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It is shown on the basis of the solution of the kinetic equation for the gas of impurity excitations
of superfluid mixtureSHe—*He that the relaxation of concentration and temperature occurs

due to two modedacoustic and dissipatiye The parameters characterizing these modes are
determined. The obtained results show that the relaxation of concentration and temperature

of impuritons is completely determined by the thermal conductivity of the mixture and by the
acoustic modésecond sound © 1997 American Institute of Physics.

[S1063-777X97)00108-4

Superfluid solutions®He—*He possess a number of Herev,=deg;/dp; is the impuriton velocity and;; the colli-
unique properties, including the existence of two essentiallgion integral for impuritons. In addition, the case of low
different mechanisms of concentration and temperatureoncentrations is considered, when it can be assumed that the
relaxationt 3 viz., second sourfdand dissipative diffusive superfluid background remains in equilibrium.
mode? This distinguishes superfluid solutions from pure he-  In order to derive the dispersion equation characterizing
lium in which temperature stabilization occurs due to secongmall oscillations in the solution, we must linearize Ef.
sound as well as from normal solutions in which the tem- This leads to the following equation for the Fourier compo-
perature and concentration relaxation is determined only byent of the functionf; describing the deviation from equi-
dissipative processdshermal and diffusive wavés$ librium:

The existence of two modes responsible for equilibrium .
stabilization of concentration and temperature in superfluid (=k-v;) 8f; =il (3F;). @
solutions necessitates their simultaneous inclusion in apjerel;; is the linearized collision integral depending 6f) ;
analysis of various kinetic processes. One of such processgsthe frequency ané the wave vector.

attracting attention of experimentérSas well as theoretical We shall seek the solution of E(R) in the form
physicistd®~*3is the phase separation of supersaturated su- ,
perfluid solutions’He—He. of=—fig, 3

In the publication§'!'*that laid the basis of the kinetic
theory of phase separation of metastable solutfbtes-"He,
either dissipative processes were not taken into accou
altogethert® or it was assumed, in analogy with normal so-
lutions, that diffusion is the main process responsible for the (w—k-v;—il;;)g;=0. 4

motion of impurities’'* However, subsequent experimeftal .
and theoretical investigations proved that second sound . The problem of d_efcermmlng the engrgy-momgntum _rela-
should also be taken into account in the description of phas%Ons @=w(K) describing hydrodynamic modes is equiva-
separation of supersaturated solutidHge—*He.!? The effect ent to determining the resolvent polB of Eq. (4)

of second sound on the growth of a new phase was analyzed R,=(w—k-v;—il;;)" ! (5)

in Ref. 13, but dissipative processes were only partially taken ) _ L _ )
into consideration. This research aims at an analysis of ten{? the subspace of impuriton collision invariants. For this
perature and concentration relaxation in superfluid solution®UrPOSe, we introduce operators projecting onto the subspace
SHe—“He at low temperatures, for which the contribution of of collision invariants for the number of particles, energy,

thermal excitations in He Il can be neglected, and the trans@"d momentum of impuritons:

wheref/ is the derivative of the functiof; with respect to
energy. This leads to the following equation for the unknown
Hinction O

port properties of the solution are determined only by impu- 1) )
rity quasiparticles. |In) = At ; |J8)=W;
An analysis of hydrodynamic modes in the impuriton He (6)
gas is based on the kinetic equation for the impuriton distri- Ipiz)
bution functionf ;> [9p)= Plpa 2
1ZI Mz
of; wheree; = &; — (&;|1)/{(1|1). The vectordJ, ), |J, ) can
ST =i (1), & s = e (slDALD 350 195,
at be omitted since the-axis is chosen along the vectkr In
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expressions(6), we have introduced the one-dimensional Calculations based on formuld43) and (14) lead to the
vectors in the space of impuriton momenta and defined théollowing expressions for dissipative coefficients:
scalar product

7= P ; (17)
Ixd=—"1 ¥ (p)xi(p)f/dT;. 7 vE
<¢||X|> f i (P xi(Pi) i i (7) K=C,; §F o, (T<Tp):
We project expressiofb) onto the subspace of collision in- (18)
i : 5nT
variants: = r;_ (TS T,
PicRiPic=Pic(@—PicQiPic) 'Pi, (8) !
where HereTF=miv§/2 is the Fermi temperature of impuritons.

In the hydrodynamic approximation used here, the dis-
Qi=k-Vi+k-ViP;y(0—Pink-ViPin—iPiliiPiy) “1P;k-vi.  persion equations for two collective modes can be deter-
(9) mined from(12).

Here, we have introduced the operator projecting on the subéne;rhe_::]rg;];nnigfn |fe|';ht(iaor?coustlc mode {k) with the
space of invariants 9y

2
4w Ui i
3p ufC

o= [Tl 13,03, 413, )3, (10) wzzkzue[l—i ©
uU;

]. (19
as well as the subspace orthogonal o it The obtained result has a simple physical meaning: when the
Pin=1—P;.. (11 properties of solutions are determined by impuritons alone,
sound propagates in the impuriton gésmpuriton second
sound”) at a velocity u; coinciding with the velocity of
sound in an ideal gas of particles of mass. The second
and third terms if(19) describe attenuation of impuriton sec-

acteristic time of impuriton collisions. Sincer;<1 and . . o
: : S : . ond sound due to viscosity and thermal conductivity respec-
kv;7;;<<1 in the hydrodynamic approximation being consid- tively

ered, we can calculate the matrix elements of the operator The second collective mode is dissipative-¢k?) and
w—P;:Q;P;. in the basisP;. and equate to zero the deter- has the enerav—momentum relation P
minant of the obtained matrix. This leads to the following oy

For calculating the matrix elements {8) and (9), we
shall use the correct-approximatiof® according to which
Pinlii Pin can be replaced by P,/ ;; , wherer;; is the char-

dispersion equation: w=—ik?D, (20
w(wz—k2u$)+ik2w2(ﬁ+ 2 1) —iuZ k4 = =0 where
Ci 3 pin Gi K; UA
(12 Deﬁ—a I (22)
Here . o - - .
is the dissipative coefficient describing this mode.
u?=ui+uz, The obtained mode corresponds to a thermal wave in
— ordinary liquids, which describes dissipative relaxation of
2ot ‘9_Pf) 2o temperature and number density of particles to the equilib-
N m; | an T' " pinCi rium state. In superfluid solutions, this collective mode is

o o ~ associated with the relaxation dHe concentration, and
are the squares of characteristic velocities in the gas of iMence determines in fact the diffusion of impurities. Accord-
puritons, §; = § — (dS/dn)ni; P¢,S.Ci.pi = MmN ing to (21), the effective diffusion coefficient in this case is
are the osmotic pressure, entropy, heat capacity, and normgbtermined by the thermal conductivity of the impuriton gas.
density of impuriton gasx; is the thermal conductivity, and As regards the actual diffusion processes, it follows from
7i the first(sheay viscosity of impuritons. The latter quan- (19) and(21) that the dissipative impurity diffusion does not
tities can be expressed in the standard fdrim terms of the  exist as such at such low temperatures, and as a result, the
time 7; of impuriton collisions: mass, thermal and pressure diffusion coefficients are equal to
zero, This is due to the fact that in the absence of thermal
excitations, the impuriton system in the situation under in-
ki ={ @il Pri) Tii » (14  vestigation is effectively a one-component system, and dif-
fusion processes do not occur in it. On the other hand, dis-
sipative relaxation occurs, like in one-component gases,

1 through the thermal mode in which density relaxation at a
l@,i)=—=|3Pivi;— Pivi), (15  constant partial pressuf& P(n,T)=0] takes place simulta-
2v3 neously with temperature relaxation by virtue of the relation

7= il @) Tii (13

where the vectors are defined as follows:

(P1an);Vn=—(9PIaT) VT

1 I
i) == |€iviz— (ST/pin) Piz)- 16
[exi) JT (2012 (ST/pin) Piz) (19 and is determined by the thermal conductivity of the gas.
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Thus, the above analysis shows that superfluid solutions Thus, in an analysis of various kinetic properties in su-
SHe—*He exhibit a peculiar two-stage relaxation of initial perfluid solutions®He—*He at low temperatures, we must
deviations of temperature and concentration from equilibtake into account both hydrodynamic modes, viz., acoustic
rium. At the first stage, a nonequilibrium state without an(19) and dissipativg20) modes, as well as the absence of
impuriton partial pressure gradienVP;=0) sets in virtu- dissipative diffusion processes in the one-component gas of
ally at the velocity of second sound. However, the humbeimpuritons.
density of impuritons and temperature may have gradients

which are connected through the relation The author @s deeply indebted to I N._Adamenko for
continued attention and fruitful discussions in the course of
(dP¢1dT)p, this research.
vn;= T. (22

~ (aPslan)y v

. At the seconq st.age., the existence of a _temperature 98¢ mail: berezhnoy@pem.kharkov.ua
dient leads to a dissipative heat flow determined by the ther-
mal conductivity of the solution, which blurs the deviation of
temperature from its equilibrium value. In this case, nondis-1|, . khalatnikov, Theory of Superfluiditfin Russiaf), Nauka, Moscow
sipative motion of impuritons in the second sound wave en- (197). )
sures the fulfilment of equality22) everywhere, and thus [LS- V. C;zr k0\3 EaTan L‘iolz.(fét&;a%/sku, Zh. IBsp. Teor. Fiz33, 634 (1957

H H ‘o 1 oV. yS. Y .
the density graQ|ent sort pf follows f[he temperature_ 9rd- sp_ Griffin, Can. J. Phys47, 426 (1969.
dient, both gradients tending to zero simultaneously with the4| ya. pomeranchuk, Zh. ksp. Teor. Fiz19, 42 (1949.
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. . . s . 17
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impuriton gas. Translated by R. S. Wadhwa
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Small-amplitude oscillations of magnetization accompanying long-lived spin-precession
in *He-B
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Institute of Physics of the Georgian Academy of Sciences, 6 Tamarashvili st., Thilisi GE-380077, *Georgia
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Frequency spectrum of small-amplitude oscillations of magnetization against the background of
coherently precessingphase-correlatédspin modes in superfluitHe placed in a strong

magnetic field depends on the magnitude of spin polarizaicand spin-orbit structure of
dynamical ordered states. Spectrum of these oscillations is calculated for unconventional
precessing modes itHe-B characterized bp=S,/2, whereS, is the value ofS at equilibrium.

© 1997 American Institute of PhysidsS1063-777X97)00208-9

The coherent dipole-dipole interaction between nucleawhere s,=cosBs, |,=c0sB,, a=ag—«a,, and y=1yg

magnetic moments in the superfluid phases of ligitite  —y, . .
defines(along with other symmetry-breaking terhke spin- The absolute minimum o#) is realized at TR=1/2. It
orbit structure of the equilibrium and dynami@time-  occurs, in particular, for the nonprecessing states \sjth
dependentordered states ofHe-A and*He-B. =1 and —1/4<l,<1. The dynamic counterpafa mirror

In the presence of a static magnetic fielg=Hozand @  image 1,++s,) of this set of equilibrium states is the
low-amplitude transverse rf field of frequenaythe stable  Brinkman—Smith(BS) spin-precessing mode with=1 and
and metastabléong-lived spin-orbit configurations are re- _1/4<s <1. In the BS mode the magnetization is precess-
alized at the minima of the thermodynamic potential ing exactly at the Larmor frequenay, and the Leggett—

"=F+ S, (1)  Takagi(LT) relaxation mechanism is completely switched
I . : . . off (S,=const).
which is constructed in the coordinate frame rotating with an (ftz m&wo) where in the rotating coordinate frame the

angulgr velocityw = wZ (S denotes the spm-.dens)tyn Eq. action of the static magnetic field is eliminated only partly, a
(1) F is the sum of the Zeeman and the dipole-dipole ener- hi hv of the | lived spi . .
ias. so that new hierarchy o the long-lived spin-processing states is sta-
gies, bilized in *He-B. These states do not correspond to the ab-
F=—woS+Up, (2 solute minimum ofUp and the LT relaxation mechanism is
operative. Among them the most thoroughly explored is the
HPD staté? generated aiv>w,. In this situation the spec-

F'=(0—-y)S,+Up, (3 troscopic term in(3) pushes the left boundars,= — 1/4 of
in the absence of the firsspectroscopicterm (at the Larmor ~ the BS state farther to the left, and the spin-precessing states

resonances = w) the stationary spin-orbit configuratiotis ~ With I,=1 and—1<s,<—1/4 are formed at the balance of
the rotating coordinate framare defined by the minima of the dipole-dipole and spectroscopic forces. For the case

wherewy= wqz with the Larmor frequencw,=gH,. Since

Up. where w exceedsw, only slightly the spin-precession takes
For 3He-B place ats,=~ —1/4 and the LT relaxation is rather slow. Due
to the presence of the spectroscopic term, the HPD trans-
UDZEXB(QB/Q)Z(Tr @_1/2)2’ (4) forms to the precessing two-domain configuration in the
15 presence of the magnetic field gradient.
whereyg is the magnetic susceptibilitf g is the frequency An effective way of analyzing other possible long-lived

of the longitudinal NMR; and the orthogonal matfix de-  SPin-precessing states thle-B is to consider the case of a

scribes the relative rotations of the spin and orbital spacesStrong magnetic field witiog> (g . In this situation the dy-
namic variablesy and vy, which appear in expressiad) for

R=RORL"1, (5)  the dipole-dipole potential, are naturally arranged as the fast
Here R©® and RV are the matrices of B3 rotations of the and slow linear combination®n the long time scale ).

spin and orbital degrees of freedom, respectively. ParamS @ good starting approximation one can discard the rapidly
cillating terms inUp and deal with the average potential

etrizing these rotations by the triples of Euler angles®
(as,Bs,vs) and (@, .8, ,v.), we find Up that contains only slow variables; andl, and possibly
some slow combination af and y. In this way, it is easy to
construct a proper first-order solution for the coherently pre-
cessing spin-states and then to explore small-amplitude os-
s cillations of magnetizatiofiproportional to g/wg)?<1],

~l)coga—y)+(1-s;)(1-I7)(cosatcos ), superimposed ogn the “megn-fpi)eld” solutior?B o

(6) When constructing the above-described “mean-field”

- 1 1
Tr R=s,l,+ > (1+s,)(1+1,)cofa+y)+ 5 (1-s,)(1
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(averagg picture, it should be realized that the answer for  ,—%3 cu,(P,S ¢la),

Up depends crucially on the magnitu@e=|S| of the spin- _ .

density of a particular precessing state. For the conventional P= P+8up(P,S,E|7),

case ofS close to its equilibrium valu&Sy=(xg/g)Hg a _ —

slow angular variable surviving the averaging procedure is ¢=¢+eU,, S=S+teUs ©)

¢=a+y and corresponding expression fd, was exten- \yith yet unknown functionsu; of slow (P,S,¢) and fast
sively used in Ref. 3. The series of homogeneously PrecesgZy variables. In what followsp is a slow variable(along
ing, metastable states different from HPD were establisheg .., P_andg)since we consider a “resonating” regime with
as a result of establishing a balance betwdgn the spec-  g—1/24 ¢
troscopic term, and the action of the finite-amplitude trans-
verse If field. - ) o
The new metastable spin-precessing states were found in  ¢=—-1+¢A,(P,S,¢), P= eAp( P.S,¢),
Ref. 4 for unconventional situations witB=Sy/2 (the HS

Implying thata, P, S, and¢ satisfy a set of equations

stat§ and S=2S, (the DS state In these case&gain for ¢=e(20+A,(P.S,9)), S=eA4P,S0), (10
wo>{1g) we can easily obtain a set of equations figr
—_1 2 2,2 2 2
UD:_XB(QB/Q) 1+2$Z|Z+(I_SZ)(1_IZ) . of . of
10 U, =——=A,, Uy=—-—==A,,
JP da
2 V(1 2)(1—12)(1+1,)(1+] 0 7 v
+§ ( _Sz)( - z)( + z)( + Z)COS(P , ( ) . of . of
. U,=2| —=+Ug| —A,, Us=—2—=A,.
where the slow angular variable= a+2y(2a+ y) for the JS de

HS(DS) state. Considering the case of an exact Larmor reso- . . —— —
nance f=wo) and noticing that the stationary valig, Here the functiong\; of the slow variables?, S, and¢ are

— 7, we see that there are two degenerate spin-orbit config ound according to the condition for the absence of secular

rations: (s,=0.75,1,=0.3), and s,—~|,. These metastable, erms in the solution of Eqg11) (lim |uil <e°). In this way

coherently precessing, spin states are at the minimapf it can be established that .

not at the true minimum of an exact dipole-dipole potential o _

Up . For this reason the HBS) states, as well as all meta- of of

stable precessing states considered in Ref. 3, are character- Aazﬂ_P_' Ap="— g

ized by the small-amplitude oscillations of the magnetization (12
against the background of the “mean-field” dynamics. of of

These oscillations are driven by the dipole-dipole torque, A, ,=2| =<tuUs|, As=-2—,

which is nonzero for the metastable dynamic states. For them IS de

the LT relaxation is al_sc_> operatiyas mentioned above, only wheref_andu_s denote time-averaged parts of the corre-
for the HPD atw=w, it is anomalously slow because of the gn,nqing functions of the fast variabte (without loss of
closeness to the BS moddn what follows we study the  goneraiity it can be assumed that@ji=0). Isolating a rap-
frequency spectrum of the small-amplitude oscillations of theidIy oscillating part of the dipole-dipole ener&ytf—f_and
magnetization, accompanying the long-livéthetastable noticing thatil, = (du; /da) &= — du; /der, from Egs.(11) we
spin-precessing state itHe-B with S=Sy/2 (HS mode. find that : : v '

This question was explored recently by means of the com-

puter simulatior?. Here we describe the results of an analytic S Fra

approach based on the self-consistent separation of the fast Uy(P,S, o[a)= —j —da

and slow spin-dynamics appropriate to the strong fieldcase

(wo>Qpg). L pra

Using two pairs of canonically conjugate variables up(P,S,sz a—_da_, (13
(a,P) and (¢,S) with ¢=a+2y and P=S,—1/2S, we @

write the Leggett equations in a dimensionless form =

— af
| P wPSela=2[ S dw
a=—1+¢ P P=-¢ o -
(8) Stationary values of the variabl® S, and¢ are found
) of : of according to the equations
=2 (8_1/2)+8(5'_S' S=-2¢ P _ o e
¢ o of af
where the time is measured in units ofs§/ (P,S) is mea- a—a_=0, (9_?:01 P (14
sured in units of Sy, and ef=Up/wgS,; with ¢
=2/15(Q 5/ wo)?<1. In order to solve the system of equa- __ The first of these equations is satisfied identically since
tions (8) to the first order ire, we use a new set of variables f is independent of. The second one shows that the sta-
a, P, ¢, andS according to the transformation tionary valuepy= 7 and from the last one we see that
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— 1 4 :
Sy=o—8 = (15 Uy (@)= 2 [by(s; | )cosna+by_yx(s; | )sin(n

2 o"S n=1
From the relationS,=P+1/2S we conclude that the —-1/2)a], (21)
low-amplitude high-frequency oscillations & and S, are and
given by
I 3
5S,=S,—S,=¢U,(a), u,(a)= __ 5 Z A(S,,1,)sinna
—_— - Z
8S, =S, —S, =¢eu,(a), (16) _
SR +Cn_ 1Sl ) cogn—1/2)a], (22)
where

where the coefficienta, b, andc are given in the Appendix.
— — — According to Egs(16) and(18) we finally arrive to the
Uz( @) =Up(@) + 5 Us(a), following answer for the small-amplitude oscillating compo-
nentsés,, 6S,, anddS;:

_ 1 _ _ 3
U (a)=—— (Uula)—u,la)s,). (1 _ _
(a) J1-¢2 (Us(@) =i e)sy) 7 8S,(t)=¢ >, [a, cosna+a,_1, Sin—1/2)a], (23
n=1
Now we can easily pass 8 andS, components: s
— — 1 - _
S,=S, cosa+e(u, (a)cosa—S, u,(a)sina), 6S(H =75 Snzl [dy") cogn+1)a+d, ™ cogn—1)a
S,=S, sina+te(u,(a)sina+S u,(a)cosa). (18 +d\2),, sin(n+1/2)a+d\"),, sin(n
In order to obtain the final results fdiS,, 6S,, andéS, we -3/2)a], (24)

must construct, according to Eq4.3), the oscillatory contri-

butionsu,(a), up(@), andug(a). After some algebra, from 1 B - — o

Egs.(4), (6), and(7) it can be shown that S(H)=75 821 [dy sin(n+1)a—d; ' sifn—1)a

~ 1 — (-

fla)= 3 [(1+5s,)%(1+1,)% coda+¢) +di™y ), cogn—3/2a—d( )y, cogn
+1/2)a], (29

+(1-s,)%1-1,)% cog3a—¢)]
whered®)=b+1/2c.

+1 (1-s9)(1-12)| (1+s,)(1+1,)| cosa _Inspecti_on _of Eq(23 shows_, thf_;lt the spectrum of longi-
2 tudinal oscillations of magnetization superimposed on the
a—g 3at o HS precessing mode comprises high-frequency harmonics
+cos +cos )+(l—sz)(1—|z)(003a with ®=wg, 2wq, 3wq, 12w, 32wy, and 5/2wy. The
2 2 same set of harmonics governs the small-amplitude oscilla-
a—o 5a— 3 tions of transversal components of the precessing magnetiza-
+cos 5 +coq2a— <p)+cosT> } + 1 (1 tion( [)see Egs.(24) and (25), keeping in mind thatd(;)
ds; =0].
’ ) ato It should be stressed that the coefficiea(s,,l,) are
—S)(1-137)] cos +coga— @)+ 5 COS—; symmetric with respect to the interchangg—1, (see the
A 3 Appendix, so that the “mirror” precessing HS states found
a—¢ in Ref. 4 for the case of a Larmor resonanece=w,) are
+§ cos™5 (s~ 12 (1+s,)(1 characterized by identical longitudinal oscillations. In con-
trast to this observation, the coefficients entering the expres-
1 Z)cosa+ ¢ +(1—s,)(1—1,)cos _ sions fordS, and 8S, have no spin-orbit symmetry and mea-
2 2 surement of the spectrum of transverse small-amplitude
a—o oscillations in the case of HS mode @t w, can discrimi-
+2 (1—55)(1—@)( COS r+COS— ” (199  nate between the two above-mentioned degenerate spin-orbit
states. It can be checked that in the case of the precessing

Using this expression, after some lengthy calculationsmode |(s,=0.75,1,=0.3) the oscillations withw=3/2 wy
we find have the largest amplitude. Next are contributionsabf

=(1/2 wq,wq), Which have about four times smaller ampli-

3 _ tudes. In the case of the precessing modds}=0.3, I,
(a)= Z [an(s;.l)cosna+a,_yis;,1;)sin(n =0.75 the oscillations witho=3/2 w, are again the stron-
- gest, but now contributions of comparable amplitudes come
-1/2)a], (200  from = (1/2 wo,2w).

604 Low Temp. Phys. 23 (8), August 1997 Kharadze et al. 604



Away from the Larmor resonanceo{ wg) the states | 1
and Il are displaced from their initial positions. In particular, ~ P2=7 [(2+5,)(1=s)l, (1-1,)—3s,5,%],
as has been demonstrated in Ref. 7, in the presence of suffi-
ciently large negative spectroscopic term< w,) the state |
moves toward a spin-orbit configuratieg=1, |,=0, while 2
the state Il loses its stability. Expressions &8,, 6S,, and bs=7551(1=5)(1~1)%
oS, are especially simple for this HS precessing state:

8S,(t)= —e(cosa—2sinal2), bus= — 2035, 1,425, (1/2—s,) (1+1,)(1/2-1,)],

8S ()= g € sin al2, (26) )
b= — 3 [(1+s,)(1/2—s,)l , (1+]1,)+2s, (1/2+s,)

2 _

oSy(t)= 3¢ cos a/2. W (1=1,)(1/2+1,)].

The HS coherently precessing mode in the spin-orbit
configuration s,=~1, 1,0 was recently observed 2
experimentally? It has been identified by means of applica-  bg,=— 5 (1=8)(L2+s) (1=l (A2)
tion of a transverse 90° rf pulse, after which the measure-
ment of the amplitude of an induction signal has allowed to
establish the magnitude of the spin polarization of the pre- 1 ) ) )
cessing state. It is certainly the most direct way to identify a ~ C1=S1|5 (1+8)(1+12)°=3s,/1 | =6(1-2s7)l 1,
spin-precessing mode witB=Sy/2 ands,=1. At the same
time, the spectroscopy of small-amplitude oscillations of
magnetization accompaning phase-correlated spin-precessing 3 2
states could serve as an additional source of information 2~ 2 S13A1 7 (1=S)(12+ )l (1=13),
about their spin-orbit structure.

We would like to thank Prof. V. Dmitriev for providing Cc3=—2bg,
us with his recent experimental results prior to publication.

Cro=4[3(1—252)| | ,+s, (1+4s,)(1+1,)(1/2—1,)],

APPENDIX

4
We give here the expressions for the coefficients appear- Can=3 [S (1—4s,)(1—1,)(1/2+1,)—(1+s,)(1/2

ing in Egs.(23)—(25). We introduce the transverse compo-

nentss, = \/1—522 andl, = \/1—IZ2: —=s,)(1, (1+1,)],

1
;=358 1,1, — 7 (1+5,)%(1+1,)%, Cop=2bey. (A3)

1
8,=7 [3(s.1,)2-5,(1-5,)l (1-1,)],

ag=— o (s,1,)% *E-mail: khar@physics.iberiapac.ge
1= —4(1+s,)(1/2—s,)(1+1,)(1/2—1,),

2
azp=— 5 [S (1+s)l (I+1,)—2(1—5s,)(1/2+s,)(1
32 3 [ 1 ( Z) 1 Z) ( 2 2 1yu. M. Bunkov, in Progress in Low Temperature Physids 24, W. P.

Halperin (Ed,), Elsevier Scienc€1999, p. 69.
—1,)(12+1,)], 2, A. Fomin, in Modern Problems of Condensed Mattciences, V. 26:
Helium Threge W. P. Halperin and L. P. PitaevsKitds), North Holland,
2 Amsterdam(1990, p. 610.
asp=¢ SL(1- )1 (1—=1,). (A1)  3G.E. Volovik, J. Phys.: Condens. Mag, 1759(1993.
4G. Kharadze and G. Vachnadze, JETP LB, 458 (1992.
These coefficients have spin-orbit symmeftijey are  _V- V. Dmitriev, private communication.

i i N 61. A. Fomin, JETP50, 144 (1979.
invariant ats,«1,). On the other hand, the coefficieftand 7G. E. Vachnadze and N. G. Suramlishvili, Low Temp. Phga, 545

¢ have no such symmetry: (1996.
8V. V. Dmitriev et al, Phys. Rev. Lett7, 86 (1997).
b :1 s 3|2 _ E (1+s )(1+] )2 _332| I This article was published in English in the original Russian journal. It was
LR ) z z z Lz edited by S. J. Amoretty.
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SUPERCONDUCTIVITY, HIGH-TEMPERATURE SUPERCONDUCTIVITY

Scaling of critical current in granular HTS materials
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Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk,
Russid
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The temperature and size dependences of critical current of three bismuth-based and one yttrium-
based ceramic samples of rectangular cross sections in zero magnetic field are studied by a
contactless method. It is shown that the critical current in ceramic HTS can be presented as the
product of temperature- and size-dependent factors. The temperature-dependent factor

describes the individual properties of Josephson net for each sample, while the size-dependent
factor is a universal homogeneous function whose index is independent of the ratio of

the sides of the cross section, temperature, and individual properties of the HTS samdg97©
American Institute of Physic§S1063-777X97)00308-3

INTRODUCTION since these dependences cannot be regarded as reliably sub-

. . stantiated in the general case.
A granular high-temperature superconductor is a system

of granules forming a three-dimensional Josephson network
. ) OBJECTS AND METHODS OF INVESTIGATIONS
of weak bond$. In a strong applied field, most of these
bonds are ruptured, and such a superconductor can be re- We analyzed the dependence of the critical current of
garded as an ensemble of noninteracting grarfulesthe  four ceramic HTS samples on the size of rectangular cross
case of weak fields smaller than the lower critical field of thesection(samples 1-¥and on temperaturgsample 1in zero
grains, the properties of the granular system can be describexternal field. All the samples were prepared by using solid-
in the framework of weak-field electrodynamics of HTS phase synthesis. Sample 1 {g?h, sSr; CaCus0,) had the
materials>~> However, the experimental study of the effect density 4.75 g/crhand the superconducting transition tem-
of such fields(of a few oerstedson the critical current in a perature T.=106.3K, sample 2 (Y-123) had the
ceramic sample is complicated since the contribution fronparameters 4.97 g/cm and T.,=91.2K, sample 3
the field created by the transport current itself becomes sigBi; Pl ,S,CaCwO,) had the density 4.71 g/cmand
nificant. Different regions of a spatially homogeneousT.=109.1K, while sample 4 (BigPhy 3Sr Ca ¢Cus 30)
sample are in fields of different intensities during the passagbad the density 4.87 g/cmand T.=108.6 K. The x-ray
of current, since each intergranular junction is in the overalphase analysis did not reveal the presence of the Bi-2212
field created by currents passing through other branches ghase in samples 1, 3, and 4, but Cagweas present in
the Josephson network. Consequently, the only method afample 3 in the form of the impurity phase.
control for this field is probably the variation of the sample The critical current was measured by the contactless
cross section. However, most of authors investigated the sdransformer technique, which is widely used for studying
called size effect, viz., the dependence of the critical currenHTS objects-%1419The sample in the shape of a ring having
I, and its average density on the size of the cross section & rectangular cross section was placed inside a ferrite case-
a ceramic HTS sample in zero field for various sample cros$ype magnetic core together with the primary and the mea-
sections*®~1" It was found® that the change in the height suring winding of a transformer. When ac current was passed
and width of the sample of rectangular cross section leads tthrough the primary, a current of the opposite direction was
different changes in the magnitude of critical current. Theinduced in the superconducting ring so that the magnetic flux
size effect is associated with the magnetic field created oaccumulated by the central kernel of the case-type core and
the sample surface by the critical current passing througipassing through the hole in the ring and through remaining
i, 1014.16 windings remained unchanged. When the current amplitude
In this paper, we analyze the dependence of critical curin the ring approaches the value of the critical current and
rent on the temperature and size of the rectangular crossxceeds it, a signal in the form of a sharp peak is induced in
section of some HTS samples in zero external magnetic fieldhe measuring winding. The magnitude of critical current is
It is shown that the functional dependence of critical currentrecorded at the moment of emergence of the signal and cal-
can be presented in the form of the product of two factorsculated from the relatioh.,=n4l,, wheren; andl, are the
The size factor is a homogeneous Euler functhne., the  number of turns and the amplitude of the current in the pri-
critical current of an HTS ceramic obeys the similitude prin-mary. The values of . were measured at frequency 20 Hz.
ciple. We will not use these or other empirical dependence3he electric field in the sample at the instantl pfecording
of critical current on magnetic field in analyzing the resultamounts to~10 2 uwV/cm. At each fixed temperature,
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FIG. 2. Temperature dependence of critical current in sample 1 for various

. . ) - ) cross sections (in - mm): 1.140x1.542, (O) 0.955x1.283, (0O)
FIG. 1. Diagram illustrating the variation of cross section of sample 3. Theg g55¢1.150 (M) 0.693x0.831, (¢) and 0.5540.748 ; () I is the
indices of the points are indicated only for initial cross sections. normalized aependence of the criical current in thTis sample:

Ir=1(%,Y, T)/1:(x,y,77.3 K).

10-20 measurements were made. The spread in the values of

| obtained in this way did not exceed a few thousandth andions (from 1.280x1.280 to 0.64%0.645 mm and from
amounted to 1% only in rare cases. The size of the samples 280x 1.100 to 0.748 0.645 mm. As a result, we obtained
was measured with the help of a clock-type indicator. Thery set of results for seven families of similar cross sections
the sample was cooled, and the valueg oivere measured yjth values of tanv varying from 1.43 to 0.859« is the

at liquid nitrogen temperatur@amples 2, 3, and)4r in the  angle formed by the diagonal of the rectangular cross section
temperature range froffi; to 77.3 K(sample 1 After this,  ith the x-axis).

the sample was heated, its size was measured, and the mea-
suring cycle was repeated. Such a sequence of procedures
could lead to a change in the superconducting parameters GfSCUSSION OF RESULTS
the sample. For this reason, the valueTgfof the sample We start from an analysis of data obtained for the first
was measured every time during heating and cooling. Thgample. The temperature dependence of critical current for
critical current of the first sample was measured at liquidfive different cross sections is shown in Fig. 2. For each
nitrogen temperature immediately after cooling as well asross section, we obtain the dependences presented by the
before the extraction of the sample from the cryostat at theipper curvel ; in Fig. 2 by dividing the experimentally de-
end of the experiments. If the sample was extracted in a dayermined value of critical current by the value of current at
or two after the main measurements, the values.ofiere  liquid nitrogen temperature. The values lgf obtained for
measured repeatedly for all the samples at 77.3 K. The cortifferent cross sections are so close that the corresponding
stancy of the parameters being measured indicated that tigints in Fig. 2 cannot be distinguished on the adopted scale,
superconducting properties of the sample remained urand hence only the curve connecting these points is pre-
changed. sented. If we carry out such a normalization for another
The width x and heighty of sample 1 were varied in sample, we obtain a different temperature dependendg of
proportion, and hence all the seven sizes of the cross sectigiince each sample is characterized by its own superconduct-
(from 1.140x< 1.542 to 0.554 0.746 mn3) were similar. The ing transition temperature, and the normalized dependences
size of the cross section of sample 2 changed according towill pass through zero at different values Bf.° Thus, we
similar regularity. The values df. were measured for six can draw the conclusion that such a dependence of critical
similar  cross  sections from 1.942.768 to currentis a characteristic of the ceramic sample material and
1.122x1.333 mm. The variation of cross section of sample 3is completely determined by the temperature:
followed a more complex regularity shown by the step line
in Fig. 1. For this purpose, three families of similar cross (M) =1cx.y, T/e(xy, To). @)
sections of the sample were obtained. The first family conThe form of this dependence remains unchanged for any
tained five similar cross sections associated with the diagonalther choice of the value oF.
OL in Fig. 1 (from 0.855<1.245 to 0.30X 0.447 mm). The Figure 3 shows the dependence of critical current
second family included 12 cross sections pertaining to diagthrough sample 1 on the length of the diagonal of its cross
onal OC. The third family associated with the straight line section at various temperatures. It can be seen that the criti-
OR was formed by seven cross sections from 1810147 cal current decreases nonlinearly upon a decrease in the
to 0.483<0.550 mm. The critical current of the fourth sample size. Since all intermediate cross sections are similar,
sample was measured for two families of similar cross secit would be interesting to find the ratio of the critical currents
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8 results corresponding to the poixt, y, (see Fig. L It can
be seen that all the points fit into the universal linear depen-
dence
6..
Inlg=pInk. 2
< If we plot the points obtained for another choice of normal-
o 4 ization values, we obtain a continuation of the obtained
curve (these points are not shown in Fig. 4 to avoid compli-
cation of the diagram i.e., the relation 3(k) does not de-
2 pend on the choice of normalization values. Consequently,
we can write
1
0 5.5 1.0 520 (kX ky) =kPle(x,y), ®

d, mm i.e., the critical current of a granular HTS sample in zero
external field, which is regarded as a function of the size of

FIG. 3. Dependence of the critical current in sample 1 on the length of the[he rectangular cross sections, is a homogeneous Euler func-

diagonal of its cross section for various temperatures, K: 921 92.45 . X ! . .

(0), 87.55(x), 82.5(*), and 77.3(A). tion with exponenp. The value ofp can be determmed with _
the help of the least squares technique by using the static
model(2) which does not contain a free term since the criti-

correspondin o these cross  sections i cal current should not change upon an identity transforma-

W rp int rg ted in the dependen f th ’n. "“"tion of the space into itselfi.e., for k=1). Evaluating the

_E; i_e _ Te/elzs)e( T € nipe wt? rcekgx-/:(a Eu?/ dty exponentp for sample 1 in each temperature series of the

=le(xi.Yi, T)/1e(X0,¥0.T) On ki, wherek;=xi/Xo=Yi/Yo fresults of measurements, we obtain a set of values coinciding

according to the model used in our experiments. In view o

inevitable errors, a rigorous equality of the ratios of the sided’vithin confidence intervals, i.e., these values can be aver-
for the cross sec'tioné;I under ir?vest%ation cannot be obtaine ged. Moreover, the verification confirms the validity of

. ) ' ero-point hypothesis concerning the equality of general
For this reason, the quantityk; was defined as P yp 9 d A g

. . mean valuesfor confidential probability of 0.96°° Conse-
ki=0.5(xi /o +Yi/yo). Figure 4 shows the dependencd gf quently, having determined the mean value, we ultimately
on k for five temperature values on the log—log scale. The

uantities corresponding to the fourth cross section of th obtainp=1.40£0.03. Here and below, confidence intervals
9 resp gtot . re determined by using quantiles of the Student distribution
sample(counting from the initial cross sectipmare used as

normalization values. The same figure shows the results a[ﬁlth a confidential probability of 0.95. Thus, the exponent of

measurements for sample 2 normalized to the values corr e Euler function does not depend on temperature, and
. : P : fience the relative curreth; does not depend om and is
sponding to the third cross section of the sample as well a

the results of measurements for sample 3 normalized to thaéetermmed only by the geometrical parameters:
la(X,y)=1c(X,y, T)/1(X0,Yo, T)- 4

Let us prove that the value of the indpxdoes not de-
pend on the properties of a specific Josephson network ex-
isting in the sample or on the ratio of the sides of the rect-
angular cross section of the sample. We use the experimental
results obtained at 77 K for samples 2, 3, and 4. Figure 5
shows the dependence kf on k on the log—log scale for
three families of similar cross sections of sample 3 and two
families for sample 4. The values corresponding to the initial
sample cross sections are used for normalization. It can be
seen that all the points fit into the same linear dependence,
i.e., the results of measurements made for samples 3 and 4
satisfy the definition of a homogeneous function. The values
of p obtained separately for each family of similar cross
sections of sample 3 coincide to within confidence intervals.
The criterion confirming the validity of the hypothesis con-
cerning the equality of mean values is satisfied, i.e., the val-
ues of exponents obtained for three families of cross sections
- —-0.6 for sample 3 can be averaged. Finally, we obtain

p=1.36:0.07. The same refers to the results obtained for
i Sompmeon o e 2 i B mpoures ample 4. In (s cas®=142¢0.04. For sarple 2, we
an in samF[)JIes 2+) and 3(@) at 77.3 K. Thge results obtained rz)at 87.55 K obtain p= 1:36i 0.05, i.e., the fact that the point in Fig. 4
(x) are displaced to the left, and at 82.5K to the right along the axis ln  corresponding to the results of measurements for three
by 0.014. sample fit into the universal dependence is not accidental. In
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FIG. 5. Dependence of the relative currdgtin samples 3 and 4 on the FIG. 7. Correspondence of experimental results obtained for sample 3 to
ratio of the corresponding sides of similar cross sections: the results obuler’'s theorem. The symbof(s, ®, and ¢ indicate the values obtained for
tained for the central, left, and right diagonals are marke®b®, and ¢, points lying on the diagonal®C, OL, andOR, respectively(see Fig. 1
respectively(see Fig. 1, | and O mark the points corresponding to cross

sections of sample 4 of square and rectangular shape, respectively.

