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Recent publications on the Monte-Carlo simulation of vortex systems in HTS are reviewed.
Dependences of the main parameters of the vortex state~such as energy, heat capacity, thermal
motion, and structural order parameter! on extrinsic parameters~temperature and magnetic
field! are described. The vortex glass phase, the influence of defects on phase diagrams, as well
as the main phase transitions in two- and three-dimensional vortex structures including
melting and 2D-3D transition are considered. ©1997 American Institute of Physics.
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The discovery of superconductors with a high superc
ducting transition temperature stimulated interest towards
nature of the mixed state in which a superconductor ex
with a nonuniform magnetic field in the bulk of the materia

The H-T phase diagram of traditional low-temperatu
superconductors contains a region of mixed state1 bounded
by the temperature dependencesHc2(T) and Hc1(T) of the
upper and lower critical fields. In high-temperature sup
conductors~HTS materials!, the combination of high tem
peratures, small coherence length, and strong anisotrop
the properties enhances the role of thermal fluctuations
magnetic flux lines, leading to noticeable changes in the
ture and phase diagram of the mixed state. The most sig
cant effect of inclusion of thermal fluctuations is manifest
in the possibility of the vortex lattice melting and transitio
to a flux liquid at temperatures much lower than the sup
conducting transition temperature.2,3 The phase diagram ac
quires a region occupied by the flux liquid.4 The presence o
defects in the material leads to vortex line pinning increas
the number of possible vortex states. For example, disor
ing of the vortex lattice leads to its transition to vorte
glass.5–8 It should be noted that fluctuations in tradition
superconductors are also being studied intensely by u
various approaches~see, for example, Refs. 9, 10!, which are
based on the standard analysis of the Ginzburg-Landau f
tional described by the order parameterC. An analysis of
fluctuations^uCu2& for magnetic fields close toHc2 and a
large Ginzburg number leads to points at which the value
^uCu2& increases atT,Tc , which can be attributed to melt
ing of the Abrikosov lattice.9,10 In our opinion, the descrip-
tions of thermal fluctuations in the mixed state on the ba
of the ensemble of vortex lines and with the help of ord
parameter fluctuations form two different approaches to
explanation of the same physical phenomenon, viz., dis
pearance of the long-range order in a superconducting
tem in a magnetic field at a temperature lower than the
perconducting transition temperature.

It was proved in Refs. 4–6 that flux liquid freezing an
transition to vortex glass~i.e., to a disordered vortex lattice!
in defective superconducting crystals, as well as the form
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second-order phase transitions. On the other hand, if
found that melting of a vortex lattice in the absence of p
ning and in the presence of thermal fluctuations is a fi
order thermodynamic transition.11

The existence of a layered structure in HTS materi
complicates the phase diagram still further. The melting
the vortex lattice in layered materials occurs through t
independent stages: a transition of the vortex lattice to a
liquid ~melting curveTm(H)! and the loss of coherence be
tween layers within a vortex line, viz., the ‘‘decoupling
transition~the coherence loss curveTdc(H)!.12–14Moreover,
a transition of a flux liquid to two-dimensional vortex ‘‘pan
cakes’’ ~3D-2D transition! can also be a second-orde
transition.14 The phase ratio can be different depending
the residual or induced pinning. Residual pinning is the te
applied to natural defects in a superconductor formed du
its synthesis, while induced defects are those caused by
ternal action on the superconductor~irradiation, pressure
etc.!. The curves on the phase diagram bounding regions
vortex lattice, vortex glass, and flux liquid as well as t
coherence loss curve might be displaced relative to one
other, coincide and even intersect.

The structure of various vortex structures and the type
phase transitions between them have become the ce
problem in the physics of mixed state, attracting serious
tention of the scientists.15–19

An experimental proof of the fact that vortex melting
a first-order transition was obtained for the first time fro
the observation of a kink on the curve of resistive transit
in a pure crystal of YBa2Cu3O7 ~YBCO! in a magnetic
field.20–25 In spite of clarity and definiteness of the expe
ments, their interpretation is doubtful since resistance i
dynamic characteristic of the material, and hence canno
used for determining the type of transitions between differ
thermodynamic phases. A true first-order phase transi
must have the following thermodynamic features: latent h
and a jump in specific volume or density, which was de
onstrated by Zeldovet al.26 In their experiment, a series o
miniature Hall probes was used to carry out local measu
ments of magnetic induction in a pure Bi2Sr2CaCu2Ox single
crystal, and it was shown that a jump in the local vort

863110863-08$10.00 © 1997 American Institute of Physics



density~which is a thermodynamic parameter! is observed in
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the range of low fieldsH,380 G. This jump was interprete
by these authors as a proof of the fact that vortex lat
melting occurs as a first-order phase transition. Procee
from this assumption, the melting curve for the pu
Bi2Sr2CaCu2Ox single crystal was determined as well as t
critical point above which no jump in the vortex density
observed~on the field scale!. A similar critical point was
observed in experiments with YBCO.25 A possible reason
behind the emergence of the critical point on the melt
curve of a vortex medium lies in the influence of residu
disorder or pinning on vortex lines. As a result, translatio
correlations in an Abrikosov vortex lattice are confined
actual practice to a maximum size determined by the deg
of disorder.27

Subsequent publications28–30 confirmed the existence o
a magnetic induction jump detected not only in local, b
also in macroscopic measurements of magnetization.26,31,32

A thermodynamic proof of the existence of a first-ord
phase transition was also obtained for YBa2Cu3O7 single
crystal from equilibrium magnetization measurements.33,34

Moreover, it was proved in a recent communication35 that
the results obtained from resistive and magnetic meas
ments carried out simultaneously in Bi2Sr2CaCu2Ox single
crystal are identical and indicate a first-order phase tra
tion.

However, Nelson,27 who did not deny the fact of mag
netic induction jump, doubted the conclusion concerning
vortex lattice melting. He believed that the jump is not
convincing proof of lattice melting since the observed jum
lies in the reversible region of the magnetization curve. B
sides, the melting curve is separated from the irreversib
line which is determined by the Bean–Livingston barr
rather than by depinning under the given conditions. Th
Nelson stated that the magnetic induction jump indicates
melting, but ‘‘decoupling’’, which is also a first-order tran
sition.

A direct observation of vortex lattice melting was carri
out ~without determining the phase-transition type! with the
help of a small-angle neutron scattering.36 It was shown that
diffraction peaks disappear at field values much lower th
Hc2(T). The results correspond to the Lindemann criter
of melting with the parameterCL50.15.

Difficulties involved in an analysis of the phase diagra
of a vortex structure based on the Lindemann/melting cr
rion or some other physical approaches~see, for example
Refs. 4, 37, 38!, the lack of a consistent theory of meltin
and a large number of external factors that must be taken
account necessitate the application of numerical methods
cluding the Monte Carlo technique.39–47

1. SIMULATION OF A VORTEX LATTICE

In most cases, the behavior of a lattice of Abrikos
vortices in HTS materials is analyzed by using compu
simulation based on the Monte Carlo~MC! method.41–51The
standard Metropolice algorithm is used in such cases.52 The
Ginzburg–Landau functional is normally treated as a Ham
tonian of interacting particles~such an approach is substa
tiated, for example, in Ref. 53!.
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are regarded as classical particles with a long-range inte
tion on a planar mesh. For example, in Refs. 41–43,
47–49, 2D vortex systems were simulated by using the f
lowing effective Hamiltonian:

H5
1

2 (
i , j

~ni2 f !~nj2 f !V~xi2xj !, ~1!

where the sum is taken over a discrete mesh whosei nodes
can be either empty (ni50) or contain a vortex
(ni51)41,43,45,48or an antivortex (ni521) as in models of a
Coulomb lattice gas.47,49Here f is the phonon charge densit
defined as

f 5~)a0
2/2!~B/F0!,

whereB is the magnetic field,F052.0679•10215T•m2 the
magnetic flux quantum,a0 the triangular lattice constant, an
V(r ) the two-dimensional lattice potential~2D potential!
which is the solution of the equation

Dx,yV~x!522pdx,0 ~2!

with V(`)50.48

While modeling a layered superconductor, we conside
system of parallel plates pierced by vortex filaments. In e
plane, the problem is formulated in the same way as in
2D case. For superconducting layers, we assume that w
a vortex line vortex points interact only with two neare
neighbors above and below the given point in the plane
Refs. 41, 43, a model system was simulated by using
following potential:

Vi
z,z1155 U0F ur i

z,z11u
r g

22G , ur i
z,z11u.2r g ,

U0F ur i
z,z11u2

4r g
2 21G , ur i

z,z11u,2r g ,

~3!

where r i
z,z115r i ,z2r i ,z11 ; r g5jab /Ag; jab is the coher-

ence length in the crystallographic planeab, and g
51/2500~for Bi2Sr2CaCu2Ox(BSCCO)!. The dimensionless
energy of interaction between the layers isU05(T0a/pd)
3@11 ln(lab/a)# wherea512.3 Å is the separation betwee
the levels,d52.7 Å the thickness of the superconductin
layer, lab the magnetic field penetration depth in theab
plane, andT0 the coefficient of the interaction potential.

Typical vortex systems under investigation norma
consist of 100–1000 vortices. A further increase in the nu
ber of vortices increases the computer time of the prob
which, however, is much shorted than in other methods, e
the molecular dynamics method~MDM !. On the other hand
a decrease in the applied magnetic field reduced the num
of Abrikosov vortices in the system, and hence their dens
which complicates the application of the MC method in vie
of weak coupling between vortex points and dictates the e
ployment of other methods including the MDM.

Vortex systems are simulated on the basis of the M
method by using the two main approaches. In the first
proach, the Abrikosov lattice is taken as the initial state
the system. Simulation is carried out at a fixed temperat
and with a definite number of MC steps.42,43,45,51Another
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approach involves the simulation of cooling of a disordered
45,51 of

er

d
e
b

a
0

-

id
ra
–1
la

ou

ai
gu

h
-
ct
.

m

b

In
u
in

ie

e-
in

al

r

x

er,
ge
can

e

n
. In
rmed

pa-
system of vortices. Starting from a disordered system
vortices, the temperature of the system is reduced aft
certain number of steps~e.g., by 1 K after 15000 steps!.45

The results of such numerical experiments are used for
termining the temperature at which the lattice is disorder
A comparison of the results of the two approached can
used for refining the melting temperature.

It was found that thermalization of the system after
random distribution of vortices occurred after 5000–100
MC steps.41–51

2. PARAMETERS AND CHARACTERISTICS OF A VORTEX
LATTICE. EXPERIMENT AND SIMULATION

2.1. Magnetic field distribution in a vortex, vortex structure,
and range of interaction of vortices

The solution of the boundary value problem~2! has the
form43,48

Vi j
z 5T0K0S ur i ,z2r j ,zu

lab
D , ~4!

where T05F0d/2plab
2 m0 ; m054p•1027 V•s/Am; d

52.7 Å is the superconducting layer thickness,F0

52.0679•10215 T•m2 the magnetic flux quantum,lab(T)
5lab(0)@12(T/Tc)

n#21/2, where we normally choosen
53.3 ~according to experiments!, Tc is the superconducting
transition temperature, andK0(x) a modified Bessel’s func
tion.

Since the vortex interaction energy decreases rap
with increasing distance, the effective vortex interaction
dius is introduced. It is usually assumed to be equal to 3
separations between modes in an equilibrium triangular
tice. On one hand, this allows one to obtain results in
reasonable time, and on the other hand, takes into acc
the interaction of vortices correctly.

2.2. Equilibrium state of a vortex lattice

Obviously, all model approaches must satisfy the m
test for a vortex lattice: the vortex system must form a re
lar triangular Abrikosov lattice1 with the lattice constant

a05S 2F0

)B D 1/2

,

in a reasonable count time, viz., thermalization time.
It was noted in Refs. 44 and 51 that the time in which t

system reaches equilibrium~i.e., is transformed into a trian
gular lattice! depends on the number of introduced defe
~pinning centers! confining the lattice and on their intensity
For example, in the case of a moderate pinning, thermal
tion of vortices over distances;a0 ~triangular lattice con-
stant! is observed; this effect does not depend on the num
of pinning centers.

A vortex system can also form a rectangular lattice.
should be noted, however, that the energies of rectang
and triangular vortex lattices coincide for systems contain
approximately 200 vortices.45 It follows hence that since the
rectangular and triangular vortex lattices have close energ
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their melting temperatures also differ insignificantly. B
sides, a mixture of such structures is always observed
vortex systems.45

2.3. Structural factor. Order parameter

In order to analyze the melting of a two-dimension
vortex lattice, the following quantity is usually calculated:41

c6}K (
i 51

N
1

Zi
(
j 51

Zj

ei6u i j ~r j !L , ~5!

whereu i j is the angle between nearest neighbors,Zi the co-
ordination number for thei th vortex, andN the number of
vortices in the system.

A similar orientational correlation parameter~sixfold
orientational order correlation! was also used by othe
authors.48 A sharp change~decrease! in w6 indicates the vio-
lation of vortex lattice regularity and a transition to the flu
liquid state.

In addition, a structural factor of the form48

S~k![
1

N
^nkn2k&5

1

N (
i j

eik~r i2r j !^ninj&, ~6!

is considered, wherenk5( ini exp(2ikr i).
It follows from the definition of the parameterw6 in ~5!

and the structural factorS(k) in ~6! that the factorS(k) must
decrease strongly upon the violation of the long-range ord
while w6 is also sensitive to the violation of the short-ran
order. As the temperature increases, two melting phases
be distinguished;48

~1! at first,S(k)→0, andw6Þ0,
~2! thenw6→0 at T5Tm .

Phase~1! ~floating lattice! is a homogeneous state of th
lattice with a short-range order. The melting temperatureTm

is lower thanTc . Thus, the phase exists in the intervalTm

,T,Tc . This is the region in which vortices still exists i
the presence of pinning, but are completely disordered
this respect, such a phase state in unstable and is transfo
to the normal state in the absence of pinning, i.e.,Tc[Tm in
a pure superconductor.

Figure 1 shows thew6(T) and«21(T) dependence~« is

FIG. 1. Dependences of reciprocal dielectric constant and correlation
rameter on normalized temperature forf 51/49 andN5169.48
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the permittivity which is calculated fromS(k)!48 for a sys-
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tem withN563 andf 51/49 at three different temperature
T50.003~belowTm* ; pinned lattice!, T50.0065~belowTm ;
floating lattice!, andT50.0075~aboveTm ; liquid!.

At low temperatures (T,Tm) and in moderate fields
(B,B2D), vortex ‘‘pancakes’’ can form a nearly perfec
Abrikosov lattice~w6 is close to unity!, while aboveTm the
parameterw6 is close to zero.43

2.4. Heat capacity of a vortex lattice

Heat capacity is another visual characteristic of
phase-transition point. The melting point of a vortex latti
must be characterized by singularities in the temperature
pendenceC(T) of heat capacity. The value of heat capac
can be calculated most conveniently by using the fluctuat
dissipative theorem45

C~T!5~1/kB
2T2!~^E2&2^E&2!, ~7!

whereT is the temperature in kelvins,E the energy of the
system, andkB the Boltzman’s constant.

The result of MC simulation of a 2D vortex system in
the absence of pinning in a field of 1T45 show that the hea
capacity of the system has a peak which is the sharper
larger the number of vortices in the system~we modelled
systems containing 108, 243, and 300 vortices!.

If we defineTm as the temperature at whichC(T) has a
peak, the value ofTm changes insignificantly with increasin
number of vortices,45 i.e., the system is large enough, and
change in the number of vortex points does not affect
quantities being measured.

2.5. Mobility of vortices

In order to determine the possibility of melting of th
vortex lattice in a 2D system, we can use the Lindeman
criterion according to which the lattice melts when the st
dard deviationsTM ~thermal motion! becomes approxi-
mately equal to 1/10 of the distancea0 in an equilibrium
vortex lattice.45

The standard deviationsTM of vortices which is equal to
the displacement of a vortex from its initial position, is d
fined as45

sTM5F(
i 51

N
~r i f 2r is!

2

N G1/2

, ~8!

where r is is the initial position of the vortex,r i f its final
position, andN the number of vortices in the system.

According to calculations,45 the motion of vortices atT
,Tm(Tm518.5 K) is small, but atT;Tm the deviationsTM

increases rapidly, i.e., the lattice melts. Thermal motion
also intensified upon an increase in the number of vortice
the system atT;Tm ~in the field H51T! and remains vir-
tually unchanged at a lower temperature.

It would be interesting to trace the effect of pinning o
the motion of vortices. For example, it was found that t
behavior of a vortex lattice with a moderate and strong p
ning is different.44 In the case of a moderate pinning, Yat
et al.44 proved that the density of pinning centers affects
thermal motion insignificantly so that the value ofsTM is of
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In the case of strong pinning,sTM has a minimum forNpin

'Nvor/4 ~Npin is the number of defects andNvor the number
of vortices! and a maximum forNpin in the region from
Nvor/2 to Nvor . The decrease in the thermal mobility fo
Npin5Nvor/4 was explained by Yateset al. by approximate
coincidence of pinned positions with the vortex lattice. A
the number of pinning defects increases, the defects f
clusters trapping vortices at distances smaller than in an
pinned lattice. This is accompanied by the formation
channels on the potential energy surface of the syst
through which unpinned vortices can diffuse. Yateset al.44

drew the following conclusions: the defect concentrati
Npin'Nvor/4 stabilizes the lattice, forNvor4,Npin,Nvor the
lattice is okey and diffusion is initiated, while forNvor

!Npin the motion of vortices and the lattice structure a
suppressed.

3. PHASE DIAGRAMS „VORTEX LATTICE, ‘‘GLASS’’, FLUX
LIQUID; LOSS OF COHERENCE BETWEEN LAYERS

3.1. Melting of vortex lattice in a 2 D system

Two-dimensional systems are being studied intensely
view of the quasi-two-dimensional nature of layered sup
conductors and weak interplanar interaction in them. For
ample, simulation of a 2D vortex lattice by the MC method
was carried out in Refs. 44, 45, 48–50.

A transition ~lattice melting! observed by Franz and
Teitel48 in a 2D system was identified as a weak first-ord
transition. The system under investigation had two charac
istic temperatures:Tm* andTm . The temperatureTm* was de-
termined from the temperature dependence of the dielec
function, which vanishes atTm* . The temperatureTm was
determined from the vanishing of the orientational corre
tion function w6(T). It was noted earlier in Sec. 2.3 tha
Tm* ,Tm in the given system; forT,Tm* , the lattice is pinned
~pinned solid!, for Tm* ,T,Tm the lattice drifts ~floating
solid!, and forT.Tm the lattice melts~isotropic fluid!. The
change in free energyDF increases linearly with the linea
sizeL of the system, which leads to the conclusion48 that the
system experiences a first-order transition.

Yateset al.45 determined the melting point~17 K! of a
2D vortex lattice from the peak on the lattice heat capac
and from the behavior of the correlation function as well
thermal motion of vortices.

Lee and Teitel,49 who simulated a 2D lattice gas, estab-
lished that lattice melting is a first-order transition. Xing a
Tesanovic50 studied a transition of a flux liquid to a flux
solid. A transition to the liquid state in the system at 18
was also observed by Yateset al.44

3.2. Melting and vortex glass phase

Melting in a 3D system of vortices was investigated
Refs. 41–43, 54, 55. Figure 2a41 shows the phase diagram o
a system of 64 vortex lines simulated by the MC method
the range of magnetic field 12.5 G<B<50 T. Figure 2b il-
lustrates the case of very low densities~16 lines!. Parameters
for the MC simulation were taken for Bi2Sr2CaCu2O8. Two
phase-transition curves were obtained. Curves1 were deter-
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mined from the disappearance of translational order in
planeS(q5G1), which is a Fourier transform of the density
density correlation function at the boundary of the Brillou
zone. This dependence has sharp peaks in the solid p
which reflect the existence of a long-range order in the s
tem. On the contrary, the structural factor in the liquid pha
has no peaks and attains saturation~at the temperatureTm!.
Curves2 were obtained from a similar analysis of the hexa
tic order parameterw6 . Melting occurs in two stages in th
same way as in the case of a 2D system. The asymptotic
form of such a curve at high temperatures is the 2D limit. In
the low-field mode, the interplanar interaction is relative
strong~stronger than correlations in the plane!. As a result,
the system contains straight vortex lines which form a ‘‘fra
ile’’ lattice. In the case of a low density of vortices, th
authors of Ref. 41 observed the vortex line reconnection
fect: in the model of coupled planes, vortices can switch
bonds. tending to a lower energy of the system.

Schneideret al.43 calculated the hexactic order param
eter C6 and the standard deviation of a vortex ‘‘pancak
from the average position in order to observe melting of
vortex lattice. For a system of 838316 vortices, the melt-
ing point of the vortex lattice in the fieldB545 mT was
defined asTm.60 K ~the experimental value isTm557 K!.
The magnetic field distribution was also calculated for th

FIG. 2. B2T phase diagram for 12.5 G<B<50 T.61 Dashed curve corre-
sponds to the results of calculations~a!. Low-density mode~b!.
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vortex phase!, ~b! T580 K, B545 mT, C6.0 ~liquid
phase!, and~c! T55 K, B590 mT ~a system without corre-
lation between layers, but with an Abrikosov lattice in th
planes corresponding to the 2D phase!. The results are in
good agreement with the experimental data for BSC
samples.

Sasik and Strous’54 also studied the melting transitio
and theTm(H) dependence. They used the MC method
k@1 ~k is the Ginzburg-Landau parameter!; for k552 and
Tc0593 K, the compound YBaCuO was simulated. T
number of vortices was 100, the number of layers was
and H550 kOe. A detailed comparison with experiment
data revealed a satisfactory agreement with the result
simulation. The transition was determined from the para
eter S(q). The vortex solid state was obtained atT
582.8 K and the vortex liquid state atT583.0 K, i.e., a
transition occurring atTm.83 K andH550 kOe is a first-
order transition.

The Abrikosov theory predicts a second-order transit
for a homogeneous type II superconductor in a magn
field. Herbut and Tesanovic55 noted that strong fluctuation
in type II superconductors can change the order of the tr
sitions and established that the melting of a vortex lattice
a strong type II superconductor (k@1) in a magnetic field is
a first-order transition. The values of the constants w
taken for YBaCuO. The range or experimental fields w
0.1–10T. The results obtained in Ref. 55 confirmed that t
liquid-solid transition of a vortex lattice in a type II homo
geneous superconductor is a first-order transition.

The transition curve for melting on the phase diagra
can be displaced when point of columnar defects are in
duced in the system in view of pinning of vortex ‘‘pan
cakes’’ or entire vortex lines on them, which results in t
formation of the vortex glass phase. Tauber and Nelso51

analyzed the effect of interaction and pinning energy in
vortex glass phase by the MC method and considered l
temperature excitations of vortices ‘‘frozen’’ at columnar d
fects in superconductors taking into account the long-ra
interaction between vortices.

3.3. 2D-3D Transition

Vortex lines in a layered material are formed by ind
vidual ‘‘pancakes’’, the interaction between ‘‘pancakes
along parallel layers being relatively weak.56 Accidental dis-
placement of these ‘‘pancakes’’ can suppress coherence
tween the layers. Thermal fluctuations of ‘‘pancakes’’ c
also be responsible for this effect at temperatures m
lower than the melting temperature of the vortex lattice. T
violation of coherence can be described on the basis o
exponentially strong temperature dependence of critical c
rent in thec direction ~across the layers!. At low tempera-
tures, vortex ‘‘pancakes’’ in different layers are aligned
the absence of disorder, and the coherence between the
ers is restored. Heterogeneities of the material create a
dom potential which controls displacements of ‘‘pancake
even atT50, and these displacements caused by disor
also suppress the phase coherence between the layers
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on Josephson junctions between layers and on random
tion of vortex lines.

The importance of pinning for interlayer coupling in la
ered HTS materials was also presumed in some experime
works.57–61

Benkraouda and Clem62 analyzed the stability of a vor
tex line as a pile of vortex ‘‘pancakes’’ to transverse d
placements.

In the MC simulation of a 3D system of vortex lines, the
following states of the system can be singled out41,43: the 3D
phase, the liquid phase, and the 2D phase. In addition. Ruy
et al.41 investigated the effect of reconnection of couplin
between vortices in different planes, which was mentione
Sec. 3.2. An analysis carried out in by Daemouet al.57

proved that the 2D-3D transition is of the second order.

4. INFLUENCE OF DEFECTS ON VORTEX LATTICE

It was noted by Yateset al.44 that the introduction of
defects into a system affects the vortex mobility in the pla
It was observed that defects with a weak to moderate pinn
force weakly affect the melting in the system. In the case
strong pinning, the vortex structure is stabilized even b
small number of pinning centers approximately equal
Npin,Nvor/4. Yateset al.44 state that an increase in the num
ber of defects toNvor/2 initiates diffusion of vortices in the
system.

Rudnevet al.63 used the MC method to analyze the b
havior of a 2D vortex system with defects. Vortices we
regarded as zero-mass classical particles with a long-ra
repulsion. Pinning was presented by a finite number of r
domly distributed potential wells with a short-range attra
tion. They analyzed the behavior of systems with 100–2
vortex points distributed over a square mesh of size
3390 or over a triangular mesh of size 3203320 cells. Pe-
riodic boundary conditions were used. Simulation parame
were typical of layered HTS materials. In order to obse
vortex lattice melting, the hexactic order parameterS6 was
calculated. It was found that the value ofS6 is close to unity
in the case of an almost perfect Abrikosov lattice and
equal to zero at temperatures above the melting point of
vortex lattice. It was also found that pinning shifts the me
ing point and modifies the phase diagram Figure 3 show
typical structure of a vortex lattice at a low temperature a
4•104 MC steps. The series of Figs. 4a–c illustrates the v
tex lattice dynamics at various temperatures. Dark spots
dicate regions near pinning centers, in which vortex ‘‘pa
cakes’’ are unstable. Clear-cut spots correspond
‘‘pancakes’’ located at large distances from pinning cente
It can be seen that the vortex lattice is destroyed at h
temperatures, and vortices do not experience the actio
pinning forces. Figure 5 shows the temperature depende
of S6 at various numbers of pinning centers. In addition
should be noted that the transition~melting! temperature de-
creases upon an increase in the concentration of pinning
ters, which corresponds to a shift of the phase boundary
the B2T diagram.

In a perfect layered superconductor at a low temperat
vortex ‘‘pancakes’’ in different layers are aligned. Koshel
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et al.56 analyzed the situation when point defects genera
random potential acting on each vortex, which destroys v
tex lines.

Machida and Kaburaki64 studied the pinning of vortices
at columnar and point defects as well as the dynamics
stepwise vortices.

Tauber and Nelson51 studied the behavior of a vorte
system in the ‘‘vortex glass’’ phase. They analyzed the s
ation when each vortex line is connected to one of the
fects, while some defects remain vacant. This phase is a
ciated with the phase of Bose glass known from simulat
of Bose systems with defects.65 Tauber and Nelson51 also
studied the case when a vortex is pinned to two nearest
lumnar defects. The description of such a system at a
temperature51 can be reduced to a quantum lattice Bose g
with the so-called hard-core statistics: bosons at differ
sites are characterized by a symmetric function, while th
at the same site obey the Pauli principle, i.e., obey the
mion statistics.66 In this case, the phase transition from th
pinned lattice to a mobile lattice is equivalent to the we
known transition from a Mott insulator to superfluidity for
Bose gas.67

CONCLUSIONS

The variety of phase diagrams for the vortex state
HTS materials, the complexity of layered strongly correlat
structures under investigation, and the lack of rigorous a
lytic approaches necessitate intense studies of phase tr
tions in a vortex lattice by using effective numerical met
ods. The results of numerical simulation by using the Mo
Carlo method presented in this review make it possible
describe satisfactorily the available experimental facts
some cases and to obtain the phase diagrams as well a
portant parameters of the system~including their numerical
value!.

In conclusion, it would be appropriate to outline a num
ber of problems which can be proposed as topics for furt
investigations in the field of modeling of the vortex lattice
HTS materials and for experimental investigation of t
mixed state. For example, it would be important to carry o
experiments demonstrating the changes in the melting cu
and the position of the critical point induced by disorder. It

FIG. 3. Vortex line distribution in a triangular lattice forB5100 mT,
T55 K; the number of pinning centersNpin510 for U520.005 eV.
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FIG. 4. Temperature evolution of a vortex lattice in a square mesh with
number of pinning centersNpin5100 for B545 mT, and various tempera
turesT, K: 5 ~a!, 30 ~b!, and 50~c!.
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interesting to calculate phase diagrams of the vortex state
various extent of disorder, to determine the state of the s
tem above the melting point of the vortex lattice, to inves
gate the region of low fields and temperatures, in which
vortex lattice can also experience melting, and finally,
would be important to carry out exact calculation of curre
voltage characteristics~see recent publications devoted to
analysis of current-voltage characteristics of a vortex sys
with defects!68,69 reflecting the dynamics of the vortex sta
in the regions of the phase diagram corresponding to
state of vortex crystal, glass, and flux liquid.

This research was carried out under financial suppor
the Russian science and engineering program ‘‘Mod
Problems in Physics of Condensed State: Supercondu
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QUANTUM LIQUIDS AND QUANTUM CRYSTALS
On critical rates of vortex formation in rotating helium
T. I. Zueva

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of the Ukraine, 310164 Kharkov, Ukraine
~Submitted April 8, 1997; revised June 23, 1997!
Fiz. Nizk. Temp.23, 1162–1171~November 1997!

The vortex flow of a superfluid liquid between concentric cylinders rotating with the same
angular velocity is studied. A general expression is obtained for the free energy of a liquid with
vortices ofarbitrary intensity. The possibility of emergence of vortices whose vorticity is
opposite in sign to the angular velocity~negative vortices! is studied. It is shown that the formation
of negative vortices in a liquid corresponds to larger values of free energy than for positive
vortices. The friction force exerted by the normal component on a vortex dislodged from
equilibrium position is derived, and the energy barrier overcome by a vortex in crossing
from one wall to another is calculated. It is shown that in view of the presence of the energy
barrier, the probability of vortex formation is significant only for angular velocities
considerably exceeding the theoretical angular velocity. Parametric equations are obtained for the
envelope of a family of lines expressing the free energy as a function of the angular
velocity of a rotating vessel with different numbers of vortices. An approximate relation between
the angular velocity of a rotating vessel and the number of vortices formed at this angular
velocity is obtained. ©1997 American Institute of Physics.@S1063-777X~97!00211-9#

In most works devoted to investigation of vortex statesvortex is formed at theinner wall, its detachment from the

in rotating superfluid helium, it is assumed~tacitly or other-
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wise! that vortices formed at a certain rotational veloc
have vorticity of the same sign as the angular velocity of
rotating vessel. This means that the circulation around
vortex defined in an appropriate manner~see, for example
Ref. 1!

R vs•dl52pg ~1!

is positive if the vessel rotates in counterclockwi
direction.2 If the motion is considered in a doubly connect
region~ring!, the vortex motion in the liquid itself is supple
mented by a~quantized! circulation around the inner cylinde
which neutralizes the difference between the linear veloci
at the outer and inner walls for low rotational velocities3

This circulation has the same sign as the angular veloc
which means that we can write the following expression
a vessel rotating in the counterclockwise direction:

R
r 5R1

vs•dl52pgL.0.

Here,r 5R1 is the inner radius of the ring under consi
eration,R2 its outer radius (R1<r<R2), L the number of
circulation quanta measured in units of 2pg.

According to Kelvin’s theorem on conservation of circ
lation ~see Ref. 4!, circulation around the inner cylinder can
not commence on its own. If the circulation around the inn
cylinder was equal to zero at the initial instant, then acco
ing to the ideal liquid model which we are following here,
cannot change simply as a result of the formation of avortex
near a wall followed by its annihilation at another wall. If th
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is opposite to the vortex~so that the total circulation aroun
any liquid contour is conserved!. However, if the vortex is
detached from theouter wall, absorption by its image at th
inner wall leads to a circulationof the same signas the
vortex ‘‘descending’’ to the inner cylinder. This means th
circulation may have the same direction as the angular
locity of the rotating vessel upon a detachment of a nega
vortex ~according to the definition~1! of the vortex sign!
from the inner wall, or of a positive vortex from the oute
wall.

Thus, it can be assumed that intensity vortices can h
a sign opposite to that of the angular velocity. We shall p
ceed from this assumption to construct a refined theory
vortex motion of a superfluid liquid in rings of any size.

FREE ENERGY AND EQUILIBRIUM CONDITIONS

While solving the two-dimensional problem for the flo
function of an ideal liquid in a ring,5 we obtained expression
for the flow function c(r ,u) and the complex-conjugat
velocity v(z) of an ideal liquid containingN vortices of
arbitrary intensity gk , located at arbitrary points zk

5r k exp(iuk). All vortices are assumed to be infinitely lon
filaments stretched along the rotational axis of the ring. W
shall rewrite these expressions after eliminating the com
nents associated with the circulation around the inner cy
der ~since no constraints are imposeda priori on the sign of
the vortex, and the existence of circulation is not presume!:

871110871-07$10.00 © 1997 American Institute of Physics
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The expression for the free energy assumes the form
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r k
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G . ~3!

Here, z5r exp(iu) is a complex variable in the ring
(r ,u) are polar coordinates of a point,s andz are the Weier-
strass sigma- and zeta-functions with half-periodsv15p,
v25 i ln(R2 /R1); h5z(v1); Zk5R1 exp(iuk).

In deriving the expressions for the free energy, we
placed the assumption concerning the existence ofN vortices
of arbitrary intensity by the assumption that all vortices ha
the sameintensity g whose sign coincides with that of th
angular velocity of the rotating vessel. However, one c
easily obtain ageneralexpression for the free energy of
superfluid liquid in a ring containingN vortex lines of arbi-
trary ~both in magnitude and sign! intensitygk ~the presence
of circulation is not assumed!.

It was shown by us earlier7 that
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k51
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gk
2.

The values of flow functionsc1 andc2 at the inner (r
5R1) and outer (r 5R2) boundaries of the ring were ob
tained while deriving the expression for the flow function

c150, c25(
j 51

N

g j ln
R2

r j
.

The values of the flow functionsc i at the vortex surfaces
~which are assumed to be cylinders of radiusa! can be ob-
tained from the general expression~2! for the flow function
by putting z5zj5r j exp(iuj) in all terms but one in which
s@ i ln(zj /zk)# has a singularity fork5 j . In this term, we
assume thatz5zj1a exp(iw), where w is the angle mea-
sured from the vortex center. In this case, we obtain~to
within terms of the order ofa/r j !

c j5S (
k51

N

gkD ln
r j

R1
1 (

k51
kÞ j

N

gkFRe ln sS i ln
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This is just the general expression for the free energy
a superfluid in rings rotating with an angular velocityv and
containingN vortices of arbitrary intensitygk .

The equilibrium condition for a vortex system can b
presented in the form of 2N equations

]F

]r i
50;

]F

]u i
50, i 51,2,...,N.

It is not difficult to write these equations, but we sha
require in future only equations corresponding to vortic
with positive and negative unit intensityg. Hence we shall
write only these equations.

Note that all terms in the expression~4! for free energy
except one contain theproduct of intensitiesg jgk ~or g j

2!.
The only exception is the termv(R2

22r j
2) which contains

the factorg j to the first power@or outside the brackets, whic
leaves a term of the type (v/g)(R2

22r j
2), as in the case of a

system of one-quantum positive vortices#.7 Thus, a reversal
of the sign of intensity of one or more vortices reverses
sign of only a few cross-multiplication terms~for kÞ j ! and
of the term proportional tov for N.1, or only of the last
term if N51 or all vortices have the same sign.

We shall consider the last case only, and endeavo
determine the sign of vortices emerging for low angular v
locities of a rotating vessel as well as the reason behind

Let us assume that a ring is filled with superfluid heliu
rotating at such a low angular velocityv that no vortices are
formed in the liquid, and hence

vs[0.

A vortex appears in the liquid for a certain angular v
locity v5vc . We shall show that this vortex, whic
emerges near a wall, isunstableirrespective of its sign and is
annihilated by its image relative to the other wall, resulti
in a circulation around the inner cylinder.

FORMATION OF ARBITRARY-SIGN VORTEX

The free energy of a superfluid liquid in a ring contai
ing a vortex of intensity2g at the pointz15r 1 can be writ-
ten in the form

872T. I. Zueva
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This expression differs from the corresponding expr
sion for a vortex with positive intensity1g only in the sign
of the last term. It turns out, however, that it is this term th
plays a decisive role in studying the behavior of a vor
system. In order to prove this, let us turn to the detai
analysis of the system with onepositivevortex, which was
carried out by us earlier7 as a first step towards the study
a multivortex system, but was not presented there since
considered a more general problem about the formation
whole ring of vortices.

The equilibrium condition for a vortex of arbitrary inten
sity assumes the form

1

2r 1
1

1

r 1
Im zS 2i ln

r 1

R1
D2

2h

v1r 1
ln

r 1

R1
56

v

g
r 1 . ~6!

The upper sign corresponds to a positive vortex and
lower one to a negative vortex. We shall consider in de
the curves describing the functions on the left- and rig
hand sides of Eq.~6! ~having premultiplied the equation b
r 1Þ0 for convenience! ~Fig. 1!.

It can easily be seen that forg.0, Eq.~6! has only one
root for any fixed value of the angular velocity.1! This root is
close to the valueR2 and, as was shown earlier, unstable. F
g,0, Eq. ~6! cannot have more than one root which is
ways close toR1 , i.e., the equilibrium position of the vorte
is closer to theinner wall of the ring. We shall find out
whether this equilibrium is stable. For this purpose, we c
culate the second variation of the free energy~5!:

FIG. 1. Dependence of velocity of the superfluid (vs) and normal (vn)
components on the vortex positionr 1 . The figures correspond toR1

50.1 cm andR251.5 cm.

873 Low Temp. Phys. 23 (11), November 1997
-

t
x
d

e
a

e
il
-

r

l-

dr1
2 s H 2r 1
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2

r 1
2 Re z8S 2i ln

r 1

R1
D1

2h

v1r 1
2 S 12 ln

r 1

R1
D2

v

g J .

~7!

The condition for the positiveness of the second var
tion has the form

1

2
1Im zS 2i ln

r 1

R1
D22 Rez8S 2i ln

r 1

R1
D1

2h

v1

3S 12 ln
r 1

R1
D2

v

g
r 1

2>0. ~8!

Let us determine (v/g)r 1
2 from the equilibrium condi-

tion ~6! and substitute it into~8!:

2Re z8S 2i ln
r 1

R1
D1

h

v1
2

v

g
r 1

2>0. ~9!

We now calculate the first two terms, taking into accou
the expression forz-functions6 and substituting the values o
half-periodsv15p andv25 i ln(R2 /R1), as well as the de-
nominatorq5R1 /R2 :

Re z8S 2i ln
r 1

R1
D2

h

v1
5

1

4 sinh2~ ln r 1 /R1!

12(
n51

`
q2n

12q2n cosh 2n ln
r 1

R1

5S R1r 1

r 1
22R1

2D 2

12(
n51

`
q2n

12q2n n

3cosh 2n ln
r 1

R1
.0.

