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It is shown on the basis of the solution of the kinetic equation for the gas of impurity excitations
of superfluid mixtures3He–4He that the relaxation of concentration and temperature occurs
due to two modes~acoustic and dissipative!. The parameters characterizing these modes are
determined. The obtained results show that the relaxation of concentration and temperature
of impuritons is completely determined by the thermal conductivity of the mixture and by the
acoustic mode~second sound!. © 1997 American Institute of Physics.
@S1063-777X~97!00108-4#

Superfluid solutions3He–4He possess a number of Herevi5]« i /]pi is the impuriton velocity andJii the colli-
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unique properties, including the existence of two essenti
different mechanisms of concentration and tempera
relaxation,1–3 viz., second sound4 and dissipative diffusive
mode.5 This distinguishes superfluid solutions from pure h
lium in which temperature stabilization occurs due to seco
sound1 as well as from normal solutions in which the tem
perature and concentration relaxation is determined only
dissipative processes~thermal and diffusive waves!.6

The existence of two modes responsible for equilibriu
stabilization of concentration and temperature in superfl
solutions necessitates their simultaneous inclusion in
analysis of various kinetic processes. One of such proce
attracting attention of experimenters7–9 as well as theoretica
physicists10–13 is the phase separation of supersaturated
perfluid solutions3He–4He.

In the publications7,11,14that laid the basis of the kineti
theory of phase separation of metastable solutions3He–4He,
either dissipative processes were not taken into acco
altogether,14 or it was assumed, in analogy with normal s
lutions, that diffusion is the main process responsible for
motion of impurities.7,11 However, subsequent experimenta9

and theoretical10 investigations proved that second sou
should also be taken into account in the description of ph
separation of supersaturated solutions3He–4He.12 The effect
of second sound on the growth of a new phase was anal
in Ref. 13, but dissipative processes were only partially ta
into consideration. This research aims at an analysis of t
perature and concentration relaxation in superfluid soluti
3He–4He at low temperatures, for which the contribution
thermal excitations in He II can be neglected, and the tra
port properties of the solution are determined only by imp
rity quasiparticles.

An analysis of hydrodynamic modes in the impurito
gas is based on the kinetic equation for the impuriton dis
bution functionf i

15:

] f i

]t
1~vi•¹! f i5Jii ~ f i !. ~1!
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sion integral for impuritons. In addition, the case of lo
concentrations is considered, when it can be assumed tha
superfluid background remains in equilibrium.

In order to derive the dispersion equation characteriz
small oscillations in the solution, we must linearize Eq.~1!.
This leads to the following equation for the Fourier comp
nent of the functiond f i describing the deviation from equi
librium:

~v2k•vi !d f i5 i I i i ~d f i !. ~2!

HereI i i is the linearized collision integral depending ond f i ;
v the frequency andk the wave vector.

We shall seek the solution of Eq.~2! in the form

d f 52 f i8gi , ~3!

where f i8 is the derivative of the functionf i with respect to
energy. This leads to the following equation for the unkno
function gi :

~v2k•vi2 i I i i !gi50. ~4!

The problem of determining the energy-momentum re
tions v5v(k) describing hydrodynamic modes is equiv
lent to determining the resolvent polesRi of Eq. ~4!

Ri5~v2k•vi2 i I i i !
21 ~5!

in the subspace of impuriton collision invariants. For th
purpose, we introduce operators projecting onto the subsp
of collision invariants for the number of particles, energ
and momentum of impuritons:

uJN&5
u1&

^1u1&1/2; uJ«&5
u«̃ i&

^«̃ i u«̃ i&
1/2;

~6!

uJpz
&5

upiz&

^pizupiz&
1/2,

where«̃ i 5 « i 2 ^« i u1&/^1u1&. The vectorsuJpx
&, uJpy

& can
be omitted since thez-axis is chosen along the vectork. In
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expressions~6!, we have introduced the one-dimensional
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vectors in the space of impuriton momenta and defined
scalar product

^c i ux i&52E c i* ~pi !x i~pi ! f i8dG i . ~7!

We project expression~5! onto the subspace of collision in
variants:

PicRi Pic5Pic~v2PicV i Pic!21Pic , ~8!

where

V i5k•vi1k•vi Pin~v2Pink–vi Pin2 iPinI ii Pin!21Pink•vi .
~9!

Here, we have introduced the operator projecting on the s
space of invariants

Pic5uJN&^JNu1uJ«&^J«u1uJpz
&^Jpz

u ~10!

as well as the subspace orthogonal to it:

Pin512Pic . ~11!

For calculating the matrix elements in~8! and ~9!, we
shall use the correctt-approximation16 according to which
PinI ii Pin can be replaced by2Pin /t i i , wheret i i is the char-
acteristic time of impuriton collisions. Sincevt i i !1 and
kv it i i !1 in the hydrodynamic approximation being cons
ered, we can calculate the matrix elements of the oper
v2PicV i Pic in the basisPic and equate to zero the dete
minant of the obtained matrix. This leads to the followin
dispersion equation:

v~v22k2ui
2!1 ik2v2S k i

Ci
1

4

3

h i

r in
D2 iuiN

2 k4
k i

Ci
50.

~12!

Here

ui
25uiN

2 1ui«
2 ,

uiN
2 5

1

mi
S ]Pf

]ni
D

T

, ui«
2 5

TS̄2

r inCi

are the squares of characteristic velocities in the gas of
puritons, S̄i 5 Si 2 (]Si /]ni)Tni ; Pf ,Si ,Ci ,r i 5 mini

are the osmotic pressure, entropy, heat capacity, and no
density of impuriton gas,k i is the thermal conductivity, and
h i the first ~shear! viscosity of impuritons. The latter quan
tities can be expressed in the standard form17 in terms of the
time t i i of impuriton collisions:

h i5^wh i uwh i&t i i , ~13!

k i5^wk i uwk i&t i i , ~14!

where the vectors are defined as follows:

uwh i&5
1

2)
u3pizv iz2piv i&, ~15!

uwk i&5
1

AT
u«̃ iv iz2~S̄T/r in!piz&. ~16!
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following expressions for dissipative coefficients:

h i5Pft i i ; ~17!

k i5Ci

vF
2

3
t i i , ~T!TF!;

~18!

k i5
5

2

niT

mi
t i i , ~T@TF!.

HereTF5mivF
2/2 is the Fermi temperature of impuritons.

In the hydrodynamic approximation used here, the d
persion equations for two collective modes can be de
mined from~12!.

The first mode is the acoustic mode (v;k) with the
energy–momentum relation

v25k2ui
2H 12 i

v

ui
2 F4

3

h i

r i
1

ui«
2

ui
2

k i

Ci
G J . ~19!

The obtained result has a simple physical meaning: when
properties of solutions are determined by impuritons alo
sound propagates in the impuriton gas~‘‘impuriton second
sound’’! at a velocity ui coinciding with the velocity of
sound in an ideal gas of particles of massmi . The second
and third terms in~19! describe attenuation of impuriton se
ond sound due to viscosity and thermal conductivity resp
tively.

The second collective mode is dissipative (v;k2) and
has the energy–momentum relation

v52 ik2Deff , ~20!

where

Deff5
k i

Ci

uiN
2

ui
2 ~21!

is the dissipative coefficient describing this mode.
The obtained mode corresponds to a thermal wave

ordinary liquids, which describes dissipative relaxation
temperature and number density of particles to the equ
rium state. In superfluid solutions, this collective mode
associated with the relaxation of3He concentration, and
hence determines in fact the diffusion of impurities. Accor
ing to ~21!, the effective diffusion coefficient in this case
determined by the thermal conductivity of the impuriton ga

As regards the actual diffusion processes, it follows fro
~19! and~21! that the dissipative impurity diffusion does no
exist as such at such low temperatures, and as a result
mass, thermal and pressure diffusion coefficients are equ
zero, This is due to the fact that in the absence of ther
excitations, the impuriton system in the situation under
vestigation is effectively a one-component system, and
fusion processes do not occur in it. On the other hand,
sipative relaxation occurs, like in one-component gas
through the thermal mode in which density relaxation a
constant partial pressure@¹P(n,T)50# takes place simulta-
neously with temperature relaxation by virtue of the relati

~]P/]n!T¹n52~]P/]T!n¹T

and is determined by the thermal conductivity of the gas

600K. È. Nemchenko



Thus, the above analysis shows that superfluid solutions
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He– He exhibit a peculiar two-stage relaxation of initi
deviations of temperature and concentration from equi
rium. At the first stage, a nonequilibrium state without
impuriton partial pressure gradient (¹Pf50) sets in virtu-
ally at the velocity of second sound. However, the num
density of impuritons and temperature may have gradie
which are connected through the relation

¹ni52
~]Pf /]T!ni

~]Pf /]ni !T
¹T. ~22!

At the second stage, the existence of a temperature
dient leads to a dissipative heat flow determined by the th
mal conductivity of the solution, which blurs the deviation
temperature from its equilibrium value. In this case, nond
sipative motion of impuritons in the second sound wave
sures the fulfillment of equality~22! everywhere, and thus
the density gradient sort of ‘‘follows’’ the temperature gr
dient, both gradients tending to zero simultaneously with
same characteristic dissipative coefficient~21!.

Relation~22! makes it possible to determine the mech
nism ~dissipative or acoustic! responsible for relaxation o
concentration and temperature under specific experime
conditions. We confine our analysis to the temperature ra
T,0.25 K and concentrationsx.0.5%, for which the con-
tribution of thermal excitations in He II can be neglecte
and the gas of quasiparticles~impuritons! can be regarded a
a one- component system. In this case, for low concen
tions (x;1%) and not very low temperatures (T;0.2 K),
relaxation of perturbations of concentration and tempera
is determined by both modes to the same extent. For hig
concentrations (x;10%) and at quite low temperature
(T;10 mK), the main part~exceeding 99.9%! of concentra-
tion perturbation relaxes to the second sound wave, pro
gating through the solution at the velocityUi . The remain-
ing purely temperature excitation relaxes to equilibriu
slowly and dissipatively due to thermal conductivity of th
impuriton gas.
601 Low Temp. Phys. 23 (8), August 1997
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perfluid solutions He– He at low temperatures, we mus
take into account both hydrodynamic modes, viz., acou
~19! and dissipative~20! modes, as well as the absence
dissipative diffusion processes in the one-component ga
impuritons.

The author is deeply indebted to I. N. Adamenko f
continued attention and fruitful discussions in the course
this research.
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Small-amplitude oscillations of magnetization accompanying long-lived spin-precession

in 3He-B
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Frequency spectrum of small-amplitude oscillations of magnetization against the background of
coherently precessing~phase-correlated! spin modes in superfluid3He placed in a strong
magnetic field depends on the magnitude of spin polarizationS and spin-orbit structure of
dynamical ordered states. Spectrum of these oscillations is calculated for unconventional
precessing modes in3He-B characterized byS5S0/2, whereS0 is the value ofS at equilibrium.
© 1997 American Institute of Physics.@S1063-777X~97!00208-9#

The coherent dipole-dipole interaction between nuclear
3
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magnetic moments in the superfluid phases of liquidHe
defines~along with other symmetry-breaking terms! the spin-
orbit structure of the equilibrium and dynamic~time-
dependent! ordered states of3He-A and3He-B.

In the presence of a static magnetic fieldH05H0ẑ and a
low-amplitude transverse rf field of frequencyv the stable
and metastable~long-lived! spin-orbit configurations are re
alized at the minima of the thermodynamic potential

F85F1vS, ~1!

which is constructed in the coordinate frame rotating with
angular velocityv5v ẑ ~S denotes the spin-density!. In Eq.
~1! F is the sum of the Zeeman and the dipole-dipole en
gies, so that

F52v0S1UD , ~2!

wherev05v0ẑ with the Larmor frequencyv05gH0 . Since

F85~v2v0!Sz1UD , ~3!

in the absence of the first~spectroscopic! term~at the Larmor
resonancev5v0! the stationary spin-orbit configurations~in
the rotating coordinate frame! are defined by the minima o
UD .

For 3He-B

UD5
2

15
xB~VB /g!2~Tr R̂21/2!2, ~4!

wherexB is the magnetic susceptibility;VB is the frequency
of the longitudinal NMR; and the orthogonal matrixR̂ de-
scribes the relative rotations of the spin and orbital spac

R̂5R̂~S!R̂~L !21. ~5!

Here R̂(S) and R̂(L) are the matrices of 3D rotations of the
spin and orbital degrees of freedom, respectively. Par
etrizing these rotations by the triples of Euler ang
(aS ,bS ,gS) and (aL ,bL ,gL), we find

Tr R̂5szl z1
1

2
~11sz!~11 l z!cos~a1g!1

1

2
~12sz!~1

2 l z!cos~a2g!1A~12sz
2!~12 l z

2!~cosa1cosg!,

~6!

602 Low Temp. Phys. 23 (8), August 1997 1063-777X/97/
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The absolute minimum of~4! is realized at TrR̂51/2. It

occurs, in particular, for the nonprecessing states withsz

51 and 21/4, l z,1. The dynamic counterpart~a mirror
image l z↔sz! of this set of equilibrium states is th
Brinkman–Smith~BS! spin-precessing mode withl z51 and
21/4,sz,1. In the BS mode the magnetization is prece
ing exactly at the Larmor frequencyv0 and the Leggett–
Takagi ~LT! relaxation mechanism is completely switche
off (Sz5const).

At vÞv0 , where in the rotating coordinate frame th
action of the static magnetic field is eliminated only partly
new hierarchy of the long-lived spin-processing states is
bilized in 3He-B. These states do not correspond to the
solute minimum ofUD and the LT relaxation mechanism
operative. Among them the most thoroughly explored is
HPD state1,2 generated atv.v0 . In this situation the spec
troscopic term in~3! pushes the left boundarysz521/4 of
the BS state farther to the left, and the spin-precessing st
with l z51 and21,sz,21/4 are formed at the balance o
the dipole-dipole and spectroscopic forces. For the c
wherev exceedsv0 only slightly the spin-precession take
place atsz.21/4 and the LT relaxation is rather slow. Du
to the presence of the spectroscopic term, the HPD tra
forms to the precessing two-domain configuration in t
presence of the magnetic field gradient.

An effective way of analyzing other possible long-live
spin-precessing states in3He-B is to consider the case of
strong magnetic field withv0@VB . In this situation the dy-
namic variablesa andg, which appear in expression~4! for
the dipole-dipole potential, are naturally arranged as the
and slow linear combinations~on the long time scale 1/VB!.
As a good starting approximation one can discard the rap
oscillating terms inUD and deal with the average potenti
ŪD that contains only slow variables:sz and l z and possibly
some slow combination ofa andg. In this way, it is easy to
construct a proper first-order solution for the coherently p
cessing spin-states and then to explore small-amplitude
cillations of magnetization@proportional to (VB /v0)2!1#,
superimposed on the ‘‘mean-field’’ solution.

When constructing the above-described ‘‘mean-fiel

6020602-04$10.00 © 1997 American Institute of Physics



~average! picture, it should be realized that the answer for
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a5ā1«ua~ P̄,S̄,w̄uā !,
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UD depends crucially on the magnitudeS5uSu of the spin-
density of a particular precessing state. For the conventio
case ofS close to its equilibrium valueS05(xB /g)H0 a
slow angular variable surviving the averaging procedure
w5a1g and corresponding expression forŪD was exten-
sively used in Ref. 3. The series of homogeneously prec
ing, metastable states different from HPD were establis
as a result of establishing a balance betweenŪD , the spec-
troscopic term, and the action of the finite-amplitude tra
verse rf field.

The new metastable spin-precessing states were foun
Ref. 4 for unconventional situations withS5S0/2 ~the HS
state! and S52S0 ~the DS state!. In these cases~again for
v0@VB!

ŪD5
1

10
xB~VB /g!2F112sz

2l z
21~ l 2sz

2!~12 l z
2!

1
2

3
A~12sz

2!~12 l z
2!~11 l z!~11 l z!cos w̃ G , ~7!

where the slow angular variablew̃5a12g(2a1g) for the
HS~DS! state. Considering the case of an exact Larmor re
nance (v5v0) and noticing that the stationary valuew̃st

5p, we see that there are two degenerate spin-orbit confi
rations: ~sz.0.75, l z.0.3!, and sz↔ l z . These metastable
coherently precessing, spin states are at the minima ofŪD ,
not at the true minimum of an exact dipole-dipole poten
UD . For this reason the HS~DS! states, as well as all meta
stable precessing states considered in Ref. 3, are chara
ized by the small-amplitude oscillations of the magnetizat
against the background of the ‘‘mean-field’’ dynamic
These oscillations are driven by the dipole-dipole torq
which is nonzero for the metastable dynamic states. For th
the LT relaxation is also operative~as mentioned above, onl
for the HPD atv.v0 it is anomalously slow because of th
closeness to the BS mode!. In what follows we study the
frequency spectrum of the small-amplitude oscillations of
magnetization, accompanying the long-lived~metastable!
spin-precessing state in3He-B with S5S0/2 ~HS mode!.
This question was explored recently by means of the co
puter simulation.5 Here we describe the results of an analy
approach based on the self-consistent separation of the
and slow spin-dynamics appropriate to the strong field ca6

(v0@VB).
Using two pairs of canonically conjugate variabl

(a,P) and (w,S) with w5a12g and P5Sz21/2S, we
write the Leggett equations in a dimensionless form

ȧ5211«
] f

]P
, Ṗ52«

] f

]a
,

~8!

ẇ52F ~S21/2!1«
] f

]SG , Ṡ522«
] f

]w
,

where the time is measured in units of 1/v0 , (P,S) is mea-
sured in units of S0 , and « f 5UD /v0S0 with «
52/15(VB /v0)2!1. In order to solve the system of equ
tions ~8! to the first order in«, we use a new set of variable
ā, P̄, w̄, andS̄ according to the transformation
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P5 P̄1«up~ P̄,S̄,w̄uā !,

w5w̄1«uw , S5S̄1«us ~9!

with yet unknown functionsui of slow (P̄,S̄,w̄) and fast
(ā) variables. In what followsw̄ is a slow variable~along
with P̄ andS̄! since we consider a ‘‘resonating’’ regime wit
S51/21«s.

Implying that ā, P̄, S̄, andw̄ satisfy a set of equations

aG 5211«Aa~ P̄,S̄,w̄ !, PG 5«Ap~ P̄,S̄,w̄ !,

wG 5«~2s1Aw~ P̄,S̄,w̄ !!, SG 5«As~ P̄,S̄,w̄ !, ~10!

we can easily obtain a set of equations forui

u̇a5
] f

] P̄
2Aa , u̇p52

] f

]ā
2Ap ,

~11!

u̇w52S ] f

]S̄
1usD 2Aw , u̇s522

] f

]w̄
2As .

Here the functionsAi of the slow variablesP̄, S̄, andw̄ are
found according to the condition for the absence of secu
terms in the solution of Eqs.~11! ( lim

ā→`

uui u,`). In this way

it can be established that

Aa5
] f̄

] P̄
, Ap52

] f̄

]ā
,

~12!

Aw52S ] f̄

]S̄
1ūsD , As522

] f̄

]w̄
,

where f̄ and ūs denote time-averaged parts of the corr
sponding functions of the fast variableā ~without loss of
generality it can be assumed that allūi50!. Isolating a rap-
idly oscillating part of the dipole-dipole energyf̃ 5 f 2 f̄ and
noticing thatu̇i.(]ui /]ā)aG 52]ui /]ā, from Eqs.~11! we
find that

ua~ P̄,S̄,w̄uā !52E ] f̃

] P̄
dā,

up~ P̄,S̄,w̄uā !5E ] f̃

]ā
dā, ~13!

us~ P̄,S̄,w̄uā !52E ] f̃

]w̄
dā.

Stationary values of the variablesP̄, S̄, andw̄ are found
according to the equations

] f̄

]ā
50,

] f̄

]w̄
50,

] f̄

]S̄
52s. ~14!

The first of these equations is satisfied identically sin
f̄ is independent ofā. The second one shows that the s
tionary valuew̄st5p and from the last one we see that

603Kharadze et al.
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Sst5
2

2«
]S̄

. ~15!

From the relationSz5P11/2S we conclude that the
low-amplitude high-frequency oscillations ofSz and S' are
given by

dSz5Sz2S̄z5«uz~ ā !,

dS'5S'2S̄'5«u'~ ā !, ~16!

where

uz~ ā !5up~ ā !1
1

2
us~ ā !,

u'~ ā !5
1

A12sz
2 ~us~ ā !2uz~ ā !sz!. ~17!

Now we can easily pass toSx andSy components:

Sx5S̄' cos ā1«~u'~ ā !cos ā2S̄'ua~ā !sin ā !,

Sy5S̄' sin ā1«~u'~ ā !sin ā1S̄'ua~ā !cos ā !. ~18!

In order to obtain the final results fordSz , dSx , anddSy we
must construct, according to Eqs.~13!, the oscillatory contri-
butionsua(ā), up(ā), andus(ā). After some algebra, from
Eqs.~4!, ~6!, and~7! it can be shown that

f̃ ~a!5
1

8
@~11sz!

2~11 l z!
2 cos~a1w!

1~12sz!
2~12 l z!

2 cos~3a2w!#

1
1

2
A~12sz

2!~12 l z
2!F ~11sz!~11 l z!S cosa

1cos
a2w

2
1cos

3a1w

2 D1~12sz!~12 l z!S cosa

1cos
a2w

2
1cos~2a2w!1cos

5a2w

2 D G1
3

4
~1

2sz
2!~12 l z

2!Fcos 2a1cos~a2w!1
4

3
cos

a1w

2

1
4

3
cos

3a2w

2 G1~szl z21/2!F ~11sz!~1

1 l z!cos
a1w

2
1~12sz!~12 l z!cos

3a2w

2

12A~12sz
2!~12 l z

2!S cosa1cos
a2w

2 D G . ~19!

Using this expression, after some lengthy calculatio
we find

uz~ ā !5 (
n51

3

@an~sz ,l z!cosnā1an21/2~sz ,l z!sin~n

21/2!ā#, ~20!
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u'~a!5 (
n51

@bn~sz ,l z!cosna1bn21/2~sz ,l z!sin~n

21/2!ā#, ~21!

and

ua~ā !5
1

A12sz
2 (

n51

3

@cn~sz ,l z!sin nā

1cn21/2~sz ,l z!cos~n21/2!ā#, ~22!

where the coefficientsa, b, andc are given in the Appendix.
According to Eqs.~16! and ~18! we finally arrive to the

following answer for the small-amplitude oscillating comp
nentsdSz , dSx , anddSy :

dSz~ t !5« (
n51

3

@an cosnā1an21/2 sin~n21/2!ā#, ~23!

dSx~ t !5
1

2
« (

n21

3

@dn
~1 ! cos~n11!ā1dn

~2 ! cos~n21!ā

1dn21/2
~2 ! sin~n11/2!ā1dn21/2

~1 ! sin~n

23/2!ā#, ~24!

dSy~ t !5
1

2
« (

n51

3

@dn
~1 ! sin~n11!ā2dn

~2 ! sin~n21!ā

1dn21/2
~1 ! cos~n23/2!ā2dn21/2

~2 ! cos~n

11/2!ā#, ~25!

whered(6)5b61/2c.
Inspection of Eq.~23! shows that the spectrum of long

tudinal oscillations of magnetization superimposed on
HS precessing mode comprises high-frequency harmo
with ṽ.v0 , 2v0 , 3v0 , 1/2v0 , 3/2v0 , and 5/2v0 . The
same set of harmonics governs the small-amplitude osc
tions of transversal components of the precessing magne
tion @see Eqs.~24! and ~25!, keeping in mind thatd3

(1)

5d5/2
(2)50#.
It should be stressed that the coefficientsa(sz ,l z) are

symmetric with respect to the interchangesz↔ l z ~see the
Appendix!, so that the ‘‘mirror’’ precessing HS states foun
in Ref. 4 for the case of a Larmor resonance (v5v0) are
characterized by identical longitudinal oscillations. In co
trast to this observation, the coefficients entering the exp
sions fordSx anddSy have no spin-orbit symmetry and me
surement of the spectrum of transverse small-amplit
oscillations in the case of HS mode atv5v0 can discrimi-
nate between the two above-mentioned degenerate spin-
states. It can be checked that in the case of the preces
mode I ~sz.0.75, l z.0.3! the oscillations withṽ53/2v0

have the largest amplitude. Next are contributions ofṽ
5(1/2v0 ,v0), which have about four times smaller amp
tudes. In the case of the precessing mode II~sz.0.3, l z

.0.75! the oscillations withṽ53/2v0 are again the stron
gest, but now contributions of comparable amplitudes co
from ṽ5(1/2v0,2v0).
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Away from the Larmor resonance (vÞv0) the states I
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b 5
1

@~21s !~12s !l ~12 l !23s s l 2 #,

as
and II are displaced from their initial positions. In particula
as has been demonstrated in Ref. 7, in the presence of s
ciently large negative spectroscopic term (v,v0) the state I
moves toward a spin-orbit configurationsz.1, l z.0, while
the state II loses its stability. Expressions fordSz , dSx , and
dSy are especially simple for this HS precessing state:

dSz~ t !52«~cos ā22 sin ā/2!,

dSx~ t !5
2

3
« sin ā/2, ~26!

dSy~ t !5
2

3
« cos ā/2.

The HS coherently precessing mode in the spin-o
configuration sz.1, l z.0 was recently observe
experimentally.8 It has been identified by means of applic
tion of a transverse 90° rf pulse, after which the measu
ment of the amplitude of an induction signal has allowed
establish the magnitude of the spin polarization of the p
cessing state. It is certainly the most direct way to identif
spin-precessing mode withS5S0/2 andsz.1. At the same
time, the spectroscopy of small-amplitude oscillations
magnetization accompaning phase-correlated spin-prece
states could serve as an additional source of informa
about their spin-orbit structure.

We would like to thank Prof. V. Dmitriev for providing
us with his recent experimental results prior to publicatio

APPENDIX

We give here the expressions for the coefficients app
ing in Eqs.~23!–~25!. We introduce the transverse comp
nentss'5A12sz

2 and l'5A12 l z
2:

a153szs'l zl'2
1

4
~11sz!

2~11 l z!
2,

a25
1

4
@3~s'l'!22s'~12sz!l'~12 l z!#,

a352
1

12
~s'l'!2,

a1/2524~11sz!~1/22sz!~11 l z!~1/22 l z!,

a3/252
2

3
@s'~11sz!l'~ l 1 l z!22~12sz!~1/21sz!~1

2 l z!~1/21 l z!#,

a5/25
2

5
s'~12 l z!l'~12 l z!. ~A1!

These coefficients have spin-orbit symmetry~they are
invariant atsz↔ l z!. On the other hand, the coefficientsb and
c have no such symmetry:

b15
1

2
s'F3l'

2 2
1

2
~11sz!~11 l z!

2G23sz
2l'l z ,
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2 4 z z ' z ' z '

b35
1

12
s'~12sz!~12 l z!

2,

b1/2522@3szl'l z12s'~1/22sz!~11 l z!~1/22 l z!#,

b3/252
2

3
@~11sz!~1/22sz!l'~11 l z!12s'~1/21sz!

3~12 l z!~1/21 l z!#,

b5/252
2

5
~12sz!~1/21sz!~12 l z!l' ; ~A2!

c15s'F1

2
~11sz!~11 l z!

223szl'
2 G26~122sz

2!l'l z ,

c25
3

2
s'szl'

2 2~12sz!~1/21sz!l'~12 l z!,

c3522b3 ,

c1/254@3~122sz
2!l'l z1s'~114sz!~11 l z!~1/22 l z!#,

c3/25
4

3
@s'~124sz!~12 l z!~1/21 l z!2~11sz!~1/2

2sz!~ l'~11 l z!#,

c5/252b5/2. ~A3!
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SUPERCONDUCTIVITY, HIGH-TEMPERATURE SUPERCONDUCTIVITY

Scaling of critical current in granular HTS materials
N. A. Bogoliubov

Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk,
Russia*
~Submitted December 9, 1996; revised February 13, 1997!
Fiz. Nizk. Temp.23, 808–815~August 1997!

The temperature and size dependences of critical current of three bismuth-based and one yttrium-
based ceramic samples of rectangular cross sections in zero magnetic field are studied by a
contactless method. It is shown that the critical current in ceramic HTS can be presented as the
product of temperature- and size-dependent factors. The temperature-dependent factor
describes the individual properties of Josephson net for each sample, while the size-dependent
factor is a universal homogeneous function whose index is independent of the ratio of
the sides of the cross section, temperature, and individual properties of the HTS sample. ©1997
American Institute of Physics.@S1063-777X~97!00308-3#
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INTRODUCTION

A granular high-temperature superconductor is a sys
of granules forming a three-dimensional Josephson netw
of weak bonds.1 In a strong applied field, most of thes
bonds are ruptured, and such a superconductor can b
garded as an ensemble of noninteracting granules.2 In the
case of weak fields smaller than the lower critical field of t
grains, the properties of the granular system can be descr
in the framework of weak-field electrodynamics of HT
materials.3–5 However, the experimental study of the effe
of such fields~of a few oersteds! on the critical current in a
ceramic sample is complicated since the contribution fr
the field created by the transport current itself becomes
nificant. Different regions of a spatially homogeneo
sample are in fields of different intensities during the pass
of current, since each intergranular junction is in the ove
field created by currents passing through other branche
the Josephson network. Consequently, the only metho
control for this field is probably the variation of the samp
cross section. However, most of authors investigated the
called size effect, viz., the dependence of the critical curr
I c and its average density on the size of the cross sectio
a ceramic HTS sample in zero field for various sample cr
sections.3,6–17 It was found10 that the change in the heigh
and width of the sample of rectangular cross section lead
different changes in the magnitude of critical current. T
size effect is associated with the magnetic field created
the sample surface by the critical current passing thro
it.10,14,16

In this paper, we analyze the dependence of critical c
rent on the temperature and size of the rectangular c
section of some HTS samples in zero external magnetic fi
It is shown that the functional dependence of critical curr
can be presented in the form of the product of two facto
The size factor is a homogeneous Euler function,18 i.e., the
critical current of an HTS ceramic obeys the similitude pr
ciple. We will not use these or other empirical dependen
of critical current on magnetic field in analyzing the res
606 Low Temp. Phys. 23 (8), August 1997 1063-777X/97/08
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since these dependences cannot be regarded as reliably
stantiated in the general case.

OBJECTS AND METHODS OF INVESTIGATIONS

We analyzed the dependence of the critical current
four ceramic HTS samples on the size of rectangular cr
section~samples 1–4! and on temperature~sample 1! in zero
external field. All the samples were prepared by using so
phase synthesis. Sample 1 (Bi1,8Pb0,3Sr1,9Ca2Cu3Ox) had the
density 4.75 g/cm3 and the superconducting transition tem
perature Tc5106.3 K, sample 2 ~Y–123! had the
parameters 4.97 g/cm3 and Tc591.2 K, sample 3
(Bi1,6Pb0,4Sr2Ca2Cu3Ox) had the density 4.71 g/cm3 and
Tc5109.1 K, while sample 4 (Bi1,8Pb0,3Sr1,9Ca2,6Cu3,3Ox)
had the density 4.87 g/cm3 and Tc5108.6 K. The x-ray
phase analysis did not reveal the presence of the Bi-2
phase in samples 1, 3, and 4, but CaCuO3 was present in
sample 3 in the form of the impurity phase.

The critical current was measured by the contactl
transformer technique, which is widely used for studyi
HTS objects.10,16,19The sample in the shape of a ring havin
a rectangular cross section was placed inside a ferrite c
type magnetic core together with the primary and the m
suring winding of a transformer. When ac current was pas
through the primary, a current of the opposite direction w
induced in the superconducting ring so that the magnetic
accumulated by the central kernel of the case-type core
passing through the hole in the ring and through remain
windings remained unchanged. When the current amplit
in the ring approaches the value of the critical current a
exceeds it, a signal in the form of a sharp peak is induce
the measuring winding. The magnitude of critical current
recorded at the moment of emergence of the signal and
culated from the relationI c5n1I 1 , wheren1 and I 1 are the
number of turns and the amplitude of the current in the p
mary. The values ofI c were measured at frequency 20 H
The electric field in the sample at the instant ofI c recording
amounts to ;1022 mV/cm. At each fixed temperature
6060606-06$10.00 © 1997 American Institute of Physics
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10–20 measurements were made. The spread in the valu
I c obtained in this way did not exceed a few thousandth
amounted to 1% only in rare cases. The size of the sam
was measured with the help of a clock-type indicator. Th
the sample was cooled, and the values ofI c were measured
at liquid nitrogen temperature~samples 2, 3, and 4! or in the
temperature range fromTc to 77.3 K ~sample 1!. After this,
the sample was heated, its size was measured, and the
suring cycle was repeated. Such a sequence of proced
could lead to a change in the superconducting paramete
the sample. For this reason, the value ofTc of the sample
was measured every time during heating and cooling.
critical current of the first sample was measured at liq
nitrogen temperature immediately after cooling as well
before the extraction of the sample from the cryostat at
end of the experiments. If the sample was extracted in a
or two after the main measurements, the values ofI c were
measured repeatedly for all the samples at 77.3 K. The c
stancy of the parameters being measured indicated tha
superconducting properties of the sample remained
changed.

The width x and heighty of sample 1 were varied in
proportion, and hence all the seven sizes of the cross se
~from 1.14031.542 to 0.55430.746 mm2! were similar. The
size of the cross section of sample 2 changed according
similar regularity. The values ofI c were measured for six
similar cross sections from 1.94532.768 to
1.12231.333 mm. The variation of cross section of sampl
followed a more complex regularity shown by the step li
in Fig. 1. For this purpose, three families of similar cro
sections of the sample were obtained. The first family c
tained five similar cross sections associated with the diag
OL in Fig. 1 ~from 0.85531.245 to 0.30230.447 mm!. The
second family included 12 cross sections pertaining to d
onal OC. The third family associated with the straight lin
OR was formed by seven cross sections from 1.31031.147
to 0.48330.550 mm. The critical current of the fourt
sample was measured for two families of similar cross s

FIG. 1. Diagram illustrating the variation of cross section of sample 3. T
indices of the points are indicated only for initial cross sections.
607 Low Temp. Phys. 23 (8), August 1997
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tions ~from 1.28031.280 to 0.64530.645 mm and from
1.28031.100 to 0.74830.645 mm!. As a result, we obtained
a set of results for seven families of similar cross sectio
with values of tana varying from 1.43 to 0.859~a is the
angle formed by the diagonal of the rectangular cross sec
with the x-axis!.

DISCUSSION OF RESULTS

We start from an analysis of data obtained for the fi
sample. The temperature dependence of critical current
five different cross sections is shown in Fig. 2. For ea
cross section, we obtain the dependences presented b
upper curveI T in Fig. 2 by dividing the experimentally de
termined value of critical current by the value of current
liquid nitrogen temperature. The values ofI T obtained for
different cross sections are so close that the correspon
points in Fig. 2 cannot be distinguished on the adopted sc
and hence only the curve connecting these points is
sented. If we carry out such a normalization for anoth
sample, we obtain a different temperature dependence oI T

since each sample is characterized by its own supercond
ing transition temperature, and the normalized dependen
will pass through zero at different values ofTc .16 Thus, we
can draw the conclusion that such a dependence of cri
current is a characteristic of the ceramic sample material
is completely determined by the temperature:

I T~T!5I c~x,y,T!/I c~x,y,T0!. ~1!

The form of this dependence remains unchanged for
other choice of the value ofT0 .

Figure 3 shows the dependence of critical curre
through sample 1 on the length of the diagonal of its cr
section at various temperatures. It can be seen that the
cal current decreases nonlinearly upon a decrease in
sample size. Since all intermediate cross sections are sim
it would be interesting to find the ratio of the critical curren

e

FIG. 2. Temperature dependence of critical current in sample 1 for var
cross sections ~in mm!: 1.14031.542 , ~s! 0.95531.283 , ~h!
0.85531.150 , ~n! 0.69330.831 , ~L! and 0.55430.748 ; ~* ! I T is the
normalized dependence of the critical current in this samp
I T5I c(x,y,T)/I c(x,y,77.3 K).
607N. A. Bogoliubov
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corresponding to these cross sections, i
we are interested in the dependence of the quantityI G

5I c(xi ,yi ,T)/I c(x0 ,y0 ,T) on ki , where ki5xi /x05yi /y0

according to the model used in our experiments. In view
inevitable errors, a rigorous equality of the ratios of the sid
for the cross sections under investigation cannot be obtai
For this reason, the quantityki was defined as
ki50.5(xi /x01yi /y0). Figure 4 shows the dependence ofI G

on k for five temperature values on the log–log scale. T
quantities corresponding to the fourth cross section of
sample~counting from the initial cross section! are used as
normalization values. The same figure shows the result
measurements for sample 2 normalized to the values co
sponding to the third cross section of the sample as we
the results of measurements for sample 3 normalized to

FIG. 3. Dependence of the critical current in sample 1 on the length of
diagonal of its cross section for various temperatures, K: 97.1~s!, 92.45
~h!, 87.55~3!, 82.5 ~* !, and 77.3~n!.

FIG. 4. Dependence of the relative current in sample 1 on the relative
of the sample~notation is the same as in Fig. 3! for different temperatures
and in samples 2~1! and 3~d! at 77.3 K. The results obtained at 87.55
~3! are displaced to the left, and at 82.5 K~* ! to the right along the axis lnk
by 0.014.
608 Low Temp. Phys. 23 (8), August 1997
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results corresponding to the pointx4 , y4 ~see Fig. 1!. It can
be seen that all the points fit into the universal linear dep
dence

ln I G5p ln k. ~2!

If we plot the points obtained for another choice of norm
ization values, we obtain a continuation of the obtain
curve~these points are not shown in Fig. 4 to avoid comp
cation of the diagram!, i.e., the relationI G(k) does not de-
pend on the choice of normalization values. Consequen
we can write

I c~kx,ky!5kpI c~x,y!, ~3!

i.e., the critical current of a granular HTS sample in ze
external field, which is regarded as a function of the size
the rectangular cross sections, is a homogeneous Euler f
tion with exponentp. The value ofp can be determined with
the help of the least squares technique by using the s
model~2! which does not contain a free term since the cr
cal current should not change upon an identity transform
tion of the space into itself~i.e., for k51!. Evaluating the
exponentp for sample 1 in each temperature series of
results of measurements, we obtain a set of values coinci
within confidence intervals, i.e., these values can be a
aged. Moreover, the verification confirms the validity
zero-point hypothesis concerning the equality of gene
mean values~for confidential probability of 0.95!.20 Conse-
quently, having determined the mean value, we ultimat
obtainp51.4060.03. Here and below, confidence interva
are determined by using quantiles of the Student distribu
with a confidential probability of 0.95. Thus, the exponent
the Euler function does not depend on temperature,
hence the relative currentI G does not depend onT and is
determined only by the geometrical parameters:

I G~x,y!5I c~x,y,T!/I c~x0 ,y0 ,T!. ~4!