We arrive at the conclusion that experimental data can
Fig. 6, the values of the ratios of sides for seven families obe presented in the form of the dimensionless currk{s)
similar cross sections of the four samples under investigatioand | 5(x,y) irrespective of the way in which the sample
are laid along the abscissa axis, while the values of expodimensions are varied. According to the experimental facts
nents for the corresponding cross sections with confidenc€l) and(4), the critical current of a granular HTS material in
intervals are plotted along the ordinate axis. It can be seepero external field has the form
that no dependence of the exponent on the value oftean _
be traced. Calculating the weight-average value, we obtain Iy, T) =GOy, ®)
p=1.39+0.02. Thus, the exponent does not depend on temwhere G(x,y) is a function depending only on the sample
perature, or on the type of the sample, or on the ratio of theize andf(T) the individual characteristic of the material of
sides of its rectangular cross section. In other words, théhe specific sample. Equatidb) shows that it is5(x,y) that
dimensionless currenkg(k) is a universal function. The is a homogeneous Euler’s function:
same result, i.e., relationd) and (4), was obtained by us _
earlier!® but in contrast to this research, we measured only Glkx,ky) =k"G(xy). ©
the sample width at a constant height, and successive cross Let us prove that the critical current in a granular super-
sections were not similar. The dependerig€x,y,) was conductor not only corresponds to the definition of a homo-
more complicated, but was universal, i.e., independent ogeneous function, but also possesses all the properties of
sample material and temperature. such a function. Above all, Euler’s theor&timust be satis-

fied:

X(dl 1ax)+y(dl 1dy)=pl,, )

i.e., the combination of derivatives on the left-hand side is
proportional to critical current, and the proportionality factor
must coincide with the value obtained earlier. The experi-
mental data obtained for sample 3 make it possible to deter-
1.4+ -_— ___‘%_-til - mine the required derivatives by using the difference

1.5

method. Figure 7 shows that the dependence under consider-

ation is linear indeed,i.e., Euler’'s theorem is valid. Approxi-

mating the obtained results by E@), we obtain the value of

12 | D ex.ponentp.= 1.3+0.2, which cpincide; with th_e one qb—
'0.6 1 0.8 ! 1.0 12 14 1.6 tained earlier. The larger confidence interval is associated
) tana with the errors emerging in the evaluation of derivatives.

Since the number of points at which the derivatives can be

FIG. 6. Vqlues of the exponent (_)f thg homogeneous function, obtained fopyaluated is small, we do not divide them into groups asso-

cross sections of the samples with different ratios of sides. Synibols, — ciated with a certain family of similar cross sections during

O, and® correspond to samples 1, 2, 3, and 4, respectively. Vertical lines . . . . .

indicate confidence intervals. The dashed line corresponds to the averagdPProximation, but different symbols are used in Fig. 7 for

value of the exponen. denoting points forming such groups.

1.3
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fields. Indeed, introducing the relative currdry with the
help of formula(5), we eliminate the individual properties of
the sample material:

l6=G(x,y)/G(Xo,Y0)- (10

In view of this relation, any set of ceramic samples has the
same size dependence of the relative current. The size of the
rectangular transverse cross-section of the samples being
compared must vary according to the same law. Let us con-
sider a few examples. If an arbitrary cross-section of a
sample is identical to its preceding and succeeding cross-
sections, we obtain the relatidy=k" from (10) with the
help of (6). In this case, the cross-sections of different
samples need not be identical. This situation is illustrated by
the straight line in Fig. 5. If, for example, only the widttof
-1.2 I 1 1 1 the samples changes while their heighy remains un-
-04 -0.2 oln 0.2 0.4 changed for all samples as in Ref. 16, the curve describing
Yy L . . .
the law of similitude will reflect the behavior of the function
FIG. 8. Correspondence of experimental results obtained for sample 1 tEZ(X/VO) in (9): 1g=F2(x/yo)/Fa(Xo/Yo). If two samples
relation (5) at different temperatureotation is the same as in Fig).3 have identical cross sections, the ratio of their critical cur-
rents will be defined in terms of their temperature factors:

I /1= (X0 /%) PTo(T)/5(T).

It can be naturally assumed that the obtained results are
valid not only for samples with rectangular cross sections.
This raises the question about the magnitude of the index for
.(%,y) = XPF(y/x)f(T). ) §amples with (_)ther t_ype_s of cross sectiqn. It has been shown

in numerous investigations that the critical current of ce-
ramic superconductors depends significantly on the magnetic
field. In our experiments, the external magnetic field was
L(X,Y) =YPF(x/y) f(T). (9) qual j[o zero, and the sample was subj.ecte':d lonly to the'mag—
netic field produced by the current flowing in it. Such a field

is satisfied simultaneously. Such a representation of experflepends on the sample shape, and hence it can be expected

mental data for similar cross sections can be satisfied easifjat the indexp will also depend on the shape of the cross

since the ratio of the sidesandy remains unchanged, and Section. For a circular sample, the functiGndepends only

hence the functions;(y/x) and F,(x/y) are constants, ©n its radiusR. Puttingk=1/R, we obtain from(5) and(6)

while | . depends only om or only ony. Figure 8 shows the ' I.(R,T)=CRPH(T),

dependence of the critical current in the first sample in

double logarithmic coordinates at five temperatures. ThavhereC is a constant. On the other hand, the current in such

curves are displaced relative to one another due to the preg-sample and the field produced by it must be connected

ence of the factof (T) in Eq.(9), which has different values through a relation that is obeyed for all currents, including

at different temperatures. If the results for sample 3 are prethe critical currentl =c/2 RH;, whereH; is the field pro-

sented in such coordinates, we obtain three straight lines thauced by the critical current at the sample surface. The simi-

are displaced relative to one another. In this case, the shift igrity of these two expressions leads to the conclusion that

caused by the factd¥,(x/y) in (9), which assumes different p=1 andf(T) coincides withH; but for a constant factor,

values for different families of identical cross-sections ofi.e., f(T) has the meaning of the magnetic field produced by

sample 3. Going over to new variables in E8), viz., the  the critical current at the sample surface and transforming the

length d of the cross- sectional diagonal and angleand  sample to the critical state.

putting k=1/d, we obtain |.(d,a,T)=dP¢(a,T). For Most of the works devoted to the critical current inves-

samples with identical cross sections, the critical current detigations of HTS objects contain data on the average critical

pends only ord. This dependence is shown by solid curvescurrent densityj.=1,/S (S is the sample cross-sectional

in Fig. 3. Thus the critical current in a granular supercon-area. Using (3), we determine the average critical current

ductor satisfies the definition of a homogeneous function andensity of the sample whose rectangular cross-sectional di-

possesses all its properties. Note that the dependence of crithensions are changed by a factorkof

cal current on temperature and cross-section may change in . (kx.Ky) = KP~2j (X.y)

the vicinity of T.. We shall show that formula&) and (6) JelHOGLKY JelXoY)-

are valid at least for>0.084 7= (T.—T)/T]. Thus, the average critical current density is also a homoge-
Formula(5) leads to the similitude law which is obeyed neous Euler function albeit with a different indpx=p—2.

by the critical current in a ceramic superconductors in zerdsince p=1.38, we find thap;<0 andj. increases upon a

Inlc

W

-0.61~

For the critical current (x,y,t) to be a homogeneous
function of the variablex andy, it is necessary and suffi-
cient that it can be represented in the féfm

Since the coordinates andy are equivalent, the condition
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gradual reduction of the sample size. However, the divereurrent imply that it must obey the similitude law, and the
gence ofj. is not observed, since the nature of {héx,y) average density of critical current is a homogeneous function
dependence changes as soon as the cross section becorokedegreep—2.

comparable with the size of the HTS graif@ a block of

grains. This research was supported by the Russian Ministry of
Let us consider the dependencd g&nd] . on the cross- Science aqd Technolo.gy Policy under the Program “.Current
sectional area. UsingB) and (9), we obtain Problems in the Physics of Cpndensed State,” Project No.
93037, as well as by the Russian Foundation of Fundamental

=S¥ (x,y), jo=S"*"1W(xy). Studies(project No. 96-02-19249a
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It is shown that the phase diagram of B 2netal with a varying charge carrier density consists

of normal phase regions in which the modulus of the order parameter is zero, the so-

called anomalously normal phase in which it differs from zero but has a random phase, and the
Berezinskii—Kosterlitz—Thouless phase. The characteristic temperatures of transitions

between these phases are determined as well as the behavior of the chemical potential as a
function of the fermion density and temperature. An attempt is made to compare qualitatively the
obtained phase diagram with the observed peculiarities in the behavior of underdoped high-

T. superconducting compounds above their critical temperature19€¥ American Institute of
Physics[S1063-777X97)00408-9

1. Peculiarities of the crossover region bounded by theghe spectrum of metals in their NP. The existence of this
limiting cases of superconductivity of condensate of Coopephase(which is also normal in a certain sensell probably
pairs on one side and the superfluidity of compound bosonexplain the anomalous behavior sometimes observed for the
on the other hand have attracted the attention of scientists favormal state of HTS materials, namely, the temperature de-
a long time in connection with a more general problem ofpendences of spin susceptibility, resistance, heat capacity,
description of high¥, superconductoréHTS materials(see, photoemission and optical spectra, éttwhich are being
for example, Ref. 1 The situation for ® systems at zero interpreted by using widely the concept of pseudogap
and finite temperatures is more or less cfeire crossover in  well as the spin gapformed at a certain temperature exceed-
quasi-D systems has also been studie@lthough ing T. considerably in some cases. Sometimes, even two or
incompletely,® while for 2D systems, only the casé=0 three such temperatures corresponding to the emergence of
has been in fact investigatéd. The latter circumstance is certain anomalies are used.
due to the fact that phase fluctuations of the charged complex This communication aims at obtaining apvs. T phase
order parameter in systems are so strong that the estab-diagram of a ® metal with attraction between charge carri-
lishment of the long-rage order in such systems is ruled ouers and calculating the values ¢t and T, bounding the
for any finite T (the Hohenberg theoremiThe description of ~ region of “anomalously normal” phaséANP) as functions
the formation of a nonhomogeneous condensate with an ef n¢ (T, is the temperature at whighvanishes
ponential decrease of correlations, including superconduct- 2. The density of the simplest Hamiltonian describing
ing ones (the so-called Berezinskii—Kosterlitz—Thouless 2D fermions in volumev has the form
(BKT) phase, involves certain complications of mathemati-
cal origin. Nevertheless, certain advances have been made in
this direction also. For example, the BKT transition in the Hoo= 5 (x)
relati\éistic field theory 2+ 1 was studied by MacKenzie
et al,”> while a crossover in the value of charge carried den- gt +
sity ny from superconductivity to superfluidity was analyzed VT (09 099140, @
by Drechsler and ZwergérHowever, the method used in
Ref. 6 for obtaining the BKT transition temperatdiggr has  where x=r,7;¢,(x) is the Fermi field,m and o are the
a number of drawbacks. For example, the equation g effective mass and spin of fermiong,is their chemical po-
was derived without taking into account the existence of gential, V the attraction constant, arfd=kg=1.
neutral order paramet@erwhose nonzero value is associated In order to calculate the required phase diagram, we use
with the violation of discrete symmetry alone, and hencethe Hubbard—Stratonovich methéske, for example, Ref)4
does not contradict the Hohenberg theorem. It will be showrwhich has become a standard approach for solving such
below that the inclusion of this parameter leads to the emerproblems. In this method, the partition functi@gfv,u,T) is
gence of a finite region witlkh # 0 on the phase diagram, a functional integral over Fermi fielddNambu spinors as
which separates the conventional normal ph&#® and the  well as the auxiliary field<I>=Vz,/;T+ z//l+ . In contrast to the
BKT phase. In spite of the exponential decrease in correlagenerally accepted method of calculatifign the variables
tions in this new(nonsuperconductingegion, it can possess @ and ®*, in our case it is expedient, following Aitchison
peculiar properties since the quantitgppears in the expres- et al.® to go over to the modulus—phase variables in the
sion for observables in the same way as the energyAgimp  corresponding integral, i.e., to use the parametrization
the theory of traditional superconductors. In other words, theb (x) = p(x)exd —i26(x)], carrying out the obvious substitu-
electron spectrum of the new phase differs considerably frontion ,(x) = x(X)exdié(x)]. This gives

2

\Y
oo

2m
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Z=f pDpD 0 exd — BQ(p,d6)],

where
T A 2 o1
Q(p,a0)= fo drf drp?—T TrLn & ?)

is the effective thermodynamic potential of the system &nd
is its Green’s function, so that

1 7 v? (V)2
G r=—1d,+ 73 ﬁ-i-,u +Tp— 73| 10,0+ om
+1 iVZ‘9+'WV =G Yp)—3(30); 3
sm T om 1= (p)—2(00); ©)

m
n,:(,u,,T,p)=Z (w2+p?) Y2+ 42T In| 1+exp
(M2+p2)1/2
|- ®)

has the meaning of number density of Fermi partidfes
p=0, expressior{8) describes the density of free fermigns
Direct comparison of expressig@b) with the Hamiltonian of
the XY model! enables us to write the following equation
for TgkT:

T
EJ[MyTBKTvP(MyTBKT)]:TBKT- 9

However, in order to determin€zkt self-consistently as a
function ofn;, we must supplement this equation with equa-

In formula (2), the trace(Tr) is taken over space, imaginary tions for p and w. (It should be recalled that the chemical
time 7(=<B=1/T) and the Nambu indices appearing in the potential in the BCS theory is normally equated to the Fermi

Pauli matricesr; .

It should be noted that the smallness orenergy, and hence the self-consistent approach is not re-

low rate of variation of the phasé(x) is not assumed any- quired)
where at this stage since we have in fact only carried out a 4. The effective potentiakl, defined in(4) has the

transition to new variables.
The low-energy dynamics in the region where# 0 is

determined by phase fluctuations, and hence we can COﬂfll’ﬁ

the analysis to expansions 9f(p,d6) only in derivatives of
0:

O (p,d6)=Qyin(p,30) + Qpol p);

1
Quin(p,d0)=T Tr Zl S(GY)"

p=const

1
ont(p)=v f drp?~=T TrLn G 1 (4

p=const

3. In the expansion of);, up to terms~(V 6)? in (4), it
is sufficient to retain the terms only witlh=1,2. The com-
putation procedure is similar to that used by Sch¥keho
analyzed only the case of high densities at T=0 and
gives’ (see Appendix

T (8
o=y [ ar | arlata T e 1T 07

+Kw,T,p(1, T)1(0,6)2], (5)

where

1
— Ne(u, T,p)

S
Ly

and the quantity

I Top)=

X+ ul2T 6
wi2T Cosﬁ[x +p?l(4T?)]2 (6)

and

(M2+p2)1/2
2T '
(7

u
K(w,T,p)= 7)1 tanh
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form

[£2(k) +p?]2
2T

2 dk
_J (2m)?
—§<k>H,

where £(k) =k?/2m— w. In this case, the missing equations
are the conditions{2 i/ Jp=0 of the minimum of(10) and
the equalityv ~ l&ontla,u— —n; definingny:

[£(k)+p?]"
anh ,

2T
(11)
(12)

{ 2T In cosh

(10)

v:f 2m? 8K + 77"

nF(Iu“iTvp):nf

Thus, equationéll) and(12) form the sought system for
self-consistent determination of the modulus of the order pa-
rameterp and the chemical potential for given values off
andn; .? It was mentioned above that the same equation lead
to the initial values op andu required for calculating gk -

If we put p=0 in (11) and(12), we arrive at equations
for the critical temperatur@ ,(=T¢'") and the value ofu
corresponding to it in the self-consistent field approxi-
mation?:

| ley| v jM/ZTpd tanhu
n——=-— u
Tp T 0 u

M
1+ ex;< T—p)

Heree,= —2W exp(—4=/mV) is the energy of two-particle
coupled states, wher&/ is the conduction band width,
ec=mn;/m the Fermi energy, and a transition #g indi-
cates a transition to the limiv—oo andV—0. It is much
more convenient to use the parametgy than the four-
fermion constantV. For example, Eq(11) acquires after
such a transition the form

(y=1.781), (13

T, In —er. (14)
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2
behavior ofp(eg) at T=Tgky. The regions of NP, ANP, and BKT phase -0,5 1 2
are indicated. 0
T/Tp
FIG. 2. Temperature dependenceofor various values ok /|ep|: 0.05
|8b| (curvel), 0.2 (curve?2), 0.45(curve3), 0.6 (curve4), 1 (curveb), 2 (curve
nN———17— 6), and 5(curve7). (Relative values fo >0 andu <0 were obtained with
(n+p) " —p

the help ofeg and|ey|, respectively. Cold lines demarcate the regions of
the BKT phase, ANP, and NP.

o 1
_Zf_md” U2+ (pIT)D) A exp{u?+ (p/ )32 1]
(19 plained in the case of a 123 cupritbecomes less and less

and we can easily verify that the system of equatiti®, _noticeable with inc.rea{singp as expected. However, it is
(15 has the exact solutiorp=(2|ep|er)? and = !mport{;mt that the kink is observed at the NP—ANP mtgrface,
—|ep|/2+ e at T=02% which means that the relation be- !-€- Prior to the gptual emergence of supgrconducﬂvﬂy. For
tween ex and |e,,| determines not only the magnitude, but this reason, additional experiments clarifying th€T) de-
also the sign ofu. It should also be noted that the quantity Pendence, especially for strongly anisotroftjaasi-D) and
(6) vanishes or{and above the mean-field critical line de- r(_elatlvely gnderdoped cuprates will undoubtedly be of con-
marcating the NP and ANP. siderable importance. N

5. An analysis of the system of equatiof®, (12), (15) _ (d) Curve3in I.:|g.. 2 shows that a transition from local
and (13), (14) was carried out numerically and led to the Pairs to Cooper pairtsign reversal of) is possible not only
following most interesting results presented graphically. @S @ result of an increase & (which is more of less evi-

(a) The ANP region(see Fig. 1turns out to be commen- denj, but also upon an increase Th(for a certain choice of
surate with the BKT region. ny). _ _ ' '

(b) For small ex(<|ep|), the Tgxr(er) dependence is (e Fmally,_ accprdmg to Cal(?ulapons, the ra_\tlo
linear, which is also confirmed by the analytic solution of the2A/ Texr=>4.4 (Fig 3) in all cases, which is in accord with
system of equations(9), (12, and (15 leading to experimental data for HTS materials; in this case, the value
TekT= €e/2. It should be noted that the temperature of for-
mation of a uniform order parameter is of the order of

T.=e€:/(2a) (Wherea>1) for the quasi-B® modef in the 8
limit of small n; also. This means that weak three-
dimensionalization can preserve both the ANP region, and 6k 28/ Taur

the BKT phasdat least, for smalh;), which is observed, for
example, in the relativistic quasiE2 model}* although the
concentration dependence was not analyzed in it. On the
other hand, an increase in the three-dimensionalization pa-
rameter can and must lead to the disappearance of the BKT
phase, i.e., to its “replacement” by an ordinary supercon- 2F
ducting phase with a uniform order parameter.

(c) Figure 2 demonstrates graphically the relations be-
tweeneg and|ep| for which the quantityu differs consider- 0 1 2 3 4 5
ably from ec. In other words, the Landau theory of Fermi eF/|ebl
liquid is not quite suitable for describing such metals with a

low fermio_n density éF.N|8b|)- The |_(ink On_theﬂ atT=T, FIG. 3. Dependences MTgcr and 2A/T, on e (we assume that
observed in the experiments considered in Ref. 12 and exx=(u?+p?)*? for u<0 andA=p for u>0.

2A/ T,
E-S
C\,
>
~
5
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of 2A/Tp(=2A/T2"F) is smaller and attaingfor eg>|ey|) dimensional case, fluctuations are especially strong and can
the limit of the BCS theory equal to 3.52 as expected. Theblur the corresponding phase transition to such an extent that
nonmonotonic dependenceARer)/T,(eF) is due to the no temperature peculiarities of thermodynamic quantities are
above-mentioned difference between the quantieendp  observed in the vicinity of the transition. It is appropriate to
for u<0 (see footnote Ron p. 616. note that HTS materials indeed exhibit a behavior close to

6. Although the phase diagram was obtained under simthe predicted mode, although a literal comparison of the
plifying assumptiondfor example, only the fluctuations of simple model under investigation with complex objects like
the order parameter phase were taken into account consisFTS materials would be naive.
tently), it demonstrates the sensitivity of the parameters of its  On the other hand, considering superconducting systems,
critical curves to the value of;. At the same time, it should it should be emphasized that certain changes occur in them
be borne in mind that, in contrast to ®3ransition atp=0, (see above For example, the electron spectrum acquired
the BKT transition occurs in the state in whigh#0, and  features of a forthcoming gap since the density of states in
hence the fluctuations of the modulus of the order parametehe ANP under investigation neag (for «>0) decreases
are less significant in this case, although they lead to theapidly (upon an increase ip), but does not vanish any-
above-mentioned decreaseTip relative toTy . The inclu-  where. In other wordsT, , viz., the temperature at which a
sion of these fluctuations would hardly affect the qualitativepseudogap is formed, is an observable and measurable pa-
pattern, but it would be undoubtedly interesting to estimata@ameter of D or strongly anisotropic B superconductors.
separately the role of each of corresponding contributions oAn obvious reason behind the absence of a true gap in these
fluctuations ofp and 6 separately. It should be borne in mind superconductors in a certain temperature range can be asso-
that the parametrization used by us is convenient and phystiated with the scattering of neutrélincharged fermions
cally justified only in regions wherp# 0. [Green’s functionG(p) in (3) corresponds to such particles

It can be stated with confidence that correlated and nonat phase fluctuations.
correlated pairs whose presence in HTS materials is being However, required investigatioris.g., the determination
discussed extensivelisee reviews in Refs. 7 and 8orre-  of one-particle Green’s function of the initial charged fermi-
spond to regions on the theoretical phase diagram: in the NBng have not been carried out even for the simple model
(T>T,), only the fluctuations of the order parameter areynder investigation. Besides, such investigations can be re-
present; in the P case, these fluctuations are so strong thagarded as very important since the type and the properties of
anomalies associated with the presence of virtual faten 3 transition involving the “ordering” of only the modulus of
be manifested in the behavior of the System even in thl% Comp|ex order parameter remain unclear.
phase. If we compare again the situation with ¥i¢ model 7. Thus, our calculations revealed the two-stage forma-
in which, however, the modulus of spin is also the requiredjon of the superconducting state in ® 2metal, occurring
quantity (which is usually neglectedthe normal phase of a through an ANP emerging between the NP and the BKT
2D metal corresponds to the paramagnetic phase in thishase. We proved only the existence of the ANP and calcu-
model with zeroon the averagespin at a lattice site. In the |ated its boundaries, while its physical properties, and above
ANP region (Tgxr<T<T,), the modulus of the order pa- gl the spectrum, require further investigations.
rameter becomes finite, indicating the existence of a finite | conclusion, let us briefly consider why the anomalies
number of stable pairsvhich, however, are still incoherent in the behavior of physical properties of HTS materials are
In such anXy model, the corresponding temperature regionmanifested most clearly just in underdoped samples. At the
is the region of existence of two-component spins at latticgyalitative level, we can state that an increase in the carrier
site, whose temperature-dependent moduli are identical, anthncentration in quasif2 systems(including HTS materi-
the directions are random and not correlated. Finally, cohery|g) necessitates a suppression of the effect of fluctuations.
ence between pairs emerges beldyir (and/orT. in the  Ag the role of the latter becomes small@g— TMF 16 oth-
quasi-D casg, while in the spin model, spins are somehow epyise, the ANP region in real system would in all probabil-
ordered(nonuniformly of uniformly in the real space. ity contract upon an increase in the hole concentration. As

The phase diagram obtained above can be CO”Side“?é/gards the B model considered above, it explains the ori-
with a certain degree of authenticity, while the phase transiyin of the ANP and the role of the critical temperature cor-
tion between the NP and ANP, in which a neutral orderesponding to the emergence of the modulus of the order
parameter can appear, required separate analyissques-  parameter, but does not allow us to attain the convergence of
tion will not be considered here in detaiDn one handsee, ihe corresponding temperatur&s and Tgyr (or T, in the
for example, Ref. j such a transition is undoubtedly a phaseqyasi-D casg. In this connection, it is necessary to analyze
transition if we formally use the Landau theory of phasethe quasi-® model which permits in principle the existence

transitions: a cert_aln physu;al parametdre modulus of the_ of a uniform order parameter also.
order parameter in our cgsis equal to zero above a certain

temperaturd , and differs from zero below this temperature. One of the authorgV. M. Loktev) is grateful to V. F.

It can easily be seen, however, that the valug ielf does Gantmakher, V. A. Gasparov, N. M. Plakida, and I. Ya.
not appear in thermodynamic quantities, and the calculatiofrugol’ for critical discussions of the superconducting transi-
of an observable of a certain correlator is always accompations in 2D system, including the possibility of manifesta-
nied with the emergence of a cofactor depending on the cotions and experimental observations of various phases in
relation function of the order parameter phase. In the lowthem. The authors are also obliged to the reviewer who
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raised the important question concerning the physical mearwhere the quantit)K(u«,T,p) was defined in7). It can be

ing and observability of the temperaturfeg.

APPENDIX A

Let us derive the kinetic compone(8) of the effective

action (). For this purpose, we must determine the first two

terms of the serie¢d), which are formally presented in the

form QV=T Tr(GX) and Q{2 = (1/2)T Tr(GZG3).

Direct calculations of){}) gives

fdrfdr 22

ob=T dk Tr[G(i w, ,k) 73]

km
: (Ve)z)
X|ig.0+ ——|, (A1)
where
il k)—
G(iwn,k)=—lwn +73€(K) = 71p A2)

wi+ E2(K) + p?

is Green'’s function for neutral fermions in the frequency—
momentum representation. Carrying out summatioAih)
over Matsubara frequencies,= w(2n+ 1) T and integration
with respect to momenti, we obtain

(V6)?
2m

(1) _
kin —

Q

f drf drn,:(,qu)(l& 0+ ), (A3)
where ng(u,T,p) is defined by formula(8). It should be
noted that, according t8), the quantity>, has the structure

z: 7301+i02,

whereO, andO, are differential operators. It can easily be
verified, however, that the component Ddfproportional to
the unit matrixl makes no contribution t6(}) .

In the case off =0, when the imaginary time is re-
placed by the real time, it follows necessarily from the
Galilean invariance of the theory that the coefficientaf is
uniquely connected with the coefficient oF §)? so that the
latter cannot be generated 6y2).%1° At T+#0, such argu-
ments become inapplicable, and hence the valueﬂ@?

seen that the obtained expression does not change the coef-
ficient of (V6)2. It can easily be verified that the cross term
including the product oD, andO, in ka iS missing.

Finally, the calculation of the contribution from®, in
(2 leads t@

kin
_T B T
)‘Efodff o 2y

>

n=—w

Q

Q(0;

dk k2 T G(i wy, k)1 G(iwy, k)]

(V6)?
4m?

(AB)

Subsequent summation over Matsubara frequencies ulti-
mately gives

Q{50 )=—Jﬁd7f dr —2—21 fdk
kin 2 0 3272m
k2
X CosRI{E2(K) + p B 72T ]

The last expression tends to zeroTas»0 as expected, but
remains comparable {&\3) at T# 0. Combining(A3), (A5),
and (A7), we arrive at(5).

(V)2 (A7)

*E-mail: vloktev@gluk.apc.org

UThe total derivative with respect tois omitted.

2|t should be borne in mind that, in the mode of local pairs, when0, the
gap A in the quasiparticle excitation spectrum is equal noptéas for
w>0), but 2+ p? (see Ref. 2 and the literature cited thejein

9In a certain sense, the temperatligis the pairing temperatur@.e., the
temperature of formation of local or Cooper painshich is often denoted
by Tp in the 3D casé? It should be borne in mind, however, that in view
of the discrete nature of symmetry violation for# 0 noted above, the
value oft, remains finite even in the case when fluctuations of the order
parameter modulus are taken into account. Naturally, the valug, of
which is slightly smaller than the critical temperatuf¥" in the mean-
field approximation, remains finite in theD2case also. This distinguishes
it basically from the latter temperature which immediately drops to zero
when fluctuations are taken into account if we treat it as the temperature
corresponding to the emergence of complete uniform order parafaetbr

must also be calculated explicitly. In this case, the term con- ot its modulusy.

taining O, leads to the expression

(Op)= JdTJdr(2 2

>

n=-—ow

020
km

dk Tr[G(i w,,k) 73G(i 0, ,K) 73]
(V)2

2
Zm)’

Summation and integration of this expression leads to

(A4)

x|ig,0+

@a —_ 1 [#
Qkin(ol)_ 2 0 dr drK(MrTyP)
2)2
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(Vo)

id,.0+
9-0 2m

(A5)
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“Higher-order derivatives have not been determined.
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Lower critical fields of textured high- T, superconductors
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The possibility of studying the anisotropy of lower critical fields in HTS materials during the
measurements of critical currents of textured samples subjected to the action of magnetic
fields applied in three different directions is explored in the theory of magnetic properties of
anisotropic superconductors. The critical fiel& andH¢,; of the highT. materials

YBa,Cw0;_5 and DyBaCus0,_ s are determined afl=77.3 K. It is found that the dependences
H‘g‘f(mc/mab) andH¢; (m./m,p) are universal for all the investigated samples. 1€97

American Institute of Physic§S1063-777X97)00508-3

INTRODUCTION fields H.; is disputable even if we have a complete quanti-
tative description of the HTS texture, i.e., if the grain orien-

It is well known that Abrikosov vortices start penetrating tation distribution functiofODP) can be reconstructed from
type 1l superconductors including all high- compounds the results of x-ray or neutron diffraction experimehts.

(HTS materialg without any exception in the applied fields The modern theory of magnetic properties of anisotropic
H=H.,, whereH, is the lower critical field. The values of type Il superconductorsywhich had been constructed before
H.1 which play an exceptionally important role in the elec- the discovery of high-temperature superconductivity, makes
trodynamics of type Il superconductors are determined freit possible(see below to study the anisotropy of the field
quently by using the *“classical” magnetic technique: the H.; of an HTS material on the basis of simple experiments
critical field H, at a given temperatufE is determined from  on polycrystalline objects. Balatskét al.” proved, among
the kink emerging on thévi(H) isotherm obtained under other things, that the penetration of magnetic vortices in an
diamagnetic screening of zero-field coolitigf-C) (M is the  type Il anisotropic superconductor must start for a certain
magnetic moment of the superconductor; see, for exampleninimum value ofH.;, which, however, depends on the
Ref. 1). Apparently, the penetration of the magnetic field in aorientation of the applied fieltl relative to the crystal axes
type Il superconductor would be accompanied by a decreas® . As the applied field increases, the vortex lattice rotates,
in the critical current ; for H=H;, but the effect observed and the direction of inductioB coincides with the fielcH

in HTS ceramics is vanishingly smalThe values of,, for ~ only when the field attains the valu¢* corresponding to
HTS materials can be determined from the anomalies emergomplete penetratiofiBean’s field. For layered supercon-
ing on the dependencds(H,) of critical current on the ductors(all HTS materials belong in first approximation to
“treatment field” H, which initiates the magnetic flux trap- uniaxial layered superconductors if we neglect a certain an-
ping, leading to a decrease in the critical currkifd) mea-  isotropy in the basal planab of rhombic crystal lattices
sured in zero magnetic field(see, for example, Refs. 3 and the equations for the lower critical field;(y) (y is the

4). angle between the magnetic anisotropy axand the exter-

A number of other methods of measuring lower critical nal field H) and for the angleg at which the field starts
fields in HTS materials are also known. Strictly speaking,penetrating the crystal foH;;=H(y) were obtained in
none of these methods of determinikig, is “direct,” and  terms of the Ginzburg—-Landau “effective mass tensor” for
model concepts should be used for obtaining the values dNc>Mg, (M, andm,, are effective masses of an electron in
the field from the results of measurements of certain physicahe directions perpendicular and parallel to the layer, respec-

quantities> tively):
For isotropic superconductors with cubic symmetry of
the crystal lattice, the magnetic and current methods of mea-  Hc1(y) =H&[coF y+(me/myp)sir? y]~ 2 (1)
surements of lower critical fields are quite suitable. In the
case of strongly anisotropic HTS materials, these methods tan §=(m./m,)tan vy, 2

are applicable, strictly speaking, only when the correspond-

ing measurements are made on single crystals to which whereH¢; is the lower critical field along the anisotropy axis
magnetic field is applied along the principal crystallographicc.

axes. For granular HTS ceramics, especially in the presence The idea of the method of determining the anisotropy of
of preferred orientation in the arrangement of graftex-  lower critical field of HTS materials developed here lies in
ture), the results of magnetic or current measurementd @f  the following. If we apply a magnetic field to a crystal in
can apparently lead only to certain averaged values, the foritihree mutually orthogonal directioths N, andT in the labo-

of averaging itself remaining unclear. Obviously, the resultgatory system of coordinate§=ig. 1), the field forms the
of such measurements indicate that the possibility of obtainanglesa, B, andc, respectively, with the magnetic anisot-
ing reliable information on the anisotropy of lower critical ropy axis. The orientational dependence of the critical field
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N. H types of textures were created by mechanical treatment by
*N pressin§ or by magnetic treatment ak<T..?° The last
c Y stage of obtaining samples was thermal treatment in an oxi-
dizing medium according to the standard technitfliead-
ing to sample fritting and saturation of crystal lattices with
I ~ oxygen to the oxygen index 756~6.90-6.95. Low-
—> ﬂ T H resistivity current and potential Ag contacts were deposited
L on the samples from the vapor phase in vacuum at
T~200°C.
T, HT It was mentioned above that the experiments involved
precision measurements of critical curremtg0) of HTS
FIG. 1. Schematic diagram of experiment. materials in zero magnetic field as functions of the magni-
tude and direction of the “treatment field”
H;(0<H,<1000 Oe), i.e., of the magnitude and orientation
Hey for thel, T, andN directions can be described by three of the trapped magnetic flux. All the measurements were
equations of typ€l). In addition, these equations are supple-made at the liquid nitrogen temperature. As a rule, the value

mented with the fourth equation of H,, was varied with a small “step”AH,~1 Oe.

cog a+cog B+co y=1. 3) A special setup was developed of an IBM PCI/A.T 386
o ) computer for recording current—voltage characteristics and
in view of orthogonality of the axek, T, andN. for obtaining thel .(0)[H,,] dependencelThe setup con-

It is well known (see, for example, Refs. 5) &hat the  gists of two similar components: the block controlling the
anisotropy of the lowerHi.;) and upperKic,) critical fields,  cyrrentl ., of the source for creating the magnetic fielg in
coherence lengtl§, and penetration depth are connected the form of a solenoid made of copper wire and the block
with the ratiom./mj;, through the following simple relation:  conirolling the specimen currehd,. Preliminary calibration

¢ /HaP=Hab/He = = = 12 of the solenoid with the help of a Hall pickup made it pos-

HealFa MHea™Ean/Ee= Ao Map= (Me/May) '(4) sible to preset the magnetic field,, to within 0.5 Oe. The

specimens were placed in a Dewar flask inserted in the sole-

It follows hence that, from the measurement of the Iowernoid. The currentsy,andl yp.as well as the voltagsl,care

CI’I'[IC.a| fields for the three orientations of the magnetic f|eIdLed to the computer through the KAMAK interface with the
relat|\{e to the axes of the Qrthqgonal laboratory system o elp of digital-analog converters and controlling blocks.
coordinates, we can determlr_le five unknowite values of The setup software makes it possible to increase
HCl along the ar.usotr.op)gbams of the crystafi{y) and at smoothly the transport currehg,for a certain value of cur-
right angles to this axisHg;) as well as the Euler angles

d+ of th ot e in the laborat h ¢ rentl . through the solenoid corresponding to a preset value
B, an 1y OT € anisotropy axis in the ‘aboratory sys em“o of Hy, and to detect the voltagé,. across the specimen.
coordinatesLTN) from the four available equations “to

ithin” the effecti tion./ h ) tal The value ofUg,=1 uV was used as a criterion of the criti-
within™ the efieclive mass raling /M,y . The expenmental ., currentl .. After the attainment of this valud, is re-

re?llzatmn to{ thoe ”f‘e”‘Od r?q.uwgs thf. me.aSLtJrr]enlmetr:ts Otf CrItI(':orded, the transport current is reduced to zero, and the next
cal currentslc(0) in a certain direction in the laboratory value of | is stabilized(which is taken higher to avoid

referen<_:e framée.g., along the axit, see '.:'g' Lin zero _hysteresis effecjs After the completion of a measuring
magnetic field on HTS samples as a function of the magni-

. e . .2 “cycle, the results are stored in the hard disk of the computer
tude and direction of the magnenc field apphed prellrn'marllyin the form of thel ((0)[H,] dependences.
at the same temperature, i.e,(0)[Hy]. Having determined
the values of critical fields from the.(O)[H] curves with
the help of objective criterigsee below for three mutually  pscUSSION OF EXPERIMENTAL RESULTS
orthogonal directions of the vectét, (longitudinal direction
HL, relative to the superconducting current, transverse direc- The results of measurements of the dependences of the
tion HY;, and normal directiot?,), we can obtain the val- critical current in zero magnetic field on the magnitude and
ues of critical fieldsH2? and HS, as well as the values of orientation of the fieldH, acting on an HTS YBu;0;_;
averaged Euler's ang|, B, and y for the samp|e under SpeCimen obtained with the help of uniaxial pl’eSSﬂinghiS
investigation as functions of the ratin,/m,,. Obviously, Ccase, relatively weak axial texture in the basal plane is
the obtaining of universal dependendd@(m./m,,) and Observedf are presented in Fig. 2. The results are normalized
HS,(me/m,y) on the basis of measurements on samples of® 1c(0) = Ic(Hy = 0){[Ic(Hy)/1c(0)](Hy)}. Naturally,
the same HTS material with essentially different textures@ll the curves are qualitatively similar. The initial horizontal

(i.e., set of the angles, 3, andy) can serve as a criterion of segments of thel(Hy)/1:(0)](Hy) curves illustrate the
correctness of the method. ideal diamagnetic state of the samples. As the fl¢|din-

creases, granules trap the magnetic flux, which is reflected in
the regions of abrupt decrease on fhe(H)/1:(0)](Hy)
curves. A transition to the region of slow decrease in critical

Experiments were made on textured HTS samples o€urrents upon a significant increaseHp is associated with
YBa,Cu,0;_ 5 and DyBaCusO,_ 5 with T,~92 K. Various  saturation of residual magnetization of grains.

