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Dirac monopoles embedded in SU(N) gauge theory with the θ term are considered. For θ = 4πM (where M is
half-integer and integer for N = 2 and N > 2, respectively), these monopoles acquire an SU(N) charge due to the
θ term and become dyons. They belong to various (but not any) irreducible representations of the SU(N) group.
The admissible representations are listed. Their minimum dimension increases with N. The basic result of the
study is the representation of the partition function of any SU(N) model involving the θ term and complemented
by singular gauge fields corresponding to the indicated monopoles in the form of a vacuum average of the prod-
uct of Wilson loops viewed along the world lines of the monopoles. This vacuum average must be calculated in
the corresponding model without the θ term. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 11.15.–q; 14.80.Hv; 12.10.–g; 02.20.Qs
The concept of monopole proposed by Dirac [1] was
originally associated with singular field configurations
in electrodynamics, which have a magnetic charge due
to the presence of a singularity. The self-energy of
Dirac monopoles in U(1) gauge theory diverges, which
hinders their physical interpretation.

In non-Abelian gauge theories, monopoles first
appear as solutions of the classical equations of motion
in a model involving the scalar product from the adjoint
representation of the gauge group [2]. These objects are
referred to as t’Hooft–Polyakov monopoles and are
associated with the regular configurations of the gauge
field that carry finite energy. Nevertheless, t’Hooft–
Polyakov monopoles retain many properties of Dirac
monopoles that are primarily related to the quantization
of the magnetic charge.

More recently, similar objects were found in many
models (see, e.g., [3]). Quantum objects corresponding
to these solutions to the classical equations of motion
are topological defects, i.e., topologically nontrivial
field configurations. In a particular case of a topological
defect whose position is time-independent, the solution
to the classical equations of motion, which are consid-
ered in the space with “cut” trajectory of the monopole
and topologically nontrivial boundary conditions,
reproduces the classical monopole solution. In this way,
Dirac monopoles arise from the topological defects of
the U(1) gauge theory [4], and t’Hooft–Polyakov
monopoles arise from the topological defects of the
Georgi–Glashow model. In what follows, both the solu-
tion to the classical equations of motion and the corre-
sponding topological defect will be referred to as
monopole. We note that two-dimensional objects can
0021-3640/02/7610- $22.00 © 20591
be considered similarly. In particular, Abrikosov–
Nielsen–Olesen strings correspond to quantum topo-
logical defects of the Abelian Higgs model [5].

According to topological concepts, classical mono-
pole solutions are absent in pure SU(N) gauge theory.
However, in view of analysis of the confinement mech-
anism in Abelian projections of gluodynamics and phe-
nomena in the model of electroweak interactions at
finite temperature, interest in topological objects of
other models that are embedded in non-Abelian gauge
theory arose recently [6]. We note that embedded
monopoles, in contrast to “true” monopoles, are unsta-
ble in most cases [6, 7]. Nevertheless, their relation to
dynamics is very substantial. In particular, their behav-
ior in lattice electroweak theory at finite temperature is
associated with the nature of electroweak phase transi-
tion [8]. After the fixation of the Abelian projection in
gluodynamics, monopoles corresponding to the U(1)N – 1

residual symmetry group [9] are responsible for con-
finement [10]. We note that there are fundamentally dif-
ferent methods of embedding Abelian monopoles in a
non-Abelian model. The distinction is in the method
used to extract Abelian variables from SU(N) fields.

More than 20 years ago, considering a model with an
additional scalar field in the semiclassical approxima-
tion, Witten showed that t’Hooft–Polyakov monopoles
in gauge theory with the θ term become dyons [11].

In this study, the effect of the θ term on the dynam-
ics of quantum monopoles is analyzed for pure SU(N)
gauge theory by considering a direct generalization of
the Dirac construction to SU(N) gauge theory. Objects
arising in such a way are Dirac monopoles correspond-
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ing to the factors of the U(1)N–1 group that are definitely
embedded in SU(N) gauge theory. The problems of
their possible instability and divergence of self-energy
are beyond the scope of this study. (Some remarks on
these problems are discussed in the conclusion of this
work.)

It is shown that monopoles thus defined are charged
with respect to the SU(N) group and belong to its vari-
ous irreducible representations. It is remarkable that the
θ term is “seen” only in that part of this construction
which imparts the SU(N) charge to monopoles. The
topological part associated with the behavior of fields at
infinity and proportional to the integer number of
instantons vanishes in the partition function for those θ
values for which the θ term imparts an integer SU(N)
charge to monopoles. More exactly, the partition func-
tion of any theory including the θ term and configura-
tions corresponding to the constructed monopoles (and
not including other singular gauge fields) is equal in the
theory without the θ term to the vacuum average of the
product of Wilson loops corresponding to monopole
lines. Wilson loops are considered in those irreducible
SU(N)-group representations whose Young tableaus are
uniquely determined by the form of the corresponding
singularities of the field along the world lines of mono-
poles.

In this study, the definition of embedded monopoles
will differ from the definition of monopoles with even
Qm [12]. The latter monopoles can be treated as arising
under the application of a certain singular gauge trans-
formation. As will be seen below, this is not the case for
the gauge-field singularities considered here.

Dirac monopoles in four-dimensional U(1) gauge
theory (treated as topological defects) are defined as
follows [4]. Let Ai be the gauge field that has strength
Fij and can have a singularity along surface Σ whose
boundary is the world line of a Dirac monopole. The
field strength is determined by the expression

(1)

where s is an infinitesimal area and the translation oper-
ator is defined along the boundary of this area (y ∈  ∂s).
At points where A is regular, Fij = ∂[iAj], whereas this
expression along surface Σ is distorted by the subtrac-
tion of the singularity corresponding to the Dirac string.
In a certain gauge, the field corresponding to the world
line of the monopole j and its Dirac string Σ is repre-

sented as Ai =  + , where  is the regular part
of the gauge field and

(2)
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Here,

where the points z of integration surface Σ are parame-
terized by the variable τα, α = 1, 2: z = z(τ).

The field strength corresponding to this field config-
uration is equal to Fij = ∂[iAj] – πeijklΩkl. The singularity
of ∂[iAj] along Σ cancels with the term involving Ω .
Thus, the strength is singular only along the boundary
of this surface.

Such singular gauge fields satisfy the identity

(3)

where

(The points z(s) of the monopole world line j are param-
eterized by variable s.) Expression (3) shows that the
indicated singular configurations are actually Dirac
monopoles, because ( is the magnetic current and *F
is the tensor dual to the field strength.

For generalizing this construction to the SU(N) the-
ory, we begin with the generalization of identity (3) to
the non-Abelian case. We consider SU(N) gauge theory
in the 4-dimensional Euclidean space and denote the

gauge field as Ai = Tb ∈  su(N), where the generators
Tb (b = 1, …, N2 – 1) of the su(N) algebra are normal-

ized by the condition Tr  = 1. The strength Rij of reg-
ular fields A is equal to ∂[iAj] + i[Ai, Aj]. Similar to the
Abelian case, the definition of the strength of a field
involving a singularity along a certain two-dimensional

surface is based on the expression i  =

Pexp(i ) – 1, where s is the infinitesimal area

and the translation operator is defined along the bound-
ary of this area.

Regular fields satisfy the Bianchi identity ∂i(*R)ik +

i[Ai, (*R)ik] = 0, where (*R)ik = eiklmRlm, which is sim-

ilar to the Abelian identity ∂i(*F)ik = 0. It can be modi-
fied to the form involving the monopole current in the
case, where fields are singular and the definition of the
gauge-field strength is appropriately modified.

Thus, our aim is to find field-A configurations whose
strength satisfies the anomalous Bianchi identity

(4)
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where the matrix n is an element of the SU(N) algebra
and transformed under the gauge transformations g as
n  gng+. If j has no self-intersections, one can
always choose a gauge in which n is a Cartan element.
Therefore, monopoles determined by Eq. (4) are Abe-
lian. They must correspond to the U(1)N – 1-group fac-
tors, whose generators are Cartan elements of the
SU(N) algebra, and must be, therefore, Dirac mono-
poles embedded in SU(N) gauge theory.

Below, we present the construction of such objects.
Similar to U(1) monopoles, they arise under the
assumption that the gauge field can be singular along
surface Σ, whereas the field strength R can be singular
only along the boundary j (the world line of the mono-
pole) of this surface. Both j and Σ are supposed to be
smooth and free of self-intersections.

Let S1 be an infinitesimal circle that has radius r and
intersects Σ. This circle lies in the plane orthogonal to
Σ and intersects Σ at the center of the circle. Gauge
transformations can reduce fields along all such circles
to the diagonal form

(5)

where A ∈  R and n is the diagonal matrix, both these
quantities being independent of their positions in S1,
and si are the components of unit vector directed along
S1. The regularity of the field strength in Σ leads to the

condition Pexp(i ) = 1, which is satisfied if the

field A behaves as

(6)

for r  0. In this case, the diagonal elements ni of
matrix n must be integer.

We consider field configurations such that the field
in other directions is regular in Σ. Surface Σ generally
consists of several parts, each corresponding to its own
n. We can write the symbolic equality Σ = .

Let us consider the plane (ij) such that (i) and (j) are
directed along S1 and Σ, respectively. Then the require-
ment for the regularity of R leads to the equation

(7)

on Σ. Equation (7) shows that fields are effectively Abe-
lian along Σ. In what follows, we will assume that this
requirement extends to the Σ boundary. This additional
requirement is very stringent. Due to it, the commutator
cannot contain any singularity that could cancel the
monopole singularity corresponding to the monopole in
the Abelian part of field strength and leading to the
anomalous Bianchi identity given by Eq. (4).

We arrive at the definition of singular gauge field
corresponding a U(1)N – 1 topological defect embedded

Aisi An,=
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S1∫
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in SU(N) theory. Similar to the U(1) case, this field can
be represented in the form

(8)

where the gauge is fixed so that Eq. (5) is valid,  is the
regular part of the gauge field, and As(Σn) is given by
Eq. (2).

The monopoles under consideration are determined
by Eq. (8) and additional condition (7) in a gauge where
fields in all infinitesimal circles intersecting surface Σ
are diagonal. A direct check shows that such configura-
tions cannot be obtained from regular fields by any
gauge transformations including singular ones.

Taking Eq. (7) into account, we can represent the
field strength corresponding to such a field configura-
tion in the form

(9)

Similar to the Abelian case, the singularity ∂[iAj] + i[Ai,
Aj] along Σ cancels with the term involving Ω . A direct
calculation shows that the singular gauge fields given
by Eq. (8) satisfy Bianchi identity (4).

Now, we can consider the effect of the θ term on the
dynamics of the monopoles constructed above. We
have

(10)

where

Using Eq. (7), we obtain Tr[Ai, Aj]n = 0. Therefore,

(11)

A thorough analysis of the regularization of the first
term in Eq. (11) indicates that it depends only on A val-
ues at infinity. Assuming that the field strength vanishes
at infinity, we conclude that this term is nothing else but
the integer number of instantons. Thus,

(12)

for integer and half-integer M, where g[A, Σ] is the
transformation modifying A to Eq. (5) along Σ.
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We consider an arbitrary SU(N) model with regular
fields and artificially supplement it with the monopole
singularities indicated above. In this case, the partition
function of the theory with added monopole singulari-
ties in the presence of the θ term can be expressed as a
vacuum average of exp(iθQ) in the corresponding
SU(N) theory without θ term. For θ = 4πM, we obtain

(13)

Below, we will use the following Abelian represen-
tation for the world line [13]:

(14)

Here, *q = , where mi is the highest weight of
the corresponding representation and Hi is the defi-
nitely normalized basis of the Cartan elements of
SU(N) algebra. The Wilson loop Wq[j] is considered in
the irreducible representation of the SU(N) group. The
space of this representation consists of tensors ,
whose symmetry with respect to the index permutation
is determined by a set of integers (describing the Young
tableau) qi (i = 1, …, N – 1) (  = r, qi ≥ 0).

A direct calculation yields nonzero elements of the
diagonal matrix *q in the form (qN = 0)

(15)

We can introduce the correspondence between any
matrix n = diag(n1, …, nN) defined in the world line of
the monopole and the SU(N)-group representation as
follows. Let the elements ni be ordered such that nN ≥
nN – 1 ≥ … ≥ n1. The corresponding representation of the
group is determined by the set of numbers

(16)

This representation is denoted as [q(n)]. In this case,
*[q(n)] coincides with –Mn except for the permutation
of elements. As a result,

(17)

where the monopole world line jn carries matrix n. For
q to be an integer, M must generally be an integer. How-
ever, σ3 is the only Cartan element in the SU(2) group.
Therefore, q = MTr(nσ3) is an integer for any half-inte-
ger M. For this reason, we consider here θ = 4πM,
where M is a half-integer and integer for N = 2 and
N > 2, respectively.
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Expression (17) indicates that monopoles become
dyons. An interesting feature of this expression is that
the topological term does not enter into the partition
function. The only meaning of this term in this case is
that monopoles become charged with respect to the
gauge group.

Expression (17) can include only certain representa-
tions that are determined by sets (q1, …, qN – 1) such that

 = NML, where L is an integer. In particular, the
complete set of irreducible representations of the SU(2)
group is admissible for N = 2 and M = 1/2. The lowest
admissible representations for N = 3 and M = 1 are
(3, 0), (2, 1), (6, 0), (5, 1), (4, 2), …. The lowest admis-
sible symmetric representation for the SU(5) group is
(5, 0, 0, 0).

Thus, our analysis of Dirac monopoles embedded in
the SU(N) gauge theory with the θ term has demon-
strated that these monopoles are dyons. It was shown
that the partition function of the theory with artificially
introduced Abelian monopole singularities can be
expressed as a vacuum average of Wilson loops corre-
sponding to the world lines of monopoles, which is
determined in theory without the θ term. This expres-
sion involves an infinite set of irreducible representa-
tions of the gauge group. An interesting feature of the
theory is that the topological term does not enter into
the partition function. Another surprising result is that
the lowest dimension of representations thus appearing
increases with N.

As was mentioned above, we treated monopole sin-
gularities as external ones and artificially introduced
them into the functional integral. At the current level of
understanding, we cannot consider these objects as
arising dynamically, because (similar to the case of the
Dirac monopole) we did not determine a model where
the corresponding singularity of the gauge field led to
the finite action. Moreover, arguments presented in [12]
indicates that such configurations can be unstable.
However, we note that many properties of unreal (from
the standpoint of Abelian theories) Dirac monopoles
proved to be inherent in objects with finite energy,
namely, in t’Hooft–Polyakov monopoles arising in a
more complex model. Similarly, the properties of the
above-analyzed Dirac monopoles embedded in SU(N)
theory with the θ term can likely be inherent in realistic
objects of a certain more complex physical model.
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the U.S. Civilian Research and Development Founda-
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An arbitrary polarization state of a single-mode biphoton is considered. The operationalistic criterion is formu-
lated for the orthogonality of these states. It can be used to separate a biphoton with an arbitrary degree of polar-
ization from a set of biphotons orthogonal to it. This is necessary for the implementation of quantum cryptog-
raphy protocol based on the three-level systems. The experimental test of this criterion amounts to the observa-
tion of the anticorrelation effect for a biphoton with an arbitrary polarization state. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 03.67.Hk; 42.25.Ja; 42.50.Dv
In recent years, considerable interest has been
shown in multilevel systems with dimensionality
higher than two, because they provide a way for more
dense data recording, as compared to the traditional
two-level systems. This is particularly important for
quantum cryptography, because it enables one to
increase the data-exchange rate [1] and enhance secu-
rity against eavesdropping attacks of a certain class [2].
However, the transition to higher-dimensionality sys-
tems inevitably gives rise to experimental difficulties
associated with the implementation and the adequate
measurement of parameters. The solution of these
problems requires the design of a data output device,
error-correction protocols, repeaters, and other quan-
tum communication devices. After the two-level sys-
tem, the three-level system is the simplest. Its state in
quantum information is called “qutrit” by analogy with
qubit. The wave function of an arbitrary three-level sys-
tem can be written as

(1)

where |1〉 , |2〉 , and |3〉  are the orthogonal basis states.
The complex coefficients ci are called the amplitudes of
basis states |i〉  and related to each other by the normal-
ization condition

(2)

At present, the use of qutrits in quantum information is
not an exotic thing. For example, the authors of [3] have
proposed a quantum cryptography protocol based on
the three-level systems, and the interferometric method
of preparing multilevel systems was considered in [1].
The theoretical analysis of state restoration from the

Ψ c1 1| 〉 c2 2| 〉 c3 3| 〉 ,+ +=

ci
2

i 1=

3

∑ 1.=
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measured quantities was carried out for an arbitrary
multilevel system in [4].

Biphoton fields have been used in many experi-
ments of quantum optics practically since its inception.
These fields are fluxes of photon pairs strongly corre-
lated in coordinate and time of their creation. In the
great majority of experiments, spontaneous parametric
down-conversion (SPDC) is used as a source of bipho-
ton field. It will be shown below that, in the case where
a photon pair is emitted into the same spatial and fre-
quency mode, the state polarization characteristics of
the biphoton allow it to be considered as a qutrit [5].
The use of single-mode biphotons as qutrits in quantum
communication protocols, e.g., in quantum cryptogra-
phy poses the problem of separating a certain biphoton
from the subset of biphotons with polarizations orthog-
onal to the polarization of the former. In this work, the
operationalistic biphoton orthogonality condition is
formulated for an arbitrary degree of polarization, and
the experimental scheme is proposed that allows unam-
biguous separation of a certain biphoton polarization
state from a set of states orthogonal to it. This is a fun-
damental problem, and its solution can be used, e.g., in
the practical implementation of quantum cryptography
protocol for the three-level systems.

Biphotons and qutrits. The use of the polarization
states of single-mode biphotons for data recording was
proposed in [5], and the polarization characteristics of
these fields were discussed in [6, 7]. A pure polarization
state of a biphoton in the collinear frequency-degener-
ate regime can be written as [5]

(3)

Here, |n, m〉  denote the state with n photons in the hor-
izontal (H) polarization mode and m photons in the ver-
tical (V) mode (n + m = 2) and ci = |ci |exp(iφi) is the

Ψ| 〉 c1 2 0,| 〉 c2 1 1,| 〉 c3 0 2,| 〉 .+ +=
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complex amplitude of the probability of finding bipho-
ton in the corresponding state. The states |2, 0〉 , |1, 1〉 ,
and |0, 2〉  constitute the orthogonal basis set in so-called
HV representation. By analogy with Eq. (1), this state
can be used for the ternary information coding. To visu-
alize the polarization states of a biphoton light, it is con-
venient to use the Poincaré sphere [7]. One can show
that state vector (3) can be represented as

(3a)

where a†(ϑ , ϕ) and a†(ϑ ', ϕ') are the operators of photon
creation and annihilation in an arbitrary polarization
mode, e.g.,

where  are the operators of photon creation in the
linear polarization modes H and V, and ϕ, ϕ' ∈  [0, 2π]
and ϑ, ϑ ' ∈ [0, π] are, respectively, the azimuthal and
polar angles on the Poincaré sphere. In this case,

where the unprimed and primed quantities relate,
respectively, to the first and the second photon of the
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Fig. 1. Scheme of a nonlinear three-arm Mach–Zehnder
interferometer. Nonlinear crystals oriented so as to produce
the appropriate state are placed in each of the arms. By
introducing (with the use of mirrors) phase difference
between the states, one can change the phases of coeffi-
cients ci in the desired way and, by varying the pump power,
one can change their amplitudes in a desired way. Mirrors
are denoted by M1, M2, and M3.
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pair. It is also convenient to introduce the degree of
biphoton polarization. This quantity was calculated in
[6] and, in the new representation, takes the form

where α is the angle at which the pair of points map-
ping biphoton onto the Poincaré sphere is seen from its
center.

The generation of a biphoton field in an arbitrary
polarization state with given coefficients ci can be
accomplished in a three-arm interferometer of the
Mach–Zehnder type with three nonlinear crystals. Each
of them produces one of the basis states in the corre-
sponding arm to prepare a linear superposition of type
(3) at the output. The amplitudes and phases of the
complex coefficients ci can be varied in a desired way
in each of the arms (Fig. 1). In particular, all states used
in the quantum cryptography protocol proposed in [3]
can be prepared in the interferometer of this type.

To adequately measure the polarization characteris-
tics of single-mode biphoton fields, the Braun–Twiss
scheme is used with arbitrary polarizing filters in the
arms (Fig. 2). Each filter includes a polarization trans-
former and a linear polarization analyzer to separate a
certain polarization state. Upon measuring a certain set
of fourth-order field moments in this scheme, one can
determine the real and imaginary parts of coefficients ci

by varying the transformer characteristics. For some
pure states |Ψ〉 this was done in [8]. However, this
scheme can be used to measure an arbitrary polariza-
tion state of biphoton field in the HV basis. We will
refer to the measuring scheme as “tuned” to the partic-
ular polarization biphoton state (3a) if the polarization
state with parameters (ϑ , ϕ) is separated in one channel
and the state with parameters (ϑ ', ϕ') in the other.

