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The magnetic moment (g factor) of a negative muon on the 1s atomic levels of zinc and cadmium was measured
with an accuracy higher by a factor of 7 than the accuracy achieved in other measurements. The experimental
value of the g factor differs substantially from the theoretical results. Possible causes of this discrepancy are
discussed. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 14.60.Ef; 13.40.Em; 31.30.Jv; 36.10.Dr; 76.75.+i
Measurement of the magnetic moment of a negative
muon on the 1s atomic level is of interest as a check of
the predictions made (i) by quantum theory for particles
with spin 1/2, according to which the magnetic moment
of a particle bound in an atom must differ from the
magnetic moment of a free particle because of the rela-
tivistic motion and (ii) by QED about the additional
(compared to a free particle) radiative corrections to the
magnetic moment because of the Coulomb field of the
nucleus. The additional radiative corrections are two
orders of magnitude smaller than the correction due to
the relativistic motion of the particle.

The g factor of a negative muon on the 1s level of an
atom with zero spin of the nucleus and electron shell is
expressed as [1]

(1)

where  are the radiative corrections for a free muon,

 are the additional radiative corrections arising in

the Coulomb field of a nucleus, is the relativistic

correction,  is the correction for nuclear polariza-

tion,  is the correction for the polarization of the
atomic electron shell in an external magnetic field (and

for the polarization of free charge carriers),  is the
correction for the diamagnetic shielding of an external

magnetic field by the atomic electron shell, and  is
the correction for the center of mass of the nucleus +
muon system.
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Strictly speaking,  and  are not corrections
to the muon magnetic moment but determine the differ-
ence between the magnetic field on a muon and the
external magnetic field. These corrections arise because
the negative muon is inside the electron shell of an
atom, which, in turn, interacts with other atoms and free
charge carriers.

Ford et al. [1] numerically calculated the quantity

(  – )/  for a number of atoms, where  =

2(1 + ) is the g factor of a free muon (  =

0.0011659230(84) [2]). The  correction was

ignored in [1]. Values accepted for  in [1] for atoms
with Z & 50 are close to those calculated later [3] in rel-
ativistic Hartree–Fock–Slater theory. Recently, Karsh-
enboim et al. [4] obtained an analytic expression for the

 and  corrections, which applies in a limited
range of the nuclear charge Z.

Corrections to the g factor of an electron on the 1s
atomic level are similar to the above-mentioned correc-

tions for a muon, except for  and , because mea-
surements for the 1s electron are carried out in hydro-
gen-like ions (with one 1s electron).

At present,  has been measured in hydrogen [5],
deuterium [6], helium [7], and carbon [8, 9]. These
measurements are consistent with theoretical calcula-
tions [10, 11] to within errors. However, only in carbon
does experimental accuracy make it possible to verify
QED predictions for radiative corrections to the mag-
netic moment of the 1s electron.
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Measurement of the magnetic moment of a bound
muon is of special interest, because the Coulomb field
for the negative muon on the 1s atomic level is much
stronger than for the 1s electron. In particular, the Cou-
lomb field for a muon in carbon is comparable with the
field for the 1s electron in lead.

The magnetic moment of a negative muon on the 1s
atomic level was measured in carbon, oxygen, magne-
sium, sulfur, zinc, cadmium, and lead [12–16] (The

quantity (  – ) in zinc, cadmium, and lead was
measured with an accuracy of ~50% [14]). The mea-
sured and calculated values of the muon g factor dis-
agree in some cases. In [16], the discrepancy for oxy-

gen and magnesium was attributed to the  correc-

tion, which was ignored in [1]. The quantity  for

zinc, which was obtained in [16], where (  – )
was measured with an accuracy higher than in [14] by
a factor of 3, differs from the theoretical value.

The aim of this work is to improve the accuracy of
measurement of the g factor of a muon on the 1s atomic
levels of zinc and cadmium. Measurements in carbon
and silicon are also repeated.

Measurements were carried out at the GPD setup
[17] placed on a muon beam from the µE1 channel of
the PSI accelerator (Paul Scherrer Institute, Switzer-
land). A magnetic field of 4100 G in a sample was pro-
duced by Helmholtz coils. The magnetic field was per-
pendicular to the axis of the muon beam. The long-term
stability of the current in Helmholtz coils was close to
2 × 10–5. The Earth’s magnetic field and fields from
magnetic materials placed near the setup were compen-
sated to an accuracy of 0.01 G. Carbon, silicon, zinc,
and cadmium disc samples were 30 mm in diameter and
12, 10, 7, and 3 (6 × 0.5) mm in thickness, respectively.
They were placed at the center of Helmholtz coils,
whose positions were corrected so that the axis of the
beam curved in the magnetic field passed through the
center of a sample. The positions of the samples with
respect to the beam axis and center of Helmholtz coils
were fixed with an accuracy of ~1 mm.

By X-ray fluorescence analysis (with a cadmium
source), we determined that the contents of Fe, Co, Ni,
and Cu in the zinc samples were 0.5, 0.5, 0.1, and
0.3 at. %, respectively. Analysis by a scanning electron
microscope with an X-ray microanalyzer (JEOL-840)
and electron energy of 25 keV showed the following
contents of impurities: (i) 0.1–0.2 at. % of Cu and less
than 0.2 at. % of Al, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni,
Ga, and Ge in the zinc samples; (ii) less than 0.1 at. %
of Fe and less than 0.2 at. % of Ca, Sc, Ti, V, Cr, Mn,
Co, Ni, Zn, Ga, Ge, Rb, Sr, Y, Zr, Nb, Mo, Tc, Ru, Rh,
Pd, Ag, In, Sn, Sb, and Te in the cadmium samples.

In order to increase the rate of data accumulation,
decay electrons were detected by four telescopes of
scintillation counters, in contrast to the preceding mea-
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surement [16]. Two telescopes, which were absent in
the measurements reported in [16], were placed
upwards and downwards from the target (up and down
telescopes) so that the muon beam did not directly
intersect them.

The muon g factor was determined from the preces-
sion frequency ω of the muon spin in an external mag-
netic field:

where ωfree and  are the spin precession frequency
and g factor of a free muon, respectively. The frequency
ωfree was determined experimentally from the preces-
sion frequency of a positive muon in copper. The pro-
cedure of measuring and processing experimental data
was reported in detail in [16]. During measurement, the
stability of the setup parameters was monitored by
determining the frequency of the periodic background
structure in the µSR spectra (background structure was
determined by the rf field of the accelerator) and was no
worse than 10–5.

The table presents available experimental data on
the muon g factor on the 1s levels of various atoms,
including our measurements and theoretical calcula-
tions. The accuracy of our measurements for zinc and
silicon is seven times higher than in [14]. Different
measurements for carbon and cadmium coincide with
each other.

Experimental data confirm that (  – )/
increases with the nuclear charge Z. Nevertheless, the

table demonstrates that the measured values of (  –

)/  are smaller than the values calculated for
almost all samples. For light elements (including sul-
fur), this difference is no greater than 7 × 10–4, which
can be attributed to the fact that the effects associated
with the polarization of the electron shell of a muonic
atom and conduction electrons were ignored in theoret-
ical calculations (see [16]).

We recall that the electron shells of the muonic
atoms formed as a result of the capture of a negative
muon by the Zn and Cd atoms are completely similar to
the electron shells of the Cu and Ag atoms, respectively.
For this reason, to correctly compare our data with the-
oretical calculations [1], the Knight shift in the Cu and
Ag atoms in the Cu–Zn and Ag–Cd alloys, respectively,
must be taken into account. In addition, it is necessary
to take into account that a sample (metallic zinc or cad-
mium) contains no more than one muonic atom at any
time under the conditions of the experiment.

Cu–Zn and Ag–Cd alloys are extensively used in
engineering, and the Knight shifts for Cu and Ag in Cu–
Zn and Ag–Cd alloys, respectively, are well studied
(see [18–21]). As follows from the NMR data [18], the
Cu Knight shift in the Cu1 – xZnx alloy decreases from
0.235 to (0.15 ± 0.01)% as x increases from 0 to 39%

gµ
free gµ

1s–( )/gµ
free ωfree ω–( )/ωfree,=

gµ
free

gµ
free gµ

1s gµ
free

gµ
free

gµ
1s gµ

free
JETP LETTERS      Vol. 76      No. 12      2002



MEASUREMENT OF THE MAGNETIC MOMENT 695
Experimental data and theoretical calculations of the g factor of a negative muon in carbon, oxygen (water), magnesium, silicon,
sulfur, zinc, cadmium, and lead

Sample
104 × ( )/

this work experiment [15, 16] experiment [12] experiment [14] theory [1]

C (graphite) 7.5 ± 0.2 7.9 ± 0.7 7.6 ± 0.3 8.2 ± 0.1

7.1 ± 0.6

8.0 ± 0.5

O in H2O 7.0 ± 1.1 9.4 ± 1.0 14.3 ± 0.2

Mg metallic
Mg in MgH2

23.1 ± 0.9 26.4 ± 0.7 29.8 ± 0.6

29.6 ± 0.7

Si crystal 36 ± 2 35.9 ± 1.1 36.3 ± 1.1 39.1 ± 1.0

S amorphous 42.4 ± 2.1 48.2 ± 1.6 49.1 ± 1.5

Zn 75 ± 9 77 ± 22 120 ± 62 129 (≥122)

Cd* 67 ± 22 201 ± 140 218 (≥175)

Pb 468 ± 220 383

*Theoretical values of the  and  corrections for cadmium were obtained by interpolating data from [1], and the  correction

was taken from [3].
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(α phase). The Cu Knight shift is equal to (0.15 ±
0.01)% and (0.07 ± 0.01)% for 40% ≤ x ≤ 57% (β
phase) and 57% ≤ x ≤ 68% (γ phase), respectively.
Therefore, a value of (7 ± 1) × 10–4 can be treated as the
upper limit of the µCu Knight shift in zinc. The concen-
tration dependence of the Ag Knight shift in the Ag–Cd
alloy [19, 21] indicates that the Knight shift for the µAg
atom in Cd does not exceed (42.9 ± 0.4) × 10–4. In
brackets, the last column of the table presents the quan-

tity (  – )/  calculated with the inclusion of
the Knight shift. Obviously, the inclusion of the Knight
shift does not eliminate the discrepancy (on the order of
five standard errors) between calculations and experi-
mental data for Zn and Cd.

Experiments [22–24] devoted to the effect of transi-
tion atomic impurities (Cr, Mn, Fe, Co, Ni) on the
Knight shift for the nuclei of matrix atoms in various
alloys indicate that impurities in the samples (Zn and
Cd) that we examined can change the Knight shift by
no more than 10% (∆_/_ & 0.1) compared to the pure
samples.

The corrections , , and  are small, and
the inaccuracy of their calculation is unlikely to be
responsible for the observed discrepancies for Zn and

Cd. The correction  is known to a high accuracy
from independent experiments. The diamagnetic cor-

rection  was well calculated (see, e.g., [3]), and the
results do not differ significantly from the experimental
data on atomic magnetic susceptibility. Therefore,
either the Knight shift on a muonic atom is anomalous
in zinc and cadmium or the calculation [1] of the rela-
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tivistic correction  is inaccurate. The anomalous
Knight shift in a muonic atom was observed, in partic-
ular, in paramagnetic MnO [25].

Thus, experimental values of the g factor of a nega-
tive muon on the 1s level of the Zn and Cd atoms differ
significantly (by five standard errors) from calculations.
This discrepancy can testify both to the anomalous
Knight shift for a muonic atom in zinc and cadmium
and to the inaccuracy of the calculated relativistic cor-
rection to the muon magnetic moment. We expect that

measurement of  in crystalline germanium (which is
a diamagnetic substance, where the Knight shift is neg-
ligible) will make it possible to determine the causes of
discrepancies.

We are grateful to the management of the Paul
Scherrer Institute, where these measurements were car-
ried out. This work was supported by the Ministry of
Education of the Russian Federation, program “Univer-
sities of Russia,” project no. 01.01.015.
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Left–Right Asymmetry of the Angular Distribution
of Prompt Neutrons from 235U Fission Induced 

by Polarized Thermal Neutrons
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Left–right asymmetry of the angular distribution of prompt neutrons from 235U fission induced by polarized
thermal neutrons was measured. This asymmetry is caused by the interference of the s and p waves in the input
reaction channel and was found to be equal to b = (–5.8 ± 1.4) × 10–5. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 25.85.Ec
In our preceding paper [1], we reported the results of
a search for sp interference in the emission of prompt
neutrons from 235U fission induced by polarized ther-
mal neutrons. These results can be treated as evidence
of the desired effect. The figure shows the geometry of
the experiment.

The target is a 90 × 220 × 0.2-mm aluminum plate
both sides of which are covered with 235U oxide–pro-
toxide. The total content of 235U in the target was 1.3 g.
A collimated beam of thermal neutrons with a flux den-
sity of 105 cm–1 s–1 “slid” along the target. Fission frag-
ments were detected by low-pressure multiwire propor-
tional counters (the chamber was filled with hexane to
a pressure of 3 torr). Delayed coincidences between
pulses from a neutron detector (plastic scintillator and
FEU-63) and detectors of fragments were measured.
Time coincidences between fragments and prompt fis-
sion γ rays were discriminated from time of flight. On-
line measurements consisted of 15-min cycles; after
each of them, the result of processing four time spectra
(two for each neutron detector) was output to the dis-
play in the form of the asymmetry factor

(1)

where i is the detector number and N1 and N2 are the
integrated neutron time spectra with two opposite
polarizations.

Simultaneously, the averaged data with rms errors
accumulated after the ith cycle were output to the dis-
play. Measurements over about 1000 h provided the
desired asymmetry

Theory [2] predicts various effects caused by the s–p
interference in the input channel of the capture reaction
of slow neutrons by nuclei. In particular, the angular
distribution of particles c in the reaction n + A  C + c

bi N1i N2i–( )/ N1i N2i+( ),=

b –5.8 1.4±( ) 10 5– .×=
0021-3640/02/7612- $22.00 © 20697
of capturing polarized neutrons by nuclei A is given by
the expression

(2)

where s is the unit vector along the polarization of neu-
trons incident on the nucleus A and nin and nc are the
unit vectors along the momenta of the captured neutron
and particle c, respectively.

Both the magnitude and sign of the coefficient b
depend on the energy of neutrons captured by a
nucleus, on the positions of the s and p resonances of
the compound nucleus, and on the quantum character-
istics of the initial and final states. For thermal neutrons
and medium-heavy and heavy nuclei, the coefficient b
is equal to about 10–4. If several initial or final states
contribute to the reaction, the coefficient b, when
summed over these states, is less than for one state,
because the coefficients can enter with opposite signs.
We use this circumstance to search for so-called pre-fis-
sion or scission neutrons. The angular distribution of
prompt fission neutrons is extended along the fission
axis, i.e., along the momenta of fission fragments
because of the composition of velocities. This property
indicates that prompt neutrons are emitted primarily
from excited completely accelerated fragments. How-
ever, some prompt neutrons have an almost spherically
symmetric angular distribution, which indicates that
they are emitted from the excited nucleus before its
scission into two fragments. Experimental data on the
fraction of these neutrons vary from 3 to 35% [3].

There are various assumptions about the emission
mechanism of scission neutrons. Neutrons can be emit-
ted upon “descending” from the saddle point to the
nuclear configuration immediately before the rupture of
the waist joining the two future fragments. In view of
this circumstance, so-called triple fission, where light
charged particles (p, d, t, 3He, α, 5He, etc.) are emitted
together with two fragments, is noteworthy. The angu-

W θ( ) const 1 bs nin nc,[ ]+( ),=
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lar and energy distributions of these particles follow
from their focusing and acceleration in the Coulomb
field of the two fragments. Therefore, they appear in the
region between fragments. They are most likely emitted
from the waist during its cooling. Obviously, neutrons
can also be emitted through the same mechanism.
Moreover, since the Coulomb barrier is absent for neu-
trons, the probability of neutron emission must be
much higher than for protons. If such is the case, the fis-
sion process accompanied by the emission of neutrons
from the waist can be treated as a neutral component of
triple nuclear fission.

