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The effect of hydrostatic pressure on the resistance and resistive transition to the superconducting
state in YBa2Cu3O72d single crystals with different oxygen contents is studied
experimentally. It is found that, following the application~or removal! of pressure, the resistance
relaxes to an equilibrium value that depends on pressure, the relaxation time at room
temperature being about two days. It is shown that the value of the superconducting transition
temperature depends on the pressure, but the width and shape of the transition depend
mainly on the degree of resistance relaxation to the equilibrium value. It is concluded that the
decrease in resistance under hydrostatic pressure is associated with the ordering of labile
oxygen in the Cu–O plane. The possible mechanisms of variation of the superconducting transition
temperature are discussed. ©1997 American Institute of Physics.@S1063-777X~97!00110-2#
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conductor YBa2Cu3O72d , its transition temperatureTc in-
creases but its resistanceR decreases.1–5 The magnitude of
variationudTc /dPu of transition temperature andudR/dPu of
resistance under a pressureP depends significantly on th
oxygen index and increases withd. A characteristic feature
of samples with a reduced oxygen concentration is a bro
ening of their resistive transitions under hydrosta
pressure.2,3 The reason behind such a behavior has not b
established so far.

In all the works mentioned above, investigations we
carried out on monocrystalline samples having an oxy
deficiencyd<0.1.4,5 For a significant oxygen deficitd;0.5,
measurements were made on ceramic samples.1–3 The aim of
the present work is to study experimentally the effect of h
drostatic pressure on resistance in theab-plane and on the
superconducting transition temperature of YBa2Cu3O72d

single crystals with an oxygen indexd;0.4–0.6.
The YBa2Cu3O72d single crystals were grown by th

solution–melt technique in a gold crucible.6 The crystals
were subjected to thermal treatment in oxygen flow at te
peratures 420–650 °C for two–three days. Measurem
were made on three crystals. The resistivity of the crystalK1
at room temperature wasrk;200mV•cm, the transition
temperatureTc592 K andDTc50.3 K. The corresponding
characteristics for crystalsK2 andK3 arer r5750 mV•cm,
Tc550 K, DTc52.4 K andr r57 mV•cm,Tc546 K, DTc54
K, respectively. A comparison with the data available in t
literature on the dependence of the transition tempera
and resistivity on the oxygen index leads to the estima
d<0.1,d<0.5, andd<0.6 for the value ofd in the crystals
K1, K2 andK3, respectively.

The hydrostatic pressure was created with the help
multiplicator by using the technique described in Ref. 7. T
pressure in the multiplicator was measured by a manga
probe placed in the vicinity of the sample. The resistan
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probe technique. A transport currentI 50.1–10m A was
passed through theab-plane. The value ofTc was deter-
mined at the middle of the resistive transition to the sup
conducting state, i.e., at the levelR5RN/2, whereRN is the
electrical resistance in the normal state. The widthDTc of
the superconducting transition was determined as the dif
ence in temperatures corresponding to the values 0.95RN

and 0.05RN of the resistance.
Isothermal measurements of resistance at room temp

ture in YBa2Cu3O72d crystals with oxygen deficiency
d;0.5 showed that after cooling of the samples from 62
650 °C, the resistance relaxes to the equilibrium value ov
few days.8 Hence all measurements were made after hold
the samples at room temperature for four days. Test meas
ments show that the sample resistance did not change
time after such a holding.

Temperature dependences of the resistanceR were mea-
sured during heating of the multiplicator~at first, under the
atmospheric pressure!. The pressure was then raised slow
at room temperature, the multiplicator was cooled to a te
perature below the superconducting transition temperat
and measurements ofR(T) were started. The pressure wa
decreased to the atmospheric level after the attainmen
maximum pressure, andR(T) dependences were measur
again.

In some cases, isothermal measurements of resistan
a function of time were made. The following procedure w
adopted: after the application~removal! of pressure, the mul-
tiplicator was placed in a thermostat and resistance was m
sured after the attainment of a particular temperature.
time interval between measurements was 100 h.

Curves1, 2, 3 in Fig. 1 show the temperature depe
dence of the reduced resistance of the samplesK1, K2 and
K3, respectively. The upper and lower insets to Fig. 1 sh
the transition to the superconducting state for the crystalsK1
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andK2, while Fig. 2 shows the corresponding transition
the sampleK3. It can be seen that the width of the resisti
transition increases with decreasing concentration of oxyg
This is in accord with the results available in the literatur2

Figure 2 shows the evolution of the superconduct
transition for the crystalK3 under hydrostatic pressure. Th
results of measurements made under the application of p
sure are shown by light circles on curve1. Curve2 shows the
R(T) dependence measured directly after the application
pressure of 4.2 kbar. Measurements were repeated after
ing the sample under pressure at room temperature for t
days. The results of these measurements are shown by c
3. The pressure was then removed, and the measureme
atmospheric pressure were made immediately after
~curve4!. After this, the sample was held at room tempe
ture for three days, and the resistance was measured re
edly. The dark circles on curve1 correspond to the results o
measurements made three days after the removal of pres

It can be seen from Fig. 2a that the results of measu
ment ofR(T) depend not only on pressure, but also on
time of holding of the sample at room temperature unde
constant pressure. A comparison of curves1 and 2 shows
that the shape and width of the resistive transition does
change upon the application of pressure, and only the m
nitude of resistance and transition temperature chan
However, a comparison of curves2 and3 shows that holding
of a sample under pressure at room temperature change
only the resistance of the sample, but also the width
shape of the superconducting transition, while the transi
temperatureTc remains unchanged~see Fig. 2b!. Such a
regularity was also observed as the pressure was reduc
the atmospheric level, at which the resistance and trans
temperature change, but the width and shape of the su
conducting transition remain unchanged. The resistanc
well as the width and shape of the superconducting transi
change as the sample is held for another three days at r

FIG. 1. Temperature dependence of the reduced resistance of single cr
K1 ~curve1!, K2 ~curve2!, andK3 ~curve3!. The upper inset shows th
resistive transition to the superconducting state for the crystalK1, while the
lower inset shows the corresponding transition for the crystalK2.
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temperature. However, the additional holding of the sam
at room temperature does not change the value ofTc . It is
interesting to note that as the pressure is lowered to the
mospheric level and the sample is held at room tempera
for three days, theR(T) dependence coincides with the d
pendence obtained before the application of pressure. T
the observed variation ofR(T) is reversible during the
application–removal of pressure. This is also confirmed
the results of measurements of resistance relaxation to
equilibrium value corresponding to the room temperat
measurement.

The dependence of the resistance of the sampleK3 on
time, measured after the application and removal of press
is shown in Fig. 3.Before the application of the pressure,
sample resistance was 3.22V. The following sequence o
measurements was adopted. After mounting the sampl
pressureP54.2 kbar was produced in the high-pressu
chamber. Curve1 shows the results of measurements of t
R(T) dependence made at 293 K about one hour after
application of pressure. The pressure was then increase

tals

FIG. 2. Evolution of superconducting transitions in the crystalK3 in the
process of application and removal of pressure~see text!.
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6.3 kbar and the sample was held at room temperature
three days under this pressure. Test measurements show
the sample resistance after such a holding was 2V, and did
not change subsequently with time. The pressure was
reduced to the atmospheric value, and the time depend
of the resistance was measured atT5293 K. Curve2 shows
the results of these measurements. It can be seen that
the passage of 50 hours, the resistance attains its equilib
value equal to the resistance value before the applicatio
the pressure.

It can be seen from Fig. 3 that the time of relaxation
the resistance to the equilibrium value is about 50 hours
temperature 293 K. It must be remarked that the relaxatio
the resistance after the application~removal! of pressure was
also observed at low temperatures. However, the relaxa
rate decreases rapidly with temperature, and no variation
the resistance were observed at liquid nitrogen tempera
for a period of seven days, which points towards the ther
activation mechanism of resistance relaxation.

The above peculiarities in the temperature and time
pendences of resistance under hydrostatic pressure were
observed during investigations of crystalsK1 andK2. The
relative variations of the critical temperature and resista
for K2 and K3 crystals were nearly identical, while th
variation for the crystalK1 was considerably smaller. B
way of an example, Fig. 4 shows the dependence of
critical temperature on pressure.

The ordering of oxygen in Cu–O planes may be the m
plausible reason behind the decrease in resistance with
under hydrostatic pressure. Such an assumption is supp
by the thermal activation nature of the process of resista
relaxation. Moreover, the time of resistance relaxation to
equilibrium value at room temperature is approximat
equal to the time of oxygen ordering in single crystals w
oxygen deficiencyd;0.5.8 Finally, neutron diffraction stud-
ies carried out during room-temperature annealing

FIG. 3. Isothermal relaxation of resistance of the crystalK3 during appli-
cation of pressureP54.2 kbar ~curve 1! and removal of pressure
P56.3 kbar~curve2!.
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samples quenched from high temperatures show that the
dering of oxygen in the Cu–O plane is accompanied b
decrease in the lattice parameters.9 Thus, a higher degree o
oxygen ordering corresponds to lower values of the latt
parameters. The reverse relation also seems to be logical
smaller values of the lattice parameters must correspond
higher ordering in the oxygen–vacancy system. The modu
of hydrostatic compression of YBa2Cu3O72d single crystals
is estimated at 230 GPa.10 Hence the application of a pres
sure of 2 kbar must lead to a decrease in the unit cell volu
by 0.09 %. The application of a pressure of 2 kbar follow
by the relaxation of resistance to its equilibrium value
duced the resistance of the samplesK2 and K3 by about
15 %. Hence a decrease in the volume of a unit cell
0.09% under a hydrostatic pressure of 2 kbar correspond
a decrease in resistance by 15%. In the course of oxy
ordering in samples with an oxygen deficitd;0.6, the lattice
parametersc anda decrease by 0.04 % while the parame
b decrease by 0.004 %.9 In other words, the decrease in th
unit cell volume amounts to about 0.09 %. The decrease
the sample resistance in the course of oxygen orderin
about 20 %.8 Thus, there is a satisfactory agreement betwe
the decrease in the unit cell volume and the decrease in
sample resistance, which are associated with the oxygen
dering and the application of hydrostatic pressure. In
light of the above arguments, it can be stated that the

FIG. 4. Pressure dependence of the superconducting transition tempe
of crystalsK1 (a! , K2 ~curve1! andK3 ~curve2! (b!.
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sure is associated with oxygen ordering in the Cu–O pla
Magnetic,11,12resistive,8 optical,13,14and structural9 stud-

ies of monocrystalline and ceramic samples
YBa2Cu3O72d with d50.4–0.6 cooled rapidly from tem
peratures 500– 650 °C show that the resistance and cr
lattice parameters decrease in the course of annealin
room temperature, while the superconducting transition te
perature increases. These variations are associated with
gen ordering in the Cu–O plane at room temperature. T
raises the question about the basic reason underlying the
crease in the transition temperature. According to Wid
et al.,13,14 the increase in the transition temperature and
decrease in resistance are due to an increase in the c
concentration which is attributed to a change in the oxyg
environment of copper atoms in the Cu–O plane, i.e., t
change in the occupancy of the oxygen positions O~1! and
O~5! which in turn causes a redistribution of charge betwe
Cu–O planes and chains. On the other hand, neutron diff
tion studies reveal9 that annealing of samples at room tem
perature practically does not change the occupancy of
positions O~1! and O~5!. This raises doubts about the validi
of the assumption that the transition temperature and ca
concentration increase due to a redistribution of charge
tween the Cu–O planes and chains.

Another reason behind the increase in the value ofTc

may be a decrease in the lattice parameters. It can be
from Fig. 2 that the application or removal of a pressure
4.2 kbar leads to a variation of about 10 % in the transit
temperature and resistance if we do not take into consi
ation the thermally activated relaxation of resistance to
equilibrium value. After relaxation of the resistance to
equilibrium value following the application or removal of
pressure of 4.2 kbar, its value changes further by 20 %.
transition temperature does not change in this case, altho
the onset and termination of the superconducting transi
are displaced by about 1 K. Thus the change in the transi
temperature is determined mainly by a change in the app
pressure, and not by a redistribution of oxygen. This me
that the value ofTc depends primarily on the crystal lattic
parameters rather than the degree of oxygen ordering.

The correlation between the magnitudes of variation
the transition temperature and resistance associated w
change in the unit cell volume following the application
removal of pressure may suggest that the variation of th
characteristics has the same origin. The resistance varia
under pressure may be due to a change in the electr
phonon interaction constant and carrier concentration. In
latter case, it is presumed that the variation ofTc and resis-
tance changes the density of statesN(EF) at the Fermi level:
an increase~decrease! in pressure causes an increase~de-
crease! in the value ofN(EF).

It was mentioned above that relaxation of the resista
to the equilibrium value is followed by a variation in th
width and shape of superconducting transitions. For
ample, it can be seen from Fig. 2 that, following the rela
ation of resistance due to an increase in pressure, the
shape of the superconducting transition becomes more
nounced. The step on the resistive transition to the super
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cates the existence in such crystals of at least two ph
characterized by different concentrations of oxygen and
ferent types of ordering in it, and hence having differe
transition temperatures.8 Hence the most plausible reason b
hind the change in the width and shape of superconduc
transitions is the redistribution of oxygen between the
phases. For example, a part of oxygen from the phase wi
lower transition temperature migrates to the phase wit
higher Tc upon an increase in pressure, while the oppos
redistribution occurs upon a decrease in pressure. The d
sion lengthL05(Dt)1/2 of oxygen at room temperature ove
one day is estimated at 30–300 Å.9 This is comparable with
the distance 50–400 Å14,15over which oxygen ordering oc
curs at room temperature in single crystals withd;0.5.

It should also be observed that the absence of step
resistive transitions of crystalsK1 andK2 does not rule out
the possibility of the existence of two or more phases hav
different transition temperatures. For example, the existe
of percolation channels for current flow in the phase with
highest transition temperature means that a transition to
superconducting state of just this phase will be observed
the resistive transition. Hence it cannot be stated unequ
cally from the available experimental data that the cryst
K1 andK2 are single-phase structures.

It was mentioned above that the derivativesdTc /dP and
dR/dP are much smaller for theK1 single crystal than for
crystalsK2 andK3. For example, it can be seen from Fig.
that dTc /dP;0.15 K/kbar for the crystal K1 and
dTc /dP;0.85 K/kbar for the crystalsK2 andK3. The rela-
tively weak effect of pressure on the transition temperat
and conductivity of crystals withd<0.1 may be explained
by using the model based on the existence of a van H
singularity in the electronic spectrum which is characteris
for a two-dimensional lattice with a strong coupling. F
crystals withTc;90 K, the Fermi level lies in the valley
between two density of states peaks, and the density of s
N(EF) at the Fermi level depends significantly on the ra
(a2b)/a.16,17An increase in the value of this ratio increas
the separation between the density of states peaks, and h
decreases the values ofN(EF) andTc . On the other hand, a
decrease in this ratio brings the peaks closer, which lead
an increase in the values ofN(EF) andTc . Such a variation
of Tc was indeed observed in the studies of the effect
uniaxial compression alonga and b axes on the supercon
ducting transition temperature of single crystals w
Tc;90 K18: the application of a load along thea axis in-
creases the transition temperature, while the application
load along theb axis decreases the transition temperatu
The ratio (a2b)/a changes weakly under hydrostatic pre
sure since it is determined only by the difference in t
moduli of compression along thea and b axes. Hence the
variation of the transition temperature under hydrosta
pressure is relatively small.

For crystals withTc;60 K, the Fermi level is displaced
from the middle of the band, and lies on the side of the v
Hove singularity. Hence, if the transition temperature is d
termined primarily by the number density of charge carrie

780Balla et al.



the application of hydrostatic pressure must move the Fermi
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level towards the density of states peak.
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Nonlinear microwave properties of epitaxial HTS films

le-
G. A. Melkov, V. Yu. Malyshev, and S. K. Korsak
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~Submitted February 27, 1997; revised April 18, 1997!
Fiz. Nizk. Temp.23, 1041–1045~October 1997!

The surface resistanceRs of epitaxial HTS films of YBa2Cu3O72d on sapphire is studied
experimentally at a frequency of 8.95 GHz in the presence of an additional powerful microwave
signal of frequency 9.4 GHz ensuring the ac magnetic field amplitude up to 20 Oe on the
film. It is found that the surface resistanceRs of the HTS film increases with the amplitude of
the additional signal. The value ofRs of the HTS film virtually coincides with the value
of the nonlinear surface resistance of the film at the same amplitude of the ac magnetic field. In
other words, the surface resistances of the film for a weak signal in the presence of an
additional powerful signal and for the powerful signal alone are close. The observed phenomena
are explained under the assumption that the HTS film is a Josephson medium containing
various types of Josephson junctions. Under the influence of a powerful microwave signal, the
properties of this medium can vary due to switching of a part of the junctions, causing a
transition of the medium to a new state which is manifested identically both for a weak and for a
powerful signal. ©1997 American Institute of Physics.@S1063-777X~97!00210-7#
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The most promising application of HTS films at prese
is the creation of a passive linear resonant structure in
microwave range.1 The application of HTS films instead o
copper analogs makes it possible to improve considera
both electric parameters~losses in the transmission band a
steepness of fronts at the band edges!, and mass and siz
parameters of instruments. However, an HTS-based de
must satisfy a number of requirements, among which is
absence of noticeable nonlinear changes in parameters
powers of a few watts, which corresponds to high microwa
magnetic fields in resonant systems, which are of the orde
tens and even hundreds of oersteds.2 The situation is compli-
cated even more by the fact that in actual practice an H
film is subjected to the action of several signals with diffe
ent frequencies and amplitudes. The nonlinearity prob
can be solved successfully only if we know the physi
reasons behind its emergence for the development of tec
logical conditions for obtaining epitaxial HTS films with a
extended linearity range and for creating devices whose c
struction would ensure the lowest values of maximum a
plitudes of microwave magnetic fields and currents fo
given power.3

In Ref. 4, a model of an epitaxial HTS film taking int
account both linear and nonlinear properties was propo
According to this model, an HTS film is an aggregate
series-connected regions with different physical parame
~Fig. 1!. Some of these regions are perfect defect-free su
conductors~regions I, III, and V in Fig. 1!, while others~II
and IV! contain various defects shunted by regions with id
conductivity, like regions of a superconductor deoriented
the basal plane and surrounded by large-angle bounda
Such boundaries form weak links of various types and m
a decisive contribution to the surface resistance of epita
HTS films.5 For this reason, an equivalent circuit diagram
a real superconducting film4 must include elements corre
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ments responsible for various types of weak links shunted
a perfect superconductor which, as a rule, is a small ind
tive reactance. We assume that weak links formed in a n
ral way during deposition of an HTS film can be classifi
into two different types. The first-type links are formed
low-resistanceSNSor bridge junctions, while second-typ
links are formed at high-resistance~e.g., tunnel! junctions. In
the linear mode for small amplitudes of a microwave sign
the main contribution to the surface resistance of epita
HTS films comes from low-resistance junctions,4 whose re-
sistance is smaller than the inductive reactance of the reg
of the perfect superconductor shunting them. According
the nonlinear resistive model of tunnel junctions,6 an in-
crease in the signal amplitude causes a transition of th
junctions to a low-resistance state, which increases their c
tribution to the surface resistance; such a switching is
sponsible for nonlinear properties of real HTS films. T
switching of junctions starts when the signal amplitude e
ceeds a certain threshold value for which the voltage ac
the junction shunted by the inductive reactance of a per
superconductor attains the value of the gap voltageVg .6 Ob-
viously, the voltage across the junction increases with
frequency for the same exciting currents in the film in vie
of the presence of the shunting inductance. This clarifies
regularity observed but not explained by Nguyenet al.2:
nonlinearities are exhibited by epitaxial HTS films for si
nals with a higher frequency for smaller amplitudes of
currents or smaller values of ac magnetic fields in the fi
corresponding to these currents.

Thus, the linear surface resistance in the model propo
in Ref. 4 is mainly due to the presence of low-resistan
weak links, while nonlinear surface resistance is associa
with switching of high-resistance links to the low-resistan
state. However, the former statement should apparently
corrected in the case when two or more microwave sign
are acting on the film if the amplitude of at least one signa

78200782-04$10.00 © 1997 American Institute of Physics
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sufficient for switching the junctions. In this case, some lin
are transformed to low- resistance state even for ano
~also weak! signal irrespective of its amplitude as a result
the action of a strong signal, and the effective surface re
tance for the weak signal in the presence of the strong si
must increase.

This research aims at experimental investigation of
linear surface resistance of an epitaxial HTS film for a we
signal in the presence of a powerful additional microwa
signal whose frequency and amplitude differ from those
the first signal. The obtained experimental dependen
proved that the linear surface resistance increases in
upon an increase in the amplitude of the additional signa
this case, the linear surface resistance for the weak si
virtually coincides with the nonlinear surface resistance
the additional powerful signal.

EXPERIMENT

We studied the surface resistance ofC-oriented HTS
films of YBa2Cu3O72d on sapphire, obtained by lase
sputtering.7 The film thickness varied from 0.1 and 0.15mm,
the critical current in the helium temperature range excee
107A/cm2, the critical temperatureTc was of the order of
89 K, and the residual surface resistance varied from 10
500mV for different films in the 3-cm wavelength rang
According to Landermanet al.,5 the volume fraction of
large-angle boundaries in the films under investigation
not exceed 0.3–4%.

We determined the relative change in the surface re
tanceRS of an HTS film in the presence of an addition
signal of a finite amplitudeh by using the method of ope
dielectric resonator~ODR!4,8 consisting of measuring th
Q-factor of an ODR with an HTS film pressed against one
its faces. The size of the rectangular resonator was chose
as to ensure resonance simultaneously at the frequencyvs at
which the surface resistance is measured for a weak si
and at the frequencyv l corresponding to an additional sign
of large amplitude. W used the lowest magnetic type os
lations Hd11 and H1d1 whose magnetic fields on the film
were orthogonal to each other. The film with the ODR w
placed at the middle of a standard 3-cm rectangular wa
guide at the antinode of the ac magnetic field of the wa
guide, which was tangential to the film surface. In our m

FIG. 1. A model of epitaxial HTS film.
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surements, we used an ODR prepared from a thermost
ceramic with permittivity «;80, whose size was
332.633.5 mm, which ensured resonance at frequenc
vs /(2p);8.95 GHz andv l /(2p);9.4 GHz.

The block diagram of the experimental setup is shown
Fig. 2. The maximum amplitude of magnetic field of fr
quencyv l at the HTS film attains a value of 20 Oe. All th
measurements were made in a pulsed mode to avoid
overheating by the electromagnetic power. The pulse du
tion was 2ms and the pulse repetition frequency was 50 H

Figure 3 shows the relative change in the linear surf
resistanceRS(h)/RS(0)21 of the HTS film at a frequency
vs /(2p)58.95 GHz in the presence of an additional micr
wave signal of frequencyv l /(2p)59.4 GHz as a function
of the amplitudeh of the microwave magnetic field of th
additional signal. HereRS(h) and RS(0) are the linear sur-

FIG. 2. Block diagram of experimental setup: low-power microwave g
erator ~1!, microwave modulator~2!, magnetron generator~3!, precision
attenuator~4!, low-frequency pulse modulator~5!, waveguide switch~6!,
band transmission filter~7!, running wave valve microwave amplifier an
pulse detector~8!, oscillograph~9!, precision attenuator~10!, directional
divisor ~11!, two-directional divisor~12!, measuring section in a magneti
field ~13!, and magnet~14!.

FIG. 3. Relative linear surface resistance of an epitaxial HTS film a
frequency 8.95 GHz as a function of the amplitudeh of an additional pow-
erful signal of frequency 9.4 GHz~j, solid curve!; the dashed curve (h)
shows for comparison the experimental dependence of the nonlinear su
resistance of the same HTS film for a signal of frequency 9.4 GHz on
amplitude of the signal.
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face resistances of the HTS film in the presence of an a
tional power signal of amplitudeh and without it. The
dashed curve in the same figure shows for comparison
experimental dependence of the relative change in the n
linear surface resistance of the same HTS film for a signa
frequency 9.4 GHz as a function of the amplitude of th
signal. It should be recalled that such dependences w
studied in detail in Ref. 4. In our case,RS(h) is the surface
resistance of the HTS film for the magnetic field amplitu
equal toh, which is measured with the same signal~which
played the role of the additional signal in basic measu
ments!. It can be clearly seen from Fig. 3 that the line
surface resistance of the HTS film in the presence of
additional power microwave signal of amplitudeh and the
nonlinear surface resistance of the film for the same am
tude virtually coincide quantitatively; the qualitative type
the dependences on the ac magnetic field amplitudeh is also
the same. These results are in complete agreement with
model of epitaxial HTS film proposed in Ref. 4 and with th
arguments presented at the beginning of this paper, acc
ing to which any real HTS film is in fact a Josephson m
dium. The properties of this medium depend on the state
weak links forming it, which are switched from one state
another by the measuring signal itself as well as with
help of an additional powerful signal. In the former case,
have a nonlinear surface resistance, while in the latter c
we are dealing with an equivalent linear surface resista
independent of the amplitude of the measuring signal
determined by the amplitude of the additional signal.

Another proof of the correctness of the assumption m
here and in Ref. 4 is the temperature dependence of the
tive surface resistance of an epitaxial HTS film in the pr
ence of an additional powerful signal, which is presented
Fig. 4. This dependence resembles in many respects the
perature dependences of the nonlinear surface resistan
epitaxial HTS films measured in Ref. 8. Our analysis of
effect of a constant magnetic field up to 4 kOe applied p
allel as well as at right angles to the surface of an HTS fi
on the dependences shown in Figs. 3 and 4 also lead

FIG. 4. Temperature dependence of the relative surface resistance o
same HTS film as in Fig. 3 for frequency 8.95 GHz in the presence o
additional signal of frequency 9.4 GHz with the microwave magnetic fi
amplitudeh520 Oe.
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the surface resistance of epitaxial HTS films in the prese
of an additional signal turned out to be similar to the effe
of these fields on the nonlinear impedance of HTS film
which was studied in Refs. 4 and 8.

In addition to the switching of Josephson weak junctio
to a new state by an additional microwave signal descri
above, an attempt was made to carry out a similar switch
with the help of a power videopulse. For this purpose, ohm
contacts required for the transmission of low-frequency c
rent pulses were deposited on an HTS film. As in the cas
microwave signals, the duration of pulses was 2ms and the
current amplitude was;5 A, which ensured the magneti
field in the film of the order of 10 Oe. This value is close
order of magnitude to the parameters ensured by an a
tional powerful microwave signal. However, we did not o
serve any noticeable effect of the additional signal on lin
microwave properties of films even when the low-frequen
current parameters were close to the parameters of the m
mum current produced by the additional microwave sign
This fact can also be explained by using the proposed mo
of the epitaxial HTS film. It was mentioned in the Introdu
tion that the voltage across Josephson junctions is de
mined by shunting inductances and increases in proportio
the signal frequency. The frequency of spectral compone
of a videopulse of duration 2ms is obviously much lower
than the frequency of an additional microwave signal, wh
amounts to 9.4 GHz. This confirms the strong dependenc
nonlinear properties of epitaxial HTS films on the signal fr
quency: the nonlinearity increases with the frequency of
signal.

CONCLUSION

It has been proven experimentally that the linear surf
resistance of an epitaxial HTS film can be changed with
help of an additional powerful external microwave sign
which differs from the weak measuring signal in frequen
and amplitude. It was found that the linear surface resista
for a weak signal in the presence of a strong signal as we
the nonlinear surface resistance for the latter signal are s
lar both quantitatively and qualitatively. This matching
preserved in the presence of constant magnetic fields a
The effect of an additional signal on the linear surface re
tance depends on the frequency of the additional signal
was not observed for videopulses of duration 2ms.

The reason behind the observed phenomena lies in
fact that an epitaxial film is a Josephson medium consis
of various Josephson junctions:SNS, bridge, tunnel junc-
tions, etc. For small amplitudes of the microwave field, t
surface resistance of the film is mainly determined by lo
resistance (SNSand bridge! junctions. For large amplitudes
high-resistance junctions are switched to the low-resista
state and start to make a contribution to the surface re
tance, which begins to increase as a result. This increas
virtually the same for a strong signal and for a weak signa
the presence of a powerful signal which is responsible fo
transition of the Josephson medium to a new state in b
cases. Such a transition is determined by the frequency o
powerful signal due to the shunting of Josephson juncti

the
n
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LOW-TEMPERATURE MAGNETISM
Activation spin waves in the Landau theory of Fermi liquid
A. I. Akhiezer, N. V. Laskin, and S. V. Peletminskii

National Science Center ‘‘Kharkov Physicotechnical Institute,’’ 310108 Kharkov, Ukraine*

~Submitted April 10, 1997!
Fiz. Nizk. Temp.23, 1046–1053~October 1997!

The activation spectra of collective oscillations with a quadratic energy–momentum relation are
studied for magnetically ordered Fermi liquid. It is shown that the spectrum of activation
spin waves depends considerably on the structure of the Landau interaction amplitude as a function
of the angle between quasimomenta of fermions. The existence of activation spin waves is
manifested in neutron and light scattering processes as well as in the transformation of waves in
magnetically ordered media. ©1997 American Institute of Physics.@S1063-777X~97!00310-1#
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The Landau theory of Fermi liquid is one of the wide
used methods of self-consistent field.1 The Landau Fermi
liquid theory is successfully employed in analysis of therm
dynamic and kinetic processes for systems of strongly in
acting fermions such as a normal or superfluid Fermi liqu
electrons in metals, and nuclear matter.

Landau and Silin1,2 were the first to study collective pro
cesses in a normal Fermi liquid, such as zero sound and
zero sound, which are characterized by a linear energy–
mentum relation. Later, Abrikosov and Dzyaloshinskii3 ap-
plied the theory of Fermi liquid for studying spectra of o
cillatory modes in a magnetically ordered Fermi liqui
These authors established the possibility of existence of
cillations with a quadratic energy–momentum relation, v
spin waves in a magnetized Fermi liquid. It should be no
that, according to Silin,2 a normal~disordered! Fermi liquid
in a magnetic field is also characterized by a quadr
energy-momentum relation.

However, Abrikosov and Dzyaloshinskii3 studied only
one case of collective oscillations with a quadratic ener
momentum relation. In actual practice, the spectrum of s
waves in a magnetically ordered Fermi liquid is richer. Th
work is devoted to an analysis of this problem. It will b
shown that along with the activationless spectrum of s
waves established in Ref. 3 on the basis of Fermi liq
theory, collective oscillations with an activation energy an
quadratic energy-momentum relation also exist, their act
tion energy being determined to a great extent by the st
ture of the Landau interaction amplitude as a function of
angle between quasimomenta of fermions. In the simp
case when the Landau amplitude is constant and indepen
of the angle between quasimomenta of fermions, an infini
degenerate activation mode also exists along with the ac
tionless mode.

The activation spectra should be taken into account in
analysis of neutron and light scattering processes as we
in the transformation of waves in magnetically ordered m
dia.
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Let us first recall the basic concept of the Landau the
of a Fermi liquid. The state of the Fermi liquid can be d
scribed by the one-particle density matrixf k,k8 , where
k5p, i , p being the momentum of a quasiparticle~fermion!
and i the quantum numbers associated with internal degr
of freedom of the fermion. The Landau theory describe
quantum liquid at low temperatures, whose energy spect
is similar to the spectrum of an ideal Fermi gas~consisting of
particles with a spin 1/2!. The starting point of the theory is
that the energy spectrum of the ideal gas is in one-to-
correspondence with the spectrum of interacting fermions
other words, the role of particles forming the gas is play
by elementary excitations~quasiparticles! whose number is
equal to the number of particles and which obey the Fer
Dirac statistics. It should be emphasized, however, that
total energy of the liquid in this case is not equal to the s
of the energies of quasiparticles, but is a certain functio
E( f ) of the one-particle density matrixf k,k8 .

In view of the coincidence of the energy spectrum of t
liquid and the ideal Fermi gas, we can describe the equi
rium properties of the Fermi liquid proceeding from the co
binatorial definition of entropy

S5Tr
~k!

~ f ln f 1~12 f !ln f !), ~1!

where the trace is taken in the space of quantum numbek.
The equilibrium density matrixf k,k8 corresponds to the

maximum of the entropyS for a fixed energyE( f ) and a
fixed spinSi /2,

Si5Tr
~k!

s i f , ~2!

wheres i are the Pauli matrices.~We assume that the energ
E( f ) is invariant to spin rotations.!

Instead of determining of the conditional maximum
entropy, we can find the unconditional minimum of the p
tential V( f ,Y),

V~ f ,Y!52S~ f !1Y0E~ f !1(
i

YiSi , ~3!
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where Y0 and Yi are thermodynamic forces~Lagrangian
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Formula ~5! and Eq.~9! form a closed self-consistent
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multipliers! conjugate to the integrals of motion. Solving th
problem, we arrive at the following nonlinear equation f
determining the equilibrium density matrix:

f 5H expS Y0«~ f !1(
i

YiSi D 11J 21

, ~4!

where the self-consistent Hamiltonian«( f ) of a quasiparti-
cle is connected with the energy functional through the f
lowing relation:

«~ f !5
]E~ f !

] f
. ~5!

Thus, assuming that the energy functionalE( f ) is
given, we can consider expressions~4! and~5! as a system of
equations for determining the equilibrium properties of t
Fermi liquid.

An analysis of nonequilibrium properties of a Fermi li
uid is based on the time-dependent one-particle density
trix f (t) whose evolution obeys a kinetic equation of the ty

i
] f ~ t !

]t
5@«~ f !, f # ~6!

if we disregard the collisions between quasiparticles.
Since the energy functionalE( f ) is invariant to spin

transformations, we have

E~U f U1!5E~ f !, U5eigis i ~7!

~gi are arbitrary real-valued parameters!. By varying the lat-
ter relation ingi , we obtain

Tr
k

s i@«~ f !, f #50. ~8!

This equation together with the kinetic equation~6! lead to
the law of conservation of the quantitySi . It should also be
noted that relations~7! together with definition~5! lead to the
relation

U1«~U f U1!U5«~ f !.

For a specific choice of the functionalE( f ), Eqs.~4! and
~6! form a system of equations for an analysis of the os
lator modes in a Fermi liquid.

Going over from the description in terms of the on
particle density matrixf to the description in terms of th
Wigner distribution function

f ~x,p,t !5
1

V (
q

eiq–xf p1q/2,p2q/2

~which is a function in the space ofx andp and a matrix in
indicess!, we obtain from~6! the following equation in the
approximation of small gradients:

i
] f ~ t !

]t
5@«~ f !, f #2

i

2 H ]«~ f !

]p
,

] f

]xJ
1

i

2 H ]«~ f !

]x
,

] f

]pJ , ~9!

where@...,...# and$...,...% denote the commutator and anticom
mutator, respectively, in the ‘‘spin space.’’4
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system of equations, which will form the basis for a analy
of small oscillations in a magnetically ordered Fermi liqui

For solving equation~9!, we choose for the equilibrium
state the spin-ordered state, assuming thatYi50. This means
that we are dealing with a second-order phase transit
while for YiÞ0 the phase transition to the magnetically o
dered state is a first-order phase transition.

According to~4!, this state can be described by the de
sity matrix

f ~ «̂ !5~eY0«̂1Y11!215
11s–n

2
f 11

12s–n

2
f 2 , ~10!

where

f 65~eY0«61Y11!215 f ~«6!, ~11!

«̂5
11s–n

2
«11

12s–n

2
«2 . ~12!

In this case, Eq.~9! has a solution corresponding to o
cillations of density and spin over the spin-ordered state. T
one-particle density matrixf (t)5 f̂ describing such oscilla-
tions can be written in the form

f̂ 5
11s–n

2
f̂ 11

12s–n

2
f̂ 21

1

2
s–f, n–f50. ~13!

It can be easily seen that the quantitiesf̂ 6 and f are
connected withf̂ through the relations

f̂ 65
1

2
Tr f̂ 6

1

2
Tr f̂ sn, ~14!

f5Tr f̂ s2nni Tr s i f̂ . ~15!

In this case, the energy functionalE( f̂ ) has the form

E~ f̂ !5E0~ f̂ !1E8~ f̂ !,

whereE0( f̂ ) is the functional of the fermion kinetic energy

E0~ f̂ !5(
p

«p Tr f̂ 5(
p

«p~ f̂ 11 f̂ 2!

andE8( f̂ ) is the functional of fermion interaction energy:

E8~ f̂ !5
1

2V (
p,p8

$Tr f̂ F~p,p8!Tr f̂ 8

1Tr s f̂ Fs~p,p8!Tr s f̂ 8%5
1

2V (
p,p8

$~ f̂ 1

1 f̂ 2!F~p,p8!~ f̂ 18 1 f̂ 28 !1~ f̂ 12 f̂ 2!Fs~p,p8!

3~ f̂ 18 2 f̂ 28 !1fFs~p,p8!f8%. ~16!

This allows us to write the Hamiltonian of a quasiparticle
the form

«̂5
11s–n

2
«11

12s–n

2
«21

1

2
s«, n«50, ~17!

where
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]E~ f̂ !

5« 1
1

F p,p f̂ 8 1 f̂ 8 1F p,p
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1
] f̂ 1

p V (
p8

$ ~ 8!~ 1 2! S~ 8!

3~ f̂ 18 2 f 28 !%,

«25
]E~ f̂ !

] f̂ 2

5«p1
1

V
(
p8

$F~p,p8!~ f̂ 18 1 f̂ 28 !2Fs~p,p8!

3~ f̂ 18 2 f̂ 28 !%, ~18!

1

2
«5

1

V (
p8

Fs~p,p8!f8. ~19!

Since f̂ 65 f 6 , f50 in statistical equilibrium, formulas
~18! and ~10! form a closed system of equations for dete
mining the equilibrium density matrixf ( «̂).

Putting f (t)5 f 1ĝ in Eq. ~9! and linearizing inĝ ~f is
the equilibrium density matrix~10! and ĝ;e2 ivt1 ik–r is the
small deviation from equilibrium!, we obtain

2 ivg1 i @ «̂,ĝ#1 i @d«̂, f #1
i

2 H k
]«~ f !

]p
,ĝJ

2
i

2 H d«̂,k
] f

]pJ 50, ~20!

where

d«̂5
11s–n

2
d«11

12s–n

2
d«21

1

2
s•d«, ~21!

and the quantitiesd«1 , d«2 , and d« are defined by the
formulas

d«15
1

V (
p8

$F~p,p8!~g18 1g28 !1Fs~p,p8!~g18 2g28 !%,

~22!

d«25
1

V (
p8

$F~p,p8!~g18 1g28 !2Fs~p,p8!~g18 2g28 !%,

~23!

