increase the high voltage in the
electrodes). A comparison of these two figures also
shows that when the vacuum improved, the value of the
momentary coincidences peak declined sharply. The
smaller secondary peaks on the right-hand side of the
main peak in Fig. 4 are most probably connected with a
small number of those recoil protons that, after being
reflected from plastics (8) and (9) in Fig. 1, did get into
the hole of plastic (8) and were registered by the proton
detector (3). From the data presented in Figs. 4 and 5,
an upper limit for the branching ratio for radiative neu-
tron decay in the energy region from 35 keV to 100 keV
could be deduced. For this, it is important to note that
the radiative photons are emitted anisotropically [2].
The triple coincidence count rate NT can be expressed as

, (1)

where ND is the e–p coincidence count rate and εi and
Ωi (i = e, p, γ) are, respectively, the efficiencies and the
solid angles for the electron detector, the proton detec-
tor, and the six gamma detectors. Further, the product
Ωγ f stands for the integral of the normalized photon-
distribution function f (which reaches a maximum at
35° [3]) over the stereometric angle of the six gamma
detectors and BR is the branching ratio of the radiative
decay mode for the observed energy region. Adopting
the procedure suggested by the Particle Data Group [6]
to deduce upper limits for Poisson processes when

NT

ND

εeΩeεpΩp

------------------------εeΩeεpΩpεγΩγ f BR=
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only a small number of events is observed, Eq. (1)
changes to

, (2)

where the factor k stands for the upper limit for the
number of radiative-decay events when n0 events are
observed. Note that this result is independent of the effi-
ciency or solid angle of both the electron and the proton
detectors. For a calculated expected number of back-
ground counts of about 1.5 in the region where the tri-
ple coincidence peak is expected, and with n0 ≡ NT = 1
event observed in this region, the procedure described
in [5] yields k = 3.11 at 90% C.L. With the number of
observed e–p coincidences ND = 5382, εγ = 1 and
Ωγ f ≥ 0.084, one then deduces an upper limit of 6.9 ×
10–3 (90% C.L.) for the branching ratio of radiative neu-
tron decay in the energy region from 35 to 100 keV.

It is interesting to note here that the maximum e–p
coincidence rate reached during the experiment
amounted to several events per minute. However, esti-
mates show that this rate could be increased by about
two orders of magnitude, corresponding to about 10–20
e–p coincidences per second. The main reason for the
low count rate during the experiment was the very low
efficiency of the MCP proton detector, even after the
vacuum problem was solved, caused by the oil vapor
which could not be removed from the detector during
the beam time.

4. Conclusion. Results from the first experiment
aiming to observe the as yet undiscovered radiative
decay mode of the free neutron are reported. Although
the experiment could not be performed under ideal con-
ditions, the data still allowed one to deduce an upper
limit of 6.9 × 10–3 (90% C.L.) for the branching ratio of
radiative neutron decay in the energy region between
35 and 100 keV. This value has the same order of mag-
nitude as the theoretical prediction based on the stan-
dard model of weak interactions [2].

Taking into account the fact that the experimental
conditions can still be significantly optimized, an e–p
coincidence count rate of 10–20 events per second is
within reach. Together with the standard model predic-
tion for the branching ratio of this decay mode, this
would correspond to a triple e–p–γ coincidence rate of
several events per 100 seconds. This can easily be
observed with the current experimental setup, which is

BR k
NT

ND

------- εγΩγ f( ) 1–≤

Fig. 5. Timing spectrum for triple e–p–g coincidences. Each
channel corresponds to 25 ns.
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now being optimized with a view to performing such an
experiment. The aim of that experiment will then be,
not only to establish the existence of radiative neutron
beta decay, but also to study the radiative gamma spec-
trum in more detail.
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After the experiment [1] in which Shibata et al.
observed coherent diffraction radiation (CDR) of a
bunched electron beam from the KURRY accelerator
(energy E = 150 MeV, mean current 〈I〉  = 10 nA, bunch
length l = 1 mm, and number of electrons in the bunch
Ne = 1.8 × 108), interest in this type of radiation has
increased appreciably. This interest stems, first, from
the possibility of producing an intense radiation source
in the millimeter and submillimeter wavelength ranges
and, second, from the possibility of nondisturbing
determination of the electron-bunch length in electron–
positron colliders and free-electron lasers when mea-
suring the spectral composition of CDR [2–4]. How-
ever, as was noted in [5, 6], the standard single-particle
model of diffraction radiation (DR) [7], which
describes the DR parameters when a relativistic particle
passes near a semi-infinite, perfectly conducting half-
plane (see also [8] for a review), should be modified
when the crosswise (in a direction perpendicular to the
electron trajectory) target dimension a is commensura-
ble with the characteristic parameter γλ/2π (γ is the par-
ticle Lorentz factor and λ is the radiation wavelength).
Therefore, it is of considerable interest to compare esti-
mates based on the theoretical model [7] with experi-
mental data for a a ≤ γλ/2π.

We carried out an experiment on the generation of
DR using a beam from the Tomsk microtron with the
energy E = 6.1 MeV (γ = 12). Basic parameters of the
microtron are given below:

Energy of accelerated electrons: 6.1 MeV

Macropulse duration: 2–6 µs

Macropulse frequency: 1–10 Hz

Current amplitude in macropulse: 40 mA

Micropulse duration: 17–20 ps

Micropulse length: 0.6 cm
0021-3640/02/7606- $22.00 © 20337
The experimental setup is shown in Fig. 1. The detector
of electromagnetic radiation was set at angle θD = 90°
relative to the electron beam. The target was a 50 × 50 ×
1-mm3 aluminum plate. It was placed in goniometer G,
which measured the impact parameter h (the shortest
distance between the target edge and the electron-beam
axis) and the tilt angle ψ relative to the beam (see
Fig. 1). A set of magnetic quadrupole lenses provided
such a beam focusing in the horizontal and vertical
directions that the beam at the place of its passage
through the target had dimensions of the order of ∆v ×
∆h = 4 × 1 mm. They were measured using a lumines-
cent screen and a wire scanner. The beam current was
measured by an inductive current sensor.

To test the optical system and to estimate the elec-
tron-beam divergence, we measured the orientation
dependence of the optical transient radiation yield. In
these measurements, the detector was a photomultiplier
FEU-110 (with the photocathode sensitivity range λ =
350–850  nm). The derived dependence is well
described by theory for the beam divergence ∆θ =
3.5 mrad [9]; the symmetry center of the measured dis-
tribution corresponds to ψ = 45° ± 1.5° = θD/2, which
confirms that the chosen experimental setup is opera-
tional.

Number of micropulses in macropulse: 104

Current amplitude in micropulse: 0.6 A

Mean microtron current: 2.4 µA

Beam nonmonochromacity: 0.5%

Beam dimensions at exit from microtron: 4 × 2 mm

Divergence:

Horizontal 15 × 10–3 rad

Vertical 5 × 10–3 rad
002 MAIK “Nauka/Interperiodica”
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Fig. 1. The experimental setup.

Target unit
A detector based on a broadband antenna of diame-
ter φ = 15 mm with an output signal preamplifier was
used to record the CDR pulse. The detector parameters
were investigated with a millimeter oscillator on a spe-
cial bench. The detector sensitivity band was λ = 1–
25 mm. The detector response linearity was checked by
varying the distance R between the oscillator and the
detector. The derived decreasing quadratic dependence
of the signal Y confirms that the detector operates in a
linear mode.

Figure 2 shows a plot of the measured CDR yield
against the mean accelerated-electron current in a mac-
ropulse (i.e., against a quantity proportional to the num-
ber of electrons in the bunch). The accelerated current
was varied over the range I = 5–30 mA. As follows from

Fig. 2. CDR yield versus mean microtron current (the dots
represent the experimental data and the solid line represents
the fit Y = kIB).

Y = kIB
the figure, we observed a quadratic dependence of the
CDR yield on current I. Fitting the measured depen-
dence by the function Y = kIB yielded the exponent B =
2.28 ± 0.08. This confirms that CDR was recorded in
the following geometry: the target tilt angle ψ = 45 ±
1.5° = θD/2, the impact parameter h = 7 mm, and the
electron-beam dimensions ∆ = 4 × 1.5 mm.

In our experiment, we also measured the depen-
dence of the CDR yield on impact parameter for a par-
allel passage of the electron beam by the target. In this
geometry, the “physical zero” of the impact parameter
(i.e., the coincidence of the electron-beam axis with the
target) can be easily determined with a high accuracy.
In addition, the crosswise target dimension in this case
is much smaller than the parameter γλ/2π.

This dependence can be described by using a simple
CDR model for the Gaussian charge-density distribu-
tion in an electron bunch with variance σz [1, 2]:

(1)

Here, YB(h) is the CDR yield of a single bunch with
the number of electrons Ne, d2W0(θx, θy, ω, h)/dωdΩ is
the spectral angular intensity of DR from a single elec-

tron, exp( ω2/c2) is the square of the modulus of the
Fourier transform of the longitudinal electron distribu-
tion in the bunch (the square of the modulus of the lon-
gitudinal formfactor), and ε(ω) is the transfer function
of the detector [10].
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Below, we use the following simple transfer func-
tion:

(2)

In this approximation, instead of (1), we have

(3)

The integration limits are ωmin = 0.094 THz (λmax =

20 mm) and ωmax = c = 1.88 THz. In our experi-

ment, we used a detector with a small angular aperture
∆Ω ! γ–1. Therefore, the frequency spectrum of the DR
intensity for a single electron as it passes parallel to the

half-plane, , has a simple form [11],

(4)

Since the lengthwise target dimension significantly
exceeds the maximum radiation wavelength, formula
(4) can be used by disregarding interference from the
target edges. Figure 3 shows the CDR spectra for vari-
ous bunch lengths at various impact parameters.

Since S(h) = ln(Y(h)/Y(0)) does not depend on the
absolute value of the radiation intensity, we can easily
compare it with the experimental result. At the same
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0 ω ωmin, ω ωmax.><
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Fig. 3. CDR spectra for various bunch lengths at various
impact parameters.
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time, S(h) depends on the electron-bunch length. Thus,
by fitting S(h) in bunch length L (L = 4.58σz is the
bunch length at the 10% level for a Gaussian electron
distribution in the bunch) to its experimental depen-
dence, we can estimate L. Figure 4 shows the results of
this procedure (curve 3 for L = 1.4 mm) and, for com-
parison, S(h) for L = 1 mm (curve 1) and L = 2 mm
(curve 2). The value of Y(0) for the experimental data
was taken by the extrapolation of their nonparametric
fit.

In conclusion, we note the following:

(1) Coherent diffraction radiation whose intensity is
proportional to the square of the number of electrons in
the bunch was recorded from a bunched microtron elec-
tron beam with energy E = 6.1 MeV and with the num-
ber of electrons in the bunch Ne = 108.

(2) When a broadband detector is used, the electron-
bunch length can be measured from the dependence of
the CDR yield on impact parameter without resorting to
cumbersome spectral measurements.

This study was supported by the Ministry of Educa-
tion of Russia (project no. 226 “The Development of
Intense Positron Sources and Beam Diagnostic Facili-
ties for Modern Colliders” of the Program “State Sup-
port for Regional Scientific and Technical Policy of the
Higher School and the Development of its Scientific
Potential”).
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Waveguide modes of microstructure fibers with a hollow core and a two-dimensionally periodic cladding are
studied experimentally and theoretically. The spectrum of modes guided in the hollow core of these fibers dis-
plays isolated maxima, indicating that waveguiding is supported due to the high reflectivity of the fiber cladding
within photonic band gaps. The main properties of the spectrum of modes guided in a hollow core of a photonic-
crystal fiber and radiation intensity distribution in these modes are qualitatively explained in terms of the model
of a periodic coaxial waveguide. © 2002 MAIK “Nauka/Interperiodica”.
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Fiber with a two-dimensionally periodic micro-
structure (two-dimensional photonic crystal) and a hol-
low core is one of the most interesting and promising
types of microstructure fibers [1–4]. Such fibers were
demonstrated for the first time by Cregan et al. [5]. The
photonic band gap in the transmission spectrum of a
two-dimensional periodic cladding in these fibers pro-
vides high reflection coefficients for electromagnetic
radiation propagating along the hollow core of the fiber,
allowing a specific regime of waveguiding to be imple-
mented. This mechanism of waveguiding is of special
interest for telecommunication applications and opens,
at the same time, possibilities to enhance nonlinear-
optical processes, including high-order harmonic gen-
eration, in a gas medium filling the fiber core [6]. The
possibility of using such fibers for laser manipulation of
small particles was recently demonstrated by Benabid
et al. [7].

In spite of many potential exciting applications of
hollow-core photonic-crystal fibers in telecommunica-
tion technologies, high-power laser physics, and non-
linear optics, only a few experiments have been per-
formed with such fibers. This is largely due to the diffi-
culties one encounters when fabricating hollow
photonic-crystal fibers. In this paper, we present the
results of our experimental and theoretical investiga-
tions of glass fibers with a hollow core and a two-
dimensionally periodic cladding. Such fibers may
guide electromagnetic radiation due to the high reflec-
tivity of the cladding within photonic band gaps, hold-
ing much promise for telecommunication applications,
high-power laser radiation guiding, laser manipulation
and laser guiding of atoms and charged particles, high-
order harmonic generation, and transport of ultrashort
laser pulses. We will demonstrate that the main proper-
0021-3640/02/7606- $22.00 © 0341
ties of the spectrum of modes guided in the hollow core
of photonic-crystal fibers can be qualitatively explained
within the framework of the model of a periodic coaxial
waveguide.

Microstructure fibers were fabricated with the use of
a preform consisting of a set of identical glass capillar-
ies. Seven capillaries were removed from the central
part of the preform for the hollow core of photonic-
crystal fibers. The cross-section image of a fiber fabri-
cated by drawing such a preform is presented in Fig. 1.
A typical period of the structure in the cladding of the
fiber shown in Fig. 1 is about 5 µm. The diameter of the
hollow core of the fiber is then approximately equal to
13 µm. The length of fiber samples employed in our
experiments ranged from several centimeters up to 1 m.

The idea of lowering the magnitude of optical losses
in a hollow fiber with a periodically microstructured
cladding relative to the magnitude of optical losses in a
hollow fiber with a solid cladding is based on the high
reflectivity of a periodic structure within photonic band
gaps [8]. In hollow fibers, the refractive index of the
core is lower than the refractive index of the cladding.
Therefore, the propagation constants of hollow-fiber
modes have nonzero imaginary parts, and the propaga-
tion of light in such fibers is accompanied by radiation
losses. The coefficient of optical losses in hollow fibers
scales [9] as λ2/a3, where λ is the radiation wavelength
and a is the inner radius of the fiber. This behavior of
the magnitude of optical losses prevents one from using
hollow fibers with very small inner diameters in nonlin-
ear-optical experiments [10]. Our estimates show that
the magnitude of radiation losses for the fundamental
mode of a hollow fiber with a fused silica cladding and
an inner radius of 6.5 µm may reach 20 cm–1 for 0.8-µm
2002 MAIK “Nauka/Interperiodica”
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radiation, which, of course, imposes serious limitations
on the applications of such fibers. Radiation losses can
be radically reduced in the case of hollow fibers with a
periodic cladding.

Our experimental studies confirm the possibility of
using hollow photonic-crystal fibers with a core diame-
ter of about 13 µm to guide coherent and incoherent
radiation. Figure 2 displays the spatial distributions of
intensity of incoherent (Fig. 2a) and coherent (Fig. 2b)
radiation obtained by imaging the output end of a hol-
low photonic-crystal fiber with the above-specified
parameters. Optimizing the geometry of coupling of
laser radiation into the fiber, we were able to achieve a
high degree of light-field confinement in the hollow
core of the fiber without losing too much energy
through mode excitation in the photonic-crystal clad-
ding (Fig. 2a). The spatial distribution of radiation
intensity at the output end of the fiber under these con-
ditions corresponded to the fundamental waveguide
mode.

To investigate the spectrum of modes guided in the
hollow core of photonic-crystal fibers, we used a dia-
phragm to separate radiation transmitted through the
hollow core from radiation guided by the cladding. The
spectra of modes supported by the hollow core of pho-
tonic-crystal fibers were measured within the range of
wavelengths from 450 up to 1000 nm. These spectra

Fig. 1. Cross-sectional image of a microstructure fiber with
a two-dimensionally periodic cladding consisting of an
array of identical capillaries. This periodic cladding sup-
ports guided modes in the hollow core of the fiber due to the
high reflectivity of a periodic structure within photonic
band gaps. The hollow core of the fiber is formed by remov-
ing seven capillaries from the central part of the structure.
The period of the structure in the cladding is about 5 µm and
the core diameter is about 13 µm.
displayed characteristic well-pronounced isolated
peaks (Fig. 3a). Similar peaks in transmission spectra
of hollow photonic-crystal fibers have been observed
earlier by Cregan et al. [5]. The origin of these peaks is
associated with the high reflectivity of a periodically
structured fiber cladding within photonic band gaps,
which substantially reduces radiation losses in guided
modes within narrow spectral ranges. Radiation with
wavelengths lying away from photonic band gaps of the
cladding leaks from the hollow core. Such leaky radia-
tion modes are characterized by high losses, giving vir-
tually no contribution to the signal at the output of the
fiber.

(a)

(b)

Fig. 2. Radiation intensity distribution in the cross section
of a hollow photonic-crystal fiber with a period of the struc-
ture in the cladding of about 5 µm and the core diameter of
approximately 13 µm. (a) A waveguide mode is excited in
the hollow core with a broad beam of incoherent light.
(b) The fundamental waveguide mode of the hollow core is
excited with 633-nm diode-laser radiation.
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To model the spectrum of guided modes and the spa-
tial distribution of radiation intensity in a hollow photo-
nic-crystal fiber, we employed the model of a periodic
coaxial waveguide. A two-dimensional periodic struc-
ture of the fiber cladding is replaced within the frame-
work of this model by a system of coaxial glass cylin-
ders (see the inset in Fig. 3c) with a thickness b ≈
4.3 µm and the inner radius of the ith cylinder equal to
ri = r0 + i(b + c), where r0 is the radius of the hollow
core (about 6.5 µm for our fiber) and c is the thickness

Fig. 3. (a) The spectrum of modes measured for a hollow
photonic-crystal fiber with a period of the structure in the
cladding of about 5 µm and the core diameter of approxi-
mately 13 µm. (b) The attenuation coefficient of the TE01
waveguide mode calculated as a function of the wavelength
for a periodic coaxial waveguide (see the inset) with r0 =
6.5 µm, b = 4.3 µm, and c = 0.7 µm.

10000

10000
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of the air gap between the cylinders. The latter parame-
ter was chosen in such a way as to include the air-filling
fraction of the fiber cladding (about 14% in our experi-
ments) and was set equal to approximately 0.7 µm for
our calculations. In our theoretical analysis, we
employed the results of earlier work [11, 12] devoted to
the properties of modes in coaxial waveguides.

Figure 3b presents the attenuation coefficient for the
TE01 mode calculated as a function of the wavelength
for a periodic coaxial waveguide with the above-speci-
fied parameters. Comparing these results with the
experimental data shown in Fig. 3a, we find that the
model of a periodic coaxial waveguide provides quali-
tatively adequate predictions for the positions and the
widths of spectral bands where the hollow core of a
photonic-crystal fiber can guide radiation with virtually
no losses. The model of a periodic coaxial waveguide,
as can be seen from Figs. 4 and 5, also gives a satisfac-
tory qualitative description for radiation-intensity dis-
tributions in the fundamental (Fig. 4) and higher order
(Fig. 5) waveguide modes of a photonic-crystal fiber.
Our theoretical results are consistent on a qualitative
level with the predictions of simulations [13] per-
formed with the use of a more accurate and more
sophisticated model of a hollow-core photonic-crystal
fiber.

The spatial distribution of 633-nm diode-laser radi-
ation (this wavelength falls within one of the passbands
in Fig. 3, corresponding to the guided modes of our
fiber) at the output of an 8-cm hollow photonic-crystal
fiber shown in Fig. 5b indicates the existence of multi-
mode regimes of waveguiding around this wavelength.
As shown in [6], multimode waveguiding regimes in
hollow photonic-crystal fibers can be employed to
enhance high-order harmonic generation in nonlinear
gases filling the hollow core of photonic-crystal fibers.
The waveguide contribution to the mismatch of propa-
gation constants related to guided modes of the pump
and harmonic radiation increases with a decrease in the

Fig. 4. Transverse intensity distribution of electromagnetic
radiation (solid line) measured at the output of a hollow-
core photonic-crystal fiber and (dashed line) calculated with
the use of the model of a periodic coaxial waveguide.
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core diameter of a hollow fiber [10]. Our photonic-crys-
tal fiber with a small core diameter is, therefore, char-
acterized by a strong dispersion of guided modes,
allowing considerable phase mismatches related to the
material dispersion of nonlinear gases to be compen-
sated. This efficient phase-mismatch compensation
becomes possible due to the unique properties of hol-
low photonic-crystal fibers, as the leaky modes guided
in hollow fibers with a solid cladding and a diameter of
the hollow core of about 13 µm would have, as men-
tioned above, unacceptably high losses.

Since hollow waveguides with a periodic cladding
permit radiation losses characteristic of hollow-
waveguide modes to be radically reduced, waveguides
of this type seem to offer new solutions in guiding high-
power laser radiation and enhancing nonlinear-optical

(a)

(b)

Fig. 5. (a) Transverse distribution of the electric field
squared in a higher order mode of a hollow-core photonic-
crystal fiber calculated with the use of the model of a peri-
odic coaxial waveguide. (b) Transverse intensity distribu-
tions of electromagnetic radiation measured at the output of
a hollow-core photonic-crystal fiber with a higher order
waveguide mode of the fiber excited with 633-nm radiation
of a diode laser. 
processes, including self- and cross-phase modulation,
as well as optical harmonic generation and wave mix-
ing. The results of preliminary experiments and theo-
retical studies [14] suggest that polycapillary glass
structures and photonic-crystal fibers can guide and
focus ultrashort x-ray pulses, including ultrashort field
waveforms synthesized from high-order harmonics.
Strong waveguide dispersion, inherent in hollow fibers
with a small core radius, can be employed to compen-
sate for the initial chirp and, eventually, to compress
short x-ray pulses.

The fibers created and studied in this work can be
used for the creation of high-sensitivity gas sensors
based on linear and nonlinear spectroscopic techniques.
Waveguiding regimes attainable with hollow photonic-
crystal fibers with a small core diameter allow the
amount of gas necessary for spectral analysis to be con-
siderably reduced and permit nonlinear-spectroscopic
studies to be performed with low-power laser pulses. In
particular, experiments on four-wave mixing in hollow
fibers (see, e.g., [15]) are usually carried out with cap-
illaries with a typical inner diameter on the order of
100 µm (the use of capillaries with smaller inner diam-
eters leads to the fast growth of optical losses). The
fibers considered in this paper would allow comparable
levels of nonlinear signal to be achieved with laser
pulses 60 times less powerful. The spectra of modes
guided by these fibers seem optimal for laser frequency
conversion through stimulated Raman scattering.