Recently, a collaboration including ITEP, Tübingen
Universitat, Darmstadt Technische Universitat, PNPI,
Kurchatov Institute, and Institut Laue–Langevin car-
ried out a search experiment with the beam of polarized
cold neutrons from the high-flux ILL reactor. In this
experiment, the left–right asymmetry of α-particle
emission about the plane determined by the polariza-
tion vector of fission-induced neutrons and the momen-
tum of the light fragment was observed in the triple fis-

Geometry of the experiment: U is the 235U target, f are the
detectors of fission fragments, n1 and n2 are the detectors of
prompt fission neutrons, and s is the polarization direction
of a beam of thermal neutrons incident on the target perpen-
dicular to the figure plane. Polarization direction was
reversed every second.
sion of the 233,235U nuclei [4, 5]. The measured asymme-
try was found to be about 10–3. However, this value may
increase to 10–2 if the degree of polarization of the fis-
sioning nucleus is taken into account. The observed
asymmetry can be described by the expression

(3)

where nlf and n are the unit vectors along the momenta
of the light fragment and α particle, respectively.

Both Eqs. (1) and (2) are formally noninvariant
upon time inversion. As for the s–p interference, theory
implies that the coefficient b involves a phase factor that
also changes its sign upon time inversion. If correlation
(3) is caused by the interaction in the final state, the
coefficient D must also involve phase. Unfortunately,
triple fission is so complex that a rigorous theoretical
explanation of the observed phenomenon is impossible.
It only remains to experimentally examine this correla-
tion in more detail.

In view of this circumstance, it is of interest to reveal
the possible nature of the interaction in the final state of
three charged particles. It can be either electromagnetic
or strong. In the first case, a similar effect must obvi-
ously be absent in the neutral component of triple
nuclear fission. Before preparing such an experiment,
which requires an intense beam of polarized neutrons,
it would be reasonable to verify that the neutral compo-
nent of triple fission really exists. The observed s–p
interference corroborates its existence, because final
states are numerous and neutrons emitted by fragments
cannot, therefore, exhibit s–p interference in the input
reaction channel. The final states may be not so numer-
ous both in the emission of α particles in triple fission
and in the emission of pre-scission neutrons of double
nuclear fission, so that the angular correlations may not
tend to zero upon summing over these final states.

Being manifested in the left–right asymmetry of the
angular distribution of fission fragments, the effect of
s–p interference in the capture of polarized thermal
neutrons by 235U nuclei was measured in [6] and found
to be on the order of 10–4.1 The same order of magni-
tude of the left–right asymmetry coefficient can be
expected for a small number of final states in this pro-
cess. The similar effect for fragment neutrons can be on

the order of 10–4/  = 10–8. Nevertheless, the frag-
ment neutrons are important in our measurements,
because they cannot be discriminated from the scission
neutrons. Inevitable background from the fragment
neutrons decreases the measured asymmetry by a factor
of 1 + δ, where δ is the fragment-to-scission neutron
ratio. Therefore, the true asymmetry coefficient can be
suppressed by a factor of 3 to 30, which is consistent

1 The number of final states in the fission process is on the order of
108–1010. However, the correlation is not suppressed, because it
is formed at the stage of a cold strongly deformed pear-shaped
nucleus at the saddle point, where the number of states for sum-
mation is small.

W const 1 Ds nlf nα,[ ]+( ),=

108
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with the measured value |b | = 5.8 × 10–5. In addition,
the result must be reduced to 100% nuclear polarization
and corrected for the geometry of the experiment,
which can provide one more order of magnitude. Of
coarse, taking into account the difference between the
spins of an α particle and neutron can also provide a
more definite value of the asymmetry coefficient for
neutrons. The coefficient δ can really be determined
with a higher accuracy. Since the angular distributions
of fragment and scission neutrons are substantially dif-
ferent, δ depends on the angle between the axis of frag-
ment scattering and the direction to the neutron detec-
tor. The minimum background from fragment neutrons
and, therefore, the maximum left–right asymmetry in
the angular distribution of detected neutrons should be
observed at 90°. Monte-Carlo simulation of an experi-
ment with real geometry shows that measurement of
the coefficients b(90°) and b(45°) with an accuracy of
10–6 will make it possible to determine both the true
correlation coefficient and the fraction of scission neu-
trons among prompt fission neutrons with an accuracy
of 10%. We are now preparing such an experiment.

We are grateful to Yu.A. Belov for technical help in
the experiment and to the staff of the reactor at the Mos-
cow Engineering Physics Institute, where the measure-
JETP LETTERS      Vol. 76      No. 12      2002
ments with a polarized neutron beam were carried out.
This work was supported by the Russian Foundation
for Basic Research, project no. 00-02-16011.
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Destruction of the Ozone Protecting Layer: 
Charge-Separation Mechanism in Clusters
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A model is constructed that explains the intense accumulation of chlorine in stratospheric ice microclusters. The
model is approved in detail for quantitative consistency using Monte-Carlo computer simulation. A complex
interparticle-interaction model is used that includes nonpair forces, charge transfer, and corrections for the
quantum-statistical uncertainty in nuclear positions. In the presence of thermal fluctuations, two thermodynam-
ically stable states of the HCl molecule—bound and dissociated—occur in water clusters. In clusters containing
more than 35 water molecules, molecular dissociation into ions becomes thermodynamically favorable under
the conditions of the polar stratosphere. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 92.60.Hp; 94.10.Fa; 82.33.Tb; 36.40.Ei; 64.60.Qb
The ozone layer protects Earth’s surface from
intense ultraviolet radiation. The ozone-depleted spots
are more frequently formed in circumpolar regions, and
their appearance correlates with seasonal temperature
variations. According to modern observations [1, 2], the
formation of “ozone holes” is preceded by the appear-
ance of a specific accumulation of solid microparticles
in the stratosphere at heights on the order of 100 km.
The stratospheric cloud is composed, to a large extent,
of ice microclusters. Analysis of natural observations in
conjunction with laboratory studies [1–5] allows one to
formulate the following most probable scenario of
ozone destruction. Chlorine in chemical compounds
inert with respect to ozone is accumulated in ice micro-
crystals. During seasonal warming, it is released and
oxidized in the reaction with ozone. In photolytic reac-
tions, the resulting chlorine compounds are again
absorbed by ice microcrystals. Thus, the chlorine accu-
mulated in the stratosphere is involved many times in
repeated ozone-destruction cycles. The high adsorption
ability of ice with respect to HCl, which is also mea-
sured in laboratory experiments [3–5], allows it to func-
tion for the destructive cycle as a whole. In recent years,
the adsorption ability of ice has been the object of
intensive study by both experimental methods [3–5]
and computer simulation [6]. The data of measure-
ments by different authors demonstrate a considerable
scatter, which indicates a strong dependence of the
properties of an ice adsorbing surface on the method of
its preparation in laboratory conditions and on its
microrelief. The phase state of ice surface layers at
stratospheric temperatures is also not fully understood.
The initial stage of capturing an HCl molecule from the
gas phase is a bottleneck determining the rate of the
entire process. Theoretically, two possible adsorption
0021-3640/02/7612- $22.00 © 20700
mechanisms exist for HCl: a simple physisorption and
an adsorption with the preliminary ionic dissociation.
In the second case, the strong electrostatic interaction
between ions and the ice surface layers provides fast
ion capture even at the initial stage. Computer simula-
tion showed [6] that the simple physisorption is incapa-
ble of providing those high values of ice adsorption
ability that are observed experimentally. The discrep-
ancy achieves several orders of magnitude. The adsorp-
tion through the molecular ionic dissociation seems to
be the most probable mechanism. Since the dissocia-
tion reaction requires overcoming an activation barrier,
forces must exist which lead to the dissociation of the
HCl molecule even in the gas phase.

Mere rupture of a chemical bond is insufficient for
the charge separation. The dissociation requires over-
coming Coulomb attraction between molecules, which
may occur only upon its weakening in a solution. Water
clusters formed from vapor in an electric field of a polar
molecule provide the most favorable conditions for the
gas-phase dissociation. After being dissolved in such a
cluster, a molecule dissociates in it into ions, much as
this occurs in a bulk electrolyte. Computer simulation
shows [7–10] that the ionic electric field stabilizes
water clusters.

In this work, the H3O+(H2O)nCl– cluster is modeled
by the mechanostatistical Monte-Carlo method in a
canonical statistical ensemble at temperatures 200 and
300 K. The interactions in the system are described
using a specially developed complex pseudopotential
model that implicitly incorporates the corrections for
the quantum character of molecular motion and for the
fluctuating-charge effect. The model takes into account
nonpair interactions due to the partial collectivization
of electronic shells, transfer of an excess charge, polar-
002 MAIK “Nauka/Interperiodica”
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ization, hydrogen-bond formation, as well as the usual
electrostatic interactions, exchange repulsion, and dis-
persion forces. A detailed description of the analytic
form of potential interaction is beyond the scope of this
publication; most of the terms are presented in detail in
[7–10]. The numerical values of the ion–water interac-
tion parameters were found by the method of succes-
sive approximations on the requirement that the agree-
ment with the experimental data on free energy and
enthalpy of water nucleation on the H3O+ and Cl– ions
[11, 12] be as accurate as possible. The cluster free
energy was calculated by the method suggested in [13]
for a bicanonical statistical ensemble and developed in
the subsequent works. The numerical values for the
parameters of direct interion interactions were taken so
as to reproduce the cluster energies obtained by the
quantum-chemical calculations for the complexes
HCl(H2O)n with n = 1, 2, and 3 [14]. A good agreement
was obtained with both experimental data and quan-
tum-chemical calculations. The free energy was repro-
duced with the experimental accuracy (fractions of
kBT).

To prevent cluster evaporation into vacuum, the sys-
tem was placed in a spherical cavity with a radius of
20 Å, and the center of the hydroxonium ion was fixed
inside the cavity to prevent direct contact of the cluster
with the walls. The lengths of Markovian chains used
for evaluating equilibrium mean values comprised 10–
30 million molecular configurations, with the first 2–
3 million being used for system thermalization. The
cluster size was sequentially increased, and the last
configuration of the preceding chain was used as the
initial configuration of the running chain, with the sub-
sequent thermalization.

The melting points of water clusters containing 20–
40 molecules lie in the temperature range correspond-
ing to the polar stratosphere. At the same time, the ionic
electric field does not facilitate the cluster crystalliza-
tion but, quite the reverse, can prevent transition to the
ordered crystalline state [15]. The behavior of heat
capacity, as calculated by the fluctuation theorem, and
the calculation of the orientational correlation functions
of molecules give evidence for a quasiliquid state of
clusters under the conditions studied. The thermal fluc-
tuations in such clusters play a crucial role, so that the
use of a mechanostatistical description is necessary.

The mean force potential W(R, T) between ions sep-
arated by the distance R has the meaning of interaction
energy, which includes not only the direct but also all
the interactions produced via the cluster molecules and
averaged over molecular positions and ion orientations.
The mean force potential is related to the ion–ion cor-
relation function g+–(R; T) by the familiar formula

(1)

The Monte-Carlo calculation of W(R, T) was performed
by the direct averaging of the total energy of the system
for a pair of ions fixed at various distances R. The

W R, T( ) kBT g+– R; T( )( )ln const.+=
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W(R, T) curve shows two deep minima with a strong
maximum between them (Fig. 1). The positions of
these minima correspond to the stable ion positions
inside the cluster. The closest minimum at R = 3.6 Å
corresponds to two ions with a distance between them
close to their contact. This distance is 0.47 Å larger than
the equilibrium distance between the ions in vacuum;
the water molecules slightly force the ions apart. The
second minimum is situated at a distance close to 15 Å.
This minimum corresponds to the stable ion positions
in the dissociated state of HCl. The presence of this
minimum is indicative of a possible dissociation of a
molecule. The position of the first minimum is almost
independent of the cluster size, whereas the second
minimum shifts to larger distances approximately pro-
portionally to the cluster linear size. Those ion posi-
tions for which most of the molecules are situated in the
interion region, while the ions are near the surface, are
thermodynamically favorable. As the cluster size
decreases, the second minimum becomes shallower and
fully disappears in the clusters with n < 5. The calcu-
lated ion–ion correlation functions show sharp maxima
in the regions of minima, with half-widths of ~0.5 Å at
the first minimum and ~1 Å at the second. These values
give an estimate for the characteristic value of the fluc-
tuations of interion distance. Upon rising to room tem-
perature, the character of R dependence does not
change for W(R, T), although the curve, as a whole,
rises approximately by 3 × 10–19 J.

The change in the average separation between the
ions upon varying the cluster size is presented in Fig. 2
for the dissociated states of the HCl molecule. These
states were selected through the preliminary thermal-
ization of the system in a configuration with ions sepa-
rated by a distance of 20 Å. This was followed by ther-
malization in the regime of nonfixed ions, after which
mean values were calculated. A barrier separating the
dissociated states from bound states in clusters with

Fig. 1. Mean force potential of the hydroxonium and chlo-
rine ions in the H3O+(H2O)30Cl– cluster vs. distance
between the ions; (s) 200 and (d) 300 K.
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n > 6 prevented the ion recombination during the simu-
lation session. In the clusters with n ≤ 6, the ions draw
close together to a contact distance under the action of
electric attractive forces and expel water molecules
from the interion region. One can see from Fig. 2 that,
after changing the cluster size by one molecule (from
n = 6 to n = 7), the separation between ions increases
fourfold jumpwise, and the ions are stabilized at dis-
tances corresponding to the second minimum of
W(R, T). On further increase in the cluster size, the ions
continue to draw apart. In the clusters with n > 20, the
average interion distance slightly oscillates with chang-
ing cluster size, evidencing the microstructuring. At
room temperature, the same dependence with a jump is

Fig. 2. Average distance between the hydroxonium and
chlorine ions in the H3O+(H2O)nCl– clusters vs. cluster size
for the dissociated states at a temperature of 200 K.

Fig. 3. Different types of interaction constituting the mean
force potential for the hydroxonium and chlorine ions in the
H3O+(H2O)30Cl– cluster at a temperature of 200 K;

(s) H3O+–water molecules, (d) Cl––water molecules,

(+) H3O+–Cl–, and (e) interaction energy between the water
molecules and water molecules with ions.
also observed at the same point n = 7, but the variations
in interion distances become smoothed.

The stabilization mechanism of the dissociated HCl
state in water clusters can be understood from a com-
parison of the behavior of different energy components
of the system when the ions are pushed apart. The first
minimum of W(R, T) is mainly due to the direct ion–ion
and water–water interactions (Fig. 3). The main contri-
bution to the second minimum of W(R, T) comes from
the ion–water interactions (Fig. 3), with the interaction
between the hydroxonium ion and water molecules in
the dissociated state being twice as strong as for the
chlorine ion. In the bound state, these energies differ
from each other by a factor of 20. The hydroxonium ion
plays a leading part in the stabilization of both the dis-
sociated state and the cluster as a whole. In the bound
state of the HCl molecule, the ion’s hydrate shell is
almost destroyed by the hydroxonium ion field, and the
dipole moments of molecules are pointed away from
the ion pair. Water molecules form a hydrogen-bond
network, with the pronounced preferred orientation of
dipole moments along the ion field lines. To stabilize
the dissociated state of HCl, no less than three molecu-
lar layers should be situated between ions. The struc-
tures stable at zero temperature with a monomolecular
layer between the H3O+ and Cl– ions [14] are incapable
of stabilizing the system at stratospheric temperatures.
The two minima corresponding to the bound and disso-
ciated molecular states are separated by a high maxi-
mum with a height of 190kBT. The kinetic characteris-
tics, including the characteristic time of overcoming
this barrier as a result of thermal fluctuations, cannot be
calculated by the Monte-Carlo method. Nevertheless,
one can expect that this time is on the same order as the
dissociation time of a molecule in a bulk water solution;
i.e., the thermodynamic equilibrium between these two
states is established on a macroscopic time scale. The
relative statistical weights of states depend exponen-
tially on the difference between their free energies. For
estimation, it suffices to compare their internal ener-
gies. The internal energy of the dissociated state in a
cluster with n = 30 molecules is 7kBT times higher, but
this difference decreases with increasing n. The point
where this difference changes sign, i.e., the cluster size
for which the dissociated state becomes energetically
more favorable than the bound state, can be determined
by extrapolating to the intersection of the graphs of
internal energies of the bound and dissociated states.
One can see from Fig. 4 that, as the cluster size
increases, the energies of both states, being negative,
decrease, although the energy of the dissociated state
decreases faster. The intersection point corresponds to
n = 37; however, considering that the entropy of the dis-
sociated state is higher, one should expect that the latter
will become thermodynamically more favorable for the
clusters containing n = 35–36 water molecules. There-
fore, HCl dissociates to form chlorine ions in clusters
with n > 35 molecules. Our preliminary calculations
JETP LETTERS      Vol. 76      No. 12      2002
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suggest that the clusters of this size in a field of two
counterions are situated at the boundary of the stable
equilibrium with saturated vapor. This fact explains the
deciding role of such clusters in the accumulation
kinetics of chlorine ions: all chlorine ions pass through
the ion-pair hydration stage. One should expect that a
relatively sharp decrease in temperature will lead to the
formation of a saturated layer near the surface of ice
microparticle and to an increase of the stable cluster
size in the ion field, which, in turn, will shift the
dynamic equilibrium toward the HCl dissociation and
fast chlorine-ion adsorption on the ice surface. It is con-
ceivable that this mechanism is precisely that which
provides the relatively high sensitivity of the chlorine
adsorption and emission at the surface of ice micropar-
ticles to the seasonal temperature variations in the
stratosphere.