1

2
d«5

1

V (
p8

Fs~p,p8!g8, ~24!

where

ĝ5
11s–n

2
g11

12s–n

2
g21

1

2
s–g, n–g50. ~25!

The system of equations~20!–~25! will serve as the ba-
sis for finding the oscillatory spectra of density and sp
density over the spin-ordered state of the Fermi liquid
should be noted that~see below! Eqs. ~20!–~25! in the ab-
sence of magnetic ordering@f 15 f 2 , see ~11!# describe
acoustic oscillations of a normal Fermi liquid. In a magne
cally ordered Fermi liquid, additional transverse oscillatio
branches ~spin waves! appear along with longitudina
branches. Note that one of transverse branches is activa
less~Goldstone’s theorem!.

The system of equations~20!–~25! has two classes o
solutions, viz., longitudinal oscillations! ~spin oscillates
along the directionn! for which g50, g1Þ0, g2Þ0 and
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to the directionn! for which gÞ0, n•g50, g15g250.
Before analyzing transverse modes, let us find out h

longitudinal modes are modified in the case of magnetic
dering. For this purpose, we note that Eq.~9! has a solution
for which g50 ~longitudinal oscillations! andd«50, while
g6 satisfies the equations

~v2k–v!g62k
] f

]p
d«650, ~26!

d«6 being connected withg6 through formulas~22! and
~23!, which will be presented in the form

d«65
1

V (
p8

$F6~p,p8!g18 1F7~p,p8!g28 %,

~27!

F6~p,p8!5F~p,p8!6Fs~p,p8!.

Oscillations described by Eq.~26! will be referred to as lon-
gitudinal relative to the direction of magnetizationn.

Noting that ] f 6 /]p5v6(] f 6 /]«6) (v65nv6), and
introducing the notation

K6~s6!5E d3p
cosq

s62cosq

] f 6

]«6
, s65

v

kv6
,

we arrive at the dispersion equation in the case when
amplitudesF6 are constant quantities independent of m
menta:

11~K11K2!F11K1K2~F1
2 2F2

2 !50 ~28!

or

11~K11K2!~F1Fs!14K1K2FFs50. ~29!

In the absence of magnetic ordering, whens15s25s,
K1(s)5K2(s)5K(s), these equations split into the tw
equations

K~s!52
1

2F
, K~s!52

1

2Fs
~30!

in accordance with the results of the Landau theory.1 The
first dispersion equation corresponds to acoustic oscillati
of density, while the second corresponds to oscillations
spin density.

3. ACTIVATION SPIN WAVES

Let us now go over to the description of oscillation
transverse relative to the direction of magnetizationn, for
which g15g250, and henced«15d«250. In this case,
we haveg5 1

2s•g, n–g50, d«5sd«, nd«50. Since

@ ĝ,b̂#5 i ~b12b2!@g,n#s, $ĝ,b̂%5~b11b2!g–s,

where the matrixb̂ has the form

b̂5
11n–s

2
b11

12n–s

2
b2 ,

we can write the kinetic equation~20! in the form
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Let us first analyze the solution of Eq.~33! in the case

n

es

n

m

u

e.,
S 2 1 2 D 1 2 1 2

3@d«,n#1
1

2
kS ] f 1

]p
1

] f 2

]p D d«50. ~31!

Equations ~26! and ~31! form a complete system o
equations for finding the spectra of oscillatory modes fo
magnetized Fermi liquid. Let us show how this system
transformed in the absence of magnetic ordering. Equat
~26! are transformed into the following two equations:

~v2k–v!g2k
] f

]p
d«50,

~v2k–v!g2k
] f

]p
d«s50, ~32!

where

d«5
2

V (
p8

F~p,p8!g~p8!,

d«s5
2

V (
p8

Fs~p,p8!g~p8!.

The first equation from~32! describes oscillations o
density of a Fermi liquid~zeroth sound!, while the second
equation is one of the three equations describing triply
generate acoustic oscillations of spin density. Two ot
equations for spin oscillations~and having the same form a
the second equation from~32!! can be obtained in the limi
of zero magnetization from Eqs.~31!.

Thus, we have proved that Eqs.~26! and ~31! describe
acoustic and spin-acoustic oscillations for a normal Fe
liquid in the absence of magnetic ordering@f 15 f 2 , see
~11!#.

Let us return to Eq.~31!. Going over in this equation to
the circular components of the vectorsg and d« relative to
the vectorn ~z-axis!,

g~6 !5g16 ig2 , d«~6 !5d«16 id«2

and noting that@g,n# (6)57 ig (6) , we transform Eq.~31! to

S v2
1

2
k•~v11v2! Dg~6 !6~«12«2!g~6 !7~ f 1

2 f 2!d«~6 !1
1

2
kS ] f 1

]p
1

] f 2

]p D d«~6 !50, ~33!

where

d«~6 !5
2

V (
p8

Fs~p,p8!g~6 !8 [2E dt8Fs~p,p8!g~6 !8 ,

~34!

and in statistic equilibrium state we have, according to~18!,

«12«252E dt8Fs~p,p8!~ f 18 2 f 28 !. ~35!

Obviously, the solutiong(6) can be obtained from the
solution g(2)[g by changing the signs of the frequencyv
and the wave vectork.
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when the spin amplitudeFs does not depend onp,p8. In this
case, forT!m(m52Y/Y0 is the chemical potential of the
Fermi system!, Eq. ~33! assumes the form

~v2ku!g12bg12~ f 12 f 2!Fsq2Fsq~kv1d~«1

2m!1kv2d~«22m!!50, ~36!

where

b52FsE dt~ f 12 f 2!,

q5E dt8g~p8!, u5
1

2
~v12v2!. ~37!

This equation shows that forqÞ0 the following dispersion
equation holds:

1/Fs5E dt

v2ku12b
~kv1d~«12m!1kv2d~«22m!

22~ f 12 f 2!!, ~38!

whose solution for small values ofk has the form1

v5
*dtu2$~ f 12 f 2!2b~d~«12m!1d~«22m!%

6b*dt~ f 12 f 2!
k2.

~39!

~We have used relation~37! in this case.! In addition to this
solution, fork50 we have an infinitely degenerate activatio
solutionv522b, q50.

Solution ~38! corresponds to Goldstone spin wav
emerging due to spontaneous symmetry breaking.

In the range of large values ofk ~and largev!, Eq. ~38!
assumes the form

1

Fs
5E dt

v2k–u
@v1d~«12m!1v2d~«22m!#k ~40!

and its solution corresponds to the spin soundv5sk trans-
verse relative tok in a magnetically ordered state.

In the weak magnetism approximation~or near the tran-
sition temperature!, solution~39! assumes the form

v5k2
2vF

2

3aF
, ~41!

where the quantityaF is connected with magnetizatio
through the relation

aFnF522E dt Tr f sn,

nF52E dtd@«~p!2m#. ~42!

Equation~40! is transformed in the case of weak magnetis
to the ordinary equation for spin sound@see~30!#.

Let us now analyze Eq.~33! in the case when the Landa
amplitudeFs(p,p8) is a function of the angle betweenp and
p8. We will use the weak magnetism approximation, i.
assume thatf 12 f 25(] f 0 /]«)(«12«2). In addition, as-
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suming that the wave vectork is small, we neglect the dif-
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ld
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2~ l 2m!! m
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o

ference between«1 and «2 is the corresponding terms i
Eq. ~33!, which assumes as a result the form

~v2k–v!g2~«12«2!g1
] f 0

]«
~«12«2!d«2

1k–v
] f 0

]«
d«250.

Noting that

d«252E dt8Fs~p,p8!d~p8!

in accordance with~34! and using~35! for T!m, i.e.,

152E dt8Fs~p,p8!d~«2m!

~this equation defines the chemical potentialm for T50!, we
obtain

~v2kv!g2~«12«2!2E dt8Fs~p,p8!d~«82m!g~p8!

2~«12«2!d~«2m!2E dt8Fs~p,p8!g~p8!

2kvd~«2m!2E dt8Fs~p,p8!g~p8!50.

It follows hence that the solution of this equation shou
be sought in the form

g~p!5
] f 0

]«
g~cosq!,

~q is the angle between the momentum vectorp of a particle
and the wave vectork!. The quantityg(cosq) in this case
satisfies the equation

~v2kv!g~cosq!2aFg~cosq!
nF

4p E do8Fs~cosu!

1aF

nF

4p E do8Fs~cosu!g~cosq8!

1kv
nF

4p E do8Fs~cosu!g~cosq8!50, ~43!

where u is the angle between the vectorsp and p8, and
notation~42! is used.

We expandg(cosq) and nFFs(cosu)[B(cosu) into
power series in the Legendre polynomials:

g~cosq!5(
l 50

`

gl Pl~cosq!,

B~cosu!5(
l 50

`

Bl Pl~cosu!, ~44!

wheregl andBl are expansion coefficients.
Taking into account the summation rule

Pl~cosu!5Pl~cosq!Pl~cosq8!
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m51 ~ l 1m!!

Pl ~cosq!

3Pl
m~cosq8!cosm~w2w8!,

as well as the orthogonality condition for Legendre polyn
mials

E doPl~cosq!Pl 8~cosq!5
4p

2l 11
d l l 8 ,

we obtain

E do8B~cosu!54pB0 ,

E do8B~cosu!g~cosq8!54p(
l 50

`
Blgl

2l 11
Pl~cosq!.

~45!

Substituting~44! and ~45! into Eq. ~41! and taking into ac-
count the fact that Legendre polynomials satisfy the relat

xPl~x!5
l 11

2l 11
Pl 11~x!1

l

2l 11
Pl 21~x!,

we can write Eq.~43! in the form

~v2v l !gl5algl 211blgl 11 , ~46!

where the following notation has been introduced:

v l5aFS B02
Bl

2l 11D , ~47!

al5k–v
l

2l 21 S 12
Bl 21

2l 21D , ~48!

bl5k–v
l 11

2l 13 S 12
Bl 11

2l 13D . ~49!

Expression~47! defines the frequencies of transverse o
cillations fork50. It can be seen that the mode withl 50 is
activationless (v050), while the frequenciesv l for
l 51,2,... differ from zero. It should be noted that, if the sp
Fermi amplitude is independent ofp andp8, expression~47!
assumes the form

v l5aFB0~12d l ,0!. ~50!

Obviously, in this case we have fork50 and infinitely
degenerate activation mode

v l5aFB0 , l 51, 2, ... . ~51!

Degeneracy is removed by taking into account the dep
dence of the Landau spin Fermi amplitude on the anglu
betweenp andp8.

We can seek the solution of Eq.~46! in the form of a
power series inuku ~it should be recalled that according t
~48! and ~49!, al;uku andbl;uku!:

v5v~0!1v~1!1v~2!1... .

gl5gl
~0!1gl

~2!1gl
~3!1... .

790Akhiezer et al.



Let us fix a certain nonnegative integerr . For the solu-
is

e

on
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i
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el

The oscillatory branch~54! is a Goldstone branch emerging
tical
ag-

-

f

f

of

is
e
ci-
tion of Eq. ~46! in the zeroth approximation, we have in th
case

v~0!5v r , gl
~0!5gr

~0!d r ,l .

Taking this into account, we can write the equation for d
termining the first approximation in the form

v r
~1!gl

~0!1v rgl
~1!2v lgl

~1!5algl 21
~0! 1blgl 11

~0! .

Putting l 5r , we obtainv r
(1)50, while for lÞr we have

gl
~1!5gr

~0!
ald l 21,r1bld l 11,r

v r2v l
. ~52!

It follows hence that the spectrum of transverse oscillati
in a magnetically ordered Fermi liquid does not conta
terms that are linear inuku.

In the second approximation in the perturbation theory
the wave vectork, Eq. ~46! assumes the form

v r
~2!gl

~0!1v rgl
~2!2v lgl

~2!5algl 21
~1! 1blgl 11

~1!

for l 5r , this equation can be written in the form

v r
~2!gr

~0!5argr 21
~1! 1brgr 11

~1! .

Noting that, according to~52!,

gr 21
~1! 5gr

~0!
br 21

v r2v r 21
, gr 11

~1! 5gr
~0!

ar 11

v r2v r 11
,

we obtain

v5v r1
arbr 21

v r2v r 21
1

ar 11br

v r2v r 11
1..., ~53!

wherear and br are defined by formulas~48! and ~49! re-
spectively.

Expression~53! is valid for r 51, 2, 3,... . However, it
follows from the derivation of this equation that forr 50 we
have the formula

v52
a1b0

v1
, ~54!

according to whichv;k2. Consequently, forr 50 we arrive
at an activationless spectrum of spin waves, which was
tablished in Ref. 3 on the basis of the Fermi liquid mod
791 Low Temp. Phys. 23 (10), October 1997
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in the case of spontaneous symmetry breaking in statis
equilibrium, which is associated with the emergence of m
netization. IfFs5const, the spectrum~54! is defined by the
formula

v5
2~kvF!2

3aF
, B0521,

which coincides with formula~41! as expected.
The activation frequency~53! in the spectrum is deter

mined by the value ofv r . For Fs5const, the activation
frequencyv r5aFB0 @see~51!# is the same for all values o
r ~see above!. For this reason, formulas~53! for r 51, 2, 3,...
become invalid ifFs5const. In order to find the range o
applicability of these formulas, we assume thatBr;Br 21 . In
this case, v r2v r 21;aFBr , v r;aF , al;bl;kvF(1
1Br). Consequently, the condition for the applicability
formulas~53! has the form

~11Br !
2~kvF!2!aF

2 uBr u.

If the amplitudeFs is close to a constant,uBr u!1, and this
condition can be written in the form

~kvF!2!aF
2 uBr u.

It can be seen that formulas~53! become applicable only
for anomalously smallk.
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Electron density of states and spin fluctuations in weak itinerant magnets

A. A. Povzner, A. G. Volkov, and P. V. Bayankin

Ural State Technical University, 620002 Ekaterinburg, Russia*
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The influence of zero-point and thermal spin fluctuations on the electronic structure and magnetic
properties of weak itinerant magnets is considered. The possibility of considerable complex
reconstruction of electron state density in fluctuating exchange and charge fields is demonstrated
for Fe12xCoxSi. The temperature dependence of paramagnetic susceptibility is in agreement
with experimental data obtained for Fe12xCoxSi. © 1997 American Institute of Physics.
@S1063-777X~97!00410-6#

1. Weak itinerant magnets include a group of com-«k is the energy of band motion of electrons,ak,s
1 (ak,s) is
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pounds of transition metals characterized by anomalou
small values of the Curie and Ne´el temperatures (Tc;10 K)
and magnetization in the ground state~m0(0)50.1mB ,
where mB is Bohr’s magneton!. This group of substance
contains weak itinerant ferromagnets~ZrZn2, Ni3Al, etc.!1 as
well as helimagnets~e.g., MnSi and Fe12xCoxSi!1,2 with
small magnitudes of wave vectors (q0;1022–
1023 Å 21),2,3 which become weakly ferromagnetic in com
paratively weak applied magnetic field
(h0.h0,c ,h0,c;10 kOe). In addition to thermal spin fluc
tuations ~with an amplitude ^m&T5^m2&T

1/2}T2/3!,1 weak
itinerant magnets are characterized by another important
insufficiently studied peculiarity, viz., zero-point spin flu
tuations whose amplitudêm&05^m2&0

1/2 depends weakly on
temperature and can become comparable to or even la
than the amplitude of magnetization in the ground st
m0(0).4–6 The results of experiments on inelastic scatter
of neutrons in MnSi can serve as an experimental evide
of realization of such a possibility.7

In this publication, an approach to the theory of a we
itinerant magnetism is developed, which describes the in
ence of thermal and zero-point spin fluctuations on the e
tron density of states for weak itinerant magnets. An analy
of this effect as well as estimates of the spin fluctuat
amplitudes were made for Fe12xCoxSi alloys in which the
renormalization of the electron density of states is signific
according to experimental results on magnetic, magnetoe
tic, and bulk characteristics.8–12

2. We shall analyze the influence of thermal and ze
point spin fluctuations on the electron density of states
weak itinerant magnets by using the Hubbard model
which intraatomic repulsion of electrons at a lattice site
taken into account in addition to their motion in the ba
~see, for example, Ref. 1!. The Hamiltonian of the electron
system can be written in the form

H5H01(
q

INq,sNq,2s2h0S0
~z! , ~1!

where

H05 (
k,s561/2

«kak,s
1 ak,s , ~2!
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the creation~annihilation! operator for electrons in a stat
with the quasimomentumk and spin s561/2, I the
electron–electron spin and charge interaction parameter

Nq,s5(
k

ak,s
1 ak1q,s ~3!

the operator of the Fourier transform of the electron den
with the wave vectorq and spins, Sq the vector of the spin
density operator,

Sq
z5(

s
sNq,s , Sq

65(
k

ak,s
1 ak1q,2sds,61/2

are its longitudinal~parallel to theZ-axis! and circular com-
ponents, andh0 the strength of a magnetic field directe
along theZ-axis.

In Ref. 5, this model was used for a self-consistent c
culation of the electron thermodynamic potential. The fo
malism of the Stratonovich–Hubbard functional transform
tions, which reduce the model under investigation to
analysis of motion of electrons in fluctuating exchange~j!
and charge~h! fields, was developed. Here we shall app
the formalism developed in Ref. 5 for calculating the Ma
subara one-electron Green’s function,13 which is directly
connected with the electron density of states:

Gk,s5
1

T
^Ttak,s

1 ak,ss~1/T!&0 , ~4!

whereTt is the operator of ordering over the imaginary tim
t, k5(k,v2n11),v2n115(2n11)T is the Fermi-Matsubara
frequency~n is an integer!, s(1/T) the scattering matrix,T
the temperature in energy units, and^...&0 the quantum-
statistical mean with the HamiltonianH0 .

In order to calculate~5!, we introduce the generatin
functional

V~lk,s!5V02T lnK expS 2FH2H0

1(
k,s

lk,sak,s
1 ak,sG Y TD L

0

~5!

~V0 is the thermodynamic potential of noninteracting ele
trons! and write the required Green’s function in the form

79200792-04$10.00 © 1997 American Institute of Physics



Gk,s5 lim
l →0

]V~lk,s!/]lk,s . ~6!
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f («2m) is the Fermi–Dirac function,xq,v
0 the Pauli nonuni-
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Expressing now~5! in terms of functional integrals with
respect toj and h variables, we obtain forV(lk,s) an ex-
pression which differs from that obtained in Ref. 5 for the
modynamic potential in the substitution«k→«k1lk,s . Ap-
plying the saddle point method in the variablesmq

g5ujq
gu and

hq ~q5(q,v2n), where v2n52nT in the Bose-Matsubara
frequency,13! for estimatingV(lk,s) and using~6!, we ob-
tain the electron Green’s function

Gk,s5
1

2N0
(

n,s8561
E )

q,g

dQq,g

2p
~ iv2n112«k

2s8jn!21S 112ss8
jn

z

jn
D . ~7!

Here

(
n

~ ...!5
T

N0
(

n
E

0

1/T

~ ...!dt; n5~n,t!;

jn is the magnitude of fluctuating exchange field at the sitn
in the representation of the imaginary timet, jn

g the compo-
nent of the exchange field vector along the a
g(g5x,y,x), Qq,g5argjq

g , jq
g is the Fourier transform o

jn
g in the variablesn andt ~see Ref. 5!, andN0 the number of

crystal lattice sites occupied byd-atoms.
Continuing expression~7! analytically to the real axis

( iv2n11→v1 iu) and going over to two-time temperatu
Green’s functions,14 we obtain the following expressions fo
the electron density of states and the amplitude of spin fl
tuations:

gs~«,j,m0!5
1

2 (
s8561

g~«1s8j!@11~2ss8m0 /mL!

3~11^m2&!/3mL
2#, ~8!

^m2&5
T

I (
q,g

mq
g5

1

IpN0
(
q,g

E
0

` F f B~v/T!1
1

2G
3Im$D21~j!1X~q,v!%21dv, ~9!

whereg(«) is the density of states for noninteracting ele
trons~i.e., for I 50!, j5ImL ; mL

25m0
21^m2&, m0(T) is the

uniform magnetization,̂m2&5^m2&01^m2&T the square of
spin fluctuation amplitude,̂m2&0 corresponding to the term
with the coefficient 1/2 in~9!, while ^m2&T corresponds to
the term with the Bose–Einstein function (f B(v/T)),

D~j!21512
I

3
x i~x!2

2I

3
x'~j!, ~10!

x i~j!52g~m1j!g~m2j!Y (
s561

g~m1sj!,

x'5 (
s561

~s/2j!E g~«1sj! f ~«2m!d«,

Xq,v5Ix0
02Ixq,v

0 5@aq22~ i Ibv/vFuqu!u~v

2vFuqu)]u~q2qc!, ~11!
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form susceptibility,vF the velocity of the Fermi surface,a
and b are the parameters that can be determined from n
tron diffraction experiments or from direct band calculation
andqc is the cutoff vector.

The obtained relations~8!–~10! not only describe the
effect of spin fluctuations on the electron density of stat
but also contain the renormalized density of sta
gs(«,j,m0) in the expressions for their amplitudes, or i
componentg(«1s8j). In the paramagnetic case and f
h050, we have

g~«,j,m050!5
1

2 (
s8561

g~«1s8j!.

Using formula~8!, we can find equations of the magnet
state and electroneutrality equations renormalized by s
fluctuations:

m05 (
s561/2

sE gs~«,j,m0! f ~«2m!d«, ~12!

N5 (
s561/2

E gs~«,j,m0! f ~«2m!d«, ~13!

whereN is the number ofd-electrons.
Differentiating magnetization with respect to extern

magnetic field, we obtain the expression for uniform pa
magnetic susceptibility,

x5]m0 /]h0uh05052~12D21~j!!I 21D~j!, ~14!

according to whichD(j) is a factor of exchange enhanc
ment of magnetic susceptibility, andx i andx' correspond to
the longitudinal and transverse Pauli susceptibility renorm
ized by spin fluctuations.

It should be noted that the derived expressions~10! and
~14! differ from those obtained earlier1,15 in that it takes into
account not only transverse, but also longitudinal spin a
charge fluctuations~associated with a change in the magn
tude of exchange field at a lattice site!. This combined influ-
ence of three types of fluctuation of electron density ensu
along with change in the number of states in subbands
responding to different spin directions, leads to the em
gence of the termx i and the weight factor 2.3 in the trans
verse component of nonenhanced susceptibility in form
~10!. In the case when either (m1j) or (m2j) is beyond the
d-band or a narrow peak on theg(«) curve, the system of
d-electrons acquires temperature-induced local magnetic
ments. As in Refs. 1, 15, local moments are induced
T.T* such that

T* 5~ Ib !21Fm* 2
2

3
IN* G Y @11~a/2!#,

wherem* is the chemical potential counted from the low
~for N.5N0! or upper~for N,5N0! edge of thed-band and
is determined from the electroneutrality condition~13! at
T5T* , j5j(T* ), m050, and 2N* is the number of vacan
(N.5N0) or occupied (N,5N0) states in the initial (I 50)
five-fold degenerated-band. The expression for the chara
teristic temperatureT* in this case virtually coincides with
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that given in Ref. 15~to within the substitutionI→2I /3).
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Calculating the amplitude of zero-point and thermal s
fluctuations in accordance with~9!, we find that the ampli-
tude of zero-point fluctuations decreases with increas
temperature, while the amplitude of thermal fluctuation
creases with it. The decrease in the amplitude of zero-p
fluctuations of spin density in approximation~11! is de-
scribed by the relation

^m2&05~3/pIb !@12~aD~j!!22#

3$11 ln~11b«F~D~j!211a!21%, ~15!

the amplitude vanishing forD(j)21>a. The amplitude of
thermal spin fluctuations forT,T* and D(j)21<a is cal-
culated by the formula

^m2&T5~T/T0!4/3, ~16!

while in the temperature rangeT.T* and forD(j)21>a it
satisfies the relation

^m2&T5~bT!2D21~j!@D21~j!1a#21, ~17!

where

T05a35/822/3@bG$4/3!z~4/3!%] 23/4I 1/4,

G(x) andz(x) being the gamma and zeta functions. It can
seen that the temperatureT* of formation of temperature
induced local magnetic moments can coincide approxima
with the temperature of vanishing of zero-point spin fluctu
tions. This is confirmed by an analysis of the properties
weak itinerant magnets and strong paramagnets atT.T* ,
which was carried out in Refs. 8, 10, 12, 15, 16.

3. A quantitative analysis of the effect of spin fluctu
tions on the electron density of states and paramagnetic
ceptibility of weak itinerant magnets will be carried out f
alloys in which temperature-induced local magnetic m
ments were studied earlier.10,12,16We shall estimate the am
plitudes of zero-point spin fluctuations on the basis of E
~11! and ~12! by using the experimental data on the magn
tization of the weakly ferromagnetic states of these alloy1!

induced by an applied magnetic field. We use theg(«) curve
shown in Fig. 1a and the parameterI 50.76 eV~see Ref. 12!.
The values of̂ m&0 obtained in this way are given in Table
The same table contains the results of experiments3,16 and of
earlier calculations12,16 of other magnetic and spin
fluctuation parameters of the alloys under investigation
was found that the calculation of the value of^m&0 by for-
mula ~15! involves the replacements of the frequency sp
trum parametersb corresponding to thermal spin fluctuation
by the quantitiesb8 whose values are also given in Table

In the quantitative analysis, we must also take into
count the effect of concentration fluctuations associated
the substitution of Si atoms ford-atoms and vice versa on th
magnetic properties. For this purpose, it is sufficient to ca
out the following substitution in the formulas containing t
enhancement factor:18

D21~j!→D21~j!@11Dp2D~j!#,

where the parameterDp251/N0((pn2p)2; pn is the prob-
ability of occupation of a given lattice site byd-metal atoms,
andp is the mean value ofpn .
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Following Ref. 18, we estimate the value ofDp2 for
Fe12xCoxSi alloys from the experimentally obtained depe
dences of magnetization on the applied magnetic field.3 It
was found that the effect of concentration fluctuations on
magnetic and electronic properties of the samples under
vestigation can be neglected sinceDp2;1022.

FIG. 1. Electron density of states as a function of energy and tempera
the model curve plotted according to the results obtained in Ref. 12
electron density of states for Fe12xCoxSi, which is not renormalized by
exchange fields~the value of the Fermi energy is indicated forx50.3! ~a!,
for Fe0.7Co0.3Si in subbands with different directions of spin atT50 K and
ferromagnetic ordering~b!, for Fe0.7Co0.3Si in subbands atT5TC ~c! and
T* ~d! ~without degeneracy in spin!.

TABLE I. Experimental3,12,16,17 and theoretical magnetic and spin
fluctuation parameters for Fe12xCoxSi alloys.

x

m0

2mB

«F ,
eV

Tc ,
K

^m&0

2mB T* , K a3102 Ib Ib8

0.10 0.050 13.220 15.0 0.000 650 3.0 5.55 0.0
0.30 0.075 13.294 44.0 0.106 350 3.6 4.80 9.8
0.40 0.100 13.324 39.0 0.439 275 4.0 4.60 2.3
0.50 0.085 13.356 34.0 0.536 200 4.4 4.40 1.9
0.60 0.050 13.391 4.8 0.049 150 4.0 1.14 21.3
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Figures 1b–d show the energy dependences of the e
tron density of states calculated by formula~8! taking into
account the data on the functiong(«),14 as well as the values
of ^m&0 , m0 and ^m&T for several characteristic temper
tures. It can be seen that the renormalization of the elec
density of states due to magnetization and zero-point s
fluctuations leads to redistributions of the number of el
tronic states between the subbands separated by the ga
to the emergence of a peak on the dependenceg(«,j,m0)
near the energy gap even near the absolute zero temper
As the temperature increases to values close toTc , the
g(«,j,m0) curve changes insignificantly, while in the par
magnetic temperature range it changes more strongly, w
is especially noticeable atT.T* (^m&050). Also, it should
be borne in mind that spin-fluctuation renormalization
electron band results in an additional displacement of
chemical potential of the alloys Fe12xCoxSi to the left of
m~0! @m(0)5«F10.033 eV forx50.3, «F being the Fermi
energy#.

The pattern of electron band transformation for we
itinerant magnets Fe12xCoxSi associated with thermal an
zero-point spin fluctuations is also confirmed by the agr
ment between the calculated temperature dependenc
paramagnetic susceptibility and the experimental data~Fig.
2!. The effect of fluctuation-induced renormalization of t
chemical potential, as well as of zero-point spin fluctuatio
on the formation of the dependencex(T) for T,T* is es-
pecially significant. At relatively high temperaturesT.T* ,
the fine-structure singularities of the electron density
states become insignificant, while^m&0 andx i vanish. In this
case, the results of calculations ofx(T) in the model curve
for electron states12 ~see Fig. 1a! for T.T* are in accord

FIG. 2. Temperature dependences of the paramagnetic susceptibili
Fe0.9Co0.1Si ~curve1! and Fe0.7Co0.3Si ~curve2! alloys. Solid curves corre-
spond to the results of theoretical calculations,d and 3 are experimental
data.16,17
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approach based on a slightly different model ofg(«) ~ob-
tained as a result of the substitutionI→2/3!.2!

Thus, spin fluctuations lead to a considerable renorm
ization of the electron density of states and chemical pot
tial of weak itinerant magnets, which should be taken in
account not only in the description of their magnetic prop
ties, but also while estimating the amplitude of spin fluctu
tions themselves. The spin-fluctuation reconstruction of
electron band determines the amplitudes of zero-point s
fluctuations, which are the smaller, the closer the Fermi le
to the left or right edge of the upper subbandg(«,0,0) ~see
Table I!. For T.T* , the amplitudes become equal to zer
which is accompanied by the formation of temperatu
induced local magnetic moments.

We believe that the effects of spin-fluctuation renorm
ization ofg(«) may be especially significant for studying th
low-temperature singularities of bulk magnetic, thermal, a
thermoelectric phenomena in weak itinerant magnets.

This research was partly financed by a grant from
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sian Ministry of Public and Professional Education~project
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Hydrodynamic asymptote of Green’s functions of a weakly anisotropic multisublattice

magnet
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The hydrodynamic asymptote of Green’s functions is determined for weakly anisotropic
multisublattice magnets whose reduced description parameters are the total spin density and the
matrix of rotation in the spin space. Spectra of spin waves are obtained and the number of
Goldstone and activation modes is determined. ©1997 American Institute of Physics.
@S1063-777X~97!00510-0#
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EXTERNAL FIELD

n
le
in

o
ce
p
w
n

pl

e
-
b

a
si

v ~a!5 « a ¹ a . ~2!

an

al
rty

e-

g-
ap-
ry

on

a
ex-
an

/1
The method of two-time Green’s temperature functio
has been widely used for determining the spectra of col
tive oscillations and kinetic coefficients, and also for obta
ing the system response to an external field.1,2 In the present
work, we shall obtain the hydrodynamic asymptotes
Green’s functions of a weakly anisotropic multisublatti
magnet and use them for determining the spectra of s
waves that may propagate in the system. It is well kno
that high-frequency processes in a multisublattice mag
can be described by the Landau–Lifshitz equation3 for sub-
lattice spins. However, such a description is no longer ap
cable at the hydrodynamic stage of evolution4 since sublat-
tice spins ceases to be approximate integrals of motion
view of a strong exchange interaction between sublattic
Earlier, it was shown by us5 that, owing to exchange inter
action, rigid spin complexes whose orientation is defined
the rotation matrixaab(x) are formed in timest@t r ~t r is
the relaxation time!. Thus, the low-frequency dynamics of
multisublattice magnet is described by the total spin den
sa(x) and the rotation matrixaab(x). We shall derive hy-
drodynamic equations for just these quantities.

The rotation matrixaab is introduced formally by con-
sidering the local spin rotationUw through an anglewa(x):

Uw
1ŝa~x!Uw5aab~w!ŝb~x!,

Uw5expS 2 i E d3xwa~x!ŝa~x! D .

Using the commutation relations for the operatorsŝa(x) of
spin density components, viz.,

@ ŝa~x!,ŝb~x8!#5 i«abgŝg~x!d~x2x8!

we can obtain a relation between the matrixaab and the
rotation angleswa ~exponential parametrization!:

a~w!5exp~2«w!, ~«w!ab[«abgwg . ~1!

With the rotation matrix there are related the right (vI ak) and
left (vak) Cartan’s differential forms:

vak~a!5
1

2
«abgabl¹kagl ,
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ak 2 abg lg k lb

It can be easily verified thatvI k(a)5avk(a). The definition
of Cartan’s forms leads to the Maurer–Cartan identities

¹kvI a i2¹ ivI ak5«abgvI bkvI g i ,

¹kva i2¹ ivak52«abgvbkvg i .
~3!

In the general case, the energy density of the system is
arbitrary functional of variablessa(x), aab(x):«(x)
5«@x;sa(x8),aab(x8)#, which is invariant to uniform spin
rotationss→s85cs, a→a85sc̃ ~c is the rotation matrix! if
we neglect by weak relativistic interactions. In the loc
limit, when spatial inhomogeneities are small, this prope
means that«(x) is a function of variablessI[as, vI k5avk

only:

«~s,a,vk!5«~as,avk,1![«~sI ,vI k!.

However, if anisotropy is taken into consideration, the d
pendence on the rotation matrix is preserved:

«5«~sI ,vI k ,a!. ~4!

In order to obtain the equations of dynamics of the ma
netic systems under consideration, we use the Hamilton
proach in which the equation of motion for an arbitra
physical quantityA has the form

Ȧ5$A,H%, ~5!

where H is the Hamiltonian of the system. The Poiss
brackets for the dynamic variablessa(x),aab(x) were ob-
tained in Ref. 6 and are defined by the formulas

$sa~x!,sb~x8!%5«abgsg~x!d~x2x8!,

$sa~x!,abg~x8!%5«agrabr~x!d~x2x8!, ~6!

$aab~x!,agr~x8!%50.

In the following, we shall obtain Green’s functions for
multisublattice magnet as the response of the system to
ternal a perturbation. Taking this into consideration, we c
write the HamiltonianH in the form

H5E d3x~«~x!1v~x!![H01V, ~7!

79600796-06$10.00 © 1997 American Institute of Physics
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where V is the interaction Hamiltonian with the extern
field, j(x,t) the field potential, andb is an arbitrary local
physical quantity. We assume that the external field va
quite slowly, and the characteristic frequency of its variat
is small in comparison witht r

21 . Hence, fort@t r the sys-
tem can still be described in terms of the quantitiessa , aab .

Using the general functional expression~7! and the sys-
tem ~6! of Poisson brackets, we can obtain the equation
motion for dynamic variables of a multisublattice magn
Since the energy density« depends only on the quantitie
sI , vI if we neglect by the anisotropy, we can formulate t
equations of dynamics in terms of the variablessI , vI , a
~such a choice of variables is convenient for a transition
the isotropic case!. In this case, taking Eqs.~5!–~7! into con-
sideration, we obtain the following system of dynamic equ
tions in an external field:

sİa52¹k

]«

«vI ak
1«abgS sIb

]«

]sIg
1vI bk

]«

]vI gk

1abm

]«

]agm
D1ha ,

ȧab5«argarb

]«

]sIg
1hab , ~8!

where the sourcesha ,hab are defined by the relations

ha5j«abgS sIb

]b

]sIg
1vI bk

]b

]vI gk
1abm

]b

]agm
D

2¹kS j
]b

]vI ak
D , hab5j«argarb

]b

]sIg
. ~9!

The equation of motion for the rotation matrix leads to t
following equation of motion for Cartan’s right formvI ak :

vİ ak52¹k

]«

]sIa
1«abgvI bk

]«

]sIg
1hak ,

~10!

hak5j«abgvI bk

]b

]sIg
2¹kS j

]b

]sIa
D .

Let us now derive the time-independent solution of E
~8!, ~10! in the absence of an external field. It follows fro
Eqs.~3!, ~8!, and~10! that the following expressions can b
written for the steady-state values of the rotation matrixa0

and Cartan’s formvI k
0 :

a0~x,t !5a~w0!a@w~x,t !#, wa~x,t !5na~2p–x1hI t !;

vI ak
0 5napk , ~11!

wherewa
0 are the uniform rotation angles,

hI a[
]«

]sIa
U

0

5hI na ;

andpk is the spiral vector. Taking into consideration form
las ~1!, ~8!, and ~11!, we obtain the following relation be
tween the steady-state values of the quantitiessIa

0 , pk , and
hI a :
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J ]wa

2. HYDRODYNAMIC ASYMPTOTIC FORM OF GREEN’S
FUNCTIONS

We introduce Green’s two-time retarding function f
arbitrary quasilocal operatorsâ and b̂:

Gab~x,t;x8,t8!52 iu~ t2t8!Tr w@ â~x,t !,b̂~x8,t8!#.
~13!

Here,w is the equilibrium statistical operator which can b
represented in the following form according to the method
quasiaverages:

w5 lim
n→0

lim
V→`

wn ,

wn5exp~Vn2Y0H02YI aŜa2nĜ!. ~14!

In this equation, the thermodynamic forcesY0 and YI a are
connected with the temperatureT and the magnetizing field
hI a through the relationsY051/T, 2YI a /Y05hI a , while the
potentialVn is determined from the normalization conditio
Tr wn51. In accordance with the conditions~11!, the equi-
librium statistical operator~14! satisfies the following rela-
tions:

@w,P̂k#5@w,Ĥ#50, P̂k5P̂ k2pknaŜa ,

Ĥ5Ĥ02hI aŜa , ~15!

where P̂ k is the momentum operator. The dependence
quasilocal operatorsâ and b̂ on coordinates and time in Eq
~13! is defined by the expressions

â~x,t !5exp i ~Ht2P–x!â~0!exp@2 i ~Ht2P–x!#,

b̂~x8,t8!5exp i ~Ht82P–x8!b̂~0!exp@2 i ~Ht82P–x8!#.
~16!

In this case, the Green’s functionGab possesses properties o
translational invariance in space and time:

Gab~x,t;x8,t8!5Gab~x2x8,t2t8!.

