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New limits on 48Ca β– and β–β– decays to excited states of 48Ti have been obtained using a 400 cm3 low-back-
ground HPGe detector and an external source of 24.558 g enriched CaF2 powder (9.822 g of 48Ca). The limits
for β– decay to the 6+ ground state and excited 5+ and 4+ states in 48Sc are 1.6 × 1020 yr, 2.5 × 1020 yr, and 1.9 ×
1020 yr at the 90% confidence level. For the β–β– decay to 48Ti, the limits to the first 2+, second 2+, and first 0+

excited states are 1.8 × 1020 yr, 1.5 × 1020 yr, and 1.5 × 1020 yr, again at the 90% confidence level. © 2002 MAIK
“Nauka/Interperiodica”.
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The doubly magic nucleus 48Ca can decay by beta
decay and double beta decay. The largest possible
energy released, 4272 keV, attracts attention to this iso-
tope for double-beta-decay investigations. However,
the small natural abundance (0.187%) and the feasibil-
ity problems of producing sufficient quantities of this
isotope make studies of fare decays rather difficult. In a
previous paper [1], we presented new limits (see table)
on decays of 48Ca. A low-background 400 cm3 HPGe
detector located in the Modane Underground Labora-
tory (depth of 4800 m w.e.) was used to measure
63.86 g of enriched 48CaCO3 powder (enrichment is
73%; 20.18 g of 48Ca were exposed for 797.3 hours).
New upper limits improved by around one order of
magnitude were obtained on half-lives of 48Ca for β–

decay to the 6+ ground state, excited 5+ and 4+ states in
48Sc, and β–β– decay to the first 2+, second 2+, and first
0+ excited states in 48Ti. However the sample was found
to have fairly large radioactive impurities, mainly 60Co
and 226Ra, which produced too high a background for
the processes under investigation, and this limited the
results. Consequently, we decided to repeat the experi-
ment after the sample was purified.

¶This article was submitted by the authors in English.
0021-3640/02/7609- $22.00 © 0545
Several methods of sample purification were devel-
oped using natural calcium with radioactive tracers.
Reduction factors of 103 and 104 were achieved for
226(228)Ra and 60Co, respectively. These results were
obtained using the same HPGe detector that was used
for measurements with enriched Ca samples. Activities
of 60Co, 226Ra, and 228Th impurities in the enriched Ca
sample after purification were found to be less than
2 µBq/g, 4 µBq/g, and 2 µBq/g, respectively, which
leads to reduction factors of >400, >70 and >25. The
chemical purification technique yielded a CaF2 powder.

The current experiment was performed with the
400 cm3 HPGe detector and 24.558 g of enriched
48CaF2 powder by looking for γ rays following β– and
β–β– transitions of 48Ca. A total of 9.822 g of 48Ca was
exposed for 1589.8 hours.

The HPGe detector is surrounded by a passive
shield consisting of 6 cm of archeological lead, 10 cm
of OFHC copper, and 15 cm of ordinary lead. To reduce
the 222Rn gas, which is one of the main sources of the
background, special efforts were made to minimize the
free space near the detector. In addition, the passive
shield was enclosed in an aluminum box flushed with
high-purity nitrogen. The cryostat, the endcap, and the
critical mechanical components of the HPGe detector
2002 MAIK “Nauka/Interperiodica”
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Experimental half-life limits and theoretical predictions for the decay of 48Ca 

Transition γ-ray, efficiency
(T1/2)exp, 1020 yr

(T1/2)theor, yr
Present Previous [1]

β– decay

0+  (983.5 keV, 3.25%) + (1312.1 keV, 2.65%) >1.6 >0.71 1.5 × 1029–1.3 × 1031 [3]

0+  5+ (130.9 keV, 15.2%) >2.5 >1.1  × 1021 [3]

0+  (130.9 keV, 11.5%) >1.9 >0.82 8.8 × 1023–5.2 × 1028 [3]

β–β–(0ν + 2ν) decay

0+  (983.5 keV, 5.0%) >1.8 >0.47 5.0 × 1026 [4]

0+  (983.5 keV, 3.89%) + (1437.5 keV, 2.95%) >1.5 >1.1 3.6 × 1026 [4]

0+  (983.5 keV, 4.03%) + (2013.7 keV, 2.33%) >1.5 >0.90

>10* [2]

The γ rays accompanying the different modes are presented with their detection efficiencies. Experimental limits are given at the 90% con-
fidence level. The asterisk * identifies the result for 0νββ decay mode taken from [2].

6g.s.
+

1.1–0.6
+0.8

41
+

21
+

22
+

01
+

are made of very pure Al–Si alloy. Finally, the cryostat
has a J-type geometry to shield the crystal from possi-
ble radioactive impurities in the dewar.

Partial γ-ray spectra of the energy ranges corresponding to
the most intensive γ quanta of different decay modes of 48Ca
which were used to estimate limits. The arrows indicate the
expected γ-line positions: 130.9 keV (β– transitions to 5+ and
4+ excited states of 48Sc), 983.5 keV (β– transition to 6+

ground state of 48Sc and for all β–β– transitions to excited
states), 1312.1 keV (β– transition to 6+ ground state of 48Sc),
1437.5 keV (β–β– transition to  excited state of 48Ti),

2013.7 keV (β–β– transition to 0+ excited state of 48Ti). 

21
+

The electronics consist of currently available spec-
trometric amplifiers and an 8192 channel ADC. The
energy calibration was adjusted to cover the energy
range from 50 keV to 3.5 MeV. The energy resolution
was 1.9 keV for the 1332 keV line of 60Co. The elec-
tronics were stable during the experiment due to the
constant conditions in the laboratory (temperature of
23°C, hygrometric degree of 50%). A daily check on
the apparatus assured that the counting rate was statis-
tically constant.

The detection efficiencies have been computed
with the CERN Monte Carlo code GEANT3.21. Spe-
cial calibration measurements with radioactive
sources and powders containing well-known 236Ra
activities confirmed that the accuracy of these effi-
ciencies is within 10%.

The background in the regions of interest was found
to decrease 5 to 10 times when compared with the pre-
vious measurement (figure). One can see from the fig-
ure that there are no statistically significant peaks at
pointed places. Using the same method of data analysis
[1], the new limits for the decay modes of 48Ca were
obtained. The table presents these limits with specified
γ-lines and their detection efficiencies using in data
analysis. The previous best results and theoretical esti-
mates for the half-lives of the investigated transitions
are given for comparison. As one can see, the limits
have improved by a factor of two or three when com-
pared with our previous measurement [1]. Note that the
new limits fail to approach the theoretical predictions,
with the exception of the β– transition to the 5+ excited
JETP LETTERS      Vol. 76      No. 9      2002
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state of 48Sc. For the last transition, current experiments
can reach the half-life theoretical value.
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remarks. This work was partly supported by INTAS
(grant no. 00-00362), the Russian Foundation for Basic
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The propagation of an intense (I ≤ 106 W/cm2) femtosecond laser radiation with a duration of ~100 fs through
gas-filled dielectric capillaries was studied. The radiation with a power up to 0.2 TW propagates along the paths
up to 20 cm with a transmission efficiency of ~45%. The beam transverse structure at the output is close to the
capillary fundamental mode under gas-ionization conditions. The transformation of pulse spectrum was studied
as a function of input intensity. It is demonstrated experimentally that the pulse is compressed to a duration of
~30 fs due to the compensation of ionization-induced self-phase modulation in a linear dispersive element at
the capillary output. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 51.70.+f; 32.80.Fb
The problem of increasing length of interaction
between a high-intensity femtosecond laser radiation
and a substance, compared to the diffraction Rayleigh
length, arises in many physical problems, such as large-
amplitude plasma wave generation for electron acceler-
ation [1], fabrication of X-ray lasers [2], etc. Several
ways were proposed for solving this problem. In partic-
ular, the propagation of a powerful laser radiation in
preliminary formed plasma channels was investigated
(see, e.g., [3, 4]). The use of hollow dielectric
waveguides (capillaries) is one of the efficient ways of
transmitting powerful laser radiation at distances
appreciably exceeding the Rayleigh length. In [5, 6],
the terawatt laser radiation was transported in vacuum
capillaries at a distance more than an order of magni-
tude exceeding the Rayleigh length. The first results on
the transmission of a powerful femtosecond laser radi-
ation in gas-filled dielectric capillaries were obtained in
[7, 8]. In the cited works, the influence of gas ionization
on the transmission efficiency and the spatial distribu-
tion of output intensity were studied as functions of gas
pressure and capillary diameter and length. In this
work, we are mainly focused on the experimental study
of a nonlinear spectrum transformation for an intense
(I ≤ 106 W/cm2) femtosecond laser radiation under con-
ditions of gas ionization in capillary.

It is known that, upon the propagation of an intense
ionizing laser radiation in gas, its spectrum becomes
enriched at short wavelengths, as compared to the ini-
tial spectrum [9]. Due to a large radiation–gas interac-
tion length in a capillary, one can attain, at relatively
low gas pressures (few torrs) and plasma concentra-
0021-3640/02/7609- $22.00 © 20548
tions, the broadening and short-wavelength shift of
pulse spectrum greater than in the known experiments
with focusing powerful laser radiation in dense gases
[9]. The spectrum broadening due to the nonlinear self-
phase modulation caused by field-induced gas ioniza-
tion can be used for the subsequent pulse compression
in linear dispersive elements [10]. In this work, such a
compression scheme for powerful laser radiation is
experimentally implemented for the first time.

In the experiments, a femtosecond laser system on
Ti : sapphire crystals was used with the amplification of
a chirped pulse and its subsequent compression [11].
The pulse parameters were as follows: pulse energy
W ≤ 20 mJ, wavelength λ = 0.8 µm, pulse duration τ ≈
85 fs, and the repetition rate F = 10 Hz. The beam diam-
eter D at the output of laser system was equal to 14 mm.
Laser radiation was led into a vacuum chamber pumped
to a pressure of 10–4 torr and focused by a spherical mir-
ror onto the input capillary face. The capillary was
placed at a three-coordinate translational stage with
angular adjustment. The magnified image of the output
capillary face was translated by another spherical mir-
ror to a 12-bit CCD camera and the spectrograph input
slit. The chamber was used to monitor the tuning of
radiation passage through the capillary and to study the
spatial structure of transmitted radiation. The spectra
were recorded using a CCD array placed at the spec-
trograph output. The incident energy and the energy
passed through the capillary were measured by cali-
brated photodiodes. Inert He and Ar gases were used in
the experiments.
002 MAIK “Nauka/Interperiodica”
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One of the main features of the capillary as a
waveguide is energy loss caused by the loss of a portion
of radiation into the shell [12]. The transmission effi-
ciency η through the capillary (capillary input-to-out-
put radiation-energy ratio) is determined by the effi-
ciency ηexc of input beam transformation into the mode
and by the energy loss upon the beam propagation in
capillary: η = ηexce–γL, where γ is the energy attenuation
coefficient in capillary. For the fundamental mode EH11

of a glass capillary with diameter d = 100 µm and
length L = 20 cm, used in most experiments, the calcu-
lated exponential factor was 0.65. The mode excitation
efficiency was determined by calculating the overlap
integral between the experimentally measured beam
distribution focused on the capillary input and the EH11

mode distribution. It was found to be ηexc = 0.7, giving
η = 0.45 for the transmission efficiency with allowance
made for the radiation capillary passage loss. In Fig. 1,
the experimentally measured transmission efficiency of
a femtosecond radiation is given as a function of the
incident pulse energy for an evacuated capillary and a
capillary filled with Ar (at a pressure of 1 torr). Similar
results were obtained with He at a pressure up to 3 torr.
It follows from Fig. 1 that the plasma formation in the
course of gas ionization at pressures studied has no
effect on the transmission efficiency through the capil-
lary. This suggests that plasma-induced energy losses
are small, in accordance with the theoretical estimates.
The observed decrease in the transmission efficiency
for pulse energies ≥15 mJ is caused by the phase front
distortion due to Kerr nonlinearity on the air path
before the entrance into the vacuum chamber and in the
input window of the vacuum chamber.

It is known that laser plasma appearing in the focus
area may strongly affect, due to refraction, the radiation
propagation process behind the focus. The plasma con-

Fig. 1. Radiation transmission efficiency for the (d) evacu-
ated and (+) Ar-filled capillary under a pressure of 1 torr.
Gas ionization was observed at energies higher than 1 mJ.
JETP LETTERS      Vol. 76      No. 9      2002
centration nmax, for which the refraction becomes sig-
nificant, can be estimated as [13]

(1)

where nc is the critical plasma concentration and θ is
half of the convergence angle of focused radiation. In
the experiments with a capillary with a diameter of
100 µm, we had nmax ≈ 3 × 1017 cm–3, which corre-
sponds to the gas pressure (for a single ionization)
pmax ≈ 10 torr. Our observations show that, in the case
where the pressure was higher or on the order of pmax,
the transmission efficiency through the capillary
decreased appreciably and the capillary entrance face
was rapidly (during few shots) destroyed. For this rea-
son, the pressure in the experiments was limited by the
pressure several times lower than its limiting value pmax.

The spatial structure of the output beam is an impor-
tant characteristic of the propagation of a powerful laser
radiation through the capillary. Figure 2 shows the
pulse-averaged spatial intensity distribution at the cap-
illary output for the incident pulse energy W = 20 mJ for
a (thin line) capillary in vacuum and (thick line)
Ar-filled capillary at a pressure of 1 torr. The points in
Fig. 2 correspond to the squared zero-order Bessel

function  describing the intensity distribution for
the fundamental capillary mode EH11. A comparison of
the curves shows that the beam transverse structure at
the capillary output in our experiments was close to the
structure of fundamental mode, even in the presence of
gas ionization. This signifies that the choice of gas-
pressure working range given by Eq. (1) is correct.

Figure 3 presents the spectra of pulses passed
through the capillary filled with Ar at pressure p = 1 torr
for various pulse input energies. At the energy lower
than the gas-ionization level, the spectrum at the capil-
lary output coincided with the spectrum obtained for
the evacuated capillary (thin line in Fig. 3). As the ion-

nmax ncθ
2,=

J0
2 r( )

Fig. 2. Transverse intensity distribution for a beam at the
output of the (thin line) evacuated capillary and (heavy line)
Ar-filled capillary under a pressure of 1 torr. Points show
the intensity distribution for the fundamental EH11 mode.
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ization threshold was exceeded, the output spectrum
underwent short-wavelength shift. With an increase in
the energy of incident pulse, the maximal shifts of cen-
tral components increased. The maximal spectral “cen-

Fig. 3. Laser pulse spectrum at the output of a capillary
filled with Ar under a pressure of 1 torr for an input pulse
energy of (thin line) 1 mJ, (heavy line) 5 mJ, and (dashed
line) 12 mJ; λ is the wavelength.

Fig. 4. The cross-section-averaged (heavy line) pulse spec-
tral intensity and (dashed line) pulse phase at the capillary
output and (points) the parabolic approximation of the
phase frequency dependence. Thin line is the experimental
spectrum.

Fig. 5. (2) Pulse envelope (on the axis) with the compensa-
tion of quadratic frequency dependence of spectral phase
and (1) envelope of the initial pulse.
ter-of-gravity” shift at the capillary output was as high
as ∆λ ≈ 20–30 nm and comprised from two to three
widths of the input pulse spectrum. The effective spec-
trum width was several times greater than its initial
value. In He, the spectrum behavior was qualitatively
the same, but, because of the higher ionization potential
of He, spectral changes analogous to those in Ar
occurred at higher incident pulse energies, and the max-
imal short-wavelength shift was smaller.

We carried out numerical simulation of laser pulse
propagation in a capillary under the experimental con-
ditions. To examine the laser pulse dynamics in a capil-
lary, the paraxial equation was used for the complex

envelope of a high-frequency field [E = x0 exp(–iω0τ)
+ c.c], and the ionization balance equations

(2)

(3)

(4)

(5)

were used, where τ = t – z/c, ω0 is the initial field fre-
quency, kp = ωp/c, ωp is the plasma frequency, c is the
speed of light, ni is the concentration of i-fold ionized
ions, Wi is the ionization probability for the ith ion, and
K is the maximal degree of ionization. To allow for the
frequency shift of ionizing radiation, we retained the
term ∂2/∂z∂τ (small for a quasi-monochromatic field).
In the laser intensity range used in the experiment, the
gas ionization has a tunneling character, so that the ion-
ization rates for atoms and ions were calculated using
the ADK formula [14] with correction coefficients
obtained for intensities in [15].

In Fig. 4, the intensity distribution is shown for the
output pulse obtained in numerical simulation for the
experimental conditions with an input pulse energy of
3.5 mJ. One can see from Fig. 4 that the results of
numerical simulation are in a good qualitative agree-
ment with the experiment. Among the main computa-
tional results, one should note the near-quadratic wave-
length dependence of the spectral phase, in compliance
with the results obtained in [10], where the idea of the
powerful laser radiation compression by virtue of self-
phase modulation compensation due to the ionization
nonlinearity was suggested. The wavelength depen-
dence of the spectral phase in the output pulse signifies
that the frequency modulation caused by the nonlinear
ionization of a gas in capillary can be compensated, to
a large measure, during the pulse propagation in a lin-
ear medium with normal dispersion relations (e.g., in a
quartz glass of the appropriate thickness). Figure 5 pre-

Ê
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c
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sents the calculated pulse intensity distribution (on the
axis) after the compensation of quadratic phase upon
passing through a quartz plate of thickness 3 cm and the
intensity distribution for the initial pulse at the capillary
output. One can see that the pulse compression is quite
efficient: the pulse duration after a half-intensity com-
pression is approximately 4.5 times shorter than at the
capillary input.