The stability of the hydrate shell of a chlorine ion in
water vapor near the adsorbing surface was studied sep-
arately. The free energy and the hydration work were
calculated. In the saturated vapor, drawing together of

Fig. 4. Total interaction energy in the H3O+(H2O)nCl– clus-
ters at a temperature of 200 K vs. the cluster size for two
states of HCl molecule; (d) dissociated and (+) bound state.

log(n)
JETP LETTERS      Vol. 76      No. 12      2002
the ion and surface is accompanied by linking the
hydrate shell to the surface and its fast growth across
the surface. Simultaneously, the molecules of the
hydrate shell form a sort of “cocoon” covering the ion.
Thus, the chlorine ion proves to be built-in under the
surface layer even at the initial stage of the process.

This work was supported by INTAS, grant no. 99-
01162.
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We have analytically found that the reflectivity amplitude from one thin layer in the presence of the other reflect-
ing layers is modulated by the squared amplitude of the radiation field but not by the first-order amplitude, as
was supposed in the paper of R. Röhlsberger (Hyperfine Interactions 123/124, 455 (1999)), for delayed nuclear
resonance reflectivity. Hence, a larger sensitivity to standing waves is expected for the reflectivity signal from
selected groups of atoms or nuclei compared with the secondary radiation emission. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 61.10.Kw; 68.49.Uv
Standing waves are created when an incident wave
is coherently reflected from crystals or multilayers (dif-
fraction, total external reflection for X rays and neu-
trons). This effect has long been effectively used for
investigation of the depth position of a selected group
of atoms by means of secondary radiation (fluorescent
signal, photoelectrons) [1, 2].

Recently, it has become possible to select the contri-
bution from selected group of atoms in the reflectivity
signal itself by investigation of the spectrum of reflec-
tivity or by selection of the scattering channel (e.g.,
nuclear resonant scattering is selected from the elec-
tronic scattering by time gating [3]). Since the first
experiment, where a peak near the critical angle of the
total external reflection in delayed nuclear resonant
reflectivity was observed, the idea of the influence of
standing waves on the reflectivity signal itself has been
discussed [4–7]. Investigations of the shape of the time
spectra of Bragg reflectivity and its variation with angle
[8, 9] also led the authors to the conclusion that the
energy or time dependence of standing waves inside a
periodical resonant multilayer influences the reflectiv-
ity energy or time spectrum [10]. Several experiments
with resonant 57Fe layers embedded at different depths
in thin magnetic films have been performed in which
the enhancement of the reflectivity signal due to the
creation of standing waves near the critical angle was
used [11, 12]. The influence of standing waves on the
reflectivity signal is even more substantial in the new
type of measurements recently performed by Röhls-
berger et at. [13], where 57Fe layers are placed inside a
wave-guide structure. In all such measurements, the
reflectivity signal was investigated and not the second-
ary radiation. All authors in [4–13] imply that a connec-
tion between standing waves and delayed nuclear reso-

¶ This article was submitted by the authors in English.
0021-3640/02/7612- $22.00 © 20704
nant reflectivity exists, but no analytical expressions
were derived, with the exception of [7], where such an
expression was suggested, but the wrong one (as we
show here).

Here we have got an analytical expression which
describes the “standing-wave influence” on the reflec-
tivity signal from an ultrathin layer in the presence of
the other reflecting layers. It is essential that the reflec-
tivity cannot be considered as secondary radiation
emission, because in reflectivity measurements the
detected radiation is coherent with the incident radia-
tion, and it obeys the laws of propagation in a layered
medium.

The most understandable result can be obtained
from the kinematic approximation for reflectivity [14],
where we simply add the reflectivity amplitudes from
individual layers with an appropriate phase factor:

(1)

The reflectivity from a thin layer rn is described by the
well-known expression [15]

(2)

where λ is the wavelength of radiation, ϑ  is the glanc-
ing angle, ρ is the surface density of scattering centers,
and f is the forward scattering amplitude by a single
scattering center.

At a first sight, the contribution from each layer to
the reflectivity in (1) is independent from the others.
But let us consider the contribution to the total reflec-
tivity R tot from one additional layer on top of a multi-

R rne
2iϕn.

n

∑=

r i
λ

ϑsin
-----------ρf ,=
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layer or other substrate with the reflectivity R. The
result will be the following:

(3)

where Q = (4π/λ)sinϑ , d is the thickness of the layer. In
(3), we also took into account the phase and refraction
corrections of the total reflectivity caused by the added
layer through the phase factor 2iϕ (the approximation
used is valid for the angular region beyond the critical
angle ϑc of the total external reflection):

(4)

and we used the determination ρ = ρv d (ρv is the vol-
ume density of the scattering centers). R' in (3) is the
reflectivity R at the distance d from the top of the mul-
tilayer (relative to the incident wave at the same
height):

(5)

For very thin layers, we can neglect this phase factor.
However, (5) can be generalized for the case when the
added layer is placed at some distance H from the sur-
face. In this case, d in (5) is replaced by H. It is this
phase factor that determines the angular or depth varia-
tions of the standing waves. The above consideration
can easily be repeated for the thin layer placed inside
the multilayer.

For illustration we consider a resonant 57Fe layer on
top of nonresonant superstructure [Si/W] · 20. The cal-
culated spectrum of Mössbauer reflectivity R tot(ω) is
determined by r(ω) and by the position H of the reso-
nant layer relative to the surface of the superstructure
(through the phase shift between the amplitudes of scat-
tering R' and r(ω)). The standing-wave influence
appears through the complex factor (1 + 2R') modulat-
ing r(ω) (Fig. 1). This factor enhances the contrast of
the spectrum when a 57Fe layer is placed at the antinode
of a standing wave (Fig. 1a) and suppresses it at the
node (Fig. 1b).

So in the kinematic approximation (when the reflec-
tivity R is small enough), the change of the single-layer
scattering amplitude caused by the other layers in the
multilayer is described by the factor (1 + 2R'). This
result already shows up the difference of the reflectivity
and the secondary radiation emission, because the
amplitude of the last one is proportional to the ampli-
tude of the radiation field (1 + R').

For angles close to the critical angle, the kinematic
approximation in the reflectivity theory is not valid. We

Rtot R iQd i
2λρ

ϑsin
----------- f+ 

  r+exp=

R'≅ r 1 2R'+( ),+

2ϕ 4π
λ

------ηd ,=

η ϑsin
2 λ2

π
-----ρv f+ ϑ λ2

2π ϑsin
------------------ρv f ,+sin≅=

R' ReiQd.=
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should use here the exact Parratt recursive formula for
reflectivity amplitude:

(6)

Here, rj is the Fresnel reflectivity amplitude, Rj + 1 is the
multiple reflectivity amplitude at the previous bound-
ary, the expression for the phase shift ϕj is given by (4),
but the approximate formula for the square root cannot
be used now.

For calculation of the reflectivity from a thin layer
by (6), we suppose that 2iϕ is small. In order to simplify
the calculations, we insert an artificial vacuum buffer
layer with zero thickness between the tested layer and
substrate, although the algebra can also be carried out
without this layer. Neglecting the (2iϕ)2 term, we
obtain

(7)

and

, (8)

R j

r j R j 1+ e
2iϕ j+

1 r jR j 1+ e
2iϕ j+

-----------------------------------.=

Rtot r01 R̃+

1 r01R̃+
-------------------

R̃ 1 r01
2–( )

1 r01R̃+( )2
--------------------------2iϕ1+=

R̃
r10 R+

1 r10R+
-------------------=

Fig. 1. Calculated Mössbauer spectra of reflectivity at the
exact Bragg angle 14.75 mrad from a thin 57Fe layer placed
at the distance (a) H = D/2 and (b) H = 0 from the surface of
a multilayer with period D = 3.0 nm (solid lines). Dashed
lines correspond to the pure interference of r(ω) and R with-
out the standing-wave factor (1 + R)2.
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where r01 is the Fresnel reflectivity amplitude from the
tested layer and R is the reflectivity amplitude from the
substrate. Finally, we obtain

, (9)

where r is again determined by (2).
The obtained result is surprisingly simple and clear.

The layer reflectivity amplitude r in the presence of the
other reflecting layers is modulated by the “squared
standing wave” (1 + R)2, because the standing-wave
structure of the radiation field reveals itself for the inci-
dent (absorption process) as well as for reflected wave
(emission process). The kinematic approach obtained
above (3) is true when R is small and (1 + R)2 ≈ 1 + 2R.

The obtained formula (9) differs from the analogous
expression (4.1) presented in [7]:

(10)

(we have rewritten it here in our notation and note that
rS is determined by Eq. (2) but with the substrate
parameters). Expression (10) from [7] implies that the
reflected amplitude from a thin layer is proportional to
the amplitude of the total radiation field (1 + R) (the
unessential term rS can be effectively combined with
R), just as in the case of secondary radiation emission.
The correct expression (9) contains this amplitude
squared (1 + R)2.

If we again suppose that the investigated thin layer
is the resonant layer (r = r(ω)), then the delayed nuclear
resonance reflectivity is calculated by the Fourier trans-
form of (9), which gives

(11)

Rtot R 1 iQd+( ) 1 R+( )2r+=

Rtot R 1 R+( ) r rS–( )+=

Rtot t( )
2

1 R+( )2 2
r t( ) 2.=

Fig. 2. The integral nuclear resonant reflectivity from a thin
57Fe layer on top of a nonresonant 56Fe substrate (solid line)
calculated by means of Parratt formula (6), which gives
exactly the same result as (9). Notice that the factor 1/sinϑ
appears from (2). The dotted line is the dependence sug-
gested by Röhlsberger [7] if we neglect the 1/sinϑ  factor in
r (the well-known dependence for secondary radiation
emission [2]); the dashed line is the dependence if we do not
neglect this factor (no peak at the critical angle ~3.7 mrad
appears). 
In Fig. 2, we plot the result of the calculations by for-
mula (9) and (10) (formula (4.2) from [7]). We see that
(10) does not give the right behavior of the delayed
nuclear resonance reflectivity in any case.

Of course, calculations can be performed correctly
by the main formula (6), but the importance of the pre-
sented expression (9) is that it clarifies the physical
understanding of how the reflectivity from a thin layer
is changed in the presence of the other reflecting sub-
stance. It also directly shows the role of standing waves
in the reflectivity process. The illustrations here were
given for the case of nuclear resonant reflectivity exper-
iments, but the result also refers to any kind of reflectiv-
ity measurements, e.g., magnetic X-ray scattering, neu-
tron reflectivity, and so on.

The authors are grateful to A.I. Chumakov for stim-
ulating discussions and R. Röhlesberger for presenting
[13] before publication. This work was supported by
the Royal Swedish Academy of Sciences, the Russian
Foundation for Basic Research (grant no. 01-02-
17541), and INTAS (grant no. 01-0822).
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Intensities and positions of resonance lines are calculated for the ferromagnetic resonance spectra of multilayer
ferromagnetic films in a magnetic field oriented normally to the film surface. It is shown that the positions of
spectral lines depend on the number of ferromagnetic layers, while the line intensities are determined by the
phase shift between the oscillations of the magnetic moments of neighboring layers. A qualitative comparison
is carried out between the results of calculations and the spectra observed in experiments. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 76.50.+g; 75.70.–i
Ferromagnetic resonance (FMR) serves as one of
the methods of studying multilayer ferromagnetic films
characterized by a giant magnetoresistance. For FMR,
ferromagnetic layers separated by a nonmagnetic metal
interlayer represent an analogue of the coupled reso-
nance circuits. Therefore, as in multiply connected cir-
cuits, the number of resonance modes observed in FMR
must correspond to the number of ferromagnetic layers.

In multilayer films, experimental observations
reveal only one line, which is interpreted as a line cor-
responding to the homogeneous resonance. Additional
resonance modes were observed in such systems only
in a limited number of cases, when the static magnetic
field was oriented along the film plane (parallel config-
uration). To excite additional modes, a high-frequency
field was applied along the static field. In films consist-
ing of two ferromagnetic layers, optical modes were
studied in [1], and in Fe/Cr multilayer systems, addi-
tional modes were observed in [2]. Our attempt to
observe these modes for similar Fe/Cr samples in a
magnetic field oriented normally to the film plane (per-
pendicular configuration) failed, because the FMR
lines broadened and vanished as this direction was
approached.

In Co/Cu polycrystalline multilayers exposed to
static (perpendicular to the film plane) and high-fre-
quency (parallel to the film surface) magnetic fields, we
repeatedly observed several resonance lines [3]. At the
same time, additional resonance lines were absent in
the parallel configuration. Figure 1 shows the shapes of
the FMR spectra obtained for two samples in the per-
pendicular configuration at a frequency of 9.55 GHz.
The samples were obtained by magnetron sputtering on
a single-crystal silicon substrate and consisted of
15 Co/Cu layer pairs. The samples differed in the thick-
0021-3640/02/7612- $22.00 © 20707
ness of the nonmagnetic interlayer: [Co(30 Å)/Cu(9 Å)] ×
15 (sample 1) and [Co(30 Å)/Cu(12 Å)] × 15 (sample 2).
For sample 1, in addition to the main line, several weak
lines were observed at lower fields. Their intensities
monotonically decreased with decreasing resonance
field. In the case of sample 2, the line intensities dif-
fered little from each other, and the line widths were
almost ten times smaller than those observed for sam-
ple 1. The measurements of the magnetization of these
films, along with the angular dependence of the spec-
trum, showed that only the main line observed in sam-
ple 1 corresponds to the homogeneous resonance. The
structural studies of the film cross sections, which were
performed by transmission electron microscopy [3],
revealed a clearly pronounced layered structure in sam-
ple 1. In sample 2, the layered structure was much less
pronounced, and, on the background of this weakly
pronounced layered structure, no regular alternation of
layers was observed.