If the interaction of the system with the external fieldj(x,t)
is defined by formula~7!, the linear response of the quanti
a to external perturbation reads

daj~x,t !5E
2`

`

dt8E d3x8j~x8,t8!Gab~x2x8,t2t8!,

or, if we use the Fourier representation,

daj~k,v!5Gab~k,v!j~k,v!. ~17!

Let us linearize the system of equations~8!, ~10! with respect
to deviations from equilibrium valuessIa

0 , aa,b
0 :

dsIa~x,t !5sIa~x,t !2sIa
0,

~18!
daab~x,t !52«argdwg~x,t !arb

0 ~x,t !.

The variation of Cartan’svI ak form associated with the trans
formations~18! has the form

dvI ak5¹kdwa2«abgvI bk
0 dwg .
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Going over to the Fourier representation, we arrive at the
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following system of equations for determining the deviatio
dsI (k,v),dwI (k,v):

LabdsIb2Zabdwb5ha , Kabdwb2«abdsIb5h̄a .
~19!

Here, the sourcesha and h̄a can be presented in th
following form in accordance with the relation~9!:

ha5jS ]b

]wa
2 ik l

]b

]vI a l
1«abgFsIb

0 ]b

]sIg
1vI b l

0 ]b

]vI g l
G D ,

h̄a5j
]b

]sIa
. ~20!

The matricesK, L, Z are defined by formulas

K5 iv2hI N2 i f 1 f 8N2T,

L52 iv1 i f̃ 1hI N2M«2N f̃82T̃,

Z5D1 iD 8N1 iM f 2M f 8N1 iND̃82ND9N2 iG

1G8N2 i ~Q2Q̃!2Q̃8N1NQ81H1MT, ~21!

where

«ab5
]2«

]sIa]sIb
, f ab5ki

]2«

]sIa]vI b i
, f ab8 5pi

]2«

]sIaavI b i
,

Dab5kikl

]2«

]vI a i]vI b l
, Dab8 5kipl

]2«

]vI a i]vI b l
,

Dab9 5pipl

]2«

]vI a i]vI b l
, Nab5«agbng ,

Mab5«agbsIg , Gab5«agbki

]«̇

]vI g i
,

Gab8 5«agbpi

]«

]vI g i

and the effect of anisotropy is taken into account through
terms

Hab5
]2«

]wa]wb
, Tab5

]2«

]sIa]wb
,

Qab5ki

]2«

]vI a i]wb
, Qab8 5pi

]2«

]vI a i]wb
.

Using Eqs.~19!, we obtain

dsI5
1

D
«21$KS~h1L«21h̄ !2Dh̄%,

dw5
S

D
~h1L«21h̄ !,

~22!

where

Sng5
1

2
«abg«xmnPaxPbm

P[L«21K2Z, ~23!

D5det P.
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k and v ~vt r!1, kl!1, l being a quantity of the type o
mean free path!, the response of the quantitya ~which is a
function of dynamic variables! to the external perturbation
j(x,t) can be presented in the form

da~k,v!5
]a

]sIa
dsIa~k,v!1

]a

]vI a l
dvI a l~k,v!

1
]a

]wa
dwa~k,v!.

Comparing this formula with~17! and taking~22! into con-
sideration, as well as the fact that

dvI a l~k,v!5~ ik ldab2plNab!dwb~k,v!,

we obtain the following expression for the low-frequen
asymptote of Green’s function of arbitrary dynamic quan
ties a andb:

Gab~k,v!5
1

D H ]a

]wa
1~ ik l1Npl !am

]a

]vI m l
1~M

1L~2k,2v!«21!am

]a

]sIm
J SmbH ]b

]wb

1~2 ik i1Npi !bn

]b

]vI n i
1@M

1L~k,v!«21#bn

]b

]sI n
J 2

]a

]sIa
«ab

21 ]b

]sIb
.

~24!

This formula is invariant to the substitutiona↔b, k→2k,
v→2v. If the anisotropy is neglected, the asymptotic for
~24! of Green’s function coincides with the correspondi
expression presented in Ref. 7. Among other things, form
~24! leads to the asymptotes for the basis of Green’s fu
tions:

GsIa ,sIb
~k,v!5

1

D~k,v!
@«21K~k,v!S~k,v!K̃~2k,

2v!«21#ab2«ab
21,

GsIa ,wb
~k,v!5

1

D~k,v!
@«21K~k,v!S~k,v!#ab , ~25!

Gwa ,wb
~k,v!5

1

D~k,v!
Sab~k,v!.

These formulas contain a dependence on matricesK, L and
Z @the dependence on matrixZ is effectively contained in
asymptotic forms through the matrixS and the quantityD,
see Eq.~23!#, which is simplified considerably for the cas
when the energy density has the special fo
«@sI ,vI ,a(w)#5«(sI ,vI )1«(a(w)), where«(sI ,vI )5«(sI2,vI 2,
sIvI ). In this case, we arrive at the following expression f
the matricesK, L, andZ:

K5 iv2hI N2 i f 1 f 8N,L52 iv1 i f̃ ,

Z5D1 iD 8N1H.
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In order to illustrate the obtained results, we choose

energy density in the form8

«5
sIa

2

2x
1

rsvI ak
2

2
1

bw2

2
,

where x is the magnetic susceptibility,rs is the magnetic
rigidity constant,b is the anisotropy constant, and the ang
w is measured from a certain direction defined by the ani
ropy axis. In this case, formulas~25! assume the form

GsIa ,sIb
~k,v!5

b1rsk
2

xv22~b1rsk
2!

xdab,

GsIa ,wb
~k,v!5

iv

xv22~b1rsk
2!

xdab,

Gwa ,wb
~k,v!5

dab

xv22~b1rsk
2!

.

It can be seen that, in the absence of anisotropy (b50),
the Green’s functionGwa ,wb

has the singularity 1/k2 for
v50 in accordance with Bogoliubov’s theorem.9 For k50,
the singularities 1/v2,1/v belong to Green’s functions
Gwa ,wb

andGsIa ,wb
respectively. Fork50, v50 and in the

presence of anisotropy, the anisotropy singularity of the t
1/b belongs to the Green’s functionsGwa ,wb

.

3. SPIN WAVE SPECTRA

In order to obtain the spin wave spectra, we must de
the poles of Green’s functionsGab . This leads to the disper
sion equationD(k,v)50. Taking into account the definition
~23! of the matrixP, we can represent this equation in th
form

det@v2a1v~ ib11b2!1 ic11c2#[det P50,

a52«21, b15M2aRN2NR̃a1aT2T̃a, ~26!

R5 f 82IhI , b252a f2 f̃ a,

c152G1~D81 f̃ aR!N1N~D̃81R̃a f !1T̃a f2 f̃ aT

2Q1Q̃,
~27!

c25D2ND9N1 f̃ a f2NR̃aRN1T̃aT1NQ82Q̃8N

1H1~G82hI M !N.

It can easily be seen that the matricesa andb2 are symmet-
ric, while the matricesb1 andc1 are antisymmetric. In ma
trix c2 , all terms are obviously symmetric with the excepti
of (G82hI M )N. The symmetry of this matrix can be studie
by using formula ~12!. In the absence of anisotropy
]«/]w50, and hence we can easily verify by using formu
~12! that @(G82hI M )N#ab5@(G82hI M )N#ba . Hence, in
the absence of anisotropy,P is a hermite matrix and this
leads to real values for spin wave frequencies.6 In the pres-
ence of anisotropy, we obtain

@~G82hI M !N#ab2@~G82hI M !N#ba
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which leads to the following condition for the hermite matr
P:

Nag

]«

]wg
[«abgnb

]«

]wg
50, ~28!

i.e., the anisotropy should be such that rotations about
directionna5hI a /hI do not change the energy functional«. If
the energy functional does not satisfy the condition~28!,
matrix P is no longer hermite and the spectrum acqui
frequencies with imaginary components in the general ca
This indicates the instability of the corresponding sta
Hence if the matrixP is not hermite, the exchange and a
isotropy constants must satisfy certain inequalities for
spin wave spectrum to be real. In the following, we sh
assume that the condition~28! is satisfied,

For the model energy density

«@sI ,vI ,a~w!#5«~sI ,vI !1«@a~w!#,

«~sI ,vI !5«~sI2,vI 2,sIvI !

the expressions for matricesbi andci in ~27! are simplified
considerably.In this case, we obtain

b152aRN, b252a f2 f̃ a, c15~D81 f̃ aR!N,

c25 f̃ a f1H

and the corresponding symmetry properties of the matr
bi andci are ensured by a special form of the energy dens

We can write the dispersion equation~26! in the form

(
n50

6

An~k!vn50, ~29!

where the coefficientsAn (n50,...,6! in terms of the convo-
lution

uabcu5
1

6
«abg«uvtaaubbvcgt

are defined by formulas

A05uc2c2c2u23uc1c2c1u,

A1526ub1c1c2u23ub2c1c1u23ub2c2c2u,

A2523uac1c1u13uac2c2u13ub2b2c2u26ub1b2c1u

23ub1b1c2u,

A35ub2b2b2u16uab2c2u26uab1c1u23ub1b1,b2u,

A453uaac2u23uab1b1u13uab2b2u,

A553uaab2u,

A65uaaau.

Let us confine our analysis to the small wave vectorsk to
analyze the possible spin wave spectra. In the absenc
anisotropy andv50, k50, we have detP(0,0)5detc2, and
in view of the explicit form of the matrixc2 in ~27!,
detP(0,0)50. This means that, in the isotropic case, t
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A2l 11(k50)50]. The situation changes in the presence
anisotropy: detP(0,0)5detc2Þ0, which means that al
modes of the anisotropic magnet are activation modes in
general case. However, the degree of anisotropy of activa
frequencies may vary from first to third. Since we are co
sidering the case of small anisotropy, we confine the anal
to a consideration of anisotropy in the linear approximat
only. In this approximation, the modes whose activation f
quencies are quadratic or cubic in anisotropy become ac
tionless. We shall consider some particular cases for
equilibrium values ofsI , hI , pk .

1. sI50, hI 50, pk50.
The dispersion equation~29! assumes the form

A6v61~A481A49k
2!v41A29k

2v21A0-k450. ~30!

Here, we have explicitly isolated the dependence on
modulusuku for the coefficientsAn in Eq. ~29!. The solution
of Eq. ~30! leads to two pairs of Goldstone modes and o
pair of activation modes:

v1,2
2 5F1,2k

2, v3
25v0

21F3k2,

where

v0
252

A48

A6
, F1,25

1

2A48
$2A296A~A29!224A0-A48%,

F35
A6A292A48A49

A6A48
.

For comparison, let us consider the form of the spin wa
spectra for an isotropic magnet10,11 for the case

v i
25l i

2k2, i 51, 2, 3

under consideration.
2. sIÞ0, hI 50, pk50.
The dispersion equation assumes the form

A6v61~A481A49k
2!v41~A281A29k

2!v21A0-k450.
~31!

For smallk, we obtain two pairs of activation modes and o
pair of Goldstone modes:

v1,2
2 5v6

2 1R6k2, v3
25R3k4.

where

v65
1

2A6
$2A486A~A48!224A28A6%,

R657
A291A49v6

2

A6~v1
2 2v2

2 !
, R352

A0-

A28
.

In the analogous case for an isotropic magnet,10,11 we obtain

v1
25n1k4, v2

25n2k2, v3
25v0

21n3k2.

In view of the emergence of activation frequencies in
isotropic case, we note that such a situation is character
for multisublattice exchange magnets whose state is cha
terized by the total spin density as well as an additional
namic variable, viz, the rotation matrix. This is due to t
fact that in the equations of motion for the densities of ad
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with terms linear in gradients, while the expansion in t
equation of motion for the rotation matrix begins from th
zeroth order gradient terms. This corresponds to preces
with the corresponding activation frequencies. A simp
model example describing such a situation is presente
Ref. 6.

3. sIÞ0, hI Þ0, pk50.
Equation~29! assumes the form

A6v61~A481A49k
2!v41~A281A29k

2!v21A081A09k
250.
~32!

In this case, all branches correspond to activation modes

v i
25v0i

2 1ci
2k2, i 51, 2, 3,

where the activation frequenciesv0i
2 are determined from the

cubic equation obtained from~32! for k50. In this case, we
obtain12 two pairs of activation modes and one pair of Gol
stone modes for an isotropic magnet:

v1,2
2 5v6

2 1m6k2, v3
25m3k2.

4. sIÞ0, hI Þ0, pkÞ0.
This is the most general case. An analysis of the disp

sion equation shows that there exist six activation branc
with spatial anisotropy associated with the existence o
spiral structure

v i5v0i1ci~p–k!1di8~p–k!21di9k
2.

In this case, we obtain6 the following expression for an iso
tropic magnet:

v1,25a~p–k!6Abk21g~p–k!2,

v i5v0i1l i8~p–k!1m i8~p–k!21m i9k
2 ~ i 53,...,6!.

In conclusion, it should be remarked that dynamics o
multisublattice magnet with a complete violation of symm
try relative to spin rotations is in many ways similar to th
spin dynamics of the superfluid B-phase of3He.13,14Both are
described by the same set of hydrodynamic variables, v
spin density and real rotation matrix~or the corresponding
rotation angles!. Hence the formulas obtained for the asym
totes of Green’s functions can also be used for the B-ph
of 3He. In particular, if we neglect the anisotropy and p
sI050, hI 50, and p50, the obtained expressions fo
asymptotic forms coincide with the results obtained in R
15 if the quantitiesa and b are replaced by the variablessI
andw.

The author is grateful to S. V. Peletminskii an
M. Yu. Kovalevskii for a discussion of results and for frui
ful remarks.
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Formation of long-range ferrimagnetic order in dilute spinels Li 0.5Fe2.52xGaxO4
near the multicritical point
N. N. Efimova

Kharkov State University, 310077 Kharkov, Ukraine
~Submitted May 12, 1997; revised May 22, 1997!
Fiz. Nizk. Temp.23, 1067–1073~October 1997!

The influence of spatial inhomogeneity of short-range exchange on the formation of long- range
ferrimagnetic order in dilute spinels is investigated. The objects of investigation are two
types of polycrystalline samples of Li0.5Fe1.1Ga1.4O4 differing in the extent of heterogeneity in
the distribution of magnetic (Fe31) and nonmagnetic (Ga31) ions in the lattice. The
heterogeneity was created by using two regimes of thermal treatment, i.e., slow cooling~S! and
quenching~Q! of samples from 1550 to 300 K. The results of analysis of magnetization
isothermssT(H) at T54.2 K, ~77–300! K, H<16 kOe and temperature dependences of initial
susceptibilityx0(T) show that the long-range ferrimagnetic order near the multicritical
point (x051.5) of thex–T phase diagram is stable to variations of the degree of spatial
heterogeneity of the exchange. ©1997 American Institute of Physics.@S1063-777X~97!00610-5#
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Spatial heterogeneity in the exchange interaction is
ways observed to a certain extent in dilute magnets w
short-range exchange in view of a nonequilibrium distrib
tion of atoms of different species in the lattice~composition
disorder!.1–5 As a result, cluster magnetic states are form
for a sufficiently high extent of dilution~including those with
a long-range magnetic order! if the concentration of mag
netic atoms is higher than the percolation thresholdc0.4 The
exchange interaction in a cluster whose size is approxima
equal to the size of a region with a higher concentration
the magnetic component is stronger than the exchange in
surrounding space. For this reason, structures of the clu
type can be regarded as two exchange-coupled subsys
viz., clusters and the matrix.4,6 Destruction of the long-range
magnetic order in such systems~e.g., under the effect o
temperature! facilitates the breaking of exchange couplin
between clusters while the ordering is still preserved in th
~short-range static order!. For this reason, states of the supe
paramagnetic type are realized in the paramagnetic~PM! re-
gion close to the transformation temperature.4,5,7–9

Theoretical and experimental studies of the concen
tion phase diagrams of dilute ferro-, ferri-, and antiferroma
nets~FM and AFM! proved that the type of the long-rang
order changes above the percolation thresholdc0 in the pres-
ence of competing exchange interaction and frustra
bonds: the FM or AFM order is replaced by the spin gla
~SG! order at a certain concentrationc08.c0 of magnetic
atoms.8,9 However, the available experimental data perta
ing to the concentration range close toc08 are contradictory,
which is primarily due to the spatial heterogeneity of state8

Not only the type of these states, but also the possibility
the formation of the long-range magnetic order of any of
known types are disputable. For example, according to
results of neutron diffraction experiments, a phase with
infinitely large correlation length, but with zero spontaneo
magnetization can exist.8 Thus, the problem of spatially het
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important and required further analysis.

PROBLEM AND OBJECTS OF INVESTIGATION

This research aims at an analysis of magnetic sta
formed nearc08(c.c08) in dilute Heisenberg ferrimagnet
with short-range interaction. The influence of spatial e
change heterogeneity on the formation of long-range fe
magnetic~FM! order is of special importance.

We analyzed the magnetization isothermssT(H) at
T54.2 K, ~77– 300! K, and for H<16 kOe as well as the
temperature dependences of the initial susceptibilityx0(T).
These characteristics make it possible to determine the p
ence of the FM ordering and its main parameters@the values
of the Curie temperatureTC and spontaneous magnetizatio
ss(T)] and provide information on magnetizatio
mechanisms.10

The objects of investigations were two types of po
crystalline samples of dilute spinel Li0.5Fe2.52xGaxO4 with
x51.4, which were subjected to different thermal treatmen
slow cooling or quenching from 1550 to 300 K. Two regim
of thermal treatment were used in order to obtain samp
with different degrees of composition disorder.

The chosen concentration of nonmagnetic io
Ga31(x51.4) is close to the multicritical pointx051.5 of
the x–T phase diagram.11 For x.x0, no long-range FM or-
der is observed at any temperatureT>4.2 K, but the spin-
glass order with the Edwards–Anderson parameter is pre
in the interval 1.5,x,2.0.12 The concentrationx51.4 cor-
responds to the reentrant region of thex–T diagram, in
which a transition to the FM state occurs initially at the Cu
point upon cooling, followed by a transition to the ferrima
netic spin glass~FSG! state at the freezing temperatu
Tf,TC . For a slowly cooled sample withx51.4, the tem-
peratureTf525 K. The concentration transition to diso
dered states of the SG-like~FSG or SG! states is induced by
a change in the relations between competing short-ra
inter- and intrasublattice antiferromagnetic interactions.

80200802-05$10.00 © 1997 American Institute of Physics
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Fe ions with a weakened exchange increases withx.
According to the results of neutron diffraction expe

ments~in the temperature range fromT.TC to T54.2 K)
and the results of magnetic measurements in the PM reg
i.e., atT.TC for FM or T.Tf for SG, magnetic states with
a cluster-type structure are formed in the vicinity ofx0.11–13

The average size of a cluster, e.g., forx51.35, amounts to
600 Å and does not depend on temperature in the inte
Tf,T,TC .13 For any type of low-temperature states~FM,
FSG, or SG!, ferrimagnetic ordering is preserved
clusters.12,13 Thus, the results of previous investigations
the dilute system Li0.5Fe2.52xGaxO4 speak in favor of the
model of heterogeneous states ‘‘clusters–matrix,’’ in wh
the type of the long-range magnetic order of the crystal~FM
or SG! as a whole is determined by the state of the matr

SYNTHESIS AND THERMAL TREATMENT OF SAMPLES.
MEASURING TECHNIQUE

Polycrystalline samples of the spinel Li0.5Fe1.1Ga1.4O4

were obtained by a method similar to that described in R
11, i.e., from carbonates and oxides of corresponding me
of the AR grade through the solid-phase reaction
T51550 K in air. After holding at this temperature for
hours, some samples were quenched in air (T5300 K),
while other samples were cooled slowly~for 10 h! to the
same temperature (300 K).

X-ray diffraction analysis was carried out in order to te
the one-phase composition of the sample and to clarify
influence of thermal treatment conditions~slow cooling or
quenching! on the degree of composition disorder. Bo
types of samples corresponded to one-phase spinels to w
the experimental error of the x-ray diffraction method.
both cases, x-ray diffraction patterns contained lines co
sponding to superstructural ordering in the octahedral sub
tice of the type 1Li1:3Me31 (Me31 – Fe31,Ga31).

The specific magnetization isothermssT(H) were re-
corded on a ballistic magnetometer~with a sensitivity of
1023G•cm3

•g21) at T54.2 K and on a pendulum magneto
meter ~with a sensitivity of 331021G•cm3

•g21) in fields
H<16 kOe atT>77 K. Temperature dependences of init
susceptibilityx0(T) in the fieldH510 Oe were measured b
the ballistic method~with a sensitivity 1024cm3

•g21).

DISCUSSION OF EXPERIMENTAL RESULTS

According to the results of x-ray diffraction studies o
slowly cooled ~S! and quenched~Q! samples, the two re
gimes of thermal treatment give samples with different typ
of composition disorder. An increase in the lattice const
for M and Q samples froma5(8.270060.0005)Å to
a5(8.274060.0005)Å, respectively indicates an enhanc
ment of the nonuniformity in the distribution of metal io
(Fe31 and Ga31) in the lattice as a result of quenching. Th
leads to a change in the magnetic properties; the result
analysis of these properties are presented in Figs. 1 and

The temperature dependences of the initial susceptib
x0(T) ~Fig. 1! for S and Q samples differ significantly bot
in shape and in the values of the Curie temperature (TCS and
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TCQ) determined by extrapolating of the high- temperatu
segments of thex0(T) curves with the maximum derivative
(]x/]T) to theT-axis. The obtained temperature values a
TCS5160 K andTCQ5242 K. A distinguishing feature of
the temperature dependencex0(T) of the quenched sampl
is the sharp decrease in the value ofx0 nearT1;TCS as well
as in the emergence of a broad peak atT→TCQ .

It should be noted that the results presented in Fig
were obtained for different S and Q samples as well as on
same S sample upon multiple cycling of thermal treatm
conditions S→Q→S . . . . This means that the observed e
fects are not accidental, but are a direct consequence o
change in the thermal treatment conditions. At the sa
time, aging effects were observed for Q samples: the m
netic properties of these samples changed after 6 months
became the same as for S samples. Therefore, the sp
distribution of metal ions in quenched samples correspon
to nonequilibrium states of the spinel lattice.

The values ofTC and spontaneous magnetizationsS(T)
were also determined from the results of analysis of mag
tization isothermssT(H), some of which are presented i
Figs. 2a~S! and b~Q!. In accordance with the Belov–Arrot
~B–A! method of thermodynamic coefficients, the magne
zation isotherms were reconstructed in theH/s –s2 coordi-
nates as shown in Fig. 3~sample Q!. Using the standard
procedure, we determined the temperature depende
sS(T) and the thermodynamic coefficienta(T), which van-
ish at T5TC .10 The values of the Curie temperature dete
mined for both types of samples~S and Q! in high fields by
using the B–A method and in low fields from thex0(T)
dependences coincide to within the experimental error62 K.

FIG. 1. Temperature dependences of the initial susceptibilityx0(T) of
samples of Li0.5Fe1.1Ga1.4O4 spinel recorded after different thermal trea
ment conditions: quenching in air (s) and slow cooling (3) in the tem-
perature intervalT5(1550–300)K. The results marked by dark squares a
triangles correspond to the same sample subjected to cyclic thermal t
ment S→Q→S→Q . . . . Theinset shows the temperature dependence
spontaneous magnetizationsS(T) for a quenched sample, determined by t
B–A method.
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This coincidence shows that long-range FM order initia
exists in the samples under investigation and is not indu
by a magnetic field. Such kind of arguments were used
some authors~see, for example, Ref. 7! who doubt the exis-
tence of a long-range FM order nearx0 in systems with a
heterogeneous magnetic structure of the cluster type.

Thus, the variation of thermal treatment conditions d
not lead to a change in the long- range order which remai
ferrimagnetic. However, it resulted in a noticeable change
magnetic properties. In addition to an increase inTC and a
change in the temperature dependence of the initial sus
tibility, quenching resulted in another effect. The results p
sented in the inset to Fig. 1 show that the temperature de
dence of spontaneous magnetizationsS(T) determined by
the B–A method for Q samples changes in the region
T1;TCS. Before considering possible reasons behind s

FIG. 2. Magnetization isothermssT(H) for a slowly cooled~S! sample.
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changes, let us analyze the field dependences of magne
tion sT(H) in greater detail~see Fig. 2!.

First of all, it can be seen that the shape of thesT(H)
isotherms in Fig. 2 obviously differs from that for soft ma
netic materials including nonsubstituted Li-spinel. The fie
interval corresponding to technical magnetization region
these samples extends to~12–16)kOe, while the technica
saturation field for Li-spinel isHS;(2 –3)kOe atT54.2 K.
Such a behavior cannot be associated with a change in c
tallographic anisotropy determined by one-ion contributio
of Fe31 and becomes lower upon the substituti
Ga31→Fe31 at all temperaturesT>0.14 Nevertheless, the
shape of thesT(H) curves shown in Fig. 2 is similar to th
shape of magnetization curves due to rotations typical
hard magnetic materials as well as of an ensemble of o
domain or superparamagnetic particles.10,15 In this connec-
tion, the following circumstance is important: it can be se
clearly from Fig. 2a that the shape ofsT(H) isotherms does
not change on the whole upon a transition through the C
point TCS5160 K. However, only the ordering in clusters
preserved atT.TCS, and the sample is magnetized due
independent rotation of their magnetic momentsM . It fol-
lows hence that the same type of magnetization also exis
the magnetically ordered region atT,TCS. At the same
time, the absence of saturation in strong fields~up to 40 kOe
at T54.2 K in our case!11 indicates the presence of diso
dered spins in the magnetic structure. Their orientation in
field is associated with the work done against excha
forces, and hence complete saturation can be attained on
fields of the order of hundreds kilooersteds. ForH<16 kOe,
the contribution of such spins to the total magnetization
the sample is apparently small. Thus, the difference in
shape of isotherms for S and Q samples should prima
reflect changes in the cluster subsystem caused by que
ing. Consequently, we can conclude that the similarity
magnetization curvessT(H) at T54.2 K ~both in shape and
in the values ofs at H5const) is due to the fact that th
total number of spins (Fe31 ions! combined is virtually the
same in clusters in S and Q samples.

FIG. 3. Magnetization isothermssT(H) for a quenched~Q! sample.
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in Figs. 2a and 2b shows that the cluster subsystem exp
ences changes as a result of quenching. AtT>77 K, the
sT(H) curves in fieldsH,4 kOe differ significantly. The
magnetization of the sample S increases gradually~almost
from zero! with the field, while for the Q sample it has
large value even forH50.5 kOe. AtT>77 K, the methods
of measurements were virtually identical in both cases~i.e.,
without preliminary demagnetization of the samples!. Con-
sequently, the peculiarities of the magnetization curves
sample Q under investigation should be naturally attribu
to the presence of a residual magnetic moment which is
tually equal to zero in the sample S according to the res
presented in Fig. 2a. This means that clusters in S an
samples~but not the samples as a whole! are in different
states.

The behavior of each individual cluster in a magne
field is determined by whether its spontaneous magnetic
ment M is fixed in space by anisotropy forces or fluctua
under the action of temperature.15 Accordingly, it ~cluster!
plays the role of a one- domain or a superparamagn
~SPM! particle.1) A transition from the one-domain to th
SPM state during periods of time typical of static measu
ments (100 s) occurs under the conditionKV525kBT,
whereK is the anisotropy constant,V the volume of a clus-
ter, andkB the Boltzmann’s constant.15 In the presence of the
field H, the energy barrier becomes lower, and the transi
from the one-domain to the SPM state occurs at a lo
temperature.15,16 Since remanence preserves only for on
domain clusters, peculiarities of thesT(H) dependence indi-
cate that a large number of clusters in the sample Q rema
the one-domain state up to high temperatures. The fact
irregularities in thesT(H) dependence observed for the
sample is more pronounced that for the S sample atT>77 K
is also in accord with this conclusion. This is manifest
most clearly atT577 K. The magnetization of the S samp
increases smoothly with the field up toH516 kOe. At the
same time, thesT(H) dependence changes noticeably in t
sample Q forH512 kOe: the magnetization increases mo
strongly in the field intervalH5(12–14)kOe. The irregular
ity in the shape of isotherms can be due to the fact that s
of one-domain clusters go over to the SPM state under
action of the field atT5const. The same mechanism can a
explain the emergence of a low peak on thex0(T) curve for
the Q sample nearTCQ . Such an effect was predicted the
retically and studied experimentally by Pfeifer an
Schuppel.16

Thus, the cluster subsystems of samples S and Q
different although the total number of spins combined
clusters in S and Q samples virtually remains unchanged~see
above!. The difference is obviously manifested in a chan
in the size distribution function for clusters. If we estima
the linear size of a cubic one-domain particle atT5100 K
andH50, it must be not smaller than~150–320)Å for val-
ues ofK5(105–104)erg/cm3 ~Li–Ga spinels!.14 The order of
magnitude of this quantity is in accord with the results
neutron diffraction experiments.13 Taking into account the
changes occurring in the cluster subsystems, we have a
for proposing that the degree of spatial heterogeneity in
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subsystem of disordered spins~matrix!, leading to a change
in magnetic properties which directly determine the lon
range FM order.

The nature of changes caused by quenching, i.e., an
crease inTC as well as specific features of temperature d
pendences of the initial susceptibilityx0(T) and spontaneous
magnetizationsS(T) is in accord with the conclusions of th
phenomenological theory.17 According to Ref. 17, some pe
culiarities in thermodynamic behavior must be observed
heterogeneous substances with coexisting ferri- and ant
romagnetic phases~FM–AFM! coupled through the ex
change interaction. The existence of clearly manifested s
tial boundaries between FM and AFM phases is n
necessary in this case: the role of the AFM subsystem ca
played by two sublattices weakly interacting with other su
lattices, which can be singled out in the structure of FM w
complex compositions.10 If we denote byTN andTC the Néel
and Curie temperatures of hypothetic~i.e., isolated AFM and
FM! subsystems, the following situation is observed
TN.TC . The system as a whole experiences only one~fer-
rimagnetic! phase transition at a temperatureTC* .TC . In the
region of temperatures close toTC of the ‘‘pure’’ FM phase,
a strong~but not jumpwise as in the case of a phase tran
tion! change in the relevant thermodynamic parameters m
be observed. For example, the value ofss(T) nearTC must
decrease, but not to zero. In the regionTC,T,TC* , weak
FM order with a spontaneous magnetizationssÞ0 must be
preserved due to the exchange interaction with the AFM s
system.

If we identify TCS with TC and TCQ with TC* for the
samples under investigation, it follows from Fig. 1 that t
value ofx0(T) decreases sharply, and the dependencesS(T)
changes significantly for the sample Q in the temperat
rangeT1;TCS. The existence of correlation between the
characteristics obviously follows from the fact thatx0(T)
;sS

2/K ~one-domain state! and x0(T);sS
2/(3kBT) ~SPM!

for rotations.10 Taking into account the fact that the exchan
between magnetically active ions (Fe31) in Li–Ga spinels is
antiferromagnetic, and the matrix contains Fe31 ions with a
large number of broken exchange bonds, we cannot rule
that quenching can lead to changes in the matrix which
favorable for the realization of the mechanism considered
Ref. 17.

CONCLUSION

The influence of spatial heterogeneity of the short-ran
exchange on the formation of the long-range FM order
frustrated ferrimagnets was analyzed by studying magn
properties of dilute spinels Li0.5Fe1.1Ga1.4O4 with the con-
centration of nonmagnetic ions Ga31 (x51.4) close to the
multicritical point x051.5 of thex–T diagram. The degree
of composition disorder, and hence the spatial heterogen
of exchange and magnetic structure were changed by u
two regimes of thermal treatment of the samples, v
quenching and slow cooling in the temperature range 155
300 K.
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presence of aging effects in quenched samples show tha

distribution of magnetic and nonmagnetic ions (Fe31 and
Ga31) in the lattice is more nonuniform in the case
quenching than in the case of slow cooling. On accoun
the short-range nature of exchange, this corresponds
higher extent of its spatial heterogeneity.

The data obtained from an analysis of magnetization
thermssT(H) at T54.2 K, ~77–300! K, and H<16 kOe as
well as temperature dependences of the initial susceptib
x0(T) show that the enhancement of spatial heterogeneit
exchange does not destroy the long-range ferrimagnetic
der, but, on the contrary, leads to extension of its tempera
range: the values of the Curie temperature increases f
160 to 242 K as a result of quenching. This effect was
plained on the basis of the thermodynamic theory for hete
geneous substances with coexisting FM and AFM pha
distributed continuously in space.

Thus, the results presented here confirm the possib
of existence of a long-range FM order in heterogeneous f
trated systems of the cluster type and indicate its stab
relative to variations of the degree of heterogeneity of
short-range exchange.
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Magnetic field induced phase transition in A 12xCaxMnO3 (A5Nd, Bi, Sm, Eu, Tb)

lus
I. O. Troyanchuk, N. V. Samsonenko, and T. K. Solovykh

Institute of Solid State and Semiconductor Physics, Byelorussian Academy of Sciences, 220072 Minsk,
Byelorus

V. A. Sirenko
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Institute of Physics, Polish Academy of Sciences, 02-668 Warsaw, Poland
~Submitted March 11, 1997; revised May 5, 1997!
Fiz. Nizk. Temp.23, 1074–1077~October 1997!

A study of Nd0.6Ca0.4MnO3 shows that the application of a magnetic field at 4.2 K induces a
transition from the insulating antiferromagnetic state to the conducting ferromagnetic
state, which is accompanied by a decrease in the sample volume by 0.1%. The replacement of
Nd ions by Bi ions leads to stabilization of the antiferromagnetic state, while the
substitution of Sm and Eu ions results in manifestation of properties typical of spin glasses.
© 1997 American Institute of Physics.@S1063-777X~97!00710-X#
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In Refs. 1–3, it is shown that the compoun
Pr12x

31 Cax
21MnO3(0.3<x<0.5) and Pr0.5

31Sr0.5
21MnO3 in an

external magnetic field experience a metamagnetic trans
from the antiferromagnetic to the ferromagnetic state. A
result, the electrical conductivity decreases by 6–8 order
magnitude, and the compounds become a metal. Be
30 K, the transition is irreversible. It was proposed1–3 that
the transition is due to ‘‘melting’’ of the charge-ordere
phase under the action of the magnetic field. The Mn31 and
Mn41 ions in the antiferromagnetic state are structurally
dered in the ratio 1 : 1, while in the ferromagnetic state
these ions are disordered. The loss in energy during a m
magnetic transition as a result of disordering of ions a
orbitals is compensated by an energy gain during stabil
tion of the metallic and ferromagnetic states in an exter
magnetic field. In addition, the antiferromagnetic phase
characterized by smaller structural distortions. Anoth
mechanism of this phenomenon, which is based on fie
induced magnetic states of the ‘‘ferron’’ type, was propos
by Nagaev.4

In this publication, we report on the results of a study
samples of A0.6Ca0.4MnO3 ~A5Nd, Bi, Eu, Sm! in magnetic
fields up to 120 kOe.

EXPERIMENT

The samples were obtained from simple oxides of A
grade according to the conventional ceramic technology.
final synthesis was carried out at 1720 K. In order to obt
stoichiometric samples, the samples were cooled slowly
rate of 100 K/h.

Magnetization was measured on a vibrating sample m
netometer, magnetostriction was measured by the str
gauge technique, electrical conductivity was determined
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by the resonance method.

DISCUSSION OF RESULTS

It was found that doping of NdMnO3 with Ca ions leads
to a transition from a weakly ferromagnetic state of t
Dzyaloshinskii–Moriya type to the ferromagnetic state f
the Ca concentrationx50.2, accompanied by an increase
the critical temperature from 89 to 128 K~Fig. 1!. A further
increase in the concentration of Ca lowers the magnetizat
and compounds withx50.4 become antiferromagnetic. A
qualitatively similar behavior was also observed f
Eu12xCaxMnO3 ~see Fig. 1!. However, the magnetization o
samples withx50.2 from the europium series is lower tha
that expected in the case of ferromagnetic ordering of Mn31

and Mn41 ions ~the total orbital momentum of Eu31 is equal
to zero, and the contribution of the rare- earth sublattice
the magnetization can be neglected!. On the other hand, the
magnetization of Eu-based compounds withx50.3 and 0.4
is higher than the magnetization of similar Nd-based co
pounds.

Figure 2 shows temperature dependences of magne
tion of samples of A0.6Ca0.4MnO3 ~A 5 Nd, Sm! and
(Nd0.45Bi0.15)Ca0.4MnO3 in a magnetic field of 200 Oe. A
low temperatures, the magnetization of the Sm-based sam
is considerably higher, and of the Bi-based sample is m
lower than that for Nd-based sample. Above 200 K, the m
netization of Nd- and Bi-based samples increases with t
perature. A similar behavior was also observed
Pr0.6Ca0.4MnO3 and was explained in Refs. 1 and 2 b
charge ordering leading to antiferromagnetism. At 4.2 K,
external magnetic field induces in Nd0.6Ca0.4MnO3 a transi-
tion from the antiferromagnetic to the ferromagnetic st
~Fig. 3!, which starts in fields above 30 kOe. The transition
irreversible, and a reverse transition to the antiferromagn
state requires a heating of the sample to a temperature

80700807-03$10.00 © 1997 American Institute of Physics
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ceeding 50 K. The transition is accompanied by nega
striction approximately by 0.1% of the sample volum
(3DL/L'DV/V) ~Fig. 4!. In the field range 30–120 kOe
the resistivity decreases from 106 to 1022V•cm. The con-
ducting state remains stable after the removal of the field
a sample of (Nd0.45Bi0.15)Ca0.4MnO3, the transition is shifted
towards stronger fields and is also reversible in field~Fig. 5!.

FIG. 1. Concentration dependence of spontaneous magnetizationMs and
critical temperatureTc in Nd12xCaxMnO3 ~m,j! and Eu12xCaxMnO3

(n,h) compounds. At temperatures below the dashed curve, the mag
zation depends on past history.

FIG. 2. Temperature dependences of magnetization for Sm0.6Ca0.4MnO3

~curve1!, Nd0.6Ca0.4MnO3 ~curve2!, and (Nd0.45Bi0.15)Ca0.4MnO3 ~curve3!
in a field of 200 Oe~cooling in H5200 Oe). The inset shows the behavi
of s(T) at temperatures above 200 K.

808 Low Temp. Phys. 23 (10), October 1997
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In (Nd0.3Bi0.3)Ca0.4MnO3, no metamagnetic phase transfo
mations were observed up to 120 kOe~see Fig. 5!.