Thus, inequality ~9! is never satisfied: a negative
intensity vortex isunstable ~like any number of negative
vortices, since the computations remain valid for an arbitr
N if we take forq the quantityq5(R1 /R2)N!. Thus we have
to make the following choice: both negative and positi
vortices are unstable for low angular velocities of a rotat
vessel; so which ones should be given preference and w
In the previous analysis, we stated that, if there is no sta
solution of the equation fordF/dr1 , the emergence of cir-
culation around the inner cylinder is assumed to be adva
geous from the energy point of view. We shall study t
justification for such a statement.

Let us consider expression~5! for free energy. Since the
second variation of free energy is negative for any sign
vortices, the root is a maximum. At the right end~for r 1

5R2!, the values of the flow functionF1 corresponding to a
positive vortex and of the flow functionF21 corresponding
to a negative vortex coincide~Fig. 2!. At the left end~for
r 15R1!, the difference between the free energiesF1 and
F21 can be presented in the form

F212F15prsg
2F2v

g
~R2

22R1
2!G . ~10!

The absolute values of these quantities can be obta
by calculating the limiting values ofF1 and F21 for
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r 1→R1,2 by puttingr 15R22« or r 15R11« and expanding
the sigma-functions in the small parameter«. These limits
are defined as

F1ur 15R11«
'prsg

2H 1

2
1 ln

2«

a J ,

F1ur 15R22«
'prsg

2H 1

2
1 ln

2«

a
1 ln

R2

R1
2

v

g
~R2

22R1
2!J .

~11!

At the right end,F215F1 , while at the left end the sign
of the last term is reversed. Atr 15R2 , we find thatF50 if
we put «5a/2 and disregard the term 1/2. However,
should be recalled that the accuracy of the obtained form
~disregarding deviations of the vortex core shape from cy
drical! deteriorates sharply near the walls. Hence these
ues of free energy can hardly be called limiting values. Ho
ever, for the same assumptions concerning«, we obtain from
formula ~11!

F15prsg
2H ln

R2

R1
2

v

g
~R2

22R1
2!J .

This is just the expression for free energy of a liquid
the presence of a circulation quantum~see Ref. 7 or formula
~12! below!. Thus, as a vortex descends to the inner cylind
the free energy is transformed~with a slight error! into the
free energy of a superfluid liquid without vortices but with
circulation.

The free energy curves are presented schematicall
Fig. 2.

The real values of the maximum energy are of the or
of g2;1028 ~a more detailed estimate of this maximum w
be obtained below!. If for some reasons~hydrodynamic in-
stability, thermal fluctuations, mechanical vibrations, etc.!2 a
vortex is detached from the wall and falls into unstable eq
librium, its deviation from this position leads to the eme
gence of a force that draws the vortex from the equilibriu
position.

We shall show that the magnitude of this force is p
portional to the second variation of the free energy~8!. For

FIG. 2. Qualitative dependence of the free energy on the vortex positior 1

for a positive (F(1)) andnegative (F(21)) vortex.
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exerted on a vortex by the normal component and rever
to the equilibrium position if equilibrium is stable or drawin
it from the equilibrium position in the opposite case. T
equation of motion for thei th vortex filament displaced from
equilibrium has the form2

gF ~vn2vs,e! i3
ddr i

dt G5z3rs~vs,e2vn! i
2êz .

Here,dr i is the deviation of the vortex filament from th
equilibrium position,z3 the bulk viscosity,vs,e the velocity
generated in the vortex core by all the remaining vortices
images~i.e., the velocity of the vortex itself!, andêz the unit
vector of the axis perpendicular to the plane of the ring~ro-
tational axis!. Calculating these expressions in cylindric
coordinates, we obtain a scalar equation~radial component!
for one vortex filament:

d~dr 1!

dt
52

z3rs

g Fvr 12
g

2r 1
2

g

r 1
Im zS 2i ln

r 1

R1
D

1
2gh

pr 1
ln

r 1

R1
G .

In the equilibrium positionr 15 r̃ 1 , the right-hand side is
equal to zero. Forr 15 r̃ 11dr 1 , we can obtain an equatio
for dr 1 by expanding all terms in the small paramet
dr 1 / r̃ 1 :

d~dr 1!

dt
52z3rsFv

g
1

1

2r̃ 1
2 1

1

r̃ 1
2 S Im zS 2i ln

r̃ 1

R1
D

22 Rez8S 2i ln
r̃ 1

R1
D D

1
2h

p r̃ 1
2 S 12 ln

r̃ 1

R1
D Gdr 1 .

It can be seen easily that the brackets contain just
second variation of the free energy~7! ~except for a dimen-
sional factor!. It was shown earlier that this quantity is a
ways negative for both positive and negative vortices. He
vortices displaced from the equilibrium always move aw
from this position.

A positive vortex detached from the outer wall an
crossing the energy barrier approaches the inner wall
merges with its image, while a negative vortex detach
from the inner wall drifts towards the outer wall. Accordin
to formula ~10!, however, the free energyF1 for r 15R1 is
lower than the free energyF21 for r 15R2 . This means that
the detachment of a positive vortex from the outer wall
energetically more advantageous than the emergence
negative vortex at the inner wall. Such a detachment lead
the emergence of a circulation around the inner cylinder w
the same sign as the angular velocity of the rotating ves
Thus, all previous arguments remain valid~see Ref. 7!, and
we can write for free energy the expression obtained abo
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formula ~5!#. Of course, this obstacle can be overcome in
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F5pg2rs,0H N

2
1L2 ln

R2

R1
2

v

g
L~R2

22R1
2!

12LN ln
R2

r 1
2N ln

a

r 1
1N Re ln sS 2i ln

r 1

R2
D

1
2hN

v1
ln2S r 1

R2
D2

v

g
N~R2

22r 1
2!J . ~12!

However, the flow pattern is reversed completely for t
vessel rotated in the opposite direction. In this ca
negative-intensity vortices are formed, and the velocity c
culation around the inner cylinder is also negative. This
comes obvious from the expression for free energy in wh
the last term~which plays a leading role in this analysi!
depends on the ratiov/g. The total ‘‘energy spectrum’’ cor-
responding to negative and positive rotational velocities
the form shown in Fig. 3. It can be seen that rotation o
vessel filled with superfluid helium always leads to the em
gence of vortices having the same direction~sign! as the
angular velocity of the rotating vessel.

ENERGY BARRIER AS A FUNCTION OF ANGULAR
VELOCITY

It was shown above that detachment of a positive vor
from the outer wall decreases the free energy. However
order to appear in the vicinity of the inner wall, the vorte
must overcome an energy barrier whose height is equa
the free energy at the maximum. To calculate this value,
must know the equilibrium positionr 1 of the vortex@i.e., the
solution of Eq.~6!# and the angular velocity corresponding
the emergence of the vortex. The problem is complicated
the fact that the rootr 1 of Eq. ~6! cannot be expressed an
lytically in terms of the parametersR1 andR2 of the ring, but
is the solution of a complex equation containing infinite s
ries. The expression for free energy is equally complex@see

FIG. 3. Dimensionless free energyf 5F/(pg2rs) as a function ofv/g for
various values ofL and N for a ring with dimensionsR150.1 cm and
R251.5 cm.
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numerical computations, but it is not possible to obtain ex
analytic expressions in the general case.

In some limiting cases, however, we can obtain appro
mate expressions forr 1 and free energy, which are mor
graphic and can provide valuable information.

In particular, for rings with a small inner radius~we shall
call them ‘‘broad’’!, we obtain the following approximate
expression for the most complex term in the free energy:

S5Re ln sS 2i ln
r 1

R2
D1

2h

v1
ln2

r 1

R2
.

Calculations show that the first vortex in such rings a
pears near the outer wall~this is true for rings withR1 /R2

,0.05!. In this case, the quantityl5R22r 1 i small, and we
can introduce a small parameter«5l/R2 . Expanding all
expressions appearing inS and free energy in this small pa
rameter, we obtain

S5 ln
2v1

pu18~0!
1 lnUu1S i ln

r 1

R2
D U5 ln

2q1/4

u18~0!

1 lnUF r 1
22R2

2

R2r 1
2q2

r 1
62R2

6

R2
3r 1

3 1q6
r 1

102R2
10

R2
5r 1

5 2...GU
' ln

2q1/4

u18~0!
1 ln 2«1 ln~123q215q61...!.

Taking into account the expansion ofu18(0) in q,6 we
can presentS in the form

S5 ln 2«1O~«!.

This gives

F1'pg2rsH ln
2R2«Ae

a
2

v

g
R2

22«J . ~13!

For ‘‘narrow rings’’ (2d5R22R1!R2), the denomina-
tor q is not small. However, we can use the homogene
condition for s-functions6 ~‘‘halfperiod reversal’’, which
was carried out while studying narrow rings in Ref. 7!:

s~ izu iv1 ,iv2!5 is~zuv1 ,v2!.

For such a substitution, the denominator

q5expS ipv2

v1
D5expS 2

p2

ln~R2 /R1! D
is small even for quite ‘‘broad’’ rings~for example, its value
is of the order of 1023 for the ratioR2 /R1.5!. In this case,
the series used for expressing thes-function will converge
so rapidly that one can confine to just the first term in t
expansion. Computing this series, we obtain the followi
approximate expression for free energy:

F1'pg2rsH ln
2r 1Ae

a
1

ln2~r 1 /R2!

ln~R2 /R1!

1 lnUsin
p ln~r 1 /R2!

ln~R2 /R1!
U2 v

g
~R2

22r 1
2!J .
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TABLE I. Angular velocities corresponding to the emergence of the first
vortex remark.
we can easily calculatev/g for which F1 vanishes.

Computer calculations show that in any case, the roo
larger thanR5(R11R2)/2. This means that, as in the case
broad rings,r 15R22l. For narrow rings, the value ofl is
close tod. Hence the ratio«5l/R2 is also small, and all
quantities can be expanded in the small parameter«. This
gives

sin
p ln~r 1 /R2!

ln~R2 /R1!
'sin

p ln~12«!

ln~122«!
'sin

p

2 S 12
«

2D
'12

p2«12

16
.

In this case, the free energy assumes the form

F1'pg2rsH ln
2R2Ae

a
2

3

2
«2

v

g
R2

22«J .

In general, we can disregard terms of the order of«, and
present the energy barrier through a very simple relation

F1'pg2rsH ln
2R2Ae

a
2

v

g
R2

22«J . ~14!

Thus, the main contribution to free energy for both n
row and broad rings comes from the logarithm of the re
tively large quantity 2R2Ae/a ~the small factor« is added to
the numerator for broad rings!. Due to the presence of th
small quantitya in the denominator, this logarithm is of th
order of 20, and hence the energy barrier is found to be of
order of 2•1027 erg in dimensional units~it is found that
this barrier is practically independent of the inner radius fo
fixed outer radius!.

From formulas~13! and~14!, we can easily calculate th
angular velocity for which the energy barrier vanishes:

v

g
5

1

2«
ln

2R2Ae

a

~for broad rings, we must add« to the numerator of the
logarithm!.

Although we must assume in a rigorous analysis that
root of Eq. ~6! depends onv ~it approaches the outer wa
with increasingv!, even a qualitative analysis shows that t
angular velocity at which the energy barrier vanishes is m
higher than the theoretical velocityv0 at which the emer-
gence of the first~unstable! vortex becomes advantageo
from the energy point of view. This means that the proba
ity of emergence of a vortex forv5v0 is low.

This probability can be estimated by calculating t
quantity

P5expS 2
F1

kBTD 2pr 1

a
.

Here F1 is the height of the energy barrier being ove
come, andT the temperature.10 The exponential factor is
determined by the frequency of collisions with the poten
barrier, for which we can take the ratio of the circumferen
of the circle containing the vortex to the vortex radius.
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Since F1;1027 erg, P. exp(21029) at T.1 K,
which is several orders of magnitude smaller than the sec
factor in the expression forP ~the vortex radius is of the
order of 1028 cm!. Thus, the probability of formation of a
vortex forv5v0 is practically equal to zero. In actual prac
tice, circulation around the inner cylinder appears at velo
ties much higher thanv0 .

With increasing angular velocity, the barrier heightF1

decreases. But since the contribution from the second t
which is proportional tov is not as large as from the firs
term, F1 becomes equal to zero for angular velocities mu
higher thanv0 . The real angular velocitiesvc at which the
first vortex appears must exceed the theoretical valuev0 by
a factor of about 100~see Table I!. Although the absolute
value of the angular velocity still remains quite small, th
difference can be probably detected experimentally.

RELATION BETWEEN ANGULAR VELOCITY AND NUMBER
OF VORTICES

The family of straight lines presented in Fig. 3 genera
depends on three parameters, viz.,r 1 , L, andN. However,
for a quite large number of vortices, the equilibrium positi
of the vortex chain lies practically at the middle of the g
for rings of all sizes, i.e.,

r 15~R21R1!/2,

while the angular velocity of the rotating vessel is connec
with the number of vortices and the number of circulati
quanta through a similar relation8

v

g
r 1

25L1
N

2
. ~15!

While deriving the above relation, we have disregarded
terms

NF S R1

r 1
D 2N

2S r 1

R2
D 2NG .

We can estimate the number of vorticesN for which
these terms are several orders of magnitude smaller than
remaining terms (L1N/2). For a fixed radius of the oute
cylinderR251.5 cm, the discarded terms are of the order
1023 for the following pairs of values ofR1 andN:

R1 , cm v0 , s21 vc , s21

1.10 4.7•1025 4.7•1023

1.20 4.4•1025 6.3•1023

1.30 4.1•1025 9.5•1023

1.35 3.9•1025 1.3•1022

1.40 3.8•1025 1.9•1022

1.45 3.6•1025 3.8•1022

Note.The outer radiusR251.5 cm.
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For large values ofR1 , the number of circulation quant
L around the inner cylinder becomes very large, and he
the real values ofN for which formula~15! is valid are much
smaller than those mentioned above.

Using the expression forr 1 and formula~15!, we can
make the family of linesFN,L one parametric~although
these lines will no longer be straight! and try to find the
envelope of this family. For this purpose, we first derive
approximate expression for the term containing thes-
function:

SN[Re ln sS 2i ln
r 1

R1
D1

2h

v1
ln2S r 1

R1
D

5 ln
2

N
1Re ln

u1~ iN ln~r 1 /R1!

u18~0!
5 ln

2

Nu18~0!

1 lnF2q1/4(
n50

`

~21!nqn~n11!sinh N~2n11!ln
r 1

R1
G

' ln
2

N
1 ln sinh N ln

r 1

R1
' ln

1

N
1N ln

r 1

R1
.

This gives

F'pg2rsH ~2L~R2
22R1

2!2N~R2
22r 1

2!!
v

g

1FL2 ln
R2

R1
12LN ln

R2

r 1
2N ln

aN

r 1

1N2 ln
R1R2

r 1
2 1N2 ln

r 1

R1
G J . ~16!

SubstitutingL5(v/g)r 1
22N/2 and grouping terms in

powers ofv/g, we obtain

FN,L52S v

g D 2

r 1
2FR2

22R1
22r 1

2 ln
R2

R1
G

2
v

g
NFR1

2

2
1

R2
2

2
2r 1

21r 1
2 ln

r 1
2

R1R2
G

1
N2

4
ln

R2

R1
2N ln

aN

r 1
. ~17!

It should be recalled that the free energy~17! should be
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ce

argumentx, andFN,L for y. In order to obtain an equation
for the envelope, we differentiate~17! with respect to the
parameterN.9

v

g FR1
2

2
1

R2
2

2
2r 1

21r 1
2 ln

r 1
2

R1R2
G5

N

2
ln

R2

R1
2 ln

aN

r 1
21.

~18!

Together with Eq.~17!, this expression gives the equa
tion for the envelope of a one-parametric family of curv
FN,L . Although this equation cannot be derived explicitly~it
is impossible to eliminateN in the analytic form!, we ob-
serve that formula~18! can be treated as a quite simple re
tion between the number of vortices and the angular velo
of a rotating vessel: by specifying the numberN of vortices,
we can determine the corresponding angular velocity,
vice versa. The accuracy of this expression is determined
the order of the discarded terms in formulas~15! and ~16!.

The author thanks I. E. Tarapov for raising interesti
questions at the seminar in the Department of Mechan
which stimulated this research. Thanks are also due to S
Shevchenko for a discussion of the results and for help
comments.

1!Note that while solving Eq.~6! with the right-hand side obtained from th
conditionF1,F0 , we have no roots at all, since the right-hand side gro
more rapidly than the left-hand side near the boundaryr 5R2 . However, it
is obvious that a root always exists for afixedv, and this root is close to
R2 . Figure 1 shows the plot of (v/g)r 1

2 for the value ofv obtained from
the conditionF1,0,F0,0 in the preceding analysis.7
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Carrier transport in quasi-one-dimensional electron systems over liquid helium under

lec-
strong localization conditions
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The conductivity of carriers in a quasi-one-dimensional electron system over liquid helium is
measured in the temperature interval 0.521.9 K in confining electric fields up to
4 kV/cm at a frequency of 1.1 MHz. Quasi-one-dimensional channels were created by using an
optical diffraction grating covered with a thin helium layer. The carrier conductivity
decreases exponentially with temperatureT, and the activation energy is of the order of a few
degrees, thus pointing towards localization of electrons in a quasi-one-dimensional
electron system. As the thickness of the helium layer covering the grating is increased, a
departure from a mono exponential dependence is observed atT,0.8 K, which indicates that
quantum effects begin to play an active role in electron mobility at these temperatures.
An analysis of the obtained results leads to the assumption that under localization conditions,
quasi-one-dimensional electron systems may contain two branches of the optical mode
of plasma oscillations, viz., a high-frequency branch associated with electron oscillations in
potential wells, and a low-frequency branch associated with the oscillations of the electron-
dimple complex with a large effective mass. ©1997 American Institute of Physics.
@S1063-777X~97!00311-3#
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7/
dimensional~Q1D! and one-dimensional~1D! electron sys-
tems over liquid helium is very interesting because of
possibility of realization of conducting channels with sm
transverse dimensions, containing one to ten electrons.1 Sur-
face electrons~SE! over liquid helium form an extremely
pure and homogeneous low-dimensional electron syst
and it can be expected that Q1D and 1D electron syst
employing SE will also be homogeneous and perfect. Qu
one-dimensional conducting channels over liquid heli
were created experimentally by using the surface undulat
of liquid helium flowing under the action of capillary force
into the grooves of the profiled substrate.2,3 Under the action
of a confining electric field, electrons are displaced towa
the bottom of the groove and can move freely only in o
direction. A distinguishing feature of such channels is t
the depth of the liquid in the grooves of the profiled substr
reach values;1024 cm and the roughnesses of the substr
have no effect on the behavior of the electron. Transfer m
surements in such quasi-one-dimensional systems h
shown that the mobility of electrons in Q1D channels m
become close to the electron mobility in bulk helium.4–6

However, experimental results obtained by increasing
separationH between the bulk helium surface and the upp
plane of the substrate, i.e. by decreasing the radius of cu
ture of the liquid in the substrate grooves, indicate that
mobility of charge carriers decreases, and its tempera
dependence begins to differ strongly from the analogous
pendence for SE over bulk helium. The obtained results w
attributed to the localization of carriers in potential we
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trons localized over a thin helium film in the immediate v
cinity of the grooves filled with the liquid.2,4

In this research, we have measured the conductivity
electrons over liquid helium in quasi-one-dimensional ch
nels under strong localization conditions. Measureme
were made in the temperature range 0.5-1.9 K in the elec
density of states between 108 and 109 cm22 at a frequency
of 1.1 MHz. The experimental cell used for measurement
shown in Fig. 1a. A high-quality glass optical grating 1
size 24.4319.6 mm and thicknessd50.8 mm~Fig. 1b! was
used to obtain quasi-one-dimensional liquid channels. T
glass used to form the optical grating had a dielectric c
stant«.4, and the number of grooves in one centimeter
the grating was 1670. The grating was mounted over e
trodesA, B, andC which were held at zero potential. Th
size of the electrodesA, B, and C was 15.639.2, 239.2,
and 15.639.2 mm, respectively. A negative voltage confi
ing the electrons to the surface of the liquid helium wetti
the substrate was applied to electrodes2 and 3. In order to
produce an electron spot with a sharper electron density
file at the edge, a negative potential was applied to
shielding electrode4. Two opposite cuts of width;1.2 mm
were made on the electrodes 2 and 3 to ensure a free lea
of helium to the drift space of the experimental cell and
reduce the possible temperature gradient between the li
helium film at the grating surface and bulk helium. The ge
erator voltage was supplied to the electrodeA, while the
signal passing through the cell was recorded at the elect
C. For such a voltage supply, the drift electric field

878110878-04$10.00 © 1997 American Institute of Physics
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directed along the liquid grooves. The electrodeB was
earthed.

The signal passing through the experimental cell w
amplified by a wide-band preamplifier1! and detected by a
phase-sensitive detector. In the experiments, we meas
the phase shiftDw and the signal amplitude variationDU
produced during charging of the measuring cell by electro
Using the measured values ofDw and DU, we determined
the realGr and imaginaryGi components of the conductanc
of the cell. According to the computations made in Refs.
the values ofGr and Gi are defined by the real and imag
nary componentsr r andr i of the electron layer resistance, a
well as the frequency of plasma oscillationsvp in the two-
dimensional electron system.

Estimates reveal that, under the conditions of such m
surements, we can disregard terms containingr i in the ex-
pressions forGr andGi . In this case, the expressions forGr

andGi assume the form

Gr52nse
2(

qn

Lqn

nse
2v2r r

m2ṽp
41~nse

2vr r !
2 ; ~1!

Gi52nse
2(

qn

Lqn

mv2vp

m2ṽp
41~nse

2vr r !
2 1g0 . ~2!

Here, e and m are the electron charge and mass,ns is the
average density of electrons in the conducting channelsv
the cyclic frequency,ṽp the plasma frequency in conductin
channels,qn the wave vector of plasma oscillations, andq0

the conductance of the cell in the absence of electrons. S
the plasma wave in a quasi-one-dimensional system
propagate only in one direction, summation in Eqs.~1! and
~2! is carried out over wave vectors of oscillations direct
along the conducting channels. The quantitiesqn are deter-

FIG. 1. ~a! Schematic diagram of the measuring cell: optical grating1,
confining electrodes~2, 3!, shielding electrode~4!, foliated textolite glass
~5!, copper supports~6!, incandescent filament~7!, and measuring electrode
(A,B,C), ~b! Optical grating profile.
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geometry and quasi-one-dimensional channels, the co
cient Lqn

was taken from Ref. 6.
The estimates obtained from an analysis of the exp

mental data show that for the values ofH used in this work,
the total resistance of all channels was quite large, and he
the conditionmṽp

2!nse
2vr r is satisfied. Moreover, experi

ments reveal that, during charging of the cell by electro
the signal amplitude varies by just a few percent, while
phase shift turned out to be of the order of a few degre
This means that we can disregard the contribution from e
trons to Gi , and we can writeGi'g0 . In this case, the
quantity tanDw, which is defined by the ratio of the quant
ties Gr andGi , can be presented in the form

tan Dw'Dw52
1

g0
(
qn

Lqn
s, ~3!

where the quantitys51/r r corresponds to the conductivit
of the channels over an area of 1 cm2.

The electron density at the surface of liquid helium w
ting the substrate was determined from the condition of co
plete charge saturation. Note that the signal from SE appe
as a rule, starting from a certain valueV' , thus pointing
towards a slight initial charging of the substrate. The elect
density in each experiment was determined by plotting
dependence ofDw on V' . While recording this dependence
the liquid surface was charged each time at a new value
V' at which the quantityDw was measured. The dependen
of Dw on V' was practically linear. Upon a decrease in vo
age, the curveDw(V') was displaced, i.e., a slight hysteres
was observed. Unfortunately, a spread of about 30%
observed in the value ofDw in different experiments for the
same values ofH, V' , and T. Such a spread is probabl
caused by the presence of a small number of impurities
solidified gases on the substrate, which could vary from
periment to experiment, by uncontrollable charging of t
substrate, as well as by an uncertainty in determining
value ofH. However, the results showed a very good rep
ducibility in the course of a single experiment. The to
number of electrons over 1 cm2 of the liquid surface was
determined from the condition

n05
V'2V'

k

eC
,

whereC5«/4pd.
Figure 2 shows typical temperature dependences ofDw

and s for values ofH equal to 1.8~curve 1! and 0.8 mm
~curve2!. It can be seen that the smaller the value ofH, the
larger the value ofs, the dependence ofs on T being the
steeper, the larger the value ofH. An analysis of the experi-
mental data shows that curve1 can be described by the de
pendence

s5
a

T
exp~2E/T!, ~4!

where the coefficientsa and E do not depend on tempera
ture. For curve1, these quantities have the following value
a5(460.1)•104V21

•K, E5(660.2)K. It can be seen tha
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curve2 displays a departure from the mono exponential
pendence. An analysis of the data reveals that this curve
be described satisfactorily by the expression

s5
a

T
exp~2E/T!1

b

T
exp~2E1 /T! ~5!

with coefficients a5(7.860.9)•1026V21
•K, E5(5.4

60.2)K, b5(460.5)•10210V21
•K, andE1.0.05 K.

The experimental dependences ofs on T indicate that
carriers are localized inQ1D channels. In the case of clas
sical thermally activated motion of localized carriers, t
conductivity is described by the following expression:

s5
nse

2n0a0
2

kBT
exp~2E/T!, ~6!

wherekB is the Boltzmann constant,a0 is the mean separa
tion between potential wells in which the electrons are loc
ized,n0 the electron vibrational frequency in potential wel
andE the height of the potential barrier.

The obtained results allow us to estimate the value
n0 . For this purpose, we must know the values ofns anda0 .
During charging of the surface of helium covering the su
strate, plane segments of the helium film are charged as
as the liquid channels. Our earlier calculations show4 that,
for a given value ofH, the number density of electrons ov
a thin helium film is about double the value of electron de
sity over the grooves with a thick helium layer. Knowing th
total number of electrons over a unit area of helium surf
and the relative areas of the thin helium film and liquid cha

FIG. 2. Temperature dependences of the phase shiftDw of the signal trans-
mitted through the experimental cell and electron conductivitys in Q1D
channels forns56.7•108 cm22, H51.8 ~d! and 0.8 mm~j!. The dotted
and dashed curves correspond to the dependences5(a/T)exp(2E/T)V21

with a5(460.1)•1024V21
•K, E5(660.2)K; and a5(7.860.9)

31026V21
•K, E5(5.460.2)K; respectively, while the solid cuve de

scribes the dependences5(a/T)exp(2E/T)1(b/T)exp(2E1 /T)V21, E
5(5.460.2)K, E120.05 K. a5(7.860.9)•1026V21

•K, b5(460.5)
310210V21

•K.
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calculations were made by using the condition of const
potential over the charged helium surface. Since the width
channels exceeds the mean separation between electron
significantly, this condition is not satisfied exactly, and t
computation ofns is approximate. The quantitya0 defining
the characteristic scale of variation of the potential relief in
liquid channel is determined by the mean separation betw
electrons localized over a thin helium film. Thus, knowingns

and a0 and using~6! with the corresponding activation en
ergyE, we can determine the mean frequencyn0 of electron
oscillations in potential wells. For curves1 and2, these fre-
quencies are found to be;1.0•1011 s21 and ;5•1010 s21,
respectively.

At temperaturesT below 0.8 K, curve2 exhibits a de-
viation from the monoexponential dependence. Two poss
explanations can be given for this effect. The first one
associated with the assumption that two types of poten
wells of different depths exist in Q1D channels. The numb
of carriers in deeper potential wells is larger than in sh
lower wells. At relatively high temperatures, carriers in de
potential wells play the main role in transport phenome
while at low temperatures, when the mobility of such carrie
becomes small, the main contribution to the conductiv
comes from the electrons in shallower potential wells. A
other possible reason behind the observed effect may be
emergence of quantum effects of electron tunneling from
potential well to another in the electron mobility a
T,0.8 K.

A characteristic feature of the system under consid
ation is that there is a certain spread in the values of poten
well parameters inQ1D channels. This spread is probab
not significant since at relatively high temperatures the d
are described quite well by a single activation energy ex
nential. However, even a slight variation of the potential w
parameters or a nonuniformity in their distribution along
channel can considerably affect the behavior of carrier c
ductivity in Q1D channels. In particular, displacement
energy levels in potential wells may lead to tunneling if e
ergy levels in adjacent potential wells coincide as a resul
fluctuations. It should be borne in mind that electrons loc
ized in Q1D channels will form dimples~ripplon polarons!
at the surface of liquid helium. The picture is further com
plicated due to the fact that the potential well may cont
several potential levels.

Analyzing the diffusionD of 3He impurities in crystals
of solid helium, Kagan8 showed that as the temperature
lowered, the emerging quantum effects make the depend
of D on T weaker than the dependence corresponding to
classical activation motion of particles. The effects observ
by us in this work are similar to a certain extent to tho
observed in Ref. 8, with the only stipulation that the spre
of potential well parameters in the present case may fur
complicate the picture. Finally, we observe that the transit
of a particle from one potential well to another may invol
absorption or emission of ripplons. Unfortunately, a theo
of this effect does not exist at present, and a quantita
comparison of the experimental and theoretical data is
possible.

880Yayama et al.



It was mentioned above that the conditionmṽp
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!nse vr r is satisfied in our experiments. This relation a
lows us to estimate the upper limit of the quantityṽp which
turns out to be below;1 GHz in the present case. This valu
one or two order of magnitude lower than the characteri
oscillation frequencyn0 of electrons in a potential well. Suc
an estimate does not contradict the data of Ref. 6 where
shown that the maximum value ofṽp for the grating used by
the authors does not exceed;900 MHz. The fact thatṽp is
much smaller thann0 indicates that the electrons localized
potential wells form dimples at the surface of liquid helium9

and the effective massm* of an electron-dimple complex i
much larger than the free electron mass.

It was shown by Chaplik10 that one-dimensional electro
systems contain a longitudinal branch of plasma oscillati
with an energy-momentum relation

v i'
2e2k

ma
ln

1

ka
,

wherek is the wave vector of oscillations, anda is the mean
separation between electrons. According to what has b
stated above, two optical modes of plasma oscillations m
exist on the helium surface inQ1D channels under localiza
tion conditions. The high-frequency mode is associated w
electron oscillations, and its energy-momentum relation
the form

vp
25~2pn0!21v i

2. ~7!

The low-frequency mode is associated with the oscillatio
of electron-dimple complexes, and its energy-momentum
lation has the form

ṽp
2~k!5va

21
2e2k

m* a
ln

1

ka
, ~8!

where va is the oscillation frequency of electron-dimp
complexes in potential wells. In view of a spread in the p
tential well parameters, the plasma oscillation spectra~7! and
~8! obviously have a certain dispersion. However, since
experimental data on conductivity inQ1D channels are de
scribed correctly by an exponential relation~at least atT
.0.8 K!, the potential well parameters do not differ signi
cantly from one another, and it can be expected that dis
sion in the spectra will not be significant. It should be qu
interesting to carry out experimental observation of su
plasma oscillation modes.
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one-dimensional electron systems over liquid helium,
electron conductivity under localization conditions decrea
exponentially with temperature, the activation energy be
of the order of several degrees. AtT,0.8 K, thes(T) de-
pendence corresponding to small values ofH shows a depar-
ture from the exponential law. This is apparently due to
existence of two types of carriers with different activatio
energies, or to the tunneling of electrons to the neighbor
potential wells. It is predicted from an analysis of the expe
mental data that, under localization conditions, theQ1D
channels may contain two optical modes of plasma osc
tions. One of these is a high-frequency mode with limiti
frequency of electron oscillations in potential wells, whi
the second is the low-frequency mode whose limiting f
quency is determined by oscillations of massive electr
dimple complexes in potential wells.
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SUPERCONDUCTIVITY, HIGH-TEMPERATURE SUPERCONDUCTIVITY

m

Resistive relaxation processes in oxygen-deficient single crystals of YBa 2Cu3O72d

M. A. Obolenskii, A. V. Bondarenko, R. V. Vovk, and A. A. Prodan

Kharkov State University, 310077 Kharkov, Ukraine*

~Submitted March 11, 1997; revised May 14, 1997!
Fiz. Nizk. Temp.23, 1178–1182~November 1997!

The effect of low-temperature annealing on the superconducting transition temperature and
electrical resistance of single crystals of YBa2Cu3O72d with an oxygen deficiencyd50.5– 0.6
quenched from temperatures of 620–650 °C is considered. The transition temperature
increases during annealing, while the resistance decreases. The isothermal relaxation of resistance
is measured and used for estimating the activation energy of the relaxation process, which
coincides with the activation energy of oxygen diffusion. The obtained results are attributed to
oxygen ordering in Cu-O planes without changing its concentration. The observed step
form of resistive transitions to the superconducting state is interpreted as the formation of clusters
characterized by different oxygen concentrations and ordering. The cluster size is estimated.
© 1997 American Institute of Physics.@S1063-777X~97!00411-8#
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ties of YBa2Cu3O72d single crystals with an oxygen defi
ciency d.0.5– 0.6 quenched from high temperatures ha
shown that these properties depend not only on the oxy
index, but also on the annealing time at room temperat
For example, room temperature annealing causes an incr
in the superconducting transition temperatureTc which may
attain values up to 15 K depending on the oxygen index1,2

Optical investigations have shown3,4 that annealing at room
temperature causes an increase in the reflectivity single c
tals, which was attributed to an increase in the carrier c
centration.

Neutron diffraction studies5 of ceramic samples o
YBa2Cu3O6.41 quenched from a temperature of 500 °C po
towards a change in the lattice parameters during sam
annealing at room temperature. However, no signific
variation is observed in the occupancy of oxygen position
Cu-O plane alonga andb-axes.

The effect of room-temperature annealing on the tran
tion temperature, carrier concentration, and lattice param
variation of oxygen-deficient samples of YBa2Cu3O72d is at-
tributed to the ordering of oxygen atoms in the Cu-O pla
without any change in the oxygen concentration in
sample.5 Since the electrical resistance depends significa
on the carrier concentration and defect structure of
sample, a change in sample resistance must be observed
ing room-temperature annealing of the sample.

The present paper aims at studying the effect of roo
temperature annealing on sample resistance in theab-plane
and on the superconducting transition temperature
YBa2Cu3O72d single crystals with decreasing oxygen co
centration after rapid cooling from 620–650 °C.

Single crystals of YBa2Cu3O72d were grown by using
the solution-melt technique in a gold crucible.6 The crystals
were annealed for two days in oxygen flow at temperatu
620–650 °C. After annealing, the crystals were cooled
room temperature in two-three minutes. The sample w
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temperature in about 15–20 minutes. All measurements
the temperature dependences of the sample resistanceR were
made during warming-up of the sample. The resistance
measured by the standard four-probe technique in a cons
currentI 51 mA. The temperature was measured by a pla
num resistance thermometer.

The following sequence of measurements was adop
while studying the effect of room-temperature annealing
the superconducting transition temperature. After the fi
measurement ofR(T) just after mounting, the samples we
held at room temperature for twenty hours before repea
the measurements. The samples were then held at room
perature for another three days, and measurements
made once again. The last series ofR(T) measurements wa
carried out after a further annealing for two weeks.

Figure 1 shows the results of measurements of tra
tions to the superconducting state for samples S1 and
with different transition temperatures. It can be seen thatTc

increases with increasing room-temperature annealing t
for crystals, while the remnant resistanceRrem decreases. It
can also be seen that the main increase in transition temp
ture and decrease in remnant resistance occur at the in
stage of annealing, i.e., during the first day. Subsequent
nealing for three days has no significant effect on the va
tion of transition temperature and of remnant resistance. F
ther annealing for two weeks does not change the transi
temperature of the remnant resistance.

A characteristic feature of resistive transitions to the
perconducting state is their step form. After room
temperature annealing, the steps on the resistive transit
are smoothed and sometimes vanish completely as, for
ample, in the case of sample S2.

The following sequence of measurements was adop
to study the effect of annealing on resistance. The sam
was held atT.620 °C for a day, cooled to room temperatu
in 2–3 minutes, and mounted in the measuring cell for fi

882110882-04$10.00 © 1997 American Institute of Physics
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minutes. After this the resistanceR(t) was measured as
function of time at a fixed temperature. Measurements w
made at various temperatures between 240 and 320 K.
ing isothermal measurements, the temperature was kept
stant to within 0.05 K.

The dependencesR(t) are presented in Fig. 2. It can b
seen that the resistance decreases continuously with inc
ing annealing time, and the slope of the dependencesR(t)
decreases rapidly with temperature. This points towards
thermal activation nature of the relaxation process. Using
method of variation of slope of resistance relaxation curv
we can determine the activation energy with the help of
expression7

U5 ln~a1 /a2!/~1/T221/T1!,

where a1 and a2 are the slopes of theR(t) dependences
measured at temperaturesT1 andT2 and are determined fo
the same values of electrical resistance. The activation
ergy of resistance relaxation, determined from the meas
ment of R(t) dependence at 295.3 and 305.8 K and forR
50.44V ~curves4 and5 in Fig. 2a! is 1.1•104 K. The value
obtained by us coincides with the activation energy of o
gen diffusion in YBa2Cu3O72d single crystals with a de
creased oxygen concentration.8,9 Hence the earlier
assumption1–5 about oxygen ordering in CuO planes durin
room-temperature annealing of YBa2Cu3O72d single crystals
quenched from 500 °C seems to be quite plausible.

It should also be observed that if the temperature is
creased after the attainment of the equilibrium value of e
trical resistance corresponding to a given temperature,
then reduced to its initial value, the equilibrium resistan
value is restored only after the passage of a consider
longer time. This is shown graphically in Fig. 2b in whic
curve 1 corresponds to measurements at 289 K after

FIG. 1. Resistive transitions to superconducting state in single crystalsS1
~curves1–3! andS2 ~curves4–6!. The dependences shown by curves1 and
4 were obtained directly after thermal treatment of the crystal in oxy
flow, while the dependences shown by curves2 and5 were obtained after
room-temperature annealing of the crystals for 20 hours. The dependen3
and6 correspond to annealing for four days.
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sample had been held at this temperature for two days. It
be seen that the resistance does not vary with time.
temperature was then increased to 320 K, the sample
held at this temperature for four hours~curve2!, after which
the temperature was again lowered to the initial valueT
5289 K. It can be seen that the resistance relaxes slowl
its equilibrium value ~curve 3!. The equilibrium value
R(289 K)50.341V was reached only after two days. It
also worth noting that the resistance value did not cha
subsequently as a result of isothermal holding of the sam
at this temperature for two weeks.

