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Abstract—Experimental investigations of the transport phenomena (electric conduction; Seebeck, Hall, and
Nernst–Ettingshausen effects) in PbTe and Pb1 – xSnxTe solid solutions with high content of In impurity (up
to 20 at. %) at temperatures of up to 400 K are reviewed. Many properties of these substances are similar to
those of noncrystalline materials. The experimental data are analyzed in terms of hopping conduction via
strongly localized impurity states related to In atoms. Temperature dependences of transport coefficients,
which are uncommon to IV–VI compounds; inversion of thermoelectric power with negative Hall coefficient;
and a positive Nernst–Ettingshausen coefficient are accounted for. The activation energy of hopping conduc-
tion, which characterizes the effective energy spread of impurity levels; the effective radius of the wave func-
tion; and the energy dependence of the density of localized states are found from experimental data. The dis-
cussion of the experimental data on hopping conduction is preceded by a brief description of resonance and
deep localized electron states related to indium impurities in IV–VI compounds. Particular attention is given
to the specific features of impurity states in samples with high In content, in which the hopping conduction
is observed. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

Group III impurities impart specific properties to
IV–VI semiconductors, which are mainly associated
with the formation of deep and resonance electron
states. The general effect is the pinning of the chemical
potential at the impurity levels. However, the electronic
properties of semiconductors doped with different
Group III elements are quite diverse. Moreover, the
doping of different compounds of the above type with
one and the same Group III impurity produces dissimi-
lar results. The differences in properties arise depend-
ing on the part of the electronic spectrum in which the
impurity levels lie. For example, indium in PbTe and
other lead chalcogenides gives rise to various states in
the conduction band, near its edge; the chemical poten-
tial is pinned in this part of the energy spectrum, and,
therefore, In acts as a donor. Thallium in lead chalco-
genides and indium in SnTe form resonance states
inside the valence band and appear as acceptors.

Finally, on adding Sn to PbTe, the level of In impu-
rity states is shifted to the conduction band bottom and
crosses it, so that localized states are formed in the band
gap of Pb1 – xSnxTe solid solutions in a certain range of
x values. This effect also occurs in PbTe at high In con-
tent (ca. 15–20 at. %). The pinning of the chemical
potential in the band gap leads to low free carrier den-
sities, and localized states play a significant role in
transport phenomena; i.e., charge transport mainly
occurs via hopping conduction.

At relatively low In content in PbTe (up to approxi-
mately 2 at. %), the position of impurity levels relative
to the conduction band bottom is the same over the
1063-7826/02/3601- $22.00 © 0001
whole sample, and the Fermi level pinning leads to an
exceptional spatial uniformity of the electron density,
despite the significant amount of uncontrolled, electri-
cally active impurities and intrinsic defects distributed
nonuniformly in space. By contrast, at high In content,
or in Pb1 – xSnxTe solid solutions, electron density fluc-
tuations, energy spread of impurity states, and random
potential relief appear owing to the dependence of the
energy of impurity states on the content of In and Sn.
Consequently, retaining their crystal structure, samples
with high In content acquire many properties of disor-
dered systems and, in particular, Fermi-glasses.

This review presents the results of experimental
studies and theoretical analysis of transport phenomena
in PbTe and Pb0.78S0.22Te solid solutions with high In
content, in which hopping conduction is predominant.
Indium impurity states are strongly localized, and,
therefore, the hopping conduction is observed at much
higher impurity densities and temperatures, compared
with the conventional semiconductors with shallow
impurity states (Ge, GaAs, etc.). Analysis of the exper-
imental data on hopping conduction yields such impor-
tant characteristics as the radii of impurity wave func-
tions, the spread of energy levels, and the density of
localized states.

The discussion of the hopping conduction is pre-
ceded by a brief review of basic properties of In impu-
rity in PbTe and Pb1 – xSnxTe solid solutions, with par-
ticular attention given to the case of high In content.

References to original papers are given in the course
of presentation, but here, in the Introduction, we men-
tion reviews concerned with the properties of IV–VI
2002 MAIK “Nauka/Interperiodica”
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semiconductors [1–4], the role of Group III impurities
in these compounds [3–9], and hopping conduction in
semiconductors [10–14].

1. INDIUM IMPURITY STATES IN PbTe
AND ITS SOLID SOLUTIONS

1.1. Resonance States in PbTe

Lead telluride, along with other lead chalcogenides,
crystallizes in an NaCl-type cubic lattice [1–3]. PbTe is
characterized by a very high static dielectric constant
(on the order of 102–103 and higher), and a substantial
(an order of magnitude and even higher) difference
between the static and high-frequency dielectric con-
stants. Like any of the IV–VI semiconductors, PbTe
grows with strong deviations from stoichiometry, and
its intrinsic defects, including vacancies, are electri-
cally active: vacancies in the lead sublattice are accep-
tors, and those in the tellurium sublattice, donors. Typical
electron and hole densities arising because of the stoichi-
ometry violations are on the order of 1018–1019 cm–3.

The band gap of PbTe is relatively narrow: 0.19 eV
at low temperatures; with increasing temperature, the
gap becomes wider, reaching ca. 0.32 eV at 300 K [1].
The absolute extrema of the electron and hole bands lie
at the same point of k space, at the edge of the Brillouin
zone in the 〈111〉  direction (L point). The constant-
energy surfaces near the extrema are four ellipsoids of
revolution, elongated along the 〈111〉  axes. The effec-
tive masses near the band edges are small; e.g., the
transverse effective mass of electrons near the conduc-
tion band bottom is 0.024m0, and the longitudinal effec-
tive mass is 10 times heavier. The principal mecha-
nisms of carrier scattering in lead chalcogenides at not-
too-low temperatures are polar and non-polar scattering
by optical phonons and scattering by acoustic oscilla-
tions [15, 16].

Group VII atoms (halogens), which substitute Te in
the PbTe lattice, produce a profound donor effect: alkali
metal impurities substituting Pb are acceptors. How-
ever, direct observation of the donor and acceptor
impurity states is impossible for these impurity centers
since, owing to the high dielectric constant and small
effective mass of carriers, the wave functions of shal-
low Coulomb centers overlap, and the impurity levels
merge with the allowed band already at impurity con-
centrations as low as 1013–1014 cm–3 [1, 5]. The concen-
trations of electrically active defects in the purest sam-
ples substantially exceed these values. High carrier
densities hinder observation and investigation of deep
levels.

The mechanism of doping of PbTe and its analogs
with Group III elements is much more complex [5, 9].
At first glance, it seems that these impurities must
behave as acceptors when they substitute Group IV
atoms, and Tl is, indeed, an acceptor in lead chalco-
genides, but Ga and In are donors. Indium shows lim-
ited donor activity in PbTe and, in the presence of halo-
gens, compensates their donor action, thus exhibiting
acceptor properties. Indium is an acceptor in SnTe,
which is an analog of PbTe. Investigations of resonance
and localized states of indium in IV–VI compounds
gave insight into the nature of the complex donor–
acceptor action of this impurity [5].

An essential specific feature of the In impurity in
PbTe is its pinning effect on the chemical potential, dis-
covered by Kaidanov et al. [5, 17, 18]. The pinning of
the chemical potential was first revealed and studied
when investigating the dependence of the Hall coeffi-
cient on temperature, pressure, and content of In impu-
rity, additional I and Na impurities, and excess Pb and
Te. Despite the unusually high solubility of indium in
PbTe (up to 24 at. % [19]), the electron density found
from the Hall coefficient does not exceed several units
multiplied by 1018 cm–3. The Hall electron density mea-
sured at 4.2 K is the same, (7.0 ± 0.1) × 1018 cm–3, for
samples with In content y varying between 0.3 and
2.5 at. %, which corresponds to a Fermi level position
of 0.073 eV. A strong nonmonotonic temperature
dependence of the Hall coefficient was revealed,
together with its pronounced dependence on pressure.

All these features were accounted for in terms of
partially filled quasilocal (resonance) impurity states of
indium in PbTe, with energy εi = 0.07 eV above the con-
duction band bottom at low temperature. With increas-
ing In content, the Fermi energy and the free electron
density grow until the Fermi level reaches the impurity
state level, after which there is no further increase in the
electron density in the conduction band, and the Fermi
energy is pinned at εi. With increasing temperature, the
impurity levels sink into the band gap, whereas under
hydrostatic pressure they go upwards, in both cases
dragging along the Fermi level and correspondingly
changing the Hall electron density.

An analysis of the Hall coefficient as a function of
temperature gave a temperature dependence of the
chemical potential, which coincides with the impurity
level, shown for several PbTe:In samples in Fig. 1. The
dependence µ(T) is mostly linear, with a temperature
coefficient ∂εi/∂T = –(3 ± 1) × 10–4 eV/K. It seems that
the dependence εi(T) becomes weaker and is even
reversed at elevated temperatures and high In content.
The correctness of experimental data processing in
these cases will be discussed below in Section 2.