Let us prove that the value of the indexp does not de-
pend on the properties of a specific Josephson network
isting in the sample or on the ratio of the sides of the re
angular cross section of the sample. We use the experime
results obtained at 77 K for samples 2, 3, and 4. Figur
shows the dependence ofI G on k on the log–log scale for
three families of similar cross sections of sample 3 and t
families for sample 4. The values corresponding to the ini
sample cross sections are used for normalization. It can
seen that all the points fit into the same linear depende
i.e., the results of measurements made for samples 3 a
satisfy the definition of a homogeneous function. The valu
of p obtained separately for each family of similar cro
sections of sample 3 coincide to within confidence interva
The criterion confirming the validity of the hypothesis co
cerning the equality of mean values is satisfied, i.e., the
ues of exponents obtained for three families of cross sect
for sample 3 can be averaged. Finally, we obta
p51.3660.07. The same refers to the results obtained
sample 4. In this case,p51.4260.04. For sample 2, we
obtain p51.3660.05, i.e., the fact that the point in Fig.
corresponding to the results of measurements for th
sample fit into the universal dependence is not accidenta

e

ze
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Fig. 6, the values of the ratios of sides for seven families
similar cross sections of the four samples under investiga
are laid along the abscissa axis, while the values of ex
nents for the corresponding cross sections with confide
intervals are plotted along the ordinate axis. It can be s
that no dependence of the exponent on the value of tana can
be traced. Calculating the weight-average value, we ob
p51.3960.02. Thus, the exponent does not depend on t
perature, or on the type of the sample, or on the ratio of
sides of its rectangular cross section. In other words,
dimensionless currentI G(k) is a universal function. The
same result, i.e., relations~1! and ~4!, was obtained by us
earlier,16 but in contrast to this research, we measured o
the sample width at a constant height, and successive c
sections were not similar. The dependenceI G(x,y0) was
more complicated, but was universal, i.e., independen
sample material and temperature.

FIG. 5. Dependence of the relative currentI G in samples 3 and 4 on the
ratio of the corresponding sides of similar cross sections: the results
tained for the central, left, and right diagonals are marked bys, d, andL,
respectively~see Fig. 1!, I and h mark the points corresponding to cros
sections of sample 4 of square and rectangular shape, respectively.

FIG. 6. Values of the exponent of the homogeneous function, obtained
cross sections of the samples with different ratios of sides. Symbolsh, 3,
:, and % correspond to samples 1, 2, 3, and 4, respectively. Vertical li
indicate confidence intervals. The dashed line corresponds to the av
value of the exponentp.
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We arrive at the conclusion that experimental data c
be presented in the form of the dimensionless currentsI T(T)
and I G(x,y) irrespective of the way in which the samp
dimensions are varied. According to the experimental fa
~1! and~4!, the critical current of a granular HTS material
zero external field has the form

I ~x,y,T!5G~x,y! f ~T!, ~5!

whereG(x,y) is a function depending only on the samp
size andf (T) the individual characteristic of the material o
the specific sample. Equation~5! shows that it isG(x,y) that
is a homogeneous Euler’s function:

G~kx,ky!5kpG~x,y!. ~6!

Let us prove that the critical current in a granular sup
conductor not only corresponds to the definition of a hom
geneous function, but also possesses all the propertie
such a function. Above all, Euler’s theorem18 must be satis-
fied:

x~]I c /]x!1y~]I c /]y!5pIc , ~7!

i.e., the combination of derivatives on the left-hand side
proportional to critical current, and the proportionality fact
must coincide with the value obtained earlier. The expe
mental data obtained for sample 3 make it possible to de
mine the required derivatives by using the differen
method. Figure 7 shows that the dependence under cons
ation is linear indeed,i.e., Euler’s theorem is valid. Appro
mating the obtained results by Eq.~7!, we obtain the value of
exponentp51.360.2, which coincides with the one ob
tained earlier. The larger confidence interval is associa
with the errors emerging in the evaluation of derivative
Since the number of points at which the derivatives can
evaluated is small, we do not divide them into groups as
ciated with a certain family of similar cross sections duri
approximation, but different symbols are used in Fig. 7
denoting points forming such groups.

b-

or

s
ge

FIG. 7. Correspondence of experimental results obtained for sample
Euler’s theorem. The symbolss, d, andL indicate the values obtained fo
points lying on the diagonalsOC, OL, andOR, respectively~see Fig. 1!.
609N. A. Bogoliubov
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For the critical currentI c(x,y,t) to be a homogeneou
function of the variablesx and y, it is necessary and suffi
cient that it can be represented in the form18

I c~x,y!5xpF1~y/x! f ~T!. ~8!

Since the coordinatesx andy are equivalent, the condition

I c~x,y!5ypF2~x/y! f ~T!. ~9!

is satisfied simultaneously. Such a representation of exp
mental data for similar cross sections can be satisfied ea
since the ratio of the sidesx andy remains unchanged, an
hence the functionsF1(y/x) and F2(x/y) are constants
while I c depends only onx or only ony. Figure 8 shows the
dependence of the critical current in the first sample
double logarithmic coordinates at five temperatures. T
curves are displaced relative to one another due to the p
ence of the factorf (T) in Eq. ~9!, which has different values
at different temperatures. If the results for sample 3 are p
sented in such coordinates, we obtain three straight lines
are displaced relative to one another. In this case, the sh
caused by the factorF2(x/y) in ~9!, which assumes differen
values for different families of identical cross-sections
sample 3. Going over to new variables in Eq.~3!, viz., the
length d of the cross- sectional diagonal and anglea, and
putting k51/d, we obtain I c(d,a,T)5dpw(a,T). For
samples with identical cross sections, the critical current
pends only ond. This dependence is shown by solid curv
in Fig. 3. Thus the critical current in a granular superco
ductor satisfies the definition of a homogeneous function
possesses all its properties. Note that the dependence of
cal current on temperature and cross-section may chang
the vicinity of Tc . We shall show that formulas~5! and ~6!
are valid at least fort.0.085@t5(Tc2T)/Tc#.

Formula~5! leads to the similitude law which is obeye
by the critical current in a ceramic superconductors in z

FIG. 8. Correspondence of experimental results obtained for sample
relation ~5! at different temperatures~notation is the same as in Fig. 3!.
610 Low Temp. Phys. 23 (8), August 1997
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fields. Indeed, introducing the relative currentI G with the
help of formula~5!, we eliminate the individual properties o
the sample material:

I G5G~x,y!/G~x0 ,y0!. ~10!

In view of this relation, any set of ceramic samples has
same size dependence of the relative current. The size o
rectangular transverse cross-section of the samples b
compared must vary according to the same law. Let us c
sider a few examples. If an arbitrary cross-section o
sample is identical to its preceding and succeeding cro
sections, we obtain the relationI G5kp from ~10! with the
help of ~6!. In this case, the cross-sections of differe
samples need not be identical. This situation is illustrated
the straight line in Fig. 5. If, for example, only the widthx of
the samples changes while their heighty0 remains un-
changed for all samples as in Ref. 16, the curve describ
the law of similitude will reflect the behavior of the functio
F2(x/y0) in ~9!: I G5F2(x/y0)/F2(x0 /y0). If two samples
have identical cross sections, the ratio of their critical c
rents will be defined in terms of their temperature factors

I 1 /I 25~x1 /x2!pf 1~T!/ f 2~T!.

It can be naturally assumed that the obtained results
valid not only for samples with rectangular cross sectio
This raises the question about the magnitude of the index
samples with other types of cross section. It has been sh
in numerous investigations that the critical current of c
ramic superconductors depends significantly on the magn
field. In our experiments, the external magnetic field w
equal to zero, and the sample was subjected only to the m
netic field produced by the current flowing in it. Such a fie
depends on the sample shape, and hence it can be exp
that the indexp will also depend on the shape of the cro
section. For a circular sample, the functionG depends only
on its radiusR. Puttingk51/R, we obtain from~5! and ~6!

I c~R,T!5CRpf ~T!,

whereC is a constant. On the other hand, the current in s
a sample and the field produced by it must be connec
through a relation that is obeyed for all currents, includi
the critical current:I c5c/2 RHf , whereH f is the field pro-
duced by the critical current at the sample surface. The s
larity of these two expressions leads to the conclusion
p51 and f (T) coincides withH f but for a constant factor
i.e., f (T) has the meaning of the magnetic field produced
the critical current at the sample surface and transforming
sample to the critical state.

Most of the works devoted to the critical current inve
tigations of HTS objects contain data on the average crit
current densityj c5I c /S ~S is the sample cross-section
area!. Using ~3!, we determine the average critical curre
density of the sample whose rectangular cross-sectiona
mensions are changed by a factor ofk:

j c~kx,ky!5kp22 j c~x,y!.

Thus, the average critical current density is also a homo
neous Euler function albeit with a different indexpj5p22.
Sincep51.38, we find thatpj,0 and j c increases upon a

to
610N. A. Bogoliubov
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gradual reduction of the sample size. However, the div
gence ofj c is not observed, since the nature of thej c(x,y)
dependence changes as soon as the cross section be
comparable with the size of the HTS grains~or a block of
grains!.

Let us consider the dependence ofI c and j c on the cross-
sectional area. Using~8! and ~9!, we obtain

I c5Sp/2C~x,y!, j c5Sp/221C~x,y!.

It can be seen that a decrease in the cross-sectional area
to a decrease in the critical current and an increase inj c .
However, it was stated above that this increase canno
indefinite. Several authors have endeavored to express
variation of j c as a power function ofS. The values2 1/2,
2 1/3, and2 1 of exponents were obtained in Refs. 3, 8,
respectively. Nevertheless, it follows from what has be
stated above that the nature of variation ofj c depends on the
sample shape as well as the manner in which the shap
varied. For example, if the size of a sample having a rec
gular cross section is varied in proportion, the exponent oS
will be approximately equal to20.3, which is close to the
result obtained in Ref. 8.

CONCLUSIONS

An analysis of the obtained results shows that the crit
current in HTS ceramic samples of rectangular cross sec
in zero external magnetic field can be presented as the f
of the product of a factor determined by the sample geom
and a temperature-dependent factor reflecting individ
properties of the Josephson network of the sam
I c(x,y,T)5G(x,y) f (T), where G(x,y) is a homogeneous
function of powerp:G(kx,ky)5kpG(x,y), p51.3960.02.
It is shown that the exponent of the homogeneous func
depends neither on temperature, nor on the material of
HTS sample, nor on the ratio of the sides of its cross sect
In all probability, the indexp for a sample of another shap
will have a different value. The above properties of critic
611 Low Temp. Phys. 23 (8), August 1997
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current imply that it must obey the similitude law, and th
average density of critical current is a homogeneous func
of degreep22.
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On peculiarities of superconducting state formation in 2 D metallic systems
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Kiev, Ukraine*
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It is shown that the phase diagram of a 2D metal with a varying charge carrier density consists
of normal phase regions in which the modulus of the order parameter is zero, the so-
called anomalously normal phase in which it differs from zero but has a random phase, and the
Berezinskii–Kosterlitz–Thouless phase. The characteristic temperatures of transitions
between these phases are determined as well as the behavior of the chemical potential as a
function of the fermion density and temperature. An attempt is made to compare qualitatively the
obtained phase diagram with the observed peculiarities in the behavior of underdoped high-
Tc superconducting compounds above their critical temperature. ©1997 American Institute of
Physics.@S1063-777X~97!00408-8#
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1. Peculiarities of the crossover region bounded by
limiting cases of superconductivity of condensate of Coo
pairs on one side and the superfluidity of compound bos
on the other hand have attracted the attention of scientist
a long time in connection with a more general problem
description of high-Tc superconductors~HTS materials! ~see,
for example, Ref. 1!. The situation for 3D systems at zero
and finite temperatures is more or less clear,2 the crossover in
quasi-2D systems has also been studied~although
incompletely!,3 while for 2D systems, only the caseT50
has been in fact investigated.2,4 The latter circumstance i
due to the fact that phase fluctuations of the charged com
order parameter in 2D systems are so strong that the esta
lishment of the long-rage order in such systems is ruled
for any finiteT ~the Hohenberg theorem!. The description of
the formation of a nonhomogeneous condensate with an
ponential decrease of correlations, including supercond
ing ones ~the so-called Berezinskii–Kosterlitz–Thoule
~BKT! phase!, involves certain complications of mathema
cal origin. Nevertheless, certain advances have been ma
this direction also. For example, the BKT transition in t
relativistic field theory 21 1 was studied by MacKenzie
et al.,5 while a crossover in the value of charge carried d
sity nf from superconductivity to superfluidity was analyz
by Drechsler and Zwerger.6 However, the method used i
Ref. 6 for obtaining the BKT transition temperatureTBKT has
a number of drawbacks. For example, the equation forTBKT

was derived without taking into account the existence o
neutral order parameterr whose nonzero value is associat
with the violation of discrete symmetry alone, and hen
does not contradict the Hohenberg theorem. It will be sho
below that the inclusion of this parameter leads to the em
gence of a finite region withr Þ 0 on the phase diagram
which separates the conventional normal phase~NP! and the
BKT phase. In spite of the exponential decrease in corr
tions in this new~nonsuperconducting! region, it can posses
peculiar properties since the quantityr appears in the expres
sion for observables in the same way as the energy gapD in
the theory of traditional superconductors. In other words,
electron spectrum of the new phase differs considerably f
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the spectrum of metals in their NP. The existence of t
phase~which is also normal in a certain sense! will probably
explain the anomalous behavior sometimes observed for
normal state of HTS materials, namely, the temperature
pendences of spin susceptibility, resistance, heat capa
photoemission and optical spectra, etc.,7,8 which are being
interpreted by using widely the concept of pseudogap~as
well as the spin gap! formed at a certain temperature excee
ing Tc considerably in some cases. Sometimes, even tw
three such temperatures corresponding to the emergenc
certain anomalies are used.

This communication aims at obtaining annf vs. T phase
diagram of a 2D metal with attraction between charge car
ers and calculating the values ofTBKT andTr bounding the
region of ‘‘anomalously normal’’ phase~ANP! as functions
of nf ~Tr is the temperature at whichr vanishes!.

2. The density of the simplest Hamiltonian describin
2D fermions in volumev has the form

H ~x!5cs
1~x!F2

¹2

2m
2mGcs~x!

2Vc↑
1~x!c↓

1~x!c↓~x!c↑~x!, ~1!

where x[r ,t;cs(x) is the Fermi field,m and s are the
effective mass and spin of fermions,m is their chemical po-
tential,V the attraction constant, and\5kB51.

In order to calculate the required phase diagram, we
the Hubbard–Stratonovich method~see, for example, Ref. 4!
which has become a standard approach for solving s
problems. In this method, the partition functionZ(v,m,T) is
a functional integral over Fermi fields~Nambu spinors! as
well as the auxiliary fieldF5Vc↑

1c↓
1 . In contrast to the

generally accepted method of calculatingZ in the variables
F and F* , in our case it is expedient, following Aitchiso
et al.,9 to go over to the modulus–phase variables in
corresponding integral, i.e., to use the parametrizat
F(x)5r(x)exp@2i2u(x)#, carrying out the obvious substitu
tion cs(x)5xs(x)exp@iu(x)#. This gives
6120612-06$10.00 © 1997 American Institute of Physics
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Z5E rDrDu exp@2bV~r,]u!#,

where

V~r,]u!5
T

V E
0

b

dtE drr22T Tr Ln G 21 ~2!

is the effective thermodynamic potential of the system andG

is its Green’s function, so that

G 2152 Î ]t1t3S ¹2

2m
1m D1t1r2t3S i ]tu1

~¹u!2

2m D
1 Î S i¹2u

2m
1

i¹u¹

2m D[G21~r!2S~]u!; ~3!

In formula ~2!, the trace~Tr! is taken over space, imaginar
time t(<b[1/T) and the Nambu indices appearing in t
Pauli matricest j . It should be noted that the smallness
low rate of variation of the phaseu(x) is not assumed any
where at this stage since we have in fact only carried ou
transition to new variables.

The low-energy dynamics in the region wherer Þ 0 is
determined by phase fluctuations, and hence we can con
the analysis to expansions ofV(r,]u) only in derivatives of
u :

V~r,]u!5Vkin~r,]u!1Vpot~r!;

Vkin~r,]u!5T Tr (
n51

`
1

n
~GS!nU

r5const

;

Vpot~r!5
1

V E drr22T Tr Ln G21U
r5const

. ~4!

3. In the expansion ofVkin up to terms;(¹u)2 in ~4!, it
is sufficient to retain the terms only withn51,2. The com-
putation procedure is similar to that used by Schakel10 who
analyzed only the case of high densitiesnf at T50 and
gives1! ~see Appendix!

Vkin5
T

2 E
0

b

dtE dr @J@m,T,r~m,T!#~¹u!2

1K@m,T,r~m,T!#~]tu!2#, ~5!

where

J~m,T,r!5
1

m
nF~m,T,r!

2
T

p E
2m/2T

`

dx
x1m/2T

cosh2@x21r2/~4T2!#1/2 ~6!

and

K~m,T,r!5
m

2p H 11
m

~m21r2!1/2 tanh
~m21r2!1/2

2T J ,

~7!

and the quantity
613 Low Temp. Phys. 23 (8), August 1997
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nF~m,T,r!5
m

2p H ~m21r2!1/21m12T lnF11exp

S 2
~m21r2!1/2

T D G J ~8!

has the meaning of number density of Fermi particles~for
r50, expression~8! describes the density of free fermions!.
Direct comparison of expression~5! with the Hamiltonian of
the XY model11 enables us to write the following equatio
for TBKT :

p

2
J@m,TBKT ,r~m,TBKT!#5TBKT . ~9!

However, in order to determineTBKT self-consistently as a
function ofnf , we must supplement this equation with equ
tions for r and m. ~It should be recalled that the chemic
potential in the BCS theory is normally equated to the Fe
energy, and hence the self-consistent approach is not
quired.!

4. The effective potentialVpot defined in ~4! has the
form

Vpot5vFr2

V
2E dk

~2p!2 H 2T ln cosh
@j2~k!1r2#1/2

2T

2j~k!J G , ~10!

wherej(k)5k2/2m2m. In this case, the missing equation
are the condition]Vpot/]r50 of the minimum of~10! and
the equalityv21]Vpot/]m52nf definingnf :

1

V
5E dk

~2p!2

1

2@j2~k!1r2#1/2 tanh
@j2~k!1r2#1/2

2T
,

~11!

nF~m,T,r!5nf . ~12!

Thus, equations~11! and~12! form the sought system fo
self-consistent determination of the modulus of the order
rameterr and the chemical potentialm for given values ofT
andnf .2! It was mentioned above that the same equation l
to the initial values ofr andm required for calculatingTBKT .

If we put r50 in ~11! and ~12!, we arrive at equations
for the critical temperatureTr(5Tc

MF) and the value ofm
corresponding to it in the self-consistent field appro
mation3!:

ln
u«bu
Tr

g

p
52E

0

m/2Tr
du

tanhu

u
~g51.781!, ~13!

Tr lnF11expS m

Tr
D G5eF . ~14!

Here«b522W exp(24p/mV) is the energy of two-particle
coupled states, whereW is the conduction band width
eF5pnf /m the Fermi energy, and a transition to«b indi-
cates a transition to the limitW→` and V→0. It is much
more convenient to use the parameter«b than the four-
fermion constantV. For example, Eq.~11! acquires after
such a transition the form
613Gusynin et al.
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ln

u«bu
~m21r2!1/22m

52E
2m/T

`

du
1

~u21~r/T!2!1/2@exp$u21~r/T!2%1/211#
,

~15!

and we can easily verify that the system of equations~12!,
~15! has the exact solutionr5(2u«bueF)1/2 and m5
2u«bu/21eF at T50,2,4, which means that the relation be
tween eF and u«bu determines not only the magnitude, b
also the sign ofm. It should also be noted that the quanti
~6! vanishes on~and above! the mean-field critical line de
marcating the NP and ANP.

5. An analysis of the system of equations~9!, ~12!, ~15!
and ~13!, ~14! was carried out numerically and led to th
following most interesting results presented graphically.

~a! The ANP region~see Fig. 1! turns out to be commen
surate with the BKT region.

~b! For small eF(!u«bu), the TBKT(eF) dependence is
linear, which is also confirmed by the analytic solution of t
system of equations~9!, ~12!, and ~15! leading to
TBKT5eF/2. It should be noted that the temperature of fo
mation of a uniform order parameter is of the order
Tc5eF /(2a) ~wherea@1! for the quasi-2D model3 in the
limit of small nf also. This means that weak thre
dimensionalization can preserve both the ANP region,
the BKT phase~at least, for smallnf!, which is observed, for
example, in the relativistic quasi-2D model,14 although the
concentration dependence was not analyzed in it. On
other hand, an increase in the three-dimensionalization
rameter can and must lead to the disappearance of the
phase, i.e., to its ‘‘replacement’’ by an ordinary superco
ducting phase with a uniform order parameter.

~c! Figure 2 demonstrates graphically the relations
tweeneF andu«bu for which the quantitym differs consider-
ably from eF . In other words, the Landau theory of Ferm
liquid is not quite suitable for describing such metals with
low fermion density (eF;u«bu). The kink on them at T5Tr

observed in the experiments considered in Ref. 12 and

FIG. 1. DependencesTBKT(eF) andTr(eF). The dotted curve illustrates th
behavior ofr(eF) at T5TBKT . The regions of NP, ANP, and BKT phas
are indicated.
614 Low Temp. Phys. 23 (8), August 1997
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plained in the case of a 123 cuprate13 becomes less and les
noticeable with increasingeF as expected. However, it i
important that the kink is observed at the NP–ANP interfa
i.e., prior to the actual emergence of superconductivity.
this reason, additional experiments clarifying them(T) de-
pendence, especially for strongly anisotropic~quasi-2D! and
relatively underdoped cuprates will undoubtedly be of co
siderable importance.

~d! Curve3 in Fig. 2 shows that a transition from loca
pairs to Cooper pairs~sign reversal ofm! is possible not only
as a result of an increase ineF ~which is more of less evi-
dent!, but also upon an increase inT ~for a certain choice of
nf!.

~e! Finally, according to calculations, the rati
2D/TBKT.4.4 ~Fig 3! in all cases, which is in accord with
experimental data for HTS materials; in this case, the va

FIG. 2. Temperature dependence ofm for various values ofeF /u«bu: 0.05
~curve1!, 0.2 ~curve2!, 0.45~curve3!, 0.6 ~curve4!, 1 ~curve5!, 2 ~curve
6!, and 5~curve7!. ~Relative values form.0 andm,0 were obtained with
the help ofeF and u«bu, respectively.! Cold lines demarcate the regions o
the BKT phase, ANP, and NP.

FIG. 3. Dependences 2D/TBKT and 2D/Tr on eF ~we assume that
D5(m21r2)1/2 for m,0 andD5r for m.0.
614Gusynin et al.
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of 2D/Tr(52D/Tc
MF) is smaller and attains~for eF@u«bu)

the limit of the BCS theory equal to 3.52 as expected. T
nonmonotonic dependence 2D(eF)/Tr(eF) is due to the
above-mentioned difference between the quantitiesD and r
for m,0 ~see footnote 2! on p. 616!.

6. Although the phase diagram was obtained under s
plifying assumptions~for example, only the fluctuations o
the order parameter phase were taken into account co
tently!, it demonstrates the sensitivity of the parameters o
critical curves to the value ofnf . At the same time, it should
be borne in mind that, in contrast to a 3D transition atr50,
the BKT transition occurs in the state in whichrÞ0, and
hence the fluctuations of the modulus of the order param
are less significant in this case, although they lead to
above-mentioned decrease inTr relative toTc

MF . The inclu-
sion of these fluctuations would hardly affect the qualitat
pattern, but it would be undoubtedly interesting to estim
separately the role of each of corresponding contribution
fluctuations ofr andu separately. It should be borne in min
that the parametrization used by us is convenient and ph
cally justified only in regions whererÞ0.

It can be stated with confidence that correlated and n
correlated pairs whose presence in HTS materials is b
discussed extensively~see reviews in Refs. 7 and 8! corre-
spond to regions on the theoretical phase diagram: in the
(T.Tr), only the fluctuations of the order parameter a
present; in the 2D case, these fluctuations are so strong t
anomalies associated with the presence of virtual pairs15 can
be manifested in the behavior of the system even in
phase. If we compare again the situation with theXY model
in which, however, the modulus of spin is also the requi
quantity ~which is usually neglected!, the normal phase of a
2D metal corresponds to the paramagnetic phase in
model with zero~on the average! spin at a lattice site. In the
ANP region (TBKT,T<Tr), the modulus of the order pa
rameter becomes finite, indicating the existence of a fin
number of stable pairs~which, however, are still incoherent!.
In such anXY model, the corresponding temperature reg
is the region of existence of two-component spins at lat
site, whose temperature-dependent moduli are identical,
the directions are random and not correlated. Finally, coh
ence between pairs emerges belowTBKT ~and/orTc in the
quasi-2D case!, while in the spin model, spins are someho
ordered~nonuniformly of uniformly! in the real space.

The phase diagram obtained above can be consid
with a certain degree of authenticity, while the phase tran
tion between the NP and ANP, in which a neutral ord
parameter can appear, required separate analysis~this ques-
tion will not be considered here in detail!. On one hand~see,
for example, Ref. 5!, such a transition is undoubtedly a pha
transition if we formally use the Landau theory of pha
transitions: a certain physical parameter~the modulus of the
order parameter in our case! is equal to zero above a certa
temperatureTr and differs from zero below this temperatur
It can easily be seen, however, that the value ofr itself does
not appear in thermodynamic quantities, and the calcula
of an observable of a certain correlator is always accom
nied with the emergence of a cofactor depending on the
relation function of the order parameter phase. In the lo
615 Low Temp. Phys. 23 (8), August 1997
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dimensional case, fluctuations are especially strong and
blur the corresponding phase transition to such an extent
no temperature peculiarities of thermodynamic quantities
observed in the vicinity of the transition. It is appropriate
note that HTS materials indeed exhibit a behavior close
the predicted mode, although a literal comparison of
simple model under investigation with complex objects li
HTS materials would be naive.

On the other hand, considering superconducting syste
it should be emphasized that certain changes occur in t
~see above!. For example, the electron spectrum acquir
features of a forthcoming gap since the density of state
the ANP under investigation neareF ~for m.0! decreases
rapidly ~upon an increase inr!, but does not vanish any
where. In other words,Tr , viz., the temperature at which
pseudogap is formed, is an observable and measurable
rameter of 2D or strongly anisotropic 3D superconductors
An obvious reason behind the absence of a true gap in th
superconductors in a certain temperature range can be a
ciated with the scattering of neutral~uncharged! fermions
@Green’s functionG(r) in ~3! corresponds to such particles#
at phase fluctuations.

However, required investigations~e.g., the determination
of one-particle Green’s function of the initial charged ferm
ons! have not been carried out even for the simple mo
under investigation. Besides, such investigations can be
garded as very important since the type and the propertie
a transition involving the ‘‘ordering’’ of only the modulus o
a complex order parameter remain unclear.

7. Thus, our calculations revealed the two-stage form
tion of the superconducting state in a 2D metal, occurring
through an ANP emerging between the NP and the B
phase. We proved only the existence of the ANP and ca
lated its boundaries, while its physical properties, and ab
all the spectrum, require further investigations.

In conclusion, let us briefly consider why the anomali
in the behavior of physical properties of HTS materials a
manifested most clearly just in underdoped samples. At
qualitative level, we can state that an increase in the car
concentration in quasi-2D systems~including HTS materi-
als! necessitates a suppression of the effect of fluctuatio
As the role of the latter becomes smaller,Tc→Tc

MF ,16 oth-
erwise, the ANP region in real system would in all probab
ity contract upon an increase in the hole concentration.
regards the 2D model considered above, it explains the o
gin of the ANP and the role of the critical temperature co
responding to the emergence of the modulus of the or
parameter, but does not allow us to attain the convergenc
the corresponding temperaturesTr and TBKT ~or Tc in the
quasi-2D case!. In this connection, it is necessary to analy
the quasi-2D model which permits in principle the existenc
of a uniform order parameter also.

One of the authors~V. M. Loktev! is grateful to V. F.
Gantmakher, V. A. Gasparov, N. M. Plakida, and I. Y
Fugol’ for critical discussions of the superconducting tran
tions in 2D system, including the possibility of manifesta
tions and experimental observations of various phases
them. The authors are also obliged to the reviewer w
615Gusynin et al.



a

wo
e

y–

e

on

coef-
m

ulti-

t

der

s
ero
ture

t’:
raised the important question concerning the physical me
ing and observability of the temperatureTr .

APPENDIX A

Let us derive the kinetic component~5! of the effective
actionV. For this purpose, we must determine the first t
terms of the series~4!, which are formally presented in th
form Vkin

(1)5T Tr(GS) andVkin
(2)5(1/2)T Tr(GSGS).

Direct calculations ofVkin
(1) gives

Vkin
~1!5TE

0

b

dtE dr
T

~2p!2 (
n52`

` E dk Tr@G~ ivn ,k!t3#

3S i ]tu1
~¹u!2

2m D , ~A1!

where

G~ ivn ,k!52
ivnÎ 1t3j~k!2t1r

vn
21j2~k!1r2 ~A2!

is Green’s function for neutral fermions in the frequenc
momentum representation. Carrying out summation in~A1!
over Matsubara frequenciesvn5p(2n11)T and integration
with respect to momentak, we obtain

Vkin
~1!5TE

0

b

dtE drnF~m,T,r!S i ]tu1
~¹u!2

2m D , ~A3!

where nF(m,T,r) is defined by formula~8!. It should be
noted that, according to~3!, the quantityS has the structure

S5t3O11 ÎO2 ,

whereO1 andO2 are differential operators. It can easily b
verified, however, that the component ofS proportional to
the unit matrixÎ makes no contribution toVkin

(1) .
In the case ofT50, when the imaginary timet is re-

placed by the real timet, it follows necessarily from the
Galilean invariance of the theory that the coefficient of] tu is
uniquely connected with the coefficient of (¹u)2 so that the
latter cannot be generated byVkin

(2) .9,10 At TÞ0, such argu-
ments become inapplicable, and hence the value ofVkin

(2)

must also be calculated explicitly. In this case, the term c
taining O1 leads to the expression

Vkin
~2!~O1!5

T

2 E
0

b

dtE dr
T

~2p!2

3 (
n52`

` E dk Tr@G~ ivn ,k!t3G~ ivn ,k!t3#

3S i ]tu1
~¹u!2

2m D 2

, ~A4!

Summation and integration of this expression leads to

Vkin
~2!~O1!52

T

2 E
0

b

dtE drK~m,T,r!

3S i ]tu1
~¹u!2

2m D 2

, ~A5!
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where the quantityK(m,T,r) was defined in~7!. It can be
seen that the obtained expression does not change the
ficient of (¹u)2. It can easily be verified that the cross ter
including the product ofO1 andO2 in Vkin

(2) is missing.
Finally, the calculation of the contribution fromO2 in

Vkin
(2) leads to4!

Vkin
~2!~O2!5

T

2 E
0

b

dtE dr
T

~2p!2

3 (
n52`

` E dk k2 Tr@G~ ivn ,k! ÎG~ ivn ,k! Î #

3
~¹u!2

4m2 . ~A6!

Subsequent summation over Matsubara frequencies
mately gives

Vkin
~2!~O2!52E

0

b

dtE dr
1

32p2m2 E dk

3
k2

cosh2@$j2~k!1r2%1/2/2T#
~¹u!2. ~A7!

The last expression tends to zero asT→0 as expected, bu
remains comparable to~A3! at TÞ0. Combining~A3!, ~A5!,
and ~A7!, we arrive at~5!.

*E-mail: vloktev@gluk.apc.org
1!The total derivative with respect tot is omitted.
2!It should be borne in mind that, in the mode of local pairs, whenm,0, the

gap D in the quasiparticle excitation spectrum is equal not tor ~as for
m.0!, but Am21r2 ~see Ref. 2 and the literature cited therein!.

3!In a certain sense, the temperatureTr is the pairing temperature~i.e., the
temperature of formation of local or Cooper pairs!, which is often denoted
by TP in the 3D case.2 It should be borne in mind, however, that in view
of the discrete nature of symmetry violation forr Þ 0 noted above, the
value of tr remains finite even in the case when fluctuations of the or
parameter modulus are taken into account. Naturally, the value ofTr ,
which is slightly smaller than the critical temperatureTc

MF in the mean-
field approximation, remains finite in the 2D case also. This distinguishe
it basically from the latter temperature which immediately drops to z
when fluctuations are taken into account if we treat it as the tempera
corresponding to the emergence of complete uniform order parameter~and
not its modulus!!.

4!Higher-order derivatives have not been determined.
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Lower critical fields of textured high- Tc superconductors

V. A. Finkel’ and V. V. Toryanik
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~Submitted July 4, 1996; revised November 11, 1996!
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The possibility of studying the anisotropy of lower critical fields in HTS materials during the
measurements of critical currents of textured samples subjected to the action of magnetic
fields applied in three different directions is explored in the theory of magnetic properties of
anisotropic superconductors. The critical fieldsHc1

ab andHc1
c of the high-Tc materials

YBa2Cu3O72d and DyBa2Cu3O72d are determined atT577.3 K. It is found that the dependences
Hc1

ab(mc /mab) andHc1
c (mc /mab) are universal for all the investigated samples. ©1997
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INTRODUCTION

It is well known that Abrikosov vortices start penetratin
type II superconductors including all high-Tc compounds
~HTS materials! without any exception in the applied field
H5Hc1 , whereHc1 is the lower critical field. The values o
Hc1 which play an exceptionally important role in the ele
trodynamics of type II superconductors are determined
quently by using the ‘‘classical’’ magnetic technique: t
critical field Hc1 at a given temperatureT is determined from
the kink emerging on theM (H) isotherm obtained unde
diamagnetic screening of zero-field cooling~ZFC! ~M is the
magnetic moment of the superconductor; see, for exam
Ref. 1!. Apparently, the penetration of the magnetic field in
type II superconductor would be accompanied by a decre
in the critical currentI c for H5Hc1 , but the effect observed
in HTS ceramics is vanishingly small.2 The values ofHc1 for
HTS materials can be determined from the anomalies em
ing on the dependencesI c(H tr) of critical current on the
‘‘treatment field’’ H tr which initiates the magnetic flux trap
ping, leading to a decrease in the critical currentI c(0) mea-
sured in zero magnetic field1! ~see, for example, Refs. 3 an
4!.

A number of other methods of measuring lower critic
fields in HTS materials are also known. Strictly speakin
none of these methods of determiningHc1 is ‘‘direct,’’ and
model concepts should be used for obtaining the value
the field from the results of measurements of certain phys
quantities.5

For isotropic superconductors with cubic symmetry
the crystal lattice, the magnetic and current methods of m
surements of lower critical fields are quite suitable. In t
case of strongly anisotropic HTS materials, these meth
are applicable, strictly speaking, only when the correspo
ing measurements are made on single crystals to whic
magnetic field is applied along the principal crystallograp
axes. For granular HTS ceramics, especially in the prese
of preferred orientation in the arrangement of grains~tex-
ture!, the results of magnetic or current measurements ofHc1

can apparently lead only to certain averaged values, the f
of averaging itself remaining unclear. Obviously, the resu
of such measurements indicate that the possibility of obt
ing reliable information on the anisotropy of lower critic
618 Low Temp. Phys. 23 (8), August 1997 1063-777X/97/08
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fields Hc1 is disputable even if we have a complete quan
tative description of the HTS texture, i.e., if the grain orie
tation distribution function~ODP! can be reconstructed from
the results of x-ray or neutron diffraction experiments.6

The modern theory of magnetic properties of anisotro
type II superconductors,7 which had been constructed befo
the discovery of high-temperature superconductivity, ma
it possible~see below! to study the anisotropy of the field
Hc1 of an HTS material on the basis of simple experime
on polycrystalline objects. Balatskiiet al.7 proved, among
other things, that the penetration of magnetic vortices in
type II anisotropic superconductor must start for a cert
minimum value ofHc1 , which, however, depends on th
orientation of the applied fieldH relative to the crystal axes
ai . As the applied field increases, the vortex lattice rotat
and the direction of inductionB coincides with the fieldH
only when the field attains the valueH* corresponding to
complete penetration~Bean’s field!. For layered supercon
ductors~all HTS materials belong in first approximation t
uniaxial layered superconductors if we neglect a certain
isotropy in the basal planeab of rhombic crystal lattices!,
the equations for the lower critical fieldHc1(g) ~g is the
angle between the magnetic anisotropy axisc and the exter-
nal field H! and for the angleu at which the field starts
penetrating the crystal forHc15H(g) were obtained in
terms of the Ginzburg–Landau ‘‘effective mass tensor’’ f
mc@mab ~mc andmab are effective masses of an electron
the directions perpendicular and parallel to the layer, resp
tively!:

Hc1~g!5Hc1
c @cos2 g1~mc /mab!sin2 g#21/2, ~1!

tan u5~mc /mab!tan g, ~2!

whereHc1
c is the lower critical field along the anisotropy ax

c.
The idea of the method of determining the anisotropy

lower critical field of HTS materials developed here lies
the following. If we apply a magnetic fieldH to a crystal in
three mutually orthogonal directionsL, N, andT in the labo-
ratory system of coordinates~Fig. 1!, the field forms the
anglesa, b, and c, respectively, with the magnetic aniso
ropy axis. The orientational dependence of the critical fi
6180618-05$10.00 © 1997 American Institute of Physics
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Hc1 for theL, T, andN directions can be described by thre
equations of type~1!. In addition, these equations are supp
mented with the fourth equation

cos2 a1cos2 b1cos2 g51. ~3!

in view of orthogonality of the axesL, T, andN.
It is well known ~see, for example, Refs. 5, 8! that the

anisotropy of the lower (Hc1) and upper (Hc2) critical fields,
coherence lengthj, and penetration depthl are connected
with the ratiomc /mab through the following simple relation

Hc1
c /Hc1

ab5Hc2
ab/Hc2

c 5jab /jc5lc /lab5~mc /mab!
1/2.

~4!

It follows hence that, from the measurement of the low
critical fields for the three orientations of the magnetic fie
relative to the axes of the orthogonal laboratory system
coordinates, we can determine five unknowns~the values of
Hc1 along the anisotropy axis of the crystal (Hc1

c ) and at
right angles to this axis (Hc1

ab) as well as the Euler anglesa,
b, andg of the anisotropy axisc in the laboratory system o
coordinatesLTN! from the four available equations ‘‘to
within’’ the effective mass ratiomc /mab . The experimental
realization of the method requires the measurements of c
cal currentsI c(0) in a certain direction in the laborator
reference frame~e.g., along the axisL, see Fig. 1! in zero
magnetic field on HTS samples as a function of the mag
tude and direction of the magnetic field applied preliminar
at the same temperature, i.e.,I c(0)@H tr#. Having determined
the values of critical fields from theI c(0)@H tr# curves with
the help of objective criteria~see below! for three mutually
orthogonal directions of the vectorHtr ~longitudinal direction
Hc1

L relative to the superconducting current, transverse di
tion Hc1

T , and normal directionHc1
N !, we can obtain the val-

ues of critical fieldsHc1
ab and Hc1

c as well as the values o
averaged Euler’s anglesa, b, and g for the sample unde
investigation as functions of the ratiomc /mab . Obviously,
the obtaining of universal dependencesHc1

ab(mc /mab) and
Hc1

c (mc /mab) on the basis of measurements on samples
the same HTS material with essentially different textu
~i.e., set of the anglesa, b, andg! can serve as a criterion o
correctness of the method.

EXPERIMENTAL TECHNIQUE

Experiments were made on textured HTS samples
YBa2Cu3O72d and DyBa2Cu3O72d with Tc;92 K. Various

FIG. 1. Schematic diagram of experiment.
619 Low Temp. Phys. 23 (8), August 1997
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types of textures were created by mechanical treatmen
pressing6 or by magnetic treatment atT,Tc .2,9 The last
stage of obtaining samples was thermal treatment in an
dizing medium according to the standard technique,10 lead-
ing to sample fritting and saturation of crystal lattices w
oxygen to the oxygen index 72d;6.90– 6.95. Low-
resistivity current and potential Ag contacts were deposi
on the samples from the vapor phase in vacuum
T;200°C.

It was mentioned above that the experiments involv
precision measurements of critical currentsI c(0) of HTS
materials in zero magnetic field as functions of the mag
tude and direction of the ‘‘treatment field’
Htr(0,H tr,1000 Oe), i.e., of the magnitude and orientati
of the trapped magnetic flux. All the measurements w
made at the liquid nitrogen temperature. As a rule, the va
of H tr was varied with a small ‘‘step’’:DH tr;1 Oe.