Since the magnitudes of electrical resistance and su
conducting transition temperature of YBa2Cu3O72d single
crystals are sensitive to the magnitude of the oxygen inde
well as the spatial distribution of oxygen, the results obtain
in this work can be attributed to saturation of the surfa

n

s

FIG. 2. Isothermal time dependences of electrical resistance measur
various temperaturesT, ~K: 279 ~curve1!, 257 ~curve2!, 239.4~curve3!,
295.3~curve4!, 305.6~curve5!. The temperature was varied at pointsA, B,
andC: 289 ~curve1!, 320~curve2!, 289~curve3!. ~a! and at pointsF, and
D ~b!.
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tion of oxygen in the bulk of the crystal. In the former cas
the oxygen-enriched surface layer with a reduced resisti
and elevatedTc may shunt the bulk of the crystal. Howeve
magnetization studies in YBa2Cu3O6.45 single crystals revea
that the transition temperature increases throughout the e
volume of the crystal upon room-temperature annealing.1 It
is also worth noting that x-ray diffraction studies
monocrystalline1 oxygen-deficient samples and neutron d
fraction studies of polycrystalline samples5 point towards a
change in the crystal lattice parameters as a result of ro
temperature annealing, as also towards an increase in o
rhombicity of the lattice. The occupancy of oxyge
positions5 and weight of the sample1 do not vary upon an-
nealing. The aggregate of these experimental data sugg
that annealing causes structural changes over the entire
ume of the samples without any change in the oxygen c
centration. The decrease in the electrical resistance obse
in by us points towards structural ordering during anneali
and the fact that the activation energy of resistance relaxa
is equal to the activation energy of oxygen diffusion indica
that these changes are associated with the diffusive flow
oxygen. Hence we assume that the decrease in resistanc
the increase inTc observed during annealing are due to o
dering of labile oxygen in Cu-O planes over the entire crys
volume, and not to the enrichment of surface layer of
crystals by oxygen. It can be seen from Fig. 2b that equi
rium distribution of oxygen depends on temperature and v
ies even when the temperature changes by justDT.30 K.
The reversibility of resistance after attainment of equilibriu
value of indicates that the oxygen concentration in the cr
tals remains unchanged upon annealing atT,320 K. This
conclusion is in accord with those drawn in Refs. 1–5 fro
investigations of the effect of annealing in the temperat
range 300–420 K on the optical, magnetic, and structu
characteristics of oxygen-deficient mono- and polycrystall
samples of YBa2Cu3O72d.

The structure of YBa2Cu3O72d for d50 is characterized
by the presence of Cu-O chains. In other words, the oxy
positions O~1! are completely filled, while the O~5! positions
are vacant. For an oxygen deficiencyd50.5, the structure is
characterized by an alternation of chains in which the O~1!
positions are filled, and chains in which the O~1! positions
are vacant. Such ordered structures can be realized f
stoichiometric ratio 1:0 and 1:1 of oxygen and vacan
concentration.10,11 On the basis of experimental studies
various physical properties of YBa2Cu3O72d with an oxygen
deficit d<0.3, Sukharevskiiet al.12 provided a justification
for the emergence of a superconducting cluster whose s
ture is nearly ordered for oxygen-to-vacancy ratios 5:1, 4
3:1, and 2:1. For example, it is assumed that for the ratio
the oxygen positions O~1! are vacant in every sixth chain
while in all other chains they are occupied.

For a nonstoichiometric ratio of oxygen to vacancy co
centration, the oxygen-vacancy system can either be di
dered, or contain a mixture of ordered clusters with differ
oxygen concentrations. It was mentioned above that an
crease inTc during room-temperature annealing of crysta2

and an increase in carrier concentration upon a decreas
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ordering in Cu-O planes. The decrease in electrical resista
during annealing observed by us also points towards or
ing in the oxygen-vacancy system. Hence an ordered sta
the oxygen-vacancy system can be expected at least at r
temperature. The step form of resistive transitions obser
by us probably points towards a nonstoichoimetric ratio
the oxygen and vacancy concentrations, leading to the
mation of a mixture of different clusters. These cluste
which can be in the form of separate phases, are appare
characterized by different concentrations of oxygen and
ordering, and thus have different superconducting transi
temperatures. The presence of steps also assumes th
sence of percolation paths of current flow in the phase wit
higher transition temperature. Otherwise this phase wo
shunt the low-temperature phase, and only the hi
temperature phase would display a superconducting tra
tion.

A typical feature of the effect of annealing is a change
the height of the steps in resistive transitions. This chang
manifested most clearly in theS2 crystal. The height of the
lower step in Fig. 1~curve 4! is 0.5RN , whereRN is the
normal state resistance. On curves5 and 6, this height cor-
responds to 0.95RN and 0.96RN, respectively. Such a larg
variation of the step height indicates a significant variation
the percolation paths after room-temperature annealing of
crystals, which may occur upon a change in the spatial
tribution and the size of the low- and high-temperature ph
clusters. The latter requires a diffusive flow of oxygen ove
distance of the order of cluster size.

It is well known that saturation of YBa2Cu3O72d crystals
by oxygen requires an annealing in oxygen flow for one d
at a temperature of 400 °C. Typical crystal size is 131
30.1 mm and hence the distanceL05(Dt)1/2 over which
oxygen diffuses under the above-mentioned conditions
0.121 mm. Since the diffusion coefficientD;exp(2U/T)
and the activation energyU.1.1•104 K, we can estimate
the distance over which oxygen can diffuse in one day
room temperature:

L'L0$@exp~2U/300!#/exp~2U/700!%1/2'30– 300 Å.

Thus, the cluster size may attain values between 30 and
Å. This quantity is in reasonable agreement with the valu
of the lengthl of Cu-O chains in YBa2Cu3O72d single crys-
tals at room temperatures, obtained from neutr
diffraction13 ( l .50 Å) and optical4 ( l .300 Å) experiments
respectively.

It should also be observed that the decrease in resist
DR/R50.220.4 observed by us during room-temperatu
annealing of crystals is in accord with an increase in
carrier concentration in Cu-O chains obtained from opti
studies.4

The increase in the superconducting transition tempe
ture during annealing of crystals at room temperature may
due to several reasons. Thus, the authors of Refs. 2, 5 a
ciate the increase inTc with a local ordering of oxygen,
while the authors of Refs. 3, 4 believe that this is due to
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increase in carrier concentration. The increase inTc may also
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be due to a change in the crystal lattice parameters
among other things, in the separations Cu-O and Cu-C
theab-plane.5 This problem was discussed in details by us
Ref. 14.

Finally, it should be noted that the results obtained by
are in accord with the results of optical and magnetic inv
tigations of oxygen-deficient crystals of YBa2Cu3O72d

quenched from high temperatures.1–4 The activation energy
of resistance relaxation is determined and is found to co
cide with the activation energy of oxygen diffusion. The st
form of superconducting transition is attributed to the clus
structure of crystals formed as a result of nonuniform dis
bution of oxygen in the Cu-O plane. The cluster size var
from 30 to 300 Å.

The authors are sincerely obliged to V. A. Shklovskii f
his keen interest in this research and for a number of v
able comments.
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Effect of high pressure on the phonon spectra of Bi2223 in Andreev junctions

V. M. Svistunov, V. B. Tarenkov, and A. I. D’yachenko

A. Galkin Physicotechnical Institute, National Academy of Sciences of the Ukraine, 340114 Donetsk,
Ukraine*

R. Aoki

Faculty of Engineering, Osaka University, Yamada-oka 2-1, Japan
~Submitted March 24, 1997; revised May 19, 1997!
Fiz. Nizk. Temp. 1183–1186~November 1997!

A ‘‘softening’’ of the high-frequency modes of the phonon spectrum is detected under pressure.
These modes correspond to breathing oxygen modes and to other vibrational modes of
Cu–O. The obtained results explain the observed increase in the ratio 2D/kTc within the
framework of the strong electron–phonon interaction model. ©1997 American Institute of
Physics.@S1063-777X~97!00511-2#
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The unusual symmetry of the order parameter in hi
temperature superconductors suggests a non-phonon pa
mechanism. However, the electron–phonon interaction m
play a significant role.1–3 The phonon spectrum of cuprate
extends to 100 mV, and previous investigations1–5 have
shown that a strong coupling exists between electrons
high-energy phonons. In the present paper, this fact is c
firmed by experiments on elastic electron-phonon interac
~EPI! spectroscopy in Andreev-typeS–c–S point contacts
under hydrostatic pressure~hereS denotes a superconducto
andc a normal constriction!.

Tunnel studies of conventional superconductors un
high pressures have proved convincingly that the depar
of the ratio R52D/kTc from the universal BCS value
R53.53 is associated with a strong EPI.6,7 There is no uni-
versal relation between 2Dmax and Tc in anisotropic high-
temperature superconductors (Dmax5max(D(k)). Neverthe-
less, EPI can make a significant contribution to the ra
R52Dmax/kTc . As in the case of conventional supercondu
ors, this contribution must be manifested under high pr
suresP since the phonon frequencies corresponding to
lower part of the boson spectrum of cuprates will affect
R(P) dependence most significantly.

In order to single out this contribution, i.e. to reveal t
role of EPI in high-temperature superconductivity, we m
measure the ratioR and the phonon frequenciesv under
pressure. For this purpose, the available Raman spectros
data2 on v(P) are not suitable since this method defines
phonon frequenciesvq for q50, i.e., at the center of the
Brillouin zone. At the same time, the maximum contributi
to superconductivity comes from phonons with large valu
of the vectorq;p/a, a being the lattice constant. It is thes
phonons that are registered by the contact techniqu4,7

Hence the information onv(P) obtained by this method
reflects the electron–phonon interaction in superconduc
more accurately.

The effect of pressure on the parameterR52D/kTc was
studied by us earlier.8 In the present paper, we shall prese
the results of complex studies of the Andreev reflection
fect in S–c–S junctions, which enable us to determine s
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phonon frequencyv(P) under different pressures. It is we
known9 that a strong EPI results in a frequency depende
of the energy gap functionD(v), while the dynamic conduc-
tivity G of an S– c–N junction has the form

G5
dI

dV
5

1

RN

3H 11U D~v!

\v1@~\v!22D2~v!#1/2U2J
v5eV/\

, ~1!

where RN is the junction resistance in the normal state.
follows from formula ~1! that the data on the derivativ
dG/dV can provide information~as in the case of a tunne
junction!1 on the electron–phonon interaction in a superco
ductor (a2F(v) and D(v)).10 In S–c–S-type junctions,
analogous singularities in the behavior of the conductivitys
caused by a strong EPI must be manifested at bias volta
eV5\v112D, wherev1 are the characteristic phonon fre
quencies of the density of statesF(v).

ANALYSIS OF EXPERIMENTAL RESULTS

The Andreev reflection was observed in bismuth c
prates ~containing 95% Bi1.6Pb0.4Sr1.8Ca2.2Cu3Ox(Bi2223)
phase,Tc5110 K) prepared by solid-phase synthesis fro
chemically pure oxides. Bismuth ceramic plates of s
130,130.01 cm were obtained by pressing the powder
tween steel anvils with copper wire props under pressure
30–40 kbar. The initial diameter of the wires (0.25 mm) d
termined the finite plate thickness. Prepared plates with
ver area elements for current and potential contacts w
annealed at a temperatureT5845 °C. The ceramic sample
were pasted to a flexible steel substrate and covered wi
layer of varnish. The substrate was bent until the format
of a microcrack in the ceramic, which was controlled
measuring the variation of the sample resistance. This le
the formation of a point contact of ‘‘break junction’’ type
which was either a tunnel junction (RN;50–100V) or an
S–c–S-type junction with an ordinary conductivity
(RN;1 –5V). Contacts with ordinary conductivity wer

886110886-03$10.00 © 1997 American Institute of Physics
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found to be much more stable to pressure variations,
enabled a complete cycle of measurements under high p
sures. Moreover, the superconductor energy gap in Andr
type junctions was manifested much more strongly than
tunnel samples. This circumstance is quite significant for
termining the variation 2D/kTc .

Hydrostatic pressure up to 15 kbar was produced i
piston–cylinder chamber. The metallic behavior of t
S–c–S junction was controlled by measuring the tempe
ture dependence of its resistance, as well as from the w
reaction of the junction conductivity to pressure. At low tem
peraturesT,Tc , the current–voltage characteristics ofS–
c–S samples had an excess current, which is a reliable in
of junctions with direct~ordinary! conductivity.4,10

Figure 1 shows theG(V) dependence of anS–c–S junc-
tion displaying an energy gap at eV52D
5114 meV(T577 K). A similar manifestation of the sum o
energy gaps of anS–c–S junction Nb–Nb was observed b
Hoffmannet al.11 As in Ref. 8, the temperature dependen
D(T) corresponds to the BCS curve.

For bias voltageseV higher than 2D, the conductivity of
S–c–S samples displays singularities which can be int
preted as a reflection of the phonon structure of the m
oxide under consideration~Fig. 2!. The spectroscopic natur
of these singularities is confirmed by the fact that their po
tion measured from the sum 2D of the energy gaps coincid
for both tunnel and ordinary conductivity junctions~see inset
a to Fig. 2!. The peculiarities of the experimental curve are
accord with some peaks of the functionF(v) ~see inset b to
Fig. 2!, although the experimental spectrum is more blurr
Moreover, according to Ref. 12, the phonon spectrum
Bi2223 ends in the region of 80 meV, while the Andre
reflection spectrum displays peculiarities at eV22D590–

FIG. 1. Characteristic of the dynamic conductivity of anS–c–S junction
demonstrating the energy gap singularity foreV52D. The inset shows the
variation of the gap with pressure:P50, 2D5114 meV,Tc5110 K ~curve
1!; P510 kbar, 2D5117 meV,Tc5111.5 K ~curve2!.
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95 meV. A similar result was also obtained forS–I –S tunnel
junctions ~see inset a to Fig. 2!. However, the parameter
2D52Dmax5114 meV for S–c–S Andreev junctions is
much larger than in tunnel junctions (2D570–84 meV).

Figure 2 shows the effect of a pressure of 10 kbar on t
structure of the second derivative for one of the investigat
S–c–S Andreev junctions. It can be seen that the initial re
gion of the phonon spectrum of Bi2223 does not vary muc
under pressure:dlnv/dP5(1–1.5)•1023kbar21 ~this is in ac-
cord with the Raman spectroscopy data!.2 The most signifi-
cant variations occur in the high-frequency spectral regio
for \v570–95 meV, where the application of pressur
causes a considerable decrease in the phonon ene
dlnv/dP52631023 kbar21.

In order to find the general nature of the phonon stru
ture peculiarities in Andreev reflection spectra in Bi2223 cu
prates, calculations were made using formula~1! in which
the complex gap parametersD(v) is obtained by exactly
solving the Eliashberg equation for the phonon density
statesF(v) for Bi2223.12 The effect of the high-frequency
part of the boson spectrum~i.e., the nonphonon mechanism
of high-temperature superconductivity! was formally taken
into account by replacing the Coulomb pseudopotentialm*

FIG. 2. Effect of pressure on Andreev reflection spectradG/dV5d2I /dV2

in S–c–S junctions. The inset~a! shows the derivatives of the conductivity
of tunnel ~curve 1! and Andreev~curve 2! junctions, while the inset~b!
shows the theoretical dependence ofdG/dV for an Andreev junction with
Bi2212 ~curve1! and the corresponding EPI function~curve3!, as well as
the experimental curvedG/dV for the phase Bi2223~curve2!.
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with high-frequency bosons. The electron-phonon coupl
constanta2(v) in the functiong(v)5a2(v)F(v) was de-
termined by using the method described by Aokiet al.,13

while the EPI constantl was chosen from the condition o
matching the theoretical critical temperature with the exp
mental value ofTc . In particular, the theoretical values o
the critical current and energy gap atl'3.3 and
m* 50.1 (lp50) were Tc5110 K andD527 meV. When
the nonphonon mechanism (lp.0) is taken into account
the EPI constant decreases to valuesl51.63 for lp50.2,
but in this case the phonon structure indG/dV is preserved.
In the anisotropic case also, the main phonon singularitie
dG/dV remain connected with a certain effective value
the energy gap.14

The departure from experimental values of the param
D is not surprising since the superconducting Bi2223 un
consideration has a high anisotropyD(k). However, the
maximum valueDmax is always realized in the case of An
dreev reflection, while the solution of Eliashberg’s isotrop
equations defines a certain effective mean value of the
ergy gap~this is the value recorded in tunnel junctions du
ing diffusive scattering of electrons at the insulato
superconductor boundary!.

Although the above calculations are of qualitative n
ture, they can be used to establish the general form of
spectrum of dG/dV and its variation under a pressu
P510 kbar. The corresponding variation of the phon
spectrum was obtained by displacing the characteristic pe
in F(v) by the experimentally determined quantitydv(P).
For the experimental value ofTc(P)5111.5 K(P510 kbar),
we obtain the valuel53.46 ~for m* 50.1 andlp50) ~the
experimental value of 2D(P)5117.5 meV). Thus, in the
strong~isotropic! EPI mechanism approximation, the chan
in the ratio R52D/kTc under pressure wa
d5@R(P)2R(0)#/R(0)50.018, which is quite close to th
experimental valued50.017 and to the valued50.02 ob-
tained from the simple Geilikman–Kresin formula

2Dmax

kTc
5CS 115,3F Tc

v0
G2

lnFv0

Tc
G D ~2!

for the characteristic breathing mode phonon freque
v0575 meV ~in the BCS–Eliashberg theory, the consta
C53.53). The obtained result justifies the application of f
mula ~2! for anisotropic cuprate superconductors, whereC is
not a universal constant~the relation between this consta
and the specific dependenceD(k) is established, for ex-
ample, in Ref. 15!.

CONCLUSIONS

Experimental results show that in Bi2223 cuprates,
maximum influence of the pressure is experienced by h
frequency phonons associated with optical vibrations of o
gen atoms and their environment. These frequencies co
spond to the energies 70–100 meV, especially to
breathing mode for\v570–75 meV. Both tunnel and An
dreev spectra display a singularity at\v'95 meV, although
the theoretical phonon spectrum in Ref. 12 terminates a
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spectroscopy, the functionF(v) in Bi2212 extends a little
farther ~up to 85 meV). For LaSrCuO, the edge of the ph
non spectrum lies at the energy\v'95 meV.17

The theoretical data presented here can claim to be
result of a qualitative analysis only. However, it is obvio
that the experimentally observed decrease of frequency in
upper part of the phonon spectrum can explain the disc
ered increase in the ratio (2Dmax/kTc)(P). An agreement
with the experiment is essentially reached by using a sim
generalization of the Geilikman–Kresin formula~2!, where
C5C(k) is a constant determined by the anisotropic pair
mechanism in cuprates. The characteristic phonon freque
v0 is the breathing mode whose energy decreases u
pressure at a rated ln v /dP52631023 kbar21. This means
that the observed increase in the ratio 2Dmax/kTc under pres-
sure is due almost entirely to the strong electron–pho
interaction.
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Tunneling of nonequilibrium quasiparticles excited by x-ray quanta in a nonsymmetric

Dif-
superconducting tunnel detector
V. A. Andrianov, M. G. Kozin, S. A. Sergeev, and V. S. Shpinel

D. Skobel’tsyn Research Institute of Nuclear Physics, Lomonosov State University, 119899 Moscow,
Russia*

V. P. Koshelets and I. V. Abramova

Institute of Radioelectronics, Russian Academy of Sciences, 103907 Moscow, Russia
~Submitted March 11, 1997; revised June 9, 1997!
Fiz. Nizk. Temp.23, 1187–1194~November 1997!

Pulse height distribution from nonsymmetric superconducting Nb/Al/AlOx /Nb tunnel junction
irradiated by x-ray quanta emitted by a55Fe source is studied. Signals of opposite polarity
emerging as a result of absorption in different electrodes of the tunnel junction are observed at
low bias voltages. This makes it possible to obtain amplitude spectra of essentially different
shape for each electrode separately. The dependence of the maximum charge output on the bias
voltage is analyzed. The diffusion coefficient, effective lifetime, and recombination
probability for quasiparticles are obtained. It is found that the charge output increases with the
magnetic field strength. ©1997 American Institute of Physics.@S1063-777X~97!00611-7#

Detectors of x-ray and softg-quanta that are being de- trode with a larger superconducting gap were detected.
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veloped on the basis of superconducting tunnel juncti
~STJ! make it possible to lower the energy threshold for
cording and to obtain a much higher energy resolution t
for semiconducting detectors.1,2 The values of energy reso
lution R attained for electrodes consisting of Nb and Al film
are 36 eV for 6 keV,3 the theoretical limit being approxi
mately 4 eV. For detectors in which Ta films are used
increase the efficiency of radiation absorption, the best re
lution for 6 keV is 68 eV.4 However, the efficiency of STJ
detectors that have been developed by now is low in view
their small size, and such detectors are used very rarely.
sides, some peculiarities in the operation of STJ detec
complicate their practical application. Among other thing
radiation absorption in the lower and upper STJ electro
usually leads to the emergence of pulses of the same pola
but with different amplitudes, which complicates the sha
of the obtained amplitude spectra. The improvement of S
detectors necessitates a further study of physical proce
taking place in various types of STJ upon the absorption
an energy quantum and excitation of quasiparticles.

In this research, we study a nonsymmetric tunnel ju
tion Nb/Al/AlOx /Nb. The shape of current-voltage chara
teristics~IVC! proved that the tunnel junction has a structu
of the S/I /S8 type with different widthsD1 and D2 of the
superconducting gaps for the upper and lower electro
The STJ was irradiated by x-rays emitted by Mn and acco
panied by the radioactive decay of55Fe. The amplitude spec
tra were measured at different temperatures in the inte
1.4–2.2 K. We studied the effect of the applied bias volta
magnetic field applied for suppressing the Josephson cu
and Fiske resonances, and temperature on the shape o
spectra.

For small bias voltagesVd,(D22D1)/e ~e is the elec-
tron charge!, pulsed of anomalous polarity emerging as
result of competition of the electron and hole channels
tunneling for nonequilibrium quasiparticles from the ele
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ferent polarities of pulses from the lower and upper el
trodes made it possible to separate spectra and to ana
them for each electrode separately.

The spectra obtained for different electrodes differ s
nificantly. The spectra were analyzed on the basis of
diffusion model taking into account the dependence of q
siparticle output on the coordinate of phonon absorption
under the assumption of the presence of quasiparticle trap
the electrodes.

Preliminary results of this research were report
earlier.5

SAMPLES AND APPARATUS

Tunnel junction Nb/Al/AlOx /Nb were prepared at the
Institute of Radioelectronics, Russian Academy of Scienc
by magnetron sputtering on a silicon substrate of thickn
;0.4 mm. Schematic diagram of STJ is shown in Fig. 1.
first, a buffer layer of amorphous Al2O3 was deposited on the
substrate, followed by a three-layer structure: the lower
film of thickness 2000 Å, a thin Al layer of thickness 60 Å
on which an insulating AlOx layer of thickness 10–20 Å wa
created as a result of oxidation, and finally the upper Nb fi
of thickness 1000 Å. The deposition of the Nb curren
carrying layer of thickness 3500 Å on the upper electro
increased its thickness to 4500 Å. The structure formation
the chip was carried out by the photolithographic and etch
technique. The STJ had the shape of a square with the i
lating barrier size 20320mm. The sizes of the lower and
upper electrodes were larger than the size of the barrier b
and 10mm respectively. The normal resistanceRN of the
STJ was 3V.

In view of technological peculiarities, the Nb films had
small-grain structure and contained the Ar impurity since
sputtering was carried out in the Ar plasma. The resid
resistance coefficientRRRof the films was close to 3.

889110889-06$10.00 © 1997 American Institute of Physics
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The STJ was cooled to 4.2–1.4 K in a helium cryos
with evacuation of He vapor. The detector was exposed
x-rays with 5.89 keV of MnKa(88%) and 6.49 keV of Mn
Kb(12%), accompanying the radioactive decay of55Fe. The
intensity of the55Fe source was 0.8mCi. The magnetic field
of strength up to 900 Oe was created by a superconduc
solenoid and was directed in the plane of the tunnel bar
along its face.

The signals from the STJ detector were supplied thro
a coaxial cable of length;1 m to a low-noise charge
sensitive preamplifier operating at room temperature. T
bias voltage was supplied to the tunnel junction throug
loading resistance of 50 kV, which ensured the conditions o
pulse measuring close to the constant-voltage regime.
amplitude spectra were recorded by using a multichan
analyzer. The pulse shape was determined with the help
digital oscillograph. A more detailed description of th
samples and the setup is given in Ref. 5.

CURRENT-VOLTAGE CHARACTERISTICS

Figure 2 shows the IVC obtained at temperatureT
51.4 K in a magnetic fieldH5200 Oe. The Josephson cu
rent was suppressed by the magnetic field. The current
at a voltage of 0.5 mV coincides with the first Fiske ste
The IVC hysteresis at voltages below 0.5 mV is associa
with the local current peak at a voltageVs50.14 mV ~the
IVC were measured in the constant-current mode!. This peak
is due to the difference in the superconducting gaps for
lower and upper electrodes of the STJ (Vs5(D22D1)/e).
The gap singularity on the IVC is observed at a voltageVg

52.74 mV and corresponds to the sum of the gaps of
lower and upper electrodes (Vg5(D21D1)/e). This gives
the values ofD151.30 meV andD251.44 meV.

Thin films are characterized by a smaller width of t
superconducting gap (D051.55 meV) as compared with
bulk Nb samples, which can be explained by the defect
ture of Nb films and by the presence of the Al interlayer
the lower electrode. However, for small thicknesses of the
layer (;50 Å), the decrease in the gap width associa
with the proximity effect is small, and defectiveness of t
film is a decisive factor in the decrease of the gap width.
this reason, the smaller valueD151.30 meV in all probabil-

FIG. 1. Schematic cross section of a superconducting tunnel junction:
con substrate~1!, layer of amorphous Al2O3 ~2!, lower Nb electrode with
leads~3!, Al/AlO x barrier layer~4!, upper Nb electrode~5!, insulating SiO2

film ~6!, leads to the upper electrode~7!, and Al/Au contact areas~8!.
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ity corresponds to the upper electrode with a more defec
small-grain structure. Such an identification of electrod
does not contradict the experimental data obtained by G
ubov et al.6 and is in accord with our results on the time
quasiparticle tunneling from different electrodes.

At T51.4 K and for voltages across the junction smal
than ;0.8 mV, the quasiparticle~thermal! current does not
exceed a few nanoamperes. The temperature variation of
current in the interval 4.2-1.4 K follows the theoretic
dependence7 I d;AT exp(2D/kT)E with D51.34 meV, indi-
cating the smallness of leakage currents atT>1.4 K and a
high quality of the tunnel barrier. At voltages abov
;0.8 mV, the quasiparticle current increases abruptly~see
Fig. 2!, which was also observed by some authors8,9 and was
explained by two-particle tunneling processes.

X-RAY DETECTION

The absorption of radiation in STJ is usually responsi
for the emergence of pulses whose polarity is determined
the sign of the applied voltage and corresponds to the
hancement of the quasiparticle current. However, at sm
bias voltagesVd,Vs5D22D1 , anomalous pulses with th
opposite polarity were also observed by us along with
pulses of normal polarity. ForVd.Vs , no pulses with
anomalous polarity were observed. The oscillograms of n
mal and anomalous pulses are shown in Fig. 3. The p
front durationst f differ considerably and amount to approx
mately 0.3ms for normal and 0.8ms for anomalous pulses

Figure 4 shows the pulse-height~amplitude! spectra for
pulses from the55Fe source atT51.4 K in a magnetic field
H5175 Oe for different bias voltagesVd across the tunne
junction. The heights of pulses are normalized to out
charge units. The electron noise level of the entire circ
~including STJ noises!, which was determined with the hel
of a gage pulse generator, did not exceed 5•103e.

Figures 4a and b show the amplitude spectra for nor
and anomalous pulses, measured at a voltageVd,Vs across
the junction. The spectrum of pulses with the normal polar
~Fig. 4a! has a peak blurred on the side of small amplitud
and a small step behind the peak, which correspond to
x-ray linesKa andKb of Mn, marked by arrows in the fig-

li-

FIG. 2. Current-voltage characteristic of a STJ~T51.4 K, H5200 Oe!.
Detector currentI d is laid on the ordinate axis in three measuring range

890Andrianov et al.
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FIG. 3. Pulses from the STJ detector behind inverting charge-sensitive
amplifier forVd,Vs : normal polarity,t f.0.3ms ~a! and anomalous polar-
ity, t f.0.8ms ~b!.

FIG. 4. Amplitude spectra of pulses for various voltages across the
Vd , mV: 0.12, normal polarity~a!, 0.07, anomalous polarity~b!, 0.23 ~c!,
and 0.75~d!. Dashed curve corresponds to calculations based on the d
sion model. Fine curves describe the decomposition in the spectra from
upper and lower electrodes.

891 Low Temp. Phys. 23 (11), November 1997
ure. Besides, a steep ascent is observed in the region of s
amplitudes. The spectrum of anomalous pulses~Fig. 4b! dif-
fers considerably from the above spectrum. It contains a
teau in the region of large amplitudes and a broad peak a
beginning of the spectrum.

The emergence of pulses with opposite polarities
Vd,Vs is associated with the radiation absorption in diffe
ent electrodes of a nonsymmetric STJ. Tunneling of exc
quasiparticles can take place through two~electron and hole!
channels making opposite contributions to the resultant p
~Fig. 5!. The electron channel dominates forVd,Vs in the
case of radiation absorption in the lower electrode with
larger superconducting gap in view of the difference in t
densities of the final states, and the observed pulses hav
anomalous polarity~Fig. 5a!. As the voltage increases (Vd

.Vs), the electron channel is blocked, and the hole chan
of tunneling plays the major role. As a result, pulses acqu
the normal polarity~Fig. 5b!.

In the case when a quantum is absorbed in the electr
with a smaller gap~upper electrode!, electron tunneling pre-
vails at all values of voltage, and hence the pulses alw
have the positive polarity. For low voltagesVd,Vs , quasi-
particle states near the gap boundary are blocked for tun
ing. As the voltage increases from 0 toVs , the blocking is
gradually removed, and the tunnel current increases, re
ing its maximum value forVd'Vs . A further increase in the
voltage leads to a suppression of the tunnel current due
decrease in the density of the final states. Thus, the am
tude of pulses from the upper electrode must be a nonmo
tonic function of the bias voltage.

Thus, for low voltages (Vd,Vs), the amplitude spectra
of normal pulses~Fig. 4a! correspond to the absorption o
radiation in the upper electrode with a smaller supercond
ing gap, while the spectra of pulses with the anomalous
larity ~Fig. 4b! correspond to the lower electrode in the ST

When the voltage across the junctionVd.Vs , radiation
absorption in the upper and lower electrodes leads to
formation of pulses with the same polarity, and the obser
spectra are a superposition of the spectra from each of
electrodes. Figures 4c and d show typical spectra obta
for Vd.Vs . The sharp crest at the beginning of the amp

re-

J:

u-
he

FIG. 5. Schematic diagram of tunneling of nonequilibrium quasiparticles
a nonsymmetric STJ. The electron and hole channels are denoted bye and
h. The arrows indicate the direction of electron tunneling. Double hatch
marks the states blocked for tunneling. Anomalous pulses are formed
result of absorption of radiation in the electrode with a larger supercond
ing gap forVd,Vs5(D22D1)/e; EF is the Fermi level,D the supercon-
ducting gap, andVd the bias voltage across the detector.

891Andrianov et al.
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tude spectra corresponds to the upper electrode, while
broad peak and the plateau in the region of large amplitu
correspond to the lower electrode. Figures 4c and d show
decomposition of spectra obtained by using the Pha
program.10 In the decomposition, use was made of the sp
tra obtained at low~see Figs. 4a and b! voltages, whose scal
on the abscissa axis varied in accordance with the chang
the voltage for which the resultant spectrum was obtaine

An analysis of the duration of pulses measured at v
ages larger thanVs also confirms the above decomposition
the spectra. Pulses with short (;0.3ms) fronts had small
amplitudes corresponding to the spectrum from the up
electrode, while the amplitudes of pulses with front of du
tion ;0.8ms corresponded to the plateau region in the sp
trum from the lower electrode.

The results obtained by us show that a variation of
voltage across the junction virtually does not affect the sh
of the spectra from each electrode, changing only the sca
the output charge. Figure 6 shows the dependence of
upper boundaryQb of the spectra on the voltage across t
tunnel junction for the upper and lower electrodes. In acc
dance with the diagram of tunneling~see Fig. 5!, the bound-
ary of the spectrum from the lower electrode passes thro
zero ~curve 1!, while Qb for the upper electrode has a pe
~curve 2!. The obtained results coincide qualitatively wi
the voltage dependences of the tunneling probability, wh
were calculated by Golubovet al.11

DEPENDENCE OF SPECTRA ON TEMPERATURE AND
MAGNETIC FIELD

The temperature dependence of amplitude spectra
measured in the interval 1.4–2.2 K. With increasing te
perature, the spectra were gradually ‘‘compressed’’. Figur
shows the temperature dependence of the boundary ou
chargeQb for the lower and upper electrodes~curves 1 and 2
respectively!. It can be seen that a decrease in the out
charge is mainly observed for the lower electrode, while
the upper electrode it becomes noticeable only atT.2 K.

The magnetic field also produced a significant effect
the amplitude spectra. Figure 8 shows the dependences oQb

on the magnetic field strength for the spectra correspond

FIG. 6. Dependences of the boundary values of the output chargeQd on the
voltage across the junction for the lower~curve 1! and upper~curve 2!
electrodes~T51.4 K, H5175 Oe!.
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to the upper and lower electrodes for two samples No. 1
No. 2 under investigation. The data were obtained from
spectra measured atT51.4 K. It can be seen that in field
higher than;100 Oe, the boundary of the spectrum for t
lower electrode is displaced linearly, the boundary of t
spectrum for the upper electrode remaining virtually u
changed. For the second sample, the charge output in
field 900 Oe increases almost by a factor of two.

DISCUSSION OF RESULTS

The analysis of the STJ Nb/Al/AlOx /Nb revealed that
nonsymmetric tunnel junctions under a low bias voltage p
mit the separation of the amplitude spectra correspondin
absorption of x-ray quanta in different electrodes. The pul
from the electrode with a larger gap width have anomalo
polarity which does not correspond to the sign of the appl
voltage. The obtained amplitude spectra and the time of
nal growth in different electrodes of a STJ differ conside
ably.

Recently, the pulses with anomalous polarity were d
tected independently during the study of tunnel junctio
with the help of a scanning electron microscope12 and in the
analysis of STJ having a more complex structure and c
taining Nb, Ta, and Al layers.13 The possibility of the emer-
gence of such pulses was theoretically predicted earlier
Golubovet al.11

When a quantum creates a photoelectron in an electr
a cascade of quasiparticles and phonons is formed soon~in a
few nanoseconds!, which results in the creation of the initia
cloud of excess quasiparticles with an energy equal to
slightly exceeding the energyD and nonequilibrium phonons
with the energy approximately equal to 2D. The linear di-
mensions of this cloud must be of the order of magnitude
the region occupied by the track of the primary photoelect

FIG. 7. Temperature dependences of the boundary values of the o
charge Qd for the lower ~curve 1! and upper~curve 2! electrodes~H
5175 Oe,Vd50.75 mV!, and temperature dependence of the recombi
tion time tR ~curve3!.

892Andrianov et al.
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over the volume of the electrode, which is accompanied
the processes of loss, recombination, and tunneling with t
constantst loss, tR , andtT respectively. These constants d
termine the effective lifetimetd of quasiparticles:

td
215t loss

211tR
211tT

21. ~1!

The timetd can be determined experimentally from th
durationt f of the pulse front from the charge-sensitive pr
amplifier: td5t f /2.2. For the junction under investigation
the timetd is equal to 0.13ms for the upper and 0.36ms for
the lower electrode.

In order to estimate the characteristic tunneling timetT ,
we can use the expression14

Qb5eN0

td

tT
, ~2!

whereQb are the upper boundaries of spectra forVd@Vs and
N0 is the number of excess quasiparticles formed in Nb a
result of absorption of a quantum of energy 6 keV;N0

52.2•106.7

Using the measured values ofQb154•104e and Qb2

516•104e for the upper and lower electrodes, we obta
tT157 ms for the upper andtT255 ms electrodes respec
tively. These values are much higher than the experime
lifetime of quasiparticles in STJ electrodes. According to o
estimates, the recombination timetR at low temperatures
(<1.4 K) is also much larger thantd . For this reason, the
lifetime is determined by quasiparticle losses, i.e., captur
quasiparticles in traps, leakage through leads, and other
sible processes.

The effect of diffusion on the shape of the observ
spectra is determined by the relation between the linear
of the electrodes of the STJ and the diffusion length over
lifetime of nonequilibrium quasiparticles,LD5A4Dtd,
whereD is the diffusion coefficient. In our case, the diffu
sion length and the size of the electrodes are approxima
of the same order of magnitude. Consequently, the quas
ticle density distribution, and hence the output charge,
functions of the photon absorption coordinate. The nonu
formity of the charge output becomes even stronger du
the presence of large peripheral regions in the given struc
of STJ, which have no direct contact with the tunnel barr
~‘‘skirts’’ !.

The diffusion equation in our case has the form

]n~r ,t !

]t
5D¹2n~r ,t !2

1

td
n~r ,t !, ~3!

where n(r ,t) is the number density of quasiparticles as
function of the spatial coordinate and time.

Since diffusion lengthsLD are always much larger tha
the thickness of the electrodes, Eq.~3! should be considered
for the two-dimensional case.

The chargeQ of quasiparticles after tunneling is define
by the integral

Q5
e

tT
E

0

`

dtE
A
n~r ,t !dr , ~4!
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tunnel barrier.
The initial conditions are determined by thed-function

n~r ,t50!5N0d~r2r0!, ~5!

wherer0 is the coordinate of quantum absorption.
The boundary conditions are determined by the proba

ity of quasiparticle reflection at the electrode boundaries
must also take into account the possibility of quasiparti
loss through the leads.

We obtained an approximate solution of Eq.~3! in the
one-dimensional case. The solution was presented in
form of a series expansion in Gaussians.15 We varied the
diffusion coefficientD, tunneling timetT , and the reflection
coefficientR which changed from 1~total reflection of qua-
siparticles! to 21 ~perishing of quasiparticles at the boun
ary! and used the experimental values oftd . The final result
of our calculations was in the form of distribution function
for the output charge, which were compared with the exp
mental spectra.

The results of calculations presented in Figs. 4a and b
dashed curves are in qualitative agreement with the exp
mental spectra except for the region of small amplitudes
the spectrum in Fig. 4b. The asymmetric peak in the sp
trum for the upper electrode~Fig. 4a! and the plateau in the
spectrum for the lower electrode~Fig. 4b! correspond to ab-
sorption of quanta in the central region of the electrodes. T
spectral regions with small pulse amplitudes correspond
absorption in the ‘‘skirts’’ of the electrodes.

The calculated data are in agreement with the exp
mental results only for small values of the reflection coe
cient R, indicating annihilation of quasiparticles along th
perimeters of the electrodes. Taking into account the qu
tative nature of the model used, we can state that this
also be an indication of quasiparticle perishing in t
‘‘skirts’’.

The results of calculations were used for estimating
diffusion coefficients:D.1.5 cm2/s (LD59 mm) for the up-
per electrode andD.2.1 cm2/s (LD517mm) for the lower
electrode. The diffusion coefficient is connected with t
mean free pathl f of quasiparticles through the relation16

D5
1

3
vFl f S 2kT

pD D 1/2

, ~6!

wherevF is the velocity of electrons on the Fermi surfac
vF50.57•108 cm/s,17 andk is the Boltzmann’s constant.

This gives the values ofl f534 and 48 Å for the upper
and lower electrodes respectively. These values are slig
smaller than the size of crystallites~50–100 Å! in Nb elec-
trodes.

The difference in the shape of the spectra for the low
and upper electrodes is primarily due to the difference in
diffusion lengthLD in view of different values of the lifetime
td for quasiparticles. It was mentioned above that the va
of td is determined by losses. The most probable mechan
of losses is the capture of quasiparticles in traps which
regions with a lower value of the gapD, that are not in
contact with the tunnel barrier, e.g., regions on the ou
surfaces of the electrodes. At the same time, the trap

893Andrianov et al.
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contact with the barrier play a positive role since they red
the probability of quasiparticle annihilation and ensure fav
able conditions for quasiparticle tunneling.14 It cannot be
ruled out that the longer lifetime in the lower electrodes
due to the capture in such traps that are formed, for exam
in the region adjoining the aluminum interlayer, or alo
grain boundaries.