A different behavior was observed for the system
Eu12xCaxMnO3 and Sm12xCaxMnO3 ~Fig. 6!. In these com-
pounds, the magnetization increases nonlinearly with
field, which is typical of superparamagnets and spin glas
As the Ca concentration increases, the magnetization
comes smaller.

The measurements of Young’s modulus revealed a c
tal structure phase transition at temperatures slightly lo
than the room temperature~Fig. 7!. The transition tempera
ture changes insignificantly with the composition.

ti-

FIG. 3. Field dependence of magnetization for Nd0.6Ca0.4MnO3 at 4.2 K:
first cycle of measurements~curve1! and second cycle~curve2!.

FIG. 4. Magnetostriction isotherms for Nd0.6Ca0.4MnO3 at 4.2 K.

808Troyanchuk et al.
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Pr0.6Ca0.4MnO3, the Mn31 and Mn41 ions are ordered a
T5250 K.2 Near 250 K, the magnetization o
Nd0.6Ca0.4MnO3 ~see Fig. 2! has the maximum value as i
Pr0.6Ca0.4MnO3.2 Consequently, we can assume that the tr
sition in Sm- and Eu-based samples near the room temp
ture is also due to the ordering of the Mn31 and Mn41 ions.
As in the case of Pr12xCaxMnO3, ordering takes place over
wide range of concentrations of Ca ions, which leads t
drop in the spontaneous magnetization in compounds w
x.0.2.

FIG. 5. Magnetization isotherms recorded at 4.2 K for samples
(Nd0.3Bi0.3)Ca0.4MnO3 (n) and (Nd0.45Bi0.15)Ca0.4MnO3 (h,j): first cycle
of measurements~curve1! and second cycle~curve2!.

FIG. 6. Magnetization isotherms recorded at 4.2 K for samples
Sm0.6Ca0.4MnO3 (n) and Eu12xCaxMnO3 for x50.3 (h) and 0.4 (s).

809 Low Temp. Phys. 23 (10), October 1997
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However, the magnetic properties of the compoun
A0.6Ca0.4MnO3 ~A 5 Bi, Eu, Sm, Nd! differ basically. In
Bi-based samples, antiferromagnetic exchange interact
are stabilized, and ferromagnetic clusters are virtually abs
~see Fig. 5!. In Nd0.6Ca0.4MnO3, the antiferromagnetic struc
ture is stable below 30 kOe~see Fig. 3!, while Eu- and Sm-
based compounds exhibit properties of spin glasses. For
reason, we believe that Sm0.6Ca0.4MnO3 and Eu0.6Ca0.4MnO3

consist of small antiferromagnetic and ferromagnetic cl
ters. The magnetic structure of antiferromagnetic cluster
stable in fields up to 120 kOe. Chemical analysis did n
reveal any significant deviations from the stoichiometric
composition in Sm- and Eu-based samples. Conseque
the change in the properties in the series A0.6Ca0.4MnO3 ~A
5 Nd, Sm, Eu! is due to increasing mismatching in the ion
radii of Mn and the rare-earth ion. In all probability, th
system does not preserve a strictly homogeneous comp
tion, but splits into microscopic domains with different typ
of crystalline structure.

This research was supported by the Foundation of F
damental Studies of the Byelorus Republic~Project F96-135!
and the Polish Committee on Scientific Research~KBN
Grant No. 2 P03B 09512!.

1A. Asamitsu, Y. Moritomo, Y. Tomiokaet al., Nature~London! 373, 407
~1995!.
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FIG. 7. Temperature dependence of Young’s modulus for compou
A0.6Ca0.4MnO3 ~A 5 Nd, Sm! and A0.5Ca0.5MnO3 ~A 5 Eu, Tb!.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS
Relaxation and effects of potential gradient in a Bi point contact
V. V. Andrievskii, Yu. F. Komnik, and S. V. Rozhok

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*

~Submitted February 28, 1997; revised March 24, 1997!
Fiz. Nizk. Temp.23, 1078–1087~October 1997!

It is shown that electron relaxation in an emitter-type point contact strongly affects the position
of the first line of transverse electron focussing~EF! in Bi on the magnetic field scale. As
a result, the energy of electrons leaving the point contact region is lower than the energyeV
determined by the voltage applied to the point contact. In the case of strong currents, the
intrinsic field of the current also affects the position of the EF line. The additional shift of the
EF line under the action of this factor depends onV nonlinearly in view of strong
nonlinearity of the current–voltage characteristics of Bi point contacts. It is shown that this
nonlinearity can be explained by an increase in the concentration of charge carriers in the point
contact region under the action of the gradient of potential distribution and interband
tunneling. These mechanisms give an accurate description of the nonlinearity of the
current–voltage characteristics of Bi point contacts. ©1997 American Institute of Physics.
@S1063-777X~97!00810-4#

Electron focussing by a transverse magnetic field1 is no- commensurate with the point contact sized, the emission of
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ticeably affected by relaxation of nonequilibrium char
carriers.2–4 This makes it possible to use the method of el
tron focussing~EF! for studying the electron–phonon rela
ation on a cyclotron trajectory5 and in a point contact.6–9 In
these regions, relaxation processes occur differently.
electron–phonon relaxation on a cyclotron trajectory ta
place under the conditions of ballistic motion of electrons
a pure metal and leads to a decrease in the amplitude o
EF line. This circumstance was used in Ref. 5 for determ
ing the dependence of electron–phonon relaxation time in
on the excess electron energyd« upon a change in the latte
quantity in a wide range~up to d«;3«F!.

The electron–phonon relaxation in a point contact
curs under a strong elastic scattering of electrons. If the v
age across the point contact ensures that the electron en
is higher than the limiting Debye energy, the drift velocity
electrons becomes higher than the velocity of sound, lead
to the emission of the Cherenkov radiation of nonequilibriu
phonons.9 The EF method makes it possible to determine
phonon modes emitted in such a process. The emissio
phonons of preferred frequencies is accompanied by
emergence of additional peaks against the background o
first EF line. These peaks appear due to the fact that disc
relaxation leads to the formation of group of electrons w
an energy differing from that of the main group of inject
electrons by the phonon relaxation energy. A manifesta
of discrete phonon relaxation on the EF curve was called
‘‘cyclotron’’ spectroscopy of the electron– phonon rela
ation in a point contact.3,6 It was found9 that longitudinal
optical phonons with energy;12 meV dominate in the
spectrum of emitted nonequilibrium phonons in the case
supersonic drift in a Bi point contact.

If the inelastic energy relaxation lengthl « for electrons is
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phonons is observed not only after the attainment of sup
sonic drift, but also for an infinitely small value of the exce
energy for electrons. After the attainment of the Debye
ergy, phonons are emitted in the entire spectral region. A
result of partial electron energy loss due to electron–pho
relaxation in a point contact, the energy of electrons emit
from the point contact to a ballistic trajectory is lower tha
the energyeV determined by the voltage applied to the po
contact. As a result, an EF line appears for a magnetic fi
value smaller than that calculated for the energyeV. How-
ever, this is not the only reason behind the deviation of
EF line from the calculated position. Among possible re
sons, we can also mention the effect of intrinsic magne
field of the current through the emitter. Here we consider
effect of relaxation and other factors on the position of t
EF line. At the same time, we consider another peculiarity
the properties of Bi point contacts, which is interconnec
with the above problem~see below!, namely, the nonlinear-
ity of their current–voltage characteristics.

POSITION OF EF LINE

In our experiments on bismuth, we used the class
method of electron focussing in a transverse magnetic fie1

The experimental technique used by us is described in d
in Refs. 8 and 9. A point contact was created on a per
trigonal face of Bi by the ‘‘needle to anvil’’ method. Th
role of the needle was played by copper wires of diame
0.1 mm sharpened by electrochemical polishing~in a 10%
solution of KOH! to a diameter;1 mm. The point contact
was in the form of a hole or a very short channel of lengtha
commensurate with or smaller than the hole diameterd.

In the EF method, the electrons injected through a po
contact~emitter! to a perfect metallic single crystal perform

81000810-07$10.00 © 1997 American Institute of Physics
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cyclotron motion in a magnetic field parallel to the crys
surface and create a potential across another point co
~collector!. The collector potential recorded as a function
the magnetic fieldU0(H) has a sharp peak at the field valu
H0 for which the largest group of electrons with the ma
mum radius of trajectory in the real space participates in
formation of the signal. For Fermi electrons, the EF li
corresponds to the magnetic field

H0F5
2cpzF

eL
, ~1!

wherepzF is the component of the Fermi quasimomentu
the z-axis is directed along the normal to the surface, anL
is the separation between the emitter and the collector. In
EF method, use is made of nonequilibrium electrons wh
have a correctiond« to the Fermi energy due to the voltageV
applied to the emitter. The focussing fieldH0 is determined
by a relation similar to~1!, but pz corresponds to the
constant-energy surface«F1d« and has the valuepz

5pzF(11d«/«F)1/2. ~Here and below, we will use a qua
dratic energy–momentum relation as a approximation s
able for analyzing the problems formulated above.! The fo-
cussing field H0 increases with the excess energy
electrons in accordance with the relation

H05H0FS 11
d«

«F
D 1/2

. ~2!

It was found8,9 that the actual increase in the focussi
field is slightly smaller than predicted by formula~2! if we
assume thatd«5eV. Curve1 in Fig. 1 is the dependence o
H0 on the voltageV across a point contact experimenta
observed for one of the samples, while curve2 is the theo-
retical curve calculated by using the relation

FIG. 1. Magnetic field corresponding to the position of the first EF line a
function of the voltage applied to the emitter: experimental curve~1!, the
dependence predicted by formula~3! ~curve 2!, calculated taking into ac-
count relaxation in the point contact according to~4! for l «5const~curve3!
and l «}«21/2 ~curve4!, and taking into account the change in the effecti
concentration of charge carriers in the point contact~curve5!.
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It was proved in Ref. 10 that foreV>«F , the EF line is
blurred to a certain extent, and the position of the peak on
curve may not satisfy relation~2!. However, the magnetic
field corresponding to maximum electron orbits in the re
space from the emitter to the collector and corresponding
the sharp descent of the EF line must correspond to form
~2!. The experimental curves in Fig. 1 are plotted on t
basis of recording of the derivativesdUc /dIl(H), which de-
termine just the field of the sharp descent of the EF line;
this reason, the blurring of the EF line for large values ofV
cannot be responsible for the discrepancy between the
perimental and theoretical curves in Fig. 1. It should
noted that this discrepancy is observed starting from v
small values of the applied voltage.

We assume that the reason behind the decrease in
excess energy of electrons emitted from the point contac
compared toeV is partial energy relaxation occurring in th
point contact region. In this case,

H0R5H0FS 11
eV

«F
S l «

a D D 1/2

, ~4!

where l «5(Dt in)
1/2 is the energy relaxation length,a the

length of the point contact channel,D5vF
2t i /3 the diffusion

coefficient for electrons,t i the elastic relaxation time, andt in

the inelastic relaxation time. The ratiol « /a takes into ac-
count the fact that the applied voltageV creates an electric
field over the lengtha (V5E/a), but an electron gains en
ergy in the fieldE over the lengthl « . In the hole model of a
point contact,a'd. The appearance of the ratiol « /a in ~4!
corresponds to a decrease in the value ofH0R relative to
H0T .

Let us introduce a certain value (l « /a)0 for the initial
segment of experimental dependencesH0(V). It can be eas-
ily determined from a comparison of the applied voltageV
and the effective voltageṼ,8 which give the same value o
magnetic field corresponding to the position of the EF li
on the experimental~1! and theoretical~2! curves. Curve3 in
Fig. 1 is plotted in accordance with formula~4! for the ob-
tained value (l « /a)0 .1! It coincides with the experimenta
dependenceH0(V) only on the initial segment, and then de
viates noticeably from the experimental curve upon an
crease inV. This increasing difference can be explained
two possible reasons: either the effect of relaxation proce
becomes weaker upon an increase in the electron energ
there exists another factor responsible for the difference
tween the experimental values ofH0 and theoretical values
for a noticeable excess energy of electrons. The intersec
of experimental and theoretical dependences for large va
of V also points to the existence of an additional reas
Indeed, the theoretical value ofH0T in the relaxation model
is the maximum possible value ford«5eV.

The suppression of relaxation upon an increase in ene
is possible in the case of a special energy dependence o
elastic relaxation time. Indeed, the velocityvF appearing in
the expression forl « increases with the energy«5«F1d« in
proportion to«1/2, while the value oft in obviously changes

a
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with energy in the same way as the value oftep changes with
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temperature~see, for example, Refs. 11–13!, i.e., in propor-
tion to «22. An increase in the value ofl « with energy can
be observed whent i is a function of energy and is describe
by the dependencet i}«p, wherep.1, as, for example, in
semiconductors in the case of scattering by charged imp
ties (p53/2). We will return to the energy dependence oft i

later.
An additional factor responsible for the difference b

tween the experimental values ofH0 and those calculated
according to formula~4! in the relaxation model is the pos
sible influence of thermoelectric effects emerging dur
heating of the emitter in the case of a strong current. T
polarity of the thermoelectric field in a heated Cu–Bi cont
coincides with the polarity of the applied electric field ens
ing the electron flow to bismuth. The presence of such a fi
would lead to an increase in the observed focussing fi
According to estimates, however, this change inH0 should
not be significant. In Ref. 9, the temperature increase in
point contact region under the action of current is estima
on the basis of the thermal conductivity equation and it
shown that the increase in temperature near the point con
boundary of radiusr;1 mm amounts to;1.5 K for typical
values of the Bi point contact resistanceR;1 V and for the
current I;0.1 A. The thermoelectric voltage in this ca
amounts to 1025– 1024 V.

A more realistic factor leading to an increase in expe
mental values ofH0 relative to the expected dependen
H0R(V) for the relaxation model is the intrinsic magnet
field of the current flowing into the crystal through the po
contact.14 In the region of maximum current concentratio
i.e., at the boundaries of the point contact aperture, the
trinsic magnetic field of the current can attain a noticea
value~according to our estimates, the field can be as high
;10 Oe for a current;100 mA!, but it decreases rapidly
with increasing distance in proportion tor 21. The magnitude
of the intrinsic magnetic field of current is proportional to t
currentI , which is a nonlinear function of applied voltage
the case of Bi point contacts.

NONLINEARITY OF THE CURRENT–VOLTAGE
CHARACTERISTIC

The current–voltage characteristics~IVC! of Bi point
contacts are nonlinear~Fig. 2!. We are speaking of a consid
erable nonlinearity of IVC of a point contact rather than
local nonlinearities which are observed while recording
second derivatived2I /dV2, and serve as the basis of poin
contact spectroscopy of the electron–phonon interaction
metals2! 15,16 ~it should be noted, by the way, that the app
cation of this method to bismuth proved to be ineffective17!.

The IVC measured by Bogodet al.18 with the help of the
pulse method on Bi single crystal whiskers~of diameter 3
mm and length 0.3–0.6 cm! indicated a nonlinearity of the
opposite sign as compared to that observed for point c
tacts. This nonlinearity of the fracture type, which appears
the current–voltage characteristics for an electric fi
strength of the order of 1022 V•cm21 is due to generation o
phonons by electrons and holes in Bi, which drift in t
electric field at a supersonic velocity. The drift of electro
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and holes as well as of acoustoelectric flows generated
them occurs in opposite directions; the generation
phonons is accompanied by an increase in the differen
resistance of the sample. Such a nonlinearity must also
present in the IVC of Bi point contacts since supersonic el
tron drift is attained foreV.hnD , but this nonlinearity is
apparently insignificant in comparison with the dominati
smooth nonlinearity presented in Fig. 2 and having a diff
ent origin.

The nonlinearity of the IVC of Bi point contacts unde
investigation can be associated, in accordance with the id
developed in Refs. 19 and 20 with the dependence of
elastic relaxation timet i on the electron energy. Shekhter19

proved that the differential derivativedI/dV(V) in semicon-
ducting point contacts in the diffusive conduction mode a
in the case of a small contribution of inelastic relaxati
reflects the energy dependence oft i . It can be reconstructed
from an analysis of the nonlinearity of the IVC for a poi
contact19 by using the relation3!

t i~«!

^t i&
5

3

2
«23/2E

0

«

du u1/2
R~0!

R~u!
, ~5!

whereR5(dI/dV)21 is the differential resistance and^t i& is
the mean value oft i .

Proceeding from the assumption that the nonlinearity
the IVC for Bi point contacts is completely determined by
special dependencet i(«), we made an attempt to reconstru
the form of this dependence by using Eq.~5!. Calculations
led to an odd result: the ratiot i /^t i& remains close to unity
up to a voltage of 80 mV, and then increases withV in
proportion to«2, or rather to exp«, the increase being no
very strong~by 20–40% for the maximum energy value
;200 meV!. Functional dependences oft i on energy of this
type are unknown. Besides, the dependencet i(«) obtained
for point contacts with different resistances did not coinc

FIG. 2. Current–voltage characteristics for Bi point contacts atT54.2 K
and for different point contact resistancesR ~for V→0!, V: 0.55 ~curve1!,
0.86 ~curve2!, 1.21 ~curve3!, and 1.38~curve4!.
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versal physical reason behind the nonlinearity. Thus, the
sion concerning the reason behind the emergence of no
earity on IVC being verified proved to be nonrealist
Similar assumptions made above in connection with a c
siderable increase inH0 at large voltages as compared to t
dependenceH0R(V) taking relaxation into account shoul
also be rejected since the obtainedt i(«) dependence fail to
describe this discrepancy. If we assume in the limit thatt i is
independent of energy~as in the case of metals! and take into
account the most realistic functional energy dependence
the parameters appearing inl « ~i.e., vF}«1/2 and t in}«22,
relation ~4! assumes the form

H0R5H0FF11
eV

«F
S l «

a D
0
S 11

eV

«F
D 21/2G1/2

. ~6!

The dependencesH0R(V) constructed according to~6! for
the samples under investigation proved to be still wea
~see curve4 in Fig. 1! than the dependences plotted for t
initial value (l « /a)0 ~curve3!.

Let us now consider other versions of explanation
nonlinearity on the IVC for point contacts.4! In view of spe-
cific band structure of Bi~small band overlapping!, the pas-
sage of current through a point contact, i.e., the stabiliza
of a certain potential distribution in it, can be accompan
by a change in the number of charge carriers. Shik21 proved
that the presence of a potential reliefU(z) of any form in a
semimetal leads to an increase in the average concentr
of charge carriers. Under the condition of nonuniform pote
tial, the concentration of electrons and holes is a posit
function. If the potential at a certain point of the samp
differs from its average value, this leads to a displacemen
the Fermi level relative to the band edges and to an incre
in the concentration of charge carriers of one polarity an
decreases in the concentration of charge carriers of the
posite polarity at this point. Since the density of states is
increasing function of energy, the total concentration
charge carriers increases, but the condition of compensa
of charge carriers of opposite polarities is preserved. It w
shown in Ref. 21 that the in the case of a small amplitude
potential variation, we have

n̄5n0S 11
3

8

Ũ22Ũ2

«F
e«F

h D . ~7!

We assume that the potential distribution in the point con
channel is linear, i.e.,U(z)5eEz, and choose the referenc
point for the potential so that the mean value ofU is equal to
zero, i.e., we measure thez-coordinate from the center of th
channel. In this case, we have

Ũ25
1

a E
2a/2

a/2

~eEz!2dz5
1

12
~eE!2a25

1

12
~eV!2. ~8!

For convenience, we put«F
h5(1/g)«F

e(g'2) in ~7!, which
gives

n̄5n0F11
g

32 S eV

«F
D 2G . ~9!
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spatial redistribution of charge carriers under a tim
independent nonuniform potential. For a time-depend
situation in the current mode, we must apparently introduc
certain coefficientk1,1 in the second term in~9!, which
takes into account the extent to which the actual spatial
tribution of charge carriers is close to the expected distri
tion. It should also be noted that the proposed idealiz
model cannot correspond completely to the heterojunc
used by us.

In the approximation of energy-independence of t
probability of elastic scattering of charge carriers, a chan
in the point contact resistance as a result of an increase in
carrier concentration due to the effect of potential nonunif
mity can be described by the following relation:

R~V!5R0F11k1

g

32 S eV

«F
D 2G21

. ~10!

The theoretical dependencesR(V) plotted according to
~10! ~dashed curves in Fig. 3! successfully describe the ini
tial region of experimental dependences~presented in Fig. 3
by different symbols for three samples!. In some cases, a
satisfactory description of the entire experimental curve
be obtained~see, for example, curve1!. In this case, we had
to take a very small value for the coefficientk150.0560.01
for all the experimental data under consideration. As
voltage V increases, the experimental dependences dev
from those calculated by formula~10!; the reason behind this
deviation will be considered below. Apparently, the sm
value of the coefficientk1 reflects the real efficiency of the
model considered above as applied to a heterojunction
well as the assumptions made by using the results obta
by Shik21 ~the application of formula~7! in the case of a
large amplitude of potential variation and the assumpt
concerning the linear distribution of the potential in the po
contact channel!.

The evolution of the idea about the effect of potent
distribution in a point contact on the charge carrier conc
tration leads to one more statement: the deformation of
tential for large values ofV can be so strong that interban
tunneling becomes possible. The latter is accompanied b
exponential increase in the charge carrier concentration
the conduction band~in the case of semiconductors, this e
fect is known as the Zinner breakdown!. In the case of bis-
muth, the model of interband tunneling presumes that tun
ing of electrons from the valence band to states with
Fermi energy begins when the quantityeV attains values
exceeding the electron energy«g measured from the top o
the valence band~i.e., the sum of the Fermi energy«F

e for
electrons and the widthDL of the energy gap between th
valence band and the conduction band at the pointL!. This
leads to generation of holes in the valence band.

The idea of interband tunneling was used for the fi
time for explaining the nonlinearity of IVC in three
dimensional Bi bridges by Vdovin and Kasumov.22 Accord-
ing to these authors, the nonlinear correctionDI to current is
correctly described by the lawDI}exp(2V0 /V), whereV0 is
the effective field determined by the geometrical size of
nanoconstriction. Similar observations were made by van
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Hilst et al.23 for two-dimensional nanoconstrictions in films
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of Bi0.95Sb0.05/Bi/Bi0.95Sb0.05. The measuring technique use
by these authors provided information concerning the cha
in the charge carrier concentration in the constriction regi
The authors of Refs. 22 and 23 proceeded from the assu
tion that the interband tunneling is the only reason behind
nonlinearity of the IVC of the objects under investigatio
and hence disregarded the possibility of an increase in
charge carrier concentration under the effect of nonunifo
potential. In Ref. 23, the relative rate of generation of ad
tional charge carriers was introduced in the fo
exp(2E0 /E), whereE0 is the characteristic field which ha
the following form in the theory of interband tunneling:

E05
pm* 1/2«g

3/2

23/2e\
. ~11!

An analysis of experimental data on the basis of this conc
tion made it possible to determineE0 and the recombination
length L0 . According to van der Hilstet al.,23 the obtained
value of E0 increases~from 1.23104 to 53104 V•cm21!
with the magnetic field strength under the effect of the f
mation of the Landau levels, but is close on the whole to
value of E0 calculated according to~11!. Van der Hilst
et al.23 assumed that m* 5(462)31023m0 and
«g5«F1DL527.6115.3542.9 meV for bismuth24 and ob-
tainedE052.23104 V•cm21.

The mechanism of interband tunneling is supplement
relative to the mechanism of increase in the charge ca
concentration under a nonuniform potential. Let us estim
its relative effect on the process in general. The interb
tunneling probability is determined by a function of the for
exp(2E0 /E). Consequently, the charge carrier concentrat
must increase under the effect of interband tunneling acc
ing to the relation

n5n0~11k2 exp~2E0 /E!!5n0~11k2 exp~2V0 /V!!.

~12!
The total change in the charge carrier concentration i
point contact with increasingV has the form

n5n0S 11k1

g

32 S eV

«F
D 2

1k2 exp~2V0 /V! D5n0f c~V!,

~13!

while the change in the point contact resistance must be
scribed by the dependence

R5R0f c
21~V!. ~14!

In formula ~12!, we introducedV05E0a, assuming that the
applied voltageV generates an electric field over the leng
a. This length is unknown, and in our calculations we us
tentative values ofa corresponding to the configuration o
the curve specified by the function exp(2V0 /V) for V!V0 .
It was found that the most realistic value isV0'1 V,7 which
corresponds to a quite reasonable point contact len
a'0.4 mm. Besides, the coefficientsk1 and k2 are fitting
parameters. It should be noted that in the case when t
coefficients are close to unity, the contribution of interba
tunneling to the resistance becomes negligibly small as c
pared to the contribution of the effect of change in the cha
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carrier concentration under the influence of the field gradie
It was mentioned above, however, that the coefficientk1 as-
sumes a small value'0.0560.01 as compared to the exper
mental value. On the contrary, the coefficientk2 should be
approximately equal to 40–50. In this case, the experime
dependencesR(V) can be described to a high degree of a
curacy by relations~13! and~14! ~solid curves in Fig. 3!. In
this case, the coefficientsk1 and k2 for point contacts with
different resistances are very close.

ONCE AGAIN ON THE POSITION OF THE EF LINE

It would be interesting to estimate whether the posit
result obtained while describing the nonlinearity of IVC for
Bi point contact on the basis of the model taking into acco
potential gradient in the point contact can be used for
plaining the dependence of the focussing fieldH0 on the
voltage applied to the point contact and creating a spati
nonuniform distribution of charge carriers with different p
larities. Such a dynamic concentration gradient results in
emergence of a certain intrinsic electric field directed aga
the applied field. The intrinsic field is probably a reason b
hind the decrease in the efficiency of the voltage applied
the point contact. This idea requires a special theoret
analysis.

At the same time, we made an attempt to estimate
maximum possible contribution of the increase in the cha
carrier concentration in a point contact to the process of
cussing. Excess charge carriers can directly affect the p
tion of the EF peak in the case when they reach the collec
In order to estimate the new position of the EF line, we u
the familiar relation between the concentration and
boundary value of quasimomentum:

pz5\~3p2!1/3n1/35\~3p2!1/3n0
1/3f c

1/3~V!5pF0f c
1/3~V!.

FIG. 3. Resistances of point contacts as functions of applied voltage; s
bols correspond to experimental data, dashed curves describe depend
calculated according to~12! taking into account the nonuniform potentia
and solid curves are calculated according to~16! taking into account inter-
band tunneling. The point contact resistance~for V→0!, V: 0.86 ~curve1!,
1.21 ~curve2!, and 1.38~curve3! at 4.2 K.
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Curve5 in Fig. 1 illustrates the theoretical dependence~cal-
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culated by using formula~6!! with the cofactorf c (V) in
which we have used the values ofk1 andk2 obtained above.
It can be seen that curve5 is far from the experimental curv
1 and fails to explain the rapid increase in the latter cu
relative to the theoretical curve4 for the relaxation model.

The assumption concerning the possible contribution
excess change carriers generated in a point contact to
focussing curve is problematic. On one hand, electrons
holes emitted from the point contact move in opposite dir
tions and are spatially separated. Consequently, ‘‘recomb
tion’’ of charge carriers of opposite polarities on a ballis
trajectory from the emitter to the collector is hardly possib
However, recombination can take place in the region adjo
ing the point contact~for example, according to estimates,23

the recombination length for excess charge carriers in
does not exceed 2–6mm!, and hence excess charge carrie
probably do not reach a ballistic orbit. We also verified t
hypothesis on the effect of excess charge carriers in a p
contact on the relaxation process in it. If we assume that
cofactor appearing inl « in formula ~4! change with the con-
centrationn according to the familiar relations~vF}n1/3 and
tep}n21 or tep}n21/3 in the ‘‘pure’’ and ‘‘dirty’’ limit
respectively!,25 the theoretical curve deviates from curve4
only slightly.

At the same time, the models considered above and le
ing to an increase in the charge carrier concentration in a
point contact~to be more precise, the nonlinearity of the IV
for the point contact associated with this effect! have an in-
direct influence on the displacement of the EF line upon
increase in the applied voltage. It should be noted that
increasing discrepancy between the experimentally obse
values ofH0 ~curve 1! and the values ofH0R calculated in
the relaxation model~curve 4! resembles the change in th
current through the point contact with the applied volta
~cf. curve3 in Fig. 2!. Such a similarity was observed by u
for all the samples under investigation with different valu
of the initial resistanceR0 and with different degrees of non
linearity. Moreover, it was found that the same values
current flowing through point contacts with different res
tances correspond to approximately the same displacem
DH05H02H0R . This leads to the assumption that the d
placementDH0 is due to the intrinsic magnetic field of cu
rent.

The intrinsic magnetic field of the current through
point contact bends the electron trajectories in the initial s
ment and must produce a ‘‘defocussing’’ effect on the el
tron flow since the polarity of this field relative to the applie
magnetic field is different for electrons emitted from t
point contact at anglesw with opposite signs~the anglew is
measured from the axis of the point contact channel!. The
electrons emitted along the channel axis and forming a p
on the EF curve experience the influence of the intrin
magnetic field only in the periphery region relative to t
contact axis, i.e., on the initial segment of a ballistic orb
This leads to a displacement of the peak on the EF cu
towards larger values of the applied magnetic field. Van S
et al.14 analyzed theoretically the effect of intrinsic magne
field on the position of the EF peak for a point contact on
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silver single crystal. According to calculations, the relati
displacement of the EF peak amounts to;1% for a current
1.5 A. In the case of Bi, this value must be considera
larger. If we take into account the ratio of microscopic p
rameters for electrons in silver and bismuth, the relative d
placement of the EF curve in Bi for a current 150 mA mu
be ;10%. In actual practice, the shift of the EF line w
larger than according to the estimates. The decisive role
the intrinsic magnetic field of current in the displacement
the EF line in question is confirmed by the fact that t
relation between the currentI and the displacementDH0 is
close to linear. An analysis of the entire body of experime
tal data leads to the empirical relationDH05AI1BI2,
where the coefficientsA and B assume the average value
93103 and 631025 respectively~hereI is measured in mil-
liamperes andDH0 in oersteds!. Thus, the additional nonuni
form magnetic field generated by current in a point cont
effectively affects the ballistic trajectories of electrons a
leads to a noticeable displacement of the leading edge of
EF line.

The authors are grateful to Yu. A. Kolesnichenko f
fruitful discussions of the results.

APPENDIX

We give a visual description of the physical models us
for explaining the nonlinearity of the current–voltage cha
acteristic for Bi point contacts.

1. Potential gradient model

A Bi sample contains electron and hole valleys loca
at pointsL andT of the Brillouin zone. We assume that th
potential varies linearly between point A and B in the re
space~Fig. 4!. In the presence of a potential gradient, t
concentrations of electrons and holes is a position funct

FIG. 4. The change in the mutual arrangement of energy bands in Bi in
region of potential gradient. The formation of electron–hole pairs occ
under the action of potential gradient~curve1! and as a result of interband
tunneling~curve2!.
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The potential gradient leads to spatial redistribution of
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4!The description of the physical models will be given in Appendix.

.

.
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z.
charge carriers of opposite polarities and to the stabiliza
of a certain level of chemical potential~CP! in this region. In
the case under investigation, this level must be exactly at
middle between the positions of CP at the initial statesA and
B ~bold curve in Fig. 4!. For the sake of clarity of presenta
tion, we consider the change in the number of electrons
holes only at the extreme pointsA andB. Electrons occupy-
ing states atA above the new level of CP move to states
lying above the initial level of CP. However, the density
states is an increasing function of energy, and the elect
arriving from A fill the states to a certain level lying below
the new level of CP. Additional electrons appear as a re
of creation of an additional number of holes. Indeed, ho
move in the opposite direction, and the number of holes
riving at A from B is insufficient for filling the hole states a
A up to the new CP level. This inevitably leads to the c
ation of additional holes which ensure the emergence of
ditional electrons atA. This process is associated with inte
valley transitions between pointsL and T of the Brillouin
zone. Thus, the presence of a potential relief in a semim
leads to an increase in the average concentration of elec
and holes while preserving the equality of charge carriers
opposite polarities.

2. Interband tunneling model

In the presence of a potential gradient between pointA
andB separated by a distancea, electrons can tunnel from
state near the top of the valence band to the Fermi level,
tunneling being accompanied by activation of electro
Holes are created in the valence band, and additional e
trons appear in the conduction band. Transitions occur
tween states at the pointL of the Brillouin zone, but between
pointsA andB separated by the distancea in the real space
The conditions for direct tunneling are created when
level eE0a5DL1«F

e is attained.

*E-mail: komnik@ilt.kharkov.ua
1!In the given example, (l « /a)050.3. In the experiments described abov

this quantity assumes the values from 0.7 to 0.2.
2!It should be noted that in the above analysis we also neglected fine

linearities for the dependencesH0(V), which could emerge in the region
of characteristic Debye frequencies.

3!In Ref. 19, formula~5! has a misprint.
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS
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Drag effects between two-dimensional superfluid charged Bose gases separated by a
rigid partition

S. I. Shevchenko and S. V. Terent’ev
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of the Ukraine, 310164 Kharkov, Ukraine*
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The drag effect in a system of two-dimensional superfluid charged Bose gases separated by a
thin insulating partition is analyzed microscopically. It is shown that in contrast to normal
systems, the drag effect is observed atT50. The temperature dependence of the entrainment
current is determined. An experiment for observing the effect is proposed. ©1997
American Institute of Physics.@S1063-777X~97!00910-9#

The possibility of transfer of motion through a solid par- Here ĉa
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tition was indicated for the first time by Andreev an
Meierovich who predicted the drag of one liquid by anoth
separated from the first liquid by a fixed partition.1 The drag
through a wall separating electron gases due to the Coul
interaction between electrons was predicted by Pogrebin2

and later by Price,3 while the drag through the electron
phonon interaction was predicted by Gurzhi a
Kopeliovich.4 Recently, perfect low-dimensional system
were created, and the drag in two-dimensional electron g
separated by an insulating partition has become an obje
numerous experimental5–8 and theoretical9–13 investigations.

In most of the publications, the problem of drag betwe
electrons in normal systems is considered. To our kno
edge, the drag between electrons in superconductors s
rated spatially was analyzed in a single theoretical pape14

The analysis carried out by Duan and Yip14 is of qualitative
nature and provides no answers to a number of questi
For example, the expression for drag current given in Ref
does not contain superconducting parameters of the sys
i.e., the current is independent of the pairing potential. T
result is astonishing; the existence of the dependence on
pairing potential will be demonstrated in the present pap
For this purpose, we shall consider the problem of the d
between charged Bose gases, i.e., the case of a strong p
potential. Our results differ from those presented in Ref.

Let us consider a system consisting of two identical tw
dimensional Bose gases separated by an insulating part
of thicknessd.

The Hamiltonian of the system has the form

H5(
a

5E \2

2M
¹ĉa

1~r !¹ĉa~r !d2r

1
1

2 (
a,b

E ĉa
1~r !ĉb

1~r 8!Vab~r2r 8!

3ĉb~r 8!ĉa~r !d2rd2r 8. ~1!
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for a boson in the layera51, 2, and the potentials are give
by

Vaa5Q2/«0r , Vaā5Q2/~«0Ar 21d2!, ~2!

whereQ52e is the boson charge and«0 the permittivity of
the interlayer.

Let us first find the energy spectrum of the system.
T50, it could be determined by using the well-known B
goliubov procedure of replacement of condensate opera
by C numbers. However, the Bose condensate is absen
two-dimensional systems atTÞ0, and we will find the spec-
trum by going over to ther–w representation, i.e., we write
the operatorsĉa in the form

ĉa~r !5exp@ i ŵ~r !#Ar̂a~r !>exp~ i ŵa~r !!Ar0

3S 11
1

2

dr̂a

r0
D . ~3!

Here r̂a(r ) and ŵa(r ) are the density and phase operato
for bosons in thea, which satisfy the commutation relation

@ r̂a~r !,ŵb~r 8!#5 idabd~r2r 8!, ~4!

r05^r̂a& is the average density of bosons, which is the sa
for both conducting layers, anddr̂a[r̂a2r0 . The second
equality in ~3! is valid for r0

2@^dr̂a
2&. It can be proved that

this inequality is satisfied for a two-layer system in the ca
of a high density, i.e., forr0>(me2/\2«0)2. Substituting~3!
into ~1! and taking into account only the terms quadratic inw
anddr̂a , we obtain

H5S(
k

H(
a

\2k2n

2M
ŵa

1~k!ŵa~k!

1
1

2 (
a,b

r̂a
1~k!Vab~k!r̂b~k!J . ~5!

HereS is the area of the system andVab(k) are the Fourier
components of the potentials, which are given by

81700817-03$10.00 © 1997 American Institute of Physics
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~for brevity the notationn5r0 has been introduced!.
After a transition to the new variables

r̂6~k!5
1

&

@ r̂1~k!6 r̂2~k!#,

ŵ6~k!5
1

&

@ŵ1~k!6ŵ2~k!# ~7!

The Hamiltonian~5! is reduced to the sum of the Hamilto
nians for two independent modes. Introducing the opera
of annihilation of an elementary excitation of speciess56,
i.e.,

b̂s~k!5
1

2 H S Es~k!S

«~k!n D 1/2

r̂s~k!12i S «~k!nS

Es~k! D 1/2

ŵs~k!J
~8!

and the creation operatorsb̂s
1(k) conjugate to them, we di

agonalize these Hamiltonians and obtain the energy o
elementary excitation:

Es
2~k!5«2~k!12n@V11~k!1sV12~k!#«~k!, ~9!

where«(k)5\2k2/2M . It can be easily seen that the mod
E1(k) corresponds to vibrations of the Bose gas in two c
ducting films as a whole, while the modeE2(k) corresponds
to density oscillations in one film relative to the other for
constant total density. Forkd!1, equation~9! leads to

E1
2 ~k!5

4pQ2n\2

«0M
k, E2

2 ~k!5
2pQ2n\2d

«0M
k2. ~10!

It is expedient to note that these expressions coincide w
the expressions for the spectrum of collective excitations
two-layer normal Fermi system, which are derived by tak
into account screening effects.13 ~We should only replace the
fermion chargee and massm by the boson chargeQ52e
and massM52m.! There is no need to take into accou
additionally the screening effects for the system under inv
tigation since Hamiltonian~5! has been diagonalized exactl

Let us now consider the problem of entrainment
bosons from one layer by moving bosons of the other lay
If layer 1 carries a uniform supercurrent, the field opera
ĉ1 in this layer should be written in the form

ĉ1~r !5exp@ i r•ks11 i ŵ1~r !#Ar̂1~r !. ~11!