A striking example of the chemical potential pin-
ning is presented by data on supplementary doping of
PbTe:In with conventional donor or acceptor impuri-
ties, which create no localized or resonance states, but
alter the number of electrons on In atoms or in the
allowed bands. The effect of additional doping with an
I (donor) or Na (acceptor) is negligible until the content
of I or Na becomes equal to the In content (see Fig. 2),
after which the Hall density changes in accordance with
the doping action of the additional impurity.

The simplest explanation of these properties was
offered by Kaidanov’s model [5], which is based on the
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assumption that, ignoring the electrons that passed
from In atoms into the conduction band, the impurity
band is half-filled, and the capacity of the impurity
band is two electrons per In atom. This concept neglects
electron–electron interaction at a single impurity center
(Hubbard energy U). Despite the evidently approxi-
mate character of this model, it satisfactorily accounts
for the overwhelming majority of experimental data,
especially those concerning transport phenomena.

Measurements performed for additionally doped
samples at T = 4.2 K allowed estimation of some
parameters of the impurity states. The position of the
impurity levels is nearly independent of the In content,
which indicates that, even at In content of up to 2 at. %,
the overlapping of the wave functions of impurity
states is weak. This means that the wave function
radius does not exceed 10–15 Å; i.e., the impurity
states are strongly localized. Data on hopping conduc-
tion, described below (Section 3.1), confirmed and
refined this conclusion.

In the case of supplementary doping in the pinning
range, the chemical potential shifts by no more than
3%. Hence, it follows that the broadening of the reso-
nance level does not exceed Γ ≈ 0.005 eV when In con-
tent y = 1 at. %. As shown below (Section 1.3), the sit-
uation changes drastically and the band of impurity
states broadens sharply at an In content above 2 at. %.

The narrow width of the density-of-states peak of
quasilocal states ensures a very strict pinning of the
chemical potential relative to the conduction band edge,
despite the inevitably nonuniform distribution of impu-
rities and electrically active defects throughout the
sample. The pinning of the chemical potential results in
high spatial uniformity of the carrier density. In gen-
eral, micro-nonuniformities in the density of electri-
cally active impurities, including statistically equilib-
rium fluctuations, give rise to fluctuations of the free
carrier density in semiconductors and, consequently,
lead to an increase in the magnetoresistance with grow-
ing magnetic induction in the range of classically strong
magnetic fields. The magnetoresistance leveling-off,
predicted by the theory for homogeneous semiconduc-
tors, was first observed in PbTe:In samples [5, 18].

Another prominent manifestation of the exception-
ally high uniformity of carrier density in PbTe:In sam-
ples is the unique pattern of Shubnikov–de Haas (SdH)
oscillations. Normally, 2–3 peaks are observed in mag-
netic field dependences of PbTe resistivity [20], and the
oscillations associated with higher Landau levels are
broadened owing to the nonuniform carrier density. By
contrast, up to 28 peaks of SdH oscillations have been
observed in PbTe doped with 1 at. % In [21].

The chemical potential pinning indicates that the
density of electronic states at the Fermi level is high,
and, thus, one would expect some manifestations of
electron spin paramagnetism. Meanwhile, a search for
paramagnetic effects in indium-doped PbTe and its
solid solutions gave a definitely negative result [22–24].
SEMICONDUCTORS      Vol. 36      No. 1      2002
The situation in indium-doped IV–VI compounds
appeared to be similar to amorphous semiconductors
[12, 25], and the contradiction between the chemical
potential pinning and the absence of paramagnetism
was eliminated by invoking one and the same model of
centers with negative Hubbard energy U. It was
assumed by Moœzhes et al. [22, 26, 27], in order to
account for the properties of PbTe:In, and by Anderson
[25], for amorphous semiconductors, that effective
attraction between two localized electrons may arise
owing to deformation of the atomic subsystem by elec-
trons. In this case, the energy of two single-electron

1 2 3

4

5

6

7

0 100 200 300 400

–50

50

25

0

–25

µ, meV

T, K

Fig. 1. Temperature dependence of the chemical potential
determined from the Hall coefficient [17]. Indium content:
(1) 0.6, (2, 3) 0.5, (4) 0.1, (5) 1, (6) 3, and (7) 6 at. %.
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states is higher than that of one two-electron state, and
the localized states are either empty or they are filled
with two electrons with opposite spins. The proposed
model not only accounts for the absence of paramag-
netic effects and explains the results obtained in study-
ing X-ray photoelectron spectra [24], but it also gives
deeper insight into current–voltage characteristics of
PbTe:In tunneling MOS structures [28, 29].

The superconductivity of some IV–VI compounds
doped with Group III atoms is one more manifestation
of the negative correlation energy of electrons in
quasilocal states (Moœzhes, [30–33]). Originally,
Chernik and Lykov [34, 35] discovered bulk supercon-
ductivity in PbTe:Tl with a critical temperature of 1.4 K
(up to 2.2 K upon supplementary doping with Na [36,
37]), which is unusually high for semiconductors.
Later, superconductivity with an even higher critical
temperature (up to 4 K) was observed in SnTe:In [38],
where In impurity levels lie inside the valence band, as
in PbTe:Tl. Also, a correlation was revealed between
the superconductivity and the resonance scattering in
IV–VI semiconductors doped with Group III atoms:
these two effects occur simultaneously when resonance
states are created against the background of the valence
band; the dependence of the intensity of resonance scat-
tering on the content of additional impurity, which
modifies the Fermi level position, correlates with the
corresponding dependences of the critical temperature
of superconductivity and other parameters characteriz-
ing the phase transition [5, 6, 9].

However, no manifestations of the negative correla-
tion energy have been noticed in transport phenomena
involving impurity states (resonance scattering and
hopping conduction). When resonance scattering is
observed, the impurity levels are strongly broadened
owing to the hybridization of impurity and band states
[6, 9]. As shown below, hopping conduction is observed
at high In content, when the energy spread of localized
impurity states is wide. Presumably, the broadening of
the band of localized or resonance states masks in both
cases the possible manifestations of the effective attrac-
tion of localized electrons.

As mentioned above, the reason for effective attrac-
tion between localized electrons is the polarization of
the atomic environment of an impurity center: when a
center is occupied by a pair of electrons, the local defor-
mation of the crystal lattice is enhanced, and the total
energy of the system decreases. Another effect due to
the interaction of localized electrons with the lattice is
long-term relaxation of the nonequilibrium electron
density: at temperatures below 20 K the redistribution
of electrons between the impurity and band states in
PbTe:In and Pb1 – xSnxTe:In solid solutions is character-
ized by times reaching several hours [5, 7, 39–43]. In
experiments, the equilibrium was disturbed by radia-
tion, which induced photoconductivity, by quantizing
magnetic field, or by high electric field.
The theoretical explanation of the long-term relax-
ation consists in that any electronic transition is accom-
panied by a change in the charge state of an impurity
center, which requires a rearrangement of the surround-
ing atomic subsystem [44, 45]; therefore, the relaxation
process is thermally activated, and, on lowering the
temperature to below 20 K, the relaxation time
increases by several orders of magnitude.

The long-term relaxation gives rise to an abnormally
high photoconductivity [7, 39, 42] responsible for the
absence of resonance scattering in PbTe:In at low tem-
peratures [6, 18]. The metastable nature of the impurity
states accounts for the lack of features related to the
density-of-states peak of indium in tunneling character-
istics of MOS structures, with hysteresis of the current–
voltage characteristic observed instead on reversing the
direction of the voltage sweep [28, 29].

Further, we discuss the hopping conduction mainly
at temperatures of 100 K and higher, and, therefore, lat-
tice reconstruction associated with electron hopping
will not be considered.

1.2. Impurity States in Pb1 – xSnxTe Solid Solutions

In PbTe-based solid solutions doped with In, the
chemical potential is pinned at a level which strongly
depends on the solid solution composition. Replacing
Te with other chalcogens, Se and S, shifts the pinning
level, which coincides with the impurity level, toward
the conduction band. Replacing Pb with lighter ele-
ments, Sn and Ge, shifts the impurity level toward the
band gap. Of particular interest is the dependence of the
impurity state energy εi in Pb1 – xSnxTe on the content of
tin, x.

With x gradually increasing, inversion of the elec-
tron and hole bands occurs in this semiconductor: the
energy gap Eg first decreases and then a zero-gap state

is attained, upon which the states of  and  symme-
try change places, and the gap starts to grow with x
increasing up to the value corresponding to SnTe [1–4].
At low temperatures, the inversion occurs at x = 0.35,
this parameter grows with increasing temperature. Fig-
ure 3 shows, as a function of x, the position of the In
impurity level in such an inverted band structure [5]. At
x < 0.22, the level approaches the conduction band bot-
tom at a rate ∂εi/∂x = –(0.3–0.4) eV to enter the energy
gap at x ≈ 0.22, which is about 0.07 eV wide at this Sn
content. Thus, a resonance impurity state becomes
localized at x * 0.22, and the chemical potential is
pinned inside the energy gap, which leads to extremely
low free carrier densities unachievable without Fermi
level pinning with any IV–VI compound growth tech-
nology.