Thus, we have created and investigated fibers with a
hollow core and a photonic-crystal cladding with a
period of the structure in the cladding of about 5 µm
and the core diameter of approximately 13 µm. Electro-
magnetic radiation is guided in the hollow core of such
fibers due to the high reflectivity of the cladding within
photonic band gaps. This regime of waveguiding allows
optical losses of guided modes to be radically reduced
as compared with waveguide modes in hollow fibers
with a solid cladding. Due to their remarkable proper-
ties, hollow photonic-crystal fibers created and investi-
gated in this work hold much promise for telecommu-
nication applications and can be used to guide high-
power laser pulses. These fibers offer a unique opportu-
nity for implementing nonlinear-optical interactions of
waveguide modes with transverse sizes of several
microns in a gas medium, opening possibilities to
improve the efficiency of optical frequency conversion
for ultrashort pulses and enhance high-order harmonic
generation. The fibers studied in this paper can be
employed to produce and guide ultrashort pulses, to
manipulate atoms and charged particles, and to develop
highly sensitive gas sensors. We have shown that the
main properties of the spectrum of modes guided in the
hollow core of photonic-crystal fibers, as well as the
radiation intensity distribution in the fiber core can be
qualitatively explained within the framework of the
model of a periodic coaxial waveguide.
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The Euler hydrodynamics describing the vortex flows of ideal fluids is shown to coincide with the equations of
motion obtained for a charged compressible fluid moving under the effect of a self-consistent electromagnetic
field. For the Euler equations, the passage to the Lagrange description in the new hydrodynamics is equivalent
to a combined Lagrange–Euler description, i.e., to the vortex line representation [5]. Owing to the compress-
ibility of the new hydrodynamics, the collapse of a vortex flow of an ideal fluid can be interpreted as a result of
the breaking of vortex lines. The Navier–Stokes equation formulated in terms of the vortex line representation
proves to be reduced to a diffusion-type equation for the Cauchy invariant with the diffusion tensor determined
by the metric of this representation. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 47.15.Ki; 47.32.Cc
1. Collapse as a finite-time process of singularity
formation from an initially smooth distribution plays a
fundamental role in physics because it represents one of
the most efficient mechanisms of energy dissipation.
For incompressible fluid dynamics, the collapse must
also be of great importance. It is well known that singu-
larity formation in gas dynamics, i.e., in compressible
fluid dynamics, is related to the phenomenon of break-
ing, which is the main factor of shock-wave formation.
From the point of view of the classical theory of catas-
trophes [1], this process is nothing but folding. It is
completely characterized by the mapping which
describes the passage from the Euler representation to
the Lagrange representation. The points where the
Jacobian J of this mapping becomes zero correspond to
the appearance of singularities in the derivatives of the
gas velocity and density. In the case of an incompress-
ible medium, the breaking is absent, because the Jaco-
bian of the corresponding mapping is fixed (for the sim-
plest gauge, it is equal to unity). Hence, at first glance,
one can see no factors that can cause such phenomena
in this case. However, our previous publications [2–4]
demonstrated the possibility of breaking in an incom-
pressible flow. This effect occurs for the vortex lines.
Unlike the breaking in gas dynamics, where one
Lagrangian trajectory crosses another Lagrangian tra-
jectory, the vortex line breaking means that one vortex
line overtakes another vortex line. For a smooth contin-
uous distribution of vorticity, the breaking initially
occurs when the vortex lines touch each other at a sin-
gle point. At the point of contact, the vorticity becomes
infinite. This is possible despite the incompressibility
of the vector fields of vorticity and velocity of the fluid.
To describe the breaking of vortex lines, a vortex-line
representation of the latter on the basis of the combined
Lagrange–Euler description was proposed in [5, 6]. In
0021-3640/02/7606- $22.00 © 20346
this representation, each vortex line was labeled by a
two-dimensional Lagrangian marker while the other
parameter defined the vortex line itself.

This paper develops this method in application to
both ideal and viscous fluids. It reveals the role of the
Clebsch variables, which can be used as the Lagrangian
markers of the vortex lines. However, the Clebsch vari-
ables are suitable only for a local description. In a gen-
eral situation, the passage to the vortex-line representa-
tion in the Euler equation is equivalent to the consider-
ation of new hydrodynamics of a compressible charged
fluid flowing under the action of self-consistent electric
and magnetic fields, where the electric and magnetic
fields satisfy the two corresponding Maxwell equa-
tions. The main feature of the new hydrodynamics is its
compressibility, which, in the Lagrange description,
means the compressibility of the mapping and, hence,
the possibility of breaking. In terms of the Euler char-
acteristics, the breaking of the vortex lines leads to an
infinite value of the curl of velocity curl v = Ω . In the
new hydrodynamics of a charged fluid, the role of den-
sity is played by the reciprocal of J. This quantity
should naturally be called the density of vortex lines. It
originates from the Cauchy formula for the vorticity Ω .
Variations of the density of the vortex lines are deter-
mined by the velocity component normal to the vortic-
ity. As is shown below, the Cauchy formula can be
obtained from the “new” Kelvin theorem on the circu-
lation conservation, as well as from the analog of the
Weber transformation. As a result, the Euler equations
prove to be resolved with respect to the Cauchy invari-
ants, which represent an infinite number of integrals of
motion. Then, one can consider the Euler equations as
partially integrated equations. For the numerical inte-
gration of the Euler equations, this fact is of fundamen-
tal importance.
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The vortex-line representation (VLR) can be
applied not only to ideal hydrodynamics but also to
describing viscous incompressible flows in terms of the
Navier–Stokes equation. Below, for the viscous case, a
diffusion-type equation describing the dynamics of the
Cauchy invariant is obtained with the “diffusion tensor”
determined by the VLR metric. The form of this equa-
tion coincides with that of the equation derived in [7].
The equations of motion of the vortex lines, when taken
in their previous form, are understood as equations
determining the change to a curvilinear coordinate sys-
tem. The exact equations derived for describing viscous
flows can be considered as a result of an exact separa-
tion of two time scales, namely, the inertial (in essence,
nonlinear) scale and the viscous one.

2. It is well known (see, e.g., the reviews [8, 9]) that,
for both two-dimensional and three-dimensional flows,
the Euler equations describing an ideal incompressible
fluid

(1)

possess an infinite number of integrals of motion. These
are the so-called Cauchy Lagrangian invariants. The
expression for a Cauchy invariant can most simply be
obtained from the Kelvin theorem on the conservation
of the velocity circulation:

(2)

where the integration contour C[r(t)] moves together
with the fluid. Changing from the Euler coordinates r to
Lagrange coordinates a, we represent Eq. (2) in the
form

where the contour C[a] is fixed.

From the arbitrariness of the contour C[a] and from
the Stokes formula, it follows that the quantity

(3)

is conserved at every point a. This quantity is the
desired Cauchy Lagrangian invariant. According to
Salmon [9], the conservation of these invariants is a
consequence of the special (infinite) symmetry, i.e., the
relabeling symmetry of the Lagrangian markers. If the
Lagrange coordinates in Eq. (3) coincide with the ini-
tial positions of fluid particles, the invariant I coincides
with the initial vorticity Ω0(a). The Cauchy invariants
characterize the freezing-in of the vortex lines in the
fluid. This is a very important property according to
which a fluid (Lagrangian) particle cannot leave the
vortex line on which it lay at the initial instant of time.
Thus, for Lagrangian particles, only one unfrozen
degree of freedom is available, namely, the motion

∂v/∂t v∇( )v+ ∇ p, divv– 0= =

Γ v dl⋅( ),∫°=

Γ ẋi

∂xi

∂ak

--------dak,∫°=

I rota ẋi

∂xi

∂a
------- 

 =
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along the vortex line. From the equations of motion for
the vorticity

(4)

it follows that the motion along a vortex line does not
affect the vorticity value. From this point of view, a vor-
tex line is an invariant object, and, hence, it is natural to
pass to some description that makes invariance evident
from the very beginning. Such a description (vortex line
representation) was proposed by Kuznetsov and Ruban
[1, 6].

3. Let us consider a vortex flow (Ω ≠ 0) of an ideal
fluid and determine this flow through the Clebsch vari-
ables λ and µ:

(5)

The geometric meaning of these variables is well
known: the intersection of the surfaces λ = const and
µ = const determines a vortex line. It is also well known
that, in the incompressible case, the Clebsch variables
are Lagrangian invariants, which do not vary along the
trajectories of the fluid particles:

(6)

Therefore, these variables can be used as markers of the
vortex lines. In Eq. (5), we pass to the new variables

(7)

where s is the parameter specifying a given vortex line.
As a result, we arrive at the expression

(8)

Here,

(9)

is the Jacobian of the transformation

(10)

Transformation (10) is inverse of transformation (7)
and determines the corresponding transition to the cur-
vilinear coordinate system connected to the vortex
lines.

The equations of motion of the vortex lines, i.e., the
equations for R(λ, µ, s, t), can be immediately obtained
from equation of motion (4) for the vorticity. However,
the simplest way of deriving these equations is to use
the combination of Eqs. (6):

(11)

which is identical to Eqs. (6), because the vectors ∇λ
and ∇µ are linearly independent.

∂Ω/∂t rot v Ω×[ ] ,=
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Applying transformation (7) to Eq. (11), we arrive at
the equation of motion of a vortex line [1]:

(12)

The important feature of this equation is its “transver-
sality”: any motion along a vortex line does not affect
the vortex line itself. One can easily see that Eq. (12) is
equivalent to the equation

(13)

where vn is the velocity component normal to the vor-
ticity vector.

According to the Darboux theorem, the Clebsch
variables can always be introduced locally but not glo-
bally. It is well known that the flows parametrized
through the Clebsch variables are characterized by the

zero value of the helicity invariant , i.e.,

the topological invariant characterizing the degree of
linking of the vortex lines. Therefore, to introduce the
vortex line representation for flows with a nontrivial
topology, it is necessary to go back to the initial equa-
tions of motion, i.e., to Eqs. (1) and (4) for the velocity
and vorticity.

4. According to Eq. (4), the velocity component vτ
tangential to the vector Ω does not directly affect the
vorticity; i.e., in Eq. (4), the velocity v should be
replaced by its transverse component vn.

The equation of motion for the transverse velocity
vn follows from Eq. (1). It has the form of the equation
of motion of a particle in an electromagnetic field:

(14)

where the electric and magnetic effective fields are
determined by the expressions

(15)

(16)

It should be noted that the electric and magnetic fields
introduced in this way are expressed through the scalar
ϕ and vector A potentials according to the standard for-
mulas

(17)

so that the two Maxwell equations

are automatically satisfied. In this case, the vector
potential A has the gauge 

which is equivalent to the condition divv = 0.

∂R
∂s
------- ∂R

∂t
------- v R t,( )– 
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v τ
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  ∂vτ

∂t
--------,––=
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ϕ p vτ
2
/2, A+ vτ ,= =

divH 0, ∂H/∂t rotE–= =

divA divvn,–=
The other two Maxwell equations can also be con-
sidered, but they carry no additional information,
because the charge density ρ and the current j are for-
mally determined from Eqs. (15) and (16). The basic
relationship in this case is equation of motion (14) for
the normal velocity component, which is the equation
of motion for a nonrelativistic particle with unit charge
and unit mass, with the velocity of light being also
equal to unity.

Equation of motion (14) is written in the Eulerian
representation. To pass to the Lagrangian representa-
tion, it is necessary to consider the equations for the
“trajectories” determined by the velocity vn:

(18)

with the initial conditions

The solution to Eq. (18) defines the mapping

(19)

which determines the passage from the Eulerian
description to a new Lagrangian description.

The equations of motion represented in terms of the
new variables are essentially the Hamilton equations

(20)

where the dots indicate the differentiation with respect
to time at a fixed a, P = vn + A ≡ v is the generalized
momentum, and the particle Hamiltonian h is deter-
mined by the standard expression as a function of the
momentum P and the coordinate R:

In Eqs. (20), the first equation is equation of motion
(14) written in terms of the variables a and t while the
second equation coincides with Eq. (18).

For the “new” hydrodynamics (14) or for its Hamil-
tonian formulation (20), the Kelvin theorem (which is
the same as the Liouville theorem) is satisfied:

(21)

where the integration goes along a closed contour mov-
ing together with the “fluid.” As in the above derivation
of Eq. (3), this leads to an expression for the “new”
Cauchy invariant:

(22)

The latter differs from the original Cauchy invariant
given by Eq. (3) in that the velocity v is replaced in
Eq. (18) by the normal velocity component vn. As a
result, the “new” hydrodynamics proves to be com-
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pressible: divvn ≠ 0. Therefore, no restrictions are
imposed on the Jacobian J of transformation (19).

From Eq. (22), one can easily obtain the expression
for the vorticity Ω (compare with [1, 6]):

(23)

where J is the Jacobian of transformation (19),

Above, it was taken into account that the generalized
momentum P coincides with the velocity v, including
the instant t = 0: P0(a) ≡ v0(a). The quantity Ω0(a) in
this expression is the new Cauchy invariant (coincident
with the initial vorticity) characterized by zero diver-
gence: divaΩ0(a) = 0.

Representation (23) generalizes Eq. (5) to an arbi-
trary topology of vortex lines. The variables a in this
expression can locally be interpreted as a set of λ, µ,
and s.

As known (see, e.g. [6]), the expression for the
Cauchy invariant can be obtained using the Weber
transformation. This is the velocity representation in
terms of the initial data, and it can be obtained, in par-
ticular, after the integration of the Cauchy invariant
given by Eq. (23).

Consider a one-form ω = (P · dR) and calculate its
time derivative. Using equations of motion (20), we
obtain

From this expression, it follows that the vector function

which depends on t and a, satisfies the following equa-
tion of motion:

The integration of this equation with respect to time
yields the Weber transformation

(24)

where the potential Φ satisfies the nonstationary Ber-
noulli equation

If Φ|t = 0 = 0, the time-independent vector u0(a) coin-
cides with the initial velocity v0(a). Taking the curl of
Eq. (24), we again arrive at Cauchy invariant (22).

Thus, in the general situation, the equation of
motion of the vortex lines has the form of Eq. (18) sup-
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Ω a( ) ∇ a⋅( )R a t,( )

J
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J
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--------Pi,=
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∂
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v n

2

2
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v τ
2

2
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  .=
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Φ̇ – p v n
2/2 v τ

2
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plemented by Eq. (23) and by the equation

(25)

with the condition divrv(r, t) = 0.
Equations of motion (18) and (25) together with

Eq. (23) can be considered as the result of the partial
integration of Euler equation (1). These equations are
resolved with respect to the Cauchy invariants, i.e., to
an infinite number of integrals of motion, which is of
fundamental importance for the numerical integration
(see [4, 5]). In this system, the Cauchy invariants are
conserved automatically, while in the case of the direct
integration of the Euler equations, it is necessary to
keep track of the degree of the conservation of the
Cauchy invariants. Presumably, this is one of the main
limitations governing the accuracy of the discrete
numerical schemes used for the direct integration of the
Euler equations.

Another important property of the vortex line repre-
sentation is the absence of any restrictions on the Jaco-
bian J, whise, e.g., occur in the case of the passage from
the Eulerian description to the Lagrangian description
in Euler equation (1), where the Jacobian is equal to
unity. The quantity 1/J has the meaning of the density n
of the vortex lines. According to Eq. (18), this quantity,
being a function of r and t, satisfies the continuity equa-
tion

(26)

In this equation, divrv(r, t) ≠ 0, because only the full
velocity v has a zero divergence.

5. Now, let us consider the application of the VLR to
describing viscous flows.

We write the Navier–Stokes equation for the vortic-
ity Ω in the form

(27)

and change to the variables a and t with the use of
Eq. (18) supplemented by Cauchy relation (23) in
which Ω0 is assumed to be a function of not only coor-
dinates a but also time t: Ω0 = Ω0(a, t).

Then, the substitution of Eq. (23) in Eq. (27) cancels
the first term on the right-hand side of Eq. (27) owing
to Eq. (18). As a result, Eq. (27) takes the form

(28)

Next, on the right-hand side of Eq. (28), we replace the
differentiation with respect to r by the differentiation
with respect to the variables a. As a result of simple but
time-consuming calculations, Eq. (28) is reduced to the
equation for Ω0(a, t):

(29)

Ω r t,( ) rotrv r t,( )=
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This equation is linear in Ω0, and the quantity  is a
metric tensor determined as

Equation (29) for the Cauchy invariant is coincident
in its form with the equation obtained by Zenkovich
and Yakubovich [7] for incompressible fluid dynamics
where the variables a have the meaning of the
Lagrangian markers of fluid particles. In the
Zenkovich–Yakubovich equation, the Jacobian J is
assumed to be time-independent, and in the simplest
case it is equal to unity. This fact determines the funda-
mental difference between the Zenkovich–Yakubovich
equation and Eq. (29).

The remarkable feature of the system obtained
above is the exact separation of the two different time
scales that are responsible for the inertial (in essence,
nonlinear) and viscous processes. The inertial pro-
cesses are described by Eq. (18), while the viscous pro-
cesses are described by the diffusion-type equation (29)
in which the diffusion “coefficient” proportional to the
viscosity ν has a complex tensor structure determined
by the metric of the mapping r = R(a, t).

I am grateful to E.I. Yakubovich for allowing me to
read the cited paper [7] before its publication.
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The structures formed by inclusions in smectic C (SmC) free-standing films are investigated using polarized
light microscopy. The domains confined in these two-dimensional (2D) systems induce distortion of the in-
plane orientational order, which governs the elastic interaction between the inclusions. The balance between
long-range quadrupolar attraction and short-range repulsion gives rise to a nontrivial collective behavior of
domains. Various 2D structures are created as a function of the concentration and size of inclusions. We observe
the formation of chains and then a 2D square lattice when the concentration of domains increases. Further
increase in the domain size leads to the transition from square to hexagonal close-packed structure. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 61.30.Eb; 61.30.Jf
The study of dispersions of foreign particles in a liq-
uid crystal host phase has attracted considerable inter-
est in recent years [1–6]. Most of the investigations
were performed in nematic (N) liquid crystals, in which
the molecules exhibit only an orientational order. The
average direction of the long molecular axis is specified
by the unit-vector field n called the director. The orien-
tational elasticity of the nematic host phase gives rise to
long-range interaction between the particles. At long
distances with respect to the inclusions size, this inter-
action can be expanded in multipoles. Recent theoreti-
cal and experimental studies [1–7] have shown that the
effective pair interaction exhibits dipolar or quadrupo-
lar character, depending on the boundary condition
around the inclusion. In both cases, attraction between
inclusions induces the formation of chain structures.
More recently, interaction between inclusions was evi-
denced in smectic C (SmC) free-standing films [8, 9].
Such films appear as two-dimensional systems conve-
nient for the investigation of the collective behavior of
inclusions. These films consist of an integer number of
molecular smectic layers oriented parallel to the free
interface bounded by air. In the SmC phase, each layer
is a two-dimensional anisotropic liquid with the long
molecular axis tilted in a preferential direction with
respect to the layer normal. The projections of the mean
direction of the long molecular axis onto the layer plane
define the two-dimensional (2D) field c(x, y) of molec-
ular ordering called c-director. Long-range attraction
between inclusions results from in-plane elastic defor-
mation of the c-director near inclusions [10]. The first

¶This article was submitted by the authors in English.
0021-3640/02/7606- $22.00 © 20351
experiments have shown [8, 9] that in 2D films the
inclusions organize themselves in long chains as in 3D
nematic emulsion. Most of the investigations were car-
ried out with spherical droplets in nematic or with cir-
cular inclusion at relatively low concentration of inclu-
sions in srnectic film. But it appears quickly that aniso-
tropic particles at high concentration should give rise to
other interesting structures. For instance, it was pre-
dicted that the formation of various cellular structures
depends on the shape and the concentration of inclu-
sions [11, 12]. Recently, two-dimentional structures
formed by inclusions were observed in nematic host
phase [13] and in SmC films [14].

This paper deals with anisotropic inclusions nucle-
ated in relatively thick film just below the SmC–N tran-
sition temperature. Both the concentration and the size
of the inclusions can be modified over a wide range.
This interesting feature allows the generation of 2D
structures built with the inclusions and the study of the
evolution of their organization versus the inclusion
size. The periodicity of the structures is governed by the
balance between the long-range attraction and the
short-range repulsive interaction. If the distance
between domains is on the order of or larger than their
size, the pair quadrupolar interaction potential leads to
a cellular structure with square lattice. A decrease of the
domain–domain distance induces an overlap of the c-
director field distortions. In this case, short-range repul-
sive interaction between domains plays the dominant
role in the formation of cellular structure and leads to
the transition into a close-packed structure exhibiting
hexagonal symmetry.
002 MAIK “Nauka/Interperiodica”
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Liquid crystal used in our experiments is decyl oxy-
benzoic acid (DOBA), which exhibits the following
phase sequence: Crystal–SmC–N–Isotropic [15]. This
material is slightly doped with ethyl decyl oxyben-
zoate. In a bulk sample of this mixture, the SmC–N
phase transition ranges from 114°C to 117°C. Impuri-
ties favor the nucleation of domains in the SmC film.
The temperature of the transition of the whole film in
nematic (T0) in this case occurs at 117°C. A weak
decrease of T0 is observed with time. This decrease may
result from a degradation of the material. The films are
achieved by spreading the material in the SmC phase
across a circular hole (4-mm diameter) in a thin glass
plate. The sample temperature is controlled with an
accuracy of ±20 mK. In our experiments, we used films
ranging from 4 to 10 µm. Both the nucleation process
and the organization of the domains are observed using
polarized light reflection and transmission microscopy.
The images are recorded using a CCD camera.

The inclusions consist of domains confined in the
uniform background SmC free-standing films. The
domains nucleate on heating approximately 3°C below
the SmC–N transition temperature in the film. Figure 1
shows the first stage of organization of the domains. At
low concentration they form chains. The domains
exhibit a slightly elliptical shape. Note that a weak
deformation of the smectic film is generally induced by
the inclusion along the normal to the layer (z direction).
Such a deformation of the film is visible by observing
the thickness interference fringes in monochromatic
light.

Interaction energy between inclusions can be
expanded in multipoles [2] that include the dipolar and
quadrupolar terms. Dipolar attraction between inelu-
sions is anisotropic and maximum in one direction.
Consequently, dipolar interaction would induce a
chaining of the inclusions along only one direction. In
the present case, we observed chain formation in two
directions with an angle of about 110° between them
(Fig. 1). The observed two orientations of chains are the

Fig. 1. Image of small domains in reflected light under
crossed polarizers. At low concentration, the domains orga-
nize in a chain structure. The horizontal dimension of the
image is about 195 µm, T0 – T = 2.1°C.
signature of nondipolar interaction. Quadrupolar inter-
action should be repulsive for directions parallel and
perpendicular to the c-director and becomes attractive
in the intermediate directions [16]. The organization of
the chains in Fig. 1 indicates that quadrupolar interac-
tion is larger than the dipolar one. As a consequence,
the final structure should be mainly determined by the
quadrupolar interaction.

Figure 2 shows the film with domains of larger size
and with a higher concentration. The increase of both
size and density of domains leads to a 2D structure with
square lattice. The large size of the domains enables us
to distinguish line defects that seem to fill the domains.
Such lines have been observed in free-standing film
[17–19] and on the free surface of the smectic droplets
[20–22]. These lines should correspond to narrow vari-
ations of the director orientation, but we cannot infer
from our observations whether these lines are con-
nected with SmC order inside the domains or only at
their surface (i.e., in the smectic layers surrounding the
inclusion). Actually, the type of order inside the
domains remains unclear to us.

Interaction between inclusions depends on orienta-
tion of the c-director near their boundary. In the imme-
diate vicinity from line defects forming domain bound-
ary, strong director deformation takes place, and we
cannot speak about an anchoring condition for the
c-director on the boundary. However, the joined action
of line defects determines the orientation of c-director
at a short distance from the domain boundary (about a
few micrometers). The strong c-director deformations
are confined in a region close to the boundary that can
be called the coat of the inclusion [23]. Inside the coat,
the elastic theory is not valid. We should consider the
orientation of the c-director outside the coat instead of
the anchoring condition on the inclusion boundary. The
symmetry of the distortion visible in Fig. 2 is the source
of quadrupolar interaction [16, 24].

The texture observed in Fig. 2 is characterized by
positional ordering of the domain centers and also ori-

Fig. 2. Image of a square lattice of inclusions in the SmC
free-standing film observed in transmission between
crossed polarizers. Polarizer is oriented at 45° with respect
to the horizontal axis. T0 – T = 1.3°C. The horizontal size of
the image is about 160 µm.
JETP LETTERS      Vol. 76      No. 6      2002



        

FORMATION OF TWO-DIMENSIONAL CRYSTAL-LIKE STRUCTURES 353

                             
entational ordering of their long axis. Those long axes
are all oriented in the same direction. It should be noted
that the periodic structure can only be achieved when
the domains exhibit approximately the same size and
line defects in the domains are parallel to their long
axis. A change of domain size induces a defect in the
periodicity (Fig. 2). So, the observed chains and square
structure can be qualitatively explained by pair quadru-
polar interaction.

The above-described square lattice is observed only
if the ratio between the domain–domain distance and
the square lattice parameter is higher than about 0.3.
The heating of the film leads to an increase of domain
size and, as a result, to an evolution of the structure. As
the domain mobility is low, the distances between them
decrease. So, increasing the domain size should be sim-
ilar to an increase of pressure. At short distances, the
domain shape tends to become nearly circular. In such
case, the square lattice becomes unstable and a reorga-
nization of the structure occurs. Domains change their
positions and form a close-packed hexagonal structure
(Fig. 3). Different domains are separated by a coat with
strong distortion of the director field. Elastic theory
with binary deformation interaction does not explain
the domain ordering. However, it is clear that a repul-
sive interaction exists between the coats. In film with
high domain density, there are no free regions without
domain structure. As a result, the domains cannot move
in order to increase the interdomain space. Even if the
domains are close compact, the boundary between
domains does not disappear, and we do not observe
coalescence. So, the repulsive interaction resulting
from the large distortion of the c-director in the coat is
high enough to allow the formation of close-packed
hexagonal structure.