To check for the possibility of realizing this effect,
additional experiments were carried out. A single-pulse
autocorrelator was built in the measuring scheme and
fed with a portion of capillary output beam collimated
by a long-focus mirror (with a focus length of 81 cm).
For the pulse compression, plane-parallel compensat-
ing quartz plates of different length were placed at the
autocorrelator input. In Fig. 6, the output autocorrela-
tion function (ACF) is shown for the output pulse with
the spectrum shown in Fig. 3 by the heavy line for a
3-cm-thick compensating plate. It follows from Fig. 6
that the pulse duration decreased to τ ≈ 35 fs, i.e.,
almost threefold compared to its initial value. In this
case, the input pulse energy was 5 mJ and the energy of
compressed pulse was ≈2 mJ, with account taken of the
capillary losses. Estimates showed that the nonlinear
phase incursion due to the nonlinear Kerr mechanism in
quartz was ≤1, so that the effect of self-focusing nonlin-
earity on the temporal and spectral pulse characteristics
could be ignored. One can see from Fig. 6 that, along
with the highly compressed portion of the ACF, there
are wings containing a considerable energy fraction of
the output signal. These wings appear due to the incom-
plete phase compensation by the quartz plate. The
incomplete phase compensation is caused by a poor
quality of the input pulse and the nonideal compression
in a glass plate. The complete phase compensation
allows one to maximally compress the pulse if its dura-
tion is determined only by the spectral width. The opti-
mal compression can be obtained by the inverse Fourier
transform of the spectrum measured simultaneously
with the ACF. As follows from Fig. 6, the duration of
the optimally compressed pulse is approximately four
times shorter than the duration of the initial laser pulse
and is equal to 20 fs. It is significant that the pulse com-
pression was uniform in cross-section, evidencing for
the quasi-one-mode regime of radiation propagation in
a capillary and the weakness of the effect of Kerr non-
linearity in the compensation plate on the radiation
parameters.

It is worth noting that the presently existing com-
pression schemes are based on the Kerr mechanism of
nonlinear self-phase modulation of a powerful laser
radiation propagating in the capillaries filled with a
high-pressure (several atmospheres) gas [16, 17]. In
this case, the maximal pulse energy is limited by the gas
ionization threshold. In particular, one of the best
results obtained in [17] demonstrates that, after the
pulse compression, a pulse duration of 5 fs can be
obtained at the capillary output for an energy of com-
pressed pulse of ≈0.5 mJ and its initial duration of 20 fs.
JETP LETTERS      Vol. 76      No. 9      2002
The results obtained in this work demonstrate experi-
mentally the compression scheme for the powerful
laser pulses with the ionization mechanism of nonlinear
self-phase modulation in capillaries filled by a low-
pressure gas. In this scheme, no limitations are posed
on the pulse energy in capillaries, which opens up the
possibilities for obtaining extremely short high-energy
(≥1 mJ) optical pulses.

In summary, the spectrum transformation of an
intense femtosecond laser pulse has been experimen-
tally studied under conditions of propagation in a gas-
filled dielectric capillary, when the gas ionization has
no effect on the efficiency of radiation propagation. It is
shown that the initial spectrum broadens substantially
(by several times) and its center of gravity shifts to
short wavelengths. The results of numerical simulation
are in a good qualitative agreement with the experi-
ment. The compression (by several times) of the output
pulse by virtue of the compensation of phase modula-
tion arising due to the nonlinear field-induced gas ion-
ization process was experimentally demonstrated. The
results obtained open up the possibilities for generating
ultrashort pulses with a duration of ≤10 fs and an
energy of tens of millijoules.

This work was supported in part by the Russian
Foundation for Basic Research (project nos. 02-02-
16065, 01-02-17512, 02-02-06317, 01-02-18006), the
Russian Academy of Sciences (project no. 1999-37),
and INTAS (grant no. 97-10236).
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A universal mechanism of the Boson peak formation in glasses is proposed. The mechanism is based on the
concept of interacting quasilocal oscillators. Even in the case of weak interaction, the low-frequency spectrum
becomes unstable. Due to anharmonicity, the system undergoes a transition into a new stable configuration. As
a result, below some characteristic frequency ωc, proportional to the typical strength of interaction, the renor-
malized density of states becomes a universal function of ω with a Boson peak feature; i.e., the reduced density
of states g(ω)/ω2 has a maximum at a frequency ωb ! ωc. We derive an analytic form of this function. © 2002
MAIK “Nauka/Interperiodica”.

PACS numbers: 61.43.Fs; 63.50.+x; 78.30.Ly
The purpose of the present paper is to propose a uni-
versal mechanism of Boson peak formation in glasses.
The Boson peak (BP) is usually observed in a wide
temperature range in the inelastic light- and neutron-
scattering intensities at low frequencies, corresponding
to a maximum in the reduced density of vibrational
states g(ω)/ω2 [1]. The position of this maximum corre-
lates with a low-temperature bump in the reduced spe-
cific heat C(T)/T3, where T is the temperature.

In spite of numerous efforts, there is no widely
accepted theory of Boson peak phenomenon. An inte-
resting feature is that the BP usually does not show up
as a peak in the density of states (DOS) g(ω) itself but
only in the reduced DOS, g(ω)/ω2. A crucial question is
whether this peak corresponds to phonon degrees of
freedom or to some additional harmonic excitations in
glasses, quasilocalized (resonant) modes (QLMs). In
the first case, it would correspond either to an anoma-
lous dispersion of the acoustic phonon excitations that
has not been observed in experiment or to some low-
lying optical modes. Disorder in an amorphous material
would destroy the long-range coherence of optical
modes. This makes a distinction between them and
quasilocalized (resonant) modes impossible. Therefore,
we base our theory of the Boson peak on harmonic
excitations in glasses which coexist and interact with
long-wavelength acoustic phonons (sound waves).

The QLMs (or broken up, low-lying optical modes)
can be described as harmonic oscillators (HOs) that
interact with the phonons [2–8]. QLMs are also found
by numerical simulations; see [9] and references
therein. Due to their interaction with phonons, they
should inevitably interact with one another [10, 11].

¶ This article was submitted by the authors in English.
0021-3640/02/7609- $22.00 © 20553
This interaction can cause a mechanical instability of
the system and the Boson peak phenomenon [12].

For illustration, consider a system of two interacting
HOs with a potential energy

(1)

Here, Mi are the masses and ωi, are the frequencies of the
two oscillators. The interaction strength is given by [11]

, (2)

where g12 accounts for the relative orientation of the
HOs, r12 is their distance, ρ is the mass density of the
glass and v  is the sound velocity. The interaction
between the HO is due to the coupling between a single
HOs and the surrounding elastic medium (the glass).
Possible additional short-range interactions do not
introduce qualitative differences. The HO–phonon cou-
pling has the form [7] *int = Λxε, where Λ is the cou-
pling constant and ε is the strain.

Diagonalization of Eq. (1) yields two frequencies

(3)

The smaller value,  becomes negative when I12

exceeds the threshold (critical) value Ic ≡
ω1ω2 . A negative  indicates an instability of
the corresponding eigenstate, vibrational instability—
the previous minimum at x1 = x2 = 0 becomes a saddle
point of the potential energy Uhar(x1, x2).

This instability also persists in a system of many
interacting HOs. However, in a real glass, an unstable
HO is always stabilized by anharmonic forces into a
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nearby minimum of the potential energy. The position
of this minimum depends on the interaction between
HOs. The new frequencies, in these new minima, are
real and different from the original ones. Thus, the
vibrational spectrum is reconstructed. This is the mech-
anism of the Boson peak formation.

Let us consider a system of randomly distributed,
interacting HOs with an initial DOS, g0(ω), where
g0(ω) is a monotonically increasing function of ω in the
frequency range from 0 to ω0 (it is normalized to 1). For
the harmonic part of the interaction, we take the gener-
alization of Eq. (1) and add an anharmonic term to sta-
bilize the system

(4)

We will consider the interaction Iij between the oscilla-
tors to be a small parameter of our theory. Namely, we
assume that the typical random interaction I between
neighboring HOs is much smaller than the typical val-

ues of the product M . As |I | ! M , the frequencies
on the order of ω0 will be practically unaffected by the
interaction, whereas HOs with frequencies

(5)

will be displaced to new minima.
Since the concentration of unstable HOs is much

smaller than that of the stable ones, a low-frequency
oscillator is usually surrounded by high-frequency
ones. Therefore, we can split our problem into two
parts. First we consider a cluster containing a low-fre-
quency oscillator with frequency ω1 & ωc which is sur-
rounded by a large number N of HOs with much higher
frequencies ωj ~ ω0. To determine the eigenfrequencies
of the interacting oscillators belonging to the cluster,
one should solve the secular equation on the order of
N + 1 in ω2. However, the variations of the high eigen-
frequencies should be small and can be discarded as

they are proportional to the small parameter I/M . As
a result, one gets for the smallest eigenfrequency a lin-
ear equation. It can easily be solved, and one can show
that such a cluster becomes unstable under the con-
dition

(6)

For the unstable situation, one has to take the anhar-
monicity, Eq. (4), into account. The new low frequency
of the coupled oscillators is then given by

(7)
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It is remarkable that the anharmonicity which has been
used in deriving the second Eq. (7) does not in the end
enter this equation of our final result, Eq. (20). 

Thus, the derivation of the new (reconstructed) DOS
amounts to a calculation of the distribution of k, ρ(k).
Inserting Eqs. (2) and (6) into the definition of ρ(k)
gives

(8)

Here, the angular brackets denote the averaging over
the positions of the N high-frequency HOs, their fre-
quencies, and orientations. For simplicity, we take
equal masses Mj = M and for gij, a uniform distribution
in the interval [–1/2, 1/2].

Using the Holtsmark method [13], one gets

, (9)

where

(10)

Here, n is the concentration of HO and 〈1/ω〉0 is the ω–1

moment of the initial DOS g0(ω). This formula is the
definition of the characteristic frequency ωc introduced
by order of magnitude in Eq. (5). Jn . I is the typical
interaction between the nearest neighbors and 〈1/ω〉0 .
1/ω0. We assume that the average 〈1/ω〉0 is finite; i.e., at
small ω, the initial DOS g0(ω) ∝ ω n with n > 0.

The DOS is reconstructed to  = /2ω,
where

(11)

and G0( ) ≡ g0(ω1)/2ω1. Using Eq. (7) and integrating
Eq. (5), we obtain

(12)

As one can see, for ω ! ωc,  = const, so that
 ∝ ω ; i.e., the reconstructed DOS appears to be a

linear function of ω. For high frequencies, the first term
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in Eq. (12) can be discarded and the original DOS is

reproduced,  =  for ω @ ωc.

If the low-frequency HOs with their reconstructed
linear DOS were isolated, the problem would be
solved. There is, however, a further interaction between
these HOs, which we will take into account in the sec-
ond step of our procedure. The low frequency HOs, dis-
placed from their equilibrium positions, create random
static forces f. The force fi acting on the ith oscillator
from the jth one is

(13)

In the presence of anharmonicity, this again recon-
structs the low frequency part of the spectrum (cf. [6]).
Consider an anharmonic potential variation under the
action of a random static force f, so that U(x) = Ax4/4 +

M x2/2 – fx, with ω1 the oscillator frequency in the
harmonic approximation. Under the action of f, the
equilibrium position shifts from x = 0 to x0 satisfying
the equilibrium equation

(14)

In the new equilibrium position, the oscillator, in the
harmonic approximation, acquires the eigenfrequency

(15)

If  is the distribution function of frequencies ω1

and P(f) is the distribution of random forces, then one
gets the new equilibrium DOS

(16)

As the forces between the HOs are proportional to

, they have a Lorentzian distribution:

(17)

Assuming ω ! ωc and integrating Eq. (16) with
 = Cω1, we get
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where

The function g(ω)/ω2 is plotted in Fig. 1. It depends
on a single parameter, ω*. The maximum of g(ω)/ω2,
i.e., the Boson peak, is at ωb ≈ 1.1ω*. For large frequen-
cies, ω @ ωb, g(ω) ∝  ω, while for small frequencies,
ω ! ωb, g(ω) ∝  ω4. Also shown is a comparison of our
theoretical curve with Raman scattering data for lith-
ium borate glasses [14] of different compositions.
These results are in a rather good agreement with the
experimental data and support the idea of a universal
form of the Boson peak [15].

The Boson peak frequency, ωb ≈ 1.1ω*, is deter-
mined by the characteristic value of the random force
δf, Eq. (19) acting on an HO with the characteristic fre-
quency ωc. According to Eq. (13), it is due to the inter-
action between HOs with frequencies on the order of

ωc; i.e.,  . Jnc, J . Mωc/g0(ω0), where nc .
g0(ωc)ωc is the concentration of these HOs. The charac-
teristic displacement of the HO from the equilibrium
position is x0 . ωc . As a result, we get the esti-
mate

(21)

We tested these ideas by numerical simulation. N
oscillators with frequencies 0 < ωi < 1 were placed on a
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Fig. 1. The Boson peak in reduced units: Eq. (20) (solid
line) and Raman data for lithium borate glasses [14]. The
positions of the BP (for different compositions x) are given
in cm–1.
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simple cubic lattice with lattice constant a = 1 and peri-
odic boundary conditions. For random orientations of
the oscillators, gij, Eq. (2), we took random numbers in
the interval [–0.5, 0.5]. The anharmonicity parameter,
A, and the masses of the oscillators, Mi, were set equal
to 1. The initial DOS for the noninteracting HOs was
taken as g0(ω) ∝ ω n, with n = 1, 2, 3. We minimized the
potential energy and calculated the DOS in the har-
monic approximation (around this minimum) for dif-
ferent interaction strengths, J. This procedure was
repeated for 10000 representations. To check for size
dependence, we did the calculations for different N.
Except for the case J = 0.07, the results did not change
between N = 2097 and N = 4096. The results also did
not change by introduction of the cubic anharmonicity.

Figure 2 shows g(ω) for g0(ω) ∝ ω 2 and J = 0.1 in a
log–log representation. The predicted crossovers in the
ω dependence of the DOS are clearly observed at two
characteristic frequencies ωc and ωb. From the calcu-
lated eigenvectors, we find that, as expected, near and
above ωb, the eigenmodes are complicated superposi-
tions of many HOs, whereas at the lowest frequencies,
the HOs are weakly coupled.

The dependence of the reconstructed DOS g(ω)/ω2

on the interaction strength J is illustrated in Fig. 3. One
can see the general increase of ωb and related decrease
of the Boson peak intensity with increasing J. This
result agrees with recent experiments [16] and molecu-
lar-dynamic simulations [17]. Our simulations cover
one decade in Boson peak frequencies. The insert
shows that, in full agreement with our predictions (see
Eq. (5) and Eq. (4)), the crossover frequencies change
with interaction J as ωc ∝  J and ωb ∝  J1 + n/3. 

In this letter, we dealt with the case of weak interac-
tion between HOs. If the interaction is increased, the

Fig. 2. Simulated density of states (g0(ω) ∝  ω2, N = 2097)
in a log–log representation. The arrows indicate two charac-
teristic frequencies ωb and ωc.
characteristic frequencies ωb and ωc grow, and the gap
between them narrows and finally disappears. Then our
Boson peak in g(ω)/ω2 superimposes the “boundary
peak” in g0(ω) at the edge of the original vibrational
spectrum. The Boson peak can no longer be distin-
guished from the boundary peak in g(ω) or from a pos-
sible equivalent maximum in g0(ω). A similar case with
strong coupling between oscillators was investigated
in [10] by means of molecular-dynamic simulations
and in [18] using the replica method.

In conclusion, we present a universal picture of the
Boson peak formation in glasses where stabilization of
the system of weakly coupled harmonic modes by
anharmonicity is essential. The principal new result of
our approach, compared to previous work, is that the
Boson peak emerges naturally on the unstructured flat
low-frequency part of the initial spectrum g0(ω)/ω2,
where no peaks in the DOS existed before. For small
interactions, the Boson peak frequency is much smaller
than the Debye frequency value. It shifts with interac-
tion strength, I which explains the large variety of
Boson peak magnitudes found in experiment.
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The simplest treatment of the complex 57Fe Mössbauer absorption spectra of nanostructured Fe–Cu–Nb–B
alloys within the recently developed generalized two-level relaxation model has been successfully performed.
This model applied for a system of superparamagnetic particles allows one to take into account the interparticle
interaction in a simpler form and to describe qualitatively a specifically asymmetric shape of Mössbauer lines
with sharp outer and smeared inward sides when the conventional two-level relaxation model fails. The
approach is actually an alternative way in order to evaluate the Mössbauer spectra of nanostructured ferro-
magnetic alloys without taking into consideration a rather wide and diverse distribution over the particle sizes.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 61.18.Fs; 61.46.+w; 76.80.+y
We report the first experimental evidence for the
success of the generalized two-level relaxation (GTLR)
model recently introduced in order to understand Möss-
bauer spectra of nanostructured magnetic alloys [1].
Studies of these alloys by means of different techniques
are of great interest for both fundamental and techno-
logical reasons. The most attractive are the structural
and magnetic properties of these alloys, so that the 57Fe
Mössbauer spectroscopy appears to be an excellent tool
for characterization of the iron-based nanostructured
materials [2–6]. These materials are produced by the
partial devitrification of amorphous alloys, and consist
structurally of nanosized crystalline bcc iron grains
(NG) with a long-range order and a residual amorphous
matrix that exhibits short-range order. As a result, the
Mössbauer spectra of the materials look like a superpo-
sition of the well-resolved hyperfine magnetic structure
corresponding to NG and strongly broadened magnetic
component with a lower average hyperfine field, which
is usually associated with the amorphous phase (see
Fig. 1). In spite of the large amount and diversity of the
experimental spectra of various nanostructured materi-
als, there still remain principal difficulties and even
contradictions in the treatment of data.