P
2 α /2( )cos

1 α /2( )cos
2

+
---------------------------------,=

Fig. 2. Scheme for measuring arbitrary polarization state of
a biphoton field. NPBS is the nonpolarizing beam splitter,
WP is a set of wave plates, P is the analyzer, D is a single-
photon detector, and CC is the coincidence counting
scheme.
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Orthogonality of single-mode biphotons. Assume
that the polarization states corresponding to modes a1
and b2 (letters denote the polarization states and index
denotes the spatial mode) are separated in channels 1
and 2 of a device illustrated in Fig. 2. Let us write the
orthogonality condition for a certain input state |Ψcd〉
and the state |Ψab〉  to which the detector device is tuned.
Let

where a†, b†, c†, and d† are the creation operators for the
polarization modes a, b, c, and d, respectively. We
emphasize that, in the general case, the modes a, b, c,
and d are not mutually orthogonal. The condition for
the orthogonality of the input biphoton and the bipho-
ton to which the device is tuned has the form

or, equivalently,

(4)

Since the creation and annihilation operators before
and after a 50% beam splitter are related to each other

as a† = (  + i ), Eq. (4) can be rewritten as

(5)

Neglecting the terms , which are
equal to zero according to Eq. (4), and the terms of the

form , which are also equal to zero
because they correspond to the creation of a photon pair
in the mode j and annihilation of a photon pair in the
mode i, etc., one gets

(6)

Note that

i.e., the mean values of both terms in Eq. (6) are equal,
because they differ only in the spatial indices and,
hence,

Ψab| 〉 a†b† vac| 〉
a†b† vac| 〉

--------------------------, Ψcd| 〉 c†d† vac| 〉
c†d† vac| 〉

--------------------------,= =

Ψab Ψcd〈 〉 0=

vac〈 |abc†d† vac| 〉 0.=

1

2
------- a1

† a2
†

vac〈 | a1 ia2–( ) b1 ib2–( ) c1
† ic2

†+( ) d1
† id2

†+( ) vac| 〉 0.=

vac〈 |aibici
†di

† vac| 〉

vac〈 |aibic j
†d j

† vac| 〉

vac〈 |a1b2 c1
†d2

† c2
†d1

†+( )

+ a2b1 c1
†d2

† c2
†d1

†+( ) vac| 〉 0.=

vac〈 |a1b2 c1
†d2

† c2
†d1

†+( ) vac| 〉

=  |a1c1
†〈 〉 | b2d2

†〈 〉 | a1d1
†〈 〉 | b2c2

†〈 〉+

=  |ac†〈 〉 | bd†〈 〉 | ad†〈 〉 | bc†〈 〉 ,+

vac〈 |a2b1 c1
†d2

† c2
†d1

†+( ) vac| 〉

=  |a2c2
†〈 〉 | b1d1

†〈 〉 | a2d2
†〈 〉 | b1c1

†〈 〉+

=  |ac†〈 〉 | bd†〈 〉 | ad†〈 〉 | bc†〈 〉 ;+
(7)

Note that the state vectors of the form aibj |vac〉  in
Eq. (7) contain two creation and two annihilation oper-
ators; hence, their sum is a vacuum state multiplied by
a numerical factor. It follows from Eq. (7) that this fac-
tor is zero. Therefore, the orthogonality condition for
the biphotons |Ψab〉  and |Ψcd〉  finally takes the form

(8)

After the beam splitter, the input state |Ψcd〉  becomes

The last two terms make no contribution to the coinci-
dences, because they correspond to the situation where
both photons are led to the same photodetector. For this
reason, the coincidence counting rate is determined by
the second-order correlation function

(9)

The absence of photocount coincidences for detectors
D1 and D2 is equivalent to the zero value of the correla-
tor in Eq. (9). The condition for the absence of coinci-
dences can be written as

(10)

which is equivalent to condition (8).
Therefore, the condition for the orthogonality of two

biphotons is equivalent to the condition for the absence
of coincidences in the scheme in Fig. 2, provided that
one biphoton is fed into the input, while the device is
tuned to the second biphoton. This procedure can be
regarded as the projection of one polarization state onto
the other, with the number of photocount coincidences
playing the role of an observable quantity. In the case
that the second state is orthogonal to the initial state, the
coincidence counting rate should drop to the level of
accidental coincidences. It should also be noted that the
rate of single photocounts in both detectors will be,
generally, nonzero upon changing the characteristics of
polarization transformers, e.g., upon analyzer rotation.
In this case, the character of changing the number of
single photocounts takes the form of interference pat-
tern with the visibility equal to the degree of polariza-
tion of a measured biphoton [9].

The experimental data [5] presented in the table
illustrate the biphoton orthogonality criterion. For
example, if the recording scheme is tuned to the |H, V〉
state, while the input state is |R, L〉  (a pair of right- and

vac〈 |a1b2 c1
†d2

† c2
†d1

†+( ) vac| 〉 0.=

ci
†d j

†

a1b2 c1
†d2

† c2
†d1

†+( ) vac| 〉 0.=

Ψcd'| 〉 i

2 c+d+ vac| 〉
------------------------------=

× c1
†d2

† d1
†c2

† c1
†d1

† c2
†d2

†+ + +{ } vac| 〉 .

G 2( ) 1

4 c+d+ vac| 〉 2
--------------------------------=

× vac〈 | c1d2 d1c2+{ } a1
†b2

†a1b2 c1
†d2

† d1
†c2

†–{ } vac| 〉 .

vac〈 | c1d2 d1c2+{ } a1
†b2

†a1b2 c1
†d2

† d1
†c2

†+{ } vac| 〉 0,=
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left-hand circularly polarized photons) or |D 〉  (a pair
of photons linearly polarized at ±45°) is orthogonal to
it, the coincidence counting rate is an order of magni-
tude lower than for the same input state |H, V 〉 . Like-
wise, a low coincidence counting rate is observed in the
case where the input state is |H, V 〉 , while the device is
tuned to the orthogonal state |H, H 〉 . At the same time,
if the device is tuned to the |H, H 〉  state and |D 〉  is the
input state, whose projection onto the |H, H 〉  equals

1/ , the coincidence counting rate is half as high as
for the case where the device is tuned to the input state.

Thus, the biphoton orthogonality criterion sug-
gested in this work allows one to unambiguously sepa-
rate a biphoton in an arbitrary polarization state from a
set of biphotons orthogonal to it. The experimental test
of this criterion amounts to the observation of anticor-
relation [10, 11] for an arbitrary biphoton polarization
state, in contrast to works [10, 11], where the directions
of photon polarization in a pair were identical, or work
[12], where they were mutually orthogonal.

In practice, this criterion can be used for the imple-
mentation of a quantum cryptography protocol [3]. The
possibility of unambiguously separating the desired
biphoton polarization state from a set of states orthog-

D

D

2

Experimental dependence of the coincidence counting rate
on the input polarization state of a biphoton and the state to
which the device is tuned

Input
state

Degree
of polari-
zation, P

Detected 
state

Degree
of polari-
zation, P

Coincidence 
counting rate 

(s–1)

|H, V〉 0 |H, V〉 0 4.0 ± 0.4

|R, L〉 0 |H, V〉 0 0.5 ± 0.25

|D, 〉 0 |H, V〉 0 0.25 ± 0.1

|H, V〉 0 |D, 〉 0 0.25 ± 0.1

|D, 〉 0 |D, 〉 0 3.8 ± 0.4

|H, V〉 0 |H, H〉 1 0.15 ± 0.05

|D, 〉 0 |H, H〉 1 1.9 ± 0.2

Note: The following notation is used for the polarization modes:
H is the horizontal direction of mode polarization; V is the
vertical direction; D,  is the linear polarization with
angles of +45° and –45° to the vertical direction; and R and
L are the right- and left-hand circular polarizations, respec-
tively.

D

D

D D

D

D
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onal to it allows a certain logical value used in the secret
key to be assigned to this biphoton with assurance.
Nevertheless, this scheme is not free from losses. For
instance, both photons in a pair may be led into the
same arm after beam splitter and, hence, may make no
contribution to the coincidences. These processes alone
halve the amount of useful information. Another loss
source appears because, despite the fact that the sug-
gested scheme filters out only one biphoton |Ψcd〉  =
c†d†|vac〉/||c†d†|vac〉|| from a set of biphotons orthogonal
to it, the probability that this biphoton will make no
contribution at the output is nonzero even if the detec-
tors are ideal. This may occur if a photon in mode c is
led to the arm tuned to mode d, and vice versa. Clearly,
since the modes c and d are generally different, each of
these photons may not be detected separately and, as a
result, no coincidence will occur.

We are grateful to S.P. Kulik and P.A. Prudkovskiœ for
discussions. This work was supported by the Russian
Foundation for Basic Research (project nos. 02-02-
16664, 00-15-96541) and INTAS (grant no. 01-2122).
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The exact solution is obtained for a propagator describing x-ray propagation through a refractive parabolic
medium. Such a medium arises in compound many-element refractive x-ray lenses that are used in synchrotron
radiation sources. The solution obtained allows one to analyze such lenses in detail to predict their operation in
particular applications (beam focusing, microobject imaging, and Fourier transform). © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 41.50.+h; 07.85.Qe; 42.79.Bh; 42.30.-d
For a hundred years after the discovery of x-ray
radiation, it was thought that refractive lenses could not
be used for focusing hard x-rays because, at least, of
two reasons. First, the refractive index for electromag-
netic radiation with energy E ranging from 10 to 50 keV
differs only slightly from unity. Second, the absorption
coefficient for this radiation is nonzero. When writing
the complex refractive index in the form n = 1 – δ + iβ,
one has, e.g., for aluminum at E = 25 keV δ = 8.643 ×
10–7 and β = 1.747 × 10–9.

This problem was solved in 1996 [1] with the use of
compound lenses, i.e., lenses composed of a large num-
ber of relatively thin elements. It proved to be quite for-
tunate that the x-ray phase velocity in a material is
higher than the velocity of light in free space. For this
reason, the focusing lens was taken to be biconcave and
the thickness of a material in the central part of the lens
was smaller than the absorption length. To date, many
publications have been devoted to various methods of
fabricating compound refractive x-ray lenses. Among
them, of primary interest are lenses with circular aper-
ture and parabolic profile. Elements of these prisms are
obtained by pressing out parabolic profile in aluminum
plates (see, e.g., [2]) or plates of organic materials (see,
e.g., [3]). Each element focuses a parallel beam into the
point at distance F1 = R/2δ, where R is the radius of cur-
vature of the parabolic profile (see figure). In this case,
the focal length of a block with N elements is F ≈ F1/N.
Let, e.g., F1 = 100 m. The focal length of a block with
100 elements will be 1 m, which is quite appropriate for
the experiments at synchrotron radiation stations.

A lens containing 1000 or more elements can rather
easily be fabricated. The length L = Np of the com-
pound lens increases with the number N of elements,
while the focal length F decreases. Clearly, the focal
length in the case L ! F can be estimated from the for-
mula F ≈ R/2Nδ for a thin lens. However, in this case
0021-3640/02/7610- $22.00 © 20600
the linear corrections in the small parameter L/F may be
quite appreciable when imaging microobjects with
extreme resolution. The theoretical analysis of the
operation of a compound lens with length L comparable
to the focal length F was performed only in the geomet-
rical optics approximation (see, e.g., [4]), which is,
clearly, insufficient for the estimation of focal spot size
and for the analysis of image transfer using this lens.

A complete solution to the problem of radiation
transfer through a long compound lens must have the
form of an integral relationship of the Kirchhoff inte-
gral type. In this case, the problem amounts to deter-
mining the kernel of integral transformation (propaga-
tor) by solving the Maxwell equation with initial condi-
tion in the form of the Dirac delta function. It is shown
in this work that, under certain conditions, this problem
has an exact solution; i.e., the propagator can be calcu-
lated analytically in a form close to the Gaussian func-
tion with complex parameters, for which one can write
the exact recurrence formulas. It is assumed that the
synchrotron radiation (SR) is preliminarily monochro-
matized and has a rather high degree of spatial coher-
ence. These conditions are fulfilled, e.g., in the third-
generation SR sources [5].

(left) Compound refractive x-ray lens and (right) parame-
ters of its individual elements.
002 MAIK “Nauka/Interperiodica”
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We choose the optical axis along the z axis (figure)
and represent the general solution to the Maxwell equa-
tion as E(x, y, z) = exp(ikz)At(x, y, z), where k = ω/c is
the wave number in vacuum. The function At(x, y, z)
describes the transfer, along the z axis, of the transverse
dependence of the wave field. Since the radiation is
hard and interacts weakly with a material, one can use,
with a high accuracy, the paraxial approximation, i.e.,
ignore the second derivative of At with respect to the
coordinate z, as compared to the first derivative. As a
result, one arrives at the parabolic equation for the func-
tion At(x, y, z)

(1)

where η = 1 – n = δ – iβ = δ(1 – iγ). In the radiation-
transfer problem, the wave field at the entrance surface
of the lens is a given function At(x, y, 0) = A0(x, y),
where the coordinate z is measured from the outset of
the lens. In the compound lens, the function s(x, y, z) is
unity in the regions inside the material and zero outside
it (figure).

In what follows, I consider only the case where the
thickness p of an individual element of a compound
lens is smaller than the characteristic scale of changing
the transverse dependence of the wave field. In other
words, the thin-lens approximation is assumed to be
fulfilled for an individual element. This is always true
for a compound lens with many elements. This restric-
tion can be used for averaging the function s(x, y, z)
over its period and replacing it by a function depending
only on the transverse coordinates:

(2)

This dependence is valid only inside the lens geometri-
cal aperture with diameter a = 2[R(p – d)]1/2 (figure).
However, the effective operation area (effective aper-
ture) of the lens is determined by the x-ray absorption
in its material and is almost always smaller than the
geometrical aperture. Because of this, one can formally
assume that dependence (2) holds everywhere over the
region of transverse plane (X, Y) considered.

Let us represent the initial wave field as a Fourier
integral

(3)

and consider the solution (x, y, qx, qy, z) with the ini-

tial function in the form of plane wave (x, y, qx, qy, 0) =
exp(iqxx + iqyy). The solution can be represented as the

dAt

dz
-------- ikηs x y z, ,( )At–

i
2k
------

d2At

dx2
----------

d2At

dy2
----------+

 
 
 

,+=

s x y,( ) d
p
--- x2

pR
-------

y2

pR
-------.+ +=

A0 x y,( )
qx qydd

2π( )2
---------------- iqxx iqyy+( ) Ã0 qx qy,( )exp∫=

P̃t

P̃t
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product  = exp(–ikη[d/p]z) (x, qx, z) (y, qy, z), with

the partial function (x, q, z) satisfying the equation

(4)

This equation coincides formally with the Schrödinger
equation for a particle in a parabolic potential. Never-
theless, the expansion in terms of the stationary states
will not be considered in this work.

Taking into account the character of the initial func-
tion, it is reasonable to seek a solution in the form of a
Gaussian function with complex coefficients

(5)

Inserting Eq. (5) into Eq. (4) and equating the coeffi-
cients of the terms for the same x powers, one arrives at
the system of ordinary differential equations

(6)

This system has an analytic solution for any initial con-
dition. It can be written as

(7)

The validity of this solution can be checked by direct
substitution. Using initial conditions (5) and recurrence

relations (7), one gets for the function (x, q, z)

(8)

Hereinafter, the notation sz = sin(z/zc), cz = cos(z/zc), and
tz = tan(z/zc) is used.

P̃t P̃ P̃

P̃

dP̃
dz
------- i

kη
pR
-------x2P̃–
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2

---------,+=

P̃ x q 0, ,( ) iqx( ).exp=

P̃ x q z, ,( ) ia0 z( ) ia1 z( )x ia2 z( )x
2

+ +( ),exp=
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dz
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i
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1
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Let us represent the general solution to the problem
(for an arbitrary initial function) in the form of integral

(9)

Substituting the expression for  in the form of
the inverse Fourier transform and integrating with
respect to qx and qy, one obtains the desired integral
transformation for a compound x-ray lens with the par-
abolic profile

(10)

whose propagator is factorized

(11)

and the partial propagator is determined by the expres-
sion

(12)

Here, λ = 2π/k is the x-ray wavelength.
This expression is the main result of the work. One

can readily verify that this function transforms to the
Dirac delta function δ(x – x') at z = 0. Evidently, integral
(10) must transform to the Kirchhoff integral in the
limit |η|  0. Indeed, after passing to the limit
|zc |  ∞ in Eq. (12), one obtains the following
expression for the transverse part of the spherical wave
in the paraxial approximation:

(13)

The expression for the propagator in a more complex
problem of radiation transfer in air at a distance of ro

before the lens, through a lens of length L, and at a dis-
tance of ri in air after the lens can be written as a con-
volution

(14)

Note that the integrals in Eq. (14) are calculated analyt-
ically to give an analytic expression for the propagator
G. However, the same result can be obtained by the
method developed above, namely, by triply using recur-
rence relations (7), with the limiting transition |η|  0

At x y z, ,( )
qxd qyd

2π( )2
----------------P̃t x y qx qy z, , , ,( ) Ã0 qx qy,( ).∫=

Ã0 qx qy,( )
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=  ikη d/ p[ ] z–( )exp P x x' z, ,( )P y y' z, ,( ),
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× 1
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  .exp

P x x' z, ,( ) PK x x' z,–( )
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1

iλz( )1/2
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  .exp

|η| → 0

G x x' ro L ri, , , ,( )

=  x2 x1PK x x2 ri,–( )P x2 x1 L, ,( )PK x1 x'– ro,( ).dd∫
being used for air. The method of recurrence relations
(7) is particularly suitable in the development of algo-
rithms for computer simulation of imaging formation
using a lens. Although this computer program was
developed by us, the analysis of particular results is
beyond the scope or this brief communication. More-
over, this method can also be applied to a system of
lenses with different parameters.

Below, main features following from Eq. (12) for
the operation of a compound refractive lens are consid-
ered. Taking into account that γ = β/δ ! 1, the complex
parameter zc can be written as zc = (pF1)1/2(1 + iγ/2). At
L ! (pF1)1/2, one can retain only the leading terms in
the sine and cosine expansions to obtain the following
expression for the propagator in the thin-lens limit:

(15)

Note that the above-mentioned domain of applicability
of this approximation can be written as L ! F. Due to
x-ray absorption, the plane wave, after passing through
the lens, acquires the Gaussian shape, for which the
intensity distribution halfwidth is aγ = 0.664(λF/γ)1/2.
This value can be considered as the lens effective aper-
ture. The expression including the terms on the order of
(L/zc)3 can easily be written to obtain the corrections on
the order of L/F to the focal length in the thin-lens
approximation.

For L = L0 = (pF1)1/2π/2 and taking into account that
sz = 1 and cz = iγπ/4, one obtains, in the linear approxi-
mation in γ, the following expression for the propaga-
tor:

(16)

From this expression, it follows that, when passing
through this lens, the wave is modulated by a Gaussian
function because of the absorption in lens and then
turns to its Fourier transform. In particular, at the lens
output, a plane wave has a Gaussian intensity distribu-
tion with the halfwidth sγ = 0.47(λL0γ)1/2, and the focal
length is L0. The quantity sγ gives the focal spot diame-
ter, whereas the lens effective aperture in this case is
aγ = 0.846(λL0/γ)1/2. If the absorption is ignored, the
propagator will be equal to delta function δ(x + x') for
L  = 2L0; i.e., the wave field is restored in the inverted
form. Clearly, the lens will have the same properties for

P0 x x' L, ,( ) –iπ x2

λF
------- 1 iγ–[ ] 

  PK x x'– L,( ),exp=

F
F1

N
-----

R
2Nδ
----------.= =

P x x',( )
1

iλzc( )1/2
-------------------=

× –i
2π
λzc

-------xx' γ π2

4λzc

----------- x2 x'2+( )–exp .
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L = 3L0, 4L0, and so on. However, the absorption dimin-
ishes the lens working region with increasing L.

In conclusion, let us estimate the parameters of the
system. Consider a compound aluminum lens for pho-
ton energies of 25 keV. Let p = 1 mm and R = 0.2 mm
[2]. One has in this case γ = 2.02 × 10–3, F1= 116 m, and
L0 = 53.4 cm. Therefore, the critical size of the com-
pound lens is achieved when 534 elements are used.
Evidently, L0 is the minimal attainable focal length for
a given radius of curvature of the parabolic surfaces.
The focal spot diameter in this case is sγ = 0.11 µm, and
the effective aperture is aγ = 97 µm. Smaller focal
length can be obtained by a gradual decrease in the
radius of curvature of the surfaces in individual ele-
ments.
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We propose a mechanism for the effective transformation of dilaton-field energy in field stars into relativistic-
plasma energy and radiation. The mechanism suggests initial transformation of the energy of an inhomoge-
neous dilaton field into electric-field energy followed by its dissipation into relativistic-plasma energy. The pro-
cess is similar to the propagation of a relativistic detonation wave through a dilaton stellar atmosphere. © 2002
MAIK “Nauka/Interperiodica”.
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(1) Boson stars formed by various types of scalar
fields in their own gravitational field are extensively
studied in modern theoretical astrophysics [1]. In the
relativistic and nonrelativistic cases, the energy density
of such fields can be very high, and the problem of
transformation of this energy into radiation naturally
arises. One such mechanism was proposed by Tkachev
[2]. He considered a model for the generation of radia-
tion by axion fields based on an analogy with the mech-
anism of laser radiation. Here, we propose an alterna-
tive mechanism which uses the dilaton-field energy.

Among the models of boson stars, the models of
self-gravitating structures with dilaton fields are known
[3]. The nature of these fields allows them to directly
interact with electromagnetic fields. The corresponding
system of equations admits solitonlike solutions for a
longitudinal electrodilaton wave. It was shown that
such a soliton could travel through an inhomogeneous
dilaton stellar atmosphere formed by its own gravita-
tional field. Passing from a region of high dilaton-field
energy density to a region of lower energy density, such
a soliton can appreciably increase the electric-field
energy. According to the models of such field stars, the
energy difference can be significant. The maximum
electric-field strength can reach a critical value for the
production of electron–positron pairs or can result in
substantial Joule heating of the plasma that already
exists in the dilaton field. It is important to note that in
regions without electromagnetic fields, the dilaton field
does not interact with quasi-neutral plasma. This model
was demonstrated with simple analytic and semiana-
lytic solutions. The realization of this mechanism in
nature can give rise to impulsive energy release in the
form of intense plasma heating and radiation in a
regime similar to the detonation-wave mechanism. Pro-
cesses of this kind are being intensively studied (see,
e.g., [4] for a review). Note that the motion of this soli-
ton is assumed to be relativistic, and the gravitational
field of the boson star is assumed to be weak. Therefore,
0021-3640/02/7610- $22.00 © 20604
the motion of an electrodilaton soliton with dissipation
may be considered in terms of special relativity. We
assume that an inhomogeneous dilaton-field energy
distribution has already been produced by gravity and
that only this distribution is important in the problem
under consideration.

(2) The Lagrangian of a dilaton-electromagnetic
field is given by [5]

(1)

where Φ is the dilaton-field potential, Flm is the electro-
magnetic-field tensor, and α is the coupling constant.
Equations for Φ and Fik can be derived from (1):

(2)

(3)

Let us consider a plane electrodilaton wave which prop-
agates along the x axis and has only the longitudinal
component F10 = Ex = E by using these equations.
Equation (2) yields

(4)

whence we can determine the constant of motion

(5)

The quadratic field combination

(6)

is negative in all special-relativity frames of reference.
The other field equation (3) takes the form

(7)

L 2Φ i, Φ i, FlmFlm( )e 2αΦ– ,–=

e 2αΦ– Fik[ ] k; 0,=

Φ i;
i; α

2
---e 2αΦ– FlmFlm( ).–=

e 2αΦ– E( ) τ, 0; e 2αΦ– E( ) x, 0,= =

e 2αΦ– E E0 const.= =

I FlmFlm 2E2–= =

∂2Φ
∂τ2
---------- ∂2Φ

∂x2
----------– αE0

2e2αΦ=
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or, introducing the new variables 2αE0x  x and
2αE0τ  τ and the function ψ = 2αΦ, we obtain

(8)

This is one of the forms of the Liouville equation [6].
There is a general class of solutions for this equation that
contains two arbitrary functions f1(x – τ) and f2(x + τ):

(9)

The primes denote the derivatives with respect to the
arguments of the functions.