Finally, further heating leads to a filling of the whole
area of the film by the domains (Fig. 4). During the
growth of the domains, their shape becomes hexagonal-

Fig. 3. Hexagonal lattice formed by close compact domains,
T0 – T = 0.3°C. The horizontal dimension of the image is
about 260 µm.
JETP LETTERS      Vol. 76      No. 6      2002
like. The boundary between domains appears as thick
strain lines. These walls are a few microns thick and
should include strong distortions of the c-director ori-
entation which insure the stability of the structure. This
structure with compact hexagonal-like arrangement is
achieved close to the temperature of the SmC–N transi-
tion. Such a film can also be considered as a 2D smectic
foam.

So, in SmC film of DOB A we observed the organi-
zation of domains in three types of structure. At low
concentration, domains form chains. At intermediate
concentration, a two-dimensional lattice with square
cell is formed. These structures result from pair quadru-
polar interaction. The disappearance of the square
structure occurs above some critical domain size. This
structure is replaced by a regular hexagonal lattice in
which the inclusions are close compact. Further
increase of the domain size decreases the free area
between domains and induces the change of their
shape. Thus, the increase of the compactness of the
structure leads to the filling of the whole SmC film by
hexagonal-like domains.

The essential feature of this system is that the
anchoring conditions at the boundary of the domains do
not seem well defined. Thus, the interdomain interac-
tion is probably mainly governed by the coat of differ-
ent molecular orientations near the domain boundary.
Such a situation is probably typical for inclusions with
complicated shape and molecular orientation on the
boundary.

This experimental study underlines the influence of
both the breaking of the symmetry of the c-director
field in the vicinity of the inclusion and the anisotropic
shape of the domain on the structural organization of
the inclusions confined in a membrane. Previous exper-
imental studies both in film and in 3D systems have
established that the boundary conditions determine the
type of interactions and lead to different organizations

Fig. 4. 2D hexagonal structure formed by hexagonal-like
domains near the temperature of the film transition to nem-
atic phase, T0 – T = 0.1°C. Horizontal dimension of image
is about 260 µm.
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of inclusions. The present results demonstrate that the
2D structural organization can also be varied by the
change of density and inclusion size. A comparison of
the average size of domains and film thickness in order
to classify the successive observed structures is under
investigation. We expect that similar self-organization
should be observed in other systems.

We thank the region nord-pas-de-calais and FEDER
for funding of the image setup. V.D. would like to thank
the University of Lille I and Laboratoire de Dynamique
et de Structure des Matériaux Moleculaires for hospi-
tality. This work was supported be the Russian Founda-
tion for Basic Research, project no. 01-02-16507
(V.D.).
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The origin of the specific activation-type behavior of the mobility of electrons on liquid-helium films with dif-
ferent kinds of substrates is discussed. The characteristic feature of the activation energy Ea observed in the
experiment is its dependence on the effective film thickness d in the form Ea ∝  d–2. A scenario of this effect is
proposed with consideration for the roughness of the substrate underlying the liquid-helium film. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 67.70.+n; 77.84.Nh
The variety of interesting experimental results that
have not yet found any appropriate interpretation
include the data on the mobility of electrons on thin liq-
uid-helium films overlying different kinds of sub-
strates. These data demonstrate the activation behavior
of the liquid-helium films, and the activation energy Ea

is found to be inversely proportional to the square of the
effective film thickness [1–4].

An explanation of this effect on the basis of the
polaron hypothesis was proposed by Platzman [2]. It
was assumed that an electron on a thin liquid-helium
film overlying an ideal substrate forms a bound state (a
single-electron dip). The main parameters of the dip
can be calculated in terms of the Feynman approxima-
tion [5]. Specifically, its effective mass M is expressed
as [6, 7]

(1)

(2)

where kc is the characteristic cutoff factor of the order
of the inverse size of the electron wave function in the
dip; e and ed are the dielectric constants of the liquid
helium and the solid substrate, respectively; and d is the
local thickness of the liquid-helium film.

Assuming that the dip mobility is µ ∝  M–1 and tak-
ing into account definitions (1) and (2), Platzman [2]
derived the formula µ ∝  exp(–β/d2), which explains the
experimental data [1–4]. However, the same formalism
leads to a rather low probability of the dip formation on
the surface of a liquid-helium film in the temperature
range T ≤ 1 K [8].

M α( ), αexp∝ mF*
2

4πσ "kc( )2
--------------------------,=

F* eE⊥ Λ/d2, Λ+
e2

ed e–( )
1 e+( )2

ed e+( )
-------------------------------------,= =
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In other versions of the theory of single-electron
dips [9], the effective mass M proves to be only a power
function of d:

, (3)

where ρ and σ are the density and the surface tension of
liquid helium and g* is the effective acceleration of

gravity [for details, see Eq. (23) given below]. In addi-
tion, the hypothesis of µ ∝  M–1 is questionable. Accord-
ing to [9], the mobility is expressed as

, (4)

where ηl is the viscosity of liquid helium and F* is

defined by Eq. (2). Evidently, the quantity M–1 deter-
mined from Eq. (3) is not identical with the quantity µ
given by Eq. (4) in terms of its dependence on the film
thickness.

Thus, the experimental data [1–4] that provide the
dependence µ ≡ exp(–β/d2) for different solid substrates
and for a wide range of film thickness values d may be of
nonpolaron origin. The issue remains open to discussion.

The present paper considers an alternative scenario
for the specific behavior of the electron mobility on a
liquid-helium film with allowance for the roughness of
the solid substrate. Such a roughness is practically inev-
itable in real experiments with thin liquid films.

1. The equation for the profile d(x, y) of a liquid-
helium film on a rough substrate has the form

(5)

M
ρF*

2

8πσ2κ*
2 d

-----------------------, κ*
2≡ ρg*/σ, κ*d 1<=

µ 4πσ2e κ*d( )2d

3η lF*
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The thickness d(x, y) is measured relative to the zero
point δ(x, y), g is the acceleration of gravity, f is the Van
der Waals constant (usually, about several tens of
degrees), and h is the height of the pedestal above the
bulk liquid helium level (measured relative to the zero
point δ(x, y)). In the absence of roughness, Eq. (5) is
reduced to the definition of the equilibrium thickness 
of a film on a flat substrate:

(6)

When h > 0, the solution of Eq. (6) is possible for  ≥ h.

At h = 0, the quantity  from Eq. (6) remains finite.
Finally, when h is negative, Eq. (6) takes the form that
is conventional for the determination of the saturation
film:

(6a)

Note that definitions (5) and (6) contain no delay
effects, which complicate the behavior of the Van der
Waals forces for small values of h. This simplification
does not affect the qualitative picture given by Eqs. (6)
and (6a) for d(h) when h passes through zero, and it is
justified in the limit of small film thickness (large val-
ues of hm), which is the case of our interest.

Now, let us consider the function δ(x, y) ≠ 0 and
assume that it is characterized by the normal amplitude
distribution

(7)

where ∆2 = 〈δ2〉  is the mean square variance of the dis-
tribution, and by the correlation functions

(8)

where 〈η 2〉  is the characteristic correlation radius. For
simplicity, the latter is assumed to be the same in both
horizontal directions.

In the conditions δ(x, y) ≠ 0, the problem on the pro-
file d(x, y) is approximately reduced to the problem of
the effective height at which the sphere (cylinder) of
radius R moving downward is stopped by a forest of ver-
tices with stochastic properties (7) and (8). As the height
h monotonically varies, the role of the effective screen-
ing radius R is sequentially played by the quantities

(9a)

(9b)

(9c)

d
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R σ/ρghm,=
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2 σ/ρg*,=
where 

These quantities follow from the analysis of the proper-
ties of Eq. (5): the radius Ro given by Eq. (9a) is known
from the classical theory of meniscus [10], the quantity
R given by Eq. (9b) follows from Eq. (5) when the Van
der Waals forces can be neglected in the interval
between the edge points of the meniscus, and the
appearance of the radius R* given by Eq. (9c) will be
demonstrated below [see Eqs. (23) and (24)].

Using the general determination of the number of
peaks of δ(x, y) ≠ 0 that rise above a given height (see,
e.g., [11]) and applying Eq. (5), for which these peaks
(the so-called active peaks) participate in the formation
of the effective boundary conditions, we can trace dif-
ferent limiting cases in the behavior of d(x, y).

The exotic case (9a) is realized in the region h > 0.
The role of roughness in this region is minor.

Variant (9b) represents a more actual case realized
for small negative values of h. In this case, liquid
menisci of radius R “hang” on the active peaks of height
δa with a distance ba between them. The quantities δa

and ba are related to the parameters of the problem R, ∆,
and η by the expressions

(10)

where ∆ and η are taken from Eqs. (7) and (8).
The minimal film thickness dmin in the central part of

a meniscus of radius R is determined as

(11)

For the meniscus not to be considerably affected by the
Van der Waals forces, the minimal thickness should
exceed ∆m. This requirement formulated in terms of h as

(12)

determines the domain of validity of case (9b).
Scenario (9b) corresponds to the initial stage of the

effect of roughness on the properties of 2D electrons.
Here, it is expedient to separate the electron density
into two components:

(13)

where ne represents the free electrons retaining a good
mobility along the menisci of radius R and nl represents
the localized electrons confined to the active peaks of
the profile d(x, y). To calculate the mobility of quasi-
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free electrons on a rough substrate, one can use pertur-
bation theory: the Born approximation, the kinetic
equation, etc. However, the limiting case under discus-
sion is unlikely to lead to the activation behavior of the
electron mobility as a function of roughness and thick-
ness of the film, although such attempts can be found in
the literature [12–14].

In the conditions hm < , the Laplace screening
radius R* becomes comparable with η [scenario (9c)]
and the characteristic quantity dmin decreases to the
region dmin ≤ 0, so that the Van der Waals forces can no
more be ignored in the intervals between the peaks δa.
Separation (13) of the electron density into two sub-
systems becomes invalid, because, in this case, all elec-
trons strongly interact with the substrate. As will be
shown below, in scenario (9c), the electron mobility is
governed by the two following characteristics: the
effective positions of the saddle points of the relief
δ(x, y) ≠ 0 and the degree of screening of the deep val-
leys of this relief by the liquid-helium film. For the
regime corresponding to Eq. (9c), the central problem
is the determination of these characteristics.

Answers to the stated questions can be obtained by
using the mutual probability Wn of different quantities
in the problem with a normal randomness given by
Eqs. (7) and (8) (see [11]). In the case under study, we
deal with the combined probability of δ(x, y) and its
second derivatives. Introducing the simplifying nota-
tions

we obtain an expression for W3:

(14)

Here, mi = 〈ξ i〉  (in our case, all mi are equal to zero),

 = 〈(ξi – mi)2〉  is the variance of the random quantity
ξi, D is the third-order determinant

composed of the correlation coefficients

and Dij is the cofactor of the element Qij of the determi-
nant D.

Using W3, we determine the position δ = δc of the
effective percolation plane for the relief δ(x, y). By def-
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inition, it is the plane near which the second derivatives

 are equal in magnitude [the consequence of the isot-
ropy of the adopted model (8)] and opposite in sign.
Then, the optimal value of δc is determined from the
condition

(15)

Differentiating W3 from Eq. (14) with respect to ξ1 at

fixed derivatives , we obtain

(16)

If, according to Eq. (15), we set ξ2 = –ξ3, we have

(17)

In other words, the percolation plane lies at the zero
level in the coordinate system related to the symmetry
plane of the function δ(x, y) (this result seems to be rea-
sonable by intuition, even without justification).

Relation (16) also is the key equation for the prob-
lem on the optimal value of the amplitude δ* of the val-
leys in the relief δ(x, y). The valleys are assumed to be

characterized by a given positive curvature  (the
peaks of δ(x, y) have a negative curvature and the val-
leys have a positive curvature):

(18)

From Eq. (16), we obtain the following relation for

δ* ≡ :

(19)

Using Eqs. (7) and (8) and the general rules for calcu-
lating the correlation functions, which allow one to
determine the explicit form of the combinations

arising in Eq. (19), from Eqs. (18) and (19) we obtain

(20)

The quantity δ* has a simple physical meaning. All val-
leys of the relief δ(x, y) that have a depth δ↓ smaller in
magnitude than δ* are covered with the liquid-helium
film, which practically reproduces the details of the sur-
face roughness. The valleys whose depth is |δ↓ | > |δ*|
are filled with liquid helium to the level δ* with a
meniscus radius R*.
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Here, it is appropriate to demonstrate how the radius
R* appears in the problem. Assuming that inside a
given valley we have

(21)

from Eq. (5) in the zero approximation we obtain

(22)

i.e., the effective thickness of the film coincides with
the flat definition of  given by Eq. (6a):

The next approximation yields

(23)

Equation (23) involves the characteristic length

(24)

which determines the properties of the liquid meniscus
in the conditions opposite to conditions (12) [scenario
(9c)].

2. An electron on a liquid-helium film interacts with
the substrate through several channels. One of them is
the direct interaction of the electron with the partially

screened pressing field . For a plane boundary, the
internal field suppressing the disturbance E⊥  in the
region occupied by the substrate is completely local-
ized inside the substrate and does not affect the dynam-
ics of the 2D electrons over its surface. If the boundary
(for simplicity, a metal boundary) is curved, the
requirement that it be equipotential in the external field
leads to the appearance of a screening electric potential

 that is nonzero in vacuum above the boundary. This
potential is harmonic and satisfies the boundary condi-
tions

(25)

so that

(26)

where δq is the Fourier component of the function δ(x).
Taking into account Eq. (25), we arrive at the fol-

lowing renormalization of the pressing field:

(27)
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In addition, a “horizontal” fluctuating component of the
electron energy in the external field comes into play:

(28)

In the long-wave limit qd ! 1, we have

(29)

and, as in the case of the pressing field, the polarization
attraction to the rough substrate requires a modification
of the “plane” formulas determining this interaction. It
is possible to develop the “quasi-plane” approximation
[a formula of the type of Eq. (2) with a varying film
thickness following the profile δ(x, y)]. However, the
formalism arising in this case is fairly cumbersome and

yields foreseeable results only in the region hm > 

[  is from Eq. (12)], i.e., where the linearization of

the initial equation (5) is possible. In the case hm > ,
it is more convenient to replace the real profile of the
substrate by some horizontally uniform density distri-
bution n(z) smoothly increasing from zero to the bulk
value no with a characteristic size of the transition
region of the order of ∆. In this case, the force Fp of the
electron attraction to the dielectric medium with a
smooth profile n(z) is represented in the form

(30)

Here, f(r) is the force of the polarization interaction of
a single atom of the substrate with an electron, αo is the
polarizability of a single atom, r is the distance between
an electron and a given atom of the substrate, and a is
the interatomic distance.

Formula (30) has the necessary asymptotic proper-
ties: the interaction is small for small values of n(z) and
in the region n(z)  no. The maximum of Fp is
reached in the middle part of the transition region. In
this zone, the density gradient is estimated by the
expression (the origin z = 0 coincides with the maxi-
mum of dn/dz)

(31)

Then, integral (30) can be calculated to obtain

(32)

The integral characteristic Fp(0) given by Eq. (32)
adequately describes the character of the polarization
attraction of an electron to a rough substrate. Using
Eq. (32), the corresponding interaction energy can be
represented as

(33)

where δ* is determined by Eq. (20).

U || eE⊥ x( ) eϕ̃ x d,( ).+=

U || . eE⊥ d x( ) δ x( )–[ ] ,

hm
cr

hm
cr

hm
cr

Fp z( ) f r( )n z z1–( ) x1d y1d z1,d∫=

f r( ) 2αoe2/r5, r a.>=

dn/dz . no/∆.

Fp 0( ) . πnoαoe2/a∆.

U p . Fp 0( )δ x( ), δ δ*,>
JETP LETTERS      Vol. 76      No. 6      2002



MOBILITY OF ELECTRONS ON A LIQUID-HELIUM FILM 359
3. The results described above are sufficient to esti-
mate the activation energy for the electron motion
along a thin liquid-helium film on a rough substrate. In
the general case, the solution of the problem on the acti-
vation mobility is an independent problem that requires
considerable effort in every specific case (see, e.g.,
[15]). However, for estimating the exponent, it is suffi-
cient to use only the energy considerations.

First of all, from the expressions for the effective
energy of an electron on a rough substrate [see
Eqs. (29) and (33)],

(34)

it follows that, in the low-temperature limit T ! Ea, all
2D electrons must be in the liquid-helium dips screen-
ing the valleys with δ ≤ δ∗  [δ∗  is from Eq. (20)] (on
condition that the number of such places is sufficient,
which is assumed to be the case under consideration).

By definition, the activation energy Ea is the differ-
ence between the values of the electron energy at the
percolation level and in the dips [Eq. (34)]. Using the
result obtained above for the position of the percolation
level [according to Eq. (17), δc = 0], we obtain

(35)

This energy is proportional to d–2, which is the desired
result.

U* . F*δ x( ), F* eE⊥ Fp 0( ),+=

Ea F*δ*, or Ea–
2πnoαoe2η2 f 1/2

a∆d2 3σ
--------------------------------------.= =

Logarithm of the 2D electron mobility on thin liquid-helium
films with different substrates as a function of the square of
the inverse film thickness d. The circles and the triangles
represent the data from [2], the diamonds show the data
from [3], and the solid line shows the data from [4] reduced
by a factor of ten.
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The experimental data on the mobility of electrons
on thin liquid-helium films with different substrates are
shown in the figure. The dependence Ea ∝  d–2 is clearly
visible, although the slopes of the lines d–2 vary consid-
erably. According to Eq. (35), in addition to the known
quantities, the proportionality coefficient in the defini-
tion of Ea contains the roughness parameters ∆ and η.
In a real 2D case, the horizontal correlations ηx and ηy

may be different. Therefore, the knowledge of only one
value (the slope of the line lnµ(d–2) in the figure) is
insufficient for obtaining a detailed information on the
roughness parameters of the substrate.

Thus, in this paper, we determined different variants
(9) possible for the screening of the roughness of a solid
substrate by a liquid-helium film. Each variant corre-
sponds to a specific type of the electron mobility over
liquid helium. In regime (9c), this mobility proves to be
of the activation character. In this case, without special
limitations, the hopping mechanism of the electron
motion leads to the dependence Ea ∝  d–2 observed in the
experiment. The proposed alternative with consider-
ation for the roughness seems to be more credible than
the polaronic version [2] of this effect.
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Manifestation of Coulomb Gap in Two-Dimensional 
p-GaAs–AlGaAs Structures with Filled Upper Hubbard Band
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The transport properties of multilayer GaAs/AlGaAs structures doped modulationally with Be so as to fill, in
equilibrium, the states of upper Hubbard band (A+ centers) with holes were studied. For the concentration of
dopants on the order of 5 × 1011 cm–2, the hopping conduction over the states in the Coulomb gap was observed
in the temperature range 0.4–4 K. The characteristic temperature (T1) was determined from the temperature
dependence of conductance and found to be appreciably lower (by 30 times) than its theoretically predicted
value. This discrepancy is assumed to be due to the correlated hopping effect. In the temperature dependence
of magnetoresistance, the suppression of negative magnetoresistance was observed with lowering temperature.
This is explained by the weakness of underbarrier scattering in the transport via the upper Hubbard band.
© 2002 MAIK “Nauka/Interperiodica”.
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INTRODUCTION 

In recent years, much interest has been shown in
studying two-dimensional structures. This is largely
caused by the observation of the transition from the
insulator type of conduction to the metallic type in such
structures [1]. We have recently proposed an explana-
tion of the experimental data assuming that the “tail” of
localized states in a system with potential disorder and,
in particular, the states of upper Hubbard band play an
important role in transport [2].

In our earlier study [3] of multilayer Be-doped
p-type GaAs/AlGaAs structures with 15-nm-thick
wells, the low-temperature two-dimensional variable-
range hopping conduction over the states of upper Hub-
bard band was studied in detail. By doping the well and
a nearby barrier layer, a situation was realized where
the upper Hubbard band (A+ centers) was filled, in equi-
librium, with holes and the conduction was over its
states. It was established that the conductance in
weakly doped samples followed Mott’s hopping law
over the whole temperature interval studied (4–0.4 K).
The magnetoresistance in weak fields was negative
(i.e., involved quantum interference). The temperature
dependence of the positive quadratic magnetoresis-
tance (which was observed in higher fields) was used to
determine the localization radius of A+ centers (10 nm).

It should be emphasized once more that the
observed hopping conduction had Mott’s character. At
the same time, it is well known that the conduction via
the states in the Coulomb gap is more typical for semi-
conductors; in the three-dimensional case, the corre-
sponding law should invariably prevail with lowering
temperature (even if Mott’s law is observed at high tem-
0021-3640/02/7606- $22.00 © 20360
peratures). Therefore, it was of interest to find out how
Mott’s hopping conduction in the structures studied in
this work transforms into the conduction over the Cou-
lomb-gap states upon lowering temperature, which are
the parameters of Coulomb gap, and what the character
of magnetoresistance in the Coulomb-gap regime is.
Note that Mott’s conduction, both in our case and in the
experiments of other authors with similar structures,
was observed at a sufficiently low impurity concentra-
tion. However, one can easily see that, as the crossover
from the hopping conduction to the Drude conduction
in 2D structures is approached at low temperatures, the
hopping conduction via the Coulomb-gap states should
be observed. Indeed, the crossover temperature from
Mott’s conduction to the Coulomb-gap conduction can
be expressed in the 2D case as

(1)

where κ is the dielectric constant, a is the localization
radius, N(εf) is the density of states at the Fermi level,
and T1 and T0 are the exponential factors in the temper-
ature dependences of the conductivity in the Coulomb-
gap and Mott’s law, respectively:

(2)

(3)
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metal–insulator transition. Considering that the dielec-
tric constant for 2D systems is independent of (or
depends only weakly on) the impurity concentration in
the vicinity of the transition [4], one finds that Tc must
increase as the transition is approached (due to the
divergence of the localization radius and increase in the
density of states). Therefore, in the 2D samples (in
which the carrier concentration changes because of
changing dopant concentration) close to the transition,
the Coulomb gap should be observed at low tempera-
tures. Such a behavior is opposite to that observed for
3D samples, where the samples close to the transition
obey Mott’s law over the whole range of attainable tem-
peratures [5].

Note that the estimation of the pre-exponential fac-
tor in Eq. (2) is of fundamental importance. In the case
of hopping induced by the electron–electron interac-
tion, it should have a universal form ρ0 = h/2e2, while
for the phonon-assisted hopping it may depend on tem-
perature as ρ0 ≈ AT, where the factor A is not universal
and depends on the parameters of a material [6]. It was
assumed by Alenier et al. [7] that the pre-exponential
factor may be observed in the samples close to metals,
where T1 ≈ T.

Most of the known observations of the Coulomb gap
in 2D samples are related to samples with a gate [8]. In
the presence of a gate, the Coulomb interaction is
screened at distances larger than the distance from the
2D layer to the gate. Accordingly, as the temperature
tends to zero, i.e., as the hopping distance increases, the
Coulomb gap becomes irrelevant and Mott’s law pre-
vails, despite the fact that, in the absence of a gate, the
Coulomb gap should manifest itself precisely in the
low-temperature region. In this respect, the system
under study is of considerable interest, because it does
not contain a gate. Note that such systems have not
been considered until now. The sole exception is pro-
vided by work [9], where the 2D impurity conduction
was also studied for the doped wells but in a tempera-
ture range not sufficiently wide for the crossover from
one law to the other be observed.

In the GaAs/AlGaAs system of interest, the well
width was d ~ 15 nm and the localization radius of the
acceptor Be impurity was 2 nm, i.e., much smaller than
d. By selectively doping the central areas of wells and
barriers, a situation was realized where the upper
acceptor (A+-center) Hubbard band was filled in equi-
librium. This case is of interest because the transport
via the upper Hubbard band may exhibit some special
features that are caused by a large radius of the states.
Moreover, this situation is more suitable for the exper-
iment, because the binding energy of A+ centers is
lower than for the A0 centers, so that the samples are
low-ohmic at low temperatures.

In this work, we demonstrate that the Coulomb gap
manifests itself in the low-temperature hopping con-
duction of heavily doped samples. In contrast to the
weakly doped samples, the weak-field magnetoresis-
JETP LETTERS      Vol. 76      No. 6      2002
tance is positive. The observed behavior is discussed
within the framework of the correlated-hopping and
weak-underbarrier-scattering models.