Fig. 1. Derivatives of the absorption spectra for two samples
which differ in the thickness of the Cu interlayer; the mag-
netic field is oriented normally to the film plane.
002 MAIK “Nauka/Interperiodica”
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Calculated positions of spectral lines for films containing different numbers of layers

Number of layers Resonance conditions

1 ω1/γ = H0

2 ω1/γ = H0, ω2, 3/γ = ±(H0 – 2HE)

3 ω1/γ = H0, ω2, 3/γ = ±(H0 – 2HE), ω4, 5/γ = ±(H0 – 3HE)

4 ω1/γ = H0, ω2, 3/γ = ±(H0 – 2HE), ω4, 5, 6, 7/γ = ±(H0 – 3HE ± )

5 ω1/γ = H0, ω2, 3, 4, 5/γ = ±( ), ω6, 7, 8, 9/γ = ±( )

6 ω1/γ = H0, ω2, 3/γ = ±(H0 – HE), ω4, 5/γ = ±(H0 – 2HE),

ω6, 7/γ = ±(H0 – 3HE), ω4, 5, 6, 7/γ = ±(H0 – 2HE ± )

2HE

H0
3 5±

2
----------------HE– H0

5 5±
2

----------------HE–

3HE
The description of additional modes is based on the
spin-wave concept. According to [4], spin waves occur
in multilayer films only when the magnetic field is ori-
ented normally to the film surface. As in single-layer
films, their spectrum is described by the equation [4]

(1)

where A is the modified constant of exchange interac-

tion in the ferromagnetic layer, Keff = (4π + 2U/ ) is
the coefficient characterizing the energy of demagnetiz-
ing field and the uniaxial anisotropy U, and k is the
wave vector whose magnitude is proportional to an
integer. These modes were observed experimentally [5]
in Co/Cu multilayer samples near the perpendicular
orientation of magnetic field. The measured spectrum
was adequately described by Eq. (1), and the intensity
of spectral lines with k ≠ 0 was much lower than the

ω
γ
---- H KeffMS–

A
MS

------- k2,⋅–=

MS
2

Fig. 2. Relative positions of the resonance modes in the per-
pendicular configuration for films with equal values of
HE > 0. Columns of equal height correspond to films with
equal numbers of ferromagnetic layers. The numbers near
the columns indicate the number of layers in the film. Col-
umn 1 corresponds to the resonance line of a single-layer
film and to the homogeneous resonance line (ω1/γ = H0) for
a multilayer film.
intensity of the homogeneous resonance line. In our
experiment mentioned above, additional modes were
observed in sample 1 also near the perpendicular con-
figuration, but the wave vector was not proportional to
an integer. According to the model proposed by Wigen
et al. [6], the magnetic moments in each ferromagnetic
layer are directed parallel to each other and oscillate
with a certain phase shifted relative to the oscillations
of moments in other layers. In the same publication, it
was shown that, in the perpendicular configuration, the
width of the calculated spectrum depends on the total
number of layers and is doubled when the number of
layers changes from two to infinity. The relative inten-
sities of the resonance lines were not calculated.

Using the aforementioned model, in which a kth fer-
romagnetic layer possesses its own magnetization Mk,
it is possible to calculate the resonance spectrum of a
multilayer system with alternating layers in the perpen-
dicular configuration. We represent the energy of the
system in the form

(2)

where the z axis is directed normally to the film surface,
H is the magnetic-field strength, J1 and J2 are the
exchange-interaction constants, and d is the ferromag-
netic-layer thickness. Assuming that the magnetic field
and the magnetizations of all layers are directed along
the z axis, i.e., normally to the film plane, and using the
equation of motion for magnetization, we obtain the
resonance spectrum. The spectra calculated in this way
for films with different numbers of layers are presented
in the table, where the following notation is introduced:
H0 = H – KeffMS and HE = J1/dMS + 2J2/dMS. According
to the formulas shown in the table, Fig. 2 displays (in
columns) the relative positions of the resonance modes
obtained for films with equal values of HE > 0. Column 1

E H Mk

k

∑ J1

dMS
2

---------- MkM j

k j≠
∑+–=

+
J2

dMS
4

---------- MkM j( )2

k j≠
∑ Keff

2
-------- Mkz

2 ,
k

∑+
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corresponds to the positions of the resonance line of a
single-layer film and of the homogeneous resonance
line ω1/γ = H0 of a multilayer film. The numbers given
near the columns in Fig. 2 indicate the corresponding
numbers of layers in the films. As one can see from this
figure, an increase in the number of layers is accompa-
nied by an increase in the spectrum width, unlike the
case of the spin-wave spectrum. Positions of lines with
different numbers of layers are different, which dis-
agrees with the calculations performed in [5].

To describe the shape and intensity of the lines in
resonance spectrum, it is necessary to calculate the
imaginary part of the total high-frequency susceptibil-
ity for various values of the phase ϕj of magnetic
moment oscillations. Let us direct the high-frequency
component of magnetic field along the x axis. Then, we
represent the high-frequency magnetization compo-
nents of the jth layer in the form mj = moj · exp(i(ωt +
ϕj)) and introduce into the equation of motion the terms
describing the damping of the transverse magnetization
components in the form of the Bloch–Bloembergen
equations (mjx/T, mjy/T). In the case of homogeneous
oscillations (ϕ = ϕj – ϕj + 1 = 0), the spectrum consists of
a single line, irrespective of the number of layers. For
films consisting of two and three ferromagnetic layers,
the spectra were calculated for different phase shifts ϕ
between neighboring layers. In the case of a two-layer
film, an increase in the phase shift is accompanied by a
decrease in the intensity of the homogeneous resonance
line and an increase in the intensity of the line corre-
sponding to the so-called optical mode. At ϕ = 180°,
only one optical mode is observed. For a three-layer
film, we assume that the phase shifts between different
pairs of neighboring layers are equal. Figure 3 presents
the results of calculating the spectrum of a three-layer
film for different phase shifts. As the phase shift
increases, the intensity of the homogeneous resonance
line decreases and additional modes arise; first one
closely lying mode appears and then another. An
increase in the phase shift leads to a decrease in the
intensity of the homogeneous resonance line, so that
the latter disappears at ϕ = 120°. Note that, at a certain
phase shift (ϕ = 180°), the central spectral line is also
absent. In the spin-wave theory, the additional lines
observed in the spectrum are interpreted as modes each
corresponding to a particular wave number. In our case,
all spectral lines are excited for a given phase differ-
ence, and their intensities are determined by the differ-
ence in the phases of magnetic moment oscillations in
neighboring layers.

As an example, Fig. 4 shows the FMR spectrum
observed at a frequency of 9.55 GHz in the per-
pendicular configuration for a Cu(200 Å)/Co(25 Å)/
Cu(38 Å)/Co(25 Å) polycrystalline film deposited on a
single-crystal silicon substrate. Line 2 shows the deriv-
ative of the absorption spectrum calculated using the
following parameters: g = 2.13, KeffMS = 13440 Oe,
JETP LETTERS      Vol. 76      No. 12      2002
HE  = –250 Oe, T = 1.34 × 10–10 s, ϕ = 127°, and f =
9.55 × 109 Hz.

The mechanism responsible for the phase difference
between the magnetization oscillations may be the non-

Fig. 3. Derivatives of the FMR absorption spectra of a film
consisting of three ferromagnetic layers calculated for dif-
ferent values of phase shift. The magnetic field is oriented
normally to the film surface. The values used in the calcula-
tions for the phase shift between the magnetization oscilla-
tions in neighboring layers are indicated in the plot. The line
intensities are presented in absolute units.

Fig. 4. Derivatives of the FMR absorption spectra of a film
consisting of two ferromagnetic layers in a magnetic field
oriented normally to the film surface: (1) experiment and
(2) calculation with the parameters g = 2.13, KeffMS =

13440 Oe, HE = –250 Oe, T = 1.34 × 10–10 s, f = 9.55 ×
109 Hz, and ϕ = 127°. The arrows indicate the positions of
the spectral lines.
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collinear ordering of the high-frequency magnetization
components in neighboring layers, because the compo-
nent of static field in this direction is zero. As in the case
of the magnetostatic modes, the orientation of a high-
frequency magnetization in a magnetic field perpendic-
ular to the sample plane is determined by the magneto-
static interactions in the film plane. In addition, accord-
ing to [7], each layer can be divided into domains,
which may also cause a noncollinear ordering of the
high-frequency magnetizations of neighboring layers.
Therefore, the noncollinearity may result from both the
presence of the third term in Eq. (2) and the presence of
domains. The latter are determined, to a great extent, by
the local inhomogeneities arising in the course of film
fabrication.

The results obtained from the calculations qualita-
tively agree with the spectra observed in the experiment
(Fig. 1). In sample 1, where the most regular and clearly
defined layered structure is observed, the intensity of
the additional modes is noticeably lower than the inten-
sity of the homogeneous resonance line, and the posi-
tions of these modes are ordered. This indicates that the
phase shift between the oscillations in neighboring
regions does not exceed several tens of degrees (see
Fig. 3 for ϕ = 30°). Hence, the misorientation of the
neighboring regions in zero magnetic field must be of
the same order of magnitude. In sample 2, in which an
irregular layered structure is observed, the phase shift
between the oscillations in neighboring regions is much
greater than in sample 1 and comprises more than a
hundred degrees (see Fig. 3 for ϕ = 120°). The spectral
lines are positioned chaotically, and, according to the
previously obtained results, the homogeneous reso-
nance line is absent.

In other experiments [2, 8], we studied additional
modes of oscillation in Fe/Cr multilayer films in the
parallel configuration. In magnetic fields below the crit-
ical field Hc, where the magnetizations of the neighbor-
ing layers were directed at an angle to each other, the
oscillation spectrum exhibited additional lines. In the
fields H > Hc, these lines were absent. On the basis of
the results obtained above, this disappearance of addi-
tional lines can be understood as the result of the align-
ment of magnetizations of all layers with the external
magnetic field.
Thus, the calculations performed for the FMR spec-
tra of multilayer films suggest that

(1) In layered structures, the spectrum of magnetic
moment oscillations is determined by the number of
weakly coupled ferromagnetic regions and the strength
of exchange interaction between them;

(2) The intensity of the spectral lines depends on the
phase shift between the oscillations of magnetic
moments in neighboring regions. The phase shift is
determined by the magnetostatic interactions and the
domain structure in the film plane. The domain struc-
ture is determined, to a great extent, by the local inho-
mogeneities in the film composition, which arise in the
course of film fabrication;

(3) In the general case, the resonance lines observed
experimentally cannot be interpreted as lines corre-
sponding to a specific value of phase shift. Exceptions
are the homogeneous resonance line and the optical
mode for a two-layer film.

I am grateful to A.I. Morozov and Yu.K. Fetisov for
discussing the results. The work was supported by
the  Russian Foundation for Basic Research, project
no. 00-02-17162.
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The exchange interaction and effective mass of fermionic excitation in a low-density (rS @ 1) system of two-
dimensional electrons are estimated from simple considerations. For the ratio of effective (renormalized due to

interaction) to band mass, the dependence m*/m = (A/ )exp(α ) is obtained, where A and α are constants
on the order of unity. The effective g factor is independent of rS and is larger than its bare value in the two-valley
case (silicon). Comparison with experimental data shows a qualitative agreement with silicon. © 2002 MAIK
“Nauka/Interperiodica”.

PACS numbers: 71.27.+a; 71.10.Pm

rS rS
In recent years, the properties of low-density two-
dimensional electrons (holes) have been intensively
studied (see, e.g., review [1]). Since this system is char-
acterized by strong interaction, the effective mass and g
factor may differ appreciably from their bare values
and, moreover, strongly change with density. This was
confirmed experimentally in [2–6], where the corre-
sponding dependences on carrier concentration were
obtained. This work is devoted to the theoretical con-
sideration of these questions.

In a low-density electron system, the Coulomb
interaction is strong compared to the kinetic energy (at
zero temperature). The ratio of these energies is on the
order of the average distance between particles in Bohr
radii rS (provided that the kinetic energy is estimated as
in a Fermi gas). Low densities correspond to rS @ 1. At
sufficiently large values of rS, a Wigner crystal is
formed. It is shown in [7] that this occurs at rS > 37 ± 5.
At smaller, though large values of rS, a strongly corre-
lated liquid appears (sometimes called a Wigner liquid)
with short-range order, as in crystal. It is this state
which will be the subject of this work.

It is conventional to describe such a liquid in terms
of the Landau theory of Fermi liquid. This implies that
the elementary excitations are classified as in a Fermi
gas; i.e., due to the interaction of Fermi-type excita-
tions, their properties (e.g., effective mass or spin sus-
ceptibility) are different from the properties of fermi-
onic excitations in gas. Although the Landau theory of
Fermi liquid provides the appropriate general relations,
the question arises as to whether one can draw more
detailed conclusions about the Wigner liquid. In this
work, an attempt is made to answer this question.

In a strongly correlated system of interest, a particle
resides for a time in the minimum of a potential pro-
duced by the surroundings, after which it jumps occa-
0021-3640/02/7612- $22.00 © 20711
sionally into the other minimum. This is reminiscent of
the behavior of a particle in the strong-coupling model,
which is used to calculate electronic spectrum in a crys-
tal, where the effective mass m* is given by

(1)

where t is the hopping matrix element and a is the lat-
tice constant. In our problem, this hopping occurs
through the positional exchange of two neighboring
particles, and, thus, there is a need to determine the
level exchange splitting energy, which will play the role
of matrix element t. The assumed analogy with the
behavior of a particle in a periodic field is the key idea
of this work.

To illustrate this idea, the following should be noted.
The above-mentioned exchange interaction should play
a decisive role in the particle transport in a strongly cor-
related quantum liquid, like a Wigner liquid. Then a
relation of type (1) (where a is the average distance
between particles) follows from mere dimensional con-
siderations. It is implied that a quasiparticle moves as a
free particle (with weak damping as in the theory of a
Fermi liquid) and does not diffuse, as, e.g., in the clas-
sical system (note parenthetically that these two limit-
ing possibilities also occur for a particle in crystal).

One more remark should be made in this respect.
Imagine that the system is completely spin-polarized
(by a longitudinal magnetic field) and we are interested
in the motion of a particle with inverted spin. To this
end, one should know the exchange interaction with the
nearest neighbors. In a crystal, this quantity would suf-
fice to determine the spin-wave spectrum. In a liquid
(homogeneous system), a quasiparticle can be assigned
momentum, so that charge moves together with spin. It
hence follows that, knowing the exchange interaction,

m∗ 1/ t a2,∼
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one may hope to make a correct estimate of the quasi-
particle effective mass.

If the exchange energy is known for two particles,
one can use Eq. (1) to estimate the effective mass and,
as it appears, draw certain conclusions about the
exchange interaction of quasiparticles in a Fermi liquid,
namely, about its sign and concentration dependence. It
is the main purpose of this work to obtain correspond-
ing relations. Agreement of the theoretical conclusions
with the available experimental data is also discussed.

So, one should first of all estimate the exchange
interaction. Since, in the low-concentration limit con-
sidered, it is weaker than the Coulomb interaction and
smaller than the characteristic plasma frequency, the
problem of its determination can be highly simplified.
The following model is then suggested. Let us choose
two neighboring particles and replace their interaction
with others by some effective external field, which we
will take in the simplest possible way, while their
mutual interaction will be of the Coulomb type, as it is
in reality. With this approach, the problem becomes sin-
gle-particle, and it can be solved in the quasiclassical
approximation.

In the simplified formulation, the Hamiltonian of a
system of two particles is chosen in the form

(2)

Here, m is the band mass, the second term is the exter-
nal field simulating the influence of other particles (plus
the compensating charge), and the frequencies ω1, 2 are
chosen so that the equilibrium distance between the
particles (in the classical limit) corresponds to the aver-
age distance between the particles of the system. Let
these minima be situated on the x axis at the points ±a/2
(a is the equilibrium distance between the particles in
the classical limit). Apart from this condition, the
parameters of the model are also determined from the
requirement that the potential minimum of one of the
particles be isotropic for a fixed position of another par-
ticle. This gives

(3)

Let us introduce the center-of-gravity coordinates
and the relative coordinates:

(4)

One can see that the wave function of the system with
Hamiltonian (2) is the product of functions of the (X, Y)
and (x, y) coordinates, with the function of the first pair

H
1–

2m
------- ∇ 1

2 ∇ 2
2+( )=

+
m ω1

2xi
2 ω2

2yi
2+( )
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x1 2, X x/2, y1 2,± Y y/2.±= =
of coordinates being known, while the wave function of
the second pair is determined from the Schrödinger
equation with the Hamiltonian

(5)

where µ = m/2 is the reduced mass. Hence, the problem
is simplified; one should now consider the motion of a
single particle in the oscillatory field and in the field of
repulsive Coulomb center that is situated at the origin
of coordinates. The potential minima are at the points
±a on the x axis.