The most popular approach for evaluation of Möss-
bauer spectra of nanostructured ferromagnetic alloys is
taking into consideration continuous distributions of
the hyperfine field Hhf [7], which should describe, first
of all, a distribution over the particle sizes in such inho-
mogenious materials. This method has allowed
researchers to restore the temperature dependencies of

¶ This article was submitted by the authors in English.
0021-3640/02/7609- $22.00 © 20558
the Hhf average values and widths of their distribution
for NG and amorphous phase, as well as to justify the
presence and evaluate the parameters of so-called inter-
face zones between NG and matrix [2, 6]. However, the
results obtained within the method often suffer from
some ambiguity. First, the widths of the Hhf distribution
require for their explanation a rather wide distribution
over particle size, which is often not confirmed by com-
plementary methods. On the other side, the sizes of NG
in the nanostructured materials are regarded to be rather
small (for instance, the average size of particles in the
Fe86 – xCu1NbxB13 alloys was estimated to be about 2–
4 nm from transmission-electron-microscopy measure-
ments [8]) so that the particles should demonstrate
superparamagnetic relaxation at finite temperatures.

The simplest way to describe the relaxation effects
on the Mössbauer line shape is to use the two-level
relaxation (TLR) model [9], within which only two
energy states corresponding to opposite directions of
the particle’s magnetic moment along the easy magne-
tization axes are considered, so that jumps from one
state to the other are determined by the energy barrier
U0 between them (Fig. 2, left). The Neel formula is
used to describe the temperature-dependent transition
rate [10]:

, (1)

where p0 is slightly dependent on temperature. Accord-
ing to the model, if the relaxation rate is comparable or
larger than the natural Mössbauer linewidth Γ0 (which
is just the case for the iron nanosized particles at room
temperature and higher), the relaxation reveals itself in

p p0 U0/kBT–( )exp=
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the Mössbauer spectra with temperature increasing as a
remarkable broadening of spectral lines followed by
shifts of the widely broadened lines to the center of the
spectra and a collapse of the magnetic hyperfine struc-
ture into a single central line or quadrupole doublet at
higher temperatures [1, 9].

At first glance, the temperature evolution of Möss-
bauer spectra of nanostructured ferromagnetic alloys
(like those shown in Fig. 1) exhibits behavior of just
this kind, which is why some investigators have tried to
evaluate the spectra within the relaxation effects [4].
The pressing point here is just the consequence of the
two-level relaxation model that, at any stage of relax-
ation in the transition region from a well-resolved
hyperfine magnetic structure to its collapse, the broad-
ening of spectral lines should be principally of a
Lorentzian type; i.e., the relaxation should result in the
appearance of long Lorentzian tails in the spectrum,
which could be easily registered by means of careful fit-
ting of the spectrum. Earlier [6], we performed such a
detailed analysis of the Mössbauer spectra of nano-
structured Fe86 – xCu1NbxB13 alloys using the powerful
DISCVER method [11] but failed to find any traces of
the conventional relaxation effects (i.e., the presence of
additional Lorentzian tails in the spectra) up to higher
temperatures where the collapse effect occurs.

However, the most striking feature of Mössbauer
spectra of nanostructured ferromagnetic alloys is a spe-
cifically asymmetric shape of the spectral lines with
sharp outer and smeared inward sides, and even stairs-
like shape at higher temperatures (see Fig. 1), which is
experimentally observed in almost every other work
published in the field (see, e.g., [2–6] and references
therein). Lines of this unusual form have been observed
earlier in many studies of systems with superparamag-
netic particles [12, 13] and could not fit the conven-
tional two-level relaxation model without taking into
account a rather wide distribution over the particle
sizes, i.e., over the magnetic anisotropy energies U0 and
relaxation parameters p0 [14]. Note that a much more
complicated multilevel relaxation model with a log-
normal particle-size distribution has successfully
described the Mössbauer spectra of real fine-particle
systems, but no qualitative distinction between effects
of the two factors on the line-shape evolution with tem-
perature has been given [15].

A qualitatively new explanation for Mössbauer line
shapes of this kind has recently been suggested in the-
oretical work [1], where a generalization of the TLR
model has been performed. In the present study, we
have applied this GTLR model for a qualitative treat-
ment of the Mössbauer spectra of the nanostructured
Fe79Cu1Nb7B13 alloys with average NG size of about
4 nm and different NG content, measured in the tem-
perature range from 300 K to 700 K. Because of the
great importance of qualitative consequences of the
new GTLR model for superparamagnetic relaxation as
JETP LETTERS      Vol. 76      No. 9      2002
a whole and for studies of nanostructured magnetic
materials in particular, below we will stay within the
simplest possible assumptions taken in [1].

Fig. 1. Temperature evolution of 57Fe Mössbauer spectra
(bars) of the nanostructured ferromagnetic Fe79Cu1Nb7B13
alloys with different content of nanograins: 25% NG (left)
and 10% NG (right). Solid lines are calculated within the
generalized two-level relaxation model for the outermost
hyperfine magnetic component corresponding to NG of the
same size with different energy distribution widths σ.

Fig. 2. Two-level relaxation model for a single superpara-
magnetic particle (left), generalized two-level relaxation
model for a particle interacting with environment (center);
two-level scheme for a particle interacting with environ-
ment at given ∆E (right).
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The principal postulate of the GTLR model is that
the relaxation between the particle’s states with oppo-
site directions of its magnetic moment never occurs as
a transition between the states of the same energy,
because even weak interaction with the environment
should inevitably smear out the energy levels (Fig. 2,
center). In a system like nanostructured ferromagnetic
alloys with a great number of degrees of freedom, the
energy levels of each particle at a certain time prove to
be separated by a certain gap ∆E (Fig. 2, right), and the
average value σ of distribution over ∆E may be rather
large and comparable to temperature. Such a separation
of the energy levels results in different values of the
relaxation rates, p12(∆E) and p21(∆E), from one state to
the other and vice versa, followed by a difference in
equilibrium populations of these states from the
detailed balance principle. As a result, the shape of the
Mössbauer absorption spectrum and its temperature
evolution changes drastically [1, 9].

Following the assumption of the conventional TLR
model that the hyperfine field at the nucleus can only be
reversed during the relaxation and the results obtained
in [1], one can easily derive the following expression
for the cross section of gamma-ray quantum absorption
for a given ∆E:

(2)

where  = ω + i(Γ0/2 + ), α = (M, m) labels the
hyperfine transitions between the ground and excited
states with nuclear spin projections m and M onto the
direction of the hyperfine field, ωα = Mωe – mωg, ωe, g =
ge, gµNHhf, µN is the nuclear magneton, gg, e is the
nuclear g factor for the ground and excited states, Cα
determines the intensity of the corresponding transi-
tion, σα is the effective absorber thickness,

(3)

It is clearly seen that, in the absence of interaction
(∆E = 0,  = p, ∆p = 0), Eq. (2) is reduced to the well-
known expression for the absorption spectrum within
the conventional TLR model [9].

From the physical point of view, the ∆E values must
be random variables spread over a certain interval, and
the simplest ∆E distribution function can be chosen in
the Gaussian form:

(4)
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1

2πσ
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2σ2
--------------– 

  .exp=
Then, the averaged absorption cross section is naturally
determined by the energy distribution width σ:

(5)

Using Eqs. (2)–(5), one can easily calculate the absorp-
tion spectrum within the GTLR model, provided that
the relaxation parameters p12(∆E) and p21(∆E) are
given; i.e., the values of energy maxima and minima
shown in Fig. 2 (right) should be determined. In the
simplest case of weak interaction (∆E ! U0), the relax-
ation parameters can be written in the form

, (6)

where p is defined by Eq. (1). In this case, as clearly
seen from comparison of Eqs. (1)–(6), the averaged
absorption spectrum  is completely defined by
only three parameters: p0, U0, and the ratio of the
energy distribution width to temperature, σ/kBT. As has
been shown already in [1], the relaxation Mössbauer
spectra calculated within this scheme differ drastically
from those of the TLR model, and the most salient fea-
ture of the GTLR spectra is just the appearance of
asymmetrically shaped lines with extended inward
wings.

Since the asymmetrical lineshape is clearly seen in
the spectra of nanostructured Fe79Cu1Nb7B13 alloys
shown in Fig. 1, we have tried to fit the data within the
GTLR model. However, in order to analyze spectra of
such a high level of complexity in detail, one needs first
to develop a strategy of analysis and corresponding
computer program like DISCVER [11], which, of
course, takes time. That is why, at this first stage of
analysis, we have decided to restrict ourselves to fitting
only the most distinguishable contribution into the
spectra with the highest value of hyperfine field, which
obviously comes from nanocrystalline grains. We have
performed simultaneous fitting of the whole tempera-
ture series of spectra for each sample over the outer-
most velocity ranges including only outer lines of mag-
netic sextet corresponding to NG. The adjustable
parameters in the course of fitting were p0 and U0, the
same for all spectra of each sample, as well as hyperfine
field, isomer shift, and σ for each spectrum of the sam-
ple. In order to avoid unphysical solutions due to the
restrictions on the fitting velocity ranges, the variable
parameter was also the spectral area of only one spec-
trum of the series, while others were bonded by the
ratios of total areas of corresponding spectra, which
were estimated independently with rather good accu-
racy [6].

Results of the analysis are shown as solid curves in
Fig. 1, and temperature depedences of the values, of
hyperfine field Hhf and energy distribution width σ for
both the samples studied are displayed in Fig. 3. As
clearly seen, Fig. 1 demonstrates a good description of

ϕ ω( ) ϕ ω ∆E,( )P ∆E σ,( ) ∆E( ).d

∞–

∞

∫=

p21 12, ∆E( ) p ∆E/kBT±( )exp=

ϕ ω( )
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the outermost lines of all the spectra, as well as almost
complete accordance between the calculated curves
and resolved magnetic hyperfine structure (with lines of
strongly asymmetrical shape mentioned above) at tem-
peratures higher than the Curie temperature of amor-
phous phase for both the samples. Remembering that
solid lines in Fig. 1 are calculated within the GTLR
model for the only hyperfine magnetic component cor-
responding to NG of the same size, one can understand
that, in this case, there is no need to introduce a broad
distribution of particle size, at least for this NG phase
even at higher temperatures, because the relaxation of
interacting particles can result in the specific broaden-
ing of the spectral lines. In any case, it is clear that,
although the GTLR model does not principally deny
the particle’s distribution over sizes, taking into account
the interparticle interaction should strongly modify the
shape of the distributions obtained by conventional
methods.

There is one more interesting result of physical
meaning. As Fig. 3 shows, despite the considerable dif-
ference between the temperature evolution of Möss-
bauer spectra for the two samples studied, the hyper-
fine-field values for nanograins in these samples are
practically the same up to higher temperatures and
slightly deviate from the temperature dependency of
bulk values of hyperfine field in pure iron. At the same
time, the difference in the temperature evolution of the
spectra for the two samples, as well as the forms of this
evolution mentioned above, seem to be governed by the
temperature dependence of energy distribution width σ
characterizing interparticle interactions. At least, it is
obviously seen in Fig. 3 that the σ(T) dependences
exhibit remarkable changes in the interactions just
above the Curie temperature of amorphous phase for
both the samples, which again evidences an essential
interrelation between the magnetic behavior of NG and
amorphous matrix.

As for the relaxation parameters p0 and U0, they
appeared to be equal to (1.0 ± 0.8) × 1011 s–1 and 1100 ±
300 K, respectively, just indicating that the fast relax-
ation regime is realized for nanograins in both the sam-
ples down to room temperature. Moreover, large mean-
square errors in these parameters justify this conclu-
sion, because, in the case of fast relaxation, the absorp-
tion cross section becomes slightly dependent on the
relaxation rate p, i.e., on p0 and U0. Indeed, the fast-
relaxation regime, from the physical viewpoint, means
very fast fluctuations between the energy states of a
particle, so that the nucleus should “feel” only the sto-
chastically averaged hyperfine field defined by the dif-
ference of the equilibrium populations, w1(∆E) and
w2(∆E), of the states at a given ∆E:

(7)

As follows from the detailed balance principle,

(8)

Hhf ∆E( ) w1 ∆E( ) w2 ∆E( )–[ ] Hhf .=

w1 ∆E( ) w2 ∆E( )– ∆p/ p ∆E/kBT( ),tanh= =
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and Eq. (5) for the absorption cross section in the
GTLR model is reduced to the form independent of the
parameter p [1]:

(9)

As seen from this equation, the spectrum in the fast-
relaxation regime represents a continuous distribution
of hyperfine magnetic sextets with lines of natural
width and relative intensities defined by the P(x, σ/kBT)
probability function. Then, one can easily see that the
line shapes in the GTLR model are asymmetric and
fully determined by the ratio of energy distribution
width σ to temperature. Realization of the fast-relax-
ation regime in our case may only mean that nanograins
in the samples studied are small and would demonstrate
the superparamagnetic behavior even at room tempera-
ture if they were isolated; however, the interparticle
interaction makes them stay in the locally ferromag-
netic state up to substantially higher temperatures.

In conclusion, the generalized two-level relaxation
model proved to be rather efficient in describing spe-

ϕ ω( )
σaΓ0

2

4
----------- Cα

2

α
∑=

× 1

ω ωα x( )tanh–[ ] 2 Γ0
2/4+

------------------------------------------------------------P x σ/kBT,( ) x( ).d

∞–

∞

∫

Fig. 3. Temperature dependences of the hyperfine fields
(top) and energy distribution widths σ (bottom) obtained
from the fitting outermost velocity ranges of the spectra
shown in Fig. 1: sample A with 25% NG (closed circles) and
sample B with 10% NG (open circles). Rectangles (top)
correspond to the bulk values of hyperfine field in pure iron.
The indicated Curie temperatures of the amorphous matrix
in the samples were estimated by the Mössbauer thermal
scan method [8].
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cific shapes of Mössbauer spectra of nanostructure fer-
romagnetic alloys. It actually represents a new
approach to analysis of the spectra taking into consid-
eration the interparticle interaction in a simple form,
which can be easily used by experimentalists. However,
the GTLR model must be extended to the case of time-
dependent energy shifts ∆E, which should be correlated
over mutually interacting superparamagnetic particles.
In addition, a detailed quantitative analysis of Möss-
bauer spectra of nanostructured ferromagnetic alloys
obviously requires the development of an efficient com-
putational procedure taking into account both the relax-
ation of interacting particles and their distribution over
sizes.

We are grateful to the “Internationales Büro des
BMBF,” Bonn, and the Russian Ministry of Science and
Technology, Moscow (project RUS-157-97), as well as
to the Russian Foundation Sponsoring Domestic Sci-
ence, Moscow, for supporting our collaboration.
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We solve a 2D model of N-component dense electron gas in the limit N  ∞ and in the range of the Coulomb
interaction parameter N–3/2 ! rs ! 1. The quasiparticle interaction on the Fermi circle vanishes as "2/Nm. The

ground-state energy and the effective mass are found as series in powers of . In the quantum Hall state on
the lowest Landau level at integer filling 1 ! ν < N, the charge-activation-energy gap and the exchange constant
are ∆ = log(rsN

3/2)"ωH/ν and J = 0.66"ωH/ν. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 71.10.Ca; 73.43.Cd; 85.30.Tv

rs
2/3
Two-dimensional electron gas (2DEG) in GaAs
quantum wells and Si heterostructures [1] is a unique
system where density of electrons n can be varied
widely. Effects of the electrostatic Coulomb interaction
are determined by the dimensionless variable rs =

e2m/ "2. In an Si MOSFET, interesting phenomena

were observed recently at relatively large  ~ 10: a
conductivity “fan” similar to the metal–insulator transi-
tion [2], and an increase of the effective electron mass
and magnetic susceptibility [3, 4]. At large rs, no exact
model exists, and many phenomenological approxima-
tions have been developed.

At small rs, there is an exact model—dense electron
gas [5]—but two of its key predictions have not been
confirmed in experiment. First, theory predicts a reduc-
tion of the effective mass m*/m – 1 ~ rslog(1/rs) at
rs  0 [6], because the forward scattering is larger
then the backward scattering for Coulomb potential.
Second, in the integer quantum Hall ferromagnet state
on the lowest Landau level, theory [7] predicts the Cou-

lomb charge-activation gap ∆ ~ e2  in strong
magnetic field H (rs  0). Yet, in an Si(100)
MOSFET, the Shubnikov–de Haas oscillation experi-
ments [8, 3] find m*/m = 1 + 0.08rs, at 3 > rs > 0.9, and
the magnetocapacitance experiment [9] finds much
lower charge activation gaps ∆ ~ "eH/mc, at 4 > rs > 1.5.
In phenomenological models (see Refs. in [1]), experi-
mental m*(rs) > m was reproduced in the large-rs

domain with a crossover at  ~ 1 from the theory [5]
with m* < m to the large rs with m* > m. But perturba-
tion series in one parameter rs could hardly have the

two so widely different crossovers  and .