EXPERIMENTAL TECHNIQUE
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FIG. 2. Critical current of an HTS sample of YR2w0,_satT=77.3Kas  FIG. 3. Critical current of an HTS sample of YB2;0,_;atT=77.3 K as
a function of the “treatment field” strength, for the longitudinal (), a function of the reduced field¢« for the longitudinal (), transverseT),
transverse T), and normal ) orientations. and normal N) orientations.

Obviously, the processing of the data requires their cor-
rection, taking into account the demagnetizing fadowith It is also logical to assume that in the case of a not very
a view of applying them to analyze the anisotropyHy; . strong texture, the orientational distribution of granules, and
For a (diamagnetir superconductor in which the magnetic hence the distribution of lower critical fieldBls(y) is
field does not penetratéd(<H,,), the effective value of the Gaussian. Indeed, it can be seen from Fig. 3 that the

fieId_H off _acting (_)qlthe sample surface under the action of the| (H )/1.(0)](Heg) curves have a shape close to the normal
applied fieldH, is distribution function for a random quantitgee, for example,
Her=H,/(1—D). (5) Ref. 13. The probability density, i.e., the value of the de-

In order to calculate the demagnetizing factbrs, D+, :2/;}3/2352Ei(t;?jﬁ)éb('?i/?aezsz?aﬁ :S:Etti;%?g_ozeﬁ 1S cor

andD,, taking into account the actual sample geometry for
the three orientations of the applied magnetic figldT, and

N), we used computational formulas and nomograms de-
scribed in Ref. 12. In contrast to tHe.(H)/1:(0)](Hy)
curves shown in Fig. 2 and corresponding to the same HTS
sample YBaCu;0;_ 5, the[l .(Hem)/l(0)](Hes) dependences
shown in Fig. 3 reveal significant differences in the positions
of various segments of the curve.

In all probability, the presence of segments of abrupt
descent on thel .(Hex)/I(0)](Hes) curves is due to the pres-
ence in the surface layers of the sample of grains oriented at
random relative to the field,, i.e., possessing different sets
of anglese, B, and y between the anisotropy axés of the
crystal and the fieldsl,, oriented along the axds, T, or N
of the laboratory reference frame. This means that the abscis-
sas of all these segments of the(H)/1.(0)](He) curves
contain a complete set of values Bff,;(«,8,y), and the
condition H3<H<HS, must be satisfied for all orienta-
tions of the fieldH,, in the absence of a texture. Owing to
texture which is always present in HTS samples, the “per- 0 * 160 + 260 Aot 300
fect” shape of the curves under consideration is not realized:
the curves are deformed in accordance with the actual distri-
but|o_n of the angles betwegn thg vectoendH;,, for agiven o 4 perivatives d[l (Hy/I(O)JdHy for an HTS sample of
specimen and a preset orientation of the magnetic field  yga,cu,0,_, as functions oM for the longitudinal (), transverseT),
T, or N). and normal N) orientations.

dl; / dHgg . rel. units
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We can assume that the valueshf,, H;, andHY; 420
determined in this way give the most reliable values of lower
critical fields of the HTS specimen under investigation for 2001 0

the three mutually orthogonal orientations of the vector
H, .2 Using these values, we can calculate the lower critical
fields in the basal planab and along the principal axis of
HTS CrySta!S(H 2? andH,) as well as the Euler a_ngles of FIG. 6. Critical fieldsH2P andH¢; at T=77.3 K as functions of the effec-
the magnetic anisotropy axis(e, 8, andy) as functions of  tie mass ratian, /my;, for four HTS samples of YB£u,0;_, (a) and for
the effective mass ratim./m,,. In order to illustrate this three HTS samples of DyB&u,0;_ 5 (b) with different textures obtained by
statement, Fig. 5 shows the dependences of the quantiti@¢giaxial pressing.

H2 HS., a, B, andy on the effective mass ratim,/m,y,

for the HTS sample YB#&Lu;0,_ s obtained on the basis of
experimental data presented in Figs. 2, 3, and 4.

It was noted in Introduction that the universal depen-
dencengf(mC/mab) and H, (mg/m,;,) obtained from the The main result of this research is the development of
results of measurements on samples with different textureisleas concerning the possibility of studying anisotropy of
can serve as a criterion of the correctness of the ideas cofidndamental superconducting parameters of HTS materials
cerning the possibility of studying the anisotropy of lower by measuring critical currents of textured material for differ-
critical fields of HTS materials by using current measure-ent orientations of the magnetic field and the experimental
ments on polycrystalline objects, which are developed herédmplementation of the proposed method. In order to obtain
Indeed, it can be seen from Fig. 6a that the correspondinthe dependencelﬂ@f(mclmab) andHg (mg/myy), there is
curves obtained for four HTS samples of YBarO,_ s with no need to use information on the texture of a material.
different textures of the basal plane coincide to a high degreMoreover, the Euler anglds, 8, andy) of the “averaged”
of accuracy (while the dependences af, 8, and y on  anisotropy axi of the HTS material obtained on the basis
m./m,,, differ significantly. of measurements of lower critical fields carry sufficient in-

The universal nature of the dependences of critical field$ormation for describing the texture of the HTS material in
is also observed for the HTS ceramics DyBe0O,_s with  the language of polar diagrams or the orientation distribution
three different types of texture obtained by magnetic treatfunction for graingagain as a function of the effective mass
ment of powders al <T (Fig. 6b. ratio).

0 20 40 60 80 100
m. /m ab

CONCLUSION
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YThe critical fieldH,; can also be determined from the measuring magnetic
field H, opposite to the “treatment field"H, and compensating the
trapped magnetic flux.

In this case, the dependendeés(H 1)1 (0)](Her) for the longitudinal () Translated by R. S. Wadhwa

622 Low Temp. Phys. 23 (8), August 1997 V. A. Finkel’ and V. V. Toryanik 622



LOW-TEMPERATURE MAGNETISM

Nonlinear stationary profile waves in spatially disordered magnetic media
E. A. Ivanchenko

National Science Center “Kharkov Physicotechnical Institute,” 310108 Kharkov, UKraine
(Submitted February 27, 1996; revised November 29, 1996
Fiz. Nizk. Temp.23, 830—834(August 1997

A nonlinear evolution system of hydrodynamic-type equations describing a three-dimensional
multisublattice magnet is investigated. Explicit form of the energy density function for

magnetic systems that have an invariant energy density relative to right and left spin rotations is
obtained. For quadratic-biquadratic dependence of the energy dénsigrms of Cartan’s

invariant functiong exact solutions are obtained in the one-dimensional case for spin density in
the form of stationary profile waves. Solutions for magnon fields that induce such waves

are also obtained. €1997 American Institute of PhysidsS1063-777X97)00608-1

INTRODUCTION {S,.,e}=0, ()]

The analysis of spin excitations in spatially disorderedwhere
media like multisublattice magnets, Hén the superfluid
state, spin glasses, etc., is based on the hypothesis about Sazf d3xs,(x),
spontaneous symmetry violation of the statistical equilibrium
statel”? This hypothesis formed the basis of the hydrody-we obtain
namic approach proposed in Ref. 3 for formulating dynamic
equations for magnetic media with a spontaneously violated
symmetry relative to spin rotations. Linear dynamic equa-Hereb is an arbitrary orthogonal matrig = as, and w
tions were obtained in Refs. 4 and 5. Nonlinear dynamics= 1/2 €,5,85, V@, is Cartan’s right form function. Using
was taken into account in Refs. 6 and 7 using the method dPoisson’s bracketl), we can write the equation of motion
phenomenological Lagrangians, and in Ref. 8 using thdor a spatially disordered magnet in the Hamiltonian form
Hamiltonian formalism. without allowance for the dissipation:

The dynamic variables describing the nonequilibrium ¢ ={s, H}=-V,4, ¢
state of magnets with a spontaneously violated symmetry ¢ = ¢’ Dok
include the spin densitya(x)(a=x_,y,z) and th_e order pa- éaﬁ:{aaB7H}:aapepﬁyas e, (5)
rameter, i.e., orthogonal matrix of rotationa,g(x) §
x(a'a=1), for which the set of Poisson brackets has thewhere
form

e(s,a,w)=¢(bs,ba,bw)=¢(s,0)). (4)

, ) Hzf d3xe(x

18400, 85X )} = €,5,8,(X) 8(x—X'), e

{Sa(X),84,(X" )} =€4,85,(X) (X—X'), 1 is the Haml!ton!an of the system. The dot over symbols in-
dicates partial time derivative.

{aqap(X), a,,(x")}=0. For the variabless, = a,sSp, Wak = Anpwp the

We shall analyze the dynamics in the longwave limit POiSson brackets have the form
when spatial in'homogeneities of dynam?c var_iables are {Sa(X),Sp(X" )} = —€,3,8,(X) S(X—X'),
small, and take into account possible nonlinear interactions ,
of spin waves by using the concept of spontaneous violation {ow(X),0p(x");=0,
of the SO(3) symmetry of spin_ rota_tions relative to which {8(X), @ (X' )} = €40 5001 (X) S(X—X')
the exchange interactions are invariant. We assume that the
energy density is a function of the quantitgs, andVa or, + 8,5V O(X—X"). (6)
equivalently, a function of the quantitiesa,
w(a) = 12e,4,a,,Va,5 (Cartan’s left form func-
tion):

The evolution equation£5) in variabless, ,w . there-
fore assume the form of equations with Maurer—Cartan
constraint$°
S(X,SQ(X’),a(X’))ZS(Sa(x), wak(a)ia)i k

sa: — Vk&@aks + ea37(§ﬁ(9§y6 + @Bk&@yks) y
=X,Y,Z. (2 .
: : . o @ k=~ Vids €T €upy®pkTsy8, @
Since the energy density of exchange interactions is invariant
to uniform rotations Vi@ 4i = Viw k= €up,0 5@ i -
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In these equationsy, = 1/2 eam(aaT) 4p 1S the right 5,= — Ox(pw o+ QTS,),
form which is connected with the time derivative, and

__ : i s 1
w, ds &. It fqllows from this system of equations that D= — 0 2t qm@, |+ = Cupy® xS, (14)
the energy density and the momentum components are X X
conserved locally: _
™= §a(£)ax .

é:_vka§a8(?@ak81 Fa:_vktiki (8)
SOLUTION OF EQUATIONS
wheren; = s,w,;, and
_ We shall now obtain the exact, nonlinear, stationary pro-
tik=~ Sik(e = Sads &)+ Quid,, & ©  file solutions, i.e., solutions for the case in which the re-

is the momentum flux density tensor. quired functions s,(x,t),w«(x,t) depend on the self-

The general system of equatiof® was analyzed by us Simulating variablex+et (the parametere defines the
earlier" In the present work, we shall derive formulas de-Various propagation velocities of perturbations in the sys-
scribing helical spin density waves in an isotropic quasi-one{€m- In this case, the system of equatidig) assumes the

dimensional magnet, taking into account the biquadratic conform

tribut.ions to_ the energy depsity. lvan@vobtained sqliton (€S,+ pwax+qms,) =0,

solutions using the Lagrangian approach for quadratic depen-

dence of the energy densitgmorphous magnetNonlinear N §_a+ ’_ E 15
dynamics of multisublattice noncollinear antiferromagnets | €2ax™ " T AT @ax| = Capy@pxSy. (19

with modulated magnetic structure in an external magnetic
field was studied in Ref. 13. pro At
d(x+et)’

It follows directly from this system of equations that

MODEL ENERGY DENSITY
es, T pwaxtqms,=C,,
. . (16)
Let us consider a disordered magnet whose energy den-

L . ; . ; : C,S,—es
sity is invariant relative to left and right spin rotations. In this — Az “-a
case, the energy density functiensatisfies the overdeter- P+q_5i

mined system of partial differential equatioffs:

whereC, are integration constants. We can use these equa-

€apy(Spds e+ wpd, &) =0. (10) tions to eliminate the unknown functions,, . At the first
aB\ 2805 €T Wpilu,, i : : :
stage, we obtain a system of three ordinary differential equa-
The general solution of this system is tions:
2 2 2 2
&= G(Sy Wax Qay: Wz Tx» Ty 2 T2), (11) (K" 8ap+FoF g)Sh=€up,CpSy . (17)

where G is an arbitrary function of the above arguments.iy which the following notation was used:
Since the systeril0) is invariant to the group of transposi-

tions of the indeX, it is expedient to go over to symmetric k'=p—x(e+qm)?, 18)
variables, after which the practical calculations can be con- 12
: . , e X9 2(ep+0C,8,)
fined to the following expression for the energy density: F.=|—= a————————>— S -
ptas; pras, -
e=¢gjte,, . A
. _ If we know the explicit form of the derivatives,,, we can
in which easily transform the system of equatiofl¥) into a linear
1 o q system by multiplying(17) by a matrix reciprocal to the
— 2 2 2 : ’ .
si—a Sut 5 @ait 5 7 (120 matrixk' 8,5+ FFp:
. . . 1
is the isotropic part of the energy and §‘/’:W €ap,C Sy k'3+k'2F2#0. (19)
4 o "
£a=7 (@202, + 02w, + 0o wl,) + > Wil 02, It follows from (19) that the quantitieC,s, and s> are

independent of the variable+et. Carrying out scaling
i — 2
Vi 9 2 2 2 2o 15 5 transformationé = (x + et)|C,l/[p — x(e + qm)?], we
+ 5 (mmy+ et mym)+ o merymz - (13 obtain the following linear system of Euler equations for the
right forms,:
is the anisotropic party is the magnetic susceptibility; is
he rigidi d 5 ds h logical d C,
the rigidity, andq, 7y, &, y,, and 8, are phenomenological C s —e . n.s n = (20)
coupling constants. dg = TepyiBEyr e It
For an isotropic quadratic-biquadratic dependence of thtsi_he solution of this svstem is
energy density(12) on variabless,,w,., we can present Y
one-dimensional spin excitations in terms of the equations Sa(£) =0apSp($0), (22
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where the orthogonal rotation matrix(g'g=1) is defined 1

as WaT5 eaﬁyamé‘yx )
Qap=C0SES, 51+ (1—cCOSé)N,Ng—SiN E€ypN,, (22 (24
andsg(§p) are integration constants. 1
The solution(21) for the right form obtained above can Yax=5 €,8,28\Ix@ )\ -

be used to define the spin density

Sa™ ApaSp- 23 In order to solve this system of equations with respect to the
The orthogonal rotational matria,; satisfies the redefined matrixa,z, we use parametrization with the help of Euler’'s

system of equations anglest

COS ¢ COSe—CO0SH Sinrsing  €OSH sin g cOSp+Ccosy sineg sin 6 sin
a=| —siny cose—cosh cosy sing €cosSh cosy cose—sinyg sing sin 6 cosy | . (25
sin @ sin ¢ —sin 6 cose cos 6

In terms of the variableg),6, and ¢, the system(24)  where ¢, is a constant. The redefined differential system
assumes the form (27) with respect to the functiom(x,t) can be eliminated
easily by equating the functior&x,t) and (x,t), i.e., by

@1=—0 COSY—¢ sin b sin ¢, satisfying the conditions

w,= 0 Sin — ¢ sin 6 cos ¥,

Cs
. ] _—+ZQ.3:kl,
: . C 1
Wix=— 0)( Cos lﬂ_ ¢x Sin ¢ sin ¢’ qm 73_( - ;‘f‘q’]TZ) C3:kleE w1, (29)
Wox= By Sin — @y Sin 6 cos , I
_ 3
W3x= — Iy~ @x COS 6. ky= p—x(e+ C]7T)2'

Let us consider the case in whiah=(0,0-1), i.e.,
C3<0 ands(¢p)=(c41,0,3). The exact solution of the rede-
fined system(26) can be obtained easily fas= ¢,= const.
Under the above-mentioned conditions the syst2), with

These relations are the redefined system of algebraic equa-
tions in parametee, which is evidently compatible since we
can present it in the form

allowance for Egs(16) and(21), becomes 2 C, 1~
: 1 Csp xp
— 6 cosy= ( - ; +qu) Cq COSé, Cs 1 (30
22— —z— —|(xqmz—1)=0.
o 1 _ ( Csp XP (xa
0 sin y= (;—qwz Cy Sin g, This system has two real solutions fer and hence fok;
c 1 andwq:
: 3
—y=—qm —+ ——+qwz)c3,
P X eiz—gc3c3+ 1+g(ci+c§)
0y COSy=2zcC, COSE, cy C% ) 2
in = i X|—m—=*|-—5+—
0, sin y=1zc, sin §, [ 2¢5 (4c§ X '
C e+qm
b= rae, 2= @n , _Gllcd,[CE p|*
P P T 2c, a2 x|
The solution for the function/(x,t) has the obvious cy
form 0 =——= 1+ 32 K+ 2 1+9(cz+cz) k3.
c p 1 c p 1 3/ |%1
Cs Cs 1 3 3
Yp(xt)y=| ——+zc |xX+|qm ——| — —+Qgmz|C3 (3D
P P X Hence the functiord(x,t) is linear inx andt on the set
Xt+ g, (28) {x,t:¢Fma/2, m=0,£1,+2,..}; i.e,,
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0(X,t):kzx+w2t+ 00,
k_&(k+%):& _@+(C§ 21/2
2\t p) p | 2c3\4ck x|

Cl( Cs) |C3|( q 2) p
wy=— | w—qm —|=—" |1+ = c3|ko+ —
27, | @t q P Cs p 3% ¢

X 1+g(c§+c§) k2, (32)

whered, is a constant. Solutions for the parameter#, and
¢ determine the rotational matri25), and the spin density
s, is defined in accordance with E3) as follows:

$1=Cj3 Sin ¢q Sin #+¢4 COS ¢q.
S,=—C3 COS ¢ Sin #+¢; Sin ¢, (33
53:C3 Ccos 0

The effective magnetic fielth, which forms stationary
profile waves with a spin density,, is defined by the rela-
tion hafﬁsat‘?i

1 qCscs ¢ |Cs C%
h+==s,+ ——(c+ch)| — | —
<y ‘ p (C1T03)| ~ 5, 4¢3

+B llz]{a %_E _@

X *p p| 2cq
cz |2

| —+— S, (- 34

4C§ X « ( )

The spin densitys,, induces a field of the same wavelength
and frequency. Particular solution fof 712, (&o)

= (0,c,,c3), n = (0,0, — 1) is obtained in the same way
as described above:

S1=C3SiN@, S,=—C3C0S¢, S3=Cy, (35

Q= k2X+ (L)zt
by replacingc,; by c, in k, and w, in Egs.(33) and (34).
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CONCLUSIONS

A characteristic feature of the Hamiltonian formalism is
a stepwise solution of a system of first-order equations.
Therefore, the choice of the parametrizati@b) at the in-
termediate stage is determined entirely by the form of the
solution(21), which simplifies integration. According to Egs.
(33) and (35), the exact nonlinear solutions for stationary
profile waves are helical in the model under consideration.
Contribution of biquadratic terms in the energy densit9)
increases with increasing density of the initial spin density
distribution in the system and decreases rigiditthis fol-
lows from Eg.(31) for e. and Eq.(32) for the frequency
w,]. However, this dependence is exhibited only in fre-
guency w, of the helical spin density wavé33), and the
wave vectork, does not depend oq.
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Magnetic and galvanomagnetic properties of the ordering Pd >AuFe alloys
N. I. Kourov
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Magnetic and galvanomagnetic properties of ordering alloyg\8¥e are studied in fields

H=<12 MA/m atT=4.2 K. It is shown that the disappearance of spontaneous magnetization in
the region of ferromagnetic—antiferromagnetic phase transition which occurs as a result of
atomic ordering of the RPAuFe alloys is accompanied by peaks of paraprocess susceptibility and
of the anomalous positive Hall effect. The sign of the normal Hall effect is reversed in this

case. It is shown that the peculiarities of galvanomagnetic properties are associated with the
rearrangement of the electronic band structure during ordering of the alloy4.99@

American Institute of Physic§S1063-777X97)00708-1

In the disordered state, UFe alloys are normal fer- inhomogeneous in the FM—AFM phase transition region and
romagnets(FM) with T.~460 K13 Atomic ordering of in which we are interested, we must study the magnetic and
these alloys by annealing @=720 K for 7=30 min trans- galvanomagnetic properties in identical, extremely high
forms them into a state close to antiferromagn€éA&M)  magnetic fieldgin the paraprocess regipn
with Ty~130 K. Such an FM—AFM phase transition is ac- In the present work, we shall discuss the magnetic and
companied by the anomalous behavior of magnetic propegalvanomagnetic properties of ordering ,RdFe alloys.
ties as well as electron properties that have been studiddeasurements were made at the International Laboratory of
earlier. High Magnetic Fields and Low Temperatures, Wroclaw, Po-

An increase in the atomic ordering degreé the alloys  land, at 4.2 K in magnetic fields up td~12 MA/m. The
under consideration leads to an increase in the average effegagnetization] was measured with the help of a ballistic
tive magnetic momentu.z; from ~3 ug/mole for a  galvanometer with an absolute measurement error not ex-
guenched alloy te~5.6 ug/mole for a sample annealed for ceeding~3%. Galvanomagnetic properties were measured
a period =30 min. This is accompanied by a sharp de-by the conventional four-probe technique with a constant
crease in the low-temperature heat capacity and an increasgrrent using instruments whose relative error did not exceed
in resistivity valuesp~200 xQ -cm, which is unusual for 10 %%.
ordered alloy$:® These experimental facts point towards a  The results of measurements of magnetization and Hall
considerable variation in the degree of localization of atomiceffect for PgAuFe alloys with various atomic orders are
magnetic moments upon a transition from FM to AFM statepresented in Figs. 1 and 2. It can be seen that the magneti-
as a result of atomic ordering of PlFe alloys, which is  zation process in atomically disordered state has the conven-
associated with the rearrangement of the electronic bantional form for ferromagnets, i.€l(H) does not display any
structure in the vicinity of the Fermi levé. This is con-  hysteresis in the region of technical magnetizatipelow
firmed by the results of analysis of optical properties of or-the saturation fields~1 MA/m). For H>Hs, the magne-

dering PdAuFe alloys? tization in the paraprocess region can be described by the
Investigations of the galvanomagnetic properties, viz.relatior?
magnetoresistancéMR) as well as normal and anomalous 3=Jg+ xpH, 0

components of the Hall effe¢HE), can provide additional

information about the variation of the electronic band strucwhere Js is the spontaneous magnetization, and
ture and the scattering processes for conduction electrons jp~10°® cn/g is the paraprocess susceptibility.

the region of transition from FM to AFM state as a result of ~ The field dependence of the Hall resistivjsy,(H) for
annealing of the alloys under consideration. The order oti>1MA/m is also a linear function and can be represented
localization of magnetic moments can be estimated by comin the form

paring the effective moment obtained from paramagnetic _ _p* *

susceptibility measurements and the spontaneous moment at PH=RoBHATRI=RoH+47R; Js. @
T~0 K obtained from magnetization curvéisom the mag- Here,Ry andR; are the normal and anomalous Hall coeffi-
nitude of the Rhodes—Wohlfarth parametes/ug).’ In or-  cients respectivelyB=H + (47— N)J the inductance in the
der to single out the characteristics of alloys that are highlysample, andN the demagnetizing factor of the sample. Ac-
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FIG. 1. Magnetization of PAuFe alloys atT=4.2 K in disordered state
(curve 1) and after annealing of samples®t 720 K over the timer= 10
(curve2), 30 (curve 3) and 300 min(curve4).

and to an increase in the paraprocess susceptibility for
H>H,. The field below which the nonlinear dependence
px(H) corresponding to technical magnetization is observed
increases insignificantly, and the slope of the linear part of
the dependencpy(H) reverses its sign in the paraprocess
region. In the entire range of investigated fields
(0=H<12 MA/m, the behavior of MR in partially and
completely ordered samples is characteristic for the parapro-
cess when the longitudinal and transverse effects are equal,
nega6tive, and linearly quadratic functions of the external
field:

Ap _p(H)—p(0)
p p(0)

It follows from (1) and (2) that together with the mag-
netic characteristicds and x,, a mathematical analysis of
the obtained linear dependencd¢H) and py(H) for
H>H,~1 MA/m leads to the values of effective normal and
anomalous Hall coefficient®y = R, + 47Rsx, and Ry
= Rs + (1 — N/4w)R, respectively. Since the samples
have the form of a parallelepiped with~47 in the case
under consideration and the paraprocess susceptibility in

—(J2=32) ~ (2xpdsH + x5H?).

cording to Ref. 3, the MR in atomically disordered alloys isthem does not excee/q)~1074 cm’lg, the true normal and
associated with the paraprocess starting from even weakafhomalous Hall coefficients in which we are interested can

fields (H=0.3 MA/m, and the familiar Akulov rulegsee,

be assumed to be equal to the experimental values of the

for example, Ref. bare applicable for its longitudinal and effective constants within the measurement errors, i.e.,

transverse components.
An increase in the value af in Pd,AuFe alloys leads to

Ro~R§ andRs~Rs .
The main magnetic and galvanomagnetic characteristics

a broadening of the technical magnetization interval, enof the PdAuFe alloys are presented in Fig. 3 as functions of

hancement of hysteresis al{H) curves in fieldsH<Hg,

[\ -106, Q-cm

0 5041|:H.MA/m 100

FIG. 2. Hall resistivity of PgAuFe alloys atT=4.2 K in disordered state
(curve l) and after annealing of samplesT®t 720 K over the timer=10
(curve2), 30 (curve3) and 300 min(curve4).
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the degree of atomic orderin@e., the annealing time). It
can be seen that the spontaneous magnetic moment
M~ 2.8 ug/mole in the disordered state. The value of this
quantity decreases with increasinglue to a transition to the
AFM state after annealing of the samples over a period
7=30 min. In view of the cluster type of FM—AFM phase
transition, the observed decrease in the valug, afi ordered
samples must be attributed to the decrease in the volume of
the FM phase. Naturally, the increase in the “paraprocess”
susceptibility in this case is caused by the ordering of mag-
netic inhomogeneitied~M and AFM clustersarising in the
FM—AFM phase transition region. The ordering process for
such inhomogeneities in a magnetic field is responsible for
nearly identical behavior of longitudinal and transverse MR.
A comparison of the results of magnetization measure-
ments obtained by u&ee Figs. 1 and)3and the paramag-
netic susceptibility results published in Ref. 3 shows that
disordered PghuFe alloys belong to the class of Heisenberg
magnets in which the magnetic moments are extremely lo-
calized at iron atoms. In this case, the Rhodes—Wohlfarth
parametelthe ratious/us) is nearly equal to unity.
According to the experimental results presented in Fig. 3
and Ref. 3, the decrease in the valueugfupon an increase
in » is accompanied by an increase in the valug.gf. On
one hand, this points towards a decrease in the degree of
localization of atomic magnetic moments due to ordering of
alloys, since the Rhodes—Wohlfarth parameter defined in the
manner proposed in Ref. 5 becomes much larger than unity
in this case. On the other hand, however, an increase in the
value of ue and its closeness to the moments of free iron

Kourov et al. 628



Pd,AuFe alloys requires further investigations that would
help in obtaining the local spin and charge density distribu-
tions.

It can be seen from Fig. 3 that a transition from FM to
AFM state in the investigated alloys is accompanied by an
anomalous variation of normal as well as anomalous Hall
coefficients. In partially ordered samples annealed over a pe-
riod 7~30 min, when the earlier investigated electronic
properties of alloys display singularities and sharp variations
are observed in the values of the moments localized at iron
atoms' 3 a reversal of the sign of the coefficieRy(r) is
observed experimentally.

In the one-band approximation, the reversal of the sign
of the normal Hall coefficient indicates a transition from
electron to hole type of Hall carriers for an atomic order
corresponding to an annealing tirre-30 min. For transi-
tion metal alloys, however, the model with one type of car-
riers is very crude. The use of the two- band approximation,

for which
] B R TTTT B A W W T B S
0 10 _ 100 Nt~ Nepte
1, min _—
(MhintNeit2)
FIG. 3. Spontaneous momept(A), susceptibility of paraprocesg,(V), leads to the conclusion that the densitiggn,) as well as

ey 3 02X mobilties ) f h ande-ype Hall carters vary sharply

upon annealing forr~30 min. In any case, the results of

measurements of the coefficieRy are in accord with the

conclusions drawn in Refs. 3 and 4 about a considerable
ions (for frozen orbital angular momentum, the values of rearrangement of the electronic band structure in the vicinity
Kre,, andupe,  are 4.9upg and 5.92up respectivelyled us  of E., which takes place due to a decrease in the overlap-
to the conclusiohabout a decrease in overlapping and henceping of d-wave functions of Fe atoms upon ordering of
an increase in the localization dfstates of the main mag- Pd,AuFe alloys as a result of transition of the nearest neigh-
netically active iron atoms during ordering of JAdiFe al-  bors of analogous Fe atoms from first coordination sphere to
loys. the second.

The above contradiction can be associated with the error  According to Fig. 3, annealing leads to an increase in the
in experimental determination @fs as a characteristic of the anomalous Hall coefficient which is positive for a quenched
local state of iron atoms in the alloys under investigation. Inalloy. The coefficient attains its highest value for annealing
the region of FM—AFM phase transition, the valuesJgf timess~30 min when the FM subsystem in the alloy disap-
obtained experimentally in accordance with Ef).are com- pears. For AFM alloys annealed for a peried-30 min,
puted for the entire volume of the sample although in actuahnomalous Hall effect is not observed within the limits of
practice they are determined only by its FM component. Ifmeasuring error for the technique used, i.e., the coefficient
the FM—AFM phase transition is treated as a cluster pheR;~0.
nomenon, the volume of the FM phase in the alloy decreases The anomalous Hall effect is usually associated with the
with increasingr and remains practically unknown. Under asymmetry of scattering of Hall carriers by various perturba-
such conditions, it is not possible to determine the spontaneions in the metaf:’ It would appear that the sharp increase
ous moment corresponding to the FM part of the sample byn the coefficientRg in the immediate vicinity of the FM—
conventional methods for partially ordered,RdFe alloys. = AFM transition region of the alloys under investigation indi-

In the FM—AFM phase transition region, for the casecates the predominance of scattering at magnetic inhomoge-
when the samples contain two magnetic subsystems, theeities(FM or AFM clusters in the anomalous Hall effect.
value of ¢ determined by the above method does not charHowever, MR studies revedihat for any extent of magnetic
acterize the true moment localized at iron atoms. Hence therdering, the magnetoresistance has nearly the same magni-
Rhodes—Wohlfarth parametei.«/us cannot define unam- tude and amounts te-(2—-3)% of the total resistivity. It
biguously the degree of localization of atomic magnetic mo-can be seen from Fig. 3 that the high-field magnetic suscep-
ments. In such cases, a more correct information about thibility also changes insignificantly upon an increase in the
blurring of d-wave functions of magnetically active atoms annealing time. However, the coefficieR increases by
can be obtained by comparing the value ©f; obtained more than an order of magnitude upon annealing of a
from the results of measurements of paramagnetic susceptiuenched alloy for~30 min.
bility with the theoretical values of the magnetic moment of A comparison of the anomalous Hall coefficient deter-
the corresponding free ion. An estimation of the true degreenined by ugsee Fig. 3 with the resistance data presented in
of localization of the magnetic moments in the orderedRef. 3 points towards the correlation of their dependence on

629 Low Temp. Phys. 23 (8), August 1997 Kourov et al. 629



7in the FM state. This is in accord with the conclusions of (a) the Rhodes—Wohlfarth parameter obtained as a result
the theory of a power relationship between the kinetic prop-of measurement of magnetic properties only is not a true
erties under consideratiér. However, the absence of criterion for the degree of localization of atomic magnetic
anomalous HE in AFM alloys for a large value pfthat moments of transition metal alloys in the FM—AFM phase
depends weakly omr indicates that such kinetic properties transition region when two magnetic subsystems coexist in
are probably determined by peculiarities of the electroniche samples;

band structure in the vicinity oEr . The scattering of con- (b) the anomalous Hall coefficient is positive and non-
duction electrons by the magnetic subsystem perturbations izero only in the FM state of ordering &UFe alloys. As the
insignificant in this case. spontaneous magnetization disappears as a result of anneal-

The behavior of magnetic and galvanomagnetic propering of samples, the negative normal Hall coefficient passes
ties observed during annealing of JAdFe alloys can be through zero and becomes positive in AFM alloys;
explained by taking into account the contribution of interfer- (c) in the region of phase transition from FM to AFM
ence effects in the anomalous HE, and by assuming that thetate, the peculiarities of kinetic properties observed during
dominant role in hall conductivity is played by the rearrange-ordering of PdAuFe alloys are due to a rearrangement of the
ment of the electronic band structure négr in the FM—  electronic band structure neBg .

AFM transition region. The latter assumption is quite signifi-
cant if magnetizedd-carriers are responsible for Hall "E-mail: lowtemp@ifm.e-burg.su
conductivity.

It must be remarked that the maximum value of the co- *M. A. Borozdina, Yu. G. Karpov, Yu. A. Vereshchagi al, Fiz. Metal.
efﬁCie.nt R s about tWQ orders_ of m.agnitUde higher than the 2M.Etlialllggsgc;iél\jl%]i(ilggl?s:eeva, and Yu. A. Vereshchagin, Fiz. Nizk.
quantity Ry. Such a situation is quite normal for most FM  temp 13 173(1987 [Sov. J. Low Temp. Phys.3, 95 (1987].
alloys. The signs of normal and anomalous HE determined®A. S. Shcherbakov, N. I. Kourov, Yu. A. Vereshchagin, and M. A. Alek-
by the type of Hall carriers are opposite in the FM state. This seeva, Fiz. Metal. Metalloved§, 68 (1993. _
is possible in the one-band approximation if the spin—orbit 2'\};&.*;%“;‘2’&1\;‘55\./' Knyazev, and L. N. Tyulenev, Fiz. Metal. Metall-
coupling constank appearing in the expression for the co- sg v Vc;nsovskii,Magnetism,J. Wiley, New York, 1974.
efficient R is negative®’ 5p. Rhodes and E. P. Wohlfarth, Proc. Roy. Stit3 247 (1963.