Investigations of galvanomagnetic effects at low
temperatures, including SdH oscillations, have shown
[47–49] that In levels lie in the energy gap near the con-
duction band bottom at x = 0.22 and reach the middle
of the gap at x = 0.26; further, the samples become

L6
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–
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p-type, and the levels enter the valence band at x = 0.29.
At higher x values approaching x = 1 (SnTe), the impu-
rity states lie deep in the valence band, and resonance
scattering and superconductivity are observed [38, 50].

Since the position of In impurity levels depends on
the Sn content, it would be expected that the impurity
band is broadened noticeably, compared with the In
impurity levels in PbTe, as a result of spatial fluctua-
tions of x in Pb1 – xSnxTe solid solutions. Although this
phenomenon has not been studied experimentally in
Pb1 – xSnxTe:In, a similar broadening has been observed
in several studies for the impurity band of Tl resonance
states in PbSe1 – xSx:Tl solid solutions [51].

1.3. Specific Features of Impurity States
at High In Content

At In content y below 2.5 at. %, the energy of impu-
rity states depends on y only slightly. At higher y, a sig-
nificant dependence εi(y) appears, which is accompa-
nied by quite a few modifications of the PbTe:In prop-
erties. The specific action of the In impurity at its
content up to 20 at. % was studied in [52, 53]. Indium
was introduced, as the impurity substituting Pb atoms,
into samples grown by the Bridgeman technique; in
other words, Pb1 – yInyTe solid solutions were studied.
The position of the impurity level as a function of y was
determined at T = 4.2 K.

Figure 4 presents the electrical conductivity σ, Hall
coefficient R, and Hall mobility |Rσ| as functions of y.
The Hall coefficient, which is extremely stable below
y < 0.025, steadily grows in absolute value by nearly
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Fig. 3. Band diagram of Pb1 – xSnxTe solid solutions and the
position of the In impurity level vs. x at T = 0 K [5].
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two orders of magnitude, with y increasing further in
the range under study. This increase indicates that the In
impurity level is shifted, together with the chemical
potential pinned to it, toward the conduction band bot-
tom. Figure 5 shows the impurity state energy εi

(determined from the Hall density) as a function of the
In content y. The decrease in εi is linear in approxi-
mately the y range of 0.05–015, with a derivative
∂εi/∂x ≈ –0.55 eV; with the linear run of εi(y) retained
beyond this range, the impurity level would leave the
conduction band at y = 0.18. It seems, however, that the
decrease in εi becomes slower when the impurity level
approaches the energy gap, and the level remains inside
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the conduction band up to y = 0.20. This feature of the
εi(y) curve will be discussed again below.

As seen from the curve for σ, the decrease in the
conductivity |Rσ| with increasing y is due to a decrease
in both the density (because of the chemical potential
shift) and mobility of electrons. At an In content of y &
0.12, the decrease in mobility is relatively gradual and
is accounted for by the increasing number of scattering
In atoms. The scattering cross-section is on the order of
10–16 cm2, which is a value typical of scattering by
short-range potential and is even smaller than that for
halogen atoms. This means that there is no resonance
scattering, similarly to the case of small y.

At y > 0.12, the decrease in conductivity and mobil-
ity becomes steeper, which was attributed in [54] to the
appearance of a random potential relief [54]. The
abrupt decrease in conductivity occurs when the chem-
ical potential enters the energy range in which the con-
duction band edge fluctuates, which not only leads to
electron scattering but also distorts the current lines. An
estimate of the characteristic potential relief amplitude
δV ≈ 0.03 eV was found from the chemical potential at
y = 0.12.

The origination of the relief is directly connected
with the dependence of the position of impurity levels
pinning the chemical potential on the content of In
atoms. At small y, impurity content fluctuations do not
make the electron concentration nonuniform, owing to
the chemical potential pinning. By contrast, at high y,
the εi value and the energy spacing between the chemi-
cal potential and the conduction band edge fluctuate in
parallel with the In content. Therefore, the decrease in
mobility with increasing y results both from the
increase in the potential relief amplitude and from the
depression of the Fermi level. The appearance of the
concentration nonuniformity, intimately associated
with the potential relief, is confirmed by independent
experimental data: the unusually clear pattern of the
SdH oscillations, described above, and the leveling-off
of the magnetoresistance in strong nonquantizing mag-
netic fields are only observed at y < 0.02 and disappear
abruptly when y exceeds this value.

Other origins of the potential relief are possible at
high In content, e.g., mechanical stresses produced by
random spatial nonuniformity of the lattice constant at
y fluctuations. One more possible source of the poten-
tial relief is spinodal decomposition of the Pb1 – yInyTe
solid solution into phases with different y values. As
shown in [54], electrons in indium impurity states make
a negative contribution to the second derivative of the
free energy density with respect to y, which favors spin-
odal decomposition. Finally, in PbTe-based solid solu-
tions such as (Pb1 – xSnx)1 – yInyTe, fluctuations of the Sn
content are also accompanied by εi nonuniformity and
enhancement of the potential relief.

When, with increasing y, the Fermi level passes into
the energy gap, a metal–dielectric transition [11] occurs
in an inhomogeneous conductor. The nonuniformity of
the electron density, associated with a random potential
relief, affects the energy εi obtained experimentally at
T = 4.2 K in the In content range y ≈ 0.15–0.20, in
which the center of the impurity band lies near the con-
duction band edge. In this case, the local conductivity
in a major part of a sample, in which the chemical
potential lies below the conduction band bottom, is
very low, and this part of the sample is similar to dielec-
tric inclusions. Current flows through a metal cluster
while it extends across the whole sample, i.e., as long
as the Fermi level lies above the percolation threshold
for a random potential. As known from the percolation
theory [11], for effective metallic conduction to occur,
it suffices that the low-resistivity cluster occupies only
about 16% of the total volume; in other words, the per-
colation threshold lies below the mean level of the
potential relief.

If a level εi( ) lying below the conduction band bot-
tom corresponds to the mean value y = , but  is still
smaller than the threshold value yc corresponding to the
breakdown of a metal cluster, then we determine εi for
a continuous low-resistance cluster, in which y < ; i.e.,
we find a εi value higher than εi( ). Therefore, the non-
linearity of the εi(y) curve at high y in Fig. 5 is spurious;
in fact, the impurity level passes into the energy gap
already at y ≈ 0.18–0.19.

The potential relief also affects the temperature
dependence of conductivity in samples with high In
content y = 0.15–0.20 [53]. With the carrier scattering
considered to be elastic, the conductivity can be repre-
sented as an integral over energy

(1)

where f0 is the Fermi–Dirac distribution function, and
the quantity σ(ε) characterizes the contribution of
electrons with energy ε to the conduction. A random
potential must give rise to a strong dependence on
energy σ(ε) in the energy range δV near the conduc-
tion band edge.

With the temperature raised from 4.2 to about 30 K,
thermal excitation of electrons results in that the num-
ber of electrons with relatively high energy, whose
mobility is suppressed by the relief to a lesser extent,
grows, which leads to higher σ. At temperatures above
30 K, account should be taken of the temperature shift
of the impurity levels and the chemical potential toward
the energy gap and the resulting decrease in the electron
density in the conduction band and in the conductivity
σ with increasing temperature. The σ(T) dependence
exhibits a maximum near 30 K in the y range under
study.

At temperatures of 100 K and higher, the σ(T)
behavior changes again; new features appear that will
be considered in the following chapter. To conclude this
section, we note that the concept of indium in PbTe as

y
y y

y
y

σ
∂ f 0

∂ε
--------– 

  σ ε( ) ε,d∫=
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Pb1 – ySnyTe with high In content [53]. y = (1) 0.145, (2) 0.16, (3) 0.20, and (4) 0.22.
an impurity giving rise to localized or quasi-local
states could, surprisingly, be employed for the quali-
tative description of properties of rather concentrated
Pb1 – yInyTe solid solutions, with y as large as about 0.2.

2. HOPPING CONDUCTION IN PbTe

Temperature dependences of kinetic coefficients
were studied in Pb1 – yInyTe solid solutions in a wide
range of y variation, including high values y ≈ 0.15–
0.20 [53]. Measurements were done with the same
Bridgeman-grown samples that were used to study
low-temperature properties described in the preceding
Section 1.3. Figure 6 presents the results of measure-
ments of conductivity σ and Hall R, Seebeck S, and
Nernst-Ettingshausen Q coefficients in samples with
the largest y.

The temperature dependence of conductivity σ(T) at
T < 100 K was discussed above (Section 1.3). A note-
worthy feature at T > 100 K is a steep increase in con-
ductivity at y = 0.16–0.22. At low temperatures, the
conductivity decreases with increasing y; by contrast, at
SEMICONDUCTORS      Vol. 36      No. 1      2002
relatively high temperatures, the conductivity grows
with In content at the mentioned y values.

At relatively high temperatures, where the conduc-
tivity increases with temperature, the Hall coefficient R
decreases rapidly as temperature is raised. The decrease
in the Hall coefficient becomes faster at higher y. At
about room temperature, the Hall density (e|R|)–1

approaches the In concentration in order of magnitude.
The fast fall of the Hall coefficient also leads to a
decrease in the Hall mobility |Rσ|.