In the leading approximation, the ground-state wave
function for a particle positioned near the right mini-
mum has the form

(6)

Next we will follow the standard methods (see, e.g.,
the problem of hydrogen molecular ion in book [8],
Ch. XI). Let ΨS and ΨA be, respectively, symmetric and
antisymmetric functions of coordinates and correspond
to the eigenenergies ES and EA, so that the equations for
them have the form

(7)

The function ΨA changes sign, while ΨS does not
change upon the substitution x  –x. Multiplying the
first equation by ΨA and the second equation by ΨS,
subtracting one from the other term-by-term, and then
integrating over the half plane x > 0, one gets

This result can be rewritten after introducing the func-
tions

(8)

(we will assume that the function Ψ1 is mainly concen-
trated near the right minimum). Then we have for the
energy difference

(9)
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The functions Ψ1, 2 transform into one another upon the
substitution x  –x. For this reason, Eq. (9) can be
rewritten as

(10)

Therefore, one must determine the function Ψ1 near x = 0
on the condition that this function coincides with Ψ+ (6)
near the right minimum.

Let us now turn to the solution of the equation with
Hamiltonian (5). We first discuss the properties of
potential energy using the cylindrical coordinates (r, ϕ).
For a fixed ϕ, the potential grows as r  0, ∞, and the
minimum is achieved at r = rm, for which

(11)

We now go to dimensionless coordinates (r/a = ρ)
and measure energy in units e2/ea. In these units, one
has, instead of Eq. (5),

(12)

(M ~ rS @ 1). The presence of a large value M will be
used below in the approximate solution to the problem.

The wave function Ψ(ρ, ϕ) is sought in the form

The function ψ obeys the equation

(13)

For the moment, this is an exact equation of the model.
Its solution will be analyzed by simplifying Eq. (13) as
far as possible using the fact that M @ 1. The desired
dependence will be obtained in the leading approxima-
tion (except for a constant coefficient). The simplifica-
tion amounts to the neglect of small contributions.
Namely, the contribution 1/4ρ2 is omitted in the first
term, because it is small compared to the second term
on the left-hand side of the equation; the potential
energy is expanded in powers of ρ in the vicinity of the
minimum; finally, in the coefficient of the second deriv-
ative with respect to ϕ, ρ is replaced by its value in the
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potential minimum. It is convenient to pass to the new
variable ξ = ρ – ρm. This gives

(14)

Here, ρm = rm/a (see Eq. (11)). The quantity F(ϕ) ~ 1,
and its exact value will not be required in the approxi-
mations adopted.

Let us separate out in Eq. (14) the part that depends
on ξ and contains derivatives only with respect to ξ.
Introduce the functions χn(ξ, ϕ), where ϕ is a parameter
and which are solutions to the equation

By the transformation χ  exp(aξ)χ, where the quan-
tity a(ϕ) is chosen so that the first derivative vanishes
(a ~ 1), this equation reduces to the familiar equation
for an oscillator. As a result, one has for the spectrum

where Ω(ϕ) ~ 1/  and b(ϕ) ~ 1/M.

The functions χn are orthogonal with weight
exp(−2aξ). The solution to Eq. (14) can be sought in the
form

Since the limiting form of the function ψ(ξ, ϕ) in the
vicinity of the potential minimum is known (Eq. (6)),
only the ground state is retained in the sum

(15)

The equation for Φ0 is obtained in the standard man-
ner: Eq. (15) is substituted into Eq. (14) and Eq. (14) is
multiplied by χ0, whereupon the integration is per-
formed with respect to ξ. Considering that χ0 is the
oscillator ground-state function (with displaced center),
one has for this function

so that the contribution containing the first derivative
∂Φ0/∂ϕ vanishes. The contribution to the potential
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energy in the ϕ direction from the integral

(with the normalized function χ0) multiplied by
~1/M ! 1 can be neglected. As a result, one has the fol-
lowing equation for Φ0:

(16)

The function Φ0 in the classically inaccessible
region can be calculated in the quasiclassical approxi-
mation [8]. Inasmuch as we are interested in the func-
tional behavior and not in the constant coefficients, the

small quantity e0(ϕ) ~ 1/  can be ignored at a large
distance from the turning point and E can be replaced,
with the same accuracy, by the value of potential energy
at the minimum; i.e., E  3/2. As a result, one obtains
for Φ0 in the vicinity of the point of interest ϕ = π/2 (see
Eq. (10))

(17)

Next we use Eq. (10) (going from ψ to Ψ1) or an anal-
ogous formula to obtain (directly using Φ0) the dimen-
sionless energy difference. Note that there are two con-
tributions from two trajectories (the function Ψ1 has
two maxima at the positive and negative values of y). As
a result, one obtains for the energy difference (except
for a factor on the order of unity)

(18)

Correspondingly, the effective mass is estimated,
according to Eq. (1), as

(19)

or, after evaluating the integral in the exponent,

This is the result of a simplified approach with Hamil-
tonian (2). In the general case, one can only state that

(20)

where the coefficients A and α are on the order of unity.
The expression obtained is valid at rS @ 1. Note that a
similar dependence can be derived from general con-
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siderations, if one takes into account that tunneling pro-
ceeds in the vicinity of a certain trajectory, whose
parameters are known within an order of magnitude,
after which a comparison should be made with the one-
dimensional case. The approximations adopted in the
approach used in this work are quite clear and, in prin-
ciple, the result can be refined.

From comparison of Eqs. (18) and (19), one gets

where n is the carrier concentration and eF is the Fermi
energy. Since the characteristic velocity of quasiparti-
cles in liquid is the Fermi velocity vF, the characteristic
travel time τ at the distance a between the particles can
be estimated as

Thus, the time τ is found to be on the order of the par-
ticle residence time, as it must. This indicates that the
use of Eq. (1) for estimating the quasiparticle effective
mass in liquid is not contradictory but, rather, gives a
reasonable result.

It follows from the Landau theory of Fermi liquid
that spin polarization of the Fermi liquid in a magnetic
field is determined by the effective g factor g* (more
precisely by the product g*m*). Once the estimate of
the exchange interaction of two particles is obtained, an
attempt can naturally be made to understand what will
happen with quasiparticles in a Fermi liquid, i.e., what
one can say about g*. We are interested mainly in a
two-valley system. In this case, a particle is character-
ized, apart from its spin S, by the valley number. This
situation can be described by introducing the quasispin
half-Q operator. In the case of two particles, the
exchange interaction Hex can be generally written as

(21)

(indices 1 and 2 label particles). In this expression, the
invariance under the independent rotations in the spin
and quasispin spaces is taken into account (complete
spin and valley degeneracy is assumed). The total wave
function must be antisymmetric about the particle per-
mutations. As usual, this poses limitations on the possi-
ble spin and quasispin states.

Let us introduce the total spin and quasispin, S =
S1 + S2 and Q = Q1 + Q2. For the spatially symmetric
state with energy ES, states with quantum numbers (S =
1, Q = 0) and (S = 0, Q = 1) are possible, while for the
spatially antisymmetric state with energy EA, states
with quantum numbers (S = 1, Q = 1) and (S = 0, Q = 0)
are possible. One can readily verify that the relations
between the coefficients of Eq. (21) and the exchange
level splitting are as follows:

(22)

ES EA–
n

m∗
------- eF,∼ ∼

τ a/v F 1/eF 1/ ES EA– .∼∼∼

Hex λS S1S2( ) λQ Q1Q2( )+=

+ λSQ S1S2( ) Q1Q2( )
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Now, the following conclusions can be drawn on the
properties of Fermi liquids. For crystals (in the ground
state), it would be reasonable to consider the lowest-
energy states of nearest neighbors (S = 1, Q = 0) and
(S = 0, Q = 1). Then the states with the maximal spin
and the maximal quasispin would be degenerate. This
degeneracy could be removed, e.g., by a weak magnetic
field, which would result in a complete spin polariza-
tion. In a Fermi liquid with short-range order as in crys-
tals, this tendency will be retained with the appropriate
corrections caused by the contribution from the kinetic
energy of quasiparticles. Therefore, one can conclude
that, in a Fermi liquid with two valleys, the quasiparti-
cle interaction will be of the ferromagnetic type; i.e.,
the effective g factor will be greater than in gas (g* > g).

Moreover, in the limit rS @ 1, the effective g factor
is independent of rS (g* = const). This follows from the
Landau theory of Fermi liquid and our statement that
the dependence of exchange interaction, which is deter-
mined by the difference |ES – EA |, coincides with the
dependence of 1/m*. However, one cannot determine a
numerical change in the g factor, because the results
obtained in this work have a qualitative character, so
that one can speak only about the type of dependences
and the orders of magnitude.

A comparison with the result obtained, e.g., in [2]
(Eq. (1) of this work) allows one to determine the coef-
ficients in the rS dependence of g*m* (and, correspond-
ingly, of the spin susceptibility χ*):

(23)

(the rS values considered in [2] were, probably, not too
large). This formula yields values that are lower than
given in [3, 4], where the results were obtained for a
broader range of rS values. As for g*, the results g* ≈
const and g* > g obtained in [4] are in agreement with
our conclusions, whereas in [3] g* increases with rS.

For the one-valley case, only the behavior of the
effective g factor changes: it should be smaller than its
bare value. However, this is at variance with the exper-
iments performed in [5, 6]. The most surprising thing is
that the effective mass obtained in [5, 6] virtually does
not change with an increase in rS (m* ≈ m). It is likely
that this disagreement is caused by the fact that the
spin–orbit interaction in GaAs is considerable (this is
also noted in [5] in connection with other questions),
and this fact was not taken into account in our consid-
erations.

Of interest is to compare with the numerical Monte-
Carlo results. In [9], a broad range of rS values was con-
sidered. Contrary to [7] (and to our conclusions), the
transition (at rS ≈ 26) to the spin-polarized state was
obtained in the liquid phase. Let us compare the results

χ∗
χ
------

g∗ m∗
gm

------------- 0.59

rS

---------- 0.95 rS( )exp≈=
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obtained for the spin susceptibility for the rS values dif-
ferent from the indicated value, by using Eq. (5) in [9],
the expression following from Eq. (20) of this work,
and the conclusion that g* is constant. The agreement
becomes quite good in the range 5 < rS < 18, if the coef-
ficients are taken, e.g., in the following way:

This is an analogue of Eq. (5) in [9], which involved six
parameters. Note that the value α ≈ 1.43 in this expres-
sion is rather close to that obtained in the model with
α ≈ 1.72 (see Eq. (19) and below), if the distance
between the nearest neighbors in a triangle lattice is
substituted for the interparticle separation a. In
Eq. (23), the dissimilarity from the model value is
greater, but the comparison with the results obtained in
[3, 4], likely, could give the better agreement (such a
comparison has not been carried out as yet). As for the
pre-exponential factor, in the one-valley case (as in [9]),
this factor should be smaller than in the two-valley
case, as follows from our conclusion about the behavior
of g* in these cases (it either increases or decreases). It
seems that this tendency takes place if one compares
the last expression with Eq. (23).
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A new class of nodal topological excitations in a 2D Heisenberg model is studied. The solutions correspond to
a nodal singular point of the gradient field of the azimuthal angle. An analytical solution is found for the isotro-
pic case. The effect of in-plane exchange anisotropy is studied numerically. This results in solutions which are
analogues of the conventional out-of-plane solitons in 2D magnets. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 75.10.Hk; 75.30.Kz
The known topological solutions in the two-dimen-
sional (2D) Heisenberg model belong to classes of the
homotopic groups isomorphic to the group of integers
such as π2(S2): Belavin–Polyakov (BP) solitons [1] and
easy-axis solitons [2]; to the relative homotopic group
π2(S2, S1): out-of-plane (OP) [3] and Takeno–Homma
(TH) [4] solitons; and to the group π1(S1): Kosterlitz–
Thouless (KT) vortices. They correspond to a map of a
spin order parameter space onto a sphere S2 homeomor-
phic to the 2D plane or a circle S1 [5].

In this paper, we use another method of searching
for nontrivial topological excitations. By starting from
the nonlinear equations for (θ, ϕ) fields describing the
dynamics of a classical 2D isotropic Heisenberg mag-
net of a spin S with an exchange J [6]

(1)

, (2)

one can see that, in the stationary case, the field variable
θ is determined by only the gradient field y = —φ. The
Euclidean 2D plane is homeomorphic to the sphere S2

with one punctured point. According to the Hopf theo-
rem [7], the Eulerian characteristic of a triangulated
surface is equal to the sum of indices of singular points
of the vector field on the surface. The Eulerian charac-
teristic of the sphere is equal to 2. In the simplest case,
one may suggest that one singular point with the
Poincaré index +1 is placed at the south pole and the
other one at infinity, with the same index corresponding
to the punctured point at the north pole. The space con-
figuration of the θ field will depend on the kind of sin-
gular point of ψ: a center, a node, or a focus. The center

¶ This article was submitted by the authors in English.

0 "S θ∂φ
∂t
------sin JS2 ∆θ θ θ —φ( )2sincos–( ),+=

0 "S
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∂t
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0021-3640/02/7612- $22.00 © 20716
singularity (Fig. 1a) corresponds to the solution of Eq. (2)
∆φ = 0, and the particular solution φ = qtan–1(y/x)
results in the well-known solitons with the axial sym-
metry listed above. One may expect that the focus sin-
gularity (Fig. 1b) will correspond to a spiral spin
arrangement [8].

The investigation of the paper is devoted to the
nodal point of the vector field y (Fig. 1c), where y has
a maximal (minimal) value. This means the choice of
the parametrization φ = φ(r); i.e., the azimuthal angle
changes along the radial direction in the plane. From
equation (2), one obtains

(3)

which determines the radial dependence of the ϕ field

(4)

where the notation a is used for the lattice unit; ϕ0 is an
initial value. The equation for the θ angle

(5)

may be integrated exactly and results in the scale-
invariant solution

(6)

This represents annuluses logarithmically divergent from
the center (Fig. 2) and looks like a “target” with annular
domains of magnetization. The parameter Q2 ≥ q2

governs the amplitude of the oscillations, R is a scale
factor, and the sign p is the polarity of the solution. The

dϕ
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continuum description is valid just for distances greater
than the lattice unit a, and the R value determines the
boundary value θ0 = θ|r = a. As is seen from Eq. (6), θ
cannot take the values 0 and π. The plane chirality is
determined by the sign of parameter q; the correspond-
ing in-plane spin texture is presented in Fig. 3.

This solution is a counterpart of the BP soliton,
because it has no definite localization radius and it is
scale-invariant. In contrast to the BP soliton, the energy
of the found solution

(7)

has no finite value and shows KT logarithmic behavior
with an increase of the system size L.

E
JS2

2
-------- —θ( )2 q2

r2 θsin
2

-----------------+ rd

a

L

∫=

=  πJS2Q2 L
a
--- 

 log

Fig. 1. The types of vector-field singular points on the
sphere: (a) center, (b) focus, and (c) node.
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The availability of a pair of stationary solutions
resembles somewhat the existence of a fundamental
system of linear second-order differential equations. In
the study of topological excitations in the classical XY
model, we deal with the last situation: in [9], just one of
the harmonic functions φ = qtan–1(y/x) was considered
as physically reasonable; another solution  = –qlogr
was exploited to obtain an effective interaction between
vortices.

As follows from Eq. (6), the choice |Q | = q realizes
a pure in-plane arrangement θ = π/2 and ensures a min-
imal energy E in the class of solutions. In the logarith-
mic scale x = log(r/R), the parameter Q determines the
wavelength δ = 2π/ |Q |, i.e., the distance between the
nearest “crests” of the “target.” The change of the angle
ϕ on the scale δ is ∆ϕ = qδ, which leads to the important
relation for the small amplitude of the magnetization
oscillations (q ≈ Q)

(8)

i.e., the ratio q/ |Q | corresponds to the relative change of
the azimuthal angle on the scale δ.

The criterion of topological stability of the BP soli-
ton is rather simple [2]: there is an integer-valued topo-
logical invariant Q (degree of the map S2  S2) asso-
ciated with the BP solution θ(r), φ(r) via

φ

∆ϕ
2π
------- q

Q
-------,≈

Q
1

4π
------ θ r( )sin θ r( )d φ r( ).d∫=

Fig. 2. The space magnetization distribution in the “target.”
The logarithmic scale is used. The inset shows a radial sec-
tion of the plot.
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For the soliton with an axial symmetry φ = φ(α) (α is
the angular polar variable), the topological invariant

where ν is a winding number. This describes the change
of the φ angle when moving around the center r = 0,

,

and is equal to the degree of the map S1  S1. A non-
zero density of the angular momenta [10]

and a zero value of the radial part of the momentum
density Pr = 0 is a common point of the solitons with the
center singularity: BP and easy-axis solitons, the OP
and TH solitons, and also KT vortices. Thus, the wind-
ing number is associated uniquely with the angular-
momentum density of the magnetization field.