¶ This article was submitted by the authors in English.
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In this letter, we show that a systematic model of
multicomponent dense electron gas agrees better with
experiment. In Si, electron states have a valley degener-
acy [1] corresponding to different band minima. For the
(100) orientation of the 2D plane, there are N = 4 equiv-
alent spin-valley states. Two valley band states here dif-
fer only by plane waves exp(±iQz) in the perpendicular
direction with an atomic value of momentum Q. These
states are strongly orthogonal. For (111) orientation,
the spin-valley degeneracy is especially large, N = 12.
Electron gas in the limit N  ∞ was first considered
in [10], and the leading term of the ground-state energy
was shown to coincide with that of a dense charged
boson gas [11].

For N-component dense 2DEG in the limit N  ∞,
we find a crossover at  = 1/N3/2 from the theory [5] at
vanishing rs to a novel systematic theory at

(1)

It describes a system of interacting electrons and plas-
mons. Plasmons are excitations with large characteris-
tic momentum q0 @ pF and energy ω0 @ eF. Landau the-
ory of Fermi liquid uses only one function—the ampli-
tude of quasiparticle scattering—to derive all Landau
Fermi liquid parameters. In our theory, the interaction
between quasiparticles vanishes as 1/Nm, and the elec-
tron subsystem is the ideal Fermi gas. The exchange of
high-energy plasmons gives rise to a polaronic-like
renormalization of the effective electron mass as a

series in powers of . In the case of an integer quan-
tum Hall state on the lowest Landau level, we predict a
linear dependence on magnetic field of the charge-acti-
vation-energy gap and the exchange constant that agree
better with experiment.

rs*

rs ! 1 and rs @ rs* 1/N3/2.=

rs
2/3
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The 2DEG Hamiltonian is expressed in terms of the
second quantized electron operator [12]

(2)

where α, β = 1, …, N are spin-valley indices. N is an
even length of fermion spinor. No valley mixing in the
density operators, an isotropic mass tensor, and a posi-
tive uniform charge at large distance d from the 2D
plane are assumed. At first we assume zero magnetic

field and αF = e2/"vF ≈ rs  ! 1 instead of the first
condition (1), and then we extend the theory to all rs ! 1.
We use Matsubara diagrammatic expansion in terms of
the Coulomb interaction. The new Coulomb line multi-
plies the diagram by a small parameter αF, whereas
each electron loop brings a large factor N with it. There-
fore, the leading order is given by diagrams with mini-
mum number of Coulomb lines per electron loop, with
an essential block being the RPA screened Coulomb
interaction—a sequence of alternating Coulomb lines
and electron loops [13]. The second condition (1)
makes the typical RPA momentum large: q ~ q0 @ pF,

where q0 = (8πe2mn)1/3 =  and ω0 = / m
defines a typical plasmon momentum and energy. The
electron polarization operator is

(3)

where e(q) = q2/2m is the electron dispersion. It
depends on the total density n and is independent of an
electron distribution over N spin valleys as long as

 ! q0. The RPA Coulomb interaction is

(4)

Its pole corresponds to a plasmon excitation with a dis-

persion: ω(q) = /2m. Electrons can be inte-
grated out from the model (2), leaving an effective the-
ory of plasmons with typical momentum q0 and a prop-
agator (4) which weakly interact (in the limit rs ! 1)
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Fig. 1. (a) Four-leg plasmon vertex and (b) two three-leg
plasmon vertices contribution to the energy. Solid lines are
electron propagations and wavy lines are plasmon propaga-
tions.
due to three plasmon, four plasmon, etc., vertices. A
plasmon vertex with a k leg with external momenta

 ~ q and frequencies |ωi | ~ ω vanishes in the limit

/m ! |ωi | as nq2/mωk for k even and nq4/m2ωk + 1 for
k odd due to the electron-number conservation.

The kinetic energy density Ekin = πn2/Nm is small,
because electrons are evenly distributed over N spin-
valley states. In the leading order, the energy of 2DEG
is given by the zero energy of plasmons: E0 = EHF + E',

where EHF = –8rsn2/3m  is the 2D Hartree–Fock
exchange energy and E' is the RPA energy [13]

(5)

At q ~ pF, we single out from E' the term that cancels
EHF exactly, and the remaining plasmon energy (also
called a correlation energy) can be evaluated as [14]

(6)

Plasmon energy (6) coincides in the leading order with
the ground-state energy of a dense charged boson gas
[11].

The next corrections to the plasmon energy are
given by the second-order diagram (a) and the third-
order diagram (b) in Fig. 1. Provided the internal fre-
quency and momentum are related by plasmon disper-

sion, the value of a diagram is proportional to  in
power of Ni – NL + 2, where Ni is the number of Cou-
lomb lines and NL is the number of electron loops. We
have numerically evaluated the two diagrams in Fig. 1

and found E0 + E1 = –(2.03191  – 0.156(1) )n2/m,
where the first term represents Eq. (6). Comparing ver-
tices of the fermion (2) and the dense charged bose gas
models, we conclude that these models are different.

A specific feature of our mean field theory that dis-
tinguishes it from the standard Landau–Fermi liquid
theory is that electron and plasmon excitations are
found in a wide momentum range pF ! p ! q0. Let us
prove that the four-fermion vertex [12] vanishes on the
infrared side of this range: Γαα ; ββ(ei, pi) ~ Q2/mn at

pi/q0  0, where ei ~ /2m and i = 1 … 4. Ω = e1 –
e2 and Q = p1 – p2 are the transfered frequency and
momentum in the particle-hole channel in Fig. 2. A pair
of electron and hole Green’s functions with indepen-
dent integration over frequency and momentum and
sum over spin-valley index γ gives a large term [12].
Therefore, vertex Γ(Ω, Q) is a ladder of alternating
pairs—polarization operators Π(Ω, Q)—and blocks M,
defined as the set of all diagrams that cannot be cut over
the pair lines. The block M is assumed to be indepen-
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MULTICOMPONENT DENSE ELECTRON GAS 565
dent of the internal integration momenta and frequency
of the adjacent Π(Ω, Q). The block M can be further
divided into i) a part that can be cut over one plasmon
line Γ3D(Ω , Q)Γ3, where Γ3 is a three-leg one-plasmon
irreducible part at vanishing leg momenta and (ii) a
four-leg one-plasmon irreducible part Γ4 at vanishing
leg momenta. Let ΓD(Ω , Q) and ΓΓ(Ω , Q) be the parts
of the total vertex Γ(Ω , Q) that end on the left with a
plasmon line D or with a block Γ4. The Dyson equation
for the particle-hole channel is algebraic:

(7)

The total four-fermion vertex is given as Γ = Γ3ΓD + ΓΓ:

(8)

If Ω ~ Q2/m, then we estimate the plasmon propagator
D(Ω , Q) ≈ Π–1(Ω , Q) ~ Q2 to be small, but the factor
(1 – DΠ) ~ Q3 is even smaller in the limit Q  0. We
use the Ward identity Γ3 = Z–1, where Z < 1 is the
Green’s function pole renormalization. Γ4 is given in

the lowest order by the two diagrams in Fig. 3:  =

− Γ(2/3)Γ(5/6) . It represents a retarded
attractive interaction, because it appears in the second
order of perturbation in plasmon exchange. Assuming
that Γ4 is finite, we conclude from (8) that Γ(0, Q) =
D(0, Q) = Q2/4m*nZ2.

This suggests an analogy between Fermi gas and a
ferromagnet with spontaneously broken symmetry
where both spin-wave dispersion and interaction vanish
as Q2 according to the Goldstone theorem. A continua-
tion to momenta on the Fermi circle gives the quasipar-
ticle interaction Γ = 2π/mN.

There are no infrared divergences in the block Γ4,
despite the possibility that some internal frequency
integration is determined by electron energy poles
rather then by plasmon energy poles in the momentum
range pF ! p ! q0. Those diagrams that (i) can be cut
into two or more parts only over electron lines and for
which (ii) each part emerging as a result is one-plasmon
irreducible after all internal electron lines are con-
tracted into points would be divergent. Those parts
where all plasmon lines are closed into loops are fer-
mion vertices, symbolically written as

V2k . In the Cooper channel, the four-leg

vertex V4 = Γ ~ Q2 vanishes and thus cuts off a specific
2D logarithmic divergence [12]. All higher order verti-
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ces are regular as functions of leg momenta and are
irrelevant in 2D, as a simple power counting shows: t ~
x2 and ψ ~ 1/x.

Despite the vanishing interaction between electrons,
there is an essential plasmon polaronic effect. The elec-
tron self-energy [12]

(9)

is related to the electron Green’s function G–1(e, p) =
ie – p2/2m + µ – Σ(e, p), where µ is the chemical
potential. At e ! ω0 and p ! q0, we calculate the self-
energy (9) and find G–1(e, p) = Z(ie – e(p))–1, where the

quasiparticle dispersion is e(p) = (p2 – )/2m* with
the renormalized effective mass

(10)

and Z–1 = 1 + Γ(1/3)Γ(7/6) /2  is a renormaliza-
tion of the Green’s function pole.

A static screened potential of an external charge z
immersed into 2DEG is given by D(0, q) (4): V(q) =

2πe2zq2/(q3 + ). It grows with the transferred
momentum, which helps to explain the heavier effec-
tive mass (10), because the backward scattering is
larger than the forward scattering.

The temperature dependence of the effective mass
comes from the momentum range pF ! p ! q0. Taking
into account the temperature dependence of the polar-
ization operator in the equation for the self-energy (9),
we encounter logarithmic infrared divergence. Deriving
and solving a simple renormalization group equation,
we find a growing effective mass if the momentum of
the quasiparticle decreases. On the Fermi line, we find

(11)

Σ e p,( ) D ω q,( )G e ω+ p q+,( )
ω q2dd

2π( )3
---------------∫–=

pF
2

m
m∗
------- 1

1

10 π
-------------Γ 1

3
--- 

  Γ 7
6
--- 

  rs
2/3,–=

rs
2/3 π

q0
3

1

m*
2 T( )

--------------- 1

m*
2

-------
NT2

12n2
-----------

q0

pF

------,log–=

Fig. 2. A particle-hole ladder for vertex Γ. Two-leg element
D, three-leg element Γ3, and four-leg element Γ4 are shown.

Fig. 3. Four-leg vertex is a sum of two diagrams in the lead-
ing order.
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where zero-temperature effective mass m* is given

by (10). In the experimental situation of the Si (100)
MOSFET, the effective mass (11) can strongly depend
on temperature.

At T ! ω0, plasmon thermal fluctuations freeze out,
whereas the ideal electron subsystem evolves from a
degenerate gas at T ! eF to the Boltzmann gas at T @ eF.
The 2DEG thermodynamic potential Ω(T) = NΩ0(T, µ) +
E0 + E1, where Ω0(T, µ) is the thermodynamic potential
of the ideal Fermi gas with the property NΩ0(0, eF) =
Ekin.

Static magnetic susceptibility is related to a change
of the total energy in external magnetic field δE =
−Nχ*(µBH)2/2. χ* is given by the Pauli ideal-gas sus-
ceptibility χ = m/2π and by the two diagrams in Fig. 4.
Evaluating them, we find χ*/χ = m*/m. There is no
exchange part coming from the interaction between
quasiparticles. Thus, there is a single Landau–Fermi-
liquid parameter m*/m given by a series in powers of

. We observe that the experimental effective mass
[3, 8] agrees well with (10). The experimental suscepti-
bility [3, 15] is larger than χ*, which indicates some
exchange effects for N = 4.

In the end, we consider the quantum Hall state [16],
with an integer filling factor ν defined as the ratio of
electron number to the magnetic flux number. If 1 !
ν < N, then ν is the number of occupied spin-valley
states in the lowest Landau level. This state is degener-
ate under global rotations in electron Fock space by
unitary matrices from the Grassmanian coset F =
U(N)/U(ν) ⊗  U(N – ν), which corresponds to a ferro-
magnetic order parameter at zero temperature. We use
the so-called magnetic units " = 1, e = c, magnetic
length lH = 1, cyclotron frequency ωH = eH/mc = 1/m,

and rs = e2/ωHlH . The polarization operator is

(12)

and at qlH @ 1 it transforms into (3). We find the self-
energy (9) using the Green’s function G–1(e) = ie + µ in
the lowest Landau level. The difference between the
self-energies for an electron in the empty spin-valley
state and an electron in the occupied spin-valley state

rs
2/3

2 ν

Π ω q,( )
ν

2π
------ q2s

2ss!
---------

2sωH

ω2 ωH
2 s2+

------------------------ q2

2
-----– 

  ,exp
s 1=

∞

∑=

Fig. 4. Two diagrams for a spin-susceptibility correction. 
gives the charge activation gap: ∆ = Σe – Σo. We single

out the Hartree–Fock term EHF = e2/lH and find

(13)

where only the real part of the electron Green’s function
is essential, µ = ∆/2 is the chemical potential inside the
ferromagnetic gap, and the last fraction in (13) becomes
approximately the delta function δ(ω) if µ ! ωH. The
Hartree–Fock term cancels out exactly as in zero mag-
netic field, and after frequency integration we find

(14)

where D–1(q) = /rs  + ν /2ss!s.
Note that ∆ ! EHF. The gap in the lowest Landau level
(14) is similar to the gap in the N = 2 quasiclassical case
of weak magnetic field and odd integer ν @ 1 [17].

We find a dispersion of spin waves as a pole of cor-

relation function C(x – r) = ,
which is uniform, because it describes a neutral excita-
tion. It is given by a ladder set of diagrams like the sec-
ond one in Fig. 3, where the electron Green’s function

includes the self-energy  = ie ± ∆/2. Using the Lan-
dau gauge representation of the density operators [7],
we find

(15)

a sum over k-leg ladder diagrams. It has a pole at iΩ =
e(Q) with the spin-wave dispersion

(16)

At intermediate wavelengths ν–3/2 ! QlH ! 1, spin-
wave dispersion is logarithmic: e(Q) = –ωHlog(QlH)/ν,

whereas, in the long-wavelength limit at QlH ! ν–3/2,
we recover Goldstone dispersion: e(Q) = JQ2, where
the exchange constant can be evaluated numerically:

. (17)

A pair of Skyrmion topological defects of ferromag-
netic order [18] has a lower activation energy ∆ = J than
the electron–hole pair (14).

We are grateful to G.M. Eliashberg, who shaped
very much the content of the work. This work was sup-
ported by the Russian Foundation for Basic Research
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Considering a double-barrier structure formed by a silicon quantum dot covered by natural oxide with two
metallic terminals, we derive simple conditions for a steplike voltage–current curve. Due to standard chemical
properties, doping phosphorus atoms located in a certain domain of the dot form geometrically parallel current
channels. The height of the current step typically equals (1.2 pA)N, where N = 0, 1, 2, 3… is the number of
doping atoms inside the domain, and only negligibly depends on the actual position of the dopants. The found
conditions are feasible in experimentally available structures. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.63.Kv; 73.21.La; 73.23.-b
The fabrication of Si nanostructures became possi-
ble through recently developed new technologies [1, 2].
Individual silicon quantum dots (SQD) reported in [2]
are spherical Si particles with diameters d in the range
5–12 nm covered by a 1–2-nm-thick natural SiO2 film.
Metallic current terminals made from degenerately
doped Si are defined lithographically to touch each
individual dot from above and from below.

To ensure metallic electrodes, the donor concentra-
tion n should be n ≥ nMott, where nMott = 7.3 × 1017 cm–3.
The critical concentration nMott is defined by the Mott
criterion [3], introducing the transition to a metallic
type of conductivity in a semiconductor at

, (1)

where aB is the Bohr radius of an electron bound to a
donor inside the Si crystal; in the case of phosphorus
donors, aB = 3nm [4].

As for the doping of the dot, the situation concern-
ing a Mott transition in small dots is much less trivial
than the one described by Eq. (1). Let us consider dots
with diameters d = 10 nm formed from n-doped Si with
n = nMott as an illustrative example. Then each dot con-
tains on average one donor. Note that we will consider
degenerately n+-doped electrodes with n @ nMott, which
ensures metallic conduction up to the borders of the
dot.

Real fabrication technology [2] provides a wafer
with hundreds of SQDs on it with current leads towards
each individual SQD. Dots on average have the same
value of mean dopant concentration n, which is deter-
mined by the parent material of bulk silicon the dots are

¶ This article was submitted by the authors in English.

aB nMott( )1/3 0.27=
0021-3640/02/7609- $22.00 © 20568
formed from. However, on the level of each individual
SQD, we will always have exactly integer number of
doping atoms. If, as in the example above, the average
number of dopants  = 1, the actual number of
donors in the dot can have values Ntot = 0, 1, 2, 3,…,
with values larger than these very unlikely.

Our objective is to illustrate that SQDs from the
same wafer fall into several distinct sets of approxi-
mately the same conductance. The typical value of con-
ductance for each set is nearly completely determined
by the number N of donors present in a certain part of a
SQD, so that N labels each set of SQDs.