The solution for a steady-state soliton traveling with
velocity u follows from the general solution with the
arbitrary functions

(10)

(11)

It has the form

(12)

To analyze the soliton evolution on an inhomoge-
neous dilaton background, we choose arbitrary func-
tions in the form

(13)

(14)

where γ and β are determined by the initial wave veloc-
ity from Eqs. (10) and (11) and µ is an arbitrary con-
stant. The electric-field profile then takes the form

(15)

The profile of this wave is shown in Fig. 1. The numer-
ator in Eq. (15) slowly changes compared to the denom-
inator. It thus follows that the electric soliton reaches its
maximum at a given τ near zero of the cosh argument.
Since the soliton velocity u < 1, the argument of the tan-
gent is always positive in this range. The numerator in
Eq. (15) and, hence, the electric field grows with time.
This growth ceases as soon as  reaches
its asymptotic value equal to 1 (see Fig. 1 for illustra-

∂ ψ2

∂τ2
--------- ∂ ψ2

∂x2
---------– eψ/2.=

ψ
16 f 1' x τ–( ) f 2' x τ+( )

f 1 x τ–( ) f 2 x τ+( )+[ ]cosh
2

------------------------------------------------------------------- .ln=

f 1 x τ–( ) γ x τ–( ), γ 1 u+

4 1 u2–
---------------------,≡=

f 2 x τ+( ) β x τ+( ), β 1 u–

4 1 u2–
---------------------.≡=

ψ 2
x uτ–

2 1 u2–
--------------------- 

  ,coshln–=

E E0/
x uτ–

2 1 u2–
--------------------- 

 cosh
2

.=

f 1 γ x τ–( ) µ τ x–( ),coshln+=

f 2 β x τ+( ),=

E/E0 16β γ µ µ τ x–( )tanh+[ ] / Qcosh
2

,=

Q γ β+( )x γ β–( )τ– µ τ x–( )coshln+[ ] .=

µ τ x–( )[ ]tanh
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tion). If an infinitely increasing function is substituted
for  in Eq. (15), then the electric field
will also continue to grow infinitely.

(3) A substantial accumulation of electric-field
energy as the wave travels in plasma can result in fast
heating of the latter. It is important to make sure that
this heating is powered by the dilaton-field energy. To
this end, let us consider the above wave traveling in
plasma. As was pointed out above, the quasi-neutral
plasma outside the region of E localization does not
interact with the dilaton field. A current is generated in
the electric-field region in plasma and the complete sys-
tem of equations now takes the form

(16)

where ρ is the charge density and j is the conduction
current. To further simplify the problem, we assume
that the plasma conductivity σ is constant and that j =
σE. We seek a solution in the form of a steady-state
wave that depends on the argument ξ = x – ut. Choosing
Ec and ρ0 as the characteristic electric-field strength and
charge density, respectively, we introduce the following
dimensionless quantities:

(17)

µ τ x–( )[ ]tanh

∂ρ
∂t
------ ∂j

∂x
------+ 0,

x∂
∂

e 2αΦ– E( ) 4πρ,= =

∂2Φ
∂t2
---------- ∂2Φ

∂x2
----------– αe 2αΦ– E2,=

e E/Ec, Ψ 2αΦ , δ ρ/ρ0,= = =

η
2αEc

1 u2–
------------------ξ , ζ 2πσ 1 u2–

uEc

-----------------------------.= =

Fig. 1. The growth of the electric soliton in a wave with var-
ious asymptotic dilaton-field energy densities ahead of and

behind the wave. Solution (15) with u = 1/  and µ = γ is
shown at various times τ. The energy densities, in units of

, are 7.4 and 0.2 ahead of and behind the soliton, respec-

tively. At large τ, the solution transforms into a steady-state
soliton.

3

E0
2
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The system of equations (16) then takes the form

(18)

This system has the first integral

(19)

where p = dΨ/dη and C is the integration constant. Its
analysis allows the transformation of dilaton-field
energy into plasma thermal energy to be traced. As in
the nondissipative case (see (12)), Ψ  –∞ ahead of
and behind this soliton and the corresponding asymp-
totic values of p follow from Eq. (19) for eΨ  0. In
these regions, the dilaton-field energy density is deter-
mined only by the derivatives of the dilaton potential;
i.e., it is proportional to p2.

When dissipation is switched off (ζ  0), it fol-
lows from Eq. (19) that the asymptotic values of p are
equal in magnitude. This equality implies that the
asymptotic values of the dilaton-field energy density
ahead of and behind the soliton are equal. Otherwise,
the transformation of dilaton-field energy into electric
energy and back into dilaton energy would be revers-
ible. In the presence of dissipation (ζ ≠ 0), the asymp-
totic value of p ahead of the soliton is larger than its
value behind the soliton, implying energy losses
through dissipation. Figure 2 shows our numerical

d2Ψ
dη2
----------

1
2
---e Ψ– e2, ηd

d ζe δ–( )– 0,= =

ηd
d

e Ψ– e( ) δ.=

p
2ζ
------

1

4ζ2
-------- 1 2ζp–( )ln+

1
2
---eΨ C,+=

Fig. 2. An electro-dilaton soliton with dissipation. The
dimensionless conductivity ζ and the constant C in Eq. (19)
were chosen to ensure the total transformation of dilaton-
field energy into plasma thermal energy behind the soliton
(p  0).
solution to the system of equations (18), which con-
firms the above analysis. The conductivity ζ was cho-
sen in such a way that all of the dilaton-field energy
transformed into thermal energy. Note that the wave
carries a finite charge. If this solution is assumed to
evolve from a quasi-neutral system, then the corre-
sponding negative charge should be assumed to remain
outside the soliton-like solution.

(4) A more complex dissipation mechanism, in par-
ticular, the production of electron–positron pairs in an
intense field E, can be considered in terms of this
model. However, it was first necessary to demonstrate
the very fact of the transformation of dilaton-field
energy into plasma thermal energy using a simple
example.

The realization of this mechanism greatly depends
on the experimental confirmation of the direct interac-
tion between the dilaton and electromagnetic fields in
Lagrangian (1). We are grateful to the referee who
pointed to the paper by Chiba and Kohri [7], in which
this problem was addressed. However, note the follow-
ing. If the dilaton charge h2e2bΦ is substituted in
Lagrangian (1) for the electromagnetic field, then all of
the above conclusions regarding the increase in the
energy of the soliton as it moves in an inhomogeneous
field remain valid. This concentrated dilaton-field
energy can be transferred through a different channel
when the dilaton interaction with other fields is
included. Radiation can be generated, for example, by
the mechanism from [2].

We thank H. Kleinert and H.J. Schmidt with whom
we formulated the original problem [8]. We are grateful
to A. Starobinsky and V. Usov for the discussion of the
model. This study was supported by the ISTC Project
no. KR-677.
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The evolution of longitudinal-and-transverse acoustic pulses propagating along an external magnetic field
through a system of resonant paramagnetic impurities with effective spin S = 1/2 is studied theoretically. It is
shown that, when the group velocities of longitudinal and transverse waves are equal and the impurity concen-
tration is sufficiently small, the initial system of equations is reduced to new evolution equations, which are inte-
grable within the framework of the inverse scattering problem approach. These equations qualitatively describe
the new coherent dynamics of acoustic pulses. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.65.+k; 72.55.+s; 43.35.Rw
Nonlinear coherent optical phenomena associated
with soliton and other self-similar solutions [1] were
thoroughly studied analytically within the framework
of integrable models [2]. When elastic waves propagate
through a paramagnetic crystal, solitonlike pulses can
form as a result of the effects associated with anhar-
monic oscillations and dispersion [3], as well as due to
the effect of nonlinear coherent interaction of acoustic
waves with paramagnetic impurities in the medium, in
the conditions of a self-induced acoustic transparency
[4, 5].

The evolution of an acoustic pulse in a crystal with
paramagnetic impurities has a number of distinctive
features making it qualitatively different from the light-
wave dynamics in the medium. For example, such fea-
tures are associated with the fact that the sound wave in
a crystal may be of a longitudinal-and-transverse type.
The self-induced acoustic transparency was observed at
low temperatures in crystal samples with paramagnetic
impurities [6]. In other experiments [7, 8], this effect
was observed in Fe2+ impurities in MgO and LiNbO3
crystal matrices.

The theory of self-induced acoustic transparency for
a transverse pulse propagating in the direction parallel
to magnetic field in a spin system with S = 1/2 was
developed, e.g., in [4, 5]. In this theory, the equations
describing the acoustic-pulse dynamics under a number
of simplifying assumptions were reduced to both non-
integrable and well-known simple integrable models.

The main purpose of this paper is the study of the
new acoustic-pulse dynamics with allowance for signif-
icant changes in the transverse and longitudinal field
components. For this purpose, a new general integrable
model that describes the one-dimensional dynamics of
0021-3640/02/7610- $22.00 © 20607
pulses propagating in a crystal with paramagnetic
impurities with spin S = 1/2 is proposed.

Let us derive the equations describing the dynamics
of a longitudinal-and-transverse wave in a crystal with
paramagnetic impurities (cf. [5]). We assume that a
homogeneous static external magnetic field B is
directed along the z axis. The contribution of the Zee-

man interaction of the magnetic moment  located at

point a to the general Hamiltonian is  = – B. The

components  are expressed through the spin com-
ponents S(a)(ra), where ra is the radius vector of the ath
spin:

Here, µB is the Bohr magneton and gjk are the compo-
nents of the Landé tensor.

Assume that the x, y, and z coordinate axes directed
along the principal axes of the Landé tensor coincide
with the crystal symmetry axes. Then, in the unstrained
unperturbed medium, the Landé tensor is diagonal:

gjk =  = gjjδjk, where δjk is the delta function. To
describe the crystal strain caused by the acoustic wave,
we introduce linear corrections to the Landé tensor:

(1)

where % is the elastic strain tensor of the crystal at the
point where the spin is located. The derivatives are
taken at the point where the strain is zero. The strain

µ̂ a( )

Ĥa µ̂ a( )

µ̂ a( )

µ̂ j
a( ) µBg jkŜk

a( )
.

k

∑–=

g jk
0( )

g jk g jk
0( ) ∂g jk

∂%pq

------------ 
 

0

%pq …,+
p q,
∑+=
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tensor components are expressed through the compo-
nents of the displacement vector U = (Ux, Uy, Uz):

The spin–phonon interaction is described by the
Hamiltonian involving the first-order terms of the
expansion in %pq powers. We consider the evolution of
the field along the z axis parallel to the vector B. In this
case, the symmetry transformations include the mirror
reflections about the planes x = 0, y = 0, and z = 0. With

allowance for these conditions, the expressions for 

and  take the form

(2)

(3)

Hereafter, γ sequentially represents x, y, and z; Sγ =
Tr{ , }, where  is the density matrix and  are the
Pauli matrices; ωB = gµBB/" is the frequency of Zeeman
splitting of the Kramers doublet, where g = gxx = gyy =

gzz; n(r) = (r – rj) is the concentration of para-
magnetic impurities; the integrals are taken over the
crystal volume; and fγ = ∂gzz/∂%γz are the spin–phonon
coupling constants [8].

Without regard for anharmonicity, under the afore-
mentioned symmetry conditions the acoustic-field
dynamics in the crystal can be described by the Hamil-
tonian

(4)

where n0 is the average density of the crystal, pj (j = x,
y, z) are the momentum density components caused by
the dynamic displacements, and λγ are the elements of
the elastic constant tensor of the crystal [9]. The num-
ber of phonons is assumed to be large, so that the clas-
sical description of the acoustic field dynamics is valid.

The equations describing the evolution of the effec-
tive spin and the acoustic field have the form

(5)

(6)

Here, H = Ha + 〈 〉 . The interaction between the spin
and the field of an elastic pulse is described by the clas-
sical Hamilton equations for a continuous medium.

%pq
1
2
---

∂U p

∂xq

----------
∂Uq

∂xp

---------+ 
  .=

Ĥs

Ĥ int

Ĥs n"ωBSzd
3r,∫=

Ĥ int〈 〉
n"ωB

g
------------- f γ%γzSγd3r.

γ
∑∫=

ŝγ ρ̂ ρ̂ ŝγ

δ
j∑

Ĥa
1
2
---

px
2 py

2 pz
2+ +

n0
----------------------------- λγ

∂Uγ

∂z
--------- 

 
2

γ
∑+

 
 
 

d3r,∫=

i"
∂ρ̂
∂t
------ Ĥ ρ̂,[ ] ,=

∂U
∂t
-------

∂H
∂p
-------,

∂p
∂t
------ ∂H

∂U
-------.–= =

Ĥ int
Using Eqs. (2)–(6), we obtain a system of evolution
equations for %γz:

(7)

Here, Gγ = "ωBfγ/g, v γ = ,

(8)

(9)

(10)

Let us obtain the most general integrable reduction
of the basic system of equations (7)–(10) without con-
sidering losses. Assume that the phase velocities of
waves are equal: v x = v y = v z = v. This situation takes
place in elastically isotropic crystals, such as alkali
metal halides with central interaction forces between
the atoms [10].

The reduction must describe the dynamics of acous-

tic pulses with durations on the order of π  or
smaller. With this condition, the slow envelope approx-
imation does not apply.

In real media, the concentration of paramagnetic
impurities can often be considered as small. Then, it is
possible to apply the unidirectional propagation
approximation similar to that used in [11] for deriving
the reduced Maxwell–Bloch equations for a two-level
optical medium. In this case, we can write the following
formal approximate equality: ∂z ≈ –v –1∂t + 2(e), where
e is a perturbation. The normalized impurity concentra-
tion is of the same order of smallness as the derivative

 = ∂z + v –1∂t of the acoustic field amplitudes. The
derivative with respect to z on the right-hand sides of
Eqs. (7) can be replaced by v –1∂t with an accuracy of
2(e2).

If the propagation of acoustic pulses is unidirec-
tional, system (7) is reduced to the form

(11)

From Eqs. (8)–(11), we derive the relation

(12)

Here, the real function I0(t) is determined by the
boundary conditions. With allowance for Eq. (12), new

∂2%γz

∂t2
------------- v γ

2∂2%γz

∂z2
-------------–

nGγ

n0
---------

∂2Sγ

∂z2
----------.=

λγ/n0

∂Sx
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-------- – ωB

Gz%zz

"
--------------+ 

  Sy
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"
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∂Sy
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"
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  Sx
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"
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∂Sz
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1
"
--- Gx%xzSy Gy%yzSx–( ).=
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integrable system of equations (8)–(11) can be repre-
sented as

(13)

Here, Fx = Gx%xz , Fy = Gy%yz , and Fz = (Gz%zz +

"ωB)  are the components of the vector F; Sγ are the

components of the vector S;  = diag(1, a, b), where

a = /  and b = / ; ϑ  = (t ')dt '; and ϑ  =

n (2"n0v 2)–1.

System (13) can be represented as the condition that
the following linear systems of equations are compati-
ble:

(14)

(15)

Here,
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2 1 a µ–+( )
---------------------------------------------------------------------------,=

β̃1 i

b
a
--- a 1–( )2 µ2–[ ]

8λ 1 a µ–+( )
------------------------------------------, β̃0

ab a µ– 1–( )
2 1 a µ–+( )

-------------------------------------,= =

β1 i
a µ 1–+( ) 2 b 1–( ) a

b
--- b

a
--- a µ 1–+( )+

8λ 1 a µ–+( )
----------------------------------------------------------------------------------------------------,–=

16aλ2 1 a–( )2+
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As reductions, system (13) has new integrable sys-
tems of equations corresponding to a ≠ 1, b = 1 and to
a = 1, b ≠ 1. For a = 1 and b = 1, system (13) formally
coincides with the model of a symmetric chiral field on
the O3 group [2]. It should be emphasized that system
(13) cannot be reduced to an integrable model of an
asymmetric chiral field [12]. Since system (13) is diffi-
cult to analyze, we proceed with considering its simple
though nontrivial reduction.

Let the z axis be a fourfold symmetry axis; i.e., con-
sider the case a = 1, b ≠ 0. For a = 1, system (13) has
the following Lax representation:

(16)

(17)

Here, λ is the spectral parameter, τ = ϑ , E = Fx – iFy,

Fz = F3, S = Sx – iSy, and β = (1 – b)/2 .
We solve the problem on the entire axis for E(τ)  0

and τ  ±∞ under the assumption that, at the initial
and final instants, the spin system is in the stable ground
state: Sz(τ, χ) = –1, S(τ, χ) = 0, and τ  ±∞. We
assume that the acoustic pulse E(τ, 0) introduced in the
crystal has an area sufficiently large for the soliton for-
mation.

Spectral problem (16) differs in its symmetry prop-
erties from previously investigated similar problems
associated with solving the integrable Heisenberg and
Landau–Lifshits equations [13] or the Raman scatter-
ing and four-wave mixing equations [14]. Therefore, it
is necessary to develop an apparatus for the inverse
problem method, as applied to this model with allow-
ance for its specificity.

The solutions to spectral problem (16) possess the
following involution:

(18)

In view of Eqs. (18), the Jost functions Ψ±, being the
solutions to problem (16) with the asymptotic behavior

(19)

can be represented in the form

∂τΦ
iλF3– λ β+( )E

λE*– iλF3 
 
 

Φ L̂Φ,≡=

∂χΦ

=  
1

2λ 1–( )
--------------------

iλSz– b λ β+( )S–

bλS* iλSz 
 
 
 

Φ ÂΦ.≡

b

b b

Φ M̂Φ λ*( )*M̂
1–
, M̂ 0 λ β+( )/λ

1– 0 
 
 

.= =

Ψ± iλσ3τ–( ), τ ∞ ,±exp=

Ψ± ψ1
± ψ2

±*λ β+
λ

------------–

ψ2
± ψ1

±* 
 
 
 
 

.=
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These solutions are related to the scattering matrix :

(20)

The Jost functions have standard analytic properties
(see, e.g., [15]); a(λ) is holomorphic in the upper half-
plane of λ, where its zero values correspond to soliton
solutions.

Represent the Jost functions in the form

(21)

Substituting the components of these functions from
Eq. (21) into Eqs. (18) and integrating the resulting
equations with respect to λ from –∞ to ∞ with the
weighting function e–iλy(2πλ)–1, we obtain the March-
enko equations for the right end of the axis (y ≥ τ):

(22)

(23)

Here,

(24)

where # is a contour including the real axis and passing
above all poles in the upper complex half-plane.

From Eqs. (21) and (16), we obtain the relation

(25)

Using Eq. (25) and the condition F3 + EE* = 1, we
obtain the relation between the potential E and the ker-
nels K1, 2:

(26)

Let us find a single-soliton solution associated with
a single eigenvalue λ. Represent the kernel F corre-
sponding to the eigenvalue λ in the form

(27)

where C0 = –ib(χ; λ)/(λ∂ηa(χ; η)|η = λ).

T̂

Ψ– Ψ+T̂ , T̂ a* b λ β+( )/λ
b*– a 

 
 

.= =

Ψ+ τ( ) e
iλσ3τ–

=

+
λK1 τ s,( ) λ β+( )K2 τ s,( )
λK2* τ s,( )– λK1* τ s,( ) 

 
 

e
iλσ3s–

s.d

τ

∞

∫

K2* τ y,( ) F0 τ y+( ) i K1 τ s,( )∂yF0 s y+( ) s,d

τ

∞

∫+=

K1* τ y,( ) K2 τ s,( ) β i∂y+( )F0 s y+( ) s.d

τ

∞

∫–=

F0 y( ) b
a
--- χ( ) 1

2πλ
----------e iλy– λ ,d

#

∫=

K2 τ τ,( ) 1 F3 τ( )+[ ] E* τ( ) 1 iK1 τ τ,( )–[ ] .=

E τ( )

=  
2 1 iK1 τ τ,( )–[ ] K2* τ τ,( )

1 iK1* τ τ,( )+[ ] 1 iK1 τ τ,( )–[ ] K2 τ τ,( ) 2+
--------------------------------------------------------------------------------------------------------.

F0 y( ) C0 χ( ) iλy–( ),exp=
The dependence of the scattering data on χ is deter-
mined by the formula [15]

(28)

For the chosen initial and boundary conditions corre-
sponding to the soliton dynamics, Eq. (28) yields

(29)

where S0 is a constant. For simplicity, we set ξ = 0.
Using Eqs. (26)–(29), we obtain a single-soliton solu-
tion for the model under consideration with λ = iη:

(30)

where

and the y and x components of the transverse field have
different signs at any instant of time. The soliton solu-
tion describes intense energy transfer between all com-
ponents of the acoustic field with allowance made for
relation (12). From solution (30), it also follows that the
asymmetry associated with the deviation of b from
unity gives rise to a nonlinear addition to the soliton
phase φs. This addition describes a nonlinear rotation of
the polarization of a transverse field.

In the general case, apart from the soliton solutions,
it is necessary to take into account solutions of other
types, such as radiation solutions associated with the
continuous spectrum of problem (16). For example, for
a small initial acoustic pulse |E | ! 1 and Sz(0, χ) = 1,
soliton solutions do not exist, and the field dynamics
are associated with the continuous spectrum of problem
(16) alone. Consider some estimates for the medium
parameters and the power of soliton acoustic pulses that
can be generated in a medium of this kind. As an exam-
ple, we consider a MgO crystal with Fe2+ paramagnetic
impurities at the temperature T = 4 K. Let the magnetic
field be such that ωB = 1012 s–1. In this case, the condi-
tion τp ~ ω–1 is valid for pulse durations of ~100 ps. The
condition ωB = 1012 s–1 corresponds to magnetic field
strengths attainable in laboratory conditions. For the
parameters of the medium, we have [6] Gγ ~ 10–13 Erg,
n ~ 1019 cm–3, n0 ~ 3–4 g/cm3, v  ≈ 5–10 × 105 cm/s, and

∂χT̂ T̂e
iσ3λτ–

Â τ  = ∞– χ,( )e
iσ3λτ

–=

+ e
iσ3λτ–

Â τ  = ∞ χ,( )e
iσ3λτ

T̂ .

b λ( )
∂ηa η( ) η λ=

---------------------------- χ( ) S0
2iχλ–

2λ 1–
--------------- 

  ,exp–=

E τ χ,( )

=  
2S0η

1– µ τ χ,( ) 1 γ1– µ τ χ,( ) 2[ ] e
iφs

1 µ τ χ,( ) 2 S0
2η 2– γ1– γ1*–[ ] µ τ χ,( ) 4 γ1

2+ +
---------------------------------------------------------------------------------------------------------------------,

µ τ χ,( ) 2τη 4ηχ
1 4η2+
------------------ 4iη2χ

1 4η2+
------------------+– 

  ,exp=

φs arg
1 γ1* µ τ χ,( ) 2+

1 γ1 µ τ χ,( ) 2+
-------------------------------------- , γ1

S0
2 η2 iηβ+( )

4η4
------------------------------------,= =
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λγ ≈ 5–10 × 1011 dyn/cm2. In these conditions, the inten-
sity of the soliton signal may reach I ~ 106 W/cm2.