For the solutions with a nodal singularity, the situa-
tion is the opposite: Lz = 0 and Pr has the nonzero value
[10]

For a pure in-plane spin arrangement, the q value deter-
mines the scaling factor

such that a change of the azimuthal angle on the scale λ

Q
ν
2
--- θ 0( ) θ ∞( )cos–cos[ ] ν ,±= =

δφ 2πν=

Lz ν"S 1 θcos–( )=

Pr "S 1 θcos–( )dφ
dr
------ "

qS
r

------ 1
1 θcos+
---------------------.= =

λlog
2π
q

------,=

φ λr( ) φ r( )– 2π.=

Fig. 3. In-plane spin arrangement of a nodal singularity. The
dotted circle displays spin directions at equal distances from
the center.
As is seen, the q value is associated identically with the
momentum density of the magnetization field.

A special kind of nodal time-dependent solution of
the 2D Heisenberg model was considered in [11] by
means of the inverse scattering transform. Keeping
time-dependent terms in Eqs. (1) and (2), one may
obtain solutions with a finite energy and finite localiza-
tion radius. The radial behavior of the angle variables
differs form the situation considered above; for exam-
ple, θ reveals an exponential dependence at large dis-
tances in a fixed time. The solitons are ring-shaped
waves. Their localization radius and thickness grows
with time linearly, whereas the amplitude is inversely
proportional to the time.

It is well known that an exchange anisotropy along
the z axis Jz > J⊥  changes its asymptotic behavior at
large distances from the power law, decreases to expo-
nential behavior, and results in the easy-axis solitons.
An analogous effect occurs in the considered case but
only for the plane exchange anisotropy J⊥  > Jz. The
static equations for the case with an account of an exter-
nal magnetic field along the z axis h may be written as

(9)

(10)

Equation (10) is the same as in the isotropic case and
results in relation (4). An analysis of the asymptotic
behavior at infinity yields the boundary value

, (11)

from which one obtains θ0 = π/2 at h = 0, and there are
no static solutions at h ≠ 0 and J⊥  = Jz. However, in the
last case, there is a dynamic solution ϕ = ϕ(r) + ωt with
the Larmor resonance frequency.

For zero magnetic field h, the asymptotic behavior at
r  ∞

may be obtained from the equation

(12)

The solution is the McDonald’s function δθ = Kv(r/λ),

v  = iq  with the localization radius

(13)
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The series expansion of solution (6) near the point
r = a is

(14)

A numerical calculation of Eqs. (9) and (10) is made by
the shooting method, and an example of the nodal OP
soliton is presented in Fig. 4a. The phase portrait of
possible behavior of the solutions is presented in Fig. 5.
An arbitrary choice of the derivative θ'(a) results in

θ r( ) θ a( ) θ' a( )r.+≈

Fig. 4. The θ(r) dependence in the (a) nodal out-of-plane
and (b) Takeno–Homma soliton.

Fig. 5. The phase trajectories of possible solutions of
Eq. (9).
JETP LETTERS      Vol. 76      No. 12      2002
energetically unfavorable oscillating solutions above or
below θ = π/2 (left and right limit cycles), and only a
unique choice of the derivative gives the soliton. As in
the case of the conventional OP with an axial symme-
try, the energy has a logarithmic divergence with grow-
ing soliton size.

Finally, we point out that inclusion of the external
magnetic field h changes the asymptotic behavior of the
soliton at infinity from the exponential into the power
decay

(15)

where q0 is given by (11). This is a counterpart of con-
ventional TH solitons (Fig. 4b).

In conclusion, the class of nodal stationary states in
the 2D Heisenberg model is investigated. The scale-
invariant solution, a counterpart of the BP soliton, is
found. An account of in-plane exchange anisotropy
yields the analogues of out-of-plane and Takeno–
Homma solitons; however, in contrast to the conven-
tional solutions, those which are considered in the
paper have no axial symmetry.

This work was partially supported by the US CRDF
(grant no. NREC-005), by INTAS (grant no. 01-0654),
and by the Program “Russian Universities” (grant
no. UR.01.01.005).
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Coulomb Blockade in a Lateral Triangular Small Quantum Dot
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An AlGaAs/GaAs lateral quantum dot of triangular shape with a characteristic size L < 100 nm (the smallest
size for dots of this type) containing less than ten electrons was studied theoretically and experimentally. Single-
electron oscillations of the conductance G of this dot were measured at G < e2/h. When going from G ! e2/h
to G ≈ 0.5e2/h, a decrease was found not only in the amplitude but also in the period of oscillations. A calcula-
tion of the electrostatics demonstrated that this effect is due to a change in the dot size produced by control volt-
ages. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 73.21.La; 73.23.Hk; 73.50.-h
Lateral submicron quantum dots have been the main
object for studying Coulomb blockade effects and
related phenomena for more than ten years [1–3]. Com-
monly, these dots contain ~100 electrons. Currently, the
problem associated with creating and studying small
lateral dots has gained special importance. This is
caused by the fact that two tunnel-coupled dots each
containing one electron represent one of the attracting
systems for detecting entangled quantum states [4–6].
However, until recently, real lateral quantum dots have
contained more than ten electrons [6–8] and had a char-
acteristic size L > 100 nm.

This work reports the properties of a lateral quantum
dot, whose area and capacity can be minimized because
of its triangular shape. The main parameters of the
quantum dot were found from modeling the three-
dimensional electrostatics of the device with regard to
the special features of its fabrication (the structure of
the initial heterojunction, the etching depth, the pres-
ence of the upper metallic gate, etc.). Coulomb block-
ade effects were studied experimentally, and a compar-
ative analysis of the behavior of single-electron oscilla-
tions and the results of modeling was performed. It was
shown that a lateral quantum dot with a small (N < 10)
number of electrons could be created even with the use
of intermediate-resolution electron lithography.

Quantum dots studied in this work were fabricated
on the basis of a high-mobility two-dimensional elec-
tron gas (2DEG) in an AlGaAs/GaAs heterojunction
with a mobility µ = 3 × 105 cm2 V–1 s–1 and an electron
concentration n = 3 × 1011 cm–2. The procedure of their
manufacturing was as follows. Three antidots located at
the vertices of an equilateral triangle and the insulating
grooves were created by electron lithography followed
by plasma-chemical etching. The distance between the
0021-3640/02/7612- $22.00 © 20720
antidot centers was d = 0.4 µm, and their lithographic
diameter was a = 0.2 µm. A microphotograph of the
junction made after the indicated technological proce-
dures is presented in Fig. 1a. Sputtering the continuous
metallic TiAu gate was the final step. A schematic sec-
tion of the junction with an indication of the corre-
sponding sizes and parameters (layer thicknesses, dop-
ing level, etch depth) is shown in Fig. 1b. The potential
was calculated by numerically solving the three-dimen-
sional Poisson equation. The computational method is
described in [9]. As distinct from the indicated work,
we used the condition of Fermi level mid-gap pinning
at the heteroboundary with the GaAs substrate. We also
assumed that the charge of the doping impurities
remained constant under nonequilibrium conditions
and took into account the effect of impurity potential
fluctuations.

The calculated results are shown in Fig. 2 as a 2D
electron density distribution in the 2DEG plane. Con-
sider first this distribution under the assumption that the
charge density is uniform in delta-doped layers and at
zero voltage at the upper gate (Vg = 0). A quantum dot
approximately triangular in shape is clearly seen in
Fig. 2a. It is formed by the boundaries of the depletion
regions around antidots. The three vertices of this “tri-
angle” represent saddle points through which the quan-
tum dot is connected with the corresponding 2D reser-
voirs. In the case under consideration, the dot is open:
the Fermi level lies above the bottom of conduction
band at the points of narrowing. The area of the quan-
tum dot is small even in this state: S ≈ (6–8) × 10–11 cm2,
and the maximum electron concentration (at the dot
center) turns out to be considerably (one and a half
times) lower than in the initial 2DEG and rapidly
decreases toward the dot boundaries. It is evident that
the contours of increased density have an ideal triangu-
002 MAIK “Nauka/Interperiodica”



        

COULOMB BLOCKADE IN A LATERAL TRIANGULAR SMALL QUANTUM DOT 721

                                                                                                               
lar shape. The number of electrons inside these con-
tours can be estimated at N = 10–15, and the total num-
ber of electrons equals 20–25. Thus, the quantum dot
created by the proposed method has a small size and
contains a small number of electrons even at Vg = 0.
However, the boundaries of the quantum dot in the open
state are rather conventional. Let us analyze the situa-
tion where the dot is brought to the closed regime suit-
able for the observation of Coulomb blockade effects.
The pattern of electron density distribution for one of
the closed dot states (Vg = –150 mV) is shown in
Fig. 2b. The negative potential at the upper gate extends
the depletion regions and reduces the electron concen-
tration. The closed state means that the Fermi level lies
very close to or even lower than the saddle points of the
potential and the quantum dot boundaries are well
defined. As compared to the open state, the area of the
triangular dot becomes significantly smaller, and the
total number of electrons in the dot decreases down to
N ≈ 8.

Figures 2a and 2b show that, if the quantum dot is
symmetric with respect to the vertical line, it is more
strongly connected with the lower reservoir than with
the lateral ones. In fact, technological tolerances and
the fluctuation potential distort the ideal shape of the
triangular dot and saddle potentials. This may lead to a
wide scatter of resistances of three 2D reservoir–dot
input/output ports and also to a decrease in the number
of electrons in the dot. This situation is shown in Fig. 2c
for Vg = 0. It is evident that one of the input/output ports
turns out to be closed, whereas the remaining two are
open and have different resistances. Here, the total
number of electrons in the dot decreased by one half.
This property of the junctions was used in the experi-
ment to design a small single-electron transistor. The
highest resistance input/output port to the dot in this
transistor was used as a side control gate changing the
number of electrons in the dot, and the upper metal gate
was used for measuring the resistance of the remaining
two input/output ports. The schematic diagram of mea-
surements is given in Fig. 3. Numbers 1 and 2 in this
figure indicate the input/output ports through which the
double-dot conductance of the dot G1212 was measured,
and number 3 marks the input/output port through
which the side gate voltage Vjg was applied. The mea-
surements were performed at a temperature of 50 mK
on the basis of a four-probe circuit at a frequency of
7.5 Hz and currents of 0.1–1 nA.

The experimental results are presented in Fig. 4. The
conductance G1212 of the dot is shown in Fig. 4a as a
function of Vjg for various upper gate voltages Vg and,
respectively, for various conductances in the closed
state. It is clear that the corresponding curves represent
oscillations equidistant in Vjg, which is characteristic of
transistor structures which operate on the basis of the
Coulomb blockade effect. Thus, each oscillation is
associated with one electron added to or removed from
the dot. Note that, as distinct from the dots studied pre-
JETP LETTERS      Vol. 76      No. 12      2002
viously in [3–5], the single-electron oscillations
observed in this work are not shaped at G ! e2/h as
deltalike peaks with wide regions of almost zero con-
ductance but have a shape close to sinusoidal. This may
be connected with the fact that one of the input ports to
the dot, for example, the second in Fig. 3, is almost
open. In order to check this hypothesis, we enhanced
the coupling of the dot to 2D reservoirs. The depen-
dence G1212(Vjg) is shown in Fig. 4b for Vg = –50 mV
and –60 mV. It is clearly seen that the background con-
ductance increased up to values G ≈ 0.5e2/h and the
oscillations behave differently. First, the conductance
exhibits a minimum at zero displacement Vjg (Vg =
−50 mV) and at Vjg = –10 mV (Vg = –60 mV). Second,
almost complete suppression of Coulomb oscillations
is observed. The first effect can be associated with the
influence of lateral displacement on the barrier height,
because the barrier height is already sufficiently small
in the described state. The second and more important
effect was observed previously in [10] for large quan-
tum dots. This effect is associated with the suppression
of the Coulomb blockade when the dot passes from the
closed (G ! e2/h) to the open (G > e2/h) state.

A comparison of Figs. 4a and 4b shows that, along
with a sharp decrease in the amplitude of single-elec-

Fig. 1. (a) Scanning electron microscope image of the struc-
ture. (b) Schematic cross section of the initial heterojunc-
tion.
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Fig. 2. Electron density contour maps n[10–3 nm–2] for (a, c) open and (b, d) closed triangular quantum dots. (c) Result of the influ-
ence of the fluctuation potential of the delta-doped layers. (d) State of a dot with two electrons and a conductance of <10–10 e2/h
(tunnel barriers have a height of >10 meV and a width of 150 nm).
Fig. 3. Schematic diagram of a Hall bridge with a single-
electron transistor based on a triangular quantum dot.
tron oscillations, a decrease in their period relative to
the side gate is also observed. The decrease in the
period can be connected with the fact that, because of
the smallness of this dot, the change in its state pro-
duced by the control gate voltages also leads to a nota-
ble change in its size (Fig. 2). To compare the calcu-
lated and experimental data more accurately, we calcu-
lated the capacity Cjg between the 2D reservoir and the
dot as a function of the upper gate voltage. The calcu-
lated value of e/Cjg for the closed state equals 18–
20 mV at Vg = –150 mV, which is in a good agreement
with the measured period of conductance oscillations in
Fig. 4a. The calculated results also predict a decrease in
e/Cjg to 14–15 mV at a voltage Vg = –75 mV, which cor-
JETP LETTERS      Vol. 76      No. 12      2002
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responds in the model to the transition to the open state
of the dot. Oscillations with this period are seen in
Fig. 4b. Such an agreement between calculation and
experiment indicates that the computer model of the
nanostructure studied in this work quite adequately
reflects its properties.

The model constructed indicates that single-electron
oscillations must terminate in the region Vg ~ –120 …
–220 mV, because both the tunnel conductance and the
number of electrons decrease almost to zero (Fig. 2d).
This prediction is confirmed by the experimental
behavior of Coulomb oscillations. The positive sign in
the G1212(Vjg) curves corresponds to the addition of
electrons to the dot, and the negative sign corresponds
to their removal. An analysis of the G1212(Vjg) curves
(Fig. 4a) in the vicinity of the lowest Vg values demon-
strates that a relative symmetry in the behavior of
G1212(Vjg) is observed upon passing through the point
Vjg = 0 at Vg > –120 mV. The appearance of new peaks
at Vjg < 0 is clearly seen. On the other hand, a sharp
asymmetry is observed in the G1212(Vjg, Vg = –120 mV)
curve: at Vjg < 0 no conductance peaks are observed,
and G  0. It should be noted that the threshold volt-
ages strongly depend on the uncontrolled factors like
the charge of doping impurities and states at the
AlGaAs/GaAs surface exposed to plasma-chemical
etching. For example, if the capacity of these states and
the fluctuation potential are neglected, the single-elec-
tron state of the dot is at the boundary of the experimen-
tal range Vg = –120 mV. Quite the reverse, if this capac-
ity is very large, the charging of the introduced surface
states fully screens a change in the voltage Vg at the
metal covering the etched areas. The results of model-
ing discussed above are related just to this case, and at
Vg = –220 mV the dot in this case has one electron. The
fluctuation potential can shift the thresholds toward the
experimental range, because the fluctuation amplitude
~1 meV is comparable with the potential-well depth in
the quantum dot. With regard to the uncertainty ∆Vg ~
100 mV noted above, the calculated position of the sin-
gle-electron state of the dot is in a reasonable agree-
ment with the measured oscillation disappearance
threshold. However, the facts presented above do not
allow us to assert that a single-electron state of the dot
is achieved in the experiment, because the asymmetry
of the G1212(Vjg) dependence at Vg = –120 mV men-
tioned above can be associated with a sharp decrease in
the potential barrier between the dot and the 2D reser-
voir (Figs. 2b, 2d).