A special setup was developed of an IBM PC/AT 3
computer for recording current–voltage characteristics
for obtaining theI c(0)@H tr# dependences.9 The setup con-
sists of two similar components: the block controlling t
currentI src of the source for creating the magnetic fieldHtr in
the form of a solenoid made of copper wire and the blo
controlling the specimen currentI spc. Preliminary calibration
of the solenoid with the help of a Hall pickup made it po
sible to preset the magnetic fieldH tr to within 0.5 Oe. The
specimens were placed in a Dewar flask inserted in the s
noid. The currentsI src andI spcas well as the voltageUspcare
fed to the computer through the KAMAK interface with th
help of digital-analog converters and controlling blocks.

The setup software makes it possible to increa
smoothly the transport currentI spc for a certain value of cur-
rent I src through the solenoid corresponding to a preset va
of H tr , and to detect the voltageUspc across the specimen
The value ofUspc51 mV was used as a criterion of the crit
cal currentI c . After the attainment of this value,I c is re-
corded, the transport current is reduced to zero, and the
value of I src is stabilized~which is taken higher to avoid
hysteresis effects!. After the completion of a measurin
cycle, the results are stored in the hard disk of the comp
in the form of theI c(0)@H tr# dependences.

DISCUSSION OF EXPERIMENTAL RESULTS

The results of measurements of the dependences o
critical current in zero magnetic field on the magnitude a
orientation of the fieldHtr acting on an HTS YBa2Cu3O72d

specimen obtained with the help of uniaxial pressing~in this
case, relatively weak axial texture in the basal plane
observed!6 are presented in Fig. 2. The results are normaliz
to I c(0) 5 I c(H tr 5 0)$@ I c(H tr)/I c(0)#(H tr)%. Naturally,
all the curves are qualitatively similar. The initial horizont
segments of the@ I c(H tr)/I c(0)#(H tr) curves illustrate the
ideal diamagnetic state of the samples. As the fieldH tr in-
creases, granules trap the magnetic flux, which is reflecte
the regions of abrupt decrease on the@ I c(H tr)/I c(0)#(H tr)
curves. A transition to the region of slow decrease in criti
currents upon a significant increase inH tr is associated with
saturation of residual magnetization of grains.3
619V. A. Finkel’ and V. V. Toryanik
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Obviously, the processing of the data requires their c
rection, taking into account the demagnetizing factorD with
a view of applying them to analyze the anisotropy ofHc1 .
For a ~diamagnetic! superconductor in which the magnet
field does not penetrate (H,Hc1), the effective value of the
field Heff acting on the sample surface under the action of
applied fieldHa is11

Heff5Ha /~12D !. ~5!

In order to calculate the demagnetizing factorsDL , DT ,
andDN, taking into account the actual sample geometry
the three orientations of the applied magnetic field~L, T, and
N!, we used computational formulas and nomograms
scribed in Ref. 12. In contrast to the@ I c(H tr)/I c(0)#(H tr)
curves shown in Fig. 2 and corresponding to the same H
sample YBa2Cu3O72d , the@ I c(Heff)/Ic(0)#(Heff) dependences
shown in Fig. 3 reveal significant differences in the positio
of various segments of the curve.

In all probability, the presence of segments of abru
descent on the@ I c(Heff)/Ic(0)#(Heff) curves is due to the pres
ence in the surface layers of the sample of grains oriente
random relative to the fieldHtr , i.e., possessing different se
of anglesa, b, andg between the anisotropy axisc of the
crystal and the fieldsHtr oriented along the axesL, T, or N
of the laboratory reference frame. This means that the abs
sas of all these segments of the@ I c(Heff)/Ic(0)#(Heff) curves
contain a complete set of values ofHc1(a,b,g), and the
condition Hc1

ab,Heff,Hc1
c must be satisfied for all orienta

tions of the fieldHtr in the absence of a texture. Owing
texture which is always present in HTS samples, the ‘‘p
fect’’ shape of the curves under consideration is not realiz
the curves are deformed in accordance with the actual di
bution of the angles between the vectorsc andHtr for a given
specimen and a preset orientation of the magnetic field~L,
T, or N!.

FIG. 2. Critical current of an HTS sample of YBa2Cu3O72d at T577.3 K as
a function of the ‘‘treatment field’’ strengthHtr for the longitudinal (L),
transverse (T), and normal (N) orientations.
620 Low Temp. Phys. 23 (8), August 1997
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It is also logical to assume that in the case of a not v
strong texture, the orientational distribution of granules, a
hence the distribution of lower critical fieldsHc1(g) is
Gaussian. Indeed, it can be seen from Fig. 3 that
@ I c(Heff)/Ic(0)#(Heff) curves have a shape close to the norm
distribution function for a random quantity~see, for example,
Ref. 13!. The probability density, i.e., the value of the d
rivative d@ I c(Heff)/Ic(0)#/dHeff as a function ofHeff is cor-
rectly described by the Gaussian function~Fig. 4!:

FIG. 3. Critical current of an HTS sample of YBa2Cu3O72d at T577.3 K as
a function of the reduced fieldHeff for the longitudinal (L), transverse (T),
and normal (N) orientations.

FIG. 4. Derivatives d@ I c(Heff)/Ic(0)#/dHeff for an HTS sample of
YBa2Cu3O72d as functions ofHeff for the longitudinal (L), transverse (T),
and normal (N) orientations.
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d@ I c~Heff!/I c~0!#/dHeff5
1

~2p!1/2DHc1

3exp@2~Heff2Hc1!2/~2DHc1
2 !#.

~6!

We can assume that the values ofHc1
L , Hc1

T , and Hc1
N

determined in this way give the most reliable values of low
critical fields of the HTS specimen under investigation
the three mutually orthogonal orientations of the vec
Htr .

2! Using these values, we can calculate the lower criti
fields in the basal planeab and along the principal axisc of
HTS crystals~Hc1

ab and Hc1
c ! as well as the Euler angles o

the magnetic anisotropy axisc ~a, b, andg! as functions of
the effective mass ratiomc /mab . In order to illustrate this
statement, Fig. 5 shows the dependences of the quan
Hc1

ab, Hc1
c , a, b, andg on the effective mass ratiomc /mab

for the HTS sample YBa2Cu3O72d obtained on the basis o
experimental data presented in Figs. 2, 3, and 4.

It was noted in Introduction that the universal depe
dencesHc1

ab(mc /mab) and Hc1
c (mc /mab) obtained from the

results of measurements on samples with different textu
can serve as a criterion of the correctness of the ideas
cerning the possibility of studying the anisotropy of low
critical fields of HTS materials by using current measu
ments on polycrystalline objects, which are developed h
Indeed, it can be seen from Fig. 6a that the correspond
curves obtained for four HTS samples of YBa2Cu3O72d with
different textures of the basal plane coincide to a high deg
of accuracy ~while the dependences ofa, b, and g on
mc /mab differ significantly!.

The universal nature of the dependences of critical fie
is also observed for the HTS ceramics DyBa2Cu3O72d with
three different types of texture obtained by magnetic tre
ment of powders atT,Tc ~Fig. 6b!.

FIG. 5. Critical fieldsHc1
ab andHc1

c at T577.3 K and the Euler anglesa, b,
andg of the axisc in the laboratory reference frameLTN as functions of the
effective mass ratiomc /mab for an HTS sample of YBa2Cu3O72d .
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CONCLUSION

The main result of this research is the development
ideas concerning the possibility of studying anisotropy
fundamental superconducting parameters of HTS mate
by measuring critical currents of textured material for diffe
ent orientations of the magnetic field and the experimen
implementation of the proposed method. In order to obt
the dependencesHc1

ab(mc /mab) and Hc1
c (mc /mab), there is

no need to use information on the texture of a mater
Moreover, the Euler angles~a, b, andg! of the ‘‘averaged’’
anisotropy axisc of the HTS material obtained on the bas
of measurements of lower critical fields carry sufficient i
formation for describing the texture of the HTS material
the language of polar diagrams or the orientation distribut
function for grains~again as a function of the effective ma
ratio!.

FIG. 6. Critical fieldsHc1
ab andHc1

c at T577.3 K as functions of the effec-
tive mass ratiomc /mab for four HTS samples of YBa2Cu3O72d ~a! and for
three HTS samples of DyBa2Cu3O72d ~b! with different textures obtained by
uniaxial pressing.
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In spite of the fact that the information obtained by usi
the algorithm described here is semiquantitative~the quanti-
ties Hc1

ab, Hc1
c , a, b, andg can be measured only as fun

tions of the effective mass ratio!, it is possible to compare
different HTS materials on the basis of the degree of ani
ropy of their lower critical fields of~see Figs. 5, 6! as well as
different samples of the same HTS materials on the basi
the type of texture and its intensity. Naturally, the combin
tion of the method of current measurements in magn
fields of various orientations developed here with a quant
tive texture analysis~it is sufficient to plot only the polar
diagram for the basal plane! will make it possible to obtain
quantitative information on the magnitudes of lower critic
fields of HTS materials in the principal crystallograph
directions.

*E-mail: kfti@rocket.kharkov.ua
1!The critical fieldHc1 can also be determined from the measuring magn

field Ha opposite to the ‘‘treatment field’’H tr and compensating the
trapped magnetic flux.2

2!In this case, the dependences@ I c(Heff)/Ic(0)#(Heff) for the longitudinal (L)
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and transverse (T) fields virtually coincide, which is in accord with the
uniaxial form of texture created by pressing.
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LOW-TEMPERATURE MAGNETISM
Nonlinear stationary profile waves in spatially disordered magnetic media
E. A. Ivanchenko

National Science Center ‘‘Kharkov Physicotechnical Institute,’’ 310108 Kharkov, Ukraine*

~Submitted February 27, 1996; revised November 29, 1996!
Fiz. Nizk. Temp.23, 830–834~August 1997!

A nonlinear evolution system of hydrodynamic-type equations describing a three-dimensional
multisublattice magnet is investigated. Explicit form of the energy density function for
magnetic systems that have an invariant energy density relative to right and left spin rotations is
obtained. For quadratic-biquadratic dependence of the energy density~in terms of Cartan’s
invariant functions!, exact solutions are obtained in the one-dimensional case for spin density in
the form of stationary profile waves. Solutions for magnon fields that induce such waves
are also obtained. ©1997 American Institute of Physics.@S1063-777X~97!00608-7#
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The analysis of spin excitations in spatially disorder
media like multisublattice magnets, He3 in the superfluid
state, spin glasses, etc., is based on the hypothesis a
spontaneous symmetry violation of the statistical equilibri
state.1,2 This hypothesis formed the basis of the hydrod
namic approach proposed in Ref. 3 for formulating dynam
equations for magnetic media with a spontaneously viola
symmetry relative to spin rotations. Linear dynamic equ
tions were obtained in Refs. 4 and 5. Nonlinear dynam
was taken into account in Refs. 6 and 7 using the metho
phenomenological Lagrangians, and in Ref. 8 using
Hamiltonian formalism.

The dynamic variables describing the nonequilibriu
state of magnets with a spontaneously violated symm
include the spin densitysa(x)(a5x,y,z) and the order pa-
rameter, i.e., orthogonal matrix of rotationsaab(x)
3(aTa51), for which the set of Poisson brackets has t
form

$sa~x!,sb~x8!%5eabgsg~x!d~x2x8!,

$sa~x!,abg~x8!%5eagrabr~x!d~x2x8!, ~1!

$aab~x!, agr~x8!%50.

We shall analyze the dynamics in the longwave lim
when spatial inhomogeneities of dynamic variables
small, and take into account possible nonlinear interacti
of spin waves by using the concept of spontaneous viola
of the SO(3) symmetry of spin rotations relative to whic
the exchange interactions are invariant. We assume tha
energy density is a function of the quantitiess,a, and¹a or,
equivalently, a function of the quantitiess,a,

vak(a) 5 1/2eabgalg¹kalb ~Cartan’s left form func-
tion!:

«~x,sa~x8!,a~x8!!5«~sa~x!, vak~a!,a!, k

5x,y,z. ~2!

Since the energy density of exchange interactions is invar
to uniform rotations
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where

Sa5E d3xsa~x!,

we obtain

«~s,a,vk!5«~bs,ba,bvk!5«~sI ,vI k!. ~4!

Here b is an arbitrary orthogonal matrix,sI [ as, andvI ak

5 1/2 eabgabl¹kagl is Cartan’s right form function. Using
Poisson’s bracket~1!, we can write the equation of motio
for a spatially disordered magnet in the Hamiltonian fo
without allowance for the dissipation:

ṡa5$sa ,H%52¹k]vak
«,

ȧab5$aab ,H%5aarerbg]sg
«, ~5!

where

H5E d3x«~x!

is the Hamiltonian of the system. The dot over symbols
dicates partial time derivative.

For the variablessIa [ aabsb , vI ak [ aabvbk the
Poisson brackets have the form

$sIa~x!,sIb~x8!%52eabgsIg~x!d~x2x8!,

$vI ak~x!,vI b l~x8!%50,

$sIa~x!,vI bk~x8!%5eavbvI vk~x!d~x2x8!

1dab¹k8d~x2x8!. ~6!

The evolution equations~5! in variablessIa ,vI ak there-
fore assume the form of equations with Maurer–Car
constraints:8,9

sİa52¹k]vI ak
«1eabg~sIb]sIg

«1vI bk]vI gk
«!,

vİ ak52¹k]sIa
«1eabgvI bk]sIg«, ~7!

¹kvI a i2¹ ivI ak5eabgvI bkvI g i .

6230623-04$10.00 © 1997 American Institute of Physics



In these equations,vI a 5 1/2eabg(aaT)gb is the right
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sİa52]x~rvI ax1qpsIa!,
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form which is connected with the time derivative, an
vI a[2]sIa

«. It follows from this system of equations tha
the energy density« and the momentum componentsp i are
conserved locally:

«İ 52¹k]sIa
«]vI ak

«, pİ a52¹kt ik , ~8!

wherep i 5 sIavI a i , and

t ik52d ik~«2sIa]sIa
«!1vI a i]vI ak

« ~9!

is the momentum flux density tensor.
The general system of equations~7! was analyzed by us

earlier.11 In the present work, we shall derive formulas d
scribing helical spin density waves in an isotropic quasi-o
dimensional magnet, taking into account the biquadratic c
tributions to the energy density. Ivanov12 obtained soliton
solutions using the Lagrangian approach for quadratic dep
dence of the energy density~amorphous magnet!. Nonlinear
dynamics of multisublattice noncollinear antiferromagn
with modulated magnetic structure in an external magn
field was studied in Ref. 13.

MODEL ENERGY DENSITY

Let us consider a disordered magnet whose energy
sity is invariant relative to left and right spin rotations. In th
case, the energy density function« satisfies the overdeter
mined system of partial differential equations:10

eabg~sIb]sIg
«1vI bk]vI gk

«!50. ~10!

The general solution of this system is

«5G~sIa
2,vI ax

2 ,vI ay
2 ,vI az

2 ,px ,py ,pz!, ~11!

where G is an arbitrary function of the above argumen
Since the system~10! is invariant to the group of transpos
tions of the indexk, it is expedient to go over to symmetri
variables, after which the practical calculations can be c
fined to the following expression for the energy density:

«5« i1«a ,

in which

« i5
1

2x
sIa

21
r

2
vI a i

2 1
q

2
p i

2 ~12!

is the isotropic part of the energy and

«a5
g

2
~vI ax

2 vI ay
2 1vI ax

2 vI az
2 1vI ay

2 vI az
2 !1

d

2
vI ax

2 vI ay
2 vI az

2

1
g1

2
~px

2py
21px

2pz
21py

2pz
2!1

d1

2
px

2py
2pz

2 ~13!

is the anisotropic part,x is the magnetic susceptibility,r is
the rigidity, andq, g, d, g1, andd1 are phenomenologica
coupling constants.

For an isotropic quadratic-biquadratic dependence of
energy density~12! on variablessIa ,vI ak , we can presen
one-dimensional spin excitations in terms of the equation
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vİ ax52]xS sIa

x
1qpvI axD1

1

x
eabgvI bxsIg , ~14!

p[sIavI ax .

SOLUTION OF EQUATIONS

We shall now obtain the exact, nonlinear, stationary p
file solutions, i.e., solutions for the case in which the
quired functions sIa(x,t),vI ax(x,t) depend on the self-
simulating variablex1et ~the parametere defines the
various propagation velocities of perturbations in the s
tem!. In this case, the system of equations~14! assumes the
form

~esIa1rvI ax1qpsIa!850,

S evI ax1
sIa

x
1qpvI axD 8

5
1

x
eabgvI bxsIg , ~15!

f 8[
d f

d~x1et!
.

It follows directly from this system of equations that

esIa1rvI ax1qpsIa5Ca ,
~16!

p5
CasIa2esIa

2

r1qsIa
2 ,

whereCa are integration constants. We can use these eq
tions to eliminate the unknown functionsvI ax . At the first
stage, we obtain a system of three ordinary differential eq
tions:

~k8dab1FaFb!sIb85eabgCbsIg , ~17!

in which the following notation was used:

k85r2x~e1qp!2,
~18!

Fa5S xq

r1qsIa
2 D 1/2H Ca2

2~er1qCasIa!

r1qsIa
2 sIaJ .

If we know the explicit form of the derivativessIa8 , we can
easily transform the system of equations~17! into a linear
system by multiplying~17! by a matrix reciprocal to the
matrix k8dab1FaFb :

sIa85
1

k8
eabgCbsIg , k831k82Fa

2Þ0. ~19!

It follows from ~19! that the quantitiesCasIa and sIa
2 are

independent of the variablex1et. Carrying out scaling
transformationj 5 (x 1 et)uCau/@r 2 x(e 1 qp)2#, we
obtain the following linear system of Euler equations for t
right form sIa :

d

dj
sIa5eabgnbsIg , na[

Ca

uCau
. ~20!

The solution of this system is

sIa~j!5gabsIb~j0!, ~21!
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where the orthogonal rotation matrixg (gTg51) is defined

n

d

vI 5
1

e a ȧ ,

the
’s
as

gab5cosjdab1~12cosj!nanb2sin jeabgng , ~22!

andsIb(j0) are integration constants.
The solution~21! for the right form obtained above ca

be used to define the spin density

sa5abasIb . ~23!

The orthogonal rotational matrixaab satisfies the redefine
system of equations
-

a 2 abg bl gl

~24!

vI ax5
1

2
eabgabl]xagl .

In order to solve this system of equations with respect to
matrix aab , we use parametrization with the help of Euler
angles:14
m

a5S cosc cosw2cosu sin c sin w cosu sin c cosw1cosc sin w sin u sin c

2sin c cosw2cosu cosc sin w cosu cosc cosw2sin c sin w sin u cosc

sin u sin w 2sin u cosw cosu
D . ~25!

In terms of the variablesc,u, and w, the system~24! where c0 is a constant. The redefined differential syste
qua-
e

assumes the form

vI 152 u̇ cosc2ẇ sin u sin c,

vI 25 u̇ sin c2ẇ sin u cosc,

vI 352ċ2ẇ cosu,
~26!

vI 1x52ux cosc2wx sin u sin c,

vI 2x5ux sin c2wx sin u cosc,

vI 3x52cx2wx cosu.

Let us consider the case in whichn5(0,0,21), i.e.,
C3,0 andsO(j0)5(c1 ,0,c3). The exact solution of the rede
fined system~26! can be obtained easily forw5w05const.
Under the above-mentioned conditions the system~26!, with
allowance for Eqs.~16! and ~21!, becomes

2 u̇ cosc5S 2
1

x
1qpzD c1 cosj,

u̇ sin c5S 1

x
2qpzD c1 sin j,

2ċ52qp
C3

r
1S 2

1

x
1qpzD c3 ,

ux cosc5zc1 cosj,

ux sin c5zc1 sin j,

cx52
C3

r
1zc3 , z[

e1qp

r
. ~27!

The solution for the functionc(x,t) has the obvious
form

c~x,t !5S 2
C3

r
1zc3D x1Fqp

C3

r
2S 2

1

x
1qpzD c3G

3t1c0 , ~28!
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~27! with respect to the functionu(x,t) can be eliminated
easily by equating the functionsj(x,t) and c(x,t), i.e., by
satisfying the conditions

2
C3

r
1zc35k1 ,

qp
C3

r
2S 2

1

x
1qpzD c35k1e[v1 , ~29!

k1[
uC3u

r2x~e1qp!2 .

These relations are the redefined system of algebraic e
tions in parametere, which is evidently compatible since w
can present it in the form

z22
C3

c3r
z2

1

xr
50,

~30!

S z22
C3

c3r
z2

1

xr D ~xqpz21!50.

This system has two real solutions fore, and hence fork1

andv1 :

e652
q

r
C3c31F11

q

r
~c1

21c3
2!G

3F2
uC3u
2c3

6S C3
2

4c3
2 1

r

x D 1/2G ,
k15

c3

r F uC3u
2c3

6S C3
2

4c3
2 1

r

x D 1/2G ,
v152

uC3u
c3

S 11
q

r
c1

2D k11
r

c3
F11

q

r
~c1

21c3
2!Gk1

2.

~31!

Hence the functionu(x,t) is linear in x and t on the set
$x,t:jÞmp/2, m50,61,62,...%; i.e.,
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k25
c1

c3
S k11

C3

r D5
c1

r F2
uC3u
2c3

6S C3
2

4c3
2 1

r

x D 1/2G ,
v25

c1

c3
S v12qp

C3

r D5
uC3u
c3

S 11
q

r
c3

2D k21
r

c1

3F11
q

r
~c1

21c3
2!Gk2

2, ~32!

whereu0 is a constant. Solutions for the parametersw, u, and
c determine the rotational matrix~25!, and the spin density
sa is defined in accordance with Eq.~23! as follows:

s15c3 sin w0 sin u1c1 cosw0 .

s252c3 cosw0 sin u1c1 sin w0 , ~33!

s35c3 cosu.

The effective magnetic fieldha which forms stationary
profile waves with a spin densitysa, is defined by the rela-
tion ha[]sa

«:

ha65
1

x
sa1H qC3c3

r
2

q

r
~c1

21c3
2!F2

uC3u
2c3

6S C3
2

4c3
2

1
r

x D 1/2G J H a3a

C3

r
2

1

r F2
uC3u
2c3

6S C3
2

4c3
2 1

r

x D 1/2GsaJ . ~34!

The spin densitysa induces a field of the same waveleng
and frequency. Particular solution foru 5 p/2, sO(j0)
5 (0,c2 ,c3), n 5 (0,0, 2 1) is obtained in the same wa
as described above:

s15c3 sin w, s252c3 cosw, s35c2 ,
~35!

w5k2x1v2t

by replacingc1 by c2 in k2 andv2 in Eqs.~33! and ~34!.
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A characteristic feature of the Hamiltonian formalism
a stepwise solution of a system of first-order equatio
Therefore, the choice of the parametrization~25! at the in-
termediate stage is determined entirely by the form of
solution~21!, which simplifies integration. According to Eqs
~33! and ~35!, the exact nonlinear solutions for stationa
profile waves are helical in the model under considerati
Contribution of biquadratic terms in the energy density~12!
increases with increasing density of the initial spin dens
distribution in the system and decreases rigidityr @this fol-
lows from Eq. ~31! for e6 and Eq.~32! for the frequency
v2#. However, this dependence is exhibited only in fr
quencyv2 of the helical spin density wave~33!, and the
wave vectork2 does not depend onq.
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Magnetic and galvanomagnetic properties of ordering alloys Pd2AuFe are studied in fields
H<12 MA/m at T54.2 K. It is shown that the disappearance of spontaneous magnetization in
the region of ferromagnetic–antiferromagnetic phase transition which occurs as a result of
atomic ordering of the Pd2AuFe alloys is accompanied by peaks of paraprocess susceptibility and
of the anomalous positive Hall effect. The sign of the normal Hall effect is reversed in this
case. It is shown that the peculiarities of galvanomagnetic properties are associated with the
rearrangement of the electronic band structure during ordering of the alloys. ©1997
American Institute of Physics.@S1063-777X~97!00708-1#
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In the disordered state, Pd2AuFe alloys are normal fer
romagnets~FM! with Tc;460 K.1–3 Atomic ordering of
these alloys by annealing atT5720 K for t>30 min trans-
forms them into a state close to antiferromagnetic~AFM!
with TN;130 K. Such an FM–AFM phase transition is a
companied by the anomalous behavior of magnetic pro
ties as well as electron properties that have been stu
earlier.

An increase in the atomic ordering degreeh in the alloys
under consideration leads to an increase in the average e
tive magnetic momentmeff from ;3 mB /mole for a
quenched alloy to;5.6 mB /mole for a sample annealed fo
a period t530 min. This is accompanied by a sharp d
crease in the low-temperature heat capacity and an incr
in resistivity valuesr;200 mV•cm, which is unusual for
ordered alloys.2,3 These experimental facts point towards
considerable variation in the degree of localization of atom
magnetic moments upon a transition from FM to AFM sta
as a result of atomic ordering of Pd2AuFe alloys, which is
associated with the rearrangement of the electronic b
structure in the vicinity of the Fermi levelEF . This is con-
firmed by the results of analysis of optical properties of
dering Pd2AuFe alloys.4

Investigations of the galvanomagnetic properties, v
magnetoresistance~MR! as well as normal and anomalou
components of the Hall effect~HE!, can provide additiona
information about the variation of the electronic band str
ture and the scattering processes for conduction electron
the region of transition from FM to AFM state as a result
annealing of the alloys under consideration. The order
localization of magnetic moments can be estimated by c
paring the effective moment obtained from paramagn
susceptibility measurements and the spontaneous mome
T;0 K obtained from magnetization curves~from the mag-
nitude of the Rhodes–Wohlfarth parametermeff /ms).

5 In or-
der to single out the characteristics of alloys that are hig
627 Low Temp. Phys. 23 (8), August 1997 1063-777X/97/08
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inhomogeneous in the FM–AFM phase transition region a
in which we are interested, we must study the magnetic
galvanomagnetic properties in identical, extremely hi
magnetic fields~in the paraprocess region!.

In the present work, we shall discuss the magnetic a
galvanomagnetic properties of ordering Pd2AuFe alloys.
Measurements were made at the International Laborator
High Magnetic Fields and Low Temperatures, Wroclaw, P
land, at 4.2 K in magnetic fields up toH;12 MA/m. The
magnetizationJ was measured with the help of a ballist
galvanometer with an absolute measurement error not
ceeding;3%. Galvanomagnetic properties were measu
by the conventional four-probe technique with a const
current using instruments whose relative error did not exc
1024%.

The results of measurements of magnetization and H
effect for Pd2AuFe alloys with various atomic orders ar
presented in Figs. 1 and 2. It can be seen that the mag
zation process in atomically disordered state has the con
tional form for ferromagnets, i.e.J(H) does not display any
hysteresis in the region of technical magnetization~below
the saturation fieldHs;1 MA/m). For H.Hs , the magne-
tization in the paraprocess region can be described by
relation6

J5Js1xpH, ~1!

where Js is the spontaneous magnetization, a
xp;1026 cm3/g is the paraprocess susceptibility.

The field dependence of the Hall resistivityrH(H) for
H.1 MA/m is also a linear function and can be represen
in the form

rH5R0B14pRsJ5R0* H14pRs* Js . ~2!

Here,R0 andRs are the normal and anomalous Hall coef
cients respectively;B5H1(4p2N)J the inductance in the
sample, andN the demagnetizing factor of the sample. A
6270627-04$10.00 © 1997 American Institute of Physics
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cording to Ref. 3, the MR in atomically disordered alloys
associated with the paraprocess starting from even we
fields (H>0.3 MA/m, and the familiar Akulov rules~see,
for example, Ref. 6! are applicable for its longitudinal an
transverse components.

An increase in the value ofh in Pd2AuFe alloys leads to
a broadening of the technical magnetization interval,
hancement of hysteresis onJ(H) curves in fieldsH,Hs ,

FIG. 1. Magnetization of Pd2AuFe alloys atT54.2 K in disordered state
~curve1! and after annealing of samples atT5720 K over the timet510
~curve2!, 30 ~curve3! and 300 min~curve4!.

FIG. 2. Hall resistivity of Pd2AuFe alloys atT54.2 K in disordered state
~curve1! and after annealing of samples atT5720 K over the timet510
~curve2!, 30 ~curve3! and 300 min~curve4!.
628 Low Temp. Phys. 23 (8), August 1997
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and to an increase in the paraprocess susceptibility
H.Hs . The field below which the nonlinear dependen
rH(H) corresponding to technical magnetization is observ
increases insignificantly, and the slope of the linear part
the dependencerH(H) reverses its sign in the paraproce
region. In the entire range of investigated fiel
(0<H,12 MA/m, the behavior of MR in partially and
completely ordered samples is characteristic for the para
cess when the longitudinal and transverse effects are eq
negative, and linearly quadratic functions of the exter
field:6

Dr

r
5

r~H !2r~0!

r~0!
;2~J22Js

2!;~2xpJsH1xp
2H2!.

It follows from ~1! and ~2! that together with the mag
netic characteristicsJs and xp , a mathematical analysis o
the obtained linear dependencesJ(H) and rH(H) for
H.Hs;1 MA/m leads to the values of effective normal an
anomalous Hall coefficients:R0* 5 R0 1 4pRsxp and Rs*
5 Rs 1 (1 2 N/4p)R0 respectively. Since the sample
have the form of a parallelepiped withN;4p in the case
under consideration and the paraprocess susceptibility
them does not exceedxp;1024 cm3/g, the true normal and
anomalous Hall coefficients in which we are interested c
be assumed to be equal to the experimental values of
effective constants within the measurement errors,
R0;R0* andRs;Rs* .

The main magnetic and galvanomagnetic characteris
of the Pd2AuFe alloys are presented in Fig. 3 as functions
the degree of atomic ordering~i.e., the annealing timet!. It
can be seen that the spontaneous magnetic mom
ms;2.8 mB /mole in the disordered state. The value of th
quantity decreases with increasingh due to a transition to the
AFM state after annealing of the samples over a per
t>30 min. In view of the cluster type of FM–AFM phas
transition, the observed decrease in the value ofJs in ordered
samples must be attributed to the decrease in the volum
the FM phase. Naturally, the increase in the ‘‘paraproce
susceptibility in this case is caused by the ordering of m
netic inhomogeneities~FM and AFM clusters! arising in the
FM–AFM phase transition region. The ordering process
such inhomogeneities in a magnetic field is responsible
nearly identical behavior of longitudinal and transverse M

A comparison of the results of magnetization measu
ments obtained by us~see Figs. 1 and 3! and the paramag
netic susceptibility results published in Ref. 3 shows th
disordered Pd2AuFe alloys belong to the class of Heisenbe
magnets in which the magnetic moments are extremely
calized at iron atoms. In this case, the Rhodes–Wohlfa
parameter~the ratiomeff /ms! is nearly equal to unity.

According to the experimental results presented in Fig
and Ref. 3, the decrease in the value ofms upon an increase
in h is accompanied by an increase in the value ofmeff . On
one hand, this points towards a decrease in the degre
localization of atomic magnetic moments due to ordering
alloys, since the Rhodes–Wohlfarth parameter defined in
manner proposed in Ref. 5 becomes much larger than u
in this case. On the other hand, however, an increase in
value of meff and its closeness to the moments of free ir
628Kourov et al.
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ions ~for frozen orbital angular momentum, the values
mFe21

andmFe31
are 4.9mB and 5.92mB respectively! led us

to the conclusion3 about a decrease in overlapping and hen
an increase in the localization ofd-states of the main mag
netically active iron atoms during ordering of Pd2AuFe al-
loys.

The above contradiction can be associated with the e
in experimental determination ofms as a characteristic of th
local state of iron atoms in the alloys under investigation.
the region of FM–AFM phase transition, the values ofJs

obtained experimentally in accordance with Eq.~1! are com-
puted for the entire volume of the sample although in act
practice they are determined only by its FM component
the FM–AFM phase transition is treated as a cluster p
nomenon, the volume of the FM phase in the alloy decrea
with increasingt and remains practically unknown. Unde
such conditions, it is not possible to determine the sponta
ous moment corresponding to the FM part of the sample
conventional methods for partially ordered Pd2AuFe alloys.

In the FM–AFM phase transition region, for the ca
when the samples contain two magnetic subsystems,
value ofms determined by the above method does not ch
acterize the true moment localized at iron atoms. Hence
Rhodes–Wohlfarth parametermeff /ms cannot define unam
biguously the degree of localization of atomic magnetic m
ments. In such cases, a more correct information about
blurring of d-wave functions of magnetically active atom
can be obtained by comparing the value ofmeff obtained
from the results of measurements of paramagnetic susc
bility with the theoretical values of the magnetic moment
the corresponding free ion. An estimation of the true deg
of localization of the magnetic moments in the order

FIG. 3. Spontaneous momentms(n), susceptibility of paraprocessxp(¹),
and the normalR0(d) and anomalousRS(s) Hall coefficients atT54.2 K
for Pd2AuFe alloys as functions of annealing timet at T5720 K.
629 Low Temp. Phys. 23 (8), August 1997
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Pd2AuFe alloys requires further investigations that wou
help in obtaining the local spin and charge density distrib
tions.

It can be seen from Fig. 3 that a transition from FM
AFM state in the investigated alloys is accompanied by
anomalous variation of normal as well as anomalous H
coefficients. In partially ordered samples annealed over a
riod t;30 min, when the earlier investigated electron
properties of alloys display singularities and sharp variatio
are observed in the values of the moments localized at
atoms,1–3 a reversal of the sign of the coefficientR0(r ) is
observed experimentally.

In the one-band approximation, the reversal of the s
of the normal Hall coefficient indicates a transition fro
electron to hole type of Hall carriers for an atomic ord
corresponding to an annealing timet;30 min. For transi-
tion metal alloys, however, the model with one type of c
riers is very crude. The use of the two- band approximati
for which

R05
nhmh

22neme
2

~nhmn1nem2!2 ,

leads to the conclusion that the densitiesnh(ne) as well as
mobilitiesmh(me) of h ande-type Hall carriers vary sharply
upon annealing fort;30 min. In any case, the results o
measurements of the coefficientR0 are in accord with the
conclusions drawn in Refs. 3 and 4 about a considera
rearrangement of the electronic band structure in the vicin
of EF , which takes place due to a decrease in the over
ping of d-wave functions of Fe atoms upon ordering
Pd2AuFe alloys as a result of transition of the nearest nei
bors of analogous Fe atoms from first coordination spher
the second.

According to Fig. 3, annealing leads to an increase in
anomalous Hall coefficient which is positive for a quench
alloy. The coefficient attains its highest value for anneal
timest;30 min when the FM subsystem in the alloy disa
pears. For AFM alloys annealed for a periodt.30 min,
anomalous Hall effect is not observed within the limits
measuring error for the technique used, i.e., the coeffic
Rs;0.

The anomalous Hall effect is usually associated with
asymmetry of scattering of Hall carriers by various perturb
tions in the metal.6,7 It would appear that the sharp increa
in the coefficientRs in the immediate vicinity of the FM–
AFM transition region of the alloys under investigation ind
cates the predominance of scattering at magnetic inhom
neities~FM or AFM clusters! in the anomalous Hall effect
However, MR studies reveal3 that for any extent of magnetic
ordering, the magnetoresistance has nearly the same m
tude and amounts to;(2 – 3)% of the total resistivityr. It
can be seen from Fig. 3 that the high-field magnetic susc
tibility also changes insignificantly upon an increase in t
annealing time. However, the coefficientRs increases by
more than an order of magnitude upon annealing o
quenched alloy fort;30 min.

A comparison of the anomalous Hall coefficient dete
mined by us~see Fig. 3! with the resistance data presented
Ref. 3 points towards the correlation of their dependence
629Kourov et al.
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t in the FM state. This is in accord with the conclusions
the theory of a power relationship between the kinetic pr
erties under consideration.6,7 However, the absence o
anomalous HE in AFM alloys for a large value ofr that
depends weakly ont indicates that such kinetic propertie
are probably determined by peculiarities of the electro
band structure in the vicinity ofEF . The scattering of con-
duction electrons by the magnetic subsystem perturbation
insignificant in this case.

The behavior of magnetic and galvanomagnetic prop
ties observed during annealing of Pd2AuFe alloys can be
explained by taking into account the contribution of interfe
ence effects in the anomalous HE, and by assuming tha
dominant role in hall conductivity is played by the rearrang
ment of the electronic band structure nearEF in the FM–
AFM transition region. The latter assumption is quite sign
cant if magnetizedd-carriers are responsible for Ha
conductivity.

It must be remarked that the maximum value of the
efficientRs is about two orders of magnitude higher than t
quantity R0 . Such a situation is quite normal for most F
alloys. The signs of normal and anomalous HE determi
by the type of Hall carriers are opposite in the FM state. T
is possible in the one-band approximation if the spin–o
coupling constantl appearing in the expression for the c
efficient Rs is negative.6,7

Thus, the obtained results of investigation of magne
and galvanomagnetic properties of ordering Pd2AuFe alloys
show that
630 Low Temp. Phys. 23 (8), August 1997
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~a! the Rhodes–Wohlfarth parameter obtained as a re
of measurement of magnetic properties only is not a t
criterion for the degree of localization of atomic magne
moments of transition metal alloys in the FM–AFM pha
transition region when two magnetic subsystems coexis
the samples;

~b! the anomalous Hall coefficient is positive and no
zero only in the FM state of ordering Pd2AuFe alloys. As the
spontaneous magnetization disappears as a result of an
ing of samples, the negative normal Hall coefficient pas
through zero and becomes positive in AFM alloys;

~c! in the region of phase transition from FM to AFM
state, the peculiarities of kinetic properties observed dur
ordering of Pd2AuFe alloys are due to a rearrangement of t
electronic band structure nearEF .
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Giant magnetoresistance of La 0.5Pb0.2Ca0.2Y0.1MnO32d films obtained by magnetron
sputtering

S. I. Khartsev, V. N. Krivoruchko, and V. P. Pashchenko

A. Galkin Physicotechnical Institute, National Academy of Sciences of the Ukraine, 340114 Donetsk,
Ukraine*
~Submitted December 3, 1996!
Fiz. Nizk. Temp.23, 840–844~August 1997!

Magnetoresistive properties of thin La0.5Pb0.2Ca0.2Y0.1MnO32d films obtained by magnetron
sputtering technique are studied. A giant decrease in resistance~up to 98%) in magnetic fields
H510 T is observed at a temperature of 175 K. The physical factors responsible for the
effect of composition and preparation technique on their magnetotransport properties are discussed.
The mechanisms and empirical relations describing the temperature and field dependences
of the resistive properties of films are also discussed. ©1997 American Institute of Physics.
@S1063-777X~97!00808-6#
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INTRODUCTION

Magnetic semiconductors with a large negative mag
toresistance have a special field of application in microe
tronics. Perovskite manganites have been known for q
some time as compounds closely related to the electrical
magnetic properties~see, for example, Refs. 1–4!. Following
the discovery of giant negative magnetoresistance in syst
based on perovskite manganites,5–9 the interest in these ma
terials has grown enormously in recent years~see review by
Nagaev10!. The need for practical application of manganit
in electronics necessitates an increase in the sensitivity o
materials to weak magnetic fields. Naturally, the solution
the problem concerning a weak saturation field require
deep understanding of the physical mechanisms lying at
root of the magnetoresistance of manganites. These me
nisms are not known at present, but two factors affect
significantly the transport and magnetic properties of man
nites have been clearly outlined, viz.,~1! the average ionic
radius of cations in theA-position11–13 and ~2! the concen-
tration and mobility of charge carriers, determined by t
ratio of Mn31 and Mn41 ions ~see, for example, Refs. 1, 2
10, and 14!. However, these are obviously not the on
physical factors responsible for the formation of the mag
toresistive effect.