Using the measured temperature dependence of
boundary chargeQb ~Fig. 7a!, we can calculate the tempera
ture dependence of the recombination timetR . For this pur-
pose, we can use relation~2! for Qb and relation~1! for the
effective lifetime td of quasiparticles, assuming that a d
crease in recombination time plays the leading role in
case of heating. The values oftR calculated in this way for
the lower electrode are presented in Fig. 7~points on curve
3!. The obtained results confirm the exponential depende
of tR on temperature16 for D51.3 meV.

The quasiparticle loss rate for the upper electrode is c
siderably higher (tloss.0.13ms), and hence the boundar
charge starts decreasing at much higher temperatures, w
the values of 1/tR becomes comparable with 1/t loss.

The most astonishing result of this research is the cha
output increase with the magnetic field strength~Fig. 8!.
Such an effect of the magnetic field is observed only for o
electrode, while for the other electrode this effect is ins
nificant. The magnetic field penetrates the surface layer

FIG. 8. Dependences of the boundary values of the output chargeQd on the
magnetic field for the lower~curve 1! and upper~curve 2! electrodes, and
for the lower electrode of sample No. 2~curve 3! ~T51.4 K, Vd

50.75 mV!.
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reducing the energy gap. In all probability, in the lower ele
trode, in which superconductivity is suppressed by the
interlayer, the magnetic field caused a decrease in the
width sufficient for the formation of a trap increasing th
output of quasiparticles. The possibility of formation of
magnetic trap was considered in Ref. 18.

This research shows that the shape of the amplit
spectra of STJ detectors is determined to a considerable
tent by diffusion of excess quasiparticles, in particular,
the relation between the diffusion lengthLD and the linear
dimensions of the electrodes. Peripheral regions~‘‘skirts’’ !
of the electrodes affect significantly the amplitude spec
and can be sources of additional losses of quasipartic
Nonsymmetric STJ which make it possible to separate
nals from different electrodes can be used for develop
specific STJ detectors as well as in analysis of kinetics
nonequilibrium quasiparticles.

The authors are grateful to M. Yu. Kupriyanov for frui
ful discussions, Yu. D. Zonnenberg and L. F. Nefedov
their help in preparing the setup.
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LOW-TEMPERATURE MAGNETISM
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Dipole magnet model for CsDy „MoO4…2
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Ukraine, 310164 Kharkov, Ukraine*
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The energy of the ordered state of the rare-earth subsystem of CsDy~MoO4!2 is calculated in the
pure dipole approximation, and the magnetic configuration corresponding to the ground
state is determined. The temperature dependence of the magnetic heat capacity is calculated in
the temperature rangeT.TN , and a good agreement with the experiment is observed.
© 1997 American Institute of Physics.@S1063-777X~97!00711-1#
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In the theory and practice of magnetism, most magn
systems are described in the exchange approximatio
which the dipole-dipole interaction is taken into account a
correction. The reverse situation has not been given m
consideration although a large number of magnetically c
centrated compounds and, in particular, rare-earth insula
including those used as working substance for adiabatic
magnetization behave like pure dipole systems. This is
to a considerable value for the one-site magnetic momen
rare-earth~RE! ions and a comparatively large atomic sep
ration in the lattice, which effectively decrease the excha
interaction in the system.

Studies of the compounds KEr~MoO4!2
1,2 and

CsGd~MoO4!2,
3 which belong to the group of alkali-eart

double molybdates, indicate that their main magnetic pr
erties can be described in the pure dipole approximation

According to the results of earlier investigations of ele
tron paramagnetic resonance4 and magnetic heat capacity5

the allied compound CsDy~MoO4!2 can also be treated as
dipole magnet. Indeed, the considerable value (;10mB) of
one-site magnetic moments of Dy31 ions in this crystal, a
low value of the temperature of transition to the magnetica
ordered state (TN51.294 K), which is comparable with th
energy of dipole-dipole interactions in the system, as wel
the close nature of temperature dependence of heat cap
near TN and the heat capacity of a two-dimensional Isi
magnet, point towards the dominating contribution fro
dipole-dipole interaction to the general pattern of spin-s
interactions in this case also.

The present work aims at describing the magnetic pr
erties of CsDy~MoO4!2 in the dipole approximation. We
shall determine the spin configuration corresponding to
ground state in the magnetically ordered phase, obtain
energy relations characterizing the ionic interaction, and
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MAGNETIC STRUCTURE OF THE GROUND STATE OF
CsDy „MoO4…2

At room temperature, the crystallographic structure
CsDy~MoO4!2 corresponds to the space groupD2h

3 with the
parametersa59.51 Å, b57.97 Å, and c55.05 Å of the
unit cell which contains two structural units of this com
pound.

In terms of the unit cell parameters, the coordinates
the RE ions arex50, y50.25, andz50 ~Fig. 1!.

With decreasing temperature, the crystal underg
structural phase transitions, among which the first-or
phase transition occurring atT.40 K is studied most exten
sively. Hence, in the helium temperature range in which
are interested, the volume of the unit cell is at least doub
This is accompanied by a decrease in its symmetry and
formation of nonequivalent centers to be occupied by
ions.6 However, this nonequivalence is manifested in t
EPR spectrum of CsDy~MoO4!2 in symmetric rotations of
the effectiveg-factor ~relative to the rhombic axes! charac-
terizing the resonant absorption at the lowest Kramers d
blet of the ground energy level6H15/2 of the Dy31 ions,
which is split by the crystal field. The extremal values of t
effectiveg- factor are found to be the same for both cente
while the angles of rotation of the principal tensor axes
not large and amount to610° and65° in the ab and bc
planes of the rhombic phase.

In view of such an insignificant difference in the param
eters of the RE lattice sites, we can treat them as magn
cally equivalent in the first approximation. In turn, during a
analysis of the magnetic structure, this circumstances all
us to consider a unit cell containing one RE site and hav

895110895-05$10.00 © 1997 American Institute of Physics
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half the volume in the case under consideration due t
halving of the parameterb.

The method of determining the magnetic structure of
ground state for one ion per unit cell was proposed by L
tinger and Tisza for classical dipole systems,7 and general-
ized by Niemeyer for quantum systems.8 This technique was
used actively for determining the minimum dipole energy
several paramagnetic salts,8,9 as well as the molybdates men
tioned above.

The essence of the method lies in the following. T
Hamiltonian of interactions of magnetic moments lying
the sitesi and j of the crystal lattice can be written in th
form

HD5(
i , j

1

r i j
3 Fm im j23

~m ir i j !•~m j r i j !

r i j
2 G , ~1!

where r i j is the radius vector connecting the sitesi and j .
Taking into consideration the connection between the co
ponents of magnetic moment and spin

m i
a5(

b
mBgi

abSi
b ,a, b5x,y,z, ~2!

where mB is the Bohr magneton, we can represent Ham
tonian ~1! in the form

HD5(
i , j

(
a,b

Pi j
abSi

aSj
b , ~3!

where

Pi j
ab5 (

«,l,n

mB
2

r i j
3 S gi

«agj
«b23

gi
algj

bnr i j
l r i j

n

r i j
2 D . ~4!

FIG. 1. Arrangement of Dy31 ions in a CsDY~MoO4!2 unit cell. The arrows
indicate possible directions of the axes ofg-tensors of nonequivalent cen
ters.
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unit cell and is independent of the position of the sitesi and
j .

According to Niemeyer’s theorem, the magnetic stru
ture of the ground state for one ion per unit cell must cor
spond to one of the eight possible versions with the m
mum energy of the momentm i in the field of the surrounding
moments. Figure 2 shows the ferromagnetic structure 1F
the antiferromagnetic Neel structure 2AF, and six types
layered antiferromagnetic structures.

Calculation of the eigenvalues of the dipole-dipole inte
action energy of these states involves the use of the th
order matrices

Ak5(
i , j

q~k!Pi j
ab , k51,...,8, ~5!

which assume the following form if Eqs.~3! and ~4! are
taken into account:

Ak5 (
l ,m,n

q~k!

3S gx
2 r 223x2

r 5 23
gxgyxy

r 5 23
gxgzxz

r 5

23
gxgyxy

r 5 gy
2 r 223y2

r 5 23
gygzyz

r 5

23
gxgzxz

r 5 23
gygzyz

r 5 gz
2 r 223z2

r 5

D , ~6!

where r[$x,y,z%5$ la,mb/2,nc%. According to Fig. 2, the
configurational componentq(k) can be represented in th
form

q~1!51; q~5!5~21!n;

q~2!5~21! l 1m1n; q~6!5~21! l 1n;

q~3!5~21!m; q~7!5~21!m1n;

q~4!5~21! l ; q~8!5~21! l 1m. ~7!

Since ^(Sa)2&5S(S11)/3, the energy eigenvalues fo
Hamiltonian~3! have the form

Ek
a5

1

3
mB

2S~S11!«k
a , ~8!

where«k
a are the eigenvalues of the matrixAk , which were

calculated through a direct summation of the elements
matrix ~6! over a sphere of radius 475 Å, thus ensuring
maximum error of 0.1% for moderate computing time.1! In
this case, we used the lattice parameters of the h
temperature phase of CsDy~MoO4!2 since dilatometric
studies10 show that the difference in lattice parameters at
and 300 K do not exceed 0.1%. The results of computati
are presented in Table I and shown schematically in Fig

The minimum energy value forE8521.3390 K corre-
sponds to the configuration 8AF with the magnetic mome
directed along thec-axes and for the maximum value o
projection of the effectiveg-factor ~ga53.7, gb51, gc

513.4!.4 The configuration 3AF for which the moments a
also oriented along thec-axis has an energy value very clos
to the 8AF configuration. The difference in the energy ch

896Anders et al.
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acteristics of these states is quite insignificant:E32E8

50.0044 K. This quantity may serve as an estimate for
coupling between chains in the ground state
CsDy~MoO4!2, which is much lower than the binding energ
E851.339 K in the chain.

The configuration 1FM lies higher on the energy sca
its energy exceeding the ground state energy by;0.11 K for

FIG. 2. Niemeyer’s ordered magnetic structures8 ~black and white sites
correspond to opposite directions of moments!.

TABLE I. Energy eigenvalues of spin configurations of the ordered stat
CsDy~MoO4!2 with different directions of magnetic moments.

Magnetic
configuration

Energy, K

Ea /kB Eb /kB Ec /kB

1FM 1.1048 0.0488 21.2285
2AF 20.0702 0.0101 20.3041
3AF 20.0543 0.0130 21.3346
4AF 0.2657 20.0069 20.8322
5AF 0.0059 20.0143 2.0852
6AF 0.0150 20.0134 1.9751
7AF 20.0709 1.0733 20.3011
8AF 20.0522 0.0123 21.3390
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moments oriented along thec-axis. The crystals of
CsDy~MoO4!2 are usually in the form of thin plates~the
a-axis is perpendicular to the plane of the plate!. Hence,
while calculating the energy of the purely ferromagne
structure 1FM. We take the demagnetizing factor into co
sideration only along thea-axis; this changes the energy o
the system byDE52pmB

2ga
2S2n0 , which amounts toDE

50.0667 K for a densityn054.9831021 cm23 of Dy31 ions
in CsDy~MoO4!2.

Results of our computations show that the energy of
tiferromagnetic structures with the moments oriented at ri
angles to the ‘‘easy’’ axisc is higher than the energy of th
ferromagnetic structure 1FM with the momenta direct
along thec-axis ~Fig. 3!. This means that, in an externa
magnetic fieldHic, the system in the ground state must b
pass the energetically disadvantageous spin-flop state, gi
way to a metamagnetic phase transition to the ferromagn
phase. In this case, the transition field will be defined by

f

FIG. 3. Energy scale of magnetic configurations of the ordered stat
CsDy~MoO4!2. The directions of magnetic moments are indicated in bra
ets.
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(m c), which amounts to

H5kB~E12E8!/gcmBS5245.4 Oe.

The experimental results11 on the dependence of magn
tization of CsDy~MoO4!2 on external magnetic field obtaine
at T.0.5 K show a sharp increase in the magnetic mom
at Hc.300 Oe forHic to the nominal value which remain
unchanged upon a further increase in the field up
;50 kOe. Such a behavior of magnetization is in qualitat
agreement with our conclusion about the metamagn
phase transition in this system.

MAGNETIC HEAT CAPACITY

The quantitative analysis of the heat capacity of a m
netic system can be used for verification of the interact
model chosen by us for describing the properties of the c
tal under consideration. The method of high-temperature
pansion of the distribution function is frequently used for th
purpose. In spite of the fact that computation of higher-or
terms in the expansion becomes quite cumbersome,
method has been used extensively for describing magn
heat capacity and magnetic susceptibility of a number
systems with dominating dipole-dipole interaction even
temperatures close toTN .12,13 A satisfactory agreement with
the experiment was obtained by taking into account the
two or three terms in the expansion.

For dipole systems with Hamiltonian~3!, the expansion
of the partition function

Z5Tr~e2HD /kBT! ~9!

in powers of reciprocal temperature leads to a series of
type

Z5Tr (
n50

`
1

n! S 2
HD

kBTD n

. ~10!

Taking into account the relation between the Gibbs poten
G(T)52kBT ln Z and the heat capacity cm5
2T(]2G/]T2)H50 , we can obtain an expression forcm(T)
also in the form of a series in powers of the reciprocal te
perature:

cm

R
5 (

n52

`

~21!n
bn

Tn , ~11!

whereR is the universal gas constant. The general form
coefficientsb2 and b3 for dipole systems is presented
Refs. 12, 13.

According to the results of EPR experiments4

CsDy~MoO4!2 is characterized by a significant anisotropy
the g-factor (gc@ga ,gb). Hence while calculating the coef
ficients bn in the case considered by us, we can disreg
terms containing (gb

2)n and (gagb)n. The expressions forb2

andb3 used by us for computing heat capacity are presen
in the Appendix.

Figure 4 shows the temperature dependence of the m
netic heat capacitycm(T) for T.TN , obtained by subtract

ing the lattice contributionctot
5: from the total heat capacity

clat . cm5ctot2clat . The solid curve corresponds to the val
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of cm calculated by using formula~11! taking into account
only the term withb2 . The inclusion of the second term wit
the coefficientb3 does not improve agreement with the e
perimental values since this term appears with a nega
sign in the expansion~11!. It can be assumed that the expe
mental values can be described better by taking into acco
terms withb4 as well as higher-order terms. However, t
problem becomes much more cumbersome due to a com
form of the coefficientsbn and a large number of lattice
sums. However, the theoretical curve is in quite good agr
ment with the experimental data if we take into account o
the first term of the expansion~11! into consideration.

CONCLUSIONS

As in the case of previously studied alkali-earth doub
molybdates KEr~MoO4!2 and CsGd~MoO4!2 with a large
magnetic moment of rare-earth ions, the main magn
properties of CsDy~MoO4!2 may be described by assuming
predominantly dipole-dipole nature of spin-spin interactio
in the system. The available computational methods allow
to choose the magnetic configuration of the ground state
the magnetically ordered phase of a dipole magnetic and
the energy estimate to predict its main properties. Amo
other things, the magnetic structure of CsDy~MoO4!2 in the
ground state consists of ferromagnetic chains of Dy31 ions
arranged and oriented along thec-axis of the crystal with the
maximum value of theg-factor projection. The magnetic
moments of adjacent chains are antiparallel to each othe

Note that for a configuration corresponding to t
ground state, the computational technique used by us, w
is essentially a mean-field method, leads to an energy v
close to the valueTN for the crystal expressed in kelvins
which serves as a measure of internal interactions in the
tem.

The coupling energy between the chains is much low
than the binding energy of magnetic moments in a cha
Together with a fairly stable minimum for orientations of th
momentsmic, this allows us to consider CsDy~MoO4!2 as a

FIG. 4. Temperature dependence of the magnetic heat capacity
CsDy~MoO4!2: experiment~* !; calculations taking into account the firs
term of the expansion~11! ~solid curve!, and the first two terms of the
expansion~dashed curve!.
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by a metamagnetic phase transition in an external magn
field oriented in the direction of the moments. Experimen
studies of magnetization of a crystal qualitatively supp
this conclusion.

Finally, we can describe the magnetic component of
heat capacity of CsDy~MoO4!2 without introducing any ad-
ditional types of ionic interactions. All this confirms th
qualitative applicability of the dipole model of a magnet f
the system under consideration.

APPENDIX

Since Tr(HD
2 ) for systems with purely dipole-dipole in

teraction contains only terms of the type(
i j

Pi j
abPi j

ab , while

Tr(HD
3 ) contains only terms of the type (

i j , jk,ki
Pi j

abPjk
abPki

ab

and(
i j

Pi j
abPi j

abPi j
ab , the coefficientsb2 andb3 can be repre-

sented in the form

b25
1

18k2 S2~S11!2mB
2$gx

4~S126S319S7!

1gz
4~S126S419S8!118gz

2~gx
2S91gy

2S10!%;

b35
1

6k2 S2~S11!2mB
2$gx

6~S229S5127~S112S13!!

1gz
6@S229S6127~S122S14!#254gz

3~gx
3S15

1gy
3S16!%1

1

9k3 S3~S11!3mB
3$gx

6@S1723~2S18

1S20!19~2S221S24!227S26#1gz
6@S1723~2S19

1S21!19~2S231S25!227S27#254gz
3~gx

3S28

1gy
3S29!%,

whereSn are lattice sums of the following types:

S15(
i j

1

r i j
6 ; S25(

i j

1

r i j
9 ; S35(

i j

xi j
2

r i j
8 ;

S45(
i j

zi j
2

r i j
8 ; S55(

i j

xi j
2

r i j
11; S65(

i j

zi j
2

r i j
11;

S75(
i j

xi j
4

r i j
10; S85(

i j

zi j
4

r i j
10; S95(

i j

xi j
2 zi j

2

r i j
10 ;

S105(
i j

yi j
2 zi j

2

r i j
10 ; S115(

i j

xi j
4

r i j
13; S125(

i j

zi j
4

r i j
13;

S135(
i j

xi j
6

r i j
15; S145(

i j

zi j
6

r i j
15; S155(

i j

xi j
3 zi j

3

r i j
15 ;

S165(
i j

yi j
3 zi j

3

r i j
15 ; S175 (

i j , jk,ki

1

r i j
3 r jk

3 r ki
3 ;

S185 (
i j , jk,ki

xi j
2

r i j
5 r jk

3 r ki
3 ; S195 (

i j , jk,ki

zi j
2

r i j
5 r jk

3 r ki
3 ;
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20 (
i j , jk,ki r i j

3 r jk
5 r ki

3 21 (
i j , jk,ki r i j

3 r jk
5 r ki

3

S225 (
i j , jk,ki

xi j
2 xjk

2

r i j
5 r jk

5 r ki
3 ; S235 (

i j , jk,ki

zi j
2 zjk

2

r i j
5 r jk

5 r ki
3 ;

S245 (
i j , jk,ki

xi j
2 xki

2

r i j
5 r jk

3 r ki
5 ; S255 (

i j , jk,ki

zi j
2 zki

2

r i j
5 r jk

3 r ki
5 ;

S265 (
i j , jk,ki

xi j
2 xjk

2 xki
2

r i j
5 r jk

5 r ki
5 ; S275 (

i j , jk,ki

zi j
2 zjk

2 zki
2

r i j
5 r jk

5 r ki
5 ;

S285 (
i j , jk,ki

xi j xjkxkizi j zjkzki

r i j
5 r jk

5 r ki
5 ;

S295 (
i j , jk,ki

yi j y jkykizi j zjkzki

r i j
5 r jk

5 r ki
5 .

Numerical values ofSn were obtained through direc
summation with increasing number of coordination sphe
participating in the summation. The computer program t
minated the computational process when the difference
tween the results of preceding and succeeding summat
was less than 1% of the preceding value of the sum.

*E-mail: aanders@ilt.kharkov.ua
1!A preliminary analysis of the convergence of eigenvalues«k

a upon an
increase in the number of coordination spheres participating in the s
mation shows that even a doubling of the radius in this case change
value of«k

a by not more than 0.1% of its initial value. Hence this estima
is used for the error in the results of computation of«k

a .
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Effect of pressure on the phase diagrams and dynamic properties of easy-plane

antiferromagnets

Yu. N. Mitsay, Yu. A. Fridman, G. A. Bairamaliyeva, and C. N. Alexeev

Simferopol State University, 333036, Simferopol, Yaltinskaya st., 4
~Submitted March 19, 1997; revised May 22, 1997!
Fiz. Nizk. Temp.23, 1202–1210~November 1997!

Phase diagrams and dynamic properties of strongly anisotropic, easy-plane antiferromagnets in
the presence of external pressure are studied. It is demonstrated that the phase with
tensorial order parameter is possible in the system. Spectra of bound magnetoelastic waves are
studied in the vicinity of the phase transition points. ©1997 American Institute of
Physics.@S1063-777X~97!00811-6#
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Special attention has recently been focused on the s
of peculiarities of the behavior of easy-plane magnets w
one-ion anisotropy.1–3 Systems with the energy of uniaxia
anisotropy comparable or greater than the energy of the
change interaction have attracted considerable interest.
of all, it is connected with the fact that such magnets
low-temperature magnets. They are4,5 NiSiF6•6H2O,
NiZrF6•6H2O, FeSiF6•6H2O, CsFeCl3, and some others
The behavior of these magnets in a transverse magnetic
has been studied extensively1,3 and interesting peculiaritie
of their properties, such as the emergence of the quadr
phase~QU! and discontinuity of phase diagrams when t
value of the magnetic ion spin is greater than unity, ha
been revealed. The dynamical properties of such syst
have also been studied extensively in the vicinity of the o
entational phase transition~OPT!.

However, the behavior of such magnets in a longitu
nal field ~parallel to the basic plane! has been studied insuf-
ficiently since investigations of this case were limited
small anisotropy~b!J, whereb is the constant of one-ion
anisotropy, andJ is the exchange constant!.6 The influence
of mechanical boundary conditions on the properties
strongly anisotropic easy-plane magnets and spectra o
ementary excitations with allowance for magnetoelastic
teraction have virtually been ignored in those studies.

In this study we have focused our attention on the
factors.

PHASE DIAGRAM OF A STRONGLY ANISOTROPIC EASY-
PLANE ANTIFERROMAGNET

The system under study is a strongly anisotropicb
@J) antiferromagnet with the Dzyaloshinskii’s exchange.
The resulting magnetic momentum lies in the easy pl
(XY), as does the applied external magnetic field. Let
determine the influence of the external pressure on the s
and dynamic properties of the magnet. We assume tha
external pressure is applied parallel to the easy plane. As
shall see, this is the most interesting case.

The Hamiltonian of the system has the form
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ni (
n1 ,n2

1 2

3Sn1
Sn2

2D~n12n2!@Sn1
3Sn2

#z%

1n(
ni

Sni

j Sni

k ujk~ni !1E drH l1h

2
~uxx

2 1uyy
2 1uzz

2 !

1h~uxy
2 1uxz

2 1uyz
2 !1l~uxxuyy1uyyuzz

1uxxuzz!2PuxxJ , ~1!

whereSni

a is the spin operator at siten of the i th sublattice,

D(n12n2),0 the Dzyaloshinskii’s exchange,n is the con-
stant of magnetoelastic~ME! exchange,l andh are the elas-
ticity moduli, ujk(ni) is the deformation tensor,J(n12n2)
.0 is the exchange integral,P is the external pressure, an
H is the external magnetic field.

In ~1! the first three terms describe the magnetic s
system, the fifth term describes the elastic subsystem, and
fourth term describes the ME exchange. Further investi
tions are carried out in a low-temperature limit~T!TN , TN

is the Néel temperature! since in this case it is possible t
make all calculations analytically. Without lack of generali
we can assume the magnetic ion spin to beS51. The orien-
tation of the sublattice magnetic momenta for the syst
described by~1! can be represented as shown in Fig. 1.

Rotate the coordinate system around the axis~perpen-
dicular to the plane of Fig. 1! so that the new quantizatio
axis j i would be parallel to the vector of magnetization
the i th sublattice. In this local coordinate system define
new spin operatorsSni

j , Sni

h ; andSni

z as follows:

Sni

x 5Sni

j cosu i1~21! i 11Sni

h sin u i ,

Sni

y 5~21! i 11Sni

j sin u i1Sni

h cosu i , ~2!

Sni

z 5Sni

z , c5
u11u2

2
, w5

u12u2

2
.

We carry out further calculations with use of the Hu
bard’s operators,3,6 which make it possible to exactly tak
into account the one-ion and ME exchange. These opera
are built on eigenfunctions of the one-site Hamiltoni

900110900-07$10.00 © 1997 American Institute of Physics
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H0~ni !cni
~M !5EM

i cni
~M !,

by
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ich
H0(ni). After separation of the mean field in the exchan
part of ~1! and transition to local operators~2! the one-site
Hamiltonian assumes the form

H052(
ni

HiSni

j 1(
ni

~21! i 11H̄ i~Sni

11Sni

2!

2
b

8 (
ni

$~Sni

1!21~Sni

2!22Sni

1Sni

22Sni

2Sni

1%

1
n

2 (
ni

H ~uxx
i 1uyy

i 2uzz
i 2Ai1Bi !~Sni

1!212Ai~Sni

j !2

1
1

2
~uxx

i 1uyy
i 1uzz

i 2Ai !~Sni

1Sni

21Sni

2Sni

1!

1~C1
i 1C2

i !~Sni

1Sni

j 1Sni

j Sni

1!1e.g.J . ~3!

Here we denote

Sni

65Sni

h 6 iSni

j , ^Sni

z &5^Sn2

z &5^Sz&,

Hi5H cosu i2^Sz&@J0 cos 2c1D0 sin 2c#,

H̄ i5
1

2
$H sin u i2^Sz&@J0 sin 2c2D0 cos 2c#%,

Ai5uxx
i cos2 u i1uyy

i sin2 u i1~21! i 11uxy
i sin 2u i ,

Bi522i $uyz
i cosu i1~21! i 11uxz

i sin u i%,

C1
i 5~21! i~uxx

i 2uyy
i !sin 2u i12uxy

i cos 2u i ,

C2
i 522i $uxz

i cosu i1~21! i 11uyz sin u i%, ~3a!

where J0 is the zero Fourier component of the exchan
integral, and D0 is the zero Fourier component of th
Dzyaloshinskii exchange. Here

J05(
n

J~n!.

Solving the one-ion problem with the Hamiltonian~3!

FIG. 1. Orientation of the sublattice magnetic momenta.
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we determine the eigenvalues and eigenfunctions ofH0 ~M
is the magnetic quantum number. ForS51 M521, 0, 1!:

E1,21
i 5

b

4
1

n/2

Hi
214H̄ i

2 $~uxx
i 1uyy

i !~Hi
218H̄ i

2!1uzz
i

3~Hi
214H̄ i

2!1Ai~Hi
224H̄ i

2!1~21! i 112C1
i HiH̄ i%

7H b2

16
1H214H̄ i

22
nb/4

Hi
214H̄ i

2 ~uxx
i 1uyy

i !Hi
22uzz

i

3~Hi
214H̄ i

2!2Ai~Hi
224H̄ i

2!1~21! i 112C1
i HiH̄ i

1S n/2

Hi
214H̄ i

2D 2

@~uxx
i 1uyy

i !Hi
22uzz

i ~Hi
214H̄ i

2!

2Ai~Hi
224H̄ i

2!1~21! i 112C1
i HiH̄ i #

2J 1/2

, ~4!

E0
i 5

b

2
1

n

Hi
214H̄ i

2 $~uxx
i 1uyy

i !Hi
21uzz

i ~Hi
214H̄ i

2!

2Ai~Hi
224H̄ i

2!1~21! i 112C1
i HiH̄ i%.

The Hubbard’s operators are built on eigenfunctions

standard rules9 Yni

M8M5ucni
(M 8)&u^cni

(M )u and describe the

transition of a magnetic ion stateM to stateM 8. These op-
erators are related to spin operators through fami
relations.9

From the condition of free energy density minimum

F 5F 02T ln Z, ~5!

whereF 0 is the free energy of an elastics subsystem wh
is determined by the last term in~1!

Z5(
M

exp~2EM /T!

andZ is the partition sum. Determine the equilibrium~spon-
taneous! deformationsujk

(0)(ni). They appear to be

uxx
~0!i5

b1
i ~h12l!2l~b2

i 1b3
i !

h~h13l!
,

uyy
~0!i5

b2
i ~h12l!2l~b1

i 1b3
i !

h~h13l!
,

uzz
~0!i5

b3
i ~h12l!2l~b1

i 1b2
i !

h~h13l!
,

uxz
~0!i5uyz

~0!i50,
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where
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~0! H F12

~Hi cos~c1~21! i 11w!12H̄ i sin~c1~21! i 11w!!2
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As is evident from~4! and ~6!, the energy level corre-
cosc5

H1^Sj&uD0u
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sponding to the ground state isE, whose analytical expres
sion in our approximation is

E1
i 52

Hi
214H̄ i

2

b
2

nP

h
1

2nP

h

HiH̄i

Hi
214H̄ i

2

3sin 2~c1~21! i 11w!. ~8!

In ~8! the terms proportional ton2/h are rather cumbersom
and we will omit them here. Near the phase-transition lin
these expressions are important and we take them expli
into account.

In this case the free energy density can be represente
the form

F i5F 0
i 1E1

i ,

F 0
i 5

l1h

2
~Hi

21uyy
2 1uzz

2 !1h~uxy
2 1uxz

2 1uyz
2 !

1l~uxxuyy1uxxuzz1uyyuzz!1Puxx . ~9!

Using ~9!, we determine the phases in which the syst
under study may exist. Suppose that the system has
values of fieldH and pressureP that the mean magnetizatio
at the sites is oriented as shown in Fig. 1. With an increas
the field to a certain valueHc2 ~at constant pressure!, the
vector of mean magnetization is oriented along the direc
of the magnetic fieldH. In this case the anglew50 andc is
determined from the condition of free energy density mi
mum ~9!. This condition leads to that in a phase withc
50, H̄ i50 from which it is easy to obtain
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One can demonstrate that in theHc2 vicinity the mean
sublattice magnetization approximately equals unity,^Sj&
51. The phase which is realized atH>Hc2 is called the
FM1 phase. We determine the value ofHc2 from the ME
wave spectra.

A further increase of the field leads to the fact that t
vector M5M11M2 orients along the direction of the fiel
~i.e., w5c50! as well as vectors of sublattice magnetiz
tion. Such configuration occurs atH>Hc3 , where Hc3

52J02uD0u.
The phase realized atH>Hc3 is called the FM2 phase

Of most interest is the case of small fields in which t
so-called quadruple~QU! phase is realized. In this phase th
magnetic vector order parameter equals zero.7

For our system it means that the mean sublattice mag
tization and the mean magnetization at the site equal zer
is well known7 that for easy-plane ferromagnets in a tran
verse magnetic field the realization of a QU phase is acc
panied by the inversion of energy levels; i.e., theE0 level
becomes the lowest level. In the system under investiga
there is no such inversion and the QU phase is realized
to certain purely quantum effects.

Let us discuss this question in detail. Let us assume
in a certain field the system undergoes a transition to the
phase. The magnetic phase realized in fieldsHc2<H<Hc1 is
called the QFM phase~quadruple ferromagnet!. In our ge-
ometry the pressure plays the role of an effective anisotr
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with the easy magnetization axis~EMA! parallel to the OY
axis.6 At fields close to the field of the QFM-QU phase tra
sition, as follows from the analysis of the free ener
density9 its minimum corresponds to values of the angles a
is close to the following:w5p/2, c50; i.e., the vector of
mean magnetization at the site the vectors of the subla
mean magnetization tend to ‘‘turn’’ along the ‘‘effective
EMA. For mean magnetization of sublattices we obtain

^Sni

j &54
H

b
cos~c1~21!2~ i 11!w!. ~10!

At P50 andH50 the system is in the QU phase sin
this result may be interpreted in the following way: there
no distinct axis in the system and all the directions in
basic plane~XY ! are equal. Therefore, magnetizations at d
ferent sites may be directed arbitrarily and their avera
equals zero. This situation is similar to the one in which
QU phase is realized in strongly anisotropic easy-pla
ferromagnets.7

As is evident, the ground state of an AFM atP50 and
H50 corresponds to the eigenvectoru1& of the Sj operator:

cni
~1!5u1&.

With increasing pressure the mean magnetization sho
be turned along the axis of the ‘‘effective’’ anisotropy~OY!.
The ground state of an AFM is a superposition of the eig
vectors u1& and u21& of the Sz operator:cni

(1)5cosdiu1&
1sindiu21&. Such superposition of the vectorsu1& and u21&
leads to the quantum redaction of the spin. This effec
characteristic of easy-axis magnets in a magnetic field
pendicular to an easy axis. In our case this effect is cause
the presence of an external pressure, which plays the ro
uniaxial anisotropy.

In the AFM under study the two described quantum
fects account for the existence of the QU phase. It turns
that the QU phase exists up to pressures determined by
formula

nPc

h
5

b

2
2J022a0 , ~11!

where

a05n2/2h.

This expression can be obtained by investigating the
istence domain of a phase with nonzero mean magnetiza

FIG. 2. Phase diagram of an easy-plane AFM in the plane (P,b).
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In Fig. 2 we show the phase diagram atH50 in the plane
(P,b). The field of QFM-QU phase transition (Hc1) can be
determined from the ME wave spectra. The behavior
angles and sublattice magnetization as a function of exte
magnetic field is shown in Figs. 3 and 4, where we deno

c05
D0

4J0
1S D0

2

16J0
2 1

d0

2J0
D 1/2

, d05Pn/h.

SPECTRA OF BOUND ME WAVES

The dynamic properties of magnets have several spe
features in the vicinity of orientational phase transitions. It
well known that allowance for the ME interactions leads
hybridization of elementary excitation.3,6 Although the ME
exchange is weak in the vicinity of OPT, precisely this p

FIG. 3. Dependence of the sublattice magnetization on the external m
netic field.

FIG. 4. Dependence of the angles of sublattice orientation on the exte
magnetic field.
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T10~q,t !5T01~q,t !5~21! j 11
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system. To investigate this question we represent the
formation tensor as a sum of two terms: spontaneous de
mationsujk

(0)(ni), which are determined by~6!, and the dy-
namic term ujk

(1)(ni), which corresponds to the lattic
oscillations. The latter may be written in terms of phon
operators as follows18:

ujk
~1!i5

i

2 (
q,l

exp~ iqni !

~2mNvl~q!!1/2 ~bq,l1b2q,l
1 !~el

j ~q!qk

1el
k~q!qj !,

whereel(q) is the unit vector of a phonon polarization,l
5 l , t, t ; m is the mass of a magnetic ion,N is the number
of sites in a lattice,vl(q)5clq is the dispersion of a free
phonon, andcl is the velocity of polarized sound.

After separation in the one-site Hamiltonian~3! of a part
proportional toujk

(1)(ni) and its quantization in accordanc
with the given formula it is possible to write the Hamiltonia
describing the processes of magnon-phonon transformat

H tr5(
ni

H(
M

P MJni

M1(
a

P a
i Yni

a J ,

where

P m~a!
i 5

1

AN
(
q,l

~bq,l1bq,l
1 !Tni

M ~a!~q,l!,

a are the root vectors6,9, andTni

M (a)(q,l) are the amplitudes

of transformations.
Further, we consider the simplest and the most inter

ing case in which the wave vector is parallel to an exter
field H. In such geometry the only nonzero components
the unit vector of phonon polarization areel

x(q), et
y(q), and

et
z(q) and the corresponding amplitudes of transformat

have the form

Tni

121~q,l !5Tnj

211~q,l !5
in

2
Tnj

0 ~q,l !qel
xS H j

k j
0 cos 2d i

2
b

4k i
0 sin 2d i D sin2 c,

Tnj

10~q,l !5Tnj

01~q,l !5~21! j 11
in

4
Tnj

0 ~q,l !qel
x~g'

j ~a1!

2g'
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Tnj

210~q,l !5Tnj

021~q,l !

5~21! j 11
in

4
Tnj

0 ~q,l !qel
x~g'

j ~a5!

2g'
j ~a6!!sin 2c,

Tnj

121~q,t !5Tnj

211~q,t !52
in

4
Tnj

0 ~q,t !qet
yS Hi

k j
0 cos 2d j

2
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4k j
0 sin 2d j D sin 2c, ~12!
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2g'
j ~a2!!cos 2c,

Tnj

210~q,t !5Tnj

021~q,t !

5~21! j 11
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Tnj

0 ~q,t !qet
y~g'

j ~a5!

2g'
j ~a6!!cos 2c,

Tnj
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j ~a5!
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Tnj

0 ~q,l!5exp~ iqnj !/A2mvl~q!.

The functionsg'
j (a) in ~12! are determined from the

relation between the spin operators and the Hubb
operators6 and in the given geometryg'

j (a) g i
j (a)50 for all

a, n is the number of the site, andj is the number of the
sublattice.

The spectra of ME waves are determined by the pole
a full Green’s function

Gaa8~n,t;n8,t8!52^T̂Ỹn
a~t!Ỹn8

2a
~t8!&,

where T̂ is the time-ordering operator, andYn
a(t) are the

Hubbard operators in the Heisenberg representation.
The Fourier transform of the Green’s function to b

found is related to the irreducible transform by the Lark

part S j j
aa8(k,vn) and the amplitudes of transformatio

Tj
a(k,l) are related by the Larkin-type equation

Gj j 8
aa8~k,vn!5S j j 8

aa8~k,vn!1~S j
a~k,vn!v~k!Pj 8

a
~k,vn!

1S j j 1

aa1~k,vn!Tj 1

a1~k,l!Dl~k,vn!Tj 2

a2

3~2k,l!G
j 2 j 8

a2a8
~k,vn!. ~13!

In ~13! Dl(k,vn)52vl(k)/(vn
22vl

2(k)) is the Green’s
function of al-polarized free phonon, andS j

a(k,vn) is the
six-dimensional vector, which in the block notation has t
form

S j
a~k,vn!5~S j 1

a ~k,vn!,S2 j
a ~k,vn!!,

where the three-dimensional vectorsS j j 8
a (k,vn) have the

form

S j j 8
a

~k,vn!5Sa t
cj 8~2a1!S

j j 8

aa1~k,vn!,
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The six-dimensional matrix isV̂(k)5s1
^ V, ands1 is

the Pauli matrix

V5S Vzj 2V1j 2V1j

V1j V11 V12

V1j V12 V11
D

Vzj~n2n8!5J~n2ṅ8!cos 2c1D~n2n8!sin 2c,

V11~n2n8!5
1

4
$Vjj~n2n8!2J~n2n8!%,

V12~n2n8!5
1

4
$Vjj~n2n8!1J~n2n8!%,

V1j~n2n8!5
1

2
$J~n2n8!sin 2c2D~n2n8!cos 2c%.

The six-dimensional vectorsPj 8
a (k,vn) can also be repre

sented in a block notation

Pj 8
ȧ

~k,vn!5~Pj 1
a ~k,vn!, P2 j

a ~k,vn!!,

while the three-dimensional vectorsPj j 8
a (k,vn) are deter-

mined by the relation

Pj j 8
a

~k,vn!5(
a1

cj~a1!G
j j 8

aa1~k,vn!.