In this case, the average momentum per boson in layer
equal to\ks1 , and the average superfluid velocity in th
layer is given byvs15\ks1 /M . As a result, the Hamiltonian
~5! is supplemented with the term

iS(
k

\k•vs1

2
@ŵ1~k!r̂1~2k!1 r̂1~2k!ŵ1~k!#

[MSĵ s1•vs1 . ~12!

Hereĵ s1 is the operator of two-dimensional current density
layer 1. Assuming that the velocityvs1 is small and taking
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average current in layer 2 induced by the current in laye

ĵ215
1

2MS (
k

\kH n1~k!1n2~k!

1
\k•vs1

4E1E2
F ~E12E2!2

E11E2
~n1~k!1n2~2k!11!

2
~E11E2!2

E12E2
@n1~k!2n2~k!#G J . ~13!

Heren1 andn2 are the Bose distribution functions:

ns~k!5FexpS Es~k!1\k•vs1/2

T D21G21

. ~14!

Further calculations will be made by assuming that
following inequalities hold:

d@F \2«0

8pQ2nMG1/3

, T!F2pQ2n\2

M«0d G1/2

[T0 . ~15!

The first inequality allows us to assume that the ener
momentum relationEs(k) is linear for all the boson mo-
menta significant for the problem. By virtue of the seco
inequality, we can neglect the excitation ofE1 modes at
nonzero temperatures. This statement follows from the
that, for a given temperatureT, the modes satisfying the
inequalityE2(k)<T are excited. The maximum wave num
ber satisfying this condition iskc.(M«0T2/2pQ2n\2d)1/2,
and fork,kc we haveE1

2 /E2
2 .T0/2T@1.

Taking into account~15! and retaining only the terms
linear in vs1 , we obtain from~13!

j215
1

8pns

\2

Md4

1

T0
H 0.040622z~3!S T

T0
D 3J j1 . ~16!

Herez(y) is the Riemann zeta function,T0 is the tempera-
ture defined by~15!, andj15nsvs1 . For characteristic values
of n51015 cm22, M52m0 , wherem0 is the mass of a free
electron, Q52e, «0510, d51026 cm, we have
T0'43103 K.

It follows from ~16! that the current in one supercon
ducting film induces a current in the other superconduct
film owing to the Coulomb interaction between spatia
separated electrons even atT50, the entrainment supercur
rent decreasing with increasing temperature. It should be
phasized that this result was obtained by us as a resu
consistent microscopic analysis and not by using qualita
arguments as in Ref. 14. According to Ref. 14, the entra
ment current atT50 must be equal to&\ j1/48pnsmvFd3.
Considering that the velocity of sound for theE2 mode is
c25(2pnQ2d/M«0)1/2 @see~10!#, we can write our result a
T50 in the form j215\ j1/200pnsMc2d3. In our opinion,
the result obtained in Ref. 14 is valid only in the weak co
pling approximation. As the electron–electron attraction
creases, the result obtained in Ref. 14 should be modifi
and in the limit of two Bose gases, the Fermi velocity
pairing electrons should be replaced by the velocity of sou
c2 for the slow mode. Since this velocity is a function of th
separationd between the conducting layers, this changes
dependence of entrainment current ond.
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In order to observe entrainment between electrons in
case of spatially separated normal systems, current is pa
through one conducting layer, and the potential differenc
measured in another~disconnected! layer. However, this
method is inapplicable in the case of superconducting lay
since no electric field can exist in a superconductor. One
possible ways for observing the entrainment current is
close the secondary circuit and to measure the magnetic
created in it. The circuit diagram for such an experimen
shown in Fig. 1.

In order to find the electric currentj2 in the secondary
circuit, we must take into account the fact that in the gene
case this current is given by

j25
Qns

M S \¹w2
Q

c
AD1 j21. ~17!

HereA is the vector potential of the magnetic field genera
by the currentj2 , and j21 stands for electric current rathe
than for the flux of particles. Since the phasew must satisfy
the condition

R ¹w•dl52pn,

in a closed circuit, wheren is an integer, the energy mini
mum corresponds to zero phase for small currentsj21. Con-
sequently, the total entrainment currentj2 in the circuit under
investigation must be equal to2(Q2ns /Mc)AL1 j21 in the
lower film and to2(Q2ns /Mc)AH in the upper film, where
AL andAH are the values of the vector potential in the low
and upper films. Solving the Maxwell equatio
curl H54p j /c, we can easily find that

j 25
j 21

21g
, where g5

4pnsQ
2D

Mc2 . ~18!

HereD is the separation between the upper and lower fi
in the secondary circuit~see Fig. 1!. The magnetic flux be-
tween the films associated with the currentj 2 is given by

FIG. 1. Schematic diagram of an experiment for detecting the drag e
between superconducting layers. The lower superconducting layer is be
order to avoid the excitation of current in the upper layer by the magn
field of the lower layer.
819 Low Temp. Phys. 23 (10), October 1997
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For g!1, the magnetic flux increases linearly withD. For
g.1, it attains saturation, and the fluxF does not depend on
D for g@1. In this case, we have

F5Fmax5
0.02e\L j 1

Q2T0~2pnsd
2!2 F0 , ~20!

whereF05hc/2e is the magnetic flux quantum.
Let us consider the numerical estimates. F

ns5n51015 cm22, Q52e, M52m0 , the dimensionless
constantg is of the order of unity forD.1024 cm. If
D@1024 cm, theng@1, and the fluxF5Fmax. While es-
timating the fluxFmax, we must take into account the fac
that it strongly depends ond (Fmax;d27/2), and the value of
d must be as small as possible. On the other hand, the v
of d must be large enough in order to neglect tunnel
through the insulating layer separating the primary and s
ondary circuits. Ford'50 Å, L51 cm, vs15105 cm/s, and
the flux Fmax'331026F0 .

Thus, we have proved that the drag current between
superconductors differs from zero even atT50 and depends
on the pairing potential for electrons. It is remarkable that
have obtained a simple test for distinguishing between
‘‘boson’’ and ‘‘fermion’’ superconductivity. In the former
case, the entrainment current and the fluxFmax are propor-
tional to d27/2, while in the latter case they are proportion
to d23, whered is the thickness of the partition separatin
the two superconducting layers.

*E-mail: shevchenko@ilt.kharkov.ua
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High-frequency spin susceptibility of a two-dimensional electron gas with electron

he
impurity states
N. V. Gleizer, A. M. Ermolaev, and A. D. Rudnev

Kharkov State University, 310077 Kharkov, Ukraine
~Submitted February 28, 1997!
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The high-frequency asymptotic form of dynamic spin susceptibility of a two-dimensional
electron gas is obtained. Local states of electrons in impurity atoms and the quantizing magnetic
field are taken into consideration. The susceptibility has resonant singularities at frequencies
of electron transitions between Landau levels and local levels. In the absence of a magnetic field,
the real part of susceptibility has a logarithmic singularity while the imaginary part has a
peak at the threshold frequency of bound electron activation by a variable magnetic field. ©1997
American Institute of Physics.@S1063-777X~97!01010-4#
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The reaction of a two-dimensional electron gas to
weak varying magnetic field is characterized by the dyna
spin susceptibility tensorx~q,v! which depends on the wav
vectorq and the field frequencyv. The peculiarities of sus
ceptibility on the complex plane of frequencyv determine
the spectrum and attenuation of magnetic excitations i
system. The knowledge of susceptibility allows us to obt
the spectrum of spin magnetization fluctuations of a tw
dimensional electron gas, cross-section of magnetic sca
ing of neutrons by spin magnetization current of conduct
electrons, and other quantities.

A large number of works have been devoted to the co
putation of spin susceptibility of two-dimensional electr
systems.1 Shoenberg2 calculated the static susceptibility of
free electron gas in a magnetic field perpendicular to
plane of motion of electrons, while Isiharaet al.,3 took into
account the Coulomb interaction of electrons. Exact exp
sions for the dynamic spin susceptibility as well as t
density-density reaction function for a free degenerate t
dimensional electron gas were obtained in Refs. 1 and 4.
quantizing magnetic field was taken into consideration
Glasser,5 while Yarlagadda and Giuliani6 obtained the high-
frequency asymptotic form for the spin susceptibility of
two-dimensional Fermi liquid. The effect of impurity atom
potentially scattering conduction electrons on susceptib
was considered by Nkoma.7 Fukuyama8 compiled a review
of the properties of two-dimensional disordered systems
magnetic field.

Spin susceptibility, which is sensitive to the dynamics
conduction electrons, experiences the effect of impurity
oms in the system. In particular, the impurity states of el
trons must affect the susceptibility and other quantities as
ciated with it. It is important to take such states in
consideration since an impurity atom in the two-dimensio
case forms a bound state with electrons even if it attra
them quite weakly. The corresponding local level lies n
the lower edger of the two-dimensional conduction ba
The local levels are ‘‘multiplied’’ in a magnetic field, an
exist in a field of both attracting and repelling scattere
Local levels are arranged between the Landau levels.
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high-frequency spin susceptibility of a two-dimensional ele
tron gas at low temperatures. We shall use the method
local perturbations9 which was employed earlier10 for calcu-
lating the conductivity tensor. It is assumed that the f
quencyv of the field is high in comparison with the electro
collision frequency.

In Sec. 2, we shall consider the effect of local electr
states in the field of isolated impurity atoms on hig
frequency spin susceptibility of a two-dimensional electr
gas. In Sec. 3 we take into account the quantizing magn
field perpendicular to the electron layer. The results obtai
in this work are briefly summarized and their possible app
cations are discussed in Sec. 4.

2. EFFECT OF LOCAL ELECTRON STATES ON DYNAMIC
SPIN SUSCEPTIBILITY

In order to calculate the spin susceptibility tensor, w
use Kubo’s formula

xab~q,v!5 i E
0

`

dteivt^@Ma~q,t !,Mb~2q, 0!#&, ~1!

where M (q,t) is the spatial Fourier component of th
Heisenberg operator for the spin magnetization of tw
dimensional electrons; brackets denote the commutato
operators, while angle brackets describe Gibbs averaging
averaging over impurity atom configurations,a,b5x,y. The
sample area and the quantum constant are assumed
equal to unity. In secondary quantization representation,
spin magnetization operator has the form

Ma~q!52m(
pss8

ss8s
a a~p2q!s8

1 aps , ~2!

wherem is the electron magnetic moment,p ands stand for
momentum and the spin quantum number, whileaps andaps

1

are the operators of annihilation and creation of electron
the stateups&, and sa are Pauli matrices. Substituting for
mula ~2! into ~1!, we obtain the following relation betwee
the susceptibility tensor and Fourier component of a retar
two-electron Green’s function. The latter quantity is calc
lated by using Green’s temperature function method.11

82000820-04$10.00 © 1997 American Institute of Physics
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Green’s function is reduced to the product of two on
particle Green’s functions averaged over impurity atom c
figurations. Disregarding vortex corrections,11 this average is
reduced to the product of average one-particle Green’s fu
tions. Using their spectral representations,11 we obtain the
following expression for the tensor~1!:

xab~q,v!52m2 (
pss8

ss8s
a sss8

b E
2`

`

d«E
2`

`

d«8

3
f ~«!2 f ~«8!

«2«82v2 i0
rs~p,«!rs8~p2q, «8!, ~3!

in which f («) is the Fermi function, andrs(p,«) is the spec-
tral density of one-electron Green’s function averaged o
impurity configurations. In a pure sample, this quantity
defined as

r0~p,«!5d~«2«p!,

where«p5p2/2m, m being the effective electron mass.
The one-particle Green’s functionG is connected with

the operatorT of electron scattering by impurity cente
through the relation9

G5G01G0T G0 , ~4!

whereG0 is the Green’s function of free electrons. The exa
expression for the mean value of the operator of short-ra
electron scattering by impurity atoms in the one-center
proximation was derived in Ref. 9. Hence the spectral d
sity of the averaged Green’s function~4! can be represente
in the form r5r01dr i , wheredr i is the impurity correc-
tion. In the linear approximation in densityni of impurity
atoms, this correction is proportional toni . Consequently,
x5x01dx i , wherex0 is the spin susceptibility tensor fo
the pure sample, anddx i is the impurity contribution which
is defined asdxab

( i ) 5dx idab , where

dx i~q,v!522m2(
p
E

2`

`

d« dr i~p,«!

3@ f ~«!2 f ~«p1q!#S 1

«2«p1q2v2 i0

1
1

«2«p1q1v1 i0D . ~5!

It can be seen from formula~4! that the functionG has
additional singularities associated with the singularities
the scattering operator. These singularities correspond to
cal electron energy levels in isolated impurity atoms. T
contribution of local levels to the spectral density of the a
erage Green’s function is given by

dr~p,«!5uv0uni~«2«p!22d@12v0F~«!#, ~6!

wherev0 is a constant characterizing the intensity of sho
range impurity potential, andF(«) is a function appearing in
the Lifshits equation9 12v0F(«)50 for local levels. It can
be seen from formula~6! that the spectral density has a delt
shaped peak at the local levels:
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where« l is the position of thel -th local level, and

r l5UdF~«!

d« U
«5« l

U21

is the residue of the amplitude of electron scattering by
isolated impurity center at the pole« l . For a shallow
(muv0u!1) local level, this residue is defined as

r 52pu« l u/m.

Formulas~5! and ~7! lead to the contribution of loca
levels to the high-frequency spin susceptibility:

dx~q,v!52m2ni(
pl

r l~«p2q2« l !
22@ f ~«p!2 f ~« l !#

3S 1

« l2«p2v2 i0
1

1

« l2«p1v1 i0D . ~8!

As expected, the real part of this equation is an even func
of frequency, while the imaginary part is an odd function

If the energy spectrum of the system contains just o
local level situated near the lower edge of a two-dimensio
conduction band, integration over the directions of the vec
p in ~8! leads to the following expression:

dx~q,v!54pmm2rniE
0

`

d«@ f ~«!2 f ~« l !#

3S 1

« l2«1v1 i0
1

1

« l2«2v2 i0D
3u«2« l1«qu@~«2« l1«q!224««q#23/2.

~9!

In the case of a weak spatial dispersion («q!u« l u), we
can confine ourselves to an expansion of the real part of
function~9! into a series in powers of«q /« l . In this case, we
arrive at the following expression for degenerate electro
taking into account terms of the order ofq2:

Re dx~q,v!54pmm2rniv
22H F12

4«q

v

3S 12
3

2

« l

v D G lnU «F2« l

v1«F2« l
U1 4«q

« l

3S 12
«F

« l
D 21F12

3

4 S 12
«F

« l
D 21G J

1~v→2v!, ~10!

where«F is the Fermi energy, and (v→2v) indicates the
term obtained from the preceding one by reversing the s
of frequency. The function~10! has a logarithmic singularity
at the threshold frequency«F1u« l u of activation of electrons
localized at impurities by a varying magnetic field. The im
purity absorption of the varying field energy has a thresh
at this frequency.
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Im dx~q,v!54p2mm2rni uv1uQ~v1« l !

3@ f ~« l !2 f ~« l1v!#@v1
2 24«q~v

1« l !#
23/22~v→2v!, ~11!

wherev65v6«q , and Q is the Heaviside function. At a
finite temperature, Eq.~11! has a threshold at the frequenc
vg5u« l u of activation of the local level. As the temperatu
decreases, the threshold is displaced towards the p
«F1u« l u in accordance with Pauli’s principle. As the imag
nary part~11! of the susceptibility passes through the thre
old frequency, it experiences a jump defined~for q50! by
4p2mm2rnivg

22. With increasing frequency, the quanti
~11! decreases in proportion tov22. The jump is naturally
blurred if we take into account the finite width of the loc
level.

3. EFFECT OF MAGNETIC FIELD ON SPIN SUSCEPTIBILITY

The method of local perturbations used above is a
applicable in the case when a two-dimensional electron
is in a quantizing magnetic field perpendicular to the pla
z50 in which the electrons move. In this case, the electr
are situated at Landau levels and the local levels detac
from them. In order to calculate the spin susceptibility ten
of such a system, it is convenient to use the Landau re
sentation. In particular, the spatial Fourier component of s
magnetization operator in this representation has the for

Ma~q!52m (
vv8ss8

ss8s
a I v8v~2q!av8s8

1 avs ,

wherev is a set of orbital quantum numbers for an electr
in a magnetic field, andI vv8(q)5^vueiqruv8& are the matrix
elements of a plane wave in the Landau basis.

The above transformations lead to the following con
butions of local levels to the high-frequency spin suscepti
ity tensor of two-dimensional electrons:

dxab~q,v!5
mm2vcni

2p (
knn8ss8

r ks

wnn8
2

~q!

~«ns2«ks
l !

@ f ~«n8s8!

2 f ~«ks
l !#S sss8

a ss8s
b

«ks
l 2«n8s81v1 i0

1
ss8s

a sss8
b

«ks
l 2«n8s82v2 i0D . ~12!

Herevc is the cyclotron frequency, while«ns and«ks
l are the

positions of thenth Landau level andkth local level respec-
tively,

wn8n5S n!

n8! D
1/2

j1/2~n82n! expS 2
j

2DLn
n82n~j!,

Ln
n82n are generalized Laguerre polynomia

j5q2/(2mvc), and the wave vectorq is parallel to the
y-axis. If the separationv0 between the Landau level and th
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local level detached from it is small in comparison withvc ,
the residue of the amplitude of scattering of electrons by
impurity atom at the pole«ks

l is equal to

r 52pv0
2/~mvc!.

For j!1, the spatial dispersion of the tensor~12! can be
disregarded. In this case, the circular components of sus
tibility are defined as

dx6~v!5dxxx~v!6 idxyx~v!

5
mm2vcni

p (
kn

r k1

~«n12«k1
l !2 @ f ~«n2!

2 f ~«k1
l !#

1

«k1
l 2«n26v6 i0

1~1↔2 !,

~13!

where the indices6 in r k6 , «n6 and«k6
l correspond to the

electron spin orientations along and against the magn
field, and (1↔2) indicates the term obtained from the pr
ceding one by reversing the sign of the electron spin pro
tion, as well as the sign ofv1 i0. It can be seen from for-
mulas ~12! and ~13! that the spin susceptibility of a two
dimensional electron gas has resonant singularities at
frequencies of electron transitions between the Landau le
and local levels that are accompanied by a spin flip. T
resonance frequencies are equal tou«n62«k7

l u.
The dependence of the real~1! and imaginary~2! parts

of the quantity

dQ5
v1g

2m2ni
dx2 ~14!

on x512v/v1 is shown in Fig. 1 near the frequenc
v15vc2v0 of resonant electron transitions between a La
dau level and a local level involving a spin flip (2→1)
within a single Landau subband. Here,g5G/v1 , whereG is
the total width of levels participating in transitions. Calcul

FIG. 1. Dependence of the real~curve1! and imaginary~curve2! parts of
the susceptibility~14! on frequency in the vicinity of resonance.
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tions were made forg50.1. The ratio of the maximum value
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of Redx2 to the Pauli susceptibility of a two-dimension
electron gas2

x05e2/~4pmc2!

is equal to

k5
pni

mv1g
.

Substituting in the above expression the valu
ni51012 cm22, the constant magnetic field streng
H5104 Oe, andv0 /vc50.1 that are typical for experiment
with an inversion layer at the Si–SiO2 boundary, we obtain
k5218.

4. CONCLUSION

In the present work, we have considered the effect
localization of electrons on the high-frequency spin susc
tibility tensor of a two-dimensional electron gas in the fie
of impurity atoms. It is assumed that the mean separa
between impurity atoms is large as compared to the radiu
the bound state of an electron and the radius of the elec
orbit in a magnetic field, while the frequency of the varyin
magnetic field considerably exceeds the electron collis
frequency. This allows us to expand the susceptibility int
series in powers of the densityni of impurity atoms and to
single out the contribution of local levels proportional toni .
The local levels are the poles of the one-electron Gree
function averaged over the impurity configurations. The
levels are manifested in the form of delta-peaks on the
pendence of the spectral density of the average Green’s f
tion on the electron energy. A consideration of these pe
leads to the value of the contribution to the susceptibi
resulting from electron transitions between bound and b
states induced by a varying magnetic field. This contribut
is obtained both in a quantizing magnetic field perpendicu
to the electron layer, and without the field.

In the absence of a magnetic field, the real part of
dynamic spin susceptibility of degenerate electrons ha
logarithmic singularity at the threshold frequency of tran
tions of localized electrons to the two-dimensional cond
tion band. The imaginary part of susceptibility has a thre
old and experiences a discontinuity at this frequency.
consideration of the finite width of the local level leads to
blurring of the jump and to the emergence of a peak at
823 Low Temp. Phys. 23 (10), October 1997
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The susceptibility has resonance singularities at frequ

cies of electron transitions between Landau levels and
local levels alternating with them. As a function of fre
quency, the real part of susceptibility has simple poles
resonance frequencies, while the imaginary part has de
shaped peaks. Formulas~10!–~13! were derived just by using
the fact of the existence of local levels in the electron ene
spectrum. The characteristics of these levels~their positions
«ks

l and the residuesr ks of the scattering amplitude! were not
specified. Hence formulas~10!–~13! can be used for obtain
ing these characteristics by comparing theory with exp
ments.

The results obtained by us can be used for studying
high- frequency magnetic properties of inversion layers
the boundary between a semiconductor and an insulato
heterojunctions, superlattices, two-dimensional and laye
metals, and thin metallic films in the case when the electr
fill only the lower energy level associated with spat
quantization.1 The above peculiarities of the real part of su
ceptibility must be taken into consideration in the dispers
equation for the spin wave spectrum in a two-dimensio
nonferromagnetic Fermi liquid. Apparently, these singula
ties lead to a rearrangement of the wave spectrum near r
nance frequencies. The peaks of the imaginary part of
susceptibility must be manifested in the absorption of hig
frequency field energy, and in the cross section of inela
magnetic scattering of neutrons by a two-dimensional e
tron gas.
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Interference phenomena and ballistic transport in a one-dimensional ring
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M. V. Moskalets
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The dependence of the conductance of a one-dimensional ballistic ring on a potential barrier at
one of the branches of the ring is considered at a nonzero temperature. The case of a
small potential barrier~Aharonov–Bohm electrostatic effect! as well as a tunnel barrier is
considered. The possibility of direct measurement of the electron wave function phase variation
upon tunneling is discussed. ©1997 American Institute of Physics.@S1063-777X~97!01110-9#
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The preservation of phase coherence during propaga
of electrons in mesoscopic samples1 at low temperatures
makes the transport properties of such objects sensitive to
phase of the electron wave function. This makes it poss
to observe the Aharonov–Bohm~AB! effect in solids.2,3

It was shown earlier4,5 that the physical properties o
doubly connected systems containing an AB magnetic fluF
are periodic inF with a periodF05h/e. Such a periodicity
was indeed observed in Refs. 6–10 during measuremen
conductance oscillations in isolated conducting rings in
magnetic field. Calculations of conductance for on
dimensional11–14 as well as multichannel15 rings also show
that the dependenceG(F) must have a periodF0 . How-
ever, experiments on chains formed by many rings16,17 dis-
play a F0/2 periodicity which is associated with the e
semble averaging of macroscopically identical b
microscopically different characteristics of the rings~length,
impurity distribution, etc.!.1,13,15,18It can be stated that th
F0/2 periodicity may be caused by interference of electro
moving along various trajectories as well as along the sa
trajectory but in opposite directions. The contribution of t
latter processes, which was first considered in the weak
calization theory by Al’tshuler, Aronov, and Spiva
~AAS!,19 is independent of microscopic characteristics of
sample and is therefore preserved upon averaging. Accor
to the prevailing concepts, averaging over an ensemble
rings is equivalent to averaging over electron energy~see
Ref. 1!.

In analogy with optical phenomena, attempts were m
to control the interference pattern in an AB magnetic int
ferometer~a mesoscopic ring containing the AB magne
flux! by changing the electron wave function phase with
help of a variable potential barrier created on one of
branches of the ring. Thus, the phase change in Refs. 20
21 was caused by the Aharonov–Bohm electrostatic eff
A potential barrier with resonance levels~quantum dot! was
used in Ref. 22. It was assumed in these works that
electron wave function phase variation by a quantityu
caused by a potential barrier with transmission coeffici
t5t0exp(iu) ~wherei is the imaginary unit! leads to an iden-
tical phase shift in the dependenceG(F). However, no such
phase shift was observed in the dependenceG(F). More-
over, the existence of such a phase shift would contradict
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connected two-terminal mesoscopic samples upon a reve
of the magnetic field,23 which is confirmed in experiments.24

Hence Yacobyet al.25 concluded that a two-terminal inter
ferometer cannot be used in principle for a direct measu
ment of the phase of the transmission coefficient of an e
tron passing through a potential barrier.

The present paper aims at determining the effect o
potential barrier of heightew on the conductance of an in
terferometer with an AB magnetic flux, and at illustrating t
possibility of using a two-terminal ballistic interferometer
study the coefficient of transmission of an electron throug
potential barrier. Such a formulation of the problem is jus
fied by the following arguments. According to Landaue
formula,1,26 the conductanceG of a sample with two termi-
nals connected with the banks is proportional to the squar
the amplitudet of transmission of a Fermi electron throug
the sample:

G5G0ut~kF!u2. ~1!

Here, G052e2/h. In other words, if the contacts ar
mounted directly on the potential barrier, it is not possible
measure the phase of the transmission coefficient during
ductance measurements. The situation becomes quite d
ent if we locate the potential barrier at one of the branche
the ballistic ring. In this case,t.AL1R1AL2R , whereAL1R

is the amplitude of transition through the branch contain
the potential barrier, andAL2R is the amplitude of transition
through the other~ballistic! branch. Writing the dependenc
on t explicitly (AL1R5A01t), we obtain

G.G0~ uA01u2t0
21uAL2Ru212 Re~A01AL2R* t !!.

The third term in this expression is proportional to the fi
power of the coefficientt of electron transmission across th
potential barrier and depends on its phaseu.

We shall consider the case of a small potential bar
~potential step! ew!«F ~where «F is the Fermi energy of
electrons at the banks!, as well as a potential barrier of arb
trary height~including a tunnel barrier withew>«F!.

In the former case, the Aharonov–Bohm electrostatic
fect is realized. It will be shown below that, in spite of th
additive nature of the contributions from vector and sca
potentials to the electron wave function phase, the magn
and electrostatic AB effects in a one-dimensional ballis
ring are independent of each other as far as the phas

82400824-06$10.00 © 1997 American Institute of Physics
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concerned. In other words, a change in the phase of the e
tron wave function during the passage across a potential
rier does not change continuously the phase of the de
denceG(F). This is due to the different ways in which th
vector and scalar potentials affect the spectrum of elec
states in the ring.27 Because of this effect, the interferenc
phenomena in doubly connected systems differ from an
gous effects in ballistic flows of particles28 when the electro-
magnetic potentials affect only the amplitude of electr
transition from the initial to the final point. This is confirme
by the results obtained in Ref. 29 where a phase variatio
the dependenceG(F) was observed under a scalar potent
acting on an electron beam in a two-slit interferome
formed in a two-dimensional electron gas. Such a phase
corresponds to the additive contribution from scalar and v
tor potentials to the electron wave function phase. No s
phase shift was observed in Refs. 20 and 21 where meas
ments were made on conducting rings with two terminals

1. FORMULATION OF THE PROBLEM AND BASIC
EQUATIONS

Our aim is to find the conductanceG of a one-
dimensional ballistic ring with a potential barrier connect
to macroscopic banks through one-dimensional conduc
~Fig. 1!. Following Büttiker et al.,12 we shall solve this prob-
lem by using the transfer matrix technique in the approxim
tion of the quantum waveguide theory.14

For this purpose, we consider the passage of a p
wave exp(ikx) through the ring from left to right. According
to formula ~1!, the square of the transmission amplitu
t(kF) for an electron with Fermi energy defines the cond
tance of the system at zero temperature. We single out
one-dimensional segments 0L, L1R, L2R, andR08. In each
segment, we introduce a coordinate axis with positive dir
tion as indicated by arrows in Fig. 1. We denote the solut
of the one-dimensional Schro¨dinger equation for the wave

FIG. 1. Model of a one-dimensional ring connected with the banks.
arrows show the positive direction of the coordinate axes. The num
correspond to the branches of the ring. 0,08 are points of contact with the
banks,L andR are contact points for terminals,F is the magnetic flux, and
Vadd is the potential of the metallic shutter creating a potential step of len
b. The cross shows the impurity position, anda is the impurity coordinate.
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C1 , C2 andCR and present it in the form

5
CL~x!5exp~ ikx!1r ~k!exp~2 ikx!,

C1~j!5~A1 exp~ ikj!1B1 exp~2 ikj!!expS i2p
jF

LF0
D ,

C2~z!5~A2 exp~ ikz!1B2 exp~2 ikz!!expS 2 i2p
zF

LF0
D ,

CR~x8!5t~k!exp~ ikx8!. ~2!

Here k is the electron wave vector,F the magnetic flux in
the ring, andL the length of the ring. In order to find the si
unknownsr , A1 , B1 , A2 , B2 , andt, we use the conditions
of continuity of the wave function at the points of interse
tion of one-dimensional conductorsL ~coordinatesx50,
j50, z50! andR ~coordinatesj5L/2, z5L/2, x850!:

HCL~0!5C1~0!5C2~0!,
CR~0!5C1~L/2!5C2~L/2!, ~3!

as well as the conditions of conservation of current at th
points:14

H dCL

dx
~x50!5

dC1

dj
~j50!1

dC2

dz
~z50!,

dCR

dx
~x850!5

dC1

dj
~j5L/2!1

dC2

dz
~z5L/2!.

~4!

It is convenient to use the matrix approach for solving the
equations. For this purpose, we put the column vectorĈ(x)
in correspondence with the wave functio
C(x)5A exp(ikx)1B exp(2ikx):

Ĉ~x!5S C1~x!

C2~x! D , ~5!

where C1(x)5A exp(ikx) and C2(x)5B exp(2ikx). In
this case, the wave functionC(x) is equal toÎ Ĉ(x), where
Î 5(1,1) is the unit row vector. The boundary conditions~3!
and ~4! can be represented in matrix form as follows:

H Ĉ2~0!5S 1
21D1T̂LĈ1~0!,

Ĉ2~L/2!5T̂RĈ1~L/2!,
~6!

where

T̂L5S 21 1

3 1D , T̂R5S 1 3

1 21D . ~7!

Here

r 5211 Î Ĉ1~0!, ~8!

t5 Î Ĉ2~L/2!. ~9!

Equations~6! must be supplemented by relations connect
the wave function valuesĈl(0) at the beginning and
Ĉl(L/2) at the end of each branch (l 51,2). In each particu-
lar case, we can obtain such a relation with the help of
transfer matrix.12,30

It is well known12,14 that at a temperatureT50, the
value ofG depends significantly on the productkFL. In or-

e
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h
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der to study the effect of potential barriers, we also consider
1

s

th

m

T̂ ~x!5
exp~ ix ! 0

. ~12!

rre-
orm

o-

re-
the conductanceGT of the ring at a nonzero temperature:

GT5G0E d«

4T
ut~k!u2cosh22S «2«F

2T D , ~10!

where«5(\k)2/(2m).

2. ELECTROSTATIC AHARONOV–BOHM EFFECT IN THE
CONDUCTIVITY OF A ONE-DIMENSIONAL BALLISTIC
RING

Let us place a metallic gate over one of the branche
the ring~Fig. 1! with a potentialVaddwhich forms a potential
step of lengthb and heightew in the ring. If the condition
uewu!«F is satisfied, the coefficientr w of reflection of a
Fermi electron by the step can be put equal to zero. In
case, the transmission coefficient will be defined as27

tw5exp@ i ~dF1kFb!#, ~11!

dF52pw/w0; ew05DFL/b. The transfer matrixT̂w for the
potential step can be represented in the following for
T̂w5T̂0(dF1kFb), where the ballistic transfer matrixT̂0(x)
is defined as
ht
of

e
h

rg

ia
m

th
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u
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is

:

0 S 0 exp~2 ix !
D

In this case, the complete transfer matrices for the co
sponding branches of the ring can be represented in the f

T̂L1R5T̂0~kFL/2!; T̂L2R5T̂0~dF1kFL/2!. ~13!

Note that in, view of the diagonality of matricesT̂w andT̂0 ,
the matrixT̂L2R does not depend on the position of the p
tential step.

The relations between the values of wave functions
quired for solving Eqs.~6! have the following form

H Ĉ1~L/2!5T̂L1RĈ1~0!expS ip
F

F0
D ,

Ĉ2~L/2!5T̂L2RĈ2~0!expS 2 ip
F

F0
D .

~14!

Substituting the solution of Eq.~6! and taking~13! and
~14! into account in~9! and then in~1!, we obtain
G5G0

~12cosD!~11cosdF!1~cosdF2cosD!~cos~2pF/F0!21!

@cos~2pF/F0!2cosD1~cosdF2cosD!/4#21sin2 D
. ~15!

Here D5kFL1dF . Similar expressions were obtained ear-
G~F!5 C ~w!cos 2pn

F
, ~17!
S D

f
t

lier for dF50 in Refs. 12 and 14.
It follows from formula~15! thatG is periodic inw with

a periodw0 . Thus, a long potential barrier of small heig
(ew!«F) has a considerable effect on the conductance
ballistic ring.

For T50, the shape of the curveG(w) depends on the
productkFL ~see Fig. 2!, and is not symmetric relative to th
reversal of the sign of the potential step. However, suc
dependence vanishes for T.T050.5DF , where
DF52«FlF /L is the separation between the electron ene
levels in the ring near the Fermi energy~Fig. 2, curve3!, and
the curve becomes symmetric:

GT~w!5GT~2w! for T.T0 . ~16!

From a formal point of view, the presence of a potent
step is equivalent to the nonsymmetric connection of ter
nals to the ring considered by Xia.14 Here,
L1dF /kF→L11L2 and dF→kFDL, where DL5L12L2 ,
L1 andL2 being the lengths of the branches constituting
ring. However, such a correspondence is valid only forT50.
For a nonzero temperature, the dependence ofG on kFDL
vanishes forT>DFL/DL, while the dependence onw is pre-
served.

The main conclusion that can be drawn from formu
~15! is that vector and scalar potentials exert different infl
ence on the conductance of the ring, which is in accord w
the results of measurements.20,21

Presenting the dependence~15! in the form of a series
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we find that the quantityw affects only the amplitudes o
harmonics of the conductanceG(F), and does not affec
their phase. Figure 3 shows the dependence ofC1 ~curve1!

FIG. 2. Dependence of the conductanceG of the ring~in units ofG0! on the
height w of the potential step forT50, F50 for L/lF5200.2 ~curve 1!,
200.8~curve2!, and atT5DF/2 ~curve3!.
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and C2 ~curve 2! on w/w0 at T5T0 . For w5w156w0/4,
C1 becomes equal to zero, whileC2(w1)Þ0 and the depen
denceG(F) nearw5w1 is periodic in magnetic flux with a
periodF0/2. Such a transition was observed experimenta
by Yacobyet al.25 Note that the presence of aw-independent
component in the amplitude of the second harmonicC2 is
associated with the contribution from the AAS effect.

For T.T0 , the value ofGT remains unchanged upon
sign reversal ofF or w.16 Separating the first harmonic, w
can write

GT50.35 cosS 2p
F

F0
D cosS 2p

w

w0
D1g~F,w!. ~18!

The second term, which contains higher harmonics, is u
ally smaller than the first term except for the values

F56F0/4, ~19a!

w56w0/4, ~19b!

near whichGT is periodic inw with a periodw0/2 ~Eq. ~19a!!
and inF with a periodF0/2 @Eq. ~19b!#.

3. BALLISTIC RING WITH A SINGLE IMPURITY

The effect of a single impurity on the conductance o
ballistic ring atT50 was considered earlier in Refs. 12 a
31. We shall consider the caseTÞ0. In addition, we shall
also consider the effect of the tunneling coefficient phase
the conductance of a ring.

Suppose that an impurity of lengthd is introduced in one
of the branches of the ring at a distancea from the starting
point. We denote the transmission and reflection coefficie
of a Fermi electron byt i5t0 exp(iu) andr i5r 0 exp(ir). The
other branch of the ring contains a potential step with a tra
fer matrix T̂w ~see Fig. 1!.

Calculations made in a similar manner as above give

G5G0u2X/~Y1Z!u2,

FIG. 3. Dependence of the amplitude of the first~curve1! and second~curve
2! harmonicsG(F) ~in units ofG0! on the heightw of the potential step for
T5DF/2.
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0 F FS 2 D G F
1t0 sin D8 expS 2p i

F

F0
D G ,

Y5r 0 exp~ ir!cosFkFS L

2
2d22aD G@cosD8

1exp~2 iD8!#

Z52 exp~2 iD!2exp~ iu!Fsin S8 sin D8

12t0 cosS 2p
F

F0
D G . ~20!

Here D5kF(L2d)1dF ; D85kFL/21dF ; S85kF(L/2
2d)1u.

Formula~20! is symmetric relative to the sign reversal
the magnetic flux:G(F)5G(2F). This can be verified
through appropriate transformations. Also, the above exp
sion is also symmetric relative to change in the impur
coordinatea: G(a)5G(L/22a2d), which indicates that
the magnitude of conductance is independent of the direc
of the measuring currentI : G(I )5G(2I ).

For numerical computations, we consider a point imp
rity (d50) with a potentialU:

U~j!5V\2/md~j2a!. ~21!

The presence of an impurity affects the depende
G(kFL). This is due to the emergence of new channels
transition fromL to R ~involving reflection at the barrier! for
r 0.0. Among other things, this causes a ‘‘large-scal
modulation~with a period larger than 2p! of the dependence
G(kFL). The amplitude of such a modulation increases w
r 0 . As the temperature increases, oscillations associated
the interference of waves with the shortest path differe
are preserved for the longest period of time. Such osci
tions have a periodD(L/lF).max@L/(2a), L/(L22a)# and
vanish atT>T0i5T0D(L/lF) ~see Fig. 4!. The following
circumstance is worth noting. If we consider a ring with
overlapping branch (t050), the separation between electro
energy levels near«F in such a ring will be half the value o
DF for a pure ring. Hence it would be natural to expect th
a decrease int0 causes a decrease in temperature at wh
oscillations on the dependenceG(kFL) vanish. However,
this is not true. This is due to the fact that the conductivity
the ring depends not only on the position of the Fermi le
relative to the electron energy levels in the ring, but also
the amplitude of the electron transition through the ring.