EXPERIMENTAL 

The method of growing multilayer structures by
molecular-beam epitaxy was described in our work [3].
The structures contained ten 15-nm-thick GaAs quan-
tum wells separated by 15-nm-thick Al0.3Ga0.7As barri-
ers. In the samples, 5-nm-thick middle areas of quan-
tum wells and Al0.3Ga0.7As barriers were doped. There-
fore, the thickness of the undoped spacer layers on both
sides of the barrier was 5 nm. Beryllium (with a volume
concentration of 5 × 1017 cm3) served as a p-type
dopant. The contacts to the samples were produced by
firing indium with a low zinc concentration for 2 min at
a temperature of 450°C.

The temperature dependences of hole concentration
are shown in Fig. 1. At temperature near 40 K, a maxi-
mum was observed in the temperature curves for the
Hall coefficient, flagging the transition to hopping con-
duction. Close to room temperatures, the curves show
activation behavior caused by the transition of holes
from the A+ centers to the band of delocalized states.
These portions of the curves were used to estimate the
binding energy of the A+ centers at 5.5 meV. This value
is slightly smaller than the values obtained by us in [3]
for the similar structures because of the higher impurity
concentration and width of the upper Hubbard band. At
low temperatures (10–0.4 K) and sufficiently low volt-
ages (0.1–0.01 V) and currents (10–100 nA), the con-
ductance is ohmic and its temperature dependence cor-
responds to the variable-range hopping conduction
(VRHC) in the Coulomb-gap regime given by Eq. (2).
We have attempted to describe the observed tempera-
ture dependence using a universal (Fig. 2a) and temper-
ature-dependent (Fig. 2b) pre-exponential factors. The

Fig. 1. Temperature dependence of the hole concentration in
wells, as calculated from the Hall coefficient for samples
(j) 1 and (h) 2.
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parameters T1 estimated from Fig. 1a (16 and 19 K) and
Fig. 1b (37 and 43 K) for two samples differ from one
another almost by a factor of two.

The pre-exponential factor estimated for two sam-
ples from Fig. 1a was found to be close to ρ0 = h/2e2 ~
104 Ω . At the same time, with a temperature-dependent
pre-exponential factor, the curves straighten out in a
larger temperature interval (Fig. 2b). The correspond-
ing pre-exponential factor A (ρ0 ≈ AT), when extrapo-
lated to the temperatures on the order of T1, proves to
be smaller than or on the order of h/e2, which cannot be
true for the phonon-assisted hopping. Therefore, the sit-
uation with the temperature-independent pre-exponen-
tial factor seems to be more realistic.

The magnetoresistance (MR) was measured in static
magnetic fields perpendicular to the structure plane up
to 1 T (note that for the fields parallel to the structure,
the MR was virtually absent). The typical low-field MR
curves are shown in Fig. 3 for two samples at several
temperatures. A portion of negative MR is seen in the
curves for sample 1; on further decrease in temperature,
it disappears and the quadratic positive MR prevails. In
the other sample, only positive MR is observed from

Fig. 2. Temperature dependence of the resistance (per one
well) of the p-GaAs/AlGaAs structure in the range 0.4–4 K
at the scale (a) not taking into account and (b) taking into
account the temperature dependence of the pre-exponential
factor. Curves 1 and 2 are for samples 1 and 2, respectively.
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low fields and on. This behavior is opposite to the
behavior of MR in more isolating samples (in Mott’s
regime). Recall that the MR in this case was always
negative in low fields and its amplitude increased with
lowering temperature.

Let us now discuss the positive MR due to the
shrinkage of wave functions in a magnetic field. The
experimental temperature dependences of the corre-
sponding positive MR are shown for two samples in
Fig. 3. According to [10], the contribution in the case of
variable-range hopping conduction over the Coulomb-
gap states is given by

where K = 0.002 is a numerical factor.
Figure 4 presents the temperature dependences of

the curve slopes for the quadratic positive MRs of two
samples; the dashed lines correspond to the T–3/2 and T–1

laws (corresponding to the positive MR in the Mott’s
regime). One can see that the experimental behavior is
closer to the T–3/2 law rather than to T–1 (as was the case
for the conductance in the Mott’s law). This fact con-

R H( )
R 0( )
------------- 

 ln K
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T
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Fig. 3. Quadratic positive magnetoresistance at different
temperatures for samples (a) 1 and (b) 2.
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firms once more that the conduction occurs over the
Coulomb-gap states. The radius a of the states between
which hopping occurs was estimated from the slope of
this curve and found to be 16 and 17 nm for samples 1

and 2, respectively. Note that a ~ ; i.e., the depen-
dence on T1 is rather weak.

DISCUSSION
Thus, measurements of the temperature depen-

dences of conductance and positive quadratic magne-
toresistance have demonstrated that, as the impurity (in
our case, A+-center) concentration increases, the transi-
tion occurs from Mott’s hopping conduction to conduc-
tion over the Coulomb-gap states. This is caused both
by an increase in the density of states at the Fermi level
and by an increase in the localization radius [see
Eq. (1)]. The calculated pre-exponential factor is close
to its universal value that was observed in a number of
works [8].

The localization radius a can be estimated directly
from Eq. (2) by determining T1 from the temperature
dependences and assuming that κ = const = 12 and C =
6.2. This yields a = 500 nm. A comparison of the local-
ization radii estimated from the T1 values and from the
quadratic magnetoresistance, on the assumption that
the dielectric constant is equal to its value beyond the
metal–insulator transition region, shows that the agree-
ment between the two values is achieved if the coeffi-
cient C is taken to be smaller by a factor of 30 than its
theoretical estimate.

This fact can be caused by two reasons. First, a
decrease in C may be due to the contribution from the
correlated hopping. The corresponding behavior was
discussed in a number of works [6]. Second, the fact
that the dielectric constant in the vicinity of metal–insu-
lator transition is the same as beyond it is questionable
for the systems studied. The point is that the corre-
sponding conclusion was formulated for purely 2D sys-
tems. In our case, we deal with the quantum well struc-
tures. Estimates show that, at least at low temperatures,
the hopping distance is comparable with the structure
thickness. In other words, one can expect that almost all
wells in the structure can be involved in the screening
of electron–electron interaction in each of the wells, so
that the system is close to three-dimensional in this
respect.

Let us now discuss the above-mentioned suppres-
sion of negative magnetoresistance in our structures.
We first note that similar effect in the hopping conduc-
tion over the Coulomb-gap states in 3D samples was
observed by us earlier. It is well known that the respec-
tive contribution to the magnetoresistance is caused by
the interference of different hopping trajectories
including underbarrier scattering events. We have pro-
posed a model that explains the observed behavior by a
decrease in the concentration of scatterers upon the
transition to the Coulomb-gap regime [11]. It is worth

T1
3/8–
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noting that our model assumes that the scattering is
weak, whereas the model with purely coulombic scat-
tering [12] leads to a universal law for the negative
magnetoresistance, in conflict with our experimental
data. It should be emphasized that the noncoulombic
scattering character in our situation can be explained by
the fact that the potential of a neutral center with
respect to the hopping hole is by no means coulombic.

CONCLUSION 

Summarizing the obtained results, we note that the
conduction in the systems with high impurity concen-
tration (close to the metal–insulator transition) pro-
ceeds over the states in the Coulomb gap. Furthermore,
the coefficient in the Efros–Shklovskiœ law proves to be
30 times smaller than follows from the Efros–Shk-
lovskiœ theory. This may be due both to the correlated
hopping and to the contribution from the Coulomb
interaction between wells. Finally, the suppression of
negative magnetoresistance has been observed in the
Efros–Shklovskiœ conduction regime. Such a behavior
may be caused by the weakness of underbarrier scatter-
ing in the hopping over the states of the upper Hubbard
band.

This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-16992.
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The photoluminescence spectra of structures with self-assembled GeSi/Si(001) islands are investigated as func-
tions of the growth temperature. It is shown that the shift of the peak of photoluminescence from islands toward
lower energies on decreasing the growth temperature is due to the suppression of Si diffusion into islands and
an increase in the fraction of Ge in islands. A photoluminescence signal from the GeSi islands is found in the
region of energies down to 0.6 eV, which is considerably smaller than the band-gap width in bulk Ge. The posi-
tion of the peak of photoluminescence from islands is described well by the model of a real-space indirect opti-
cal transition with account of the real composition and elastic strains of the islands. Mono- and multilayer struc-
tures are obtained with self-assembled GeSi/Si(001) nanoislands exhibiting a photoluminescence signal in the
region 1.3–2 µm at room temperature. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 78.55.Ap; 78.67.Hc
In the last few years, interest has considerably
increased in various kinds of low-dimensional systems
on silicon substrates. This interest is associated with the
possibility of creating light-emitting devices and photo-
detectors based on these systems. One of the lines
actively developed in this area is Si1 – xGex/Si(001) het-
erostructures with self-assembled nanoislands and
quantum dots. An intense photoluminescence (PL)
band is observed in such structures in the region of
wavelengths λ = 1.3–1.6 µm (0.75–0.95 eV) [1], which
is of great practical importance for information transfer
and reception with the use of optical-fiber transmission
lines.

One of the theoretical models [2] relates the appear-
ance of the given signal of PL from islands with the
real-space indirect radiative recombination of holes
localized in islands and electrons located in Si at the II
kind heteroboundary with an island. According to the
model [2], the indirect optical transition must be
observed in structures with Ge/Si(001) self-assembled
islands down to energies of ~0.4 eV (~3 µm), which is
considerably lower than the band gap width of not only
bulk Si but also bulk Ge. However, so far, the PL line
from islands has been observed in the region of ener-
gies 0.75–0.95 eV [3], which is smaller than the band
gap of Si but larger than the band gap of Ge. One of the
reasons for the given discrepancy between the theory
and experiment for the structures grown at germanium
deposition temperatures above 550°C is the formation
of a GeSi alloy in islands due to Si diffusion into islands
accelerated by elastic stresses [4]. The formation of a
0021-3640/02/7606- $22.00 © 20365
GeSi alloy in the islands is often disregarded in the
description of optical and electrophysical properties of
structures with nanoislands, which leads to an incorrect
interpretation of experimental data.

In this work, the PL spectra of mono- and multilayer
structures with GeSi/Si(001) self-assembled nanois-
lands grown at various Ge deposition temperatures are
analyzed with account of the real island parameters,
namely, sizes, composition, and elastic strains.

The structures to be studied were grown on Si(001)
substrates by molecular-beam epitaxy from solid
sources. The structures with self-assembled nanois-
lands comprised a buffer Si layer and a Ge layer with an
equivalent thickness of from five to ten monolayers
(ML, 1 ML ≈ 0.14 nm). The deposition of Ge was car-
ried out at temperatures Tg = 600, 700, and 750°C. The
structures for photoluminescence measurements had a
capping Si layer, whose growth was carried out at the
same temperatures as the deposition of Ge. Multilayer
structures were grown at Tg = 600 and 700°C and con-
sisted of five periods of Ge layers with an equivalent
thickness of 7.5 ML separated by spacing silicon layers
30 and 60 nm thick, respectively. The morphology of
the structure surfaces was studied on a Solver P4
atomic force microscope (AFM) and x-ray diffraction
(XRD) studies were carried out on a DRON-4 diffrac-
tometer. The PL spectra of GeSi heterostructures were
recorded by a BOMEM DA3.36 Fourier spectrometer.
Cooled Ge and InSb detectors were used for measuring
the spectra. An Ar+ laser (line 514.5 nm) was used for
PL excitation.
002 MAIK “Nauka/Interperiodica”
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Studies of the growth of GeSi nanoislands per-
formed previously at various Ge deposition tempera-
tures showed [4, 5] that a GeSi alloy forms in nanois-
lands at Tg ≥ 600°C immediately in the process of Ge
deposition. On decreasing Tg from 750 down to 600°C,
the fraction of Ge in the islands increases, which leads
to a decrease in the size of islands [4, 5]. According to
AFM studies, the size of dome islands in the growth
plane decreases from 200–250 nm down to 60–80 nm
and their height decreases from 30–35 nm down to 10–
12 nm as Tg decreases from 750 down to 600°C [4, 5].
At the same time, according to x-ray diffraction and
Raman spectroscopy data, the fraction of Ge in non-
overgrown dome islands increased from x = 40–50%
for Tg = 750°C to x = 70–75% for Tg = 600°C [4, 5]. The
formation of a GeSi solution in the islands is associated
with Si diffusion accelerated by nonuniform fields of

Fig. 1. PL spectra of structures grown at (1) 600°C,
(2) 700°C, and (3) 750°C recorded at 77 K with the use of
(a) Ge and (b) InSb detectors. The upper curves in the fig-
ures correspond to the spectral characteristics of the detec-
tors. The dip at 0.9 eV is associated with absorption in the
fused-silica window of the Fourier spectrometer. All the
spectra are normalized to the maximum of the PL signal
from the islands. The model of an indirect optical transition
in the GeSi islands is schematically depicted in the inset
(see text).
elastic strains (RES) from the islands [6]. The magni-
tude of the residual elastic strains of nonovergrown
dome islands was in the range RES = 50 ± 10% and was
independent of the growth temperature. The absence of
the dependence of RES on Tg is due to the fact that the
shape of dome islands (the ratio of height to lateral
size), which in many respects determines the extent of
the relaxation of elastic strains in these islands, is inde-
pendent of the Ge deposition temperature. When the
islands are overgrown at high temperatures (Tg >
500°C), the height of the islands decreases [7] and the
fraction of Si in the islands increases [4]. According to
the data of an x-ray diffraction analysis of the recipro-
cal space in the vicinity of (004) and (404) reflections
from the Si substrate, the mean Ge concentration in the
islands in multilayer structures decreases from x = 48 ±
5% to x = 36 ± 5% on increasing the growth tempera-
ture from Tg = 600 to 700°C. The obtained fractions of
Ge in the overgrown islands in multilayer structures are
significantly lower than the fraction of Ge in nonover-
grown islands. The magnitude of residual elastic strains
in islands, regardless of the growth temperature, com-
prises RES = 80 ± 20%. An increase in RES in islands
during overgrowth is due to the fact that the free island
surface, on which the relaxation of a significant part of
elastic strains in nonovergrown structures occurs, dis-
appears as the cover layer of Si grows.

The variation of the island composition as the Ge
deposition temperature increases are revealed in PL
spectra (Fig. 1). In the PL spectra of structures with
nanoislands measured at 77 K using a Ge detector
(Fig. 1a), a wide PL band is observed in the region 0.7–
0.9 eV in addition to the PL line at 1.1 eV associated
with the radiative recombination of a free exciton in Si.
The appearance of the given PL band is due to a real-
space indirect optical transition between holes local-
ized in islands and electrons that occur in Si at the II
type heterojunction with an island [2]. This indirect
optical transition is depicted schematically in the inset
in Fig. 1a, in which the positions of 2∆ valleys of the
conduction band and the level of heavy holes in the
vicinity of a GeSi island are shown. It is evident from
the PL spectra (Fig. 1a) that the PL peak maximum
shifts toward the region of lower energies on decreasing
the growth temperature. This shift of the PL peak from
the islands is due to an increase in the fraction of Ge in
the islands on decreasing the growth temperature [4, 5].
As the fraction of Ge in the islands increases, the dis-
continuity of valence bands at the silicon–island hetero-
junction increases and, as a consequence, the indirect
optical transition energy in the islands decreases (see
inset in Fig. 1a).

The PL spectra recorded with the use of a Ge detec-
tor (Fig. 1a) indicate that the low-energy edge of the PL
signal from the islands grown at Tg = 600°C is deter-
mined by the limit of the spectral characteristic of the
given detector. The PL spectra of structures measured at
77 K with the use of a InSb detector (Fig. 1b) showed
JETP LETTERS      Vol. 76      No. 6      2002
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that a significant part of the PL signal from the islands
grown at Tg = 600°C is located in the region of energies
that are significantly smaller than the band gap width of
bulk Ge (E = 0.735 eV at 77 K). The existence of the PL
signal from islands in the region of energies that are
smaller than the band-gap width of bulk Ge can serve
as a corroboration of the model [2], which relates the
peak of PL from islands with a real-space indirect opti-
cal transition. It should be noted that the maximum sen-
sitivity of the InSb detector is more than two orders of
magnitude lower than the sensitivity of the Ge detector.

A comparative analysis of the PL spectra of mono-
and multilayer structures with islands grown at Tg = 600
and 700°C showed (Fig. 2) that, in addition to signifi-
cant enhancement of the PL signal from the islands, the
peak of PL from the islands in multilayer structures
shifts by 15–25 meV toward higher energies. This shift
of the peak of PL from the islands is associated with the
decrease in the mean concentration of Ge in the islands
due to Si diffusion from the barrier layers into the
islands during the growth of the multilayer structures,
whose duration is longer as compared to the growth of
monolayer structures. In the study of multilayer struc-
tures with GeSi/Si(001) islands by electron microscopy
[8], it was shown that the concentration of Ge in the
islands decreases with increasing depth of the layer of
islands. This is connected with the fact that the time it
takes for the interdiffusion of atoms in lower layers of
multilayer structures is longer than that for upper lay-
ers. It may be suggested that the composition of islands
in monolayer structures corresponds to the composition
of islands in the upper layers of multilayer structures,
because the growth conditions (temperature and growth
time of the capping Si layer) for these layers are similar.
The concentration of Ge in the islands of the upper lay-
ers of multilayer structures is higher than that averaged
over all layers [8]; therefore, the fraction of Ge in the
islands of monolayer structures is higher than that in
multilayer structures. It is the decrease in the mean con-
centration of Ge in the islands of multilayer structures
compared to the concentration in monolayer structures
that leads to the shift of the peak of PL from islands
toward the region of higher energies found experimen-
tally. The dependence of the composition of islands on
their depth is also responsible for the broadening of the
peak of PL from the islands in multilayer structures
(Fig. 2). The line width of PL from the islands in mul-
tilayer structures increases in spite of the decrease in
the size spread of the islands and their spatial ordering
observed in multilayer structures [9]. It is evident that
the peak width of PL from the islands in the structures
under study is determined by the difference in the com-
position of islands located in different layers rather than
the size spread of the islands.

As mentioned above, the mean concentration of Ge
and the extent of relaxation of elastic strains have been
determined in the islands of multilayer structures.
According to the results of x-ray diffraction analysis,
JETP LETTERS      Vol. 76      No. 6      2002
the mean concentration of Ge in the islands decreases
from x = 48 ± 5% down to x = 36 ± 5% on increasing
the growth temperature from Tg = 600 up to 700°C.
Given the composition and elastic strain of the islands,
the position of energy bands can be estimated in the
vicinity of the islands. In the calculations, the layer of
islands was considered as a uniformly strained layer
whose thickness and composition corresponded to the
height and composition of the islands. This approxima-
tion is possible, because according to AFM data the
lowest size of the dome islands in the growth plane of
the structures under study was >50 nm and exceeded
their height by a factor of five. The change in the posi-
tion of the energy bands of Si in the vicinity of an island
due to the propagation of the fields of elastic strains
from the islands to the Si layers (see inset in Fig. 1a)
was taken into account in the calculations. According to
the calculations, the energy of the real-space direct
optical transition associated with the recombination of
electrons and holes localized in the islands must com-
prise E = 0.83 ± 0.05 eV for Tg = 600°C and E = 0.89 ±
0.04 eV for Tg = 700°C. The energies obtained are

Fig. 2. PL spectra of (1) mono- and (2) multilayer structures
with nanoislands grown at (a) 600°C and (b) 700°C. The
spectra were recorded at 77 K using an InSb detector.
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higher than the energies at which the photolumines-
cence signal from the islands is observed. At the same
time, the calculated energies of the real-space indirect
optical transition between holes localized in the islands
and electrons located in Si (see inset in Fig. 1a) com-
prise E = 0.76 ± 0.05 eV for Tg = 600°C and E = 0.86 ±
0.04 eV for Tg = 700°C. These energy values agree well
with the position of the peaks of PL from the islands in
multilayer structures (Fig. 2), which corroborates the
model [2], which relates the PL signal from islands
with the real-space indirect optical recombination of
charge carriers.

The calculations of the band diagram of structures
with islands showed that the discontinuity of the
valence bands at the Si–island heterojunction, depend-
ing on the growth temperature, comprises from
250 meV (for Tg = 700°C) up to 350 meV (for Tg =
600°C). These energy values by more than an order of
magnitude exceed the thermal energy that the charge
carriers possess at room temperature (25 meV).
Because of this, a significant part of holes remain local-
ized in the islands even at room temperature. In the
structures studied, the PL signal from the islands was
observed down to room temperature (Fig. 3). For a mul-
tilayer structure grown at Tg = 600°C, a significant part
of the PL signal from islands is arranged in the region
of energies lower than the band gap width of bulk Ge
(curve 1 in Fig. 3). The intensity of the PL signal from
the islands formed at Tg = 600°C is approximately an
order of magnitude higher than the intensity of the PL
signal from the islands grown at Tg = 700°C (Fig. 3).
The higher intensity of the PL signal from the islands
grown at Tg = 600°C is due to the better localization of
holes in the islands grown at a lower temperature and,
hence, having smaller sizes, a higher concentration of
Ge, and a larger discontinuity of valence bands at the

Fig. 3. PL spectra of multilayer structures with nanoislands
grown at (1 and 2) 600°C and (3) 700°C measured at room
temperature using (1) InSb and (2 and 3) Ge detectors. The
spectra were recorded at an optical pump power of
50 W/cm2.
heterojunction with Si. A decrease in the concentration
of Ge in the islands on increasing the growth tempera-
ture also leads to a decrease in the potential well for
electrons, which is located in Si at the heterojunction
with an island (see inset in Fig. 1a). The potential well
for electrons is due to the penetration of elastic strains
from the islands into the Si layers, and its depth
increases with increasing mismatch between the crystal
lattices of Si and of the island. Because, according to
x-ray diffraction data, the magnitude of the residual
elastic strains is independent of the growth tempera-
ture, the mismatch between the Si and island crystal lat-
tices will be higher for the islands that have a larger Ge
concentration. Hence, the potential well for electrons
will also be higher at the islands containing a larger
fraction of Ge.

A comparison of the PL spectra of structures
recorded at 77 and 300 K (Figs. 1 and 3) indicate that
the position of the line of PL from islands exhibits a
weaker dependence on the growth temperature than the
position of the PL line associated with the optical
recombination of a free exciton in Si. This is associated
with the fact that the decrease in the width of the band
gap on increasing the measurement temperature is
compensated by an increase in the hole populations of
the excited states in the islands. The high-energy opti-
cal recombination of holes from these levels leads to a
weak temperature dependence of the position of the PL
signal due to islands.

Studies of the PL spectra of mono- and multilayer
GeSi structures with nanoislands have been carried out
in this work, depending on the growth temperature. It is
shown that the peak of PL from the islands shifts
toward the region of lower energies on decreasing the
growth temperature. This shift is due to the suppression
of Si diffusion into the islands and an increase in the
fraction of Ge in the islands on decreasing the growth
temperature. For structures with nanoislands grown at
600°C, a signal of PL from the islands has been found
at energies smaller than the band gap width of bulk Ge.
The shift of the peak of PL from the islands to the
region of higher energies in multilayer structures as
compared to monolayer ones is related to the decrease
in the mean concentration of Ge in the islands in the
case of longer growth of multilayer structures. With
regard to the real composition and elastic strains of the
overgrown islands, the position of the peak of PL from
the islands is described well by the model of a real-
space indirect optical transition between holes local-
ized in the islands and electrons located in Si at the II
type heterojunction with an island. Structures with
GeSi/Si(001) self-assembled nanoislands have been
obtained that have a PL signal in the region 1.3–2 µm
up to room temperature, which open a way of creating
light-emitting diode structures based on silicon tech-
nology in the wavelength region ~1.55 µm of practical
interest.
JETP LETTERS      Vol. 76      No. 6      2002
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Quantum Frequency Standards Based on the Soliton State 
of a Bose–Einstein Condensate
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A method for stabilizing frequency based on using the soliton state of the Bose–Einstein condensate of alkali
metal atoms as an atomic source was suggested. The critical total number of lithium condensate particles at
which the existence of a quasi-one-dimensional soliton in the condensate was possible and the lifetime of such
a soliton were estimated. The attainable accuracy of measuring reference transition frequencies in the suggested
standard was shown to be substantially higher than with the known quantum frequency standards. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 03.75.Fi; 06.30.Ft; 06.20.Fn
Recent observations of the soliton states of 7Li
atoms in a cylindrical optical trap [1, 2] (also see the
theoretical analysis in [3–5]) open up new possibilities
of controlling the spatial movement of the Bose–Ein-
stein condensate and substantially broaden the range of
possible physical applications of this macroscopic
quantum object.