The potential practical application of magnetoresist
properties of manganites has also aroused considerable
est in the technology of preparation and properties of t
films of the material which are characterized by a large va
of the magnetoresistive effect.10 Most manganite films were
prepared by using the expensive technique of laser sputte
of samples~see, for example, Refs. 7–9!. However, the more
economical technique of magnetron sputtering was rece
applied successfully for preparing high-quality films
(LaCa)MnO3.15 We used the same technique to obtain th
films of La0.5Pb0.2Ca0.2Y0.1MnO32d films. In this work, we
report the results of magnetoresistive studies of such fil
Among other things, a giant variation of the film resistan
with 2DR/R05@R(H)2R0#/R0 up to 98% in a magnetic
field H510 T was observed at a temperature of 175
@(R(H) andR0 are the resistance in a magnetic field and
631 Low Temp. Phys. 23 (8), August 1997 1063-777X/97/08
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the absence of a magnetic field, respectively#. The physical
factors responsible for the effect of film composition a
preparation technique on their magnetic and transport c
acteristics are indicated. Empirical relations describing te
perature and field dependences of film resistance, and
conductivity mechanisms corresponding to these dep
dences, are discussed.

2. CHOICE OF COMPOSITION, PREPARATION TECHNIQUE,
AND INVESTIGATION OF THE SAMPLES

It was mentioned above that the physical nature of
metal–semiconductor and ferromagnetic–antiferromagn
phase transitions in perovskite manganites is not clear as
However, it has ben established that the magnetoresis
effect depends significantly on oxygen nonstoichiometry,
tio of manganese ions of different valencies, and the aver
radiusr A of cations in theA-position. Resistance variation o
more than 50% in a magnetic field was observed only
systems withr A smaller than 1.23 Å. We took this circum
stance into account while selecting the composition of ox
mixtures. The average cation radius in theA-position for
La0.5Pb0.2Ca0.2Y0.1MnO32d compounds is 1.19 Å. According
to the current theory,11–13 this should lead to high magne
toresistive characteristics of the material, as well as to h
metal-semiconductor transition temperatures. The result
investigations presented in Sec. 3 confirm the accuracy of
assumptions made above.

Thin La0.5Pb0.2Ca0.2Y0.1MnO32d films of thickness
;3500 Å were prepared by reactive magnetron sputtering
the setup VUP–5M. The powder of required compositi
was synthesized from a mixture of oxide
La2O3,PbO, MnO2,Y2O3 and calcium carbonate by annea
ing the mixture CaCO3 for 24 hours at 850 °C in air followed
by slow cooling and crushing. Targets for sputtering we
obtained by hydrostatic pressing of synthesized powder
pellets and sintering at 1050 °C for six hours. The sputter
of films was carried out on sapphire substra
Al2O3(011̄2), whose temperature was maintained
800 °C. The pressure of the gaseous mixture Ar:O251:4
was 50 mTorr and the residual pressure in the chamber
6310631-04$10.00 © 1997 American Institute of Physics
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531027 Torr. The results of x-ray structural analys
showed that the ceramic and film samples have a sin
phase perovskite structure. Texturized structure of films w
observed upon a growth of blocks parallel to the~202!–axis
of the sapphire substrate. The angle of disorientation
blocks did not exceed 3.5°.

The resistance and magnetoresistance of films were m
sured as functions of temperature and magnetic field by
ing the four-probe technique. Magnetic field up to 10 kO
were produced by an electromagnet, and up to 100 kOe
pulse technique in a solenoid. The field was applied para
to the plane of the film. The magnetoresistance was indep
dent of the mutual orientation of field and current. The te
perature dependence of the magnetization of bulk cera
samples was measured on pendulum balance magnetom

We did not carry out direct measurements of the oxyg
concentration in as-deposited films. However, thermogra
tational data for ceramic samples and several other a
ments~including the results of measurements presented
low! indicate unambiguously that the films obtained as
result of magnetron sputtering are oxygen-deficient. Cha
in the oxygen concentration affects significantly the ratio
Mn31 and Mn41 ions as well as the magnetoresistive effe
In order to optimize the ratio Mn31:Mn41, we subjected the
films to supplementary annealing in oxygen flow for a per
of 30 min. Different annealing regimes were tried with t
annealing temperature varying between 750 and 1000 °C

3. DISCUSSION OF RESULTS OF MEASUREMENT

The temperature dependence of the resistivityr, magne-
toresistanceDR/R0 ~in a field of 1T), and magnetizationM
of bulk ceramic samples of La0.5Pb0.2Ca0.2Y0.1MnO32d ,
which were later used as targets for obtaining films, are p

FIG. 1. Temperature dependence of magnetizationM , resistivity r, and
magnetoresistive effect DR/R0 in ceramic samples of
La0.5Pb0.2Ca0.2Y0.1MnO32d in a field H51T.
632 Low Temp. Phys. 23 (8), August 1997
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sented in Fig. 1. It can be seen that ther(T) curve has a
broad peak in the region of temperatureTm5200 K. The
resistance is of semiconductor type (dr/dT , 0! aboveTm

and metallic type (dr/dT . 0! belowTm . This temperature
is usually considered as the metal–semiconductor trans
temperatureTMS. The magnetoresistance increases with
creasing temperature and is reduced to 20% at 77 K in a fi
H51 T. It follows from the M (T) dependence that th
phase transition from the paramagnetic to ferromagnetic s
is quite blurred, and magnetization saturation does not oc
even at liquid-nitrogen temperature. This circumstan
points towards considerable magnetic defects in cera
samples.

The r(T) dependence obtained for films in a magne
field at various temperatures of annealing in oxygen atm
sphere is shown in Fig. 2. It can be seen that like for
original targets, the resistance attains a peak valuermax at a
certain temperatureTm . The value ofTm increases and the
resistancermax decreases rapidly upon an increase in
temperature of annealing of films in the interval 750–850 °
and remains esssentially constant upon a further increas
the annealing temperature. The physical reason behind
a behavior lies in the variation of the ratio Mn31:Mn41,1,2,14

and can be described as follows. The stoichiometric LaMn3

is an antiferromagnet and an insulator. Substitution of bi
lent ions (Pb21 and Ca21 in the present case! for La31 and
annealing in oxygen lead to the emergence of mobile cha
carriers and Mn41 ions. This process, in turn, stimulates th

FIG. 2. Temperature dependence of resistivity
La0.5Pb0.2Ca0.2Y0.1MnO32d films annealed in oxygen at various temper
tures. The inset shows the accuracy with which the depende
r(T)5r01A exp(2B/T) is observed for the resistivity of films annealed
825 and 1000 °C.
632Khartsev et al.
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system to undergo a metal–semiconductor phase transi
which correlates with the magnetic phase transition from
ferromagnetic state to the paramagnetic state. As the num
of Mn41 ions increases, the transition temperatureTMS in-
creases. The characteristic diffusion temperature for oxy
lies in the region of 850 °C, and any further increase in
annealing temperature does not affect the diffusion rate
nificantly. However, manganites with all their mangane
ions in the tetravalent state are also ferromagnets and i
lators. Hence an increase in resistance and a decrease inTMS

should be expected for a very large number of Mn41 ions.
This is the tendency displayed by the data presented
Fig. 2.

An analysis of the experimental results presented
Fig. 2 shows that the film resistance aboveTm is of activa-
tion type and can be approximated quite well by the expr
sion r(T)5r0 exp(Ea /kT) with an activation energyEa of
the order of 0.1 eV. This points towards the polar nature
film conductivity for T.Tm.5,9 Note that the exponentia
temperature dependence of the resistance approaches
to Tm with decreasing frequency of the metal-semiconduc
phase transition. For films annealed at 1000 °C this law
obeyed everywhere in the regionT.Tm , which suggests a
higher degree of perfection of crystal and magnetic struc
of films. However, we did not observe any indications o
transition to the charge ordered state in these films.16,17

While no special information is available about th
mechanism of conductivity of manganites in the param
netic phase, the situation is entirely different for the magn
cally ordered state. Historically, the first interpretation co
cerned the properties of manganites in the model of dou
exchange between Mn31 and Mn41 ions.18,19 ~It is also
worthwhile to mention the model based on RKK
interaction.20! However, attempts to explain the large ma
netoresistive effect in the double exchange model encou
serious difficulties.21 It is also difficult to explain severa
results of magnetic measurements14,22 on the basis of the
mechanisms described in Refs. 18 and 19. Earlier, it w
proposed by Nagaev23,24 that a magnetic semiconductor ma
go over to spatially inhomogeneous state under certain c
ditions. Giant magnetoresistance is one of the peculiaritie
inhomogeneous state.23,25 These ideas were generalized
perovskite manganites in the review by Nagaev.10 In our
opinion, however, the inhomogeneous state model also h
number of drawbacks, especially in view of recent resu
concerning the charge-ordered state in manganite si
crystals.16,17The magnetic-polaron model,26 which leads to a
number of reasonable relations for the resistive propertie
a narrow-band semiconductor, may turn out to be useful

It was mentioned above that the film conductivity is
activation type in the high-temperature region. It is intere
ing to note that the exponential temperature dependenc
resistance was also observed by us at low temperatures
way of an example, the inset in Fig. 2 shows the depende
of the resistance of films annealed at 825 °C and 1000 °C
can be seen that the dependencer(T) can be described quit
accurately by the expressionr(T)5r01A exp(2B/T). The
633 Low Temp. Phys. 23 (8), August 1997
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corresponding activation energy is about 1.5–2 times hig
than the activation energy obtained for the paramagn
phase. For comparison, we observe that the double exch
model predicts theT9/2-dependence for resistance in the low
temperature region.27 In several cases, the experimental d
pendence r(T) was approximated by the relation28

r(T)5r01AT2 or even the relation29 r(T)5r02CT
1BT2. Such a spread of empirical relations apparen
points towards diverse elastic and inelastic scattering me
nisms for charge carriers in the low-temperature region, e
of which can be enhanced or suppressed by an external fo

Figure 3 shows the temperature dependence of the m
netoresistive effect in the 1-T field for films annealed at 75
800, 850, and 950 °C. It can be seen that the films are hig
magnetoresistive with the maximum effect;65% occurring
at 180 K. The complete field–temperature diagram of
magnetoresistive effectDR(H,T)/R0 of a film annealed at
1000 °C is shown in Fig. 4. A 98% decrease in the resista
is observed in a fieldH510 T at a temperature of 175 K
The analysis of data presented in this figure shows~see inset
in Fig. 4! that the film resistance has a quadratic depende
on the field at all temperaturesT.Tm :s(H)5s01kH2.
Such a behavior ofs(H) corresponds to the quadratic d
pendence of conductivity on magnetization observed in m
cases13,28,30for low values of the latter.

FIG. 3. Temperature dependence of the magnetoresistive effectDR/R0 in a
field H51 T in La0.5Pb0.2Ca0.2Y0.1MnO32d films annealed at various tem
peratures.
633Khartsev et al.
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CONCLUSIONS

We have studied the La0.5Pb0.2Ca0.2Y0.1MnO32d films
obtained by using the reactive magnetron sputtering te
nique. The film resistance decreases by 98% in a fi
H510 T in the temperature range 125–175 K, as compa
to a decrease of just 10% for bulk ceramic samples. I
shown that the variation of annealing temperature in oxy
atmosphere can effectively vary the ratio of the ions Mn31

and Mn41, and thus alter the magnetoresistive properties
films. Empirical relations describing the temperature a
field dependences of the film resistance are established,
the existing conductivity models for manganites in param
netic and ferromagnetic phase are discussed.

We wish to thank G. K. Volkova for carrying out th
x-ray structural analysis of films, Yu. V. Medvedev fo
stimulating discussions and encouragement, and S. V. T
senko for drawing our attention to the work of Balbash
et al.15

FIG. 4. Temperature and field dependence of the magnetoresistive effe
La0.5Pb0.2Ca0.2Y0.1MnO32d films annealed in oxygen at 1000 °C. The ins
shows the accuracy with which the quadratic dependence of the effec
magnetic field is observed at 200 and 226 K.
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Teor. Fiz.60, 56 ~1994! @JETP Lett.60, 57 ~1994!#.
23V. A. Kashin and E` . L. Nagaev, Zh. E´ ksp. Teor. Fiz.66, 2105 ~1974!

@JETP39, 1036~1974!#.
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Spin structure of antiferromagnetic disclination
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The spin structure of magnetic disclination, viz., spin inhomogeneity manifested in
antiferromagnets in the presence of a dislocation, is analyzed. The analysis is carried out on the
basis of the discrete model as well as in the specially constructed generalized continual
theory based on the local introduction of the antiferromagnetism vectorl and taking into account
the possibility of a change in the length of this vector. In the solution without singularities
constructed for disclination, the modulus of the antiferromagnetism vector vanishes at the center
of the disclination. In the discrete model, the disclination energy depends significantly on
the arrangement of spins near the core and on the type of their interaction. With the proposed
model of spin arrangement, the results of numerical analysis based on the discrete and
continual models are in good agreement. It is shown that planar disclinations are stable to the
emergence of spins from the easy plane. ©1997 American Institute of Physics.
@S1063-777X~97!00908-0#
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1. INTRODUCTION

Antiferromagnets~AFM! have attracted the attention o
a large number of researchers for more than fifty years~see
reviews in Refs. 1–3!. The spin ordering in AFM is usually
described for a finite number of magnetic sublattices eac
which is ferromagnetically ordered so that the total magn
moment of the AFM is equal to zero in the exchange
proximation. The properties of AFM observed during the l
decade cannot be explained by using the simple mode
sublattices. It suffices to mention the peculiar quantum pr
erties of low-dimensional AFM~see Ref. 1! and the exis-
tence of frustrated AFM whose properties cannot be
scribed in general by the simple sublattice model.

The concept of frustration is usually associated with s
glasses in which ferromagnetic and antiferromagnetic li
between nearest neighbors are distributed at random. H
ever, frustration effects can also be observed in magnets
a regular lattice and with the antigferromagnetic interacti
In this connection, we can mention AFM with a triangul
lattice4 or with a more complexkagomeelattice.5 For these
AFM, the division of the initial lattice into a finite number o
magnetic sublattices taking into account the interaction o
between nearest neighbors cannot satisfy the condition
minimum energy for neighboring spins, i.e., the condition
antiparallel orientation. In this case, the problem of t
ground state becomes nontrivial even in the classical s
approximation. For example, according to the results of
merical analysis, a 120° three-sublattice structure obse
for a triangular sublattice is not unconditionally advan
geous, while the exact solution of the problem for akagomee
lattice is unknown. The study of frustrated magnets forms
interesting trend in the modern theory of magnetism.

The strong dependence of the properties of AFM on
type of the lattice must lead to a considerable effect of
tended lattice defects on antiferromagnetic ordering. Acco
ing to Dzyaloshinskii6 and Kovalev and Kosevich,7 the
presence of a dislocation in AFM is responsible for ‘‘disto
635 Low Temp. Phys. 23 (8), August 1997 1063-777X/97/08
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tions’’ in the sublattices and leads to the formation of ma
roscopic magnetic defects, viz., domain walls terminating
a special line~disclination!. Since a disclination can be re
garded as an antiferromagnetic vortex with a semi-integ
value of topological charge~vorticity!,2,3 its analysis presents
an independent interest in view of growing importance
two-dimensional magnetic solitons and especially vortic
Magnetic vortices are known to make a specific contribut
to the response function of magnets2 and lead to the emer
gence of localized or quasilocal magnon modes.8,9 Thus, the
emergence of a disclination leads to the observed phys
effects whose analysis must be based on the study of
actual spin distribution in the disclination core as well as
away from it.

An analysis of the properties of magnetic vortices can
based on the discrete spin model as well as on the conti
approach. The results of these approaches during an ana
of an out-of-plane vortex in a ferromagnet and in AFM are
good agreement even in the case when the length param
in the macroscopic theory, viz., the radius of the vortex co
is close to the lattice constanta.8 An analysis of a vortex in
discrete models can be carried out only numerically for fin
lattices ~whose size usually does not exceed 40340!. For
this reason, the continual approach which makes it poss
to find general regularities for a vortex in an unbound
medium plays a special role. Natural roughness of the c
tinual approach applied to real magnets which contain sp
in discrete sites can be controlled by comparing with
results of numerical analysis based of discrete models. In
case of disclination, however, the continual approach ba
on an analysis of the antiferromagnetism vector as a
vector leads to singularities near the center of the disclina
and requires modification.

Kovalev10 proposed a one-dimensional continual mod
for describing the structure and dynamics of complex m
netostructural topological defects predicted in Refs. 6 and
In this model, which generalizes the well-known Frenke
Kontorova model to the case of magnetically ordered me
6350635-07$10.00 © 1997 American Institute of Physics
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no singularity is observed near the center of the disloca
and disclination. However, this model fails to give corre
asymptotic forms of field distribution at large distances fro
the center of the defect in view of its one-dimensional natu

In this paper, we carry out a detailed analysis of the s
structure of a disclination near its core as well as away fr
it. The analysis was made on the basis of the discrete m
for classical spins as well as in the generalized contin
model based on the local introduction of the antiferrom
netism vectorl taking into account the possibility of th
change in the length of this vector.

In the discrete model, the disclination energy depe
considerably on the arrangement of atoms near the disl
tion core and on the nature of their interaction. It is sho
that an anisotropy of the ‘‘easy plane’’ type with a plan
orientation of spins in this model is stable to the emerge
of spins from the ‘‘easy plane.’’

In the continual model, a solution without singularities
constructed for a disclination in an AFM near the Ne´el tem-
perature. In this solution, the modulus of the antiferrom
netism vector vanishes at the center of the disclination.
possibility of application of this solution at low temperatur
also is discussed. Among other things, a specific mode
spin arrangement is indicated, for which the results of ana
sis based on the discrete and continuous models are in
agreement.

2. STRUCTURE OF DISCLINATION CORE ON THE BASIS
OF LATTICE MODEL

The Heisenberg classical model is often used for a
croscopic description of a magnet~see, for example, Refs.
and 3!. The model used by us here is based on a tw
dimensional square lattice with withdrawn half-line of latti
sites~Fig. 1!. Each site is put in correspondence with the s
vectorSi of constant length,Si

25S2:

H5J( ~SxiSx j1SyiSy j1lSziSz j!. ~1!

Here and below, the summation is carried out over pa
of nearest neighbors,J.0 is the exchange integral which
assumed for simplicity to be the same for all links, andl the
constant describing magnetic anisotropy. Assuming that
AFM has an ‘‘easy plane’’ type anisotropy, we put 0<l<1.

We introduce the following parametrization:

Sz5Sm, Sx5SA12m2 cosw,
~2!

Sy5SA12m2 sin w.

Here the values ofumu<1, andw is the angle betweenS
and a fixed direction in the basal plane. In these variables
have

H5JS2( $A12mi
2A12mj

2 cos~w i2w j !1lmimj%.

~3!

If, however, all the spins lie in the basal plane~it will be
shown below that this assumption is confirmed by numer
calculations!, it is sufficient to proceed from the expressio
636 Low Temp. Phys. 23 (8), August 1997
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H5JS2( cos~w i2w j !. ~4!

In the case of an ideal antiferromagnetic ordering,
spins of neighboring magnetic atoms are antiparallel. S
an ideal antiferromagnetic ordering can obviously take pl
only if the number of atoms in any closed chain of exchan
coupled atoms in the crystal is even. If, however, the m
netic lattice of the crystal contains a closed chain of ato
with an odd number of sites, such a spin ordering can
exist. Before we analyze the disclination, it would be exp
dient to consider a model problem on the ground state o
closed chain with an odd numberN of sites and with anti-
ferromagnetic interaction.

We take the energy of spin interaction in the form~4!,
assuming that the summation is carried out over the spin
the chain. For definiteness, we choose an arbitrary site
ascribe to it the numberi 50 andw i50. The sites will be

FIG. 1. Lattice fragments used for calculations of the spin structure o
disclination with a pentagon~a! and a triangle~b! of central atoms coupled
through the exchange interaction. Segments of straight line indicate
change bonds. Light circles denote atoms whose spin orientation is d
mined by energy variation, while dark circles denote atoms whose spins
fixed by the boundary conditions.
636Ivanov et al.
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numbered in the counterclockwise direction. The syst
symmetry allows us to write the solution for the angleswk ,
which ensures the minimum of energyE:

wk5~21!kp1
2pk

N
n, ~5!

where k is the site number andn a half-integer such tha
2N/2,n,N/2.

The energy of a chain containing an odd number of s
and measured from the level2JS2N is defines as

En5JS2N~12cos@2pn/N# !.

The absolute minimum corresponds ton561/2. Stable
local minima correspond tounu,N/4. The angle between th
directions of the vectors i5(21)iSi at neighboring chain
sites is the same for all links and is equal to 2pn/N. Such a
behavior ofs i corresponds to the behavior of the direct
vector n during circumvention of a disclination in liquid
crystals; the numbern corresponds to the Frank index of th
disclination. As we move along the chain, the vectors i ro-
tates through the angle 2pn. This explains the half-integra
value ofn.

We arrange the lattice sites at the vertices of a reg
N-gon inscribed in a circle of radiusR. For the direction of
s which can be specified at each point of the circle in
limit N→`, the expression forw i can be presented in th
form w5x/2, wherex is the angular coordinate of the give
point on the circle. For a large number of sites in the cha
we can easily obtain the following asymptotic form for th
ground-state energy:E5p2JS2/2N.

In a crystal with a square lattice containing a dislocatio
the Burgers vector is equal to the lattice constant, and
closed loop drawn through exchange links and embracing
dislocation axis contains an odd number of sites. It was no
above that this leads to the emergence of spin inhomog
ity, viz., disclination. Variation of the Hamiltonian of th
magnet along the directions of spins makes it possible to
the spin configuration corresponding to this disclination.

In a numerical analysis of the spin structure, we can
a lattice fragment with a finite number of sites. In order
determine the structure of the core, we can choose a f
ment containing approximately 100 lattice sites. Its inter
tion with the remaining part of the lattice can be taken in
account by choosing certain boundary conditions. Usua
we use the so-called fixed boundary conditions, i.e., cho
certain directions corresponding to a known asympto
forms of the solution for spins adjacent to the fragment.
our case, the form of these conditions can be determined
using the analogy between the closed loop in the lattice
a free chain. Considering the closed loop formed by sp
adjacent to the fragment and having a nearly circular sha
we assume that the angle formed bys and a fixed axis is
equal to half the value of the polar coordinate of this s
w5x/2. ~It should be noted that the same asymptotic fo
can also be obtained from the phenomenological theory;
below.! Such an approach~the choice of fixed boundary con
ditions of the typew5x! was used for studying magnet
vortices.8,9 However, the situation with a disclination i
somewhat more complicated. Indeed, the symmetry of
637 Low Temp. Phys. 23 (8), August 1997
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problem implies that the vortex center, which coincides w
the origin ~pole! of the polar system of coordinates, lies
the center of a unit cell of the magnet. In view of the low
symmetry of the problem on magnetic disclination, the co
dinate of the pole in the direction of the withdrawn half-lin
of atoms~x-axis! is not defined and must be determined i
dependently from the condition of energy minimum. For th
reason, we proceed as follows. Solving the equati
]H/]Si50 with a fixed value ofS at the boundary corre
sponding to a certain positionx0 of the pole, we determine
the spin configuration and its energy for the givenx0 . Then
we find the energy minimum of the fragment in the para
eterx0 by changing the position of the pole.

Let us start from the simple case when all the spins lie
the basal plane~it will be proved below that this configura
tion is stable and corresponds to the absolute minimum
the disclination energy!. The equation forw i can be written
in the form

tan w i5
( sin w i

( cosw i
.

The summation is carried out over the nearest neighb
of the i th site. These equations can be solved by the itera
method with the initial approximation chosen in the for
w5x/2. For our calculations, we used fragments of tw
types depicted in Figs. 1a and b.

The values ofw i at the boundary sites denoted by da
circles in Fig. 1 were fixed by the conditionw5x/2. Energy
minimization for values ofw i at inner sites was carried ou
for various positions of the pole, and the energy of the s
configuration was determined. Then the energy minim
was determined from the position of the center of the dis
nation ~pole!. The dependence of energy on the position
the disclination center on the symmetry linex0 is shown in
Fig. 2. The minimum is attained atx050.570a for the frag-
ment with a triangle of atoms coupled through the excha
interaction at the center~see Fig. 1b! and atx050.611a for
the fragment with the central pentagon~see Fig. 1a!. It is
interesting to note that the difference between the value
anglesw and the values ofx/2 is small even for centra
atoms. For example, the corresponding values of angles
the configuration shown in Fig. 1a are 0,669.75°, and
6148.72°. This is quite close to the asymptotic values672
and 6144°. The difference between these values decrea
rapidly as we move away from the center, while an incre
in the fragment size virtually does not affect the spin orie
tation at the central sites.

The analysis of the planar distribution of spins should
supplemented with the analysis of the possibility of sp
emergence from the basal plane. Indeed, according to
analysis carried out in Refs. 6, 7, a structure of the type o
domain wall emerging from the center of the dislocation
formed in the case of an easy-axis AFM for whichl.1, and
the spin distribution is not planar. This means that for
easy-plane AFM with 1.l.0, there can exist in principle
such alc.0 that the planar distribution of spins is violate
for l>lc at least in a certain region. In the case of a ma
netic vortex, this problem was analyzed by Wysin,9 and the
637Ivanov et al.
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values oflc for different lattices were found to be of th
order of 0.7–0.9.

Let us analyze the stability of the planar spin configu
tion relative to the emergence of spins from the basal pla
Following the method developed by Wysin,9 we linearize the
complete system of equations]H/]w i50, ]H/]mi50 rela-
tive to mi . In matrix form, this system can be written as

(
j

S 2
1

l
Aid i j 1ei j Dmj50,

where ei j 51 if i and j are nearest neighbors andei j 50
otherwise, andAi 5 S j cos(wi 2 wj) is the sum of energies
of the links emerging from thei th site. The value oflc is
determined by the condition that this system has a nontri
solution, i.e., det(2 Aidij 1 lceij) 5 0. Our numerical analy-
sis revealed that this condition does not hold for a
0<l<1. This means that the disclination in the model und
investigation is of purely in-plane type for easy-plane and
isotropic AFM ~with l51!.

We have calculated the ground-state energy of an A
with a disclination for lattice fragments close to circles w
radii 5a, 6a, 7a, and 8a, wherea is the lattice constant
The disclination center was chosen in accordance with
results obtained above at pointsx050.570a and 0.611a for
fragments with a triangle and a pentagon of atoms at
center coupled though exchange interaction. An anal
shows that the disclination energy can be approximated q
well by the formula

E5
1

4
pJS2 lnS CR

a D , ~6!

whereC is a constant whose value depends strongly on
configuration of exchange bonds between atoms at the ce

FIG. 2. Spin distribution energy for various positions of the pole~disclina-
tion center! as a function of the pole coordinatex. Curves1 and 2 corre-
spond to two versions of arrangement of exchange bonds of atoms r
sented in Fig. 1a and b.
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of the dislocation. For the models with a pentagon and
triangle of exchange-coupled atoms at the center, the va
of C are 3.15 and 11.84. The logarithmic dependence
energy on the size of the system coincides with the dep
dence following from the continual approximation@see for-
mula ~10! below#.

3. PHENOMENOLOGICAL DESCRIPTION OF DISCLINATION
NEAR THE NÉEL POINT

It was mentioned above that sublattices cannot be in
duced into an AFM with a dislocation so that the spins
each sublattice be parallel, and the division into the sub
tices be consistent for the entire crystal. However, sublatt
can be introduced with the help of the following procedu
We divide the lattice into several regions that do not cont
the dislocation core. In each such region, we can introd
sublattices and define the antiferromagnetism vectorl as the
normalized difference between mean values of magnet
tions of the sublattices. For intersecting regions, the num
tion of the sublattices can be matched.

Let us consider a system ofn intersecting regions with
an ideal lattice, which form a closed contour embracing
dislocation core. We will match the sublattices moving alo
this contour. Having returned to region 1 from the side
regionn, we note that sublattices have changed places,
the sign ofl has been reversed. Consequently, we can use
phenomenological description of AFM by introducing th
vectorl on a plane with a cut emerging from the center of t
dislocation and by assuming thatl has opposite signs on th
opposite banks of the cut. Thus, the vectorl can be defined
locally in any region which does not contain the dislocati
center.~This resembles the procedure which is normally us
for introducing the deformation field in the description of
crystal with a dislocation in the theory of elasticity.11! In the
vicinity of the center, the direction ofl is not defined, and
hence the model withu lu51 used for ideal AFM cannot be
used directly. A similar difficulty is also encountered in
phenomenological analysis of a Bloch point12 and can be
overcome in the same way by assuming that the length of
vector l can change and thatu lu50 at the center of the dis
clination. The contribution of this modification to the syste
energy can be taken into account by supplementing the
ergy with terms depending on the length ofl.

With such an approach, the gradient ofl near the center
of the disclination is not small, which is in contradiction
the traditional assumptionua(¹ l)u2!1 in the phenomeno-
logical theory. However, we can indicate an interesting c
from the physical point of view, when a transition from th
discrete to the continual model can be made easily, and
continual theory describes exactly the structure of singu
solitons of the type of a disclination in an AFM. Let u
consider the temperatureT close to the Ne´el pointTN of the
AFM. In this case, the equilibrium value ofl } At, where
t5(TN2T)/TN , and accordingly the characteristic size
spin inhomogeneity isD5D(T)5D0 /At, where the value
of D0 is of the order of the lattice constanta. The character-
istic size of the disclination core is determined by the qu
tity D and increases indefinitely asT→TN ; for this reason,
the conditions for the applicability of the continual approx

re-
638Ivanov et al.
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mation are essentially satisfied. It should be noted that
need not consider the critical region in the immediate vic
ity of the Néel point: the value ofD(T)'3D0'3a even for
t;0.1, and in accordance with the results obtained in Re
the continual and discrete approaches are in good agree
~at any rate, for an analysis of static properties of magn
inhomogeneities!.

While constructing the phenomenological theory, w
proceed from the energy of the form

W5
1

2
AE

V
dr H ~¹ l!21

1

D1
2 l z

21F~ l 2!J . ~7!

~at finite temperatures, it is more expedient to speak of
thermodynamic potential.

HereA.0 is the nonuniform exchange constant,F( l 2)
the function determined by the exchange interaction and
scribing the change in the AFM energy upon a change in
length of the vectorl, and D1 the characteristic scale o
length associated with anisotropy energy; the value ofD l@a
for weakly anisotropic magnets. The integration domainV is
thexy plane with a cut emerging from the dislocation cent
The boundary conditions at the upper and lower banks of
cut can be written in the forml(1)52 l(2) .

For the quantityl, we introduce the parametrization

l5 lez cosu1 l sin u~ex cosw1ey sin w!.

The distribution ofl can be obtained from the Euler
Lagrange equations for energy functional. Variation leads
the following system of equations:

¹2l 2 l S ~¹u!21~¹w!2 sin2 u1
1

D1
2 cos2 u D 2 l

dF

dl2
50,

¹~ l 2¹u!2 l 2 sin u cosuS ~¹w!22
1

D1
2D 50,

¹~ l 2 sin2 u¹w!50.

Let us go over to polar coordinates (r ,x). The substitu-
tion l 5 l (r ), u5p/2, w5nx1w0 , wherew0 is an arbitrary
number, transforms the last two equations into identit
This is in accord with the results of analysis based on
discrete model, according to which all the spins in the d
clination lie in plane, i.e.,u5p/2. Considering thatw050 at
the cut, we arrive at the conditionw5x/2 obtained above for
a region far away from the disclination center. The bound
condition at the cut (l(1)52 l(2)) definesn as half-integral.
The equation forl assumes the form

d2l

dr2 1
1

r

dl

dr
2 l

n2

r 22 l
dF

dl2
50. ~8!

For definiteness, we assume the form of the funct
F( l 2) following from the Landau expansion:

F~ l 2!5
1

2D0
2 ~ l 22t!2,

wheret5(TN2T)/TN , andD0 is of the order of the lattice
constanta. In this case, we can introduce the new unkno
639 Low Temp. Phys. 23 (8), August 1997
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function c(x)5 l t21/2 depending on the variablex
5 r /D(T), D(T) 5 D0t21/2, and write the universal dimen
sionless equation forc(x):

d2c

dx2 1
1

x

dc

dx
2c

n2

x2 1c2c350. ~9!

We choose the boundary conditions from the requi
ment of the absence of singularity at the center of discli
tion and equilibrium at infinity,c(0)50 andc(`)51. This
equation differs from the static version of the Gros
Pitaevskii equation for a vortex in liquid helium13 only in
that the coefficient of the term 1/x2 is half-integral. Conse-
quently, the asymptotic behavior ofl (r ) can be described a
l→(r /r 0)n, r 05x* t21/2D0 for r→0 and l→12n2D0

2/2tr 2

for r→`. The parameterx* can be determined numericall
~see below!. The value ofl differs from unity only in the
regionr<r 0;t21/2D0 , which can be identified with the dis
clination core.

Using the asymptotic behavior forr→`, we can prove
that the energy of disclination contains the logarithmic d
pendence on the sizeR of the system, which is typical o
inhomogeneities of the type of vortices:

E5tA
n2

4
lnS D

AtR

D0
D , ~10!

whereR is the radius of the AFM sample~which is regarded
as cylindrical! and D the numerical constant which can b
determined after the solution of the differential equation~9!.
The solution of this equation with the boundary conditio
l (0)50, l (`)51 can be constructed numerically by the ta
get method~see Ref. 3 for details!, and its form is presented
in Fig. 3. In order to simplify calculations of energy, it i
convenient to use the identity 2ED0

25t*rdr (1 2 l 4),
which can be obtained by multiplying Eq.~9! by dl/dr and
integrating with respect tor from 0 to `.

We obtained the following values for the constantx* for
n51/2, 3/2, and 5/2: 1.272, 2.140, and 2.964. For these
ues of the topological parameter, the constantsD are equal to
5.50, 0.82, and 0.44, respectively. The anomalously la
value of D for n51/2 can be explained by the fact that,
contrast to disclinations withn53/2 and 5/2 or a magnetic
vortex in which l→r /r 0 for r→0, the value ofdl/dr di-

FIG. 3. Dependencec(x), x5r /D(T) for various values of the topologica
parametern. Numbers1, 2, 3 on the curves correspond ton51/2,3/2,5/2,
respectively.
639Ivanov et al.
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verges forr→0. It should be noted that, since the values
D for n51/2 and 3/2 differ significantly, the disclinatio
with n53/2 can become more advantageous than that w
n51/2 for a certain value ofR't21/2D0 . However, for
macroscopic AFM samples, this can take place only in
immediate vicinity of the Ne´el point, and we will henceforth
consider only the case withn51/2.

4. ON THE POSSIBILITY OF PHENOMENOLOGICAL
DESCRIPTION OF DISCLINATIONS AT LOW
TEMPERATURES

Thus, the disclination energy exhibits a logarithmic d
pendence on the sample size both in the discrete and in
continual models, and the formulaw5x/2 of the continual
theory is also valid in the discrete theory. Let us consider
possibility of constructing a version of the continual theo
which could describe the properties of disclinations at l
temperatures at least semiquantitatively.

Away from the disclination core, the gradient ofl is
small, D0(dl/dr) ; (D0 /r )3, and the continual model ca
be used forD0<a as well. Near the disclination core, th
situation is obviously worse, but a comparison of the res
of analysis for an out-of-plane magnetic vortex in the d
crete and continual models revealed8 that the data obtained
by using these two approaches are in good agreement
for D0;a. Consequently, the condition of smallness for t
gradient of vectorl is probably not very critical.

Another problem is associated with the fact that the
quired continual model must predict the contraction of
length of vectorl to zero at the center of the disclinatio
Usually, the low-temperature phenomenology of AFM
constructed by introducing two sublattices with the spinsS(1)

and S(2) as well as normalized vectors of magnetizati
m5(S(1)1S(2))/2S and the antiferromagnetism vecto
l5(S(1)2S(2))/2S which are connected through the cond
tions l21m251, m• l50 by virtue of the relations
uS(1)u5uS(2)u5S.2,3 For an AFM with a square lattice, sub
lattices are chosen in such a way that they are transfor
into each other through elementary translation along thex or
y axes by vectorsaex or aey . In the case of a noncollinea
orientation of spins, the value ofulu calculated in this way is
smaller than unity. It can easily be seen, however, that for
spin configuration constructed above, which describes a
clination, the value ofulu at not very large distances from th
center of the disclination depends on the choice of this tra
lation vector. In this case, the coordinate dependence ofulu is
anisotropic, and the quantity 12 lu vanishes along a certai
direction in the lattice. Moreover, these directions are diff
ent in the case when such alternative definitions are use

The emergence of anisotropy with the second-order a
in the distribution ofl is not surprising. For such a definitio
of the vectorl, the symmetry of a magnetic unit cell in th
form of a rectangle with sidesa and 2a is lower than the
symmetry of a crystallochemical unit cell. Generally, th
does not create any problem since disclinations can be
scribed in terms of anisotropic solutions of the correspond
equations for the vectorl for such a definition ofl. Simulta-
neous rotation of the magnetic unit cell and the functionl (r )
through 90° restores the initial symmetry of the solution. F
640 Low Temp. Phys. 23 (8), August 1997
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our purposes, however, it is more convenient to introduc
model in which the disclination would be described by sy
metric solutions of the typel 5 l (r ), u5p/2, w5x/2 consid-
ered in the previous section.

Let us consider various methods of determining the
tiferromagnetism vectorl. According to the approach deve
oped by Andreev and Marchenko,14 this vector is equal to
the dipole moment of the microscopic spin density, calc
lated for a magnetic unit cell.1! We choose this cell in the
form of a square with sideA2a and with its center at the
point i corresponding to the first site of magnetic sublatt
atom site~the division of a crystal with a dislocation int
sublattices was discussed at the beginning of the prev
section!. We define the antiferromagnetism vectorl i by the
formula

I i5
1

2S S S~ i!2
1

4 (
a

S~ i1a!D , ~11!

where the summation is carried out over the four vectors
elementary translations:6aex and 6aey . The equilibrium
value of u lu is equal to unity. It can be stated that this de
nition follows from a certain averaging over the magne
cell orientations, which was written above anisotropically,
well as from averaging over the direction of spins in t
given sublattice.

Since the transformation properties of the antiferrom
netism vectorl with such a definition coincide with the stan
dard properties, the phenomenological energy of an A
written in the form of a functional of the vectorl must also
be defined by formula~7! with different numerical values o
parameters.2! Accordingly, the general structure of the sol
tion and the form of Eq.~8! for the functionsl (r ) remain
unchanged. Since we are interested only in a semiquan
tive description of the solution, we can use for the functi
F( l 2) the Landau expansion by puttingt51 in it. In this
case, the functionl (r ) can be described by the solution of th
universal equation~9! constructed above, i.e.,l (r 5c(r /D0),
and the energy of the disclination withn51/2 is defined as

E5~pA/4!ln~5.5R/D0!. ~12!

This expression contains the parametersA andD0 . The
quantityA can be defined by using the microscopic expr
sions~1! and~11!, but it is easier to make use of the coinc
dence of logarithmic asymptotic forms of energy in differe
approaches. Comparing~6! and ~12!, we find thatA5JS2.
As regards the parameterD0 , its value can be determine
most consistently by comparing the functionl (r ) in the con-
tinual theory with the value ofl at discrete points obtained i
the lattice model. We shall use the asymptotic form of t
continual solution for large values ofr , according to which
12 l 5D0

2/8r 2. Calculating the same quantity by formu
~11! by using the asymptotic formw5x/2, we can easily
obtain l (r )'12a2/32r 2. Comparing these expressions, w
find thatD05a/2.