System (13) describes the complex dynamics of
three field components and can be used to describe new
physical phenomena, including a strong interaction of
several fields. For example, consider the phenomenon
of electromagnetically induced transparency (EIT)
[16], which was observed in multilevel optical systems.
In the presence of a strongly varying linear dispersion,
the EIT leads to a considerable decrease in the group
velocity of light in the medium down to values that may
be comparable with or smaller than the velocity of
sound in this medium. Such a decrease in the group
velocities of light was observed experimentally in crys-
tals with implanted rare-earth ions and in other media.
A decrease in the resonance absorption, along with the
strong linear dispersion, suggests new mechanisms of
the resonance interaction of light with acoustic waves.
In [17], it was stated that, owing to the strong linear dis-
persion associated with the EIT, the phase matching
between electromagnetic and acoustic waves is possi-
ble in a dielectric optical waveguide with implanted
three-level ions. In [18], the interaction of an electro-
magnetic field with acoustic phonons was described
using a Hamiltonian similar to that used above for
describing the coupling between the spin states and
acoustic phonons. A resonant optical medium can be
modeled by an effective two-level medium. The pon-
dermotive force related to the local density variations in
the optical medium makes a contribution to the acous-
tic-field dynamics, and the expression for this contribu-
tion corresponds to the right-hand sides of Eqs. (7). In
such a scheme, it is necessary to take into account not
only the transverse electromagnetic field, but also the
longitudinal acoustic field, whose contribution to the
dynamics of optical medium manifests itself as a non-
linear phase modulation. With a model analogous to
model (13), it is possible to study the Brillouin scatter-
ing processes for picosecond acoustic pulses.

In closing, it should be noted that the new integrable
model (13) can also be used in the theory of gravitation.
JETP LETTERS      Vol. 76      No. 10      2002
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The statistics of the jumplike plastic deformation of a Cu–Be alloy under the conditions of a low-temperature
unstable plastic flow is studied experimentally. At a high strain rate, the parameters of the load jumps are found
to be related by power laws, which corresponds to a scale-invariant behavior. A comparison with the data
obtained for another mechanism of plastic instability, namely, the Portevin–Le Chatelier effect, points to the
existence of universal laws governing the dynamics of a dislocation ensemble in the conditions of plastic insta-
bility. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 62.20.Fe; 46.35.+z; 81.05.Bx; 05.65.+b
The plastic flow of a solid is an example of a nonlin-
ear dynamical phenomenon that occurs in an extended
dissipative system represented by an ensemble of
defects in a crystal structure. The dynamics of such sys-
tems obeys unified laws and, in particular, exhibit self-
organization at different scale levels in space and/or
time [1]. Therefore, studies of the plastic flow from the
viewpoint of the self-organization of the dislocation
motion, i.e., the motion of the main plasticity carriers,
have attracted considerable interest in the last few years
[2, 3]. In some cases, collective processes in a disloca-
tion ensemble manifest themselves at the macroscopic
level in the form of jumplike deformation curves
reflecting the complex evolution of the flow stress [3,
4]. The corresponding self-organization in time is
accompanied by a spatial self-organization, namely, by
the localization of the plastic flow in the deformation
bands, which may be stationary or may propagate along
the crystal in the form of solitary waves [3]. Such a
complex space–time behavior suggests that the jump-
like deformation curves be analyzed in terms of the the-
ory of dynamical systems.

Recent studies (see, e.g., [5–9]) of the deformation
curves by the methods of statistical, dynamical, and
multifractal analyses have revealed complex correla-
tions between the plastic processes that occur in the
course of the jumplike plastic deformation of alloys as
a result of the dynamic interaction of dislocations with
impurity atoms, i.e., in the conditions of the Portevin–
Le Chatelier effect [3]. It was found that, at low strain
rates, the character of flow corresponds to a dynamic
chaos [10], while, at higher strain rates, a transition to
self-organized criticality takes place [11]. At the same
time, the plastic instability can be of a different micro-
scopic origin, which makes it possible to study both
universal and unique dynamic manifestations of physi-
cally different mechanisms. In this paper, we study the
statistics of the low-temperature instability for the jum-
0021-3640/02/7610- $22.00 © 20612
plike plastic deformation of Cu–Be polycrystalline
specimens exhibiting a great number of load jumps at
liquid helium temperatures.

The typical experimental technique used for such
investigations includes the tension (compression) of a
specimen at a constant strain rate  with the load
applied to the specimen being the measured quantity (in
some sense, this technique is opposite to the conven-
tional physical experiment in which the external action
is preset and the response of the system is measured).
The deformation with a given strain rate  is a result

of the plastic deformation of the specimen with a rate 
and the elastic deformation of the specimen–loading
machine system with a rate /M (where σ is the
mechanical stress and M is the rigidity of the system):

 =  + /M. This relation explains the jumplike
character of the deformation in an unstable plastic flow:
a dislocation avalanche leads to the relation  @ ,
and the load applied to the specimen drastically jumps
because of the elastic response of the machine; in its
turn, this jump leads to the termination of the avalanche
process and to the repetition of the load increase cycle
and appearance of instability.

Polycrystalline specimens 0.5 mm in diameter and
30 mm in length were cut out of a wire made of an alloy
with the composition Cu–12 at. % Be–0.2 at. % Co.
The specimens were subjected to tension at 4.2 K (M ≈
6.2 × 106 N/m) in their initial state or after their homog-
enization by annealing at 800°C with a subsequent
quenching. The strain rate was varied in the range  =
2.7 × 10–6–5.4 × 10–2 s–1. The stress–time curves σ(t)
(t is time) were recorded in a digital form with a fre-
quency of 5–50 Hz. The microstructural state of the
crystals changes with deformation, which is reflected
by a change in the rate of strain hardening (Fig. 1).
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Therefore, the statistical samples were accumulated at
the stage of steady-state jumplike plastic deformation
(ε ≥ 5–10%), and the amplitude of load jumps was nor-
malized to the running average (the details of the exper-
imental technique can be found in [8, 12]).

Although the microstructural state and the shape of
the stress–time curves cannot be exactly the same for
different specimens, the experimental results allow us
to determine some common features. At low strain
rates, the jumplike stress–time curves have a regular
character (see Fig. 1), which manifests itself in the
existence of a definite scale of load jumps. Correspond-
ingly, the histograms of the amplitude and duration dis-
tributions of the jumps have a peaked form. As the
strain rate increases, the distributions become asym-
metric: the position of the maximum gradually moves
toward the ordinate axis (the probability of small load
jumps increases), and at strain rates higher than ~10–3 s–1,
the histograms are described by monotonically decreas-
ing functions.

The normalized probability density functions
obtained for the amplitudes δ and durations τ of load
jumps at high strain rates for annealed specimens are
adequately described by the power laws nδ ~ δ–x and
nτ ~ τ–y (Fig. 2a). Hence, the quantities δ and τ are
related as δ ~ τh (Fig. 2b), where h characterizes the sin-
gularity of the stress–time curve at the instant of jump
(in the case h < 1, a jump with the duration τ  0 has
a finite magnitude). For different specimens, the expo-
nents were found to vary within 1–1.5, and the set of
exponents for each specimen satisfied the relation y =
h(x – 1) + 1 (see, e.g., caption to Fig. 2) that follows
from simple scaling considerations [13]. The absence
of the characteristic scale of deformation processes,
which manifests itself in the power-law statistics,
points to the possibility of self-organized critical
dynamics of the dislocation system. Deviations from
the power laws are observed at the edges of the ranges
within which the characteristics of the load jumps vary.
Presumably, these deviations can be attributed to the
lack of statistics for rare large jumps and to the limited
sensitivity of measurements. Note that the approxima-
tion of the dependence for the durations in Fig. 2a is
less convincing than that for the amplitudes. Generally
speaking, even in the numerical modeling of the
dynamics of self-organized criticality, the distributions
of τ exhibit a more noticeable scatter [11]. In the exper-
iment, this is due to the lower accuracy of the τ mea-
surements. An independent verification of the assump-
tion about the self-organized criticality can be provided
by the behavior of the energy spectrum of the stress–
time curve. According to [13], if the condition 2/h + x ≤ 3
is satisfied, the low-frequency part of the spectrum is
described by the dependence S(f) ~ 1/f2, which agrees
well with the experimental observations. Therefore,
despite the scatter of data and the narrow range of argu-
JETP LETTERS      Vol. 76      No. 10      2002
ment variations in the experimental dependences, the
assumption about the self-organized criticality seems to
be quite plausible.

Fig. 1. Stress–time curve obtained for an annealed Cu–Be
specimen (  = 2.7 × 10–4 s–1 and T = 4.2 K).ε̇a

Fig. 2. (a) Normalized probability density functions for the
(1) amplitudes δ and (2) durations τ of stress jumps at  =

2.7 × 10–3 s–1 and (b) the relation between the parameters
of stress jumps (the data are averaged for close values of τ).
The corresponding estimates of the exponents are x ≈ 1.2,
y ≈ 1.4, and h ≈ 1.3 (notation is given in the text).

ε̇a

t



 

614

        

LEBYODKIN 

 

et al

 

.

                  
One more characteristic feature is associated with
the effect of the microstructural state of the crystals.
The transition from the histograms with a maximum to
monotonic distributions is observed for all specimens;
however, in the case of annealed crystals, it occurs at
smaller values of . By contrast, the monotonic distri-
butions obtained for the initial specimens noticeably
deviate from the power laws even for the highest strain
rates (see [12]). Since the annealing leads to the relax-
ation of internal stresses and to crystal softening, this
observation agrees well with the fact that, at the initial
deformation stage (ε ≤ 5%) in the annealed crystals, the
asymmetry of distributions is greater than is observed
after the strain hardening.

Thus, at certain conditions, the curve statistics
obtained for the jumplike plastic deformation of Cu–Be
exhibits a scale invariance, giving evidence of the self-
organization of the dislocation dynamics. The compar-
ison with the data for the Portevin–Le Chatelier effect
showed that the types of distributions and the transi-
tions between them upon varying experimental condi-
tions are qualitatively similar for the two mechanisms
of plastic instability [7–9]. This result points to the
existence of general laws that govern the instability
dynamics. However, the manifestation of the scale-
invariant behavior depends on the material and micro-
structure of the specimens and on the deformation con-
ditions. Therefore, it is of interest to consider the exper-
imental data from the viewpoint of similarity of and dif-
ference between the physical mechanisms responsible
for the analogous statistical properties of the jumplike
plastic deformations. In fact, the scale symmetry is
often associated with a universal behavior for which the
scaling factors are determined by the fundamental
properties of the system and, specifically, by its dimen-
sion and symmetry and by the form of the nonlinear
dynamical law.

The dislocation glide is discontinuous: it consists of
the motion and arrests at localized obstacles. In the case
of a thermally activated dislocation motion, the depen-
dence σ( ) observed at a constant temperature is a
monotonically increasing function, because the dislo-
cation waiting time at obstacles is inversely propor-
tional to the strain rate, tw ~ 1/ , and decreases with
increasing σ. In alloys, an additional resistance to plas-
tic flow may be caused by the diffusion of impurity
atoms toward immobile dislocations. This component
of σ decreases with increasing  because of a decrease
in the number of impurity atoms that have an opportu-
nity to reach a dislocation. Because of the competition
between these two contributions, the dependence σ( )
becomes N-shaped with a negative slope in some inter-
val of . If the strain rate  provided by the loading
machine corresponds to this interval, an instability sim-
ilar to relaxation oscillations takes place, as, e.g., in the
Gunn effect in a medium with a negative differential
conductivity [14]. These concepts lie at the basis of the
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ε̇

ε̇

ε̇

ε̇ ε̇a
models of the Portevin–Le Chatelier effect. The low-
temperature jumplike plastic deformation observed in a
number of materials, including pure substances, has a
different microscopic origin. The theoretically best
understood mechanism is the mechanism of thermome-
chanical instability caused by the relation between the
strain rate and the heat release. Namely, at liquid
helium temperatures, the energy dissipation that
accompanies the dislocation motion may cause consid-
erable local heating in the strained crystal. Since the
heating contributes to the activation of dislocations, an
avalanche process may take place. An alternative
hypotheses was also discussed in the literature, such as,
e.g., the nonthermic mechanism based on the concept
that the dislocation pile-ups mechanically break
through the obstacles. However, these hypotheses were
not adequately treated theoretically. From the experi-
ments, it was found that the low-temperature instability
is also associated with the N-like sensitivity of the flow
stress to the strain rate [15] (this also follows from the
thermal hypothesis [16]). Therefore, despite the differ-
ence in the microscopic nature, the plastic instability
mechanisms under consideration can be associated
with the same type of nonlinearity typical of the excited
media.

In the ideal case of a homogeneous deformation, the
instability of the relaxation oscillation type should cor-
respond to periodic load jumps with the same ampli-
tude and duration. The complex behavior of real speci-
mens is caused by the inhomogeneity of plastic flow.
Therefore, along with the N-shaped response function,
the character of the spatial correlation between local
strains in the specimen is of fundamental significance.
In the case of the Portevin–Le Chatelier effect, the cor-
relation is mainly determined by the elastic stresses
associated with the field of elastic strains compensating
the incompatibility between the plastic strains in the
inhomogeneous flow [7, 8]. Presumably, this mecha-
nism also manifests itself in the low-temperature defor-
mation, because the effect produced by the annealing of
specimens on the experimental histograms points to the
important role of plastic relaxation of internal stresses.
At the same time, it is evident that, at low temperatures,
the formation of spatial scales strongly depends on the
heat transfer processes. Along with other features of the
conditions for dislocation motion and multiplication at
low temperatures, this factor may be responsible for the
difference in the spatial patterns of the strain localiza-
tion. For example, at a low strain rate, each load jump
observed in the conditions of the Portevin–Le Chatelier
effect is usually associated with the formation of a sin-
gle deformation band (the elastic stresses provide the
correlation only at small distances because of the expo-
nential dependence of the plastic strain rate on stress).
By contrast, at low temperature, a multiple shear gener-
ation is observed in different parts of the specimen.

A possible explanation of the experimental results
lies in the consideration of the competition between the
characteristic length and time scales, which are deter-
JETP LETTERS      Vol. 76      No. 10      2002
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mined by the properties of material and by the deforma-
tion conditions [9]. The arguments presented here are
of a general character and combine different mecha-
nisms of spatial correlation. When the plastic instability
occurs in some part of the crystal, the strain rate in this
region (deformation band) becomes higher than in the
rest of the crystal and, hence, gives rise to a strain gra-
dient. At a low , the inhomogeneity considerably
decreases within the time interval between successive
load jumps, so that the correlation between them is
insignificant and their parameters are distributed near
the average ones, which approximately correspond to
the relaxation oscillations. At high strain rates, the time
between the jumps is insufficient for the relaxation of
the strain gradients (remind that  was varied within
several orders of magnitude). As a result, the correla-
tion length increases and the stress is always close to
the critical value for the initiation of a plastic burst at
some point, which is typical of the self-organized criti-
cality. This can lead to a repeated formation of new
bands and a hierarchical distribution of the load jump
parameters without any characteristic scale. Note that,
in the case of the Portevin–Le Chatelier effect, an
increase in the strain rate is accompanied by the transi-
tion from the localization to the propagation of the
deformation bands along the crystal [3]. This agrees
well with the assumption that the correlation length
increases. For the low-temperature deformation, such
data are as yet not available. The similarity of the shape
(see [7, 17]) and statistics of the stress–time curves
obtained for both instability mechanisms is indirect evi-
dence in favor of the possible propagation of the defor-
mation bands in the low-temperature deformation con-
ditions.

Thus, the data obtained from this study characterize
the plastically strained crystal as a system in which
complex dynamical regimes are possible, and the tran-
sitions between these regimes can be controlled by
varying the experimental conditions. More definite
conclusions concerning the universal properties of
plastic instability can presumably be obtained by
applying the methods of dynamical and multifractal
analyses used earlier for analyzing the Portevin–Le

ε̇a

ε̇a
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Chatelier effect [9]. The results of such investigations
will be reported elsewhere.

This work was supported by the Russian Foundation
for Basic Research (project nos. 01-02-16461, 01-02-
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The electrical resistance and the thermoelectric power in the ab plane of a weakly oxygen-doped La2CuO4 + x
crystal (0.001 < x < 0.007) and its static magnetic susceptibility were studied in the vicinity of antiferromagnetic
transition. The electrical resistance and the thermoelectric power behave anomalously near the Néel tempera-
ture, indicating that the transport is strongly affected by the establishment of long-range antiferromagnetic
order. Analysis of the obtained data allows the conclusion to be drawn that the doping gives rise to a conduction
band as a result of the overlap between the wave functions of deep impurity states that are strongly renormalized
due to the correlation and polaron effects. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 74.25.Fy; 74.72.Dn
Antiferromagnetic ordering of copper spins in the
dielectric phase and spin fluctuations in the metallic
state are universal features of the cuprate high-Tc super-
conductors. For an understanding of the nature of the
superconducting state, it is important to know how
strong is the interaction of charge carriers with the cop-
per spin subsystem. However, no direct experimental
data have been obtained thus far on the interaction of
charge carriers in the CuO2 plane with copper spins. In
[1], the deviation from the linear temperature depen-
dence of the resistivity ρab(T) in the ab plane of the
metallic phase of high-Tc superconductors was consid-
ered as a manifestation of the charge spin scattering
upon opening a pseudogap in the spectrum of magnetic
excitations. It has now become clear [2] that the
pseudogap effects primarily relate to the electronic
spectrum, so that the separation of charge and spin
degrees of freedom in the x–T domain of existence of
the pseudogap is not a trivial problem, because the ini-
tial states are renormalized in the presence of a high
hole concentration in CuO2.

Clearly, the influence of the magnetic subsystem on
the transport properties manifests itself most strongly
in the vicinity of the Néel temperature (TN), where
changes in the spin lattice are the strongest. The sur-
prising thing is that, despite the numerous measure-
ments of electrical resistance along the CuO2 planes in
various single-crystal high-Tc superconductors
(La2CuO4 + x [3], La2 – ySryCuO4 [4], YBa2Cu3O6 + x [5],
and Bi2Sr2ErCu2O8 [6]), no anomalies were observed
for ρab(T) near TN in the appropriate temperature and
concentration regions. An important question then
arises as to whether the absence of the manifestations of
spin ordering in the electrical resistance is evidence of
0021-3640/02/7610- $22.00 © 20616
a weak interaction between the charge carriers and cop-
per spins (in particular, charge carriers may have zero
spin or the conduction may occur beyond the CuO2
planes) or it is an experimental artifact.

This work is devoted to the solution of this question.
The temperature dependence of ρab(T) was measured
near the TN temperatures of La2CuO4 + x single crystals.
It is known [7] that ρab(T) shows only a weak inflection
caused by a change in the conductivity activation
energy. For this reason, our measurements of ρab(T)
were sufficiently accurate for the local conductivity
activation energy Eab(T) = dln(ρab(T))/dT to be deter-
mined. Together with the electrical resistance in the ab
plane, the thermoelectric power αab(T) was also mea-
sured to separated the contributions to ρab(T) from
changes in the electronic spectrum and from the scatter-
ing mechanism. The La2CuO4 + x system was chosen for
our measurements not only because it is the simplest
system among the high-Tc superconducting cuprates [3]
but also because TN for this system can be determined
rather easily from the maximum of magnetic suscepti-
bility [8] due to the hidden weak ferromagnetism of
these systems.

Sample quality is highly important for measuring
transport properties, because the presence of uncon-
trolled impurities and defects or the inhomogeneous
dopant distribution may shunt the effect. We used high-
quality La2CuO4 + x single crystals grown under quasi-
equilibrium conditions from a solution in melt [9]. The
sample orientation and the oxygen content were moni-
tored by single-crystal diffractometry [8]. The results
presented in this work were obtained for the samples
cut from the same La2CuO4 + x single crystal. Note that
the room-temperature resistivity of the samples with
002 MAIK “Nauka/Interperiodica”
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x < 0.001 was higher than 10 mΩ cm. On the one hand,
this restricted measurements of transport properties at a
low doping level but, on the other hand, indicated the
high quality of the crystals used. Measurements of the
transport properties were carried out by the standard
contact dc methods [10]. Ohmic contacts were obtained
by firing silver paste into the samples with a character-
istic size of 3 × 1 × 0.5 mm.

The doping with oxygen was performed by anneal-
ing at an oxygen partial pressure from 2 × 10–5 to 1 atm
and temperatures <950 K to avoid the formation of oxy-
gen vacancies [11], which irreversibly deteriorate crys-
tal. The following relation was found between the oxy-
gen content in the samples and the oxygen pressure in
annealing: x ≅  7p1/6, where p is the oxygen pressure in
atm. As shown in [11], this dependence is evidence that
the degree of oxidation of the extra-stoichiometric oxy-
gen in La2CuO4 + x is two; i.e., one excessive oxygen
atom creates two holes in the CuO2 plane.

Our measurements showed that, as regards the
transport properties, the domain of existence of the
antiferromagnetic phase in La2CuO4 + x can convention-
ally be divided into three regions of oxygen concentra-
tion: the “dielectric” region at 0 ≤ x ≤ 0.0015 and TN >
310 K, the “semiconductor” region at 0.0015 < x <
0.006 and 240 K < TN < 310 K, and the “electronic
decay” region at 0.006 < x < 0.012 and TN < 240 K. In
this work, only the dielectric (Fig. 1) and semiconduc-
tor (Figs. 2, 3) regions are considered, because the
microscopic decay in the third region occurs above TN,
and the observed effects require separate consideration.
The dependences of ρab, Eab, and αab on the average dis-

Fig. 1. (a) Electrical resistance ρab(T), activation energy
E(T), and (b) thermoelectric power αab(T) in the ab plane
of the sample with TN = 318 K and x ≈ 0.0011.
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tance D(x) ≈ 3.8/(2x)1/2 Å between the impurity centers
in the ab plane at T = 370 K are shown in Fig. 4.

When characterizing the behavior of transport prop-
erties of La2CuO4 + x in the dielectric region, the follow-
ing should be taken into account. At temperatures
higher than TN (Figs. 1a, 4a), the activation energy Eab ≈
0.5 eV is high, nearly constant, and depends exponen-

Fig. 2. (a) Electrical resistance ρab(T), activation energy
E(T), and (b) thermoelectric power αab(T) in the ab plane
of the sample with TN = 300 K and x ≈ 0.0015.

Fig. 3. (a) Electrical resistance ρab(T), activation energy
E(T), and (b) thermoelectric power αab(T) in the ab plane
of the sample with TN = 275 K and x ≈ 0.0025. A hysteretic
“peak” caused by the electronic decay processes is seen for
E(T) near 240 K. The hysteresis is not seen on the scale used
in this figure.
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tially on the distance between the impurity centers
(Fig. 4a); i.e., one can write

(1)

where A is a constant. Taking into account the high acti-
vation energy and the metallic behavior of thermoelec-
tric power (Fig. 1b), one can state that such a behavior
of electrical resistance is typical of the nonadiabatic
high-temperature hopping of small polarons between
nearest neighbors [12]. In this case, A = 2/a, where a is
the characteristic localization radius of a charge carrier.
Indeed, using Eq. (1) and the obtained data (Fig. 4a),
we can estimate the carrier localization radius at a ~
1 Å. By the term “polaron” one should mean a hole
bonded to an acceptor (extra-stoichiometric oxygen),
as it follows from the exponential dependence of resis-
tivity on D(x) (Fig. 4a). At the same time, according to
[12], E ≈ Wp/2, where Wp is the polarization energy,
which can be estimated as

(2)

where 1/εp = 1/ε∞ – 1/ε0 is the difference of the inverse
optical and static dielectric constants and e is the ele-
mentary charge. According to [3], 1/εp ≈ 1/6 at x ≈ 0. At
small x, Wp in our samples reaches a value of ≈1 eV,
which is consistent, according to Eq. (2), with the
smallness of the charge localization radius.