One of the most important uses of such soliton states
is frequency stabilization and the development of the
corresponding fundamentally new quantum standards.
The obvious advantage of using Bose–Einstein conden-
sate soliton states as an atomic source in quantum fre-
quency standards is a substantial increase in measure-
ment time τ and the ensuing decrease in the error of fre-
quency measurements δω ≈ 1/τ at comparatively small
linear device dimensions. For instance, in experiments
performed in [1], the lifetime of stable one-dimensional
Bose–Einstein condensate soliton states of lithium
atoms was longer than 3 s. At a ~1 cm/s velocity of such
a soliton and an Li ≈ 10 cm size of the region of interac-
tions between atoms and a radiofrequency field, the
error in frequency measurements would δω ~ 0.05 Hz,
which is almost two orders of magnitude lower than the
measured reference transition widths. For instance, the
modern primary cesium standard is characterized by a
δω ≈ 3 Hz error in frequency measurements at typical
flight velocity 〈V〉  ≈ 104 cm/s and path length L < 5 ×
102 cm [6].

A schematic diagram of a quantum frequency stan-
dard using the stable soliton state of the Bose–Einstein
condensate of lithium atoms as an atomic source is
shown in the figure. Initially, the Bose–Einstein con-
densate is formed in a magnetic trap [in the (2, 2) state,
where the first number is the total atomic spin and the
second, its projection]. The condensate is then injected
into a magnetic waveguide (which can, for instance,
0021-3640/02/7606- $22.00 © 20370
consist of two current-carrying conductors [7]) at a 1–
5 mm/s velocity. The spatial extension of such a soliton
along the waveguide axis is determined by the total
number of atoms in the Bose–Einstein condensate, and
its cross section, by the frequencies of oscillations in
the magnetic potentials of the current-carrying conduc-
tors. At the initial concentration of atoms in the conden-
sate above some critical value and a negative scattering
length, the soliton state of the Bose–Einstein conden-
sate of lithium atoms is formed. The lifetime of this
state is determined by two main factors: two-particle
collisions of condensate atoms and residual gas pres-
sure.

Further, while the soliton moves along the magnetic
waveguide, Bose–Einstein condensate atoms interact
with a radiofrequency field tuned to the reference tran-
sition frequency (for alkali metal atoms, the transition
between the hyperfine structure sublevels is used).
Because, initially, atoms in the condensate are in the
(2, 2) state, the interaction with the radiofrequency field
causes the transition of some part of atoms to the lower
hyperfine structure state with a change in the magnetic
moment projection. As a result, these atoms are no
longer confined with the magnetic field and leave the
condensate region. All atoms that shift to the lower state
under field action and leave the magnetic waveguide
fall straight down and are recorded, for instance, by a
surface ionization detector of the usual cesium stan-
dard. The number of atoms that leave the condensate
can be used to determine the probability of the radiof-
requency transition, which, in turn, depends on the fre-
quency difference between the applied radiofrequency
field and the reference transition. The detector is, how-
ever, reached not only by the atoms that change spins as
a result of absorbtion of radiofrequency quanta, but also
by the atoms whose spins change because of pair colli-
002 MAIK “Nauka/Interperiodica”
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Schematic diagram of a quantum frequency standard based on the soliton state of a Bose–Einstein condensate.

Atoms transited to the lower state under the effect
of the external radio field

External radio field acting on

2,2
sions, which is an important factor directly influencing
the accuracy of frequency measurements. This diffi-
culty can be overcome by calibrating the measuring
system (against the data obtained in the absence of a
radiofrequency field).

The construction of a quantum standard based on
Bose–Einstein condensate soliton states requires con-
sidering the conditions of formation and propagation of
such quasi-one-dimensional soliton states in a magnetic
waveguide [7]. Such a soliton distribution of a Bose–
Einstein condensate is formed along waveguide z axis,
whereas, in the transverse direction, the condensate is
confined in the two-dimensional potential well

(1)

where M is the mass of the atom, x and y are the trans-
verse coordinates of the particle in the potential well,
αx, y are the coupling constants along the x and y axes,
and ωx, y are the oscillation frequencies.

The Gross–Pitaevski equation for a one-particle
wave function of atoms with a negative scattering
length in a directing (along z axis) magnetic waveguide
with the transverse confinement potential U has the
form

(2)

where a is the absolute scattering length value and N is
the total number of atoms in the condensate. An
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approximate normalized wave function of the conden-
sate in the normal state has the form [8]

(3)

where χ0 is the wave function of the normal state of the
harmonic oscillator corresponding to potential (1) and
the B and γ constants are determined by the equations

(4)

The natural spreading of the wave function of Bose–
Einstein condensate atoms is balanced by effective non-
linear contraction in the soliton state [the last term in
the right-hand side of (2)]. In the absence of such bal-
ancing [if the nonlinear term in (2) is small], the wave
function spreads with the characteristic time

(5)

Note that one-dimensional solitons are stable with
respect to perturbations of their profiles. Such perturba-
tions can be caused, for instance, by nonuniformities of
the magnetic waveguide confinement field, and the
decay time of these perturbations is also determined by
(5). Because of the loss of atoms as a result of spin–spin
interactions in pair collisions and in collisions with
background atoms, the concentration of atoms in Bose–
Einstein condensates decreases as time passes. This
eventually results in soliton decay. A maximum con-
centration of atoms is reached in the soliton center,

(6)
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This value also determines soliton length L = 2/B.
The condensate can only exist at fairly high concen-

trations of atoms. The most stringent restrictions on the
soliton length and, accordingly, the concentration of
atoms in it arise from the requirement T < Tc, where Tc

is the critical temperature [9],

(7)

In (7), the transverse frequencies are assumed to be
equal to each other (ωx ≈ ωy = ω), and the oscillation
frequency along the z axis in our problem is determined
by soliton length L. For the lithium condensate with a =
1.43 × 10–7 cm [9] and the transverse oscillation fre-
quency ω = 1.6 × 102 Hz [7], the condition T < Tc gives

 > 1013 cm–3. We then have B > 3 × 103 cm–1; that is,
the maximum soliton length is Lm = 7 µm, and the total
number of atoms in the condensate is N > Nmin = 2 ×
103. These values determine the limiting soliton param-
eters.

The soliton lifetime is determined by the rate at
which the number of particles in the Bose–Einstein
condensate decreases. In the absence of external
actions, the main reason for this decrease is interactions
of electron spins in pair collisions of atoms. These
interactions cause simultaneous spin flip and the falling
out of atoms from the condensate. The rate of this pro-
cess is 〈σV〉  = 5 × 10–15 cm3/s (σ is the cross section and
V, the velocity of atoms) [10]. Atomic concentration
changes in a Bose–Einstein condensate are described
by the equation

(8)

where n = N|Ψ0|2. According to estimate (5), wave func-
tion perturbations decay fairly rapidly (τd ~ 10–2 s). The
soliton then broadens adiabatically, which allows the
ratio between the B and N functions to be conserved
[see (4)] at an arbitrary instant of time. The integration
of (8) in spatial coordinates yields the equation for the
total number of atoms in the Bose–Einstein condensate

(9)

The solution to (9) describes a decrease in concentra-
tion N in time,

(10)

where Ni is the initial number of atoms. Estimating the
lifetime of the soliton tm as the time of decreasing the
number of atoms to the critical value Nmin = 2 × 103 (see
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above), we obtain tm ≈ 50 s for the lithium condensate
on the condition that Ni @ Nmin. It follows that the time
during which the soliton state of the Bose–Einstein
condensate of Li atoms can be observed can reach
~50 s, which corresponds to a δω ≈ 0.003 Hz error in
reference transition frequency measurements.

At the same time, because of the peculiar “Möss-
bauer effect,” the absorption of light by condensate
atoms becomes collective [11] if the recoil velocity in
the absorption of a quantum is much lower than the
velocity of sound in the condensate, and it certainly is
for transitions between hyperfine structure levels. As a
result, the absorption line shifts by a value that depends
on the number of particles in the condensate. Let us
estimate this shift by (4) from the γ value, which deter-
mines the initial soliton state of the Bose–Einstein con-
densate. At the parameters used above, γ > 400 s–1, and
the rate of frequency variations amounts to  ≈ 10–2 s.
To use the device under consideration as a primary fre-
quency standard, the drift of the reference transition
frequency during ~50 s of measurements should not
exceed δω ≈ 1/50 s–1 = 0.003 Hz, which corresponds to
the rate of frequency variations  ≤ 10–3 s–2. Such fre-
quency stabilization can be attained in a Bose–Einstein
condensate of 7Li atoms in the (2, 2) state by decreasing
the temperature of the condensate to T = 10–8 K. Using
(4), (6), and (7), we can also show that such a decrease
in temperature decreases the number of atoms in the
condensate to N = 300.

A modification of the method for frequency stabili-
zation described above is the formation of soliton struc-
tures in Bose–Einstein condensates of 7Li atoms in the
(1, 1) state by means of the Feshbach resonance [1, 2].
The advantage of forming soliton structures in such a
state stems from the virtual impossibility of the transi-
tion to the excited state. The lifetime of atoms in the
condensate is therefore only determined by their loss as
a result of three-particle collisions. Suppose that each
collision of atoms in a sphere of radius rc, which is
determined from the elastic scattering cross section,
causes two atoms to fall out of the condensate. Accord-
ing to [12], the decay rate is then given by the equation

(11)

With the atomic scattering length –a = –1.6 × 10–8 cm
[1], we then obtain the rate of reference transition fre-

quency shifting  = "π|a | /M = 10–3 s–2, which cor-
responds to a ~50 s time of frequency measurements.

The measuring scheme shown in the figure should
be modified to use the (1, 1) state of the Bose–Einstein
condensate of lithium atoms as a frequency standard.
Lithium atoms in the (1, 1) state cannot be confined
with a magnetic trap; therefore, an optical trap similar
to that described in [1, 2] should be used. After the for-
mation of a condensate of atoms in the (2, 2) state in a
magnetic trap, the condensate can be transferred to an
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optical trap formed by a laser beam. In this trap, the
condensate in the (2, 2) state quickly and virtually com-
pletely transforms into the condensate in the (1, 1) state
under the action of a strong radiofrequency field, and,
by means of the Feshbach resonance, a Bose–Einstein
condensate soliton state is formed. After interacting
with a fairly weak measuring radiofrequency field,
which excites some part of atoms to the (2, 2) state, the
condensate returns to the magnetic trap, where atoms in
the (1, 1) state are sifted out, and (2, 2) atoms excited to
the higher state only remain. The number of these
atoms constitutes the measurement signal.

Above, our estimates were made for the characteris-
tics of Li atoms. The use of the Feshbach resonance [1],
however, allows the magnitude and sign of the scatter-
ing lengths of some other alkali metal atoms (Na, Rb,
and Cs) to be controlled. The suggested frequency stan-
dard can be optimized by studying the possibility of the
existence of stable soliton states in these gases.

To summarize, we showed the possibility in princi-
ple of using the atomic reference transition of the Bose–
Einstein condensate soliton states for measuring fre-
quencies, which makes it possible to substantially
improve the characteristics of quantum frequency stan-
dards with the use of the available instrumentation.

We thank A.N. Oraevskiœ for useful discussions.
This work was supported by INTAS (grant no. 01-
0855) and the Russian Foundation for Basic Research
(project no. 02-02-17686).
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The main features of the possible quadrupolar glass state in ortho-deuterium and para-hydrogen under high
pressure are predicted and considered in replica-symmetric approximation in analogy with glassy behavior of
diluted ortho-hydrogen at low pressures. The quadrupolar model with J = 2 is suggested. The orientational order
and glass regime grow continuously on cooling, as is the case with ortho-para hydrogen mixtures at zero pres-
sure. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 64.70.Kb; 62.50.+p; 61.43.Fs
The structure of high-pressure phases of solid hydro-
gen has been widely investigated recently (e.g. [1, 2]). At
low pressures, the centers of para-hydrogen and ortho-
deuterium molecules occupy lattice sites of the hcp
structure. The molecules are in spherically symmetric
phase (I or SP). Between 28 GPa for o-D2 and 110 GPa
for p-H2 and ~150 GPa, the molecules become orien-
tationally ordered in broken-symmetry phase II (BS).

High pressure breaks the rotational symmetry of the
J = 0 solids. The ordering occurs even in the systems of
para-hydrogen and ortho-deuterium molecules because
of the mixing of higher order J levels with the ground
state J = 0 as a result of the increase of the intermolec-
ular interactions at high pressures [1, 2]. The anisotro-
pic interaction between two molecules is dominated at
low pressures [3] by electrostatic quadrupole–quadru-
pole (EQQ) interaction, which plays a major role below
100 GPa [1, 4]. However, it is necessary to take into
account other anisotropic interactions to understand the
results of precise experiments (e.g., Raman scattering [1]).

The purpose of this article is to show the possibility
of an orientational glass state in solid p-H2 and o-D2
under pressure. Only the main features of this phenom-
enon will be taken into account. The J = 0  J = 2
transitions take place as a result of pressure increase. In
this case, the J = 2 molecules may be randomly distrib-
uted on a close-packed lattice. It was indicated in [2, 5]
that rotational disorder under pressure may be frozen.
The molecules with J = 0 are spherically symmetric,
have no electric quadrupole moment, and play the role
of dilutant.

So we can consider the quadrupolar glass state in
analogy with glassy behavior of diluted o-H2 and p-D2
at low temperatures and pressures. In this case, only the
molecular species are orientable. They have orbital

¶This article was submitted by the author in English.
0021-3640/02/7606- $22.00 © 20374
angular momentum J = 1. The ordered state is charac-
terized by a long-range orientational order at high
ortho-H2 and para-D2 concentrations [3]. However, for
concentrations less than approximately 55%, measure-
ments show no evidence of orientational phase transi-
tion. Instead, NMR experiments have been interpreted
in terms of freezing of the orientational degrees of free-
dom [3, 6]. This state is so-called quadrupolar glass.

The EQQ interaction can bring about the orienta-
tional glass state at high pressure in p-H2 and o-D2. The
rough estimation of the 0  2 transition probability α
can be done [4, 5] using quantum mechanical perturba-
tion theory, because the main anisotropic part (EQQ) of
the intermolecular interaction is small [3]. We have α =
4 × 10–4 for D2 and α = 6 × 10–5 for H2 at zero pressure.
The probability to find a J = 2 molecule increases
strongly with pressure; α = 0.1 at 40 GPa for D2 and
150 GPa for H2 and α = 0.4 for D2 at 150 GPa. It is pos-
sible that an intermediate range of α exists where a qua-
drupolar glass occurs.

Let us consider the system of particles on lattice
sites i, j with the truncated EQQ Hamiltonian

(1)

where the quadrupole component Q = 

can be replaced by an equivalent operator with the same

matrix elements  ~ [3  – J(J + 1)] in the space J =

const, Tr  = 0.

Quadrupolar glass freezing in mixtures of ortho-
and para-hydrogen was considered in [7] with
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where Jz = 1, 0, –1 and J = 1.
This model describes well the zero-pressure experi-

ments on ortho–para mixtures even in a replica-sym-
metric approach.

Now, the Hamiltonian (1) will be examined on the
condition J = 2 and Jz = 0, 1, –1, 2, –2:

(3)

where Jij are random exchange interactions with Gaus-
sian probability distribution

The scaling J = / , J0 = /N ensures, as usual,
a sensible thermodynamic limit. The multiplier 1/3 in
Eq. (3) is used for simplicity.

Using the replica method, the free energy is
obtained in the form

where t = /kT.
Extreme conditions for the free energy give the

equations for order parameters
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(4)

where averaging is performed with the effective Hamil-
tonian

Free energy and order parameters in the replica-
symmetric [8] case become

(5)

Here,

Order parameters are m quadrupolar order parame-
ter (analog of magnetic moment in spin glasses), q glass
order parameter, and p auxiliary order parameter:
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The temperature dependence of the order parameters
obtained from Eqs. (6)–(8) is represented in Fig. 1.
There is no trivial solution m = 0, q = 0 at a finite tem-
perature, because TrQ3 ≠ 0. The orientational order and
glass regime grow continuously on cooling, just as in
the case of Hamiltonian (1)–(2) describing the ortho–
para hydrogen mixtures at zero pressure [7]. The qua-
drupolar long-range order is present for T > 0 even if

 = 0. In the pure case (  = 0,  ≠ 0), we have from
Eqs. (6)–(7) q1/2 = m.

It is easy to see from Eq. (2) that Q2 = 2 – Q. So the
equation for p is not independent, and p = 2 – m. There
is no similar expression for Q2 from Eq. (3) and for
order parameter p.

J̃0 J̃ J̃0

Fig. 1. Order parameters for the case (a)  = 0,

(b)  = 1, and (c)  = 2.5.

J̃0/ J̃

J̃0/ J̃ J̃0/ J̃
Using Eq. (5) for free energy, the heat capacity can
be written in the form

(9)

Specific heat as a function of (kT/J) calculated from

Eq. (9) for four cases of ( / ) is shown in Fig. 2. The
temperature dependence of Cv is smooth, as in ortho–
para mixtures at zero pressure.

In conclusion, the main features of the random qua-
drupolar system (1), (3) are considered in the replica-
symmetric mean-field approximation. This system with
J = 2 was not considered earlier. The possible realiza-
tion of the quadrupolar glass state under high pressure
in ortho-deuterium and para-hydrogen is predicted.

I am grateful to E.E. Tareyeva and V.N. Ryzhov for
useful and stimulating discussions. This work was sup-
ported by the Russian Foundation for Basic Research,
project no. 02-02-16622a.

REFERENCES

1. A. F. Goncharov, M. A. Strzhemechny, H. K. Mao, and
R. J. Hemly, Phys. Rev. B 63, 064304 (2001).

2. H. K. Mao and R. J. Hemley, Rev. Mod. Phys. 66, 671
(1994).

3. I. F. Silvera, Rev. Mod. Phys. 52, 393 (1980).
4. T. I. Schelkacheva, Phys. Lett. A 239, 397 (1998).
5. E. A. Lutchinskaia and E. E. Tareyeva, in The High Pres-

sure Effects in Materials: Collection of Scientific Works
(Naukova Dumka, Kiev, 1986), p. 21.

6. N. S. Sullivan, M. Devoret, B. P. Cowan, and C. Urbina,
Phys. Rev. B 17, 5016 (1978).

7. E. A. Lutchinskaia, V. N. Ryzhov, and E. E. Tareyeva,
J. Phys. C 17, L665 (1984).

8. S. Kirkpatrick and D. Sherrington, Phys. Rev. B 17, 4384
(1978).

Cv

kN
-------

d

d kN / J̃( )
-------------------- J̃

kT
------ 

  q2 p2–
2

----------------
 
 
  J̃0

J̃
----- 

  m
dm

d kT / J̃( )
--------------------.–=

J̃0 J̃

Fig. 2. Specific heat as a function of (kT/ ) for a =  =
{0; 1; 1.4; 2.5}.

J̃ J̃0/ J̃
JETP LETTERS      Vol. 76      No. 6      2002



  

JETP Letters, Vol. 76, No. 6, 2002, pp. 377–379. Translated from Pis’ma v Zhurnal Éksperimental’no

 

œ

 

 i Teoretichesko

 

œ

 

 Fiziki, Vol. 76, No. 6, 2002, pp. 437–439.
Original Russian Text Copyright © 2002 by Dolgopolov.

                                                                   
On Effective Electron Mass of Silicon Field Structures
at Low Electron Densities

V. T. Dolgopolov
Institute of Solid-State Physics, Russian Academy of Sciences, Chernogolovka, Moscow region, 142432 Russia

Received August 22, 2002

The trial wave function method developed in [10, 11] for the case of a narrow s band in a perfect crystal is adapted
for the calculation of the concentration dependence of the effective mass and the Landé factor in a two-dimen-
sional electron system of low density. It has been found that the effective mass has a tendency to divergence at a
certain critical concentration, whereas the g factor remains finite. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.20.-r; 71.30.+h; 71.10.Ca
As the temperature decreases, a dilute electron gas
in highly mobile silicon field structures exhibits a
strong drop in the resistance if the electron concentra-
tion ns is higher than a certain critical one ns > nc and an
increase in the resistance when ns < nc [1]. In the vicin-
ity of nc, the resistance possesses scaling properties as
a function of temperature and electron density. This
instance from the very first caused researchers to con-
sider the observed transition as a disorder-controlled
quantum phase metal–insulator transition (MIT) and
gave rise to a tide of similar investigations of other
objects in which any change in the sign of the derivative
(dR/dT)(ns) was taken as an evidence of the occurrence
of a quantum phase MIT.

In the recent experimental study [2] of the variation
of the screening properties of a two-dimensional elec-
tron system, temperature [3] was interpreted in terms of
the work [4], and a strong increase in the effective mass
was observed in silicon metal–oxide–semiconductor
(MOS) structures as the electron density approached a
value of ~0.8 × 1011 cm–2, which virtually coincided
with nc in the best of the investigated samples. A similar
behavior of the cyclotron mass was observed in inde-
pendent experiments [5] on the measurement of the
temperature dependence of Shubnikov–de Haas oscil-
lations. An analysis of the experimental data similar to
that made in [2] but performed in the opposite limit in
the ratio of valley-splitting energy to temperature with
the use of data of other experimental groups and sam-
ples from other sources [6, 7] confirmed the versatility
of the m*(ns) curve.

The conclusion that should be made from the recent
experimental data is that the quantum phase transition
observed in the most perfect MOS structures is rather
the property of a pure disorder-free two-dimensional
electron system. A qualitative theory of two-dimen-
sional electron Fermi liquid in a state close to crystalli-
zation was presented in [8, 9]. Below, I propose a quan-
0021-3640/02/7606- $22.00 © 20377
titative description of a two-dimensional paramagnetic
electron liquid in a precrystalline regime, adapting the
trial wave function approach developed in [10, 11] for
the case of a narrow s band in a perfect crystal.

I will assume that the ground state of an electron
system with strong interaction in a regime close to crys-
tallization can be described as an electron crystal with
a great number of charge-carrying mobile defects. The
real two-dimensional electron system will be replaced
by a grid of lattice sites with a density of ns. An elec-

tronic wave function of the Wannier type φ[(r – g) ],
where the vector g specifies the position of a lattice site,
will be associated with each site. The corresponding

creation operator is . If each site were occupied by
only one electron, the system would represent a perfect
electron crystal. In fact, there is a certain probability
depending on ns that in the ground state, a site can be
occupied by two electrons with opposite spins. The
number of such sites eventually determines the number
of mobile excitations and, hence, the transport proper-
ties of the system.

I will construct Bloch wave functions based on lat-
tice sites

(1)

(2)

The Hamiltonian of the system contains the electron
kinetic energy and the electron interaction at one site

(3)

ns
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ag
†

ψk r( ) ns
–1/2 ikg( )φ r g–( ),exp

g

∑=

ak
† ns
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Here, εk = "2k2/2m, and ε0 is the static permittivity. We
introduced a coefficient α into the interaction energy
determined by the exact form of the wave function on
the site and completely neglected the electron interac-
tion on the neighboring sites. Proceeding to the limit of
the gas on noninteracting electrons requires that the
modulation in Eq. (1) disappear and the coefficient α be

a slowly varying function of ns vanishing at   0.
We will neglect this weak dependence in the region of
low electron densities.

In [10], it was proposed that a many-body trial func-
tion be used for the ground state in the form

(4)

where G and Γ are the sets of sites occupied by elec-
trons with spins up and down, respectively; and Φ0 is a
vacuum state. It is convenient to express the function ψ
through operators of creation and annihilation of Bloch
waves and to take into account electron correlation by
decreasing the coefficient AGΓ in Eq. (4) by a factor of
ην if the corresponding product implies the occurrence
of doubly occupied sites whose fraction equals ν (0 <
η < 0). The relation between ν and η in the ground state
was obtained in [10]. For our case,

(5)

The probability that a one-particle state with a wave
vector k is occupied undergoes a jump at k = kF by the
value

(6)

Thus, the trial wave function describes a mixture of
functions that corresponds to a fully occupied band
(solid spin-ordered phase) and a paramagnetic electron
liquid. The transition to the solid phase is continuous

ns
1–

ψ AGΓ

GΓ
∑ ag↑

†

G

∏ ag↓
† Φ0,

Γ
∏=

η ν 1
2
--- ν– 

  1–

.=

q 16ν 1
2
--- ν– 

  .=

Fig. 1. Effective mass as a function of electron concentra-
tion. The solid line corresponds to Eq. (9) with nc2 = 0.78 ×
1011 cm–2. Squares and circles correspond to the experi-
mental data from [2] and [13], respectively.
and is characterized by the parameter q (0 ≤ q ≤ 1): q = 1
in the paramagnetic electron liquid with weak interac-
tion, and q = 0 in the electron crystal.