This relation does not ensure the smallness of gradie
near the core, but it can be obtained only from t
asymptotic properties of distributions. It does not depend
many details of the continual or discrete model, for examp
on the atomic structure of the dislocation core or the form
640Ivanov et al.
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the functionF( l 2). Indeed, away from the core, whenl .1,
the asymptotic form contains onlyd2F( l 2)/d( l 2)2 for l 51,
and the asymptotic form can be obtained by replacingD0

2 by
1/@d2F( l 2)/d( l 2)2# for any form of the functionF( l 2). Con-
sequently,taking such a substitution into account, we can
sume that this formula is valid for all continual and discre
models.

The correctness of the complete phenomenolog
analysis of a disclination, including the description of t
core region, can be verified by comparing the expressions
energy, which, unlike asymptotic formulas, strongly depe
on the details of the atomic structure of the core. It was no
above thatE5(pA/4)ln(CR/a) in the discrete model, and th
values ofC differ significantly for different discrete models
C53.15 and 11.75 in the cases with a pentagon and a
angle of atoms at the center, which are coupled through
exchange interaction.

In the case of the continual model, the expression
energy contains the parameterD0 . If we consider this quan-
tity as a fitting parameter and compare this dependence
the expression for the disclination energy in the discr
model, we can also find the relation between the param
D0 and the lattice constant. Comparing the two expressi
for energy, we find thatD050.47a for the model with a
triangle of central atoms, which is in good agreement w
the resultD050.5a obtained from an analysis of asymptot
forms. Thus, we obtained astonishingly good~taking into
account the semiquantitative nature of the theory! agreement
between the results of alternative approaches to an ana
of a disclination in an AFM~both its core and asymptoti
forms! for two specific models, viz., the discrete model wi
the dislocation core structure presented in Fig. 1b and
continual model with the functionF( l 2) in the form of the
Landau expansion.

This result can be regarded as accidental in a cer
sense. For the model with a pentagon of central atom
comparison of the expressions for energy givesD051.75a,
and the difference is significant. The origin of this differe
is quite clear: as a matter of fact, the coefficientC in the
expression for energy is determined above all by the reg
of the disclination core. Obviously, these constants mus
different for models with different arrangements of atom
The difference is if only due to the fact that the atomic de
sity in the dislocation core region differs from the equili
rium value. In all cases~e.g., in the description of atomi
models with different values of exchange integrals in
dislocation core and away from it!, it would be appropriate to
generalize the continual model~6! by supplementing the ex
pression for energy with a term of the forml 2/U(r ), where
U(r ) is a certain function localized at a distance of the or
of the dislocation core radius. By varying the intensity of th
additional term, we can ‘‘control’’ the contribution of th
core region to the disclination energy without changing
asymptotic behavior away from the core and construct a c
tinual theory for any discrete model. Detailed discussion
such ‘‘inhomogeneous’’ models is beyond the scope of t
paper. It is important for our analysis that we can indicat
lattice model of dislocation that is quite simple and phy
cally reasonable, but nevertheless provides a descriptio
641 Low Temp. Phys. 23 (8), August 1997
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the disclination on the basis of the solution of variation
equations of the simple continual theory~6!, which is in
good agreement with the accurate discrete approach. Co
quently, the proposed continual model based on the cont
tion of the length of the vectorl ~or its inhomogeneous gen
eralizations! is in all probability quite adequate and can b
used for solving other~more complex! problems in the
theory of disclinations in AFM, e.g., an analysis of magn
modes localized at a disclination, and analysis of the con
bution of disclinations to magnon damping, neutron scat
ing, or scattering of light.
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1!This explains formally the ambiguity in the definition ofl. The dipole

moment of a system of charges is determined uniquely and does no
pend on the choice of the reference point only if the total charge of
system is zero. In our case, this corresponds to complete compensati
spins within a magnetic unit cell, and this condition is satisfied only
proximately. On the other hand, the definition ofl introduced by us is
preferable since the total spin of a magnetic unit cell with a higher sy
metry is smaller than for the standard magnetic unit cell.

2!It follows from the same considerations that the Lagrangian of this mo
of AFM can be written in terms of the antiferromagnetism vectorl in the
same way as in the two-sublattice model, and the dynamic term has
standard form (A/c2)(] l/]t)2, wherec is the phase velocity of magnons
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS

the
Dilatometric size effect in thin C 60 films

A. T. Pugachev, N. P. Churakova, and N. I. Gorbenko

Kharkov State Polytechnical University, 310002 Kharkov, Ukraine
~Submitted October 17, 1996; revised November 27, 1996!
Fiz. Nizk. Temp.23, 854–856~August 1997!

The change in the lattice parameterDa/a of monocrystalline C60 films of thickness less than 10
nm is determined by the transmission high-energy electron diffraction method. In the
temperature range 90–260 K, the value ofDa/a increases with decreasing film thickness. The
results are used for calculating the coefficientsa f andas of linear thermal expansion of
the films and of the surface atomic layer. The value ofas along the~111! plane is equal to
(55615)31026 K21. © 1997 American Institute of Physics.@S1063-777X~97!01008-6#

The properties of nanosize objects~films and crystals! the reflecting sphere still intersects the given point of
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are determined by the properties of not only bulk, but a
surface and subsurface layers.1 An analysis of the propertie
of such objects is of independent interest and makes it p
sible in some cases to obtain useful information on the
namics of the surface lattice. Various aspects of the struc
and properties of fullerite were studied by many autho2

However, thermal expansion of films has not yet been st
ied. In this communication, we report on the results
electron-diffraction investigations of the thermal expans
of monocrystalline fullerite C60 films of thickness less than
10 nm. The experimental data on thermal expansion are u
for determining the thermal expansion coefficient for t
outer atomic layer of fullerite.

Fullerite films were obtained by evaporation of C60

single crystals with a purity not worse than 99.9% and c
densation on the cleavage plane of NaCl at room tempera
in a vacuum;1023 Pa. For subsequent electron-optical i
vestigations, the films were separated in water and fished
on nets. In view of the small film thickness, the films cover
only a small fraction of cells of the net so that each segm
could be regarded as a console, i.e., free.

Electron diffraction patterns were recorded~by transmis-
sion of electrons! in an accelerating potential of 40 keV for
current density lower than 1025 A•cm22. Possible instru-
mental errors in the measurements of lattice spacing w
taken into account by using a standard and by controlling
position of the sample under investigation relative to
photographic plate during the experiment.3 The temperature
was varied from room to nitrogen temperature. The atta
ment with the sample was surrounded by a screen coole
the temperature of liquid nitrogen. The temperature of
attachment was measured by a copper-constantan the
couple to within63°.

The thicknesst of such thin monocrystalline films wa
preset by the mass of the evaporant and the geometry o
evaporation, and was then determined by the electr
diffraction method from the size of the reciprocal lattice s
in the direction of the normal to the film4:

t5d~Dw!21, ~1!

whered is the lattice spacing andDw the angle within which
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reciprocal lattice with the Miller indiceshkl. The angleDw
was determined by tilting the film relative to the electro
beam, and the angle within which a reflex with the chos
indiceshkl is still observed on the electron diffraction pa
tern was measured by a tilt goniometer. The film thickne
was determined from~220! reflexes with an error of 10%
We investigated two series of films of thickness 3.5 and
nm.

The thermal expansion coefficienta was determined
from the results of measurements of the lattice period va
tion as a function of temperature:

a5Dd/d~DT!21, ~2!

whereDd/d is the relative change in the lattice spacing a
result of thermal expansion upon a change in temperatur
DT. SinceDd/d522Dr /2r , the value ofDd/d was mea-
sured from the change in the spacing 2r between diffraction
reflexes on the electron diffraction pattern for~422! reflexes.
The error 2Dr /2r of measurements on an optical microsco
was 531024, which leads to the error6331026 K21 in the
measurements ofa. It should be noted that the average val
of a was determined for the temperature range indica
above. When the electron beam was incident along the
mal to the film, the values ofDd/d, and hence ofa, were
determined in a direction parallel to the film surface.

According to the results of electron diffraction and ele
tron microscopic investigations, C60 films were continuous,
monocrystalline, and had an fcc lattice with a period close
that for a bulk sample. Electron diffraction patterns~Fig. 1!
contained reflexes~220! and ~422!, indicating that the~111!
plane of the C60 film was parallel to the~100! plane of NaCl.
At the same time, reflexes with lattice spacings of 0.86 a
0.43 nm which were also observed can be identified as
reflexes associated with stacking faults of 1/3~422! and 2/3
~422!.5 An analysis shows that in spite of considerable d
ferences in the lattice periodsa50.564 nm for NaCl and
a51.42 nm for fullerite C60, favorable orientational rela
tions required for the monocrystalline growth of C60 films
are created in the given film–substrate system. For exam
the two periods of the C60 lattice correspond~to within 1%!
to five periods of the NaCl lattice.

6420642-02$10.00 © 1997 American Institute of Physics
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Table I gives the results of precision measurements
lattice spacingDd/d for C60 films in the temperature interva
from T1 to T2 . The value ofDd/d increases upon a decrea
in the film thickness. For example, the value ofDd/d for a
film of thickness 3.5 nm is 1.6 times the value ofDd/d for
bulk fullerite.

The measured dilatometric effect of lattice spacing in
temperature range under investigation is due to thermal
pansion as well as the phase transition of fullerite from
fcc lattice to a simple cubic lattice atT'260 K. According
to the results of dilatometric and x-ray diffraction studies,
this phase transition the value ofDd/d amounts to
3.431023.6,7 This value was used for calculating the line
expansion coefficientsa f for the films, which are given in
Table I. The temperature interval under investigation
cluded the region 90–260 K of the ordered C60 phase. The
obtained average values of the thermal expansion coeffic
correspond to this phase.

The obtained data on the linear expansion coefficient
very thin films make it possible to estimate the thermal
pansion coefficientas of the surface layer associated wi
the linear expansion coefficientav in the volume through the
relation8

as /av5us
2/uv

2, ~3!

FIG. 1. Electron diffraction pattern for a fullerite C60 film of thickness 3.5
nm at T5270 K. The scale of the electron diffraction pattern
2Ll520.6 nm•mm.

TABLE I. Relative changes if the lattice spacingDd/d and average linear
thermal expansion coefficienta f of fullerite C60 films in the temperature
rangeT1–T2 .

t, nm T1–T2 , K Dd/d • 103 a f • 106, K21

3.5 269–83 11.6 44
6 273–80 8.2 25
` 273–80 6.87 197

` 273–80 7.16 19.56
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on the surface and in the volume, respectively. The value
us

2 are higher than the values ofuv
2 and tend exponentially to

the volume value.1 In this approximation, the linear expan
sion coefficient of thenth atomic layer can be written in th
form

an5av1~as2av!e2n. ~4!

The linear thermal expansion coefficienta f of the film can
be presented as a superposition of the linear thermal ex
sion coefficientsan of individual atomic layers taking into
account the relative film volumeh occupied by them. In
these calculations, we assumed thath5(m21)21 ~m is the
number of atomic layers in the film thickness! and that the
relative volume of the surface layer is equal to 0.5h. Thus,
the thermal expansion coefficient of the film can be p
sented in the form of a linear combination ofas andav :

a f5a1as1a2av . ~5!

Each value of the film thickness corresponds to its own
efficientsa1 anda2 . For example, a monocrystalline fullerit
film of thickness 3.5 nm, which is oriented along the~111!
plane, corresponds approximately to four lattice perio
d11150.82 nm, i.e., five atomic layers fit into the film thick
ness. In this case,a150.47 anda250.53. For a film of
thickness 6 nm containing eight~111! layers, the values of
a1 anda2 are equal to 0.30 and 0.70, respectively.

From the measured values ofa f and the value ofav
known from the literature,6,7 expression~5! can be used for
estimating the value ofas : as54031026 K21 and
7031026 K21 for films of thickness 6 and 3.5 nm, respe
tively.

Thus, the thermal expansion coefficient of the surfa
atomic layer ~111! parallel to the surface
asi

5(55615)31026 K21 in the temperature range unde
investigation. This value ofasi

is apparently somewhat ex
aggerated since the contribution to the measured dilatom
effect comes not only from the parallel, but also from t
perpendicular component of thermal expansion relative
the surface in view of natural roughness of the film.9

The authors are grateful to A. I. Prokhvatilov for fruitfu
discussion of the results.
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Peculiarities of nonlinear electrical conductivity of two-dimensional ballistic contacts
M. V. Moskalets

Prospect Il’icha,93a, Flat 48, 310020 Kharkov, Ukraine
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Fiz. Nizk. Temp.23, 857–863~August 1997!

Peculiarities of the conductivity of two-dimensional ballistic contacts that are sensitive to the
nature of the confining potential as well as the existence of electrostatic potential inside
the microconstriction are considered. It is shown that the position, amplitude, and shape of the
peculiarities carry direct information about the position of quantization levels, the
magnitude of potential inside the microconstriction, and the probability of passage of an electron
through the contact. ©1997 American Institute of Physics.@S1063-777X~97!01108-0#
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1. INTRODUCTION

Conducting structures of small size1 are unique objects
for studying the wave properties of charge carriers in sol
A quantum point contact in the form of a narrow constricti
~whose sized is comparable with the electron waveleng
lF! connecting two macroscopic regions is an object of t
type. Quantization of the transverse motion of electrons
the region of microconstriction changes the electron sp
trum. Each transverse quantization lev
«n5(pn\/d)2/(2m) (n51,2,...) has a one-dimensional
subband«n(px)5px

2/(2m)1«n ~the x-axis is directed along
the contact axis! with conductivity G052e2/h correspond-
ing to it. The quantization of the conductance of tw
dimensional ballistic contacts discovered in Refs. 2 and
a direct experimental evidence for the existence of qu
one-dimensional conducting subbands in a ballistic mic
constriction.

It was revealed as a result of theoretical analysis4–12 that
conductance quantization takes place for contacts wit
sharp geometry, as well as contacts with a smooth sh
~adiabatic contacts!. According to Landauer’s multichanne
formula,13 the conductivity of a contact can be defined
G5NG0~N is the number of conducting subbands!. A one-
dimensional subbandn is conducting if the condition«n,«F

is satisfied~«F is the Fermi energy of electrons at the ban
of the structure!. A variation of the gate voltageVg changes
the contact diameter, leading to a variation of the position
the quantization levels. Consequently, the number of c
ducting subbands varies, and this is reflected in the form
steps of equal height on the dependenceG(Vg).

A variation of the voltageV applied to the contact ca
also change the number of conducting subbands.14 Depend-
ing on the type of conductivity, the subbands are divided i
three classes: conducting subbands, for which the rela
«n,«F2ueVu/2 is satisfied, nonconducting subband
for which the relation«n.«F1ueVu/2 is satisfied, and sub
bands which conduct only in one directio
«F2ueVu/2,«n,«F1ueVu/2.15 The change in the nature o
conductivity in a subband is manifested in the form of spik
~peaks! on the dependenced2I /dV2(V) arranged at
(eV)n52u«n2«Fu.16 These peculiarities were observed e
perimentally in Refs. 15, 17 and 18.

The position of the levels«n is determined by the con
644 Low Temp. Phys. 23 (8), August 1997 1063-777X/97/08
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tact size and nature of the potential barrier confining
transverse motion of electrons in the contact. Normally,
‘‘hard wall’’ model is used, in which the electron wave func
tion vanishes at the contact boundaryy5y(x), and the spec-
trum of the transverse motion is the spectrum of a particle
a potential well~with vertical walls!. However, experimenta
results indicate18 that the ‘‘soft wall’’ model is preferable for
n.1.19 This model employs the parabolic potenti
U(x,y)5U0(x)1v2y2/2 which confines the transverse m
tion of electrons with the harmonic oscillator spectru
However, further investigations are needed to determine
nally the nature of potential barrier in a microconstriction

In the present work, it is shown that the peculiarities
the potential forming a microconstriction can be determin
from an analysis of nonlinear singularities of conductivity
two-dimensional ballistic contacts, associated with a cha
in the number of subbands or a change in the contact di
eter or voltage. The present communication consists of
following parts. In Sec. 2, we analyze the dependen
dI/dVg(Vg). It will be shown in Sec. 3 that the dependen
]I /]T(V) has peaks whose position corresponds to the
tance between the transverse quantization levels«n and the
Fermi level«F . In Sec 4, we shall show that an electrosta
potential relative to the contact edges exists in a microc
striction, and analyze its effect on nonlinear singularities
the contact conductivity.

2. NONLINEAR CONDUCTIVITY OF A TWO-DIMENSIONAL
BALLISTIC CONTACT

We shall start from the expression for current pass
through a ballistic adiabatic contact with a voltageV applied
across its banks1 in nonlinear response regime (eV!«F):

I 5
2e

h (
n
E d«Tn~«!H f 0S «2«F2

eV

2 D2 f 0S «2«F

1
eV

2 D J . ~1!

Here,Tn(«) is the probability of passage of an electro
with energy« through the contact in channeln, and f 0(«)
5(exp(«/T)11)21 is the Fermi function.

It was mentioned in the Introduction that the existence
quasi-one-dimensional conducting subbands leads to a st
6440644-06$10.00 © 1997 American Institute of Physics
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nonlinearity of the current–voltage characteristics~IVC! of a
quantum ballistic contact. An increase in the voltage m
bring the bottom of one of the subbands«n in the band of
current states6eV/2 near the Fermi level«F , which results
in a sharp variation of the contact conductivity and is ma
fested in the form of a spike~peak! on the dependence of th
second derivative of currentd2I /dV2 with respect to voltage
V.

On the other hand, a change in the contact diameterd for
a fixed voltage, accomplished by a variation of the gate v
ageVg , also leads to a change in the number of conduct
subbands and hence to the emergence of conductance j
on theG(Vg) dependence~for V→0!,2,3 as well as current
jumps on theI (Vg) dependence~for VÞ0!.14 Thus, the de-
pendence of the first derivative of currentdI/dVg with re-
spect to the gate voltage onVg for V5const ~just like the
dependence of the second derivative of currentd2I /dV2 with
respect to voltageV for Vg5const! contains peaks corre
sponding to a change in the number of conducting subba

Let us evaluate the derivativedI/dVg by taking into ac-
count the fact that the only quantity depending onVg in
formula ~1! is Tn , which is a function of«n :

dI

dVg
5(

n
S dI

dVg
D

n

,

S dI

dVg
D

n

5
2e

h E d«
dTn

d« S 2
d«n

dVg
D H f 0S «2«F2

eV

2 D
2 f 0S «2«F1

eV

2 D J . ~2!

A peculiar feature of the quantityTn(«) is that it varies
from zero~for «,«n! to unity ~for «.«n! in a narrow en-
ergy intervalD«.Dn in the vicinity of «n . Hence we can
single out two limiting cases

~1! 4T!Dn~T is the temperature at the contact bank!.
In this case, we can putf 0(«)5u(2«):

S dI

dVg
D

n

5
2e

h S 2
d«n

dVg
D H TnS «F1

eV

2 D2TnS «F2
eV

2 D J ,

~3a!

or, for V!Dn

S dI

dVg
D

n

5
2e2

h
VS 2

d«n

dVg
D dTn

d«
. ~3b!

~2! 4T@Dn . In this case, we can putTn(«)5u(«2«n):

S dI

dVg
D

n

5H 2e

h S 2
d«n

dVg
DV~«n2«F1eV/2!, V@T,

e2

2h

V

T S 2
d«n

dVg
D cosh22S «n2«F

T D , V!T.

~4!

Here, V(x)5@11exp(2x/T)1exp((x2V)/T)#21. Let us
also consider the expression for the peak amplitude@for
«n(Vg)5«F# for an arbitrary relation betweenV andT:

S dI

dVg
D

«n5«F

5
2e

h S 2
d«n

dVg
DAn~V,T!,
645 Low Temp. Phys. 23 (8), August 1997
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An~V,T!5tanhS V

4TD . ~5!

Let us analyze the above expressions. The depend
dI/dVg(Vg) consists of a sequence of peaks arranged
«n(Vg)5«F and corresponding to the ‘‘passage’’ of th
quantization leveln through the current interval6eV/2 in
the vicinity of the Fermi level«F :«F2eV/2,«n(Vg),«F

1eV/2. The amplitudes of the peaks are defined by the qu
tities d«n /dVg and An(Vg ,V,T). For 4T@Dn , the depen-
dencesAn(Vg) are identical for alln. Hence, the ratio of the
peak amplitudes in this case is determined exclusively by
quantity d«n /dVg . In the following, we shall consider two
traditionally used models of the potential corresponding
the motion of electrons in the contact region, viz., the ‘‘ha
wall’’ and the ‘‘soft wall’’ models.19

In the ‘‘hard wall’’ model, the contact boundary is as
sumed to be impermeable to electrons with any energy.
quantization levels«n5(pn\/d)2/(2m) depends on the
contact diameterd which is assumed to be proportional
the gate voltageVg . In this model, the variableVg can be
replaced by the variabled ~it is more convenient to use th
dimensionless quantity j52d/lF!. Computing
d«n /dj522«n /j, we can easily show that the ratio of pea
amplitudes in the ‘‘hard wall’’ model~for 4T@Dn! is de-
fined as~Fig. 1!

S dI

dVg
D

1

:S dI

dVg
D

2

:S dI

dVg
D

3

:...5
1

1
:

1

2
:

1

3
:... . ~6!

In the ‘‘soft wall’’ model, the transverse motion of elec
trons is confined by a parabolic potential. The quantizat
levels are equidistant:«n5U0(Vg)1\v(n11/2). It is as-
sumed that the gate voltage does not change the rela
separation between levels, i.e., the frequencyv, but varies
only the potentialU0 inside the contact. The dependen

FIG. 1. Dependence ofdI/dVg on contact diameter forT50.01«F and
V50.1«F .
645M. V. Moskalets
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U0(Vg) is assumed to be linear. In this case, the quan
d«n /dVg5const and does not depend onn. Hence all peaks
in the ‘‘soft wall’’ model ~for 4T@Dn! have the same
height:

S dI

dVg
D

1

:S dI

dVg
D

2

:S dI

dVg
D

3

:...51:1:1:... . ~7!

A comparison of formulas~6! and ~7! leads to the con-
clusion that an analysis of the relative amplitudes of the
pendencedI/dVg(Vg) makes it possible to choose betwe
various models of the potential confining the transverse m
tion of electrons in the constriction region.

As the temperature decreases (4T!Dn), formulas ~6!
and~7! remain valid forV@Dn @see formula~3a!#. However,
an additional factordTn /d«.1/Dn appears forV!Dn ~see
formula ~3b!!. In the ‘‘soft wall’’ model,19 Dn'const, and
formula ~7! remains valid. In the ‘‘hard wall’’ model,
Dn.1/n ~see, for example, Refs. 4 and 6! and amplitudes of
all peaks become equal. It should be mentioned, howe
that Zagoskin and Kulik11 obtainedDn5const for a contact
with special geometry in the ‘‘hard wall’’ model. Hence fo
mula ~6! remains valid in this model for the entire range
variation of temperatureT and bias voltageV.

An analysis of the dependence of the width (DVg)n of
peaks on their numbern also makes it possible to choos
between models of confining potential in the contact:

~DVg!n.Hn•max~T,V,Dn! in the hard wall model,
max~T,V,Dn! in the soft wall model.

~8!

Moreover, an analysis of the dependence of the p
width on temperatureT and bias voltageV allows us to
determine experimentally the quantityDn .

An increase in the bias voltageV or temperatureT in-
creases the width of peaks and the peaks merge. In this
the dependencedI/dVg(Vg) becomes smooth and attains
classical asymptotic form. In the classical~not quantum!
limit ( d@lF), the currentI passing through a ballistic con
tact is equal to 4e2dV/(hlF), and hencedI/dj5G0V
~G052e2/h is the conductance quantum!. The current at-
tains the classical value when the bias voltageV or the width
of temperature blurring of Fermi steps becomes equal to
separation between quantization levels~see Fig. 2!:

D«n.max~V,4T!. ~9!

3. TEMPERATURE AND FIELD SPECTROSCOPY OF
TRANSVERSE QUANTIZATION LEVELS IN A CONTACT

In the preceding section, we considered the peculiari
of the I –Vg characteristics of a contact associated with
‘‘passage’’ of the quantization level«n through the current
interval 6eV/2 in the vicinity of the Fermi level. In this
section, we shall consider the IVC nonlinearity associa
with the ‘‘passage’’ of the quantization levels through t
region of temperature blurring of the edge of the Fermi st
This nonlinearity is manifested on the dependence of]I /]T
on the bias voltageV. Differentiating formula~1! with re-
spect to temperature, we obtain
646 Low Temp. Phys. 23 (8), August 1997
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]I

]T
5

2e

h (
n
E d«

dTn

d« H CS «2«F2eV/2

T D
2CS «2«F1eV/2

T D J . ~10!

Here,C(x)5 ln@11exp(x)#2x@11exp(2x)#21. Formula~10!
is simplified in two limiting cases:

~a! for 4T@Dn

]I

]T
5

2e

h (
n

H CS «n2«F2eV/2

T D
2CS «n2«F1eV/2

T D J ; ~11!

~b! for 4T!Dn

]I

]T
56.6T

e

h (
n

H dTn

d«
~«F1eV/2!2

dTn

d«
~«F

2eV/2!J . ~12!

Thus, the dependence]I /]T(V) consists of a set of posi
tive and negative peaks arranged at (eV)n52u«n2«Fu ~see
Fig. 3, curve1!. In the case~a! corresponding to the situatio
when the region of temperature blurring of the Fermi s
exceedsDn , the shape of the peak does not depend onn and
is determined by the functionC(x). Note that the amplitude
of the peak in this case does not depend on its number
temperature: (]I /]T)«n5«F

5(2e/h)ln 2, while the peak
width is proportional to temperature. As the temperature
creases (4T!Dn), the shape of the peak is determined
the energy derivative of the transmission coefficie
dTn /d«(«). In this case, the width of the peak is indepe
dent of temperature~and is equal toDn! and the amplitude is
proportional to the ratioT/Dn . The effect vanishes atT50.

FIG. 2. Dependence ofdI/dVg on contact diameter forT,V.Dn . The
values of parameters areT50.1«F andV50.1«F .
646M. V. Moskalets
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Thus, an analysis of the dependence]I /]T(V) makes it
possible to determine the position of quantization lev
(eV)n52u«n2«Fu in the contact~for a fixed contact diam-
eter d!. Moreover, the temperature dependence of the p
width leads to the value ofDn . Note that the position of
quantization levels can also be determined from the posi
of the peaks on the dependenced2I /dV2(V),16 although only
broad singularities are observed instead of peaks in ac
experiments.18

4. EFFECT OF QUANTUM ELECTROSTATIC POTENTIAL ON
THE CONDUCTIVITY OF A BALLISTIC CONTACT

We shall show that one-dimensionalization of electr
spectrum in the region of microconstriction leads to the
istence of a potential difference in thermodynamic equil
rium between the constriction and contact banks~quantum
electrostatic potential!.20 We shall study the effect of this
potential difference on nonlinear singularities of the cond
tivity of the contact considered in the previous section.

For the sake of simplicity, we shall consider a ballis
contact in the form of a channel of widthd and lengthL.d.
The potential difference between the contact and the ban
denoted byF(d). In this case, the electron number dens
n(d) in the contact can be written in the form

n~d!5
2

hd (
n
E dpxf 0@«n1eF~d!1px

2/~2m!2«F#.

~13!

Here,«F is the chemical potential of electrons at the ban
~the potential of the banks is assumed to be zero!. The po-
tential F(d) is determined from the self- consistency con
tion which, in the limit of strong screening

L,d@r s ~14!

FIG. 3. Dependence of]I /]T on voltageV. Curve 1 is obtained without
consideration of the potential at the center of microconstriction. Curv2
takes the potentialF into account. The values of parameters areT50.002«F

andd55.25lF .
647 Low Temp. Phys. 23 (8), August 1997
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~r s is the screening radius! is reduced to the condition o
electrical neutrality. Assuming that the background of po
tive charge is the same at the banks and in the channel
obtain from the electroneutrality condition

n~d!5n0 , ~15!

wheren052p/lF
2 is the electron density at the banks. Thu

formulas~13! and~15! lead to the self-consistency conditio
which determines the quantityF(d):

lF
2

phd (
n
E dpxf 0~«n1eF~d!1px

2/~2m!2«F!51.

~16!

In the ‘‘hard wall’’ model at zero temperature (T50),
this relation gives

4

pj (
n

~11w~d!2n2/j2!1/2u~11w~d!2n2/j2!51.

~17!

Here,w(d)52eF(d)/«F . The dependencew(d) is plotted
in Fig. 4. The peaks on this dependence correspond to
‘‘inclusion’’ of the next conductivity channel, which occur
when the following condition is satisfied:

«n1eF~d!5«F . ~18!

The corresponding channel widthdn is given by

dn5
lF

2

n

~11wn!1/2, ~19!

The potential in the channel is defined as

wn5
p

4
nS (

k51

n21 S 12
k2

n2D 1/2D 21

21. ~20!

FIG. 4. Dependence of potentialF on the microconstriction diameter.
647M. V. Moskalets
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It can easily be shown that, if we take into account the qu
tum electrostatic potential~QEP! F(d), the ‘‘inclusion’’ of a
conducting subband with numbern occurs for
jn.n20.5(n@1).

Upon a decrease in the contact diameter (d.lF), the
screening radius (r s.lF) becomes comparable withd, and
the strong screening approximation becomes invalid. In
case, a charge layer formed near the channel edges ham
an increase in the potential inside the channel upon a
crease in its diameter. Hence the variation of the potentiaF
will no longer compensate the increase in the ene
«1.1/d2 and the channel will become nonconducting. No
that the channel would have remained conducting in
strong screening limit even ford→0.

In the current state, the potentialF also depends on th
voltage applied to the contact. In this case, the s
consistency condition assumes the form

lF
2

phd (
n
E dpxu~px!$ f 0@«n1eF~d,V,T!1px

2/~2m!

2«F2eV/2#1 f 0@«n1eF~d,V,T!1px
2/~2m!2«F

1eV/2#%51. ~21!

Formulas~16! and~21! are also applicable for a conta
of arbitrary shape. The quantityd stands for the contact siz
at the narrowest position. Moreover, the change in the c
tact diameter over a distance;lF must be small:
d(ln d)/dx!lF

21 . Note that the expressions presented ab
were obtained under the assumptionTn5u(«2«n), which is
valid at least for 4T@Dn .

Let us now study how the existence of a potent
F(d,V,T) changes the results obtained in previous sectio
Note that the results obtained in this section are applica
for a broad contact (d.lF) for which the ‘‘hard wall’’
model of confining potential is more suitable.

The existence of the potentialF can be taken into ac
count easily by replacing«n with «n1eF. As a result, the
expression fordI/dVg assumes the form

dI

dVg
5

2e

h (
n
E d«

dTn

d« S 2
d«n

dVg
2e

dF

dVg
D H f 0S «2«F

2
eV

2 D2 f 0S «2«F1
eV

2 D J . ~22!

It can easily be shown that the peak amplitude for 4T@Dn is
proportional to the quantity

S dI

dVg
D

n

.
~11wn!3/2

n
, ~23!

wherewn is defined by formula~20! for T50 andV50. If
T and V are not equal to zero, we must solve Eq.~21! nu-
merically to obtain the quantitywn . It follows from formula
~23! that, if we take QEP into consideration, the ratios
peak amplitudes on the dependencedI/dVg(Vg) no longer
satisfy the simple relation~6!, which can be used for exper
mentally determining the potential inside the microconstr
tion.
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The expression for]I /]T also changes and assumes t
following form for 4T@Dn :

]I

]T
5

2e

h (
n

H CS «n1eF2«F2eV/2

T D
2CS «n1eF2«F1eV/2

T D2e
]F

]T F f 0S «n1eF

2«F2
eV

2 D2 f 0S «n1eF2«F1
eV

2 D G J . ~24!

It follows from the above expression that the presence
QEP leads to the asymmetry of positive and negative p
amplitudes in the dependence]I /]T(V) ~see Fig. 3, curve2!.

5. CONCLUSION

In this work, we have shown that the investigation
nonlinear singularities of two- dimensional ballistic contac
makes it possible to obtain direct information about the
ture of electrostatic potential forming the microconstrictio
For example, the measurement of relative amplitude of pe
on the dependencedI/dVg(Vg) determines whether the con
fining potential is impenetrable for electrons or the tran
verse electron movement occurs in the parabolic~‘‘soft
wall’’ ! potential.

It is also shown that the presence of electrostatic pot
tial in the microconstriction region is a characteristic featu
of quantum ballistic contacts. This potential emerges due
difference in the nature~dimensions! of the electron spec-
trum in the region of microconstriction and at the conta
edges. It should be observed that in the ‘‘soft wall’’ mode19

which is applicable ford.lF , the electrostatic potential in
the microconstriction region is induced by the gate volta
Vg . According to our investigations, the electrostatic pote
tial in the contact does not vanish upon an increase in
contact diameter (d.lF), although its physical nature
changes. In this case, the potential in the microconstrictio
not connected with the gate voltageVg determining the
shape of the contact, but is due entirely to the manifesta
of the quantum nature of electron motion in the contact.
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Thomas–Fermi screening of a moving surface charge

sur-
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Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Lenin ave.,
Kharkov 310164, Ukraine*
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The dynamical screening effects in the skin layer of a metal are investigated. The electric charge
density near the metal surface induced by a moving charged body outside the metal is
screened at the Thomas–Fermi length if the velocity parallel to the surface is smaller than the
Fermi velocity. Crisis of screening is found at the velocity approaching the Fermi velocity,
which results in the electric field penetration inside the metal at large distances, and in the
distortion of the electric field distribution outside the metal. The energy dissipation from
a moving charged body as a function of the velocity has a pronounced singularity near the Fermi
velocity. © 1997 American Institute of Physics.@S1063-777X~97!01208-5#
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Macroscopic charge cannot exist inside a metal. Up
introduction into a metallic sample, any external charge c
centrates near its surface in a thin layer, whose character
thickness is1,2

lTF5@4pe2N~«F!#21/2, ~1!

the so-called Thomas–Fermi screening length, which is ty
cally of the order of a few angstroms.@N(«F) is the density
of electronic states at the Fermi energy,«F .#

If the external charge is fixed in space, the emerg
Coulomb potential will be screened inside the metal at
same distance. Along the surface, charge density can b
calized within some area, and can be translated parallel to
surface without changing its shape. It is tempting to consi
the surface charge, which is generated due to the motion
charged body in vacuum near the metal surface, as a sep
entity, and to investigate the effects related to its dynam
behavior. At the velocity smaller than the Fermi velocity, t
nonlinearity in the response to an external perturbation m
occur if the former approaches the phonon propagation
locity, which results in phonon emission followed by ext
energy release from the surface sheet. In the case of
motion with a velocity greater than the Fermi velocity, t
oscillatory potential emerges in the wake behind the char
body ~e.g., an ion moving in a metal!, which can trap con-
duction electrons in the wake-bound state.3,4 At a velocity
approaching the Fermi velocity, the charged body wake i
‘‘resonance’’ with the conduction electrons, which accou
for the singularity of the dissipation in the surface sheet a
for the stopping power of body motion. In the case of moti
of a charged body outside the metal, this results in the n
linear interaction between the external moving charge
the induced charge near the surface. The dependence of
force and power dissipation on the velocity is nonlinear a
possibly nonmonotonic.

The information concerning the electron states in me
which can be obtained in the corresponding experiments
similar to that found from the conventional conductivi
measurements except that~1! it is directly related to the re-
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face;~2! the nonlinear output is expected in the linear amp
tude regime~small charges and fields! since the nonlinearity
may be concerned with the large velocity of collective m
tion rather than with the drift velocity of electrons.

In the present paper we investigate the dependenc
the charge distribution inside the metal and the electrost
potential outside the metal, on the velocity of the surfa
sheet motion produced by a charged body~known as the
‘‘tip’’ ! outside the metal moving parallel to the metal su
face. It is shown that the surface charge follows the tip m
tion adiabatically only if the velocity of motion is muc
smaller than the Fermi velocityVF . A velocity greater than
VF causes a crisis of the Thomas–Fermi screening, wh
results in the nonlinear charge penetration deep into
metal and in the distortion of the screening electric field
side and outside the metal.

The questions considered can have relevance to scan
tunneling microscopy,5 to the effects of charge quantizatio
in small metallic electrodes,6 to ballistic electron transport in
narrow metallic constrictions and point contacts,7,8 and to
general aspects of ‘‘fermiology,’’ i.e., Fermi surface reco
struction in metals, since the dynamical screening effect
the surface sheet depend essentially on the topology
shape of the Fermi surface. The interaction of a moving s
face charge with phonons can be viewed as a kind of ‘‘s
face spectroscopy’’ of conduction electrons in metals.9

Another type of experiment involves charged ion moti
inside a metal3 or a traversal of the interface between me
and vacuum.4 If the velocity of ion motion approachesVF

from above, the wake-bound state of an electron and s
ping power for ion motion reveal a singularity in the lim
V→VF . In the case of small velocity, the surface char
follows the external perturbation adiabatically, allowing for
semiclassical description of the interaction of external el
tric field and the induced charge. Important difference b
tween the caseV @ VF andV < VF is that semiclassical ap
proximation may present a reasonable approximation of
problem.

After the discussion of the validity of different approx
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The scalar potential in a metal emerging from an external
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cable to the problem of dynamical screening in Sec. 2,
investigate in Sec. 3 the dynamical screening in a tw
dimensional metal with a cylindrical Fermi surface since
most clearly illustrates the theoretical method adopted by
and the origin of the velocity-dependent anomaly predict
In Sec. 4, similar effects are considered for a thr
dimensional metal with a spherical Fermi surface. Ene
dissipation and drag force induced in a moving body
calculated in Sec. 5, followed in Sec. 6 by the discussion
the physical aspects of the surface charge dynamics and
sible realization of its fast motion in metals.

2. SEMICLASSICAL APPROXIMATION FOR A DYNAMICAL
SCREENING

Linear response of a degenerate electron gas to a t
and space-dependent electric potential

f~r ,t !5E dk

~2p!3 E
2`

` dv

2p
fkv exp~ ikr 2 ivt !

is described by the quantum kinetic equation10 ~assuming\
5 1!

~v2«p1k/21«p2k/2! f kv
1 1efkv~ f p2k/2

0 2 f p1k/2
0 !50,

~2!

where f p
0 is the unperturbed electron distribution functio

(exp@(«p 2 m)/T# 1 1)21, and f kv
1 is the first order cor-

rection to f kv(p). ~Assuming that the velocity of motion i
much less than the light velocityc, we can ignore the mag
netic field effects and eliminate the vector potential A, lea
ing only a scalar potentialf.!

Equation~2! results in the Lindhard formula~e.g., see
Ref. 1! for the relation between the electric displacement a
the electric field

Dkv5Ekv14pPkv5e~k,v!Ekv ,

where rkv 5 2(4p)21ikPkv is the external charge den
sity, and

«~k,v!511
4pe2

k2 E 2dp

~2p!3

f p1k/2
0 2 f p2k/2

0

v2«p1k/21«p2k/22 id
.

~3!

At v 5 0, the dielectric function within the random-pha
approximation~RPA! @Eq. ~2!# is

e~k!511
kTF

2

k2 L~x!, L~x!5
1

2
1

12x2

4x
lnU11x

12xU, ~4!

wherex 5 2k/kF . At small k, the kinetic equation~2! re-
duces to a semiclassical~SA! Boltzmann kinetic equation fo
the distribution functionf (p,r ,t), and Eq.~3! reduces to an
expression for the dielectric function

e~k!511kTF
2 /k2, ~5!

which is equivalent to~1! with kTF 5 1/lTF .
To clarify the difference between various approxim

tions, let us consider the screening of the electrostatic po
tial produced by a charged plane immersed inside the m
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electric charge uniformly distributed with the densitys in a
planez 5 0 is

f~z!52sE
2`

` exp~ ikz!

k2e~k!
dk. ~6!