Equation~13! can be solved due to the ‘‘split’’ depen
dence on indexa. Finally, the dispersion relation in th
mean-field approximation for the ME waves has the form

$12~y22y3!2%$12~y21y3!2%50, ~14!

where

y2~k,vn!52V11~k!H b~a!G0
a~vn!ug'~a!u2

1
Dl~k,vn!

12Qll8Dl~k,vn!
b~a!b~b!G0

a~vn!

3g'~a!g'
* ~b!Ta~k,l!Tb~2k,l8!J ,

~15!

y3~k,vn!52V12~k!H b~a!G0
a~vn!g'~a!g'~2a!

1
Dl~k,vn!

12Qll8Dl~k,vn!
b~a!b~b!G0

a~vn!

3G0
b~vn!g'~a!g'~2b!T2a~k,l!T2b

3~2k,l8!J ,

Qll85Tj
a~2k,l8!S j j 8

aa8~k,vn!Tj 8
2a8~k,l!.

Here we sum overa, b, l, andl8.
As is evident from the analysis of~14! in the QFM

phase, the transverse polarized ME waves~t andt! ‘‘become
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ized wave splits out~1! and its spectra has the form

v1
2~k!5v l

2~k!~12a0 /J0!.

However, in the vicinity of the OPT QFM-FM phase an
QFM-QU phase it is possible to uncouple Eq.~14! with re-
spect to polarizations. Let us consider the dynamics o
system in the vicinity of the QFM-FM1 phase transition.
this case~see above! w50, cos 2c'21, and cosc'0,
while the mean sublattice magnetization is^Si

j&'1. It fol-
lows from ~12! that the only nonzero amplitudes of transfo
mations areT10(k,t) and T01(k,t) and only t-polarized
phonons interact with the magnetic subsystem. The equa
12(y21y3)250 decomposes in the vicinity of the QFM
FMI transition into three equations, each describing qua
phonon oscillations of certain polarization. The solutions
these equations are

v I
2~k!5v l

2~k!~12a0 /J0!,

v II
2~k!5vt

2~k!~12a0/4J0!,

v III
2 ~k!5v t

2~k!
ak21@~H21HuD0u!/2J0#2d0

ak21a01@~H21HuD0u!/2J0#2d0
.

~16!

From the condition@(H21HuD0u)/2J0#2d050 we deter-
mine the field of a QFM-FM1 phase transition

Hc252
uD0u

2
1S D0

2

4
22d0J0D 1/2

. ~17!

It follows from ~16! that at the point of OPT in a long
wave limit (ak2!a0) the spectrum oft-polarized quasi-
phonons softens:

v I~k!'v l~k!,

v II~k!'vt~k!, ~18!

v III
2 ~k!5v t

2~k!
ak2

a0
,

while the spectrum of quasimagnons is determined by
expression

E2~k!52J0~ak21a0!. ~19!

Thus t-polarized phonons strongly interact with magnons
the vicinity of the OPT~QFM-FM1!. Their spectrum softens
while in quasimagnon spectrum the ME gap appears.

The value of the gap, as follows from~19!, is

vme5A2J0a0. ~20!

The results~18!–~20! obtained by us precisely coincid
with the results for slightly anisotropic AFM.6

Of special interest is the dynamics of a system in
vicinity of the OPT QFM-QU phase since this case has
been investigated previously.

As we have noticed above, near the point under stu
w5p/2 andc50, while the mean sublattice magnetizatio
equals zero:̂Sz&'0. HenceV1150 and thereforey2 equals
zero ~15!. The dispersion relation~14! has a more simple
form:
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It should be noted that in this situationT10(k,t) and
T01(k,t) amplitudes of transformation differ from zer
T10(k,t)'T01(k)'0 by virtue of infinitesimally smallH/b
ratio. Equation~21! accordingly splits into equations, each
which describes quasiphonon oscillations of certain polar
tion. These equations have the solutions

v I
2~k!5v l

2~k!,

v II
2~k!5vt

2~k!
ak21Hc1

2 2H2

ak21Hc1
2 2H212a0

,

v III
2 ~k!'v t

2~k!, ~22!

where

Hc15Ab/2~b/22d022a02J0!.

HereHc1 is the field of a OPT QFM-QU. At the point of a
transition in a long-wave limit (ak2!a0) the spectrum of
t-polarized quasiphonons softens:

v II
2~k!5vt

2~k!ak2/2a0 , ~23!

while in the spectrum of quasimagnons

E2~k!5~ak212a0!~2J012a0!, ~24!

the ME gap appears

vme52AJ0a0. ~25!

As is evident from the relations~18! and ~23!, in the
vicinity of the point of OPT QFM-QU phase the soft mode
a t-polarized quasiphonon mode, while at the point of O
QFM-QU phase at-polarized quasiphonon mode is a so
mode. Therefore, in the QFM phase~at Hc2,H,Hc1! two
transversely polarized modes interact with the magn
branch.

Note that the value of ME gap in the spectrum of qua
magnons in the QU-phase is& times larger than the gap i
the vicinity of a transition to the FM1 phase. Besides,
906 Low Temp. Phys. 23 (11), November 1997
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exchange amplification characteristic of antiferromagnets
From the conditionHc1,Hc2 we obtain the value of a

one-ion anisotropy constant at which the above-described
fects are realized

b.J01d012a01$~J01d012a0!21D0
214d0

24uD0uAD0
2/41J0d0%

1/2.

CONCLUSIONS

As we have noted recently, anisotropic magnets h
attracted considerable attention. Peculiarities of their beh
ior were studied in many papers.1–3 However, the influence
of mechanical boundary conditions on the properties of s
systems was virtually neglected. In the present paper i
demonstrated that the presence of mechanical boundary
ditions ~external pressureP! leads to a series of specific fea
tures in the behavior of easy-plane AFM.

In particular, these peculiarities exhibit themselves in
QU phase. We show that this phase is formed due to
presence of two quantum effects, one of which is charac
istic only of the easy-plane magnets and the other is cha
teristic of the easy-axis magnets.

Quite interesting is the effect involving the change
polarization of the soft mode, which softens in the transiti
from Hc1 to Hc2 .
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS
Faraday rotation in conductors with magnetoimpurity electron states
A. M. Ermolaev and G. I. Rashba

Kharkov State University, 310077 Kharkov, Ukraine
~Submitted April 22, 1997; revised June 2, 1997!
Fiz. Nizk. Temp.23, 1211–1214~November 1997!

The high-frequency Hall conductivity for metals and degenerate semiconductors with
magnetoimpurity electron states is calculated. The effect of these states both on Faraday rotation
angle and on magnetic circular dichroism is considered. Additional maxima and minima on
the frequency dependence of Faraday angle, which are associated with the magnetoimpurity
electron states, are observed. ©1997 American Institute of Physics.@S1063-777X~97!00911-0#

Crystals in a magnetic field have a circular anisotropyFermi boundary.~Al-Cr, Al-Fe, Al-Cu!, as well as above it
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caused by nonequivalence of rotational directions in a pl
perpendicular to the magnetic field. This anisotropy caus
difference in the velocities of electromagnetic waves hav
opposite circular polarizations and propagating in the m
netic field direction, as well as a difference in the coefficie
of absorption of these waves. As a result, the polariza
plane of a linearly polarized radiation passing through a cr
tal turns through a certain~Faraday! angle, while the linearly
polarized radiation becomes elliptically polarized.1

The practical significance of the Faraday effect is as
ciated with the possibility of using it as a method for stud
ing the structure of solids. For example, the Faraday ef
can be used to determine reliably an important band par
eter in semiconductors, viz., the effective mass of conduc
electrons, and to draw conclusions about the propertie
energy bands and electron impurity states.2 Faraday rotation
at optical transitions from bound states of donor impurities
semiconductors was considered in Refs. 3 and 4, whe
was shown that bound electrons make a strong contribu
to the Faraday rotation in weak as well as strong magn
fields. If the electron and impurity concentrations are co
mensurate, the contribution of rotation at donor electro
may be comparable with the Faraday rotation at free carri

Impurities are manifested in two ways in low
temperature magneto-optical effects. On one hand, they
fine the mean free path of conduction electrons and hin
the formation of closed stable electron orbits as well as re
nance absorption. This effect is usually taken into consid
ation by introducing a constantn, i.e., the electron collision
frequency. This is true for the case when electrons unde
only potential scattering at the impurity atoms. At the sa
time, electron-impurity scattering may contain resonan
corresponding to local and quasilocal states,5 which are ac-
companied by a sharp increase in the electron density
states at local and quasilocal levels. This leads to the for
tion of new optical absorption resonances associated
electron transitions between impurity and band states.
tual bound states of electrons6 are a special case of impurit
states. These correspond tod-resonances in the scattering
electrons by transition metal impurities in a nonmagne
matrix. The corresponding resonant levels may lie below
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~Al-V !. New optical absorption bands associated with th
states have been observed experimentally.7,8

The magnetoimpurity states9,10 formed as a result of the
combined action of the attractive potential of impurity atom
and a magnetic field on electrons are a specific case of
purity states of electrons. The impurity perturbation partia
removes the degeneracy in the position of the Larmor ‘‘
bit’’ center and splits one or several sublevels from ea
Landau level. This results in the emergence of a large nu
ber of optical absorption resonances associated with elec
transitions between Landau levels and magnetoimpu
levels.10,11 Magnetoimpurity states of electrons have be
observed experimentally and are responsible for the crea
of beats in the de Haas-van Alphen effect in bismuth with
and Se impurities.9,12 They also cause new optical absorptio
resonances in semiconductors Si and Ge with neutral im
rity atoms.11

In this work, we shall consider the effect of magnetoim
purity states of electrons in metals, semimetals, and deg
erate semiconductors on the Faraday effect and circular m
netic dichroism. We use the model of a conductor descri
in Refs. 9, 10, 13. Among other things, it is assumed that
mean separation between point impurity atoms is larger t
the radius of the bound state of an electron, while the e
tromagnetic field frequencyv is much higher than the elec
tron collision frequency.

It is well known2,3 that the angle of rotation of the ligh
polarization plane parallel to thez-axis and to the wave vec
tor is determined by the difference in the refractive indic
n2 and n1 for circularly right-and left-polarized waves. In
the case of weak absorption, this difference is proportiona
the real component of the Hall conductivitysxy :

u5
v~n22n1!

2c
5

2p Re sxy

nc
, ~1!

where n5(n11n2)(1/2) andc is the velocity of light in
vacuum. The magnetic circular dichroism is determined
the quantityD proportional to the difference in the absor
tion coefficientsk6 of circularly polarized waves or to the
imaginary component of the Hall conductivity2:

907110907-03$10.00 © 1997 American Institute of Physics
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In the approximation linear in the concentration of im
purity atoms, the high-frequency conductivity tensor can
written in the form s5s01ds, where s0 is determined
only by potential scattering of conduction electrons by i
purity atoms, andds is the contribution from magnetoimpu
rity states.10 This givesu5u01du, whereu0 is the known
contribution due to rotation at free carriers taking into a
count potential electron-impurity scattering, whiledu takes
into account magnetoimpurity states.

The method of calculation of high-frequency Hall co
ductivity of metals with magnetoimpurity electron states w
described in Refs. 10 and 13. Near the frequencies of r
nant transitions of electrons between Landau levels and m
netoimpurity levels, it contains the contribution

dsxy
~s!5 i

e2ne

mvs
2 as

2S vs
2

vs
22v2 iG D 1/2

, ~3!

where

as
252

ni

ne

V

vs
2 S v0

vs
2D 3/2

3(
k

@ f ~«k
r 2vs

2!2 f ~«k
r !#

3F k2s

~11V/vs
2!22

k2s11

~12V/vs
2!2G ~4!

is the oscillator force of a resonant transition. Herem ande
are the effective mass and charge of the electron,ne andni

the number densities of electrons and impurity atoms,vs
2

5sV2v0 are the resonance frequencies~V is the cyclotron
frequency andv0 the separation between the Landau le
and the magnetoimpurity level split from it,s51,2,...!, f is
the Fermi function, and«k

r andG are the position and width
of thekth magnetoimpurity level. Summation in formula~4!
is carried out over the magnetoimpurity levels participat
in transitions at frequencyvs

2 . The difference in the Ferm
functions is associated with the Pauli exclusion princip
Here and below, the quantum constant is assumed to
equal to unity.

Taking ~3! and ~4! into account, we obtain from~1! the
contribution of magnetoimpurity states to the Faraday an

dus
25

2pe2ne

mcnvs
2 as

2 ReS vs
2

v2vs
21 iG D 1/2

. ~5!

This formula shows that the Faraday angle as a function ov
has asymmetric peaks at resonance frequenciesvs

2 , which
are shifted towards high frequencies. In the case of elec
transitions from magnetoimpurity levels to above-lying La
dau levels, we can write this correction in the vicinity
resonance frequenciesvs

15sV1v0 (s50,1,...) in the form

dus
152

2pe2ne

mcnvs
1 as

1 ReS vs
1

vs
12v2 iG D 1/2

, ~6!

where the oscillator force now has the form10,13
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Expression~6! leads to the emergence of asymmet
peaks on the frequency dependence of the Faraday a
The minima lie at frequenciesvs

1 and are shifted towards
low frequencies.

Figure 1 shows the results of calculation of the quan

w65udu6u
mcnv6

2pe2nea6
~7!

as a function ofx5v/v621 in the vicinity of resonance
frequenciesv65V6v0 . We have used the value of th
parameterg65G/v650.02 typical of semimetals and de
generate semiconductors with donor impurities in a magn
field of inductionB550 T. If we substitute into~7! the InSb
parametersm53.2310232 kg, ne51021 m23, n53, 4, and
alsoni /ne50.002,v0 /V50.04, the maximum value of the
correction to the Faraday angle due to magnetoimpurity l
els is udu6

maxu50.2. The ratio of this value to the maximum
Faraday angle in the absence of magnetoimpurity state
25%.

The corrections toD due to magnetoimpurity states o
electrons is found to be negative. It leads to asymme
minima on the frequency dependence ofD. The minimum at
vs

2 is displaced towards low frequencies and that atvs
1

towards high frequencies. For the above values of par
eters, this correction is equal to 0.2.

FIG. 1. Frequency dependence~7! of the Faraday anglew6 as a function of
x5v/v621 near the resonance frequenciesv6 .
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LOW-DIMENSIONAL AND DISORDERED SYSTEMS

led
Vibrational modes of a terminated atomic chain
E. Ya. Glushko and V. A. Khrisanov

State Pedagogical Institute, 324086 Krivoi Rog, Ukraine*

~Submitted April 21, 1997; revised June 28, 1997!
Fiz. Nizk. Temp.23, 1215–1222~November 1997!

A complex terminated molecular chain adsorbed at the surface is analyzed without taking into
account periodic boundary conditions and translational invariance approximation. The
solution of the motion equation is a standing wave. The dispersion equation for band modes is
obtained and conditions for the existence of localized states are investigated. The
constructed parametric diagrams make it possible to evaluate vibrational bands and local modes
~if they exist! for (SN)x and C-C samples. It is proposed that excitations of local and
band modes of adsorbed molecules can be used for low temperature laser cleaning of the surface
and for molecular engineering purposes. ©1997 American Institute of Physics.
@S1063-777X~97!01011-6#
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The problem of small vibrations of a linear atomic cha
is traditionally affiliated to exactly solvable problems form
ing the basis of the dynamic theory of crystal lattices.1–3

Periodic boundary conditions~PBC! used in this approxima
tion as well as the assumption concerning the independe
of the vibrational phase of the unit cell number4,5 make it
possible to obtain an analytic solution for dispersion of ba
mode frequencies for simple chains. A transition to the
scription of real~including terminated! systems is made by
taking into account more accurately the interaction betw
atoms, its quantum-mechanical nature in the PBC appr
mation, and the condition of translational invariance~TI! of
the solution.6 The arguments in favor of the PBC approxim
tion put forth starting from Born andKarman are based on
the independence of bulk properties~electron and phonon
spectra! of the state of the boundary for one- or thre
dimensional crystals of large size, which is well known fro
experiments~see, for example, Ref. 5!. A theoretical proof of
the smallness of the density perturbation for normal vib
tions, which is introduced by cyclic boundary conditions
the case of bulk crystals was obtained by Ledermann.7 Lif-
shits and Rozentsveig8 carried out a more complete analys
of the effect of free surface on the vibrational states o
semi-infinite crystal by using the method of regular pert
bations. More general relations were obtained for local sta
split from continuous bands. However, PBC become inap
cable ~even for band states! in the case of small or mesos
copic crystals in view of the fact that the effect of boundar
on the bulk states cannot be eliminated in principle in su
systems. The grounds for application of the PBC method
an analysis of local states~their frequencies, conditions o
splitting from bands, and amplitude distribution! are still less
solid. Local states can be obtained approximately for a se
terminated chain by introducing a complex wave num
whose imaginary component is responsible a decrease in
amplitude of a local vibrational mode with increasing d
tance from the boundary.4,9 On the other hand, an accura
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dynamic equations, in which the equations of motion
boundary atoms differ from those for other atoms in view
a special position of these atoms. In such an approach,
phases of atomic displacements are determined by matc
conditions and ‘‘perceive’’ the remoteness of their ‘‘hos
from the lattice boundary.

The mechanism of the influence of boundaries on
electron spectrum of a periodic system was clarified in R
10: the eigenstates in an infinitely large system have the f
of standing waves due to the inevitable presence of the
flected wave~see also Ref. 11! and do not possess transl
tional invariance. The same effect can be expected for
problem on vibrational modes in a terminated chain, wh
can be essentially treated as a single large molecule.
distribution of mode amplitudes in such a system is essen
for understanding of thermodynamic and optical properti
as well as adsorption and desorption conditions. Fin
atomic and molecular chains play an important role in mo
ern microelectronics as an element of ultrasmall semic
ducting devices12: bridges, switches, elements of optic
memory, etc. Electronic, phonon, and optical properties
linear chains and superstructures are being intensely stu
both experimentally13 and theoretically.14,15 Among scarce
publications which are not confined to the PBC and TI a
proximations, we can mention the paper by Syrkin a
Feodos’ev,16 in which exact analytic expressions for integr
characteristics~heat capacity, spectral shift function, an
spectral density! of a monatomic linear chain are consider
by using the Peresada method of Jacobi matrices.

In the present paper, the exact solution of the class
problem on vibrational modes in a complex harmonic ch
containing an arbitrary numberN of unit cells is obtained
without using the TI and PBC approximations. It is show
that for N@1, the positions of the edges of the acoustic a
optical bands of states virtually coincide with the results o
tained in the TI and PBC approximations, but local vibr
tional states and mode amplitude distribution in the ch

910110910-07$10.00 © 1997 American Institute of Physics
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where x0a is the amplitude of vibrations of theath atom.
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differ radically. The mode amplitude distribution in ban
states resembles the pattern of standing waves in a ca
with absorbing walls. In the case of a diatomic chain,
dispersion equations are obtained for band and local sta
and the phase diagrams as well as conditions of local m
splitting are analyzed for various ratios of elastic consta
and atomic masses. The parameters of the (SN)x and C-C
chains are evaluated. The possibility of selective effect
individual regions of linear molecules in the low-temperatu
experiments are considered.

DESCRIPTION OF THE MODEL

Let us consider a linear diatomic chain containingN
identical cells. The atomic masses in each cell will be
noted bym1 and m2 . The longitudinal interaction betwee
the atoms of a cell is described by a force constantk1 , while
the interaction between cells is described by the force c
stantk2 . We assume that there is a surface with which
first atom of the chain is linked, while the last atom rema
free ~Fig. 1!. The coupling of the chain with the surfac
changes the force constants near the first atom. Assum
that interaction takes place only between nearest neighb
we can consider that only the constant of coupling of
chain with the surface~denoted byk0! will be modified. The
transverse degrees of freedom of the linear chain are
scribed by other sets of force constants (k08 ,k18 ,k28) and
(k09 ,k19 ,k29). In the case of small vibrations, the problem
solved independently for each vibrational branch in view
separatibility of the interaction potential. The resultant sp
trum is obtained as a result of combination of three soluti
obtained in a similar way.

EXACT SOLUTION OF THE PROBLEM OF SMALL
VIBRATIONS OF A TERMINATED LINEAR CHAIN

Let us consider longitudinal vibrations of the adsorb
model chain shown in Fig. 1. We write the system of clas
cal equations of motion in the harmonic approximation:

maẍa5kaxa212~ka1ka11!xa1ka11xa11 ,

a51,...,2N, ~1!

wherexa is the displacement of theath atom from its equi-
librium position under the following conditions:

x050 k2N1150, ~2!

which indicate that the surface is stationary and the last a
is free. We shall seek the solution of system~1! in the form

xa5x0aeivt, ~3!

FIG. 1. Schematic diagram of a model chain.

911 Low Temp. Phys. 23 (11), November 1997
ity
e
es,
de
ts

n

-

n-
e
s

ng
rs,
e

e-

f
-
s

i-

m

Note that xa does not possess translational invariance
view of the finite size of the linear crystal.

The condition for the existence of a nonzero solution
system~1! is the equality of its determinant to zero. Takin
into account~3!, we obtain

U b2* b3 0 0 •••

a1 a2 a3 0 •••

0 b1 b2 b3 •••

••• ••• ••• ••• ••• ••• ••• ••• •••

••• a1 a2 a3 0

••• 0 b1 b2 b3

••• 0 0 a1 a2*

U50.

~4!

The order of determinant~4! is 2N. The left-hand side of
~4! can be represented as the product of matrices

~D,2D8!L̂nS A1

B1
D50, n5N22 ~5!

with the matrix elements

D5Ub2* b3

a1 a2
U, D85Ub2* 0

a1 a3
U,

A15Ub2 b3

a1 a2*
U, B15Ub1 b3

0 a2*
U,

C5Ub2 b3

a1 a2
U, C85Ub2 0

a1 a3
U,

Q5Ub1 b3

0 a2
U, R5Ub1 0

0 a3
U,

L̂5S C 2C8

Q 2R D , ~6!

and

a2* 5v12
2 2v2; b2* 5v0

21v11
2 2v2;

a152v12
2 ; a25v12

2 1v22
2 2v2; a352v22

2 ;

b152v21
2 ; b25v11

2 1v21
2 2v2; b352v11

2 ,

wherev i j
2 5ki /mj , i , j 51,2; v0

25k0 /m1 .
Equation~5! has an exact solution if we represent t

matrix L̂ in the form of the sum of two matricesX̂1 and X̂2

which possess the properties of orthogonality

X̂1•X̂250̂ ~7!

and reproducibility

X̂i
25a i X̂i , i 51,2. ~8!

It can easily be verified that the matrices

X̂15S 1 x

y xyD , X̂25S 1 z

21/x 2z/xD ~9!

911E. Ya. Glushko and V. A. Khrisanov



satisfy conditions~7! and~8!. In this case, the transfer matrix

a

th

l

i-

of
p

o-

magnetic oscillatory modes of a terminated structure of al-
10

-
m-

tical
s

cal

n
d

e
nal
lt
C

of
es.

nds
s

the
cy
l
ase

are

es

m
en
can be written in the form

L̂5h~X̂11X̂2!, ~10!

whereh5C/2, and the coefficientsa i in ~8! are defined as

a1511xy, a2512z/x. ~11!

Taking ~10! into account, we obtain the following formul
for the nth-order matrixL̂:

L̂n5hnS a1
n21X̂11

a1
n212a2

n21

a12a2
X̂1X̂21a2

n21X̂2D . ~12!

A slightly different approach for deriving~12! is described in
Ref. 20. The components of the matricesX̂1 and X̂2 can be
determined by comparing Eqs.~6!, ~9!, and~10!:

5
x52

C1R

2Q
1F S C1R

2Q D 2

2
C8

Q G1/2

y52
C1R

2C8
1F S C1R

2C8 D 2

2
Q

C8G
1/2

12
Q

C

z5
C1R

2Q
1F S C1R

2Q D 2

2
C8

Q G1/2

22
C8

C

.

After summing up the matrices in the parentheses on
right-hand side of~12!, we obtain

L̂n5
hn21

a12a2
V̂. ~13!

Here V̂ is a matrix with the componentsv i j :

v1152L1a1
n1L2a2

n , v1252C8~a1
n2a2

n!,

v215Q~a1
n2a2

n!, v225L2a1
n2L1a2

n , ~14!

where

L15C8/x, L25Qx,

a15~C1L2!/h, a25~C1L1!/h. ~15!

Taking into account~14! and ~15!, we can write the genera
dispersion equation~5! in the form

1

x~L22L1!
@~C1L2!n~A11B1x!~DC81D8L2!

2~C1L1!n~D81Dx!~C8B11A1L2!#50. ~16!

The quantitiesC1L1 and C1L2 are conjugate, which fol-
lows from ~15! and ~13!:

C1L25b1jAg, C1L15b2jAg, ~17!

whereb5(C2R)/2, j5sgnQ, g5(C1R)2/42C8Q. Not-
ing thatx(L22L1)Þ0 and taking~17! into account, we ob-
tained from~16! the generalized dispersion equation for v
brational modes of a linear chain:

~b1jAg!n~A1L11B1C8!~DC81D8L2!

2~b2jAg!n~D8L11DC8!~C8B11A1L2!50.

~18!

Equation~18! has a structure coinciding with the structure
dispersion equations for electronic states in a terminated
riodic system of potential wells as well as for electr
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e

e-

ternating layers with different permittivities.The type of
solutions of Eq.~18! is determined by the sign of the func
tion g. Delocalized states distributed over a chain are co
pactly located in frequency intervals whereg,0. In our
case, these intervals correspond to acoustic and op
modes. Positive values ofg correspond to frequency region
in which only local states can exist.

For frequencies belonging to the acoustic or opti
band, the expressionsb1jAg and b2jAg are complex
conjugate:

b6jAg5e6 if. ~19!

Sincex also becomes a complex quantity, we have

x5uxueiw, ~20!

where uxu5AC8/Q, cosw52j(C1R)/A4C8Q, 0,w,p.
Substituting ~19! and ~20! into the generalized dispersio
equation~18!, we obtain the dispersion equation for ban
vibrational modes:

sin~nf1c!50, ~21!

where

c5arccos~p1 /Ap1
21p2

2!,0,c,p,

f5arccosb, 0,f,p,

p15
A1D8

uxu
1B1Duxu1~B1D81A1D !cosw,

p25~B1D82A1D !sin w.

It follows from ~21! that for N@1 the chain ends affect th
mode spectrum of band states weakly since the additio
phasecP@0,p#. For sufficiently long chains, the exact resu
~21! coincides with that obtained by using the TI and PB
approaches,4 the only difference being that the number
band modes is reduced by the number of split local mod
Figure 2 shows the band relief calculated by formula~21! for
k05k2 . It can be seen that the acoustic and optical ba
merge form1 /m25k1 /k251. As the inequivalence of atom
becomes stronger, the forbidden gap is broadened, and
optical vibration band becomes narrower. In the frequen
range whereg.0, Eq. ~18! describes the boundary loca
states split from the bands to the forbidden gap. In the c
of a long chain (N@1), the dispersion equation~18! for
local states is simplified. The frequencies of local modes
determined by zeros of the first term in~18! for jb.0 and
by zeros of the second term forjb,0.

LOCAL MODES AND AMPLITUDE DISTRIBUTION

The general dispersion equation~18! allows us to formu-
late the condition of splitting of local states from band edg
for long chains. The requirementg50 gives

A1D2B1D850. ~22!

Analyzing this equation, we find that a local state splits fro
the top of the optical band for the following relation betwe
model parameters:
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2z~11«2a!1a50. ~23!

The condition for the splitting of local states from the botto
of the optical band and from the top of the acoustic band
the form

z~11«2a!~16s!13a2850, ~24!

where the plus sign corresponds to splitting from the bott
of the optical band and the minus sign from the top of
acoustic band. Here

z5
~«11!~g11!

«g
, s5S 12

16

«gz2D 1/2

,

«5
m1

m2
, g5

k1

k2
, a5

k0

k2
.

Relations~23! and~24! allow us to determine the region
of existence of local states on the diagrams of model par
eters. Obviously, for chains with any parameters« andg, we
can always find a value ofa for which a local superoptica
state is formed. On the~g,a! plane, the region of localization
lies above the straight linea51. The region of splitting of
local states from the top of the optical band on the diagr
of parameters~«,a! lies between the straight linesa511«
anda52«12/(«12) ~Fig. 3!.

Let us consider various cases of coupling between
atomic chain and the surface.

1. If a heavy atom (m1 /m2.1) is coupled with the sur-
face, the forbidden band contains a level which does
depend on the coupling with the surface. Its position is
termined by the ratiok1 /k2 . Fork1 /k2.1, the level lies near
the bottom of the optical band the closer to it, the larger
ratio k1 /k2 . For k1 /k2,1, the level occupies a position ne
the acoustic band in a similar manner. Fork15k2 , the level
is localized at the middle of the forbidden gap. Moreover,
the rigidity of the coupling between the chain and the surf
increases, a level splits from the acoustic band approa

FIG. 2. Band relief of a diatomic chain fork05k2 as a function of relative
parameters of the model. Band states are hatched, local states are not
(v22

2 5k2 /m2).
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the optical band upon an increase ink0 . The ratio k1 /k2

determines the form of this approach: the level approac
the bottom of the optical band asymptotically fork1 /k1.1
~Fig. 4a!, while for k1 /k2,1 the local state rapidly reache
the optical band and vanishes~Fig. 4b!. In both cases, an
increase in the rigidity of coupling between the chain and
surface leads to the splitting of a local state in the ba
above the optical band of the spectrum. The superopt
mode is formed rapidly as the local state moves away fr
the band edge in a narrow region near the free end of
chain. For certain values of the parametersm1 /m2 and
k1 /k2 , the region of localization of vibrations with a supe
optical frequency can be shifted from one end of the lin
chain to the other upon an increase in the coupling rigidityk0

and can even be distributed over both ends of the chain. S
a phenomenon is observed, for example, form15m2 and
k15k2 , when the ratiok0 /k2 increases from 2 to 5. Fo
k1 /k2.1, a rigidly adsorbed chain has three local mod
while such a number of local modes can be observed
k1 /k2,1 only in a very narrow band of values ofk0 .

2. If a light atom is coupled with the surface, the forbi
den gap can contain, in accordance with~24!, not more than
one local state~Fig. 5!. For k1 /k2.1 and a rigid coupling
k0 , a local level lies near the acoustic band the closer to
the closer the ratiok1 /k2 of coupling constants to unity
Another local level is observed above the optical band
chain weakly coupled with the surface has only one lo
state in the forbidden band, which moves away from
optical band as the coupling with the surface becom
weaker and weaker~Fig. 5a!. For k15k2 , no local state is
split from the acoustic band, and when the coupling cons
k1 andk2 are such thatk1 /k2,1, the diagram contains only
the upper local branch whose slope is smaller than in
case whenk1 /k2.1 ~Fig. 5b!. Thus, in the case of a rigid
coupling of a chain with a surface through any of the tw
atoms. i.e., for any ratiom1 /m2 , the frequency spectrum
contains a strongly localized superoptical vibrational mo

ownFIG. 3. Region of existence of local states above the optical band for v
ous ratios of the parameters«5m1 /m2 anda5k0 /k2 .
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FIG. 4. Diagram of local states for a coupling with the surface through a heavy atom: strong~a! and weak~b! coupling of the atom with the chain.
Irrespective of the rigidity of coupling of a chain with a
th
o
h
o

d.

from 1.0 and 1.5. Irrespective of the type of the atom linking
in

i-

cies

he
surface, the frequency spectra for chains coupled with
surface through a heavy atom always contains at least
local vibration, while the spectra of chains coupled throug
light atom are characterized by a range of values of the c
pling constantk0 , in which not a single local state is forme
For example, form1 /m250.5 and k1 /k250.9, no local
states are formed for values of the ratiok0 /k2 from the range
e
ne
a
u-

a chain with the surface, all the local vibrations depicted
Figs. 4 and 5 are formed at the right~free! end of the chain.

The second part of the problem on vibrations of a term
nated chain for the amplitudesx0a of vibrational modes also
has an exact solution. The substitution of mode frequen
into ~1! leads to a nonhomogeneous system of 2N21 linear
equations which can be solved by the Kramer method. T
FIG. 5. Diagram of local states for a coupling with the surface through a light atom: strong~a! and weak~b! coupling of the atom with the chain.
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convolution of the determinants appearing in this case is
ried out according to the above procedure~7!–~13! ~see also
Ref. 10!. Analytic expressions forx0a are found to be real-
valued both for band and for local modes.

The distribution of mode amplitudes of band states i
linear chain is shown in Fig. 6. The chain contains 30 ato
The state with the numberi 55 corresponds to the fifth leve
lying in the acoustic band, while the state with the numb
i 529 corresponds to the boundary of the optical band. T
complete frequency spectrum also includes a local vibra
with a frequency lying above the optical band. The chain
coupled with the surface through a light atom. The results
calculations definitely confirm the fact that band vibration
modes in terminated oscillatory systems do not poss
translational invariance, and the amplitudex0a in ~3! de-
pends strongly on the position of an atom in the chain. T
splitting of a local mode at one end of the chain is acco
panied by a suppression of amplitudes of the nearest b
modes in this region~Fig. 6c!. Analytic expressions for the
amplitudes of local vibrations indicate their exponential d
crease from the edge.

CONCLUSION

This research determines the limits of applicability of t
constant-phase and PBC approximations which are tradit
ally used in vibrational problems.1–9,21The obtained analytic
results indicate an extremely weak dependence of delo
ized mode frequencies of periodic structures withN@1 on
the choice of the boundary conditions as well as on the t
of TI assumptions concerning the phase of vibrations. If
are speaking of local modes, these approximations at l
distort their frequency. Exact distributions of mode amp
tudes of all types differ in principle from those obtained

FIG. 6. Distribution of mode amplitudes in arbitrary units over a chain of
atoms. The atoms are marked by dots and connected by straight line
better visualization: fifth mode from the bottom of the acoustic band~a! and
modes near the top of the optical band~b! and ~c!.
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standing waves in a periodic structure with semipermea
walls. In this case, the well-known oscillatory theorem on t
relation between the number of nodes in the amplitude
tribution function in a mode and the serial number of th
mode holds well.

The information about the position of a local vibration
mode of an adsorbed chain of atoms can be important
practical purposes of laser cleaning of surfaces under c
trolled low-temperature desorption.17 In the course of fine
cleaning, optical radiation is spent on ‘‘heating’’ of the su
face local mode only right to the rupture of the bond a
following desorption. On the other hand, the emergence
desorbed molecules at a certain laser frequency in l
temperature experiments makes it possible to determine
elastic constant of coupling between a linear molecule an
surface from parametric diagrams~see Figs. 4 and 5!.

Selective excitation of band modes of an adsorbed ch
at low temperatures makes it possible to preserve a defi
sequence of antinodes and nodes in its linear structure
subsequent restriction or another action on the system.

We obtained approximate estimates of frequencies
amplitudes of vibrations for an (SN)x crystal whose structure
is formed by weakly interacting chains. We considered
individual chain as a one-dimensional lattice with two ato
in a unit cell with the same coupling constants (k15k2).
Proceeding from the energy of dissociation of the S
bond19 and assuming that the ratio of the energy of a vib
tional quantum of S-N to the energy of dissociation of t
S-N bond is the same as for C-H,17 we find that the S-N
coupling constantk51.43 mdyne/Å. In this case, the optica
spectrum lies in the band (1 – 1.3)•1014 s21, while the acous-
tic spectrum occupies the frequency range (0.3– 7
•1013 s21. The vibrational amplitudes of upper modes in t
acoustic and optical bands are 0.10 and 0.13 Å, respectiv
for the average length of the S-N bond of 1.61 Å.18

For a C5C5C chain, the acoustic band width is es
mated as 1.3•1014 s21, which gives approximately 3.3
mdyne/Å for the elastic coupling constant.
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Magnetoplasma waves in inversion layers with local electron states

N. V. Gleizer, A. M. Ermolaev, and Babak Haghighi

Kharkov State University, 310077 Kharkov, Ukraine
~Submitted April 15, 1997!
Fiz. Nizk. Temp.23, 1223–1228~November 1997!

The spectrum and damping factor of plasma and magnetoplasma waves in a two-dimensional
electron gas at low temperatures are calculated, taking into account local electron states
at impurity atoms. It is shown that localization of electrons decreases the frequency of long-wave
plasmons and rearranges the magnetoplasma spectrum in the vicinity of resonant frequencies
of electron transitions between the Landau levels and local levels. As a result, the plasma
absorption peak is displaced towards low frequencies, and the magnetoplasma peak splits.
The characteristics of plasmons and magnetoplasmons are calculated for parameters of the
inversion layer at the boundary between silicon and silicon dioxide. ©1997 American
Institute of Physics.@S1063-777X~97!01111-0#
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Two-dimensional plasmons in the inversion layer at
boundary between silicon and silicon dioxide at low te
peratures were observed for the first time by Allenet al.1

who excited plasma waves by linearly polarized infrared
diation incident on the grating deposited on the surface o
semitransparent shutter.1,2 Since the wavelength of the radia
tion is much larger than the thickness of the inversion lay
the latter can be treated as a conducting planez50 with a
two-dimensional conductivity tensor. The calculations2 made
in the approximation of an infinitely large conductivity of th
shutter without taking into account delay effects proved t
the plasmon frequency can be written in the form

vp~q!5H 4pe2nq

m
@«s coth~qds!

1«d coth~qdd!#21J 1/2

, ~1!

wherem and e are the electron mass and charge,n is the
electron number density in the inversion layer,«s and«d are
the static permittivities of the semiconductor and the insu
tor, ds anddd their thicknesses, andq is the two-dimensiona
wave vector. Collisionless damping of long-wave plasmo
in a two-dimensional degenerate electron gas is not
served. Their damping is mainly determined by collision
electrons with impurity atoms. The damping of such pla
mons is mainly determined by collisions of electrons w
impurity atoms. The damping factor is equal ton/2, wheren
is the collision frequency determined by the potent
electron-impurity scattering. The absorption of the elect
magnetic radiation by the inversion layer is determined
the real component of the quantitys̄(q,v)5s(q,v)/
«(q,v), wheres and« are the conductivity and permittivity
of the two-dimensional electron gas, which are functions
the wave vectorq and frequencyv.2 In the vicinity of fre-
quency~1!, we have

Re s̄~q,v!5
e2ngq

2m
@~v2vq!21gq

2#21. ~2!
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damping factor. This expression shows that plasma wa
are manifested in the presence of a clear peak on the c
describing the frequency dependence of absorption, whic
superimposed on the high-frequency Drude background2

Re s̄5e2nn/~mv2!.

In a magnetic field perpendicular to the inversion lay
plasma resonance is transformed into magnetoplasma r
nance. Such a resonance was observed for the first tim
Theiset al.3 and is manifested in the presence of a peak
the dependence of absorptionP on the magnetic field
strength or radiation frequency. The peak lies at the mag
toplasmon frequency2

vq
~0!5@vc

21vp
2~q!#1/2, ~3!

wherevc is the cyclotron frequency of electrons. The pe
width is given by

gq
~0!5

n

2
~11vc

2/vq
~0!2!. ~4!