The mean value of the Hamiltonian given by Eq. (3)
in the state with given ν equals

(7)

where εF is the Fermi energy of an equivalent number
of electrons in the absence of interaction. According to
[11], the expression in Eq. (7) is minimized with
respect to ν with regard to Eq. (6). A minimum of the
Hamiltonian is attained at

(8)

which, according to Eq. (6), corresponds to

(9)

Here, m* is the renormalized effective mass. In the
same way, following [11], the Landé factor can be
found as

(10)

The simplest of way of generalization to the case of two
valleys is in considering two parallel sublattices where
in each of them the number of electrons equals ns/2 and
the characteristic cell size is diminished compared to
the one-valley case by a factor of β. The coefficient β is
determined by the ratio of Coulomb energies of inter-
and intravalley interactions. In the limit of two sublat-

tices in one plane, β = . In the case of two valleys,
nc1 in Eqs. (9) and (10) should be changed for nc2 =
2β2nc1.

A comparison of the curves obtained in this way
with experimental results is shown in Figs. 1 and 2. One
fitting parameter nc2 = 0.78 × 1011 cm–2 has been used,
which corresponds to α = 0.15. It is evident from the
figures that the behavior of both the effective mass and
the g factor is reasonably described within the frame-
work of the proposed model, though the coefficient α is
approximately twice as large as the value expected
according to numerical calculations [12].

It should be specially noted that the above consider-
ations give no way of judging the spin state of the solid
phase, because it is determined by the exchange inter-
action of electrons on neighboring sites. Moreover, in
the immediate vicinity of the transition point, in the

region where (〈H(ns)〉ν – 〈H(nc2)〉ν)  turns out to be
smaller than the exchange energy of electrons on neigh-
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boring sites, the proposed description does not work in
the paramagnetic electron liquid as well. Thus, the
issues of the phase diagram in the immediate vicinity of
the transition point and those of the spin structure of the
solid phase remain out of the scope of this consider-
ation. In general, the approximation used is poorly con-
trolled, and the rather good description of experiment
still remains its only justification.

It is well known that the concentration nc that corre-
sponds to a change of the sign of the derivative dR/dT
strongly varies from sample to sample, depending on
the disorder in the electron system under study. An
impression is gained from experimental data that the
transition point nc2 measured for different samples also
somewhat varies. This fact can also be related to the
effect of disorder, as was discussed in [8, 9]. In strongly
disordered electron systems, nc @ nc2 and the effect
considered above, namely, the dramatic increase in the
effective mass is not observed. In the most perfect of
the electron systems studied, nc . nc2.

The author is grateful to V.F. Gantmakher, A. Gol’d,
S.V. Iordanskiœ, B. Spivak, D.E. Khmel’nitskiœ, and

Fig. 2. Effective g factor as a function of electron density.
The designations of experimental points are the same as in
Fig. 1.
JETP LETTERS      Vol. 76      No. 6      2002
A.A. Shashkin for useful discussions. A significant part
of this work was carried out at the University of
Munich, and the author is grateful to J.P. Kotthaus and
researchers from his institute for help and discussions.
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Results are presented from theoretical studies and computer simulations of the resonant excitation of Langmuir
waves during the ionization of a homogeneous gas by high-intensity laser radiation. Two mechanisms for the
formation of nonuniform resonant structures in the discharge are examined: plasma-resonance ionization insta-
bility, resulting in the density modulation along the electric field vector, and gas breakdown in the field of a
transversely inhomogeneous laser beam (a Bessel beam produced by an axicon lens). In both cases, the transi-
tion of the plasma density through the critical value is accompanied by the generation of intense Langmuir
waves, the formation of fast ionization fronts, and the appearance of long-lived quasi-turbulent states. © 2002
MAIK “Nauka/Interperiodica”.
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SUMMARY OF THE STUDIES SUPPORTED 
BY THE RUSSIAN FOUNDATION FOR BASIC RESEARCH

PROJECT NO. 99-02-16238
1. INTRODUCTION

The dynamics and structure of discharges created by
electromagnetic waves in various frequency ranges
(from RF to optical) have been actively investigated for
more than three decades. Interest in these studies stems
from both their fundamental theoretical importance and
a number of various practical applications (the increase
in the energy capacity of the working media of gas
lasers and plasmochemical reactors, the development
of new technologies for material processing, the propa-
gation of high-power radiation through ionizable
media, the creation of artificial radio-reflecting and
ozone-restoring ionized regions in the Earth’s atmo-
sphere, etc.). In recent years, due to rapid progress in
microwave electronics and laser technology, which
resulted in the development of the methods for generat-
ing ultraintense microwave and optical pulses, great
interest has been attracted to a number of new, previ-
ously uninvestigated aspects of the physics of the ion-
ization interaction of radiation with matter and new
prospects have been opened for various important
applications of microwave and laser plasmas. Among
these applications are, in the microwave range, the cre-
ation of high-speed plasma switches and the accumula-
tors and transformers of the radiation energy and, in the
optical range, the development of X-ray and UV lasers
and laser–plasma methods for accelerating charge par-
ticles, radiation self-channeling, frequency upshifting,
and the achievement of high energy density in small
spatial regions during laser breakdowns of dense gas-
0021-3640/02/7606- $22.00 © 20380
eous and condensed media and small-size atomic clus-
ters.

An important physical factor governing the self-
consistent evolution of high-intensity electromagnetic
radiation and the plasma produced by it is the ionization
nonlinearity [1–16]. In strong fields, the ionization non-
linearity, which is essentially inertialess, manifests
itself (in contrast to other nonlinearities) as early as in
the initial stage of breakdown and, in many cases,
determines the type of the field–plasma structure that is
formed in the final stage. A remarkable and unique
property of the ionization nonlinearity (that is atypical
of other nonlinearities, such as ponderomotive, ther-
mal, and relativistic nonlinearities) is that it provides
the mutual concentration (joint localization) of the field
and plasma. These effects lead to the formation of
localized field–plasma structures with large peak
amplitudes of the electric field (substantially larger than
the amplitude of the incident wave). A large group of
these effects is related to the phenomenon of plasma
resonance, i.e., the sharp increase in the oscillation
amplitudes of the plasma particles and the longitudinal
(parallel to the plasma density gradient) electric field in
the regions where the plasma density is close to the crit-
ical density.

Previous theoretical and experimental investigations
showed that the phenomenon of plasma resonance can
play an important role in the dynamics of both micro-
wave and optical discharges, resulting, in particular, in
the development of small-scale ionization–field insta-
002 MAIK “Nauka/Interperiodica”
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bility [3, 4, 6, 12, 17, 18] and in the formation of vari-
ous types of self-sharpening structures in the nonlinear
stage of this instability [12, 17, 19–21]. However, a
number of important questions concerning the spa-
tiotemporal discharge evolution under plasma reso-
nance conditions still remain unanswered. First of all,
this concerns one-, two-, and three-dimensional small-
size active zones that appear due to the onset of the ion-
ization–field instability or to ionization self-channeling
in a quasi-uniform discharge; this also concerns dis-
charges that are initially localized in small spatial
regions (such as strata that are formed during break-
down of thin films [22], filamentary discharge in a
dense gas or condensed medium on the axis of an axi-
con lens [23], and breakdown of atomic clusters [24]).

In the dynamics of this type of field–plasma struc-
tures, an important role is played by the processes of the
resonant (transition) excitation and subsequent evolu-
tion of intense plasma (Langmuir) oscillations. Recent
investigations showed that these processes (which were
in fact ignored in the first studies on the theory of
microwave and optical discharges) can strongly affect
the spatial structure of the field and plasma, the gener-
ation of fast particles, and the frequency spectra of the
reflected and scattered radiation. Although the prob-
lems of the resonant field–plasma interaction (in partic-
ular, the problem of the generation of Langmuir oscil-
lations at the pumping frequency in the plasma corona
of laser microexplosion) were discussed in many
papers, all the publications on this subject were in fact
devoted to the excitation of Langmuir oscillations in a
beforehand prepared plasma. This also concerns the
current investigations on the laser generation of Lang-
muir waves for the purpose of creating charged-particle
accelerators (obviously, these studies are dealing with a
nonresonant excitation of Langmuir oscillations at a
frequency much lower than the pumping frequency).
However, under the conditions that are of interest to us,
the processes of Langmuir wave generation cannot be
separated from the processes of plasma production. The
theoretical description of these processes requires the
development of new approaches based on the solution
of self-consistent equations for the field and ionization
kinetics.

To a great extent, the character of the resonant phe-
nomena under study is determined by the shape and
dimensions of the regions in which the plasma density
in a certain stage of breakdown passes through the crit-
ical value. In this review, we present the results from
theoretical studies of various dynamical models of opti-
cal discharge, which demonstrate the role of the main
factors governing the formation and structure of these
regions. Here, we do not consider breakdowns in small-
size objects in which the structure of both the resonance
region and the excited Langmuir oscillations are deter-
mined by the geometry of the ionized object itself. The
dynamics of Langmuir oscillations in such objects pos-
sesses a number of interesting features that were dem-
onstrated in [25, 26] by using a simple model of the ion-
JETP LETTERS      Vol. 76      No. 6      2002
ization of a thin gas slab. However, theoretical investi-
gations in this field have only gotten under way;
therefore, in this review (which also includes a number
of new, previously unpublished results), the main atten-
tion is given to other models that are examined in more
detail and in which localized plasma resonance regions
appear during breakdown of an unbounded uniform
medium. As factors governing the appearance of these
regions, in Section 2, we consider small-scale ioniza-
tion instability, which results in the formation of a state
with a developed Langmuir turbulence in the nonlinear
stage, and, in Section 3, the strong spatial inhomogene-
ity of the incident ionizing radiation (breakdown in the
axial region of a Bessel wave beam produced by an axi-
con lens).

In the subsequent theoretical analysis, numerical
estimates, and computer simulations, we are oriented to
the following ranges of the optical discharge parame-
ters: the radiation wavelength in a vacuum is λ0 ~ 1–
10 µm, the radiation intensity is S ~ 1014–1015 W/cm2,
the pulse duration is τ ~ 50–500 fs, and the gas pressure
required to produce a plasma with the density on the
order of the critical one (under the assumption of com-
plete single ionization) is p ~ 0.5–50 atm. The electron–
ion collisions frequency in the above radiation intensity
range (i.e., at the corresponding oscillatory and thermal
electron velocities) is two to three orders of magnitude
lower than the field frequency, which allows one, as a
rule, either to ignore collisions at all or to take them into
account only when calculating the damping rate of the
excited Langmuir oscillations in the late stage of the
process.

2. PLASMA-RESONANCE INSTABILITY 
OF A HOMOGENEOUS DISCHARGE

Plasma-resonance ionization instability (PRII)
belongs to a class of ionization–field instabilities that
are caused by the mutual enhancement of the small ini-
tial perturbations of the field and plasma density [3, 12,
17]. In contrast to the other instabilities of this type that
are associated with the ionization-induced scattering of
a transverse wave [3, 13], this instability is related to
small-scale density modulation along the electric field
vector and can be regarded as an ionization analogue of
the well-known modulational instability of a homoge-
neous ac field in a fully ionized plasma with a positive
(focusing) nonlinearity [27]. The onset of PRII in an
initially uniform discharge leads to its separation into
thin dense layers (which are then disintegrate into two-
or three-dimensional plasma objects), the formation of
fast internal ionization fronts, and the generation of
intense Langmuir oscillations [17, 20].

Various types of small-scale disintegration of a free
localized discharge during the onset of PRII where
observed in experiments on microwave gas discharges
in focused wave beams [6, 18]. The results of these
experiments are in good agreement with both the linear
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theory of PRII [3, 6] and computer simulations of its
nonlinear stage [17]. In optical discharges, direct obser-
vations of PRII are hampered due to its small spatial
scale (the perturbation period is shorter than the field
wavelength). To reveal the macroscopic effects of PRII
(strong absorption, scattering, and a specific transfor-
mation of the radiation spectrum [12]) requires special
experiments on optical breakdowns in dense gases (or
condensed media) at relatively low electron-collision
frequencies. At present, performing such experiments
seems to be of great importance in view of the opportu-
nity of achieving in them very high plasma densities
(higher than the critical density) and high electromag-
netic energy densities in the plasma resonance regions.

The first investigations of ionization instabilities in
an ac field were performed within an elementary theory
of the plasma polarization response. In this theory, both
the time delay in the establishment of the steady-state
forced electron oscillations with respect to plasma den-
sity variations and the spatial dispersion caused by
electron thermal motion were ignored. This theory is
applicable under the conditions |e| @ (krD)2 and |e| @
ωτE, where

(1)

is the complex permittivity of a cold plasma, ω is the

circular frequency of the field, ωp =  is the
electron plasma (Langmuir) frequency, rD =

 is the electron Debye radius, k is the per-
turbation wavenumber, e and m are the charge and mass
of an electron, ν is the electron collisions frequency, Te

is the electron temperature, N is the electron density
averaged over the field period (this density is assumed
to be equal to the ion density), Nc = mω2/4πe2 is the crit-
ical plasma density, and τE = |E(∂E/∂t)–1| is the charac-
teristics time scale of variations in the complex ampli-
tude of the electric field E. The resonant excitation of
plasma (Langmuir) oscillations can only be described
by using an approach that goes beyond the scope of the
above assumptions. An example of such an approach is
described in [17]; below, we mainly follow this
approach (which is somewhat refined and generalized).

2.1. Basic Equations and Assumptions. 
One-Dimensional Model

We represent the space- and time-dependent electric

field vector  in the form  = (1/2)E(r,
t)exp(–iωt) + c.c., where the complex amplitude E(r, t)
(as well as the plasma density N(r, t)) is assumed to be
slowly varying (on the time scale 1/ω) functions of
time. The time variations in the plasma density will be
described by using the well-known expressions for the
period-averaged gas ionization rate ∂N/∂t. For a wide

e 1
ωp

2

ω ω iν+( )
------------------------– 1 N

Nc 1 iν/ω+( )
--------------------------------–= =

4πe2N /m

Te/4πe2N

Ẽ r t,( ) Ẽ r t,( )
class of the ionization mechanisms, this rate can be rep-
resented as a function of the electric field amplitude |E |
and the electron density N:

(2)

First, we consider the spatiotemporal evolution of a
discharge in a one-dimensional model (E = x0E(x, t),
N = N(x, t)), which describes the development of unsta-
ble perturbations on spatial scales that are smaller than
the electromagnetic wavelength. The evolution of the
slowly varying complex amplitude of the electric field
can be determined from the following fairly simple (in
fact, phenomenological) equation, which allows one to
describe the generation and damping of Langmuir
waves in a non-steady-state plasma (see also [27–29]):

(3)

Here, δ = VT/ω, VT is the electron thermal velocity,

and  is the operator describing collisionless Landau
damping. In gas breakdown, the electron thermal veloc-
ity VT is determined, generally speaking, by the ampli-
tude of the electron oscillatory velocity V~ = e|E |/mω.
The relationship between these velocities depends on
the ionization mechanism: for electron-impact ioniza-
tion, the thermal velocity is, as a rule, substantially
higher that the oscillatory velocity [2], and, for tunnel-
ing ionization in a field with an amplitude that is not too
small as compared to the intra-atomic field Ea (see
below), the velocity VT is lower than or on the order of
V~ [30]. In the calculations presented below, we will
assume for simplicity that the thermal velocity VT is a
given constant, which is determined in order of magni-
tude by a certain effective value of V~. We also assume
that ν = const ! ω and use the following model expres-

sion for :

(4)

The quantity D = D(t) on the right-hand side of
Eq. (3) is the x component of the electric induction
(electric displacement) vector D. In the one-dimen-
sional model under consideration (the so-called plane
capacitor model), this quantity does not depend on x in
view of the equation ∇  · D = ∂D/∂x = 0. The evolution
of small-scale one-dimensional (spatially periodic)
structures can be determined by assuming that either
the electric induction D(t) or the x-averaged electric
field  is a given function of time. Actually, the func-

tions D(t) and  are determined by the two- or three-
dimensional evolution of the large-scale field–plasma
structure and should be calculated by solving an equa-
tion for the averaged (over small-scale perturbations)
electric field; an example of such a calculation is pre-
sented in Section 2.4.
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2.2. Linear Stage of the Instability

Let us consider the stability of a quasi-steady dis-
charge with respect to small spatially periodic field and
density perturbations. We linearize Eqs. (2) and (3)
against the homogeneous unperturbed state, E0(t) and
N0(t), satisfying Eqs. (2) and (3) at ∂/∂x = 0. Then, in the
absence of dissipation, we obtain the following set of
equations for small perturbations of the complex field
amplitude E1(x, t) = E – E0 and the electron density N1 =
N – N0:

(5)

(6)

where e0(t) = 1 – (N0(t)/Nc) and the coefficients α =

∂f/∂|E | and β = ∂f/∂N are determined by the values
of the corresponding derivatives of the ionization rate in
the unperturbed state. For perturbations of the form E1,

N1 ~ exp( ), under the assumption that the

homogeneous state evolves on time scale much larger
than the characteristics time γ−1 during which the insta-
bility under consideration develops, Eqs. (5) and (6)
yield the following dispersion relation for the time con-
stant γ:

(7)

When deriving this equation, we neglected the terms
containing the factor β, which is justified for all the ion-
ization mechanisms of interest (impact, tunneling, and
multiphoton ionization) under the adopted assumption
that the homogeneous state is slow varying.

For a given real perturbation wavenumber k, disper-
sion relation (7) has one real root γ1 and two complex
conjugate roots γ2, 3 with Reγ2, 3 = –γ1/2:

(8)

(9)

(10)

We can see that for any value of δ2k2 ≠ e0, the dispersion
relation has roots with the positive real part Γ = Reγ > 0,
corresponding to unstable solutions. For δ2k2 = e0, all
the roots are zero. For δ2k2 < e0, the instability is related
to the root γ1, and for δ2k2 > e0, it is related to the roots
γ2, 3. The maximum instability growth rate Γm and the
corresponding wavenumber km depend on the relation
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between the parameters e0 and ec = ; in partic-

ular, for e0 > ec, we have Γm = /2 and  =
e0 – ec. Figure 1 shows the growth rate Γ = Reγ2 as a
function of the wavenumber for e0 = 0.

We note that the above results are applicable in the
limited ranges of the time constant and wavenumber:

∂E0/∂t ! γ ! ω and (ω/c)  ! k ! ωp/VT. At the
upper boundary of the above wavenumber range, colli-
sionless damping begins to play an important role. At
the lower boundary, the perturbation wavelength
becomes comparable to the wavelengths of the trans-
verse wave; i.e., the applicability conditions for the
used one-dimensional (capacitor) model fail to hold.

2.3. Nonlinear Stage of Instability

The dynamics of large-amplitude perturbations in
the nonlinear stage of instability for various ionization
mechanisms determining the form of the function
f(|E |, N) in Eq. (2) was studied by using computer sim-
ulations. The scenarios of the solution behavior for dif-
ferent f have much in common. Here, we present, as an
illustration, the results obtained with the use of the
well-known model expression for the average rate of
tunneling ionization of hydrogen atoms in a linearly
polarized field [17, 31]:

(11)

Here, Ω = me4/"3 = 4.16 × 1016 s–1 and Ea = m2e5/"4 =
5.14 × 109 V/cm are the atomic units of the frequency
and electric field, respectively; " is Planck’s constant;
and Ng is the density of neutral gas atoms before ioniza-
tion. Equations (2)–(4) and (11) were solved numeri-
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f 4
3
π
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E
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3
---

Ea

E
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  .exp=

Fig. 1. Instability growth rate Γ = Reγ2 vs. wavenumber k

for ω = ωp (km = δ–1(αE0/ω)1/4 and Γm = /4).αE0ω
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cally over the interval 0 ≤ x ≤ L with the following ini-
tial and boundary conditions:

(12)

(13)

Initial condition (12) for l ! L corresponds to a situa-
tion in which small initial (seed) perturbations are
localized in a narrow spatial region. Boundary condi-
tions (13) correspond to solutions that are spatially
periodic (with a period of 2L) in the entire space and are
mirror symmetric with respect to the ends of the inte-
gration interval.

The results of numerical simulations for the case
D = D0 = const are presented in Figs. 2–4 in the dimen-
sionless units

N x 0,( ) N0
x2

l2
-----– 

  , E x 0,( )exp
D 0( )

e x 0,( )
---------------,= =

∂E
∂x
------

x 0=

∂3E

∂x3
---------=

x 0=

∂E
∂x
------=

x L=

∂3E

∂x3
---------

x L=

0.= =

Fig. 2. Spatiotemporal evolution of the plasma density n(x, t)
and the field amplitude |E(x, t)| in the nonlinear stage of
instability for D = const. Numerals by the curves show the
time values.
(14)

The calculations were performed for the following
dimensionless parameters: D0/Ea = 0.045, N0/Nc = 0.2,
Ω/ω = 25, L/l = 6, L/δ = 30, ν/ω = 0, and Ng/Nc = 1.5.
These dimensionless parameters approximately corre-
spond to the following conditions of real experiment on
gas breakdown in laser field: the electromagnetic wave-
length in a vacuum is λ0 ≈ 1 µm, the laser intensity is
S  ≈ 0.6 × 1014 W/cm2, and the gas pressure is p ≈
50 atm. If we assume that the characteristic thermal
velocity VT, which determines the parameter of spatial
dispersion δ in Eq. (2), is on the order of the oscillatory
electron velocity in the plasma resonance region
(where, as follows from the calculated results presented
below, the field amplitude attains a value of |E | ≈ (0.1–
0.15)Ea), then, for the remaining dimensional parame-
ters of the problem, we obtain VT ≈ 4 × 108 cm/s, δ ≈ 4 ×
10–7 cm, l ≈ 2 × 10–6 cm, and L ≈ 10–5 cm. We note that
the required gas pressure can be substantially reduced
as compared to the above value by using laser radiation
with a longer wavelength or a gas whose atoms can be
multiply ionized.

Figure 2 shows the spatiotemporal evolution of the
plasma density n(x, t) and the electric field amplitude
|E(x, t) |. Figure 3 illustrates the dynamics of the spatial
spectrum (the first six spatial harmonics) of the electric
field, which is represented as

(15)

x/L x, ωt t,

E/Ea E, n N /Nc.=

E x t,( ) e j t( ) πjx/L( ).cos
j 0=

∞

∑=

Fig. 3. Time behavior of the amplitudes of the spatial field
harmonics for D = const.
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Figures 4 depicts the temporal evolution of the modulus
of the complex field amplitude at the point x = 0. Three
main stages can be distinguished in the field and plasma
evolution during the breakdown. In the first stage (0 <
t < t1 ≈ 30; Fig. 2, curves corresponding to the times
t = 0 and 27), the peak plasma density n(0, t) grows at a
progressively increasing rate and reaches its maximum
value. In the second stage (t1 < t < t2 ≈ 80; Fig. 2, curves
corresponding to the times t = 45, 61, 77, and 85),
which begins when the plasma density at the point x = 0
passes through the critical value, intense Langmuir
oscillations are excited and a fast ionization wave is
formed. The propagation velocity of this wave is deter-
mined by the processes of the excitation and transpor-
tation of Langmuir waves near the wave front where the
plasma density changes abruptly and where the plasma
resonance point is located. In the example under con-
sideration, this velocity is approximately equal to the
electron thermal velocity VT and is substantially higher
than the ionization wave velocity calculated for the
same parameters, but without allowance for the excita-
tion of Langmuir waves (i.e., at δ = 0). After the wave
front traverses the entire integration region (t > t2), the
discharge passes into the third stage, in which the gas is
fully ionized; the density is constant both in time and
space (N = Ng, es = 1 – Ng/Nc); and, as follows from
Eq. (3), the amplitudes ej(t) of the spatial field harmon-
ics vary according to the law

(16)

where t ' = t – t2. According to Eq. (3), in the parabolic
approximation used (|∆ωj | ! ω), the complex frequen-

e0 t( ) D
es

---- e0 t2( ) D
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----– 
  i∆ω0t'–( );exp+=

e j t( ) e j t2( ) i∆ωjt'–( ) j 1 2 3 …, , ,=( ),exp=

Fig. 4. Time behavior of the field amplitudes at the point
x = 0 for D = const.