The thermoelectric power S also decreases with
increasing temperature, although slower than R does. In
samples with relatively low In content, up to y = 0.02,
the kinetic coefficients virtually coincide in samples
doped with indium and halogens at equal Hall densi-
ties; by contrast, at high y, the thermoelectric power is
higher in absolute value in indium-doped samples, and
its temperature dependence is the opposite.

The temperature dependence of the Nernst–Etting-
shausen coefficient Q also differs from that in halogen-
doped samples. In particular, the sign of Q changes
from negative, which is typical of lead chalcogenides,
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to positive in going to high temperatures. After the
change of sign, the Nernst–Ettingshausen coefficient is
an order of magnitude smaller than that at T ≤ 100 K,
which correlates with the drop of the Hall mobility.

The observed dependences are rather smooth and
neatly change from one to another, which confirms the
absence of phase transitions.

Passing to a discussion of the possible theoretical
models of the transport phenomena in the high-temper-
ature part of the interval under study, we note that the
transition to intrinsic conduction is commonly charac-
terized by an increase in conductivity, a decrease in the
Seebeck and Hall coefficients, and a positive sign of the
Nernst–Ettingshausen coefficient. However, very high
Hall densities (up to 1020–1021 cm–3) give no way of
assuming that intrinsic conduction is improbable at any
plausible band-structure parameters. Moreover, the
electron gas must be strongly degenerate at such high
concentrations over the entire temperature range under
study, and the fast activation-type rise in electron den-
sity is incompatible with strong degeneration.

Based on these considerations, the authors of [53]
interpreted the observed dependences as evidence of
hopping conduction via localized impurity states. Even
very strongly localized wave functions must overlap at
high In impurity content, thus enabling the hopping
conduction. Transition to a metal-type conduction over
the impurity band does not occur because of the strong
fluctuations of the impurity level energies. Electron
transitions between the impurity centers are necessarily
phonon-assisted, and, therefore, the temperature depen-
dence of hopping conduction σh is activation-type
(ε3-conduction):

(2)

Experimental lnσh(1/T) dependences were used to
evaluate the activation energy ε3 ≈ 0.03 eV characteriz-
ing the spread of energy levels. Hence, it was concluded
that the energy level position strongly fluctuates. This
result is not surprising, because, at high y, In atoms fre-
quently lie close to one another, even occupying neigh-
boring sites of the metal sublattice, and their environ-
ment may differ in the absence of ordering, which leads
to different impurity level energies.

In the order of magnitude, the activation energy ε3 is
in agreement with the potential relief amplitude (see
Section 1.3). Thus, the random potential in PbTe:In is
largely associated with the fluctuations of the In impu-
rity level position.

The possibility of observing high-temperature hop-
ping conduction in PbTe:In is made more likely by the
fact that the impurity levels, together with the chemical
potential pinned to them, move into the energy gap at a
high temperature. As a result, the electron density in the
conduction band decreases with increasing tempera-
ture, and the growing hopping conduction becomes the
principal mechanism of conduction.

σh σ3
ε3

kT
------– 

  .exp=
Although the Hall, Seebeck, and Nernst–Etting-
shausen coefficients in the hopping conduction range
were not discussed in detail in [53], it was mentioned
that the experimentally observed specific temperature
dependences of these effects are in qualitative agree-
ment with the hopping conduction model. In particular,
the Hall coefficient is small in the case of hopping con-
duction and does not reflect the true electron density;
i.e., identifying the electron density with the Hall den-
sity leads to an overestimated carrier density and chem-
ical potential.

In this connection, the question arises as to whether
the hopping conduction takes place along with the band
conduction in samples with relatively low (y < 0.1) In
content at high temperatures (T > 300 K). As seen in
Fig. 1, the temperature dependence of the chemical
potential found from the Hall-effect data, which coin-
cides with the temperature dependence of the impurity
level, is nonlinear at y ≥ 0.01 and even nonmonotonic at
y = 0.06 [17]. It was shown in [53] that calculation of
the chemical potential by the method used in [17] yields
at y ≥ 0.10 an incredibly steep rise in the chemical
potential at high temperatures, where the hopping con-
duction, disregarded in [17], is significant. Since the
curves for different y transform smoothly from one into
another, it seems natural to conclude that the nonlinear-
ity of the µ(T) dependence in the samples with y ≈
0.01–0.03 is spurious and stems from disregarding the
hopping conduction, which is important at high temper-
atures even at relatively small In content.

3. HOPPING TRANSPORT IN Pb0.78Sn0.22Te SOLID 
SOLUTIONS

As shown in the preceding section, observation of
the hopping conduction in PbTe is enabled by the fact
that the In impurity level moves into the energy gap at
high temperatures, and the impurity state becomes local-
ized. Hence, it follows that better conditions for studying
the hopping conduction are provided by Pb1 – xSnxTe
solid solutions, where In impurity levels lie within the
band gap already at T = 0 and x ≥ 0.22, and, with
increasing temperature and In content, these move even
deeper into the energy gap.

Indeed, studies of transport phenomena in
(Pb0.78Sn0.22)1 – yInyTe at y between 2 and 20 at. % fur-
nished a clear and detailed pattern of the hopping trans-
port; its analysis yielded reliable evidence in favor of
the hopping nature of conduction, as well as several
important parameters of In impurity states. The results
concerning the hopping transport in these solid solu-
tions were reported in [55–62].

The samples were fabricated by the cermet technol-
ogy, commonly used for IV–VI semiconductors, with
subsequent homogenizing annealing at 650°C for 100 h.
The characteristic grain size was about 0.1 mm. The
conductivity σ, thermoelectric power S, and Hall R and
SEMICONDUCTORS      Vol. 36      No. 1      2002
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Nernst–Ettingshausen Q coefficients were measured in
the temperature range 4.2–400 K.

3.1. Electrical Conductivity

As seen in Fig. 7, the measured conductivity falls
with decreasing temperature, with σ varying within
several orders of magnitude in the temperature range
under study. Such a dramatic variation indicates the
exponential temperature dependence of the conductiv-
ity. In contrast to PbTe, in which the conductivity rise
occurs only at y ≥ 0.15, in (Pb0.78Sn0.22)1 – yInyTe solid
solutions it starts at y = 0.03 and continues until y =
0.15, with transition to metallic conduction (Mott tran-
sition) at y = 0.2.

If we assume that the conduction in samples with
high In content is due to electrons in extended states,
then the electron density can be evaluated from the Hall
coefficient (see Section 3.4) to be very high (up to
≈1022 cm–3). At such densities, the Fermi level must lie
deep in the conduction band, as in the case of metals.
Meanwhile, at 0.03 ≥ y ≥ 0.15, σ is smaller than
350 Ω–1 cm–1, which, according to Mott [12], is the
minimum metallic conductivity for the case when the
chemical potential lies near the middle of the allowed
band. Hence, it follows that the transport is effected by
localized electrons.

In the temperature range 100–400 K, the depen-
dences lnσ(1/T) are represented by straight lines (Fig. 8).
This circumstance was attributed in [55, 56] to hopping
conduction with nearest-neighbor hopping (ε3-conduc-
tion), which is described by relation (2).1 Table 1 pre-
sents the hopping conduction parameters, ε3 and σ3,
determined from the straight line slope and the inter-
cept on the ordinate axis.

The activation energy of hopping conduction, ε3, is
on the same order of magnitude (several tens of meV)
as that in PbTe:In. At y > 5 at. %, it decreases substan-
tially with increasing In content, i.e., with decreasing
distance between the neighboring In atoms. This points
to correlation between the energies of impurity states of
closely spaced In atoms, which is due to large-scale
random chemical potential. In this case, the higher the
concentration, the smaller the hopping range and the
narrower the energy scatter of transitions between near-
est neighbors.

The activation energy ε3 was also determined in
samples containing 3 and 5 at. % In with the introduc-
tion of up to 2.5 at. % supplementary donors or
acceptors, Cl and Tl, which produce no impurity levels
near the chemical potential. Within the scatter of the

1 In the first of the cited reports [55], a part of the obtained data on
conductivity and thermoelectric power was accounted for by the
conduction due to thermal excitation of electrons into the conduc-
tion band above the mobility threshold (ε1-conduction). Refine-
ment of the experimental data and detailed analysis of the whole
of their set led the authors to conclude that ε3-conduction is
observed at T = 100–400 K at any indium content in the range y =
3–15 at. %).
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obtained experimental values (±5 eV), the activation
energy is independent of the content of a supplementary
dopant and is close to the value presented in Table 1.
Since the activation energy characterizes the energy
spread of the localized levels, this means that the intro-
duction of the mentioned amount of additional impuri-
ties has no significant effect on the energy spectrum of
levels created by In atoms.
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Analysis of the limiting conductivity, σ3, as a func-
tion of the In impurity concentration, NIn, is the most
direct and precise of all the methods for evaluating
the radius a of a localized wave function, employed
in studying impurity states of Group III elements in
IV–VI compounds. The following formula was
obtained for this dependence in terms of the percola-
tion theory [11]:

(3)

The slope of the straight line, which represents the

lnσ3( ) dependence according to (3), is defined by
the parameter a. As seen from Fig. 9, the dependence is
nearly linear and the slope of the straight line a ≈ 6 Å.
Thus, the obtained result confirms the concept of strong
localization of In impurity states and is in agreement
with the estimate obtained from the onset of a strong
εi(y) dependence (see Subsection 1.1).