Summarizing the above, we need for a quantization
of the conduction through a dot with N donors the fol-
lowing conditions:

· Size d of the dot comparable with Bohr radius: 2 <
d/aB < 5.

· Average doping n of the dot n ≤ d–3, leading to a

mean number of dopants  ≤ 1, so that Ntot= 0, 1, 2
are the most probable configurations of an individual
SQD.

· Doping of the electrodes nel @ nMott, so that current
leads are perfectly metallic.

· Dot covered by an oxide layer thick enough to sup-
press ballistic transport through the dot.

In fact, all these conditions can be simultaneously
satisfied for a SQD fabricated with the method men-
tioned above [2].

Model system. We use a simple model of a cubic
SQD with d > 2aB (we will use d = 10 nm for estimates),
covered with an oxide layer with thickness δ = 2 nm,
height [4] B = 3.15 eV, and connected with current ter-

N tot

N tot
002 MAIK “Nauka/Interperiodica”
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minals from the left and right. The x axis is oriented
from left to right along the current flow, as shown in
Fig. 1.

A tunneling current is injected into the dot via the
oxide barrier from the top (source at x = 0) and leaves
the dot at the bottom (drain at x = d). Due to the pres-
ence of the oxide barriers, this current is nonballistic
and nonthermal. We assume that the high potential bar-
riers associated with the oxide layers are not much
affected by the voltage and the tunneling charges. We
concentrate on what happens between these effective
source and drain (Fig. 2), as in [5].

In the case where the dot can be regarded as an insu-
lating system, it is reasonable to assume that the applied
voltage drops equally over the potential barriers and the
dots. For simplicity, we neglect the difference of the
dielectric constants of the oxide barriers and the dot. In
this approximation, we can introduce an effective volt-
age Veff = V(d – 2δ)/d = 0.6 V describing the part of the
total transport voltage V applied between effective
source and drain which drops across the dot itself.

In this crude approximation, we neglect the effect of
spatial quantization upon values of the ionization
energy, the conductivity gap, and material parameters
of silicon.

Dot without donors. At Veff = 0, the Fermi level
inside the dot is situated in the middle of the gap, i.e.,
Eg/2 below the conduction band edge (Eg = 1.14 eV at
300 K).

As Veff grows, the bottom of the (still empty) con-
duction band bends down accordingly. When the con-
duction band in the dot close to the drain aligns with the
Fermi level of the emitter, we expect a drastic increase
in the tunneling current. This threshold Vth voltage
(Fig. 2) for Veff is given by Vth = Eg/2e, regardless of the
number Ntot of dopants in the dot (as long as the dot is
not yet metallic, of course). In the following, we there-
fore limit our studies to voltages

(2)

In this voltage range, we have a d-thick barrier
(formed by the dot) with always finite height between
effective source and drain. The intrinsic concentration
of electrons and holes at 300 K is 1.4 × 1010 cm–3. Even
at this high temperature, the probability of having at
least one intrinsic electron in a dot with size d = 10 nm
is only 1.4 × 10–8. So we would expect virtually no cur-
rent in this mode. This is confirmed by direct electrical
tests [2] of SQD with the required properties.

Single-donor channel. Let us now consider one
single donor in the dot located at x with ionization
energy [4] Ed = 0.045 eV (for P as a donor).

At zero temperature, current is due to resonant tun-
neling via nonionized donor (as in [6], for example).

V eff V th≤ Eg/2e 0.57 V.= =
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Differential conductance g(ε) for the states with energy
ε is

(3)

where Γl, r is the linewidth of the 1s state of the electron
bound to the donor due to coherent mixing with con-
duction states to the left (right) of the left (right) tunnel
barrier.

Oxide barriers (with height B = 3.15 eV and width
δ = 2 nm) give the dominant contribution to Γl, r com-
pared to contributions of the body of the dot (with typ-
ical height <Eg/2 = 0.57 eV and width <d = 10 nm). So,
we can approximate Γl, r with linewidth Γ for the case

g ε( ) 4e2

π"
--------

Γ lΓ r

ε εd–( )2 Γ l Γ r+( )2+
--------------------------------------------------,=

Fig. 1. Potential profile of the dot covered by an oxide layer
at V = 0. A donor is marked with a short bar.

Fig. 2. Potential profile of the dot between effective source
and drain biased with Veff = V1 (thick solid line) and Veff =
Vth (dashed line).
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of an impurity localized at distance δ inside rectangular
one-dimensional tunnel barrier [6] of height B:

(4)

where m is (true, not effective) electron mass, κ =
(2mB)1/2/", and pF = (2mEF)1/2/" = (3π2nel)1/3 is the
Fermi wave number in the contact electrodes. The
numerical estimate in (4) is given for the electrodes
doped up to nel = 1021 cm–3 as in [2].

Within approximation (4), the point ε = εd brings
function g(ε) given by (3) to a sharp maximum g(εd) =
e2/π" of width Γ ! eVth.

From Fig. 2, it is clear that resonant energy εd =
Eg/2 – xVeff/2ed – Ed. This means that, as soon as the
effective Fermi level eVeff/2 reaches a certain threshold
eV1/2, tunnel current J flowing through the structure
acquires a steplike increase of

(5)

If the impurity is located near the drain, i.e., d – aB <
x < d (as donor 1 in Fig. 2), then threshold V1 for the
effective voltage Veff is given by

(6)

In contrast, for an impurity located at distances ∆x >
2dEd/Eg from the drain (i.e., further away than the
threshold case of donor 2 in Fig. 2), no additional cur-
rent channel via a single impurity can be opened at low
enough voltages defined in (2) where virtually no back-

Γ l Γ r Γ
2 pFκ

pF
2 κ2+

-----------------B
2κδ–( )exp

κδ
---------------------------= = =

=  2.5 10 9–  eV,×

J1 = 
1
e
--- g ε( ) εd

eV /2–

eV /2

∫  = 
g εd( )2πΓ

e
---------------------- = 

2eΓ
"

---------- = 1.2 pA.

V1 Eg/2e Ed/e– 0.525 V.= =

Fig. 3. Current–voltage characteristic of a model system
(not to scale).
ground current is present. In the present case, this value
∆x = 0.8 nm, which returns us to the above criterion:
only impurities located in the immediate vicinity
(defined within the accuracy aB) of the drain contribute
to the single-impurity channel.

This shows that, in the first approximation, the con-
ductance of this channel does not depend on x. As
shown above, a single-impurity channel already selects
only impurities located within a very narrow range of x
close to the drain.

Two-, three-, multi-donor channel. The above
consideration shows that, due to the bend of the bottom
of conduction band following the transport voltage,
there is no chance to notice current flowing through a
sequential chain of impurities (such as donors 1 and 3
in Fig. 2), connecting source and drain. The contribu-
tion of such a chain will be totally masked by the cur-
rent flowing directly via the conduction band. The only
way for multiple impurities to manifest themselves in
quantized conductance is to form multiple geometri-
cally parallel single-impurity channels situated close
enough to the drain, as considered above.

Therefore, if N > 1 impurities fall into the thin layer
near the drain to approximately the same x coordinate
as that of donor 1 in Fig. 2 (within the Bohr radius), we
will see a switching-on of an N-fold channel with cur-
rent

(7)

at the same threshold voltage Veff = V1 = 0.525 V as for
a single-donor channel (Fig. 3).

All the above considerations are only valid as long
as the dot itself can be regarded as an insulating system.
As the number of donors in an SQD grows, the dot
becomes a metallic particle, and the conduction band
edge in the dot aligns with the Fermi level of the elec-
trodes. In a very simple estimate, we define this transi-
tion to a metal when the total volume of Ntot donors with

an individual volume of (4π/3)  exceeds the volume
of the dot. This is an exaggerated version of the Mott
criterion (1) that holds not only in bulk but also in a
small structure. For the analyzed example from above
this gives Ntot = 8 as a limiting value. The practically
interesting set 0, 1, 2, 3, … for both Ntot and N consid-
ered above is still far below this limit.

Quite a number of other mechanisms of electron
transport might take place in this system. Surprisingly,
even taking into account such other mechanisms [7]
does not much change the main idea of the present
paper.

In small dots with diameter d < 2aB = 6 nm, the
domain with N active dopants extends to the whole dot,
and thus N = Ntot. In large dots with diameter d > 2aB =
6 nm, the domain with active dopants is less than the
dot itself and is localized near the drain. Hence, the
position of the domain, number N, and value JN all can

JN NJ1 N2eΓ /" 1.2 pA( )N= = =

aB
3
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be different for current flowing in different directions.
Really, when the sign of applied voltage changes, the
source and the drain change places.

In a certain sense, the discrete increase of a dot’s
conductivity that follows the increase of the dopants
number could be regarded as a mesoscopic analogue of
the Mott transition between insulating and conducting
states of the system.

Useful discussions with I. Devyatov, M. Kupri-
yanov, and S. Oda are gratefully acknowledged.
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Anomalously High Raman Scattering Cross Section
for Carbon–Carbon Vibrations in trans-Nanopolyacetylene
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Absolute Raman scattering cross section on the stretching carbon–carbon vibrational modes of trans-nanopo-
lyacetylene (NPA) was measured at an excitation wavelength of 514 nm. It is shown that the carbon–carbon
bonds in trans-NPA scatter light more efficiently than in the diamond structure by several orders of magnitude.
The role of resonant Raman scattering and the model of coherent vibrations of carbon–carbon bonds are dis-
cussed. © 2002 MAIK “Nauka/Interperiodica”.
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Polymers with conjugated π-electron system attract
active attention as prototypes of materials with well-
defined controllable electronic and optical properties.
In recent years, they have been used in the fabrication
of highly efficient light-emitting diodes [1] and opto-
electronic integrated devices [2]. There have also been
reports on the discovery of superconductivity in this
material [3]. An important feature of the π-conjugated
polymers is the strong electron–vibrational interaction
in polymer chain, resulting, in particular, in a high
nonlinear optical response of the vibrational nature.
Polyacetylene (PA) is chemically the simplest π-con-
jugated polymer [(CH)x], in which the polymer chain
consists of a sequence of carbon–carbon (CC) bonds
(…–C=C–C=…). Most remarkable properties are dis-
played by the PA trans isomer. In spite of an almost
30-year history of inquiry, trans-PA has become quite a
complex material for studying the unusual properties of
long π-conjugated chains, primarily because of the
destructive role of various defects that are present in the
available PA samples. However, in recent years, one has
succeeded in synthesizing the most ordered PA called
nano-PA (NPA) [4], where the PA nanoparticles are dis-
persed in a transparent polymer matrix of a saturated
polymer. The properties of trans-NPA are qualitatively
different from those observed in trans-PA of other
types. In particular, the anomalously high spontaneous
Raman activity of stretching CC vibrational modes
observed in [5] cannot be explained within the frame-
work of the conventional Raman scattering theory [6,
7]. In [7], we proposed a qualitative model for interpret-
ing these anomalies as a manifestation of vibrational
coherence in the ordered trans-PA chains. In this work,
we report the experimental estimate of the unusually
high absolute Raman scattering cross section for the
stretching CC modes in trans-NPA, which exceeds, by
0021-3640/02/7609- $22.00 © 20572
several orders of magnitude, highly Raman active
materials such as diamond.

NPA films consisted of the PA nanoparticles of size
≤30 nm dispersed in a transparent poly(vinyl butyral)
matrix with a PA weight content of ≈1% [4]. The PA
nanoparticles were globular in shape and formed from
structurally organized π-conjugated chains. The
absorption spectrum of NPA showed a sharp edge with
a zero-phonon line of the trans isomer at the wave-
length λ = 730 nm (Fig. 1). The trans-to-cis concentra-
tion ratio was >90%, as was estimated from the optical
absorption of films (Fig. 1) and the ratio of Raman
intensities of the cis and trans isomers. Measurements
were made at room temperature for unoriented films

Fig. 1. Absorption spectrum of NPA film. Arrows indicate
the excitation wavelength (ν0), the Stokes scattering com-
ponents from the C–C and C=C vibrational modes, and the
zero-phonon absorption lines of the NPA isomers.

00-cis

00-trans

νS
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with an optical density of ~1 and a thickness of 5 µm on
glass substrates.

The intensity of scattered light from a sample with
length L, refractive index n, and reflection coefficient R
in a small solid angle ∆Ω ! 1 is

(1)

where I0 is the intensity of the incident light, S(ν0, νS) is
the Raman extinction per unit length and unit solid
angle in a given scattering geometry for the optical
excitation ν0 and scattering νS frequencies, the factor n2

accounts for the difference in the solid angles of Raman
observation in the sample and outside it, and the T* fac-
tor accounts for the sample absorption at ν0 and νS

(Fig. 1). For the sample with absorption coefficients
α(ν0) and α(νS), one has after integrating over L

(2)

For measuring the Raman spectra of NPA, a triple
spectrograph was assembled on the basis of a double
monochromator (f/6) with dispersion subtraction and a
dispersive monochromator equipped with a cooled
CCD. The forward scattering geometry was used, for
which the argon laser radiation at λ = 514 nm and a
power of ≈10 mW was focused on the sample, and the
scattered radiation was accumulated at the input slit of
the double monochromator.

The absolute Raman cross section of NPA was
obtained using a strong Raman line at 872 cm –1 in a
LiNbO3 crystal. A plane-parallel LiNbO3 plate of thick-
ness L = 1 mm optically polished on both sides and ori-
ented along its optical axis was used. The integrated
Raman cross section of LiNbO3 for this orientation was
taken from [8], where it was measured relative to dia-
mond at λ = 488 nm. The Raman extinction S(ν0, νS) of
diamond at λ = 514 nm was taken from [9].

The Raman spectra measured under similar condi-
tions for the NPA film and LiNbO3 crystal are shown in
Fig. 2. In the Raman spectrum of NPA, two lines at
1080 and 1470 cm–1 dominate, which correspond,
respectively, to the C–C and C=C stretching modes of
the trans isomer [5]. The Raman linewidths were
mainly determined by the spectrometer instrumental
function with a width of ≈40 cm–1. The ratio of areas
under the two Raman lines and the LiNbO3 line (Fig. 2)
was found to be IS(NPA)/IS(LiNbO3) = 2 ± 0.5. Taking
into account the parameters for LiNbO3 (n = 2.3, R =
0.16, L = 1 mm, and T* = 1) and NPA (n = 1.5, R = 0.04,
L = 5 µm, and T* ≈ 0. 5) one has from Eq. (1)
S(NPA)/S(LiNbO3) ≈ 1500. Setting the ratio
S(LiNbO3)/S(diamond) = 0.44 for the diamond line at
1332 cm–1 at λ = 488 nm [8] and S(diamond) = 8 ×
10−7 cm–1 sr–1 at λ = 514 nm [9] and taking into account

the corrections to the factor , one finally obtains for

IS I0 1 R–( )2S ν0 νS,( )L∆Ωn
2
T∗ ,=

T∗ α ν S( )L–[ ]
α ν S( )L α ν 0( )L–[ ]exp 1–
α ν S( ) α ν 0( )–[ ] L

---------------------------------------------------------------.exp=

νS
4
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the isotropic film S(NPA) ≈ 5 × 10–4 cm–1 sr–1. Notice
that the Raman signals for NPA depended linearly on
the excitation intensity.

Thus, the Raman intensity of an NPA film with ≈1%
of PA is three orders of magnitude higher than in dia-
mond, which is known to be among the most Raman
active substances. With allowance made for the carbon
concentration in NPA and in diamond, one finds that the
scattering cross section σ = S/n = 10–24 cm2/sr of the CC
mode per one carbon atom in trans-NPA is 2 × 105 times
greater than in diamond. Note that this result relates to
the trans-NPA cross section averaged over the orienta-
tions of the strongly anisotropic polymer chains.
Clearly, the anisotropy factor will increase this result. It
is natural to attribute the enhancement of Raman inten-
sity to the conjugation effect of carbon p orbitals in
polymer chains.

Naturally, a comparison of the Raman efficiencies
of different substances is only correct for the optical
frequencies far from the electronic absorption bands.
Let us discuss the origin of optical absorption in NPA
at λ = 514 nm corresponding to the short-wavelength
edge of the main electric-dipole transition of cis-NPA
(Fig. 1). Note, first, that cis-NPA isomerizes into the
trans form at the excitation intensities used in our
Raman experiments. The Raman measurements of the
NPA films with the isomer content cis/trans ≈ 1 fol-
lowed by the isomerization in the course of recording
indicate that the intensity of cis lines decreases from a
value comparable to the trans lines to the undetectable
level [10]. However, in this case the absorption at λ =
514 nm remains appreciable (Fig. 1), likely, because the
isomerization results in a rather inhomogeneous NPA
trans form with a high content of short conjugated
bonds, which are responsible for the optical absorption
at λ = 514 nm but make a small contribution to the
Raman signal [10]. This follows from the well-known

Fig. 2. (bottom line) Raman spectra of the NPA film and
(upper line) of the reference LiNbO3 sample. The spectrum
of LiNbO3 is shifted for clearness.
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fact (see, e.g., [11]) that the short conjugated trans-iso-
mer chains manifest themselves at the high-frequency
absorption and Raman edges (this is also seen from the
asymmetry of the spectra in Fig. 2). Consequently,
within the measurement accuracy, the NPA absorption
at λ = 514 nm does not affect the Raman intensities of
long conjugated trans-NPA chains, which are responsi-
ble for the Raman lines at 1080 and 1470 cm–1 and the
electric-dipole absorption in the range 600–750 nm
(Fig. 1). Therefore, one can assume that the resonant
Raman scattering at λ = 514 nm does not occur for the
most Raman active long trans-NPA chains. Neverthe-
less, we will estimate the gain factor for the resonant
Raman cross section from the electric-dipole transition
of the trans isomer at ν0 ~ Eg ≈ 1.7 eV. Since the life-
time of the lowest electric-dipole trans-NPA state is on
the order of tens of femtoseconds, as it follows from the
direct NPA measurements [12] and the photolumines-
cence data on trans-PA [13], the homogeneous broad-
ening parameter can be estimated at Γ ≈ 0.1 eV, and the
characteristic gain factor can be estimated as (Eg/Γ)2 ~
300 (see, e.g., [14]). One can see that, even if the result-
ing Raman cross section σ at λ = 514 nm is attributed
to the resonant Raman scattering, i.e., if the (Eg/Γ)2 fac-
tor is taken into account, the Raman efficiency for the
CC vibrational modes in trans-NPA will be three orders
of magnitude higher than in diamond. Note that σ in
NPA coincides with the value measured for the most
studied Shirakawa’s PA [15]. However, these values
can hardly be compared with each other, because the
Shirakawa’s PA displays a broad structureless electric-
dipole absorption band and the CC Raman linewidths
by an order of magnitude larger than in NPA, which
corresponds to a broad length distribution of conju-
gated chains. For this reason, it is commonly accepted
that λ = 514 nm in the Shirakawa’s PA corresponds to
the resonant Raman scattering from a certain length
[11, 15].