0
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cies ∆ωj of the harmonics (which are in fact the fre-
quency shifts of the excited Langmuir harmonics with
respect to the frequency ω of the external field) are
determined by the expression

(17)

We note that these frequencies can be calculated more
accurately by using the exact dispersion relation for
Langmuir waves. The initial amplitudes ej(t2) of the
damped Langmuir harmonics in expression (16) can be
calculated numerically (Fig. 3 presents the amplitudes
of the first six harmonics over a fairly wide time inter-
val also including the instant t = t2).

The above breakdown scenario has much in com-
mon with scenarios calculated for another initial den-
sity profiles and another methods for specifying the
electric induction amplitude D(t). Figure 5 presents the
calculated temporal evolution of the amplitudes of the
first five spatial field harmonics for a version in which
the tunneling ionization of a gas by a femtosecond laser
pulse was modeled for a given (Gaussian) envelope of
the average electric field  in a plasma,

(18)

Calculations were performed for the initial conditions
corresponding to a sinusoidal density modulation
against the uniform background density,

, (19)

for the following parameters: A = 0.08, τ = 60, t0 = 180,
n0 = 0.1, and n1 = 0.03, the other parameters being the

∆ωj
1
2
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E t( )

E e0 A t t0–( )2/τ2–( ).exp= =
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Fig. 5. Time behavior of the amplitudes of the spatial field
harmonics, |ej(t)|, for a given (Gaussian) envelope of the

average field  = e0(t).E
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same as in the previous version. It can be seen in Fig. 5
that, in a certain breakdown stage (t > 160), along with
the given Gaussian zeroth harmonic e0(t), a set of Lang-
muir harmonics with amplitudes ej ~ e0max = A arise in
the plasma (the amplitude of the first harmonic e1 is
twice as large as e0max). After the gas has been fully ion-
ized, the harmonic amplitudes slowly decrease due to
Landau damping.

Therefore, both of the above examples demonstrate
the intense generation of Langmuir oscillations during
gas breakdown and the formation of a relatively long-
lived quasi-turbulent state characterized by a large
number of spatial Langmuir harmonics with different
wavenumbers and different eigenfrequencies in the
final stage of breakdown.

2.4. Two-Dimensional Boundary Problem

The above approach can be generalized to a two-
dimensional boundary problem that allows us to
describe the generation of small-scale field–plasma
structures during the breakdown of a gas slab (or half-
space filled with a gas) by a finite-duration laser pulse.
Below, we formulate the problem, briefly describe the
solution method, and present some numerical results
(see also [32]).

Let a Gaussian laser pulse with frequency ω and
electric field parallel to the x axis be incident from a
vacuum onto a plane gas slab (which occupies the
region 0 < z < Lz) along its normal (which is parallel to
the z axis) and produce a plasma via tunneling ioniza-
tion of the gas atoms. We assume that the initial elec-
tron density N in the gas is much lower than the critical
density Nc and is slightly modulated (in order to ensure
seed perturbations for the onset of PRII) along the
x axis. The modulation period 2Lx is assumed to be
small as compared to the electromagnetic wavelength,
the gas slab thickness Lz and the characteristic longitu-
dinal scale lz of the arising structures. The electric field
is described under the assumption that the field enve-
lope is a slowly varying function of time. Owing to the
inequalities Lx ! c/ω, lz, the electric field remains quasi-

transverse,  = (1/2)x0E(x, z, t)exp(–iωt) + c.c., in spite
of the formation of inhomogeneous plasma structures
stretched along the z axis.

The method for describing the field evolution is
based on the separation of long (electromagnetic) and
short (Langmuir) spatial scales. The complex ampli-
tude E(x, z, t) is assumed to be a periodic (with the
period 2Lx) function of x and a slowly varying (on the
scale Lx) function of z. The small-scale (transverse)
field structure is described by the quasi-one-dimen-
sional equation

(20)

Ẽ

eE
2i
ω
-----∂E

∂t
------ δ2∂2E

∂x2
--------- Γ̂ E+ + +

c2

ω2
------∂2E

∂z2
---------,–=
which generalizes one-dimensional phenomenological
equation (3) by taking into account the slow depen-
dence of the average (macroscopic) field  =

 on the longitudinal coordinate z, which

enters into Eq. (20) as a parameter.
The long-scale (longitudinal) structure is described

by the parabolic equation for the average field,

(21)

with the radiation conditions at the slab boundaries:

(22)

where (t) is the amplitude of the incident wave at
the inlet boundary of the slab (z = 0).

Equations (2), (4), (11), (20), and (21) were solved
numerically in the region 0 ≤ x ≤ Lx, 0 ≤ z ≤ Lz under the
initial conditions

(23)

for the given time dependence of the incident wave
amplitude

(24)

and the given initial profile of the gas density Ng(z) =
Ngmax f(z)

(25)

The results of numerical calculations are presented in
Fig. 6–8 in dimensionless units that differ from units
(14) only in another unit of length: (ω/c)x  x and
(ω/c)z  z. The calculations were performed for the
following parameter values: Ω/ω = 25, δω/c = 0.01, ν =
0, Ngmax = 1.2Nc, A/Ea = 0.07, t0ω = 85, t1ω = 60,
Lzω/c = 2, z1ω/c = 0.2, z2ω/c = 1.8, Lxω/c = 0.3, N0/Nc =
0.03, and n1 = N1/Nc = 0.003. These parameter values
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correspond to the laser wavelength λ0 ≈ 1 µm, the peak
intensity S ≈ 1.4 × 1014 W/cm2, the pulse duration (at a

level of 1/e of the peak intensity) t1 ≈ 50 fs, and the
pressure p ≈ 40 atm. The evolution of the field and
plasma during breakdown is shown in Fig. 6, which
presents the spatial distributions of the plasma density
n(x, z) and the modulus of the complex field amplitude
|E(x, z)| for different times t. It can be seen that the gas
is highly ionized in a gas layer of thickness ∆z ≈ 0.8. In
each cross section z = const of this layer, the main
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Fig. 6. Two-dimensional evolution of the plasma density
n(x, z, t) and the field amplitude |E(x, z, t)| in a gas slab dur-
ing the intense excitation of Langmuir oscillations.
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breakdown stages are the same as in the one-dimen-
sional problem considered above: (i) the growth of the
maximum plasma density in the plane x = 0 and the for-
mation of a thin (first critical and then fully ionized)
layer stretched along the z axis, (ii) the expansion of
this layer over x in the course of propagation of a fast
(with a velocity of ~VT) ionization wave sustained by
the field of the excited Langmuir waves, and (iii) the
coalescence of two ionization waves propagating in
opposite directions and the formation of a fully ionized
homogeneous plasma layer of thickness ∆z with slowly
damping Langmuir harmonics excited in it. The wave-
numbers and eigenfrequencies of these harmonics
(except for the zeroth harmonic, which coincides with
the average field ) are described by the same expres-
sions (15)–(17) as in the one-dimensional problem. The
spatiotemporal evolution of the average field  = e0
and the amplitudes of the first three Langmuir harmon-
ics (j = 1, 2, and 3) in the course of ionization is shown
in Fig. 7. For the chosen parameters (which correspond
to the case of a relatively weak reflection of the incident
wave from the plasma), this evolution turned out to be
close to that calculated above for a given Gaussian time
dependence of the average field (t).

The role of both the ionization instability under
study and the related generation of Langmuir waves
during gas breakdown is illustrated in Fig. 8, which
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shows the calculated spatial profiles of the plasma den-
sity n(z) in the slab at times t = 0, 85, and 175 for the
case where small-scale seed plasma-density perturba-
tions, which are required for the onset of instability, are
absent (n1 = 0, the other parameters being the same as
in Figs. 6 and 7). The dashed curve shows the profile
n(z) at the instant t = 175 (after the electromagnetic
pulse has already passed through the slab) for n1 =
0.003, i.e., under conditions corresponding to the gen-
eration of intense Langmuir waves. It can be seen that,
in the absence of instability, the gas is everywhere
incompletely ionized and the plasma density does not
exceed a value of N = 0.5Nc, whereas the onset of insta-
bility results in the formation of a completely ionized
plasma slab with N = 1.2Nc. It is interesting that, in the
latter case, in spite of the formation of an overcritical
plasma slab, the field amplitude and the total energy of
radiation transmitted through the slab decrease only
slightly. The energies of transmitted and reflected radi-
ation are 92.5 and 3.3% of the incident pulse energy,
respectively; 4.2% of the total energy is transformed
into Langmuir oscillations. The low fraction of radia-
tion reflected from a fairly thick plasma slab with an
overcritical density can be explained by the effect of
delayed ionization, which is mainly produced by the
excited Langmuir waves after most of the incident radi-
ation have already passed through the slab (rather than
by the electric field of the pulse itself). We note, how-
ever, that, as applied to a real experiment, such small
losses of the pulse energy can only be regarded as a
rough estimate, because, in calculations, a number of
other mechanisms for energy losses (such as electron
collisions and energy losses related to both the detach-
ment of electrons from atoms and the directed velocity

Fig. 8. Longitudinal profiles of the plasma density in a gas
slab in the absence of instability (n1 = 0) and under devel-
oped instability (dashed curve; n1 = 0.003, t = 175, and x =
0.15).
that is acquired by an electron at the instant of detach-
ment and that depends on the field phase at this instant)
were not taken into account. Although, under condi-
tions of gas ionization by high-intensity radiation and
in the adopted parabolic approximation, these losses
are small, they may be comparable with the small
energy losses obtained above.

3. DISCHARGE IN A BESSEL WAVE BEAM

In this section, we consider resonance phenomena
accompanying gas breakdown in the field of a Bessel
wave beam. Such a beam, which is a cylindrical wave
propagating at a certain angle θ to the z axis, can be pro-
duced by focusing laser radiation by an axicon lens. An
extended filamentary discharge excited in the focal
region of such a lens attracts considerable attention
because of the possibility of using it for the channeling
of electromagnetic radiation in the modern projects of
X-ray lasers and laser–plasma accelerators. A number
of problems related to axicon breakdown were investi-
gated both experimentally and theoretically (in the sca-
lar approximation) [23, 33, 34]. A possible role of
Langmuir oscillations in the formation of the spectrum
of radiation scattered by such a discharge [23] was
pointed out; however, the problems of the resonance
excitation of Langmuir oscillations and their influence
on the discharge dynamics (i.e., the problems in which
we are interested here) were not discussed or analyzed.
These problems can adequately be investigated only in
the framework of a self-consistent vector problem for
an electromagnetic field in a nonsteady plasma with
allowance for spatial dispersion. The formulation of
such a problem in a simple model of a longitudinally
uniform axisymmetric discharge in the field of a circu-
larly polarized cylindrical wave and the results of
numerically solving this problem are presented below
(some of these results were also reported in [35]).

The basic vector equation for the slowly varying
envelope of the electric fields in plasma has the form

(26)

We are interested here in such solutions to this equation
that, in the absence of a discharge (at N ≡ 0), describe
the field of a Bessel wave beam with a circularly polar-
ized transverse component, which has a maximum on
the axis:

(27)

Here, x0 and y0 are the unit vectors along the corre-
sponding transverse Cartesian axes; r, ϕ, and z are the
cylindrical coordinates; kz = k0cosθ and k⊥  = k0sinθ are
the longitudinal and transverse wavenumber, respec-
tively; k0 = ω/c is the wavenumber in free space; θ is the
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convergence angle of a cylindrical wave; and J0 is the
zero-order Bessel function. In fact, such a beam is a
“hybrid” (EH) wave, i.e., a superposition of TE and TM
waves with the longitudinal electric and magnetic field
components, Ez and Hz, related by

(28)

For the given type of the field symmetry, the ionization
rate and the density of the plasma produced during
breakdown are independent of z and ϕ (N = N(r, t));
hence, in the presence of plasma, the dependence of the
desired solution to Eq. (26) on z and ϕ everywhere
remains the same as in Eqs. (27) and (28). This allows
us to rewrite Eq. (26) as a set of equations for the ampli-
tudes of the field components Er, Eϕ, and Ez, which
depend on time t and only one space coordinate r. The
resulting equations (which are not presented here
because of their cumbersome form) were solved
numerically over the interval 0 ≤ r ≤ R together with
Eq. (2) for the plasma density. In the latter equation, the
ionization rate f, as in the previous section, was
described by expression (11), which is also applicable
for the qualitative description of the breakdown dynam-
ics in the case of elliptic or circular field polarization.
The radius R was chosen to be large enough for the
plasma density in the region r ~ R to satisfy the inequal-
ity N(r) ! Ncsin2θ, which allows us to neglect in this
region the influence of plasma on the structure of long-
scale-length (averaged over the scale length δ) solu-
tions to Eq. (26).

In the region r ≥ R, the field was described by Max-
well’s equations for free space and was represented as
a superposition of converging (incident) and diverging
(reflected) cylindrical waves of the TE and TM types
with given longitudinal and transverse wavenumbers kz

and k⊥ . The longitudinal components of the electric and
magnetic fields of the incident waves were written as

(29)

and those of the reflected waves were written as

(30)

Here,  and  are the first-order Hankel func-
tions describing the converging and diverging waves,
respectively; C(t) is the given envelope of the incident
pulse amplitude; and F(t) and G(t) are the sought-for
electric and magnetic field envelopes of the reflected
waves. The relation between the amplitudes of the lon-
gitudinal components of the incident TE and TM

waves, /  = –icosθ, was chosen [as in (28)] such
that the transverse field in the absence of plasma was
everywhere circularly polarized and was described by

Ez
0( ) J1 k ⊥ r( ) iϕ ikzz+( ),exp∼

Hz
0( ) i θEz

0( ).cos–=

Ez
i( ) C t( )H1

2( ) k0r θsin( ), Hz
i( ) i θEz

i( )cos–= =

Ez
r( ) F t( )H1

1( ) k0r θsin( ),=

Hz
r( ) G t( )H1

1( ) k0r θsin( ).=

H1
2( ) H1

1( )

Hz
i( ) Ez

i( )
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expression (27) (in this case, in cylindrical coordinates,

we have  = i  ~ J0(k0rsinθ)). We note that,
in the presence of plasma, the field remains circularly
polarized only on the axis, where we always have Eϕ(0)
= iEr(0).

The calculations were performed with the initial
conditions

(31)

and the following boundary conditions: (a) the solution
is analytical at the point r = 0,

(32)

and (b) the tangential components of the electric and
magnetic fields (Ez, Hz, Eϕ, Hϕ) and the normal compo-
nent of the electric field Er are continuous at r = R. The
latter condition (the continuity of Er) is the simplest
version of an additional boundary condition, whose
necessity stems from the presence of the term δ2∇ (∇  · E)
in Eq. (26), because this term (which takes into account
spatial dispersion) increases the order of the set of
equations under study. In order to avoid additionally
increasing this order by introducing the model fourth-

order operator  (4), collisionless damping was

described by the simpler second-order operator E =
−ia∇ (∇  · E), which, at a relevant choice of the coeffi-
cient a, provides a sufficiently accurate description of
the Langmuir wave damping. Conditions (b) allow us to
derive expressions that relate the components of the
electric field and their normal derivatives at the bound-
ary r = R to the amplitude function C(t) of the incident
wave:

(33)

Eϕ
0( ) r( ) Er

0( ) r( )

N r 0,( ) 0,=

Eϕ r 0,( ) iEr r 0,( ) 2C 0( ) θJ0 k0r θsin( ),cot–= =

Ez r 0,( ) 2C 0( )J1 k0r θsin( ).=

Ez 0, ∂Er/∂r ∂Eϕ /∂r 0;= = =

Γ̂
Γ̂

1
k0
----

∂Ez

∂r
-------- EzQ1 θsin– CQ2 θ,sin=

1
k0
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∂Eϕ

∂r
--------- EϕQ3 θ EzQ4 θcos+sin– CQ5 θ,cos=

Er EϕQ6 EzQ7 θcot+ + CQ8 θ, Q1cot
h0

h1
-----

1
ρ
---,–= =

Q2 2ih1
*ImQ1, Q3–

1
Q1
------ 1

ρ2
----- 1– 

  1
ρ
---,–= =
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1
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i
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ρ2Q1
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The calculations have shown that the scenario of the
process under study depends substantially on the con-
vergence angle θ of the incident wave. If this angle is
smaller than a certain critical angle θc ≈ 25°, the field
and the plasma density behave according to the predic-
tions of the scalar models [4, 6, 9, 10, 34]: the maxi-
mum of the plasma density is Nmax/Nc = Ksin2θ, the
coefficient K being in the range 3–6; hence, at small
angles, we have Nmax ! Nc. However, at θ > θc, the pro-
cess of ionization in the axial region is similar to that
occurring in the nonlinear stage of PRII, which have
been considered in the previous section: the plasma
density and the field amplitude at the axis grow at a pro-
gressively increasing rate, and, after the plasma density

ρ k0R θ, h0sin H0
1( ) ρ( ), h1 H1

1( ) ρ( ).= = =

Fig. 9. Evolution of the plasma density n(r, t) and the field
amplitude |E(r, t)| in an axicon discharge for θ = 6°. Numer-
als by the curves show the time values.

0.06
have passed through the critical value, a fast ionization
wave is formed that propagates in the radial direction

over a distance of r ~  and contains the plasma res-
onance point at its front.

The above characteristic scenarios of the field and
plasma evolution are illustrated in Fig. 9 (θ = 6°) and
Figs. 10–12 (θ = 30°) in same dimensionless variables
that were used in Section 2: k0r  r, ωt  t,
E/Ea  E, and N/Nc = n. Figures 9 and 10 show the
radial profiles of the plasma density n(r, t) and the mod-
ule of the electric field amplitude |E(r, t)| at different
instants for a Gaussian envelope of the incident pulse,
C(t) = Aexp[–(t – t0)2/τ2], and the following parameters

of the problem: Ω/ω = 22, k0δ = VT/c = 0.02; ν/ω =
0.01, a = 0.1, Ng = 1.5Nc, t0ω = 100, τω = 50, A/Ea =

k0
1–

3

Fig. 10. Evolution of the plasma density n(r, t) and the field
amplitude |E(r, t)| in an axicon discharge for θ = 30°.
Numerals by the curves show the time values. The dashed
curve shows the unperturbed field |Evac(r)| (in the absence
of a plasma) at the instant when the field on the axis reaches
its maximum (t ≈ t0).
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0.0037 at θ = 6° and A/Ea = 0.0204 at θ = 30°, and
k0R = 8 at θ = 6° and k0R = 4 at θ = 30°. At the given
values of A, the maximum field at the axis (in the
absence of plasma) is the same in both cases:
|E |max/Ea = 0.1. The above dimensionless parameters
correspond to the vacuum wavelength λ0 ≈ 0.8 µm, the
maximum intensity (recalculated for a homogeneous
plane wave with an amplitude equal to |E |max) S ≈ 3 ×
1014 W/cm2, the pulse duration (at a level of 1/e) τ  ≈
30 fs, and the gas pressure p ≈ 60 atm.

The transition of the plasma density through the crit-
ical value (Fig. 10) is accompanied by the excitation of
intense Langmuir oscillations, whose amplitude
reaches its maximum (twice as high as the amplitude of
the unperturbed electric field at the axis) at the front of
the ionization wave at r ≈ 1. The oscillating character of

2

Fig. 11. Spatial and temporal behavior of Langmuir oscilla-
tions: (a) ReEr(r) at t = 150 and (b) ReEr(t) at r = 1. The
dashed curve shows the time dependence of the amplitude
of the unperturbed Gaussian pulse, |Evac(t)|, at r = 1.

–
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the Langmuir field is clearly seen in Fig. 11. Figure 11a
shows the profile of ReEr(r) at t = 150, and Fig. 11b
presents the time behavior of ReEr(t) at r = 1 (ImEr(r, t)
behaves in a similar way). The wavelength of Langmuir
oscillations (the characteristic spatial scale of the field
variations) in the region where the gas is completely
ionized is on the order of the radius of this region and
gradually decreases with decreasing plasma density
(Fig. 11a). The oscillation period of the complex ampli-
tude Er(t) (Fig. 11b) is determined by the frequency
shift of the excited Langmuir oscillations with respect
to the external field frequency ω. The amplitude of
these oscillations exceeds the maximum field ampli-
tude of the Gaussian pulse in the absence of plasma,
|Evac(t)|, shown for comparison in Fig. 11b by the
dashed line.

The coupling of the excited Langmuir oscillations to
an external electromagnetic field (due to the presence
of a fairly sharp boundary of the ionized region) gives
rise to the partial emission of their energy into the sur-
rounding space, i.e., to the occurrence (along with the
fundamental frequency component ω) of one or several
components at frequencies close to ωpmax =

 ≈ 1.22ω in the spectrum of the cylindrical
wave reflected from the discharge. In view of the linear
character of the “transition” resonant excitation of
Langmuir oscillations, the intensities the shifted spec-
tral components are proportional to the intensity of the
incident wave. This linear parametric conversion of the
scattered spectrum of an ionizing electromagnetic wave
(previously described in the model of a thin gas slab
[26]) is illustrated in Fig. 12 by the time dependence of
the quantity ReG(t) [which, according to Eq. (30),

determines the behavior of the amplitude  of the
reflected wave] at large times t > 220 (after the end of

4πe2Ng/m

Hz
r( ) t( )

Fig. 12. Time behavior of the amplitude function ReG(t) of
the reflected TE wave [see Eq. (30)] at large times. The
curve illustrates the presence of radiation from the dis-
charge at the upshifted frequency ωpmax = 1.22ω.
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the incident pulse), when the signal amplitude at the
fundamental frequency has already substantially
decreased, but the Langmuir oscillations still exist and
continue emitting. At t ≈ 250, the intensity of the shifted
frequency component is about 10–4 of the maximum
intensity of the incident wave. The divergent cylindrical
waves with the frequencies ω and ωpmax are inclined to
the symmetry axis of the discharge at different angles θ
and θp related by cosθp = (ω/ωpmax)cosθ (in the given
numerical example, θ = 30° and θp = 45°). A similar
(annular) frequency–angular structure of radiation
reflected from the plasma was actually observed in
experiments on the axicon breakdowns of solid dielec-
trics [23], although the unambiguous interpretation of
these experiments is still lacking. Another macroscopic
effect that can be, in principle, verified experimentally
is the transformation of radiation polarization. Calcula-
tions show that, after the plasma density have passed
through the critical value, the relationship between the
amplitudes Ez and Hz of the reflected wave changes
abruptly; i.e., the TE and TM waves undergo transfor-
mation. In the above numerical example (θ = 30°), the
energy fractions of these waves in the incident pulse are
43 and 57%, respectively, whereas in the reflected wave
these are 59 and 31% (10% of energy is absorbed). It
can be shown that the polarization of the transverse
components of the wave is transformed from circular to
elliptic with the principal axis oriented in the azimuth
direction.

4. CONCLUSION

The considered models of optical discharge in a
dense gas show that the transition of the plasma density
through the critical value is accompanied by the gener-
ation of intense Langmuir waves with amplitudes
exceeding the amplitude of the laser field creating the
discharge. This process leads to a substantial increase
in the gas ionization rate and, after complete ionization,
to the formation of a relatively long-living quasi-turbu-
lent state, characterized by broad-spectrum Langmuir
oscillations. The results obtained are of interest for var-
ious applications related to the production and imple-
mentation of laser plasmas. In our opinion, further
investigations in this field should be directed to the
solution of the following problems: (i) a more detailed
and specified analysis of the possible macroscopic con-
sequences of the considered effects and their experi-
mental observation, (ii) the study of the dynamics of
various types of Langmuir excitations during break-
downs of small-size objects (thin films, fibers, and
atomic clusters), and (iii) the study of resonance phe-
nomena during optical breakdowns of condensed
media. One of the most important problems here is the
calculation of the ionization rates and effective electron
collision frequencies in strong optical fields.