In the vicinity of the peak, the real component ofs̄ is given
by formula ~2! as in the absence of the field, butvq andgq

are defined by~3! and ~4!.
It was noted in Refs. 1–3 that the experimentally o

served properties of plasmons and magnetoplasmons in
inversion layer at the Si–SiO2 boundary are satisfactorily
described by the classical formulas~1!–~4! only for a large
electron number density. In the case of a low dens
(n,1016 m22), deviations from the classical theory of con
ductivity of a two-dimensional electron gas become sign
cant. For example, Allenet al.1 noted that the plasma pea
on theP(v) curve for low electron densities is shifted from
the value predicted by formula~1! towards low frequencies
According to Allenet al.,1 such a displacement is due to a
increase in the effective massm or electron localization.
Theiset al.3 proved that for smalln the magnetoplasma pea
splits into two peaks. One of them lies below the peak
scribed by formula~3!, while the other peak lies above it. I
order to explain this phenomenon, the effects associated
a nonlocal nature of conductivity of a two-dimensional ele
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tron gas in a magnetic field were taken into account.2,4 The
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conductivity contains a correction of the order of (ql) ~l is
the magnetic length! with a resonance at a frequency 2vc .
The interaction of a magnetoplasmon with the subharmo
structure of the cyclotron resonance leads to magnetop
mon peak splitting.4 It was noted in Refs. 2, 4, however, th
this interaction is too weak to be responsible for the obser
splitting. For this reason, the problem of the plasma abso
tion line in inversion layers cannot be regarded as sol
completely.

In the present paper, we consider the effect of local e
tron states in the field of impurity atoms on the spectrum a
absorption of plasmons and magnetoplasmons in a t
dimensional electron gas. We used the model and the c
putational method described in Refs. 5, 6. It will be sho
that electron localization leads to a displacement of
plasma peak on theP(v) curve towards the low-frequenc
region. The inclusion of resonant transitions of electrons
tween Landau levels and local levels causes a rearrange
of magnetoplasmon spectrum in the vicinity of resonant f
quencies similar to the crossover in the theory of coup
waves.7 This leads to the splitting of the magnetoplasm
peak mentioned above.

In Sec. 2, we consider the properties of magnetop
mons near the frequencyv15vc1v0 of resonant electron
transitions from a local level to the Landau level lying abo
it ~v0 is the separation between a Landau level and the lo
level split from it by an attracting impurity!. The neighbor-
hood of the frequencyv25vc2v0 corresponding to transi
tions from a Landau level to a local level will be analyzed
Sec. 3. The spectrum and damping of plasmons taking
account electron localization in zero magnetic field are c
sidered in Sec. 4. The obtained results are summarize
Conclusion, where the theoretical results are compared
experimental data.

2. EFFECT OF LOCAL ELECTRON STATES ON THE
PROPERTIES OF TWO-DIMENSIONAL
MAGNETOPLASMONS

It was proved in Ref. 6 that local electron states in
quantizing magnetic field perpendicular to the invers
layer are manifested in the presence of resonant terms in
tensor or high-frequency conductivity of a two-dimension
electron gas. For example, the transverse conductivitysxx in
the vicinity of the frequencyv15vc1v0 corresponding to
electron transitions between a local level and a Landau le
contains the term

ds5 i
e2na1v1

mv
~v2v11 iG!21, ~5!

where

a15
niNrN21

2pmnv0
2v1l 4 @11~11N21!~112vc /v0!22#

3@ f ~«N21
l !2 f ~«N!# ~6!

is the oscillator force of a resonant transition andG the width
of the local level labeled byN21 and participating in tran-
sitions. Hereni is the number density of impurity atoms,r N
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ing at the pole«N2 iG, and f the Fermi function; the quan
tum constant is assumed to be equal to unity. The differe
in the Fermi functions in~6! takes into account the Pau
exclusion principle in electron transitions from the loc
level «N21

l to the Landau level«N . We assume that the
Fermi boundary«F of two-dimensional electrons lies be
tween the levels«N21 and«N

l , andql!1. In this case, the
expression for the oscillator force contains only one term~6!,
and spatial dispersion of conductivity~5! can be neglected.

Expression~5! must be taken into account in the dispe
sion equation for magnetoplasma waves2:

«~q,v!511
4p iq

v
sxx~q,v!

3~«s coth qds1«d coth qds!
2150. ~7!

This equation can be written in the form

12A1~x22vc
2/v1

2 !215a1A1x22~x21!21, ~8!

where

x5v/v1 ,

A154pe2nq@mv1
2 ~«s coth qds1«d coth qdd!#21.

~9!

In the absence of local levels (a1→0), the solution of
Eq. ~8! is the function~3!. The inclusion of electron local-
ization leads to a rearrangement of themagnetoplasmon s
trum in the vicinity of frequencyv1 . As a matter of fact, the
straight linev5v1 intersects the dispersion curve~3! at the
point

q05
mv0

2

4pe2n S 112
vc

v0
D ~«s1«d!,

where we assume thatqds@1 andqdd@1. Consequently, in
the vicinity of this point we have a crossover situation sim
lar to that observed in the spectrum of a lattice with quas
cal vibrations.7 Equation~8! has two real positive rootsx1

and x2 , one of which lies below the magnetoplasmon fr
quency~3!, while the other lies above this frequency. Figu
1 shows the results of numerical solution of the dispers
equation~8! for values of parameters of the inversion layer
the Si-SiO2 boundary in a magnetic field of inductionB
50.1 T. The dashed curve describes the function~3!, while
the lower and upper curves presentx1 andx2 as functions of
the ratio of the wave numberq to the Fermi wave numbe
kF . The following values of parameters are use
m50.2m0 ~m0 is the free electron mass!, v0 /vc50.1,
n51016 m22, «s1«d515, and ni /nl50.1. In this case,
N5196, which allows us to neglect the effect of magne
field on the scattering amplitude residue. In zero field, it
given by6

r 52pu« l u/m,

where« l is the position of the local level in the field of a
attracting impurity. The residuer is obtained for«F /u« l u
52. For such values of parameters, we haveq051.5
3102 m21 andv159.831010 s21.

918Gleizer et al.
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The damping factor for magnetoplasmons with the sp
trum vq

( i ) ~i 51,2 is the number of the branch! is given by
gq

( i )5gq
01dgq

( i ) , where

dgq
~ i !5

v0
4a1

2v1
2 ~112vc /v0!2G@~vq

~ i !2v1!21G2#21.

~10!

The term~10! in the decrement, which is associated with t
local level, has a peak at the frequencyv1 of electron tran-
sitions from the local level«N21

l to the Landau level«N .
The existence of two roots of the dispersion equation~8!

indicates that the plasma peak on the curve describing
frequency dependence of absorption of electromagnetic
diation splits into two peaks. In the vicinity of thei th peak,
the absorption is proportional to

Re s̄ i~q,v!5
m~«s1«d!2gq

~ i !

32p2e2nq2 ~vq
~ i !22vc

2!2

3@~v2vq
~ i !!21gq

~ i !2#21. ~11!

The position of the peak of~11! is determined by the energy
momentum relationvq

( i ) for magnetoplasmons, and the pe
width is determined by the damping factorgq

( i ) .

3. MAGNETOPLASMONS IN THE VICINITY OF FREQUENCY
v25vc2v0

In the vicinity of frequencyv25vc2v0 , the conduc-
tivity of resonant transition of electrons from a Landau lev
to the neighboring local level differs from~5! in the reso-
nance frequency and oscillator force.6 The latter quantity is
defined as

FIG. 1. Splitting of the dispersion curve~3! ~dashed curve! of magnetoplas-
mons into the low-frequency~curve 1! and high-frequency~curve 2!
branches in a magnetic fieldB50.1 T.
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a25
niNrN

2pmnv0
2v2l 4 @11~12N21!~122vc /v0!22#

3@ f ~«N21!2 f ~«N
l !#,

where N is the number of the local level participating i
transitions.

The dispersion equation~7! for magnetoplasma waves i
the vicinity of frequencyv2 can be obtained from Eq.~8! by
replacing the subscript ‘‘1’’ by ‘‘ 2’’. This equation has two
roots y1,25v1,2/v2 lying below and above~3!. Figure 2
shows the solution of the dispersion equation for the val
of parameters used in Sec. 2 and forB51 T. In this case,
N520, and the residuer N should be calculated by takin
into account the magnetic field. Forv0!vc , it is given by6

r 52p~ lv0!2.

The contribution of the local level to the damping fact
for magnetoplasmons can be obtained from formula~10! by
replacing the subscript ‘‘1’’ by ‘‘ 2’’ and by changing the
sign ofvc . This leads to a peak against the background o
smooth dependence of the damping factor~4! on the plasmon
frequency. The position of the peak is determined by
resonance frequencyv2 , and its width by the broadening o
the local level. The ratio of the maximum value of decreme
~10! to ~4! is equal to 3.3 for all values of parameters ind
cated in Sec. 2 and forn5G51011 s21.

As in Sec. 2, the magnetoplasma peak on the curve
scribing the frequency dependence of absorption splits
two peaks. The absorption in the vicinity of the peak is p
portional to expression~11! in which we must substitute the

FIG. 2. Low-frequency~curve1! and high-frequency~curve2! branches of
the magnetoplasmon spectrum in the vicinity of frequencyv2 in a magnetic
field B51 T. The dashed curve corresponds to spectrum~3! in the absence
of local levels.
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plasma waves obtained in this section. The ratio of the m
mum absorption to the background

Re s̄5
e2nn

m
~v21vc

2!~v22vc
2!22

is k150.02 for the low-frequency branch andk2521.4 for
the high-frequency branch in Fig. 2. It should be noted t
this ratio for magnetoplasmons in the absence of elec
localization isk050.6. The calculations were made for th
above values of parameters and forq5104 m21. In this case,
vp53.231010 s21, vq

(0)59.531011 s21, and v258
31011 s21.

4. PLASMA WAVES IN ZERO MAGNETIC FIELD

We assume that the energy spectrum of two-dimensio
electrons contains only one local level« l52vg split by an
attracting impurity from the lower edge of the conducti
band. Owing to the local level, the imaginary component
the high-frequency conductivity of the degenerate elect
gas contains the contribution6

Im ds5
e2rni

pv3 ~« l1v!3 lnU«F2« l2v

«F2« l
U2~v→2v!,

~12!

in which (v→2v) denotes the term differing from the pre
vious one in the sign of frequency. Taking into account~12!,
we can write the dispersion equation~7! in the form

12bu225cwa~u!, ~13!

where

u5v/~«F1vg!;

wa~u!5u24Fu lnU12u

11uU2a lnU12u2UG ;
a5~11«F /vg!21,

b54pe2nq@m~«F1vg!2~«s1«d!#21,

c52b
ni

n
~11«F /vg!21.

Figure 3 shows the solution of the dispersion equat
~13! for long-wave plasmons in a degenerate electron gas
the above values of parameters. It can be seen that the in
sion of electron localization reduces the plasmon frequen
Such an effect was observed1 in the inversion layer at the
Si-SiO2 boundary for a low electron density. The separat
between the dispersion curves in Fig. 3 is

Du5
ni

n
b1/2~112«F /vg!~11«F /vg!22.

This leads to the relative deviation of the plasmon freque
from ~1!, i.e., Dv/v50.06.

The damping factor for plasmons with the energ
momentum relationvq is given by

gq5
n

2
1

mvq
2

2e2n
Re ds~vq!, ~14!
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where

Re ds~v!5
e2rni

v3 Q~« l1v!~« l1v!

3@ f ~« l !2 f ~« l1v!#1~v→2v!,

andQ is the Heaviside function. Formula~14! shows that the
contributiondg to the damping factor from the local leve
has a frequency thresholdvg for activation of localized elec-
trons. Near the threshold,dg}v2vg . This threshold is
shifted upon cooling to the point«F1vg in accordance with
the Pauli principle. Forq/kF50.04 and the values of param
eters given in Sec. 2, the relative value of the peak of
decrement~14! is 2dg/n56.

Plasma absorption taking into account the local leve
given by formula~2! into which the energy-momentum rela
tion and the damping factor of plasmons obtained in t
section should be substituted. Forq/kF50.04, n50.4
31016 m22, andn50.531012 s21, the relative height of the
plasma peak is (vq /n)2570.

CONCLUSIONS

In this paper, we considered the effect of electron loc
ization in the field of isolated impurity atoms on the spe
trum and damping of plasma and magnetoplasma waves
two-dimensional electron gas. We also considered
plasma absorption of electromagnetic radiation incident

FIG. 3. Dispersion of plasmons taking into account the local level. T
dashed curve is the dispersion curve~1! in the absence of electron localiza
tion.

920Gleizer et al.



the electron layer. It was proved that electron localization
ar
a

e

el
za
g

ab
s

las
fr
o
ti
is
i

ec
a
el
a
c

tru
i

en
en

dependence of absorption splits into two peaks. Such a split-
3 -

ion
,

tion
tal
ks

due
in-

his
reduces the frequency of long-wave plasmons as comp
to its value in the absence of local levels. Such a decre
was observed by Allenet al.1 who studied plasmons in th
inversion layer at the boundary between Si and SiO2 and
explained the freezing out of charge carriers to local lev
But this is not the only effect observed in this case. Ioni
tion of electrons localized at impurities by an electroma
netic field is accompanied by the emergence of a notice
contribution to the high-frequency conductivity, which mu
be taken into account in the dispersion equation for p
mons. This also leads to a decrease in the plasmon
quency, which is manifested in a shift of the plasma peak
the curve describing the frequency dependence of absorp
towards the low-frequency region. The estimate of the d
placement given in Sec. 4 is in satisfactory agreement w
the experimentally obtained estimate,1 but the theory predicts
an elevated value of the peak height.

In a quantizing magnetic field perpendicular to the el
tron layer, a system of local levels alternating with Land
levels is formed. Electron transitions between these lev
which are induced by the magnetic field, lead to reson
corrections to the conductivity of the two-dimensional ele
tron gas. A rearrangement of the magnetoplasmon spec
similar to the crossover in the theory of coupled waves
observed in the vicinity of the resonant transitions frequ
cies. As a result, the magnetoplasma peak on the frequ
921 Low Temp. Phys. 23 (11), November 1997
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ting was observed by Theiset al. who studied the depen
dence of absorption on the magnetic field in the invers
layers at the Si-SiO2 boundary. According to calculations
for a fixed radiation frequencyv ~following Ref. 3, we put
v53.7 meV!, the resonant fieldsB1 and B2 for which ab-
sorption has the maximum value areB156.88 T andB2

55.69 T. The positions of the peaks and their separa
DB51.2 T are in good agreement with the experimen
data.3 However, the theory gives higher heights of the pea
as in the case of zero magnetic field. This is apparently
to the existence of mechanisms of electron scattering in
version layers, which were not taken into account in t
research.
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5È. A. Kaner and A. M. Ermolaev, Zh. E´ ksp. Teor. Fiz.92, 2245 ~1987!
@Sov. Phys. JETP65, 1266~1987!#.

6N. V. Gleizer and A. M. Ermolaev, Fiz. Nizk. Temp.23, 73 ~1997! @Low
Temp. Phys.23, 55 ~1997!#.

7A. M. Kosevich, The Theory of Crystal Lattice@in Russian#, Vishcha
Shkola, Kharkov~1988!.

Translated by R. S. Wadhwa
921Gleizer et al.



LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

the
Verification of the theory of Brownian motion of a particle through a potential barrier in
a viscous medium during experimental study of dislocation acoustic relaxation in
normal and superconducting niobium

V. D. Natsik and P. P. Pal-Val

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*
~Submitted May 28, 1997!
Fiz. Nizk. Temp.23, 1229–1242~November 1997!

The Kramers theory~1940! describing a thermally activated escape of a particle from a potential
well in a viscous medium is used for explaining the acoustic absorption peak discovered by
Kramer and Bauer~1967! in niobium in the liquid helium temperature range. It is shown that the
properties of the peak observed in experiments correspond to the model of resonant
interaction of acoustic vibrations with dislocation kink chains. Kinks, viz., pseudoparticle
excitations on dislocation lines, perform diffusive drift in the second-order Peierls relief under
the action of acoustic vibrations, experiencing simultaneously viscous drag exerted by
conduction electrons. The possibility of a sharp controllable change in electron viscosity during a
superconducting transition can be used for verifying the conclusions of the Kramers theory
in experimental investigations of the dislocation contribution to attenuation of sound. It is found
that at low temperatures, the conditions for the observation of the anomaly predicted by
Kramers are created for kinks in niobium: the diffusion mobility of particles increases with the
dynamic drag coefficient. This circumstance makes it possible to explain one of the most
interesting properties of the Kramer–Bauer peak which could not be interpreted correctly till now,
i.e., the displacement of the peak towards low temperatures during a magnetic field induced
transition ofNb from the superconducting to the normal state. The possibilities of observation of
quantum diffusion of kinks in acoustic experiments are also considered briefly. ©1997
American Institute of Physics.@S1063-777X~97!01211-5#

INTRODUCTION sion is not trivial and even unexpected to a certain extent:
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Thermally activated motion of quasi- and pseudop
ticles through potential energy barriers is of utmost imp
tance for many branches of physical kinetics. In 19
Kramers1 was the first to pay attention to the important a
nontrivial role of the viscosity of the medium in contact wi
moving particles in processes of this type. He described o
dimensional Brownian movement of a particle in a comp
potential relief~Fig. 1a!, which is activated by thermal force
exerted by a thermodynamically equilibrium medium a
calculated the mean time in which the particle, which w
initially trapped by the potential wellA, escapes through th
barrier B. Following the basic concepts of the classic
theory of Brownian movement, Kramers assumed that
action of the medium on the particle can be presented as
sum of two components: viscous drag and fast thermal
pacts. The main result obtained by Kramers was the con
sion that the time during which the particle escapes from
potential well is a nonmonotonic function of the drag co
ficient. It was found that in the case of a high viscosity of t
medium, the increase in the drag coefficient slows down
emergence of the particle from the well. At the same time
the other limiting case of a low-viscosity medium, the opp
site effect is observed: the increase in the drag coeffic
accelerated the particle escape from the well. This con
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first case is intuitively clear, while the second appears a
paradox and can be regarded as a peculiar anomaly.

The Kramers analysis as well as the theory of Brown
movement on the whole are based on phenomenologica
sumptions concerning specific correlation properties of a r
dom force describing the interaction of a particle with a m
dium. The correctness of these assumptions for a spe
physical situation is not obvious as a rule. For this reas
physical experiments aimed at the verification of nontriv
predictions of the theory of Brownian movement~like the
conclusion concerning the nonmonotonic dependence of
time of emergence of a damped particle from a potential w
on the damping constant! are of special interest.

The Kramers theory was developed to clarify the kin
ics of chemical reactions and of decay of heavy atomic
clei, which were urgent at that time, on the basis of t
liquid-drop model of the nucleus. To our knowledge, no
tempts were made to verify experimentally the above c
clusion concerning the role of viscosity in such type of rea
tions. It is also difficult to estimate the possibility of
controllable change in viscosity during the measurement
reaction rates in experiments made in the above fields
science. In this paper, we consider an interesting possib
of experimental verification of the Kramers theory whi
studying dynamic dislocation processes occurring in meta

922110922-11$10.00 © 1997 American Institute of Physics
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superconductors at temperatures below the supercondu
transition temperatureTc .

Bcc metals are the most effective objects of investi
tion, which can be used for solving the problem formulat
above. Among these metals, niobium which has a relativ
high superconducting transition temperatureTc59.3 K can
be singled out since the potentialities of experiments w
this metal are much richer. A typical element in the disloc
tion structure of bcc metals is a set of dislocations wh
lines lie in extended rectilinear valleys of the lattice poten
relief ~first-order Peierls relief!.2 A special action on such
dislocations can lead to the creation of pseudoparticle e
tations~kinks! connecting two rectilinear segments of a d
location line, which lie in neighboring valleys of the Peier
relief.3,4 One-dimensional motion of kinks along a disloc
tion line involves the overcoming of another system of latt
potential barriers, viz., second-order Peierls relief. In ad
tion, moving kinks experience the action of viscous fricti
due to scattering of phonons and conduction electron
dislocations.4–6 In metals with standard electron paramete
the electronic component plays the leading role in damp
of the motion of a dislocation line in the temperature ran
T<10 K.5,6 Thus, a thermally activated motion of a kin
~pseudoparticle! through second-order Peierls barriers in
viscous electronic medium corresponds completely to
process considered by Kramers. The advantage of the su
conductor used for verifying the conclusion of the Krame
theory about the role of viscosity lies in the possibility of
controllable change in the electron drag coefficient for
kink: at T,Tc , the electron damping of dislocations can
varied considerably by a transition of the metal from t

FIG. 1. Two types of potential reliefs in which Brownian movement
particles is considered: a solitary potential well of a finite depth~a! and the
sum of a periodic crystal relief and a potential field of constant intensity~b!.

923 Low Temp. Phys. 23 (11), November 1997
ing

-
d
ly

h
-
e
l

i-

i-

at
,
g
e

e
er-
s

a

magnetic field.
The experimental study of the kinetics of formation a

motion of dislocation kinks is based on the application
acoustic spectroscopy.3,4,9 By varying the vibrational fre-
quency and temperature of samples, we can create condi
for a resonant interaction of sound with kinks. A detail
analysis of such resonances makes it possible to obtain
information on the dynamic and kinetic characteristics
kinks as well as on the parameters of potential barriers o
come by kinks. For a fixed frequency of vibrations, ea
such resonance corresponds to a peak on the temper
dependence of sound absorption. In 1967, Kramer
Bauer10 who studied the low-temperature acoustic propert
of niobium at a frequency;105 Hz observed a new absorp
tion peak localized in the temperature region near 3 K and
changing its position on the temperature axis upon a cha
in the vibrational frequency as well as upon a supercond
ing transition. Later, the existence of such a peak was c
firmed by some other authors.11–15 In a recent publication,15

the properties of the Kramer–Bauer peak were analyze
detail, and it was proved that most of these properties can
described by using the model of resonant interaction
sound with dislocation kink chains performing a therma
activated diffusion in a second-order Peierls relief.

However, the explanation of the behavior of the peak
the superconducting state proposed in Ref. 15 appeare
slightly artificial since it was based on the assumption ab
a significant change in the lattice potential barrier for dis
cations in niobium upon a superconducting transition. T
assumption does not contradict the existing ideas abo
relation between the lattice and electronic properties of tr
sition bcc metals, but other experimental confirmations of
assumption have not been obtained.

A dissatisfaction remaining in connection with this pro
lem after the previous publication15 stimulated a more de
tailed analysis of changes in the diffusion mobility of disl
cation kinks which can appear upon a considerable chang
the electron viscosity. It was found that the dislocation a
electronic parameters of niobium have values permitting
realization of the anomalous dependence of diffusion mo
ity of a particle ~kink in our case! on the drag coefficient
predicted by Kramers: the inclusion of this circumstan
makes it possible to provide a universal description of
behavior of the Kramer–Bauer peak in the normal as wel
superconducting state without any additional assumptio
This publication is devoted to the description of details
such an analysis and to a substantiation of the above con
sion.

In Sec. 1, the basic concepts of the Kramers theory1 are
formulated in the form convenient for the application of t
theory to a description of the Brownian movement of dis
cation kinks.

In Sec. 2, the experimental data obtained by differ
authors who studied the Kramer–Bauer acoustic relaxa
peak in normal and superconducting niobium are syste
atized. The basic concepts of the dislocation model propo
in Ref. 15 and used for explaining the physical nature of
peak are also described briefly.
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kinks to the logarithmic decrement of sample vibrations
analyzed. The analysis is based on the application of
results of the Kramers theory to the description of t
Brownian movement of a kink through the barriers of
second-order Peierls relief.

In Sec. 4, the conclusions of the theory are compa
with the experimental data obtained from the study of
Kramer–Bauer peak. It is shown that the application of
Kramers theory makes it possible to describe all the m
peculiarities of the peak.

1. KRAMERS THEORY

Kramers1 studied a one-dimensional motion of a partic
under the action of the resultant of two independent for
f (x) and f S(t). The first termf (x)52dU(x)/dx describes
the action of the potential fieldU(x) on the particle~Fig. 1a!,
while the second termf S(t) is a random force associate
with the thermal motion of a thermodynamically equilibriu
medium in which the particle moves. The time variation
the dynamic variables of the particle, viz., the moment
p(t) and coordinatex(t), obeys the Hamilton classical equ
tions

H ṗ5 f ~x!1 f S~ t !
mẋ5p, , ~1!

wherem is the mass of the particle, and the dot denotes
time derivative. As a result of the action of a random for
f S(t), the time variation of the dynamic variables becom
random also. For this reason, it is more convenient to
scribe the motion of the particle by using the distributi
function r(p,x,t) for the mapping point (p,x) in the phase
space. In the general case, the functionr(p,x,t) must satisfy
the kinetic equation

S ]

]t
1 f ~x!

]

]p
1

p

m

]

]xD r5L̂S~r!, ~2!

in which the left-hand side is determined by the motion
the particle in the phase space in the absence of the med
and (L̂)S(r) is a functional~collision integral! describing the
change in the distribution function under the action of t
medium.

We can obtain the explicit form of the operatorL̂ only
by specifying the statistical properties of the random fo
f S(t) and by establishing its relation with temperature a
dissipative parameters of the medium. Kramers procee
from the assumption that the random processf S(t) has a
short correlation timet : on one hand, the values off S(t) and
f S(t1t) are regarded as statistically independent, and on
other hand, the momentum

pt5E
t

t1t

f S~ t8!dt8

transferred to the particle during this time can be regarde
very small. The quantitypt defined in this way is indepen
dent of timet; moreover, it is assumed thatpt has a thermo-

924 Low Temp. Phys. 23 (11), November 1997
s
e

d
e
e
in

s

f

e

s
-

f
m,

e
d
ed

e

as

the properties of the medium. A formal expression of the
assumptions is the equality

~pt!
n5mnt, n51,2,3,..., ~3!

where the bar indicates statistical averaging, and the co
cients mn do not depend on timet explicitly, but can be
functions of the variablesp and x as well as of the param
eters of the medium. Using equality~3!, we can write the
collision integral in the form of a series in the moments
the transferred momentum:

L̂S~r!52
]

]p
~m1r!1

1

2

]2

]p2 ~m2r!1... . ~4!

The next step is the establishment of the relation
tween the coefficientsm1 andm2 and physical parameters o
the medium. This problem can be solved by analyzing t
limiting cases for which the distribution functionr(p,x,t)
can be written easily from simple physical consideration1!

The first is the stabilized motion of a particle with a consta
average momentump̄5p05const under the action of th
uniform potentialU(x)52 f 0x, wheref 0 is a constant force.
It is well known that such a motion can be described
characterizing the interaction of the particle with the mediu
through the viscous drag coefficientb:

HbV5 f 0 ,
x̄5Vt; ~5!

where V5 ẋ̄5m21p̄ is the average velocity of the stead
state motion. If we neglect dispersion of momentum and
ordinate and are interested only in the change in their m
values, we can put in correspondence with motion~5! a dis-
tribution function of the form

r~p,x,t !5const•d~p2mV!d~x2Vt!, ~6!

whered(x) is the Dirac delta function. It can easily be ver
fied that Eq.~2! permits such a form of diffusion in the phas
space if we retain only the first term in the collision integr
~4! and put

m152
b

m
p. ~7!

in it.
The other limiting case is the steady state of a particle

a potential well with infinitely high walls.U(2`)5U(`)
5`. In this case, the functionr(p,x,t) must coincide with
the equilibrium Boltzmann’s distribution

rB~p,x!5const•expS 2
E~p,x!

kT D ,

E5
p2

2m
1U~x!. ~8!

In order to describe dispersion of momentum and coordin
in the collision integral~4! typical of distribution ~8!, we
must retain both terms. In this case, the function~8! satisfied
Eq. ~2! if we put, in addition to~7!,

m252bkT. ~9!
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The retainment of only two terms in the collision inte-
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kT

~mU9 !1/25
mnAkT

. ~12!
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gral and the choice of the coefficientsm1 andm2 in the form
~7! and~9! are in complete agreement with the classical p
tern of Brownian movement proposed by Einstein. In t
approximation, diffusion of the mapping point of a partic
in the two-dimensional phase space is described by solut
of a partial differential equation of the Focker–Planck typ

]

]t
r5

dU~x!

dx

]

]p
r2

p

m

]

]x
r1

b

m

]

]p S pr

1mkT
]

]p
r D . ~10!

It should be noted that in the derivation of this equation,
drag coefficientb and the temperatureT were introduced as
two separate characteristics of the medium, which, howe
does not rule out a possible temperature dependenceb(T).

The solution of the problem of the emergence of a p
ticle from the wellA of a potential reliefU(x) we are inter-
ested in~see Fig. 1a! is reduced to the search of a solution
Eq. ~10! satisfying the initial condition of the form
r(p,x,t)5const•d(p)d(x2xA). Considering the low-
temperature limit in whichkT!U0 , Kramers proved that the
temperature dependence of the average frequencyn of emer-
gence of the particle from the wellA through the barrierB
without taking into account the reverse process can be
scribed by an expression resembling in form the Arrhen
classical law for the rates of chemical reactions:

n5n0~b,T!expS 2
U0

kTD . ~11!

However, the preexponential factorn0(b,T) in this ex-
pression remains a complex function of the parametersb and
T. We can obtain explicitly only the asymptotic forms of th
function n0(b,T) in the limits of low (b→`) and high
(b→0) viscosity. In each of these cases, diffusion in t
two-dimensional phase space (p,x) can be reduced to a one
dimensional problem. For large values of the drag coe
cient, diffusion flow along the spatial coordinatex plays the
leading role, while the role of the effective diffusion coef
cientdx is played by a quantity inversely proportional to th
drag coefficientb:

dx5mkT/b.

In the case of small drag, the emergence of a part
from a well id determined by one-dimensional diffusio
along the energy coordinateI (E)5rpdx, where the integra-
tion is carried out along the contour of constant ene
E(p,x)5E ~I is the adiabatic invariant for undamped motio
of the particle in the potential wellA!. In this case, the role
of effective diffusion coefficientdI is played by a quantity
proportional to the drag coefficientb:

dI5
bkTI

m

dI

dE
.

Kramers also obtained an estimate for the character
value of the drag coefficientb0 separating the above
mentioned asymptotic forms:
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Here and below, we will use in addition to the barrier heig
U0 its differential characteristicsUA,B9 and the frequencies
nA,B of undamped motion of the particle near the bottom
the well and the top of the barrier, corresponding to the
characteristics:

UA,B9 5Ud2U~x!

dx2 U
x5xA ,xB

, nA,B5
1

2p S UA,B9

m D 1/2

. ~13!

Ultimately, Kramers proved that the dependen
n0(b,T) can be correctly described by a relatively simp
interpolation formula for any values of the viscosity of th
medium:

n0~b,T!

>H bU0 /~mkT!, b,b0 ;

nA$@11~b/~4pmnB!!2#1/22b/~4pmnB!%, b.b0 .
~14!

Thus, the theory predicts a nonmonotonic dependenc
the reaction rate~11! on the viscosity of the medium: th
linear increase in the preexponential factor in~11! for small
values of b,b0 is transformed into a broad peak in th
region b0,b,4pmnB . As the viscosity increases furthe
the preexponential factor decreases according to the lawn0

'2pmnAnBb21. The anomaly described by the upper lin
of formula ~14!, i.e., the increase in the reaction rate with t
viscosity of the medium, is a consequence of the spec
nature of diffusion of the mapping point along the ener
coordinate.

Concluding this section, let us consider a more comp
diffusion underlying many kinetic phenomena in crystals.
the physics of crystals, it is often necessary to describe m
roscopic diffusion flows for which the elementary process
activated transition of a particle through an individual barr
considered by Kramers is repeated many times in space~dif-
fusion of impurities, electrons, polarons, elements of a dis
cation line, etc. in a periodic potential relief of the cryst
lattice!. In such cases, the problem involves the calculat
of a macroscopic diffusion flux or macroscopic mean valu

of the particle displacementu5^x̄& and velocityu̇5^ ẋ̄& in a
potential of the form

U~x!5Up~x!2 f 0x, ~15!

whereUp(x)5Up(x1b) is a periodic~with periodb! lattice
potential andf 0 is a constant force applied to the partic
~Fig. 1b!. The operation of averaginĝ...& presumes the
evaluation of average values of the relevant quantities o
time intervals much longer than the timen21 of emergence
of a particle from an individual well. According to the wel
known concepts of the diffusion theory in crystals,16 a mac-
roscopic diffusion flux is characterized by the spatial diff
sion coefficientD, which is connected~in the case of one-
dimensional processes! with lengthb and frequencyn of an
elementary jump through the relationD5b2n. In the linear
approximation (b f0!kT), the average velocityu̇ of diffu-
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the constant forcef 0 , is determined by the Einstei
relations16,17

bdu̇5 f 0 , bd5
kT

D
5

kT

b2n
. ~16!

Relations~16! are also valid in the case when a partic
experiences the action of a periodic~in time! force f (t) if the
characteristic frequency of force variation remains sma
than the frequencyn of diffusion jumps.

It should be noted that in problems of the type und
investigation, the role of the medium the interaction w
which is determined by the particle drag coefficientb is
played by the ensemble of quasiparticles~phonons, conduc-
tion electrons, etc.! in the crystal, which are scattered at
particle or pseudoparticle undergoing diffusion. Hencefo
we will call this phenomenon the dynamic drag~or first-
order damping!. At the same time, relations~16! show that
the steady-state diffusion drift of a particle in the crys
relief under the action of the constant forcef 0 is also for-
mally equivalent to its motion in a viscous medium with t
drag coefficientbd . This drag describes actual dissipation
mechanical energyf 0x of the particle, accompanying ran
dom activated wandering in the lattice; such a process ca
called diffusive drag~or second-order damping!. Formulas
~11!, ~14!, and ~16! describe the relation between the diff
sive (bd) and dynamic~b! drag of the particle:

bd5
kT

b2n0~b,T!
expS U0

kTD . ~17!

Such a relation is not universal: for a large dynamic visc
ity, bd is proportional tob, while in the opposite limiting
casebd is inversely proportional tob. There also exists a
large interval ofb values for whichn0'na , and the value of
bd is virtually independent ofb. It should also be noted tha
the temperature dependences of the dynamicb(T) and dif-
fusivebd(T) viscosities differ qualitatively. As a rule,b(T)
decreases with temperature: the phonon viscosity as a r
of the decrease in the density of thermal phonons, and e
tron viscosity in the superconductor due to Cooper pairing
electrons. On the contrary,bd(T) increases exponentiall
upon cooling in accordance with~17!, and the temperature
dependenceb(T) can only suppress or enhance this increa

2. KRAMER–BAUER PEAK

Kramer and Bauer,10 and subsequently a number of oth
authors11–15who studied experimentally the acoustic prop
ties of niobium in the liquid helium temperature range, o
served an absorption peak of the relaxation type~Fig. 2!.
They used in experiments a wide range of acoustic and
trasonic frequencies from 2•104 to 7•107 Hz and observed a
systematic displacement of the peak temperatureTp towards
high temperatures upon an increase in the vibrational
quency~see Table I!.

The measurements were mainly made on samples in
superconducting state since the peak was localized be
Tc.9.3 K in all cases. In some cases, the samples w
transformed into the normal state durin
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measurements10,12,14,15by applying a magnetic field of a su
percritical magnitudeH.Hc2.5 kOe, which resulted in a
displacement of the peak towards low temperatures~see Fig.
2 and Table I!. The presence of the peak and its reaction
the superconducting transition can also explain18 the anoma-
lies in the field dependences of acoustic absorption in Nb

FIG. 2. Low-temperature peaks of acoustic relaxation in Nb in the nor
~d! and superconducting~s! states for various ultrasonic frequencies a
cording to data obtained in Refs. 10, 12, 15.

TABLE I. Frequency dependence of the Kramer–Bauer peak temperatu
the normal and superconducting states.

Cyclic frequency
v, s21

Peak temperatureTp , K

Referencen-state s-state

1.3•105 – 2.62 13
4.6•105 – 3.14 13
5.0•105 2.08 3.24 10
5.3•105 2.05 3.15 14, 15
1.5•106 2.37 3.75 10
6.3•107 – 6.3 11
1.9•108 4.7 7 12
1.9•108 – 7.15 11
3.1•108 – 7.5 11
4.4•108 – 7.8 11
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Refs. 18–21.
It was found in Refs. 10–15 that the peak is affected

only by the superconducting transition, but also some ot
factors characterizing the structural state of the sam
~single crystals, polycrystals, grain size, impurity compo
tion, and preliminary plastic deformation! as well as the ex-
perimental conditions~the rate of sample cooling to helium
temperatures!. In Ref. 15 devoted to a generalization of va
ous experimental observations, we noted the following m
significant peculiarities in the acoustic absorption in Nb
helium temperatures:

1. All the absorption peaks listed in Table I have t
same physical origin and are due to the action o
system of identical thermally activated relaxators
Nb samples.

2. The linear response of relaxators to acoustic exc
tion of the samples corresponds to the model o
standard linear body with a single characteristic f
quency of relaxation.

3. The temperature dependence of the characteristic
laxation frequency is described qualitatively by t
Arrhenius relation~11!, and the empirical values o
the parameters appearing in this relation have val
of the order of U0;(2 – 3)•1023 eV and n0

;1010– 1011 s21.
4. The transition of the samples from the normal to t

superconducting state leads to a considerable
crease in the relaxation frequency, which is forma
equivalent to an increase in the activation energy
dU;1•1023 eV.

5. The relaxators responsible for the Kramer–Ba
peak are formed in the samples as a result of actio
thermoelastic stresses upon rapid cooling; in the c
of a slow cooling, no peak is observed.

6. An increase in the impurity concentration in th
samples facilitates the accumulation of relaxat
upon rapid cooling.

Having analyzed all possible mechanisms of the em
gence of above singularities critically, we proposed15 a
simple dislocation model for their explanation. This mode
based on electron microscopic data on the dislocation st
ture of bcc metals,2 on the concepts of dislocation kinks e
isting in the theory of dislocations and on their dynam
properties,3,4,9 and on the results of computer simulation
the motion of an individual kink in bcc metals throug
second-order Peierls barriers.22 The basic concepts of th
model are illustrated in Figs. 3 and 4. We assume that
initial Nb samples contain a mesh of screw dislocations
the slip system̂111&$011%, consisting of rectilinear segmen
LN lying in the valleys of the first-order Peierls relief~Fig.
3a!. In the case of rapid cooling of the sample, thermoela
stresses bend the segments between the nodes of the
and form a system of kinks at them~Fig. 3b!. After tempera-
ture stabilization, thermoelastic stresses disappear, but k
are preserved at dislocations owing to the drag effect of
purities which hamper the returning of the segments to
initial linear configurations~Fig. 3c!. Under the action of
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small periodic mechanical stresses accompanying acou
vibration of the sample, kinks move along the dislocatio
overcoming second-order Peierls barriersUp(x) ~Fig. 4b!.
The contribution from kink chainsLi bounded by impurity
atoms ~Fig. 4c! to the response of the sample to acous
excitation becomes resonant under certain condition, cau
the formation of the absorption peak. The shape of the p
and its position on the temperature axis are determined
the temperature dependence of the mobility of kinks in
relief Up(x).

3. INTERACTION OF ACOUSTIC VIBRATIONS WITH
DISLOCATION KINKS

An individual kink connecting two linear segments of
dislocation line, which are located in neighboring valleys
the Peierls relief~Fig. 4a!, is characterized by the widthlk

and effective massmk . In the simple case of a sinusoida
relief, these quantities are defined as23

lk5aS 2C

pabsP
D 1/2

, mk5
4aM

p2 S pabsP

2C D 1/2

, ~18!