Further, the Raman efficiency of trans-NPA
depends relatively weakly on the excitation wavelength
as compared to the cis isomer, for which the Raman
cross section increases sharply at λ = 514 nm [10]. In
[7], the estimate σ ~ 1 × 10–27 cm2/sr was obtained for
the Raman CC vibrations in NPA at λ = 1064 nm, for
which the absorption is four orders of magnitude lower
than for the main absorption band of trans isomer [16],
and the Raman lines also correspond to the NPA trans-
parency band. With allowance for the correcting factor

, the Raman intensity at λ = 514 nm is ~40 times
higher than for λ = 1064 nm.

Therefore, the Raman spontaneous intensity for the
CC vibrational modes in the trans-NPA structure is
higher than in the diamond structure by several orders
of magnitude, and this is not associated with resonant
Raman scattering. We attribute the observed high
Raman activity in trans-NPA to the CC coherent vibra-

νS
4

tions that can arise in the ordered trans-NPA chains.
According to the model of coherent vibrations sug-
gested recently in [6, 7], the CC-bond ensemble can
scatter light fields coherently with the addition of their
amplitudes rather than of their intensities, as it takes
place in the Raman processes. The increase in the
Raman intensity of the CC vibrational modes upon
transition from diamond to trans-PA can be character-
ized by the number N of CC bonds coherently scatter-
ing light. As a rough estimate of N one can take N ~
σ(NPA)/σ(diamond) ~ 105 at λ = 514 nm, which is
approximately equal to the number of CC bonds in the
PA nanoparticle. The CC vibration coherence effect, in
a sense, is analogous to the scattered light coherence in
CARS spectroscopy.
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The spectrum of excitonic excited states in GaAs/AlGaAs quantum wells of different width is studied together
with its change due to the screening of electron–hole interaction by two-dimensional electrons. The exciton
binding energy decreases sharply with an increase in the concentration of two-dimensional electrons. The tem-
perature dependence of screening parameters is studied for the ground and excited excitonic states down to
ultralow temperatures T = 50 mK. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Fg; 71.35.Cc; 78.66.Fd
The Coulomb interaction of charge carriers plays
the central part in the collective effects occurring in the
low-dimensional electron systems such as the frac-
tional or integer quantum Hall effects and composite
fermions [1, 2]. Since the interaction in a two-dimen-
sional electron system is strongly screened, the investi-
gation of screening parameters is highly important for
the understanding of the nature of these collective phe-
nomena and their correct theoretical description. In
spite of the importance of Coulomb screening phenom-
enon, the experimental works devoted to this problem
are few in number. The Coulomb screening by free car-
riers manifests itself most pronouncedly in the screen-
ing of a bound electron–hole states (excitons) in a quan-
tum well and in the collapse (dissociation) of these
bound states upon an increase in the charge-carrier con-
centration higher than its critical value [3, 4].

It is worth noting that, while on the subject of the
collapse of excitonic states, we by no means imply that
the bound state disappears from the semiconductor
excitation spectrum, because the bound states arise in
the two-dimensional systems with the attractive poten-
tial as weak as one likes. It will be shown in this work
that the screening of electron–hole interaction in an
exciton by a system of two-dimensional electrons
brings about a sharp decrease in the exciton binding
energy upon reaching the threshold concentration, and
this is accompanied by a decrease in the oscillator
strength of the excitonic transition. Such a threshold-
like decrease in oscillator strength was observed for the
perfect GaAs/AlGaAs structures at unexpectedly low
concentrations of free charge carriers [4]. The screen-
ing effect on the binding energy of excitonic state has
not been studied experimentally so far, although this
parameter remained one of the most important parame-
0021-3640/02/7609- $22.00 © 0575
ters in the quantitative description of screened interac-
tion in electron systems.

It is the purpose of this work to study experimentally
the screening effect of two-dimensional charge carriers
on the binding energy of the ground and excited exci-
tonic states in the GaAs/AlGaAs quantum wells.

Single 180-Å and 300-Å GaAs/AlGaAs quantum
wells were studied at temperatures from T = 4.2 K to
T = 50 mK. Despite the fact that the structures were
undoped, the presence of residual impurities in them
gave rise to a low-density two-dimensional channel
with a charge-carrier concentration on the order of ne =
(1–20) × 109 cm–2. The carrier concentration in the
channel could be smoothly varied by the illumination
of structure with a combination radiation of two laser
sources: a semiconductor laser with the wavelength λ =
7500 Å (for the intrawell photoexcitation) and a He–Ne
laser with λ = 6328 Å (for the overbarrier photoexcita-
tion). This made it possible to vary the electron density
in the channel from the maximal value (different in dif-
ferent structures but on the order of 2 × 1010 cm–2) to
1 × 109 cm–2.

Similar to the previous works [4, 5], the charge-car-
rier concentration in the channel was determined by the
optical detection of the dimensional magnetoplasma
resonance. To this end, mesas shaped like discs with a
diameter of 0.1 mm were formed in the structures, and
the samples were placed in the maximum of electric
field on the microwave path. The plasma oscillation fre-
quency was obtained from the magnetic-field depen-
dences of differential luminescence signal appearing
upon the power modulation of microwave field with a
frequency of 16–40 GHz. This frequency was directly
related to the mesa diameter and the concentration of
two-dimensional electrons [6]. This technique made it
2002 MAIK “Nauka/Interperiodica”
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possible to determine the concentration of a two-
dimensional electron gas up to the concentrations on
the order of 1 × 109 cm–2 (the method of measurements
is described in [4, 5]).

The high quality of the structures is seen from the
fact that the well-resolved HH2S, LH2S, and HH3S
lines of excited excitonic states (upper curve in Fig. 1)
are clearly seen in the luminescence spectra at low car-
rier concentrations in the channel (ne ≤ 1 × 109 cm–2), in
addition to the lines corresponding to the recombina-
tion of the ground state of free (HH1S) and bound (BE)
excitons on heavy holes and free excitons on light holes
(LH1S). This interpretation of the observed lines is in
compliance with the known experimental data [7] and
confirmed by the numerical computations performed
by us for a GaAs/AlGaAs quantum well with a given
width. Moreover, our studies in a perpendicular mag-
netic field made it possible to unequivocally differenti-
ate between the excitonic states with heavy and light
holes and confirm the above-mentioned interpretation
of excited states.

One can see from Fig. 1 that, as the concentration of
two-dimensional carriers increases, the excited exci-
tonic states are screened first, because their binding

Fig. 1. Luminescence spectra measured at T = 50 mK in the
300-Å-thick quantum well for three concentrations of two-
dimensional electrons. The electron concentration was mea-
sured by the magnetoplasma resonance method [4].
energies are lower and their wave functions are more
extended than those of the ground state. Due to a
decrease in the binding energy, the excited excitonic
states thermally dissociate at helium temperatures T =
1.5–4.2 K, as a result of which the lines corresponding
to the transitions from the excited states disappear from
the luminescence spectra of the structures under study.
However, at ultralow temperatures on the order of
50 mK, the excited excitonic states are observed in the
luminescence spectrum in a considerably broader con-
centration range (lower curves in Fig. 1). The binding
energy of ground excitonic state on heavy (HH1S) and
light (LH1S) holes is high and, correspondingly, it can
be screened by a considerably higher concentrations of
two-dimensional electrons. One can see from Fig. 1
that the screening of excited states is accompanied by a
change in the spectral position of the respective recom-
bination radiation lines.

Figure 2 shows the changes in the energies of the
ground and excited excitonic states measured in the
180-Å and 300-Å quantum wells. One can see that the
ground-state energy of the excitons on light and heavy
holes almost does not change with a rise in the electron
concentration in the wells and starts to shift to higher
energies only at densities higher than 3 × 109 cm–2. As

Fig. 2. Spectral positions of the excitonic ground (HH1S)
and excited (LH1S, LH2S, HH2S, and HH3S) states as func-
tions of electron concentration ne measured for the
GaAs/AlGaAs quantum wells (a) 300 and (b) 180 Å in
thickness.
JETP LETTERS      Vol. 76      No. 9      2002
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for the excited states, they undergo low-energy shift at
very low concentrations ne, with the least strongly
bound HH3S state being shifted most pronouncedly.
The behavior of excitonic terms in the narrower 180-Å
quantum well coincides qualitatively with the behavior
for the 300-Å well, with the only difference that the
changes occur at higher electron concentrations.

A decrease in the exciton binding energy due to the
screening of electron–hole interaction manifests itself
more pronouncedly in a change of energy gap E2S – E1S

between the ground and excited excitonic states. Fig-
ure 3a shows the energy difference between the ground
(HH1S) and excited (HH2S) excitonic states on heavy
holes as a function of the concentration measured for
the 300-Å and 180-Å quantum wells. One can see that
this difference decreases almost twofold from
4.83 meV to 2.88 meV for the 300-Å well and from
6.05 meV to 3.59 meV for the 180-Å well with increas-
ing electron concentration. In the narrower well with
L = 180 Å, the screening is less efficient and the
changes occur at higher electron concentrations. Such a
dependence seems to be quite natural, because the exci-
ton binding energy in the narrow well is higher, while
the wave function in the well plane is less extended and,
hence, the screening threshold should be shifted to
higher electron concentrations. Figure 3b demonstrates
the behavior of binding energy of the excitonic 1S, 2P,
and 2S states (curves 1, 2, and 3, respectively), as cal-
culated by the relaxation method for the case of Lin-
chard screening by two- dimensional electrons in the
300-Å-thick quantum well. For comparison, the
ground-state (1S) energy calculated by the less accurate
Ritz variational method [8] is also shown in the same
figure. Despite the fact that the complex character of
valence band in the quantum well was not taken into
account in the calculations, the relaxation method prop-
erly describes the experimentally observed decrease in
the binding energies of different excitonic states and
yields the threshold concentrations close to their exper-
imentally observed values.

It is worthy of note that the decrease in the binding
energy of the 1S state is not accompanied by a notice-
able change in the spectral position of the excitonic
state, and a small shift to higher energies is observed
only for high electron concentrations. In our opinion,
such a behavior is caused by the fact that, apart from a
decrease in exciton binding energy, the screening of
Coulomb interaction also renormalizes the semicon-
ductor gap, as a result of which the position of excitonic
term is determined by the combined effect of these two
contributions, which almost fully compensate each
other.

From the curves presented in Fig. 2, one can deter-
mine changes in the exciton ground-state energy and in
the position of semiconductor gap upon varying the
concentration of quasi-two-dimensional electrons. For
zero concentration of two-dimensional electrons in the

channel, the theoretical calculations give ~  =EHH2S
b
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1.15 meV for the binding energy of the HH2S excitonic
state [7], whereas it decreases more than tenfold upon
screening and, likely, does not exceed 0.1 meV when
the excited states disappear from the luminescence
spectra. For this reason, the position of the HH2S state
at an electron concentration of 4 × 109 cm–2 coincides,
to an accuracy better than 0.1 meV, with the renormal-
ized semiconductor gap.

Apart from measuring binding energies of the 1S
and 2S excitonic states, we also examined the tempera-
ture dependence of the threshold concentration, for
which the oscillator strength of excitonic transition
decreases sharply, much as this was done in original
work [4] in the range of appreciably lower temperatures
down to T = 50 mK.

The influence of temperature on the screening of
bound states in the quasi-two-dimensional systems has
two aspects. On the one hand, the fraction of electrons
localized at the fluctuations of random potential
increases with lowering temperature, thereby reducing
the concentration of mobile electrons that are involved
in the screening of Coulomb interaction in the well. On

Fig. 3. (a) Energy gap EHH2S – EHH1S between the ground
(HH1S) and excited (HH2S) excitonic states as a function of
electron concentration ne measured for the quantum wells
300 and 180 Å in thickness. (b) Ground-state (1S) and
excited-state (2P and 2S) exciton energies (curves 1, 2, and
3, respectively) calculated by the relaxation method for the
GaAs/AlGaAs quantum well of thickness 300 Å. Curve 4
corresponds to the exciton ground state calculated by the
Ritz variational method.
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the other hand, as shown in [8], the screening of exci-
tonic states by two-dimensional electrons becomes
more efficient with a decrease in temperature, because
electrons with small momenta k make the greatest con-
tribution to the screening. In the best structures, the
screening of excitonic states occurs at very low concen-
trations, so that the electron gas is nondegenerate at
temperatures T = 1.5–4.2 K. It was shown in [8] that the
screening efficiency strongly depends on temperature
in this case.

In Fig. 4, the variations of the line intensity ratio for
the free and bound excitons are shown as functions of
electron concentrations measured for two 180-Å- and
300-Å-thick quantum wells. One can see from this fig-
ure that the threshold concentration decreases with low-
ering temperature, evidencing the weakness of localiza-
tion effects and a high quality of the samples. The tem-
perature dependence of the threshold electron density,
for which excitons become screened, is satisfactorily
explained by the calculations made in [8]. At a temper-
ature of 50 mK, the threshold concentration in the
300-Å quantum well is equal to 3 × 109 cm–2, which
corresponds to the dimensionless parameter rs = 10.5.
In the narrower quantum well 180 Å wide, the threshold
concentration is higher, in accordance with the calcula-
tions carried out in [8].

Fig. 4. Luminescence intensity ratio of the free (IFE) and
bound (IBE) excitons as a function of electron concentra-
tion, as measured at various temperatures T = 1.5 K, 0.4 K,
and 50 mK in (a) 300-Å-thick and (b) 180-Å-thick quantum
wells.
The experimental results are in accordance with the
results of calculations carried out in recent work [8] in
the Linchard approximation with allowance for the
nonlinear character of screening by two-dimensional
electron gas in quantum wells. Taking into account the
nonlinear character of screening leads to the satisfac-
tory agreement with the experiment both for the value
of threshold concentration and for the character of
observed spectral changes under conditions of the col-
lapse of excitonic states. Apart from the binding energy,
a change in the oscillator strength was also calculated
for the excitonic transition as a function of electron
concentration in the quantum well. According to the
calculations, the intensity of excitonic transition
decreases less sharply than the binding energy with an
increase in the density of two-dimensional gas. As a
result, the exciton line in the optical experiments is
observed even at relatively high electron concentra-
tions, for which the exciton binding energy is apprecia-
bly lower.

In summary, we have investigated in this work how
the binding energies of the excitonic ground and
excited states decrease with increasing electron con-
centration in the well, as a result of the screening of
electron–hole interaction by a system of quasi-two-
dimensional electrons. The dependence of exciton
binding energy on the electron density in the channel
was experimentally measured. It was found that, upon
lowering temperature from 1.5 K to 50 mK, the transi-
tion associated with exciton dissociation becomes more
pronounced and shifts to lower electron concentrations.

This work was supported by the Russian Foundation
for Basic Research, the State scientific and technical
program “Nanostructures,” and INTAS (grant no. 99-
1146).
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Effective boundary conditions to the Ginzburg–Landau equations at the twinning plane of an orthorhombic
(d + s) superconductor are obtained on the basis of microscopic BCS theory. The range of the parameters of
orthorhombic strain is found where the order parameter behaves variously on both sides of the twinning boundary.
© 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.20.De; 74.20.Fg
In recent years, much attention has been given to
unconventional high-temperature orthorhombic super-
conductors [1–4]. This is due, in particular, to the
observed breakdown of the tetragonal symmetry of
CuO2 planes in YBCO as a result of the appearance of
CuO chains, which lead to the orthorhombic deforma-
tion of electronic spectrum and pair interaction, giving
rise, in turn, to the s component in the order parameter
if the latter had d symmetry in the absence of deforma-
tion. The two possible directions of these chains give
rise to twinning boundaries that separate so-called twin
domains with different chain directions. Although a
number of works have been devoted to studying the
behavior of domains near the twinning boundary [4–8],
the question of boundary conditions to the Ginzburg–
Landau (GL) equations at the twinning plane is still
open. It turns out that the boundary conditions allow
one to answer the question of how the order parameter
of orthorhombic superconductors behaves upon pass-
ing to the neighboring domain.