Some qualitative conclusions concerning the wave
function radius can also be obtained from the transition

σ3 σ30 1.73/aN In
1/3–( ).exp=

N In
1/3–

Table 1.  Parameters of hopping conduction in
(Pb0.78Sn0.22)1 – yInyTe [56]

y , Å σ3, Ω–1 cm–1 ε3, meV

0.03 13 160 44

0.05 11 360 43

0.07 10 420 34

0.10 8.8 620 26

0.15 7.6 890 11

NIn
–1/3

105 15
4

5

6

7

lnσ3

N–1/3
In  

, Å

Fig. 9. Logarithm of the limiting hopping conductivity σ3 vs.

 [56]. The slope of the straight line corresponds to

a = 5.8 Å.

NIn
1/3–
to metallic conduction at y = 0.2. The value of 0.2 is the
percolation threshold for the problem of sites in a face-
centered cubic crystal lattice [11]. Thus, metallization
occurs provided that an infinite cluster is formed from
In atoms separated by the minimum possible distance
between the sites of the metallic face-centered sublat-
tice in which In impurity atoms reside. Hence, it also
follows that the wave function radius a is on the same
order of magnitude as the inter-site distance in the sub-
lattice, i.e., several Angströms.

Let us now discuss the applicability conditions for
relations (2) and (3), which were obtained in terms of
the theory of hopping conduction via nearest neighbors.
For the hopping to occur mainly between nearest neigh-
bors, it is necessary that the following inequality be sat-
isfied:

(4)

An exponential temperature dependence is observed
when

(5)

Substituting the obtained parameters a and ε3 into (4)
and (5), we see that both inequalities are satisfied,
being, however, not too strong in the most part of the
temperature and concentration ranges under study. For
example, the left- and right-hand sides of (4) are,
respectively, 4.3 and 2.1 at y = 0.03 and T = 200 K. Sim-
ilar estimates are also obtained for y = 0.07 [56]. Thus,
at temperatures above 100 K, the transport occurs via
nearest-neighbor hopping; i.e., the average hopping
distance is temperature-independent. At temperatures
below 100 K, inequality (4) is reversed, and variable-
range-hopping conduction must appear [11], with the
weaker temperature dependence described by the
Mott law:

(6)

However, conductivity measurements [55, 59]
revealed that at T < 100 K there is only a slight tendency
toward the weakening of the conductivity dependence
on temperature, with experimental data differing
widely between different samples. No regular trends
with smooth transition from one relationship to
another were found, presumably, as a result of the
influence of inter-grain boundaries. We will return to
the discussion of the possibility of variable-range-
hopping conduction further, when considering thermo-
electric power (Section 3.2).

3.2. Thermoelectric Power

Figures 10a and 10b show temperature dependences
of the thermoelectric power in the temperature range
100–400 K for samples with varied In content.

The first remarkable fact is that the Seebeck coeffi-
cient S is negative over the entire temperature range
under study in the samples with y = 0.02–0.03, whereas

2/aN In
1/3 ε3/kT .>

ε3/kT 1.>

σh σ0 T0/T( )1/4–[ ] .exp=
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for y ≥ 0.05 its sign changes to positive when the tem-
perature is lowered below 200 K, with the Hall coeffi-
cient remaining negative. This sign reversal for the ther-
moelectric power, with the Hall coefficient sign
unchanged, is common to noncrystalline solids [12]
and is accounted for by the negative derivative of the
energy dependence of the density of states, dg/dε < 0
(or derivative dσ(ε)/dε < 0), near the chemical potential
level.

The positive thermoelectric power was accounted
for in [55] as follows. With increasing In content, the
impurity band broadens, partially overlapping with the
conduction band which lies close, with a zero gap
between the impurity and band states and a dip possibly
appearing instead in the dependence of the density of
states g on energy (pseudo-gap). From the existence of
a minimum in the g(ε) function, it follows that a maxi-
mum necessarily exists below and that there is an
energy range in which the density of states decreases
with increasing energy (Fig. 11). If the chemical poten-
tial µ lies within this range, the thermoelectric power
may have a sign opposite to that of the charge carriers.
Since the number of states in the impurity band is twice
the total number of electrons supplied by In atoms (see
Section 1.1), this position of the chemical potential is
possible if the impurity band is not quite symmetric,
which is not surprising in the case of overlapping
between the impurity and band states. We will revert to
the discussion of the nature of the g(ε) function in the
next section.

In the proposed model, the chemical potential lies
within the range of localized states created by the In
impurity, whereas the delocalized (extended) states lie
above it. In view of the fact that the system under study
is strongly disordered owing to the chaotic distribution
of In, Sn, and Pb atoms in the cation sublattice, some
part of the extended electronic states may also be local-
ized. The boundary between the localized and delocal-
ized states (mobility threshold εc) lies above the chem-
ical potential. The conventional band conduction is
effected by electrons with energies ε > εc, and, therefore,
the mobility threshold plays the role of the conduction
band edge in the materials under study, and the band con-
duction is to be activated across the energy gap εc – µ.

Let us now discuss the temperature dependence of
thermoelectric power. In the temperature range ≈100–
200 K, the absolute value of the Seebeck coefficient |S|
grows with decreasing temperature, in qualitative
agreement with the dependence |S| ∝  T–1 obtained by
means of the percolation theory for nearest-neighbor
hopping [13, 14]. At temperatures above 200 K, the
thermoelectric power is proportional to T, as in metals
and heavily doped semiconductors, whereas the perco-
lation theory predicts its leveling-off with increasing
temperature [12–14]. It may be stated that the experi-
mental temperature dependence of the Seebeck coeffi-
cient is described by the relation S = AT + BT–1. It is this
dependence that was obtained theoretically in terms of
SEMICONDUCTORS      Vol. 36      No. 1      2002
the effective medium model to describe the experimen-
tal data for Fermi glasses [13, 63]:

(7)

where ε3 is the activation energy of hopping conduc-
tion.

If the density of states and its derivative change only
slightly with temperature, the transition from S ∝  T–1 to

S
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Fig. 10. Thermoelectric power vs. temperature for
(Pb0.78Sn0.22)1 – yInyTe solid solutions [57]. Curve numbers
correspond to In content y, at. %.
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Fig. 11. Energy spectrum of (Pb0.78Sn0.22)1 – yInyTe solid
solution at y ≥ 0.05, proposed to account for the experimen-
tal data on thermoelectric power [55]. The range of local-
ized states is hatched.
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S ∝  T dependence gives rise to a minimum in |S| at a
temperature

(8)

This shape is characteristic of the |S|(T) curve at
y = 0.02–0.03 (Fig. 10a). The activation energy can be
evaluated from the experimental value of Tmin to be ε3 =
62 meV at y = 0.03, having the same order of magnitude
as the activation energy ε3 = 44 meV determined from
conductivity. However, the very fact of the thermoelec-
tric power sign reversal indicates that the logarithmic
derivative of the density of states at the chemical poten-
tial level (d lng/dε)ε = µ changes substantially, and,
therefore, the method determining the activation energy
from the minimum of the |S(T)| function can only be
used for evaluation. In the above-cited papers [56–62],
the activation energy ε3 was mainly determined from
the temperature dependence of conductivity, and, using
relation (7), it was then used to find (dlng/dε)ε = µ at a
given temperature from the thermoelectric power.

As mentioned above, at y ≥ 0.05 and T < 200 K, the
chemical potential lies in the range of negative dg/dε
derivatives, and the thermoelectric power is positive. At
the same time, at relatively high temperatures, T = 200–
400 K, the thermoelectric power is negative at any In
content y. Hence, it follows that, first, the energy spec-
trum (density of localized states g(ε)) changes funda-
mentally with y, and, second, the chemical potential
shifts with temperature relative to features in the g(ε))
function. Hence, for experiments in which the chemical
potential is varied in a controlled manner at fixed In,
content and temperature are of special interest. Experi-
ments of this kind, performed with samples doped with
supplementary, electrically active impurities, are dis-
cussed in the next section.

To complete the review of thermoelectric power in
the samples without supplementary doping, let us
briefly discuss the temperature dependence of the See-
beck coefficient at T < 100 K. As follows from esti-
mates based on the inequality (4), a transition to vari-
able-range-hopping conduction must occur on lower-
ing the temperature to below 100 K, but the large scatter
of the experimental data on conductivity gave no way
of observing this effect. It would be expected that inter-
grain boundaries produce a weaker effect on the zero-
current Seebeck effect, compared with that on the con-
ductivity, and, therefore, thermoelectric power mea-
surements could reveal features characteristic of the
variable-range-hopping conduction at T < 100 K. In the
case of the nearest-neighbor hopping, the |S| value
decreases with increasing temperature at relatively low
temperatures, 100–200 K. At the same time, according
to the theory [12, 64], passing to the case of variable-
range-hopping radically changes the temperature
dependence of the thermoelectric power: the Seebeck
coefficient decreases when the average hopping dis-
tance grows with decreasing temperature.