Thus, the obtained results of investigation of magnetic7A- V. Vedyaev, A. N._Voloshinskii, A. B. Granovskii, and N. V. Ryzha-
and galvanomagnetic properties of ordering/Rere alloys OV I2V- Vuzov, Fizikal, 66 (1987.
show that Translated by R. S. Wadhwa
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Giant magnetoresistance of La ,5Pbg,Cag,Yo1MNO5_ 5 films obtained by magnetron
sputtering
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Magnetoresistive properties of thin Ldh, ,.Ca) Y 71MNO;_ 5 films obtained by magnetron

sputtering technique are studied. A giant decrease in resistapc® 98%) in magnetic fields

H=10 T is observed at a temperature of 175 K. The physical factors responsible for the

effect of composition and preparation technique on their magnetotransport properties are discussed.
The mechanisms and empirical relations describing the temperature and field dependences

of the resistive properties of films are also discussed.197 American Institute of Physics.
[S1063-777X97)00808-9

INTRODUCTION the absence of a magnetic field, respectiyelhe physical
factors responsible for the effect of flm composition and
Magnetic semiconductors with a large negative magnepreparation technique on their magnetic and transport char-
toresistance have a special field of application in microelecacteristics are indicated. Empirical relations describing tem-
tronics. Perovskite manganites have been known for quitperature and field dependences of film resistance, and the
some time as compounds closely related to the electrical ancbnductivity mechanisms corresponding to these depen-
magnetic propertiesee, for example, Refs. 1x:4ollowing  dences, are discussed.
the discovery of giant negative magnetoresistance in systems
based on perovskite manganites the interest in these ma-
terials has grown enormously in recent ye@se review by
Nagaev?). The need for practical application of manganites
in electronics necessitates an increase in the sensitivity of the It was mentioned above that the physical nature of the
materials to weak magnetic fields. Naturally, the solution ofmetal—semiconductor and ferromagnetic—antiferromagnetic
the problem concerning a weak saturation field requires @hase transitions in perovskite manganites is not clear as yet.
deep understanding of the physical mechanisms lying at thelowever, it has ben established that the magnetoresistive
root of the magnetoresistance of manganites. These mecheffect depends significantly on oxygen nonstoichiometry, ra-
nisms are not known at present, but two factors affectingio of manganese ions of different valencies, and the average
significantly the transport and magnetic properties of mangaradiusr , of cations in theA-position. Resistance variation of
nites have been clearly outlined, vizl) the average ionic more than 50% in a magnetic field was observed only in
radius of cations in thé\-positiont**3and (2) the concen- systems withr , smaller than 1.23 A. We took this circum-
tration and mobility of charge carriers, determined by thestance into account while selecting the composition of oxide
ratio of Mn** and Mrf* ions (see, for example, Refs. 1, 2, mixtures. The average cation radius in tAeposition for
10, and 14 However, these are obviously not the only LagsPhy ;Cay Yo MNO;_ s compounds is 1.19 A. According
physical factors responsible for the formation of the magneto the current theory?~3 this should lead to high magne-
toresistive effect. toresistive characteristics of the material, as well as to high
The potential practical application of magnetoresistivemetal-semiconductor transition temperatures. The results of
properties of manganites has also aroused considerable inténvestigations presented in Sec. 3 confirm the accuracy of the
est in the technology of preparation and properties of thirassumptions made above.
films of the material which are characterized by a large value  Thin LaggPly Cay,Yq1MNOz_5 films of thickness
of the magnetoresistive effettMost manganite films were ~3500 A were prepared by reactive magnetron sputtering on
prepared by using the expensive technique of laser sputteririje setup VUP-5M. The powder of required composition
of samplegsee, for example, Refs. 7-However, the more was  synthesized from a mixture of oxides
economical technique of magnetron sputtering was recentl{za;,03,PbO, MnQ,Y,0; and calcium carbonate by anneal-
applied successfully for preparing high-quality films of ing the mixture CaC@for 24 hours at 850 °C in air followed
(LaCa)MnQ,.2> We used the same technique to obtain thinby slow cooling and crushing. Targets for sputtering were
films of Lag Py ,Ca Y0 1MNO5_ ;5 films. In this work, we  obtained by hydrostatic pressing of synthesized powder into
report the results of magnetoresistive studies of such filmgpellets and sintering at 1050 °C for six hours. The sputtering
Among other things, a giant variation of the film resistanceof films was carried out on sapphire substrates
with —AR/Ry=[R(H) —Rg]/Ry up to 98% in a magnetic Al,03(012), whose temperature was maintained at
field H=10 T was observed at a temperature of 175 K800 °C. The pressure of the gaseous mixture AxQ@:4
[(R(H) andR, are the resistance in a magnetic field and inwas 50 mTorr and the residual pressure in the chamber was

2. CHOICE OF COMPOSITION, PREPARATION TECHNIQUE,
AND INVESTIGATION OF THE SAMPLES
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FIG. 1. Temperature dependence of magnetizabbnresistivity p, and S

magnetoresistive  effect AR/R, in  ceramic  samples  of BRI A . R , L

Lag 5Py Cay oY 0..MNO;_5 in a fieldH=1T. 100 150 200 250
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5x10 7 Torr. The results of x-ray structural analysis FIG. 2. Temperature  dependence  of resistivity  of
showed that the ceramic and film samples have a singlg=2%#.C%2Y0:MNO;_; films annealed in oxygen at various tempera-

. . . tures. The inset shows the accuracy with which the dependence
phase perovskite structure. Texturized structure of films was Y P

) P(T)=po+ A exp(—BIT) is observed for the resistivity of films annealed at
observed upon a growth of blocks parallel to {802 —axis 825 and 1000 °C.
of the sapphire substrate. The angle of disorientation of
blocks did not exceed 3.5°.
The resistance and magnetoresistance of films were meaented in Fig. 1. It can be seen that th€l) curve has a
sured as functions of temperature and magnetic field by usroad peak in the region of temperatufg,=200 K. The
ing the four-probe technique. Magnetic field up to 10 kOeresistance is of semiconductor typegp(dT < 0) aboveT,,
were produced by an electromagnet, and up to 100 kOe bgnd metallic type dp/dT > 0) belowT,,. This temperature
pulse technique in a solenoid. The field was applied parallels usually considered as the metal-semiconductor transition
to the plane of the film. The magnetoresistance was indepenemperaturel 5. The magnetoresistance increases with de-
dent of the mutual orientation of field and current. The tem-creasing temperature and is reduced to 20% at 77 K in a field
perature dependence of the magnetization of bulk ceramigl=1 T. It follows from the M(T) dependence that the
samples was measured on pendulum balance magnetometghase transition from the paramagnetic to ferromagnetic state
We did not carry out direct measurements of the oxygeris quite blurred, and magnetization saturation does not occur
concentration in as-deposited films. However, thermogravieven at liquid-nitrogen temperature. This circumstance
tational data for ceramic samples and several other argyoints towards considerable magnetic defects in ceramic
ments(including the results of measurements presented besamples.
low) indicate unambiguously that the films obtained as a The p(T) dependence obtained for films in a magnetic
result of magnetron sputtering are oxygen-deficient. Changgield at various temperatures of annealing in oxygen atmo-
in the oxygen concentration affects significantly the ratio ofsphere is shown in Fig. 2. It can be seen that like for the
Mn3* and Mrf* ions as well as the magnetoresistive effect.original targets, the resistance attains a peak vajug at a
In order to optimize the ratio MiT :Mn**, we subjected the certain temperatur&,,,. The value ofT,, increases and the
films to supplementary annealing in oxygen flow for a periodresistancep,,, decreases rapidly upon an increase in the
of 30 min. Different annealing regimes were tried with thetemperature of annealing of films in the interval 750—-850 °C,
annealing temperature varying between 750 and 1000 °C. and remains esssentially constant upon a further increase in
the annealing temperature. The physical reason belh;nl(?1 such
a behavior lies in the variation of the ratio MitMn** 12
3 DISCUSSION OF RESULTS OF MEASUREMENT and can be described as follows. The stoichiometric LayinO
The temperature dependence of the resistigjitynagne-  is an antiferromagnet and an insulator. Substitution of biva-
toresistance\R/R (in a field of 1T), and magnetizatiad lent ions (PB" and C&" in the present cagdor La®* and
of bulk ceramic samples of kaPh,Ca ,Yq,MnO;5_5, annealing in oxygen lead to the emergence of mobile charge
which were later used as targets for obtaining films, are preearriers and Mfi" ions. This process, in turn, stimulates the
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system to undergo a metal-semiconductor phase transition, 75
which correlates with the magnetic phase transition from the
ferromagnetic state to the paramagnetic state. As the number
of Mn** ions increases, the transition temperatilifg; in-
creases. The characteristic diffusion temperature for oxygen
lies in the region of 850 °C, and any further increase in the
annealing temperature does not affect the diffusion rate sig-
nificantly. However, manganites with all their manganese
ions in the tetravalent state are also ferromagnets and insu-
lators. Hence an increase in resistance and a decredsggin 45
should be expected for a very large number of*Nrons.

This is the tendency displayed by the data presented in £
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Fig. 2. -
An analysis of the experimental results presented in ‘I° 30
Fig. 2 shows that the film resistance abdNg is of activa- ~

tion type and can be approximated quite well by the expres- %
sion p(T)=po expE,/KT) with an activation energ¥, of 1
the order of 0.1 eV. This points towards the polar nature of

film conductivity for T>T,,.>° Note that the exponential 15
temperature dependence of the resistance approaches close
to T,, with decreasing frequency of the metal-semiconductor
phase transition. For films annealed at 1000 °C this law is
obeyed everywhere in the regidn>T,,, which suggests a
higher degree of perfection of crystal and magnetic structure

of films. However, we did not observe any indications of a 100 150 T.K 200 250
transition to the charge ordered state in these flitis. ’

While no special information is available about the rig. 3. Temperature dependence of the magnetoresistive afi®, in a
mechanism of conductivity of manganites in the paramagfield H=1 T in LagsPh; ;Cay,Y1MNO;_; films annealed at various tem-
netic phase, the situation is entirely different for the magnetiPeratures.
cally ordered state. Historically, the first interpretation con-
cerned the properties of manganites in the model of double
exchange between Mh and Mrf™ ions®' (It is also
worthwhile to mention the model based on RKKY corresponding activation energy is about 1.5-2 times higher
interaction?®) However, attempts to explain the large mag-than the activation energy obtained for the paramagnetic
netoresistive effect in the double exchange model encountgshase. For comparison, we observe that the double exchange
serious difficulties It is also difficult to explain several model predicts thd®2-dependence for resistance in the low-
results of magnetic measureméfits on the basis of the temperature regiofY. In several cases, the experimental de-
mechanisms described in Refs. 18 and 19. Earlier, it wapendence p(T) was approximated by the relatidn
proposed by Nagaé¥**that a magnetic semiconductor may p(T)=p,+AT? or even the relatidi p(T)=p,—CT
go over to spatially inhomogeneous state under certain con+ BT?, Such a spread of empirical relations apparently
ditions. Giant magnetoresistance is one of the peculiarities gfoints towards diverse elastic and inelastic scattering mecha-
inhomogeneous stafé”® These ideas were generalized to nisms for charge carriers in the low-temperature region, each
perovskite manganites in the review by Nagd®n our  of which can be enhanced or suppressed by an external force.
opinion, however, the inhomogeneous state model also has a Figure 3 shows the temperature dependence of the mag-
number of drawbacks, especially in view of recent resultmetoresistive effect in the 1-T field for films annealed at 750,
concerning the charge-ordered state in manganite singlg00, 850, and 950 °C. It can be seen that the films are highly
crystals'®!’ The magnetic-polaron mod& which leads to a  magnetoresistive with the maximum effee65% occurring
number of reasonable relations for the resistive properties ait 180 K. The complete field—temperature diagram of the
a narrow-band semiconductor, may turn out to be useful. magnetoresistive effedciR(H,T)/R, of a film annealed at

It was mentioned above that the film conductivity is of 1000 °C is shown in Fig. 4. A 98% decrease in the resistance
activation type in the high-temperature region. It is interestis observed in a fieldld=10 T at a temperature of 175 K.
ing to note that the exponential temperature dependence ghe analysis of data presented in this figure sh(seg inset
resistance was also observed by us at low temperatures. By Fig. 4) that the film resistance has a quadratic dependence
way of an example, the inset in Fig. 2 shows the dependenaen the field at all temperatures>T,,:0(H)= 0o+ kH?.
of the resistance of films annealed at 825 °C and 1000 °C. IBuch a behavior ofr(H) corresponds to the quadratic de-
can be seen that the dependep€€) can be described quite pendence of conductivity on magnetization observed in most
accurately by the expressigi(T)=po+A exp(—B/T). The case$>*?®3for low values of the latter.
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Spin structure of antiferromagnetic disclination
B. A. lvanov, V. E. Kireev, and V. P. Voronov

Institute of Magnetism, National Academy of Sciences of the Ukraine, 252142 Kiev, Ukraine
(Submitted January 9, 1997
Fiz. Nizk. Temp.23, 845—-853(August 1997

The spin structure of magnetic disclination, viz., spin inhomogeneity manifested in
antiferromagnets in the presence of a dislocation, is analyzed. The analysis is carried out on the
basis of the discrete model as well as in the specially constructed generalized continual

theory based on the local introduction of the antiferromagnetism véetod taking into account

the possibility of a change in the length of this vector. In the solution without singularities
constructed for disclination, the modulus of the antiferromagnetism vector vanishes at the center
of the disclination. In the discrete model, the disclination energy depends significantly on

the arrangement of spins near the core and on the type of their interaction. With the proposed
model of spin arrangement, the results of numerical analysis based on the discrete and
continual models are in good agreement. It is shown that planar disclinations are stable to the
emergence of spins from the easy plane. 1897 American Institute of Physics.
[S1063-777X97)00908-0

1. INTRODUCTION tions” in the sublattices and leads to the formation of mac-
roscopic magnetic defects, viz., domain walls terminating on

AntiferromagnetdAFM) have attracted the attention of a special line(disclination. Since a disclination can be re-

a large number of researchers for more than fifty yéae® garded as an antiferromagnetic vortex with a semi-integral
reviews in Refs. 1-8 The spin ordering in AFM is usually value of topological chargevorticity),® its analysis presents
described for a finite number of magnetic sublattices each ain independent interest in view of growing importance of
which is ferromagnetically ordered so that the total magnetiewo-dimensional magnetic solitons and especially vortices.
moment of the AFM is equal to zero in the exchange ap-Magnetic vortices are known to make a specific contribution
proximation. The properties of AFM observed during the lastto the response function of magrfetnd lead to the emer-
decade cannot be explained by using the simple model afence of localized or quasilocal magnon mo®&3hus, the
sublattices. It suffices to mention the peculiar quantum propemergence of a disclination leads to the observed physical
erties of low-dimensional AFMsee Ref. 1 and the exis- effects whose analysis must be based on the study of the
tence of frustrated AFM whose properties cannot be deactual spin distribution in the disclination core as well as far
scribed in general by the simple sublattice model. away from it.

The concept of frustration is usually associated with spin  An analysis of the properties of magnetic vortices can be
glasses in which ferromagnetic and antiferromagnetic link$ased on the discrete spin model as well as on the continual
between nearest neighbors are distributed at random. Hovapproach. The results of these approaches during an analysis
ever, frustration effects can also be observed in magnets withf an out-of-plane vortex in a ferromagnet and in AFM are in
a regular lattice and with the antigferromagnetic interactiongood agreement even in the case when the length parameter
In this connection, we can mention AFM with a triangular in the macroscopic theory, viz., the radius of the vortex core,
lattice® or with a more complexagomedattice® For these s close to the lattice constaat® An analysis of a vortex in
AFM, the division of the initial lattice into a finite number of discrete models can be carried out only numerically for finite
magnetic sublattices taking into account the interaction onlyattices (whose size usually does not exceedx4m). For
between nearest neighbors cannot satisfy the condition ahis reason, the continual approach which makes it possible
minimum energy for neighboring spins, i.e., the condition ofto find general regularities for a vortex in an unbounded
antiparallel orientation. In this case, the problem of themedium plays a special role. Natural roughness of the con-
ground state becomes nontrivial even in the classical spitinual approach applied to real magnets which contain spins
approximation. For example, according to the results of nuin discrete sites can be controlled by comparing with the
merical analysis, a 120° three-sublattice structure observe@sults of numerical analysis based of discrete models. In the
for a triangular sublattice is not unconditionally advanta-case of disclination, however, the continual approach based
geous, while the exact solution of the problem fdagomee on an analysis of the antiferromagnetism vector as a unit
lattice is unknown. The study of frustrated magnets forms awector leads to singularities near the center of the disclination
interesting trend in the modern theory of magnetism. and requires modification.

The strong dependence of the properties of AFM on the  KovaleV'° proposed a one-dimensional continual model
type of the lattice must lead to a considerable effect of exfor describing the structure and dynamics of complex mag-
tended lattice defects on antiferromagnetic ordering. Accordnetostructural topological defects predicted in Refs. 6 and 7.
ing to Dzyaloshinskfi and Kovalev and Kosevich,the In this model, which generalizes the well-known Frenkel—
presence of a dislocation in AFM is responsible for “distor- Kontorova model to the case of magnetically ordered media,
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no singularity is observed near the center of the dislocation
and disclination. However, this model fails to give correct
asymptotic forms of field distribution at large distances from
the center of the defect in view of its one-dimensional nature.

In this paper, we carry out a detailed analysis of the spin
structure of a disclination near its core as well as away from
it. The analysis was made on the basis of the discrete model
for classical spins as well as in the generalized continual
model based on the local introduction of the antiferromag-
netism vectorl taking into account the possibility of the
change in the length of this vector.

In the discrete model, the disclination energy depends
considerably on the arrangement of atoms near the disloca-
tion core and on the nature of their interaction. It is shown
that an anisotropy of the “easy plane” type with a planar
orientation of spins in this model is stable to the emergence
of spins from the “easy plane.”

In the continual model, a solution without singularities is
constructed for a disclination in an AFM near théeNeem-
perature. In this solution, the modulus of the antiferromag-
netism vector vanishes at the center of the disclination. The
possibility of application of this solution at low temperatures
also is discussed. Among other things, a specific model of
spin arrangement is indicated, for which the results of analy-
sis based on the discrete and continuous models are in good
agreement.

x/a

2. STRUCTURE OF DISCLINATION CORE ON THE BASIS
OF LATTICE MODEL

The Heisenberg classical model is often used for a mi-
croscopic description of a magn@tee, for example, Refs. 2
and 3. The model used by us here is based on a two-
d.lmens.lonal square_ lat.tlce W.Ith withdrawn half-“n? of Iattlcg FIG. 1. Lattice fragments used for calculations of the spin structure of a
sites(Fig. 1). Each site is put in correspondence with the spingisciination with a pentagofe) and a triangle(b) of central atoms coupled
vector S of constant IengthSZZSZ: through the exchange interaction. Segments of straight line indicate ex-

change bonds. Light circles denote atoms whose spin orientation is deter-
mined by energy variation, while dark circles denote atoms whose spins are

H= JE (Sxisxj + Syisyj + )\Sziszj)- (o fixed by the boundary conditions.

Here and below, the summation is carried out over pairs
of nearest neighborgd>0 is the exchange integral which is
assumed for simplicity to be the same for all links, anthe 2
constant describing magnetic anisotropy. Assuming that the H =95 2 codoi—¢)). )
AFM has an “easy plane” type anisotropy, we putcQ <1.
We introduce the following parametrization:

In the case of an ideal antiferromagnetic ordering, the
spins of neighboring magnetic atoms are antiparallel. Such

S,=Sm S,=Sy1-m? cose, an ideal antiferromagnetic ordering can obviously take place
5 . (2) only if the number of atoms in any closed chain of exchange-
Sy=Sy1l-m"sin¢. coupled atoms in the crystal is even. If, however, the mag-

Here the values dim|<1, andg is the angle betwee®  netic lattice of the crystal contains a closed chain of atoms
and a fixed direction in the basal plane. In these variables, w&ith an odd number of sites, such a spin ordering cannot

have exist. Before we analyze the disclination, it would be expe-
dient to consider a model problem on the ground state of a
H=JS {\/1——m|2\/1——mf cog ¢;— ¢j) + Amm}. closed chain with an odd numb&¥ of sites and with anti-
ferromagnetic interaction.
(3) We take the energy of spin interaction in the fo(#),

If, however, all the spins lie in the basal plafiewill be  assuming that the summation is carried out over the spins in
shown below that this assumption is confirmed by numericathe chain. For definiteness, we choose an arbitrary site and
calculationg, it is sufficient to proceed from the expression ascribe to it the number=0 and ¢;=0. The sites will be
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numbered in the counterclockwise direction. The systenproblem implies that the vortex center, which coincides with
symmetry allows us to write the solution for the anglgs the origin (pole) of the polar system of coordinates, lies at

which ensures the minimum of energy the center of a unit cell of the magnet. In view of the lower
ok symmetry of the problem on magnetic disclination, the coor-
o =(—1)*m+ — v, (5)  dinate of the pole in the direction of the withdrawn half-line
N of atoms(x-axis) is not defined and must be determined in-
wherek is the site number and a half-integer such that dependently from the condition of energy_minimum. For t_his
—N/2< p<N/2. reason, we proceed as follows. Solving the equations
The energy of a chain containing an odd number of site§H/9S =0 with a fixed value ofS at the boundary corre-
and measured from the level J<2N is defines as sponding to a certain positioxy of the pole, we determine
the spin configuration and its energy for the given Then
En=JS’N(1—cog2mv/N]). we find the energy minimum of the fragment in the param-

eterxy by changing the position of the pole.
Let us start from the simple case when all the spins lie in
the basal planéit will be proved below that this configura-

The absolute minimum correspondsite- = 1/2. Stable
local minima correspond ta’| <N/4. The angle between the

directions of the vectowr,=(—1)'S at neighboring chain ' - .
=(-1)'S g g tion is stable and corresponds to the absolute minimum of

sites is the same for all links and is equal t6i2N. Such a the disclinati Th tion f b it
behavior ofo; corresponds to the behavior of the director, e disclination energy The equation fokp; can be written

vector n during circumvention of a disclination in liquid " t€ form
crystals; the number corresponds to the Frank index of the

disclination. As we move along the chain, the veaigro- an ¢;= 2 sin ¢;
tates through the angler2. This explains the half-integral " X cosg;’
value of v.

We arrange the lattice sites at the vertices of a regular The summation is carried out over the nearest neighbors
N-gon inscribed in a circle of radiuR. For the direction of of theith site. These equations can be solved by the iteration
o which can be specified at each point of the circle in themethod with the initial approximation chosen in the form
limit N—oo, the expression forp; can be presented in the ¢=x/2. For our calculations, we used fragments of two
form o= x/2, wherey is the angular coordinate of the given types depicted in Figs. 1a and b.
point on the circle. For a large number of sites in the chain, The values ofp; at the boundary sites denoted by dark
we can easily obtain the following asymptotic form for the circles in Fig. 1 were fixed by the conditiap= x/2. Energy
ground-state energy = 72JS%/2N. minimization for values ofp; at inner sites was carried out

In a crystal with a square lattice containing a dislocation,for various positions of the pole, and the energy of the spin
the Burgers vector is equal to the lattice constant, and angonfiguration was determined. Then the energy minimum
closed loop drawn through exchange links and embracing theas determined from the position of the center of the discli-
dislocation axis contains an odd number of sites. It was notedation (pole). The dependence of energy on the position of
above that this leads to the emergence of spin inhomogenéae disclination center on the symmetry lirg is shown in
ity, viz., disclination. Variation of the Hamiltonian of the Fig. 2. The minimum is attained a=0.57 for the frag-
magnet along the directions of spins makes it possible to findnent with a triangle of atoms coupled through the exchange
the spin configuration corresponding to this disclination.  interaction at the centdsee Fig. 1pband atxy=0.611a for

In a numerical analysis of the spin structure, we can usé¢he fragment with the central pentag¢see Fig. 1a It is
a lattice fragment with a finite number of sites. In order tointeresting to note that the difference between the values of
determine the structure of the core, we can choose a fragingles¢ and the values of/2 is small even for central
ment containing approximately 100 lattice sites. Its interac-atoms. For example, the corresponding values of angles for
tion with the remaining part of the lattice can be taken intothe configuration shown in Fig. la are ,69.75°, and
account by choosing certain boundary conditions. Usually+ 148.72°. This is quite close to the asymptotic valae&?
we use the so-called fixed boundary conditions, i.e., choosand +=144°. The difference between these values decreases
certain directions corresponding to a known asymptoticapidly as we move away from the center, while an increase
forms of the solution for spins adjacent to the fragment. Inin the fragment size virtually does not affect the spin orien-
our case, the form of these conditions can be determined biation at the central sites.
using the analogy between the closed loop in the lattice and The analysis of the planar distribution of spins should be
a free chain. Considering the closed loop formed by spinsupplemented with the analysis of the possibility of spin
adjacent to the fragment and having a nearly circular shape&mergence from the basal plane. Indeed, according to the
we assume that the angle formed byand a fixed axis is analysis carried out in Refs. 6, 7, a structure of the type of a
equal to half the value of the polar coordinate of this site,domain wall emerging from the center of the dislocation is
¢=x/2. (It should be noted that the same asymptotic formformed in the case of an easy-axis AFM for whick 1, and
can also be obtained from the phenomenological theory; sethe spin distribution is not planar. This means that for an
below) Such an approactthe choice of fixed boundary con- easy-plane AFM with >\ >0, there can exist in principle
ditions of the typee=yx) was used for studying magnetic such ax.>0 that the planar distribution of spins is violated
vortices®® However, the situation with a disclination is for A=\ at least in a certain region. In the case of a mag-
somewhat more complicated. Indeed, the symmetry of theetic vortex, this problem was analyzed by Wysiand the
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of the dislocation. For the models with a pentagon and a
triangle of exchange-coupled atoms at the center, the values
of C are 3.15 and 11.84. The logarithmic dependence of
energy on the size of the system coincides with the depen-
dence following from the continual approximatigsee for-
mula (10) below].

U/U,
1.010-

3. PHENOMENOLOGICAL DESCRIPTION OF DISCLINATION
NEAR THE NEEL POINT

1
1.005 It was mentioned above that sublattices cannot be intro-

duced into an AFM with a dislocation so that the spins in
2 each sublattice be parallel, and the division into the sublat-
tices be consistent for the entire crystal. However, sublattices
can be introduced with the help of the following procedure.
We divide the lattice into several regions that do not contain
the dislocation core. In each such region, we can introduce
1.000 sublattices and define the antiferromagnetism velcas the
l 1 normalized difference between mean values of magnetiza-
0 0.5 1.0 x/a tions of the sublattices. For intersecting regions, the numera-
tion of the sublattices can be matched.
FIG. 2. Spin diSt][ibUtiPH er}etrr?y fOTI Vafiou;_ p;);i“gns of ;he %“:’50“”3‘ Let us consider a system of intersecting regions with
gggn(;e?éet}waosvaergig(r:l_l,ogfoarraﬁg%%eer:togz ér:(chan;évggndinof a(;grrTrwes reprg-n Ideal_ lattice, which form a closed Cont9ur embr.acmg the
sented in Fig. 1a and b. dislocation core. We will match the sublattices moving along
this contour. Having returned to region 1 from the side of
regionn, we note that sublattices have changed places, and
i ) the sign ofl has been reversed. Consequently, we can use the
values of\. for different lattices were found to be of the phenomenological description of AFM by introducing the
order of 0.7-0.9. o _ _ vectorl on a plane with a cut emerging from the center of the
Let us analyze the stability of the planar spin configura-yisiocation and by assuming thiahas opposite signs on the
tion relative to the emergence of spins from the basal plan%pposite banks of the cut. Thus, the vedtaan be defined
Following the method developed by Wysime linearize the locally in any region which does not contain the dislocation
complete system of equation$l/de; =0, JH/dm;=0 rela-  center (This resembles the procedure which is normally used
tive tom;.. In matrix form, this system can be written as  ¢o inroducing the deformation field in the description of a
crystal with a dislocation in the theory of elasticity.In the
Z m; =0, vicinity of the center, the direction dfis not defined, and
. hence the model withl|=1 used for ideal AFM cannot be
wheree;=1 if i andj are nearest neighbors amg=0  used directly. A similar difficulty is also encountered in a
otherwise, and\; = 3 cosp — ¢)) is the sum of energies phenomenological analysis of a Bloch pofnand can be
of the links emerging from théth site. The value ok, is  overcome in the same way by assuming that the length of the
determined by the condition that this system has a nontriviabector| can change and thilf=0 at the center of the dis-
solution, i.e., det(- A& + Ag;) = 0. Our numerical analy- clination. The contribution of this modification to the system
sis revealed that this condition does not hold for anyenergy can be taken into account by supplementing the en-
0=A\=1. This means that the disclination in the model undefrergy with terms depending on the lengthlof
investigation is of purely in-plane type for easy-plane and for  With such an approach, the gradientlafear the center
isotropic AFM (with A =1). of the disclination is not small, which is in contradiction to
We have calculated the ground-state energy of an AFMhe traditional assumptiofa(Vl1)|2<1 in the phenomeno-
with a disclination for lattice fragments close to circles with |ogical theory. However, we can indicate an interesting case
radii 5a, 6a, 7a, and &, wherea is the lattice constant. from the physical point of view, when a transition from the
The disclination center was chosen in accordance with theiscrete to the continual model can be made easily, and the
results obtained above at pointg=0.57( and 0.614 for  continual theory describes exactly the structure of singular
fragments with a triangle and a pentagon of atoms at theolitons of the type of a disclination in an AFM. Let us
center coupled though exchange interaction. An analysigonsider the temperatufeclose to the Nel point Ty of the
shows that the disclination energy can be approximated quit&FM. In this case, the equilibrium value dfx \/?- where

1
—XAi5ij+eij

well by the formula 7=(Tn—T)/Ty, and accordingly the characteristic size of
1 CR spin inhomogeneity is\=A(T)=A,//7, where the value
E= 1 wIS In ?), (6) of Ay is of the order of the lattice constaat The character-

istic size of the disclination core is determined by the quan-
whereC is a constant whose value depends strongly on théity A and increases indefinitely 8s— Ty ; for this reason,
configuration of exchange bonds between atoms at the centtdre conditions for the applicability of the continual approxi-
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mation are essentially satisfied. It should be noted that we 1
need not consider the critical region in the immediate vicin-
ity of the Neel point: the value ofA(T)~3A,~3a even for
7~0.1, and in accordance with the results obtained in Ref. 8
the continual and discrete approaches are in good agreement
(at any rate, for an analysis of static properties of magnetic .5
inhomogeneities

While constructing the phenomenological theory, we
proceed from the energy of the form

1 1 1
w=§Ader‘(V|)2+E|§+F(|2) . (7) 0 5 X

(at finite temperatures, it is more expedient to Speak of th&!G. 3. Dependencé(x), x=r/A(T) for various values of the topological
thermodynamic potential. param(te_tenll. Numbersl, 2, 3on the curves correspond #0=1/2,3/2,5/2,
Here A>0 is the nonuniform exchange constaft)?) respeciivey:
the function determined by the exchange interaction and de-
scribing the change in the AFM energy upon a _change in th?unction W) =172 depending on the variablex
length of the vectod, and A, the characteristic scale of _ tIA(T), A(T) = Agr 2 and write the universal dimen-
length associated with anisotropy energy; the valuasfa
for weakly anisotropic magnets. The integration donfairs
thexy plane with a cut emerging from the dislocation center. d?y 1dy v 3
The boundary conditions at the upper and lower banks of the dx2 T x dx Y2 tv—y=0.
cut can be written in the forry )= —1_,.
For the quantityl, we introduce the parametrization

sionless equation fo#(x):

9

We choose the boundary conditions from the require-
ment of the absence of singularity at the center of disclina-
I=le, cos 6+ sin (e, coso+e, sin ¢). tion and equilibrium at infinity#(0)=0 andy(c)=1. This

o . equation differs from the static version of the Gross-—
The distribution ofl can be obtained from the Euler— pijtaeyskii equation for a vortex in liquid helidfonly in
Lagrange equations for energy functional. Variation leads tqnat the coefficient of the term %7 is half-integral. Conse-
the following system of equations: quently, the asymptotic behavior Hfr) can be described as
dF = (r/rg)?, To=X,7 ¥2Aq for r—0 andl—1—12A%/27r?
W:O’ for r—oo. The parametex, can be determined numerically

V2|—|<(V0)2+(V(,D)2 Sir? 6+
(see below. The value ofl differs from unity only in the

1
Pco§ 6)—I
1

1 regionr<ro~7 2A,, which can be identified with the dis-
V(12V ) —12 sin 6 cos 6| (Ve)?— —2) =0, clination core.
A7 Using the asymptotic behavior for—c, we can prove

2 _ that the energy of disclination contains the logarithmic de-
V(17 sir? 6¢)=0. pendence on the size of the system, which is typical of

Let us go over to polar coordinates, {). The substitu- inhomogeneities of the type of vortices:
tionl=I1(r), 6=u/2, p=vx+ ¢q, Wheregp, is an arbitrary 2 ﬁR
number, transforms the last two equations into identities. E=7A — In| D —>
This is in accord with the results of analysis based on the 4 Ao
discrete model, according to which all the spins in the diswhereR is the radius of the AFM samplgvhich is regarded
clination lie in plane, i.e.f=w/2. Considering thap,=0 at  as cylindrica] and D the numerical constant which can be
the cut, we arrive at the conditiap= x/2 obtained above for determined after the solution of the differential equatigh
a region far away from the disclination center. The boundaryrhe solution of this equation with the boundary conditions

(10

condition at the cutl¢,y=—1_,) definesv as half-integral. 1(0)=0, 1(~)=1 can be constructed numerically by the tar-
The equation fof assumes the form get methodsee Ref. 3 for detailsand its form is presented
@ 14l 2 dF in Fig. 3 In order to sim.plify .calculzations of energy, it is
— 4+ = ——1 ——| ——>=0. (8)  convenient to use the identity EAG=r/rdr(1 - 14,
dr® rdr r= dl which can be obtained by multiplying E¢9) by dI/dr and

r{'ntegrating with respect to from O to .
We obtained the following values for the constaptfor
v=1/2, 3/2, and 5/2: 1.272, 2.140, and 2.964. For these val-
1 ues of the topological parameter, the consténtre equal to
HP)ZW (12=7)2, 5.50, 0.82, and 0.44, respectively. The anomalously large
0 value of D for v=1/2 can be explained by the fact that, in
wherer=(Ty—T)/Ty, andAg is of the order of the lattice contrast to disclinations witlv=3/2 and 5/2 or a magnetic
constanta. In this case, we can introduce the new unknownvortex in whichl—r/ry for r—0, the value ofdl/dr di-

For definiteness, we assume the form of the functio
F(1?) following from the Landau expansion:
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verges forr — 0. It should be noted that, since the values ofour purposes, however, it is more convenient to introduce a
D for v=1/2 and 3/2 differ significantly, the disclination model in which the disclination would be described by sym-
with »=3/2 can become more advantageous than that witimetric solutions of the type=1(r), = w/2, o= x/2 consid-
v=1/2 for a certain value oR~7"Y2A,. However, for ered in the previous section.

macroscopic AFM samples, this can take place only in the Let us consider various methods of determining the an-
immediate vicinity of the Nel point, and we will henceforth  tiferromagnetism vectol. According to the approach devel-

consider only the case with=1/2. oped by Andreev and Marchenkbthis vector is equal to
the dipole moment of the microscopic spin density, calcu-
4. ON THE POSSIBILITY OF PHENOMENOLOGICAL lated for a magnetic unit cell. We choose this cell in the
DESCRIPTION OF DISCLINATIONS AT LOW form of a square with sidg/2a and with its center at the
TEMPERATURES pointi corresponding to the first site of magnetic sublattice

Thus, the disclination energy exhibits a logarithmic de-atom site(the division of a crystal with a dislocation into

pendence on the sample size both in the discrete and in t}‘?‘éjblf”‘ttices was.discussed'at the begir!ning of the previous
continual models, and the formuta= y/2 of the continual section. We define the antiferromagnetism vectpby the

theory is also valid in the discrete theory. Let us consider théormula
possibility of constructing a version of the continual theory 1 1 _
which could describe the properties of disclinations at low  |i= 25 (5“)— 4 ; 5<'+a)), (1)
temperatures at least semiquantitatively.