A decrease in the barrier transparency causes a decr
in the amplitude of oscillations of the dependenceG(F).31

In this case, the amplitude of the second harmonic increa
~Fig. 5! due to an increase in the contribution from the AA
processes to the field dependence of the conductance.

It follows from formula ~20! that the dependenceG(w)
is sensitive to the amplitude and phase of the transmis
coefficientt i . In order to determine the dependence onu, we
write
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G~w!5(
n

Dn cosS 2pn
w

w0
2gnD , ~22!

where Dn and gn are the amplitude and phase of thenth
harmonic.

Calculations show that the following relation holds f
T>T0 :

g15u. ~23!

In other words, a change in the phase of the transmis
coefficient causes a corresponding variation in the phas

FIG. 4. Dependence of the conductanceG of a ring with a single impurity
~in units ofG0! on the parameterL/lF for T5DF/2 ~curve1!, 1.5 DF ~curve
2! and 5DF ~curve 3!. The values of the parameters areF50, w50,
V/kF51, and 2a/L50.1.

FIG. 5. Dependence of the amplitude of the first~curve1! and second~curve
2! harmonicsG(F) ~in units of G0! for w50, and amplitude of the first
harmonic forw50.2 ~curve3! on the ratioV/kF . The values of the param
eters are 2a/L50.5, T5DF .
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parity condition~16! was obtained for a symmetric ring~for
w50!, and is not valid in the present case.

The presence of a magnetic fluxFÞ0 does not change
the relation ~23!. The only exception are the value
F56F0/4 @see Eq.~19a!# near whichD1 vanishes.

One more circumstance deserves attention. A chang
the barrier transparency may cause a sign reversal for
first harmonic in the dependenceG(F) ~Fig. 5, curve3!.
Calculations show that the amplitude of the first harmo
for T>T0 vanishes if the following condition is satisfied:

dF2u5p/2. ~24!

Thus, if we keep the amplitude of the first harmonic
the dependenceG(F) equal to zero, the change in the heig
of the potential barrier is proportional to the variation in t
phase of the coefficient of transmission of a Fermi elect
through the potential barrier.

Yacoby et al.22 found a variationp in the phase of the
dependenceG(F) in an AB interferometer with a quantum
dot ~QD! ~a potential barrier with a resonance level! upon
the passage of a QD levelEn through a resonance
«F5En1Vp, whereVp is the QD potential relative to the
ring. Theoretical studies reveal25,32,33 that this is due to the
vanishing of the first harmonic amplitude near the resonan
It is shown in this section that such an effect may also
observed for a nonresonance potential barrier.

CONCLUSION

In this work, we have studied the effect of a potent
barrier of arbitrary height on the conductivity of an AB ma
netic interferometer. Results obtained for nonzero tempe
tures are presented. In this case, the effect of uncontroll
geometrical size~parameterkFL! is ruled out, but control-
lable parameters like the magnetic fluxF and the heightew
of the potential barrier continue to exert an influence.

For a small potential step (ew!«F), the interference of
electron waves propagating along different branches of
ring ~Aharonov–Bohm electrostatic effect! causes an oscilla
tory dependence of the conductanceG of the ring onw. It is
shown that the quantitydF ~phase change of the electro
wave function due to the presence of a step! does not affect
the phase of the dependenceG(F) in accordance with the
experimental results.20,21 It is also shown that a change indF

may cause a reversal of the sign of the amplitude of the
harmonic C1 in the dependenceG(F). Near the value
C1(dF)50, the period of oscillations changes fromF0 to
F0/2, which was indeed observed by Yacobyet al.25

The effect of a tunnel barrier on the conductance of
ring is studied. It is shown that for certain values of para
eters, the sign of the amplitude ofC1 may be reversed upon
a change in the value of the tunneling coefficient. This eff
was observed earlier in the case of resonance tunnelin22

However, it is shown in the present work that such an eff
may also occur during ordinary~nonresonance! tunneling.

It is found that an increase in the coefficient of electr
reflection at the potential barrier causes a relative increas

828M. V. Moskalets
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G(F) ~with a periodF0/2! due to an increase in the contr
bution from the AAS processes.

It is also shown that the use of a ballistic ring with
small potential barrier~electrostatic AB interferometer! al-
lows us to determine directly the change in the phase of
electron wave function upon tunneling through the barr
formed in one of the branches of the ring.
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Energy spectrum of a finite chain of cylindrical potential wells

g a
E. Ya. Glushko

State Pedagogical Institute, 324086 Krivoy Rog, Ukraine*
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An approximate analytic solution of the Schro¨dinger equation is obtained for a finite quasi-one-
dimensional system of cylindrical potential wells. The system is considered as a model of
an atomic chain or a quantum filament. It is shown that a smooth variation of the transverse size
of a cylindrical quasi-one-dimensional system may modify the spectrum due to the creation
~annihilation! of transverse quanta. The threshold nature of the states of a wide chain associated
with the quantization of longitudinal motion is considered. ©1997 American Institute of
Physics.@S1063-777X~97!01210-3#
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Low-dimensional solid structures display an enormo
number of physical phenomena, such as the quantum
effect, high-temperature superconductivity, reversi
memory, etc. In particular, quasi-one-dimensional syste
like quantum filaments, atomic and molecular chains, a
tips of scanning tunnel microscopes~STM! have continued
to attract the attention of researchers. Apparently, the ch
structure of layers in metaloxide cuprates plays an impor
role in the mechanism of high-temperatu
superconductivity.1 Atomic chains of real structures may b
simulated by potential well chains. Such a system of o
level weakly interacting potential wells was considered
Ref. 2 where the connection between the topology of a o
dimensional atomic chain and the energy spectrum was
lyzed. It was shown that a variation of the connectivity of t
chain ~formation of a ring! causes a detachment of loc
states. Maslovaet al.3,4 calculated the contribution to th
STM tunnel current from a local state formed due to int
action of the electrode tip with the sample surfac
Demichevaet al.5 studied experimentally the sharp increa
in the conductivity of microscopic conducting channe
formed in oxidized polypropylene under the action of a c
rent. Using the spectra of radiative recombination of el
trons in the heterojunction GaAs–AlGaAs with quantu
filaments having photo-excited holes, Kukushkinet al.6 ob-
tained the magnetic field dependence of the energy spec
and discovered a dimensional increase in the electron e
tive mass. They confirmed experimentally~see also the re
view in Ref. 7! the absence of a size miniband energy qu
tization. The theoretical proof of this effect is obtained fro
an analysis of exactly solvable terminated superlattice m
els without using the translational invarianc
approximation,8,9 as well as in the framework of such a
approximation.10

In general, the conventionally used theoretical models
quasi-one-dimensional systems2,5–7 are strictly one-
dimensional since they do not take into consideration
transverse degrees of freedom. However, a disregard
quantization in the transverse direction displaces the en
energy diagram downwards by a quantity of the order of
energy of transverse quanta. The resulting uncertainty in
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quasi-one-dimensional system in an impermeable poten
box as was done in Refs. 8 and 11. Tikhodeev11 used this
approach to solve the problem of tunnel oscillations of
electron density in paired quantum wires. The tw
dimensional problem of states in a cylindrically symmet
infinite potential well was studied in detail in Refs. 12 an
13. The three- and multidimensional cases were analyze
Ul’yanov.14

In this work, we use the exact solutions for a finite sy
tem of one-dimensional potential wells to obtain an appro
mate analytic solution for band and local states of a ter
nated cylindrical quasi-one-dimensional chain of finite-de
potential wells. The obtained spectrum contains local sta
of two types, viz., intrinsic and extrinsic. The condition
smallness of perturbation theory corrections to the energ
actual states near the bottom of the conduction band of
chain is analyzed. The existence of the threshold effec
expulsion of states from quantum chains with a shallow
tential well caused by longitudinal quantization is cons
ered.

2. FINITE CYLINDRICAL CHAIN OF POTENTIAL WELLS

Let us consider a system ofN coaxial cylindrical poten-
tial wells, each having a lengtha and radiusR. In this
model, the wells have a depthU0 and are separated by infi
nitely narrow partitions with opacity coefficientV ~Fig. 1a!.
The potential energy of such a system can be presented in
form of the sumU(r,z)5U0(r,z)1DU(r,z), where the
additive part in cylindrical variablesr and z has the form
U0(r,z)5Ur1Uz ,

UzH \2V

m* (
l 51

N21

d~z2 la !, zP~0, Na!,

U0 , z¹~0, Na!;

~1!

DU~r,z!5H 0, r,R,

2Uz, r.R, zP~0, Na!,

2U0, r.R, z¹~0, Na!.

The potential energyUr is equal to zero forr,R andU0 for
r.R, r being the radius vector in the cylindrical system

83000830-05$10.00 © 1997 American Institute of Physics
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coordinates. The exact solution of the problem can be
tained with the help of the zeroth approximation potent
chosen in the form of a superposition of one-dimension
terminated Kronig–Penney potential lowered into the co
mon potential well of depthU0 , and the potential of an
infinite cylindrical well of depthU0 with a flat bottom. In
view of a large number of wells in the system, the correcti
DU(r,z) weakly alters the zeroth approximation spectru
~see below! and can be taken into account in the perturbati
theory. Using the notation

Dr5
d

rdr S r
d

dr D1
1

r2

d2

dw2 , Dz5
d2

dz2 ,

wherew is the azimuthal angle, we obtain the following ex
pression for the additive part of the Hamiltonian:

Ĥ052
\2

2m* ~Dr1Dz!1Ur1Uz . ~2!

The correctionDU(r,z) to the zeroth Hamiltonian~see
Fig. 1b! annihilates thed-barriers in the space outside th
cylinder and ‘‘trims’’ the excessive increase in potential
the hatched regions 1 and 3 byU0 . Since the variables in the
HamiltonianĤ0 are separated, we obtain for thel fragment
of the wave function in the zeroth approximation

~ckk'
~z,r!! l5~Ale

ikz

1Ble
2 ikz!einwH A'Kn~ k̄'r!,

B'Jn~k'r!,
r.R,
r,R,

~3!

where k and k' are the longitudinal and transverse wav
vectors,n50,61,62, . . . is the angular quantum number,l
P@0, N11# labels the quantum wells, the terminal values

FIG. 1. A cylindrical chain of finite-depth potential wells:U0, is the depth
of the cell. The potential inside the chain is equal to zero~a!. Correcting
potential energyDU(r,z). The dashed curves correspond tod-notches with
opacitiesV ~b!.
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l corresponding to the left and right banks of the on
dimensional potential with appropriate modifications of t
first bracket,Jn is thenth order Bessel function,Kn the nth
order McDonald function, andA' ,B' are the normalizing
constants of the transverse part of the wave function,

k21k'
2 5

E

E0a2 , k'
2 1 k̄'

2 5g0
2;

g0
25

2m* U0

\2 , E05
\2

2m* a2 . ~4!

Here E is the energy eigenvalue in the three-dimensio
problem. The boundary conditions at any point (z,w) on the
lateral wall of the cylinder lead to the equation of quantiz
tion of transverse motion:

k̄'Jn~k'R!Kn11~ k̄'R!5k'Jn11~k'R!Kn~ k̄'R!. ~5!

This equation is an exact dispersion relation describing
energy spectrum of a particle in an infinite cylindrical pote
tial well of finite depth.13,14 Figure 2 shows the energy spe
trum of transverse motion calculated according to form
~5! for U054E0 and the angular quantum numbern50 as a
function of radiusR.1! It can be seen that states in an infini
cylindrical well with a flat bottom and finite depth ar
formed for an indefinitely small radiusR, since the lower
branch of transverse motion begins directly at the po
R50. This result is in accord with the general conclusi
about the absence of a threshold for the existence of stat
an arbitrary cylindrical well.12 Higher branches of states d
possess such a threshold which is defined forn50 by the
zeros ofJ1(k'R). In the limit U0→`, we obtain a quantum
filament in a cylindrical potential box.9,11 The growth of the
transverse size of the system is described by the approp
displacement of the vertical section in Fig. 2 defining t
radial quantum numbersNr51,2,. . . ,Nmax. For R59a, for
example, we obtainNmax56 for n50 andNmax55 for n51.

The longitudinal quantization is defined by the Ham
tonian

FIG. 2. Transverse quantum motion. The solid curves correspond to tr
verse branches. The quantum numbersNr are measured from below. Th
arrow shows the position of the limiting radiusRmin'1.1a of the chain in
zeroth approximation. The dashed horizontal line corresponds to the lim
wave numberkmax'1.486/a.
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The solution of the eigenvalue problem for a terminated s
tem of potential wells without using the translational inva
ance approximation is based on a convolution of the prod
of transfer matricesL̂ connecting the vectors (Al ,Bl) in ad-
jacent wells:12

L̂m5
1

2 F ~m1Aln!m1~m2Aln!m,

@~m1Aln!m2~m2Aln!m#j̄Al/n,

jAn/l@~m1Aln!m2~m2Aln!m#

~m1Aln!m1~m2Aln!m , ~7!

wherej5sgnn, j̄5sgnl, m5N22,

L̂5Fm n

l mG ;
l5~V22k2!sin ka12Vk coska,

n5sin ka, m52V sin ka2k coska. ~8!

Local states exist inside the energy gaps (ln.0). It was
shown by us earlier8 that, for N@1, the equation of loca
states for the one-dimensional system~6! has the form

Al/n5j H l0 /n0

~V* 2V!/2 , ~9!

where z5j sgnm; n05k0 sinka1k coska, l05(Vk0

2k2)sinka1k(V1k0)coska; k0
25g0

22k2; V* is the opac-
ity coefficient of a single perturbed barrier away from t
edges,k is the wave number of longitudinal motion,l0 /n0

corresponds to local states near the ends, while (V* 2V)/2
corresponds to the intrinsic local state. The band states
respond to negative radicandsln. In this case, transforma
tion of the general dispersion relation leads to the gene
ized Kronig–Penney equation for the energy spectrum
longitudinal motion:

cos
ps12w0

m
5coska1

V

k
sin ka, ~10!

where w05arctg((n0 /l0)jA2l/n, s5Z, (ps12w0)/m5
@0,p#. This equation differs from the known result for a
infinite one-dimensional system ofd-barriers ~see, for ex-
ample, Ref. 14! in the additional phase 2w0 which slightly
modifies the states near the band edges. However, e
wave functions of band states of a terminated system d
considerably from the conventionally used Bloch wave fu
tions in that they are in the form of standing waves and
not reveal a tendency towards translational invariance
N→`.8,9

The simple form of the relations~5!, ~9! and~10! allows
us to obtain the energy diagram of states in a certain rang
variation of opacitiesV of barriers separating the wells~
E2V diagram!. Figure 3 shows such a diagram for a term
nated chain of potential wells for the smallest transve
quantum numberNr51 for n50. The chosen depthU0 of
the potential well in Figs. 2 and 3 corresponds to a wo
function of 4.7 eV~carbon,a50.142 nm!.15 The character-
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Figure 2 shows thatNmax53 for R55a. It follows from Fig.
3 that the system being studied by us does not have any l
states for such values of parameters, and its conduction b
stretches fromEg1'1.6E0 to the vacuum level~continuum!.
A transition in the chain to the stateNr52 without a change
in the angular quantum number raises the bottom of the c
duction band to the levelEg2'2.25E0(E05U0/4). The state
with a transverse quantum numberNr53 is not realized for
the given values ofR andU0 . This is due to the presence o
an energy gap in the longitudinal spectrum. The horizon
dashed line in Fig. 2 separates the transverse states with
ergy E'.U02Eg1 which combine with longitudinal state
and fall into the continual spectrum region. Her
E'5k'

2 a2E0 . The energy gap is responsible for the em
gence of a threshold for the existence of a bound state in
chain of shallow cylindrical potential wells separated by b
riers. The arrow in Fig. 2 shows the minimum chain rad
for which electron conductivity still exists in the zeroth a
proximation for the above values of parameters.

3. SMALL PARAMETERS OF THE PROBLEM

The spectrum for the multiplicative wave function~3!
obtained in the zeroth approximation does not take into

FIG. 3. E2V diagram in the quasi-one-dimensional model. The hatch
region corresponds to the band states forNr51, n50. The solid line is the
external local state calculated by using formula~9!. The dashed curves show
the position of the band states forNr52, n50; the local state is expelled to
the continuous spectral region.
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proceeding further, we remark that only ‘‘tails’’ of the wav
functions of band states penetrate the regions 1 and 3~Fig.
1b! where this potential is quite high:DU(z,r)52U0 .
However, DU(z,r)50 in the region of the chain prope
where the main density of band states is concentrated.
indicates that the separable approximation chosen by u
effective, at least for band states and deep local states~which
attenuate rapidly in the outer region!. Let us estimate the
magnitude of corrections to the obtained energy values.

The l th order correction to the energy in perturbati
theory is defined by the expression

DE5E dwE r drE dz ckk'

2 ~z,r!DU~r,z!. ~11!

The integration in this equation is carried out over the en
space, but only regions 1 and 3 make a nonzero contribu
(DE1) in the halfspace to the left and right of the cylinde
where DU(r,z)52U0 . Region 2 of compensatingd-
barriers also makes a nonzero contributionDE2 ~Fig. 1b!.
Taking into consideration the properties of the amplitud
Al52Bl* , the expression in the first brackets in~3! can be
presented in real form:12

c i~z!5Ai Hexp~6k0z!,
Cl sin~kz1w l !,

z¹@0, Na#,
z¹@0, Na#, ~12!

where Cl and w l5arctan(ImAl /ReAl) are defined by the
system of boundary conditions, andAi is determined from
the normalization condition for the longitudinal part of th
wave function. The componentsDE1 andDE2 have different
values for different types of states. In the case of band sta
DE1 contains an asymptotically small factorAi

2/k05 l ex/L,
whereL5Na is the crystal size andl ex is the length of the
‘‘tail’’ part of the probability density that falls in the externa
medium.

The contribution from the second region is more sign
cant. Taking into account the relation between the am
tudes of the transverse part of the wave function

A'5B'Jn~k'R!/Kn~ k̄'R!, ~13!

we obtain forn50

DE2522E0VaF ( l 51
N21Cl

2 sin2~ka1w l !

a/Ai
2 G E'

U0

3S 12
K0

2~ k̄'R!

K1
2~ k̄'R!

D . ~14!

HereE' is the energy of the transverse quantum which c
be determined from Fig. 2. It follows from the explicit form
of Ai

22 that the quantity in the square brackets in Eq.~14!
does not exceed unity. ForNr51 and the values of param
eters obtained above, the last two factors in~14! are equal to
0.05 and 0.091, respectively. ForNr52, these factors are
equal to 0.105 and 0.25. It can be easily calculated
uDE2u<0.006Eg1 in the first case anduDE2u<0.02Eg2 in the
second case. Hence the main correctionDE2 narrows the
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transverse motion and 2% for the upper branch.
The correctionDE1 is significant for local states. Puttin

the expression within square brackets in~14! equal to unity,
we arrive at the following expression for the sum of tw
contributions:

DE52
E'

U0
S 2VaE01U0

l ex

l ex1 l in
D S 12

K0
2~ k̄'R!

K1
2~ k̄'R!

D ,

~15!

where l in is the effective length over which the state pe
etrates from the endface into the chain. For deep states, w
l ex! l in , the correctionDE becomes small in compariso
with the total energyE5E'1Es , whereEs is the energy of
the local state detachment from the one-dimensional ban

4. STATES IN A NARROW OR SHALLOW CHAIN

In the general case, the formation of an energy level i
system of shallow potential wells is essentially insepara
and we cannot disregard the correlation between transv
and longitudinal motion. However, for broad and long cha
(R@a, N@1), the problem of threshold depth of a commo
potential well into which a quasidiscrete level falls from th
continuum can be solved in the separable approximat
SinceE'!Eg for R@a, the threshold depth for a very lon
chain (N>20) can be assumed to be equal toU0'Eg ,
where the band gapEg is defined in accordance with~8! and
~10! by the conditionl50. This conclusion is also valid in
the case of a finite depth of barriers separating the poten
wells. In the notation used in Refs. 8 and 9,Eg is defined by
the equationln50.

As regards the threshold radiusRmin for which a bound
state is formed in a chain of finite depth, we have presen
above just a qualitative estimate of this parameter in the
order perturbation theory. Substituting into~14! the limiting
value k'51.486/a( k̄'51.339/a) obtained from the condi-
tion E'1Eg50, we can compute the correctio
DEg>0.1E' for R'1.1a whence, in accordance with Fig. 2
we obtain the interval of valuesRmin between 1.1a and 1.2a.
This result can be refined by using integral approach, e
the Green’s function method~see Ref. 14 in this connection!.

5. DISCUSSION OF RESULTS

The method of separation of the additive part of pote
tial used in Sec. 2 can be applied to solve the problem o
quantum wire which can be described by the model of p
allelepiped wells forming parallel filaments. The zerot
approximation wave functions in this case have the form
triple product of the expression in the first brackets in fo
mula ~3! written for various degrees of freedom. The cond
tions of smallness of corrections are analogous to those
sidered while discussing Eq.~14!.

It follows from the dimensional dependence of the e
ergy spectrum that a smooth decrease in the value ofR to
Rmin leads to a continuous upward displacement of the
ergy pattern~Fig. 3! accompanied by an expulsion of boun
states into the continuous spectrum. Such spectral variat
can be observed experimentally during extension or co

833E. Ya. Glushko



pression of the initial quantum chain caused, say, by the
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1!Branches corresponding ton51 in Fig. 2 lie almost exactly in the middle

st.,

ics
interaction of chain atoms with the substrate. An increas
the separation between the centers of the wells is accom
nied by a narrowing of the transverse dimensions of
wells and a corresponding increase in the band gap. For
parameters chosen by us, a transition to the insulating s
occurs forR'a. It must be borne in mind, however, that th
conclusion is valid for a solitary chain of potential wells wi
a flat bottom. In real semiconducting quantum wires,10 trans-
verse waves are considerably distorted due to scatterin
the interatomic barriers. For a thick quantum wire, i.e.
bunch of cylindrical chains considered above, the model p
posed here indicates that the integral characteristics of
energy spectrum, e.g., band width and position of the bot
of the band, are completely independent of the numbe
chains in the bunch if the number is of the order of seve
dozens.

The model gives a slightly distorted initial band spe
trum @see Eq.~10!# for the case when the chain of potenti
wells is intersected by another chain at considerable ang
The results obtained above are not applicable if the num
of intersections is large, i.e., close toN.

A consideration of the finite thickness of interatom
barriers does not produce any major changes in the pa
described here.8

The author sincerely thanks the reviewers of this pa
for a number of helpful comments.

This research was financed by the International So
Foundation.
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between the branchesn50, while the branches corresponding ton52 lie
in the middle between branchesn51.
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Teor. Fiz.51, 176 ~1990! @ JETP Lett.51, 201 ~1990!#.

7K. Schuller, Solid State Commun.92, 141 ~1994!.
8E. Ya. Glushko, Fiz. Tverd. Tela~St. Petersburg! 36, 2417 ~1994!; 38,
2051 ~1996! @ Phys. Solid State36, 1313~1994!; 38, 1132~1996!#.

9E. Ya. Glushko and V. N. Evteev, Preprint of the State Pedagogical In
Krivoy Rog ~1994!; Ukr. Fiz. Zh.40, 719 ~1995!.

10V. R. Gushin, Zh. E´ ksp. Teor. Fiz.100, 924~1991! @ Sov. Phys. JETP73,
510 ~1991!#.

11S. G. Tikhodeev, Zh. E´ ksp. Teor. Fiz.99, 1871~1991! @ Sov. Phys. JETP
72, 1047~1991!#.

12L. D. Landau and E. M. Lifshitz,Quantum Mechanics@in Russian#,
Nauka, Moscow~1989!.

13V. M. Galitskii, B. M. Karnakov, and V. I. Kogan,Problems in Quantum
Mechanics@in Russian#, Nauka, Moscow~1981!.

14V. V. Ul’yanov, Problems in Quantum Mechanics and Quantum Statist
@in Russian#, Vysha Shkola, Kharkov~1980!.

15A. V. Eletskii and B. V. Smirnov, Phys. Usp.165, 977 ~1995!.

Translated by R. S. Wadhwa
834E. Ya. Glushko



QUANTUM EFFECTS IN SEMICONDUCTORS AND DIELECTRICS
Noncentrality effects of impurity ions in an icosahedral environment
A. B. Roitsin, L. V. Artamonov, and A. A. Klimov

Institute of Semiconductor Physics, National Academy of Sciences of the Ukraine, Prospekt nawki, 45,
252650 Kiev, 28 Ukraine
~Submitted April 2, 1997!
Fiz. Nizk. Temp.23, 1112–1121~October 1997!

The multivalley potential corresponding to the displacement of impurity ions from the center of
symmetry to the centers of faces of icosahedrons, dodecahedron vertices, and centers of
hexagonal faces of fullerenes is considered. The generalized effective Hamiltonian describing the
behavior of endohedral complexes with noncentral ions in external electric fields of any
orientation is derived. Its eigenvalues are obtained and line intensities of all possible transitions
between tunnel levels are calculated. The paraelectric resonance spectrum is predicted and
analyzed without an electric field as well as in the presence of a field. ©1997 American Institute
of Physics.@S1063-777X~97!01310-8#

INTRODUCTION result was confirmed in the theoretical work of Joslinet al.11
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The discovery of fullerenes and crystals based on th
~fullerites!1–3 has created many new trends in vario
branches of science, including low-temperature physics.
terest has also been aroused for symmetries whose elem
include rotation by an angle divisible by 2p/5572°, e.g.,
C5 , C5v , D5 , D5h , Y, Yh , etc., especially for the last two
of these. The peculiar structure and symmetry of these
formations are as interesting as their unusual and div
properties. For example, it was shown that the introduct
of atoms of other elements into fullerites may lead to
formation of materials with semiconducting, metallic, i
cluding superconducting properties. It was also found t
atoms~molecules! of elements belonging to various group
of the periodic table~right up to lanthanides and even ur
nium! can be introduced directly into fullerenes.4–6 Such for-
mations were called endohedral fullerenes and denoted
M@CN , where M is the atom~ion! or the group of atoms
being introduced into the fullerene andN is the number of
carbon atoms in the latter. This form of notation is used
distinguish these compounds from ordinary compounds
which elements exist next to each other~in the case of
fullerenes, they are attached from outside!.

The large diameter of the fullerene cavity~d.7.1 Å in
the case of C60! points towards the possibility of the eme
gence of noncentrality which was observed earlier in crys
with a local symmetry lower than icosahedral.7–9 The effect
consists in the displacement of the minimum of the poten
energy of interaction of the implanted atom with th
fullerene framework from the center of symmetry of the l
ter. The noncentrality effect usually arises in the case w
the atomic radius of the particle being implanted is sma
than the radius of the implantation cavity. This statement
been verified by calculations. Thus, Wanget al.10 calculated
the equilibrium positionsr min for a large group of ions of the
periodic table implanted in C60, and showed thatr minÞ0 for
many of them, i.e., the atom is not situated at the cente
symmetry of C60. In particular,r min'1.3 Å for Li1. This
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Calculations for Na show that r min.0.7 Å. For com-
parison, we note thatr min50 for heavier atoms~like K1!14

and atoms of noble gases.15–17

Fullerene C20 and one of the highest fullerenes C180 also
possess icosahedral symmetry with~IS!.18 Side by side
fullerenes, the clusters formed by other atoms and posses
different symmetries, including icosahedral are a
investigated.19–21 Thus, Jinlonget al.22 studied an icosahe
dral cluster M@Co12 consisting of 12 cobalt atoms and co
taining atoms of various elements of the iron group, from
to Ni. It was shown that in all cases except Ti, Mn, and C
atoms which have a closed shell inside the cluster, a
placement from the icosahedron center is possible.

The formation of condensed materials from endohed
fullerenes and other clusters opens new avenues in low- t
perature physics research. For example, it was mentione
Ref. 23 that the introduction of polar molecules with a co
stant dipole moment into fullerenes may form the basis
creating a new class of ferroelectric crystals, while Wa
et al.10 indicated the possibility of formation of a new clas
of high-temperature superconductors with a spec
electron–phonon coupling based on endohedral fullere
~in contrast to the impurity fullerites tested earlier, in whic
the impurity is implanted between fullerenes.3!

The noncentrality effect is accompanied by the prese
of several (n) equivalent equilibrium positions. In the cas
of impurity ions, these positions are displaced from the sy
metry center along the symmetry directions, while for dipo
molecules displacement or dipole orientation along these
rections may take place. Overlapping of potential valleys a
wave functions of a particle moving in them leads to
intervalley tunneling of the latter and a splitting of then-fold
degenerate energy level. The resulting characteristic sys
of tunnel energy levels causes a diversity of effects includ
paraelectric resonance~PER!,7,8 which provides a technique
for direct investigation of the noncentrality effect. In view o
the strong ion–lattice coupling and the short relaxat

83500835-08$10.00 © 1997 American Institute of Physics



TABLE I. Characters of IR of groupYh .
Irreducible
representations 1E 12C5

1,4 12C5
2,3 20C3

1,2 15C2
1 I 12C5

1,4I 12C5
2,3I 20C3

1,2I 15C2
1I

Ag 1 1 1 1 1 1 1 1 1 1
Au 1 1 1 1 1 21 21 21 21 21
F1g 3 «1 «2 0 21 3 «1 «2 0 21
F1u 3 «1 «2 0 21 23 2«1 2«2 0 1
F2g 3 «2 «1 0 21 3 «2 «1 0 21
F2u 3 «2 «1 0 21 23 2«2 2«1 0 1
Gg 4 21 21 1 0 4 21 21 1 0
Gu 4 21 21 1 0 24 1 1 21 0
Hg 5 0 0 21 1 5 0 0 21 1
Hu 5 0 0 21 1 25 0 0 1 21

Remark. Cn
m is them-fold rotation around thenth order axis. The digit preceding the elements indicates the number of such elements.«65(16A5)/2.
times associated with it, PER is usually observed at low tem-
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rections of the type@111#, @100#, and @110#, i.e., towards
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peratures only.
Thus, a large number of publications point towards

possibility of emergence of tunnel levels in many endohed
complexes, between which quantum transitions may oc
In the present work, we shall study the energy structure
noncentral ions~NI! in the intracrystalline electric field of IS
produced for different atomic configurations~icosahedron,
dodecahedron, fullerene!. We shall consider transitions be
tween tunnel levels under the action of a varying exter
electric field.

ENERGY STRUCTURE AND RESONANCE TRANSITIONS.
GENERAL ANALYSIS

Earlier investigations7–9 of the high-symmetry system
(Oh group! show that NI are displaced along symmetry d
e
l
r.
f

l

vertices, centers of faces, and edges. In view of this
taking into account the results of calculations ofr min ,10–17

we shall consider below the symmetric displacement dir
tions. We shall analyze a 20-valley potential that correspo
simultaneously to the NI displacements towards the cen
of icosahedron faces, pentagonal dodecahedron vertices
centers of hexagonal faces of fullerenes. All these figu
have the symmetry groupYh whose irreducible representa
tion ~IR! characters are presented in Table I.24 The reducible
representationP20 which transforms the potential valley
was obtained by direct mutual transformation of 20 dode
hedron vertices defining the displaced equilibrium positio
of NI of all the figures considered here. From Table I w
obtain for the above representation the decomposition

P205Ag1F1u1F2u1Gg1Gu1Hg , ~1!
e

FIG. 1. System of tunnel levelsl i . Pos-
sible resonance transitions in field-fre
PER ~a!. Relative line intensities~b!:
1→n21 , 2→n62 , 3→n56 , 4→n45 ,
5→n34 , 6→n36 .
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TABLE II. Point groups of polyhedra in an external electric field.

eld
indicating the origin and number of tunnel levels.
Let us consider the resonance transitions in the system

equations~1! in the absence of the external static elect
field E0 , i.e., a field-free PER. Transitions in PER take pla
under the action of a varying electric field whose vectore is
transformed according to the IRF1u . An analysis of direct
products of IR of the groupYh

25 leads to allowed transition
indicated in Fig. 1a. In this case, transitions are induced
the vectore oriented arbitrarily in space.

Quite frequently, PER is realized as the external fieldE0

by passing through resonance. For convenience of spe
analysis the field is oriented along the symmetry directio
and hence some of the point group elements are prese
For the symmetry directions of the fieldE0 , we choose the
directions from the inversion center towards vertices, cen
of faces, and edges of different figures. Table II shows
symmetry groups emerging for such field directions. T
presence of two point groups in one square for fullerene
associated with two types of faces and edges. The up
symbols correspond to a pentagon and the edge betwe
pentagon and a hexagon, while the lower symbols co
spond to a hexagon and the edge between two hexag
Data on the nature of splitting of levels under the action o
field E0 are presented in Table III. The digits correspond
the number of times the IR indicated at the top of the colu
together with the subgroup is contained in the IR of t
group Yh indicated at the beginning of the row. It can b
seen from the Table that it is sufficient to consider each IR
any point subgroup not more than twice for formulating t
selection rules in an arbitrary case. The results of calc
tions are presented in Fig. 2, the arrows showing the allow
electric dipole transitions. The indices at the arrows show
directions of components of the fielde, the symbols

Polyhedron

Direction from center to

face vertex edge

Icosahedron C3v C5v C2v

Dodecahedron C5v C3v C2v

Fullerene C5v /C3v Cs Cs /C2v
TABLE III. Splitting of tunneling levels in an electric field applied along th
of

e

y

ral
s
ed.

rs
e
e
is
er
n a
e-
ns.
a

n

f

a-
d
e

i and' replacing the letters (x,y) and z, respectively. The
absence of a notation indicates that a transition is poss
for any direction of the fielde.

GENERALIZED EFFECTIVE HAMILTONIAN

The method of obtaining generalized effective Ham
tonian for centers with a multivalley potential and an ar
trary local symmetry is described in Ref. 26. In the ca
under consideration, the Hamiltonian is a 20320 matrixM20

whose matrix elements~ME! are defined in the basis of sym
metric functionscb corresponding to certain IRb of the
groupYh . The initial perturbation operator can be presen
in the formŴ5ŴK1ŴE , ŴK andŴE being the operators
of energy of interaction of NI with intracrystalline and exte
nal electric fields, respectively. The operatorŴK is invariant
with respect to all operations of the groupYh , ŴE has the
form ŴE52dE, whered is the operator of the dipole mo
ment of NI which is transformed according to the IRF1u ,
andE in the general case is the sum of the external elec
fields E01e acting on NI. Using the method of perturbatio
matrix26,27 and matrix of IR of the groupYh ,28 we first ob-

FIG. 2. Allowed transitions between tunnel levels in a constant electric fi
oriented along the symmetry directions.
e symmetry directions.

ector
Irreducible representations
of Yh group
Yh

C5v C3v C2v Cs

A1

z A2

E1

x,y E2

A1

z A2

E
x,y

A1

z
A2

y A3

A4

x
A1

x,y
A2

z

Ag 1 0 0 0 1 0 0 1 0 0 0 1 0
F1u 1 0 1 0 1 0 1 1 1 0 1 2 1
F2u 1 0 0 1 1 0 1 1 1 0 1 2 1
Gg 0 0 1 1 1 1 1 1 1 1 1 2 2
Gu 0 0 1 1 1 1 1 1 1 1 1 2 2
Hg 1 0 1 1 1 0 2 2 1 1 1 3 2
Dimensionality
of secular equations

4 0 4 4 6 2 6 7 5 3 5 12 8

Remark: AandE are one- and two-dimensional IR. The lettersx, y, z below the IR notation indicate the appurtenance of the corresponding polar v
components to these IR.
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tain nonzero perturbation matricesM (b3b8) of the opera-
ˆ

n
or
th
e
ed
or

l 5E ~c~b!!* Ŵ c~b!dt. ~2!

n-

i-
1:
tor W for all pairs of IRb andb8 (bÞb8). The results of
calculations are presented in Appendix 1. The nondiago
matrices (bÞb8) do not contain nonzero ME of the operat
ŴK because of its invariance to all transformations of
groupYh . Nonzero ME of it will be present only in squar
matrices of the typeM (b3b). These elements are arrang
along the principal diagonal, and all ME are identical f
each IRb. We introduce the following notation for them:
i
r:
-

e

id
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n
III
o
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d

ua

ua
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e

b K

Since the operatord̂ does not possess parity relative to i
version, the matricesM (b3b) do not contain nonzero ME
of the operatorŴE .

The required matrixM20 can be represented as a comb
nation of the perturbation matrices presented in Appendix
M2053
M ~131! M ~132!, 0, 0, 0, 0

M ~232!, 0, 0, 0, M ~236!

M ~333!, M ~334!, 0, M ~336!

M ~434!, M ~435!, 0

c.c. M ~535!, M ~536!

M ~636!

4 ~3!

where c.c. stands for complex conjugate, and zeros indicate 1 2 2 1
t
re-

xact
he

s-

ra-
-

als
that all ME of the block are zeros. The rows and columns
~3! are arranged according to IR in the following orde
Ag , F1u , F2u , Gg , Gu , Hg . The equation contains six pa
rametersabb8 describing the effect of external fieldsE, as
well as six parameterslb characterizing the intracrystallin
electric field.