Tmin 3ε3/2πk.=
Indeed, thermoelectric power measurements in
(Pb0.78Sn0.22)0.97In0.03Te solid solutions (with and with-
out supplementary doping with Cl) in the temperature
interval including the T < 100 K range demonstrated that
|S| exhibits a maximum at T ≈ 50 K, and, at T < 50 K, the
thermoelectric power decreases as the temperature is
lowered, which is characteristic of variable-range-hop-
ping conduction. The temperature of sign reversal of
the derivative d|S|/dT agrees in order of magnitude with
the theoretical estimate presented above. A power-law
dependence of the thermoelectric power is observed at
20 K < T < 50 K, which is somewhat weaker than that
predicted by the theory [12, 64]. However, |S| sharply
decreases with temperature at T < 20 K, much faster
than the theory predicts. Possibly, this circumstance is
associated with the transition to temperatures at which
long-term relaxation of the density of localized elec-
trons occurs as a result of reconstruction of the atomic
subsystem in electronic transitions (Section 1.1). This
effect must hinder hopping, and, therefore, the hopping
conduction may become less effective and be replaced
by band conduction, for which the low-temperature
thermoelectric power is small. An increase in the rela-
tive contribution of the band conduction can also be
favored by the approach of the impurity levels to the
conduction band at low temperatures.

3.3. Thermoelectric Power in the Case
of Supplementary Doping

The chemical potential µ can be shifted by supple-
mentary doping with donors or acceptors that produce
no localized states near the chemical potential level,
which allows scanning of the spectrum of localized
states of electrons on In impurity atoms. The thermo-
electric power and some other kinetic coefficients were
measured in Pb0.78Sn0.22Te solid solutions containing 3
and 5 at. % of In, with supplementary doping with Cl
donors (0–2.5 at. %) or Tl acceptors (0–2 at. %) [58–
62]. Chlorine and Tl, as well as In, were introduced as
substitutional impurities into the anion or cation sublat-
tices, respectively. Although Tl gives rise to resonant
states in PbTe and its solid solutions [5, 9], the corre-
sponding energy levels lie deep inside the valence band,
far from the chemical potential level in the samples
with a high content of In donors. Filling of Tl acceptor
states with electrons exerts a compensating acceptor
effect, with each Tl atom receiving one electron and Cl
atoms being singly charged donors.

Figure 12 presents the thermoelectric power as a
function of temperature in the samples with y = 0.05
and additionally doped with Cl or Tl. The most striking
experimental result is the reversal of the thermoelectric
power sign to negative upon doping, in sufficient
amounts, with either donors or acceptors at relatively
low temperatures (150 K and below), where the ther-
moelectric power is positive in samples not subjected to
supplementary doping. The obtained dependence of the
thermoelectric power on the content of electrically
SEMICONDUCTORS      Vol. 36      No. 1      2002
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active impurities is absolutely unusual for semiconduc-
tors with broad allowed bands, to which IV–VI com-
pounds belong. Indeed, the conventional negative ther-
moelectric power is obtained in the samples doped with
In donors up to 3 at. %, whereas raising the In content
to 5 at. % and more leads to anomalous positive ther-
moelectric power at relatively low (T < 200 K) temper-
atures. The thermoelectric power sign is reversed to
negative upon addition of the Tl acceptor. Raising the
content of donors in the samples with 5 at. % In by add-
ing up to 2 at. % Cl makes the positive thermoelectric
power higher, but, when the Cl content reaches 2.5 at. %,
the thermoelectric power also reverses its sign and its
absolute value increases sharply. Such effects of doping
are, however, completely accounted for in terms of the
hopping conduction model with a complex spectrum of
localized states, including a density-of-states peak and
a dip at higher energies. When the chemical potential is
shifted, the derivative dg/dε twice changes its sign near
ε = µ, which leads, in accordance with (7), to the corre-
sponding changes in the sign of S.

In samples with 3 at. % In, in which the thermoelec-
tric power S is negative at any temperature, it also
remains negative upon supplementary doping with Cl
or Tl [58, 59]. However, at y = 3 at. % as well, the
behavior of the thermoelectric power under supplemen-
tary doping is not quite usual: raising the content of
both donors and acceptors leads to higher |S| values,
which is due to the nonmonotonic energy dependence
of the derivative dg/dε.

Analysis of how the thermoelectric power depends
on the content of supplementary impurities yields the
density of localized states as a function of energy. Once
the experimental value of S is known, and the activation
energy of hopping conductivity ε3 is found from the
temperature dependence of conductivity σ, for any
given composition and temperature, relation (7) yields
the quantity

(9)

which is obtained as a function of the electron density
in localized states n.

The prevalence of the hopping conduction mecha-
nism indicates that only a negligible part of the total
amount of electrons are in the extended states, and the
density n is equal to the difference between the donor
and acceptor concentrations:

(10)

Varying the content of Cl and Tl, we obtain the func-
tion f(n) at fixed In content keeping the nature of the
density-of-states function g(ε) unchanged. When vary-
ing the chemical potential µ, we have

(11)
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since

(12)

Taking into account that the absolute values of n and
g approach zero when the chemical potential µ is low-
ered to the impurity band edge, we integrate (11):

(13)

The function µ(n) is found by integrating (12):

(14)

where n0 and µ0 are the minimum values of n and µ in
the samples under study, which are attained in the sam-
ple with the highest content of acceptor (Tl). Numerical
integration of (13) and (14) yields the function g(µ) in
the parametric form: g(n) and µ(n). The unavoidable
extrapolation of the experimental function f(n) to n = 0
brings some arbitrariness into the calculation, thus
impairing its accuracy, but the result of calculation by
means of (13) is independent of the extrapolation
method.

Figures 13 and 14 show the results of the above-
described calculations for y = 0.05 and y = 0.03, respec-
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Fig. 12. Thermoelectric power vs. temperature for
(Pb0.78Sn0.22)0.95In0.05Te additionally doped with Cl or Tl
[62]. NTl = (1) 0, (2) 1, (3) 1.5, and (4) 2 at. %; NCl: (5) 0,
(6) 1, (7) 2, and (8) 2.5 at. %.
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tively. The curve obtained at T = 150 K for the higher In
content, y = 0.05, exhibits a peak and a minimum,
which lies approximately 80 meV above the peak. This
result confirms the proposed model of the nonmono-
tonic dependence of the density of localized states on
energy.

The minimum in the function g(ε) is not deep: the
density of states varies by about 10% between the min-
imum and the peak. Presumably, the true g(ε) depen-
dence is somewhat sharper, but the function is
smoothed by thermal broadening of the edge of the
energy distribution of electrons. If the transport is
effected by the electrons in the vicinity of the chemical
potential, it can be shown that the major contribution to
the thermoelectric power comes from energy regions
about 4kT wide (the width of two energy regions, above
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Fig. 13. Density of localized electronic states in
(Pb0.78Sn0.22)0.95In0.05Te solid solution at T = 150 K [62].
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Fig. 14. Density of localized electronic states in
(Pb0.78Sn0.22)0.97In0.03Te solid solution at T = 300 K [61].
and below the chemical potential, is doubled owing to
the factor ε – µ under the integral over energy). At T =
150 K, 4kT = 52 meV, which is only slightly less than
the distance between the peak and the minimum in g(ε),
so the smoothing of the function may be significant.
With temperature raised to 300 K, the averaging of the
density of states over the energy interval may eliminate
the nonmonotonic details of g(ε). This may be the sec-
ond reason (along with the lowering of the chemical
potential) for the negative thermoelectric power at rela-
tively high temperatures of 200–400 K at any y values.

As can be seen from Fig. 14, the calculated depen-
dence g(ε) is monotonic at y = 0.03 and T = 300 K; how-
ever, a trace of the peak of impurity states remains in
the form of an inflection in the curve. In this case, the
curve is smoothed to an even greater extent, compared
with y = 0.05 and T = 150 K (calculation for low tem-
peratures at y = 0.03 was impossible because of the
strong scatter of the experimental points).

The curves presented in Figs. 13 and 14 show that
the band of localized states extends into the energy gap
to a depth of at least 100 meV. This value is much larger
than the activation energy of hopping conduction (ε3 ≈
40 meV), which is determined by the average energy
distance between the electron levels at the neighboring
impurity centers; at the same time, the overall width of
the band of localized states may be enhanced by a large-
scale potential relief. This furnishes one more piece of
evidence in favor of the existence of a large-scale poten-
tial relief, repeatedly mentioned above in Sections 1.3,
2, and 3.1.

3.4. Hall Effect

Experimental data on the Hall effect in
Pb0.78Sn0.22Te solid solutions with high content of In
have played an important role in establishing the
mechanism of conduction in these compounds. The
sign of the Hall coefficient R is invariably negative,
even at positive thermoelectric power S, which is typ-
ical of Fermi glasses. At high temperatures, Hall den-
sities nH = (e|R|)–1 grow with increasing In content (see
Fig. 15) and attain the values of 1021–1022 cm–3, i.e.,
exceed the In concentration at the highest content of
indium. The assumption that all these electrons are in
the conduction band leads to the conclusion that the
electron gas is strongly degenerate. At the same time, as
follows from a steep decrease in |R| with increasing
temperature (Fig. 16), the temperature dependence of
the Hall density is activated, which contradicts the
assumption of strong degeneration.