For the quasi-two-dimensional superconductors of
interest, the orthorhombicity can be introduced by writ-
ing the electron (quasiparticle) energy dispersion in the
form

(1)

where the upper and lower signs relate to the right and

left domains, respectively, and  = (ky ± kx)/ . The
corresponding Fermi surfaces (for a = 0.5) are shown at
the top of Fig. 1.

The equations for the Fermi momenta can be written
by introducing quasi-angular parameters θ1, 2 measured

e k( ) 2t kx
2 ky

2 2akxky+−+( )=

=  2t 1 a+−( )kx'
2

1 a±( )ky'
2

+( ),

kx y,' 2
0021-3640/02/7609- $22.00 © 200579
from  in the right and left domains:

(2)

where  =  is the Fermi quasi-
momentum and eF is the Fermi energy. The introduc-
tion of the quasiangular parameter θ is suitable prima-
rily because the averaging over the elliptic Fermi sur-

kx'

kx' kF 1 a± θ1 2, , ky'cos kF 1 a+− θ1 2, ,sin= =

kF
2

eF/2t 1 a2–( )

Fig. 1. (top) Fermi surfaces, (second row) order parameters,
and (bottom) their d and s components in the neighboring
domains for a = b = 0.5. The signs (±) correspond to the
(upper sign) even and (lower sign) odd solutions.
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face with allowance for the local density of states is
greatly simplified:

(3)

where v  is the local velocity and ν is the total density of
states at the Fermi surface.

The expressions for the momentum in the initial sys-
tem are obtained from Eq. (2):

(4)

where the indices (1, 2) again relate to the right and left
domain, respectively, and  =  =

. It follows that α1 + α2 = π/2. Intro-
ducing α = α2 – α1, one has α1, 2 = π/4  α/2 and
sinα = a (–π/2 < α < π/2).

When an electron passes through the twinning
boundary, its energy and y projection of momentum are
conserved in the neighboring domain. It follows from
Eq. (4) and the above definition of α that θ2 – θ1 = α.
Defining θ = (θ1 + θ2)/2 + π/4, one has

(5)

By performing analogous calculations for the velocity
v = ∂e(k)/∂k, one finds that

(6)

at the Fermi surface, where vF = 2  is the Fermi
velocity. Hence it follows that, when passing to the
neighboring domain, an electron conserves its velocity
projection perpendicular to the twinning boundary.
Moreover, it was shown in [6] that, at least in the strong
coupling limit, an electron passes through the twinning
boundary without reflection.

The effective boundary conditions to the GL equa-
tions are determined from the linearized equation for
the order parameter ∆*(pf, r) near the superconducting
transition temperature,

(7)

where p are the Fermi vectors determining the direction
dependence of order parameter; the summation over
these vectors corresponds, in fact, to the integration
over the Fermi surface with allowance for the local den-
sity of states; V is the electron interaction potential; ω
are the Matsubara frequencies; and the functions Φω are

…〈 〉 F
1
ν
--- Sd

v
------ …( )∫ θd

2π
------ …( ),

π–

π

∫= =

kx
1 2,( ) kF θ1 2, α1 2,–( ),cos=

ky
1 2,( ) kF θ1 2, α1 2,–( ),cos=

α1tan α2cot

1 a–( )/ 1 a+( )
+−

kx
1 2,( ) kF θ α+−( ); ky

1 2,( )cos kF θ.sin= =

v x
1 2,( ) v F θ; v y

1 2,( )cos v F θ α+−( )sin= =

2teF

∆∗ p r,( ) V p p''–( )
p' p'',
∑=

× r'∆ p' r',( )πT Φω r p''; r' p',,( ),
ω
∑d∫
defined through the Green’s functions in the normal
state:

(8)

The electron–electron potential can be expanded in
terms of a set of mutually orthogonal normalized func-
tions at the Fermi surface:

(9)

where the positive Vn values correspond to attraction. It
was shown by Pokrovskiœ in [9] that, near the transition
temperature (1 – T/Tc ! 1) in the weak coupling limit,
one can take into account only the leading term corre-
sponding to the maximum value of Vn in this expansion.
Then the order parameter is ∆*(p, r) = Ψ(r)ϕ(p), where
the index for the function ϕ(p) is omitted.

The simplest such function satisfying the orthor-
hombic symmetry condition and normalized at the
Fermi surface can be written to the left and right of the
twinning plane as

(10)

If the s component |b | < , the energy gap has zeros;

otherwise, at |b | > , the gap is everywhere nonzero.
The function ϕ(θ) on both sides of the twinning bound-
ary is shown in the second row of Fig. 1, and below are
shown its d and s components. The signs indicate their
behavior for the even or odd solution of the spatial
function Ψ(r).

The kernel of the linearized integral equation can be
most simply calculated by the quasi-classical trajectory
method generalized to anisotropic superconductors [10,
11]. Considering that all spatial quantities depend only
on the coordinate x, one finds

(11)

Φω r p; r' p',,( ) Gω p' q'/2+ p q/2+,( )
q q',
∑=

× G ω– –p' q'/2+ –p q/2+,( ) i q'r' qr–( ).exp

V p p'–( ) Vnφn p( )ϕn p'( ),
n

∑=

ϕ1 2,
2 2θ1 2,cos b+±

1 b2+
-----------------------------------------=

=  
2 2θ α+−( )sin b+( )±

1 b2+
------------------------------------------------------.

2

2

Ψ x( ) νV0 K11 x x'–( )Ψ x'( ) x'd

0

∞

∫=

+ νV0 K12 x x'–( )Ψ x'( ) x'; x 0;>d

∞–

0

∫

Ψ x( ) νV0 K21 x x'–( )Ψ x'( ) x'd

0

∞

∫=

+ νV0 K22 x x'–( )Ψ x'( ) x'; x 0,<d

∞–

0

∫
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where K11 = K22 account for the contribution of electron
trajectories within one domain and K12 = K21 account
for the contribution of the electron trajectories passed
from one domain to the other through the twinning
boundary:

(12)

To simplify formulas, the length henceforth is mea-
sured in units of coherent length ξ0 = vF/2πTc, and ωD

is the Debye cutoff frequency for the logarithmically
divergent integrals and sums in the BCS model.

Due to the symmetry property, this system has two
linearly independent solutions (even and odd), each
being the unique solution (except for an arbitrary coef-
ficient) to the equation

(13)

In what follows, the indices (±) relate, respectively, to
the even and odd solutions.

The effective boundary conditions to the GL equa-
tion follow from the asymptotic solution to this integral
equation at x @ 1. By direct substitution, one can
readily verify that the linear function Ψ ~ x + λ, where
λ is the extrapolation length defining the boundary con-
dition Ψ'(0) = Ψ(0)/λ, is such an asymptotic solution.
Our goal is to calculate this extrapolation length from
Eq. (13). We will do this by applying the variational
approximation proposed by Svidzinskiœ [12, 13].
According to this method, the extrapolation length can
be written, to first approximation, as

(14)

where

K11 x( )

=  
ϕ1 2, θ( )( )2

θcos
----------------------- 2n 1+( )x

θcos
-----------------------exp

F

;
n ωD/2πTc–=

ωD/2πTc

∑
K12 x( )

=  
ϕ1 θ( )ϕ2 θ( )( )

θcos
------------------------------ 2n 1+( )x

θcos
-----------------------exp

F

.
n ωD/2πTc–=

ωD/2πTc

∑

Ψ± x( ) νV0 K11 x x–( ) K12 x x'+( )±( )Ψ± x'( ) x'd

0

∞

∫=

=  νV0 K± x x',( )Ψ± x'( ) x'.d

0

∞

∫

λ H G2/E+
F G+

-----------------------,=
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(15)

In our problem,

(16)

Here,

(17)

where the ellipses stand for the θ-odd terms that vanish
upon the integration. For simplicity, the orthorhombic
deformation parameter b describing its s component is
set to be equal to b =  (–π/2 ≤ β ≤ π/2).

By using Eq. (17), one can evaluate E±, F±, G±, and
H±, whereupon we find from Eq. (14) the extrapolation
lengths λ±. The resulting algebraic expressions are too
cumbersome to present them in this paper. The extrap-
olation lengths can more simply be evaluated from
Eqs. (16) and (17) for the given orthorhombic deforma-
tion parameters a = sinα and b = . Figure 2 shows
the dependences of λ+ and λ– on the parameter b for
various positive values of a. For the negative a values,
the extrapolation lengths are λ±(a, b) = λ±(–a, –b).

E 1 νV0 K x x',( ) x'd

0

∞

∫– x,d

0

∞

∫=

F 1 νV0 K x x',( ) x'd

0

∞

∫– x x,d

0

∞

∫=

G νV0 K x x',( ) x'd

0

∞

∫ x– x,d

0

∞

∫=

H νV0 K x x',( ) x'd

0

∞

∫ x– x x.d

0

∞

∫=

E± π2

8
----- θd

2π
------ θcos ϕ1

2 θ( ) ϕ1 θ( )ϕ2 θ( )+−( ),

π–

π

∫=

F± 7ζ 3( )
8

------------- θd
2π
------ θcos

2 ϕ1
2 θ( ) ϕ1 θ( )ϕ2 θ( )+−( ),

π–

π

∫=

G± 7ζ 3( )
8
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2π
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H± π4

96
------ θd

2π
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2 θ( ) ϕ1 θ( )ϕ2 θ( )±( ).

π–
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2 θ( ) φ2
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Fig. 2. Relative extrapolation lengths in units of ξ0 =
vF/2πTc for the (upper panel) even and (bottom panel) odd
solutions to Eq. (13) as functions of the orthorhombic defor-
mation parameter (s component of order parameter) b for
various values of orthorhombic deformation parameter a of
Fermi surface from (upper curves) 0 to 0.9 with a step
of 0.1.

Fig. 3. Regions of (outside the ellipsoidal curve) even and
(inside) odd behavior of the spatial solution as a function of
the orthorhombic deformation parameters a and b. The ver-
tical dashes separate the regions where the modulus of s

component |b| > , so that the energy gap has no zeros
there.

2

The following boundary conditions at the twinning
plane follow from these results:

(18)

These conditions, naturally, satisfy the condition for
conservation of current through the twinning boundary.

It follows from boundary conditions (18) that the
GL functional for the free energy of a superconductor
includes the twinning-induced surface energy density
equal in the respective units to

(19)

Therefore, the even or odd spatial behavior of the
order parameter with respect to the twinning plane
depends on the ratio of the extrapolation lengths λ+ and
λ–. Figure 3 shows the ellipsoidal curve separating the
regions of odd (inside) and even (outside) behavior of
Ψ(r) as a function of the orthorhombic deformation
parameters a and b. In the first case, the d component of
order parameter dominates. According to definition
(10), this component (illustrated in Fig. 1) only deforms
upon passing through the twinning boundary because
of the orthorhombic deformation of the Fermi surface,
while the s component changes sign, confirming the
commonly accepted assumption about the behavior of
the order parameter components of (d + s) supercon-
ductors with respect to the twinning boundary [5–8]. If
the solution Ψ(r) is spatially even, the s component of
order parameter dominates, and it is, naturally, even
about the twinning plane, while the d component
changes sign. The vertical dashed lines in Fig. 3 sepa-
rate the regions where the energy gap has no zeros.

To this point, we considered the case where elec-
trons pass through the twinning plane freely, i.e., with-
out reflection. If the electron reflection from the twin-
ning boundary (with reflection coefficient R) is taken
into account, the even solution does not change,
because the contribution of the reflected electron trajec-
tories coincides with the contribution of the electron
trajectories starting from the symmetric point of the
neighboring domain, as is well seen in Fig. 1. Contrast-
ingly, the odd solution changes appreciably, because
the sign of the contribution from the reflected electrons

n ∇ ie
c
----A– 

  Ψ r( )
+0

=  
1
2
--- 1

λ+
----- 1

λ–
-----+ 

  Ψ +0( )
1
2
--- 1

λ+
----- 1

λ–
-----– 

  Ψ –0( ),+

n ∇ ie
c
----A– 

  Ψ r( )
–0

=  
1
2
--- 1

λ–
----- 1

λ+
-----– 

  Ψ +0( )
1
2
--- 1

λ+
----- 1

λ–
-----+ 

  Ψ –0( ).–

^surf
1

2λ+
--------- Ψ +0( ) Ψ –0( )+ 2=

+
1

2λ–
-------- Ψ +0( ) Ψ –0( )– 2.
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is opposite to that of the electrons coming from the
symmetric point of the neighboring domain, so that the
second terms in Eqs. (16) for E–, F–, G–, and H– acquire
the factor (1 – 2R). In particular, at R = 1/2, the reflected
electrons fully compensate the contribution of the elec-
trons coming from the neighboring domain, so that the
second terms in Eq. (16) vanish and λ– becomes equal
to the extrapolation length for a superconductor border-
ing the normal metal with free (reflectionless) electron
passing through the interface. In this case, the problem
can be exactly solved by the Wiener–Hopf method. The
extrapolation lengths calculated by the Wiener–Hopf
method for quasi-two-dimensional s and dxy supercon-
ductors are equal to 0.696 and 0.744, respectively [14],
while the variational approximation used in this work
gives 0.688 (for a = α = 0 and b = ∞; i.e., β = π/2) and
0.754 (for a = α = 0 and b = β = 0), indicating that the
error of variational approximation is less than 1.5%.

Figure 4 presents the extrapolation length λ– as a
function of the parameter β =  for R = 1/2 and
the parameters α ranging from 0 to 1, which is conve-
nient for the inclusion of the limiting s state with b = ∞.

Surprisingly, the curves separating the regions of
even and add spatial solutions, depending on the orthor-
hombic deformation parameters a and b for all D = 1 –
R > 0, virtually coincide with the curve for R = 0 shown

barctan

Fig. 4. Extrapolation lengths λ– for the odd solution with
the electron reflection coefficient from the twinning bound-
ary R = 1/2 as functions of β =  for various values
of orthorhombic deformation parameter a of Fermi surface.
At the right of the upper and bottom curves, a = 0 and 1,
respectively. The remaining curves correspond to other a
values with a step of 0.1.

barctan

β = arctan b
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in Fig. 3 and differ from it no more than by 1%, i.e.,
lesser than the above-mentioned estimated error of the
variational approximation. In other words, the regions
of even and odd solutions with respect to the twinning
boundary are virtually independent of the reflection
coefficient R in the case of nonzero transmission coef-
ficient D.

This work was supported by the Scientific Council
of the direction “Superconductivity” of the State Scien-
tific and Technical Program “Topics in Condensed
State Physics.”
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It is shown that the identity of particles must inevitably be taken into account, because states in quantum field
theory are nonlocalizable. This circumstance, together with finite limiting velocity, is responsible for the
asymptotic character of formulas for the transmission capability of nonrelativistic communication channels
(they are formally valid only for infinite time delay between messages, when the identity of particles is negli-
gible, and, correspondingly, for infinitely slow transmission in time—bits per second per message). The trans-
mission capability of a sequential relativistic quantum communication channel is obtained in real time with
allowance for the identity of particles. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Hk
Transmission capability is one of the basic parame-
ters of a communication channel [1]. It determines the
upper rate of information transmission through the
communication channel and equals the number of bits
(≤1) per message that can be transmitted for a suffi-
ciently long sequence with arbitrarily low error proba-
bility.

Classical information theory is formulated in terms
of statistical ensembles [1]. Input quantities for a dis-
crete channel are alphabet symbols that are sent to the
channel with certain probabilities. The channel is
described by the transition probabilities between the
entry and exit for each symbol [1, 2]. In this case, the
physical nature of information carriers associated with
the alphabet symbols is not specified, but it is implicitly
meant that a certain classical object (signal) corre-
sponds to each symbol.

The entry object for a nonrelativistic quantum com-
munication channel is a quantum ensemble [3–6]. The
alphabet symbols are assigned to density matrices that
are sent to the channel with certain probabilities. The
quantum communication channel is formally described
by a mapping (superoperator) that transforms the input
density matrices into the output ones [3–6]. When clas-
sical information is transmitted through the quantum
communication channel, rather than the quantum state
itself, classical information is extracted at the receiver
end by measurements. Quantum coding theorems were
excellently reviewed by Holevo [4]. The physical
nature of information carriers is also not specified.

The most important characteristic of a communica-
tion channel is its transmission capability in real time.
The usual treatment of transmission capability as a rate
(number of bits per message) is not associated with the
0021-3640/02/7609- $22.00 © 20584
transmission speed in real time, because the formula-
tion of the problem does not involve time. It is implic-
itly meant that the alphabet symbols are transmitted
with certain frequency. In this approach, logical contra-
dictions do not arise for the classical nonrelativistic
communication channel, because classical signals cor-
responding to the alphabet symbols can be measured as
quickly as is wished (instantaneously) and, therefore,
the transmission rate per unit time is determined only
by the repetition frequency of symbols (if extra restric-
tions on the properties of the communication channel,
e.g., on its transmission band, are absent).