Away from the disclination core, the gradient bfis where the summation is carried out over the four vectors of
small, Ao(dl/dr) ~ (Ao/r)3, and the continual model can elementary translationst ag, and =ae,. The equilibrium
be used forA,<a as well. Near the disclination core, the value of|l| is equal to unity. It can be stated that this defi-
situation is obviously worse, but a comparison of the resultsition follows from a certain averaging over the magnetic
of analysis for an out-of-plane magnetic vortex in the dis-cell orientations, which was written above anisotropically, as
crete and continual models revedlatat the data obtained well as from averaging over the direction of spins in the
by using these two approaches are in good agreement eve@iven sublattice.
for Ap~a. Consequently, the condition of smallness for the  Since the transformation properties of the antiferromag-
gradient of vectot is probably not very critical. netism vectott with such a definition coincide with the stan-

Another problem is associated with the fact that the re-dard properties, the phenomenological energy of an AFM
quired continual model must predict the contraction of thewritten in the form of a functional of the vectbmust also
length of vectorl to zero at the center of the disclination. be defined by formul#7) with different numerical values of
Usually, the low-temperature phenomenology of AFM isparameter$. Accordingly, the general structure of the solu-
constructed by introducing two sublattices with the siftd  tion and the form of Eq(8) for the functionsl(r) remain
and S? as well as normalized vectors of magnetizationunchanged. Since we are interested only in a semiquantita-
m=(SV+S2)/2S and the antiferromagnetism vectors tive description of the solution, we can use for the function
|=(S'V—S2))/2S which are connected through the condi- F(1%) the Landau expansion by putting=1 in it. In this
tions 1>+m?=1, m-1=0 by virtue of the relations case, the functioh(r) can be described by the solution of the
|SW|=|$?)|=5.23 For an AFM with a square lattice, sub- universal equatiori9) constructed above, i.d(r_y(r/Ag),
lattices are chosen in such a way that they are transformeghd the energy of the disclination with=1/2 is defined as
into each other through elementary translation alongqbe E=(mA/4)In(5.5R/A,). (12)
y axes by vectorsie, or ag,. In the case of a noncollinear
orientation of spins, the value df calculated in this way is This expression contains the parametérandA,. The
smaller than unity. It can easily be seen, however, that for thguantity A can be defined by using the microscopic expres-
spin configuration constructed above, which describes a dissions(1) and(11), but it is easier to make use of the coinci-
clination, the value ofi| at not very large distances from the dence of logarithmic asymptotic forms of energy in different
center of the disclination depends on the choice of this transapproaches. Comparin@) and (12), we find thatA=JS%.
lation vector. In this case, the coordinate dependendgisf ~ As regards the parametey,, its value can be determined
anisotropic, and the quantity-1l| vanishes along a certain most consistently by comparing the functikn) in the con-
direction in the lattice. Moreover, these directions are differ-tinual theory with the value df at discrete points obtained in
ent in the case when such alternative definitions are used. the lattice model. We shall use the asymptotic form of the

The emergence of anisotropy with the second-order axisontinual solution for large values of according to which
in the distribution ofl is not surprising. For such a definition 1—I=A§/8r2. Calculating the same quantity by formula
of the vectorl, the symmetry of a magnetic unit cell in the (11) by using the asymptotic forrp= x/2, we can easily
form of a rectangle with sidea and 2a is lower than the obtainl(r)~1—a?32r2. Comparing these expressions, we
symmetry of a crystallochemical unit cell. Generally, thisfind thatA,=a/2.
does not create any problem since disclinations can be de- This relation does not ensure the smallness of gradients
scribed in terms of anisotropic solutions of the correspondingnear the core, but it can be obtained only from the
equations for the vectdrfor such a definition of. Simulta-  asymptotic properties of distributions. It does not depend on
neous rotation of the magnetic unit cell and the functign many details of the continual or discrete model, for example,
through 90° restores the initial symmetry of the solution. Foron the atomic structure of the dislocation core or the form of

640 Low Temp. Phys. 23 (8), August 1997 lvanov et al. 640



the functionF(1?). Indeed, away from the core, whérs1,  the disclination on the basis of the solution of variational
the asymptotic form contains onty?F(12)/d(1%)2 for I=1,  equations of the simple continual theof§), which is in
and the asymptotic form can be obtained by replaaﬁﬁg)y good agreement with the accurate discrete approach. Conse-
1 d?F(1%)/d(1?)?] for any form of the functiorF(1?). Con-  quently, the proposed continual model based on the contrac-
sequently,taking such a substitution into account, we can asion of the length of the vectdr(or its inhomogeneous gen-
sume that this formula is valid for all continual and discreteeralizations is in all probability quite adequate and can be
models. used for solving othermore complex problems in the

The correctness of the complete phenomenologicajheory of disclinations in AFM, e.g., an analysis of magnon
analysis of a disclination, including the description of the modes localized at a disclination, and analysis of the contri-

core region, can be verified by comparing the expressions fqftion of disclinations to magnon damping, neutron scatter-
energy, which, unlike asymptotic formulas, strongly depenc\ng or scattering of light.

on the details of the atomic structure of the core. It was noted
above thaE= (7A/4)In(CR/a) in the discrete model, and the The authors are grateful to V. G. Bar'yakhtar, A. S.
values ofC differ significantly for different discrete models: Kovalev, and A. L. Sukstanskii for fruitful discussion of the
C=3.15 and 11.75 in the cases with a pentagon and a triresults.
angle of atoms at the center, which are coupled through the  This research was partly supported by grant No. 2.4/27
exchange interaction. of the Ukrainian Foundation of Fundamental Studies.
In the case of the continual model, the expression for
energy contains the parametkg. If we consider this quan-
tity as a fitting parameter and compare this dependence with
the expression for the disclination energy in the discrete
model, we can also find the relation between the parameteg mail: vbaryakhtar@gluk.apc.org
Ay and the lattice constant. Comparing the two expression&This explains formally the ambiguity in the definition &f The dipole
for energy, we find that\,=0.47a for the model with a moment of a system of charges is detefmined qniquely and does not de-
triangle of central atoms, which is in good agreement with pend on the choice of the refe_)rence point only if the total charge of_ the
. . . system is zero. In our case, this corresponds to complete compensation of
the resultA,=0.5a obtained from an analysis of asymptotic spins within a magnetic unit cell, and this condition is satisfied only ap-
forms. Thus, we obtained astonishingly gogidking into proximately. On the other hand, the definition lomtroduced by us is
account the semiquantitative nature of the thg;agreement preferable since the total spin of a magnetic unit cell with a higher sym-
between the results of alternative approaches to an analysj&'e!y is smaller than for the standard magnetic unit cell. ,
of a disclination in an AFM(both its core and asymptotic It follows from the_sam(_e considerations th_at the Lagrapglan of_thls model
o . . . of AFM can be written in terms of the antiferromagnetism vector the
forms) for two specific models, viz., the discrete model with  same way as in the two-sublattice model, and the dynamic term has the
the dislocation core structure presented in Fig. 1b and thestandard form &/c?)(4l/at)2, wherec is the phase velocity of magnons.
continual model with the functioff (1) in the form of the
Landau expansion.
This result can be regarded as accidental in a certain
sense. For the model with a pentagon of central atoms, a
comparison of the expressions for energy givgs=1.75, 1H.-J. Mikeska and M. Steiner, Adv. Phy40, 191 (1991.
and the difference is significant. The origin of this different 25- A. 'Vgﬂovzalni ;\5- *i-g*;olezhuk, Fiz. Nizk. Temj21, 355(1995 [Low
IS qUIte.Clear: as a matter of fa.Ct’ the coeffici@tin the . SA?nhij.Kos)é\S/ick;, B. /i Iva?l](.)v, and A. S. KovaleWonlinear Magnetiza-
expression for energy is determined above all by the region tion Waves. Dynamic and Topological Solitofis Russian, Naukova
of the disclination core. Obviously, these constants must be pumka, Kiev(1983.
different for models with different arrangements of atoms. “R. S. Gekht, Usp. Fiz. Nauk9, 261 (1989 [Sov. Phys. Uspeki82, 871
The difference is if only due to the fact that the atomic den- (19891 ,
o . . . . - J. N. Reimers and A. J. Berlinsky, Phys. Rev48 9539(1993.
sity in the dislocation core region differs from the equilib- "¢ ",y 2\oshinskii, Pisma zh, IEsp. Teor. Fiz25, 110 (1977 [JETP
rium value. In all casege.g., in the description of atomic | ett. 25, 98 (1977,
models with different values of exchange integrals in the”A. s. Kovalev and A. M. Kosevich, Fiz. Nizk. TemB, 259(1977 [Sov.
dislocation core and away from);it would be appropriate to ~_J- Low Temp. Phys3, 125(1977)]. .
generalize the continual mod@) by supplementing the ex- Bl'g'g' Ivanov, A. K. Kolezhuk, and G. M. Wysin, Phys. Rev. Lét6, 511
pression for energy with a term of the forlfU(r), where gé. M?'Wysm Phys. Rev. B9, 8780(1995.
U(r) is a certain function localized at a distance of the ordera, s. Kova|e'v, Fiz. Nizk. Ter;']pZO, 1034(1994 [Low Temp. Phys20,
of the dislocation core radius. By varying the intensity of this 815(1994].
additional term, we can “control” the contribution of the llﬁ- ’\f( KOTDeViCE'DE'OCfg;’”S in the Theory of Elasticitlin Russian,
core region to the disclination energy without changing thelZEéLé.Oé;kiﬁz ;i A'.el‘f/am?" and V. A. Stephanovich, JMMMS 373
asymptotic behavior away from the core and construct a con- (1993 )
tinual theory for any discrete model. Detailed discussion of3L. p. Pitaevskii, Zh. Esp. Teor. Fiz40, 646(1961) [Sov. Phys. JETR3,
such “inhomogeneous” models is beyond the scope of thisl4451 (1962]. _
paper. It is important for our analysis that we can indicate a A. F. Andreev and V. |. Marchenko, Usp. Fiz. NaliR0, 39 (1980 [Sov.
. . . . . . . Phys. Uspekh23, 21 (1980].
lattice model of dislocation that is quite simple and physi-

cally reasonable, but nevertheless provides a description Gfanslated by R. S. Wadhwa
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS

Dilatometric size effect in thin C ¢ films
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The change in the lattice parametea/a of monocrystalline g, films of thickness less than 10
nm is determined by the transmission high-energy electron diffraction method. In the
temperature range 90-260 K, the valueAaf/a increases with decreasing film thickness. The
results are used for calculating the coefficieatsand ag of linear thermal expansion of

the films and of the surface atomic layer. The valuexgfalong the(111) plane is equal to
(55+15)x10 ¢ K1, © 1997 American Institute of Physid§1063-777X97)01008-§

The properties of nanosize objedfdims and crystals  the reflecting sphere still intersects the given point of the
are determined by the properties of not only bulk, but alsaeciprocal lattice with the Miller indicebkl. The angleA¢
surface and subsurface layéran analysis of the properties was determined by tilting the film relative to the electron
of such objects is of independent interest and makes it posseam, and the angle within which a reflex with the chosen
sible in some cases to obtain useful information on the dyindiceshkl is still observed on the electron diffraction pat-
namics of the surface lattice. Various aspects of the structurern was measured by a tilt goniometer. The film thickness
and properties of fullerite were studied by many autffors.was determined froni220) reflexes with an error of 10%.
However, thermal expansion of films has not yet been studWe investigated two series of films of thickness 3.5 and 6
ied. In this communication, we report on the results ofnm.
electron-diffraction investigations of the thermal expansion  The thermal expansion coefficieni was determined
of monocrystalline fullerite g, films of thickness less than from the results of measurements of the lattice period varia-
10 nm. The experimental data on thermal expansion are usdibn as a function of temperature:
for determining the thermal expansion coefficient for the 1
outer atomic layer of fullerite. a=Ad/d(AT) %, @

_ Fullerite films were obtained by evaporati(())n 060C  whereAd/d is the relative change in the lattice spacing as a
single crystals with a purity not worse than 99.9% and conyegyit of thermal expansion upon a change in temperature by
densation on the cleavage plane of NaCl at room temperaturgt since Ad/d= — 2Ar/2r. the value ofAd/d was mea-

. _3 . . . 1

in a vacuum~10 * Pa. For subsequent electron-optical in-gred from the change in the spacing@tween diffraction
vestigations, the films were separated in water and fished oyifiexes on the electron diffraction pattern fd22 reflexes.

on nets. In view of the small film thickness, the films coveredrhe error 2Ar/2r of measurements on an optical microscope
only a small fraction of cells of the net so that each segmenyas 5« 10-4 which leads to the errat 3x 106 K~ in the
could be regarded as a console, i.e., free. _ measurements af. It should be noted that the average value

_ Electron diffraction patterns were record@y transmis- o , \was determined for the temperature range indicated
sion of electrongin an accelerating potential of 40 keV for a 4p5ve. When the electron beam was incident along the nor-
current density lower than 18 A-cm 2. Possible instru- mal to the film. the values ohd/d. and hence ofr. were
mental errors in the measurements of lattice spacing Wergetermined in a direction parallel to the film surface.
taken into account by using a standard and by controliing the  according to the results of electron diffraction and elec-
position of the sample under |nve§t|géat|on relative to theyon microscopic investigations,ggfilms were continuous,
photographic plate during the experimerhe temperature mqnocrystalline, and had an fec lattice with a period close to
was varied from room to nitrogen temperature. The attachg,at for a bulk sample. Electron diffraction patter(fsg. 1)

ment with the sample was surrounded by a screen cooled {gntained reflexe@20) and (422, indicating that the(111)

the temperature of liquid nitrogen. The temperature of theblane of the G film was parallel to thé100) plane of NaCl.

attachment was measured by a copper-constantan thermgs the same time, reflexes with lattice spacings of 0.86 and

couple to within=3°. _ o 0.43 nm which were also observed can be identified as the
The thicknesg of such thin monocrystalline films was (efiexes associated with stacking faults of 1422 and 2/3

preset by the mass of the evaporant and the geometry of thg>7) 5 An analysis shows that in spite of considerable dif-

evaporation, and was then determined by the electrongences in the lattice periods=0.564 nm for NaCl and
diffraction method from the size of the reciprocal lattice sitea: 1.42 nm for fullerite G,, favorable orientational rela-

in the direction of the normal to the fifftn tions required for the monocrystalline growth ofilms

t=d(Ag) L (1) are created in the given film—substrate system. For example,
' the two periods of the £ lattice correspondto within 1%)
whered is the lattice spacing antlp the angle within which  to five periods of the NaCl lattice.
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whereu? andu? are the mean square displacements of atoms
on the surface and in the volume, respectively. The values of
u: are higher than the values of and tend exponentially to
the volume valué.In this approximation, the linear expan-
sion coefficient of thenth atomic layer can be written in the
form

an:av+(as_ av)ein' (4)

The linear thermal expansion coefficiemt of the film can

be presented as a superposition of the linear thermal expan-
sion coefficientse,, of individual atomic layers taking into
account the relative film volume; occupied by them. In
these calculations, we assumed that (m—1)"* (mis the
number of atomic layers in the film thickngsand that the
relative volume of the surface layer is equal to .5 hus,

the thermal expansion coefficient of the film can be pre-
sented in the form of a linear combination ®f and «,, :

ai=aast ara, . (5)

FIG. 1. Electron diffraction pattern for a fulleritesgfilm of thickness 3.5 . . .
nm at T=270 K. The scale of the electron diffraction pattern is E@ch value of the film thickness corresponds to its own co-

2LA=20.6 nmmm. efficientsa, anda,. For example, a monocrystalline fullerite
film of thickness 3.5 nm, which is oriented along tfel 1)
plane, corresponds approximately to four lattice periods

Table | gives the results of precision measurements ofl111=0.82 nm, e, ﬁ\ie atomic Iaye_rs fit into the f”’.“ thick-
lattice spacinghd/d for Cg, films in the temperature interval N€SS: In this caseal—_q.47 qnda2—0.53. For a film of
from T to T,. The value ofAd/d increases upon a decrease thickness 6 nm containing eiglit1) layers, the values of
in the film thickness. For example, the value/fi/d for a @ @nda, are equal to 0.30 and 0.70, respectively.

film of thickness 3.5 nm is 1.6 times the value &fl/d for From the measured \éalues ai and the value of,
bulk fullerite. known from the literaturé, expression5) can be used for

- . 6 1
The measured dilatometric effect of lattice spacing in thefStimating the value ofas: as=40x10" K™= and

_6 _l . .
temperature range under investigation is due to thermal ex/0*10 > K™= for films of thickness 6 and 3.5 nm, respec-

pansion as well as the phase transition of fullerite from theiVe!Y: , o
fcc lattice to a simple cubic lattice dt~260 K. According Thus, the thermal expansion coefficient of the surface

to the results of dilatometric and x-ray diffraction studies, for""toi1iC +Iayer 5%11)71 ‘parallel  to the surface
this phase transition the value ofd/d amounts to 9s=(55+15)x107° K™= in the temperature range under

3.4x 10 .57 This value was used for calculating the linear investigation. This value ok is apparently somewhat ex-
expansion coefficienta; for the films, which are given in aggerated since the contribution to the measured dilatometric
Table I. The temperature interval under investigation in-effect comes not only from the parallel, but also from the
cluded the region 90-260 K of the ordereg,@hase. The perpendicular component of thermal expansion relative to
obtained average values of the thermal expansion coefficieihe surface in view of natural roughness of the film.

correspond to this phase.

The obtained data on the linear expansion coefficient for The authors are grateful to A. 1. Prokhvatilov for fruitful

very thin films make it possible to estimate the thermal ex-dISCUSSIon of the results.

pansion coefficientg of the surface layer associated with
the linear expansion coefficien, in the volume through the
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Peculiarities of nonlinear electrical conductivity of two-dimensional ballistic contacts
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Peculiarities of the conductivity of two-dimensional ballistic contacts that are sensitive to the
nature of the confining potential as well as the existence of electrostatic potential inside

the microconstriction are considered. It is shown that the position, amplitude, and shape of the
peculiarities carry direct information about the position of quantization levels, the

magnitude of potential inside the microconstriction, and the probability of passage of an electron
through the contact. €997 American Institute of Physid$1063-777X97)01108-Q

1. INTRODUCTION tact size and nature of the potential barrier confining the
transverse motion of electrons in the contact. Normally, the
Conducting structures of small sizare unique objects “hard wall” model is used, in which the electron wave func-
for studying the wave properties of charge carriers in solidstion vanishes at the contact boundary y(x), and the spec-
A quantum point contact in the form of a narrow constrictiontrum of the transverse motion is the spectrum of a patrticle in
(whose sized is comparable with the electron wavelength a potential well(with vertical wall9. However, experimental
\g) connecting two macroscopic regions is an object of thisesults indicat® that the “soft wall” model is preferable for
type. Quantization of the transverse motion of electrons im=11° This model employs the parabolic potential
the region of microconstriction changes the electron spect(x,y)=Uy(x) + w?y?/2 which confines the transverse mo-
trum. Each transverse guantization leveltion of electrons with the harmonic oscillator spectrum.
en=(mnhld)?/(2m) (n=1,2,..) has aone-dimensional However, further investigations are needed to determine fi-
subbande,(py) = p)z(/(Zm)Jran (the x-axis is directed along nally the nature of potential barrier in a microconstriction.
the contact axjswith conductivity Go=2e?/h correspond- In the present work, it is shown that the peculiarities of
ing to it. The quantization of the conductance of two-the potential forming a microconstriction can be determined
dimensional ballistic contacts discovered in Refs. 2 and 3 ifrom an analysis of nonlinear singularities of conductivity of
a direct experimental evidence for the existence of guasitwo-dimensional ballistic contacts, associated with a change
one-dimensional conducting subbands in a ballistic microin the number of subbands or a change in the contact diam-
constriction. eter or voltage. The present communication consists of the
It was revealed as a result of theoretical anafydfahat  following parts. In Sec. 2, we analyze the dependence
conductance quantization takes place for contacts with @1/dVy(Vy). It will be shown in Sec. 3 that the dependence
sharp geometry, as well as contacts with a smooth shapd/JdT(V) has peaks whose position corresponds to the dis-
(adiabatic contacls According to Landauer’s multichannel tance between the transverse quantization levgland the
formulal® the conductivity of a contact can be defined asFermileveler. In Sec 4, we shall show that an electrostatic
G=NGy(N is the number of conducting subbanhda one-  potential relative to the contact edges exists in a microcon-
dimensional subbanal is conducting if the conditios,<eg striction, and analyze its effect on nonlinear singularities of
is satisfied(eg is the Fermi energy of electrons at the banksthe contact conductivity.
of the structurg A variation of the gate voltag¥, changes
the contaqt dl_ameter, leading to a variation of the position of2' NONLINEAR CONDUCTIVITY OF A TWO-DIMENSIONAL
the quantization levels. Consequently, the number of CONG | LISTIC CONTACT
ducting subbands varies, and this is reflected in the form o
steps of equal height on the dependeGd¥/ ;). We shall start from the expression for current passing
A variation of the voltageV applied to the contact can through a ballistic adiabatic contact with a voltagepplied
also change the number of conducting subbdfid®epend-  across its banRsin nonlinear response regimeY{<sg):
ing on the type of conductivity, the subbands are divided into 2
. . . e eV
three classes: conducting subbands, for which the relation |=— 2 fdng(g)(fo(g—gF——)—fo(g—gF
e,<eg—|eV|/2 is satisfied, nonconducting subbands, h g 2

for which the relatiore,,>eg+|eV|/2 is satisfied, and sub- eV
bands which conduct only in one direction: + - ] (8]
er—|eV|i2<e,<ep+|eV|/2.2° The change in the nature of

conductivity in a subband is manifested in the form of spikes  Here, T,(¢g) is the probability of passage of an electron

(peaks on the dependenced?l/dV?(V) arranged at with energye through the contact in channel andfy(e)

(eV),=2|e,—¢|.1® These peculiarities were observed ex- = (expe/T)+1) ! is the Fermi function.

perimentally in Refs. 15, 17 and 18. It was mentioned in the Introduction that the existence of
The position of the levels,, is determined by the con- quasi-one-dimensional conducting subbands leads to a strong
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nonlinearity of the current—voltage characteristib&C) of a 2
guantum ballistic contact. An increase in the voltage may

bring the bottom of one of the subbandg in the band of -
current states-eV/2 near the Fermi levedg, which results |
in a sharp variation of the contact conductivity and is mani-
fested in the form of a spik@eak on the dependence of the L
second derivative of currenil /dV? with respect to voltage

V. o I
On the other hand, a change in the contact diarmkfer % 1
a fixed voltage, accomplished by a variation of the gate volt- = [

ageV,, also leads to a change in the number of conducting
subbands and hence to the emergence of conductance jump

on theG(V,) dependencéfor V—0),2° as well as current
jumps on thel (V) dependencéfor V#0).* Thus, the de-
pendence of the first derivative of curresit/dVy with re-
spect to the gate voltage ory for V=const(just like the
dependence of the second derivative of curdéhtd V? with

respect to voltage/ for Vy=cons} contains peaks corre-
sponding to a change in the number of conducting subbands.

Let us evaluate the derivativd/dV, by taking into ac-
count the fact that the only quantity depending dg in
formula (1) is T,,, which is a function ofe,:

dl dl

N E IVE il

dVg F \dVy/,

dl _2e g dT, de, ¢ eV
avl Th ) e | Tay)|eleTer T

eV
8_8F+7

_fo

] . )

A peculiar feature of the quantify,(¢) is that it varies
from zero(for e<g,) to unity (for e>¢,) in a narrow en-
ergy intervalAe=A, in the vicinity of ¢,. Hence we can
single out two limiting cases

(1) AT<A(T is the temperature at the contact banks

In this case, we can pdt(e)=6(—¢):

dl | 2e de, - +eV - eV
avy TR\ T avy) | Tl eEt ) T Tl e ) )
n
(3a)
or, forV<A,
dl _2e2V de, | dT, a
av, ~m YTy, (3

(2) 4T>A,. In this case, we can piit,(g) = 0(e —&,):

2e(_den)) VI2), Vs T
(dl) ) w T ay,/HenmerreVia), VT,
dV - e2 V dsn Sn_SF
9/ n I -2 <
Sh T ( dVg)COSh ( T , V<T.

(4)

Here, Q(x)=[1+exp(—xT)+exp(k—V)/T)] > Let us
also consider the expression for the peak amplit{ide
en(Vg) =&g] for an arbitrary relation betweevi andT:

(dl) _Ze( dsn)
d_\/g = _d_\/g An(V,T),

SnZSF
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FIG. 1. Dependence ofil/dV, on contact diameter folf =0.0lsr and
V=0.1s¢ .

Y,
An(V,T) =tan)‘(ﬁ) . (5)

Let us analyze the above expressions. The dependence
dl/dVy4(Vg) consists of a sequence of peaks arranged at
en(Vg)=¢e¢ and corresponding to the “passage” of the
quantization leveh through the current intervateV/2 in
the vicinity of the Fermi levelep :eg—eVI2<e,(Vq)<eg
+eV/2. The amplitudes of the peaks are defined by the quan-
tities de,/dVy and A,(Vg,V,T). For 4T>A,,, the depen-
dencesA(Vy) are identical for alh. Hence, the ratio of the
peak amplitudes in this case is determined exclusively by the
quantityde,/dVy. In the following, we shall consider two
traditionally used models of the potential corresponding to
the motion of electrons in the contact region, viz., the “hard
wall” and the “soft wall” models®

In the “hard wall” model, the contact boundary is as-
sumed to be impermeable to electrons with any energy. The
quantization levelse,=(wnA/d)?/(2m) depends on the
contact diameted which is assumed to be proportional to
the gate voltagéd/y. In this model, the variabl®y can be
replaced by the variablé (it is more convenient to use the
dimensionless quantity  £=2d/\g). Computing
de,/dé=—2¢,/&, we can easily show that the ratio of peak
amplitudes in the “hard wall” modelfor 4T>A,)) is de-

fined as(Fig.

(dl) _(dl _(dl) o111

vy vy lavg) T e

In the “soft wall” model, the transverse motion of elec-
trons is confined by a parabolic potential. The quantization
levels are equidistant,=Uq(Vy) +ho(n+1/2). It is as-
sumed that the gate voltage does not change the relative

separation between levels, i.e., the frequengybut varies
only the potentialU, inside the contact. The dependence

(6)

2
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Uo(Vy) is assumed to be linear. In this case, the quantity 0,5
de,/dV4y=const and does not depend enHence all peaks
in the “soft wall” model (for 4T>A,) have the same

height: 0.4
di\ (dIy (di}
d_Vg 1. d_Vg 2. d_Vg 3....—1.1.1.... . (7)
00,3—
A comparison of formulag6) and (7) leads to the con- %

clusion that an analysis of the relative amplitudes of the de- =
pendenced|/dV,(V,) makes it possible to choose between © 0,2}
various models of the potential confining the transverse mo-
tion of electrons in the constriction region.

As the temperature decreasesTA,), formulas (6)

and(7) remain valid forvV> A, [see formulg3a)]. However, 0.1

an additional factodT,/de=1/A, appears foV<A, (see

formula (3b)). In the “soft wall” model® A,~const, and IU T R
formula (7) remains valid. In the “hard wall” model, 0 1 2 34 5 6 7 8 9
A,=1/n (see, for example, Refs. 4 ang &d amplitudes of 2d/)'|=

all peaks become equal. It should be mentioned, however,
that Zagoskin and Kulik obtainedA = const for a contact FiG, 2. Dependence ofii/dV, on contact diameter fofl,V=>A,. The
with special geometry in the “hard wall” model. Hence for- values of parameters affe=0.1s¢ andV=0.1s¢ .
mula (6) remains valid in this model for the entire range of
variation of temperatur@ and bias voltagd/.

An analysis of the dependence of the width\{y), of al 2e S [d
peaks on their numben also makes it possible to choose JT h < f &
between models of confining potential in the contact:

dT, \P(s—s,:—eV/Z
de T

(8—8F+GV/2)]
Y| —. (10

T

(8) Here, ¥ (x) = In[1+expK)]-x[1+exp(x)] . Formula(10)

_ is simplified in two limiting cases:
Moreover, an analysis of the dependence of the peak (a) for 4T>A,

width on temperaturéel and bias voltage/ allows us to

n-maxT,V,A,) in the hard wall model,

(AVg)n= maxT,V,A,) in the soft wall model.

determine experimentally the quantify, . ﬂ_ E 2 (an—sF—eV/Z)
An increase in the bias voltagé or temperaturel in- dT  h 5 T

creases the width of peaks and the peaks merge. In this case,

the dependencdl/dVy(V,) becomes smooth and attains a _ (8n_8F+eV/2)}. (11)

classical asymptotic form. In the classicalot quantum T '

limit (d>\g), the current passing through a ballistic con- (b) for 4T<A

tact is 2equal to 4°dV/(h\g), and hencedl/dé=GyV I " o JT

(Gpy=2¢€/h is the conductance quantinmilThe current at- a e n n

tains the classical value when the bias voltsger the width ot o6y En: (E (epteVi2)= g~ (er

of temperature blurring of Fermi steps becomes equal to the

separation between quantization levedse Fig. 2 —eV/Z)]. (12)
Aep=max 'V 4T). (9)

Thus, the dependené/dT(V) consists of a set of posi-
tive and negative peaks arranged aV),=2|e,—&g| (see
Fig. 3, curvel). In the casda) corresponding to the situation
when the region of temperature blurring of the Fermi step

In the preceding section, we considered the peculiaritie§xceeds\,, the shape of the peak does not depend @md
of the | -V, characteristics of a contact associated with thelS determined by the functio (x). Note that the amplitude
“passage” of the quantization leved, through the current Of the peak in this case does not depend on its number and
interval =eV/2 in the vicinity of the Fermi level. In this temperature: {/JT), . =(2e/h)In2, while the peak
section, we shall consider the IVC nonlinearity associatedvidth is proportional to temperature. As the temperature de-
with the “passage” of the quantization levels through thecreases (#<A,), the shape of the peak is determined by
region of temperature blurring of the edge of the Fermi stepthe energy derivative of the transmission coefficient
This nonlinearity is manifested on the dependencélédT  dT,/de(e). In this case, the width of the peak is indepen-
on the bias voltage/. Differentiating formula(1) with re-  dent of temperaturéand is equal tad\ ;) and the amplitude is
spect to temperature, we obtain proportional to the ratid/A,,. The effect vanishes at=0.

3. TEMPERATURE AND FIELD SPECTROSCOPY OF
TRANSVERSE QUANTIZATION LEVELS IN A CONTACT
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FIG. 3. Dependence afl/dT on voltageV. Curvel is obtained without
consideration of the potential at the center of microconstriction. C@rve
takes the potentiab into account. The values of parameters Bre0.00Z ¢
andd=5.25¢.

FIG. 4. Dependence of potentid on the microconstriction diameter.

(rs is the screening radiluigs reduced to the condition of
electrical neutrality. Assuming that the background of posi-

Thus, an analysis of the depender@tédT(V) makes it i h is th t the bank din the ch |
possible to determine the position of quantization levels V€ Charge Is the same at the banks and in the channel, we

(eV),=2|e,—e¢| in the contactfor a fixed contact diam- obtain from the electroneutrality condition

eterd). Moreover, the temperature dependence of the peak n(d)=ng, (15)
width leads to the value oA,. Note that the position of

guantization levels can also be determined from the positiomheren,=27/)\2 is the electron density at the banks. Thus,
of the peaks on the dependert?/dV?(V),* although only ~ formulas(13) and(15) lead to the self-consistency condition
broad singularities are observed instead of peaks in actuathich determines the quantith(d):

experiments?® ,

iE dp.fo(e,+ed(d)+p2/(2m)—gp) =1
7Thd px o\en px F .
4. EFFECT OF QUANTUM ELECTROSTATIC POTENTIAL ON n

THE CONDUCTIVITY OF A BALLISTIC CONTACT (16)

We shall show that one-dimensionalization of electron  In the “hard wall” model at zero temperaturdl ¢ 0),
spectrum in the region of microconstriction leads to the exthis relation gives
istence of a potential difference in thermodynamic equilib-
rium betwc_een the cpnstriction and contact bampsantum. i 2 (14 o(d)—n?£2)Y29(1+ o(d)— % &3 =1.
electrostatic potentinf® We shall study the effect of this w& w
potential difference on nonlinear singularities of the conduc- 17

tivity of the contact considered in the previous section. Here, o(d) = —ed(d)/z . The dependence(d) is plotted

tFO; 'th?hsa:cke of ?lmprlllcny, ;Ne} Shj‘tlt! congdertr?_ga:jlllstlcin Fig. 4. The peaks on this dependence correspond to the
contact In the form of a channet o1 widthand feng : inclusion” of the next conductivity channel, which occurs

The potential difference between the contact and the banks . N C
denoted byd(d). In this case, the electron number densitywhen the following condition is satisfied:

n(d) in the contact can be written in the form ented(d)=¢. (19
2 . . -
n(d)= 0g > j dp,folen+ed(d)+p2/(2m)—ec]. The corresponding channel width, is given by
n
13 A n (19
=,
Here, e is the chemical potential of electrons at the banks "2 (1+ep)t

(the potential of the banks is assumed to be kefbe po-
tential ®(d) is determined from the self- consistency condi-
tion which, in the limit of strong screening

The potential in the channel is defined as

n-1 K2\ 12 -1
> (1——2) ) ~1. (20)

k=1 n

ar
L,d>r (14) $n=z "
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It can easily be shown that, if we take into account the quan- The expression fodl/JdT also changes and assumes the
tum electrostatic potenti@QEP ®(d), the “inclusion” ofa  following form for 4T>A,:
conducting subband with numbern occurs for 2 g, ted—cp—eVi2
&=n—0.5(n>1). =—>{wv
Upon a decrease in the contact diametds={¢), the h % T

al
aT

screening radiusr¢=\g) becomes comparable with and e ted—ccteV? oD

the strong screening approximation becomes invalid. In this —yp| 2 F )—e - [fo e, ted
case, a charge layer formed near the channel edges hampers T JaT

an increase in the potential inside the channel upon a de- eV eV

crease in its diameter. Hence the variation of the potefitial —er~ | ol enteb—ept —- H (24)

will no longer compensate the increase in the energy
e,=1/d? and the channel will become nonconducting. Notelt follows from the above expression that the presence of
that the channel would have remained conducting in thé2EP leads to the asymmetry of positive and negative peak
strong screening limit even fat— 0. amplitudes in the dependengl dT(V) (see Fig. 3, curve).

In the current state, the potentidl also depends on the
voltage applied to the contact. In this case, the self-
consistency condition assumes the form 5. CONCLUSION

N2 I.n this yvork, we have shovyn thgt the inv.es.tigation of
—hd En: f dp(p){folen+ed®(d,V,T)+pi/(2m) nonlinear singularities of two- dimensional ballistic contacts
makes it possible to obtain direct information about the na-
ture of electrostatic potential forming the microconstriction.
For example, the measurement of relative amplitude of peaks
on the dependenadl/dV,(V,) determines whether the con-
) fining potential is impenetrable for electrons or the trans-
Formulas(16) and(21) are also applicable for a contact \,q;se electron movement occurs in the parabfisoft
of arbitrary shape. The quantity stands for the contact size wall" ) potential.
at the narrowest position. Moreover, the change in the con- s 5150 shown that the presence of electrostatic poten-
tact dlamettig over a distance-Ag must be small: g in the microconstriction region is a characteristic feature
d(In d)/dx<Ae". Note that the expressions presented aboveys q,antum ballistic contacts. This potential emerges due to a
were obtained under the assumptii=6(e —en), Which i gigference in the naturédimensions of the electron spec-
valid at least for >A,,. , _ trum in the region of microconstriction and at the contact
Let us now study how the existence of a potentialggges. |t should be observed that in the “soft wall” mddel
@(d,V,T) changes the results obtained in previous sectionsy hich is applicable fod=A\r, the electrostatic potential in
Note that the results obtained in th'IS section are applicablghe microconstriction region is induced by the gate voltage
for a broad contactd>A\g) for which the “hard wall” V. According to our investigations, the electrostatic poten-
model of confining potential is more suitable. _ tial in the contact does not vanish upon an increase in the
The existence of the potentid can be taken into ac-  conact diameter d>Ag), although its physical nature
count easily by replacing,, with e,+ed. As aresult, the  hanges. In this case, the potential in the microconstriction is
expression fod|/dV, assumes the form not connected with the gate voltagé, determining the

dl 2e de dd shape of the contact, but is due entirely to the manifestation
n . .
IR — —e— — of the quantum nature of electron motion in the contact.
dv,  h ; f de e av, © dvg>{f°(8 eF q
eV eV

_7>_f0<8_8|:+7

—ep—eVI2]+foley+ed(d,V,T)+p2/(2m)—ef

+eV/2)}=1. (21)

dT,
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It can easily be shown that the peak amplitude foB4A | is
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The dynamical screening effects in the skin layer of a metal are investigated. The electric charge
density near the metal surface induced by a moving charged body outside the metal is

screened at the Thomas—Fermi length if the velocity parallel to the surface is smaller than the
Fermi velocity. Crisis of screening is found at the velocity approaching the Fermi velocity,

which results in the electric field penetration inside the metal at large distances, and in the
distortion of the electric field distribution outside the metal. The energy dissipation from

a moving charged body as a function of the velocity has a pronounced singularity near the Fermi
velocity. © 1997 American Institute of Physid$§1063-777X97)01208-3

1. INTRODUCTION laxation processes and mechanisms very near the metal sur-
face;(2) the nonlinear output is expected in the linear ampli-

_ l\(/jlacr_oscppm chargtlal_cannotlemst inside almﬁtal. UPoR de regime(small charges and fieliisince the nonlinearity
Introduction mtq ameta ICc Samp'e, any external charge C(.)n'may be concerned with the large velocity of collective mo-
centrates near its surface in a thin layer, whose characteris

hick L2 fon rather than with the drift velocity of electrons.
thickness | In the present paper we investigate the dependence of
Ae=[4me>N(eg)] Y2, (1)  the charge distribution inside the metal and the electrostatic

the so-called Thomas—Fermi screening length, which is typi_potential outside the metal, on the velocity of the surface

cally of the order of a few angstromd(eg) is the density fthe”et mo;qu ptrhoducetd Iby a-charged" blc(tely;)r\]/v n ast tlhe
of electronic states at the Fermi energy.. ] ip” ) outside the metal moving parallel to the metal sur-

If the external charge is fixed in space, the emergingace' It is shown that the surface charge follows the tip mo-

Coulomb potential will be screened inside the metal at th ion adiabatically only if the velocity of motion is much

same distance. Along the surface, charge density can be |GMaller than the Fermi velocity . A velocity greater than
calized within some area, and can be translated parallel to théF €auses a crisis of the Thomas—Fermi screening, which
surface without changing its shape. It is tempting to considefeSults in the nonlinear charge penetration deep into the
the surface charge, which is generated due to the motion of@etal and in t_he distortion of the screening electric field in-
charged body in vacuum near the metal surface, as a separ&id® and outside the metal. .
entity, and to investigate the effects related to its dynamical ~ 1he questions considered can have relevance to scanning
behavior. At the velocity smaller than the Fermi velocity, theunneling mwrpscop?,to the effects of charge quantization
nonlinearity in the response to an external perturbation majf Small metall.lc electrng%to ballistic glectron transport in
occur if the former approaches the phonon propagation velarrow metallic constrictions and point contatfsand to
locity, which results in phonon emission followed by extra 9eneral aspects of “fermiology,” i.e., Fermi surface recon-
energy release from the surface sheet. In the case of fagtruction in metals, since the dynamical screening effects in
motion with a velocity greater than the Fermi velocity, the the surface sheet depend essentially on the topology and
oscillatory potential emerges in the wake behind the charge@hape of the Fermi surface. The interaction of a moving sur-
body (e.g., an ion moving in a metalwhich can trap con- face charge with phonons can be viewed as a kind of “sur-
duction electrons in the wake-bound stifeAt a velocity ~ face spectroscopy” of conduction electrons in mefals.
approaching the Fermi velocity, the charged body wake is at  Another type of experiment involves charged ion motion
“resonance” with the conduction electrons, which accountsinside a metdlor a traversal of the interface between metal
for the singularity of the dissipation in the surface sheet andind vacuunt. If the velocity of ion motion approacheg:
for the stopping power of body motion. In the case of motionfrom above, the wake-bound state of an electron and stop-
of a charged body outside the metal, this results in the nonping power for ion motion reveal a singularity in the limit
linear interaction between the external moving charge an—Ve. In the case of small velocity, the surface charge
the induced charge near the surface. The dependence of drfajlows the external perturbation adiabatically, allowing for a
force and power dissipation on the velocity is nonlinear andsemiclassical description of the interaction of external elec-
possibly honmonotonic. tric field and the induced charge. Important difference be-
The information concerning the electron states in metalfween the cas¥ > Vi andV < V¢ is that semiclassical ap-
which can be obtained in the corresponding experiments, iproximation may present a reasonable approximation of the
similar to that found from the conventional conductivity problem.
measurements except thd) it is directly related to the re- After the discussion of the validity of different approxi-
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mations (semiclassical or random-phasevhich are appli- The scalar potential in a metal emerging from an external
cable to the problem of dynamical screening in Sec. 2, weslectric charge uniformly distributed with the densityin a
investigate in Sec. 3 the dynamical screening in a twoplanez = 0 is

dimensional metal with a cylindrical Fermi surface since it
most clearly illustrates the theoretical method adopted by us
and the origin of the velocity-dependent anomaly predicted.
In Sec. 4, similar effects are considered for a threey; reduces to an exponential dependence(z)
dimensional metal with a spherical Fermi surface. Energy— 4(0) exp(— «yglz]) within the SA. Within the RPA, by
dissipation and drag force induced in a moving body argntoducing a parameter

calculated in Sec. 5, followed in Sec. 6 by the discussion of

= expikz)
d)(Z):ZO' _w—kzmdk. (6)

the physical aspects of the surface charge dynamics and pos- _ _ [ KTF @
sible realization of its fast motion in metals. 2ke
we obtain
© cogq 2KgzXx)
2. SEMICLASSICAL APPROXIMATION FOR A DYNAMICAL d(z)= —————— dx. (8)
SCREENING o X“+af(x)
Linear response of a degenerate electron gas to a timé:-or typical metals falls within the interval
and space-dependent electric potential 0.3<a<1 (9)
B dk » dw ) ) [a is related to the most commonly used quaﬁting
$(r.)= 2m)3 ) . 27 Pro EXHIKT —iwl) = rq/ay, wherea, is the Bohr radius, ant is the average
. . o _ distance between electrons, sinee = 7 1(4/9m)3 r
is described by the quantum kinetic equatfofassuming = 0.1659.]
=1 The normalized potential distributiogb(z)/$(0) as a

function of Xz is shown in Fig. 1a for varioua. However,
) since it is nonexponentigpower-like and oscillating with a
period w/kg! at largez), ¢(z) is very small in the region in
which, within the SA, it decays exponentially. If replotted as

1 0 0\
(w=eprrtep—i2) fkoT €Pko(fo_ko= fpik2) =0,

Wherefg is the unperturbed electron distribution function
_ -1 1 - g '
(exf(ep — w)/T] + 1), andfi, is the first order cor- 5" nction  of ktez = zIh\yg, all the dependences

rection tof,,(p). (Assuming that the velocity of motion is #(2)/$(0) at differenta fall nearly into a single lingFig.
much less than the light velocity, we can ignore the mag- 1b). The screening radius

netic field effects and eliminate the vector potential A, leav-
ing only a scalar potentiap.)
Equation(2) results in the Lindhard formulée.g., see

Ref. 1) for the relation between the electric displacementand . . . .
the electric field within 10% accuracy equals the Thomas—Fermi screening

length in the interval otx from O to 1. This has an implica-
Dko= Ekot 4Py, = (K, 0)Ey,, tion that the semiclassical approximation, which is not exact,

r_=J°c¢<z>dz/¢<0>. (10
0

where p,, = —(4m) likP,, is the external charge den- nt_evertheless gives a rgasonaple estimate of screening. We
sity, and will use the approximation which can be used to trace the
, o o dynamical screening effects in metals. The solution proves to
s(kiw)=1+ 4me j 2dp forke— fooke be quite complex even within the SA, and it would become
' k? (2m)3 w—epiktepka—i6 intractable in the RPA scherffesincek in Eq. (2) must be

(3 considered as an operatal/dz. In any case, the validity of

At o = 0, the dielectric function within the random-phase SA is indeed guaranteed as longass small (9).

approximation(RPA) [Eg. (2)] is

2 2
KTF 1 1-x |1+X 3. THOMAS—FERMI SCREENING IN A TWO-DIMENSIONAL
6(k)=1+?2—L(X), L(X):E+Tlnm’ (4) METAL
wherex = 2k/kg. At small k, the kinetic equatior{2) re- Consider the metallic semispace in the vicinity of a

duces to a semiclassicg@A) Boltzmann kinetic equation for charged tipT moving parallel to the metal surface with a

the distribution functiorf(p,r,t), and Eq.(3) reduces to an velocity V (Fig. 2). We shall investigate the steady-state dis-

expression for the dielectric function tribution of electrons in a momentum spaide, p,t) and the
(k)= 1+ 12 /K2 ) electrostatic. potential distrit?utionjb(r,t) inside and outsi.de.