As is known from the theory of hopping conduction,
the Hall coefficient, which is proportional to the off-
diagonal component of the conductivity tensor in a
transverse magnetic field, σxy, is negligible in the case
of hopping conduction [11, 13]. The reason for this is
that the probability of hopping between two sites is
independent of the magnetic field in weak fields, and
SEMICONDUCTORS      Vol. 36      No. 1      2002



HOPPING CONDUCTION VIA STRONGLY LOCALIZED IMPURITY STATES OF INDIUM IN PbTe 15
hopping between three or more sites is to be considered
in calculating the hopping contribution to σxy. The
smallness of |Rh| in the purely hopping mechanism
requires that the contribution of delocalized conduction
band electrons be taken into account in calculating the
total Hall coefficient R, even in the case when the con-
ductivity σxx is dominated by hopping, σxx ≈ σh. The
model used in this situation is similar to the double-
band model for semiconductors [11] and yields the
relation

(15)

where the subscript b indicates the contribution of con-
duction band electrons with energies above the mobil-
ity threshold. Neglecting, in accordance with the afore-
said, the partial Hall coefficient Rh and the band contri-
bution to the conductivity σb, we obtain

(16)

Assuming that the electron density in the delocal-
ized states depends on temperature as exp(–ε1/kT), we
obtain the temperature dependence of the Hall coeffi-
cient in the following form [11]:

(17)

In general, ε3 ! ε1 in weakly doped compensated
semiconductors with hydrogen-like impurity centers,
and the Hall coefficient |R| grows exponentially with
temperature in the range of hopping conduction [11,
65]. By contrast, in materials with strongly localized
impurity states, which are the object of the present
review, R steeply decreases with increasing tempera-
ture, which indicates an exponential rise in the Hall
density nH with a positive activation energy

(18)

From εR > 0, it follows that ε1 < 2ε3. Moreover, the
experimental data indicate that εR is nearly twice the
activation energy of conductivity ε3. For example, at
y = 0.03, the activation energies εR ≈ 80 meV and ε3 =
44 meV [55]; at y = 0.07, the respective parameters are
εR ≈ 72 meV and ε3 = 34 meV. Although the accuracy
of the evaluation of εR and ε3 is insufficient for deter-
mining the activation energy of band conductivity
(ε1-conductivity), we may conclude that either ε1 is
small, as compared with ε3, or the band conduction is
not activated at all. Therefore, the hopping conductivity
grows faster than the band conductivity with increasing
temperature, and the Hall coefficient decreases.

Thus, the hopping conduction in the samples with
high In content at temperatures 100–400 K can be con-
sidered high-temperature as compared with that in the
conventional weakly doped semiconductors.

R
Rbσb

2 Rhσh
2+

σb σh+( )2
------------------------------,=

R Rb
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σh
----- 
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.≈

R
2ε3 ε1–

kT
------------------ 

  .exp∝

εR 2ε3 ε1.–=
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At first glance, it seems strange that the activation
energy of ε1-conductivity is small, whereas the chemi-
cal potential µ increases significantly upon supplemen-
tary doping with chlorine but does not reach the mobil-
ity threshold εc and remains within the band of impurity
states; i.e., the quantity εc – µ is on the same order of
magnitude as ε3 in the temperature range 100–400 K
under study (Figs. 11, 13, and 14). This contradiction is
resolved if account is taken of the pronounced temper-
ature dependence of the position of the impurity band
center relative to the conduction band edge, which is
observed at relatively small In content in PbTe [5, 17]
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Fig. 15. Hall density of electrons nH vs. In content NIn in
Pb0.78Sn0.22Te:In at room temperature [55].
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Fig. 16. Temperature dependence of the Hall coefficient in
Pb0.78Sn0.22Te:In [55, 59]. Curve numbers correspond to
the In impurity content, at. %.
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(Section 1.1). Assuming that εc – µ decreases with
increasing temperature in the same way as εi does at
small y, we obtain for the energy gap εc – µ

(19)

where the temperature-independent dimensionless
parameter c is equal to about 3 ± 1. The activation-type
temperature dependence of the density of delocalized
electrons is described by the first constant in relation
(10), which, therefore, should be identified with the
parameter ε1. Since, at low temperatures T  0 K, the
indium impurity level in Pb0.78Sn0.22Te lies near the
conduction band edge (Section 1.2), the parameter ε1
may be small, in agreement with the experimental data
on the Hall effect (and also on the Nernst–Etting-
shausen effect, see below, Section 3.5). The quite prob-
able decrease in the mobility of delocalized electrons
with increasing temperature also reduces ε1 and can
even make it negative, which corresponds to a decrease
in the band conductivity σb with increasing tempera-
ture. At the same time, the energy gap εc – µ is large
enough at high temperatures, owing to the second term
in (19), e.g., εc – µ ≈ 80 meV at T = 300 K.

The fast decrease in the Hall coefficient with
increasing temperature [in accordance with (16)] also
makes the Hall mobility lower:

(20)

εc µ– const ckT ,+=

Rσ Rbσb
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σ
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Fig. 17. Temperature dependence of the Nernst–Etting-
shausen coefficient in (Pb0.78Sn0.22)0.97In0.03Te [59]. Sam-
ples: (1) without supplementary doping; supplementary
doping with chlorine: (2) 1, (3) 2, and (4) 3 at. %; and thal-
lium: (5) 1, and (6) 1.5 at. %.
Since σb ! σ, the Hall mobility |Rσ| is much lower
than the corresponding value for the band conductivity
|Rbσb|, and, at room temperature, experiment gives val-
ues of about 1 cm2 V–1 s–1 (and less) at high In content
y ≥ 10 at. %. The rise in the reciprocal value |Rσ|–1 is
characterized by an activation energy approximately
equal to ε3, in agreement with the experiment. As
shown below, the temperature dependence of the Hall
mobility can also be obtained by measuring the Nernst–
Ettingshausen effect.

3.5. Nernst–Ettingshausen Effect

The transverse Nernst–Ettingshausen effect (TNEE)
was studied in Pb0.78Sn0.22Te solid solutions with In
content y = 0.03 in the temperature range of 100–400 K
[59, 61]. Figure 17 presents the experimental tempera-
ture dependences of the TNEE coefficient Q.

In the investigated solid solutions with high indium
content, the room-temperature Q is an order of magni-
tude lower, and the ratio of Q to the Hall mobility is an
order of magnitude higher than the respective values in
halogen-doped PbTe samples [66–68]. An even greater
difference between the indium- and halogen-doped
samples consists in the sign of the Nernst–Etting-
shausen coefficient. In conventional charge transport by
delocalized electrons, the TNEE coefficient in the
extrinsic conduction range is proportional to the scat-
tering parameter r, which describes the dependence of
the relaxation time τ on energy ε:

(21)

In lead chalcogenides and their solid solutions, the
parameter r is negative owing to phonon scattering and
strong nonparabolicity of the electron dispersion; there-
fore, a negative TNEE coefficient is commonly
observed upon doping with halogens [66], whereas in
the samples under study with high In content, the
TNEE is positive.

Finally, the TNEE coefficient steeply decreases
with increasing temperature by 3–4 orders of magni-
tude in the range T = 100–400 K in all samples of
Pb0.78Sn0.22Te.

The above temperature dependence and the very
small value of Q for hopping conduction have the same
physical origin as the similar properties of the Hall
coefficient. Indeed, the phenomenological relation for
the TNEE coefficient contains two terms, one propor-
tional, similarly to the Hall coefficient, to the quantity

(22)

r
∂ τln
∂ εln
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Table 2.  Measured kinetic coefficients in (Pb0.78Sn0.22)0.97In0.03Te without supplementary doping [59] and theoretical esti-
mates of summands in (25) [61] made upon calculating Q2 (see text)

Experimental data Theoretical estimates

T, K
σ,

Ω–1 cm–1 S, µV/K R, cm3/C
|Rσ|

cm2 V–1 s–1
Q(k/e)

cm2 V–1 s–1
Q1(k/e)

cm2 V–1 s–1
Q2(k/e)

cm2 V–1 s–1
Q3(k/e)

cm2 V–1 s–1
Q1 + Q2 + Q3/(k/e)

cm2 V–1 s–1

150 5 –80 –17 85 300 50 475 –80 445
200 12 –41 –2.7 25 150 15 140 –12 143
300 28 –45 –0.35 10 80 6 54 –5 55
and the other, to the off-diagonal component of the ten-
sor defining the thermoelectric and thermomagnetic
effects:

(23)

In a transverse magnetic field, the quantity bxy defines
the component of current along the x-axis at a tempera-
ture gradient along the y axis. The smallness of the func-
tion σxy(ε), which determines the smallness of the Hall
coefficient R, also leads to negligible values of both sum-
mands in the expression for the TNEE coefficient in the
case of the hopping conduction mechanism. Hence, it
follows that two types of conduction are to be taken into
account simultaneously in calculating Q, similarly to the
case of R. The “double-band” model yields the following
expression for the TNEE coefficient:

(24)

where the designations used for partial quantities are
the same as in the preceding section. Neglecting Qh and
Rh and taking into account that σ ≈ σh and S = Sh, we
obtain an expression for Q, comprising three sum-
mands [59]:

(25)

In calculating Q3, there is no need to use microscopic
theory, because the third term in (25) contains only inde-
pendently measured coefficients, σ, S, and R. The term
Q3 is negative at y = 0.03 since S < 0 and R < 0. Its abso-
lute value is significantly lower than the measured total
TNEE coefficient Q (Table 2).