This study was supported in part by the Russian Foun-
dation for Basic Research (project nos. 99-02-16238,
02-02-17271, 01-02-16575, and 02-02-06266) and the
Russian Academy of Sciences (grant no. 1999(6)-37).
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Tunneling spectroscopic studies of high-temperature superconductors (HTSC) are overviewed. It is demon-
strated, in particular, that the superconducting gaps determined from Andreev reflections and tunneling current–
voltage characteristics coincide at all doping levels. Facts are presented evidencing the strong electron–phonon
interaction in the HTSC systems. The nature of the so-called pseudogap, which is observed in some tunneling
experiments, is briefly discussed. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION 

Although the theoretical and experimental studies of
the nature of high-Tc superconductivity are far from
completion, vast experimental material has been accu-
mulated during 15 years of studying high-temperature
superconductors (HTSC) by the most up-to-date exper-
imental methods, and theoretical models were devel-
oped for the description of the unique properties of
HTSC materials. Note that, up to the present time, the
pairing mechanism has been the subject of controversy
[1–8], although the isotope effect observed in the
underdoped and overdoped superconducting cuprates
and some other phenomena indicate that phonons play
an important role in the formation of superconducting
properties of HTSC materials [2, 8].

According to modern concepts [9–11], the doped
crystals of most anisotropic superconducting cuprates
Bi2Sr2Can – 1CunO2n + 4 + δ, Tl2Ba2Can – 1CunO2n + 4 + δ,
and HgBa2Can – 1CunO2n + 4 + δ are natural superlattices
of the S–I–S–I– … type, where S is a thin supercon-
ducting block containing one or several calcium-inter-
calated CuO2 planes and I is an insulating layer
(spacer), which, in particular, provides doping of the
CuO2 blocks upon the introduction of excess oxygen
into the central part of the spacer. Since the dopant is
outside the CuO2 blocks, it does not strongly affect the
hole relaxation time in the CuO2 planes. The introduc-
tion of impurities (both magnetic and nonmagnetic)
into the CuO2 plane suppresses superconductivity. In
HTSC cuprates, the spacers occupy up to 80% of crys-
tal volume, and only 20% of its volume is occupied by
the superconducting CuO2 blocks. The spacers play an
0021-3640/02/7606- $22.00 © 20394
important role in the c-directed electron transport
because of the resonance tunneling [10].

At T < Tc, the doped HTSC crystal behaves as a
stack of strongly coupled Josephson junctions, and,
hence, the superconducting current in the c direction
has the Josephson character (weak superconductivity).
It is worth noting that the specificity of the supercon-
ducting properties of layered crystals with the Joseph-
son interlayer interaction was discussed in detail well
before the discovery of HTSC materials [12, ch. 6].

In cuprates, the CuO2 plane with half-filled 2D band
is unstable against the transition to Mott’s insulator
phase and against the formation of long-range antifer-
romagnetic order. Weak doping with oxygen destroys
the antiferromagnetic long-range order. It is likely that
further doping leads to the metal–insulator transition
and to the appearance of the open hole Fermi surface
[13]. In this case, the Fermi level may fall within the
vicinity of an extended Van Hove singularity [14, 15].
It should be noted that the experimentally studied
Fermi surface in optimally doped cuprate compounds
coincides, to a good accuracy, with the one calculated
theoretically by the density-functional technique [13].

High-temperature superconductivity in the CuO2
planes arises in a relatively narrow range of doping
level p. However, the physical nature of parameter p
still remains to be clarified. The matter is that the Fermi
surface area and, hence, the total hole concentration
change only slightly in the doping range corresponding
to superconductivity. This fact was pointed out both in
works devoted to studying the optical properties of
HTSC materials [16] and in the angle-resolved photoe-
mission spectroscopic (ARPES) experiments. Instead
002 MAIK “Nauka/Interperiodica”
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of an appreciable decrease in the Fermi surface area
with decreasing doping level, an anisotropic
“pseudogap” arises at the surface [17, 18]. The nature
of this phenomenon is unclear. The photoemission data
suggest [19] that the superconducting gap is maximal in
the Γ–M direction, i.e., in the direction where the
pseudogap is maximal, and it is minimal in the Γ–Y
direction. In the presence of the extended Van Hove sin-
gularity at the Fermi level, the quasiparticle density of
states is also maximal in the Γ–M direction. The gap
anisotropy decreases appreciably with increasing dop-
ing level [20].

To first approximation, the critical temperature Tc

changes with p following the parabolic law [20].

2. SOME EXPERIMENTAL RESULTS OBTAINED 
FOR THE HTSC MATERIALS BY TUNNELING 

AND ANDREEV SPECTROSCOPIES 
The methods of tunneling and Andreev (microjunc-

tion) spectroscopies, as applied to HTSC materials,
have demonstrated that they are quite efficient and
allow the obtaining of valuable information on the
physical properties of these materials in their supercon-
ducting and normal states. Below, we briefly discuss
some recent experimental results obtained by the tun-
neling and microjunction measurements on the HTSC
samples.

2.1. Internal Josephson Effect and Characteristic 
Properties of the S–I–S–I … Structure. 

The discovery and investigation of the internal
Josephson effect (IJE) [21–27] in the cuprate supercon-
ductors is among the most significant achievements of
the last years, because it clearly demonstrates the 2D
character of electron transport in HTSC materials. The
detailed studies of IJE in various HTSC systems have
culminated in the development of a new method of
studying layered superconductors, namely, the method
of internal tunneling spectroscopy.

The studies of the internal Josephson effect in
HTSC mesa structures fully confirmed the S–I–S–I …
model. (i) At T < Tc, multibranched current–voltage
characteristics (CVCs) are observed for the c-directed
current in mesas [21–23]; (ii) the CVCs of mesas show
geometrical Fiske resonances [25]; (iii) the critical
Josephson current, as a function of an external mag-
netic field, exhibits Fraunhofer oscillations in mesas
[26]; and (iv) the microwave radiation is observed from
the mesa structures upon passing above-critical current
through the HTSC mesa structures [21–23].

2.2. Internal Josephson Effect; the Determination 
of Superconducting Gap and the Shape of CVC Curves

In [27], the internal Josephson effect was observed
in the doped single crystals Bi-2212 at the natural
ultrathin steps (of height from 1.5 to 30 nm), which
JETP LETTERS      Vol. 76      No. 6      2002
always present at the surface of cryogenic cleavages
(break junction technique). The direct STM measure-
ments showed that the height of these steps is propor-
tional to half of the unit cell c/2 = 1.5 nm (the cleavage
plane passes between two BiO planes) [28, 29]. Note
that half of the unit cell in the c direction corresponds
to one Josephson junction.

According to the data in [28, 29], the microstep
width does not exceed 1 µm. This result coincides with
the estimates made in [27]. By changing the junction
using a micrometer screw, one can pass from one step
to the other in one experiment and record alternately
their CVCs (j || c).

At helium temperature, the authors of [27] observed
well-defined gap structure in the CVCs of microsteps at
the surfaces of cryogenic cleavages in the underdoped
and optimally doped Bi- 2212(La) single crystals and in
the overdoped Bi-2212 single crystals and whiskers
(Fig. 1). The stacks of 1 ≤ n ≤ 25 Josephson junctions
were studied. A high resistance of stacks (Rn4.2 K = 200–
1500 Ω per junction) allowed the voltage range to be
increased higher than the gap bias Vgn without any
appreciable junction overheating. For the stack of n
equivalent junctions, the gap bias Vgn corresponding to
a sharp increase in the quasiparticle current jqp || c is

Fig. 1. CVC (normalized to one contact; Vnorm = V/N) of a
microstep at the cryogenic cleavage in underdoped
Bi-2212(La) single crystal with the number of contacts N =
13 at T = 4.2 K (Tc = 81 ± 3 K). The dotted line is for the
Dines model with parameters per contact ∆s = 24 meV, Γ =
0.5 meV, and Rn = 1700 Ω . Inset: the dependence of gap
voltage Vg on the number N of SIS contacts in microsteps of
various height, as obtained in one experiment.
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given by the expression Vgn = (2∆/e)n. The experimen-
tal dependence Vgn(n) can be used to determine the gap
parameter ∆ with a high accuracy (inset in Fig. 1). For
the optimally doped BSCCO(La) samples with Tc =
91 ± 2 K, ∆4.2 K = (27 ± 0.5) meV and 2∆/kTc = 6.9 ± 0.5.
With a rise in temperature, the gap structure in the
CVCs of stacks retains its sharp shape over a suffi-
ciently wide temperature interval, allowing the temper-
ature dependence ∆(T) to be determined for the gap
(Fig. 2).

It was found that the CVCs of the stacked S–I–S
junctions coincide well in the reduced coordinates. The
gap singularity in CVC has the shape typical of the
“s-symmetric” (isotropic) gap parameter. At first
glance, this result is hard to fit to the photoemission
data, according to which the gap parameter in the ab
plane is highly anisotropic [19]. There are, however, a
number of reasons why the shape of gap singularity,
even in the case of d pairing, can closely resemble the
shape corresponding to the isotropic order parameter.
First, it was shown in [30] that the Van Hove singularity
renders the gap structure in the CVCs of junctions much
more prominent even if the order parameter in the ab
plane is strongly anisotropic. Second, for the tunneling
in the c direction, which is most likely to occur in our
experiments, one should take into account that the over-
lap integral t⊥  in the c direction depends strongly on the
wave vectors in the ab plane and has the form [31]

(1)t⊥ kxacos kyacos–( ).≈

Fig. 2. Influence of temperature on the dI(V)/dV character-
istics (normalized to one contact) of a microstep at the cryo-
genic cleavage in underdoped Bi-2212(La) single crystal
with the number of contacts N = 18 (Tc = 87 ± 2 K).
Thus, it turns to zero simultaneously with the supercon-
ducting gap, so that tunneling from the zero-gap
regions does not occur. It is worth noting that the CVC
shape similar to ours was observed in [32] at the natural
ultrathin steps (mesas).

It should also be noted that poorly defined gap struc-
ture (pseudogap), which is observed in some cases in
the CVCs of Bi- 2212 mesas at T > Tc [32, 33], bears no
direct relation to the superconductivity and, probably, is
a consequence of the two- dimensionality of metallic
CuO2 blocks. Note that the influence of 2D (surface)
bands on the CVCs of normal tunneling junctions was
considered in the theoretical work of Ben Daniel and
Duke [34]. A “multigap” structure predicted by the
authors of [34] was observed in [35] in the CVCs of
normal Bi–Al2O3–Al junctions over a very wide tem-
perature range.

2.3. Josephson Spectroscopy; Excitation
of Raman Active (Nonpolar) Optical Phonons

by ac Josephson Current in the HTSC Josephson 
Junctions over the Frequency Range up to 20 THz

As was mentioned above, there is some evidence of
the strong electron–phonon interaction (EPI) in HTSC
cuprates [2, 8]. This was confirmed, in particular, by
studying the excitation of optical Raman active
phonons by ac Josephson current in Bi-2201, Bi-2212,
and Bi-2223 Josephson junctions over the frequency
range up to 20 THz [36–40] (Fig. 2), by photoemission
data [41], and by studying the isotope effect [42, 43]
and the renormalization of the quasiparticle density of
states at T < Tc [44–46].

The fine structure in the CVCs of Josephson
Bi-2212 junctions was first observed in [47] and, as it is
now clear, was due to the excitation of nonpolar optical
phonons by ac Josephson current in the energy range
εph = 38–54 meV. More recently [48, 49], resonances
with optical modes corresponding to the vibrations of
heavy bismuth, strontium, and copper ions (εph = 6–
24 meV) were observed in the CVCs of the Bi-2212
mesa structures. The phenomenological theory describ-
ing the interaction of ac Josephson current with
IR-active (polar) optical phonons was proposed in [49,
50]. The theory involving the interaction with all
(Raman and IR-active) optical modes was developed by
one of us in [40]. In that work, it was shown that the
phonon emission by the Josephson current flowing
through the tunneling junction gives rise to an excess dc
current ∆I(V). This current can be expressed in terms of
the Josephson current JP(V) and the phonon Green’s
function as

(2)∆I V( )
α0λ

2 ω0λ

e
-----------------

γωj ReJP ωj/2( )[ ]

ωj
2 ω0λ

2–( )2 γ2ωj
2+

---------------------------------------------.
λ
∑=
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Here,  is the coupling constant of optical phonons
and electrons for the wave vector q = 0, γ is the phonon
damping constant due to the anharmonicity or elec-
tron–phonon interaction, and ω0λ is the phonon fre-
quency. The quantity ωj is expressed through the volt-
age V on the junction by the Josephson relation

(3)

A similar expression, though naturally without the
Josephson current, can be written for the intensity of
Raman scattering by optical phonons. Equation (2)
demonstrates that the excess current ∆I has peaks at
voltages satisfying the condition

(4)

Accordingly, the quantity dI/dV has minima at voltages
close to the values given by Eq. (4). The difference
between the positions of the maxima of ∆I and minima
of dI/dV is small and is determined by the phonon
damping constant γ.

In [37], the interaction of ac current with Raman
active phonon modes, including the apical oxygen
mode (εph ≈ 80 meV) was observed over the whole
range of phonon frequencies (up to 20 THz; Fig. 3).
One can clearly see in Fig. 3 that the intragap features
in the CVC curves coincide well with the spectrum of
Raman active phonons in optical experiments [51]. In
the upper part of Fig. 3, the fragments of resonance
structure in the dI/dV curves of several break junctions
are shown as functions of 2eV for the near-optimum
doped Bi-2212 single crystals at T = 4.2 K. The struc-
ture is observed in the energy range 0 ≤ 2eV ≤ 85 meV,
which covers the range of Raman active optical
phonons in Bi-2212. It is worth noting that the reso-
nance structure appears at the biases V satisfying the
condition 2eV = "ωph. For comparison, the results of
measuring Raman spectra of Bi-2212 [51] are pre-
sented in the bottom of the figure for two main polariza-
tions (curves 1 and 2 correspond to the Z(X, X)Z geom-
etry and curve 3 is for the Y(Z, Z)Y geometry). The bars
in the central part of Fig. 3 indicate the energies of
Raman active phonons corresponding to the atomic
vibrations in the Bi-2212 structure (see Table 1 in [37]).

Further experimental studies of the low-frequency
resonances (Bi-, Sr-, and Cu-related optical modes) in
the CVCs of break junctions in the Bi-2201(La) single
crystals have shown that the ac Josephson current
excites optical phonons not only in the SIS but also in
the SNS junctions [39], unequivocally confirming the
validity of our model [40]. It was also established that
the CVC structure due to the excitation of optical
modes in the doped Bi-2212(La) Josephson junctions is
observed both in underdoped and overdoped single
crystals and that the degree of doping has little effect on
the frequency of the main phonon modes [39]. This sig-
nifies that the electron–phonon coupling strength in

α0λ
2

ωj 2eV /".=

2eV "ω0λ .=
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BSCCO does not change appreciably in the whole
domain of existence of superconductivity.

The studies of the internal Josephson effect in
microsteps at the surface of cryogenic cracks in
BSCCO with few SIS junctions showed [39] that, in
some cases, the nonequilibrium optical phonons were
generated synchronously. It should also be noted that
the temperature anomalies of 2∆ were observed in [39]
for the Cu-related phonon mode at T < Tc in near-opti-
mum doped Bi-2201(La) samples. It is conceivable that
these anomalies are caused by the renormalization of
the optical phonons with k  0 and frequencies close
to 2∆(0) in HTSC materials with strong electron–
phonon coupling at T < Tc. Depending on the ω0/2∆
ratio, where ω0 is the phonon frequency at T > Tc, the
phonon frequencies at T < Tc should either increase
anomalously (ω0/2∆ > 1) or decrease (soften) anoma-
lously (ω0/2∆ ≤ 1) with lowering temperature.

2.4. Andreev, Tunneling, and Internal-Tunneling 
Spectroscopies; Influence of Doping

on the Superconducting Gap ∆ in Bismuth Cuprates

It is well known that the underdoped HTSC cuprates
have two gaps ∆p and ∆s in the electronic excitation
spectrum [18]. It has recently been assumed [54] that
the larger gap ∆p (pseudogap) measured over a wide
temperature range in the underdoped HTSC cuprates
by photoemission or tunneling spectroscopy character-
izes the binding energy 2∆p of Cooper pairs that remain

Fig. 3. Comparison of the structure due to the excitation of
optical phonons by ac Josephson current in dI(V)/dV char-
acteristics of the Josephson Bi-2212 junctions with the
Raman phonon spectra of Bi-2212 (see text).
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in the incoherent state at T > Tc. The smaller gap ∆s
(superconducting gap), as measured using Andreev or
Raman spectroscopy, defines the minimal excitation
energy 2∆s of superconducting condensate at T < Tc

(Tc < T* in the underdoped samples). According to the
model suggested in [54], the superconducting gap ∆s

changes with changing hole concentration p in parallel
with Tc and passes through a maximum at the point of
optimum doping (scaling between ∆s and Tc). At the
same time, ∆p increases monotonically as p  0 (i.e.,
upon passing from the overdoped to the underdoped
samples).

Note that no scaling relationship between ∆s and Tc

was observed in the doped HTSC materials in some
works where STM spectroscopy was mostly used [55–
58]. At the same time, the detailed studies in works
[59–61] have confirmed the scaling model for ∆s and Tc

(in bismuth cuprates at least).

In [59–61], the CVCs of Josephson break junctions
were measured over a wide temperature range up to the
critical temperature Tc. The following objects were
used for the investigation:

(1) underdoped (UND), optimally doped (OPD),
and overdoped (OVD) Bi-2201(La) single crystals;

(2) underdoped (UND) and optimally doped (OPD)
Bi-2212(La) single crystals and overdoped (OVD)
Bi-2212 single crystals and whiskers.

The following experimental techniques were used:

(1) Andreev spectroscopy (multiple Andreev reflec-
tions in the SNS-type microjunctions),

(2) tunneling spectroscopy (single tunneling SIS
junctions),

Fig. 4. Superconducting gap and 2∆/kTc as functions of the
reduced concentration p/popt of impurity holes in Bi-2212.
(3) internal-tunneling spectroscopy (internal
Josephson effect in microsteps at the surface of cryo-
genic cleavages).

All these methods of studying the superconducting
properties of HTSC materials are implemented using
break junctions in HTSC single crystals and whiskers.
Passing from one measurement regime to the other can
be accomplished by mechanical changing the break
junction at helium temperature.

Note that there are specific difficulties in obtaining
single tunneling HTSC junctions at j || c because of the
layered structure of cuprate samples (in the c direction,
the edges of tunneling junction represent a natural stack
of SIS Josephson junctions). The superconducting cur-
rent in the c direction is often suppressed near the sur-
faces of the (especially underdoped) samples. A single
CuO2 block cannot completely screen an external elec-
tric field in the c direction, because the screening length
exceeds the thickness of this block [62]. In this case, a
number of strongly nonequivalent additional SIS junc-
tions arise in series with the main (planned) junction,
which may shift the overall gap structure in the CVCs
to larger biases. This effect was repeatedly observed in
[59–61] in the underdoped samples. To reject CVCs of
the complicated junctions, phonon resonances were
used in [59–61], which were clearly seen in the dI/dV
characteristics in the presence of ac Josephson current.
These resonances serve as reliable calibration marks in
the CVCs and allow a true single junction to be distin-
guished from the complicated combined junction. As is
mentioned in Section 2.3, the biases at which CVC fea-
tures appear due to the interaction of ac Josephson cur-
rent with optical phonons are determined from the con-
dition 2eV = "ωph. For the stack junctions this condition
changes to 2eV/n = "ωph, where n is the number of junc-
tions in the stack.

Note that these difficulties are, probably, the reason
why the gap in the underdoped Bi-2212 samples is
strongly overstated in [55–58].

In [59–61], the gap structure in the dI/dV character-
istic of a junction in the tunneling regime (a peak of dif-
ferential conductivity at the gap bias Vg = 2∆/e) became
the same as the subharmonic gap structure in the dI/dV
characteristic of the same junction in the microjunction
(Andreev) regime (a set of dips in the differential con-
ductivity for biases Vg = 2∆/en, where n is an integer).
Similar work was carried out earlier with a niobium
break junction [63]. The value of the superconducting
gap was assumed to be reliable only if the ∆ values
obtained by the two above-mentioned methods were
the same. The data of tunneling, internal tunneling, and
Andreev spectroscopies were used to construct the
dependence of superconducting gap ∆ on the concen-
tration p of impurity holes in Bi-2212 (Fig. 4).

One can see from Fig. 4 that there is a scaling rela-
tion between the superconducting gap ∆ (T = 4.2 K) and
the critical temperature Tc over the whole doping range.
The dependence of superconducting gap ∆ on the dop-
JETP LETTERS      Vol. 76      No. 6      2002



TUNNELING AND ANDREEV SPECTROSCOPIES 399
ing level in Bi-2212 shows a weak plateau in the opti-
mum doping region (Fig. 4), which is probably a con-
sequence of Fermi level pinning by the Van Hove sin-
gularity. To first approximation, the ratio 2∆/kTc = 7.0 ±
0.5 is independent of doping. Similar behavior is
observed for the superconducting gap in Bi-2201 as
well [59–61], though at the ratio 2∆/kTc ≈ 12. These
results are in conflict with the results of some other
works [55–58], according to which the gap ∆ in the
underdoped Bi-2212 samples increases drastically with
lowering Tc, so that the 2∆/kTc ratio attains a value of 20
and larger.

It was also established in [59–61] that the gap mea-
sured by tunneling and microjunction spectroscopies
goes, as it must, to zero in the region where the resis-
tance becomes zero at the resistive transition (i.e., at
T = Tc) in the UND, OPD, and OVD samples of the
Bi-2212 and Bi-2201 phases, in contrast to the results
obtained in [56, 57], according to which the supercon-
ducting gap in underdoped samples is independent of
temperature and becomes a pseudogap of the same
value at T = Tc.

We do not deny the presence of a pseudogap in the
underdoped HTSC cuprates. However, the following
facts deserve attention. First, it was shown in the exper-
iments on measuring electronic heat capacity [64] and
in studying the magnetic-field effect on the CVCs [33]
in the underdoping regime that the pseudogap is related
neither to the superconducting fluctuations nor to the
uncorrelated Cooper pairs higher than Tc. The
pseudogap has a different nature, which is not related
directly to the superconductivity. Second, tunneling
spectroscopy is not the best method of studying the
pseudogap properties, especially in the normal state,
where it mainly accounts for the surface properties of the
samples. It has been pointed out in theoretical work [34]
that the CVCs of the normal tunneling junctions can be
strongly influenced by the 2D surface bands. A multigap
structure that was predicted by the authors of [34] was
observed in [35] over a very wide temperature range in
the CVCs of normal Bi–Al2O3–Al junctions. In this
respect, special care should be taken in the STM mea-
surements, where, as was shown in [65], the tunneling
current may depend strongly on the impurities, tip, etc.

Note in conclusion that the superconducting gap ∆
increases linearly as a function of the number n of
CuO2 planes in the superconducting blocks of the
optimally doped samples of cuprate families
Bi2Sr2Can – 1CunO2n + 4 + δ, Tl2Ba2Can – 1CunO2n + 4 + δ,
and HgBa2Can – 1CunO2n + 2 + δ (1 ≤ n ≤ 3) [59]. Recall
that the dependence of maximal critical temperature
Tcmax on n in cuprates does not obey a simple linear law
[66]. Our observations of the linear relation between
the superconducting gap and the number of CuO2 lay-
ers are confirmed by the photoemission data. However,
we do not know any simple theoretical explanation for
such a behavior of the gap. There are a number of mod-
JETP LETTERS      Vol. 76      No. 6      2002
els [4] which can account for an increase in the Tc and
the gap as the number n of layers increases. It should,
however, be noted, first, that rigorous proof for the
applicability of these models to the HTSC materials is
lacking and, second, that these models do not provide a
linear relation between the gap and the number of lay-
ers [67].

We are grateful to V.L. Ginzburg, V.F. Gantmakher,
Yu.M. Kagan, M.P. Trunin, and L.M. Fisher for useful
discussions of the results of our work. This work was
supported in part by the Scientific Council of the Rus-
sian Scientific and Technical program “Topical Direc-
tions in Condensed Matter Physics” (projects “Delta”
and “HTSC-64”) and the Russian Foundation for Basic
Research (project nos. 99-06-16366 and 02-02-17915).
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ERRATA
In the article of D.A. Ryzhikh and K.A. Ter-Mar-
tirosyan published in vol. 74, no. 3, pp. 139–143:

c13 should be replaced by c23 in the third row of
Eq. (6), in the second row of Eq. (8), and in the first and
seventh rows of Eq. (9).

We are grateful to Prof. Luciano Moscoso for atten-
tion and for pinpointing these misprints.
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(1) 10χmax should be written instead of χmax in Fig. 3;
(2) the article was received January 9, 2002. 
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