It reduces to an exponential dependencef(z)
5 f(0) exp(2 kTFuzu) within the SA. Within the RPA, by
introducing a parameter

a5S kTF

2kF
D 2

~7!

we obtain

f~z!5E
0

` cos~2kFzx!

x21a f ~x!
dx. ~8!

For typical metals,a falls within the interval

0.3,a,1 ~9!

@a is related to the most commonly used quantity2 r s

5 r 0 /a0 , wherea0 is the Bohr radius, andr 0 is the average
distance between electrons, sincea 5 p21(4/9p)1/3 r s

5 0.1659r s .#
The normalized potential distributionf(z)/f(0) as a

function of 2kFz is shown in Fig. 1a for variousa. However,
since it is nonexponential~power-like and oscillating with a
periodp/kF

1 at largez!, f(z) is very small in the region in
which, within the SA, it decays exponentially. If replotted
a function of kTFz 5 z/lTF , all the dependence
f(z)/f(0) at differenta fall nearly into a single line~Fig.
1b!. The screening radius,

r̄ 5E
0

`

f~z!dz/f~0!, ~10!

within 10% accuracy equals the Thomas–Fermi screen
length in the interval ofa from 0 to 1. This has an implica
tion that the semiclassical approximation, which is not exa
nevertheless gives a reasonable estimate of screening
will use the approximation which can be used to trace
dynamical screening effects in metals. The solution prove
be quite complex even within the SA, and it would becom
intractable in the RPA scheme11 sincek in Eq. ~2! must be
considered as an operatorid/dz. In any case, the validity of
SA is indeed guaranteed as long asa is small ~9!.

3. THOMAS–FERMI SCREENING IN A TWO-DIMENSIONAL
METAL

Consider the metallic semispace in the vicinity of
charged tipT moving parallel to the metal surface with
velocity V ~Fig. 2!. We shall investigate the steady-state d
tribution of electrons in a momentum spacef (r ,p,t) and the
electrostatic potential distributionf(r ,t) inside and outside
the metal with the assumption that they make a self-sim
configuration which depends on the relative coordinatex
2 Vt.

In a semiclassical approximation, charge densityr is ex-
pressed in terms off as
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r

ar

ich
ean
ing

ace
o-

al

,
en-

ace

vior

s o
r52eE dp

~2p\!3 ~ f 2 f 0!, ~11!

where f 0 is the equilibrium Fermi distribution. The scala
potential can be found from the Poisson equation

¹2f14pr50, ~12!

and f satisfies the Boltzmann equation

] f

]t
1v

] f

]r
2e¹f

] f

]p
52 v̂~ f 2 f 0!, ~13!

in which v̂ is an electron collision operator. The self-simil
distributions off andf are

f 5 f 01xw~x2Vt,y,p!] f 0 /]«p , f5f~x2Vt!. ~14!

FIG. 1. Normalized potential distribution inside a metal at various value
a as a function of 2kFz ~a! andkTFz ~b!. 1—a 5 0.2; 2—a 5 1.1; 3—a
52.0.
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The charge density in a metal atT 5 0 is

r52eN~«F!^xw&, ~15!

where^...& denotes averaging over the Fermi surface.
We ignore scattering of electrons inside a metal, wh

is expected to be a good approximation if the electron m
free path is much larger than the Thomas–Fermi screen
length, but include the scattering of electrons at the surf
with the help of the diffuse boundary condition that intr
duces a diffusivity coefficientq(0 , q , 1). Requiring
that the electron current be zero at the metal surface,12 we
can write the boundary condition in case of a cylindric
Fermi surface directed along they axis in the form

x2w5~12q!xw1
q

2 E
0

p

xw sin wdw, ~16!

where q is the diffusivity coefficient of the metal surface
andw is the angle between the direction of electron mom
tum and surface.

In the Fourier representation with respect to the surf
coordinatesx, y, the equations forfk andxwk are~below we
drop for clarity the indexk!

k2f2d2f/dz2524peN~«F!^xw& ~17!

and

@n1 ikx~VF cosw2V!#xw1VF sin w
dxw

dz

5eVFS ikx cosw1sin w
d

dzDf. ~18!

Although we are considering a clean metal~collision fre-
quency v→0!, a ‘‘trace’’ of the electron scattering~v510!
should remain in order to ensure a proper analytical beha
of the electron distribution inside a metal asz→`.

In the case of zero velocity,V 5 0, Eq. ~18! gives xw

5 ef, thus resulting in an exponential distribution off
inside the metal

f5f~0!exp~2kTFz! with kTF5AlTF
221kx

2. ~19!

f

FIG. 2. Schematic diagram of a charged tip (T) moving parallel to the metal
surface with a velocityV. Surface charge~a dashed line! accumulates near
the metal surface and moves with the same velocity.w is the angle of
incidence of the electron.
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We shall use below the dimensionless units such that\

ta
on

int
-

of
-

-

s of
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on,

ary
5 1, e 5 1 andN(«F) 5 1, VF 5 1, whereVF is the Fermi
velocity. Thus, representingxw in the form xw 5 f
1 uw , we obtain

S 2kx
21

d2

dz2Df5f1^uw& ~20!

and

S igw1
d

dzDuw5
ikxV

sin w
f, ~21!

where

gw5
k~cosw2V!2 iv

sin w
, v510. ~22!

The solution of Eq.~21! is

uw5Aw exp~2 igw!1
ikxV

sin w E
0

z

f~z8!exp@2 igw~z

2z8!#dz8, ~23!

from which it follows thatf(z) can be obtained with the
Laplace transform

fp5pE
0

`

f~z!exp~2pz!dz,

giving for the space dependence off at z . 0

f~z!5
1

2p i Ea2 i`

a1 i`

dpepz

3
pf~0!1f8~0!1*2p

p ~dw/2p!Aw /~p1 igw!

p22kx
22S~p!

,

~24!

whereS(p) is a function

S~p!511kxVE
2p

p dw

2p

1

kx~cosw2V2 i0!2 ip sin w
.

~25!

Integral ~24! is taken in a complex planep along a vertical
line which is situated to the right of all singularities~poles
and branching lines! of the integrand~Fig. 3!. The solution
depends upon the analytical properties ofS(p) which will be
discussed below, and is different atV , 1 ~velocity smaller
than the Fermi velocity! and atV . 1.

The requirement thatf(z) derived from ~24! behaves
regularly atz→` establishes the relation betweenf~0! and
f8(0) ~prime denotes derivative with respect toz! and thus
allows the solution of the Poisson equation outside the me
which for clarity we also represent in the form of a Poiss
integral:

f5
1

2p i Ea2 i`

a1 i`

dpe2pz
pf~0!2f8~0!24pQe2ph

p22kx
2 ,

z,0, ~26!

where for simplicity it is assumed that the tip is a po
chargeQ located at a heighth above the metal surface. Re
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l,

quirement thatf(z) in ~24! should properly behave atz→
2 ` allows us to find the potential provided that the value
the ratiof8(0)/f(0) is specified by the solution of the Pois
son equation inside the metal.13

Evaluation of the integral~24! at V , 1 gives

f~z!5f~0!e2p0z1E
2p

p e2p0z2e2 igfz

p0
21gw

2 Aw , ~27!

wheref8(0) is related tof~0! according to

f852p0f~0!2E
2p

p dw

2p

Aw

p01 igw
. ~28!

This is a consequence of the vanishing exp(p0z) terms in
f(z), wherep0 is the pole of the denominator of the inte
grand of Eq.~24!.

Substitution of Eq.~27! into ~23! gives

uw5Aw exp~2 igw!1
kxV

sin w F f0

gw1 ip0
@exp~2p0z!

2exp~2 igwz!#

1E
2p

p dw

2p

Aw8

p0
21gw8

2

exp~2 igw8z!2exp~2 igw8z!

gw2gw8
G ,

~29!

where

f05f~0!1E
2p

p dw

2p

Aw

p0
21gw

2 . ~30!

The positive values ofw(0 , w , p) correspond to elec-
trons reflected from the surface and the negative value
w( 2 p , w , 0) correspond to electrons arriving from
the bulk of the metal. The quantityAw in Eq. ~29! satisfies at
w , 0 the same relation~16! asxw does. For positivew, the
exponents exp(2 igw) taken with the finite value of v in-
crease exponentially inside the metal and therefore sho
cancel themselves out. This condition gives the relati
which is valid at2 p , w , 0:

FIG. 3. Path of integration in Eq.~24! for V , 1 ~a! and V . 1 ~b!.
Integrals along broken lines cancel each other becauseS(p) at V , 1 has
the same value on both sides to the left and to the right of the imagin
axis.
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w sin w Fgw1 ip0

2E
2p

p dw8

2p

Aw8

~p0
21gw8

2
!~gw2gw8!

G . ~31!

This relation closes the set of equations necessary for
determination of the field distribution inside the metal. Co
bination of Eq.~24! with the boundary condition forAw re-
sults in an integral equation forAw in the domain 0, w
, p

L̂Aw1
kxV

sin w E
0

p dw8

2p

1

p0
21gw8

2 S Aw8
gw1gw8

1
L̂Aw8

gw2gw8
D

5
kxV

sin w

f0

gw2 ip0
, ~32!

wheref0 is taken from Eq.~30!, and L̂ is the operator of
diffusive reflection

L̂Aw5~12q!Aw1
q

2 E
0

p

Aw sin wdw. ~33!

Once solved, Eq.~32! can be used to find the ratiof8/f at
the metal surface, which is our goal in solving se
consistently for the field distribution inside and outside t
metal.

Let us evaluatep0 and S(p). Consider separately th
casesV , 1 andV . 1.

Expression~25! can be reduced to an integral along t
unit circle z 5 exp(iw) in the complex planez,

S~p!511 R dz

2p i

2kxV

~kx2p!z222~kxV1 i0!z1kx1p
.

~34!

At V , 1, the poles of the denominator in the integrand

z1,25~kxV1 iv6A~kxV1 iv!21p22kx
2!/~kx2p!,

lie either inside or outside the unit circle and therefore
integral is equal to zero~except for Rep 5 0!. We therefore
have

S~p!511
i

~12V2!1/2

d~p!

d~0!
, V,1. ~35!

The poles of the denominator of the integrand in Eq.~24! are
6 p0 , where

p05A11k2. ~36!

Typical values ofuku are of the order of the inverse dis
tance from the tip to the metal surface, which is assume
be much larger than the Thomas-Fermi screening len
lTF , and thereforeuku is much smaller than the characteris
momentumkTF @kTF 5 (4p)1/2 in dimensionless units#.

In the caseV . 1, the behavior ofS(p) is quite differ-
ent. At the real axisS(p) is

S~p!512
ukxuV

@p21kx
2~V221!#1/2, V.1. ~37!
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5 6 iq0 , where q0 5 kx(V s 2 1) . At the real axis,
the denominator of the integrand of Eq.~24! has two pairs of
poles6 p1 and6 p2 . For example, in the caseky 5 0 the
equation for the poles

p25kx
2112

ukxuV
@p21kx

2~V221!#1/2 ~38!

gives two values forp . 0:

p5p15kx , and p5p2512
1

2
kxV,ukxu!1. ~39!

The first pole signals that the electric field distributio
breaks the Thomas–Fermi barrier and penetrates into a m
to distancesukxu21 of the order of the tip-to-surface distanc
which is much larger thanlTF . This, however, is not an
equilibrium charge distribution.

With the two polesp1,2, the potentialf(z), which is
derived from Eq. ~24! by integration along the contou
shown in Fig. 3b has two exponentially increasing ter
exp(p1z) and exp(p2z), and also the nonsingular terms ex
( 2 p1z), exp(2 p2z), exp(6 iq0z), and exp (2 igwz), where
q0 5 kx(V

2 2 1)1/2. Elimination of singular contributions
results in the number of equations which is larger than
number of variables. This means that the only admiss
solution in this case is a trivial one,Aw 5 0, uw 5 0, f0

5 0. We thus find thatf(0) 5 f8(0) 5 0, which is
inconsistent with the equation for the potential value outs
the metal@Eq. ~26!#. In fact, if f(0) 5 f8(0) 5 0 ~note
that these quantities are functions ofk! in some domain ofk,
then in this same domain the potential will become infinite
largez. We conclude, therefore, that there is no regular
lution for f(z) if the velocity of the tipV is greater than the
Fermi velocity.

This means that the solutionf(z) does not existin the
linear approximationin xw , and higher-order terms in th
electron distribution should be taken into account on
right side of the Poisson equation~17!.

4. DYNAMICAL SCREENING IN A THREE-DIMENSIONAL
METAL

It can be assumed that the instability of the steady-s
motion of a surface sheet at high velocity found in the p
vious section is specific to the two-dimensional Fermi s
face. We shall see, however, that similar property is a
seen in a three-dimensional metal.

In a metal with a spherical Fermi surface, an equat
for the angular-dependent part of the electron distribut
analogous to~21! is

S igw1
d

dzDuw5
ikxV

sin u sin w
f, ~40!

whereu is a polar angle of the electron momentum at t
Fermi surface, andgw is a quantity

gw5
kx~sin u cosw2V!1ky cosu2 iv

sin u sin w
. ~41!

The boundary condition of diffuse scattering atz 5 0 and
0 , w , p is
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FIG. 4. Poles of the denominator in Eq.~44! at ky 5 0 andV 5 0.9. ~a! large value ofkx (kx 5 0.8) corresponding to one polep0 ; ~b! small kx ~kx

5 0.4, two poles2 p1 ,p2!. Curve1—the dependencep2 2 kx
2, curve2—the dependenceS(p).
q p p

e

-

S5

at

n
of
u2w5~12q!uw1
p E

0
sin uduE

0
dwuw sin u sin w.

~42!

The dynamical screening is represented by a thr
dimensionalS-function analogous to~25!

S511E dV

4p

3
kxV

kx~sin u cosw2V!1ky cosu2 ip sin u sin w2 iv
,

~43!

wheredV 5 sinu du dw, which gives the potential distribu
tion

f~z!5
1

2p i Ea2 i`

a1 i`

dpepz

3
f~0!1pf8~0!1*~dV/4p!@Aw /~p1 igw!#

p22k22S~p!
.

~44!

Evaluation of an integral~43! at ky 5 0 andV , 1 gives
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e- 5
12

V

(12p2/kx
2)1/2 ln

V1(12p2/kx
2)1/2

Vp/kx1(12V2)1/2(12p2/kx
2)1/2,

p,ukxu,

12
V

(p2/kx
221)1/2Farcsin

(p2/kx
221)1/2

(p2/kx
2211V2)1/2

2arcsin
(12V2)1/2(p2/kx21)1/2

(p2/kx
2211V2)1/2 , p.ukxu.

~45!

At p 5 10, the function~43! is

S~p,V,h!512
V

2 E
21

1

dx
sgn~V2hx!

~~V2hx!2211x2!1/2 u~~V

2hx!2211x2!, ~46!

whereh 5 ky /kx . Recall that atp→`S equals 1, whereas
at p 5 0 it is smaller than unity and becomes negative
largeV.

Looking for the poles of an integrand of Eq.~44! with
real axis,

p25kx
21ky

21S~p,V,h!, ~47!

we note that whenS0 5 S(p→ 1 0) is negative, there
always will be two rootsp1 . 0 andp2 . 0 of ~47! in the
certain domain ofk. This is seen from the graphical solutio
of Eq. ~47!, as shown in Fig. 4. Therefore, in this domain
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wave vectors there will not exist any regular solution for the
as

t

V 5tanh
1

. ~51!

e-
he

-
nts
d of
he-

the
is
the
es.

is

elf
r of

is
of

o-

p-
na-

re

long
electric field, and therefore there is a crisis of the Thom
Fermi screening. Let us specify the domain of the latter.

Evaluation ofS0(V,h) gives

S0

5

{
12

V

2~11h2!1/2 lnU12a1~~12a!22b2!1/2

11a2~~11a!22b2!1/2U,
V.h

12
V

2~11h2!1/2 ln

3
b2

@11a2~~11a!22b2!1/2#@12a1~~12a!22b2!1/2#
,

V,h,

~48!

where

a5V
h

11h2 , b25
11h22V2

~11h2!2 , h5
ky

kx
. ~49!

The functionS0(V,h) for differenth is shown in Fig. 5. The
smallest value ofV at which S0 is negative is achieved a
h 5 0, where

S0~V,0!512
V

2
lnU11V

12VU. ~50!

This expression is negative atV . Vc where Vc

5 0.8335 is the solution of an equation

FIG. 5. Dependence ofS0 on V. Curves1, 2, and3 correspond toh 5 0,
0.5, and 1.0, respectively.
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- c Vc

Therefore, the instability of laminar flow occurs in a thre
dimensional metal at a velocity slightly smaller than t
Fermi velocity. Near the critical value ofV, the instability
takes place at a smallky-to-kx ratio. The smaller isukyu, the
stronger is the distortion from the unperturbedf(z) distribu-
tion. In effect, the large-ky Fourier components of the poten
tial are virtually unaffected, whereas small the compone
are depressed. This implies a change of the potential an
the charge distribution inside a metal, which is shown sc
matically in Fig. 6. The shape of the image of~symmetrical!
external charge in the surface sheet is compressed in
direction perpendicular to the direction of motion and
elongated in the opposite direction. At the same time,
penetration depth of electric field inside the metal increas
Near the critical velocity, the characteristic compression

Dz2
lTF

~Vc2V!1/2. ~52!

The effect of potential redistribution strongly manifests its
if the distance between the tip and the metal is of the orde
a few unperturbed Thomas–Fermi screening lengths.

Let us analyze the analytical properties ofS in the com-
plex planep. S(p) has a singularity along the imaginary ax
p 5 iq, which is in effect a manifestation of the existence
the branching points of two-dimensionalS @Eq. ~37!#. In a
three-dimensional metal, maximal velocity of electron m
tion parallel to the metal surfaceVi 5 sinu may be smaller
than 1 atV , 1 in some range ofu. The functionS( iq)
attains different values when the imaginary axis is a
proached from the left and from the right, and remains a
lytical in the subspaces Rep , 0 and Rep . 0. The values
of S(p) to the left and to the right of the imaginary axis a

S6~ iq !511
V

2 E
0

p

duR6~v,q/kx!, ~53!

v5
V2h cosu

sin u
,

whereh 5 ky /kx , and

FIG. 6. Schematic diagram of the charge penetration inside a metal a
the metal surface~a! and along the cross-sectional plane~b!. Solid lines
correspond toV , Vc , and dotted lines correspond toV . Vc .
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Proceeding further in the same manner as in Sec. 2, we

s

a

-

R6~v !55
0, uvu,1

2
sgn~v !

~v2212x2!1/2, uvu.1,uxu,Av221

6
i sgn~vx!

~x22v211!1/2, uvu.1,uxu.Av221

~54!

wherex 5 q/kx .
We can now calculate from~24! the potentialf(z). In-

tegrating along the path shown in Fig. 7, we obtain

f~z!5f0 exp~2p0z!1E dV

4p
Zw exp~2 igwz!

1E
2`

` dq

2p
Xq exp~ iqz!, ~55!

where, as follows from the requirement thatf(z) vanish at
z→`, a relation betweenf~0! andf8(0) is

f8~0!52p0f~0!2E dV

4p

Aw

p01 igw
. ~56!

The coefficientsf0 , Zw , andXq in the expression~55! are

f05
2p0

D8~p0! Ff~0!1E dV

4p

Aw

p0
21gw

2 G , ~57!

Zw5
1

2 F 1

D1~ igw!
1

1

D2~ igw!GAw , ~58!

Xq5S 1

D1~ igw!
2

1

D2~ igw! D F ~ iq2p0!f~0!

2E dV

4p

q1 ip0

~p01 igw!~q1gw!GAw , ~59!

whereD(p) 5 p2 2 k2 2 S(p) is the denominator of an inte
grand of Eq.~24!, which is appropriate for the 3d case.

FIG. 7. Contour of integration for the calculation of the potentialf(z) @Eq.
~24!# in a three-dimensional metal.
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calculate with the help of Eq.~55! the functionuw

uw5Aw exp~2 igwz!1
kxV

sin u sin w F f0

gw1 ip0

3~exp~2p0z!2exp~2 igwz!!

1E dV8

4p
Zw8

exp~2 igw8z!2exp~2 igwz!

gw82gw8

1E
2`

` dq

2p
Xq

exp~ iqz!2exp~2 igwz!

q1gw
G ,

whereAw is an arbitrary constant. Requiring that the term
proportional to exp(2 igwz) cancel each other out atw . 0,
and using, atw , 0, the boundary condition~42!, we obtain

Aw5
kxV

sin u sin w F f0

gw1 ip0
1E dV8

4p

Zw8
gw2gw8

1E
2`

` Xq

q1gw
G ~60!

at2 p , w , 0, and

A2w5~12q!Aw1
q

p E
0

p

sin uduE
0

p

dwAw sin u sin w

5L̂Aw ~61!

at 0 , w , p, whereL̂ is a three-dimensional operator of
diffuse reflection, which can be written in the form

L̂512q1q̂, ~62!

whereq̂ is an operator

q̂Aw5
q

p E dV1Aw sin u sin w ~63!

~dV1 means a solid-angle integration with a positivew!. It
follows also that the inverse operator is

L̂215
12q̂

12q
. ~64!

Combining Eqs.~57! and ~60!, we obtain an integral equa
tion for Aw in the domain 0, w , p

L̂Aw2
kxV

sin u sin w H E dV18

8p
S Aw8

gw1gw8
1

L̂Aw8
gw2gw8

D
3S 1

D1~ igw!
1

1

D2~ igw! D
2E

2`

` dq

2p

q1 ip0

q2gw
E dV18

4p F Aw8
~p01 igw8!~q1gw8!

1L̂
Aw8

~p02 igw8!~q2gw8!
G J 5

kxV

sin u sin w F f0

gw2 ip0

1f~0!E
2`

` dq

2p

iq2p0

gw2 iqS 1

D1~ iq !
2

1

D2~ iq ! D G , ~65!
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where D6( iq) is a value ofD(p) to the left/right of an
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imaginary axisp 5 iq 6 0.
Equation~66! is valid atV , Vc when the linear regime

of the surface sheet motion is realized. In this case the s
tion for Aw , together with Eq.~56!, permits determination o
the effective boundary condition, i.e., the value of the ra
f8/f at z 5 0.

5. ENERGY DISSIPATION IN A MOVING SURFACE SHEET

In this section we will consider the energy losses in
surface sheet as a result of its interaction with the exte
charge that pulls the sheet. The force acting on the shee

F5Er, ~66!

where the surface charge densityr is determined as (1/4p)
3(]f/]z)z50 , and Ex 5 2(]f/]z)z50 . The product
FxV 5 W gives the power dissipated in a metal. Integrati
with respect to space coordinatesx, y and performing the
Fourier transformation, we obtain

W5
V

4p E d2k

~2p!2 kxp0~k!ufk~0!u2 Im z~k!, ~67!

wherek 5 (kx ,ky). The quantityz~k! is the coefficient in
the boundary condition at the metal surface

f8~0!52p0~11z~k!!f~0! ~68!

@we dropped the indexk in fk(0) andfk8(0)#. Using Eq.
~56!, we obtain

z~k!5
1

p0
E dV1

4p
S Aw

p01 igw
1

L̂Aw

p02 igw
D /f~0!, ~69!

whereAw is found from the integral equation~66!.
In the case of absence of ay-dependence of the potentia

~for example, for an infinite rod moving parallel to the su
face!, an expression for the rate of the energy dissipation
unit length is

W5
V

4p E dkx

2p
kxp0~kx!ufkx

~0!u2 Im z~kx!, ~70!

wherez(kx) is found by settingky 5 0 in ~70!. In the case
of small uku, Eq. ~66! can be solved iteratively inkx :

Aw5Aw
01kxAw

11... . ~71!

In the lowest approximation we obtain

L̂Aw5
kxV

sin u sin w F 1

gw2 ip0

1E
2`

` dq

2p

p02 iq

q2gw
S 1

D1~ iq !
2

1

D2~ iq ! D Gf~0!,

~72!

where gw is determined in~41! with v 5 10. Typical
values ofq are on the order ofkx , i.e., much smaller than th
inverse Thomas–Fermi screening lengthkTF ~in the dimen-
sionless units we haveukxu ! 1!. We introduce the function

R~q!5
1

2i S 1

D1~ iq !
2

1

D2~ iq ! D , ~73!
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D6~ iq !52k22q22S6~ iq !; S6~ iq !5S~ iq60!.
~74!

SettingS6( iq) 5 S1(q) 6 iS2(q), we obtain from~53!

S1~q!512
V

2 E
21

1

dx
sgn~V2hx!

~L~x!2q2/kx
2!1/2 u~L~x!

2q2/kx
2!, ~75!

S2~q!5
V

2 E
21

1

dx
u~L~x!!sgn~V2hx!

~q2/kx
22L~x!!1/2 uS q2

kx
2

2L~x! D sgnS q

kx
D , ~76!

wherex 5 cosu, andL(x) 5 (V 2 hx)2 1 x2 2 1. Ath 5 0, a
direct integration gives the following expression for the po
tive values ofq andkx :

S1~q!5H 12V ln
11~V22q2/kx

2!1/2

~12V21q2/kx
2!1/2, q/kx,V,

1, q/kx.V

~77!

and

S2~q!55
VS p

2
2arcsin

(12V2)1/2

(12V21q2/kx
2)1/2D , q/kx,V

VS arcsin
1

(12V21q2/kx
2)1/2

2arcsin
(12V2)1/2

(12V21q2/kx
2)1/2, q/kx.V.

~78!

The dependencesS1,2(q) at variousV and h are shown in
Fig. 8. An approximate value ofR(q) at ukx,yu ! 1 is

R~q!'
S2~q!

S1
2~q!1S2

2~q!
. ~79!

R(q) is an odd function ofq, which vanishes linearly a
small uq/kxu and which behaves at 1/q at uqu @u kxu.

The two terms on the right side of Eq.~73! represent the
contributions to the dissipation emerging from the main p
p 5 p0 in the complex planep, and from the branching poin
along the imaginary axis. The contributions toz~k!, z1(k),
andz2(k) prove to be of the same order of magnitude. Su
stitution of Eq.~73! into Eq.~70! at p0 ' 1 and smallkx @see
Eq. ~36!# gives

Im z1~k!5
kxV

12q E dV1

4p

22q2qgw
2

~11gw
2 !2 sin u sin w

2
kxV

12q E dV1

4p

1

11gw
2 E dV1

p

q

11gw
2

1
kxV

12q E dV1

4p

gw

11gw
2 E dV1

p

qgw

11gw
2 ,

~80!
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Im z2~k!5
kxV

12q E dV1

4p

3
~22q!R0~q!2qgwR1~gw!2gwR~gw!

~11gw
2 !sin u sin w

1
kxV

12q E dV1

4p

1

11gw
2 E dV1

p

3F2qR0~gw!1
q

2
gwR~gw!G

1
kxV

12q E dV1

4p

gw

11gw
2 E dV1

p

FIG. 8. Dependences ofS1 ~upper curves! andS2 ~lower curves! on q. ~a!
h 5 0. Curves1, 2, and 3 correspond toV 5 0.3, 0.5, and 0.7;~b! V
5 0.7. Curves1, 2, and3 correspond toh 5 0, 0.2, and 0.4.
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3FqR1~gw!1
q

2
R~gw!G , ~81!

where

Rn~x!5
1

p
V.p.E

2`

`

–
R~q!qn

q2x
dq. ~82!

Inspection of integrals in Eqs.~81! and ~82! shows that at
kx→0*dV1 /(1 1 gw

2) takes a constant value, where
*dV1gw /(1 1 gw

2) behaves askx ln(1/kx). This means that
the last term in Eq.~82! can be ignored at small value ofk.
The second term is of the order ofkx , whereas the first term
behaves askx ln(1/kx).

For orientation, we assume thatR(q) is Cq/(q2

1 a2), which gives from Eq. ~81! R0(q) 5 Ca/(q2

1 a2) and R1(q) 5 2Caq/(q2 1 a2). One can then
evaluate integrals in~82!. It appears that the last term in th
expression is of the same order of magnitude as the co
sponding term in Eq.~81!; therefore, it can be ignored. Th
second term in Eq.~82! is proportional tokx ln(1/kx). Evalu-
ation of the leading~logarithmic! term in z2 requires the
knowledge of the functionsR0,1 at q 5 0. After some alge-
bra, we obtain

Im z~k!5kxV
12q/2

12q F ln
C1

kx
1m ln

C2

kx
G , ~83!

whereC1,2 ; 1 are complex functions ofV, h, andq andm
is a quantity

m5
2

p E
0

` R~x!

x
dx, ~84!

which is shown for different valuesV andh in Fig. 9.
Sincez is a small quantity (uzu ! 1), the field outside

the metal is almost equal to its value calculated for an ide

FIG. 9. Dependence ofm on V. Curves1, 2, 3, and 4 correspond toh
5 0, 0.2, 0.4 and 0.6.
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reflecting metallic surface (lTF 5 0). The power dissipated
due to the tip motion becomes~in the dimensionless units!

W.
V

4p E d2k

~2p!2 kx

ufk8~0!u2

p0~k!
Im z~k!. ~85!

In the dimensional units, the dissipated power is

W5
V2

4pe2N~«F!VF

12q/2

12q

3E d2k

~2p!2 kx
2ufk8~0!u2

3F ln
C̃1

ukxulTF
1m ln

C̃2

ukxulTF
G . ~86!

Assuming that the tip is a point chargeQ, we obtain an
estimate ofW valid atV ! Vc

W1.
V2Q2lTF

2

VFd4

12q/2

12q
, ~87!

whered is a distance between the tip and the metal surfa
At small d . lTF , this expression matches in order of ma
nitude the loss of a charged particle that moves insid
metal.

For a charged rod with a chargeQ per unit length, an
estimate of the loss per unit length is

W2;
V2Q2lTF

2

VFd3

12q/2

12q
. ~88!

The quantitym in ~84! increases dramatically atV near
the critical velocityVc . At a value ofV larger thanVc , the
linear regime of the surface screening breaks down.
asymptotic behavior ofm nearVc

m.
1

uku21S0~V,h!
, uku!1, ~89!

whereS0→0 in the limit V→Vc(h). The functionVc(h) is
shown in Fig. 10.

FIG. 10. Dependence ofVc on h.
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n

of the momentakx andky . Dissipated powerW can be de-
termined by integration ofm in Eq. ~85! with respect tok.
Whether the dissipated powerW vs V will have similar sharp
resonances depends on the actual potential distribution a
metal surface.

Let us consider as an example a point chargeQ at a
heighth above the metal surface giving atl→0

f~r !5QS 1

~x21y21~z2h!2!1/2

2
1

~x21y21~z1h!2!1/2D , ~90!

from which we have

fk8~0!54pQ exp~22ukuh! ~91!

and an infinite thin rod with the linear charge densityQ, for
which

f~r !5
Q

2
ln

x21~z2h!2

x21~z1h!2 ~92!

and, correspondingly

fkx
8 ~0!52pQ exp~22ukxuh!. ~93!

In the second case we then obtain

W;
W2~V!

S0~V,0!11/4h2 , h@1, ~94!

and in the first case

W;W1~V!E
0

` dh

~11h2!2

1

S0~V,h!1~11h2!/4h2 . ~95!

The dependences~95! and ~96! are shown in Fig. 11.

6. DISCUSSION

Dynamical interaction of a moving charge with a me
surface reveals singularities in the dissipated power a
function of the velocity of motionV. Depending on the to-
pology of the Fermi surface, the maximum of power dis
pation in the surface sheet occurs either at the Fermi velo
or slightly below it. At the same value ofV, the electric field
begins penetrating the metal to a depth much greater than
Thomas–Fermi length, thus breaking the Thomas–Fe
screening barrier.

Crucial for the observation of such effects is the pos
bility of realization of fast motion of a surface charge. Th
can be achieved by propagating charged particles or s
charged bodies above and near the metal surface. The o
possibility may be in creating an electronically driven m
tion of a surface charge parallel to the metal surface. C
cerning the latter, we envisage a setup with an array
equally spaced metallic electrodes near the bulk metal~Fig.
12a! biased periodically in time with the short electric puls
of fixed polarity. This will create maxima in the surfac
charge distribution in a metal moving between subsequ
locations in the metal surface with an average velocityV̄
5 Dx/Dt ~Dx is the distance between electrodes, andDt is
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the interval between pulses!. The velocity of the order of the
Fermi velocityVF ; 108 2 106 cm/s can be easily obtaine
with the corresponding choice ofDx andDt.

The other possibility is a motion of a charged soliton
some kind in a semiconducting or a superconducting fi
overlaying the metal~Fig. 12b!. For instance, in the case o
the Gunn effect in semiconductors, a moving charged sol
is formed due to anN-shaped current-voltage characteris
of the semiconductor.14 The size of the soliton in GaAs is o

FIG. 11. Normalized dissipationW/W1 ~curve1! andW/W2 ~curve2! as a
function of the velocityV at h 5 2.5.

FIG. 12. Schematic diagram of the electronically driven motion of a surf
charge.~a! Electric pulses switched periodically between metallic electro
near the metal surface;~b! Propagating solitons in the semiconductor lay
overlaying the bulk metal.
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n

made quite large,V ; 10 cm/s. As a result of the interac
tion of solitons with the induced surface charges in a me
the current-voltage characteristic of a semiconductor fi
overlaying the metal attains a singularity atV near the Fermi
velocity of the metal.

Another possibility is propagating low-frequenc
charged plasmons15–17 in a thin superconducting film in the
vicinity of a bulk metallic electrode.

It should be noted that the effect considered in this
per, an additional dissipation related to the surface cha
may have relevance to an evaluation of the quality factorQf

of an rf cavity, in particular, a superconducting cavity. At th
lowest temperature at which the power absorption due to
electronic excitations in a superconductor is quite small~and,
therefore, Qf large!, a dissipation related to the surfac
charge may contribute to the residual value ofQf attained at
the lowest temperature in a very high-quality cavities (Qf

; 1010).18
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Study of surface phenomena in the ferroelastic phase transition in a semi-

ition
infinite crystal
N. M. Lavrinenko

A. Galkin Physicotechnical Institute, 340114 Donetsk, Ukraine*
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Surface phenomena are studied during ferroelastic phase transition in a semi-infinite crystal with
tetragonal symmetry. It is shown that the strictional bond between the order parameter and
lattice deformation leads to the emergence of a spatially modulated structure with a finite value of
the wave vector at the surface phase transition point. The surface phase transition always
precedes the ferroelastic phase transition in the bulk. ©1997 American Institute of Physics.
@S1063-777X~97!01308-X#

The role of surface in phase transitions in magnetic ma-~interaction! constants, measure the surface phase trans
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terials has recently attracted ever-increasing attention of
searchers. The possibility for the existence of surface m
netic anisotropy was first indicated by Ne´el.1 It was predicted
theoretically in 1970 that under certain conditions the surf
of magnetic crystals may possess magnetization at temp
tures higher than the Curie point~see Ref. 2!. If an orienta-
tional phase transition occurs in the bulk of the crystal, it
accompanied by a reversal of orientation of the magn
moments at the surface. The difference between sur
forces and bulk forces results in a nonuniformity of the ord
parameter and affects the phase transition temperature.
existence of a ‘‘transition’’ surface layer with properties d
fering from those in the bulk was first confirmed experime
tally by Krinchak and Zubov.3 Such a relatively simple pat
tern of phase transition is justified only in the case where
magnetization at the surface and in the bulk of the samp
parallel to the surface, thus excluding the influence of lo
range dipole–dipole forces, i.e., demagnetizing fields. In
opposite case, the surface effects lead to the emergence
strip domain structure.4,5 A similar picture is also observe
when long-range elastic forces are taken in
consideration.6,7 In other words, the strictional bond betwee
the order parameter and lattice deformation leads to
emergence of a spatially modulated structure in the plan
the ferroelastic phase transition point. Earlier, w
considered7 a plane–parallel plate in which a ferroelas
phase transition takes place, and the surface is taken
account through boundary conditions, viz., free elas
boundary conditions and an uncoupled order parameter.
der certain conditions, the strictional coupling of the ord
parameter with lattice deformation leads to the emergenc
a spatially modulated structure instead of a homogene
phase at the transition point. The wave vector of the eme
ing structure depends on the plate thickness and on the
stant of interaction between the order parameter and ela
deformation. We did not consider in Ref. 7 the possibility
a surface phase transition. From the physical point of vi
an interesting situation arises when the ferroelastic ph
transition can occur in the bulk of the crystal as well as at
surface. In the present paper we consider the possibility
competition between the bulk and surface phenomenolog
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temperature, and determine whether the system splits
domains.

An intrinsic ferroelastic phase transition is one who
order parameter is coupled linearly with nonisomorphic str
tion, i.e., with macroscopic deformations of the crystal l
tice. To a considerable extent, this coupling determines
peculiarities of the critical behavior of the system in t
broadest possible sense8–11 and is independent of the micro
scopic realization of the order parameter. Since only lo
wave fluctuations of the characteristic parameter increas
the phase transition point, the free energy can be written
the continuous medium approximation. For definiteness,
shall consider a semi-infinite crystal of tetragonal symme
which occupies the regionz<0 and whose order paramete
h is linearly connected with the elastic strain (uxx2uyy).

In the absence of external fields, the expansion of f
energy in powers of the order parameterh and the strain
tensoruik5(ui ,k1uk,i)/2 during the ferroelastic phase tran
sition has the structure

Fv5E d3x@Ah21Bh41a~¹h!21lvh~uxx2uyy!1 f y#,

~1!

where the elastic energy densityf y has the form

f y5
1

2
C11~uxx

2 1uyy
2 !1

1

2
C33uzz

2 1C13uzz~uxx1uyy!

1C12uxxuyy12C66uxy
2 12C44~uxz

2 1uyz
2 !. ~2!

Apart from the volume componentFv , the total free energy
of the system also contains the free surface ene
F5Fv1Fs , where

Fs5(
zPs

@ah21g~¹h!21lsh~uxx2uyy!#. ~3!

The role of the gradient in the bulk of the crystal (z→2`)
is insignificant, and the solution of the equilibrium equatio
for the order parameter and elastic deformations is the s
as that in an infinite medium:

u
0

xx2u
0

yy52lvh
0

/C, h
0

252A* /2B,

6620662-03$10.00 © 1997 American Institute of Physics



C5~C112C22!/2, A* 5A2lv
2/2C,0. ~4!
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ux85a11ux1a12uy1 ik1Duz2 ik1Eh;
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The bulk ferroelastic phase transition point is defined by
relation

Ac5A8tc5lv
2/2C, t5~T2Tc0!/Tc0 ~5!

(Tc0 is the temperature of transition in the system that d
not interact with the lattice deformations,uxx2uyy50!.

Let us compute the mean-square fluctuation of the or
parameter at the crystal surface, which makes it possibl
determine the singularities of the surface phase transition
its temperature. In order to determine the fluctuation pr
ability, we must consider the highest possible equilibriu
i.e., the lowest value of the thermodynamic potential. Ob
ously, this condition is satisfied if fluctuations of the ord
parameter and displacement vector are at equilibrium in
bulk. Using the equilibrium conditions in the bulk

2Ah14Bh31lv~uxx2uyy!22aDh50,

]s ik

]xk
50 ~ i ,k5x,y,z! ~6!

~s ik5]Fv /]uik is the bulk tensor of stresses!, we transform
Eqs.~1!–~3! to the form

Fs5(
zPs

Fah21g~¹h!21lsh~uxx2uyy!1
1

2
s izui

12hh8aG . ~7!

Here and below, the prime indicates differentiation with
spect to the coordinate normal to the surface. It should
emphasized that bulk equilibrium equations~6! must be valid
everywhere in the bulk right up to the surface. Otherwise,
physical quantities will not have static fluctuations.