At the Néel temperature, the resistivity curve is bent
due to a decrease in the activation energy Eab(T) in the
antiferromagnetic phase (Fig. 1a). It is conceivable that
this is an indication that the radius of localized states

ρab x T,( ) AD x( ) Eab/kT+( ),exp∼

W p
e2

2εpa
-----------,=

Fig. 4. (a) Electrical resistance ρab, resistivity activation
energy E, and (b) thermoelectric power αab at T = 370 K as
functions of the average distance D(x) between impurity
centers in the ab plane.
increases, according to Eq. (2), by several times upon
the ordering of copper spins.

The thermoelectric power αab(T) changes linearly
with temperature at T < 250 K and T > 350 K in the
dielectric region and decreases by approximately
120 µV/K near the TN temperature (Fig. 1b). Such a
behavior can be explained by the polaron hopping
transport [12] in the presence of charge-carrier interac-
tion with a magnetic lattice. For the polaron transport,
a contribution from the polaron kinetic energy to the
thermoelectric power is ignored, so that the thermo-
electric power can be written in the thermodynamic
approximation [10] as a change in the entropy upon the
transfer of charge –e:

, (3)

where ∆Sc, ∆Ss, and ∆So are changes in the configura-
tional, spin, and orbital entropies, respectively. The spin
and orbital contributions ∆Ss/e = ∆So/e = k/eln2 ≈
60 µV/K disappear upon the three-dimensional order-
ing of the Cu2+ spins below TN [13], if the spin–spin and
spin–orbit interactions are taken into account. We
observed this not only in the dielectric (Fig. 1b) but also
in the semiconductor (Figs. 2b, 3b) regions. The contri-
bution of ∆Sc to αab(T) changes with temperature
almost linearly in the regime of nearest-neighbor hop-
ping between impurity centers [12, 14] for a broad,
compared to the temperature range used, energy distri-
bution of acceptor levels.

As the concentration of the extra-stoichiometric
oxygen increases, the dependence of the resistivity and
thermoelectric power on the temperature (Figs. 2, 3)
and oxygen concentration (Fig. 4) weakens. We treat
the bends in the plots of thermoelectric power, resistiv-
ity, and its activation energy vs. D(x) (Fig. 4) as a man-
ifestation of the electronic transition from the dielectric
to the semiconductor phase.

In the semiconductor region above TN, the thermo-
electric power is equal to ≈120 µV/K and does not
change with temperature and oxygen concentration
(Figs. 2–4); i.e., the contribution to αab(T) comes only
from ∆Ss and ∆So. This indicates that the carrier spins
remain free above TN, despite the strong antiferromag-
netic fluctuations. The lack of activation contribution to
αab(T) allows one to state, when characterizing the
kinetic properties of the semiconductor region, that
transport occurs near the Fermi level and the resistivity
activation energy has a purely kinetic character and is
mainly determined by the polaron shift Wp. In other
words, we have the polaron hopping conduction, as in
the dielectric region, but the conduction is due not to
small but to large polarons. Indeed, for the sample with
TN = 300 K one has Wp ≈ 2Eab ≈ 0.1 eV and, according
to Eq. (2), a ≈ 7 Å; i.e., the hole localization region is
larger than the lattice constant.

We assume that the charge-carrier transport in the
semiconductor region proceeds through the impurity

eαab T( ) ∆Sc ∆Ss ∆So+ +=
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band, although not over the free states, as in the dielec-
tric phase, but over the occupied states. Theoretically,
this process is quite realistic. Due to the strong polaron
effect, the energy of Coulomb repulsion between two
carriers on the same center can be strongly lowered
[15], so that the upper and lower Hubbard bands over-
lap. In the case of low doping, when the resonant broad-
ening is smaller than the “classical” broadening, the
impurity states are localized, and conduction has the
hopping character. In the Hubbard model, the density
N(E) of impurity states near the Fermi level EF is
approximately symmetric about its position. Then the
fact that the contribution to the thermoelectric power
from the configurational entropy is not observed exper-
imentally in the semiconductor region is easily under-
stood. For instance, according to [12, 14], ∆Sc ~
dlnN(E)/  ≈ 0, and only the term ∆Ss + ∆So

remains in Eq. (3).
The electrical resistance anomaly near TN (Fig. 2a)

differs substantially from the anomaly in the dielectric
region. Upon doping, it disappears as the boundary of
electronic decay region is approached (Fig. 3a). The
changes in the form of E(T) dependence are likely
caused by a change in the transport regime from the
nonadiabatic hopping of small bound polarons between
the free acceptor states to the hopping of large polarons
between the occupied states of impurity band. There-
fore, our measurements show that the resistivity anom-
alies near TN are caused by the polaron effect.

Our measurements of electrical resistance of the
La2CuO4 + x crystals with TN ≤ 310 K roughly correlate
with the data reported in [3]. However, the conclusion
drawn in [3] about the applicability of the shallow-
impurity model to La2CuO4 + x is incompatible with our
measurements of thermoelectric power and with the
data on electrical resistance in the dielectric region. We
believe that the deep-impurity model [16, 17], accord-
ing to which the impurity conduction band is formed
deep inside the charge-transfer gap (≈2 eV) through the
overlap of impurity wave functions strongly renormal-
ized due to the correlation and polaron effects, is the
most realistic model for the explanation of the transport
properties of La2CuO4 + x.
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Quantum states of 2D electrons are studied in a periodic potential without inversion center in the presence of a
magnetic field. It is shown that the energy spectrum in magnetic subbands is not symmetric about the center of
magnetic Brillouin zone E(k) ≠ E(–k). Singularities (phase branching points) of the electron wave function,
which determine the quantization law of Hall conductivity σxy, are studied in the k space. It is found that a sharp
change takes place in the number of points in the magnetic Brillouin zone and in the corresponding values of
topological invariants determining the Hall conductivity of filled subbands. It is noted that the longitudinal con-
ductivity of a lattice without inversion center placed in a magnetic field is not invariant with respect to a change
in sign of the electric field, and a photovoltaic effect must arise in an ac electromagnetic field. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 73.20.–r; 73.43.Cd
It is known that a uniform magnetic field and a peri-
odic potential essentially differ in the character of their
action on an electron. In particular, a magnetic field
forms discrete levels (Landau levels), whereas a peri-
odic potential leads to the formation of energy bands.
As a result, the spectrum of an electron moving in a
magnetic field exhibits an extremely interesting and
rich structure, which received the name Hofstadter but-
terfly [1, 2].

Magnetic quantum states of a Bloch electron were
studied in detail in the tight- and weak-binding approx-
imations for potentials V(r) differing in symmetry (see,
for example, [3, 4] and also [5–7]). A number of exper-
imental works were also devoted to this problem [8]. In
this case, however, it was always assumed that the peri-
odic potential possess symmetry about the inversion of
coordinates, that is, V(r) = V(–r).

In a zero magnetic field and a periodic potential with
or without an inversion center, the Bloch electron
energy is invariant with respect to a change in sign of
quasi-momentum E(k) = E(–k). This symmetry is a
consequence of the invariance of the stationary
Schrödinger equation with respect to time reversal. In a
magnetic field, the t  –t symmetry is violated.
Therefore, it is natural to assume that the energy of a
Bloch electron moving in crystal without an inversion
center in the presence of a magnetic field will not be an
even function of the quasi-momentum determined in
the magnetic Brillouin zone (MBZ). Because of this, it
may be expected that a crystal without inversion center
in the k space, that is, E(k) ≠ E(–k), possesses unusual
physical properties in a static magnetic field.
0021-3640/02/7610- $22.00 © 20620
It should be noted that the symmetry of energy spec-
trum in the k space in crystals without inversion center
can also be violated as a result of spin–orbit interaction.
Even in zero magnetic field, the electron energy in such
crystals depends on the spin orientation, and the Kram-
ers degeneracy E(k, 1/2) = E(–k, –1/2) takes place. This
fact leads to a number of observable effects, one of
which is the circular photovoltaic effect in a 2D elec-
tron gas [9]. However, such effects are always small on
the Brillouin zone scale because of the smallness of
spin–orbit interaction [10]. Below, we will show that
the energy spectrum of magnetic subbands of a spinless
particle can undergo drastic changes in the entire MBZ
in the absence of inversion center in the periodic poten-
tial.

The Hamiltonian of an electron in a uniform mag-
netic field and in the field of a two-dimensional periodic
potential will be written in the form

(1)

where

(2)

is the Hamiltonian of an electron in a uniform magnetic
field. Here, c is the velocity of light, e is the electron
charge, and m* is the effective mass. From here on, the
vector potential A of the magnetic field is taken in the
Landau gauge A = (0, Hx, 0), so that H || z. The model

Ĥ Ĥ0 V x y,( ),+=

Ĥ0
1

2m*
----------- p̂ eA

c
-------– 

  2

=
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periodic potential of a lattice without inversion center
will be written in the form

(3)

where a is the period of the potential (see Fig. 1). Here,
the parameter V2 determines the degree of violation of
the spatial inversion symmetry of lattice (3). At V2 = 0,
the symmetry about inversion is restored. In what fol-
lows, we will assume that amplitude V1 is fixed.

The character and structure of the eigenstates of
Hamiltonian (1) are determined by the magnetic flux
through a unit cell of the lattice [11]. If this flux (mea-
sured in terms of flux quanta Φ0) is equal to a rational
number

(4)

then the wave function is an eigenfunction of the mag-
netic translation operator and obeys the Bloch–Peierls
conditions

(5)

Here, vectors am = {m1qa, m2a}, (m1, m2 are integer
numbers) specify the positions of sites of the so-called
magnetic lattice of the crystal and –π/qa ≤ kx ≤ π/qa, –
π/a ≤ ky ≤ π/a.

If the inequalities

(6)

are fulfilled (here, lH and ωc are magnetic length and
cyclotron frequency, respectively), the electron quan-
tum states can be calculated within the framework of
the perturbation theory, that is, without taking into
account the interaction between the Landau levels.
Simple estimates show that, at a = 80 nm, condition
p/q = 3 is fulfilled in magnetic field H . 2 × 104 Oe, and
conditions (6) will be true for amplitudes V1, V2 ≈
1 meV. The wave function of an electron in the µth
magnetic subband obeying Eq. (5) can be expanded in
oscillator functions ϕN of the Nth Landau level [3]

(7)

where x0 = c"ky/|e|H = ky . Note that condition (5) will
be fulfilled if the expansion coefficients in Eq. (7) obey
the relationships

(8)

V x y,( ) V1 πx/a( ) πy/a( )cos
2

cos
2

=

+ V2 2πx/a( )sin 2πy/a( )sin+[ ] ,

Φ
Φ0
------ p

q
---

e Ha2

2π"c
---------------, p q are integer numbers,,= =

Ψk x y,( ) Ψk x qa+ y a+,( )e
ikxqa–

e
ikya–

e 2πipy/a– .=

"ωc @ V1 V2; lH ! a,

Ψk µ,
N x y,( )

=  Cnµ
N k( ) ϕN

x x0– lqa– nqa/ p–
lH
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In the representation of symmetrized linear combi-
nations of Landau functions (7), the stationary

Schröedinger equation Ψ = EΨ takes the form

(9)

where  = "ωc(N + 1/2). Matrix  of dimension
(p × p) in Eq. (9) has the following structure:

(10)

with diagonal elements

(11a)

and off-diagonal elements
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Hnm
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Fig. 1. Lines of constant potential values V(x, y) (Eq. (3)) in
a crystal lattice unit cell at V2/V1 = 0.1. Signs “+” and “–”
correspond to the maximum and minimum of the potential.
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(11b)+
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Fig. 2. Isoenergetic lines (k) = const in the lowest mag-

netic subband related to the first Landau level N = 1 at
V2/V1 = 0.1, p/q = 3/1.

E1
1

Fig. 3. Isoenergetic lines (k) = const in the lowest mag-

netic subband of the zero Landau level N = 0 at (V2/V1)cr =

0.051706, p/q = 3/1. The value of (k0) reaches a maxi-

mum at the point k0 at which magnetic subbands touch each
other.

E1
0

E1
0

where (ξ) is a Laguerre polynomial. Thus, the peri-
odic potential leads to the splitting of Landau levels
into p magnetic subbands for rational values of the
number of magnetic flux quanta. It should be noted that
the system of Eqs. (9) determined according to
Eqs. (10) and (11) is not periodic in p/q with a period of
1, as it takes place for the standard Harper’s equation [2].

The energy spectrum and the eigenvector compo-

nents (k) can be calculated analytically for simple
rational values of p/q. Our calculations of energy spec-
trum demonstrated the absence of an inversion center in
the k space for functions Eµ(k) assigned to different
magnetic subbands. A typical arrangement of isoener-
getic lines in the MBZ in the lowest of the three mag-
netic subbands (p/q = 3/1) split off from the first Lan-
dau level N = 1 is shown in Fig. 2. Here, the light areas
correspond to larger energy values in the subband.

It should be noted that, as the magnetic field direc-
tion is inverted (H  –H), the spectrum, as expected,
changes in the following way:

At the same time, energies 

,

and the corresponding partial derivatives ∂E/∂kα (α = x, y)
are equal at the opposite boundaries of the MBZ. At the
center and at the boundaries, ∂E/∂kα are nonzero. The
structure of energy spectrum must evidently depend on
parameter V2. In particular, we found that, at a certain
critical value of V2, the energy gap separating two

neighboring subbands disappears, and surfaces (k)
touch each other at a certain k0 lying on the diagonal of
MBZ. Figure 3 displays the plot of isoenergetic lines

for the lowest magnetic subband (k) split off from
the zero Landau level N = 0 at p/q = 3/1 and the critical
value of the ratio (V2/V1)cr = 0.051706. With a further
increase in parameter V2, this degeneracy disappears,
and the neighboring subbands remain separated by an
energy gap. Below, it will be shown that at the critical
value V2, that is, at the point of gap collapse a sudden
change takes place in the singularities of the eigenvec-

tor (k) of the system of Eqs. (9) in the k space, as
well as in the topological invariants determining the
Hall conductivity of the corresponding subbands.

Coefficients (k) can be chosen proportional to
the algebraic adjunct Djn(k) of any (for example, jth)
row of the secular determinant of the system of Eqs. (9)
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at E = Eµ(k). According to [12], the components of a
normalized eigenvector can be presented in the form

(12)

In Eqs. (12), Dnn(k) is the algebraic adjunct to the

matrix element [  – ], and the phase (k) is
determined by the relationships

(13)

It can be shown that component (k) is a purely real
function, and it vanishes at some special points km of
the extended magnetic Brillouin zone –π/qa ≤ kx ≤ π/qa,

–πp/qa ≤ ky ≤ πp/qa. The other components (km)
(n ≠ j) have no definite limit at k  km, and km are
phase branching points for these components. Note that
the notion of extended MBZ was introduced by Usov
[12]. From here on, the superscript in parentheses will
specify the representation number (that is, the row
number), and we will omit the indices of magnetic sub-
band µ and Landau level N.

The properties of the spectrum and wave functions
of magnetic Bloch states in a periodic potential without
an inversion center must essentially affect the transport
and optical characteristics of a 2D electron gas. Below,
we will consider the specific features of the quantiza-
tion law of 2D Hall conductivity in crystals with broken
inversion symmetry. The Hall conductivity of the fully
occupied magnetic subbands separated by energy gaps
was calculated in [3, 13]. In works by Novikov et al.
[14], the topological nature of the singularities of
eigenfunctions corresponding to magnetic subbands
was discussed. Kohmoto showed that the quantized
Hall conductivity of a magnetic subband is determined
by the topological singularities of wave function [15],
and in terms of e2/h units this conductivity is equal to
the first Chern number taken with the opposite sign.
However, Kohmoto gave no explicit equations for the
calculations of conductivity. This problem was solved
by Usov [12], who found interrelation between the Hall
conductivity σxy of a subband and wave-function singu-
larities (phase branching points in the k space). The
explicit equation for the conductivity of the µth mag-
netic subband corresponding to the Nth Landau level
takes the form [12]

(14)

This equation is a direct consequence of the Kubo for-
mula. Integer numbers S(km) of a given subband deter-
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mine the phase incursion (k) for coefficients (k)
in Eq. (7) (in 2π units) in tracing the points km in the
negative direction (clockwise).

We performed calculations of the Hall conductivity
of magnetic subbands at p/q = 3/1 in the potential given
by Eq. (3). To calculate the components of eigenvectors
of the Hamiltonian given by Eq. (1), we selected the
representation of the first row in the secular determi-
nant of the system of Eqs. (9). Sections and singulari-

ties of function (k) in the extended MBZ for the
lowest of the three magnetic subbands of the zero Lan-
dau level are given in Figs. 4a, 4b. The main computa-
tional parameters are given in the caption to the figure.
The values of the ratio V2/V1 in Figs. 4a and 4b are,
respectively, lower and higher than the critical value.

The two singularities where (k) = 0 (see Fig. 4a)
are marked with letters A and B. When tracing each of
these points along the path shown in the figure, the

phases of each of the components (k) and (k)
change by +2π. Thus, S(kA) = S(kB) = 1, and, according
to Eq. (14), σxy = –e2/h. The Hall conductivities of the
other magnetic subbands can be calculated in a similar
way. These conductivities are zero for the computa-
tional parameters indicated in Fig. 4a.

When the quantities V2 are changed, singularities A
and B shift in the extended Brillouin zone, and small
changes in V2 correspond to small displacements of sin-
gularities. In accordance with the topological nature of
Eq. (14), the conductivity σxy changes only at the
moment of tangency (degeneracy of the spectrum at
point k0) of the neighboring subbands. As the parameter
V2 reaches the critical value, two neighboring (in our
case, lower and middle) magnetic subbands of the zero
level under consideration touch each other at a certain
point of the MBZ. Singularities A and B disappear

immediately [that is, now (k) does not vanish at
these points]. Note that these points do not annihilate
and do not go into the boundary of the extended MBZ.
Simultaneously, a new singularity appears at the point

where the component (k), designated in Fig. 4b as
point C, vanishes. The position of the local minimum of

(k) (the nucleus of singularity C) is marked with an
arrow in Fig. 4a. In tracing point C along the contour
indicated in Fig. 4b, the phase of each of the compo-

nents (k) and (k) changes by –2π, and, as a
consequence of Eq. (14), the contribution to the con-
ductivity of the Landau level N = 0 from the lowest
magnetic subband related to this level is zero. It can be
shown that a contribution to the conductivity equal to
−e2/h will be given now by the middle magnetic sub-
band E2(k), which touches the lowest E1(k) at the criti-

cal value . At the same time, it is evident that the

φn
j( ) Cn

j( )

C1
1( )

C1
1( )

C2
1( ) C3

1( )

C1
1( )

C1
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change in the amplitude of the potential V1 at V2 = 0
cannot lead to a change in the quantization law for Hall
conductivity. Thus, in crystals without an inversion
center, a new quantization rule is fulfilled for the Hall
conductivity, and its value changes abruptly at a certain
critical value of parameter V2.

Fig. 4. Contourplots and singularities of the real function

(k) in an extended MBZ for N = 0, p/q = 3/1: (a) V2/V1 =

0.02; (b) V2/V1 = 0.06.

C1
1( )
Note in conclusion that the absence of spectrum
symmetry in the k space must lead to a number of other
observable effects. Thus, it can be expected that the lon-
gitudinal conductivity σxx will not be invariant about a
change in sign of a constant electric field E because of
the absence of an inversion center in the k space. A pho-
tovoltaic effect similar to that described in [9] must
arise in the situation under consideration in an ac elec-
tromagnetic field. These effects will be considered in a
separate publication.
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The decay times of the terahertz photoconductivity signal are studied for samples in the quantum Hall regime.
The photoconductivity signal has both the longitudinal components caused by the photoinduced change in the
longitudinal resistance and the transverse components due to the photoinduced transverse current. The signal
kinetics are qualitatively different for samples with relatively low (500000 cm2/Vs and lower) and relatively
high (900000 cm2/Vs and higher) charge-carrier mobilities. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 72.40.+w; 73.43.–f
1 Studies of photoconductivity and cyclotron absorp-
tion of terahertz electromagnetic radiation in two-
dimensional (2D) electron systems in the quantum Hall
(QH) regime have attracted the attention of researchers
since the time of discovery of the QH effect [1]. Two-
dimensional electron systems effectively interact with
terahertz radiation [2–17], because the characteristic
scale of energy gaps between the Landau levels in the
QH regime is about 10 meV. The unique feature of the
terahertz spectroscopy consists in the absence of the
interband generation of electron–hole pairs, so that the
radiation absorption leads to a redistribution of elec-
trons in energy without changing the total number of
electrons in the 2D electron system. This provides a
possibility for the most correct study of the electron
excitation processes and the subsequent electron relax-
ation under the QH conditions. In this paper, we present
the results of studying the terahertz photoconductivity
kinetics in the QH regime.

Samples used in our experiments were made on the
basis of GaAs/AlGaAs heterostructures characterized
by the following mobilities µ4.2 K and densities ns of 2D
electrons: structure A with µ4.2 K = 1.9 × 105 cm2/Vs and
ns = 3.11 × 1011 cm–2; structure B with µ4.2 K = 5 ×
105 cm2/Vs and ns = 2 × 1011 cm–2; structure C with
µ4.2 K = 9 × 105 cm2/Vs and ns = 2 × 1011 cm–2; and struc-
ture D with µ4.2 K = 16 × 105 cm2/Vs and ns = 3.57 ×
1011 cm–2. The structures were used to fabricate the
devices in the form of Hall bridges (270 µm wide and

1 Permanent address: Institute of Physics of Microstructures, Rus-
sian Academy of Sciences, Nizhni Novgorod, 603950 Russia.
0021-3640/02/7610- $22.00 © 20625
2 mm long) and in the form of meanders (with a width
of 100 µm and an effective length of 60 mm, so that the
resulting area of the sample was 2 × 3 mm). The tera-
hertz radiation source was a p-Ge pulsed cyclotron res-
onance laser (pulse duration was less than 1 µs) with a
wavelength tuned by a magnetic field within 100–
160 µm [18–21]. The measured signal was the voltage
drop between the potential contacts induced by a tera-
hertz radiation pulse in magnetic fields corresponding
to filling factors near ν = 2. Figure 1 shows the depen-
dence of the photoresponse (PR) of a meander-shaped
sample B on magnetic field for different positions of the
p-Ge laser line. This dependence shows the presence of
two PR mechanisms. In addition to the double PR peak
that is associated with the bolometric response of the
system and is “fixed” to the edges of the QH plateau, a
single peak whose position depends on the photon
energy of laser radiation is observed. The position of
this peak varies linearly with magnetic field, in compli-
ance with the value of the cyclotron mass mc = 0.067m0
(m0 is the free electron mass); i.e., a cyclotron reso-
nance peak is observed in the PR.