FIG. 3. Dislocation model15 used for interpreting the Kramer–Bauer pea
various configurations of a dislocation line~solid curve! in a first-order
Peierls relief~before~a!, during ~b! and after rapid cooling of the sample
~c!; dashed lines show minima of the relief, crosses indicate the node
dislocation mesh, and dark circles correspond to impurity atoms.

FIG. 4. Kinks on a dislocation line15: and individual kink and its geometri-
cal parameters~a!, Second-order Peierls relief for a kink~b!, and a kink
chain bounded by impurity atoms~d! ~c!.
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effective mass of the dislocation,sp the Peierls stress,a the
Peierls relief period, andb the magnitude of the Burger
vector of the dislocation. The one-dimensional motion of
kink along the peak of the relief~the x-axis in Fig. 4a! is
equivalent to the motion of a particle of massmk is we
choose the coordinatexk of the center of the kink as th
coordinate of such a pseudoparticle. The kinks moves in
periodic second-order potentialUP(x)5UP(x1b) of the
Peierls relief~Fig. 4b!, and the total potential energy of th
kink in the presence of a shear stresss(x,t) in the disloca-
tion slip plane has the form

Up~x,t !5UP~x!2abE s~x,t !dx. ~19!

The role of the thermostat-medium in which the motion
the kink takes place is played by the system of conduc
electrons and the system of thermal phonons. The scatte
of electrons and phonons at a kink moving at a cons

average velocityẋ̄5Vk5const leads to the emergence of t
viscous drag forcebVk ,4–6 and the drag coefficient is th
sum of the electron and phonon components.

Let us consider the interaction of the acoustic field w
an individual kink chainLi bounded by impurity atoms~Fig.
4c!. For a large lengthLN of the initial segment and not ver
high concentrations of impuritiesb/LN!c!b/l, the seg-
mentsLi contain a large numberNi of kinks separated by
linear segmentsl 5Li /Ni11@lk . The kinks interact with
one another through long-range forces of the Coulomb ty3

and hence form equidistant chainsXn5nl (n51,2,...,Ni) in
the absence of stresses (s50). If the shear stress compone
s(x,t)5s0(x) exp(ivt) acting in the region of location o
the chain~v is the cyclic frequency of vibrations! has a small
amplitudeab2us0u!U0 , the chain performs small forced v
brations in which an individual kink with numbern performs
diffusion drift in the relief ~19!, being displaced from the
equilibrium positionXn by uxkn

2 2Xnu>b.
Under real experimental conditions,v<108 s21!nA ,

and the acoustic wavelength is 2ps/v>1022 cm@Li ~s is
the velocity of sound!. These inequalities allow us to assum
that the stresss0 is uniform over the lengthLi . Under the
action of a uniform forcef s5abs0 exp(ivt) varying slowly
with time, individual kinks perform diffusive drift in the re
lief UP(x) considered at the end of Sec. 1. Such a mot
can be described conveniently by using average displ
mentsun(t)5^xkn

2 &2Xn which satisfy the inequalities ma
uunu@b anduun112unu! l . In the case of diffusive drift of a
kink, the average force of inertiamkün;mkv

2un is negligi-
bly small as compared to the diffusive drag forcebdu̇n

;vbdun(mkv!bd). For this reason, the collective move
ment of a kink chain is determined by the balance of d
forcesbdu̇n , the forcef nn of interaction between kinks, an
the driving forcef s :

bdu̇n1(
n8

f nn85abs0eivt. ~20!

It was shown in the monograph3 that in the case of smal
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f nn8 can be approximated by the formula

(
n8

f nn8>
p2a2Ck

lL
i
2 un ,

whereCk is the effective linear tensile force in the kink cha
~by the order of magnitude, 2Ck;2C;Gb2, whereG is the
shear modulus!. Consequently, the kink chain under the a
tion of a varying stress performs forced vibrations equival
to the vibrations of an overdamped oscillator:

un~ t !5
s0bl3~Ni11!2

p2aCk

eivt

11 ivtdi
,

tdi5
bdl 3~Ni11!2

p2a2Ck
. ~21!

Using formula~21!, we can easily calculate the energywi

dissipated by the kink chainLi over the period of vibrations
2p/v:

wi5 (
n51

Ni
2p/v

E
0
dt Re f s~ t !Re u̇n~ t !

5
s0

2b2l 3Ni~Ni11!2

pCk

vtdi

11v2tdi
2 . ~22!

In real samples, the parametersNi and l are random
quantities. Let us introduce the average numberrk of dislo-
cation kinks per unit volume and the dimensionless para
eter

k5S l

aD 3

~Ni11!25F Li
3

a3~Ni11!
G , ~23!

where the bar indicates statistical averaging over the
semble of kinks. In addition, the sample contains seve
equivalent slip systems with dislocations of the type un
investigation, and hence we can characterize their interac
with an individual mode of elastic vibrations of the samp
by introducing the average orientational factorx defined by
the relation 2W0Mex5s0

2, whereMe is the elastic modulus
corresponding to the given vibrational mode andW0 the en-
ergy of vibrations averaged over the period. Calculating
mean energy dissipated in a unit volume of the sample
using formula~22!, we obtain the following expression fo
the logarithmic decrement of the individual vibration
mode:

d5
(Li

wi

2W0
5

xMeb
2a3krk

pCk

vtd

11v2td
2 , ~24!

td5
akbd

p2Ck
5

akkT

p2b2Ckn0~b,t !
expS U0

kTD . ~25!

While deriving the expression for the relaxation timetd , we
have used formula~17! for the diffusion drag coefficientbd .

Formulas~24! and ~25! provide an exhaustive descrip
tion of the contribution of dislocation kinks to the intern
friction of the sample. These formulas contain the parame
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sample volume as well as the parametersU0 and n0(b,T)
characterizing the interaction of an individual kink with th
second-order Peierls relief and quasiparticles~electrons and
phonons!. The temperature dependence of decrementd(T)
might acquire peaks located at the pointsTp(v) on the tem-
perature scale, which are defined by the equation

vtd~Tp!51. ~26!

In the cases when the frequencyn0(b,T) appearing in
formula ~25! strongly depends on the dynamic drag coe
cient b for kinks, the positionTp of absorption peaks on th
temperature axis also becomes sensitive to the value o
coefficientb and to the form of its temperature dependen

4. THEORY AND EXPERIMENT

According to the results of computer simulation of t
motion of a kink on a screw dislocation of the slip syste
^111&$011% in bcc metals, the typical heightsU0 of the
second-order Peierls barriers are of the order of 1023 eV.22

For such values of activation energy and reasonable va
of the parameters appearing in the preexponential facto
formula ~25!, the peak on the temperature dependence
decrement~24! falls in the region of helium temperature
The peak height

dm5d~Tp!5
xMeb

2a3krk

2pCk
~27!

is proportional to the parametersk andrk characterizing the
kink distribution in the sample. Thus, the model formulat
in Sec. 2 and formulas~24! and ~25! corresponding to it
provide a qualitative description for most of properties of t
Kramer–Bauer peak, which are listed in that section.
additional analysis is required only for the effect of displac
ment of the peak during a superconducting transition.

Analyzing Eq.~26! connecting the peak temperatureTp

with the vibrational frequencyv,15 we assumed that the de
pendence of relaxation timetd on the dynamic drag coeffi
cient b is insignificant and putn05nA in formula ~25!. In
this case, Eq.~26! can be written in the form

ln vTp52 ln a2
U0

kTp
, ~28!

a5
akk

p2b2CknA
. ~29!

A comparison of experimental results given in Table I w
formula ~28! is illustrated in Fig. 5. For the normal (n) state,
the position of the peak on the temperature axis is in g
agreement with formula~28!, but for the superconducting (s)
state the agreement is much worse. Besides, the slope
straight lines for the normal and superconducting states
fer considerably, which indicates~under the assumption
made above! the effect of the superconducting transition
the height of Peierls barriers for kinks:U0n.2.15 meV and
U0s.3.23 meV.

Here we will consider the possibility of another expl
nation of the effect of the superconducting transition of
Kramer-Bauer peak, that is based on an analysis of the
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pendencen0(b,T) of frequency in formula~25! on the elec-
tron drag coefficient for kinks, which decreases abrup
upon such a transition.5 According to the conclusions draw
by Kramers, a considerable dependence of freque
n0(b,T) on the coefficientb can be observed only whe
certain inequalities connecting the dynamic drag coeffici
b, the kink massmk , and the parameters of the reliefUp(x)
are satisfied~see formula~14!!. In order to obtain semiquan
titative estimates, we assume that the reliefUp(x) has a sinu-
soidal shape

Up~x!5
U0

2 S 12cos
2p

b
xD , ~30!

and estimate the barrier heights by using the values of
relief U0;(2 – 3)•1023 eV obtained from Fig. 5. We will
also use the standard estimates of the continual theor
dislocations, i.e., 2C;Gb2 and 2M;rb2 ~r is the density
of the crystal! and assume that the relationsp;1022G typi-
cal of most of bcc metals is satisfied for Nb. For the s
system in Nb under consideration,a53.331028 cm, b
52.931028 cm, G53.931011 dyne/cm2, and the Nb den-
sity r58.6 g/cm3. Using these estimates and formulas~12!,
~13!, and ~30!, we obtain the order-of-magnitude estimat
for several important parameters appearing in formula~14!:

mk;10223 g, nA5nB;531011 s21,

b0~T;5 K!;10212 g3s21. ~31!

Going over to the estimate of the drag coefficientb for
kinks, we note that elastic scattering of conduction electr
and thermal phonons at kinks plays the leading role in
dynamic drag of kinks in bcc metals in the helium tempe
ture region.4,5 Using the results presented in the reviews4,5

we can write the following expression to the total contrib
tion of electrons and phonons to the coefficientb at T
,10 K:

b5be1bph5
a

lk
FqeabpFnegn,s~T!1qph

\b

a3 S T

Q D 9/2G ;

FIG. 5. A comparison of experimental data~Table I! on the frequency
dependence of the Kramer–Bauer peak temperatureTp(v) with formula
~28!.15
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Here pF and ne are the Fermi momentum and the numb
density of conduction electrons respectively,gn,s(T) is a
function describing the change in the number of elect
excitations upon a transition of the metal from the norma
the superconducting state,D(T) the energy gap of the supe
conductor,Q the Debye temperature, andqe and qph are
numerical coefficients whose exact values are determine
details of scattering of electrons and phonons at the dislo
tion core. The available theories give only rough estima
for the coefficientsqe and qph ~with an order-of-magnitude
spread in values!: qe;1021 andqph;53105.

In the case of Nb,Q.275 K, pF.10219 g•cm/s, and
ne.1023 cm23. Using this values, we can easily find that t
electron component in the drag coefficient in the normal s
has the valueben;10213 g•s21 and is much larger than th
phonon componentbph,10214 g•s21 at temperaturesT
,10 K under consideration. In the superconducting state,
electron component of drag decreases abruptly~exponen-
tially! with temperature. The phonon component also
creases, but according to a power law. Consequently, t
exists a temperatureT0 below whichbes(T),bph(T). The
temperatureT0 is determined by the condition of equality o
the electron and phonon components of drag in the super
ducting state, which can be written in the form of the equ
tion

gs~T0!5qS T0

Q D 9/2

, q5
\qph

qepFnea
4 . ~33!

Unfortunately, the value of the parameterq can be estimated
only to within two orders of magnitude in view of a larg
indeterminacy in the parametersqph and qe : q;105– 107.
Taking into account this indeterminacy and using the va
of the gap width for NbD(0).1.531023 eV,24 we can eas-
ily obtain the estimateT0;(1 – 3)K.

The above analysis shows that for temperatures of in
est, the dynamic drag coefficients for kinks satisfies the
equalityb,b0 , and hence we must use the expression in
upper line of formula~14! for the frequency factorn0(b,T).
In the temperature rangeT0,T,Tc , the phonon componen
in formula ~32! can be neglected, which leads to the follow
ing expression for the relaxation timetd :

td~T!5
hT2

gn,s~T!
expS U0

kTD , ~34a!

h5
k2mkak

p2b2CkU0ben
. ~34b!

Formula~34a! provides a natural explanation for the e
fect of an increase of the activation energy for the Krame
Bauer peak upon a transition of Nb to the superconduc
state: at low temperatures,D(T)@kT, and the temperature
dependence of relaxation time in the superconducting s
acquired the form

td~T!>
hT2

2
expS U01D

kT D .

930 Low Temp. Phys. 23 (11), November 1997
r

n
o

by
a-
s

te

e

-
re

n-
-

e

r-
-
e

–
g

te

It should be noted that the order of magnitude of the quan
D corresponds to the activation energy jump determin
from the change in the slopes of the straight lines in Fig
However, in the present case, the effect is not associated
a change in the lattice parameters of Nb upon a superc
ducting transition, but is a consequence of the anomal
effect of viscosity on the Brownian movement of particl
~dislocation kinks in our case! predicted by Kramers.

The application of formula~34a! allows us to write Eq.
~26! defining the peak temperatureTp in the form

ln vTpn
2 52 ln h2

U0

kTpn
; ~35a!

for the normal state and

ln
vTps

2

gs~Tps!
52 ln h2

U0

kTps
, ~35b!

for the superconducting state. Figure 6 illustrates good ag
ment between formulas~35! and experimental results give
in Table I. It can be seen from the figure that the values ofTp

recorded experimentally in the normal (Tpn) and in the su-
perconducting (Tps) states lead to identical values of th
barrier heightU0.2.431023 eV and the parameterh.1.5
310212s•K22.

An important circumstance supporting the applicabil
of the above consideration to a description of the Kram
Bauer peak is the correlation of the temperaturesTps with the
magnitude and temperature dependence of the energy
D(T) of Nb, which are determined from independe
experiments.24

Using the empirical estimates of the parameters of
theory obtained above, the experimental values ofdm;104,
and formulas~27! and ~34b!, we can also obtain the order
of-magnitude estimates for the parameters characterizing
kink distribution in the samples: k;105 and rk

;1014 cm23.
Thus, the dislocation model described in Sec. 2 toget

with the Kramers theory of activated motion of a partic

FIG. 6. A comparison of experimental data~Table I! on the frequency
dependence of the Kramer–Bauer peak temperatureTp(v) with formulas
~35!. The values of the functiongs(T) are calculated by using the data o
the value of the gapD(T) for Nb, presented in the review in Ref. 24.
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dislocation drag provide a satisfactory semiquantitative
scription of all the peculiarities of the Kramer–Bauer pe
detected in experiments. It should be noted, however,
the pointTps52.62 K in Fig. 6 deviates noticeably from th
straight line described by Eq.~35b!. The most plausible rea
son behind such a deviation is apparently the role of
phonon component in the dynamic drag coefficient for kin
in the s-state, which increases upon cooling. In order to
scribe this deviation quantitatively, we must putq;107 in
Eq. ~33! and the corresponding value ofT0.3 K. However,
an unambiguous interpretation of this deviation requires
experimental detection of the peak in thes-state at lower
temperatures, which is possible only for vibrations with
cyclic frequency&104 s21.

Concluding this section, it is also appropriate to discu
the considerations25 concerning the possibility of the effec
of quantum properties of dislocation kinks on the propert
of the Kramer–Bauer peak. According to general laws
quantum statistics, there must be a characteristic tempera
Tq below which the diffusion of kinks in the reliefUP(x)
will be determined not only by the thermally activated tra
sition of kinks through the barriersU0 , but also by the pos-
sibility of under-the-barrier passage~quantum tunneling!. A
detailed discussion of tunneling of kinks through the barri
of the second-order Peierls relief and estimates of the t
peratureTq were given by Petukhov26:

kTq>
\

b S U0

2mk
D 1/2

5\nA . ~36!

According to conclusions drawn in Ref. 26, the diffusion
kinks atT.Tq is thermally activated, and a transition to th
purely quantum limit occurs atT,0.5Tq . In the temperature
interval (0.5-1)Tq , diffusion is determined by the joint ef
fect of quantum tunneling and thermal activation. Substit
ing the parameters of kink in Nb into~36! leads to the esti-
mate Tq;3 K. Consequently, we can expect a significa
influence of quantum effects on the Kramer–Bauer peak
experiments at frequenciesv,104 s21, for which the tem-
perature of the peak is shifted below 2 K. A theoretical d
scription of such effects should be based of a quantum a
log of the Kramers theory.

CONCLUSIONS

1. This research aims at theoretical interpretation of
acoustic absorption peak discovered for the first ti
by Kramer and Bauer,10 who studied niobium at liq-
uid helium temperatures, and observed later by so
other authors.11–15The main attention was paid to a
analysis of the most interesting peculiarity of th
peak, i.e., its shift towards low temperature upon
transition of Nb from the superconducting to the no
mal state, induced by a magnetic field.

2. The analysis is based on the model of resonant in
action of acoustic vibrations with kink chains
screw dislocations of the slip system̂111&$011%,
which was proposed by us earlier,15 and on the appli-
cation of the results obtained by Kramers,1 who de-
scribes the kinetics of a thermally activated em
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account of the force of viscous friction acting on
for describing kink diffusion in the lattice potentia
relief ~second-order Peierls relief!. When kinks move
along dislocations in a metal at low temperatures,
drag is mainly due to their interaction with condu
tion electrons. For this reason, a transition of t
metal to the superconducting state~as well as the re-
verse transition!, which changes significantly the vis
cosity of the electron gas, is also accompanied b
strong controllable change in the drag coefficients
kinks. This creates unique premises for experimen
verification of the conclusions of the Kramers theo
concerning the role of viscosity in activated motio
of particles.

3. The basic concepts of the Kramers theory are p
sented in this paper in the form convenient for app
cation to a description of diffusion of dislocatio
kinks. The main properties of the Kramer–Bau
peak recorded experimentally are systematized,
the data characterizing the dependence of the t
perature of the peak on the vibrational frequency
the normal and superconducting states are tabula

4. It is shown that the conditions for observing the no
trivial kinetic effect predicted by Kramers, i.e., th
increase in the diffusion mobility of particles with th
drag coefficients, are satisfied for kinks in Nb in th
helium temperature range. Owing to this effect, t
relaxation time~the characteristic diffusion time! for
dislocation kink chains in the superconducting state
much longer than in the normal state, which caus
the experimentally observed displacement of the d
location absorption peak towards low temperatu
upon a transition of Nb from the superconducting
the normal state.

5. According to the conclusions of the theory, the d
placement of the Kramer–Bauer peak as a result o
superconducting transition must correlate with t
temperature dependence of the energy gap of the
perconductor. The use of gap values obtained fr
independent experiments24 in the analysis of the
properties of the peak confirms these conclusio
This circumstance is a sound argument in favor of
adequacy of the theory and experiments.

6. A comparison of experimental data with the results
the theory makes it possible to obtain empirical es
mates for a number of parameters characteriz
kinks at dislocations of the system̂111&$011% in Nb:
the orders of magnitude of the kink mass, secon
order Peierls barrier height, electron and phonon d
coefficients for a kink, and the volume density
kinks.

7. An approximate estimate of the characteristic te
perature~2–3 K! below which kink diffusion in the
lattice relief in Nb can acquire quantum-mechanic
features is obtained. Quantum diffusion of kink
should be studied by acoustic spectroscopy meth
at vibrational frequencies of&104 Hz.
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SHORT NOTES

his
Hamiltonian formalism in the theory of quadruple magnet
A. A. Isayev

National Science Center ‘‘Kharkov Physicotechnical Institute,’’ 310108 Kharkov, Ukraine*
~Submitted April 18, 1997; revised June 5, 1997!
Fiz. Nizk. Temp.23, 1243–1246~November 1997!

Poisson brackets are obtained for dynamic variables of a quadrupole magnet, i.e., the spin
density and the matrix of the quadruple moments. The starting point for the analysis is the
derivation of the kinematic component of the Lagrangean of the system. Equations of
motion are derived, and the number of Goldstone and activation modes is determined for the
case when the energy functional is invariant to spin rotations. ©1997 American
Institute of Physics.@S1063-777X~97!01311-X#

1. POISSON BRACKETS FOR A QUADRUPLE MAGNET play a decisive role for determining the PB structure. For t
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The description of magnets in which tensor interactio1

~higher-order exchange interactions and one-ion anisotro!
exist along with ordinary spin-spin interactions necessita
the application of not only dipole~spin! degrees of freedom
but also multipole~quadrupole, octupole, etc.! degrees of
freedom.2 This is due to the fact that the replacement
tensor interactions by certain effective fields which can
expressed only through magnetization and the applicatio
uncoupling of the typê (si)m&→^si&m are possible only
when tensor interactions are weak. Even in the simple c
when the spinS51, the matrix of the quadruple momen
must be used along with the spin variable. Such dynam
which includes tensor degrees of freedom, can differ sign
cantly from the orientational dynamics for magnetization d
scribed by the Landau–Lifshitz equations.

This communication aims at the development of t
Hamilton approach to the theory of a quadrupole magn
The Hamilton approach is known to be an effective meth
for deriving nonlinear dynamic equations which take in
account the symmetry properties of the Hamiltoni
automatically.3 Being a phenomenological formalism, it
simpler and more clear from the physical point of view th
the microscopic approach which, as a rule, depends on
model used.2 The Hamilton approach is based on Poiss
brackets~PB! of dynamic variables of the system. In th
continual limit, the dynamic variables of a quadrupole ma
net include the spin densitysa(x) and the matrixf ab(x) of
the quadrupole moment. Poisson brackets can be obtain
several different ways.4 We shall follow the approach deve
oped in Ref. 5, according to which the form of the kinema
component of the Lagrangean of the system

Lk5E d3xFa~x;w!wa~x![E d3xLk~x!

~wa are dynamic variables andFa(x;w(x8)) is a certain
functional of the variableswa! and variations of dynamic
variables which leave the kinematic component invari
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reason, we shall consider the derivation of the functio
Lk(x) in the case of a quadrupole magnet.

In Ref. 6, the kinematic component of the Lagrange
for a magnet with complete breaking of symmetry relative
spin rotations was written in the form

LI k~x!52sa~x!va~x!, va5
1

2
«abgãgmȧmb , ~1!

where a id the real matrix of rotations in the spin spac
(aã51). Using the kinematic component~1!, we can obtain
PB for the variablessa(x) and aab(x). Differentiating the
condition of orthogonality of the matrixa with respect to
time, we obtain

ȧã1aa8 50. ~2!

Modifying the density of the kinematic componentLI k of the
Lagrangean taking into account the limitation~2!, we obtain

LI k→Lk5LI k1
1

2
f ab~ ȧã1aa8 !ab . ~3!

Here the quantitiesf ab play the role of Lagrangean multipli
ers~it will be shown below that the matrixf ab has the mean-
ing of the matrix of the quadrupole moment!. Assuming that
the matrix f ab is symmetric (f 5 f̃ ), we transform expres-
sion ~3! to the form

Lk5cab aba , ~4!

where

cab5S f ar2
1

2
«arn snDarb

21, f̃ 5 f . ~5!

Henceforth, we shall assume thata is the matrix of an arbi-
trary linear transformation. In fact, we extend the set of d
namic variables. A new set of variables corresponding to
density of the kinematic component~4! includes the spin
densitysa(x), the matrixaab(x) of an arbitrary linear trans-
formation, and the Lagrangean multipliersf ab(x). The PB
for the initial set of variablessa(x),aab(x) ~whereaab is the
rotation matrix! will form the subalgebra of PB for the ex
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tended set of variables. Also, the new set of variables will be
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used to obtain the subalgebra of PB corresponding to a q
rupole magnet.

The density of the kinematic component~4! has the stan-
dard form known from classical mechanics. Consequen
we can immediately write the PB for the variablesa andc:

$aab~x!,amn~x8!%5$cab~x!,cmn~x8!%50,

$aab~x!,cmn~x8!%5dandbmd~x2x8!. ~6!

For further analysis, it is convenient to introduce the ten
gab :

gab5can anb . ~7!

It follows from ~5! that in this case we have

gab5 f ab2
1

2
«abgsg .

In turn, the spin density can be expressed in terms of
antisymmetric component ofgab :

sa~x!5«abgggb
a ~x!, gmn

a [
1

2
~gmn2gnm!, ~8!

and the matrixf ab is expressed in terms of the symmetr
component ofgab :

f ab5gab
s , gab

s [
1

2
~gab1gba!. ~9!

Taking into account the definition~7! of the matrixgab and
formulas~6!, we can easily obtain the following algebra fo
the variablesaab(x) andgab(x):

$aab~x!,gmn~x8!%5dbmaan~x!d~x2x8!,

$gab~x!,gmn~x8!%5~gan~x!dbm2gmb~x!dan!d~x2x8!.
~10!

The variablessa(x) and f ab(x) are connected with the vari
ablesgab(x) through relations~8! and ~9!. Using these ex-
pressions and~10!, we can obtain PB for the dynamic var
ablessa(x), aab(x), and f ab(x):

$ f ab~x!, f mn~x8!%5
1

4
~«agndbm1«bgmdan1«bgndam

1«agmdbn!sg~x!d~x2x8!,

$sa~x!, f bg~x8!%5~«abr f gr~x!1«agr f br~x!!d~x2x8!,

$sa~x!,sb~x8!%5«abgsg~x!d~x2x8!, ~11!

$aab~x!,sm~x8!%5«bmraar~x!d~x2x8!,

$aab~x!,amn~x8!%50,

$aab~x!, f mn~x8!%5
1

2
~dbmaan~x!1dbnaam~x!!d~x2x8!.

~12!

The first three formulas in~11! define the subalgebra of th
dynamic variabless and f . We shall give a physical inter
pretation of this subalgebra, by replacing the dynamic v
ablessa and f ab by the operatorsŝa and f̂ ab and the PB
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general rules of quantum mechanics. Then relations~11! as-
sume the form

@ f̂ ab~x!, f̂ mn~x8!#5
i

4
~«agndbm1«bgmdan1«bgndam

1«agmdbn!ŝg~x!d~x2x8!,

@ ŝa~x!, f̂ bg~x8!#5 i ~«abr f̂ gr~x!1«agr f̂ br~x!!d~x2x8!,

@ ŝa~x!,ŝb~x8!#5 i«abgŝg~x!d~x2x8!.

We can easily explicate this algebra in the language of s
matrices corresponding to the spinS51@(sa)mn5 i«amn#,
namely,

f̂ ab5
1

2 S ŝaŝb1 ŝbŝa2
2

3
dabŝ2D . ~13!

Since f̂ ab is the operator of the quadrupole moment~see
Ref. 7!, we shall assume that the quantityf ab appearing in
formulas~11! is the matrix of the quadrupole moment of sp
S51, and Trf 5 f aa50 ~relation f aa50 together with sub-
algebra~11!!. Using the PB~11!, we obtain dynamic equa
tions for the quantitiessa and f ab :

ṡa~x!5«abg

dH

dsb~x!
sg~x!12«abr f mr~x!

dH

d f mb~x!
,

ḟ ab~x!5
1

2

dH

d f gn~x!
~dgb«nma1dan «gbm!sm~x!

1~«bgr f ar~x!1«agr f br~x!!
dH

dsg~x!
. ~14!

These equations describe ‘‘ideal hydrodynamics’’ of
quadrupole magnet and are valid in the low-temperature
gion (T!Tc), in which we can neglect relaxation process
It follows from Eqs.~14! that the main conditions25const
of the orientational dynamics is not satisfied for a quadrup
magnet in the general case. Instead, we have two new i
pendent conserved quantities

I 15Tr f 22
1

2
s2[Tr g2,

I 25Tr f 31
3

4
sa f absb[Tr g3, ~15!

whose PB with the variablessa and f ab are equal to zero.
Since the conservation of the quantitiesI 1 and I 2 is not as-
sociated with a specific structure of the Hamiltonian and
only due to the structure of PB~11!, relations~15! can be
regarded as kinematic constraints. For this reason, the n
ber of independent dynamic variables is actually equal
six8–10 and not to eight. From the general algebra~11! and
~12!, we can single out the subalgebra of dynamic variab
aab andsa ~the quantitiesf ab do not appear in this subalge
bra!, which is compatible with the additional conditionaã
51. This subalgebra determines the low-frequency dynam
of a many-sublattice magnet.11

It should be noted that quantum-mechanical dynamics
a quadrupole magnet with the spinS51 was studied by

934A. A. Isayev
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literature cited therein!. In the case of pure states, this d
namics can be described in terms of four independent v
ables. In the general case, the complete set of mean valu
eight operatorsŝa , f̂ ab forming the Lie algebra SU~3! and
taking into account two kinematic operator identities sho
be used.

2. SPECTRUM OF COLLECTIVE OSCILLATIONS

The calculation of the spectrum of collective oscillatio
involves the determination of the corresponding equilibriu
values of the spin densitys0 and quadrupole momentf 0 by
minimizing the energy functionalH(s, f ) followed by a lin-
earization of the dynamic equations~14! in the vicinity of the
obtained valuess0 and f 0. As a rule, this is a complicate
procedure. Here, we shall formulate a few symmetry con
erations which make it possible to draw general conclusi
concerning the form of possible oscillations in the system

Let us consider uniform spin rotations described by
matrix c, i.e.,

s→s85cs, f→ f 85c f c̃, ~16!

and assume that the energy functionalH(s, f ) is invariant to
transformations~16!:

H~s, f !5H~s8, f 8!. ~17!

If in this case the functionalH(s, f ) attains its minimum
value for s5s0 and f 5 f 0, the minimum is degenerate, th
degeneracy being described by the transformation

s0→s5cs0, f 0→ f 5c f0c̃. ~18!

The order parameter of a quadrupole magnet is represe
by the spin densitysa and the matrix of the quadrupole mo
ment f ab or, which is the same, by the traceless matrixgab ,
and is therefore eight-dimensional. According
Monastyrsky,12 the space of the order parameter as a ma
fold is a factor-space SO~3!/H, where SO~3! is the group of
three-dimensional rotations andH the subgroup of rotations
preservinggab

0 [ f ab
0 2(1/2)«abgsg

0:cg0c̃5g0. In addition
to the trivial identity transformation, the SO~3! group has a
nontrivial subgroup, viz., the continuous group of tw
dimensional rotations SO~2!. Consequently, the space of th
order parameter can be either the SO~3! group, or the sphere
S25SO~3!/SO~2!. The former case corresponds to a biax
quadrupole magnet, while the latter indicates the existenc
a certain preferred direction and corresponds to a unia
quadrupole magnet.

Let us first consider the former case. We assume that
energy functional has a minimum in the class of solutio
belonging to SO~3!. In this case, displacements of the po
of minimum can be of two types. First, these can be thr
dimensional displacements in a space tangential to the in
935 Low Temp. Phys. 23 (11), November 1997
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the minimum from the stationary SO~3! orbit, the three vi-
brational branches corresponding to these displacement
Goldstone branches. Second, there exist five types of
placements which pull the minimum from the SO~3! orbit; in
view of the existence of two kinematic constraints, on
three of these displacements are independent. These
placements correspond to three activation branches. T
for a biaxial quadrupole magnet with the energy function
invariant to spin rotations, we have three Goldstone a
three activation vibrational modes.

Let us now consider a uniaxial quadruple magnet. In t
case, the energy minimum belongs to the steady-stateS2

orbit, and there are two types of displacements in a sp
tangential to this orbit, corresponding to two Goldstone
brational branches. In addition, there are six displacemen
a space transverse to the steady-state orbit, which draw
minimum from theS2 orbit. Four of these displacements a
independent, which corresponds to four activation mod
Thus, two Goldstone and four activation vibrational branch
exist for a uniaxial quadrupole magnet.

It should be noted that a symmetry analysis similar
that considered above was used for describing and clas
ing intrinsic modes in theB-phase of3He ~Ref. 13! and in
nematic liquid crystals.14 In particular, Golo and Ketterson13

explained the ‘‘real squashing’’ of the mode (J521) in ex-
periments of propagation of zeroth sound in3He2B on the
basis of the theory of representations of the SO~3! group.

The author is grateful to S. V. Peletminsky and M. Y
Kovalevsky for fruitful discussions.

*E-mail: isayev@kipt.kharkov.ua
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The behavior of the paramagnetic susceptibility of a 2 D metal during transitions

between normal, pseudogap, and superconducting phases

V. P. Gusynin, V. M. Loktev, S. G. Shaparov

N. N. Bogoliubov Institute of Theoretical Physics, National Academy of Sciences of the Ukraine, 252143
Kiev, Ukraine*
~Submitted May 23, 1997; revised July 1, 1997!
Fiz. Nizk. Temp.23, 1247–1249~November 1997!

The paramagnetic susceptibility of a 2D metal with an arbitrary charge carrier density is
calculated. It is shown that the temperature dependence of the susceptibility displays a clearly
manifested nonmonotonisity upon a transition from the normal to an ‘‘abnormal’’~also
nonsuperconducting! phase whose one-particle spectrum contains a pseudogap. ©1997 American
Institute of Physics.@S1063-777X~97!01411-4#

1. Phenomena occurring in high-temperature supercon-netic correlation length in view of the fact that the CuO2
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ductors~HTS materials! upon a change in the concentratio
nf of mobile charge carriers~holes! in them remain vital
problems in solid state physics. Although the relation b
tween doping and magnetic, conducting, and supercond
ing properties of these compounds has been established
ably, the reasons behind the observed correlations rem
unclear. Essentially, the following main tendency should
mentioned: the lower the concentrationnf in cuprate (CuO2)
layers, the stronger the deviations in the properties of H
materials from the predictions of the theory of a norm
Fermi liquid on one hand and the BCS theory of superc
ductivity on the other hand. For this reason, the concept
underdoped and overdoped states~modes! in which the be-
havior of various HTS parameters differ qualitatively ha
been introduced and used widely~see the reviews in Refs
1–3 and Ref. 4!.

For example, a transition from the normal to the sup
conducting state in underdoped samples is accompanied
a decrease in the density of quasiparticle states which is
typical of the normal Fermi liquid. It is important that th
decrease starts long before the temperatureT attains its criti-
cal valueTc . The behavior of the heat capacity5 and the
ARPES spectrum6,7 confirm this effect directly. This de
crease is interpreted~see Ref. 4! as an opening of a
pseudogap in the electron spectrum of cuprates. Accordin
Pines,3 the reasons behind the emergence of the pseudo
form a key problem in the HTS theory.

At the same time, other characteristics~the NMR relax-
ation time and the Knight shift8! indicate that the uniform
magnetic susceptibilityx(T) of the normal phase decreas
upon cooling at a value ofT much higher thanTc , which
also contradicts the Fermi-liquid behavior according
which

x~T!5xPauli[
1

p
mB

2m

in the regionT.Tc ~heremB is the Bohr magneton andm
the effective mass of the carrier!. According to an alternative
point of view ~see reviews in Refs. 3, 9, and 10!, the main
changes occur not in the delocalized subsystem~charge car-
riers!, but in the localized subsystem~spins of Cu21 ions! in
which a spin gap can emerge upon a decrease in the m
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planes contain lattice site magnetic moments. Some crit
remarks concerning this hypothesis were formulated
Ref. 1.

It was proved recently11,12 ~by using a simple model of a
2D superconductor with an arbitrarynf) that a pseudogap in
the one-electron spectrum and the corresponding pseud
phase emerge in metallic systems with a lowered dimens
ality. In the approximation used, the pseudogap phase
formed self-consistently at a certain temperatureTr which
for all nf is higher thanTc ~[TBKT in the 2D case,TBKT

being the Berezinskii–Kosterlitz–Thouless temperature!.
This communication aims at the calculation of the pa

magnetic susceptibility~PMS! of a 2D metal undergoing a
transition from the normal to the pseudogap phase, and
to the superconducting phase~BKT in our case! with singlet
pairing. The unexpected result of this research was that
PMS clearly ‘‘perceives’’ the transition to the pseudog
~nonsuperconducting! phase, while the transition to the su
perconducting phase occurs smoothly.

2. The density of the HamiltonianH* for 2D fermions
in an external magnetic field1! has the form

H~x!52cs
1~x!S ¹2

2m
1m Dcs~x!

2Vc↑
1~x!c↓

1~x!c↓~x!c↑~x!

2mBH@c↑
1~x!c↑~x!2c↓

1~x!c↓~x!#, ~1!

where all notations are the same as in Ref. 11.
Without considering the details of calculations~which

are virtually the same as in Ref. 11!, we note that, since the
field term in ~1! has a diagonal form in spin indices, th
general expressions for the statistical sumZ and the thermo-
dynamic potentialV preserve their form, the only differenc
being that the one-particle Green’s function through wh
these quantities are defined becomes a function of the fi

G~ ivn ,k!5
~ ivn1mBH ! Î 1t3j~k!2t1r

~ ivn1mBH !22j2~k!2r2 eivnt3d,

d→10. ~2!

936110936-02$10.00 © 1997 American Institute of Physics
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Thus,V is also a function ofH, which allows us to calculate
directly the required PMS by using the well-known relatio

x~T!5
1

v
]2V

]H2U
H→0

. ~3!

The final expression for~3! taking into account~2! is simple
and has the form

x~T!5
1

2
xPauliE

2m/2T

`

dx cosh22Ax21r2/4T2. ~4!

It can easily be verified that if the modulus of the ord
parameterr50 ~normal phase!, integral ~4! can easily be
evaluated, and the PMS acquires the form typical for an id
2D Fermi gas13:

x~T!5xPauli@11exp~2m/T!#21.

The results of numerical solution of the self-consiste
system of equations forr, m, andTBKT ~and also forTr on
the critical liner→0!, which was derived in Ref. 11, make
possible to calculatex(T) directly by using~4! ~see Fig. 1!.
It can be seen that, if the PMS has a sharp kink atT5Tr , the
point of transition to the superconducting state on thex(T)
curve is actually not manifested. Such a behavior co
sponds qualitatively to the situation observed for HTS ma
rials ~see Refs. 3 and 14!, in which the uniform PMS~as well
as other observable parameters! experiences the most notice
able change at a certain temperatureT* .Tc . If we assume
that this temperature corresponds to the formation o
pseudogap~or r, which is actually the same!, we must iden-
tify Tr andT* . Thus, the temperatureT* introduced empiri-
cally by some authors acquires a clear physical meaning

The curves depicted in Fig. 1 correspond to the disreg
of fluctuations ofr and vortex configurations of the angleu,
which is more or less justified only for phases in whi
rÞ0. However, in the normal phase the fluctuations of
order parameter~and not only of its phase! are significant
even for relatively highnf and can make a contribution to th
PMS ~which is also negative! in the regionT.Tr .15 In the

FIG. 1. Temperature dependence of PMS for different values ofnf deter-
mined by the value of the ratio«F /«b ~«b is the energy of a two-particle
bound state1,11!: 0.2 ~curve 1!, 0.6 ~curve 2!, 1 ~curve 3!, 5 ~curve 4!, 10
~curve5!, and 20~curve6!.
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size the difference in the behavior of the PMS at the poi
TBKT ~i.e., Tc! andTr .