TR the metal with the assumption that they make a self-similar

which is equivalent td1) with xtg = 1M\ qf. configuration which depends on the relative coordinate
To clarify the difference between various approxima-— Vt.

tions, let us consider the screening of the electrostatic poten- In a semiclassical approximation, charge dengity ex-

tial produced by a charged plane immersed inside the metahressed in terms df as
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7

FIG. 2. Schematic diagram of a charged fip) (noving parallel to the metal
surface with a velocity/. Surface chargéa dashed lineaccumulates near
the metal surface and moves with the same velogjtyis the angle of
incidence of the electron.

¢(2)/4(0)

20 The charge density in a metal &t= 0 is

p=—eN(ep)(Xp) (15

b where(...) denotes averaging over the Fermi surface.

We ignore scattering of electrons inside a metal, which
is expected to be a good approximation if the electron mean
free path is much larger than the Thomas—Fermi screening
length, but include the scattering of electrons at the surface
with the help of the diffuse boundary condition that intro-
duces a diffusivity coefficien(0 < g < 1). Requiring
that the electron current be zero at the metal surfacee
can write the boundary condition in case of a cylindrical
Fermi surface directed along tlyeaxis in the form

4(2)/9(0)

ks

X—¢:(1_Q)X¢+gJO Xo sin (PdQD, (16)
where q is the diffusivity coefficient of the metal surface,
\ and ¢ is the angle between the direction of electron momen-
¢ 10 20 tum and surface.

2y In the Fourier representation with respect to the surface
coordinatex, y, the equations fos, andy . are(below we

FIG. 1. Normalized potential distribution inside a metal at various values ofdrop for clarity the index)
a as a function of Rz () andkrgz (b). I—a = 0.2; 2—a = 1.1; 3—«

—20. k?¢p—d?¢p/dZ?=—4meN(er){x,) (17
and
dp [v+iky(Ve cose—V)]x,+V sinqodX‘p
= — (f— x\VFE - F a5
p 2ef 2ah)? (f—"1o), (1)) ¢ dz
where f is the equilibrium Fermi distribution. The scalar _ - ; d
=eVg| ik, cose+sin ¢ —| ¢. 18
potential can be found from the Poisson equation Pl ¢ ? 4z ¢ (18)
VZ¢p+4mp=0, (12 Although we are considering a clean metabllision fre-
andf satisfies the Boltzmann equation quency v—>0)., a “trace” of the electron scatterln_g/=+0) _
should remain in order to ensure a proper analytical behavior
of ~of of of the electron distribution inside a metal &s>.
GV eve p —v(T=To), (13 In the case of zero velocityy = 0, Eq.(18) gives x,,

= e¢, thus resulting in an exponential distribution ¢f

in which vis an electron collision operator. The self-similar . .
inside the metal

distributions off and ¢ are
f=fot x (X—VLy,p)dfolde,, ¢=d(X=Vi). (14 b= p(0)exp—x7ez) With xre= 72 +KE. (19
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We shall use below the dimensionless units such that

= 1,e = 1andN(eg) = 1,V = 1, whereV is the Fermi
velocity. Thus, representing, in the form y, = ¢ v | ———]
+ u,, we obtain HE
it ]
( k2+— $=+(uy) (20 i}
u‘ A
10
and i N
)ik 21 '
el az/Y¢ sing (21) I
where a b
k(cose—V)—iv
R a— v=+0. (22 FIG. 3. Path of integration in Eq24) for V < 1 (a) andV > 1 (b).
Sin¢ Integrals along broken lines cancel each other bec&(ge atV < 1 has

the same value on both sides to the left and to the right of the imaginary
axis.

The solution of Eq(21) is

) ikyV [z .
U,=A, exp(—iy,)+ Sin g fo d(z")exd —iy,(z
~2')]dZ, 23) quirement that¢(z) in (24) shou_Id prop.erly behave at—

— oo allows us to find the potential provided that the value of
from which it follows that¢(z) can be obtained with the the ratiog’ (0)/¢(0) is specified by the solution of the Pois-
Laplace transform son equation inside the metal.

Evaluation of the integral24) atV < 1 gives

=pf°°¢(z>exrx—pz>dz,
0

7 @ PoZ— g i17¢?
o ¢(Z)=d>(0)e*poz+f 27 A 27
giving for the space dependencegfatz > 0 -7 Pot 7Y,
1 (atiw where ¢’ (0) is related top(0) according to
= z
H(2)=5 Ja_iw dpe® f A, )
¢'=—Pod0)— | oo (29

p¢(0)+¢> (0)+ [T (del2m)A,I(p+iy,)
p —k2 S(p) ' This is a consequence of the vanishing gxp( terms in
#(2), wherep, is the pole of the denominator of the inte-

. _ (4) grand of Eq.(24).

whereS(p) is a function Substitution of Eq(27) into (23) gives

de 1 K,V )

. X 0
S(p)=1+k Vj,,, 27 K (cose—V—i0)—ip sing" Up=A, eXp—17,)+ oo ¢ | v.+ipo [exp(=Po2)
(25 ’

Integral (24) is taken in a complex plang along a vertical —exp—iye2)]
line which is snyated to the right of gll smgularmésol_es ™ de A, exp—iy,z)—exp—iy,2)
and branching lingsof the integrandFig. 3). The solution 27 02+ 2 Yo Yor s
depends upon the analytical propertiesspp) which will be T ET PO Yy £

discussed below, and is different\at< 1 (velocity smaller (29
than the Fermi velocityand atv > 1.

The requirement tha#(z) derived from(24) behaves
regularly atz—oo establishes the relation betwee0) and = de A,
¢'(0) (prime denotes derivative with respectZpand thus bo=¢(0)+ ﬁw o m (30)
allows the solution of the Poisson equation outside the metal, 0" Te
which for clarity we also represent in the form of a PoissonThe positive values op(0 < ¢ < ) correspond to elec-

where

integral: trons reflected from the surface and the negative values of
o ey —ph o( — m < ¢ < 0) correspond to electrons arriving from
b= i a dpe Pz G 20) 2477Qe , the bulk of the metal. The quanti#y, in Eq. (29) satisfies at
2 Ja-ie pT—ky ¢ < 0 the same relatiofiL6) asy,, does. For positivep, the
2<0, (26) exponents exp(- iy,) taken with the finite value of v in-

crease exponentially inside the metal and therefore should
where for simplicity it is assumed that the tip is a point cancel themselves out. This condition gives the relation,
chargeQ located at a heightt above the metal surface. Re- which is valid at— 7 < ¢ < 0:
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kv oo This _function has branching2 points 32 the imaginary a;_xis
°"sing | yo+iPo = Ziqg, whereqy = k(V°s — 1)< At the real axis,
¢ the denominator of the integrand of E@4) has two pairs of
B fw d_go’ A, 31 poIesfi pfl artlﬁt plz. For example, in the cadg, = O the
.27 (p3+yi,)(7¢—7¢/) . equation for the poles

[kl V
This relation closes the set of equations necessary for the p2:k>2<+ 1- [pz+k2(:/2_1)]1/2 (39
determination of the field distribution inside the metal. Com- X

bination of Eq.(24) with the boundary condition foA, re-  gives two values fop > 0:

sults in an integral equation fok, in the domain 0< ¢ 1

< 7 p=p;=k,, and p:pzzl—zkxv,|kx|<1. (39
- KV (7do’ 1 Ay IiAW The first pole signals that the electric field distribution
LA+ sing Jo 2m p2+ 7’2’ Yot Vo + Yo~ Yeo! breaks the Thomas—Fermi barrier and penetrates into a metal

to distancesgk,| ~* of the order of the tip-to-surface distance,
B kyV g which is much larger thamg. This, however, is not an
" sing Yo—iPo’ (32) equilibrium charge distribution.
. . With the two polesp, ,, the potential¢(z), which is
where ¢, is taken from Eq.(30), andL is the operator of derived from Eq.(24) by integration along the contour

diffusive reflection shown in Fig. 3b has two exponentially increasing terms
A q (= exppP.2 and expp,z), and also the nonsingular terms exp
LA,=(1-q)A,+ > fo A, sin ede. (33 (= P12, exp(— p.2), exp(= iqez), and exp (- ivy,2), where

qo = k(V? — 1)Y2. Elimination of singular contributions

Once solved, Eq(32) can be used to find the rati¢’/ ¢ at results in the number of equations which is larger than the
the metal s’urface which is our goal in solving self- number of variables. This means that the only admissible

consistently for the field distribution inside and outside theSolution in this case is a trivial ondy, = 0, u, = 0, ¢o

metal. = 0. We thus find that¢$(0) = ¢'(0) = 0, which is
Let us evaluatep, and S(p). Consider separately the inconsistent with the equation for the potential value outside
casesV < 1 andV > 1. the metal[Eq. (26)]. In fact, if #(0) = ¢'(0) = 0 (note

Expression(25) can be reduced to an integral along the that these quantities are functionskofin some domain ok,
unit circlez = exp(g) in the complex plane then in this same domain the potential will become infinite at

largez. We conclude, therefore, that there is no regular so-

S(p)=1+ é dz 2k,V lution for ¢(2) if the velocity of the tipV is greater than the
(P)= 27 (ky—p)z2—2(k,V+i0)z+k,+p° Fermi velocity.
(39 This means that the solutio#i(z) does not existn the

linear approximationin x,, and higher-order terms in the
electron distribution should be taken into account on the

23 = (kV+iv: VKV +iv)2+ p2—k2) /(K= p), right side of the Poisson equatidh7).

At V < 1, the poles of the denominator in the integrand,

lie either inside or outside the unit circle and therefore the4. DYNAMICAL SCREENING IN A THREE-DIMENSIONAL
integral is equal to zer@except for Rgp = 0). We therefore  METAL

have It can be assumed that the instability of the steady-state
o(p) motion of a surface sheet at high velocity found in the pre-
S(p)=1+ (1-V3™ 50)’ V<1. (35  vious section is specific to the two-dimensional Fermi sur-

face. We shall see, however, that similar property is also
The poles of the denominator of the integrand in 24) are  seen in a three-dimensional metal.

*+ pg, Where In a metal with a spherical Fermi surface, an equation
for the angular-dependent part of the electron distribution
— 2
Po=v1+k~. (38 analogous tq21) is
Typical values oflk| are of the order of the inverse dis- d ik, V
tance from the tip to the metal surface, which is assumed to | iy, + g Y=snosng & (40

be much larger than the Thomas-Fermi screening length
Mte, and thereforék| is much smaller than the characteristic where 6 is a polar angle of the electron momentum at the

momentumxg [kt = (47)Y? in dimensionless units Fermi surface, ang,, is a quantity
In the caseV > 1, th_e behavior o8(p) is quite differ- K(sin 0 cos ¢ —V) +k, cos 6—iv
ent. At the real axiS(p) is Vo= - - . 41
sin 6 sin ¢
|kl V ” . _
S(p)=1-— . V>1. (379  The boundary condition of diffuse scatteringzat= 0 and
[P?+K(V2—1)]" 0<g¢<mis
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FIG. 4. Poles of the denominator in E@4) atk, = 0 andV = 0.9. (a) large value ofk, (k, = 0.8) corresponding to one pofg; (b) smallk, (ky
= 0.4, two poles— p;,p,). Curve 1—the dependencp? — kf, curve 2—the dependencg(p).

a (= . G . i
u_¢=(1—q)u¢+; fo sin 0d0f0 deu,, sin 6 sin ¢.
(42

The dynamical screening is
dimensionalS-function analogous t¢25)

S—lfdﬂ
)

KV
(SN 0 oS @— V) +K, COS6—ip SN 0 SiN g1V’
(43

wheredQ) = sin #dé d¢, which gives the potential distribu-

tion
_ 1 a+ioe 2
¢(Z)—ﬁ i dp
><<75(0)+p<75’(0)H(dQ/47T)[A¢/(IO+i%p)]

p?—k*=S(p)
(44)

Evaluation of an integral43) atk, = 0 andV < 1 gives

655 Low Temp. Phys. 23 (8), August 1997

represented by a three-

S:
( . v V+(1-p?/k2)12
(1 P2 " V ko + (1- VA (1 - p2IKk2) 2’
pP<|kul,

. Vv (PP 1)t
(p2lk>2<_1)1/2[arCS|n(p2/k)2(_1+V2)1/2
—arcsir‘(l_vz)llz(pZ/kX_1)1/2 P>k

\ (p2/k3_1+v2)1/2 ' x| *
(45
At p = +0, the function(43) is
Vo[t sgnV — 7x)
S(p,Vﬂ?)—l_ E Jildx ((V_ 77)()2_1_'_)(2)1/2 0((V
—7x)2—1+x?), (46)

wheren = ky/k,. Recall that ap— =S equals 1, whereas
atp = 0 it is smaller than unity and becomes negative at
large V.

Looking for the poles of an integrand of Eg4) with
real axis,

p?=kz+kj+S(p,V,7), (47)

we note that wher§, = S(p— + 0) is negative, there
always will be two rootg, > 0 andp, > 0 of (47) in the
certain domain ok. This is seen from the graphical solution
of Eq. (47), as shown in Fig. 4. Therefore, in this domain of
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wave vectors there will not exist any regular solution for the

electric field, and therefore there is a crisis of the Thomas- VC=tanhV—. (51
C

Fermi screening. Let us specify the domain of the latter.

So

f

\

Evaluation ofSy(V, ) gives

1

1—a+((1—a)2—32)1/2‘

V>7q

BZ

_2u+n%”“”1+a—q1+af—55ﬂ%

‘T a— (a2 BT a+ (1-a)?- B

V<n,

where

The functionSy(V, ) for different 5 is shown in Fig. 5. The
smallest value oV at which Sy is negative is achieved at
n = 0, where

This expression
= 0.8335 is the solution of an equation

FIG. 5. Dependence @, on V. Curvesl, 2, and3 correspond top = 0,

VI

—=1In

\Y
So(V,00=1—

2_1+772-—v2
A== 7?)? "

1-V

is negative aV

1+V

=
n k.’

> V. where V,

So

1.0

\\2\3

1

1.0

0.5, and 1.0, respectively.
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Therefore, the instability of laminar flow occurs in a three-
dimensional metal at a velocity slightly smaller than the
Fermi velocity. Near the critical value &f, the instability
takes place at a smélll-to-k, ratio. The smaller igk,|, the
stronger is the distortion from the unperturbgfz) distribu-

tion. In effect, the largds, Fourier components of the poten-
tial are virtually unaffected, whereas small the components
are depressed. This implies a change of the potential and of
the charge distribution inside a metal, which is shown sche-
matically in Fig. 6. The shape of the image(sfymmetrical
external charge in the surface sheet is compressed in the
direction perpendicular to the direction of motion and is
elongated in the opposite direction. At the same time, the
penetration depth of electric field inside the metal increases.
Near the critical velocity, the characteristic compression is

ATE
Az— W (52)

The effect of potential redistribution strongly manifests itself
if the distance between the tip and the metal is of the order of
a few unperturbed Thomas—Fermi screening lengths.

Let us analyze the analytical properties®in the com-
plex planep. S(p) has a singularity along the imaginary axis
p = iqg, which is in effect a manifestation of the existence of
the branching points of two-dimension&8I[Eq. (37)]. In a
three-dimensional metal, maximal velocity of electron mo-
tion parallel to the metal surfadg = sin @ may be smaller
than 1 atV < 1 in some range of. The functionS(iq)
attains different values when the imaginary axis is ap-
proached from the left and from the right, and remains ana-
Iytical in the subspaces Re< 0 and Rep > 0. The values
of S(p) to the left and to the right of the imaginary axis are

| vV o(n
Si(|q):l+§ fo doR.(v,q/ky), (53

V-7 cosé

1% "
sin 6

where = k,/k,, and

FIG. 6. Schematic diagram of the charge penetration inside a metal along
the metal surfacda) and along the cross-sectional plat®. Solid lines
correspond td&/ < V., and dotted lines correspond Yo> V..
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&

Y

FIG. 7. Contour of integration for the calculation of the poten#téf) [Eq.
(24)] in a three-dimensional metal.

0, lv]<1
sgr(v) .
Ro(o)={ =157 lv]>1]x|<\v*—1
i sgnvx)
imﬁ, |U|>l,|X|>\/UZ—1
(54

wherex = g/k,.
We can now calculate frorf4) the potential¢(z). In-
tegrating along the path shown in Fig. 7, we obtain

dQ .
$2)=do xii—pe2)+ [ 57, exii—iv,2)

+Jm qu i 55
55 Xa explia), (59

where, as follows from the requirement thafz) vanish at
z—, a relation betweerp(0) and ¢’ (0) is

dQ A,

¢'(0)=—pod(0)~ | Z o (56)
The coefficientspy, Z,, andX, in the expressioris5) are
_ 2po @ A,
¢°_—D’(po) {925(0)4‘[ ype m : (57
z 1 ! + ! }A (58
¢ 2|Dy(iy,) D_(iy,)|*
« _( 11 ) . 0
q— D+(|,y¢) D-(")/(p) (Iq p0)¢( )
dQ g+ipg
f 4w (Potive)(Aty,)| ¢ 59

whereD(p) = p? — k? — S(p) is the denominator of an inte-
grand of Eq.(24), which is appropriate for thedBcase.
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Proceeding further in the same manner as in Sec. 2, we
calculate with the help of E¢55) the functionu,,

®o
7¢+ip0

Ky
sin @ sin ¢

U,=A, exp(—iy,2)+

X (exp(—po2) —exp(—iy,2))

dQ’ exp(—iy,z) —exp —iy,2)
[y,
47T ’y‘p/_‘yq;/
» d exp(iqz) —exp —iy,z
+f dq exdigz) —exd ~iy,2)]
o 27 4 a+ v,

whereA,, is an arbitrary constant. Requiring that the terms
proportional to exp(- iy,2) cancel each other out at> 0,
and using, atp < 0, the boundary conditio®2), we obtain

Z,

b, [ 2,
y¢+|p0

T }(p )(p
I }(P

at— 7< <0, and

K,V
A,== -
¢ sin 6 sin @

(60)

A_wz(l—q)A¢+%f sinedef deA, sin 6 sin ¢
0 0

=LA, (62)

ato< o < m, whereL is a three-dimensional operator of a
diffuse reflection, which can be written in the form

L=1-q+4q, (62)
where(q is an operator

.. q . .

qA(P—; dQ A, sin 0 sin g (63

(dQ), means a solid-angle integration with a positige It
follows also that the inverse operator is

1-§

Sy
L 1—q (64)
Combining Egs.(57) and (60), we obtain an integral equa-

tionforA,inthe domain0< ¢ < 7

a kY f dQl [ A, LA,
¢ sin@sine 8T \ Vet Ve Vo= Vo
X( 1 N 1 )
D+(|'}’(p) D—(I’ycp)
_Joc ﬂq-ﬂpoj de,_ A<P’
—2 2m Q=Y J 47 [(Potive)(Qt ver)
_|_|: A(p’ :| _ ka d)o
(Po— 1Y) (A= Y1) sinfdsine | y,—ipg
= dgig—py[ 1
O] . 2zy, 4. Doaw)[ ©
. O. Kulik 657



where D.(iq) is a value ofD(p) to the left/right of an where
imaginary axisp = iq * 0. N N . L e
Equation(66) is valid atV < V. when the linear regime D.(ig)=—-k*=0°=S.(ia); S.(iq)=S(iq=0).

of the surface sheet motion is realized. In this case the solu- (74)
tion for A, together with Eq(56), permits determination of = SettingS. (iq) = S;(q) * iS,(q), we obtain from(53)
the effective boundary condition, i.e., the value of the ratio v (1 y )
#'lpatz = 0. _ __f Sgniv—7x
Si(q)=1 2 _1dX (A(X)—qzlki)llz O(A(X)
5. ENERGY DISSIPATION IN A MOVING SURFACE SHEET e (75)
X/

In this section we will consider the energy losses in a _ 2
surface sheet as a result of its interaction with the external g, (q)= v fl d 0(A£x)2)sgr(V 17/72)() ﬂz
charge that pulls the sheet. The force acting on the sheet is 2 (/K= A(x)) K

F=Ep, 66

’ - | 100 —A(x))sgr(ﬂ), (76

where the surface charge densitys determined as (1) Ky
X(dpldz),—9, and Ey = —(d¢ldz),—o. The product

wherex = cosf,andA(x) = (V — 7x)2+ x?— 1.Atp=0,a

F’.‘t\é =W gltv(;,\s the power d&gsm:zted n 2 metfal. Ir.]tegtrﬁtmgdirect integration gives the following expression for the posi-
with respect to space coordinatesy and performing the .\ . oc ofg andk,:

Fourier transformation, we obtain

2 2/1,2\1/2
\V; d?k 1+(Ve—q /kx)
- == 2 1-Vin Cglk, <V,
W= yps f (2m)2 KxPo(K)| ¢ (0)]% Im £(k), (67) S,(q)= (1-V2+qk3)1? x 77)
wherek = (ky,ky). The quantity{(k) is the coefficient in 1, a/ke>V
the boundary condition at the metal surface and
¢'(0)=—po(1+¢(k))p(0) (68) [ (a _ (1-V2)L2
[we dropped the indek in ¢ (0) and ¢,(0)]. Using Eq. v 2 ANV ke ™) Alkx<V
(56), we obtain
. 1
1 dQ A LA S(q)=4¢ V| aresin——5 57511
{(k)=— J - £ _+—21/14(0), (69 (1-V+a7k;)
Po 4w p0+|')/¢p Po— 1Y, . (1_\/2)1/2
whereA,, is found from the integral equatioi66). TSN TV gy Alkx=>V.
In the case of absence ofyadependence of the potential ' (78)

(for example, for an infinite rod moving parallel to the sur- . .
face, an expression for the rate of the energy dissipation pef ¢ dependences, ;(q) at variousV and » are shown in

unit length is Fig. 8. An approximate value &¥(q) at|ky,| < 1 is
V [ dk, ) S(q)
- _Z R(q)~= . 79
1= | 2o Kokl (017 Im (k) (70) @~ 2+ (79
where{(k,) is found by settingk, = 0 in (70). In the case R(q) is an odd function ofg, which vanishes linearly at
of small k|, Eq. (66) can be solved iteratively ik, : small|g/k,| and which behaves atdat|qg| >| k,].
A¢=A2+kxAi+... . (71) The two terms on the right side of E(f.3) represent the

contributions to the dissipation emerging from the main pole
In the lowest approximation we obtain p = po in the complex plang, and from the branching point
along the imaginary axis. The contributions k), ;(k),

L o= kXV_ 1_ and Z,(k) prove to be of the same order of magnitude. Sub-
Sin6 sine | v,~1Po stitution of Eq.(73) into Eq.(70) atpy ~ 1 and smalk, [see
N foo dq po—iq ( 1 1 ) 2(0) Eq. (36)] gives
% 2m =7, |D.(iq) D_(ig) ! i~ XY f A0,  2-9-q¥2
m = - -
(72) ! 1-qJ) 4w (1+y,)?singsing
where v, is determined in(41) with v = +0. Typical K,V aa, 1 dQ, g
yalues ofg are on the or_der dfx,_i.e., much smallerthan the - 1—q f 4 142 f T 1+ 92
inverse Thomas—Fermi screening lengtf: (in the dimen- ¢ ¢
sionless units we ha,| < 1). We introduce the function N kv f dQ, v, J' dQ. qy,
P=21 1D Ga)” D_(im))’ (80)
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FIG. 8. Dependences &, (upper curvesandS, (lower curve$ on g. (a)
n = 0. Curvesl, 2, and 3 correspond tov = 0.3, 0.5, and 0.7(b) V
= 0.7. Curvesl, 2, and3 correspond top = 0, 0.2, and 0.4.

KV [ dO.
Im {5(k)= f

1-q 47
X(Z_q)RO(Q)_q7¢R1(7¢)_ 7¢R( 74))
(1+5)sin 6 sin ¢

L kv f do, 1 fd(h
1-q ) 47 1+9]

aw

X

~ARo(7e)+ 3 VR(¥,)

N (Y f dQ, vy, fdQJr
1—q A 1+yi T
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FIG. 9. Dependence of on V. Curvesl, 2, 3, and 4 correspond toyn
=0,0.2,0.4 and 0.6.

X

ARu(7,)+ 5 R m}, 8D

where

1 = R n
Rn(x)=;V.p.J[_ (@) dg. (82

© q_X

Inspection of integrals in Eqg81) and (82) shows that at
ky—0fdQ, /(1 + yi) takes a constant value, whereas
JdQ, y,/(1 + y2) behaves ak, In(1/k,). This means that
the last term in Eq(82) can be ignored at small value kf
The second term is of the order kof, whereas the first term
behaves ag, In(1/k,).

For orientation, we assume thaR(q) is Cq/(g?
+ a?), which gives from EQ.(81) Ry(q) = Cal/(g?
+ a°) and Ry(q) = —Cad/(g®> + a?). One can then
evaluate integrals i82). It appears that the last term in this
expression is of the same order of magnitude as the corre-
sponding term in Eq(81); therefore, it can be ignored. The
second term in E82) is proportional td, In(1/k,). Evalu-
ation of the leading(logarithmig term in ¢, requires the
knowledge of the functionR ; atq = 0. After some alge-
bra, we obtain

1-qg/2
1-q

c c
In—2+pIn—2, (83)

Ky Ky

whereC, , ~ 1 are complex functions of, 7, andqg andu
is a quantity

Im £(k) =K,V

_Z fx R(X) d 84
e el (84
which is shown for different valueg and » in Fig. 9.
Since? is a small quantity [¢| < 1), the field outside
the metal is almost equal to its value calculated for an ideally
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FIG. 10. Dependence of. on 7.

reflecting metallic surfacexgr = 0). The power dissipated

due to the tip motion becomém the dimensionless unijts

v d’k [0

WZE 2m)? Ky 0o(K) Im (k). (85
In the dimensional units, the dissipated power is
V2 1—q/2
W= 2
4'7Te N(SF)VF 1_q
d%k
2 ’ 2
Xf (271_)2 kx|¢k(0)|
X|In ;-i- In i (86)
lkhre X7 ToINre]

Assuming that the tip is a point charg®, we obtain an
estimate ol valid atV < V.
V2Q2\2: 1-q/2

" TVed® 1-q° &7

Sharp resonances of versusV occur at a fixed values
of the moment, andk, . Dissipated poweW can be de-
termined by integration of. in Eg. (85) with respect tok.
Whether the dissipated powéf vs V will have similar sharp
resonances depends on the actual potential distribution at the
metal surface.

Let us consider as an example a point cha@et a
heighth above the metal surface giving at-0

1
¢(r):Q (X2+y2+(Z—h)2)1/2

1
T & ryir (zr ) (90)
from which we have
¢ (0)=4mQ exp(—2|k|h) (91

and an infinite thin rod with the linear charge densty for

which
Q x%+(z—h)?
$N= 5 N Ganye %2

and, correspondingly
1 (0)=27Q exp(—2|kh).
In the second case we then obtain
L W(v)
So(V,0)+1/4h?’

and in the first case

(93

h>1, (94)

= dg 1
W W V) f o (T+ 77 S(Voq)+ (1+ )R

The dependenceg®5) and(96) are shown in Fig. 11.

(95

6. DISCUSSION

Dynamical interaction of a moving charge with a metal
surface reveals singularities in the dissipated power as a
function of the velocity of motiorlV. Depending on the to-
pology of the Fermi surface, the maximum of power dissi-

whered is a distance between the tip and the metal surfaceyation in the surface sheet occurs either at the Fermi velocity
Atsmalld = \rg, this expression matches in order of mag- or sjightly below it. At the same value &, the electric field
nitude the loss of a charged particle that moves inside &egins penetrating the metal to a depth much greater than the

metal.
For a charged rod with a chardg@ per unit length, an
estimate of the loss per unit length is
W V2Q2\2. 1—q/2 -
The quantityu in (84) increases dramatically at near
the critical velocityV.. At a value ofV larger thanV,, the

Thomas—Fermi length, thus breaking the Thomas—Fermi
screening barrier.

Crucial for the observation of such effects is the possi-
bility of realization of fast motion of a surface charge. This
can be achieved by propagating charged particles or small
charged bodies above and near the metal surface. The other
possibility may be in creating an electronically driven mo-
tion of a surface charge parallel to the metal surface. Con-

linear regime of the surface screening breaks down. Arterning the latter, we envisage a setup with an array of

asymptotic behavior of. nearV,

1
P K=t (89

whereSy— 0 in the limit V—V (7). The functionV.(7) is
shown in Fig. 10.
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equally spaced metallic electrodes near the bulk m&tgl.

123 biased periodically in time with the short electric pulses
of fixed polarity. This will create maxima in the surface
charge distribution in a metal moving between subsequent
locations in the metal surface with an average velotity

= Ax/At (Ax is the distance between electrodes, ards
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the order of 10um. The velocity of soliton motion can be
made quite largey ~ 10’ cm/s. As a result of the interac-
tion of solitons with the induced surface charges in a metal,
the current-voltage characteristic of a semiconductor film
overlaying the metal attains a singularity\ahear the Fermi
velocity of the metal.

Another possibility is propagating low-frequency
charged plasmof¥*’in a thin superconducting film in the
vicinity of a bulk metallic electrode.

It should be noted that the effect considered in this pa-
per, an additional dissipation related to the surface charge,
may have relevance to an evaluation of the quality faGpr
2 of an rf cavity, in particular, a superconducting cavity. At the
lowest temperature at which the power absorption due to the
S electronic excitations in a superconductor is quite sig@alt,
therefore, Qs large, a dissipation related to the surface
charge may contribute to the residual valugXxfattained at
the lowest temperature in a very high-quality caviti€3; (

~ 100 18

*E-mail:kulik@fen.bilkent.edu.tr
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Study of surface phenomena in the ferroelastic phase transition in a semi-
infinite crystal

N. M. Lavrinenko

A. Galkin Physicotechnical Institute, 340114 Donetsk, Ukraine
(Submitted December 19, 1996; revised January 30,1997
Fiz. Nizk. Temp.23, 880—883(August 1997

Surface phenomena are studied during ferroelastic phase transition in a semi-infinite crystal with
tetragonal symmetry. It is shown that the strictional bond between the order parameter and
lattice deformation leads to the emergence of a spatially modulated structure with a finite value of
the wave vector at the surface phase transition point. The surface phase transition always
precedes the ferroelastic phase transition in the bulk.1997 American Institute of Physics.
[S1063-777X97)01308-X]

The role of surface in phase transitions in magnetic mafinteraction constants, measure the surface phase transition
terials has recently attracted ever-increasing attention of reéemperature, and determine whether the system splits into
searchers. The possibility for the existence of surface magdomains.
netic anisotropy was first indicated by &lé It was predicted An intrinsic ferroelastic phase transition is one whose
theoretically in 1970 that under certain conditions the surfac@rder parameter is coupled linearly with nonisomorphic stric-
of magnetic crystals may possess magnetization at temperHon, i.e., with macroscopic deformations of the crystal lat-
tures higher than the Curie poifgee Ref. 2 If an orienta- tice. To a considerable extent, this coupling determines the
tional phase transition occurs in the bulk of the crystal, it isPeculiarities of the critical behavior of the system in the
accompanied by a reversal of orientation of the magneti®roadest possible serise' and is independent of the micro-
moments at the surface. The difference between surfac¥OPIic realization of the order parameter. Since only long-
forces and bulk forces results in a nonuniformity of the ordefVave fluctuations of the characteristic parameter increase at

parameter and affects the phase transition temperature. THa Phase transition point, the free energy can be written in
existence of a “transition” surface layer with properties dif- the continuous medium approximation. For definiteness, we

fering from those in the bulk was first confirmed experimen-ShE_1II conside_r a semi-in_finite crystal of tetragonal symmetry
tally by Krinchak and Zubo¥.Such a relatively simple pat- which occupies the regior<0 and whose order parameter

tern of phase transition is justified only in the case where the’ Is linearly connected with the elastic straii—uy,).

magnetization at the surface and in the bulk of the sample is In th_e absence of external fields, the expansion OT free
) . energy in powers of the order parameterand the strain
parallel to the surface, thus excluding the influence of long- . .
tensoru;,= (U x+ U i)/2 during the ferroelastic phase tran-

range dipole—dipole forces, i.e., demagnetizing fields. In the ..

opposite case, the surface effects lead to the emergence Ofsguon has the structure
strip domain structur&> A similar picture is also observed 3 ) 4 )

when long-range elastic forces are taken inton:f d*X[A7"+ By + a(V )"+ A, n(UgUyy) + 1,1,
consideratiorf:’ In other words, the strictional bond between D
the order parameter and lattice deformation leads to th%,
emergence of a spatially modulated structure in the plane at
the ferroelastic phase transition point. Earlier, we
considered a plane—parallel plate in which a ferroelastic
phase transition takes place, and the surface is taken into
account through boundary conditions, viz., free elastic +Cralholyy+ 2066u5y+ 2044(u§z+ uf,z). @

boundary conditions and an uncoupled order parameter. U')S\part from the volume componef, , the total free energy

der certain conditions, the strictional coupling of the orderys e system also contains the free surface energy:

parameter with lattice deformation leads to the emergence gf_g L F_ where

a spatially modulated structure instead of a homogeneous

phase at the transition point. The wave vector of the emerg-

ing structure depends on the plate thickness and on the con-

stant of interaction between the order parameter and elastic i )

deformation. We did not consider in Re]E). 7 the possibility of?rh_e r_oIe. (.Jf the gradient in the bulk of the .c_ry§tal—(>—oo).

a surface phase transition. From the physical point of view:tS mﬁlgmflcant, and the solut|o|n Of. the ;equmb_rlum _eql;atlons

an interesting situation arises when the ferroelastic phasé)rt N c_)rder pa.ra.meter qnd elastic deformations is the same
" ) as that in an infinite medium:

transition can occur in the bulk of the crystal as well as at the

surface. In the present paper we consider the possibility ofa o o 0 0

competition between the bulk and surface phenomenological  uy,—uy,=—\,7/C, 7?=—A*/2B,

here the elastic energy density has the form

1 2 2 1 2
fyzi Cll(uxx+ uyy) + E C33uzz+ C13Uzz( uxx+ uyy)

Fe= ZES [an?+9(V7)2+ Nsm(Uxx—Uyy) 1. 3)
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C:(Cll_ sz)/z, A*:A_)\3/2C<O (4) u),(:allux+alzuy+ileUZ_iklEn;

The bulk ferroelastic phase transition point is defined by the Uy =&y Uy+ 80Uy +ik,Du,+ ik, E 7;
relation
11

1/2
_) D(iklux+ikzuy)+agguz+ asza”n,
C33

A=A"1=\22C, 7=(T—Te)/ T (5) ul=

z

(T is the temperature of transition in the system that does c c

not interact with the lattice deformations,,— Uyy= 0). n' =E 44 (ikyUy—ikoUy) +ag, =33 U,+ 447, (9)
Let us compute the mean-square fluctuation of the order 2a 2a

parameter at the crystal surface, which makes it possible Qhere

determine the singularities of the surface phase transition and

its temperature. In order to determine the fluctuation prob- bik3 bk biki bok3

ability, we must consider the highest possible equilibrium, 311=v+ K 32227+ o

i.e., the lowest value of the thermodynamic potential. Obvi-

ously, this condition is satisfied if fluctuations of the order _kika(bo—by) b=k Cu (1-D?) vz
parameter and displacement vector are at equilibrium in the %2 k? © 2N Cyy ’
bulk. Using the equilibrium conditions in the bulk 12 12
3 b=kl =% Ak %(1—D2) :
2An+4B7n°+ N\, (U —Uyy) —2aA =0, 1 Cul &= 2% Cas ;
Jo; 2_1,2
0 (ik=xy,2) ©) ko—ki  CaF .