Thus, the results of this work indicate that a single-
electron transistor is realized in a lateral triangular
small dot with a few electrons. It is shown by calcula-
tions that a single-electron state can be obtained in a
quantum dot based on 2DEG in an AlGaAs/GaAs het-
erojunction.
JETP LETTERS      Vol. 76      No. 12      2002
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We consider topological quantum mechanics as an example of topological field theory and show that its special
properties lead to numerous interesting relations for topological correlators in this theory. We prove that the
generating function ^ for these correlators satisfies the anticommutativity equation ($ – ^)2 = 0. We show that
the commutativity equation [dB, dB] = 0 can be considered as a special case of the anticommutativity equation.
© 2002 MAIK “Nauka/Interperiodica”.
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1. During the last two decades, there has been much
interest in quantum field theories whose correlators do
not depend on points and metric but only on the topol-
ogy of the manifold and on the types of operators in the
correlators. These theories are called topological [1].
Among the most celebrated examples are the Chern–
Simons theory [2], N = 2 twisted gauge theories [3], and
topological sigma models [4]. Here, we consider yet
another, much simpler example of topological theory,
which is a subsector of supersymmetric quantum
mechanics. We call it topological quantum mechanics.

An explicit construction of many topological theo-
ries is given by a BRST-like symmetry operator Q,
Q2 = 0, so that the energy–momentum tensor of the the-
ory has the special form [3]

(1)

where Gµν is some tensor. This formula leads to many
interesting corollaries. In particular, it provides correla-
tors with the independence of metric and points, which
are topological invariants.

In the case of one-dimensional theory, the energy–
momentum tensor has only one component and is equal
to the Hamiltonian

(2)

In topological quantum mechanics, the objects of study
are correlators  of Q-closed opera-
tors. They would seem to depend on n times t1 < … < tn.
However, since the energy–momentum tensor is the
anticommutator of Q and G+, the correlator actually

Tµν Q Gµν,{ } ,=

H T00 Q G00,{ } Q G+,{ } .= = =

ΦA1
t1( )…ΦAn

tn( )〈 〉

¶ This article was submitted by the author in English.
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does not depend on t and is given by the factorization
formula

(3)

This means that it is sufficient to study the correlators
of one operator ΦA in the theory with the deformed
supercharge Q:

(4)

Later, we will see that this one-point correlator is a total
derivative of ^ on the space of coupling constants TA:

(5)

where T{…} stands for the chronological ordering. In
what follows, we carefully formulate the theory and
realize that the function ^ satisfies an interesting qua-
dratic differential equation, which we call the anticom-
mutativity equation.

2. Thus, we consider the simplest example of topo-
logical field theory: topological quantum mechanics.
As usual, there is a nilpotent symmetry operator Q, and
one can introduce the Hamiltonian in the form (2). All
the operators act on the space V with the following
properties:

(6)

ΦA1
t1( )…ΦAn

tn( )〈 〉

=  0 e
t1– H

ΦA1
e

t1 t2–( )H
ΦA2

…e
tn 1– tn–( )H

ΦAn
e

tnH
0

=  0 ΦA1
e

t1 t2–( )H
…e

tn 1– tn–( )H
ΦAn

0
tk tk 1––( ) ∞→

lim

=  ΦA1
〈 〉… Φ An

〈 〉 .

Q Q ΦAT A∑+ Q Φ.+=

∂A^ ΦA〈 〉 deformed T ΦAe{ }〈 〉 ,= =
Φ G+,{ } td∫

V V1 V0,⊕=

HV0 0, QV0 0,= =

H 0 on V1.>
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This physically means that V is the state space of our
system and V0 is the vacuum-state space. We assume
that the kernel V0 of the Hamiltonian consists of
Q-closed states and that all nonzero energies have a
strictly positive real part. In this theory, we study corr-
elators of the form (5), which are vacuum matrix ele-
ments, i.e., the operators from Hom(V0, V0), and which
can be written in the following form:1 

(7)

We want to present this operator from Hom(V0, V0) as
an operator from Hom(V, V). The way to do this is to
insert Π0’s at the beginning and at the end. After this,
we finally obtain the object we need:

(8)

Here, Φ is the generating function of the operators

(9)

Our theory is Euclidean, which means that the evolu-
tion Φ in time can be described by the formula

(10)

Our operators can be both even and odd; therefore, we
need to introduce a superalgebra for describing their
properties, our coupling constants TA being graded too.
Their algebra is

(11)

where {…} stands for the supercommutator.

In order to get some nontrivial interesting properties
of the correlators, let us consider a special set of opera-
tors that satisfy the algebra

(12)

1Here, we used the properties  = 0 and G+V0 = 0, which allow

one to interpret F as a correlator in topological theory, but they
are not necessary for our main result.

G+
2

Fαβ
k( )

=  … 0α ΦG+e
t1H–

ΦG+e
t2H–

…Φ 0β t1…d tk 1–d

0

∞

∫
0

∞

∫

=  
1
k!
---- T Φ 0( ) G+ Φ t( ) td,{ }

∞–

+∞

∫ 
 
 

k 1–

 
 
 

αβ

.

^ k( )

=  … Π0ΦG+e
t1H–

ΦG+e
t2H–

…ΦΠ0 t1…d tk 1– .d

0

∞

∫
0

∞

∫

Φ Φ 0( ) ΦAT A.∑= =

Φ t( ) e tH– Φ 0( )etH.=

T A TB,{ } s 0,=

ΦA ΦB,{ } s CAB
K ΦK ,=

Q ΦA,{ } s 0.=
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Π0 being a projector onto the vacuum states. One can
rewrite Π0 in terms of H:

(13)

It commutes with Q. Therefore,

(14)

3. The algebra of operators Φ generates numerous
commutation relations for ^(k), which can be written
in a compact form in terms of the generating function ̂

(15)

as

(16)

One can easily obtain all our correlators as derivatives
of ^. We now prove this equation in the generic case.

Let us introduce an operator-valued differential
form of indefinite rank on R:

(17)

We can check that

(18)

One can construct the differential form on Rk – 1, which
takes a value in Hom(V, V) and includes k + 1 Φ’s

(19)

Our form is d-closed, because QΠ0 = Π0Q = 0 and Φ
anticommutes with Q:

(20)

One can consider the integral of the rank k – 1 compo-
nent of our form over the boundary of some surface and
rewrite it as an integral of dω(k – 1) over this surface by
the Stokes theorem. The surface of integration is the
boundary of a k-dimensional cube. The result of inte-
gration is

(21)

The terms that include Π0 come from the commutator

{^, ^}, while other terms come from TATB ∂K^.
For our superalgebra of operators ΦA, one can write
(super)Jacobi identities in form

(22)

Π0 e tH– .
t ∞→
lim=

QΠ0 Π0Q 0,= =

0α〈 |Q 0α〈 |Π 0Q 0.= =

^ ^ k( )∑=

^ ^,{ } T ATBCAB
K ∂K^.=

U e tH– G+dte tH– .+=

dU Q U,{ }+ 0.=

ω k 1–( ) Π0ΦU1…ΦUkΦΠ0.=

dω k 1–( ) Π0Φ U1 Q,{ }…Φ UkΦΠ0–=

– … Π0ΦU1…Φ Uk Q,{ }ΦΠ 0– 0.=

… Π0Φ Π0 1–( )ΦG+e
t1H–

…G+e
tk H–

0

∞

∫
0

∞

∫
× ΦΠ0dt1…dtk 1– perm. of Π0 1–( )+ 0.=

CAB
K

CAB
K CKD

E 0.=
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If we introduce the derivative $ = TATB ∂K, our

anticommutativity equation can be written as the zero-
curvature equation

(23)

4. Let us consider what this equation gives for the
linear part of ^ in (15), FA. Then, (23) leads to

(24)

For odd operators ΦA, this equation is quite nontrivial.
One can see this by considering the matrix example. In
this case, our state space V is the four-dimensional vec-
tor space. The operators Q and G+ are 4 × 4 matrices

(25)

V0 is the subspace of V with the first two zero coeffi-
cients. The operators ΦA that satisfy commutation rela-
tion (15) are

, (26)

where stars are some numbers. When considering com-
mutation relations on ΦA, we are interested only in the
right bottom block. It is easy to show that in this block
there is the anticommutator of the two right bottom
blocks of ΦA and ΦB. This is what we get by commuting
matrix elements FA. This block is the only one remain-
ing after acting of the two projectors onto ΦA. Thus, we
observe that it is only these special commutation rela-
tions of matrices ΦA that provide us with the similar
algebra for ΦA (i.e., for the right bottom blocks)

(27)

1
2
--- CAB

K

$ ^– $ ^–,{ } 0.=

FA FB,{ } CAB
K FK .=

Q

0 0 0 0

1 0 0 0

0 0 0 0

0 0 0 0 
 
 
 
 
 

, G+

0 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0 
 
 
 
 
 

,= =

H Q G+,{ }

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0 
 
 
 
 
 

.= =

ΦA

a 0 0 0

* a– * *

* 0

* 0 
 
 
 
 
 

=

FA

ΦA ΦB,{ }
* * * *

* * * *

* *

* * 
 
 
 
 
 

.=

{FA, FB}
In the previous formula, one could see that no other
block contributes to the right bottom block. Let us see
this in terms of operators FA. Consider

(28)

Using formula (13) for the projector, one arrives at the
formula

(29)

An important property of this representation is

(30)

Hence, the only term in (28) that survives is the c-num-
ber term in (29) and

(31)

5. Our anticommutativity equation contains the
commutativity equation introduced in [5–7] as a special
case for special operators. Recall the commutativity
equations have the form

(32)

Namely, consider a new odd operator G– that satisfies

(33)

Consider even operators Φµ that satisfy relations (12)
with C = 0 and

(34)

These properties allow us to add the new odd operators
 = [Φµ, G–] to our algebra, because they satisfy (12)

and have ^ in their terms. The main object in commu-
tativity equations in terms ^ is

. (35)

Here, we introduce two kinds of coupling constants TA:
even τµ and odd θµ. One can show that (33) leads to

(36)

FA FB,{ } Π 0ΦAΠ0ΦBΠ0 Π0ΦBΠ0ΦAΠ0.+=

Π0 e tH–

t ∞→
lim t–( )k Hk

k!
------∑

t ∞→
lim 1= = =

+ QG+ t–( )k Hk 1–

k!
------------∑ t–( )kG+

Hk 1–

k!
------------Q∑+ 

 
t ∞→

.

Π0ΦAQG+ t–( )k Hk 1–

k!
------------ΦBΠ0 0,=

Π0ΦAG+ t–( )k Hk 1–

k!
------------QΦBΠ0 0.=

FA FB,{ }  = Π0ΦAΦBΠ0 Π0ΦBΦAΠ0+  = CAB
K FK .

Bµ Bν,[ ] 0, Bµ
∂B
∂τµ
--------.= =

G–
2 0, G– G+,{ } 0,= =

G– Q,{ } 0, G–V0 0.= =

Φµ G–,[ ] Φ ν,[ ] 0.=

Φµ'

Bµ
∂^
∂θµ
--------

θ 0=

=

^ θ 0= 0, so=

θµ∂
∂

θν∂
∂

^ ^,{ }
θ 0=

∂µ^ θ 0= ∂µ^ θ 0=,[ ] 0.= =
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This can be the commutativity equation if we show that
Bµ = ∂B/∂τµ. It follows from the properties of G– that

(37)

6. Consider the deformation of the solutions for the
anticommutativity equation by variation of operator G+

in terms of _ = G+/H = , so that

(38)

The variation of _ satisfies

(39)

The variation δ_ is exact, since Q does not have
cohomologies in V1. We can write the variation of the
solution to the anticommutativity equation, and after
some algebra we get

(40)

In (40), ^Z is obtained from the expression for ^ in
terms of2 _ by the replacement of an insertion of _ by
Z. The variation of ^ in form (40) is an analogue of the
gauge transformations in zero-curvature equation (23),
because they retain this equation:

(41)

The special property of the commutativity equation
is that Bµ is invariant under variations of _, as follows

2Schematically, ^ = Φ_Φ_…Φ_ΦΠ0.

Bµ
∂B
∂τµ
--------

∂Bν

∂τµ
---------

∂Bµ

∂τν
---------= =

∼ …Φ µG+e tH– Φν G–,[ ]… … Φµ G–,[ ] G+e tH– Φν…=

G+e tH– td
0

∞∫
_ Q,{ } 1 Π0.–=

δ_ Q,{ } 0 δ_ Q Z,[ ] .= =

δ_^ $ ^– ^Z,{ } s.–=

Π0∑

$ ^– $ ^–,{ } 0 $ ^– δ^,{ } 0,= =

$ ^– δ_^,{ } $ ^– $ ^– ^Z,{ } s,{ } 0.= =
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from (33) and (40). Really, ^|θ = 0 = 0 and ^Z|θ = 0 = 0,
so the variation term linear in θ is

(42)

In case of the anticommutativity equation, we have in
general only two terms invariant under the variations of
_: ^(1) and ^(2).

Thus, we considered topological quantum mechan-
ics as an example of topological field theory and
showed that its special properties lead to numerous
interesting relations for topological correlators in this
theory. We proved that the generating function ^ for
these correlators satisfies the anticommutativity equa-
tion ($ – ̂ )2 = 0. We showed that commutativity equa-
tion [dB, dB] = 0 could be considered as a special case
of the anticommutativity equation.

The author is grateful to A. Morozov, A. Mironov,
and A. Losev for fruitful discussions. The author is
especially grateful to Kaiserslautern University for hos-
pitality during the preparation of this work. This work
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Research (project no. 01-02-17682-a) and by the Volk-
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The class of fractional Hamiltonian systems that generalize the classical problem of the two-dimensional (2D)
isotropic harmonic oscillator and the Kepler problem is considered. It is shown that, in the 4D space of struc-
tural parameters, the 2D isotropic harmonic oscillator can be extended along a line in such a way that the orbits
remain closed and oscillations remain isochronous. Likewise, the Kepler problem can be extended along a line
in such a way that the orbits remain closed for all finite motions and the third Kepler law remains valid. These
curves lie on the 2D surfaces where any dynamical system is characterized by the same rotation number for all
finite motions. © 2002 MAIK “Nauka/Interperiodica”.

PACS numbers: 45.20.Jj
It is known [1, 2] that, in the class of Hamiltonian

systems H = |p |2 + U(|r |) with two degrees of free-

dom, the orbits of all finite motions are closed in the
two cases: in the Kepler problem (U = –1/ |r |) and in the
isotropic harmonic oscillator. It is also known that, in
the first case, this is due to a hidden symmetry (addi-
tional degeneracy) caused by the existence, in addition
to the energy and angular momentum integrals, of a
third integral of motion in the Kepler problem [3].

It is shown in this work that the class of Hamilto-
nians possessing these properties can be extended
appreciably upon the transition to so-called fractional
systems. Below, the following class of Hamiltonians is
considered:

(1)

where r = |r |; r = |p |; r, p ∈  R2, and α1, β1, α2, β2, and
σ are real parameters. This class includes, in particular,
the Hamiltonian of a particle in the central field with

potential U ~ , α1 = 2, and β1 = α2 = 0.

The dynamics of the Hamiltonian systems of class
(1) were studied by us using the approach suggested in
[4, 5]. We briefly describe its essence. Consider the
Hamiltonian function of the form H = H(p, r). By writ-
ing the vectors p and r in the polar coordinates (p, ψ)
and (r, ϕ) and passing to the new angular variables Ψ =
ψ + ϕ and Φ = ψ – ϕ, we obtain the following (nonca-

1
2
---

H p
α1r

β1 σp
α2r

β2,+=

r
β2
0021-3640/02/7612- $22.00 © 20728
nonical) equations of motion from the corresponding
Hamiltonian equations:

(2)

which have the first integrals

(3)

Elimination of p and r from equations of motion (2)
brings about the following system of equations for the
angular variables (Ψ, Φ):

(4)

where ζi = βi + αi, θi = βi – αi (i = 1, 2), and D = β2α1 –
β1α2 ≠ 0.

Let us identify the configuration space of the
dynamical system with the surface of a unit sphere (Φ
and Ψ are the polar and azimuthal angles, respectively).