In the course of the experiments, it was found that
samples with low and high mobilities exhibit not only
different transport characteristics but also qualitatively
different dynamics of the photoconductivity signal. The
time dependences of the PR, which are typical of the
samples made on the basis of structures A and B, are
presented in Figs. 1 and 2a. We observed two PR com-
ponents with different decay times. The initial rapidly
decreasing (with the decay time t = 2–3 µs for the Hall
bridges and 6–8 µs for the meanders) part of PR
changes sign upon reverting magnetic field. This result
002 MAIK “Nauka/Interperiodica”



 

626

        

KALUGIN 

 

et al

 

.

                                                                                              
is explained by the fact that, within the first few micro-
seconds after the terahertz radiation pulse, the PR sig-
nal mainly results from the drift of photoexcited elec-
trons along the Hall field of the sample; i.e., it is a cur-
rent flowing in the sample in the transverse direction
[20, 21]. It should be stressed that the PR component
induced by the transverse current contributes to the
voltage drop between the potential contacts. This con-
tribution is associated with the conductivity of 2D elec-
tron gas in the QH regime. The equation relating the
current density to the electric field has the form Ex =
ρxx jx + ρxy jy, where ρxx and ρxy are the resistivity tensor
components. From this equation, it follows that the

Fig. 1. (a) Magnetic-field dependence of the photoresponse
of a meander-shaped sample (structure B) for different posi-
tions of the laser line 30 µs after the laser pulse. The maxi-
mal laser intensity Jmax corresponds to a peak power of
about 1 W, the bias current is Ibias = 25 µA and T = 4.2 K.
For illustration, the plot also presents the dependence of the
longitudinal resistance of the same sample on magnetic
field in the absence of laser radiation. (b)–(e) Time depen-
dences of the photoresponse of a meander-shaped sample
(structure A): plots (b) and (c) show the dependences of the
early photoresponse evolution for two opposite directions
of magnetic field B = 5.9 T at Ibias = 25 µA and for the pho-
ton energy of laser radiation equal to 10.92 meV; plots
(d) and (e) present the results of numerical analysis and sep-
aration of the Hall (xy) and longitudinal (xx) photoresponse
components from the data of plots (b) and (c).
transverse current also makes a contribution to the lon-
gitudinal electric field.

In addition to this rapidly decreasing component, for
samples A and B we observed longitudinal PR compo-
nents which did not change their sign under the mag-
netic field reversal; these components are characterized
by decay times of 280–350 µs.

In both meanders (structures A and B) and Hall bars,
the longitudinal PR component also contains very slow
components with decay times of tens or even hundreds
of milliseconds. One can assume that they are associ-
ated with the heating of crystal lattice or to the elastic
deformation of the structure because of the sound pulse
that accompanies the pulse of terahertz radiation and
propagates in liquid helium from the laser active ele-
ment.

We did not observe any substantial difference in the
time constants for the structures with relatively low
mobilities (samples A and B with mobilities of 190000
and 500000 cm2/Vs, respectively) in the case of both
meander-shaped samples and Hall bars. At the same
time, the signal intensity associated with the cyclotron
resonance was higher in the samples with higher mobil-
ity.

Fig. 2. (a) Time dependences of the cyclotron resonance
photoresponse for meander-shaped samples with (a) µ4.2 K =

1.9 × 105 cm2/Vs and ns = 3.11 × 1011 cm–2 (structure A)

and (b) with µ4.2 K = 5 × 105 cm2/Vs and ns = 2 × 1011 cm–2

(structure C) at T = 4.2 K and Jmax. The values of magnetic
field strength, bias current, and photon energy of laser radi-
ation are as follows: (a) 6.17 T, 60 µA, and 10.68 meV,
respectively; (b) 5.25 T, 25 µA, and 9.126 meV, respec-
tively.
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For the structures with high mobilities (C and D),
we observed qualitatively different dynamics: unlike
samples A and B, which exhibited dynamics similar to
those shown in Fig. 2a, samples C and D produced a
signal of the type shown in Fig. 2b. The signal was
unstable and varied in shape from one laser pulse to the
other. The samples operated not as linear devices but in
the “switch” mode. An increase in the mobility was
accompanied by a decrease in the QH breakdown cur-
rent and a narrowing of the QH plateau. The explana-
tion for such a behavior is known [22]: in samples with
higher mobility, the dimensions of the localization
regions become comparable with (or greater than) the
sample width, because they can reach tens (or even
hundreds) of microns. In such samples, the relaxation
to the equilibrium state requires much longer time.
Thus, the difference in the photoconductivity kinetics
observed for samples with different mobilities can be
attributed to the difference in the amplitude and corre-
lation radius of the scattering potential and to the corre-
sponding difference in the conduction mechanisms in
the QH regime.

In closing, we note that our experiments have
revealed the presence of two PR mechanisms: the bolo-
metric and the cyclotron resonance mechanism. The
effect observed by us is a result of the contributions
made by the variations of both longitudinal and trans-
verse conductivities under the terahertz radiation. The
photoconductivity signal kinetics is qualitatively differ-
ent for samples with low and high mobilities of charge
carriers.

We are grateful to K. von Klitzing, R. Haug, R. Ger-
hardts, and U. Zeitler for encouraging us in this work
and for useful discussions. We thank I.V. Kukushkin for
helping us in improving our experimental setup. The
work was supported by the German Scientific Commu-
nity (DFG, the program “Quantum Hall Systems,”
project no. Na235/10-1/2). The work of Yu.V. and S.S.
was also supported by the Russian Foundation for
Basic Research and by the programs “Low-Dimen-
sional Quantum Structures” and “Physics of Solid-
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It is found that additional illumination by photons with energies above the band gap width in barrier layers leads
to a strong (up to 40% in depth at the values of the illumination power used in this work) modulation of the light
intensity elastically scattered upon resonant excitation of exciton states in quantum wells of GaAs/AlGaAs
structures. Evidently, the effect observed is associated with the redistribution of oscillator strengths of exciton
transitions due to the formation of three-particle exciton complexes (trions). These complexes arise through
preferred capture of nonequilibrium like charge carriers (in our case, holes). © 2002 MAIK “Nauka/Interperi-
odica”.

PACS numbers: 73.21.Fg; 78.35.+c; 78.67.De
Light scattering arises because of static or dynamic
fluctuations of the refractive index of the medium. The
scattered light intensity strongly increases when the
frequency of the light propagating through the medium
is close to the frequency of a certain optical transition
in this medium (resonant scattering [1]). Resonant Ray-
leigh1 scattering (RRS) upon excitations to heavy-hole
exciton states in semiconductor structures with quan-
tum wells (QW) was first observed by Hegarty et al. [2,
3] and was explained by the occurrence of lateral fluc-
tuations of the QW width. These fluctuations lead to a
spread in the energy position of exciton levels, that is,
resonance frequency of exciton transitions. Resonant
scattering may serve as a powerful method for studying
effects associated with nonuniformities in the spatial
distribution of the electron density of states of various
types (localized and free excitons, impurity centers,
etc.). Currently, this method is rather widely used for
studying semiconductors and semiconductor-based
nanostructures (see, e.g., [4, 5] and references therein).

External perturbations (magnetic or electric field,
deformation of the sample, etc.) can significantly affect
the electronic spectrum of a semiconductor or a semi-
conductor nanostructure and, respectively, affect RRS.
Additional illumination of the sample by radiation with
a wavelength differing from the scattered light wave-
length is one of such perturbations. Much as this takes
place in experiments on photoreflectance and photoab-
sorption [6], illumination may lead to a change in inter-
nal electric fields, to occupation of electronic states,
etc. and, thus, affect the spectrum and intensity of RRS.

1 That is, elastic scattering by optical nonuniformities with linear
sizes much smaller than the light wave length.
0021-3640/02/7610- $22.00 © 20628
In the case of intrawell excitation of excitons in semi-
conductor structures, additional illumination by radia-
tion with quantum energies above the band gap width in
barrier layers can induce the formation or recharging of
three-particle exciton complexes (trions) in QW, and
the change in their concentration lead to the corre-
sponding transformation of photoluminescence (PL)
and PL excitation (PLE) spectra [7, 8]. It should be
expected that the RRS spectra will also change under
these conditions.

In this work, we report the detection of strong mod-
ulation of the RRS intensity upon excitation of heavy-
hole excitons in shallow QW of GaAs/AlGaAs struc-
tures under additional above-barrier illumination under
conditions when illumination leads to the formation of
trions in QW. We believe that, the main contribution to
the effect observed is associated with the occurrence of
an additional channel of electron–phonon interaction
upon illumination, namely, with the possibility of direct
(resonant) excitation of trions. As a result, RRS arises
at the trion transition frequency, and the oscillator
strengths of transitions to free exciton states decrease.
Hence, the intensity of light scattered at these transi-
tions decreases as well.

The structure under study contained two tunnel-iso-
lated GaAs QW 30 and 40 Å in width separated by an
Al0.05Ga0.95As barrier 600 Å in width and confined on
both sides by Al0.05Ga0.95As barrier layers 1000 Å thick.
The band gap width in barrier layers Egb was about
1.6 eV, and the depth of potential wells for electrons
and holes was 45 and 30 meV, respectively. QW with
such parameters must have one single-particle size-
quantization level for particles of each sort, namely,
002 MAIK “Nauka/Interperiodica”
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electrons, heavy holes, and light holes. However, in
fact, their exciton spectrum is more complex than fol-
lows from this simple picture [9].

A titanium–sapphire laser tunable in the range 1.49–
1.77 eV served as a source of exciting radiation. A He–
Ne laser was used for additional above-barrier illumi-
nation of the sample. The energy of its quanta (1.96 eV)
considerably exceeded Egb. The beams of both lasers
were overlapped with each other and focused on the
sample surface into a spot about 3 mm in diameter. The
maximum radiation intensity incident on the sample was
about 1 W/cm2 for the Ti–sapphire laser and 10−2 W/cm2

for the He–Ne laser. In most of the experiments, the Ti–
sapphire laser power was chosen in such a way that the
luminescence excited by both sources was of approxi-
mately the same intensity. The exciting or illuminating
laser beam was modulated by a mechanical chopper
with a frequency of 1 kHz. The secondary radiation
(luminescence and scattered light) was collected from
the excited sample surface (that is, in reflection geome-
try), analyzed by an MDR-2 monochromator (relative
aperture 1 : 2.5, collimator focal length 400 mm, and
grating with 600 lines per mm), and detected by a
cooled photomultiplier. The photomultiplier signal was
measured using a lock-in detection technique. During
the measurements, the sample was in superfluid helium
at a temperature of ≈2 K.

The specific features of radiative recombination in
the structure under study were described previously in
[8]. It was found that the recombination radiation spec-
trum of each QW in the structure excited by the radia-
tion of a He–Ne laser consists of two lines: the high-
energy component corresponds to exciton lumines-
cence, and the low-energy component corresponds to
trion luminescence. The luminescence spectrum of a
narrow (30 Å in width) QW of the structure is shown in
Fig. 1a. At the same time, trion lines were absent in the
PL spectrum in the case of resonance excitation of free
heavy-hole excitons in QW by Ti–sapphire laser radia-
tion. A region of the PLE spectrum of a narrow QW
corresponding to this exciton transition is also shown in
Fig. 1a. These results demonstrate that the concentra-
tion of charge carriers (electrons or holes), which form
trions upon binding to excitons, is sufficiently small in
the absence of sample illumination. In the case of
above-barrier excitation by He–Ne laser radiation, an
excess of charge carriers of one sign or another (evi-
dently, holes in our case) appears in the wells because
of the difference in the capture efficiency of electrons
and holes in QW. Thus, conditions for the formation of
trions are created. In the case of simultaneous excita-
tion of the sample by both lasers, the ratio between the
intensities of the exciton and trion components of the
luminescence spectrum is determined by the rates of
kinetic processes (capture of charge carriers in QW, for-
mation of excitons and trions, recombination pro-
cesses) in nonequilibrium electron–hole system and
JETP LETTERS      Vol. 76      No. 10      2002
depends on the density of excitation by each of these
lasers [8].

Several secondary emission spectra of a narrow QW
of the structure obtained upon excitation by Ti–sap-
phire laser radiation with different energies of light
quanta are drawn in Fig. 1b by fine lines. The peak
energy position of each spectral line corresponds to the
excitation quantum energy "ωexc, and its width is deter-
mined by the spectrometer spread function. That is, the
contribution from the elastic scattering of the exciting
light dominates in all spectra. At the values of "ωexc that
fall in the band of resonance excitation of heavy-hole
exciton photoluminescence (Fig. 1a), the secondary
emission spectrum also contains a low-energy wing
with an intensity considerably lower than the scattering
line intensity. This is due to luminescence (at the given
amplification, it is manifested substantially in the third
and fourth curves at the right). The dependence of the
scattered light intensity on "ωexc is shown by circles in

Fig. 1. (a) PL spectrum upon excitation by He–Ne laser
radiation (dashed curve) and PLE spectrum in the region of
transitions to heavy-hole exciton states (solid curve) of a
narrow QW of the structure. (b) Intensity of resonant Ray-
leigh light scattering in the absence of illumination Ioff (cir-
cles) and its change ∆I = Ion – Ioff upon switching on illumi-
nation by He–Ne laser radiation (triangles) as functions of
the exciting light photon energy "ωexc; fine solid lines are
secondary emission spectra for some values of "ωexc.
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Fig. 1b (lest the figure be overcharged, the spectra are
not given for all values of "ωexc). The resonance
increase in scattering intensity is pronounced in the
vicinity of the exciton transition energy. The small (less
than 0.2 meV) Stokes shift of the RRS signal maximum
with respect to the maximum of the PLE spectrum
gives evidence of the high quality of the structure [10].
The light scattering intensity well apart from the reso-
nance is virtually independent of the quantum energy
and is determined by nonselective (residual) scattering
from the sample surface and elements of the optical
system.

When switching on the additional stationary illumi-
nation of the sample by He–Ne laser radiation, we
observed a rather significant change in the scattered
light intensity. The decrease in the scattered light inten-
sity upon illumination at the maximum of the resonance
curve was about 40% of the resonance amplitude at the
excitation and illumination intensities used in this
work. At the same time, the scattering intensity remains
virtually unchanged outside the resonance region. The
change in the scattered light intensity ∆I = Ion – Ioff
under the action of illumination is shown in Fig. 1b by
triangles (Ioff and Ion are the intensities, respectively,
without and with illumination). It is evident that the
dependence of ∆I on "ωexc approximately repeats the
dependence of Ioff less the intensity of the background
nonresonant scattering.

The light-scattering experiments described above
were carried out with the use of modulated exciting
radiation of a Ti–sapphire laser and stationary He–Ne
illumination. In order to extract weak difference signals
more reliably and accurately, that is, for the direct
detection of the changes in the scattered light intensity

Fig. 2. Differential RRS and PL spectra for two values of
the quantum energy of the exciting light.
∆I arising upon illumination, we used a differential
technique that is commonly used in modulation spec-
troscopy when the illuminating rather than exciting
laser beam is modulated. In this case, changes in inten-
sity due to additional illumination will also be observed
in luminescence spectra.

Figure 2 displays differential secondary emission
spectra of a narrow QW measured at two values of the
exciting light photon energy "ωexc = 1.5757 and
1.5732 eV. The former value is close to the energy posi-
tion of the free exciton peak in the PLE spectrum, and
the second one, to the maximum of the trion PL line
(see Fig. 1a). It is evident in Fig. 2 that, in the case of
excitation to the free exciton state (lower spectrum), the
additional illumination leads to a decrease in the RRS
light intensity (narrow peak) accompanied by a drop in
the free exciton luminescence line intensity (both sig-
nals, RRS and PL, are negative), whereas the trion com-
ponent of the PL spectrum increases (signal is positive).
It was already noted that above-barrier illumination
gives rise to an excess of nonequilibrium holes in QW.
Excitons created upon resonance excitation are bound
with these holes, forming positively charged trions.
Therefore, the intensity of exciton luminescence
decreases, and that of trion luminescence increases [8].

When excitation is performed in the vicinity of the
peak of the trion PL line (upper curve in Fig. 2), a spike
related to RRS light as well as lines of exciton and trion
luminescence are observed in the differential spectrum,
all the signals being positive. Note that the main contri-
bution to the luminescence spectrum arises from direct
excitation of the sample by He–Ne illumination. As
mentioned above, the equilibrium concentration of
charge carriers in QW is too small in order for intrawell
excitation by Ti–sapphire laser radiation could result in
the formation of a notable amount of trions. On the
other hand, in the case of excitation to the states with an
energy lower than the free exciton energy (for example,
to localized exciton states), the line of free exciton
luminescence must have low intensity at low tempera-
tures, because it can appear only as a result of thermal
depletion of lower lying states (exciton delocalization).

Thus, the use of the differential technique allows us
to find that the scattered light intensity can both
decrease and increase upon illumination, depending on
"ωexc.

Figure 3 demonstrates a series of differential spectra
obtained at various values of the quantum energy of the
exciting Ti–sapphire laser. As the excitation quantum
energy decreases, the amplitude of the negative signal
(corresponding to the decrease in the intensity of RRS
light upon additional illumination) first increases, then
starts to drop and changes its sign, when the quantum
energy "ωexc is in the energy range in which the trion
luminescence line is located. The shape of the differen-
tial PL spectra at two values of "ωexc was described in
sufficient detail and explained in the two preceding
paragraphs. The results presented in Fig. 3 allow one to
JETP LETTERS      Vol. 76      No. 10      2002
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follow how these spectra are transformed as "ωexc is
changed. The spectral dependence of the amplitude of
the differential RRS signal (proportional to the change
in the scattered light intensity upon illumination)
obtained from the data similar to those given in Fig. 3
is shown in Fig. 4. It is evident that the maximum value
of the negative RRS signal more than an order of mag-
nitude exceeds the maximum value of the positive
signal.

The results presented here relate to a narrow QW.
The results for a wide (40 Å in width) QW of the struc-
ture are in a qualitative agreement with the above
results and are not presented here to save room. Com-
pleting the description of experimental data, we note
that the amplitude of the differential RRS signal is
directly proportional to the excitation intensity,
whereas its dependence on the illumination intensity
exhibits more complicated nonmonotonic behavior and
needs presently a more careful investigation.

Let us discuss the possible qualitative explanation of
the effect observed. The scattered light intensity is char-
acterized by the extinction coefficient h, which is
defined as the ratio of the total intensity of light scat-
tered in a unit volume along all the directions to the flux
density of the incident light. It is proportional to the

Fig. 3. Dependence of differential secondary emission spec-
tra of a narrow QW of the structure on the quantum energy
of the exciting light.
JETP LETTERS      Vol. 76      No. 10      2002
mean squared fluctuation of the permittivity 〈(δε)2〉V in
the volume V [11]

(1)

The contribution to the permittivity of the crystal from
each of the electronic transitions is proportional to its
oscillator strength. If fluctuations of ε are due to the fluc-
tuations of exciton transition frequencies [2], then, in
the vicinity of the exciton resonance one has (δε)2 ∝  f 2,
where f is the oscillator strength of this transition.

Let us denote the oscillator strength of the exciton
transition in the absence of illumination (that is, in the
absence of charge carriers in QW) by f0; in this case, the
oscillator strength of the trion transition equals zero.
When illumination is switched on, charge carriers
appear in QW. As a result, the possibility of direct res-
onant excitation of trions arises. Therefore, the trion
transition acquires some oscillator strength ftr. By virtue
of the sum rule, the oscillator strength of the exciton
transition decreases, because an additional channel of
electron–photon interaction opens. Let us denote the
change in the oscillator strength of the exciton transi-
tion by ∆fex = fex – f0, where fex is the exciton oscillator
strength in the presence of illumination. As a conse-
quence, resonant Rayleigh light scattering arises in the
vicinity of the transition to trion states upon illumina-

tion. Its intensity is proportional to htr ∝  , and the
RRS intensity in the vicinity of the exciton transition

h ω4V /6πc4( ) δε( )2〈 〉 V .=

f tr
2

Fig. 4. Dependence of the differential RRS signal amplitude
on the quantum energy of the exciting light (black trian-
gles). A portion of curve on a tenfold enlarged scale is
shown by light triangles. For comparison, dashed curve
shows the PL spectrum of a narrow QW upon excitation of
the structure by He–Ne laser radiation.
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changes by the value proportional to ∆hex ∝   –  ≅
2f0∆fex (at small ∆fex). The relative change in the scat-
tered light intensity in the vicinity of the exciton reso-
nance ∆hex/h0 ≅  2∆fex/f0, where h0 is the extinction coef-
ficient in the exciton resonance region in the absence of
illumination.

From experimental data at the maximum levels of
excitation and illumination (Fig. 1b), we obtain
∆hex/h0 ≈ –0.4, and an estimation of the change in the
oscillator strength of the exciton transition gives ∆fex ≈
–0.2f0. Considering that the resonance frequencies and
the damping coefficient for exciton and trion transitions
are almost similar, we obtain from the above relation-

ships ∆hex/htr ≅  2f0∆fex/ . From the differential RRS
spectrum (Fig. 4), we obtain ∆hex/htr ≈ –28. From here,
with the use of the above value of ∆fex, the estimation of
ftr gives ftr ≈ 0.12f0.

Thus, ftr comprises approximately 60% of ∆fex; that
is, most of the oscillator strength of the exciton transi-
tion is transferred to trions. Evidently, this means that,
under conditions when illumination can result in the
formation of trions, the effect of redistribution of oscil-
lator strengths of transitions in the exciton region of the
spectrum considered above makes the main contribu-
tion to the strong photomodulation of the intensity of
resonant Rayleigh light scattering. However, in fact, the
real situation is more complicated. Thus, excess charge
carriers that appear upon illumination do not fill QW
uniformly and are accumulated in the regions with
larger local well width. This means that the resonant
photogeneration of trions can proceed only in these
regions. Therefore, besides energy fluctuations of exci-
ton transitions, fluctuations arise in the oscillator
strengths that are spatially correlated with the former
ones. This must also affect the scattering intensity. In
addition, the nonuniformity of the charge carrier distri-
bution in the well plane give rise to electric fields,
which can change the local values of ε. Other effects
that can lead to a change in the RRS intensity are also
possible.