For any orientation of the fieldE0 , the exact analytic
expressions for eigenvalues of the operator~3! cannot be
presented in a general form. Hence it is expedient to cons
the approximate solutions using the perturbation theory
the presence of degeneracy29 for two possible cases
ŴK@ŴE and ŴE@ŴK . For symmetric directions of the
field E0 , the 20th order secular equation splits into equatio
of lower order. The numbers in the last row of Table
indicate the dimensionality of such equations, the latter c
responding to a definite IR of the subgroup. For two- dime
sional representations, two identical equations of the in
cated dimensionality are obtained. Thus, if the fieldE0 is
directed along theZ-axis, the symmetry ofYh drops toC5v
and the secular equation is split into five fourth-order eq
tions. One of these corresponds to the IRA1 , while the IR
E1 and E2 have two identical equations each. These eq
tions have the form

IRA1 :

E42E2~E12
2 1E26

2 1E36
2 !1E12

2 E36
2 50,

IRE1 :

E42E2S 3

4
E26

2 1E56
2 1E45

2 D1
3

4
E26

2 E45
2 50,

IRE2 :

E42E2S 1

3
E36

2 1
1

4
E56

2 1E34
2 1E45

2 D1
1

4
E56

2 E34
2
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E36E451
)

E36E56E34E4550, ~4!

where Ebb85abb8Ez . For the sake of simplicity, we pu
l i50 when deriving the above expressions, which cor
sponds to zeroth approximation for the caseŴE@ŴK . We
can use the biquadratic equations~4! to obtain all energy
levels in the analytic form. For the caseŴK@ŴE , the ze-
roth approximation is determined by the levelslb . For this
case, the data presented in Appendix 1 can be used for e
computations of the squares of ME for transitions in t
system of levels presented in Fig. 1a:e12

2 , 5/2e26
2 , 5/3e36

2 ,
5/2e56

2 , 2e34
2 , 4e45

2 , respectively, for transitionsAg↔F1u ,
F1u↔Hg , F2u↔Hg , Gu↔Hg , F2u→Gg , Gg↔Gu where
ebb85abb8e; e25ex

21ey
21ez

2.

PHYSICAL MEANING OF PARAMETERS lb AND abb8

We shall use the valley approximation, which is the o
cillatory analog of the MO LCAO method in quantum
chemistry.30 Let w i ( i 51,2,...,20) be thevalley function of a
particle in the i th quasiequilibrium position~Fig. 3!. The
functionsw i carry out the reducible representationP20 trans-
forming them into each other under the action of the ope
tions of groupYh . As a result, we obtain orthonormal sym
metrized functionsc j

b :

c j
b5Db(

i 51

20

ki j
b w i . ~5!

For each of the 20 functions, the coefficientski j
b andDb

are presented in Appendix 2, The nonorthogonality integr
s iÞ0 are presented below in descending order:

s15E w1* w2dt, s25E w1* w3dt,
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s35E w1* w20dt, s45E w1* w19dt,

s55E w1* w18dt; s051.

Substituting~5! into ~2!, we obtain

lb5(
i 50

5

ni
bVi /Sb ,

where

V05E w1* ŴKw1dt, V15E w1* ŴKw2dt,

V25E w1* ŴKw3dt, V35E w1* ŴKw20dt,

V45E w1* ŴKw19dt, V55E w1* ŴKw18dt.

Similar relations can be obtained for the parametersabb8 . In
this case, ME of the type

E w i d̂zw jdt

will appear together with the integralss i as parameters o
the theory.

Let us estimate the highest overlapping integrals1 . For
the valley function we choose an oscillator function of t
type

w i5~ l /p!3/4 exp$2~ l /2!@~x2xi !
21~y2yi !

2

1~z2zi !
2#%,

normalized to unity, wherexi , yi , zi are the coordinates o
the center of thei th valley, l 5mv/\ wherem is the mass of
an NI, andv is the frequency of oscillations in a potenti

FIG. 3. Equilibrium positionsi of noncentral ions~dipole directions! for a
20-valley potential in endohedral complexes of icosahedral symmetry.
points i are located at the vertices of a pentagonal dodecahedron.
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310 rad/s, we find thats150.4. Neglecting all nondi-
agonal ME, we obtain

lb5V0~ i 51,...,6!;

a125
R1

2AS12

; a265
R2

2AS26

; a365
R3

2AS36

;

a565
R2

A3S56

; a345
R1

A3S34

; a455
t3r 112t4r 66

A6S45

;

R1,25t1r 116t2r 66; R352~ t2r 111t1r 66!;

Sbb85SbSb8 ; t1,25A162/p;

t3,45A161/p; r ii 5E w i* d̂zw idt.

Putting r ii 5*w i* Zw idt, we obtainr 11/r 6654.3, which
indicates that terms which are proportional tor 66 can be
disregarded~except for the casea36, but this ME will be
much smaller than othera i j and its role will be insignifi-
cant!. In this approximation, the tunnel splitting does n
occur, and the system is described by a single param
d05r 11, viz., by the local electric dipole moment. Such a
approximation can be used for strong fieldsE0(ŴE@ŴK).

Let us consider the tunnel approximation7,8 in which all
nondiagonal matrix elements of the operatorŴK and nonor-
thogonality integrals are assumed to be small, and only in
grals corresponding to nearest neighbors are preser
Moreover, all nondiagonal ME of the operatorŴE are put
equal to zero. In this approximation,lb5V01abU, where
U5V0s12V1 , andab are equal to23, 2A5, 1A5, 12, 0,
and 21, respectively forb51, 2, 3, 4, 5, 6, and the separa
tion between levels is determined by a single parameterU.
This scale is used for the system of levels presented in
1a. For the transition frequencies~in units of U!, we have
n21532A5, n625A521, n5651, n4552, n345A522, n36

5A511, wherenbb85lb2lb8 . Using the relations for pa-
rametersabb8 and squares of transition ME in the field-fre
PER, we can also obtain an expressions for line intensitie
the tunnel approximation. These data~in units of e2d0

2! are
presented in Fig. 1b together with the corresponding data
transition frequencies~in units of U!. The obtained results
describe nonparametrically the relative values of frequen
and transition intensities, and can be used for identifying
PER lines.

CONCLUSION

The number of lines in the PER spectrum and their
tensities depend on the presence~or absence! of the external
field E0 and its orientation relative to the coordinate ax
attached to a certain cluster of icosahedral symmetry. Th
for E050, we obtain six lines whose frequenciesnbb8 and
intensitiesI bb8 are in the ratio 0.24:0.76:1.0:1.2:2.0:3.2 a
1.3:0.47:1.6:1.20:0.96:0.044, respectively. ForE0Þ0 and for
field orientation along the fifth-order axis, there will be fift
PER lines in all, of which six will be observed foreiE0 , 32
for e'E0 , and 12 for any orientation of the vectore.

e
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Two situations must be distinguished in experimen
The first of these is a random orientation of paraelectric c
ters for an orientationally disordered condensed clus
Here, the axes of the centers are distributed randomly
space, and the description of the PER spectrum requir
preliminary averaging of transition frequencies~resonance
electric fields! over angles characterizing the orientation
the axes of complexes. Such an averaging causes an
tional broadening of PER lines. The second situation co
sponds to the same type of orientation of centers in ident
or several nonequivalent positions. Such a situation can a
in a number of supercooled liquids or crystals of fuller
type. In this case, the above expressions for transition
quencies will realize directly, and the line broadening will
caused by other factors, the most important of which in P

FIG. 4. Projection of an icosahedron on the (x,y) plane passing through its
center and perpendicular to thez-axis. Thez-axis passes through the vert
ces of the icosahedron and is directed towards the reader. The solid
indicates the projection of a part of the figure lying above the plane, w
the dashed line corresponds to the part below the plane.

b
TABLE A1. Coefficientski j for symmetrized functions.
.
n-
r.
in

a

f
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R

observed, however, that forE050 the field-free PER spectr
in two cases will be identical since the spectra are indep
dent of orientation of the fielde responsible for the transi
tions. This circumstance extends the range of materials
can be subjected to investigation, including the gase
phase, solutions, and powders.

Finally, it should be remarked that all possible cases
PER realization can be described on the basis of the Ha
tonian ~3!. The relations for frequencies, intensities, a
other characteristics of spectral lines are simplified consid
ably in the tunnel approach which can be used expedie
for describing the first experimental results. The Hamilton
~3! may also serve as the basis for studying other proper
of materials that are determined by noncentral impurities
endohedral complexes.

This research was carried out under financial supp
from the Ukrainian State Committee on Science and Te
nology.

APPENDIX 1

The matrices of the perturbation operatorŴ are defined
as follows:

M ~132!5
a12

&

~P,&Ez ,2P* !;

M ~236!

5
a26)

2 S P Ez , 2P* /A6, 0, 0

0, P/&, 2Ez /), 2P* /&, 0

0, 0, P/A6, Ez 2P*
D ;

ne
e

IR b j

ki j
b

i

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Ag 1 1 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11

F1u 2
1 1c3 1a3 1c3* 2c2 2c2* 1c5 11 1c5* 2c6 2c6* 1c6 1c6* 2c5 21 2c5* 1c2 1c2* 2c3 2a3 2c3*
2 2a2 2a2 2a2 2a2 2a2 2a5 2a5 2a5 2a5 2a5 1a5 1a5 1a5 1a5 1a5 1a2 1a2 1a2 1a2 1a2

F2u 3
1 2c4* 1a4 2c4 1c1 1c1* 1c6* 21 1c6 2c5 2c5* 1c5 1c5* 2c6* 11 2c6 2c1 2c1* 1c4* 2a4 1c4

2 1a1 1a1 1a1 1a1 1a1 2a6 2a6 2a6 2a6 2a6 1a6 1a6 1a6 1a6 1a6 2a1 2a1 2a1 2a1 2a1

Gg 4
1 2c10 1a8 2c10* 1c8* 1c8 1c6 21 1c6* 2c5* 2c5 2c5* 2c5 1c6 21 1c6* 1c8* 1c8 2c10 1a8 2c10*
2 1c5 11 1c5* 2c6 2c6* 2c8 2a8 2c8* 1c10 1c10* 1c10 1c10* 2c8 2a8 2c8* 2c6 2c6* 1c5 11 1c5*

Gu 5
1 2c2 1a3 2c2* 1c3* 1c3 2c6 11 2c6* 1c5* 1c5 2c5* 2c5 1c6 21 1c6* 2c3* 2c3 1c2 2a3 1c2*
2 1c5 11 1c5* 2c6 2c6* 2c3 2a3 2c3* 1c2 1c2* 2c2 2c2* 1c3 1a3 1c3* 1c6 1c6* 2c5 21 2c5*
1 2c7* 1a7 2c7 1c9 1c9* 2c6* 11 2c6 1c5 1c5* 1c5 1c5* 2c6* 11 2c6 1c9 1c9* 2c7* 1a7 2c7

Hg 6 2 2c5 21 2c5* 1c6 1c6* 2c9 2a7 2c9* 1c7 1c7* 1c7 1c7* 2c9 2a7 2c9* 1c6 1c6* 2c5 21 2c5*
3 1a9 1a9 1a9 1a9 1a9 2a9 2a9 2a9 2a9 2a9 2a9 2a9 2a9 2a9 2a9 1a9 1a9 1a9 1a9 1a9

Remark: ki3
2,352(ki1

2,3)* , ki3,4
4 5(ki2,1

4 )* , ki3,4
5 52(ki2,1

5 )* , ki5
6 5(ki1

6 )* , ki4
6 52(ki2

6 )* .
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M ~336!

e
c-

um
co
-

;
i

ett.

z.

TABLE A2. CoefficientsAb andni for symmetrized functions.
5
a36

)

S Ez , P* , 0, 0, P

0, 2P/&, )Ez , P* /&, 0

2P* 0, 0, P 2Ez

D ;

M ~536!

5
a56

4 S 3P* , 0, 0, 2P, 22Ez

2P, 4Ez , A6P* , 0, 0

0, 0, 2A6P, 4Ez , P*

2Ez , 2P* , 0, 0, 23P

D ;

M ~334!5
a34

2 S P, P* , 0, 22Ez

0, &P, &P* , 0

2Ez , 0, 2P, 2P*
D ;

M ~435!5a45S 2Ez , 0, 2P, 0

0, 2Ez , 0, P

2P* , 0, Ez , 0

0, P* , 0, Ez

D ;

whereP5Ex1 iEy , and the common factor in front of th
matrix indicates that all ME must be multiplied by this fa
tor;

a1252E ~c~1!!* d̂zc2
~2!dt,

a2652E ~c2
~2!!* d̂zc3

~6!dt,

a3652E ~c2
~3!!* d̂zc3

~6!dt,

a5652E ~c2
~5!!* d̂zc2

~6!dt,

a3452E ~c3
~3!!* d̂zc1

~4!dt,

a4552E ~c4
~4!!* d̂zc4

~5!dt,

where the subscript of the functions denotes their order n
ber in the base of the corresponding IR, the superscript
responds to the IR~for convenience of notation, letters de
fining IR in formulas are replaced by digits:Ag→1, F1u→2,
F2u→3, Gg→4, Gu→5, Hg→6!; dt is the volume element
and allabb8 are real. The choice of the coordinate system
indicated in Fig. 4.

APPENDIX 2

Coefficientski j
b and Db for symmetrized functions are

given in Tables A1 and A2.

a1,25
&

p61
; a3,45&a1,2; a5,65

&

36p
;
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-
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a7,85&a5,6; a95
A6

p11
;

c1,25
1

2
1

iA6

2
; c3,45

1

36p
1

iD 7

A8
;

c5,65
1

p61
1

iD 6

A8
; c7,85

1

p61
1

iJ7

A8
;

c9,105
1/~p62!1 iA7

2
; Db5Ab/ASb

Sb5(
i 50

5

ni
bs i ;

A65A562p; D65A56p; J65A25611p;

p5A5.
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LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

he
Low-temperature plasticity of Zn-doped b –Sn crystals

A. N. Diulin, G. I. Kirichenko, V. D. Natsik, and V. P. Soldatov

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of the Ukraine, 310164 Kharkov, Ukraine
~Submitted December 12, 1996; revised March 6, 1997!
Fiz. Nizk. Temp.23, 1122–1127~October 1997!

Work hardening curves are obtained for Sn–Zn single crystals with Zn concentration 0.01 and
0.53 at.% in the temperature interval 1.6–300 K. It is found that the Zn impurity
significantly affects the shape of the curves as well as the work hardening parameters like the
strain-hardening factor, duration of slip stage, temperature dependences of critical shear
stress, and strain-rate sensitivity. A comparative analysis is carried out for the effect of Zn on low-
temperature creep of Sn, and the effect of the same concentration of Cd impurity~which
was studied earlier!. © 1997 American Institute of Physics.@S1063-777X~97!01410-2#

It was shown by us earlier1,2 that the kinetics of low- doped b –Sn showed that the smooth plastic flow in t
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/1
temperature plastic deformation of high-purity single cryst
of b –Sn (99.9995%) oriented for easy slip in the (10
3^010& system is determined by the mechanisms of th
mally activated or quantum motion of dislocations throu
the lattice potential relief barriers~Peierls barriers!. The
Peierls mechanism of dislocation drag significantly affe
the plasticity of many pure crystals, e.g., a number of se
conductors and most of bcc metals. However, experime
studies of this mechanism at low temperatures are hamp
by the effects of low-temperature embrittlement and disc
tinuous ~jumplike! plastic flow. Pureb –Sn has a unique
property for a Peierls crystal to preserve a considerable
serve of plasticity and a smooth plastic flow upon cooli
down to subkelvin temperatures. Together with the exp
mental studies of the plasticity ofb –Sn in a wide tempera
ture range 0.5–300 K, this circumstance allowed us to ca
out a quantitative verification1,2 of nearly all conclusions and
predictions of the theory of thermal and quantum motion
dislocations in a Peierls relief.3–6

Another interesting problem emerging during the stu
of the Peierls mechanism of dislocation drag concerns
effect of impurity atoms on the dislocation motion throu
Peierls barriers.7–10 Impurity atoms deform the potential re
lief of the matrix and are capable of radically affecting t
thermally activated and tunnel transitions of dislocatio
through Peierls barriers. On a macroscopic scale, this ma
manifested in the form of various anomalies on the tempe
ture dependences of plasticity parameters. The most inte
ing and disputable anomalies are the effect of softening
certain bcc metals by impurities,9 and the displacement o
the threshold temperature of transition to the quantum p
ticity region observed forb –Sn.2 A detailed experimenta
analysis of these anomalies in bcc metals is hampered
only by the above-mentioned effect of low-temperature e
brittlement, but also by an additional embrittlement caus
by doping. However,b –Sn continues to be a very conv
nient object for experimental investigations of impurity e
fects also. Indeed, first experiments on single crystals of
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system (100)̂010& is preserved right down to lowest tem
peratures for low impurity concentrations, while a jumplik
deformation is observed only below 4 K in strongly dop
samples.2

In this connection, we are planning a series of expe
ments to study the regularities of the low-temperature p
ticity of b –Sn single crystals doped with various impuritie
We intend to study the effect of impurity concentration a
the intensity of impurity barriers on the kinetics of disloc
tion motion across Peierls barriers in the slip system (1
3^010& in the regions of thermally activated slip (T.2 K)
and quantum plasticity (T<1 K). Earlier, we obtained11 the
stress-strain curves for Sn–Cd alloys with the Cd concen
tions 0.01, 0.21, and 0.53 at.% in the temperature range 4
100 K. We also constructed the temperature dependence
the yield stress for these alloys. In the present work,
extend our investigations to Sn–Zn alloys. The atomic c
centration of Zn in the alloys studied by us was 0.01 a
0.53 at.%. Atoms of Zn and Cd have quite different size- a
elasticity parameters. Hence, while preserving identical
purity concentrations, we obtained the experimental resu
enabling us to estimate the effect of impurity barrier intens
on the dislocation motion in the Peierls relief.

We study the plasticity of single crystals of Sn–Zn a
loys in the temperature range 1.6– 300 K. The main purp
of our investigations was to determine the extent and type
the effect of the Zn impurity on the stress–strain curves a
work-hardening parameters in Sn–Zn alloys oriented for s
in the system (100)^010&. Besides, the data on the strain-ra
sensitivity to small variations of deforming stress, i.e., t
differential characteristics of plasticity, are also obtaine
This information is essential for the subsequent thermal
tivation analysis of the process.

1. EXPERIMENTAL TECHNIQUE

Single crystals of Sn–Zn alloys were grown in batch
of ten crystals per seed from the melt by using the modifi
Bridgmann technique.12 The orientation of the axis of elon

84300843-05$10.00 © 1997 American Institute of Physics



gation of the single crystals was such that the maximum
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shear stress was attained in the slip system (100)^010&. The
initial components used for preparing alloys contained im
rities whose concentration did not exceed 1025–5•1026.
According to Hansen and Anderko,13 the solubility of Zn in
solid Sn is not less than 0.7 at.%, its upper limit at or n
the eutectic temperature varying from 2 to 3 at.%.

Single crystals of alloys were deformed under creep c
ditions by using direct loading technique. The load on
sample was varied in small steps corresponding to an
crease of 0.2–0.4 MPa in the shear stress. The strain in
ments corresponding to each stage of loading were reco
automatically on an electronic recorder with an error not
ceeding 5•1025. Such a loading regime ensured an avera
strain rate of about 5•1025s21 in the crystal.

The work-hardening curvest(«) corresponding to the
above average strain rate were constructed from the
increment and the corresponding increase in strain. Th
curves were used for determining the critical shear str
~CSS! t0, the strain-hardening factork, and the duration of
the work-hardening staget(«). The values of CSS were
measured in the same sample at different temperature
reduce the spread in the values oft0 for alloys with different
structures. First measurements were made at the highest
perature by loading the sample until the onset of plastic flo
The sample was then unloaded, cooled to a certain temp
ture, and again subjected to loading until the emergenc
CSS. This procedure was repeated five or six times for
same sample.

We also measured the differential characteristic of pl
ticity, viz., the sensitivity (] ln «̇/]t)T of creep rate to smal
variations of the deforming stress. For this purpose,
sample was loaded additionally by applying small stres
Dt50.1–0.2 MPa during the recording of transient cre
curves upon the attainment of a creep rate of about 1025s21,
and the resulting incrementsD«̇ of the creep rate were re
corded. The required quantity (] ln «̇/]t)T was estimated as
the ratio of finite increments

S ] ln «̇

]t D
T

'
ln~ «̇1D«̇!2 ln «̇

Dt
.

The above experiments were made in the temperature r
1.6–300 K. Intermediate temperatures were obtained by
ing the technique described in Ref. 14, while temperatu
below 4.2 K were obtained by pumping He vapor. At te
peratures below the superconducting transition tempera
of Sn (Tc53.7 K), the samples were deformed in a solen
whose magnetic field was stronger than the critical va
(Hc530.5 mT).

2. DISCUSSION OF EXPERIMENTAL RESULTS

2.1. Work-Hardening Curves

Figure 1 shows typical work-hardening curves for sing
crystals of Sn15 and Sn–Zn alloys at different temperature
An analysis of the all the curves recorded in this way ma
it possible to note the following most important features:
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~1! the stress–strain curves for pure Sn as well as Sn
alloys have a step manifested in the form of two stag
on thet(«) curves, corresponding to easy slip~stage I!
and linear work hardening~stage II!;

~2! the effect of temperature on thet(«) curves is mani-
fested in a gradual reduction of stage I with increas
temperature, culminating in its disappearance at a te
perature of about 60 K;

~3! as a rule, the stress–strain curves display only the lin
work-hardening stage at nitrogen temperatures, whil
parabolic shape oft(«) curves dominates near room
temperature;

~4! doping of Sn leads to a stronger manifestation of the s
on stress–strain curves at low temperatures.

The lower the temperature, the stronger the effect
impurities on the work-hardening curves. An increase in
impurity concentration leads to an increase in the stress
responding to the onset of plastic deformation, a sharper

FIG. 1. Work hardening curves for single crystals of pure Sn15 and Sn–Zn
alloys: Sn (99.9995%)~a!, Sn 1 0.01 at.% Zn~b! and Sn1 0.53 at.% Zn
~c!.
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on the work-hardening curves, and a variation of the kine
of strain increment at the yield point and immediately beh
it, especially at temperatures below 4.2 K. Thus, a transi
in the alloy with a Zn concentration 0.53 at.% at 1.6
through the yield point is accompanied by a catastrophic
rapid growth in the sample strain~at a rate of several percen
in a fraction of a second! even upon a slight increase in th
load. If the level of stress on the sample can be reduced a
initial stage~by removing a part of the load!, the increase in
deformation continues as a rule, albeit at a lower rate. T
behavior points towards the presence of a ‘‘flow tooth’’
the alloy Sn1 0.53 at.%Zn, which is manifested specifical
during sample deformation under creep conditions. No s
singularity is observed in the alloy Sn1 0.01 at.%Zn at the
same temperature.

Another peculiarity distinguishing the Sn–Zn alloy
from Sn–Cd alloys can be seen in Fig. 2, showing the te
perature dependence of the duration of the easy slip stag« I .
Irrespective of temperature, the Sn–Cd alloys display
shortening of the easy-slip stage upon an increase in the
purity concentration.11 Such an effect is also observed in th
Sn–Zn alloys, but only at temperatures higher than 4 K.
example, an increase in the Zn concentration to 0.53 at.%
temperatures below 4 K leads to a sharp increase in the v
of « I . The reason behind such an inversion has not b
established thus far.

A similar inversion is also observed on the temperat
dependence of the strain-hardening factork I near 20 K upon
a transition form a lower to a higher concentration of
impurity ~Fig. 3!. The decrease ink I observed below 20 K in
alloys with a higher concentration of Zn impurity can b
regarded as a manifestation of a peculiar impurity soften
effect. Such an effect was also observed in Sn–Cd alloy11

and earlier in Fe–C,9 Fe–N, and Fe–Si alloys,16 but at higher
temperatures.

2.2. Temperature Dependence of the Critical Shear Stress

Figure 4 shows the temperature dependences of the
cal shear stresst0(T) for the investigated Sn–Zn alloys an
Sn single crystals.1 For comparison, the inset shows the te
perature dependences of CSS for Sn–Cd alloys of the s
concentration as Sn–Zn alloys~dashed curves!.11 Two char-

FIG. 2. Temperature dependence of the duration of the easy slip stag
pure Sn15 ~solid curve! and for Sn1 0.01 at.% Zn (h) and Sn1 0.53 at.%
Zn (s) alloys.
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acteristic branches corresponding to a strong~below 100 K)
and weak ~above 100 K) temperature dependence of
critical shear stress shown in the figure are typical of pure
and its alloys with Cd. Thet0(T) dependence for pure Sn i
characterized by the presence of a sharp kink at about 7
and a low-temperature plateau in the temperature range
60 K. This singularity vanishes upon the doping of Sn, t
effect of Zn impurity being stronger than that of Cd: the kin
and the plateau on thet0(T) dependence vanish in Sn–Z
alloys with the Zn concentration 0.01 at.%, while this effe
in Sn–Cd alloys is observed only for 0.21 at.%Cd.

Above 100 K, the CSS of pure Sn as well as its allo
becomes practically independent of temperature. Apparen
the attainment of a constant value oft0 in this temperature
range corresponds to the attainment of the intrinsic strest i

whose value increases considerably with the impurity c
centration in the alloy~Table I!.

It can also be seen from Fig. 4 that doping with Z
increases the CSS significantly as compared to its value
pure Sn or Sn–Cd alloy with an equivalent Cd concentrati
This can be seen clearly in Table I containing the values
the critical shear stresst0(0,0) for pure Sn andt0(0,C) for
Sn–Cd and Sn–Zn alloys extrapolated to zero temperat

forFIG. 3. Temperature dependence of the strain-hardening factor at the
slip stage for pure Sn1 ~solid curve! and for Sn1 0.01 at.% Zn (h) and Sn
1 0.53 at.% Zn (s) alloys.

FIG. 4. Temperature dependence of the critical shear stress for single
tals of pure Sn1 ~solid curve! and for Sn1 0.01 at.% Zn (h) and Sn1
0.53 at.% Zn (s) alloys. The inset shows the dependence for Sn1
0.01 at.% Cd (¹), Sn1 0.53 at.% Cd (n),11 Sn 1 0.01 at.% Zn (h), and
Sn 1 0.53 at.% Zn (s).
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TABLE I. Effect of impurities on critical shear stresst0 .
as well as the ratiot0(0,C)/t0(0,0) characterizing the rela
tive increase in the CSS for alloys with different types
impurities.

One of the important results obtained earlier by us11 is
the impurity softening effect observed in thet0(T) depen-
dence: the yield stress of Sn decreased significantly in
temperature interval 60–80 K as a result of doping~0.01 and
0.21 at.%) by Cd impurity. Such an effect was not observ
for Zn impurity since the values oft0(T) for samples even
with 0.01 at.% Zn are higher than the corresponding va
for pure Sn in the entire investigated temperature range.

In all probability, the strong dependence oft0 on the
type of impurity for the same concentration in the alloy
due to the different intensities of barriers formed by the
impurities to hinder the movement of dislocations. Acco
ing to Refs. 17–19, the barrier intensity is determined b
combination of the parameters of size and modular m
matching of the atoms of impurity and the matrix. Accordi
to the data presented in Ref. 20, the difference in the ato
radii of Sn and Cd is 2–6%, while the corresponding diffe
ence for Sn and Zn is 21%. The elastic properties of th
elements, e.g., the characteristic values of the elastic con
C44(C445G, whereG is the shear modulus! at helium tem-
peratures differ even more sharply~by 13 and 64%, respec
tively!. If we confine the analysis to a qualitative estimate
size and modular mismatching parameters, the disparit
the impurity atoms of Zn and Cd atoms as dislocation d
centers becomes obvious.

2.3. Creep Rate Sensitivity to Deforming Stress

Figure 5 shows the temperature dependences of the

Alloy
t0(0,0),

MPa

t0~0,C!

t0~0,0!
t i ,

MPa

Sn ~99.9995%! 12.5 1 1
Sn10.01 at.% Cd 14.7 1.2 1.5
Sn10.53 at.% Cd 24 1.92 5
Sn10.01 at.% Zn 23.5 1.9 1.5
Sn10.53 at.% Zn 35 2.8 9.5

FIG. 5. Temperature dependence of the strain rate sensitivity for«55% for
Sn (99.9995%)~solid curve!,1 Sn1 0.01 at.% Zn (h), and Sn1 0.53 at.%
Zn (s).
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alloys corresponding to a strain«55%. For pure Sn, this
dependence has a well-defined minimum at 70 K cor
sponding to the kink on thet0(T) dependence. It can be see
that this singularity disappears as a result of doping with
which correlates with the vanishing of the kink and plate
on thet0(T) dependence~see Fig. 4!.

Two hypotheses have been proposed in the literatur
explain the presence of the above singularities on the t
perature dependences oft0 and (] ln «̇/]t)T for crystals with
the Peierls mechanism of dislocation drag: the two-hu
shape of the Peierls barriers,21–24and the nonmonotonic tem
perature dependence of intrinsic stresses at stage I.1 The rela-
tive advantages of these hypotheses can be determined
from a detailed thermal activation analysis of the experim
tal data, which we are planning to carry out in near futu
Here, we can simply state that the temperature dependen
the strain-hardening factork I at stage I varies sharply as
result of doping~see Fig. 3!. The possibility of an equally
significant variation of the temperature dependence of in
nal stresses as a result of doping cannot be ruled out and
be attributed to the vanishing of anomalies on the tempe
ture dependences oft0 and (] ln «̇/]t)T observed in the al-
loys under consideration at temperatures 50–80 K, wh
were observed in pure Sn.

A comparison of the three curves presented in Fig
indicates that a transition from pure Sn to a weakly dop
alloy with 0.01 at.% Zn reduces the characteristic value
(] ln «̇/]t)T by about 50%. However, a subsequent incre
in the Zn concentration by a factor of 50 practically does n
change its value or the temperature dependence. This
seems to be surprising and must be taken into considera
during subsequent studies.

3. CONCLUSIONS

The results presented in this publication mark an imp
tant step towards the accumulation of experimental data c
cerning the effect of impurity atoms of the kinetics of disl
cation motion through the Peierls barriers inb –Sn single
crystals. We confined ourselves to the description of the
fect of the Zn impurity on the low-temperature plastic flo
of Sn under the creep conditions in the slip system (10
3^010& and compared them with our earlier results11 on the
effect of the same concentration of Cd impurities on t
process. Both types of impurities are found to exert a stro
influence on the parameters of the work-hardening curve
Sn and result in a qualitative variation of the temperat
dependencet0(T) of the yield stress and the creep rate se
sitivity to the deforming stress variations (] ln «̇/]t)T . How-
ever, Cd and Zn impurities affect the plasticity of Sn in qu
different ways. For example, the impurity-induced softeni
observed in the temperature interval 60–80 K as a resul
doping with Cd does not occur upon doping with Zn.

Unfortunately, the available experimental data are ins
ficient for a detailed thermal activation analysis and
drawing unambiguous conclusions about the microsco
mechanisms of the effect of impurities of the dislocation m
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tion in a Peierls relief. We intend to continue our investiga-
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SHORT NOTES

in
Influence of cyclic change of normal and superconducting states on the deformation
of Pb–In alloys

V. P. Lebedev, V. S. Krylovskii, and V. M. Pinto Simoes

Kharkov State University, 310077 Kharkov, Ukraine*

~Submitted April 2, 1997; revised May 7, 1997!
Fiz. Nizk. Temp.23, 1128–1130~October 1997!

The effect of cyclic change of the normal and superconducting states of single crystals of Pb–In
alloys is manifested in the form of strain hardening. The increase in the deforming stress in
this case is attributed to an increase in the density of structural defects. ©1997 American
Institute of Physics.@S1063-777X~97!01510-7#

The rearrangement of the electron energy spectrum dur-alloys with indium ~the smoothed shear stress vs. stra
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ing the superconducting transition leads to a decrease in e
tron drag force acting on moving dislocations1 and a simul-
taneous increase in the intensity of structural defe
generation.2 This results in an enhanced strain-hardening
metals in the superconducting state.3 The effect of the ex-
perimental conditions and the state of the object on
change in the electron drag acting on dislocations is usu
studied by a cyclic variation of the normal and supercondu
ing states in the course of active loading, creep, or st
relaxation in the same object.1

The presence of dynamic processes associated with
tiple transitions of the electron subsystem of a metal,
application and removal of an external magnetic field, pe
odic jumps in mechanical stress, etc., may also affect
strength and plastic characteristics of the metal. This w
confirmed by Didenko and Pustovalov4 who concluded that
deformation of metal with multiple variations of the supe
conducting and normal states followed by load removal a
annealing leads to the formation of a defect structure hav
a lower recovery and higher strain hardening at temperat
exceeding the superconducting transition temperatureTc .
The present paper aims at finding the laws governing
deformation of a metal during cyclic variation of the norm
and superconducting states at temperaturesT,Tc .

Measurements were made on single crystals of the al
Pb–xat.%In(x50 –5! formed by using components with a
initial purity 99.9992% for Pb and 99.999% for In. Sampl
in the form of plane-parallel plates (135330 mm) were
deformed at 4.2 K by stretching at the rate of 1.531024 s21.
The error in stress measurements was623104 Pa, while
strain was measured to within 0.1%. Cyclic variation of t
normal and superconducting states at a rate of two cycles
one percent strain was carried out by using a magnetic fi
with inductionB50.2 T. The residual resistance of the me
in the normal state was measured by the four-point techn
having a sensitivity of 4310213 V•m.

The periodically varying mechanical stress was crea
on the sample at 77 K by magnetostriction variation of
length of a nickel plate (100 mm) in the loading device.

A common feature of the experiments was the existe
of a higher shear stresstc in single crystals of lead and it
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curvet(g) was obtained by measuring stress in the norm
state! upon deformation under cyclic variation of normal an
superconducting states as compared to the stress valutn

obtained upon deformation in the normal state only. Sin
cycling of the states was started in the elastic region of lo
ing, the yield stress was always higher than in the norm
state.

Figure 1 shows the strain-hardening curvest(g) for
single crystals of the alloy Pb–5 at.%In having the sa
orientation and deformed under various conditions: curv1
— normal state, curve2 — superconducting state, curve3 —
cyclic variation of normal and superconducting states. E
lier, it was shown by us3 that loading of a metal with a fixed
normal electron density leads~almost immediately behind
the yield point! to a higher level of deforming stress in th
superconducting state than in the normal state (ts.tn). In
accordance with the chosen pattern of deformation wit
periodic variation of normal and superconducting stat
when the sample spends nearly the same time in each s
curve 3 should be lying between curves1 and 2 in Fig. 1.
However, a cyclic change of states leads to a plastic flow
higher values deforming stresstc.ts.tn . Moreover, at
each stage of deformation, we observeduc.un for the strain
hardening modulus,tbc.tbn for ultimate strength, and an
increase of about 20% in plasticity during loading in t
normal state. The absolute (tc2tn) and relative (tc2tn)/tn

variations of shear stress increase monotonically, attain
the values 0.8 MPa and 85%, respectively, forg'125%.
The ratio oftc2tn to the isolated stress jumpdtns is equal
to 10.

Like strain defects, impurity atoms also facilitate a mo
effective role of cycling of states in the metal
superconductor strain hardening process. The inset in Fi
shows a linear increase intc2tn with concentration of in-
dium atoms in the alloy.

Thus, a cyclic variation of the state of the electron
system of a metal through superconducting transition
only provides information about the magnitude of the ele
tron drag force acting on a moving dislocation,1 but also
allows us to observe the increase in the deforming str
~Fig. 1! due to dynamic processes occurring during a cha

84800848-03$10.00 © 1997 American Institute of Physics
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of state, this increase being larger than that in the shear s
even due to deformation in the superconducting state on3

A higher intensity of strain-hardening processes may
caused by an increase in the concentration of structural
fects and their distribution over the volume of the crystal

In order to estimate the distortion of a lead crys
(99.9992% purity!, we measured the residual resistivityr
after loading in normal and superconducting states, as
as under cyclic variation of these states. Measurementsr
were carried out in the absence of external stresses in
sample and in a magnetic field higher than the critical fi
(H.Hc ,Hc2). The increase inr with relative elongation«
is shown in Fig. 2~the figure does not show ther(«) depen-
dence for a sample deformed in the superconducting stat!. It
was found thatrc.rn for the entire interval of deformations
and the differencerc2rn increases monotonically with«.
For the orientation of the lead single crystal indicated in
lower part of the figure,rc2rn50.62•10210V•m and
(rc2rn)/rn510% for «510%.

It follows from various models of structural hardenin5

that t(g)5t01aGbANd, where t0 and t(g) define the
shear stress of the original and deformed crystal,a50.1–1,
G is the shear modulus, andNd the dislocation density. As
suming that point and line defects make equal contributi
to the growth of resistance for lead, we can use the dep
dencesrc(«) andrn(«) ~Fig. 2! to estimate the excess dis
location density Nd5@r(«)2r0#/2rd , where r0 corre-
sponds to the undeformed crystal, andrd is the resistivity of
dislocations of unit density. Using the above formula f
t(Nd), we obtain a linear relation between the addition
strain hardening (tc2tn) or (ts2tn) and the quantity

FIG. 1. Strain-hardening curvest(g) of single crystals of Pb–5 at.%In
alloys corresponding to the normal~curve1! and superconducting~curve2!
states, as well as the cyclic variation of these states~curve 3!. The inset
shows the dependence of additional increase in stresstc2tn on the In
concentration in the alloy (g575%).
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(rc2rn)1/2 or (rs2rn)1/2 ~see inset in Fig. 2!. Different
slopes of straight lines3 and 4 correspond to an increase
intensity of generation of an additional number of deform
tion defects and the formation of a more effective network
structural obstacles in the path of moving dislocations upo
cyclic change of states than for superconducting and nor
states.

A possible reason behind the observed effect of the
clic change of states can be the influence of the chang
mechanical stress in the sample due to the supercondu
transition~stress jumpsdsns). In order to verify this hypoth-
esis, we subjected the alloy Pb–5 at.%In to deformation
77 K by using normal procedure and under cyclic stre
variation ~nickel magnetostrictor of length 100 nm in th
loading circuit of the sample!, whose magnitude correspond
to the jump in stress during the superconducting transition
comparison of the strain-hardening curves shows that the
plication of a small pulsating mechanical stress~of amplitude
0.1 – 0.5 MPa and a frequency of two cycles per 1% relat
elongation! to the sample during extension does not cau
any increase in the deforming stress.