If the fluctuating quantities correspond to plane sin
soidal waves in theXY plane

ui~x,y,z!5exp~ i ~k1x1k2y!!ui~k1 ,k2 ,z!,

h~x,y,z!5exp~ i ~k1x1k2y!!h~k1 ,k2 ,z!,

k1
21k2

25k2, i 5x,y,z,

Eqs.~6! will assume the form

C44ux91 ik1C44* uz852 ik1lvh1~C11k1
21C66k2

2!ux

1k1k2~C661C12!uy ;

C44uy91 ik2C44* uz85 ik2lvh1k1k2~C661C12!ux

1~C11k2
21C66k1

2!uy ;

C33uz91C44* ~ ik1ux81 ik2uy8!5C44k
2uz ;

h95
Ak

a
h1

lv

2a
~ ik1ux2 ik2uy!, ~8!

where C44* 5 C44 1 C13, and Ak 5 A 1 6Bh
02 1 ak2.

Solving the bulk equilibrium equations~8!, we can determine
the unknown derivativesh8,ui8 ( i 5x,y,z) for z50 appear-
ing in ~7! in terms of the order parameterh and displace-
mentsui ( i 5x,y,z) for z50:
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uy85a12ux1a22uy1 ik2Duz1 ik2Eh;

uz85S C11

C33
D 1/2

D~ ik1ux1 ik2uy!1a33uz1a34h;

h85E
C44

2a
~ ik1ux2 ik2uy!1a34

C33

2a
uz1a44h, ~9!

where

a115
b1k2

2

k2 1
b2k1

2

k2 ; a225
b1k1

2

k2 1
b2k2

2

k2 ;

a125
k1k2~b22b1!

k2 ; b25kS C11

C44
~12D2! D 1/2

;

b15kS C66

C44
D 1/2

; a335kS C44

C33
~12D2! D 1/2

;

a345
k2

22k1
2

k2

C44E

D~C11C33!
1/2 ~b22b1!;

a445~Ak /a!1/2; D52
C44*

C441~C11C33!
1/2;

E5
lv

C44
@~Ak /a!1/21k~C66/C44!

1/2#21. ~10!

It is important to note that the surface energy is a function
only h,ui ( i 5x,y,z) if the bulk equilibrium equations~8!
are satisfied. Otherwise, the volume of the crystal adjoin
the surface, and hence the surface itself, will not be at e
librium.

Minimizing the surface energy~7! with respect to dis-
placement vectorsui(k) for given values ofh(k), we obtain

Fs5E d2k~a1gk212aa441¹ f /2!uh~k!u2, ~11!

where the increment¹ f in ~11!, which is negative and linea
in the wave vector, has the form

¹ f 52C33a33S 3a34

2a33
D 2

2
k1

2l1
2 A221k2

2l2
2 A1112k1k2l1l2A12

A11A222A12
2 . ~12!

The quantitiesAab (a,b51,2) are defined by the relation

Aab5C44aab2
kakbC44

2 ~11D !2

C33a33
, ~13!

and l6 are linear combinations of surface and volum
‘‘magnetostriction’’ coefficients

l65ls1
3C44E

2
6

C44~11D !3a34

2a33
, ~14!

which depend on the direction of the wave vector~through
a34) and on the temperature~throughE!. The correction¹ f
in ~11! is determined entirely by the long-range elas
forces. This quantity is also nonzero in two limiting cases
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bulk of the crystal and an order–disorder phase transi
(ls50) occurs at the surface of the crystal;

~2! a conventional order–disorder phase transition
curs in the bulk of the crystal (lv50), and a ferroelastic
phase transition (ls Þ 0) occurs at the surface of the cry
tal.

Consequently, as a result of taking strictional effects i
account, a phase with spatially modulated order parame
which is characterized by a finite value of the wave vect
always emerges at the surface phase transition point.

It is easy to see that¹ f is nonzero for all directions o
the wave vector, and that it assumes the minimum value
k1

25k2
2:

¹ f 52kS ls1
3

2
lv~a/A!1/2D 2

/~C66C44!
1/2.

Thus, in contrast to an infinite crystal, the system under c
sideration does not possess any directions of wave vec
with anomalous fluctuations of the order parameter or
softening modes corresponding to them.12 The Landau
theory describes such a phase transition quite accurately

The surface phase transition temperature is determ
from the condition

a12aa4450. ~15!

This relation is satisfied only when the coefficienta in
the surface energy is negative, i.e., when the surface fa
tates the formation of an ordered phase. The surface p
transition temperature can be determined from the form
a254aAs54aA8ts . Using Eqs.~4! and~10!, we obtain the
following expression from Eq.~15! for A* .0:

a2

4a
2

lv
2

2C
5As* 5A8

Ts2Tc

Tc0
.0. ~16!

In other words, the surface phase transition always occ
earlier than the phase transition in the bulk. Fora2/4a
5 lv

2/2C the surface and bulk phase transition temperatu
coincide, and a ‘‘special’’ phase transition takes place~see
Refs. 2 and 13!. In contrast with the order–disorder pha
transition in which the ‘‘special’’ phase transition is chara
terized by the relationa50,2 the point at which the ‘‘spe-
664 Low Temp. Phys. 23 (8), August 1997
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a ferroelastic phase transition. It is interesting to note t
this displacementlv

2/2C is determined entirely by the bulk
constants and coincides with the gap in the vibrational sp
trum of the order parameter of an infinite sample.

Thus, in a semi-infinite crystal in which a ferroelast
phase transition is possible in the bulk of the crystal as w
as at the surface, strictional coupling of the order param
and lattice deformation always leads initially to a surfa
phase transition occurring at a temperature higher than
temperature of phase transition in the bulk. This surface tr
sition leads to the emergence of a spatially modulated st
ture which is characterized by a finite value of the wa
vectork0 . This quantity is defined by a linear combination
constants of interaction of order parameter with lattice def
mations at the surface and in the bulk of the crystal. In t
case, the phenomenological approach to the problem
phase transition is justified at all temperatures since there
no wave vector directions in the system corresponding
anomalous~critical! fluctuations of the order parameter.
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DYNAMICS OF THE CRYSTAL LATTICE

Neutron scattering and diffusive x-ray diffraction in acoustic modes in Nd 2CuO4

D. V. Fil and A. L. Zazunov

Institute of Single Crystals, Ukrainian National Academy of Sciences, 310001 Kharkov, Ukraine*
~Submitted November 25, 1996!
Fiz. Nizk. Temp.23, 884–890~August 1997!

The differential cross section of thermal neutron scattering and x-ray scattering by acoustic
excitations are calculated in the framework of an anisotropic elastic medium model with an
additional two-dimensional acoustic-type mode which interacts with elastic deformation.
This model was proposed earlier for describing the anomalous behavior of sound velocities in
Nd2CuO4. The influence of plane mode on the angular dependence of neutron scattering
and on the shape of diffusive spot in x-ray diffraction pattern is studied. ©1997 American
Institute of Physics.@S1063-777X~97!01408-4#
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A peculiar behavior of sound velocities in single crysta
of Nd2CuO4 and Pr2CuO4 has been described in Refs. 1 a
2. This peculiarity consists in the anomalous dependenc
quasitransverse mode velocities on the direction of a rota
wave vector in the symmetry planes parallel to thec4 axis. A
phenomenological model based on the assumption abou
existence of a collective mode which has an acoustic ene
momentum relation and which propagates along the C2
planes in the single crystals under consideration was
posed. In this model, interaction of the lattice with addition
degrees of freedom corresponding to the plane mode
lead to a dependence of acoustic vibration velocities on
direction of wave vectorq similar to those observed in
experiments.1,2 For a definite choice of parameters of th
model, hybridization of a quasitransverse elastic vibrat
with a plane mode leads to the emergence of two intrin
vibrations~fast and slow! which are mainly responsible fo
transfer of the transverse elastic signal withq directed at an
angleuÞ0, p/2 to the axisc4 and polarization lying in the
plane defined by the direction ofq andc4 axis. Foru close to
0, the fast mode gives the main contribution; foru close to
p/2 the main contribution comes from the slow mode, a
both modes give similar contributions in a small region ou
in the interval (0,u,p/2). This explains the experimen
tally observed abrupt changes in the transverse signal ve
ity as a function ofu and the detection of two transvers
signals with identical polarization and radically different v
locities in the region of the jump.

We believe that the hypothesis about the existence
plane mode calls for an independent experimental confir
tion. Earlier, we considered3 the theory of Brillouin scatter-
ing of light for a lattice with an additional plane mode. In th
present work we aim at an analysis of the effects associ
with the existence of a plane mode which may be manifes
in experiments on neutron scattering and diffusive diffract
of x-rays by acoustic phonons.

The analysis carried out in the present work is based
the phenomenological approach for describing the additio
mode. The important circumstance for the problem un
consideration as regards the microscopic nature of the a
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tional mode is that, firstly, the additional oscillation is n
connected with longwave fluctuations of the electron den
since the existence of Coulomb interaction would determ
the gap nature of the spectrum of such oscillations. Secon
since the application of a strong constant magnetic field d
not change the nature of the angular dependences of
acoustic signal velocities,1,2 it can also be stated that th
additional mode is not connected with spin oscillation
Hence the degrees of freedom corresponding to this mod
not interact directly with neutrons or the electromagne
field, i.e., the scattering mechanism of the latter is de
mined by the nuclear and electromagnetic potentials of
tice atoms, and the effect of the plane mode is manifes
through its interaction with longwave elastic vibrations. T
subsequent analysis is based on this assumption.

1. SCATTERING OF NEUTRONS BY ACOUSTIC MODES

Following the approach described in Ref. 3, we write t
Hamiltonian of the model in the form

H5Hu1Ha1H int . ~1!

The elastic part of this equation has the standard form

Hu5
1

2 E d3r ~ru̇i
21l iklmuikulm!, ~2!

whereui are the components of elastic displacement vec
uik is the strain tensor components,r is the density of the
elastic medium, andl iklm is the elastic moduli tensor. Sinc
we are interested in the spectroscopy of the acoustic mo
of the system, we shall not consider optical vibrations in
present approach. In order to simulate an acoustic pl
mode, we introduce an additional degree of freedom lik
(211)-dimensional gage field (an ,an0) in thenth layer~the
layers are perpendicular to thec4 axis!. Such a field is char-
acterized by a single independent component, which co
sponds to the assumption concerning the existence of an
ditional mode in the system. The HamiltonianHa assumes
the form
6650665-05$10.00 © 1997 American Institute of Physics
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Ha5
1

8p (
n
E d2r ~en

21va
2bn

2!, ~3!

whereei52] ia02] tai ; b5eik] iak , andva is the velocity
of the plane wave along the layers. Taking into account
tetragonal symmetry of the system, we can present the in
action Hamiltonian in the form

H int5(
n
E d2rbn~gzuzz1gx~uxx1uyy!!, ~4!

wheregz andgx are interaction constants. The choice ofHa

andH int in the form~3! or ~4!, respectively, may be justified
for example, in the model of an elastic medium contain
two-dimensional layers of superfluid anyons in which any
density fluctuations interact with the elastic strain ten
components.3–5 Since we do not aim at a microscopic d
scription of the effect in this work, we consider Hamiltonia
~1! only as a convenient phenomenological model. Since
Hamiltonian~4! is invariant to the replacement of right-han
coordinate system by a left-hand one, we assume implic
that the existence of an additional degree of freedom is
sociated with the emergence of the corresponding order
rameter in the system that violates the symmetry for
given layer.

The differential cross section of inelastic neutron scat
ing calculated in the Born approximation per unit energy
the scattered neutron and per unit solid angle has the for6,7

d2s

dEdo
5

1

2p

k8

k
au

2(
lm

exp~2 iq~Rl2Rm!!
m

m

p
e
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dteivt^e2 iqu~ l ,t !eiqu~m,0!&. ~5!

In this equation,au is the length of neutron scattering by
lattice atom~for simplicity, we assume that this quantity
the same for all atoms!, k and k8 are wave vectors of an
incident and a scattered neutron,q5k82k, and v
5(2mn)21(k22k82) ~mn is the neutron mass!.

In order to compute the mean in Eq.~5!, we go over to
the secondary quantization representation in the Hamilton
~1!. Choosing the calibrationa050, ¹2a50(¹25 ix]x

1 iy]y) and using the Fourier components of the fieldsu~r !
andan(r ), we can present the Hamiltonian~1! in the form

H5
1

2 (
q

Fru̇i
1~q!u̇i~q!1l i lkmqiqluk

1~q!um~q!

1
1

4pd
@Q̇1~q!Q̇~q!1va

2qpl
2 Q1~q!Q~q!#

1
1

d
~ iqplQ

1~q!$gzqzuz~q!1gx~qxux~q!

1qyuy~q!!%1H.c.!#, ~6!

~here d is the separation between layers, a
qpl5(qx

21qy
2)1/2. Going over to normal coordinates in th

above equation, we obtain

H5
1

2 (
qx

~ȧx
1~q!ȧx~q!1vx

2~q!ax
1~q!ax~q!!, ~7!

wherevx
2(q) are the eigenvalues of the matrix
S c̃11qx
21 c̃66qy

21 c̃44qz
2 ~ c̃121 c̃66!qxqy ~ c̃131 c̃44!qxqz ig̃xqxqpl

~ c̃121 c̃66!qxqy c̃11qy
21 c̃66qx

21 c̃44qz
2 ~ c̃131 c̃44!qyqz ig̃xqyqpl

~ c̃131 c̃44!qxqz ~ c̃131 c̃44!qyqz c̃44qpl
2 1 c̃33qz

2 i g̃zqzqpl

i g̃xqxqpl 2 i g̃xqyqpl 2 i g̃zqzqpl va
2qpl

2

D ~8!
tor
with c̃ik5cik /r, and g̃z(x)5gz(x)A4p/dr. The above equa-
tion takes into account the symmetry of elastic tensor co
ponents for the Nd2CuO4 lattice. The direction ofx and y
axes is chosen along the Cu–O bonds in CuO2 planes. In
terms of the secondary quantization operators, the Ha
tonian ~7! can be presented in the form

H5(
q,x

vx~q!S bx
1~q!bx~q!1

1

2D , ~9!

whereb1 andb are the boson creation and annihilation o
erators. The quantitiesu( l ,t) are presented in terms of th
operatorsb as follows:

ui~ l ,t !5
1

~2rV!1/2 (
xq

jx i~q!

~vx~q!!1/2 ~bx~q!1bx
1~2q!!

3exp~ iqRl2 ivx~q!t !, ~10!
-

il-

-

wherejx i are components of the eigenvectors of the opera
defined by the matrix~8!.

Calculating the mean in~5!, integrating with respect tot
and summing over the lattice sites, we obtain

d2s

dEdo
5

1

2

k8

k

au
2N

M (
x

1

vx~q!
uqjx~q!u2e22W~q!

3$~N~vx~q!!11!d~v2vx~q!!

1N~vx~q!!d~v1vx~q!!%, ~11!

where

W~q!5
1

2rV (
xq8

1

vx~q8!
uqjx~q8!u2S N~vx~q8!!1

1

2D
~12!

is the exponent in the Debye–Waller factor,N(v) is the
666D. V. Fil and A. L. Zazunov
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Bose distribution function,M is the mass of a unit cell,N is
the number of cells, andjx5jx1,jx2,jx3 . In the limit
T@vx(q), Eq. ~11! reduces to

d2s

dEdo
5

1

2

k8

k

Tau
2N

M (
x

I x~q!$d~v2vx~q!!

1d~v1vx~q!!%, ~13!

where

I x~q!5
1

vx
2~q!

uqjx~q!u2e22W~q!. ~14!

It follows from Eq. ~13! that the existence of a plane mod
leads to the emergence of an additional peak in the diffe
tial scattering cross section. Using the expression~14!, we
analyze the intensity of peaks as a function of the experim
tal geometry. Let us first consider the caseq5k1q8 with
kÞ0 ~k is the reciprocal lattice vector! and uq8u/uku!1,
keeping in mind that we are interested in the spectroscop
the longwave part of the spectrum. In this ca
W(q)'W(k), i.e., the Debye–Waller factor defines the a
isotropy of intensities as a function of the directionk ~the
magnitude of the anisotropy will be discussed below!, and is
constant for a fixed value ofk. We assume the model param
eters in accordance with the analysis of the experime
velocities of sound in Nd2CuO4 observed in Ref. 2: (c̃11)

1/2

56.05; (c̃33)
1/255.85; (c̃12)

1/254.59; (c̃13)
1/254.19;

( c̃44)
1/252.46; (c̃66)

1/254.22; va53.83; (g̃z)
1/253.95 ~in

units of 105 cm/s), gz50. The angular dependencesI x(u)
for k5(0,0,2p/c) and (2p/a,2p/a,2p/c) ~wherea and c
are lattice parameters! and q8 lying in ~010! and ~11̄0!
planes, respectively, are shown in Figs. 1a and 1b~u is the
angle betweenq’ and thez axis!. The corresponding angula
dependences of the energy shift for a scattered neutron
shown in Fig. 1c. For the geometry chosen by us, the int
sity corresponding to a purely transverse elastic mode w
polarization in the~001! plane is identically equal to zero
For comparison, Fig. 1 also shows the intensity correspo
ing to quasitransverse vibration for a system without a pl
mode ~with the same values of the elastic tensor com
nents!. For a quasilongitudinal mode, the corresponding
pendence practically coincides with curve1 in Figs. 1a and
b. It follows from the dependences presented here that
existence of an additional mode does not affect the scatte
spectrum forq8 lying in the (x,y) plane. For the remaining
q8, the interaction with a plane mode leads to the splitting
the peak corresponding to a quasitransverse acoustic pho
For u→0, the contribution from the additional mode dete
mines the nonzero intensity of nearly elastic scattering w
qÞk. The caseu50 must be considered separately. F
such a direction of the wave vector, the plane mode com
nent vanishes, and the dependenceI 3(u) changes abruptly
Note that the departure of the plane mode spectrum from
purely two-dimensional case would cause a jump of fin
width.

The angular dependencesI x(u) for k50 andq, which
lies in the (x,z) plane, are shown in Fig. 2. For a syste
without the plane mode, the scattering intensity correspo
667 Low Temp. Phys. 23 (8), August 1997
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ing to the quasilongitudinal mode practically coincides w
curve 1 in Fig. 2, and the contribution from the quasitran
verse mode is too small to be shown on the given scale
can be seen from Fig. 2 that together with the quasilong
dinal mode of two other intrinsic oscillations of the syste
the presence of a plane mode is responsible for a signifi
contribution to the total scattering intensity.

FIG. 1. Dependence of the neutron scattering intensitiesI x on u for
k5(0,0, 2p/c), q8'@010# (a!, k5(2p/a,2p/a,2p/c), q8'@11̄0# (b!, the
scattered neutron energies corresponding to them~solid curves correspond
to q8'@010#, and the dashed curves correspond toq8'@11̄0# (c!. The
dashed curves in Figs.~a! and ~b! show the intensity of scattering by th
quasitransverse sound in a system without a plane mode. The numbe
the curves are the intrinsic mode numbers.
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2. DIFFUSIVE SCATTERING OF X-RAYS BY ACOUSTIC
MODES

Let us now consider the diffusive scattering of x-rays
acoustic modes. Taking into account the displacement
lattice atoms, we can present the differential scattering c
section in the form7,8

ds

do8
5

1

2 S e2

mc2D 2

~11cos2 a!u f qu2(
lm

exp~2 iq~Rl

2Rm!!E
2`

`

dtE
2`

` dv

2p
eivt^e2 iqu~ l ,t !eiqu~m,0!&,

~15!

where f q is the Fourier component of the atomic scatteri
form factor~for simplicity, we assume the form factor to b
the same for all atoms!, anda is the angle betweenk andk8
~the wave vectors of the incident and scattered electrom
netic waves!. Substituting the expansion~10! into Eq. ~15!,
we obtain in the limitT@vx(q) the following expression for
the diffusive scattering cross-section of x-rays:

ds

do8
5

1

2 S e2

mc2D 2

~11cos2 a!
u f qu2TN

M

3(
x

uqjx~q!u2

vx
2~q!

e22W~q!. ~16!

Here q5k2k85k1q8. Proceeding from this equation, w
consider the effect of a plane mode on the form of the d
fusive spot in the vicinity of the structural peaks. The curv
corresponding to equal intensity of diffusive scattering, o
tained from the condition

(
x

uqjx~q!u2

vx
2~q!

5const,

are presented in Fig. 3a@k5(0,0, 2p/c), projection onto the
~010! plane# and in Fig. 3b@k5(2p/a,2p/a,2p/c), projec-
tion onto the~11̄0! plane#. The corresponding curves for
system without the additional mode are also shown in
figure. It can be seen from Fig. 3 that the existence of a pl
mode causes a significant variation of the diffusive spot
the scattering geometry considered by us.

FIG. 2. Dependence ofI x on u for k50, q8'@010#.
668 Low Temp. Phys. 23 (8), August 1997
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3. ANISOTROPY OF THE DEBYE–WALLER FACTOR

Finally, let us consider the effect of the additional mo
on the dependence of the Debye–Waller factor on the di
tion of the scattering wave vector and temperature. We
strict the analysis to the Debye model. In this model,
shall carry out summation with respect toq8 in ~12! inside a
sphere of radiusqD and assume that the linear dependence
vibration frequencies on the wave vector is valid in the su
mation region. In this case, we obtain for the quantityW(k)

W~k!5W0~k!1T2W1~k!, ~17!

where

W0~k!5
qD

2

8~2p!3r (
x
E

0

2p

dwE
21

1

d cosu
ukjx~u,w!u2

sx~u,w!
,

~18!

FIG. 3. Shape of the diffusive spot for x-ray scattering~the solid and dashed
curves show the results for a system with and without an additional m
respectively!, k5(0,0, 2p/c), projection onto the ~010! plane (a!;
k5(2p/a,2p/a,2p/c), projection onto the~11̄0! plane (b!.
668D. V. Fil and A. L. Zazunov
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W1~k!5
1

2~2p!3r (
x
E

0

2p

dwE
21

1

d cosu
ukjx~u,w!u2

sx
3~u,w!

3E
0

sxqD /T

dx
x

ex21
~19!

~sx are acoustic mode velocities!. It can be shown tha
W1(k) is independent ofT in the low-temperature limit. The
upper limit in the integral with respect tox in ~19!, in fact,
can be made to tend to infinity for allx, u, andw, except for
a small region in the vicinity ofu50 for one of the modes
In this region, the integral with respect tox in ~19! is ;T21,

FIG. 4. Dependence ofW0(a! and W1(b! on uk for k'@010# ~solid and
dashed curves show the results for a system with and without an addit
mode, respectively!.
669 Low Temp. Phys. 23 (8), August 1997
and the phase volume of this region is;T. The contribution
from this region is also independent of temperature. He
the qualitative behavior of the temperature dependence o
Debye–Waller factor is preserved. Nevertheless, the effec
lattice interaction with the plane mode is manifested in
variation of the nature of the dependenceW0(k) andW1(k)
on the directionk. The dependencesW0(k) and W1(k) on
the angleuk betweenk and thec4 axis for k'@010# are
shown in Fig. 4. For comparison, the figure also sho
analogous dependences for a system without the additi
mode. The numerical values ofW0 andW1 are estimated for
k iz andk;107 cm21 asW0;1021 andW1;1025 K22.

It can be seen from Fig. 4 that the interaction of t
lattice with the plane mode is manifested in an additio
anisotropy of the Debye–Waller factor and in its temperat
dependence. As regardsW0 , it should be noted that in spite
of the validity of the qualitative conclusion about the pla
mode determining the additional anisotropyW0 , its numeri-
cal value is sensitive to the choice of the approximation a
may turn out to be quite different if the contribution of op
tical phonons is taken into account and upon integration o
the entire Brillouin zone. The effect associated with t
plane mode may be less significant than that expected f
the model considered here. On the other hand, the m
provides a quantitative description of the anisotropy of
temperature dependence of the Debye–Waller factor at
temperatures.
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Effect of pressure on phase transitions in fluosilicate hexahydrates of bivalent metals
S. K. Asadov, È. A. Zavadskii, V. I. Kamenev, and B. M. Todris

A. Galkin Physicotechnical Institute, National Academy of Sciences of the Ukraine, 340114 Donetsk,
Ukraine*
~Submitted October 21, 1996; revised January 9, 1997!
Fiz. Nizk. Temp.23, 891–901~August 1997!

The results of experiments on hydrostatic pressure effect on the stability of crystalline phase
states in fluosilicate hexahydrates of bivalent metals MSiF66(H2O), where M5 Mg, Mn, Fe, Co,
Ni, and Zn, are considered in a wide temperature range. The results of measurements are
presented on theP–T diagram of crystalline states. A generalizedP–T diagram permitting the
classification of the properties of individual compounds and identification of high-
pressure phases is constructed. The obtained results are compared with theoretical models.
© 1997 American Institute of Physics.@S1063-777X~97!01508-9#
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1. INTRODUCTION

Fluosilicate hexahydrates of bivalent metals~M–FSH!
MSiF66(H2O), where M5 Mg, Mn, Fe, Co, Ni, and Zn,
have similar crystal lattices which can be described a
trigonally distorted structure of the CsCl type, formed
octahedral ionic complexes@SiF6#22 and @M(H2O)#21.
These M–FSH can be divided into three types according
the difference in the crystal lattice symmetry at room (Tr)
and low temperatures. The first type includes Ni- and Z
based FSH which can be described by the symmetry gr
R3̄ in the entire temperature range.1 Cobalt-based FSH be-
longing to the second type also possesses theR3̄ symmetry
at Tr ,1 but experiences a first-order phase transition~PT!
upon cooling~at T5246 K).2,3 A comparison of the results
obtained in Refs. 4 and 5 shows that the low-tempera
modification of Co–FSH has the monoclinic symme
P21 /c. Fluosilicates of Mg, Fe, and Mn belonging to th
third type are characterized by the presence of symm
planes parallel to the trigonal axis of the crystal. It w
shown initially by x-ray diffraction methods that Mg- an
Fe–FSH belong to the space groupR3̄m,6,7 while Mn–FSH
belongs to theP 3̄m1 group.4 Here we will use this symme-
try identification for denoting phases, although the author
subsequent publications8,9 discovered reflexes on the x-ra
diffraction patterns of Mg- and Fe–FSH , which are inco
patible with theR3̄m group. In their opinion, the structure o
the latter compounds can be interpreted as a pseudohex
nal structure based on periodically alternating elements
monoclinic lattice with the space groupP21 /c. All the
M–FSH compounds of this type change their structure
P21 /c through a first-order PT upon cooling.5 The transition
temperature is 300 K for Mg–FSH and 230 and 225 K
Mn- and Fe–FSH respectively.

The results of analysis of the temperature dependenc
the NMR line width for1H and19F nuclei indicate10–12 that
M–FSH display an intrinsic motion of octahedrons formi
the crystal lattice in a certain temperature range. In the tri
nal modification of the third-type M–FSH~M 5 Fe and Mn!,
the motion of ions@SiF6#22 as well as@M(H2O)6#21 takes
place. The temperature at which this intrinsic motion in the
crystals ceases upon cooling coincides with the tempera
670 Low Temp. Phys. 23 (8), August 1997 1063-777X/97/08
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of PT to the monoclinic state. The high-temperature mod
cation of M–FSH of this type has a trigonal dynamica
disordered structure, while the low-temperature modificat
is a monoclinicP21 /c phase which is ordered not only a
regards its diffraction properties, but also in view of the a
sence of intrinsic motion. The disorder existing in M–FS
of the first and second types atTr can be regarded as pa
tially dynamic since it involves the motion of@SiF6#22 ions
only. These ions rotate between two possible orientati
appearing on x-ray diffraction patterns1 in the surroundings
of stationary@M(H2O)6#21 ions ~if we neglect thermal vi-
brations!. However, the termination of motion in Ni- an
Zn–FSH upon cooling is not accompanied with a change
the diffraction pattern. In this case, a transition from the p
tially dynamic to a static disorder, i.e., to a state with a ‘‘fr
zen’’ disorder, probably occurs instead of the ordering of
crystalline structure. Cobalt fluosilicate belonging to t
third-type M– FSH undergoes a transition to theP21 /c state
upon cooling, but the temperature corresponding to term
tion of motion of @SiF6#22 ions does not coincide with the
temperature of PT to the monoclinic state. In all probabili
such an peculiar behavior is associated with the borde
position of Co–FSH between M–FSH groups with differe

symmetries:R3̄m(P 3̄m1), andR3̄.
In addition to structural PT considered above, so

M–FSH display transitions associated with magnetic ord
ing. According to the results of measurements, Ni–FSH g
over to the ferromagnetic~FM! state atT,1 K, while Mn-
and Co–FSH experience a transition to the antiferromagn
~AFM! state with weak ferromagnetism. It was shown
Refs. 13–15 that the AFM ordering in Co- and Mn–FSH
preserved up to pressuresP540 and 80 MPa, respectively
Cooling at higher values ofP leads to the FM ordering
Nickel-based FSH remains ferromagnetic in the entire ra
of pressures under investigation~up to 950 MPa and change
the magnetic anisotropy type from easy axis to easy pl
only for P5130 MPa. Two magnetization jumps observed
Fe–FSH are induced by magnetic fieldsH159.8 MA/m and
H2534.38 MA/m.16 However, these jumps disappear f
P.180 MPa, and magnetization increases monotonic
with the field.17

In this research, we carry out a detailed experimen
6700670-08$10.00 © 1997 American Institute of Physics
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investigation of the effect of hydrostatic pressure on the
bility of crystalline phase states, on the temperature of
transitions between these states, and on the form of t
realization. The solution of this problem enabled us to c
struct theP–T phase diagrams, to discover triple points, n
high-pressure phases, and wide regions of metastable s
to establish regularities in the behavior of various FSH un
pressure, and to determine the relation between the varia
of their crystalline structure, magnetic properties, and
type of ionic disorder in a PT.

2. EXPERIMENTAL TECHNIQUE

Experiments were made by two independent metho
difference–thermal analysis~DTA! and x-raying diffraction
~XD!. The samples were single crystals obtained from a
persaturated aqueous solution of salt according to the t
nique described in Ref. 18.

The DTA method was used for determining the PT te
perature and for establishing the nature of thermal effe
accompanying these transformations. The object under
vestigation of size 63634 mm, the standard crystal, and
differential thermocouple were placed in a high-pressure v
sel which simultaneously served as a furnace in the D
sense. The case made of beryllium bronze subjected to
mal treatment was connected with a gas membrane comp
sor through a steel capillary. The pressure was transm
from the compressor to the vessel through gaseous hel
The choice of helium as the transmitting medium enabled
to make measurements under isothermal as well as isob
conditions and to move along any trajectory on theP–T
plane up toT;12 K. The apparatus used made it possible
carry out experiments in the temperature range 12–35
and in the pressure interval 0–200 MPa. The errors in m
surements were60.5 K and 1.5 MPa, respectively.

The temperature and pressure dependences of the la
spacingd440, as well as the intensity and shape of the x-r
reflex ~440! in the crystals under investigation~indices in
hexagonal axes of a rhombohedral lattice! were determined
as a result of XD measurements. Stability regions for cr
talline phases on theP–T plane, the presence and type
PT, as well as the values ofT andP corresponding to them
were determined from the presence of anomalies on th
dependences and their forms. The choice of the reflex~440!
for recording was primarily dictated by the convenience
experiments. The reflex was recorded from the natural f
of the crystal. The high intensity of the reflex~which was
100 times the background intensity! enabled us to detect it
variation to within 6 0.02°, which ensured the error o
61.731022% in determining the relative change in th
value ofd440 in CuKa11a2

(2u440;80°) radiation and com-
plete standardization of conditions of x-ray diffraction. A
the same time, the shape of the profile of this reflex is s
sitive to loss of axial symmetry of the crystal.

Measurements were made in a high-pressure cham
made in the form of an attachment to the x-ray diffractome
DRON-3. The single crystal under investigation was plac
in a thick-walled container made of beryllium and suppor
by a bandage manufactured from beryllium bronze subjec
671 Low Temp. Phys. 23 (8), August 1997
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to thermal treatment. As in the case of DTA measureme
the pressure was created by a gas membrane compre
The construction of the chamber is described in greater de
in Ref. 19. The maximum pressureP which could be at-
tained in the chamber was 140 MPa. The temperature
varied from 4.2 to 350 K.

3. DISCUSSION OF RESULTS

The results of experiments with M–FSH are presented
the sequence corresponding to the serial numberN of ar-
rangement of atoms~M! in the Periodic Table. The choice o
such a sequence was dictated by the regularity which
indeed observed in the change in the behavior of these c
pounds under pressure and which is associated with an
crease in the atomic number of the bivalent metal. This w
be considered in greater detail below.

The results of measurements for each M–FSH are g
eralized in the form of correspondingP–T phase diagrams
For convenience of comparison, the diagrams are plo
similarly. Dark figures denote points of thermal anomal
according to DTA data, while light figures correspond
anomalies ond440(T,P) according to the results of XD mea
surements. Arrows on the figures indicate the directions
variation ofT or P at which these anomalies were detecte
and the form of anomalies determine the type of phase t
sitions. For clarity, the regions of existence of differe
phases are hatched with different angles.

3.1. P –T phase diagram of MgSiF 66„H2O…

In the case of Mg–FSH, a change in pressure up
200 MPa does not lead to loss of stability in the hig
temperature rhombohedralR3̄m or low-temperature mono-
clinic P21 /c phases. The temperature of the forward a
backward first-order PT between these states~the tempera-
ture hysteresis width is 5 K) is virtually independent of pre
sure. The temperature stability boundaries of these phase
the P–T phase diagram are straight lines parallel to t
P-axis.

3.2. Stability of crystalline phases of Mn–FSH under
pressure

TheP–T diagram for Mn–FSH is shown in Fig. 1. As i
the case of Mg–FSH, the temperature of forward and ba
ward PT between the high-temperature trigonalP 3̄m1 and
low-temperature monoclinicP21 /c modifications is virtually
independent of pressure, but the transitions are observed
up to P;90 MPa. The linesab anda8b8 forward and back-
ward phase transitionP 3̄m1↔P21 /c converge at the triple
point. The region on theP–T diagram near the triple point is
shown in Fig. 2 on magnified scale. Figure 3 presents
three-coordinate system (P,T,d440) the data on the behavio
of the quantityd440 upon a change inT andP in the vicinity
of the triple point, which are required for identification o
phases adjoining the triple point and establishing the na
of PT between these phases. Thef klmnop f curve in the
(P,T) plane is the trajectory of variation of the independe
thermodynamic coordinatesT andP. The values ofd440 as-
sumed by this quantity upon a variation ofP and T are
671Asadov et al.
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plotted along the vertical axis. Solid bold curves connect
these values describe the dependencesd440(T) and d440(P)
in various regions of theP–T diagram. In order to illustrate
the correspondence between anomalies manifested on
curvesd440(T) and d440(P) and the lines on theP–T dia-
gram depicted in Fig. 2, the latter are presented by das
curves in the horizontal plane (P,T) in Fig. 3.

A comparison of the results presented in Figs. 2 an
leads to the following conclusions.

~1! The pressure dependence of the temperature co
sponding to the first-order PTP 3̄m1→P21 /c forms the
curve ab on the P–T diagram. The reverse transitio
occurs along the curvea8b8. The temperature hysteres
between these curves is;11 K. The bifurcation of the
d440 curve in theP21 /c phase is a consequence of b
furcation of the diffraction maximum~440!, which is
associated with the loss of the trigonal symmetry in
lattice and the division of the sample into crystal d
mains as a result of a transition to theP21 /c state.9

~2! Heating or compression of the sample which was i
tially in the P 3̄m1 state leads to an abrupt decrease
the value ofd440 on the bc8 curve by ;1.6 %. This
characterizes thebc8 curve as the first-order PT curve
The phasea formed as a result of this transition appa

FIG. 1. P–T phase diagram for MnSiF66(H2O).

FIG. 2. Region of theP–T phase diagram for MnSiF66(H2O) near the
triple point.
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ently preserves the trigonal symmetry since the ph
transitionP 3̄m1→a is not accompanied with a chang
in the shape of the peak at~440!. The negative slope o
the bc8 curve indicates that the phasea is simulta-
neously a high-pressure phase~HPP! and a high- tem-
perature phase relative to theP 3̄m1 state. For this rea-
son, the samples go over upon heating from theP 3̄m1
state to the statea as in a HPP upon a decrease in sp
cific volume, which is a rare effect in solid state physic

~3! By an appropriate change inT andP, the sample can be
returned from the statea to theP 3̄m1 phase on theb9c
curve or transformed to theP21 /c state on theb9d
through a first-order PT. The transitionP21 /c→a oc-
curs along theb8d8 curve.

Thus, the triple point on theP–T diagram of
MnSiF66(H2O) is formed by three curves of first-order PT
P 3̄m1↔P21 /c, P 3̄m1↔a, anda↔P21 /c. As a result of
hysteresis phenomena, the triple point appears on theP–T

diagram at pointb for a transition from theP 3̄m1 state, at
point b9 for a transition from thea state, and at pointb8 for
a transition from theP21 /c state.

Let us return to theP–T diagram depicted in Fig. 1. The
P21 /c phase is formed upon cooling at the moment of
tersection of the curveab9dq and is preserved down to he
lium temperatures. ForP.Pcr , the P21 /c phase is not
formed at all, and the sample exhibits anomaly in the te
perature behavior on thedm curve. This anomaly is illus-
trated in Fig. 4 by thed440(T) curve typical ofP.Pcr and
corresponds to its kink. The points at which the kink is o
served form thedm curve. On theP–T diagram, this curve
separates two statesa and b characterized by larger an
smaller values of the thermal expansion coefficient of
crystal lattice along the@440# direction. Since the value o
the coefficient changes abruptly upon the intersection of
curve, while the quantityd440 changes continuously, thedm
curve can be classified according to formal features a
curve of the second-order PTa↔b. A transition through the
dm curve is not accompanied by a change in the shape of

FIG. 3. Variation of the lattice separationd440 in MnSiF66(H2O) near the
triple point.
672Asadov et al.
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profile of the peak at~440!. This means that the crystal la
tice in the stateb as well as in the statea has a trigonal
symmetry axis. Since the XD experiments were confined
pressureP5140 MPa, and the DTA method did not reve
this anomaly, the data on the transition temperature at hig
pressures are not available. We can assume, however,
the dm curve will be continued for higher values ofP. The
first-order PTb→P21 /c occurs along thedq f k curve. It
takes place if the sample is transformed from the phaseb to
the absolute stability region of the monoclinic state with t
characteristic parabolic shape of the boundary (ab9dq f k
curve! by changing pressureP ~e.g., along the trajectory
KM ) or by varying P and T ~e.g., along the trajectory
CDM). The transformationb→P21 /c is irreversible in the
parameterT since theq f k curve is not manifested upon sub
sequent cooling from theP21 /c phase, and the monoclini
state is preserved down to helium temperatures. In orde
carry out the PTb→P21 /c again, we must carry the samp
through the curvea8b8bd8lnp corresponding to the vanish
ing of theP21 /c state and return to the region of phaseb on
the P–T diagram. It should also be noted that the reve
transitionP21 /c→b takes place on the boundarymlnp of a
typically S-shaped curve.

The P–T diagram~Fig. 1! contain regions of metastabl
states shown by double hatching between the curves co
sponding to the formation and disappearance of the co
sponding phases. Depending on the previous history of
sample and the thermodynamic route of its transition to
relevant region in these states, any phase whose hatc
covers the given region can be realized. For example, if
transfer the sample from the initial pointA (P 3̄m1 phase! to
the pointD ~the region of metastable statesP21 /c andb),

FIG. 4. Temperature dependence of the quantityd440 in MnSiF66(H2O) for
different values of pressureP, MPa: 130~curve1! and 135~curve2!.
673 Low Temp. Phys. 23 (8), August 1997
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intersecting theab9dq curve on which a transition to the
P21 /c state takes place~e.g., along the trajectoryAD), at
point D it will be in the P21 /c state with the monoclinic
symmetry of the crystal lattice. If, however, we transform t
sample from the pointA to the same pointD bypassing the
boundary of the formation of theP21 /c phase~e.g., along
the trajectoryABCD), the sample will experience a numbe
of PT ~the first-order PTP 3̄m1→a on thebb8c8 curve and
the second-order PTa→b on thedm curve! and will be at
the point D in the stateb with trigonal symmetry of the
crystal lattice at the pointD. Thus, below thepnld8d f k
curve, the statesP21 /c andb are metastable and do not los
their relative stability down to helium temperatures.