Thus, strong photomodulation of the resonant Ray-
leigh light scattering has been observed experimentally
in this work in the region of exciton transitions in quan-
tum wells under illumination of the structure by radia-
tion with quantum energies that exceed the band-gap
width in barrier layers. The effect observed has been
explained by redistribution of oscillator strengths of

f ex
2 f 0

2

f tr
2

exciton and trion transitions due to accumulation of
excess holes in wells and the possibility of direct (reso-
nant) photogeneration of trions arising in this case.
Note that an analogous effect should also be observed
in the resonant light reflection spectra.
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Ultrahigh-Frequency NMR of Tm3+ Ions in Single Crystals
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Resonant transitions predicted earlier between low-lying electron–nuclear sublevels of the Tm3+ ground state
were observed at frequencies up to 700 MHz in a dielectric Van Vleck paramagnet—thulium ethylsulfate single
crystal. It is shown that, due to the distortion of the 4f-electron shell of a rare-earth ion in an applied magnetic
field, the parameters of electron–nuclear interaction become field-dependent. © 2002 MAIK “Nauka/Interpe-
riodica”.

PACS numbers: 75.10.Dg; 76.30.Kg; 76.60.-k
1. Van Vleck (polarization) paramagnetism is most
often observed in crystals containing non-Kramers
rare-earth (RE) ions, i.e., RE ions with an even number
of electrons in the unfilled 4f shells. The crystal electric
field removes degeneracy of the ground 2S + 1LJ multip-
let of these ions to generate Stark splitting on the order
of 10–100 cm–1. In this case, the ground electronic state
is a singlet or a nonmagnetic doublet, so that all mag-
netic properties of Van Vleck paramagnets are caused
by the Zeeman splitting, which, as a rule, can be calcu-
lated using second-order perturbation theory [1, 2].
However, in rather strong magnetic fields (H > 20 kOe),
conditions for the applicability of the perturbation the-
ory are broken, and a number of new physical effects
arise [3]. Among them, field-induced structural phase
transitions in the dielectric VV paramagnets TmPO4 [4]
and LiTmF4 [5] and the appearance of coupled 4f-elec-
tron–phonon excitations in thulium ethylsulfate crys-
tals Tm(C2H5SO4)2 · 9H2O (TmES) [6] are noteworthy.
Strong magnetic fields also give rise to the coupled
4f-electron–nuclear states in dielectric VV paramagnets
[3, 7]. It should be noted that the transition frequencies
between the electron–nuclear sublevels of the ground
singlet in TmES crystals fall, practically, within the
EPR X-band, whereas the transition probabilities are
induced by the matrix elements of nuclear spin opera-
tors. In this connection, one can speak about “ultrahigh-
frequency” NMR in a strong magnetic field, contrary to
the enhanced NMR at moderate fields [2]. It is the pur-
pose of this work to observe and investigate ultrahigh-
frequency Tm3+ NMR in a TmES single crystal in mag-
netic fields up to 3 T.

2. Theoretical studies of the effect of strong mag-
netic fields on the properties of Tm3+ ion in TmES sin-
gle crystals [3] amount to the diagonalization of the
0021-3640/02/7610- $22.00 © 20633
Hamiltonian of an isolated RE ion (in doing so, the
spin–spin interaction between the ions is, naturally,
ignored, because this is a good approximation for eth-
ylsulfates, where the separations between the RE ions
are about 7 Å)

(1)

where the Hamiltonian of crystal electric field in the
common notation is written as [8]

(2)

The Zeeman interaction of the 4f shell, the nuclear Zee-
man interaction, and the hyperfine interaction (with a
constant Ahf) have the usual form

(3)

The wave functions of electron–nuclear states, the tran-
sition frequencies, and the magnetic moment of the
Tm3+ ion were calculated as functions of the magnitude
and direction of an applied magnetic field. Further
development of the theory required experimental veri-
fication of these dependences. First of all, it was neces-
sary to observe the transitions between the ground-state
electron–nuclear sublevels.

3. To measure the 169Tm NMR spectra of a TmES
single crystal in the frequency range from 18 to
700 MHz at a temperature of 4.2 K, a stationary bridge-
type laboratory-assembled spectrometer with a
matched resonant circuit was used. The static magnetic
field and the perpendicular rf magnetic field were ori-
ented in the plane perpendicular to the crystallographic
axis c. To eliminate the effect of the demagnetizing
field, the sample was shaped like a sphere of diameter 4

* *cr *eZ *nZ *hf ,+ + +=

*cr α B20O2
0 βB40O4

0 γ B60O6
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mm. The transition frequency was determined from the
absorption signal minimum upon scanning an ampli-
tude-modulated magnetic field. The observed spectrum
width monotonically increased with increasing static
field and reached approximately 50 Oe at 30 Oe. The
ratio of magnetic field to the solenoid current was cali-
brated against the EPR signal of a DPPH sample placed
in the immediate vicinity of the sample under study.

The 169Tm NMR signal in TmES at a frequency of
495 MHz is shown in Fig. 1. The measured field depen-

Fig. 1. Derivative of the 169Tm NMR absorption signal in
TmES. The frequency of applied rf magnetic field and the
peak-to-peak width are indicated. Magnetic field is oriented
perpendicular to the crystal symmetry axis c; temperature is
4.2 K.

Fig. 2. Field dependences of the transition frequencies
between the Tm3+ ground-state electron–nuclear sublevels
in TmES at liquid helium temperature: ∇  are the experimen-
tal points; dotted line is for the results of the perturbation
theory of boosted NMR [2]; dot-and-dash line is for the
refined data given in [3, 7] for strong magnetic fields with-
out taking into account a change in the hyperfine interaction
parameters; and solid line is for the results of the theoretical
calculations in this work (for details, see text).
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dence of the transition frequencies between the Tm3+

ground-state electron–nuclear sublevels in the TmES
single crystal at liquid helium temperature is shown in
Fig. 2 (points). Note that the observed dependence does
not coincide with the one calculated in [3, 7] (Fig. 2,
dot-and-dash line), where, for a more clear presentation
of the changes induced by strong magnetic fields in the
properties of electron–nuclear spin systems of dielec-
tric VV paramagnets, the changes in the hyperfine field
at the nucleus because of the electron-shell distortion
and electron-density redistribution were ignored. Thus,
we arrive at the conclusion that magnetic fields higher
than 2 T distort noticeably the unfilled 4f shell of the RE
ion, and one should not ignore the corresponding
changes in a hyperfine magnetic field at nucleus in the
calculations.

4. The standard scheme for analyzing the hyperfine
interaction effects for the RE elements (the quadrupole
effects are disregarded because the nuclear spin of
169Tm is I = 1/2) is as follows (see, e.g., [8]). A magnetic
field produced by 4f electrons with orbital angular
momenta li and spins si

(4)

within the ground 2S + 1LJ multiplet, where the total
angular momentum is a good quantum number, can be
represented in the form

(5)

where the reduced matrix elements 〈J ||N ||J〉  can easily
be tabulated for different electronic 4fn configurations
[8]. As a result, the Hamiltonian of hyperfine interac-
tion can be written as

(6)

The crystal electric field reduces rotational symmetry
and distorts electronic shells of the RE ion in crystal, as
compared to the free atom. As a result, the magnetic
hyperfine interaction is affected [11], and the hyperfine
constant Ahf becomes anisotropic, according to the sym-
metry of local environment of the RE ion. For this rea-
son, Eq. (6) is replaced by the expression

(7)

For RE ethylsulfates with a magnetic ground state, the

principal values of hyperfine interaction tensor , as
obtained from the experimentally measured hyperfine
structure of EPR line, may differ from each other more
than tenfold [8]. For the VV ions, i.e., ions with a non-
magnetic ground state (e.g., the Tm3+ ion in TmES),
paramagnetic resonance is unobservable, so that the
principal values of hyperfine interaction tensor can be
estimated only in an indirect way. Namely, one can

H4 f 2µB ri
3– li si– 3ri risi( )/ri

2+[ ]{ }
i 4 f∈
∑–=

=  2µB ri
3–〈 〉 N–

H4 f 2µB ri
3–〈 〉 J N J〈 〉 J,–=

*hf 2µBγI" ri
3–〈 〉 NI( ) Ahf JI( ).= =

*hf J ÃI( ).=

Ã
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measure the so-called paramagnetic shift [2] by
enhanced NMR at moderate fields. This shift is aniso-
tropic and its value depends on both the hyperfine inter-
action magnitude and the degree of Stark wave-func-
tion mixing due to the electronic Zeeman interaction.
Thereafter, one can perform numerical calculations
using the explicit form of RE wave functions in crystal
field. The estimates, made by us using the data of works
[9] gave the following principal values of hyperfine
interaction tensor for Tm3+ in axially symmetric crystal
field in TmES [10]: A|| ≈ –241 MHz and A⊥  ≈ –388 MHz
(the estimate of Ahf made for a free trivalent Tm3+ ion
from the Tm and Tm2+ measurements gave –393.5
MHz [8]). Note that the perturbative theory developed
for enhanced NMR at moderate fields [2] predicts that
the tensor components of paramagnetic shift are field-
independent, as shown in Fig. 2 by the dotted line. One
can see that, at strong magnetic fields, all experimental
points lie systematically below this straight line. This
poses the problem of analyzing the effect of strong
magnetic fields on the electron–nuclear interaction in
VV paramagnets.

5. A sufficiently strong magnetic field, for which the
Zeeman energy of the RE ion is comparable to the Stark
splitting energies of its ground multiplet, further
reduces the symmetry of the local environment.
Switching on such a magnetic field can be regarded as
the inclusion of a low-symmetry term in the crystal-
field Hamiltonian, with the magnitude of this term
depending on the magnetic field strength. It then
becomes clear that the hyperfine interaction should
change in a sufficiently high magnetic field. This is pri-
marily due to the fact that the angular dependence of 4f-
electron density changes. Indeed, the radial distortions

of the crystal-field parameters [  and  in Eq. (2)],
which are equal, by the order of magnitude, to tens and

hundreds of cm–1, change the mean value 〈 〉  by no
more than one percent [11]. The magnetic fields in the
range considered correspond to the Zeeman energies on
the order of a few cm–1.

To illustrate these arguments, we calculated the
Tm3+ ground-state 4f wave functions in a TmES crystal
exposed to different magnetic fields. Figure 3 depicts
the angular dependences of the Tm3+ 4f-electron den-
sity for the TmES crystals placed in an external mag-
netic field of 5 T aligned with the x axis in the crystal
symmetry plane. One can clearly see that symmetry
breaks in the crystallographic plane between the x and
y directions. Naturally, the electron-density redistribu-
tion should affect the direction and magnitude of the
hyperfine magnetic field Hhf at the nucleus. In addition,
it is conceivable that the appearance of electron-density
anisotropy in the xy plane perpendicular to the crystal-
lographic axis c induces rotation of the nearest sur-
roundings of the VV ion and, as a result, violates the
equivalency of two Tm3+ ions in a unit cell of the TmES

B2
0 B4

0

ri
3–
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crystal, as it can be seen from the spectra of bound
4f-electron–phonon states in TmES [3, 6].

Thus, the transition frequencies between the
ground-state electron–nuclear sublevels of a VV ion in
strong magnetic fields should be calculated self-consis-
tently with allowance for the magnetic-field-induced
distortions in the 4f shell [10]. The results of such cal-
culations are presented in Fig. 2 by the solid line. Note
also that, inasmuch as the field-induced magnetic
moment of the 4f-electron shell depends, in principle,
on temperature and, simultaneously, determines the
hyperfine field at nuclei, the transition frequencies
between the ground-state electron–nuclear sublevels
can also show temperature dependence [10]. However,
the experimental observation of this dependence neces-
sitates substantial modification of the experimental
setup.

6. In conclusion, we sum up the main results of this
work. A specially designed experimental system has
been used to observe the ultrahigh-frequency 169Tm
NMR signal in a single crystal of a dielectric VV para-
magnet (thulium ethylsulfate) in the frequency range
from 18 to 700 MHz in magnetic fields up to 3 T at
helium temperature. The resonance signal was
observed for the transitions between the Tm3+ ground-
state electron–nuclear sublevels. The observed field
dependence of the transition frequencies is evidence
that the applied magnetic field affects the hyperfine
interaction parameters. The theoretical method sug-
gested for calculating these effects agrees satisfactorily
with the experiment.

We are grateful to A.V. Egorov (Kazan State Univer-
sity) for assistance in experiment preparation, to Prof.
M.M. Zaripov (Kazan State University) for the atten-
tion to the work, and to Prof. H. Suzuki (Kanazawa
University, Japan) for the discussion of results. This
work was supported by the Scientific and Educational
CRDF center (REC-007) and the Nederlandse Organi-
satie voor Wetenschappelijk Onderzoek (NWO).
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Polariton Dispersion of Periodic Quantum Well Structures1 
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We studied the polariton dispersion relations of a periodic quantum-well structure with a period in the vicinity
of half the exciton resonance wavelength, i.e., the Bragg structure. We classified polariton modes using an
approximation of a large number of quantum wells. The polariton effective masses are found to be very small
and equal to 10–3–10–4 of the free-electron mass. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.Fg; 71.36.+c; 73.20.Mf
1 Semiconductor structures allow engineering of the
light–matter interaction. The band structure and disper-
sion relation of the coupled mode of exciton and pho-
ton, called a polariton, can be controlled by the struc-
ture design, thereby opening great opportunities for
fundamental studies of exciton and photon physics, as
well as for device applications. Recently, considerable
attention has been devoted to the study of photon–mat-
ter interaction in semiconductor microcavities (MCs)
[1] and photonic band-gap materials [2], i.e., structures
characterized by light-wavelength size. One of the
advantages of polariton-dispersion engineering is the
possibility to construct a bosonic quasiparticle with
extremely small effective mass m. In particular, due to
the small density of states in such a system, a statisti-
cally degenerate gas of polaritons may arise even at
high temperatures and small densities (the temperature
at which a quasi-2D gas of noninteracting bosonic qua-
siparticles becomes statistically degenerate is T0 =
π"2n/2mkB [3]).

In this paper, we consider the system of polaritons in
a periodic quantum-well (PQW) structure with a period
close to half the exciton resonance wavelength, i.e., in
a Bragg structure. In PQW structures, due to the total
confinement of excitons in QWs, the propagation of
polaritons through the PQW is possible only because of
the electromagnetic transfer of excitation through the
barrier layers; in this sense, they are Wannier–Mott
excitons for in-plane motion and Frenkel excitons for
motion in the growth direction [4]. Before there were
any experiments, several unique properties of polari-
tons in PQW structures had been predicted [4–9].
Ivchenko et al. [8] made two related and significant
predictions. First, in an infinite Bragg structure with d =
λ/2, the normal light wave is a standing wave character-
ized by two wave vectors Q = ±π/d with a field E(z) ∝
sin(πz/d) with nodes at every QW position. This wave

1 This article was submitted by the authors in English.
0021-3640/02/7610- $22.00 © 20637
does not couple to excitons, because the optical transi-

tion matrix element ∝ E(z)Ψ(z) is minimal and,

therefore, Bragg PQW structures with a large number
of QWs poorly emit and absorb resonant light in the
normal direction [8]. Second, although it is a poor emit-
ter, the Bragg structure is an excellent reflector: due to
constructive interference between the light waves
reflected by various QWs, the reflectivity of the Bragg
structure is dramatically enhanced; in fact, in reflectiv-
ity or transmission, a set of N QWs with d = λ/2 is
equivalent to a single QW (SQW) with a radiative cou-
pling coefficient N amplified times over the value for an
SQW [8].

The theoretical predictions initiated intense experi-
mental studies. A strong amplification of the reflectance
in Bragg PQW structures was observed in [10]. The
enhancement of the signal decay rate in the Bragg
structure was observed in the degenerate four-wave-
mixing experiments in reflection geometry [11].
Recently, almost 100% reflectivity and the onset of a
photonic band gap were observed in a Bragg PQW
sample with N = 100 QWs [12]. These experiments
confirmed that the constructive interference between
the light waves reflected by various QWs can be treated
as a huge (∝ N) enhancement of the radiative coupling
coefficient [8]. Further resonant excitation studies
revealed that the radiative coupling effects dominate not
only the transmission, reflection, and absorption spectra
but also the resonance Rayleigh scattering [13, 14].

In this paper, we study polariton-dispersion rela-
tions of high-quality Bragg and nearly Bragg PQW
structures with d ≈ λ/2. In our experiments, e–h pairs
are generated by continuum absorption and lose energy
by incoherent processes, populating low-energy carrier
and polariton states. As shown in [12], under these con-
ditions the PL spectra of a PQW structure cannot be
explained by the radiatively uncoupled incoherent
emission of 100 individual QWs but are dominated by

zd∫
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the cooperative emission from radiatively coupled
QWs, i.e., by polaritonic states. Radiative coupling of
the QWs occurs without any external coherent exci-
tation.

The non-AR-coated PQW sample (DBR28) con-
tains N = 100 8.5-nm-thick In0.04Ga0.96As QWs
between GaAs barriers (for details, see [12]). The use
of low-In-concentration QWs ensures that the back-
ground refractive indices of the well and barrier are
nearly identical, thereby eliminating the photonic band
gap arising from a distributed Bragg-mirror-like reflec-
tivity. A decrease in flux with increasing radius during
the growth on a rotating substrate provides an experi-
mental way to continuously scan d. For cw PL studies,
the excitation was provided either by an HeNe laser
(excitation energy "ω = 1.96 eV) or by a Ti : sapphire
laser. The excitation was focused to a 50-µm spot.
Experiments were performed in a He4 cryostat at T =
1.5 K.

The theoretical analysis of the polariton mode dis-
persion is based on the transfer-matrix approach that
describes light propagation through a multilayer struc-
ture by solving the Maxwell wave equation including
the corresponding boundary condition at each interface
(LDT). According to [5, 9], the eigenmodes of the self-
consistently coupled light–QW–exciton system in an
infinite PQW structure obey the dispersion relation

Fig. 1. (a) The scheme showing the dispersions of polaritons
in PQW structures. In the infinite periodic structures, the
polariton dispersions in the PQW growth direction (dotted
lines) are constructed from the photon dispersions (bold
lines), their replicas (thin lines), and exciton dispersion
(dotted line). The polariton branches obey Eq. (2). The tran-
sition from an infinite to finite number of QWs, N, corre-
sponds to the transition from continuous Q to discrete
modes. For large N, the energies of the discrete modes

(dots) fall on the continuous branch dispersions at Qj = ,

j = 1, …, N (vertical dashed line). (b) An example of in-
plane dispersions of polariton mode branches calculated
using Eq. (2). Dotted lines represent dispersions of the exci-
ton and standing waves of light. The polariton mode disper-
sions (solid lines) are formed by anticrossing dispersions of
the exciton and photon.

π
d
--- j

N
----
(1)

where Q is the wave vector of light along the PQW
growth direction reduced to the first Brillouin zone, k =

ω/"c, kz = , kx is the in-plane polariton wave
vector, ω0 is the exciton resonance energy, and Γ0 and Γ
are, respectively, the radiative and nonradiative exciton
damping constants in a single QW. As was shown in
[9], for finite number N of QWs, the eigenmodes cor-
respond to the discretized values of the complex wave
vector Q. For large N, the values of wave vector tend to
become real and equally spaced, and Eq. (1) trans-
forms to

(2)

where Qj = , j = 1, …, N. The roots of Eq. (2) ω =

ω(j, kx) correspond to the eigenenergies of the polariton
modes. The polariton energies also tend to become real
for large N and, therefore, since the imaginary part of
energies yields the radiative width of PQW polaritons,
polariton states become stationary in the high-N limit,
similar to bulk polaritons [7, 9].

The origin of polariton modes in PQW structures
can be understood with the schemes shown in Fig. 1.
Figure 1a schematically shows the dispersion of polari-
tons in the PQW growth direction. For infinite N, the
polariton dispersions are constructed from the photon
dispersions, their replicas, and exciton dispersion. We
concentrate below on the energy region close to the
exciton resonance. Around ω0, there are three PQW
polariton branches originating from the folded photon
dispersion and exciton dispersion: the upper (U), the
middle (M), and the lower (L) one. The splitting
between the branches at the anticrossing point at Q =
π/d, proportional to the electromagnetic coupling
between the photon and exciton, is small compared to
ω0 and is exaggerated in Fig. 1a. For finite and large N,
the energies of the discrete modes fall on the continu-

ous branch dispersions at the momenta Qj = , j = 1,

…, N for the jth polariton mode; i.e., the continuous
branch and discrete modes obey Eq. (2) with the same
r.h.s. We mark the upper jth mode as Uj and so on. Fig-
ure 1a presents the case of a Bragg structure with d =

λ/2, i.e., with ω0 = πc/d ; the modification of the
scheme for different d is straightforward. An example
of the in-plane dispersions for U, M, and L polariton
branches is shown in Fig. 1b. The dispersions were cal-
culated using Eq. (2) for d/λ = 0.501, Qj = 0.99π/d, and
Γ0 = 20 µeV. The polariton modes are formed by the
anticrossing dispersions of the exciton and standing
waves of light (Fig. 1b). Note that the mode MN is a

Qd( )cos kzd( )cos
Γ0k/kz

ω0 ω– iΓ–
--------------------------- kzd( ),sin–=

εbk2 kx
2–

Q jd( )cos kzd( )cos
Γ0 ω0 ω–( )k/kz

ω0 ω–( )2 Γ2+
------------------------------------- kzd( ),sin–=

π
d
--- j

N
----

π
d
--- j

N
----

εb
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standing wave with a field E(z) ∝  sin(πz/d) with nodes
at every QW position ∀ d and ∀ kx, and its optical tran-
sition matrix element is zero.

Figure 2a shows the cw spectra of PL emitted in the
direction normal to the PQW structure. Spectra are
taken from different positions on the sample corre-
sponding to different periods d, as labeled in Fig. 2a.
Figures 2b and 2c present the measured PL energy and
intensity of polariton modes at kx = 0 corrected for the
exciton energy shift due to a change in the QW thick-
ness. The radiative mode splitting well exceeds the
inhomogeneous exciton linewidth. The solid and
dashed lines show positions of the eigenmodes at kx = 0
calculated using Eq. (2). The best agreement between
the experiment and Eq. (2) is achieved using Γ0 =
20 µeV (dashed lines). The linear fit to the HWHM of
reflectivity spectrum vs. N gives Γ0 = 27 µeV [12]. The
eigenmodes calculated using Eq. (2) with Γ0 = 27 µeV
are also shown in Fig. 2b. All polariton modes observed
in the experiment are clearly classified. This confirms
that the QW number N = 100 is large enough to validate
the approximation of Eq. (2) with real and equally
spaced Qj [9].2 Figure 2c shows eigenmodes (solid
lines), reflection dips (triangles), and absorption peaks
(squares) calculated for N = 100 PQW using the
Lorentzian excitonic susceptibility within an LDT
approach [12]. Here, the absorption A is defined as A =
1 – R – T, where R is the reflection and T is the trans-
mission. The best agreement between the experiment
and the theory is achieved with Γ0 = 27 µeV, in agree-
ment with [12]. As expected, PL clearly follows the
absorption; thus, the results of the LDT calculations are
in good agreement with the experiment.