The peculiarities of the superconducting transition its
are the most likely mechanism of the effect leading to
increase in the concentration of deformation defects and
formation of a structure with an enhanced resistance to
plastic flow. The change in the state of the electronic sys
occurs through an intermediate or mixed state of the su
conductor. A change in the external magnetic field in t
interval 0<H<Hc , Hc2 leads to the emergence of a d
namic intermediate state or a mixed state in the metal w
moving system of domains or magnetic flux vortices. T
interaction of the interface between the normal and superc
ducting phase with crystal lattice defects6,7 may facilitate a

FIG. 2. Variation of the resistivityr with the strain« for single crystals of
Pb (99.9992% purity! after loading in the normal~curve1! state and upon
cyclic variation of states~curve 2!. The inset shows the dependence
tc2tn on (rc2rn)1/2 ~curve3! and ofts2tn on (rs2rn)1/2 ~curve4!.
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Photon excitation of the third molecular continuum in solid krypton

nd
A. N. Ogurtsov and E. V. Savchenko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of
Ukraine, Lenin Ave., 47, 310164, Kharkov, Ukraine

J. Becker, M. Runne, and G. Zimmerer

II. Institut für Experimental Physik der Universita¨t Hamburg, 22761 Hamburg, Germany
~Submitted May 26, 1997; revised June 6, 1997!
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Luminescence study of the near-ultraviolet continuum in nominally pure solid krypton under
selective excitation by synchrotron radiation is presented. Intrinsic nature of the emission has been
established. Clear threshold behavior at the band gap energy reveals the key role of the
electron-hole pairs in a population of the continuum forming states. ©1997 American Institute
of Physics.@S1063-777X~97!01610-1#

In addition to the well-known vacuum ultraviolet~VUV ! centers, which are self-trapped in the regular lattice a
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continua stemming from the decay of self-trapped excito
wide near-UV luminescence bands were observed in rare
solids.1 A rebirth of interest in their origin has been stim
lated by a prospect of the development of excimer las
operating in a near-UV range of spectra.2 Despite the active
current theoretical3 and experimental studies in gas,4–7 con-
densed phases,8–10 and cluster beams,11 the origin of these
bands~the so-called third continua! is still under discussion

Synchrotron radiation is a very valuable tool for eluc
dation of primary processes of emitting state population.
minescence study of the third continuum following select
excitation with synchrotron radiation was performed on so
Xe ~Ref. 8! and solid Ar~Ref. 10!. In the present paper, th
results of the first analysis of the near-UV luminescence
solid krypton following primary selective excitation wit
synchrotron radiation in the excitonic range and the rang
band-to-band excitation are presented.12

The experiments were performed at the SUPER-LU
experimental station of HASYLAB at DESY13 in an ultra-
high vacuum environment~a basic pressure in the exper
mental chamber did not exceed the 10210 mbar!. The
samples were grown from a Kr gas~99.99%! in a special cell
attached to a helium cryostat. Preparation of samples u
isobaric (P580 Pa! conditions with a constant rate of coo
ing 0.1 K/s in the temperature range 80–60 K results in h
transmittance samples with a small quantity of initial defe
of structure. The samples contained inevitable amount of
impurity. The Xe concentration is estimated to be in a lo
ppm range.14 After condensation the cell was opened and
measurements of photoluminescence and excitation sp
were performed. Selective photon excitation was carried
with Dl52.5 Å. In the luminescence and the excitation sp
tra, the luminescence was spectrally dispersed with a 0.
Pouey monochromator equipped with a solar-blind pho
multipler ~Dl515 Å!.

The luminescence spectrum in the region of self-trap
exciton emission~the M -band at 8.6 eV! and the third con-
tinuum at 5.3 eV is shown in Fig. 1. TheM -band consists of
four well-known15,16M -subbands originating from the radia
tive decay of Kr2* (M1 ,M2) and XeKr*(M18 ,M28) molecular
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trapped at the initial and electronically induced defects of
structure. A narrow bandA originates from Xe atoms in the
Kr matrix.17

At low temperatures the third continuum reveals tw
components: aH-band at 5.3 eV with FWHM50.3 eV and a
H8-subband at 4.9 eV with FWHM50.4 eV. The
H8-subband disappears on heating of the sample, whe
theH-band only reduces its intensity by half, beginning wi
T535 K. The main component which peaks at 5.3 eV a
which remains in the luminescence spectrum, is though
be of intrinsic nature.

In order to gain insight into the origin of this band, w
measured the excitation spectrum. Figure 2 shows the e
tation spectra of theH-, theH8-, and theM -bands recorded
at the luminescence photon energies indicated in Fig. 1
arrows. The choice of emission energy~8.3 eV! for measur-
ing the excitation spectrum of theM -band is dictated by its
complex internal structure due to the presence of small qu
tity of Xe impurity. Note that at the chosen energy the co
tribution of the M1 subband is dominant. The excitatio
spectrum of theM1 subband shows the well-known fin
structure in the excitonic range of the spectrum.18 The most
prominent features were observed in the region below
first member of the bulk excitonsG~3/2!. This fact clearly
demonstrates the association of the subband with the s
ture defects and with the surface region of the sample
addition, the excitation spectrum of theM1 subband yields a
step-like behavior at the energyE521.78 eV, which ex-
ceeds the band gap energyEg511.61 eV by the lowest ex-
citon energyE1510.17 eV. The energyE11Eg determines
the threshold for creation of excitons during inelastic scat
ing of secondary photoelectrons by valence electrons.19

To check the probable origin of theH-band from impu-
rities, we measured the excitation spectrum in a transpare
range of the Kr host. We found that this band cannot
excited below the range of intrinsic absorption. Moreov
the band in question cannot be excited in the excitonic ra
of energies (E15E,Eg) and its behavior is in contrast with
that of the extrinsicM1 subband. The tests confirm beyon
any doubt the intrinsic nature of theH-band in nominally

85100851-02$10.00 © 1997 American Institute of Physics
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pure solid krypton. The excitation spectrum of theH-band
yields a pronounced threshold at the band gap energyEg and
a maximum at 2Eg . The clear threshold behavior testifie
that the creation of free electron-hole pairs is the prim
process of population of continuum forming states. If t
energy position of theH-band is taken into account, th
direct recombination of free electrons and holes should
excluded. It is well known that free holes are rapidly se
trapped in atomic cryocrystals,20 forming molecular-ion-like
centers. The radiative recombination of self-trapped ho

FIG. 1. The luminescence spectrum of solid krypton excited byhn
514.2 eV atT55 K. The arrows indicate the photon energies at which
excitation spectra in Fig. 2 were measured.

FIG. 2. The excitation spectra ofH-, H8-, andM -bands measured at lu
minescence photon energies indicated in Fig. 1 by arrows. The position
bulk transverse~1, 18, 2!, bulk longitudinal (L, L8), and surface (S) exci-
tons are marked at the top of the curves according to Ref. 1.
852 Low Temp. Phys. 23 (10), October 1997
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range of the spectra and is excluded as a probable chann
population of the third continuum forming states. A mo
likely assumption about the origin of theH-band seems to be
the radiative transition from the excited states of the kryp
molecular ion to lower-lying repulsive states. According
this assumption, the population of the continuum formi
states is a two-step process: self-trapping of holes follow
by their excitation. The key role of the self-trapped holes
the formation of near-UV emission from nominally pu
solid krypton is evident from the observed features of
excitation spectrum and from the temperature behavior of
H-band—quenching with increasing temperature starting
35 K, where electrons are released from their traps.21 The
nature of theH8-band is presently not clear. Perhaps it orig
nates from heteronuclear krypton-xenon ionic centers.
tailed assignment of the emitting states requires further
vestigation.
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Anisotropic pinning and the mixed-state galvanothermomagnetic properties

si-
of superconductors—a phenomenological approach
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In the presence of isotropic and anisotropic pinning the vortex dynamics is discussed in terms of
phenomenologically introduced, nonlinear viscosities. The formulas for linear
galvanothermomagnetic effects are derived and analyzed under the condition at which the
transport current or temperature gradient is directed at arbitrary angle with respect to the
unidirected twins, which cause the anisotropic pinning. It is shown that two new effects
which appear due to the anisotropic pinning, namely~with respect to the reversal of the magnetic
field direction! even transverse and odd longitudinal voltage, have a distinct origin. The first
is due to the guided vortex motion, while the second appears only when anisotropic~in contrast
with isotropic! pinning changes the Hall drag coefficient. We also show that the last effect
might be masked in the experiment by a large, odd contribution, which has the same angular
dependence and which appears due to the Ettingshausen effect. In order to clarify the
problem of influence of the twins on the Hall drag coefficient, we discuss the possibility of
separating these two contributions in the experiment. ©1997 American Institute of Physics.
@S1063-777X~97!01710-6#

1. The influence of the pinning on the transport proper-resistivities in terms of the drag and pinning vortex visco
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ties of high-Tc superconductors~HTSC! is a very interesting
problem. One of the open and rather controversial issue
this field is the influence of the pinning on the Hall dra
coefficient. Recently, Vinokuret al.1 have calculated the ef
fect of point ~isotropic! pins on the Hall resistivity and
showed that the Hall constant is pinning-independent. I
also true for the anisotropic pinning caused, for example,
a system of unidirected twins in YBCO single crystal? So
et al.2 have shown that in the last case, in addition to
usual longitudinal and transverse~Hall! resistivities ~even
and odd, accordingly, with respect to the reversal of a m
netic field direction! two new contributions to the resistivit
appear: the even transverse and the odd longitudinal co
butions. These results follow in Ref. 2 from the general fo
of the linear Ohm’s law in anisotropic media which, in tur
was formulated on the basis of symmetry considerations
fact, it was postulated in Ref. 2 that presence of the tw
changes the Hall conductivity. The experimental situat
also is still controversial. Recent paper3 claims that for a
twinned ~and further irradiated with high-energy Pb ion!
YBCO single crystal the mixed-state Hall conductivity do
not depend on the pinning strength, in complete agreem
with the theory.1

The main purpose of this paper is to suggest and dev
theoretically a new method for experimental verification
the plausible effect of twins on the Hall drag coefficie
within the framework of the phenomenological approa
used earlier in Ref. 1 for the case of isotropic pinning. W
modify the method of Ref. 1 for considering both the isotr
pic and anisotropic pinning so that we can derive the Oh
law, which was postulated in Ref. 2. We can therefore cla
the origin of the earlier introduced2 four phenomenologica
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ties, i.e., on a more detailed level. In the linear case we sh
that the above-mentioned, new, even, transverse contribu
is due completely to the guided vortex motion4 and does not
require the modification of the Hall drag coefficient by twin
whereas the odd longitudinal contribution depends entir
on the different values of this coefficient for motion of vo
tices along the twins and across them. It follows from th
conclusion that in order to justify the influence of the twi
on the Hall drag coefficient, we must identify only odd lo
gitudinal contribution in the measurements.

But as we show below, experimental observation of t
small ~Hall in nature! contribution may be masked by th
possible appearance~due to the emergence of a small tem
perature gradient in the presence of the transport curren! of
the odd Seebeck contribution with the same angular dep
dence. In order to give a theoretical basis for the separa
of these two contributions, we also calculated the therm
magnetic properties of the sample with anisotropic pinni
using the same approach. We will show that the main c
tribution to the odd Seebeck resistivity now gives the guid
vortex motion, while the possible Hall contribution is sma
and can be disregarded.

2. Following Ref. 1, we have for the average velocity
vorticesv the equation of motion

hv1av3n5f1fp , ~1!

whereh is the isotropic friction coefficient,a is the isotropic
Hall drag viscosity,f is the moving external force~Lorentz
or thermal, see below!, and fp is the average resulting pin
ning force, which is the sum of the isotropic contributionf p

i

and the anisotropic contribution«f p
a , where «5a0 /d is

85300853-04$10.00 © 1997 American Institute of Physics



relative fraction of vortices placed on the twins~a0 andd are
p
o

e.
e
d
l

l t
-

o

so

m
ic
-

ci-

-
a
i-

al

,

tz

n

r t[bh l ;r l[bh t ; rHl[baHl ; rHt[baHt ;

ea-

the
are

tiv-
i-

-

n

the

r:

ame

s
the
i-

tex
he
ive

e
le
the average distances between vortices and twins, res
tively!. Considerations which may lead to the equation
motion in the form~1! will be discussed in detail elsewher
If «50, we obtain Eq.~2! in Ref. 1. We assume that th
average anisotropic pinning forcef p

a can be decompose
into two partsf p

a5f p
t 1f p

l , where, neglecting small Hal
viscosities,f p

t 5 f p
t
•m, f p

l [ f p
l
•mi . Herem and mi[z3m

are the unit vectors directed perpendicularly and paralle
the twins, respectively,z is the unit vector which is perpen
dicular to the sample’s plane,f p

t [f p
t
•m, and f p

l [f p
l
•mi .

As in Ref. 1, we assume thatf p
i 52g i(v)v, whereg i(v)

.0 is phenomenological coefficient, which depends only
the value ofv[uvu. For f p

t and f p
l we assume that

f p
t 52g t~ uv tu!vt2a tvt3n, ~2a!

f p
l 52g l~ uvu l !vl2a lvl3n, ~2b!

where g t and g l are the average phenomenological ani
tropic viscosities which include also thev-independent terms
for the motion of vortices across the twins and along the
respectively;a t and a l are the corresponding anisotrop
Hall drag coefficients, andn is the unit vector in the mag
netic field direction~n5nz, wheren561!. Herevl5v lmi

and vt5v tm are longitudinal and transverse vortex velo
ties, respectively (v5vl1vt). Below we will show that in-
corporation of the Hall terms in~2! is equivalent to the as
sumption that the anisotropic pinning influences the H
drag coefficienta and leads to a new effect—the odd long
tudinal contribution to the resistivity of the sample.

Substitution of the expressions forfp into ~1! leads to a
system of two nonlinear equations forv t andv l

H h tv t1naHlv l5 f t ,
2naHtv t1h lv l5 f l ,

~3a!
~3b!

where

h t[h1g i~v !1«g t~ uv tu!, ~4a!

h l[h1g i~v !1«g l~ uv l u!, ~4b!

aHl[a1«a l , aHt[a1«a t , ~4c!

and f t[f•m and f l[f•mi are the transverse and longitudin
components of the external force, respectively.

In the linear case, whereh t and h l are constants, i.e.
they do not depend on the velocities, the solution of~3! is
simple

v t5D21~h l f t2naHl f l !; v l5D21~h t f l1naHt f t!;

D[h th l1aHlaHt . ~5!

The electric field induced by the vortex motion isE
5(1/c)B3v, and if the external force is equal to the Loren
force f5(F0 /c) j3n, whereF0 is the flux quantum,c is the
light velocity, and j is the transport current density, the
from ~5! we obtain

EL5r tmi~mi• j !1r lm~m• j !1n@rHlmi~m• j !

2rHtm~mi• j !#, ~6!
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b[BF0 /Dc2. ~7!

Note that four phenomenological resistivities may be m
sured in two special, ‘‘basic’’ measurements, namely,r l and
rHl –in j'TB ~twin boundary! geometry, andr t ,rHt –in
j iTB geometry. Physically, relation~6! shows how to ex-
pressE for arbitrary angle betweenj andm in terms of four
basic resistivities. It was postulated earlier in Ref. 2 on
basis of the symmetry considerations. In our approach we
able to elucidate the origin of the above-mentioned resis
ities @see Eq.~7!# in terms of the drag and pinning viscos
ties, i.e., at a more detailed level. Equation~6! admits an-
other representation ofE in terms of two mutually
perpendicular unit vectorsei[ j / j ande'[(z3 j )/ j ; thenE
[Eiei1E'e' , where

Ei5~r i
11nr i

2! j ; E'5~r'
11nr'

2! j . ~8!

HereEi andE' are the longitudinal~dissipative! and trans-
verse~Hall, nondissipative! components of the electric field
~in relation to the transport current density!, respectively, and

H r i
1[x2r l1y2r t ,

r'
1[xy~r t2r l !,

H r'
2[x2rHl1y2rHt ,

r i
2[xy~rHl2rHt!,

~9!

wherex[m•ei andy[mi•ei . The angle-dependent resistiv
ities r i

6 and r'
6 ~in contrast to the ‘‘intrinsic’’ parameters

r l , r t , rHl , and rHt! are measurable values for a give
sample and they do not depend on the value ofn. The sign
~1! here means that this value is even with respect to
reversal of the magnetic field direction, where the sign~2!
means that the valuenr',i

2 is odd.
In the isotropic limit«50; thenh t5h l5h̃[h1g i(v)

and aHl5aHt5a. In the limit a2!h̃ 2 we obtain directly
from Eqs.~3! the results of Ref. 1@including the nonlinear
scaling relationrxy5rxx

2 (ac2/BF0); Eq. ~7! in Ref. 1#.
In contrast with the isotropic limit, where onlyr i

1 and
r'

2 are not equal to zero, in general («Þ0), as we can see
from ~9!, two new contributions to the resistivity appea
transverse evenr'

1 and longitudinal oddnr i
2 . Note that the

angular dependence of these two contributions is the s
and has the maximum value atu5p/4 ~hereu is the acute
angle betweenm and j !. But unlike this similarity, these
contributions~as can be seen from their derivation! have a
completely different origin.

The even transverse resistivityr'
1 stems from the evi-

dently different pinning force for the motion of the vortice
along and across the twins, and we can see in
experiment5 the different critical currents for these two d
rections. Usually, in some temperature interval5 r t!r l , and
such inequality promotes the so-called guided vor
motion4, where the vortices prefer to move mostly along t
twins than to slip across them. If we define the quantitat
measure of guiding as cotw[uE'

1/Ei
1u5ur'

1/ri
1u, then cotw

5(12u) tanu/(u1tan2 u) where u[r t /r l and 0,u,1. If
u→0, then w→u and we have a full guiding. From th
above formula follow several conclusions with a simp

854V. A. Shklovskij
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a! at 0,u,1 always tanw.tanu and, in addition, tanw
increases when tanu is increasing with a fixed value ofu,

b! if we assumeu5const and change tanu, then tanw as
a function of tanu is convex downwards and correspondi
minimal value of (tanu)min52Au(12u) is attained at tanu
5Au,

c! if tan u.1, then always cotw,1. But when tanu
!1, then depending on the relation betweenu and tanu we
have several opportunities:

cot w'H @~12u!/u#tan u,1 u.tan u,

tan u/u@1 tan2u!u!tan u,

1/tanu@1 u!tan2 u.

~10a!
~10b!
~10c!

We see that in the cases~10b! and ~10c! always
E'

1@Ei
1 . The last situation is real, because in the expe

ment in Ref. 5,u may be well below unity~for example,u
,1026 at T'87 K for YBCO; see Fig. 1, curves1 and5 in
Ref. 5!.

The appearance of the odd longitudinal contributionr i
2 ,

as we see from Eqs.~2!, ~4!, ~7!, and ~9!, follows from the
assumed influence of twins on the ‘‘bare’’ Hall drag coef
cient a. It must be stressed that such influence should
different for the vortex motion along and across the tw
(g lÞg t). Physically, it may follow from a different behavio
of the Magnus force, whose microscopic origin may
highly complex~see, for example, Ref. 6!. It is evident, at
least, that the vortices move along the twin at the cons
value of the order parameter, whereas the order param
value is not homogeneous for the vortices that move ac
the twins.

3. In what follows, however, we consider anoth
mechanism for ther i

2 appearance, which implies that th
Ettingshausen effect is possible. For this reason, we will
tially discuss the case in which, the transport current is z
but there is a thermal force

fT5si¹T1s'¹T3n. ~11!

Here ¹T is the temperature gradient vector in the plane
the sample, andsi and s' are the phenomenological con
stants~si[Sw is the transport entropy per vortex unit lengt
s'[F0Qn /rn , whereQn is the normal state thermoelectr
power, andrn is the normal state resistivity; see, for e
ample, Ref. 7!. Substitution of the thermal force componen
f t

T and f l
T ~instead off t and f l! into Eqs.~3!

f t
T[sixT1ns'yT , ~12a!

f l
T[siyT2ns'xT , ~12b!

where f t
T[m•fT , f l

T[mi•fT and xT[m•¹T, yT[mi•¹T
leads to the solutions of Eqs.~3! in the form ~5!

v t
T5~c/B!~si

txT1ns'
t yT!,

v l
T5~c/B!~si

l yT2ns'
l xT!, ~13!

where

H si
t[~B/cD!~h lsi1aHls'!,

s'
t [~B/cD!~h ls'2aHlsi!

,
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Finally, we have the following equation for the electric fie
E produced by¹T @compare with Eq.~6!#:

ET5s'
t mi~mi•¹T!1s'

l m~m•¹T!1n@si
tmi~m•¹T!

2si
l m~mi•¹T!#. ~15!

Comparing ~15! and ~6!, we see that if we change
s'→(F0 /c), si→0, and¹T→ j , then Eq.~15! transforms
into Eq.~6!. All physical analysis of Eq.~6! can therefore be
repeated for Eq.~15! with only one essential distinction: fo
thermomagnetic effects all four parameters given by~14! are
the values of the same order of magnitude7, becausesi and
s' in Eq. ~11! are approximately of the same order of ma
nitude for HTSC. Note, however, that in Eq.~6! rHl!r l and
rHt!r t . From Eqs.~14! and ~15! it follows that the Hall
contributions~;aHt andaHl! always are small in compari
son with other terms which are proportional toh t and h l .
Because of this circumstance, all new~i.e., those stemming
from anisotropy! thermomagnetic effects, givingEi

2(¹T)
andE'

1(¹T), might be of the same order of magnitude@un-
like galvanomagnetic effects, where usuallyEi

2( j )!E'
1( j )#.

Until now, several interesting experimental investigations
the thermomagnetic effects in YBCO single crystals w
unidirected twins have been carried out8. But below we deal
only with ‘‘secondary’’ thermomagnetic effects produced
¹T, which, in turn, is generated by the transport curre
densityj due to the Ettingshausen effect~the latter in almost
adiabatic conditions was measured in YBCO by Battlo
et al.9!. In the case of anisotropic pinning such ‘‘secondar
thermomagnetic effects produce additional odd longitudi
~‘‘Seebeck’’! and even transverse~‘‘Nernst’’ ! contributions
to the measured voltages. If the real experiment is carried
in nonisothermal conditions, these additional contributio
may mask the ‘‘intrinsic’’ odd longitudinal contribution
which is attributable to the possible influence of the twins
the Hall drag coefficient. Moreover, it is conceivable that
the case of bad heat removal conditions the intrinsicEi

2

50 ~i.e.,aHl5aHt5a!, but we measure onlydEi
2 produced

by the Ettingshausen effect. Analysis of the experimen
observations ofEi

2 ~in contrast toE'
1! therefore requires

more accurate estimates of the heat removal conditions
pecially for the case of large transport current densities. T
oretical estimate of the additional odd longitudinal contrib
tion dEi

2 in the adiabatically isolated sample can be deriv
as follows. First, we calculate¹TL , which arises due to the
heat current flow densityQw carried by the vortices which
move with the velocityvL in the sample with the anisotropi
pinning in the presence of the transport current densityj

Qw5UwvL5TSwvL52k¹TL . ~16!

HereUw5TSw is the thermal energy of the vortices, andk is
the thermal conductivity of the sample. From~16! we have

¹TL52mvL52~mc/B!~n3EL!. ~17!
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Herem[TSw /k andEL is given by Eq.~6!. Substitution of

io

h

p

at

b

It is my pleasure to thank A. A. Prodan for help in pre-

r,

d,

.

.

ak,

as
~17! into the equation forET ~15! after some calculations
gives us the desired additional odd longitudinal contribut
dEi

2 :

dEi
25~mc/B j !~xy!@~s'

l r t2s'
t r l !1~si

trHl2si
l rHt!#.

~18!

Neglecting a small Hall contribution in the second part of t
brackets and comparing~18! with the equation forEi

2 ~8!,
we see that both contributions have the same angular de
dence and may have the same order values.

For further estimates we can use~18!, in which we re-
placek by keff in order to take into account the actual he
transfer conditions~keff is always greater thank!. If the heat
removal from the sample is effective~in term ofkeff it means
that keff→`!, then dEi

2→0 and we can ignore it. In the
opposite case (keff→k) we would havedEi

2@Ei
2 .

In conclusion, we stress that Eqs.~3! allow us to con-
sider nonlinear galvanothermomagnetic effects. This will
the subject of the next publication.
856 Low Temp. Phys. 23 (10), October 1997
n

e

en-

-

e

paring this paper for publication.

1V. M. Vinokur, V. B. Geshkenbein, M. V. Feigelman, and G. Blatte
Phys. Rev. Lett.71, 1242~1993!.

2E. B. Sonin and A. L. Kholkin, Fiz. Tverd. Tela34, 1147 ~1992! @Sov.
Phys. Solid State34, 610 ~1992!#; E. B. Sonin, Phys. Rev. B48, 10487
~1993!.

3A. V. Samoilov, A. Legris, F. Rulier-Albenque, P. Lejay, S. Bouffar
Z. G. Ivanov, and L.-G. Johansson, Phys. Rev. Lett.74, 2351~1995!.

4A. K. Niessen and C. H. Weijsenfeld, J. Appl. Phys.40, 384 ~1969!.
5A. V. Bondarenko, M. A. Obolenskii, R. V. Vovk, A. A. Prodan, V. A
Shklovskij, and A. G. Sivakov, inProc. of the 7th Intern. Workshop on
Critical Currents in Superconductors, H. W. Weber~Ed.!, World Scien-
tific, Singapore~1994!, p. 177.

6E. B. Sonin, Phys. Rev. B55, 485 ~1997!.
7T. W. Clinton, Wu Liu, X. Jiang, A. W. Smith, M. Rajesuari, R. L
Greene, and C. J. Lobb, Phys. Rev. B54, R9670~1996!.

8H. Ghamlouch and M. Aubin, Physica C269, 163~1996!; H. Ghamlouch,
M. Aubin, R. Gagnon, and L. Taillefer, Physica C275, 141 ~1997!.

9T. T. M. Palstra, B. Batlogg, L. F. Schneemeyer, and J. V. Waszcz
Phys. Rev. Lett.64, 3090~1990!.

This article was published in English in the original Russian journal. It w
edited by S. J. Amoretty.
856V. A. Shklovskij



LETTERS TO THE EDITOR
Low-temperature acoustic characteristics of the amorphous alloy
Zr41.2Ti13.8Cu12.5Ni10Be22.5

A. L. Gaiduk, E. V. Bezuglyi, and V. D. Fil

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of the Ukraine, 310164 Kharkov, Ukraine*

W. L. Johnson

California Institute of Technology, Pasadena, CA 91125, USA
~Submitted July 22, 1997!
Fiz. Nizk. Temp.23, 1139–1143~October 1997!

The temperature dependences of the sound velocityv and attenuationa of high-frequency
~50–160 MHz! sound in the bulk amorphous alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5 are studied at helium
temperatures in the normal and superconducting states. The alloy is characterized by a
relatively small constantC determining the intensity of interaction between an elastic wave and
two-level systems. The density of states of the latter systems is estimated. The peculiarities
in the variation ofv during the superconducting transition point to the possibility of a gapless
superconductivity in a narrow temperature interval nearTc . © 1997 American Institute
of Physics.@S1063-777X~97!01810-0#

Low-temperature kinetics of amorphous materials isnel levels with the energy splittingE5AD21D0
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mainly determined by specific low-energy quasilocal exc
tions, viz., two-level systems~TLS!. The model concept o
TLS developed in Refs. 1 and 2 proved to be very fruitful f
explaining the thermal, elastic, and electromagnetic prop
ties of insulating glasses and metglasses.3 A simplest model
of a TLS is a heavy tunneling entity in an asymmet
double-well potential. Both the initial model of TLS and i
subsequent versions4 are universal and are not connect
with specific features associated with the microscopic ori
of double-well potentials.

The properties of a large number of various glasses h
been studied extensively. One of the most remarkable res
in this field is the conclusion concerning virtual indepe
dence of the TLS density of states of the composition and
method of obtaining of glass. As regards metglasses
should be noted, however, that all the compositions that w
investigated before had been obtained at very high coo
rates (>103 K/s), which probably determines the abov
mentioned universality.

New classes of glass-forming systems obtained rece
are stable over a wide temperature region of superco
liquid state. Their high resistance to crystallization make
possible to obtain bulk amorphous samples at very
quenching rates (<10 K/s). It would be interesting to esti
mate the density of states of TLS for a typical representa
of this family of metglasses. In this connection, we stud
the acoustic properties of the amorphous al
Zr41.2Ti13.8Cu12.5Ni10Be22.5

5 at temperatures near 1 K.
Acoustic measurements are known to be one of the m

informative methods of studying TLS.3 The interaction of
TLS with sound mainly follows the two principal mecha
nisms: resonance and relaxation. The former mechanism
responds to the excitation of direct transitions between t
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sound of frequencyv ~D is the asymmetry of a double-we
potential andD0 the tunnel splitting of energy levels fo
D50!. In the available frequency range (v!T), the reso-
nant contribution to variations of the sound velocity is det
mined ~to within a constant term! by the formula

S dv i

v i
D

res

5
P̄g i

2

rv i
2 ln T5Ci ln T, ~1!

where P̄ is the TLS density of states,g the deformation
potential,r the mass density, andi denotes the longitudina
( l ) or transverse (t) polarization.

The resonant contribution to the absorption coefficie
a/q ~q is the wave number! is small in the parameterv/T on
the Ci scale.

Elastic deformation of the wave also shifts the spectr
of tunnel levels. If there exist the relaxation mechanis
which makes it possible for TLS to tune the occupancy of
levels to a new set ofE rapidly ~on the v21 scale!, the
attenuation and the velocity of sound acquire a relaxat
component:

S a i

qi

dv i

v i

D 5
Ci

2 S p
ln vtmin

D , ~2!

where tmin is the minimum relaxation time forD50 and
E;T. Expressions~2! are valid forvtmin!1; otherwise, the
relaxation interaction can be neglected. In the general c
the TLS relaxation in metglasses is due to interaction w

85700857-04$10.00 © 1997 American Institute of Physics
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electrons as well as with phonons, but the contribution of
latter can be neglected atT,2 – 3 K, and the relaxation fre
quency can be written in the form3

~tmin
21!e5

p

2
h2T, ~3!

whereh is the dimensionless parameter of coupling betwe
electrons and the TLS.

The sample with an acoustic path length of 0.74 cm w
cut from an oval ingot.5 The values ofv and a were mea-
sured in the pulsed mode by the phase-sensitive br
method at frequencies close to 54.3 and 162.9 MHz. T
diamagnetic responsex was measured at a frequency of 22
Hz with the concentric arrangement of the sample, the
ceiving and exciting coils. Note the high homogeneity of t
alloy: 8–10 well-defined reflexes were observed at an aco
tic wavelength;15 mm. In order to avoid possible errors o
interference origin, main measurements were made by c
paring phases and amplitudes of first and second or t
pulses. At 77 K, the velocities werev l5(5.1760.03)
3105, v t5(2.4960.01)3105 cm/s.

Figure 1 shows the relative change in the velocity
transverse sound in the alloy under investigation in the n
mal (n) and superconducting (sc) states. In the former case
the fieldH51.5 T(Hiq) was applied. It should be noted th
aboveTc, such fields did not affect the behavior ofv anda.
In the normal phase, the temperature variation of the velo
is correctly approximated by a logarithmic dependence w
the coefficientCi /2 appearing when expressions~1! and ~2!
are added. To within the error of measurements, the value
the constants Ci ~Cl5(0.5860.02)31025, Ct5(1.42
60.03)31025! were independent of frequency.

In the superconducting phase, freezing out of norm
excitations leads to an increase intmin

6 and to a sharp de
crease in the relaxation contributions to the velocity and
sorption of sound, which is reflected in a sharp kink on
v(T) curve in Fig. 1 at the temperatureTon50.85 K. The
inset to Fig. 1 shows the changes in the velocity nearTon

measured simultaneously (H50) with the diamagnetic re

FIG. 1. emperature dependences of relative changes in the velocity of t
verse sound in the amorphous alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5 at a fre-
quency of 54.3 MHz. The inset shows a fragment ofdv/v(T) dependence
and the diamagnetic responsex in the superconducting transition region.
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H.4 mOe. The sample obviously contains two phases w
the phase-transition temperaturesTc1.0.9 K and
Tc2.1.02 K. The value ofTc2 probably corresponds to
surface phase since this transition does not affect the so
velocity in any way. Besides, an increase inH̃ to 40 mOe
leads to virtually complete suppression of the jump inx at
Tc2 , while the peculiarity atTc1 is preserved up toH̃51 Oe.
The non-coincidence between the resistive and magnetic
perconducting transitions in a glass of the same composi
observed by Gerberet al.7 is apparently also connected wit
the existence of two phases.

It can be seen from Fig. 1 that the temperaturesTon and
Tc1 do not coincide. Naturally, we can assume that
sample is not homogeneous as regardsTc1 , but the small
width of the jump inx at Tc1 renders this assumption hard
plausible. Probably, the regime of so-called gapless su
conductivity is realized in the temperature interv
Tc12Ton.8

An analytic expression fortmin in a superconductor can
be derived only forE!Dsc ~Dsc is the superconducting
gap!.6 Since the main contribution to the measured para
eters comes from TLS withE<T, the above limitation boils
down toT!Dsc . In this case, we can write

~tmin
21!e sc5

p

2
h2Te2Dsc /T. ~4!

Since the velocity in the superconducting phase con
ues to grow up toT;0.4 K, the conditionvtmin,1 obvi-
ously remains valid, and expression~2! for the relaxation
contribution todv/v still holds. Assuming that the resonan
contribution in the normal and superconducting phases is
same, we have the following expression for the difference
the velocities of sound in thesc- andn-phases from~1-4!:

Dv
v

5S dv
v D

sc

2S dv
v D

n

;2
Dsc

T
.

In actual practice, the strong inequality betweenT andDsc is
not satisfied in our experiments. Nevertheless, we can ex
that the experimental dependencesDv/v(T21) become lin-
ear in a certain temperature intervalT,Tc , where
Dsc(T)'Dsc(0).

A dependence of this type is shown in Fig. 2a. For co
parison with theoretical dependences, the temperature s
in Fig. 2 is given in reduced form, and the superconduct
transition temperature is assumed to be equal toTon. The
velocity scale is also normalized toCt/2. It was found that
the dependenceDv/v(T21) is close to linear in the entire
temperature range belowTon, but its slope is twice the BCS
value of Dsc(0). In all probability, such a behavior o
Dv/v(T21) is the result of joint operation of severa
temperature-dependent mechanisms. For comparison, Fi
presents the results of complete calculation ofDv/v for the
BCS model~h50.85, see below! on the basis of equation
from Ref. 6. The agreement between the theoretical and
perimental dependences is obviously unsatisfactory over
tually the entire temperature range, although the scale
variation is reproduced correctly on the whole. The agr
ment can probably be improved in the vicinity ofTc by

ns-
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taking into account magnetic scattering effects which elim
nate the divergence in the derivatives of the order param
and energy gap atTc ,8 but a rigorous theory of interactio
between sound and TLS in the presence of magnetic im
rities has not yet been constructed. The assumption conc
ing the equality of the resonant contributions in thesc- and
n-phases might be incorrect due to a considerable narrow
of the tunnel levels upon a decrease in (tmin

21 )e sc,
9 which can

affect the behavior ofDv/v at lower temperatures, e.g., ca
change the normalization of the ordinate axis in Fig. 2a.

Figure 2b shows the temperature dependences of v
tions in sound absorption, which is also normalized bypCt/2
in accordance with~2!. Further, the normalized absorption
the normal phase was assumed to be equal to unity in
formity with ~2! since the real value ofa cannot be deter-
mined in the temperature interval under investigation~this
can be done only from the difference in absorption in
normal and deep superconducting states!. The theoretical de-
pendences in the BCS model correctly reproduce the dif
ence in the behavior of absorption at two frequencies,
though the steepness of the variation ofa/q for T/Ton;0.45
is higher than the theoretical value. It should be recall
however, that the steepness of experimental dependenc
Fig. 2b is also determined by the choice of the normalizat
constantCt . The estimated value ofh'0.85 naturally de-
pends on the value ofDsc : the value ofh decreases with
Dsc . In this case, theoretical dependences become still m
gently sloping, and the estimated value ofh can not be re-
duced by a factor of more than two for the same normali
tion constantCt .

Let us now estimate the TLS density of states. This c
be done if we know the crossover temperatureTcr at which

FIG. 2. Difference of the relative changes in the transverse sound veloci
the superconducting and normal states as a function of reduced temper
Smooth curves correspond to the results of calculation (h50.85) ~a!; ab-
sorption in the superconducting phase:h50.89~curve1! and 0.81~curve2!
~b!. The temperature is given on reciprocal scale.
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one: (te)min5(tph)min . Usually it is assumed that the cros
over occurs at a temperature at which the velocity of sou
passes through its maximum.3 In our case,Tcr'3.3 K. The
phonon relaxation rate is mainly determined by transve
phonons:3

~tmin
21!ph5

8g t
2

prv t
5 T3. ~5!

Combining~1!, ~3!, and~5!, we obtain

P̄58.4~Tcr /h!2Ct•1032 erg21
•cm3 ~6!

~in this equation,Tcr is in degrees!. SubstitutingTcr53.3 K,
h50.85, Ct51.42•1025, we obtain P̄51.8•1029

erg21
•cm23. This value is two–three orders of magnitud

smaller than values known from literature.4

In formula ~6!, we specially singled out the quantitie
whose values are not known exactly. In actual practice
noticeable contribution~proportional toT2! to the velocity of
sound is observed in the sample under investigation~we are
planning to publish the corresponding results later!; the com-
bination of this contribution with the logarithmic dependen
can also lead to the formation of a velocity peak. For t
reason, the value ofTcr can be slightly higher. The fitting
value ofh ~see Fig. 2b! depends on the energy gap for whic
the BCS value was used. If our assumption concerning
effect of magnetic scattering is confirmed, the energy g
will be smaller,8 which can reduce the estimated value ofh2

by a factor of several times. The exact value ofCt is not
known to us either; it can be obtained from the logarithm
decrease in the velocity of sound in the deep supercond
ing state. On account all these remarks, the estimated v
of P̄ in the alloy under investigation can be an order
magnitude higher than the value given above, but still c
siderably smaller than the known values from the literat
sources.

In summary, the values of the TLS density of states
the amorphous alloy Zr41.2Ti13.8Cu12.5Ni10Be22.5 estimated on
the basis of acoustic measurements are much smaller tha
other metglasses. This is probably due to the very low rat
cooling of the melt (;10 K/s). The observed peculiarities o
superconducting ordering indicate, on one hand, the t
phase structure of the amorphous alloy under investigat
and on the other hand, the possible realization of a gap
superconductivity in this material in a narrow temperatu
range.

The authors are grateful to V. Z. Bengus, E. D. Taba
nikova, and A. S. Bakai for fruitful discussions and to E.
Masalitin for his assistance in preparing the apparatus.
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ERRATA
Erratum: Peculiarities in the electron properties of dŠSb‹-layers in epitaxial silicon.
III. Electron–phonon relaxation [Low Temp. Physics 23, 303–307 (April 1997)]
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