The situation is basically different in relativistic
quantum mechanics, which emerges immediately as
quantum field theory in the absence of reasonable inter-
pretation [7–9]. A state vector |ϕ〉 ∈  * describing the
quantum system must have a carrier (amplitude
smoothing function) depending on the spacetime argu-
ment. The amplitude is specified on the mass shell. For
this reason, the amplitude is nonlocalizable for both
massless and massive particles in the Minkowski space-
time [10, 11], i.e., is nonzero over the entire space
(beyond any compact region). Therefore, the calcula-
tion of trace over spatial degrees of freedom requires
the availability of the entire space. In contrast to the
nonrelativistic case, the existence of the limiting veloc-
ity makes this operation dangerous and leads to real
physical sequences: the access to the entire space
requires infinite time. In any real case, measurements
are carried out in a limited spacetime domain. There-
fore, there is a fundamental question of how the trans-
mission capability of the communication channel
depends on the quantum state (spacetime amplitude),
spacetime domains, where measurements are carried
out, and the reference frame.
002 MAIK “Nauka/Interperiodica”
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If the state amplitudes cannot be strictly localized
(this is true at least for free fields), the states that are
sequentially sent into the communication channel can-
not be treated as independent due to the inevitable over-
lap. In this case, the space of states is not described by
the tensor product of the spaces of states for individual
messages (*⊗ n) and must be described by either the
symmetrized (Sym*⊗ n for bosons) or antisymme-
trized (Asym*⊗ n for fermions) tensor product. Identi-
cal particles can be treated as distinguishable in indi-
vidual messages, and the space of states can be effi-
ciently described as the ordinary tensor product only
for the infinite spacing between individual messages.
However, the transmission speed in time (bits per sec-
ond) is zero in this case due to the existence of the lim-
iting velocity.

The generalized functions with operator values are
represented in the form [7–9]

(1)

where µ = 0, 1 is the helicity index. The generalized
basis vectors (linear continuous functionals in *) have
the form

(2)

where |0〉  is the vacuum vector, |kµ〉 ,  ∈ Ω *, and
Ω* is the space conjugated to the basic function space
Ω . Physical states (vectors in *) are obtained by
smoothing the generalized operator functions with
basic functions (amplitudes) from space Ω( ) (space of
infinitely differentiable functions decreasing at infinity
more rapidly than any negative power):

(3)

Here, the amplitude  ( (k, k0 = |k |)) serves as the
coefficient of expansion in terms of the generalized
basis states. The construction  ∈  Ω( ),  ∈
Ω∗ ( ), and |ϕµ〉 ∈  *, and Ω ⊂  * ⊂  Ω∗  is the equipped
Hilbert space (Gelfand triad) [8, 13].

ϕ̂µ
+ x̂( ) k̂eik̂ x̂aµ
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2( ),d∫=

k̂ k0 k,( ), x̂ x t,( ),= =

aµ
+ k̂( ) 0| 〉 kµ| 〉 , x̂µ| 〉 ϕµ x̂( ) 0| 〉 ,= =

kµ k'µ'〈 〉 k0δµµ'δ k k'–( ),=

aµ'
– k'ˆ( ) aµ

+ k̂( ),[ ] k0δ k k'–( )δµ µ', ,=

x̂µ| 〉

x̂

ϕµ| 〉 x̂ϕ̃µ x̂( )ϕµ
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x̂
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Below, we consider the following field states propa-
gating in one direction of the x axis (k > 0), which carry
information between remote users:

(4)

where

(5)

with the normalization condition

(6)

We discuss now the problem of admissible degree of
amplitude localization on the branch of the light cone.
The square integrability (normalization) condition for
ϕ(k) restricts the admissible degree of decreasing ϕ(τ)
at infinity (τ  ∞). The answer is given by the
Wiener–Paley theorem [14]. For a square integrable
function ϕ(k), which is equal to zero on the semiaxis
k < 0 but is not identical zero, the following integral
must converge:

(7)

Therefore, the amplitude ϕ(τ) on the light cone cannot
decrease exponentially, but this decrease can be
arbitrarily close to the exponential |ϕ(τ) | ~
exp{−α|τ|/ln(ln(ln…ln |τ|))} (α is a positive number);
i.e., states are nonlocalizable (are nonzero beyond any
compact domain).

Let us discuss the transmission of classical informa-
tion by a quantized massless field. It is fundamentally
impossible to use only single-photon states in the case
of a sequential communication channel because of non-
localizability. We consider the binary alphabet {0, 1}
with a priori probabilities {π0, π1}, which is assigned to
quantum states with generally nonorthogonal polariza-
tions {ν0, ν1}. For simplicity, the spatial amplitudes for
different polarizations are considered as identical. The

ϕµ| 〉 kd
k
-----ϕ̃ k k,( ) kµ| 〉

0

∞

∫ kϕ k( ) kµ| 〉d

0

∞

∫= =

=  x t–( )d( )ϕ x t–( ) x t– µ,| 〉 ,
∞–

∞

∫

ϕ k( )
ϕ̃ k k,( )

k
----------------, ϕ x t–( )

1
2π
------ e ik x t–( )– ϕ k( ) k,d

0

∞

∫= =

x t– µ,| 〉 eik x t–( ) kµ| 〉 k,d

0

∞

∫=

ϕµ ϕµ〈 〉 kd
k
----- ϕ̃ k k,( ) 2

0

∞

∫ k ϕ k( ) 2d

0

∞

∫= =

=  x t–( ) ϕ x t–( ) 2d

∞–

∞

∫ 1.=

ϕ τ( )ln

1 τ2+
------------------ τd

∞–

∞

∫ ∞.<
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results are simply generalized to arbitrary amplitudes.
Individual messages of length n consist of single-pho-
ton states sequentially sent into the communication
channel with the interval τ0. More exactly, a message of
length n is described by the following n-photon state
vector, whose components are taken with probabilities
{π0, π1}:

(8)

where decomposition goes over the generalized basis
vectors from Ω*:

(9)

and

(10)

where indices im = +, – correspond to the orthogonal
basis polarization states. The generalized basis states
are completely symmetric with respect to the particle
permutations [7–9] and have the following form in the
momentum space (for details, see [8]):

(11)

where jl,  = +, – and the sum is taken over all particle
permutations {i}. The orthogonality condition for the
generalized basis vectors has the form

(12)

We now consider the normalization condition for the
n-photon vectors of messages of length n. In order to
emphasize the difference between the case of identical
particles and the case of distinguishable particles, we
first suppose that information is coded into the orthog-

ϕν| 〉 An … k1 k2… knϕ1 k1( )ddd

0

∞

∫
0

∞

∫=

× ϕ2 k2( )…ϕn kn( ) k1ν1 k2ν2 … knνn, , ,| 〉 ,

ϕm km( ) ϕ km( )e
ikmτ0 m 1–( )

, n ν1 ν2 … νn, , ,( ),= =

k1i1 k2i2 … knin, , ,| 〉 ai1

+
ai2

+
k1( )…ain

+
kn( ) 0| 〉 ,=

im + – m, 1…n,= =

aνi

+ ki( ) ανi
a+

+ ki( ) βνi
a–

+ ki( ),+=

i 0 1, ανi

2 βνi

2+, 1,= =

k1 j1 k2 j2 … kn jn, , ,| 〉
k1k2…kn

n!
---------------------=

× δj1 ji1
, δ k1 qi1

–( )…δjn jin
, δ kn qn–( ),

i{ }
∑

jil

k1 j1 k2 j2 … kn jn k1' j1' k2' j2' … km' jm', , , , , ,〈 〉

=  δn m, k1k2…kn

× δj1 ji1
', δ k1 ki1

'–( )…δjn jin
', δ kn kin

'–( ).
i{ }

∑

onal polarization states [ji = +, – in Eq. (11)]. In this
case, we have

(13)

Recall that the single-particle amplitude is normalized
to unity according to Eq. (6). Overlaps in different posi-
tions for identical particles are zero formally only for
τ0 = ∞ because of fundamental nonlocalizability.

We first find the transmission capability in the case
where the observation time is unlimited (formally equal
to infinity; i.e., the entire branch of the light cone is
accessible in τ) and then generalize the results to finite
time. Let us discuss the direct coding theorem for a
source.

The density matrix corresponding to the code word
from a random set of M words has the form

(14)

and, after averaging of E over all possible random sets
of code words, provides the total density matrix of all
possible messages of length n:

(15)

where Pn is the probability of state |ϕn〉 . Reduce ρ(n) to
the diagonal form

(16)

ϕ j ϕ j'〈 〉 An
2 … k1…d kn … k1' …d kn'd

0

∞

∫
0

∞

∫d

0

∞

∫
0

∞

∫=

× ϕ1* k1( )ϕ1 k1'( )…ϕn* kn( )ϕn kn'( )

× k1 j1 k2 j2 … kn jn k1' j1' k2' j2' … km' jm', , , , , ,〈 〉

=  An
2 … k1… kn δj1 ji1

', ϕ1* k1( )ϕ1 k1( )
i{ }

∑dd

0

∞

∫
0

∞

∫

× e
ikτ0 i1 1–( )

…δjn jin
', ϕn* kn( )ϕn kn( )e

iknτ0 in n–( )

=  An
2 τ1δj1 ji1

', ϕ∗ τ1( )ϕ τ 1 τ0 i1 1–( )–( )…d

∞–

∞

∫
i{ }

∑

× τnd

∞–

∞

∫ δjn jin
', ϕ∗ τn( )ϕ τ n τ0 in n–( )–( ).

ρn j

n( ) ϕn j
| 〉 ϕn j

〈 | , n j ν1 j … νnj, ,( ),= =

j 1…M,=

ρ n( ) E ρn j

n( )( ) Pn ϕn| 〉 ϕn〈 | ,
n
∑= =

Pn πνi1
…πνin

, im

i1 … in, ,
∑ 0 1,,= =

ρ n( ) λJ λJ| 〉 λ J〈 | ,
J

∑=

λJ λJ'〈 〉 δ J J', , J J1 … J
2n, ,( ),= =
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where the eigenvalues λJ and eigenvectors |λJ〉  can be
expanded in terms of the generalized basis vectors as

(17)

The amplitude Φ(k1i1, …, knin; τ0) is uniquely expressed
in terms of single-particle amplitudes ϕ(k) and their
polarizations and also depends on the time spacing (τ0)
between individual packets.

The projector on the typical space of the n-photon
density matrix

(18)

is the von Neumann entropy of the ensemble of n-pho-

ton states, where  is the projector on the typical
subspace. After averaging over random code words [3–
6], the mean error over the random sets of M code
words of length n satisfies the inequality

(19)

The error can be made arbitrarily small, if the number

of code words satisfies the inequality M =  <

; i.e., the number of bits per one message meets
the condition

(20)

The limit of H(n)/n for n  ∞ is important. It is always
smaller than H (1) ⊗  n, because the overlap of individual
packets decreases the distinguishability of code words
due to the identity of particles.

λJ| 〉 … k1… kndd

0

∞

∫
0

∞

∫
i1 … in, ,
∑=

× Φ k1i1 … knin; τ0, ,( ) k1i1 … knin, ,| 〉

=  … τ1… τndd

∞–

∞

∫
∞–

∞

∫
i1 … in, ,
∑

× Φ τ1i1 … τnin; τ0, ,( ) τ1i1 … τnin, ,| 〉 .

Typ λJ : e H
n( ) δ+( )– λJ e H

n( ) δ–( )–< <{ } ,=

Pε
n( ) λJ| 〉 λ J〈 | ,

λJ Typ∈
∑=

H n( ) λJ λJlog
J

∑–=

Pε
n( )

Pe n M,( ) 2Tr ρ n( ) I Pε
n( )–( ){ }≤

+ Tr ρ n( )Pε
n( )ρ n( )Pε

n( ){ } 2ε M 1–( )e H
n( ) δ–( )– .+≤

enR
n( )

eH
n( ) δ–

R n( ) H n( )

n
--------- δ'.–<
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The quantity H(n)/n decreases with increasing n for
fixed spacing τ0 and a given amplitude. For τ0 = 0, we
have H(n) = 0, because all states in the typical subspace
become identical. Let the spacing of one extreme
packet on the light cone be τ0 = ∞. In this case, the den-
sity matrix is ρ(n) = ρ(n – 1) ⊗ ρ (1) and

(21)

The sequence H(n)/n decreases and is limited from
below. Therefore, the limit exists and equals 

(22)

This limit is the transmission capability and determines
the rate of information transmission as the number of
bits per message per photon. However, it is not the
speed in the bit /s sense, because the access to the entire
branch of light cone is required.

The inverse coding theorem is proved using the
Fano inequality [3, 6] and gives the same upper esti-
mate for the number of code words as inequality (20)
does.

The transmission capability as the number of bits
per second is associated with measurements in a finite
time window, and we discuss this problem below.

In the preceding case, where the entire light-cone
branch in τ is accessible (unlimited observation time),
the space, in which the probability distribution of
results arises after decoding, is a discrete space speci-
fied by the indices of code words nj = (ν1j, …, νnj). The
fundamental difference of the decision rule (unity
decomposition) for a finite observation window is that
the space of results is the Cartesian product of sets

(23)

where Tn is the light-cone region accessible to observa-

tion (time window) and Tn +  = (–∞, ∞). In what fol-
lows, it is convenient to denote Tn = nT0 (T0 is the effec-
tive time window per message). When an n-photon
message is decoded, the outcome of a measurement in
each of the channels numbered by indices νkj can be

either in the time window, τk ∈  Tn, or outside it, τk ∈  ,
independently of other values. The latter outcome
means that the detector in the time window Tn did not
trigger.

Any operator acting in n-photon subspace on polar-
ization degrees of freedom in a limited time window

H n( )

n
--------- H n 1–( )

n
---------------

H 1( )

n
--------- H n 1–( )

n 1–
---------------.≤+≤

H∞
H n( )

n
---------.

n ∞→
lim=

Σ τ1 Tn ν1 j,∈( ) τ1 Tn ν1 j,∈( )∪[ ]=

× … τn Tn νnj,∈( ) τn Tn νnj,∈( )∪[ ] ,

Tn

Tn
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can be expanded in terms of the generalized basis oper-
ators as

(24)

where the following notation is introduced for brevity:

The density matrix for an individual message in the
basis of generalized states is equal to

(25)

where  = αi, li = + and  = βi, li = –. Therefore, the

density matrix for the ensemble of n messages is ρ(n) =

. After calculation of the trace over space-
time variables in the basis |kj〉 , the effective density
matrix takes the form

(26)

X jj' … k1… kn k1 j1 … kn jn, ,| 〉 kn jn' … k1 j1', ,〈 |dd∫∫=

=  
td

2π( )n
------------- keikt kj| 〉d

0

∞

∫ 
 
 

k'e ik't– k' j'〈 |d

0

∞

∫ 
 
 

Tn

∫

+
td

2π( )n
------------- keikt kjd

0

∞

∫ 
 
 

k'e ik't– k' j'〈 |d

0

∞

∫ 
 
 

,

Tn

∫

k1 j1 … kn jn, ,| 〉 kj| 〉 , k k1 … kn, ,( ),= =

t τ1 … τn, ,( ), j j1 … jn, ,( ),= =

dk dk1…dkn, dt dτ1…dτn jk ±.= = =
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n ϕn| 〉 ϕn〈 | … k1… knγl1

…γln
dd

0

∞

∫
0

∞

∫
l1 … ln, , ±=

∑



= =

× ϕ k1( )…ϕ kn( )e
iknτ0 n 1–( )
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*…γln'

*dd

0

∞

∫
0

∞

∫
l1' … ln', , ±=

∑



× ϕl1'
* k1'( )…ϕ ln'

* kn'( )e
ikn' τ0 n 1–( )

kn' ln' …k1' l1'〈 |




,

γli
γli

Pnρn
n( )

n∑

ρne
n( ) td

2π( )n
-------------

Tn

∫
l1 l1' … ln ln', , , , ±=

∑
i i',{ }
∑=

× γli1
γli1

''
*ϕ i1

τ1( )ϕ i1'
* τ1( )…γlin

γlin
''

*ϕ in
τn( )ϕ in'

* τn( )

×δj1 li1
, δli1

'' j1', …δjn lin
, δlin

'' jn',
td

2π( )n
-------------

Tn

∫
l1 l1' … ln ln', , , , ±=

∑
i i',{ }
∑⊕

× γli1
γli1

''
*ϕ i1

τ1( )ϕ i1'
* τ1( )…γlin

γlin
''

*ϕ in
τn( )ϕ in'

* τn( )

× δ?1 li1
, δli1

'' ?1, …δ?n lin
, δlin

'' ?n, ,
where jk, , ?k = ± and similarly for the total density
matrix. The sign of direct sum indicates that the second
term is orthogonal to the first term. In the second term,
it is sufficient to retain only diagonal elements (as was
discussed above), and the formal change jk,   ?k is
made. Repeating the preceding argumentation, one can
obtain that the number of code words is equal to (for
details, see [3–6])

(27)

The inverse coding theorem can be proved similarly [3,
6] using the quantum analogue of the Fano inequality.
Therefore, the transmission capability is 

(28)

Thus, since states in quantum field theory are nonlocal-
izable, individual messages cannot be described as
independent because of their inevitable overlap, and the
identity of particles must therefore be taken into
account. This circumstance, together with the existence
of finite limiting velocity, is responsible for the asymp-
totic character of formulas for the transmission capabil-
ity of nonrelativistic communication channels (they are
valid formally only for infinite spacing between mes-
sages, when the identity of particles can be ignored).
The transmission speed in time (bit/s message) tends to
zero in this case. Formula (28) determines the transmis-
sion capability of the relativistic quantum channel in
real time.
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