It should also be noted that the sign of the thermal eff
accompanying the corresponding first-order PT is reverse
various segments of the boundaries of formation and dis
pearance of the monoclinic state. For example, the dis
pearance of theP21 /c phase on the segmentb8d8l occurs
with absorption of heat, while heat is liberated on the s
mentlnp. The formation of the ordered state through the
P 3̄m1→P21 /c and a→P21 /c on the segmentsab9 and
b9d, respectively, is accompanied by liberation of heat. T
phase transformationb→P21 /c occurring as a result o
heating is endothermal on the segmentq f and exothermal on
the segmentf k. The difference in the type of thermal anom
lies in the sample on these segments of theq f k curve are
illustrated by thermograms typical of each region~Fig. 5!.
Irreversibility and the exothermal nature of the P
b→P21 /c enable us to consider it as a relaxation proc
similar to crystallization of amorphous metals or a transiti
from a metastable state~at low temperatures! obtained by
quench-hardening to an absolutely stable state as a resu
annealing.

FIG. 5. Thermograms of heating of MnSiF66(H2O) for different values of
pressureP, MPa: 50~a! and 110~b!. The initial state isb.
673Asadov et al.
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3.3. Peculiarities of P –T phase diagram for
FeSiF66„H2O…subsection

The P–T phase diagram for FeSiF66(H2O) is shown in
Fig. 6 and reflects the following features of the behavior
this compound under pressure.

~1! The familiar PTR3̄m↔P21 /c is observed only up to
the pressure 7.5 MPa~forward transition occurs along
the ab curve and backward along thea8b8 curve!. For
P.7.5 MPa, a first-order PT to a new state denoted
a on theP–T diagram is discovered. The invariabilit
of the shape and intensity of the~440! peak in the course
of the R3̄m↔a transition suggests that the third-orde
symmetry axis is preserved in the statea.

~2! In addition to the above transformationR3̄m→a, the
first-order PTa→P21 /c is also observed in the pressu
range 7.5 MPa,P,63 MPa upon cooling. After this
transition, the monoclinic structure is preserved down
helium temperatures.

~3! The bc and bd curves corresponding to the direct P
R3̄m→a and a→P21 /c converge upon a decrease i
the value ofP, forming the triple pointb together with
the ab curve corresponding to the PTR3̄m→P21 /c.
The curvesb8c8, d8b8, and a8b8 corresponding to re-
verse phase transitions also form the triple pointb8.

~4! The stateP21 /c is not formed if P.Pcr563 MPa. In
this case, a change inT causes, in addition to the P
R3̄m↔a, two second-order PTa↔b and b↔g. The
invariability of the shape and intensity of the~440! peak
in the course of these transformations indicates that
new phasesb and g possess the trigonal symmetry
well as the phasea. The regions of existence of th
statesb and g on the P–T diagram for P.Pcr are
bounded by the curvesmk andpq, respectively.

~5! In the given compound, as well as in Mn–FSH, the a
solute stability region of the ordered stateP21 /c is para-
bolic. Theabd f curve is the boundary of its formation
while the a8b8d8 is the boundary of its disappearanc
These curves confine the region of metastable state
which either theP21 /c phase, or the phasesa, b, g

FIG. 6. P–T phase diagram for FeSiF66(H2O).
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demarcated by the curvesnpq and lmk of the second-
order PT can exist depending on the previous history
the sample. If the sample is compressed isothermall
Tr to pressures 7.5 MPa,P,63 MPa and then cooled
isobarically~e.g., along the trajectoryACD on theP–T
diagram!, it will be transformed from the initial state
R3̄m to the a phase upon the intersection of thebc
curve and into the stateP21 /c upon the intersection o
thebd curve. In view of metastability of the statesa, b,
and g, the curvesf d,lmk, and npq will not be mani-
fested, and the sample will remain in the phaseP21 /c at
the pointD of the diagram. Subsequent heating along
trajectoryDC leads to the reverse sequence of two
P21 /c→a→R3̄m. If, however, we transform the
sample to the pointD bypassing the boundary of th
formation of theP21 /c phase, e.g., along the trajecto
AEFD, the sample will be in the stateg at the pointD
as a result of the sequence of transitio
R3̄m→a→b→g. If the sample is heated along the
same trajectoryDC, it experiences a cascade of five P
g→b→a→P21 /c→a→R3̄m.

~6! In contrast to Mn–FSH, the sign of the thermal effect
Fe–FSH is not reversed at the boundaries of format
and disappearance of the monoclinic state. The
R3̄m→P21 /c on the ab curve as well as the PT
a→P21 /c on thebd curve are accompanied by libera
tion of heat, while the PT is exothermal along the ent
d f curve. The reverse transformations along thea8b8d8
andb8c8 curves occur with heat absorption. In additio
the boundaryb8d8 of disappearance of theP21 /c phase
has a less pronouncedS-shaped curvature.

3.4. Phase transitions in CoSiF 66„H2O… under pressure

The P–T diagram for Co–FSH shown in Fig. 7 leads
the following conclusions.

~1! As the sample is cooled fromTr , the well-known first-
order PTR3̄→P21 /c1 is observed only to the pressur

FIG. 7. P–T phase diagram for CoSiF66(H2O).
674Asadov et al.
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Pcr550 MPa. The pressure dependence of tempera
corresponding to this transformation forms theab curve
on theP–T diagram.

~2! For P.Pcr , the P21 /c phase is not formed at all, but
second-order PT manifested in inflections on the isob
dependenced440(T) occurs along theb f e curve. Since
the shape and intensity of the~440! peak do not change
in the vicinity of the temperature corresponding to t
point of inflection, we can assume that the third-ord
symmetry axis is preserved in the new stateb.

~3! The phaseP21 /c can be obtained not only by coolin
through the first-order PTR3̄→P21 /c along theab
curve, but also by heating through the first-order
b→P21 /c along thecb curve. For this purpose, th
sample must be transformed to the stateb without inter-
secting the boundary of formation of theP21 /c phase
~e.g., to the pointD along the trajectoryABCD). A
further isobaric heating of the sample~e.g., along the
trajectory DA) leads to two first- order PT
b→P21 /c→R3̄occurring at intersections of curvesbc
and d f , respectively. The transformationb→P21 /c is
irreversible in the parameterT since thecb curve is not
manifested upon cooling of the sample transformed
the monoclinic state down and theP21 /c phase is pre-
sented to helium temperatures. Thus, the region of
mation of the ordered monoclinic state in this compou
(abc curve! is parabolic as in manganese and iron flu
silicates.

~4! The boundary of disappearance of theP21 /c phase on
the P–T diagram is anS-shaped curved f kl typical of
M–FSH. The region of metastable states~double hatch-
ing! in which either theP21 /c phase or the phasesR3̄
andb divided by theb f curve can be preserved depen
ing on the past history of the sample lies between
curves corresponding to the formation and disappeara
of the ordered phase.

~5! The sign of the thermal effect is reversed at the bou
aries of formation and disappearance of the monocl
state upon relevant PT. The PTR3̄→P21 /c is accom-
panied by liberation of heat on the entire segmentab of
the boundary of formation of theP21 /c phase. The PT
b→P21 /c is also exothermal near the point of inflectio
b of the parabolaabc, but the transformation become
endothermal upon cooling by 20 K below the tempe
ture corresponding to the point of inflection. The P
P21 /c→b is accompanied with liberation of heat on th
entire segmentlk f . As the temperatureT increases by
12 K above the temperature corresponding to the p
of inflection f , the transformationP21 /c→R3̄ changes
from exothermal to endothermal.

3.5. Anomalies in the temperature behavior of crystal lattice
of Ni and Zn fluosilicate hexahydrates under pressure

It was noted in Ref. 1 that Ni- and Zn–FSH under atm
spheric pressure and atTr have a rhombohedral crystal la
tice with the symmetryR3̄ which is also preserved upon
cooling. At the same time, the results of our XD investig
675 Low Temp. Phys. 23 (8), August 1997
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tions of these single crystals indicate the presence of ano
lies in the temperature behavior of the crystal lattice of b
salts. Anomalies are identical and are manifested in a kink
the d440(T) dependences atT5220 K for Ni–FSH and at
T5200 K for Zn–FSH. The emergence of anomalies is n
accompanied by a change in the shape of diffraction p
which is sensitive to the crystal symmetry and cannot
detected on DTA thermograms. The observed changes in
slope ofd440(T) curves actually indicate a continuous tra
sition in Ni- and Zn–FSH from a high-temperature state w
a smaller value of the thermal expansion coefficient of
crystal lattice to a low- temperature state with a larger va
of this coefficient. Formally, we can assume that a seco
order phase transition from the high-temperaturea(R3̄)
phase to theb(R3̄) phase isostructural to it occurs at thes
temperatures~the space symmetry group of these phase
shown in the parentheses!. The PT temperature for both
compounds virtually does not depend on pressure to wi
the accuracy of its graphical determination from thed440(T)
dependences obtained for various values ofP and forms the
lines parallel to theP-axis on theP–T phase diagrams o
Ni- and Zn–FSH.

4. GENERALIZED P –T PHASE DIAGRAM OF CRYSTALLINE
STATES OF FLUOSILICATE HEXAHYDRATES OF
BIVALENT METALS

After the construction ofP–T phase diagrams for all the
compounds under investigation, it became clear that we
dealing with fragments of a complicated but single patte
viz., a generalizedP–T diagram. In spite of considerabl
differences inP–T diagrams of the salts under investigatio
there are several structural elements which can be used
constructing theP-T diagram for each compound.

The first such element consists of the curves correspo
ing to the forward and backward first- order transitions b
tween the high temperature state with the symmetry elem
3̄m(R3̄m or P 3̄m1) and the low-temperature monoclinic
P21 /c state. They reflect the fact that the temperature
realization of these PT remains virtually unchanged upo
variation ofP, and hence are parallel to the pressure axis
the P–T diagrams.

The second element is the triple point formed by t
curves of three first-order PT.

The third element is the parabolic segment of the bou
ary of formation of the ordered monoclinic phaseP21 /c and
the S-shaped segment of its disappearance. The peculiar
of the shape of these boundaries in Mn-, Fe-, and Co–F
determine the existence of critical pressuresPcr and the
pressure-independence of the temperature correspondin
disappearance of the ordered phase.

Finally, the fourth element is the curve of the secon
order PT between the states with the trigonal symmetry
the crystal lattice, which differ in the values of the therm
expansion coefficient.

The P–T diagram formed by the above-listed elemen
in the form presented in Fig. 8 is essentially generaliz
phase diagram for M–FSH under investigation. TheP–T
diagram for each compound can be presented as a segme
675Asadov et al.
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the generalizedP–T diagram on the right of the vertical lin
in Fig. 8, which corresponds to the given crystal. As we
over from one M–FSH to another from left to right, th
curves are arranged in accordance with the experimen
observed decrease in the value ofP corresponding to the
triple point and the critical pressurePcr of the formation of
the P21 /c phase. In our experiments with Mg–FSH, neith
the triple point nor the critical pressurePcr have been at-
tained in view of insufficient pressure generated by the
compressor. The triple point for this salt was discovered
Gorevet al.20 at P5210 MPa, while the existence of critica
pressurePcr;360 MPa follows from the results obtained b
Krygin et al.21 The pressure corresponding to the triple po
is 90 MPa for Mn–FSH and 7.5 MPa for Fe–FSH. For C
FSH, no triple point is observed, whilePcr550 MPa. For Ni-
and Zn–FSH, a second- order phase transition between t
nal phases with different thermal expansion coefficients
observed even under the atmospheric pressure, while fo
remaining M– FSH it is observed forP.Pcr .

It can be seen from Fig. 8 that the sequence of M–F
formed as a result of such an arrangement repeats the
rangement of the corresponding bivalent metals in the P
odic Table. This means that the form of theP–T diagram for
each M–FSH and the serial numberN of the metal consti-
tuting it are connected through a relation according to wh
an increase inN is equivalent to a displacement of the orig
of the coordinates of the relevantP–T diagram on the gen
eralizedP–T diagram towards higher pressures.

5. IDENTIFICATION OF HIGH-PRESSURE PHASES IN
FLUOSILICATE HEXAHYDRATES OF BIVALENT METALS

With the help of experimental methods, only low
pressure phases~LPP! formed in the samples under the a
mospheric pressure could be identified in M–FSH. The sy
metry of phases existing only under a high pressure co
not be determined directly in view of technical difficultie
The generalizedP–T diagram shows, however, that the r
gions of existence of HPP of some M–FSH overlap with

FIG. 8. GeneralizedP–T phase diagram of crystalline states of fluosilica
hexahydrates of bivalent metals.
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regions of existence of identified LPP of other M–FSH. T
similarity of P–T diagrams for M–FSH with a large atomi
numberN of M and the region of theP–T diagram for a
smaller numberN, which follows from the structure of the
generalized diagram, leads to the conclusion that the ph
with coinciding regions of existence on the generalizedP–T
diagram must be crystallographically identical. For examp
the phasesa and b which are HPP for Mn-, Fe-, and Co–
FSH ~experiments for Mg–FSH under the pressu
P.140 MPa were not made! must have the same crystallin
structure as the LPP in Ni- and Zn–FSH, i.e., the struct
with R3̄. This can be confirmed by the following argument

~1! Comparing theP–T diagrams for Co- and Ni–FSH an
taking into account the identical behavior of the crys
lattices of these salts upon the intersection of the co
sponding curves of the second-order PT, we note that
P–T diagrams of Ni– FSH and of Co–FSH compress
preliminarily to a pressureP.Pcr are similar. According
to the results of XD investigations,1 the high temperature
phases withR3̄ in Co–FSH and the phasea(R3̄) in
Ni–FSH are isostructural. This leads to the conclus
that the low-temperature HPPb(R3̄) of Ni–FSH and
the low-temperature phaseb of Co–FSH are isostruc
tural. Since the phasesa(R3̄) and b(R3̄) in Ni–FSH
have identical symmetry and belong to theR3̄ group,
the low-temperature HPPb in Co–FSH also has the
symmetry groupR3̄.

~2! The curves corresponding to the formation of the mon
clinic phaseP21 /c in Mn–FSH~see Fig. 1! and in Fe–
FSH ~see Fig. 6! can be divided into two segments. On
of them lies at the boundary with theR3̄m(P 3̄m1)
phase, while the other, starting from the triple poin
serves as the boundary between the HPPa and b and
forms a parabola closed by theT-axis. The same curva
ture is also typical of the curve corresponding to t
formation of theP21 /c phase in Co–FSH at the bound
ary with the LPPR3̄ and the HPPb belonging to the
symmetry groupR3̄ ~see Sec. 4!. Such an analogy again
leads to the conclusion that the HPPa andb in Mn- and
Fe–FSH are identical to the phasesR3̄ and b in Co–
FSH, and hence are two modifications of the structu
typeR3̄differing in the values of the thermal expansio
coefficient of the crystal lattice.

6. CORRESPONDENCE OF P –T DIAGRAMS OF
CRYSTALLINE STATES AND MAGNETIC P –T PHASE
DIAGRAMS OF FLUOSILICATE HEXAHYDRATES
OF MANGANESE, IRON, COBALT, AND NICKEL

The existence of the critical pressurePcr on the P–T
diagrams of the crystalline states of Mn–FSH~see Fig. 1!,
Fe–FSH~see Fig. 6!, and Co–FSH~see Fig. 7! indicates that
the sample cooled to ultralow temperatures under a pres
P,Pcr has the monoclinic phaseP21 /c, while the sample
cooled forP.Pcr has a rhombohedralR3̄(P 3̄m1) crystal
lattice. Obviously, the change in the type of ultralow
temperature magnetic ordering from AFM for a samp
676Asadov et al.
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cooled underP.Pcr to FM for cooling underP,Pcr
14 is in

good agreement with the behavior of the crystalline struct
under pressure~being a secondary effect relative to structu
transformations! and indicates that the AFM ordering is typ
cal of theP21 /c state, while the FM ordering is characte

istic of theR3̄phase. Similarly, a spin state with zero effec
tive magnetic moment is realized in the monoclinic pha
P21 /c of Fe–FSH in a magnetic field parallel to the trigon
axisC3 belowT510 K underP,Pcr . Under the same con
ditions, for P.Pcr , iron fluosilicate in the disordered trigo
nal g phase loses the properties of an easy-pl
paramagnet.17 According to theP–T diagram of crystalline
states, Ni–FSH at ultralow temperatures has only one s
metry modificationR3̄, and the phaseP21 /c is not formed
at all. In conformity with what has been said above conce
ing the correspondence between the structural and mag
properties of M–FSH, the crystal of this salt experienc
only the ferromagnetic ordering at ultralow temperatures15

7. COMPARISON WITH THEORETICAL MODELS

The first-order PT observed in M–FSH as well as
many other compounds occur, in all probability, not alo
the phase-equilibrium curves, but on lability boundari
Possible reasons behind such a behavior can be com
blocking of the nucleation of a new phase due to jump
volume in the course of the first-order PT as well as ot
mechanisms of kinetic origin.22

Above a certain temperatureTz , the parabolic lability
boundaries of the ordered and disordered phases on theP–T
diagrams of the compounds under investigation are succ
fully described by the Landau theory.23 At T5Tz , the labil-
ity boundary of the ordered phase is virtually independen
pressure. It was proposed in Ref. 23 that the emergence o
S-shaped lability boundary can be due to a strong coop
tive interaction forming a metastable ordered state and
serving the attained degree of ordering up toT5Tz . The
latter is equivalent to the statement that the entropy of
ordered subsystem is independent of the parameterP.

Breaner and Zavadskii24 also attributed the emergence
an S-shaped boundary to the competing effect of the para
etersT andP on the Landau coefficients.

Sukharevskii and Zavadskii25 proposed a Landau mode
potential taking into account the existence of two order
channels. This potential corresponds to the phase diag
with a triple point and with parabolic lability boundaries.
was proved that the interaction of two order parameter
responsible for a radical change in the thermodynamic
rameter of TP: the sign of lability boundary curvature for t
ordered and disordered phases and sign reversal of the
mal effect~single on the phase equilibrium curve and dou
on lability boundaries!.

Thus, we can conclude that the main peculiarities
phase transitions in M–FSH as well as the shape of lab
boundaries on theP–T diagrams can be explaned satisfac
rily in the above thermodynamic models.
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8. CONCLUSION

This research completes the cycle of experiments
voted to an analysis of the behavior of M–FSH in wid
ranges of pressures and temperatures. The results of
surements are presented in the form ofP–T diagrams of
crystalline state. The generalizedP–T phase diagram make
it possible to systematize the properties of individual co
pounds and to identify high-pressure phases.

The correspondence between theP–T diagrams of crys-
talline states and the availableP–T magnetic phase diagram
of fluosilicate hexahydrates of Mn, Fe, Co, and Ni is ind
cated.

Theoretical models allowing us to describe a phase d
gram with a triple point and parabolic andS-shaped lability
boundaries are considered.

*E-mail: kamenev@host.dipt.donetsk.ua
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LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

ne-
Influence of oxygen content and structural defects on low-temperature mechanical
properties of high-temperature superconducting single crystals and ceramics

S. V. Lubenets, V. D. Natsik, L. S. Fomenko, H.-J. Kaufmann, and V. S. Bobrov

B. Verkin Institute for Low Temperature Physics and Engineering of National Academy of Sciences of
Ukraine, 47 Lenin Ave., Kharkov, 310164, Ukraine*

A. N. Izotov

Institute of Solid State Physics, Russian Academy of Sciences, Chernogolovka, Russia
~Submitted January 30, 1997!
Fiz. Nizk. Temp.23, 902–908~August 1997!

The data for the microhardness and fracture toughness of Y–Ba–Cu–O and Bi-based single
crystals and ceramics in the temperature range 77–293 K are presented and analyzed. Our study
reveals that the microhardness of high temperature superconductors is very sensitive to the
oxygen stoichiometry, the phase composition, the temperature, and to the microstructural defects
such as impurities, intergranular boundaries, and voids. Attention is drawn to the anisotropy
of the micromechanical properties and to the features of the fracture in the vicinity of the
indentation. The data available on the plasticity of Y–Ba–Cu–O and Bi–Sr–Ca–Cu–O
from micro- and macrotests are compared. ©1997 American Institute of Physics.
@S1063-777X~97!01608-3#
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Practical applications of Y–Ba–Cu–O an
Bi–Sr–Ca–Cu–O superconducting compounds are o
limited by their poor mechanical performance, i.e., extrem
low ductility and elevated brittleness, especially at low a
moderate temperatures. Plasticity and strength of h
temperature superconductors~HTSCs! are adversely affected
by numerous defects: voids, surface and bulk microcra
grain and twin boundaries, phase inhomogeneities, imp
ties, oxygen nonstoichiometry which result from the synth
sis process at high temperature and from subsequent co
to room temperature and mechanical treatment or loadin

A study of the mechanical properties of such comp
cated objects, whether they are ceramics~polycrystals! or
single crystals, does not appear to be a simple task. Ne
theless, several procedures have been devised for this
poses. It is possible to suppress the intrinsic brittlenes
superconducting oxides and reveal clear plastic flow w
dislocation generation by deforming at elevated temperat
@1–5#, at room temperature with the application of hydr
static pressure@6# or by using shock-loading techniques@7#.
However, most investigations have been made with the
dentation techniques which can be used successfully ov
wide range of temperatures@8–12#.

The purpose of the present paper is to report new res
and consider briefly some previous measurements of mi
hardness and fracture toughness of single crystals and ce
ics of Y–Ba–Cu–O and Bi–Sr–Ca–Cu–O compounds
the temperature range 77–293 K. The behavior of the mic
hardness near theN–S phase transition temperatureTc and
the mechanism of microplasticity of HTSCs are of interes
us. We will discuss the dependence of micromechan
properties on temperature, oxygen and impurity concen
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ities of ceramics, and we will estimate a difficult-to-measu
property such as surface energy. Finally, we will comp
the available data on the plasticity of these materials
tained from micro- and macrotests.

2. EXPERIMENTAL PROCEDURE

The Y–Ba–Cu–O and Bi–Sr–Ca–Cu–O compoun
were prepared by high-temperature solid state reaction.
ramic specimens were prepared first by cold pressing
then by sintering of synthesized powder. Variations in pr
sure~0.2–5 GPa! and annealing temperature~1073–1233 K!
permitted different densities to be attained. T
Y–Ba–Cu–O test samples had a densityD between 2.1 and
5.85 g/cm3 ~0.33–0.92 of the x-ray density, DR

5 6.38 g/cm3! and Tc 5 85– 92 K. Single crystals were
grown in alundum or platinum crucibles~below referred to
as Y–Al and Y–Pt, respectively! by a spontaneous crystalli
zation technique. The crystals were flat with~001! faces
dominating. The concentration of platinum in Y–Pt crysta
and aluminum in Y–Al crystals was found to be 0.01 wt.
Pt and 0.25 wt.% Al. The investigation of the influence
the oxygen deficiency on microhardness was carried ou
YBa2Cu3O72d crystals with four concentrations of oxygen
d 5 0.1, 0.3, 0.4, and 0.9. The oxygen index in as-gro
crystals was varied by further thermal treatment in oxygen
in argon. The microindentations were carried out at ro
temperature by using a PMT-3 standard diamond tester
at temperatures from 77 to 300 K they were made by usin
special tester set described in Ref. 12. HardnessHV and frac-
ture toughnessKc ~the critical stress intensity factor! were
calculated by using the relations9,13

6780678-06$10.00 © 1997 American Institute of Physics
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HV51.854~P2Pth!/~2a!2,

Kc50.016~E/HV!1/2~P2Pth!/c
3/2,

where 2a is the impression diagonal;P is the indentation
load; Pth is the threshold load which does not result in
impression or a crack;E is the elastic constant~along the
axes@100# and @010# E11 5 E22 5 156 GPa and along th
axis @001# E33 5 89 GPa for Y–Ba–Cu–O at room
temperature14!. The experimental data plotted in the coord
nates (2a)2 2 P and c3/2 2 P are well described by the
linear relations giving the load-independent values ofHV and
Kc .

3. RESULTS AND DISCUSSION

3.1. Y–Ba–Cu–O system. Single crystals

Effect of oxygen content on microhardness.The hardness
of the Y–Ba–Cu–O system is highly sensitive to oxyg
concentration.12,15,16 The results of our measurements a
shown in Fig. 1 for three temperatures. The strongest c
centration dependenceHV(d) for Y–Pt crystals is observed
at room temperature: the hardness changes about 1.5 tim
the d interval from 0.3 to 0.4, i.e., in the range o
orthorhombic-1→orthorhombic-2 phase transition, but it
not affected by orthorhombic-tetragonal phase transitiond
. 0.5). Thus, the sharp variation ofHV can apparently be
associated with the variation in the properties of the latt
within the orthorhombic symmetry due to one-dimensio
ordering of oxygen vacancies. The aluminum impurity
Y–Al crystals weakens the softening effect and extends
range of microhardness-oxygen concentration depend
toward higher values ofd.

The strong effect of oxygen stoichiometry on the pla
ticity of Y–Ba–Cu–O speaks in favor of shear in the Ba
CuO plane, since the main variations upon changing the o
gen index, occur just in the CuO plane.

The available data17,18 show that the elastic moduli cor
responding mainly to shear modes increase monotonic
with oxygen concentration. The moduli corresponding to

FIG. 1. Effect of oxygen concentration in Y–Ba–Cu–O single crystals
microhardness at temperatures 77~1!, 200~2!, and 293 K~3 and38!. Curves
1, 2, and3 correspond to crystals from the series Y–Pt, and curve38 cor-
responds to the Y–Al crystals.
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index, after which they begin to decrease. Consequently,
considered behavior ofHV(d) is due not to the variation o
the elastic properties of crystals but to the effect of oxyg
concentration and oxygen ordering on the core structure
mobility of dislocations.

The microhardness and fracture toughness of Y–B
Cu–O and some rare-earth cuprates Re–Ba–Cu–O~Re: Gd,
Ho, Dy, Er, Yb! single crystals studied are shown to va
over wide ranges: at room temperatureHV 5 5 – 10 GPa and
Kc 5 0.4– 1 MPa•m1/2.8,9,12,19 This considerable spread o
the measured values may be attributed to the variation
oxygen concentration which was not controlled.

Mechanical anisotropy ofY–Ba–Cu–Ocrystals. The
hardness of Y–Ba–Cu–O crystals was found to be isotro
within an experimental error. However, the special measu
ments made on relatively large crystals with well-develop
~100! and ~001! faces have demonstrated that the hardn
ratio of ~100! to ~001! surfaces is 1.2 for the orthorhombi
phase and 1.8 for the tetragonal phase.20

The length of cracks and the direction of their propag
tion are very sensitive to indentation crystallography. Cle
age of these layered structures is easier along b
planes.9,14 That is the reason why the hardness of align
Y–Ba–Cu–O was found to be strongly anisotropic:21 prefer-
ential cleavage of the basal planes results in much lo
hardness for indentation on the (100)/(010) plane than on
the ~001! plane: 3.8 and 6.7 GPa, respectively.

Notice that the mechanical anisotropy may be affec
by the presence of twin boundaries. Hardness was foun
be insensitive to a twin structure, which arose during
tetragonal-orthorhombic phase transition; however, the fr
ture toughness for twinned crystals was different than t
for untwinned crystals, according to Ref. 14.

Temperature dependence of microhardness.So far, only
few results of an experimental study of the temperature
pendence of the microhardness of Y–Ba–Cu–O single c
tals have been reported. However, they cover a wide t
perature range from the boiling point of liquid nitrogen
almost 1200 K and concern both phases of the Y–Ba–Cu
compound, i.e., tetragonal and orthorhombic phases.
have summarized the basic data in Fig. 2.

Notice a linear increase in the hardness of the ort
rhombic phase~Fig. 2, curve1! with decreasing temperature
without any anomalies nearTc . 93 K.12 The data obtained
for softer crystals and at a higher temperature22 ~Fig. 2, curve
2! show a similar temperature dependence. The increas
HV at T . 550 K can be attributed to the changes in oxyg
stoichiometry. Samples with the tetragonal structure exh
lower hardness at room temperature, which increase rap
with decreasing temperature, and a sharp transition fr
ductile behavior to brittle fracture at about 200 K Ref. 1
~Fig. 2, curve3!. AnalogousHV and their low-temperature
dependences of normal brittle semiconductors~e.g., Si, Ge!
and Y–Ba–Cu–O single crystals can indicate that in regio
the similar thermally activated dislocation mechanisms c
trol plastic deformation produced by indentation.12 It may be
suggested that strong covalent bonds~in the first case! and
ionic bonds~in the second case! create high Peierls barriers

n

679Lubenets et al.
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which constrain the dislocation mobility in these crystals.
The high-temperature deformation processes in the

tragonal phase~region III, Fig. 2, curve4; Ref. 10! are ob-
viously diffusion assisted. In the intermediate region II t
mixed dislocation-diffusion mechanisms are expected
control plastic flow~see, for example, Refs. 5 and 23 and t
bibliography cited there!.

Fracture toughness and surface energy.Measurements
of the temperature dependence of the fracture toughness
been carried out with two series of Y–Ba–Cu–O single cr
tals: Y–Al and Y–Pt.24 They are characterized by the sam
oxygen indexd . 0.3– 0.4 and the same critical temperatu
Tc . 60 K. For Y–Pt crystals, a decrease ofHV andKc with
increasing temperature arises from thermally activated di
cation glide. This provides evidence for a quasi-brittle ty
of fracture. In contrast, a weak rise ofKc of Y–Al crystals
from 3.4 MPa•m1/2 ~at 77 K! to 3.5 MPa•m1/2 ~at 292 K!
~and a weak drop ofHV from 9.3 GPa~at 77 K! to 8.5 GPa
~at 292 K! with increasing temperature may point to an id
ally brittle mode of fracture, without allowance for the glid
dislocations or with their slight participation. In this situ
tion, the calculated values ofKc are determined essentiall
by the material constants. Using the Griffith–Orovan relat
K2 5 2gE/(1 2 v2), where v is the Poisson ratio, we cou
estimate the surface energyg of two surfaces (100)/(010)
and~001!. The~001! face indentation gives an averageKc of
about 0.35 MPa•m1/2 and henceg100/010. 360 erg/cm2. An
indentation of (100)/(010) face showed a large anisotropy
crack length for crack directions perpendicular to and pa
lel to the basal plane~cf. Refs. 14–16, and 19!: Kc

. 0.7 MPa•m1/2 and g100/010 . 1400 erg/cm2 in the first
case andKc . 0.2 MPa•m1/2 andg001 . 160 erg/cm2 in the
second case.

Ceramics

Indentation technique is very useful in estimating t
density and homogeneity of samples because of the poss
ity of accurately locating the impressions on the surface

FIG. 2. Microhardness of Y–Ba–Cu–O single crystals as a function
temperature: the orthorhombic phase,d 5 0.1 ~1!;12 the orthorhombic
phase, as-grown~2! ~Ref. 20!; the tetragonal phase,d 5 0.9 ~3! ~Ref. 12!;
the tetragonal phase~4! ~Ref. 10!.
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structural and other defects. This is particularly evident
measurements on ceramics.

The influence of microstructure inhomogeneities on
hardness of Y–Ba–Cu–O ceramics is reflected very d
tinctly in histograms and in average values of hardnes19

The hardness in the vicinity of grain boundaries is sma
and its dispersion is higher than they both measured wi
grains. The role of intergrain material in the formation of t
ductility of ceramics can be demonstrated best of all by
example of fine-grain ceramics with the grain sized
. 5 mm. Its average hardness was found to be smaller b
factor of 3 as compared with that of ceramics of about
same density withd . 40mm, which indicates the deter
mining influence of grain boundaries on the impression f
mation.

The temperature dependences of the microhardnes
ceramics with an average grain sized . 5 mm and different
densities D/DR 5 0.73, 0.91, and 0.98 are plotted i
Fig. 3.25 Figures 3a and 3b show the data ofHV measure-
ments at an indentor loadP1 5 0.15 N andP2 5 2 N,
respectively. At theP1 load an impression area was ve
nearly equal to the grain area, whereas at theP2 load it far
exceeded the grain area. The measured values ofHV at P2

characterize the hardness of given ceramics on average,
whole, and then they are less thanHV values obtained a
indentation with smaller loadP1 . The smaller the load on
the indentor, the closer are the measured values to the h
ness of the grains. From Fig. 3 we see that the hardnes
near-linear with temperature without any detectable featu
in the range from 77 to 293 K for all samples examined, b
what is more important in this context, it depends strongly
density.

Recently19 we studied the dependence of the hardness
the density of Y–Ba–Cu–O ceramics in the interval
D/DR 5 0.33– 0.92 at room temperature and deduced fr
the experiments that the hardness increases exponen
with increasing density~see also Ref. 26!, as is usually ob-
served for many structural ceramics:

HV5HV0 exp@2n~12D/DR!#.

This equation adequately describes the data in Fig. 3 a
temperatures~the plots for two fixed temperatures, 77 an
293 K, are presented in the insets in Figs. 3a and 3b!. The
HV0 value decreases with increasing temperature from 8.
4.6 GPa atP2 5 2 N and from 11.6 to 5.7 GPa atPt

5 0.15 N. The factorn in the exponent is equal to 4.6 at
load of 2 N independently of temperature. At a load
0.15 N then value increases from 2.6 at 293 K to 3.6
77 K. An increase in the value ofn with decreasing tempera
ture and an increase in the load is likely due to the cra
formation along the grain boundaries. These microcracks
hance the dependence of hardness on density, which in
initial ceramics is determined by the intrinsic voids.

The maximum hardnesses of grains in ceramic sam
and single crystals of the same oxygen concentration ar
good agreement in the whole temperature range from 7
293 K.

f
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3.2. Bi–Sr–Ca–Cu–O system

The Bi-containing HTSC ceramics and crystals exhibi
highly nonuniform micromechanical properties.27 The hard-
ness of single crystals at room temperature was found
have three typical values: 0.5; 1.1, and 3.1 GPa. The d
observed are close to those measured individually on
types of ceramic crystallites with different optical reflecti
capacities: 0.43 GPa and 1.08 GPa for ‘‘dark’’ crystallit

FIG. 3. Microhardness of Y–Ba–Cu–O ceramics as a function of temp
ture, at the loads on the indentorP1 5 0.15 N ~a! and P2 5 2 N ~b!.
Relative densityD/DR 5 0.98 ~1!, 0.91 ~2!, and 0.73~3!. The insets show
D/DR dependences of lnHV at two temperatures 77~1! and 293 K~2!.
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and 3.8 GPa for ‘‘bright’’ crystallites. These values are co
siderably lower than the micro-hardness of a Y-Ba-Cu
system.

Nonuniform mechanical properties of a Bi-Sr-Ca-Cu
system apparently are attributable to their multiphase nat
Preparation of single-phase crystals of this system is s
ously hindered by different causes. As was demonstra
nearly single phase material~2212! can be obtained only by
thoroughly controlling the processing parameters: the o
gen pressure, the maximum sintering temperature, the
nealing time, and the cation stoichiometry.28 The high qual-
ity ~2223! phase samples were also prepared.29,30

Addition of Pb dopant to the Bi–Sr–Ca–Cu–O syste
stabilizes the 2223 phase and therefore hardens
Bi22xPbxSr2Ca2Cu3Oy ceramics.31 Figure 4 shows the micro
hardness plotted as a function of Pb dopant concentrat
Measurements were performed at room temperature by u
six samples with different values ofx but approximately the
same densityD/DR , between 0.6 and 0.7. The microhar
ness increases almost 2.5 times with increasingx from 0.2 to
0.6. Near-linear rise ofHV with x is probably caused by
solid-solution hardening. A deflection ofHV(x) from the lin-
ear dependence atx 5 0.6 may result from Ca2PbO4 particle
formation, which leads to additional precipitate hardening

The microhardness of the Bi22xPbxSr2Ca2Cu3Oy ceram-
ics increases with decreasing temperature and, as with
Y–Ba–Cu–O system, has no anomalies in the rangeTc

5 105– 110 K. Figure 5 shows theHV values and their
changes in the temperature interval from 77 to 293 K fo
sample withx 5 0.4.

Microhardness measurements with the Knoop inden
carried out on the~001! face of 2223 crystals showed pola
hardness anisotropy betweenHmin 5 0.9 GPa andHmax

5 1.33 GPa for azimuth 45°@the short diagonal of the in
denter was parallel to the~100! face# and 0° ~or 90°!,
respectively.32 The corresponding data for 2212 crystals33

are Hmin 5 0.8 GPa andHmax 5 2.5 GPa. Attention was
drawn to a correlation between theHmax and Tc values for
HTSC materials:32,34,35the higher theHmax the lowerTc ~in

a-

FIG. 4. Microhardness of Bi22xPbxSr2Ca2Cu3Oy ceramics as a function of
Pb dopant concentration at room temperature.
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particular, for the 2212 phaseTc 5 85 K and for the 2223
phaseTc 5 100– 110 K!. This correlation seems to suppo
the notion that superconductors with higherTc values have a
more friable crystal structure.

The other feature of the Bi–Sr–Ca–Cu–O crystals
considerable lateral cracking or crushing as a result of ind
tation. As a result, well-developed radial cracks were rar
visible. An estimation of fracture toughness showed val
as low as 0.11 MPa•m1/2 ~Ref. 27! and 0.22 MPa•m1/2 ~Ref.
36!. Lateral cracking causes the formation of surface relie
the form of a ‘‘roof.’’ The residual strain of this blister i
estimated to be no less than 1%.

4. COMPARISON OF MICRO- AND
MACROCHARACTERISTICS

Some data on the plasticity of Y–Ba–Cu–O a
Bi–Sr–Ca–Cu–O compounds obtained in micro- and m
rotests can be compared. In the temperature range wher
material is normally brittle, the empirical ratio of microhar
ness to yield stress is found to be about 3~Ref. 37!. In ac-
cordance with the available data for Y–Ba–Cu–O ceram
the maximum HV 5 4.3 GPa ~Ref. 19! and sy

5 1.25 GPa~Ref. 6!, henceHV /sy 5 3.2. It is of interest to
compare the microhardness and the strength of the si
crystals. At 77 K,HV 5 13.2 GPa~Ref. 12!, and the strength
sT 5 3.1– 5.4 GPa, as measured at the same temperatu
a field-ion microscope,38,39 therefore, HV /sT 5 4.3
2 2.6. We note that thesT values are close to the theoretic
strength of a perfect crystal:sT /E33 5 1/16 2 1/30. A
similar value ofsT > 4.3 6 0.7 GPa at 78 K was found fo
LuBa2Cu3O72d single crystals of diameter 74–245 nm
Ref. 40.

There are data on hardness of Bi–Sr–Ca–Cu–O~2212!
crystals,27,41 and tensile strength and elastic modulus

FIG. 5. Microhardness of Bi22xPbxSr2Ca2Cu3Oy ceramics as a function o
temperature forx 5 0.4.
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s
n-
y
s

n

-
the

s,

le

in

f

5 3.1 GPa ~Ref. 27! and HV 5 6.2 GPa ~Ref. 41!, sc

5 0.94 GPa andE 5 92 GPa~Ref. 42!; therefore,HV /sc

5 3.3– 6.6 andsc /E 5 1/100. In this case it is clear tha
first, the yield point was not reached because of the bri
fracture of whiskers and, secondly,sc is less thansT be-
cause of the large cross section of whiskers more t
50mm2.
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