To measure the dispersion of the PQW polariton
modes, we studied angularly resolved PL following
experiments in [15], where this method was applied to
study the dispersion of polaritons in MCs. The disper-
sions of polariton modes are revealed via their PL
energy vs. kx = ksinφ dependence, where φ is the exter-
nal angle between the emitted photon and the direction
normal to the PQW structure. The measured disper-
sions of polariton modes are presented in Fig. 3. The
dashed lines show positions of the eigenmodes calcu-
lated using Eq. (2). Dispersions of the polariton modes
numerically calculated using LDT for 100 QWs (open
squares) are in good agreement with the experimental
data (Fig. 3). The calculation based on Eq. (2) has no
fitting parameter and uses the value of Γ0 obtained from
the fit to the experimental data in Fig. 2. The main result
of the polariton dispersion measurements is that the
polariton effective masses are very small. In particular,
for the mode MN – 1, m ≈ 5 × 10–4m0, they are close to the

2 The calculation of the complex wave vectors Q by using the
transfer matrix of a finite 100-QW structure [9] shows that there
is a finite imaginary part for periods where the corresponding
mode is bright. This implies that the large-N approximation is not
validated over the whole range of periods.
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effective mass of microcavity polaritons. This agree-
ment is natural, because the polariton dispersions are
determined by the anticrossing dispersions of an exci-
ton and standing waves of light both for PQWs and
MCs. Note that small density-of-states effective mass
[1/m = 2/"2∂E/∂(k2)] is characteristic of most of the
polariton modes (Fig. 3).

Fig. 2. (a) PL spectra in the normal direction in the reflec-
tion geometry for the non-AR-coated N = 100
In0.04Ga0.96As/GaAs PQW structure under cw nonresonant
excitation at 1.96 eV. Spectra are taken from different posi-
tions on the sample corresponding to different periods d;
T = 1.5 K. Poor emission in the normal direction at Bragg
resonance, d = λ/2, reveals the vanishing overlap between
the QW excitons and the standing wave of light. (b) The
measured PL energy and intensity of polariton modes vs. d
(grayscale map). The mode energies calculated using
Eq. (2) with Γ0 = 20 µeV (Γ0 = 27 µeV) are shown by
dashed (solid) lines. The mode classification includes the
branch U, M, or L index and the j = 1, …, N number (Fig. 1).
The optically inactive MN mode is absent in the PL spectra.
(c) Absorption peaks (squares), reflection dips (triangles),
and eigenenergies (solid lines) calculated using LDT
through a finite non-AR coated 100 QW structure. Note that
the functional dependence of A on the period is different for
an AR-coated structure.
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We notice that the linewidth of the polariton PL
from the N = 100 PQW sample is sometimes narrower
than the linewidth of exciton PL from SQWs grown
under as nearly as possible identical conditions. The
smallest PL linewidth, ≈0.15 meV, observed in N =

Fig. 3. Measured PL energy of polariton modes (solid
points) in non-AR coated N = 100 In0.04Ga0.96As/GaAs
PQW structure with d = 0.5025 λ vs. kx under cw nonreso-
nant excitation at 1.495 eV; T = 1.5 K. Triangles correspond
presumably to the PL of localized states. The mode energies
calculated using Eq. (2) with Γ0 = 20 µeV are shown by
dashed lines. The polariton effective masses are extremely
small; e.g., the quadratic fit to the mode MN – 1 dispersion at

small kx yields m ≈ 5 × 10–4m0. The calculated absorption
peaks using a Lorentzian excitonic susceptibility for the
propagation through a 100-QW non-AR coated PQW struc-
ture with Γ0 = 27 µeV are shown by open squares. 
100 PQW at d ≈ 0.5025λ is ≈4 times narrower than the
exciton PL linewidth in the SQWs. The effect of line
narrowing due to the radiative coupling between the
QWs clearly dominates over the broadening effects
originating from the inhomogeneities of QW thickness,
etc.

This work was supported by the Russian Foundation
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A model of a quantum computer with diagonal continuous interaction between qubits is proposed. Such a com-
puter is controlled only by short single-qubit operations. The realization of quantum Fourier transform and sim-
ulation of the wave function of a many-particle problem with linear and quadratic potentials on this quantum
computer are discussed. This method applies to a wide class of diagonal interactions and to the case, where the
interactions of different qubits are different. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 03.67.Lx
1. Quantum computing is an unprecedented test for
modern physics, because it requires a level of control-
ling the behavior of nano-objects that has not been
achieved before. Whereas the mathematical theory of
quantum calculations is well developed, their physical
realizations present a serious challenge to our under-
standing of the nature. For this reason, it is important to
search for such simple realizations of quantum algo-
rithms that are associated with simple technology prob-
lems. A computational unit—qubit—is usually repre-
sented as a certain characteristic, e.g., spin, charge, or
position of some elementary particle.

Two-qubit transformations, which are of fundamen-
tal importance for quantum algorithms, are technically
very difficult. To realize such a transformation, one
must control the degree of entanglement of particles,
which is determined by the overlap of the spatial parts
of their wave functions. On the other hand, particles
participating in calculations must be clearly distin-
guished, which is possible only if the overlap of their
wave functions is sufficiently small. These require-
ments on the physical realization of quantum calcula-
tions are contradictory. In any case, two-qubit transfor-
mations are much more difficult than single-qubit ones.

It is reasonable to propose the following approach.
Since the interaction between particles with a change in
the degree of entanglement follows from the wave
equation, two-qubit transformations accompany the
natural time evolution of a quantum system. This sys-
tem can be controlled by single-qubit transformations,
which are easily inspected. Thus, calculations will be
carried out through acting on the system only by single-
qubit pulses, whereas two-qubit transformations will
proceed in the background mode and will be uncon-
trolled. This is the essence of the proposed computa-
0021-3640/02/7610- $22.00 © 20641
tional model with single-qubit control. This model is
much more realistic than the abstract quantum com-
puter scheme implying control through two-qubit inter-
action. Below, this model will be applied to simulate
the behavior of a many-particle system with the qua-
dratic interaction specified by a diagonal matrix.

The basic problem in this model with single-qubit
control is that two-qubit interaction proceeds uncon-
trollably, in particular, with irrelevant qubits, which
seriously distorts quantum algorithms. Calculations in
this model require methods of correcting undesirable
transformations by means of single-qubit pulses. To
demonstrate the capabilities of this approach, we first
apply this model to realize the quantum Fourier trans-
form. Our basic assumption is that the Hamiltonian
matrix of two-qubit interaction is diagonal. For conve-
nience and simplicity, we first additionally assume that
this interaction decreases with distance as the Yukawa
potential.

2. Realization of quantum Fourier transform
with single-qubit control. The quantum Fourier trans-
form is the key subroutine in quantum computing,
because it is used in many other algorithms [1–3]. Fig-
ure 1 shows the simplest scheme of functional elements
for realizing this transformation. This scheme was used
by Shor for fast quantum factorization [1]. Integer a =
a0 + a02 + … + al – 12l – 1 is represented by the basis state
|a0a1…al – 1〉  = |a〉 . These states form an orthonormal-
ized basis for the input states of the quantum scheme of
functional elements. We arrange them from top to bot-
tom. The same convention will be accepted for the out-
put states of the scheme, but bits bj of the number b =
b0 + b02 + … + bl – 12l – 1 will be arranged in the reverse
order.
002 MAIK “Nauka/Interperiodica”
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This scheme realizes the inverse quantum Fourier
transform in O(l2) steps, whereas the dimension of the
transformation matrix is equal to N = l2. However, this
scheme requires two-qubit control and cannot, there-
fore, be realized directly in the model under consider-
ation. Below, we demonstrate how it can be realized.
Let us consider interactions of the form

(1a)

and

(1b)

H

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 ρ 
 
 
 
 
 

, ρ 0,>=

H

ρ1 0 0 0

0 ρ2 0 0

0 0 ρ3 0

0 0 0 ρ4 
 
 
 
 
 
 

.=

Fig. 1. Quantum scheme of functional elements for the
inverse quantum Fourier transform with single- and two-
qubit control. Circles are the Hadamard gates, and two-
qubit operations have form (1).

Fig. 2. Scheme for the inverse quantum Fourier transform
with continuous interaction given by Eq. (1a) and shown by
the rectangles. Circles are the Hadamard gates.
Here, ρ and ρi (i =1, 2, 3, 4) have the form ρ = ρ0(e–br/r),
where b = const and r is the separation between qubit
particles, and ρ1 + ρ4 ≠ ρ2 + ρ3. We arrange l qubits
equidistantly in one line. Let the interaction between
qubits j and k be specified by the Hamiltonian Hj, k
given by Eqs. (1). Such Hamiltonians arise, for exam-
ple, in the Ising model for spin-1/2 particles. The
required decrease in interaction with increasing dis-
tance can be achieved by putting qubits in a suitable
potential well. Taking an appropriate length unit, we
can have b = 1. We first examine interaction given by
Eq. (1a) and then expand the results to case (1b).

2.1. Realization of the quantum Fourier transform
without regard for the phase shift. Let the quantum
Fourier transform and inverse quantum Fourier trans-
form have the form

(2)

respectively. In this case, the inverse transform can be
realized by using scheme shown in Fig. 2, where the

rectangles are unitary transformations U =  with

 = , where each  is given by Eq. (1a)

with ρ0 = π and r = j – k. If the time unit is chosen so
that the product of Plank’s constant by ρ0 is equal to π,
and the length unit is chosen so that r = j – k, U is such
transformation of the state vector that is induced by the
Hamiltonian under consideration per unit time. Here, it
is assumed that single-qubit operations take negligibly
short time compared to unity, so that interaction
between qubit pairs cannot strongly change the phase
during this time. To demonstrate that this scheme really
realizes the inverse quantum Fourier transform, we
apply the method for calculating amplitudes proposed
by Shor in [1]. The output state corresponding to a
given basis input state |a〉  is a linear combination of the
basis states |b〉  with some amplitudes. All absolute val-

ues of these amplitudes are equal to 1/ , and it is suf-
ficient to control their phases. For simplicity, we intro-
duce the notation  = al – 1 – j, j = 0, 1, …, l – 1. In the
process of applying our scheme, qubit values with num-
bers j and k ≤ j pass from left to right through the ele-
ments shown in Fig. 2. Following this direction, we will
take four types of interactions: (i) self-interaction of 

and  in the Hadamard operation, (ii) interaction

between  and  (j > k), (iii) interaction between 

and  (j > k), and (iv) interaction between  and 
(j > k) with times 0, k, j – k, and l – 1 – j, respectively.

QFT: a| 〉 1

N
-------- e

2πiab
N

---------------–

b| 〉 ,
b 0=

N 1–

∑

QFT 1– : a| 〉 1

N
-------- e

2πiab
N

---------------

b| 〉 ,
b 0=

N 1–

∑

e iH̃–

H̃ H̃ j k,

l j k 0≥> >
∑ H̃ j k,

L
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a j'

ak'

a j' ak' a j'

bk b j bk
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The resulting phase is the following sum of the contri-
butions of these interactions:

(3)

In what follows, the first and last terms will be denoted
as A and B, respectively. Their contribution corresponds
to the action of the diagonal Hamiltonians on |a〉  and
|b〉 , respectively. After change j to l – 1 – j, the sum of
the second and third terms takes the form

(4)

where S is an integer. The first term does not change its
phase, and we obtain the desired result without regard
for the contributions A and B.

2.2. Correction of the phase shift. The contribution
of diagonal terms A and B to the phase is calculated as
follows. We first consider only term A, which consists
of terms Aj, k = cj, k , where cj, k depends only on j
and k but is independent of a. In order to suppress all
interactions except for the interaction between selected
qubits, single-qubit NOT transformation will be
applied several times to all qubits excepting selected
qubits j and k.

We first consider a pair of unselected qubits with
numbers p and q such that q > p. Their continuous inter-
action during time interval ∆t provides the term
dp, q∆t  in the phase, where dp, q depends only on
the degree of a decrease in interaction with increasing
distance but is independent of  and . In particular,

for a Yukawa-type decrease, dp, q = /|q – p |. Then,
we invert arbitrarily one (let it be q) of these two qubits
by applying the NOT operation. Its state becomes 1 –

. Then, the second interval ∆t of continuous interac-

tion introduces term dp, q∆t (1 – ) to the phase.
Finally, we recover the content of qubit q by applying
the second NOT operation. The resulting phase shift in
these four actions is equal to dp, q∆t  and depends only
on the content of qubit p.

Now, we can compensate this phase shift by one sin-
gle-qubit transformation. Interaction between a pair of

π
a j' akk

2 j k– j k–( )
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a j' bk j k–( )

2 j k– j k–( )
-------------------------

l j k 0≥> >
∑+

l j k 0≥> >
∑

+ π a j' b j

l j 0≥>
∑ π

b jbk l j– 1–( )

2 j k– j k–( )
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π
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∑
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JETP LETTERS      Vol. 76      No. 10      2002
qubits p and q, one of which (let it be p) is selected and
the other is unselected, can be compensated by using
only single-qubit operations, namely, two NOT opera-
tions for q and a certain phase shift for p.

Next, this method should be modified to simulta-
neously compensate for all effects of the unselected
qubits. For this purpose, we apply the NOT operations
to each such qubit with sufficiently short intervals so
that the contributions from the unselected qubits to the
phase cancel each other. This can be made by two meth-
ods: single-qubit operations are applied either at ran-
domly generated times or periodically with different
periods for different qubits. Let us discuss the first
approach.

2.3. Compensation of the phase shift. For each unse-
lected qubit p, we consider a Poisson process !p gen-

erating times 0 <  <  < … <  < 1 with a certain

fixed density λ @ 1. Let all !p be independent. Then,
the NOT operations are applied to each qubit p sequen-

tially at times . At time 1, the NOT operation is
applied to qubit p, if and only if mp is odd. Thus, each
qubit recovers its initial state after this procedure. Inter-
actions between the selected qubits remain unaffected.
Let us calculate the contribution from a certain unse-
lected qubit to the phase. This contribution consists of
two terms corresponding to the interactions with
selected and unselected qubits, respectively. We will
calculate them sequentially.

(i) Since the density λ of Poisson process !p is high,

qubit p is in the state  for about half the time and in

1 –  for the remaining half. The interaction of this
qubit with some selected qubit j makes the contribution

dp, j  + dp, j(1 – ) , i.e., dp, j .

(ii) Let us consider different unselected qubits q ≠ p.
Since the NOT operations are applied to qubits p and q
at independent times and the density λ is high, these
qubits are in each of states ( , ), ( , 1 – ), (1 –

, ), and (1 – , 1 – ) for about quarter the time.

The resulting contribution is equal to [  +

(1 – ) + (1 – )  + (1 – )(1 – )] = dp, q.

The total phase shift from the unselected qubits is
the following sum of values from (i) and (ii) for all
p ∉  {j, k}:

This shift can be compensated by single-qubit transfor-
mations, because the first two terms depend only on the
values of qubits, and the remaining terms are constants.
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Thus, we construct the scheme with continuous two-
qubit interaction and single-qubit operations that gives
phase shift dj, k . Taking the time interval ∆t as a
time unit in this procedure, we obtain phase shift
∆tdj, k . In order to obtain shift –∆tdj, k , we
must first apply the NOT operation to qubit j, carry out
the above procedure, apply the NOT operation to qubit
j, and add –∆tdj, k  by the single-qubit operation.

Thus, we can make any addition of the form c  to
the phase, where c is any real number. The appropriate
combination of these schemes gives the phase shift

(5)

for any cj, k. Performing these operations before and
after the inverse quantum Fourier transform in the pro-
cedure discussed in the preceding section, we compen-
sate terms A and B in the phase and obtain the scheme
realizing the inverse quantum Fourier transform.

Let us estimate the delay caused by the introduction
of the NOT operations with a high density compared to
the abstract realization of quantum algorithms on the
schemes based on functional elements. We fix the time
unit so that one operation in the scheme takes unit time.
The NOT operation can be applied with identical short
time intervals δt, i.e., at times kδt for any integer k with
probability p = 1/λ, where λ is the density of the pro-
cess. We denote M = T/δt, where T is the computational
time. The error of phase shift caused by the possible
imperfection of the random process in this model is
equal to δtD, where D is the variance of the sum of ran-
dom variables taking values 1 and 0 with the respective

probabilities p and 1 – p, i.e., O( ). Therefore, the

resulting error is equal to about T/  and must be
negligibly small. For the quantum Fourier transform,

T = O( ), and M = O( ) will be sufficiently
large for negligibly small e. Thus, the method of ran-
dom processes results in a delay that is slightly larger
than the quadratic delay, as compared to the standard
model, and this is quite admissible for fast algorithms
such as quantum Fourier transform. Applying the mod-
ifications of the above method to slower quantum algo-
rithms such as the Grover algorithm [7], one must use
the method of periodic NOT operations rather than the
method of random processes. In this model the NOT
transformations are applied to each of qubits j at times
jkδt for integer k, where δt is the short time interval. In
this case, we can repeat the above construction and
remove undesirable phase shifts by appropriately
choosing δt. This method results in a delay in the form
of a factor of about n2, as compared to the complexity
of the abstract model of quantum functional schemes.

3. Possibility of using various interactions. The
proposed technique is easily extended to the general

a j' ak'

a j' ak' a j' ak'

ak'

a j' ak'

c j k, a j' ak'
j k,
∑

M

M

Nln Nln
2

/e
case of Hamiltonian given by Eq. (1a) with an arbitrary
decrease; i.e., the phase shift of form (5) can be gener-
ated in this model, and

(6)

for any cj, k.

The application of interaction (1b) per unit time
gives phase shift ρ1(1 – )(1 – bk) + ρ2(1 – )bk +

ρ3 (1 – bk) + ρ4 bk, which can be reduced to the pre-
ceding case through the linear shift, because ρ1 + ρ4 ≠
ρ2 + ρ3.

Finally, this technique can be directly generalized to
the Hamiltonians that can be diagonalized by single-
qubit operations.

4. Simulation of physics by continuous interac-
tions. We discuss now an important Feynman’s idea [4]
of simulating many-particle physical problems on a
quantum computer. Zalka [5] and Wiesner [6] proposed
the scheme implementing this idea on the basis of the
Coppersmith–Deutsch–Shor (see Fig. 1) method for
inverse quantum Fourier transform. The method pro-
posed above for realizing the quantum Fourier trans-
form with single-qubit control provides a simple way to
simulate the wave function of many-particle problems
with linear and quadratic potentials. The corresponding
Hamiltonian for s1 particles has the form

(7)

where s = 3s1 is the total number of spatial coordinates
qk determining the particle positions, pk are the
momenta, and v j, k are the constants determining the
interaction potentials. We will discuss the case k = 1,
because the general case is fully similar.

It is necessary to approximate the action of opera-
tion e–iHt on the wave function ψ0, where H = Hp + Hq,
Hp = p2/2m, Hq = V(q), p = i–1(∂/∂q), and potential V(q)
is a real quadratic function. Without loss of generality,
we can take t = 1. A suitable approximation can be
obtained in the coordinate or momentum basis of the
space of state vectors, and the Hamiltonian is nondiag-
onal in both bases. To reduce the problem to diagonal
Hamiltonians, we take short time interval ∆t and repre-
sent our time evolution operator in the approximate
form

(8)

For example, Hq has the diagonal form in the coordinate
basis. Using Fourier transform f 

f(q)dq, which changes differentiation

∂/∂q to multiplication by ip, we can represent the action

c j k, a j' bk
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of the momentum part of the operator as  =

FT−1 , where the operator in the middle is diag-
onal. If the Fourier transform and phase shift –p2/2m
can be realized, the sequential application of such oper-
ators from Eq. (8) yields the necessary approximation.

Let the wave function ψ(q) and its momentum rep-
resentation FT(ψ) be defined in segments (–A, A) and
(−B, B), respectively. Taking small ∆q and ∆p values,
we can approximate this function through

where δa(q) takes the values 1 and 0 on the segment
(qa, qa + ∆q) and outside it, respectively. In this case,
the Fourier transform can be approximated by the linear
operator, whose action on δa yields

where σb(p) is the one-step momentum function similar
to δa. Introducing new one-step coordinate and momen-
tum functions as da(q) = δa(q – A) and sb(p) = σb(p – B),
we write the Fourier transform in the form

(9)

which is very similar to the quantum Fourier transform.
Let us assume that the physical space is grained in

the coordinate and momentum representations with
grain sizes ∆q and ∆p, respectively. In this case, the par-
ticle under consideration can be located only at points
qa or have only momenta pb. We associate position qa,
a = 0, 1, …, N = 2l with the basis state |a〉  in the l-qubit
quantum system. For simplicity, we choose the length

unit so that ∆q = ∆p = /  and A = B = .
In this case, Eq. (9) corresponds to the quantum Fourier
transform given by Eq. (2), and the phase shift
−p2∆t/2m from Eq. (8) corresponds to the phase shift
−πb2∆t/mN. Both operations can be realized by contin-
uous interaction with single-qubit control, because they
have the necessary form. Finally, the first of operators
(8) can be realized similarly.

When simulating an ensemble of s1 particles, we
must take s1 copies of quantum register for one particle
and perform the above procedure for the united quan-
tum memory.

5. Advantages of the quantum simulation of wave
functions. The method proposed above for the quan-
tum simulation of wave functions retains all advantages
of the quantum solution proposed for Schrödinger
equation in [1, 5, 6]. Namely, this method of realizing
the quantum Fourier transform takes time O(l2) for a

e
iH p–

e–i p
2∆t /2m

ψ qa( )δa,
a 0=

2A/∆q

∑

1

2π
----------∆q e

i pbqa–
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given interaction between qubits. If this operator is
used in the approximate form obtained by omitting
exponentially small phase shifts, the corresponding
modification of the proposed method takes time O(l),
with the constant depending on a chosen accuracy.

The main advantage of this method, as applied to the
simulation of wave functions, is manifested in many-
particle problems. The wave function of a system of s
one-dimensional particles at a fixed time has the form
ψ(x1, x2, …, xs), where xj is the coordinate of the jth par-
ticle. To store the approximation of this function with
grain e and arguments limited by b, the memory of Ns

bits is required, where N = b/e. At the same time, the
quantum simulation method requires about lnN qubits
for each particle, and the total required memory equals
slnN qubits, which is equal to almost the logarithm of
classical memory.

6. The model of a quantum computer controlled by
only single-qubit operations with uncontrolled continu-
ous diagonal two-qubit interaction has been proposed.
The simplicity of control is the advantage of this model.
The simple method of realizing the quantum Fourier
transform and simulating many-particle problems with
quadratic potentials has been proposed in this model.
Such a quantum computer can simulate free fields and
particles, states of a set of harmonic oscillators, and the
behavior of complex polyatomic molecules.

It would be important to generalize the proposed
method to nondiagonal Hamiltonians. Finally, it would
be interesting to select the computational quantum-
mechanical problems, where quantum calculations
with the qubit representation of wave functions could
be effective. For example, such a reformulation implies
the presence of a spatial grain, and the traditional field-
theory problem of series divergence at high energies
will thus be removed. This qubit reformulation gener-
ally seems to be more efficient, because it requires
memory that increases linearly rather than exponen-
tially with an increase in the number of particles, as in
the convenient description of wave functions.
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