IX azg= k2 D(C11C33)1/2 (b2_b1)1

(o= dF, 1du;y is the bulk tensor of stressesve transform

*
Egs.(1)—(3) to the form au=(A/a)¥2 D=— 44 .
; — Y~ ~ 12
1 = (Ada) Cat+(C11Cs9)"
Fs:E a772+g(vn)2+)\s77(uxx_uyy)+EO'izui v
zes E=C [(Ax/a)Y?+K(Cge/Can) . (10
44

+297n a|. (7) It is important to note that the surface energy is a function of

only n,u; (i=x,y,z) if the bulk equilibrium equationg8)
Here and below, the prime indicates differentiation with re-are satisfied. Otherwise, the volume of the crystal adjoining
spect to the coordinate normal to the surface. It should behe surface, and hence the surface itself, will not be at equi-
emphasized that bulk equilibrium equatidég must be valid  librium.

everywhere in the bulk right up to the surface. Otherwise, the  Minimizing the surface energy7) with respect to dis-

physical quantities will not have static fluctuations. placement vectors;(k) for given values ofp(k), we obtain
If the fluctuating quantities correspond to plane sinu-
soidal waves in th&Y plane Fs:f d?k(a+gk2+2aay,+ Vi2)| n(k)|?, (11

u;(x,y,z)=exp(i(kyx+k u;(kyq,ks,2), . . . . .
(xy.2) iy YNk ka.2) where the incremer¥ f in (11), which is negative and linear

7(X,y,z)=expli(kix+Kkyy)) n(Ky,K;,2), in the wave vector, has the form
K2+k3=Kk2, i=x,y,z, 3ay,)?
toe Vi=—Csaas3 A

Egs. (6) will assume the form

2y 2 2y 2
Caaty+ik Chus = —ikyh, 7+ (C11kE + Ceek) Uy _ KNS Az KoM= Agat 2kikoh 1A Asp
AviAr— AL

. (12

+K1ka(Cet CroUy; - . _
_ _ The quantitiesA,; (o, 3=1,2) are defined by the relation
Caguy+ikaChau; =ikoh, 7+ KiKy(Ceet Cip)Uy

koKpCi((1+D)?
+(CyiK5+ Ceek)uy ; Aup=Casdap— T Copm (13)
Caquij + Ch(ik Uy +ikouy) = Cak®us; and A, are linear combinations of surface and volume
“magnetostriction” coefficients
" Ak + )\U (k ik ) (8)
a 2a Aoz Aot 44= 44 34 (14)

whereC%, = Cyq + Ciz, andA, = A + 6B%2 + ak? 2 2833

Solving the bulk equilibrium equatior{8), we can determine which depend on the direction of the wave vedfitirough
the unknown derivativeg’,u; (i=x,y,z) for z=0 appear- as,) and on the temperatufghroughE). The correctiorV f
ing in (7) in terms of the order parameter and displace- in (11) is determined entirely by the long-range elastic
mentsy; (i=x,y,z) for z=0: forces. This quantity is also nonzero in two limiting cases:
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(1) a ferroelastic phase transition ( # 0) occurs in the cial” phase transition takes place is displaced in the case of
bulk of the crystal and an order—disorder phase transitiom ferroelastic phase transition. It is interesting to note that
(As=0) occurs at the surface of the crystal; this displacemenkf/ZC is determined entirely by the bulk

(2) a conventional order—disorder phase transition occonstants and coincides with the gap in the vibrational spec-
curs in the bulk of the crystal\,=0), and a ferroelastic trum of the order parameter of an infinite sample.
phase transitionNg # 0) occurs at the surface of the crys- Thus, in a semi-infinite crystal in which a ferroelastic
tal. phase transition is possible in the bulk of the crystal as well

Consequently, as a result of taking strictional effects intoas at the surface, strictional coupling of the order parameter
account, a phase with spatially modulated order parameteand lattice deformation always leads initially to a surface
which is characterized by a finite value of the wave vectorphase transition occurring at a temperature higher than the
always emerges at the surface phase transition point. temperature of phase transition in the bulk. This surface tran-

It is easy to see thaél f is nonzero for all directions of sition leads to the emergence of a spatially modulated struc-
the wave vector, and that it assumes the minimum value foture which is characterized by a finite value of the wave

k2=Kk3: vectork,. This quantity is defined by a linear combination of
3 2 constants of interaction of order parameter with lattice defor-
Vi=—k| N+ 5 Ay(alA)Y2) [(CeeCas) Y2 mations at the surface and in the bulk of the crystal. In this

case, the phenomenological approach to the problem of
Thus, in contrast to an infinite crystal, the system under conphase transition is justified at all temperatures since there are
sideration does not possess any directions of wave vectoR wave vector directions in the system corresponding to
with anomalous fluctuations of the order parameter or thé&nomalougcritical) fluctuations of the order parameter.
softening modes corresponding to th&mThe Landau
theory describes such a phase transition quite accurately. *E-mail: lavr@host.dipt.donetsk.ua
The surface phase transition temperature is determined

from the condition L. J. Neel, Phys. Radiurhi5, 225 (1954.
2M. I. Kaganov and A. B. Chubukov, iMagnetic Properties of Crystalline
at2aay,=0. (15 and Amorphous Medifin Russiaf, Nauka, Novosibirsk1989.
. . . . . . 3G. S. Krinchak and V. E. Zubov, Zh.K8p. Teor. Fiz.69, 707 (1975
This relation is satisfied only when the coefficienin [Sov. Phys. JETA2, 359 (1975,

the surface energy is negative, i.e., when the surface facili4yu. 1. Bespyatnykh, I. E. Dikshtein, and V. V. Tarasenko, Fiz. Tverd. Tela
tates the formation of an ordered phase. The surface phaséleningrad 22, 3335(1980 [Sov. Phys. Solid State2, 1953(1980].

.. . 5 H H
transition temperature can be determined from the formula®. V- Chubukov, Fiz. Tverd. TeldLeningrad 24, 2465 (1982 [Sov.
Phys. Solid Stat@4, 1399(1982].

2 __ _ ’ : H
a*=4aAs=4aA’ 5. Using Eqs(4) and(10), we obtain the  e5 £ andreev, Pisma zh. Esp. Teor. Fiz32, 654 (1980 [ JETP Lett.

following expression from Eq(15) for A* >0: 32, 640(1980].
5 2 ’N. M. Lavrinenko, Fiz. Nizk. Temp22, 1132(1996 [Low Temp. Phys.
a® A, . T Te 22, 865(1996].
Za 20 As=A T, >0. (16) s8R Folk, H. Iro, and F. Shwable, Phys. Left57, 112 (1976.

°F. Shwable, J. Stat. Phy39, 719 (1985. )
In other words, the surface phase transition always occur%’?l-g% L[e.]vIEa'Ir']l)Dlull_(einflAéYAl. (Slg%?nin- Pis'ma Zhkdp. Teor. Fiz11, 540
earllzer than the phase transition in the _t_)l‘”k' FefAce 11, M. Vitebskii, A. S.,Zel’tser, and N. M. Lavrinenko, Ukr. Fiz. ZI83,
= \;/2C the surface and bulk phase transition temperatures gg (1988,
coincide, and a “special” phase transition takes plésee *?v. G. Baryakhtar, I. M. Vitebskii, N. M. Lavrinenko, and V. L. Sobolev,
Refs. 2 and 1B In contrast with the order—disorder phase ,J- Phys. Cond. Matte2, 2579(1990.
transition in which the “special” phase transition is charac- - B& and M. A. Moore, J. Phy&10, 1927 (1877

terized by the relatiom=07 the point at which the “spe- Translated by R. S. Wadhwa
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DYNAMICS OF THE CRYSTAL LATTICE

Neutron scattering and diffusive x-ray diffraction in acoustic modes in Nd >,CuO,
D. V. Fil and A. L. Zazunov

Institute of Single Crystals, Ukrainian National Academy of Sciences, 310001 Kharkov, Ukraine
(Submitted November 25, 1996
Fiz. Nizk. Temp.23, 884—890(August 1997

The differential cross section of thermal neutron scattering and x-ray scattering by acoustic
excitations are calculated in the framework of an anisotropic elastic medium model with an
additional two-dimensional acoustic-type mode which interacts with elastic deformation.

This model was proposed earlier for describing the anomalous behavior of sound velocities in
Nd,CuGQ,. The influence of plane mode on the angular dependence of neutron scattering

and on the shape of diffusive spot in x-ray diffraction pattern is studied1987 American
Institute of Physicqd.S1063-777X97)01408-4

A peculiar behavior of sound velocities in single crystalstional mode is that, firstly, the additional oscillation is not
of Nd,CuQ, and PyCuQ, has been described in Refs. 1 and connected with longwave fluctuations of the electron density
2. This peculiarity consists in the anomalous dependence dfince the existence of Coulomb interaction would determine
guasitransverse mode velocities on the direction of a rotatinthe gap nature of the spectrum of such oscillations. Secondly,
wave vector in the symmetry planes parallel tothexis. A since the application of a strong constant magnetic field does
phenomenological model based on the assumption about th®t change the nature of the angular dependences of the
existence of a collective mode which has an acoustic energycoustic signal velocitie? it can also be stated that the
momentum relation and which propagates along the LuOadditional mode is not connected with spin oscillations.
planes in the single crystals under consideration was prd-ence the degrees of freedom corresponding to this mode do
posed. In this model, interaction of the lattice with additionalnot interact directly with neutrons or the electromagnetic
degrees of freedom corresponding to the plane mode mafield, i.e., the scattering mechanism of the latter is deter-
lead to a dependence of acoustic vibration velocities on th&iined by the nuclear and electromagnetic potentials of lat-
direction of wave vectorg similar to those observed in tice atoms, and the effect of the plane mode is manifested
experiments:?> For a definite choice of parameters of the through its interaction with longwave elastic vibrations. The
model, hybridization of a quasitransverse elastic vibratiorsubsequent analysis is based on this assumption.
with a plane mode leads to the emergence of two intrinsic
vibrations (fast and slow which are mainly responsible for
transfer of the transverse_ elastic signa! wit_luiirec_ted _at an 1 SCATTERING OF NEUTRONS BY ACOUSTIC MODES
angle #+0, /2 to the axisc, and polarization lying in the
plane defined by the direction gfandc, axis. Foré close to Following the approach described in Ref. 3, we write the
0, the fast mode gives the main contribution; foclose to  Hamiltonian of the model in the form
/2 the main contribution comes from the slow mode, and H=H +H.+H. 1)
both modes give similar contributions in a small regiongof uthas it
in the interval (<6< w/2). This explains the experimen- The elastic part of this equation has the standard form
tally observed abrupt changes in the transverse signal veloc-

: : : 1 .

ity as a function of@ and the detection of two transverse H,== f d3r (pU+ NjamUikUim), 2
signals with identical polarization and radically different ve- 2

locities in the region of the jump. whereu; are the components of elastic displacement vector,

We believe that the hypothesis about the existence of @;, is the strain tensor componenjs,s the density of the
plane mode calls for an independent experimental confirmaelastic medium, and ., is the elastic moduli tensor. Since
tion. Earlier, we considerédhe theory of Brillouin scatter- we are interested in the spectroscopy of the acoustic modes
ing of light for a lattice with an additional plane mode. In the of the system, we shall not consider optical vibrations in the
present work we aim at an analysis of the effects associatgotesent approach. In order to simulate an acoustic plane
with the existence of a plane mode which may be manifestechode, we introduce an additional degree of freedom like a
in experiments on neutron scattering and diffusive diffraction(2+ 1)-dimensional gage fieldaf, ,a,,c) in the nth layer(the
of x-rays by acoustic phonons. layers are perpendicular to tlog axis). Such a field is char-

The analysis carried out in the present work is based omcterized by a single independent component, which corre-
the phenomenological approach for describing the additionadponds to the assumption concerning the existence of an ad-
mode. The important circumstance for the problem undeditional mode in the system. The Hamiltoni&ty assumes
consideration as regards the microscopic nature of the addihe form
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1 o . ) )
Ha=g— 2 f d?r(&;+v3b?), 3 f dte/@(e™ 'l VelaumOy, (5)
T n — o
wheree,= — g,ap— d,a; ; b=eyd;ay, andv, is the velocity In t_his equationa_u is _th_e length of neutron sc_attering _by_a
of the plane wave along the layers. Taking into account théattice atom(for simplicity, we assume that this quantity is
tetragonal symmetry of the system, we can present the intethe same for all atomsk andk’ are wave vectors of an

action Hamiltonian in the form incident and a scattered neutrom=k’'—k, and o
=(2m,) " (k?—k’?) (m, is the neutron mags
Hip= > f d2rb (g Uy, + Oy (U + Uyy)), (4) In order to compute the mean in E&), we go over to
n

the secondary quantization representation in the Hamiltonian

whereg, andg, are interaction constants. The choicetbf (1). Choosing the calibrationag=0, V,a=0(V;=ixdy
andH,, in the form(3) or (4), respectively, may be justified, *iy?) and using the Fourier components of the fields)
for example, in the model of an elastic medium containing®"d@n(r), we can present the Hamiltoniat) in the form
two-dimensional layers of superfluid anyons in which anyon 1 e N
density fluctuations interact with the elastic strain tensor H=7% % pU; (A)U;(A) + Xm0 G U (9)Um(Q)
components—® Since we do not aim at a microscopic de-
scription of the effect in this work, we consider Hamiltonian 1 . :
(1) only as a convenient phenomenological model. Since the T amd [Q(@)Q(1) +v3a5Q  (A)Q(A)]
Hamiltonian(4) is invariant to the replacement of right-hand
coordinate system by a left-hand one, we assume implicitly
that the existence of an additional degree of freedom is as-
sociated with the emergence of the corresponding order pa-
rameter in the system that violates the symmetry for the Fayuy(Q)}+H.c)l, ®)
given layer. (here d is the separation between layers, and
The differential cross section of inelastic neutron scatterdpi= (A% +02)*% Going over to normal coordinates in the
ing calculated in the Born approximation per unit energy ofabove equation, we obtain
the scattered neutron and per unit solid angle has the®form 1 ) )
fo 1K H=> % (aj(a (@) +oi(@ay(Day ), ()

o 1K iq(R—
dEdo 27 K Yogg O TTARI-Rw)

1
ty (igpQ " (a){9,9,u,(q) + gx(axux(q)

wherewf((q) are the eigenvalues of the matrix

GO+ G+ G (Gt Gty (GatCaOxd,| 18y
(Gt Go)Uxly GOy + Gl +Gads (Gt Ga)Oyd, Gy Cpi
(Gia T G U0l (Gt Caay,  Culh+ G 1G0,0g
— G — Gy ap —iG0,0y  via;

8

with G,=cy/p, and‘gz(x)z d,x)V4mldp. The above equa-  where¢,; are components of the eigenvectors of the operator
tion takes into account the symmetry of elastic tensor comdefined by the matrix8).
ponents for the NgCuQ, lattice. The direction o andy Calculating the mean ifb), integrating with respect to
axes is chosen along the Cu—0 bonds in gulnes. In  and summing over the lattice sites, we obtain
terms of the secondary quantization operators, the Hamil-
tonian(7) can be presented in the form d?c 1k’ aN 1 B
TEd~ 2K M 2 o lat(@f?e 2@
dEdo 2k M % w,l(q) X

1
H=q2x wX(q)<BI(q)BX(q)+§ ; ) X{(N(w,(0))+1) 80— w,(q))

+N(wy(q)d(@+w,(d))}, (11
whereB8™ andg are the boson creation and annihilation op-

erators. The quantities(l,t) are presented in terms of the where
operatorsB as follows:

— 1 1 ’ 2( ’ l)
W(q)_Zp_Vqu ——|9&,(a")]*| N(w,(q N+35

£i(Q) N ")
(0= 20 & (@2 AU A () e 12
X
XexpigR —iw,(q)t), (10 is the exponent in the Debye—Waller factdi(w) is the
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Bose distribution functionM is the mass of a unit celN is
the number of cells, and,=¢,1,6,2.6,3. In the limit
T>w,(q), Eqg.(11) reduces to

d?c 1k TaN
dEdo 2K M ;'X(Q){f?(w—wx(q))

+o(w+w,(9)}, 13

where

1
()= PIE) |lag,(q)]?e™ 2. (14

It follows from Eq. (13) that the existence of a plane mode
leads to the emergence of an additional peak in the differen-
tial scattering cross section. Using the expressibf), we
analyze the intensity of peaks as a function of the experimen-
tal geometry. Let us first consider the cage k+q’ with
k#0 (s is the reciprocal lattice vectprand |q'|/|«<1,
keeping in mind that we are interested in the spectroscopy of
the longwave part of the spectrum. In this case,
W(q)~W(k), i.e., the Debye—Waller factor defines the an-
isotropy of intensities as a function of the directian(the
magnitude of the anisotropy will be discussed beloand is
constant for a fixed value af. We assume the model param-
eters in accordance with the analysis of the experimental
velocities of sound in NgCuQ, observed in Ref. 27q,)?
=6.05; (Go'?=5.85; [Gp)'%=4.59; [GoY?°=4.19;
(Ga)Y?=2.46; GoY?=4.22; v,=3.83; [@)"?=3.95 (in

units of 1¢ cm/s), g,=0. The angular dependenceg 6)

for k=(0,0,27r/c) and (2r/a,2w/a,2w/c) (wherea andc

are lattice parametersand g’ lying in (010 and (1D)
planes, respectively, are shown in Figs. 1la anddls the
angle between’ and thez axis). The corresponding angular 2 \
dependences of the energy shift for a scattered neutron are 2 X
shown in Fig. 1c. For the geometry chosen by us, the inten-
sity corresponding to a purely transverse elastic mode with 2 &
polarization in the(001) plane is identically equal to zero.
For comparison, Fig. 1 also shows the intensity correspond- 3
ing to quasitransverse vibration for a system without a plane 0 1}2 z
mode (with the same values of the elastic tensor compo- 0

nentg. For a quasilongitudinal mode, the corresponding de-

pendence practically coincides with curen Figs. 1a and FIG. 1. Dependence of the neutron scattering intensitigson 6 for
b. It follows from the dependences presented here that th&~ (0:0: 27/C), a'L1010] (), x=(2m/a,2m/a,2mic), q'L[1D] (b), the

. .. . Scattered neutron energies corresponding to ttestid curves correspond
existence of an additional mode does not affect the scattering q'L[010], and the dashed curves correspondatd [1D] (c). The

spectrum forg’ lying in the (x,y) plane. For the remaining dashed curves in Figga) and (b) show the intensity of scattering by the
g’, the interaction with a plane mode leads to the splitting ofguasitransverse sound in a system without a plane mode. The numbers on

the peak corresponding to a quasitransverse acoustic phondpg curves are the intrinsic mode numbers.

For 6—0, the contribution from the additional mode deter-

mines the nonzero intensity of nearly elastic scattering with

g+# k. The case#=0 must be considered separately. For

such a direction of the wave vector, the plane mode compan 1o the quasilongitudinal mode practically coincides with
nent vanishes, and the dependeng@) changes abruptly. ¢, 1 in Fig. 2, and the contribution from the quasitrans-

Note that the departure of the plane mode spectrum from th\?erse mode is too small to be shown on the given scale. It

rely two-dimensional woul jump of fini . . . .
\F/)vlijdfhy two-dimensional case would cause a jump o tecan be seen from Fig. 2 that together with the quasilongitu-

The angular dependenceg(6) for k=0 andg, which dinal mode of two other intrinsic oscillations of the system,
lies in the &,z) plane, are shown in Fig. 2. For' a systemthe presence of a plane mode is responsible for a significant
without the plane mode, the scattering intensity correspondcontribution to the total scattering intensity.
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FIG. 2. Dependence df, on 6 for k=0, q" L[010].

2. DIFFUSIVE SCATTERING OF X-RAYS BY ACOUSTIC
MODES

Let us now consider the diffusive scattering of x-rays by
acoustic modes. Taking into account the displacements of
lattice atoms, we can present the differential scattering cross
section in the forr®

dO'_l
do’ 2

2\2

© (1+cog a)|fq|2|2 exp(—iq(R,

mc
)J’ dtJ glet(giaullgiqumoy,

(19

wheref, is the Fourier component of the atomic scattering
form factor (for simplicity, we assume the form factor to be
the same for all atomsand« is the angle betweek andk’
(the wave vectors of the incident and scattered electromag-
netic waves Substituting the expansiofl0) into Eq. (15),
we obtain in the limifT>w, (q) the following expression for

[110)

FIG. 3. Shape of the diffusive spot for x-ray scatteritite solid and dashed

the diffusive scattering cross-section of x-rays: curves show the results for a system with and without an additional mode,
do 1 ez 2 |f |2TN respectively, #=(0,0, 2m/c), projection onto the (010 plane (&
I D (1+CO$2 @) a k= (2m/a,2w/a,2x7/c), projection onto thé1D) plane (b.
do’ 2 \mdc M
2
X (q) 3. ANISOTROPY OF THE DEBYE-WALLER FACTOR

Hereg=k—k’=k+q'. Proceeding from this equation, we Finally, let us consider the effect of the additional mode
consider the effect of a plane mode on the form of the dif-on the dependence of the Debye—Waller factor on the direc-
fusive spot in the vicinity of the structural peaks. The curvestion of the scattering wave vector and temperature. We re-
corresponding to equal intensity of diffusive scattering, ob-strict the analysis to the Debye model. In this model, we

tained from the condition shall carry out summation with respectdo in (12) inside a
|qé (q)|2 sphere of radiugp and assume that the linear dependence of
> = nst, vibration frequencies on the wave vector is valid in the sum-
x @ ( ) mation region. In this case, we obtain for the quantitys)
are presented in Fig. 3a= (0,0, 2/c), projection onto the W( 1) = Wo( 1) + T2W, (50), (17)

(010 plang and in Fig. 3b «=(27/a,27/a,2w/c), projec-

tion onto the(1D) pland. The corresponding curves for a where
system without the additional mode are also shown in the 5
figure. It can be seen from Fig. 3 that the existence of a plan (1) = F”d J | |k, (0.0)|°
mode causes a significant variation of the diffusive spot for ° 8(2 )3 ¢ s, (6,¢) '
the scattering geometry considered by us. (18
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FIG. 4. Dependence oiVy(a) and W;(b) on 6, for kL [010] (solid and
dashed curves show the results for a system with and without an additional

x/2

0 0k

mode, respectively

Wi (k)=

(s, are acoustic mode velocitieslt can be shown that
W, (k) is independent of in the low-temperature limit. The
upper limit in the integral with respect toin (19), in fact,
can be made to tend to infinity for gl 6, and¢, except for
a small region in the vicinity ob=0 for one of the modes.
In this region, the integral with respectxdn (19) is ~T~ 1,

669

1
2(27T)§p p

Sydp /T X
X dx —
0 e"—1
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2 1
> f quJ’ d cos 6
0 -1

x/2

| K€, (0,0)]2
(60, 0)

(19

and the phase volume of this regionisT. The contribution
from this region is also independent of temperature. Hence
the qualitative behavior of the temperature dependence of the
Debye—Waller factor is preserved. Nevertheless, the effect of
lattice interaction with the plane mode is manifested in the
variation of the nature of the dependenig(x) andW, (k)

on the directionk. The dependenceéd/y(x) and W, (x) on

the angled, betweenk and thec, axis for «L[010] are
shown in Fig. 4. For comparison, the figure also shows
analogous dependences for a system without the additional
mode. The numerical values @, andW, are estimated for
kllzandk~10" cm ! asWy~10"1 andW,;~10 ° K2,

It can be seen from Fig. 4 that the interaction of the
lattice with the plane mode is manifested in an additional
anisotropy of the Debye—Waller factor and in its temperature
dependence. As regarllé,, it should be noted that in spite
of the validity of the qualitative conclusion about the plane
mode determining the additional anisotropy, its numeri-
cal value is sensitive to the choice of the approximation and
may turn out to be quite different if the contribution of op-
tical phonons is taken into account and upon integration over
the entire Brillouin zone. The effect associated with the
plane mode may be less significant than that expected from
the model considered here. On the other hand, the model
provides a quantitative description of the anisotropy of the
temperature dependence of the Debye—Waller factor at low
temperatures.
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Effect of pressure on phase transitions in fluosilicate hexahydrates of bivalent metals
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A. Galkin Physicotechnical Institute, National Academy of Sciences of the Ukraine, 340114 Donetsk,
Ukraine*
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Fiz. Nizk. Temp.23, 891-901(August 1997

The results of experiments on hydrostatic pressure effect on the stability of crystalline phase
states in fluosilicate hexahydrates of bivalent metals M&{H,0), where M= Mg, Mn, Fe, Co,
Ni, and Zn, are considered in a wide temperature range. The results of measurements are
presented on thB—T diagram of crystalline states. A generaliZ@dT diagram permitting the
classification of the properties of individual compounds and identification of high-

pressure phases is constructed. The obtained results are compared with theoretical models.
© 1997 American Institute of Physids$1063-777X97)01508-9

1. INTRODUCTION of PT to the monoclinic state. The high-temperature modifi-
. ) cation of M—FSH of this type has a trigonal dynamically
_Fluosmcate hexahydrates of bivalent meta_M—FSH) disordered structure, while the low-temperature modification
MSiFs6(H,0), where M= Mg, Mn, Fe, Co, Ni, and Zn, g 5 monoclinicP2; /c phase which is ordered not only as
hgve S|m|la_r crystal lattices which can be described as ?egards its diffraction properties, but also in view of the ab-
trigonally distorted structure of thze, CsCl type, forrrﬁd bY sence of intrinsic motion. The disorder existing in M—FSH
octahedral ionic complgx_e@SH_:G] and [M(H.0)] ; of the first and second types &t can be regarded as par-
These M—FSH can be divided into three types according t(ﬁally dynamic since it involves the motion §BiFs]2~ ions

the difference in the crystal Igmce symmetry at r_ooTlh)( only. These ions rotate between two possible orientations
and low temperatures. The first type includes Ni- and Zn-

: . appearing on x-ray diffraction pattefns the surroundings
based FSH which can be described by the symmetry grougfgtationgary[M(HZO)G]“ ionspzif we neglect thermal \?I

R3in the entire temperature ranbé:obalt-baied FSH be-  prations. However, the termination of motion in Ni- and
longing to the second type also possesseRBeymmetry  zn—FSH upon cooling is not accompanied with a change of
at T,,* but experiences a first-order phase transitie)  the diffraction pattern. In this case, a transition from the par-
upon cooling(at T=246 K) >* A comparison of the results tially dynamic to a static disorder, i.e., to a state with a “fro-
obtained in Refs. 4 and 5 shows that the low-temperatureen” disorder, probably occurs instead of the ordering of the
modification of Co—-FSH has the monoclinic symmetry crystalline structure. Cobalt fluosilicate belonging to the
P2;/c. Fluosilicates of Mg, Fe, and Mn belonging to the third-type M— FSH undergoes a transition to 2, /c state
third type are characterized by the presence of symmetryipon cooling, but the temperature corresponding to termina-
planes parallel to the trigonal axis of the crystal. It wastion of motion of[SiF;]2~ ions does not coincide with the
shown initially by x-ray diffraction methods that Mg- and temperature of PT to the monoclinic state. In all probability,
Fe—FSH belong to the space groBAm,>’ while Mn—FSH  such an peculiar behavior is associated with the bordering
belongs to the®3m1 group? Here we will use this symme-  position of Co—FSH between M—FSH groups with different
try identification for denoting phases, although the authors 0§ymmetriesR§n(P§”nl), andR3
subsequent publicatioh$ discovered reflexes on the x-ray In addition to structural PT considered above, some
diffraction patterns of Mg- and Fe—FSH , which are incom-M-FSH display transitions associated with magnetic order-
patible with theR3m group. In their opinion, the structure of ing. According to the results of measurements, Ni-FSH goes
the latter compounds can be interpreted as a pseudohexagwrer to the ferromagneti=M) state atT<1 K, while Mn-
nal structure based on periodically alternating elements oind Co—FSH experience a transition to the antiferromagnetic
monoclinic lattice with the space group2;/c. All the  (AFM) state with weak ferromagnetism. It was shown in
M—FSH compounds of this type change their structure tdRefs. 13—15 that the AFM ordering in Co- and Mn—FSH is
P2, /c through a first-order PT upon cooliigrhe transition  preserved up to pressur€=40 and 80 MPa, respectively.
temperature is 300 K for Mg—FSH and 230 and 225 K forCooling at higher values oP leads to the FM ordering.
Mn- and Fe—FSH respectively. Nickel-based FSH remains ferromagnetic in the entire range
The results of analysis of the temperature dependence aff pressures under investigatiup to 950 MPa and changes
the NMR line width for*H and'°F nuclei indicaté’®'2that  the magnetic anisotropy type from easy axis to easy plane
M—FSH display an intrinsic motion of octahedrons forming only for P=130 MPa. Two magnetization jumps observed in
the crystal lattice in a certain temperature range. In the trigoFe—FSH are induced by magnetic fields=9.8 MA/m and
nal modification of the third-type M—FSH = Fe and M,  H,=34.38 MA/m® However, these jumps disappear for
the motion of iong SiF;]?>~ as well ag M(H,0)¢]?>" takes P>180 MPa, and magnetization increases monotonically
place. The temperature at which this intrinsic motion in thesawith the field*’
crystals ceases upon cooling coincides with the temperature In this research, we carry out a detailed experimental
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investigation of the effect of hydrostatic pressure on the stato thermal treatment. As in the case of DTA measurements,
bility of crystalline phase states, on the temperature of PThe pressure was created by a gas membrane compressor.
transitions between these states, and on the form of theifhe construction of the chamber is described in greater detail
realization. The solution of this problem enabled us to conin Ref. 19. The maximum pressuf® which could be at-
struct theP—T phase diagrams, to discover triple points, newtained in the chamber was 140 MPa. The temperature was
high-pressure phases, and wide regions of metastable statesried from 4.2 to 350 K.

to establish regularities in the behavior of various FSH under

pressure, and to determine the relation between the variatia®) DISCUSSION OF RESULTS

of their crystalline structure, magnetic properties, and the

type of ionic disorder in a PT. The results of experiments with M—FSH are presented in

the sequence corresponding to the serial nunibesf ar-
rangement of atom@) in the Periodic Table. The choice of
2. EXPERIMENTAL TECHNIQUE such a sequence was dictated by the regularity which was

) ) indeed observed in the change in the behavior of these com-
Experiments were made by two independent methodsyoynds under pressure and which is associated with an in-

difference—thermal analysi®TA) and x-raying diffraction  ¢rease in the atomic number of the bivalent metal. This will
(XD). The samples were single crystals obtained from a sUpe considered in greater detail below.
persaturated aqueous solution of salt according to the tech- The results of measurements for each M—FSH are gen-
nique described in Ref. 18. . eralized in the form of correspondiig—T phase diagrams.
The DTA method was used for determining the PT tem-gq convenience of comparison, the diagrams are plotted
perature and for establishing the nature of thermal effectgim"aﬂy_ Dark figures denote points of thermal anomalies
accompanying these transformations. The object under irﬁccording to DTA data, while light figures correspond to
vestigation of size & 6>x4 mm, the standard crystal, and a 5,omalies ortl 44 T,P) according to the results of XD mea-
differential thermocouple were placed in & high-pressure vesgrements. Arrows on the figures indicate the directions of
sel which simultaneously served as a furnace in the DTA aration of T or P at which these anomalies were detected,

sense. The case made of beryllium bronze subjected to thegyq the form of anomalies determine the type of phase tran-
mal treatment was connected with a gas membrane compresiions. For clarity, the regions of existence of different

sor through a steel capillary. The pressure was transmitteghases are hatched with different angles.
from the compressor to the vessel through gaseous helium.

The choice of helium as the transmitting medium enabled ug-1- P—T phase diagram of MgSiF 6(H,0)

to make measurements under isothermal as well as isobaric |y the case of Mg—FSH, a change in pressure up to
conditions and to move along any frajectory on #eT 200 MPa does not lead to loss of stability in the high-
plane up tor ~12 K. The apparatus used made it possible togheratyre rhombohedram or low-temperature mono-
carry out experlmen_ts in the temperature range 12,_350 Riinic P2,/c phases. The temperature of the forward and
and in the pressure interval 0—200 MPa. The errors in mea;, yward first-order PT between these stathe tempera-

surements were-0.5 K and 1.5 MPa, respectively. ture hysteresis width is 5 K) is virtually independent of pres-

The temperature and pressure dependences of the latligh e The temperature stability boundaries of these phases on

spacingdaso, as well as the intensity and shape of the XTthe pP-T phase diagram are straight lines parallel to the
reflex (440 in the crystals under investigatiofindices in P-axis.

hexagonal axes of a rhombohedral lattieeere determined
as a result of XD measurements. Stability regions for cryss Stability of crystalline phases of Mn—FSH under
talline phases on th®-T plane, the presence and type of pressure
PT, as well as the values df and P corresponding to them
were determined from the presence of anomalies on these TheP-T diagram for Mn—FSH is shown in Fig. 1. As in
dependences and their forms. The choice of the réfidg)  the case of Mg—FSH, the temperature of forward and back-
for recording was primarily dictated by the convenience ofward PT between the high-temperature trigoR@ml and
experiments. The reflex was recorded from the natural fackow-temperature monoclinie2, /c modifications is virtually
of the crystal. The high intensity of the refléwhich was independent of pressure, but the transitions are observed only
100 times the background intensitgnabled us to detect its up toP~90 MPa. The linesb anda’b’ forward and back-
variation to within = 0.02°, which ensured the error of ward phase transitioR 3nl«< P2, /c converge at the triple
+1.7<107%% in determining the relative change in the point. The region on the—T diagram near the triple point is
value ofdygg in CUK,, 4 ,,(20440~80°) radiation and com- shown in Fig. 2 on magnified scale. Figure 3 presents in
plete standardization of conditions of x-ray diffraction. At three-coordinate systeni®(T,d,4q the data on the behavior
the same time, the shape of the profile of this reflex is senef the quantityd,4o upon a change it andP in the vicinity
sitive to loss of axial symmetry of the crystal. of the triple point, which are required for identification of
Measurements were made in a high-pressure chamb@hases adjoining the triple point and establishing the nature
made in the form of an attachment to the x-ray diffractometeof PT between these phases. THdmnopf curve in the
DRON-3. The single crystal under investigation was placed P,T) plane is the trajectory of variation of the independent
in a thick-walled container made of beryllium and supportedthermodynamic coordinatels andP. The values ofly,g as-
by a bandage manufactured from beryllium bronze subjectedumed by this quantity upon a variation Bf and T are
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FIG. 1. P-T phase diagram for MnSj6 (H,0).
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FIG. 3. Variation of the lattice separati@h,, in MnSiF;6 (H,0) near the
triple point.

plotted along the vertical axis. Solid bold curves connecting

these values describe the dependerttggT) and d ¢ P)
in various regions of th®—T diagram. In order to illustrate

the correspondence between anomalies manifested on the

curvesdpT) and d . P) and the lines on th®-T dia-

gram depicted in Fig. 2, the latter are presented by dashed

curves in the horizontal pland>(T) in Fig. 3.

A comparison of the results presented in Figs. 2 and 3

leads to the following conclusions.

(1) The pressure dependence of the temperature corre-

sponding to the first-order PF3n1— P2, /c forms the
curve ab on the P—T diagram. The reverse transition
occurs along the curva’b’. The temperature hysteresis
between these curves 511 K. The bifurcation of the
da40 curve in theP2,/c phase is a consequence of bi-
furcation of the diffraction maximun{440), which is

associated with the loss of the trigonal symmetry in the
lattice and the division of the sample into crystal do-

mains as a result of a transition to tR&, /c state’

(2

the value ofdys on thebc’ curve by ~1.6 %. This
characterizes thbc’ curve as the first-order PT curve.
The phasex formed as a result of this transition appar-

T.K
320t i ¢
\
a
280 | _\,\a“
P3m1 = 5
v L s A | 8‘ b"v\
200 P2,/e 'e-,k \’\d'
0 20 40 60 80 100 P, MPa

FIG. 2. Region of theP-T phase diagram for MnSy6(H,0) near the
triple point.
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Heating or compression of the sample which was ini-
tially in the P3nl state leads to an abrupt decrease in

ently preserves the trigonal symmetry since the phase
transitionP 3n1— « is not accompanied with a change
in the shape of the peak &440. The negative slope of
the bc’ curve indicates that the phase is simulta-
neously a high-pressure phagdPP and a high- tem-
perature phase relative to tiR3ml state. For this rea-
son, the samples go over upon heating from Rgnl
state to the state as in a HPP upon a decrease in spe-
cific volume, which is a rare effect in solid state physics.
By an appropriate change ihandP, the sample can be
returned from the state to theP3m1 phase on thé"c
curve or transformed to th®2,/c state on theb”d
through a first-order PT. The transitid?2,/c— a oc-
curs along thév’'d’ curve.

Thus, the triple point on theP-T diagram of
MnSiF;6 (H,0) is formed by three curves of first-order PT:

P3aml~P2;/c, PAnl—a, anda« P2, /c. As a result of
hysteresis phenomena, the triple point appears orPthHe
diagram at poinb for a transition from thé® 3n1 state, at
pointb” for a transition from ther state, and at poirit’ for
a transition from theP2, /c state.