Moreover, our calculations proved~see Fig. 1! that the
higher the value ofnf , the relatively smaller the width of the
region of the pseudogap phase, which is also in satisfac
agreement with the pattern following from th
experiments.4,14 As regards the thermodynamics of the pha
transition from the normal to the pseudogap phase, it mus
studied only by taking into account the damping of the ex
tations present in the system, which requires a special an
sis ~naturally, including a more complete analysis of the co
tribution from fluctuations!. It should also be borne in mind
that this transition does not lower the symmetry sponta
ously and hence cannot be regarded as a true phase tr
tion. The only thing that can be stated is that the value or
starts increasing rapidly at the pointTr ~if T,Tr!, while
above this temperature the value ofr decreases quite slowly

However, the potentialities of the simple model used
obtaining the results described above should not be ove
timated, although these results are in good agreement
the conclusions drawn on the basis of experiments. T
model not only disregards the three-dimensional nature
real HTS materials~this effect is weak, but is essential fo
Tc!, but also ignores such an important circumstance as
presence of localized spins which strongly interact w
charge carriers1 and make their own significant contributio
to the PMS, not to mention the possible formation~see Ref.
1! of an anisotropic order parameter. However, these~and
some other! factors cannot be studied simultaneously a
consistently so far.

*E-mail: vloktev@gluk.apc.org
1!The direction of the field is insignificant for subsequent calculation

should be noted, however, that if the field lies in the plane of motion
fermions, the diamagnetic contribution to the total magnetic susceptib
is ruled out automatically.
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Temperature dependence of the dislocation component of the modulus defect in

n of
deformed bcc metals
P. P. Pal-Val

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of the
Ukraine, 310164 Kharkov, Ukraine*

~Submitted July 31, 1997!
Fiz. Nizk. Temp.23, 1250–1255~November 1997!

Experimental data on temperature dependences of the dislocation component of the modulus
defect are obtained for some bcc metals~Mo, Fe, and Nb! of different purity and orientation.
Measurements are made at frequenciesv/2p.90 kHz in the temperature range 6–300 K. It
is found that the modulus defect in Mo and Fe single crystals increases monotonically with
temperature starting from 6 K. The increase in the modulus defect becomes stronger in
temperature intervals in which relaxation peaks were observed earlier on the temperature
dependences of absorption. It is shown that such a behavior of the modulus defect is due to some
thermally activated dislocation processes with a broad distribution of activation parameters,
which occur in the given temperature range. In contrast to Mo and Fe, Nb shows no temperature
dependence of the modulus defect up to 170–200 K, but at higher temperatures it increases
rapidly. The existence of a broad temperature region in which the modulus defect is constant
indicates that thermally activated processes with a relaxation time close to the reciprocal
cyclic frequency 1/v are either absent or suppressed considerably in this temperature range.
© 1997 American Institute of Physics.@S1063-777X~97!01511-9#
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The total strain in a mechanically loaded real crysta
the sum of the elastic and inelastic components. The inela
component is determined to a considerable extent by the
bility of structural defects~above all, dislocations! contained
in the crystal. The main difference between the elastic
inelastic strain components is that elastic deformation occ
‘‘instantaneously,’’ while inelastic deformation is a functio
of time. This is due to a certain relaxation timet character-
izing the mobility of crystal structure defects. By definitio
the elastic modulus is the ratio of the applied stress to
total strain of the crystal. In view of the presence of t
relaxing strain component, we distinguish between two li
iting values of elastic moduli: unrelaxed modulusEU ~i.e.,
the elastic modulus at the instant of application of a lo
when the inelastic component of strain is zero!, and relaxed
modulusER ~i.e., the modulus measured in a time interv
exceedingt considerably, when the inelastic strain has t
maximum value!. The quantity (EU2ER)/EU[D is known
as the maximum defect of modulus. If we apply a perio
load of frequencyv to the crystal, the dynamic elastic mod
lus measured in experiments will have an intermediate va
ER,E,EU , i.e., a certain intermediate defect of modul
DE/E will be observed. In the approximation of a line
standard rigid body, this quantity can be expressed in
form ~see, for example, Ref. 1!

DE

E
[

EU2E

EU
5D

1

11v2t2 . ~1!

The value ofD is determined by the number of micro
scopic relaxators of various types and by their individu
contribution to inelastic deformation under given experime
tal conditions, in particular, at a given temperature. In
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contributions from different microrelaxators, and a spec
choice of experimental conditions is required for the obje
of interest to make the dominating contributions. This pro
lem has a relatively simple solution when we analyze
dislocation contribution to dynamic moduli. At first, tho
oughly annealed samples are investigated, which are su
quently subjected to plastic deformation, and repeated m
surements are made. On the contrary, in other experim
the deformed samples are studied first, and then dislocat
contained in them are fined by irradiation or annealing.
deformation is carried out mainly due to slip, the change
elastic moduli can be attributed to changes in the disloca
structure of the crystals, i.e., the creation of new dislocati
and untrapping of the initial dislocations. To our knowledg
the authors of all publications in this field assumed~explic-
itly or implicitly ! in an analysis of experimental data that t
dislocation contribution to inelastic strain in annealed~or
irradiated! samples is equal to zero. In this case, formula~1!
can be written in the form

S DE

E D
d

>
E02E«

E0
5Dd

1

11v2td
2 , ~2!

where E0 is the measured dynamic elastic modulus in a
nealed~or irradiated! samples,E« the dynamic elastic modu
lus in deformed samples, and the subscriptd indicates the
dislocation nature of the relaxation under investigation.

Dynamic dislocation effects are usually described qu
tatively and quantitatively on the basis of the string model
dislocation proposed by Granato and Lu¨cke2 as well as the
kink model of dislocations developed by Seeger and sub
quently by other researchers.3–5 Several dislocation pro-
cesses making contributions to additional dislocatio

938110938-05$10.00 © 1997 American Institute of Physics



TABLE I. Basic parameters of samples.
Metal Orientation
Impurities,

1024 wt. % RRR

Residual
strain,

%
DE/E

~6 K, 10 K for Nb!
DE/E

~300 K!

^111& — 1.5•105 0.25 7.65•1025 7.2 •1024

0.019 7.41•1025 7.23•1024

Mo ^110& 7 1.2•105 0.24 1.16•1023 6.4 •1023

0.59 2.79•1023 2.13•1022

^941& — 0.95•105 0.34 9.25•1024 7.0 •1023

^100& ;2 1•104 0.65 1.14•1022 2.64•1022

Nb 10 2•103 15 1.33•1022 8.8 •1022

Polycrystal 500 60 5 7.32•1022 7.69•1022

^100& — 0.82 9.07•1024 6.73•1023

Fe ^941& ;1 — 0.84 9.95•1024 4.31•1023

2.76 4.39•1023 1.48•1022
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Dd and td , can be distinguished. The most important p
cesses in the low-temperature region are quasiviscous flo
dislocations,2,6,7 the motion of dislocation segments in th
force field of trapping centers,2,8,9 the formation of kink pairs
at dislocations,3 and migration of geometrical kinks along
dislocation.4,5,10,11 In most cases, an analysis of these p
cesses by acoustic methods was carried out by using
temperature and amplitude dependences of sound absorp
while similar dependences of dislocation modulus def
were practically not used for this purpose. Moreover, whil
large number of theoretical publications were devoted to
tailed interpretation of dislocation anomalies of sound
sorption, peculiarities in variation of the dislocation modul
defect were not studied sufficiently. The lack of informati
is especially noticeable in the temperature dependence
elastic modulus defect. In some cases, this led to errone
assumptions and even unjustified generalizations concer
the dislocation contribution to the modulus defect measu
in a wide temperature interval. An analysis of some of th
assumptions will be given below in the discussion of t
obtained experimental results.

In the present communication, we report on system
experimental results on the temperature dependences o
Young modulus defect in some bcc transition metals~Mo,
Fe, and Nb!, which were obtained in the temperature ran
6–300K. Typical features of these dependences are reve
and analyzed on the basis of available theoretical conc
concerning the dynamic behavior of dislocations in crysta

EXPERIMENT

The samples were cut from Mo, Fe, and Nb single cr
tals of various purity and orientation. The integral meas
of sample purity in the case of Mo and Nb single crystal w
the residual resistanceRRR5R300/R0 reduced and extrapo
lated to 0 K. The orientation of monocrystalline samples w
determined by using Laue diffraction patterns. For the s
comparison, one of Nb samples was polycrystalline with
average grain size smaller than 0.1 mm. The initial density
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eters of the samples under investigation are given in Tab
Acoustic measurements were made by the method

double compound vibrator.12 Longitudinal standing waves
with an oscillatory frequency;90 kHz were excited in the
samples. The application of resonant methods in an ana
of small variations in elastic moduli is most expedient sin
these methods can ensure a relative error in the meas
ments of the elastic modulus as small as 1028. We measured
the resonant frequency of forced vibrations of the samp
from which the corresponding velocity of sound and elas
moduli were determined. The temperature dependence
the resonant frequency of the samples were measured in
deformed and deformed samples in the temperature ra
6–300 K at a constant amplitude of ultrasonic strain«
;1027. Special measures was taken to carry out exp
ments in the amplitude-independent range; for this purpo
the amplitude dependences of the resonant frequency o
samples were measured preliminarily. As a rule, the am
tude ‘‘margin’’ of the beginning of amplitude dependen
was not smaller than strain. The dislocation componen
the modulus defect was determined from formula~2!. Tem-
perature dependences of decrement of vibrations~which
were reported earlier and are not presented here! were mea-
sured simultaneously.

The relation between acoustic properties of the samp
and dislocation processes was established by introdu
fresh dislocations in the samples by deforming them at ro
temperatures to residual plastic strain varying from 0.019
15% for different samples.

DISCUSSION OF THE RESULTS OF MEASUREMENTS

The results obtained for different metals differ notic
ably both qualitatively and quantitatively; for this reason, t
results will be described and analyzed separately.

Molybdenum

Figure 1~a! shows the temperature dependences ofDE/E
obtained for samples with different orientations at appro

939P. P. Pal-Val



FIG. 1. Temperature dependences of modulus defect for various orientations of samples and various preliminary plastic strains in Mo~a,b!, Fe ~c! ~curve1
describes the dependence (DE/E)(T) defined by formulas~2! and ~5! for the activation energyU50.071 eV and frequency of attemptsn055•1012 s21!,24

and Nb~d!.
mately the same level of a preliminary plastic deformation.
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The main feature of the (DE/E)/(T) curves is the monotonic
and considerable increase in the dislocation componen
modulus defect in the entire temperature range. The valu
DE/E at room temperature is almost an order of magnitu
larger than its value at 6 K~see Table I!. This peculiarity was
considered earlier by us13 and by Wire and Granato14 who
obtained results for NaCl and copper. Figure 1b shows
the observed effect is preserved upon an increase in res
plastic strain and in the absolute value ofDE/E, although
the relative change with temperature becomes slig
smaller. Wire and Granato14 assumed that the behavior o
DE/E in NaCl and Cu is the same and that it is due to
movement of dislocation segments in the Cottrell field
interaction with point defects, which increases statistica
with temperature. However, the proposed model, first, gi
an increase in modulus defect not more than by a facto
four, which does not correlate with most of our results, a
second, such a behavior of (DE/E)(T) is not universal~see
below!.

It should be noted that in some publications~see, for
example, Refs. 15, 16! the deformation modulus defect wa
used for obtaining the temperature dependenceB(T) of the
dislocation drag coefficient. It was assumed implicitly th
the entire deformation modulus defect is due to quasivisc

940 Low Temp. Phys. 23 (11), November 1997
of
of
e

at
ual

ly

e
f
y
s

of
d

t
s

Granato-Lu¨cke theory,2 has the following expression for th
modulus defect in the range of low vibrational frequenc
(vtdv!1) and amplitudes:

S DE

E D
v

'Dv5
48Gb2

p4C
VLL2, ~3!

whereG is the shear modulus,b the modulus of the Burgers
vector,C linear tension of dislocations,V the orientational
factor, L the dislocation density, andL the length of a dis-
location segment. SinceC'Gb2/2, the quasiviscous contri
bution to modulus defect must be virtually independent
temperature, which contradicts most of experimental resu
At high frequencies for whichvtdv;1, the modulus defec
associated with quasiviscous flow of dislocations must
crease upon an increase in temperature due to an increa
the dislocation drag coefficientB since, according to Granat
and Lücke,2 the relaxation timetdv increases with tempera
ture in this case:

tdv5
B~T!L2

p2C
. ~4!

To our knowledge, the decrease in the value ofDE/E with
increasing temperature was detected experimentally o
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nent of dislocation relaxation does not dominate as a rul
deformed crystals. Consequently, the use ofDE/E for deter-
mining B(T) and other characteristics of a viscous flow
dislocations requires at least a preliminary analysis of
temperature dependence of the modulus defect as, for
ample, in Ref. 15. It should also be borne in mind that
clearly manifested acoustic anomalies~absorption peaks
etc.! were observed on the temperature dependences of
rementd(T) in molybdenum in the range of temperatur
and plastic strains under investigation,18–20 in contrast to the
case when the behavior ofB(T) was studied, and thed(T)
curve had a relaxation peak. Kobelevet al.21 proposed an
algorithm for separating the quasiviscous and relaxa
components of sound absorption and modulus defect, w
includes information on the position of the relaxation pe
on the temperature axis as an essential element.

The behavior of the modulus defect in the helium te
perature range, in which a sharp increase in the value
DE/E gives way to a more gently sloping region abo
;25 K, is of considerable interest. The height of the ‘‘ste
formed in this case increases with preliminary plastic stra
This peculiarity correlates with a considerable increase in
decrement in this temperature region.12,18,19It will be shown
below that the presence of a ‘‘step’’ can indicate a stro
acoustic relaxation at temperatures below 10 K. Another
culiarity of this type, which is clearly manifested at relative
high strains, is observed near 150 K.

Iron

Temperature dependences of the modulus defect in h
purity Fe single crystals proved to be similar to a cert
extent to those obtained for molybdenum~see Fig. 1c!. At
temperatures 60–70 K, the (DE/E)(T) curves have a well-
defined inflection~‘‘step’’ !. As in the case of Mo, the tota
modulus defect and the height of the ‘‘step’’ increase w
preliminary plastic strain in the samples. The position of
‘‘step’’ and the variation of its height with preliminary strai
correlate with the presence of the so-calleda-peak on the
temperature dependences of the decrement near 55 K.
height of this peak increases with plastic strain, while
position on the temperature scale remains unchanged. It
proved in Refs. 21–23, that thea-peak in Fe is due to the
thermally activated formation of pairs of double kinks
‘non-screw’ dislocations. For thermally activated relaxati
processes, the relaxation timet th can be written in the form

t th5n0
21 exp~U/kT!, ~5!

wheren0 is the frequency of attempts,U the activation en-
ergy, andk the Boltzmann’s constant. In Ref. 22, the follow
ing activation parameters were obtained for theg-peak in Fe:
U.0.071 eV andn0.5•1012 s21. The solid curve in Fig. 1c
shows the dependence (DE/E)(T) obtained by formulas~2!
and ~5! taking into account the above activation paramete
It can be seen that formulas~2! and ~5! predict a much nar-
rower temperature region of transition from a nonrelaxed
relaxed state than that observed in experiments. Moreo
the increase inDE/E with temperature continues after th
transition also, although this increase is slower than in
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deformation defects responsible for relaxation have a w
distribution of activation parameters, and the end of one
thermally activated relaxation processes extended on
temperature scale in most cases overlaps with the exten
beginning of the next process corresponding to a higher t
perature. In this way, a continuous spectrum of mechan
relaxations is formed. The increment of intensities of the
relaxations increases considerably forvtd→1, but is not
equal exactly to zero in any case. This explains the conti
ous increase in the deformation modulus defect in Mo a
Fe.

Niobium

The experimental results obtained in Nb single cryst
and polycrystals differ considerably from the results for M
and Fe described above. The dependences (DE/E)(T) pre-
sented in Fig. 1d have extended segments in the l
temperature region~from 10 to;200 K!, in which the tem-
perature dependence of the modulus defect is utterly ab
in spite of considerable value ofDE/E after plastic deforma-
tion. This means that thermally activated relaxation p
cesses in Nb in the temperature range;10– 200 K,1! which
are connected with deformation defects and have a typ
relaxation time of the order of 1/v, are either absent or sup
pressed to a considerable extent. A sharp increase in
value of DE/E in single crystals at higher temperature
which correlates with the acoustic absorption peak in t
temperature range as in the case of Mo and Fe, indicates
emergence of such a process in the high-temperature re
of the temperature range under investigation.

CONCLUSIONS

1. Single crystals of Mo and Fe display a monoton
increase in the dislocation component of the modulus de
in the temperature range 6–300 K at ultrasonic frequen
;90 kHz, indicating the presence of a large number of th
mally activated microscopic relaxators~trapped dislocation
segments and kink pairs! with a wide spectrum of activation
parameters. This can be, for example, due to a distributio
dislocation segments over length and/or a change of this
tribution with temperature.

2. Niobium single crystals and polycrystals are char
terized by the extended (;10– 200 K) segment on which th
modulus defect is independent of temperature. In all pr
ability, thermally activated processes with a relaxation tim
close to the reciprocal cyclic frequency 1/v of vibrations are
either absent, or suppressed significantly in this tempera
range.

3. In temperature regions where the increment of
modulus defect increases abruptly~i.e., a ‘‘step’’ is formed
on the (DE/E)(T) curves!, temperature dependences
sound absorption have relaxation peaks. The ‘‘step’’
blurred in temperature more strongly than predicted by
rheological model of a ‘‘standard linear rigid body’’, whic
also points to a wide distribution of activation parameters
corresponding relaxation processes.
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LETTERS TO THE EDITOR

i-
Negative thermal expansion of fullerite C 60 at liquid helium temperatures

A. N. Aleksandrovskii, V. B. Esel’son, V. G. Manzhelii, and B. G. Udovidchenko

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine,
47, Lenin Ave., 310164, Kharkov, Ukraine1

A. V. Soldatov and B. Sundqvist

Umea University, Department of Experimental Physics, 90187 Umea, Sweden2

~Received August 8 1997!
Fiz. Nizk. Temp.23, 1256–1260~November 1997!

The thermal expansion of fullerite C60 has been measured in the temperature range 2–9 K. A
compacted fullerite sample with a diameter of about 6 mm and height of 2.4 mm was
used. It was found that at temperatures below;3.4 K the linear thermal expansion coefficient
becomes negative. At temperatures above 5 K our results are in good agreement with the
available literature data. A qualitative explanation of the results is proposed. ©1997 American
Institute of Physics.@S1063-777X~97!01611-3#

A considerable body of data already exists on the physi-
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cal properties of fullerites.Regarding the thermal expan
sion, however, no data yet exist on the thermal expansio
C60 and other fullerites at temperatures below 5 K~Ref. 2!,
although one may expect that at liquid helium temperatu
there are peculiarities typical of orientational glasses in
behavior of the thermal expansion of C60. In this paper we
report the results of measurements of the thermal expan
of C60 carried out in the temperature range 2–9 K. Since60

has a cubic lattice, its thermal expansion is isotropic a
fully described by a single thermal expansion coefficient
is therefore not necessary to use single crystals in ther
expansion studies.

The sublimated C60 powder used in our experiment
sample preparation was supplied by Term USA, Berke
CA, and had a nominal purity of better than 99.98%. N
traces of solvents were found by Raman analysis within
accuracy~0.1% by mass!. Room-temperature powder x-ra
diffraction pattern of the material displayed sharp peaks fr
fcc structure (a514.13 Å). In an atmosphere of dry argo
the C60 powder was loaded in a small piston-cylinder dev
used for the sample preparation. After subsequent comp
ing of the powder at about 1 GPa, the sample~pellet of 6 mm
in diameter and about 2.4 mm in height! was immediately
transferred into a glass tube and dried under dyna
vacuum 1026 Torr for about 16 h. The compacting proc
dure was done in air and did not exceed 15 min. Finally,
sample was sealed in vacuum 1026, shielded from light, and
kept in that state for 3 months until the beginning of dila
metric measurements. Before mounting the sample, the g
cell containing the sample was opened in argon atmosp
at excessive pressure of about 200 Torr. During insertion
the sample into the measuring cell of the dilatometer,
sample was exposed to air for no more than 20 min and t
was evacuated. During the measurements the vacuum in
dilatometer cell was maintained at the level of 1026 Torr.

The measurements of the linear thermal expansion w
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ences of Ukraine by using a capacitive dilatometer,which
was specially modified for the measurements on C60. The
resolution of the dilatometer was 2•1029 cm. The sample
was transported to Kharkov in a vacuum glass cell shiel
from light and was held in a high vacuum during the me
surements.

The dilatometer was constructed in such a way that
its elements capable of affecting the measured thermal
pansion of the sample due to their own thermal expans
were held at constant temperature in a liquid helium ba
The temperature of the sample was measured by a refer
germanium resistance thermometer and a differential th
mocouple. Since the sample was in a vacuum chambe
was well insulated thermally. Figure 1 shows a schema
drawing of the measuring cell of the dilatometer. A therm
metric block containing the sample thermometer, a thermo
eter to control the temperature, and a sample heater w
mounted on the objective table~4! of the dilatometer with
which a good thermal contact was established. The fulle
sample studied~7! was also located on this table. The tem
perature difference between the upper and lower parts of
sample was measured by a differential thermocouple~gold-
iron alloy versus copper!, which measured the temperatu
difference between the objective table~4! of the dilatometer
and a fine aluminum foil gasket~3! 0.02 mm thick and a 7
mm wide, which is located between the upper part of
sample and a sapphire hemisphere~6!. Thermal connections
between the objective table and the structural elements o
dilatometer and those with the displacement gauge w
made by sapphire-sapphire point contacts. Because of
hardness and thermal conductivity of single-crystal sapph
such contacts were found to perform very well
dilatometers.4,5 According to the data of Carr and Swenson4

the thermal expansion of a sapphire single crystal along
direction making a 60° angle with respect to the hexago
axis isa51.2T2.2

•10211 K21 in the temperature range unde

943110943-04$10.00 © 1997 American Institute of Physics
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consideration. For the direction along the axis this magnit
is probably even smaller since at room temperature the lin
thermal expansion of sapphire along the hexagonal axis i
order of magnitude smaller than that in the basal plan6

Therefore, in order to have a minimal thermal expansion
sapphire was cut from a single crystal of artificial sapphire
such a way that the direction along which thermal expans
measurements of the studied samples were made coinc
with the direction of the hexagonal axis of the sapphire cr
tals. It should be noted that since we did not know the t
contribution of the sapphire and the aluminum foil to t
results of thermal expansion measurements of C60, we made
additional studies to determine this contribution. From
data obtained by us it was found that this contribution w
smaller than the experimental resolution of our setup in
whole range of temperatures studied.

Temperatures below 4.2 K were obtained by pump
out liquid helium into a small container which was in the
mal contact with the sample and by continuously refilling
by using the capillary method of DeLonget al.7 The elonga-
tion of the sample was measured by a two-terminal cap
tive gauge connected so as to determine the frequency
tunnel diode oscillator circuit. The block containing the c
pacitive displacement gauge and the tunnel diode oscill
were also placed in a liquid helium bath at constant temp
ture.

The change in the length of the sample was determi
by increasing the temperature and decreasing it. Data on
temperature and sample length were measured once a m
and processed in real time by a computer.

The measurements were made by a temperature
technique. At the beginning of each measurement the sam
was held at constant temperatureT1 and the output of the
displacement gauge was constant. The temperature o
objective table with the sample was then changed to a t
peratureT2 , which from that moment was held constan

FIG. 1. Schematic drawing of the measuring cell of the dilatometer: ro
sensitive displacement transducer~1!; sapphire tip~2!; aluminum packing
~3!; sapphire objective table of the dilatometer~4!; base for the objective
table~5!; sapphire hemisphere~6!; C60 sample~7!; sapphire support for the
dilatometer objective table~8!. Elements1, 2, 5, and8 are in a liquid helium
bath held at constant liquid helium temperature.
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When the temperature variation of the sample no longer
ceeded 0.001 K per minute, we determined the change in
length because of the temperature change fromT1 to T2 .
The temperature steps were 0.1–0.3 K, depending on
temperature region. In the temperature range below 4.
eight runs were made as the temperature was raised and
lowered, while in the temperature range above 4.2 K th
runs were made.

This procedure determined the relative elongation of
sample (DL/L0) as a function of temperature, and the the
mal expansion was determined by differentiating these
sults with respect to temperature.

Figure 2 shows the final results for the linear therm
expansion coefficienta of C60 as a function of temperatur
~the solid curve!. The error bars show the estimated expe
mental errors. A marked increase in the error below 2.5 K
worth noting; however, we have failed to find the reason
this behavior. The most interesting and, at first glance, un
pected result is the negative thermal expansion observed
low about 3.4 K. Such a phenomenon has been obse
previously in other molecular crystals at liquid helium tem
peratures, namely, in methane below 8 K~Refs. 8–10! and in
a dilute solution of nitrogen in argon atT,3.5 K ~Ref. 11!.
For comparison, we show as open circles the existing exp
mental data from dilatometric studies of the linear therm
expansion coefficient of a single crystal of C60 ~Ref. 2!. In
the overlapping temperature range 5–9 K an excellent ag
ment is observed between these data and our results. A
other comparison, the dashed curve shows the results
calculation of linear thermal expansion coefficient obtain
from data for the specific heat capacity of C60 ~Ref. 12!,
assuming that the Gru¨neisen lawg53aV/Cx is valid, i.e.,
the behavior expected fora in a quasi-harmonic model fo
the crystal lattice. Data for the compressibilityx and molar
volume V were obtained from Refs. 12–14, and the Gru¨n-
eisen coefficientg is assumed to be equal to 3~Ref. 13!,
which is close to the Gru¨neisen coefficients for rare gas so
ids and for simple molecular crystals with dominant cent
interactions.15,16 If instead we use the present data fora to

o

FIG. 2. Linear thermal expansion coefficient of fullerite C60.
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calculate an ‘‘effective’’ Gru¨neisen parameter as a functio
of temperature, we find that at temperatures below 3.4 K
Grüneisen coefficient is negative and reaches very large
ues Fig. 3. For a glassy~disordered! material such as an
orientationally disordered sc C60 we would expect to find a
comparatively small contribution to the thermal expansi
which would be proportional to absolute temperature,
against the observed background of very large negative
ues such a component is impossible to see.

As mentioned above, a negative thermal expansion
efficient has previously been observed in some other mole
lar crystals, and it is reasonable to assume that the e
observed here arises from the same mechanism. In the
of molecular crystals a negative thermal expansion can a
from the tunneling of molecules between different orien
tional states with identical energies. It is well known17 that
tunnel energy levels split up into several levelsEi equal to
the number of energy equivalent states of the molecule.
Grüneisen coefficient for such levels,g i52(d ln Ei)/
(d ln V), is negative since the magnitude of the separat
between the new levels increases with decreasing height
width of the barrier, which prevents a molecule from rot
ing. In turn, the indicated parameters of the barrier decre
with increasing volumeV of the solid in such a way that th
derivative ofEi with respect toV is positive andg i is nega-
tive. In the Grüneisen law approximationa5gC, whereC
is the specific heat andg is the effective Gru¨neisen coeffi-
cient. It thus follows that at sufficiently low temperature
where the rotational motion of molecules occurs mai
through tunneling, the thermal expansion coefficient mus
negative. The tunnel splitting of energy levels depends ex
nentially on the heightU of the barrier,17 while U, in turn,
has a power dependence on the crystal volumeV.18 The
result is that the Gru¨neisen coefficients are very large.19,20

The unusually large negative values ofg obtained here are
therefore strong evidence for the tunneling nature of
negative thermal expansion.

These considerations are, of course, common for all s
stances whose molecules have orientational degrees of

FIG. 3. The Gru¨neisen coefficient of fullerite C60.
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tive only at very low temperatures which are beyond t
reach of experiment because of the presence of very h
barriers that prevent the molecules from rotation. The bar
U, which prevents fullerene molecules from rotating in t
solid phase, is also rather high21 and it seems surprising tha
tunnel splitting of the levels can reveal itself at such a h
temperature as a few degrees. The lowest librational ene
levels of fullerite in a low-temperature phase are about
and 8.5 cm21 ~Refs. 22–24!. A possible reason for the larg
tunnel splitting is that the low-temperature (T,90 K) phase
of C60 is an orientational glass, and for some molecules
the glass the barrier may appear to be significantly low
than that is observed in experiments on crystals with ori
tational order. Local deformations arising in C60 during the
formation of the orientational glass25 might also decrease th
value ofU. Note that the structure of the glass and, hen
the coefficientsa andg may depend on the history of fuller
ite samples, and on the type and number of impurities
them.

Finally, impurity atoms and small molecules can be
cated in interstitial voids and tunnel between them at l
temperatures. In principle, this situation must lead to a sp
ting of their tunnel levels and account for the negative co
tribution to the thermal expansion. The presence of impu
ties in the molecular interstitials has also been shown
change the critical temperature for the orientation
transition26 and thus should also have an effect on the bar
U. We therefore note that a small concentration of arg
may exist in our sample, which was prepared in an arg
atmosphere. On the other hand, the probability of tunne
must be highest for light molecules such as H2 and for He
atoms, but significantly smaller for the comparatively hea
atoms of argon.

Although we can thus explain qualitatively the effe
which we observed, no detailed explanation has yet b
found. The influence of, for example, the sample history a
impurities on the effect requires further investigation, and
would also be interesting to extend the studies to lower te
peratures.

We wish to thank A. I. Prokhvatilov and M. A. Strzhe
mechny for participation in the discussion of the results.

This work was financed, in part, by the Royal Swedi
Academy of Sciences and by the State Foundation for F
damental Research of the Ministry of Science and Techn
ogy of Ukraine ~Project N2.4/117!. B.S. and A.V.S. also
acknowledge financial support from the Swedish Resea
Councils for the Natural Sciences~NFR! and Engineering
Sciences~TFR!.

1E-mail: aalex@ilt.kharkov.ua
2E-mail: bertil.sundqvist@physics.umu.se

1M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Scienc
Fullerenes and Carbon Nanotubes, Academic Press, San Diego~1996!.

2F. Gugenberger, R. Heid, C. Meingast, P. Adelmann, M. Braun, H. Wu
M. Haluska, and H. Kuzmany, Phys. Rev. Lett.69, 3774~1992!.

3A. M. Tolkachev, A. N. Aleksandrovskii, and V. I. Kuchnev, Cryogenic
15, 547 ~1975!.

4R. H. Carr and C. A. Swenson, Cryogenics4, 76 ~1964!.

945Aleksandrovskii et al.



5K. O. McLean, C. A. Swenson, and C. R. Case, J. Low Temp. Phys.7, 77
~1972!.

.

.

n

te

s,

17L. D. Landau and E. M. Lifshitz, Quantum Mechanics@in Russian#,
Nauka, Moscow~1989!.

n-
k.

al

ka,

ssat,

h-
w

nd

as
6Fizicheskii Enziklopedicheskii Slovar’@in Russian#, Sovietskaja Enziklo-
pedia, Moscow~1962!, Vol. 2.

7L. E. De Long, O. G. Symko, and J. C. Wheatley, Rev. Sci. Instrum.42,
147 ~1971!.

8D. C. Heberlein and E. D. Adams, J. Low Temp. Phys.3, 115 ~1970!.
9A. N. Aleksandrovskii, V. B. Kokshenev, V. G. Manzhelii, and A. M
Tolkachev, Fiz. Nizk. Temp.4, 915 ~1978! @Sov. J. Low Temp. Phys.4,
435 ~1978!#.

10Yu. A. Freiman, Fiz. Nizk. Temp.9, 657~1983! @Sov. J. Low Temp. Phys.
9, 335 ~1983!#.

11A. N. Aleksandrovskii, V. G. Manzhelli, V. B. Esel’son, and B. G
Udovidchenko, Low Temp. Phys.108, 279 ~1997!.

12W. B. Beyermann, M. F. Hundley, J. D. Thompson, F. N. Diederich, a
G. Gruner, Phys. Rev. Lett.68, 2046~1992!.

13M. A. White, C. Meingast, W. I. F. David, and T. Matsuo, Solid Sta
Commun.94, 481 ~1995!.

14A. Lundin and B. Sundqvist, Phys. Rev. B53, 8329~1996!.
15M. Klein and A. J. Venables~Eds.!, Rare Gas Solids, Academic Pres

London, New-York, San Francisco~1976!.
16Physics of Cryocrystals, V. G. Manzhelii and Y. A. Freiman~Eds.!, AIP

Press, American Institute of Physics, Woodbury, New York~1997!.
946 Low Temp. Phys. 23 (11), November 1997
d

18V. G. Manzhelii, E. A. Kosobutskaya, V. V. Sumarokov, A. N. Aleksa
drovskii, Yu. A. Freman, V. A. Popov, and V. A. Konstantinov, Fiz. Niz
Temp.12, 151 ~1986! @Sov. J. Low Temp. Phys.12, 86 ~1986!#.

19C. R. Case, K. O. McLean, C. A. Swenson, and G. K. White, Therm
Expansion-1971, AIP Conference Proc., New York~1972!, p. 312.

20G. R. Case and C. A. Swenson, Phys. Rev. B9, 4506~1974!.
21C. Meingast and F. Gugenberger, Mod. Phys. Lett. B7, 1703~1993!.
22G. Kato, C. Yokomizo, H. Omata, M. Sato, T. Ishii, and K. Nagasa

Solid State Commun.93, 801 ~1995!.
23S. Huant, J. B. Robert, G. Chouteau, P. Bernier, C. Fabre, and A. Ra

Phys. Rev. Lett.69, 2666~1992!.
24T. Yildirim and A. Harris, Phys. Rev. B46, 7878~1992!.
25S. V. Lubenets, V. D. Natsik, L. S. Fomenko, A. P. Isakina, A. I. Prok

vatilov, M. A. Strzemechny, N. A. Aksenova, and R. S. Ruoff, Lo
Temp. Phys.23, 251 ~1997!.

26G. A. Samara, L. V. Hansen, R. A. Assink, B. Morosin, J. E. Schirber, a
D. Loy, Phys. Rev. B47, 4756~1993!.

This article was published in English in the original Russian journal. It w
edited by S. J. Amoretty
946Aleksandrovskii et al.



CHRONICLE

ing
In memorium of Andrei Stanislavovich Borovik-Romanov

Fiz. Nizk. Temp.23, 1261~November 1997!

@S1063-777X~97!01711-8#

Andrei Stanislavovich Borovik-Romanov passed awayful and raised a considerable interest in reports contain

th
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cu

si
on
l o
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really important results. As the editor-in chief of the Journal
ew
the
ded
rch

ei

e
ov
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but

7/
on July 31, 1997 in Australia where he had gone to attend
International Congress on Magnetism~ICM-97!. His demise
came as a complete surprise to all of us, for right until
end he was displayed extraordinary activity both in scie
and in his interaction with friends and colleagues. He sp
about his latest results on nuclear magnetic resonance in
tiferromagnets with a trigonal one-dimensional structu
with the same type of enthusiasm and pride that accom
nied his account about his discoveries of weak ferrom
netism, piezomagnetism of antiferromagnets, and spin
rent in superfluid3He. The role of Andrei Stanislavovich in
the development of magnetism and low temperature phy
is not confined just to his own discoveries. His participati
in conferences, seminars, and meetings of the Counci
magnetism which he headed for many years were very fr

947 Low Temp. Phys. 23 (11), November 1997 1063-777X/9
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of Experimental and Theoretical Physics, he promoted n
ideas in many fields of physics. His impact on research in
fields of magnetism and low temperature physics exten
far beyond Moscow. Presenting the results of his resea
activity in an extremely lucid and intelligible manner, Andr
Stanislavovich won acclaim in many countries~Switzerland,
England, USA, Japan, etc.!. His beneficent influence on th
growth of physics in the Ukraine and especially in Khark
can hardly be overestimated.

We shall cherish forever fond memories of Andr
Stanislavovich, who was not only a talented physicist,
also highly intelligent and a good-minded person.

Editorial Board

Translated by R. S. Wadhwa

947110947-01$10.00 © 1997 American Institute of Physics



Anatolii Illarionovich Zvyagin

ject
„1937–1991…

On the 60th birth anniversary

Fiz. Nizk. Temp.23, 1262–1263~November 1997!

@S1063-777X~97!01811-2#

The 60th birth anniversary of the leading Ukrainian sci-of perception were responsible for the choice of this sub
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7/
entist, Professor Anatolii Illarionovich Zvyagin, Correspon
ing Member of the National Academy of Sciences of t
Ukraine, falls on November 14, 1997. All through his scie
tific activity, he was associated with the Physicotechni
Institute for Low Temperature Physics and Engineer
headed by him since 1988. His style was distinguished
perception, precision, perfection and the appropriate ch
of the subject of investigation. The mainstay of his scient
activity was the study of low-symmetry and low-dimension
magnetic insulators. His scientific intuition and a wide ran

948 Low Temp. Phys. 23 (11), November 1997 1063-777X/9
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which is one of the most important topics in solid state ph
ics today. It is in this field that Dr. Zvyagin attained the mo
impressive results. In his investigations of low-dimension
magnets, Dr. Zvyagin observed and studied subthresh
two-magnon absorption of antiferromagnets in the mic
wave range.

His discovery in 1983 of exchange branches in the s
wave spectra of a low-dimensional antiferromagnet, wh
are analogs of optical phonons, and the study of their in
action with ordinary ‘‘acoustic’’ magnons, are of special si

948110948-02$10.00 © 1997 American Institute of Physics



nificance in the physics of magnetism. His works aimed at
of
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w

s

g
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.
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cils. He was also a member of the Editorial Board of this
g
an

nd
ere

and
the

for
ctor

of
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n
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ut
the
finding the effect of low symmetry on various branches
energy excitations in highly anisotropic magnetic crysta
i.e., electron, magnon, and phonon excitations, have bec
classical. He obtained important results in essentially lo
temperature structural and magnetic phase transition
crystals with a strong spin–phonon interaction.

Anatolii Illarionovich earned fame not only as a leadin
scientist, but also as a talented scientific organizer. Owin
his zeal, benevolence, facility to infuse others with his ide
and readiness to share his ideas and experience with his
leagues, he gathered talented and devoted scientists to
out many investigations, including the study of ferroelas
materials, viz., molybdates and tungstates of rare-earth m
als which undergo low-temperature magnetic and struct
phase transitions. A specific manifestation of the coopera
Jahn–Teller effect, i.e., a spontaneous deformation of dif
ent signs and the splitting of a crystal into sublattices
peculiar structural analog of an antiferromagnet, were
served in these materials. The results obtained in this field
Dr. Zvyagin were highly acclaimed and triggered inten
studies of such ferroelastics both in Ukraine and abroad. A
Zvyagin was an active member of various Academic Co
949 Low Temp. Phys. 23 (11), November 1997
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journal. Dr. Zvyagin paid a lot of attention to the promisin
young scientists. The seminars in his department were
excellent school for them, and very interesting topics a
speakers were selected for these seminars which w
marked by a friendly atmosphere and lively discussions,
always attracted large audiences. As a Professor at
Kharkov Polytechnical Institute, he delivered lectures
many years on the physics of magnetism, semicondu
physics, radiospectroscopy, and quantum electronics.

The fruitful research and organizational activity
Dr. Zvyagin won wide acclaim and appreciation. For h
cycle of works on ‘‘Discovery and Study of New Types o
Resonances, Structures and Magnetoelastic Anomalie
Low-Temperature Antiferromagnets’’, he won the Ukrainia
State Award in 1991. The pupils, friends and followers
Anatolii Illarionovich cherish the fondest memories abo
this outstanding scientist and person, and are continuing
investigations initiated by him.

Editorial Board

Translated by R. S. Wadhwa
949Editorial Board
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