ṙ
∂H
∂p
------- Φ, ṗcos

∂H
∂r
------- Φ,cos–= =

Φ̇ 1
p
---∂H

∂r
------- 1

r
---∂H

∂p
-------– 

  Φ,sin=

Ψ̇ 1
p
---∂H

∂r
------- 1

r
---∂H

∂p
-------+ 

  Φ,sin=

M rp Φsin const, E H p r,( ) const.= = = =

Φ̇̇

=  Φ 2 Φ̇( )2 θ1 θ2–
4D

---------------- ζ1Φ̇ θ1Ψ̇–( ) ζ2Φ̇ θ2Ψ̇–( )+
 
 
 

,cot

Ψ̇̇

=  Φ 2Φ̇Ψ̇
ζ1 ζ2–

4D
---------------- ζ1Φ̇ θ1Ψ̇–( ) ζ2Φ̇ θ2Ψ̇–( )+

 
 
 

,cot
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It should be emphasized that the arbitrary real expo-
nents αi and βi in Hamiltonian (1) appear in Eqs. (4)
only as coefficients, greatly simplifying the analysis of
the problem.

The dynamical system (1) possesses a pair of inte-
grals of motion:

(5)

with I1 = 2E/M and I2 = . It is assumed that
M ≠ 0 and that all negative values of power bases are
excluded.

Excluding the angular velocity  from the first
equation in Eqs. (5), we arrive at the equations

(6)

(7)

where Φ' = dΦ/dτ, τ = (M/ED)t, ν1 = θ1/D, ν2 = θ2/D,
and the quantity sin2Φ0 < 1 is determined (for finite
motions) by the relation

(8)

One can see that

(9)

The general motion of a representative point on the
sphere represents the rotation over the angle Ψ accom-
panied by the periodic oscillations of the polar angle Φ.

From Eq. (6), one can obtain the expression for the
oscillation period T of the angle Φ(t) and the expression
for the rotation number N (defined as the increment
(divided by 2π) of the azimuthal angle Ψ during the
period of polar angle Φ) of a trajectory on the sphere:

(10)

I1
1

D Φsin
2

------------------- θ2 θ1–( )Ψ̇ ζ2 ζ1–( )Φ̇–[ ] ,=

I2 Φsin( )
D 2 θ2 θ1–( )–

=

×
θ2Ψ̇ ζ2Φ̇–

2D
--------------------------

θ2 θ1Ψ̇ ζ1Φ̇–
2σ– D

--------------------------
θ1–

,

M
D θ2 θ1–( )–

Ψ̇

Φsin
Φ0sin

-------------- 1
1
ν2
----- Φ'

Φsin
2

--------------–
ν2

1
1
ν1
----- Φ'

Φsin
2

--------------–
ν1–

1,=

Ψ'
2
D
---- Φsin

2

ν2 ν1–
----------------

ζ2 ζ1–
ν2 ν1–
----------------Φ',+=

E
ν2 ν1–

M
-------------- Φ0sin

2 ν2

ν2 ν1–
---------------- 

 
ν2 ν1–

σ ν2 ν1–( )
------------------------- 

 
ν1–

1.=

Φ τ( ) Φ τ; ν1 ν2 E M, ,( ),=

Ψ τ( ) Ψ τ; ν1 ν2 D ζ2 ζ1–, , E M, ,( ).=

N
Φ0sin

πν1ν2D
-------------------=

×
1 z/ν2–( ) 1– 1 z/ν1–( ) 1– zd

1 z/ν2–( )
2ν2 1 z/ν1–( )

2ν1–
Φ0sin

2
–

----------------------------------------------------------------------------------------.

z–

z+

∫
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Here, z± (z– < z+) are the roots of the equation

. (11)

It is worth noting that, despite the fact that the function
Ψ(t) depends on the combination ζ2 – ζ1, the rotation
number N is independent of it. This signifies that, by
fixing the values of three combinations θ1 = β1 – α1,
θ2 = β2 – α2, and D = α1β2 – α2β1 in the 4D space of the
structural parameters (α1, β1, α2, β2), we obtain straight
lines

(12)

(k2/k1 = (β2 – α2)/(β1 – α1) and γ is the parameter of
straight line), along which the dependence of the rota-
tion number N on the first integrals E and M is retained.
For each straight line of type (12), there is a one-param-
eter family of Hamiltonian functions

(13)

Fractional continuation of the Kepler problem.
On the curve of type (12) passing through the point

(  = 2,  =  = 0,  = –1) corresponding to the
Kepler problem, one has D = –2, ν1 = +1, and ν2 = 1/2,
with

(14)

A pair of branches of the function t = t(Φ) is determined
from Eq. (6):

(15)

Integrating along the cycle      (0 <

 ≤ π/2 ≤  < π), one finds that the oscillation
period of the function Φ(t) obeys the dependence
T(E) ∝  (–E)–3/2, i.e., the third Kepler law holds at any γ.
Integrating the equation

(16)

along the cycle, one finds that the increment of Ψ on the
period of polar angle is 2π, irrespective of (E, M) and
the parameter γ.

1 z
ν2
-----– 

  2ν2

1 z
ν1
-----– 

  –2ν1

Φ0sin
2

=

α1 α1
0 k1γ, β1+ β1

0 k1γ,+= =

α2 α2
0 k2γ, β2+ β2

0 k2γ+= =

H p
α1

0

r
β1

0

rp( )
k1γ

σp
α2

0

r
β2

0

rp( )
k2γ

.+=

α1
0 β1

0 α2
0 β2

0

α1 2 γ, β1+ γ, α2
γ
2
---, β2 –1

γ
2
---.+= = = =

σ2 Φ0sin( )3

2M3
--------------------------- t ti–( )

=  Φ0 Φ Φcot

Φ0cot
2 Φcot

2
–

-----------------------------------------arctan+−cotsin
 
 
 

Φi

Φ

.

Φ0
– Φ0

+ Φ0
–

Φ0
– Φ0

+

dΨ
dΦ
-------- γ 1–( )+

2 Φsin

Φsin
2 Φ0sin

2
–

-----------------------------------------±=
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Therefore, in the systems of one-parameter family

, (17)

all finite orbits on the sphere are closed for any γ, so that
the third Kepler law is valid. However, the orbit shapes
depend on γ. One can readily verify that the conditions
for closing orbits on the (r, ϕ) plane are also fulfilled for
all γ values.

Finally, we present the formulas for the transforma-
tion of orbits on the (r, ϕ) plane upon varying γ:

(18)

where (r, ϕ) and (r ', ϕ') are the points on the orbits cor-
responding to the values of γ and γ' for the dynamical
systems with Hamiltonian (17). In particular, these for-
mulas can be used to derive the expression for the third
integral of motion at γ ≠ 0 using the known expression
for the case of γ = 0 (i.e., the Kepler problem). This sig-
nifies that all dynamical systems of family (17) retain
the hidden symmetry of the Kepler problem.

The orbit deformation on the (r, ϕ) plane upon vary-
ing the parameter γ is shown in the figure and confirmed
by numerical calculations. The singularities appear on
the orbits when (in certain intervals of γ values)  = 0
and  = 0 (i.e., Φ = π/2 and ∂H/∂p = 0). Note that the
reverse motion along the orbit (  changes its sign) is
not accompanied by a change in the direction of the
vector of angular momentum; when moving back, the
velocity vector is in opposition to the momentum
vector.

H p2 rp( )γ σ
r
--- rp( )γ/2+=

r 2
M

ϕsin
----------- 

 
γ
r0 Φ( ), r' 2

M
Φsin

------------ 
 

γ'

r0 Φ( ),= =

Φ Φ0
– 2

ϕ' ϕ–
γ' γ–
--------------,–=

ṙ
ϕ̇

ϕ̇

Typical transformation of orbits when moving along the
one-parameter manifold (14): γ = (a) 0 (Kepler problem),
(b) –0.15; (c) –0.45, (d) –1, (e) –2, (f) 0.45, (g) 1 (all orbits
are circles with the center shifted from the origin of coordi-
nates), (h) 2 (all orbits have the lima on shape), and (i) 4.c,
Fractional continuation of the harmonic oscilla-
tor problem. Let us now consider the straight line of

type (12) that passes through the point (  = 2,  =

 = 0,  = 2). This corresponds to the harmonic
oscillator problem. On this line, D = 4, ν1 = –1/2 and
ν2 = 1/2; in this case,

(19)

Equations (6) and (7) take the form

Here, sin2Φ0 = σM2/E2, and the differentiation is with
respect to the initial independent variable t. Integrating
the first of these equations (with a chosen lower limit of
integration), we determine a pair of branches for the
function t = t(Φ):

(20)

Integrating along the cycle     , one
finds that the period of function Φ(t) is T = σ–1/2 and
that it depends neither on (E, M) nor on the parameter
γ. The azimuthal angle Ψ considered as a function of Φ
is given by the expression

(21)

The increment of Ψ on the period T of polar angle
equals π for any γ value; i.e., the deformation of orbits
does not violate their closeness. In this case, r(t + T, γ) =
r(t, γ) and ϕ(t + T, γ) = ϕ(t, γ) + π. Thus, all dynamical
systems with Hamiltonians

(22)

are isochronous, and all orbits of finite motion in these
systems are closed.

Two-parameter families. Under the condition θ1 ≠ θ2,
for each pair of real values (ν1, ν2), there is a 2D surface
in the 4D space of structural parameters that is deter-
mined by two linear relations that connect θ1, θ2, and D
with each other:

(23)

Let this pair of numbers (and, hence, the corresponding
surface) be specified. For each fixed value of any of
three quantities θ1, θ2, and D (for definiteness, let it be
D), Eqs. (23) uniquely determine the values of the two
other quantities; i.e., for each value of D there is a certain
straight line of the form (12) lying at this surface. Thus,
the surface of type (23) is stratified by straight lines (12).

α1
0 β1

0

α2
0 β2

0

α1 2 γ, β1+ γ, α2 γ, β2– 2 γ.–= = = =

Φ̇ 2σ1/2 Φ Φsin
2

Φ0sin
2

---------------- 1± ,sin±=

Ψ̇ 2E
M
------- Φsin

2 γΦ̇.–=

2σ1/2 t ti–( ) Φcot

Φ0cot
2 Φcot

2
–

-----------------------------------------arctan+−=
Φi

Φ
.

Φ0
– Φ0

+ Φ0
–

Ψ Ψi– Φcos
Φ0cos

------------------
Φi

Φ
arcsin+− γ Φ Φi–( ).–=

H p2 rp( )γ σr2 rp( ) γ–+=

θ1 ν1D, θ2 ν2D.= =
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Among such 2D surfaces, three are distinguished by
their special properties and because they allow com-
plete analysis of the respective dynamical systems.
They are associated with the simplest commensurabil-
ity types of the numbers ν1 and ν2. Specifically, these
are the surface µ1 (ν1 = 1, ν2 = 1/2), the surface µ2 (ν1 =
–1/2, ν2 = 1/2), and the surface µ3 (ν1 = 1/2, ν2 = 1) that
transforms to µ1 by the obvious permutation α1  α2
and β1  β2 (the surface µ2 transforms into itself
upon the same permutation).

The surface µ1 contains a point corresponding to the
Kepler problem; it can be written in the form

(24)

and parameterized as

(25)

The Hamiltonian function corresponding to the arbi-
trary point with parameters D ≠ 0 and γ at the surface µ1
has the form

(26)

A pair of branches of the function t = t(Φ) is determined
from Eq. (15) by the change σ2/2M3  Dσ2/2M3. This

signifies that T ∝  (–E)–3/2. 

Analysis shows that, for any dynamical system
given by Eq. (26), all finite orbits at the surface µ1 are
characterized by the same rotation number N = 2/ |D |.
Therefore, by fixing D in Eq. (25), we obtain a straight
line, which lies on the surface µ1 and along which all
systems are characterized by the same rotation number
(common to all finite orbits). In particular, by setting
D = –2, we obtain the above-considered line (14),
which passes through the point corresponding to the
Kepler problem. On the lines corresponding to the
rational values of D, all finite orbits are closed, while on
the lines corresponding to the irrational values of D, all
finite orbits are open.

The surface µ2 passes through the point correspond-
ing to the harmonic oscillator problem; it is written in
the form

(27)

and can be parameterized as

(28)

It is also stratified by the straight lines along which the
rotation number is conserved. Namely, the rotation

     

α1 2α2– 2, β1 2β2– 2= =

α1 –D γ, β1+ γ,= =

α2 –D/2 γ/2 1, β2–+ γ/2 1.–= =

H p D– rp( )γ σ p D/2– rp( )γ/2 1– .–=

2
D
----

α1 α2+ 2, β1 β2+ 2= =

α1 D/2 γ, β1+ D/2– 2 γ,+ += =

α2 D/2 2 γ, β2–+– D/2 γ.–= =
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number equals 2/

 

|

 

D

 

|

 

 for all orbits of any system with
the Hamiltonian function

(29)

In particular, by setting 

 

D

 

 = 4, we obtain the above-con-
sidered line (19), which passes through the point corre-
sponding to the harmonic oscillator.

Numerical analysis indicates that the above-men-
tioned two-parameter families from the class given by
Eq. (1) cover all systems for which the orbits of all
finite motions in the system have the same rotation
number.

In summary, the class of fractional Hamiltonian sys-
tems of type (1) is considered in this work. It is shown
that, at 

 

σ

 

 < 0, there exists a one-parameter family of
Hamiltonians of the form (1) that generalize the Kepler
problem and for which all finite orbits are closed, so
that the third Kepler law is valid. The orbits deform
upon changing the parameter of the family. Neverthe-
less, all representatives of the family possess hidden
symmetry (additional integral of motion).

At 

 

σ 

 

> 0, a one-parameter family of Hamiltonians of
type (1) exists, which inherits from a 2D isotropic har-
monic oscillator the closeness of orbits and the isoch-
ronism of oscillations (though nonlinear) for all 

 

E

 

 > 0.
All representatives of this family also possess hidden
symmetry.

Moreover, in each of the cases 

 

σ

 

 < 0 and 

 

σ

 

 > 0, the
corresponding one-parameter family is a particular case
of a certain two-parameter family of Hamiltonian func-
tions. For each of them, all finite motions are character-
ized by the same rotation number. The orbits of all finite
motions are closed if this number is rational and are
otherwise open.

We are grateful to Prof. V.I. Yudovich for helpful
discussion of the results.
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In Memory of Our Contributors
PACS numbers: 01.60.+q
É.L. Nagaev, Magnetic Polarons (Ferrons) of
Complicated Structure, JETP Lett. 74, 431 (2001).

Éduard Leonovich Nagaev, an outstanding theoreti-
cal physicist, distinguished specialist in the field of
quantum theory of the solid state, Doctor of Physics
and Mathematics, Winner of the State Premium of the
USSR, Principal Research Scientist at the Institute of
Radio Engineering and Electronics, Russian Academy
of Sciences, died suddenly December 14, 2001. He was
the author of pioneer research in the physics of mag-
netic semiconductors and the originator of the ferron
concept. This concept (and, more generally, the idea of
electronic phase layering in magnetic semiconductors
and other materials) has found wide acceptance in the
scientific community. This is, in particular, witnessed
by the diploma for the discovery of “The Phenomenon
of Heterophase Localization of Conduction Electrons
in Semiconductors” (in collaboration with A.I. Larkin
and D.E. Khmel’nitskiœ). In recent years, this idea has
0021-3640/02/7612- $22.00 © 20732
proved to be particularly topical in view of the discov-
ery of the colossal magnetoresistance effect in manga-
nites. É.L. Nagaev accomplished a great deal of work
on the physics of non-Heisenberg magnets, photoin-
duced magnetism, and the theory of small metallic par-
ticles. He made a tangible contribution to the theory of
electronic processes in gases and electrolytes, polarons
and excitons, the metal–insulator transition, supercon-
ductivity, and the isotope effect. Éduard Leonovich
published more than 300 articles in journals (mostly
without coauthors), of which 14 are reviews, and the
monographs “Physics of Magnetic Semiconductors”
(Nauka, Moscow, 1979; extended English edition Mir,
Moscow, 1983) and “Magnets with Complex Exchange
Interaction” (Nauka, Moscow, 1988). The book
“Colossal Magnetoresistance and Phase Layering in
Magnetic Semiconductors” (Imperial College, London,
2002) was published after his death. In JETP Letters, he
published 25 works. 
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