Let us return to thé—T diagram depicted in Fig. 1. The
P2,/c phase is formed upon cooling at the moment of in-
tersection of the curvab”dq and is preserved down to he-
lium temperatures. FoP>P., the P2;/c phase is not
formed at all, and the sample exhibits anomaly in the tem-
perature behavior on them curve. This anomaly is illus-
trated in Fig. 4 by thed,(T) curve typical ofP>P, and
corresponds to its kink. The points at which the kink is ob-
served form tham curve. On theP-T diagram, this curve
separates two states and B8 characterized by larger and
smaller values of the thermal expansion coefficient of the
crystal lattice along th¢440] direction. Since the value of
the coefficient changes abruptly upon the intersection of this
curve, while the quantityl,,o changes continuously, thtm
curve can be classified according to formal features as a
curve of the second-order R 3. A transition through the
dm curve is not accompanied by a change in the shape of the

)
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FIG. 4. Temperature dependence of the quartity in MnSiF;6 (H,0) for
different values of pressuré, MPa: 130(curve 1) and 135(curve2).

intersecting theab”dq curve on which a transition to the

profile of the peak at440). This means that the crystal lat- P2;/c state takes placée.g., along the trajectordD), at
tice in the state as well as in the stater has a trigonal Point D it will be in the P2, /c state with the monoclinic
symmetry axis. Since the XD experiments were confined tgymmetry of the crystal lattice. If, however, we transform the
pressureP =140 MPa, and the DTA method did not reveal sample from the poin& to the same poinD bypassing the
this anomaly, the data on the transition temperature at highdtoundary of the formation of th®2,/c phase(e.g., along
pressures are not available. We can assume, however, tHie trajectoryABCD), the sample will experience a number
the dm curve will be continued for higher values 8. The  of PT (the first-order PTP3n1— « on thebb’c’ curve and
first-order PTB—P2,/c occurs along thalqfk curve. It  the second-order P&— B on thedm curve and will be at
takes place if the sample is transformed from the piase  the pointD in the stateB with trigonal symmetry of the
the absolute stability region of the monoclinic state with thecrystal lattice at the poinD. Thus, below thepnld'dfk
characteristic parabolic shape of the boundaap”fiqfk  curve, the stateB2,/c andg are metastable and do not lose
curve by changing pressur® (e.g., along the trajectory their relative stability down to helium temperatures.
KM) or by varying P and T (e.g., along the trajectory It should also be noted that the sign of the thermal effect
CDM). The transformatiorB— P2, /c is irreversible in the accompanying the corresponding first-order PT is reversed at
parameteil since thegfk curve is not manifested upon sub- various segments of the boundaries of formation and disap-
sequent cooling from th@®2,/c phase, and the monoclinic pearance of the monoclinic state. For example, the disap-
state is preserved down to helium temperatures. In order tpearance of thé®2,/c phase on the segmehtd’l occurs
carry out the PT3— P2, /c again, we must carry the sample with absorption of heat, while heat is liberated on the seg-
through the curve’b’bd’Inp corresponding to the vanish- mentlnp. The formation of the ordered state through the PT
ing of theP2, /c state and return to the region of pha&en p3ni— P2,/c and a—P2;/c on the segmentab” and
the P—T diagram. It should also be noted that the reverseyd, respectively, is accompanied by liberation of heat. The
transitionP2; /c— g takes place on the boundaminpofa  phase transformatio— P2,/c occurring as a result of
typically S-shaped curve. heating is endothermal on the segmehtand exothermal on
The P-T diagram(Fig. 1) contain regions of metastable the segmentk. The difference in the type of thermal anoma-
states shown by double hatching between the curves corr@es in the sample on these segments of g& curve are
sponding to the formation and disappearance of the corrgfustrated by thermograms typical of each regidg. 5).
sponding phases. Depending on the previous history of thgreversibility and the exothermal nature of the PT
sample and the thermodynamic route of its transition to theg— P2, /c enable us to consider it as a relaxation process
relevant region in these states, any phase whose hatchirgmilar to crystallization of amorphous metals or a transition
covers the given region can be realized. For example, if wgrom a metastable stat@t low temperaturgsobtained by
transfer the sample from the initial poiAt(P 3nl phasgto quench-hardening to an absolutely stable state as a result of
the pointD (the region of metastable statB®,/c and 8), annealing.
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6. P—T phase diagram for FeSj6(H,0).

Peculiarities of P-T phase diagram for

FeSiFg6(H,0)subsection

Fig.

The P-T phase diagram for FeSj6(H,0O) is shown in
6 and reflects the following features of the behavior of

this compound under pressure.

D

(2

©)

(5

674

The familiar PTR3m«— P2, /c is observed only up to
the pressure 7.5 MPdorward transition occurs along
the ab curve and backward along tfegb’ curve. For
P>7.5 MPa, a first-order PT to a new state denoted by
a on theP-T diagram is discovered. The invariability
of the shape and intensity of ttt¢40 peak in the course
of the R3n+— « transition suggests that the third-order
symmetry axis is preserved in the state

In addition to the above transformatidd3m— «, the
first-order PTa— P2, /c is also observed in the pressure
range 7.5 MP&P<63 MPa upon cooling. After this
transition, the monoclinic structure is preserved down to
helium temperatures.

The bc and bd curves corresponding to the direct PT
R3n—a and a— P2, /c converge upon a decrease in
the value ofP, forming the triple pointo together with
the ab curve corresponding to the PR3m— P2, /c.
The curvesb’c’, d’'b’, anda’b’ corresponding to re-
verse phase transitions also form the triple pdiht

The stateP2,/c is not formed ifP>P.,=63 MPa. In
this case, a change ih causes, in addition to the PT

R3n«- «, two second-order P+ B and B« vy. The
invariability of the shape and intensity of &40 peak

in the course of these transformations indicates that the
new phaseg and y possess the trigonal symmetry as
well as the phasex. The regions of existence of the
statesB and y on the P-T diagram for P>P,, are
bounded by the curvesk andpqg, respectively.

(6)

T. K
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FIG. 7. P=T phase diagram for CoSi6(H,0).

demarcated by the curvespq andImk of the second-
order PT can exist depending on the previous history of
the sample. If the sample is compressed isothermally at
T, to pressures 7.5 MRaP<63 MPa and then cooled
isobarically(e.g., along the trajectoxCD on theP-T
diagram), it will be transformed from the initial state

R3m to the a phase upon the intersection of the
curve and into the statB2,/c upon the intersection of
thebd curve. In view of metastability of the states j3,
and y, the curvesfd,Imk, andnpq will not be mani-
fested, and the sample will remain in the ph&sy /c at
the pointD of the diagram. Subsequent heating along the
trajectoryDC leads to the reverse sequence of two PT
P2,/c—a—R3m. If, however, we transform the
sample to the poinD bypassing the boundary of the
formation of theP2,/c phase, e.g., along the trajectory
AEFD, the sample will be in the statg at the pointD

as a result of the sequence of transitions

R3an—a— B—y. If the sample is heated along the
same trajectornfD C, it experiences a cascade of five PT:
y—B—a—P2;/c—a—R3M.

In contrast to Mn—FSH, the sign of the thermal effect in
Fe—FSH is not reversed at the boundaries of formation
and disappearance of the monoclinic state. The PT
R3n—P2;/c on the ab curve as well as the PT
a—P2,/c on thebd curve are accompanied by libera-
tion of heat, while the PT is exothermal along the entire
df curve. The reverse transformations along a\b’d’
andb’c’ curves occur with heat absorption. In addition,
the boundanpb’d’ of disappearance of the2, /c phase
has a less pronounceédshaped curvature.

In the given compound, as well as in Mn—FSH, the ab-3.4. Phase transitions in CoSiF §6(H,0) under pressure

solute stability region of the ordered st&8, /c is para-
bolic. Theabdf curve is the boundary of its formation
while thea’b’d’ is the boundary of its disappearance.
These curves confine the region of metastable states, i)
which either theP2,/c phase, or the phases, 83, v

Low Temp. Phys. 23 (8), August 1997

The P-T diagram for Co—FSH shown in Fig. 7 leads to

' the following conclusions.

As the sample is cooled froff, , the well-known first-
order PTR3— P2, /c! is observed only to the pressure
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(2

(4)

(5

3.5.
of Ni and Zn fluosilicate hexahydrates under pressure

P,=50 MPa. The pressure dependence of temperaturéons of these single crystals indicate the presence of anoma-
corresponding to this transformation forms tie curve  lies in the temperature behavior of the crystal lattice of both
on theP—T diagram. salts. Anomalies are identical and are manifested in a kink on
For P>P,, theP2,/c phase is not formed at all, but a the dss(T) dependences af=220K for Ni-FSH and at
second-order PT manifested in inflections on the isobarid =200 K for Zn—FSH. The emergence of anomalies is not
dependencel, . T) occurs along théfe curve. Since accompanied by a change in the shape of diffraction peak
the shape and intensity of tl{¢40 peak do not change Which is sensitive to the crystal symmetry and cannot be
in the vicinity of the temperature corresponding to thedetected on DTA thermograms. The observed changes in the
point of inflection, we can assume that the third-orderslope ofd,,T) curves actually indicate a continuous tran-
symmetry axis is preserved in the new state sition in Ni- and Zn—FSH from a high-temperature state with
The phaseP2;/c can be obtained not only by cooling @ smaller value of the thermal expansion coefficient of the
through the first-order PR3- P2,/c along theab cryst_al Iatticg 'to a low- temperature state with a larger value
curve, but also by heating through the first-order prof this coefficient. Formally, we can assume that a g:cond—
B—P2;/c along thecb curve. For this purpose, the order phase transition from the high-temperaturéR3
sample must be transformed to the st@teithout inter-  phase to thg3(R3 phase isostructural to it occurs at these
secting the boundary of formation of th®2,/c phase temperaturesthe space symmetry group of these phases is
(e.g., to the pointD along the trajectoryABCD). A shown in the parenthesesThe PT temperature for both
further isobaric heating of the sample.g., along the compounds virtually does not depend on pressure to within
trajectory DA) leads to two first- order PT the accuracy of its graphical determination from thegyT)
B—P2,/c— Rgoccurring at intersections of curves dependences obtained for various value® afnd forms the
anddf, respectively. The transformatigf— P2, /c is lines parallel to theP-axis on theP-T phase diagrams of
irreversible in the parametdr since thecb curve is not  Ni- and Zn—FSH.

manifested upon cooling of the sample transformed to

the monocrl:nllp state down and tﬁfl/ ¢ Ehase o P14 GENERALIZED P—T PHASE DIAGRAM OF CRYSTALLINE
sented to helium temperatures. Thus, the region of fore T rTEs OF ELUOSILICATE HEXAHYDRATES OF

mation of thg ordered 'mono'clinic state in this cpmpoundB,VALENT METALS

(abc curve is parabolic as in manganese and iron fluo-

silicates. After the construction oP-T phase diagrams for all the
The boundary of disappearance of thg,/c phase on compounds under investigation, it became clear that we are
the P—T diagram is anS-shaped curvelfkl typical of ~ dealing with fragments of a complicated but single pattern,
M—FSH. The region of metastable statesuble hatch- Viz., a generalized®—T diagram. In spite of considerable
ing) in which either theP2, /c phase or the phaség differences inP—T diagrams of the salts under investigation,

and 3 divided by thebf curve can be preserved depend- there are several structural elements which can be used for
ing on the past history of the sample lies between theonstructing theP-T diagram for each compound.

curves corresponding to the formation and disappearance The first such element conS|sts_ of the curves cqr_respond—
of the ordered phase. ing to the forward and backward first- order transitions be-

The sign of the thermal effect is reversed at the boundfeen the high temperature state with the symmetry elements

aries of formation and disappearance of the monoclinic3n(R3m or P3m1) and the low-temperature monoclinic

state upon relevant PT. The AR3— P2, /c is accom- P2,/c state. They reflect the fact that the temperature of
panied by liberation of heat on the ent}re segmesnf realization of these PT remains virtually unchanged upon a
the boundary of formation of thB2, /c phase. The PT variation of P, and hence are parallel to the pressure axis on

B—P2,/c is also exothermal near the point of inflection the P—T diagrams. . ) .
b of the parabolabc, but the transformation becomes 1€ seécond element is the triple point formed by the

endothermal upon cooling by 20 K below the tempera-CUrves of three first-order PT. ,
ture corresponding to the point of inflection. The PT The third element is the parabolic segment of the bound-

P2, /c— @ is accompanied with liberation of heat on the &Y of formation of the ord_ereo! monoclinic phaBg, /c an_d N
entire segmentkf. As the temperaturd increases by the S-shaped segment of its dls_appearance. The peculiarities
12 K above the temperature corresponding to the poinf the shape of these boundaries in Mn-, Fe-, and Co-FSH

of inflection f, the transformatiorPZl/CHREChanges determmg the existence of critical pressues and the_
pressure-independence of the temperature corresponding to
from exothermal to endothermal.

disappearance of the ordered phase.

Finally, the fourth element is the curve of the second-
order PT between the states with the trigonal symmetry of
the crystal lattice, which differ in the values of the thermal
expansion coefficient.

It was noted in Ref. 1 that Ni- and Zn—FSH under atmo-  The P-T diagram formed by the above-listed elements

Anomalies in the temperature behavior of crystal lattice

spheric pressure and &t have a rhombohedral crystal lat- in the form presented in Fig. 8 is essentially generalized
tice with the symmetryR3 which is also preserved upon phase diagram for M—FSH under investigation. TheT
cooling. At the same time, the results of our XD investiga-diagram for each compound can be presented as a segment of
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Mg- Mn- Fe- Co- Ni, Zn-FSH regions of existence of identified LPP of other M—FSH. The
T " r— > similarity of P—T diagrams for M—FSH with a large atomic
c cvx s numberN of M and the region of the°—T diagram for a
\k\\ smaller numbeN, which follows from the structure of the
R§m(P3m1 §§3 \:a(R N generalized diagram, leads to the conclusion that the phases
\‘Q with coinciding regions of existence on the generaliBedl
a o) \\ diagram must be crystallographically identical. For example,
m the phasesr and 8 which are HPP for Mn-, Fe-, and Co—
P2i/c - FSH (experiments for Mg—-FSH under the pressure
i //, P>140 MPa were not madlenust have the same crystalline
g4 B(Rg)» structure as the LPP in Ni- and Zn—FSH, i.e., the structure
715 oA with R3 This can be confirmed by the following arguments.
ko757 A 777277 i i i
ST AT AST LAY ST (1) Comparing the®—T diagrams for Co- and Ni-FSH and
A4%2€X042422 174 endo] e taking into account the identical behavior of the crystal
GIGGLGGE GEI8.VIHI. VIS O THIIH4 lattices of these salts upon the intersection of the corre-
Pe: P sponding curves of the second-order PT, we note that the

FIG. 8. Generalized®-T phase diagram of crystalline states of fluosilicate
hexahydrates of bivalent metals.

the generalized—T diagram on the right of the vertical line
in Fig. 8, which corresponds to the given crystal. As we go
over from one M—FSH to another from left to right, the
curves are arranged in accordance with the experimentally
observed decrease in the value PBfcorresponding to the
triple point and the critical pressui;, of the formation of

the P2, /c phase. In our experiments with Mg—FSH, neither
the triple point nor the critical pressufe, have been at-
tained in view of insufficient pressure generated by the gagz)
compressor. The triple point for this salt was discovered by
Gorevet al?° at P=210 MPa, while the existence of critical
pressureP .~ 360 MPa follows from the results obtained by
Krygin et al?! The pressure corresponding to the triple point

is 90 MPa for Mn—FSH and 7.5 MPa for Fe—FSH. For Co—
FSH, no triple point is observed, whike,,= 50 MPa. For Ni-

and Zn—-FSH, a second- order phase transition between trigo-
nal phases with different thermal expansion coefficients is
observed even under the atmospheric pressure, while for the
remaining M— FSH it is observed fd&?>P,.

It can be seen from Fig. 8 that the sequence of M—FSH
formed as a result of such an arrangement repeats the ar-
rangement of the corresponding bivalent metals in the Peri-
odic Table. This means that the form of tRe-T diagram for
each M—FSH and the serial numbérof the metal consti-
tuting it are connected through a relation according to which
an increase il is equivalent to a displacement of the origin
of the coordinates of the relevaRt-T diagram on the gen-
eralizedP-T diagram towards higher pressures.

P-T diagrams of Ni— FSH and of Co—FSH compressed
preliminarily to a pressur> P, are similar. According

to the results of XD investigatiorishe high temperature
phases withR3 in Co—FSH and the phase(R3 in
Ni—FSH are isostructural. This leads to the conclusion
that the low-temperature HPB(R3 of Ni—FSH and
the low-temperature phase of Co—FSH are isostruc-

tural. Since the phases(R3 and B(RE) in Ni-FSH

have identical symmetry and belong to tR& group,

the low-temperature HPIB in Co—FSH also has the
symmetry groulR3

The curves corresponding to the formation of the mono-
clinic phaseP2;/c in Mn—FSH (see Fig. 1 and in Fe—
FSH (see Fig. & can be divided into two segments. One
of them lies at the boundary with thR3m(P3m1)
phase, while the other, starting from the triple point,
serves as the boundary between the HPBnd 8 and
forms a parabola closed by tAeaxis. The same curva-
ture is also typical of the curve corresponding to the
formation of theP2,/c phase in Co—FSH at the bound-

ary with the LPPR3 and the HPPB belonging to the
symmetry groupR?(see Sec. ¥ Such an analogy again
leads to the conclusion that the HeRand 8 in Mn- and
Fe—FSH are identical to the phasﬁgandﬂ in Co—
FSH, and hence are two modifications of the structural
type Rgdiffering in the values of the thermal expansion
coefficient of the crystal lattice.

6. CORRESPONDENCE OF P—T DIAGRAMS OF
CRYSTALLINE STATES AND MAGNETIC P-T PHASE

DIAGRAMS OF FLUOSILICATE HEXAHYDRATES

5. IDENTIFICATION OF HIGH-PRESSURE PHASES IN
FLUOSILICATE HEXAHYDRATES OF BIVALENT METALS

OF MANGANESE, IRON, COBALT, AND NICKEL

The existence of the critical pressuRe, on the P—-T

With the help of experimental methods, only low- diagrams of the crystalline states of Mn—F$ee Fig. ],
pressure phase&PP) formed in the samples under the at- Fe—FSH(see Fig. § and Co—FSHsee Fig. Jindicates that
mospheric pressure could be identified in M—FSH. The symthe sample cooled to ultralow temperatures under a pressure
metry of phases existing only under a high pressure coul® <P has the monoclinic phase2;/c, while the sample
not be determined directly in view of technical difficulties. cooled forP>P, has a rhombohedrd&3P3nl) crystal
The generalized®-T diagram shows, however, that the re- lattice. Obviously, the change in the type of ultralow-
gions of existence of HPP of some M—FSH overlap with thetemperature magnetic ordering from AFM for a sample
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cooled undeP> P, to FM for cooling undeP<P.*isin 8 CONCLUSION

good agreement with the behavior of the crystalline structure

under pressuréeing a secondary effect relative to structural ~ This research completes the cycle of experiments de-
transformationsand indicates that the AFM ordering is typi- voted to an analysis of the behavior of M—FSH in wide
cal of theP2, /c state, while the FM ordering is character- ranges of pressures and temperatures. The results of mea-

istic of theR3 phase. Similarly, a spin state with zero effec- Surements are presented in the formR+T diagrams of
tive magnetic moment is realized in the monoclinic phasecrystalline state. The generalized-T phase diagram makes
P2, /c of Fe—FSH in a magnetic field parallel to the trigonal it possible to systematize the properties of individual com-
axis C3 below T=10 K underP<P,,. Under the same con- pounds and to identify high-pressure phases.

ditions, forP>P,,, iron fluosilicate in the disordered trigo- The correspondence between #eT diagrams of crys-
nal v phase loses the properties of an easy-plandalline states and the availatfee-T magnetic phase diagrams
paramagnet’ According to theP—T diagram of crystalline of fluosilicate hexahydrates of Mn, Fe, Co, and Ni is indi-
states, Ni-FSH at ultralow temperatures has only one syncated.

metry modificationR3, and the phas®2;/c is not formed Theoretical models allowing us to describe a phase dia-
at all. In conformity with what has been said above concerngram with a triple point and parabolic aig#dshaped lability

ing the correspondence between the structural and magnetioundaries are considered.

properties of M—FSH, the crystal of this salt experiences

only the ferromagnetic ordering at ultralow temperatdres.

*E-mail: kamenev@host.dipt.donetsk.ua
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LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

Influence of oxygen content and structural defects on low-temperature mechanical
properties of high-temperature superconducting single crystals and ceramics
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The data for the microhardness and fracture toughness of Y—-Ba—Cu—-0O and Bi-based single
crystals and ceramics in the temperature range 77—293 K are presented and analyzed. Our study
reveals that the microhardness of high temperature superconductors is very sensitive to the
oxygen stoichiometry, the phase composition, the temperature, and to the microstructural defects
such as impurities, intergranular boundaries, and voids. Attention is drawn to the anisotropy

of the micromechanical properties and to the features of the fracture in the vicinity of the
indentation. The data available on the plasticity of Y-Ba—Cu—O and Bi—Sr—-Ca—Cu-0

from micro- and macrotests are compared. 1€@97 American Institute of Physics.
[S1063-777X97)01608-3

1. INTRODUCTION tions, density, and microstructural and phase inhomogene-
and ities of ceramics, and we will estimate a difficult-to-measure
roperty such as surface energy. Finally, we will compare
e available data on the plasticity of these materials ob-
ained from micro- and macrotests.

Practical  applications of Y-Ba-Cu-O
Bi—Sr—Ca—Cu-0O superconducting compounds are ofte
limited by their poor mechanical performance, i.e., extremel;}
low ductility and elevated brittleness, especially at low and'
moderate temperatures. Plasticity and strength of high-
temperature superconduc_tcﬁH;TSCs) are adversely gﬁected 2 EXPERIMENTAL PROCEDURE
by numerous defects: voids, surface and bulk microcracks,
grain and twin boundaries, phase inhomogeneities, impuri- The Y-Ba—-Cu-O and Bi—Sr—-Ca—-Cu—-O compounds
ties, oxygen nonstoichiometry which result from the synthe-were prepared by high-temperature solid state reaction. Ce-
sis process at high temperature and from subsequent coolimgmic specimens were prepared first by cold pressing and
to room temperature and mechanical treatment or loading. then by sintering of synthesized powder. Variations in pres-

A study of the mechanical properties of such compli-sure(0.2—5 GPaand annealing temperatuf®073-1233 K
cated objects, whether they are ceramipslycrystalg or  permitted different densities to be attained. The
single crystals, does not appear to be a simple task. Neve¥—-Ba—Cu—O0 test samples had a dengitypetween 2.1 and
theless, several procedures have been devised for this pus-85 g/cri  (0.33-0.92 of the x-ray density, Dg
poses. It is possible to suppress the intrinsic brittleness of 6.38 g/cni) and T, = 85-92 K. Single crystals were
superconducting oxides and reveal clear plastic flow withgrown in alundum or platinum crucibldbelow referred to
dislocation generation by deforming at elevated temperaturess Y—Al and Y—Pt, respectivelypy a spontaneous crystalli-
[1-5], at room temperature with the application of hydro- zation technique. The crystals were flat wifp01) faces
static pressurg6] or by using shock-loading techniqugd.  dominating. The concentration of platinum in Y—Pt crystals
However, most investigations have been made with the inand aluminum in Y—AI crystals was found to be 0.01 wt.%
dentation techniques which can be used successfully overRt and 0.25 wt.% Al. The investigation of the influence of
wide range of temperatur¢8—12). the oxygen deficiency on microhardness was carried out on

The purpose of the present paper is to report new result§Ba,Cu;O;_ 5 crystals with four concentrations of oxygen:
and consider briefly some previous measurements of microd = 0.1, 0.3, 0.4, and 0.9. The oxygen index in as-grown
hardness and fracture toughness of single crystals and ceraerystals was varied by further thermal treatment in oxygen or
ics of Y=Ba—-Cu-0O and Bi—Sr—Ca—Cu—O compounds inin argon. The microindentations were carried out at room
the temperature range 77—293 K. The behavior of the microtemperature by using a PMT-3 standard diamond tester and
hardness near thd—S phase transition temperatufe and  at temperatures from 77 to 300 K they were made by using a
the mechanism of microplasticity of HTSCs are of interest taspecial tester set described in Ref. 12. Hardibgand frac-
us. We will discuss the dependence of micromechanicalure toughnes¥, (the critical stress intensity factowere
properties on temperature, oxygen and impurity concentragalculated by using the relatiohs
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15 latation modes increase up to the value$.7 of the oxygen

. 1 index, after which they begin to decrease. Consequently, the
. - a considered behavior dfl\,(6) is due not to the variation of
Iy the elastic properties of crystals but to the effect of oxygen
® 'Y concentration and oxygen ordering on the core structure and
% mobility of dislocations.
1; 10F ~ 3 The microhardness and fracture toughness of Y—Ba—
. 2\\\\ Cu-0 and some rare-earth cuprates Re—Ba—C(ReéD Gd,
> ~\\—-‘- Ho, Dy, Er, Yb single crystals studied are shown to vary
~e over wide ranges: at room temperattitg = 5—10 GPa and
3 K. = 0.4—1 MPam2.8%1219This considerable spread of
5 - * the measured values may be attributed to the variations in
7 GI 5 6 oxygen concentration which was not controlled.
(7;5) Mechanical anisotropy off —Ba—Cu—Ocrystals The

hardness of Y-Ba—Cu-0O crystals was found to be isotropic
FIG. 1. Effect of oxygen concentration in Y—Ba—Cu—O single crystals onWithin an experimental error. However, the special measure-
microhardness at temperatures(Iy, 200(2), and 293 K(3and3'). Curves  ments made on relatively large crystals with well-developed
1, 2, and3 correspond to crystals from the series Y—Pt, and c®veor- (100 and (001) faces have demonstrated that the hardness
responds to the Y—Al crystals. . . .
ratio of (100 to (001) surfaces is 1.2 for the orthorhombic
phase and 1.8 for the tetragonal ph&se.

Hy=1.854P—Py)/(2a)2, The length of cracks and the direction of their propaga-
s o tion are very sensitive to indentation crystallography. Cleav-
Kc=0.016E/Hy) (P —Py)/c™, age of these layered structures is easier along basal

where 2 is the impression diagonaP is the indentation Planes’™* That is the reason why the hardness of aligned
load; Py, is the threshold load which does not result in anY—Ba—Cu—O was found to be strongly anisotropfigrefer-
impression or a crackE is the elastic constartalong the ential cleavage of the basal planes results in much lower
axes[100] and[010] E;, = E,, = 156 GPa and along the hardness for indentation on the (30®10) plane than on
axis [001] Ez; = 89 GPa for Y-Ba—Cu—O at room the (001 plane: 3.8 and 6.7 GPa, respectively.
temperatur¥). The experimental data plotted in the coordi- ~ Notice that the mechanical anisotropy may be affected
nates (2)2 — P andc¥2 — P are well described by the by the presence of twin boundaries. Hardness was found to

linear relations giving the load-independent valuesigfand ~ be insensitive to a twin structure, which arose during the

K. tetragonal-orthorhombic phase transition; however, the frac-
ture toughness for twinned crystals was different than that
3. RESULTS AND DISCUSSION for untwinned CryStaIS, aCCOfding to Ref. 14.

Temperature dependence of microhardn&ssfar, only
few results of an experimental study of the temperature de-
Effect of oxygen content on microhardnéBse hardness pendence of the microhardness of Y-Ba—Cu-O single crys-
of the Y—-Ba—Cu—0O system is highly sensitive to oxygentals have been reported. However, they cover a wide tem-
concentratiot?51® The results of our measurements areperature range from the boiling point of liquid nitrogen to
shown in Fig. 1 for three temperatures. The strongest coralmost 1200 K and concern both phases of the Y-Ba—-Cu-0O
centration dependendé, () for Y—Pt crystals is observed compound, i.e., tetragonal and orthorhombic phases. We
at room temperature: the hardness changes about 1.5 timestiave summarized the basic data in Fig. 2.
the & interval from 0.3 to 0.4, i.e., in the range of Notice a linear increase in the hardness of the ortho-
orthorhombic-1-orthorhombic-2 phase transition, but it is rhombic phasé¢Fig. 2, curvel) with decreasing temperature,
not affected by orthorhombic-tetragonal phase transiti®n ( without any anomalies nedr, = 93 K.'2 The data obtained
~ 0.5). Thus, the sharp variation &f, can apparently be for softer crystals and at a higher temperattit€ig. 2, curve
associated with the variation in the properties of the lattice2) show a similar temperature dependence. The increase of
within the orthorhombic symmetry due to one-dimensionalHy atT > 550 K can be attributed to the changes in oxygen
ordering of oxygen vacancies. The aluminum impurity instoichiometry. Samples with the tetragonal structure exhibit
Y—Al crystals weakens the softening effect and extends théower hardness at room temperature, which increase rapidly,
range of microhardness-oxygen concentration dependeneéth decreasing temperature, and a sharp transition from
toward higher values o#é. ductile behavior to brittle fracture at about 200 K Ref. 12
The strong effect of oxygen stoichiometry on the plas-(Fig. 2, curve3). AnalogousH,, and their low-temperature
ticity of Y—-Ba—Cu—O speaks in favor of shear in the BaO/dependences of normal brittle semiconduct@g., Si, G¢
CuO plane, since the main variations upon changing the oxyand Y—Ba—Cu—O single crystals can indicate that in region |
gen index, occur just in the CuO plane. the similar thermally activated dislocation mechanisms con-
The available datd®show that the elastic moduli cor- trol plastic deformation produced by indentatigrit may be
responding mainly to shear modes increase monotonicallguggested that strong covalent borioisthe first casgand
with oxygen concentration. The moduli corresponding to di-ionic bonds(in the second cage&reate high Peierls barriers,

3.1. Y-Ba—-Cu-0 system. Single crystals
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through the sensitivity of microhardness to the presence of
‘}{ ortho | tetra structural and other defects. This is particularly evident in
i g( 900 K measurements on ceramics.
The influence of microstructure inhomogeneities on the
& 3 hardness of Y—-Ba—Cu—0O ceramics is reflected very dis-
O 8 tinctly in histograms and in average values of hardri@ss.
:x:; R 2 The hardness in the vicinity of grain boundaries is smaller
/ and its dispersion is higher than they both measured within
..... . grains. The role of intergrain material in the formation of the
ductility of ceramics can be demonstrated best of all by the
example of fine-grain ceramics with the grain size
= 5 um. Its average hardness was found to be smaller by a
0 400 T K 800 1200 factor of 3 as compared with that of ceramics of about the
' same density withd = 40 um, which indicates the deter-
FIG. 2. Microhardness of Y-Ba—Cu—O single crystals as a function ofmini_ng influence of grain boundaries on the impression for-
temperature: the orthorhombic phas®,= 0.1 (1);*2 the orthorhombic ~ Mation.
phase, as-growf®) (Ref. 20; the tetragonal phas@, = 0.9 (3) (Ref. 12; The temperature dependences of the microhardness of
the tetragonal phas@) (Ref. 10. ceramics with an average grain site= 5 um and different
densitiesD/Dg = 0.73, 0.91, and 0.98 are plotted in
Fig. 32° Figures 3a and 3b show the datat${ measure-
which constrain the dislocation mobility in these crystals. ments at an indentor loa®; = 0.15N andP, = 2N,

The high-temperature deformation processes in the terespectively. At theP, load an impression area was very
tragonal phaséregion lll, Fig. 2, curved; Ref. 10 are ob- nearly equal to the grain area, whereas atRhdoad it far
viously diffusion assisted. In the intermediate region Il theexceeded the grain area. The measured valugs$,oft P,
mixed dislocation-diffusion mechanisms are expected taharacterize the hardness of given ceramics on average, as a
control plastic flomsee, for example, Refs. 5 and 23 and thewhole, and then they are less thak, values obtained at
bibliography cited thene indentation with smaller loadP;. The smaller the load on

Fracture toughness and surface enerf§easurements the indentor, the closer are the measured values to the hard-
of the temperature dependence of the fracture toughness hamess of the grains. From Fig. 3 we see that the hardness is
been carried out with two series of Y—Ba—Cu—O single crysnear-linear with temperature without any detectable features
tals: Y—Al and Y—P£* They are characterized by the samein the range from 77 to 293 K for all samples examined, but,
oxygen indexd = 0.3—0.4 and the same critical temperaturewhat is more important in this context, it depends strongly on
T. = 60 K. For Y—Pt crystals, a decreasetdf andK; with density.
increasing temperature arises from thermally activated dislo- Recently® we studied the dependence of the hardness on
cation glide. This provides evidence for a quasi-brittle typethe density of Y—Ba—Cu-O ceramics in the interval of
of fracture. In contrast, a weak rise Kf, of Y—Al crystals D/Dg = 0.33—0.92 at room temperature and deduced from
from 3.4 MPam'? (at 77 K) to 3.5 MPam'? (at 292 K the experiments that the hardness increases exponentially
(and a weak drop ofly, from 9.3 GPaat 77 K) to 8.5 GPa  with increasing densitysee also Ref. 26 as is usually ob-

(at 292 K) with increasing temperature may point to an ide-served for many structural ceramics:

ally brittle mode of fracture, without allowance for the glide

d_islocations or with their slight participatiqn. In this s?tua— Hy=Hyo exd —n(1—D/Dg)].

tion, the calculated values &f. are determined essentially
by the material constants. Using the Griffith—Orovan relatio
K2 = 2yE/(1 — v?), where v is the Poisson ratio, we could
estimate the surface energyof two surfaces (100(010)
and(001). The(001) face indentation gives an averal§g of

1/2 ~
about 0.35 MPan'™ and henceyionoio= 360 ergle. An 4 & oo oip- — 5 N and from 11.6 to 5.7 GPa @,

indentation of (10§ (010) face showed a large anisotropy in _ 0.15 N. The facton in the exponent is equal to 4.6 at a

crack length for crack directions perpendicular to and paraIT d o .
2 N independently of temperature. At a load of
lel to the basal planecf. Refs. 14-16, and 19 K, oa incep y peratur

. . 0.15 N then value increases from 2.6 at 293 K to 3.6 at
= 0.7 MPam" and V100010 = 1400 erglerf in the first 27 'anincrease in the value ofwith decreasing tempera-
case an, = 0.2 MPam'“and yoo; = 160 erg/crinthe "y 2 Fincrease in the load is likely due to the crack
second case. formation along the grain boundaries. These microcracks en-
hance the dependence of hardness on density, which in the
initial ceramics is determined by the intrinsic voids.

The maximum hardnesses of grains in ceramic samples

Indentation technique is very useful in estimating theand single crystals of the same oxygen concentration are in
density and homogeneity of samples because of the possibijood agreement in the whole temperature range from 77 to
ity of accurately locating the impressions on the surface an@93 K.

Mhis equation adequately describes the data in Fig. 3 at all
temperaturegthe plots for two fixed temperatures, 77 and
293 K, are presented in the insets in Figs. 3a and Bbe

Hyo value decreases with increasing temperature from 8.1 to

Ceramics
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FIG. 4. Microhardness of Bi,PbSr,CaCu;0, ceramics as a function of
Pb dopant concentration at room temperature.

2r and 3.8 GPa for “bright” crystallites. These values are con-
siderably lower than the micro-hardness of a Y-Ba-Cu-O
system.

Nonuniform mechanical properties of a Bi-Sr-Ca-Cu-O

Preparation of single-phase crystals of this system is seri-

nearly single phase materig?212 can be obtained only by
thoroughly controlling the processing parameters: the oxy-

nealing time, and the cation stoichiometfyThe high qual-
ity (2223 phase samples were also prepared.
Addition of Pb dopant to the Bi—Sr—Ca—Cu—0O system

H, . GPa

Bi,«PBSr,CaCu0, ceramics: Figure 4 shows the micro-

six samples with different values afbut approximately the
same densityp/Dg, between 0.6 and 0.7. The microhard-
ness increases almost 2.5 times with increagifrpm 0.2 to

{ ( ~ 0.6. Near-linear rise oH, with x is probably caused by
100 200 300 solid-solution hardening. A deflection bf,,(x) from the lin-
T K ear dependence at= 0.6 may result from C#bQ, particle

formation, which leads to additional precipitate hardening.
FIG. 3. Microhardness of Y—Ba—Cu—O ceramics as a function of tempera- ~ The microhardness of the Bi,Ph,Sr,CaCu;0, ceram-

system apparently are attributable to their multiphase nature.

ously hindered by different causes. As was demonstrated,

gen pressure, the maximum sintering temperature, the an-

stabilizes the 2223 phase and therefore hardens the

hardness plotted as a function of Pb dopant concentration.
Measurements were performed at room temperature by using

ture, at the loads on the indenté, = 0.15N (8 andP, = 2N (b).  jcs increases with decreasing temperature and, as with the

Relative densityd/Dg = 0.98(1), 0.91(2), and 0.73(3). The insets show  yv_Bg—Cu-0 system, has no anomalies in the rafige
D/Dg dependences of IHy at two temperatures 7(@) and 293 K(2). = 105-110K. Figure 5 shows thel, values and their
changes in the temperature interval from 77 to 293 K for a
sample withx = 0.4.
Microhardness measurements with the Knoop indenter
carried out on th€001) face of 2223 crystals showed polar
The Bi-containing HTSC ceramics and crystals exhibitedhardness anisotropy betwedth,;, = 0.9 GPa andH .
highly nonuniform micromechanical properti€sThe hard- = 1.33 GPa for azimuth 45fthe short diagonal of the in-
ness of single crystals at room temperature was found tdenter was parallel to th¢100 face] and 0° (or 909,
have three typical values: 0.5; 1.1, and 3.1 GPa. The dat@spectively’> The corresponding data for 2212 crystals
observed are close to those measured individually on tware H,,;, = 0.8 GPa andH . = 2.5 GPa. Attention was
types of ceramic crystallites with different optical reflective drawn to a correlation between tli, ., and T, values for
capacities: 0.43 GPa and 1.08 GPa for “dark” crystallitesHTSC materials$?34*3the higher theH . the lowerT, (in

3.2. Bi—Sr—Ca—Cu-0 system
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0.40 | whiskerd? at room temperature: the maximunt,

= 3.1GPa(Ref. 29 and H, = 6.2 GPa(Ref. 41, o,

= 0.94 GPa ancE = 92 GPa(Ref. 49; therefore,H\, /o,
0.35 = 3.3-6.6 ando./E = 1/100. In this case it is clear that,

) first, the yield point was not reached because of the brittle
fracture of whiskers and, secondly, is less thano; be-
cause of the large cross section of whiskers more than
50 wm?.

H,.GPa
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