Calculation of the positive term Q2 requires that the
partial band-related thermoelectric power Sb be calcu-
lated using the formula

(26)
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When using (26), we must take into account the
existence of the potential relief, which is responsible
for the increase in σb(ε) with energy at ε > εc. In calcu-
lating Sb, it was assumed [61] that, above the mobility
threshold, the current flows through percolation chan-
nels, and the function σb(ε) is proportional to (ε – εc)t,
where t is the critical conductivity index t = 1.6 [11]. At
relatively high temperatures, T ≥ 100 K, it was assumed
that µ < εc, and the Boltzmann distribution function was
used for f0. A calculation requiring no further assump-
tions gave the following formula [61]:

(27)

Further numerical estimation of Sb and Q2 in [61]
was based on the assumption that the energy gap εc – µ
is equal to the activation energy of band conductivity ε1
[61]. It was found that the positive second summand in
(25) is larger than the two others, and approaches, in
order of magnitude, the experimental value of the
TNEE coefficient, which made it possible to account
for the obtained sign and value of Q. To refine the esti-
mations made in [61], let us consider the temperature
dependence of εc – µ (19), replacing the first constant
with ε1, which is negligible as follows from the temper-
ature dependences of the Hall (Section 3.4) and
Nernst–Ettingshausen (this section, below) coeffi-
cients. Then, (27) takes the following form:

(28)

At t =1.6 and c ≈ 3, we obtain the following expres-
sion for Q2:

(29)

The results of Q calculation using (29) are also pre-
sented in Table 2. Taking into account the temperature
dependence of εc – µ improved the numerical agree-
ment between the theoretical estimates and the experi-
ment.

In evaluating the quantity Qb appearing in the first
summand of (25), we must keep in mind that, within a
kT-vicinity of the mobility threshold, the density of
states can be considered a weak function of energy
rather than being proportional to ε1/2, as it is near the

Sb
k
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εc µ–
kT
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e
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conduction band bottom. Therefore, we have the quan-
tity ε – εc (instead of the conventional ε3/2) under the
integrals over energy, which define the kinetic coeffi-
cients. In spite of this circumstance, the conventional
equation was obtained for Qb [59, 61]:

(30)

where the effective scattering parameter r defines the
relative contribution of electrons with different energies
to the integrand Qb. All the integrals appearing in the
expression for Qb contain the quantity

(31)

Hence, it follows that 1 + r = t and r = 0.6. Substi-
tuting this value into (30) and using formulas (20) and
(25), we obtain [61]

(32)

The positive term Q1 is an order of magnitude
smaller than Q2; its numerical estimates and the calcu-
lated overall quantity Q1 + Q2 + Q3 are given in Table 2
together with its experimental value Q. Among the esti-
mates of the three summands in (25), that of Q1 is the
least reliable, because it includes an assumption con-
cerning the value of the effective parameter r. It would
be expected, however, that, since Q1 is relatively small,
the roughness of its estimation may introduce only a
minor error into the overall Q coefficient, which is
mainly determined by Q2.

Similar to the case of the standard theory of the
Nernst–Ettingshausen effect in semiconductors, Q is
proportional to the Hall mobility |Rσ|, which, for the
materials under study, accounts for the small values of
the measured Q. At the same time, the calculated coef-
ficient is positive at |Rσ|, and its absolute value is an
order of magnitude higher than that in the conventional
theory for the case of scattering by acoustical phonons
(r = – 0.5), which ensures agreement between theory
and the experiment in the sign of Q and in the order of
magnitude of Q/|Rσ|.

The proportionality of all the three summands in Q to
the Hall mobility |Rσ| accounts for the observed fast
decrease in the TNEE coefficient with increasing tem-
perature. According to (20), this decrease is exponential,
with the activation energy of Q– given by εQ = ε3 – ε1.
Determining the εQ value from the experimental data,
we obtain εQ = 37 meV, which is close to ε3 and indi-
cates that ε1 is small, as do the results of εR determina-
tion.

Thus, the positive sign, magnitude, and temperature
dependence of the Nernst–Ettingshausen coefficient are
accounted for, along with other transport phenomena
discussed above, in terms of the dominant hopping con-
duction and involvement of delocalized electrons with

Qb
k
e
--rRbσb,–=

σ ε( ) ε εc–( )τ ε( ) ε εc–( )1 r+∝ .=

Q1 0.6
k
e
-- Rσ .≈
energies above the mobility threshold in kinetic effects
in transverse magnetic field.

CONCLUSION

In summary, we present the complete body of evi-
dence in favor of the hopping conduction observed in
(Pb0.78Sn0.22)1 – yInyTe solid solutions.

1. The exponential increase in conductivity as a
function of temperature, with the activation energy ε3.

2. The increase in conductivity as a function of
indium content.

3. The conductivity is significantly lower than the
minimum metallic conductivity at “metallic” Hall den-
sities of carriers.

4. A high Hall density (up to 1021–1022 cm–3) is
observed at room temperature along with its activation-
type temperature dependence.

5. Low Hall mobilities (to tenths of cm2 V–1 s–1 at
room temperature) point to transport over localized
states.

6. The observed coexistence of a positive thermo-
electric power with a negative Hall coefficient is typical
of disordered systems.

7. The temperature dependence of the thermoelec-
tric power S is typical of Fermi glasses: at low temper-
atures, ≈20–50 K, |S| grows with temperature, as in the
case of variable-range-hopping conduction; upon tran-
sition to nearest-neighbor hopping, |S| decreases with
increasing temperature, approximately as 1/T; with fur-
ther increase in temperature, |S| starts to grow again (as
T). The boundary of the variable-range-hopping con-
duction range is in agreement with theoretical esti-
mates.

8. Unusual behavior of the thermoelectric power
upon doping with supplementary electrically active
impurities that produce no localized states. In particu-
lar, in some cases, acceptor doping leads to thermoelec-
tric power sign reversal from positive to negative.

9. The Nernst–Ettingshausen coefficient Q is abnor-
mally small, owing to the small Hall mobility |Rσ|; at
the same time, the Q/|Rσ| ratio is an order of magnitude
higher than that in conventional semiconductors with
extrinsic conduction. The values of both Q and Q/|Rσ|
are in agreement with the theoretical estimates in terms
of hopping conduction combined with conduction by
electrons in delocalized states above the mobility
threshold.

10. The transverse Nernst–Ettingshausen coefficient
is positive, in contrast to that usually observed in lead
chalcogenides in the extrinsic conduction range.

11. Activation-type temperature dependences of the
quantities reciprocal to the Hall and Nernst–Etting-
shausen coefficients. The first of these is characterized
by an activation energy close to 2ε3, and the second, by
an activation energy close to ε3. This is due to the com-
bination of two factors: the rise in the hopping conduc-
SEMICONDUCTORS      Vol. 36      No. 1      2002
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tion with temperature, and the absence of fast increase
in the conduction by delocalized electrons because of
the growing energy distance between the mobility
threshold and the chemical potential.

Thus, the entire vast body of experimental data indi-
cates, with account taken of the existence of interre-
lated parameters describing various transport phenom-
ena, that hopping conduction via strongly localized
indium impurity states occurs in (Pb0.78Sn0.22)1 – yInyTe
solid solutions.
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Abstract—Using Raman scattering, it was ascertained that silicon nanocrystals with sizes exceeding 2 nm are
formed in amorphous silicon films exposed to nanosecond ultraviolet laser radiation with energy densities rang-
ing from 75 to 150 mJ/cm2; it is shown that these nanocrystals have sizes no smaller than 2 nm and have pre-
ferred (100) orientation along the normal to the film surface. In a system of mutually oriented Si nanocrystals,
anisotropic behavior of the Raman scattering intensity was experimentally detected in various polarization con-
figurations, which made it possible to determine the volume fraction of oriented nanocrystals. The orientational
effect is presumably caused by both the macroscopic fields of elastic stresses in the film and the local fields of
elastic stresses around the nanocrystals. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The formation of nanocrystals in amorphous silicon
(a-Si) films and the study of their properties is a topical
problem. Detection of the effects caused by localization
of electrons and phonons in nanocrystals is of particular
interest. Since the band gap of crystalline Si (1.1 eV) is
smaller than the mobility gap in hydrogenated a-Si
(a-Si:H), which can be as large as 1.9 eV [1], we may
expect that quantum-mechanical size effects for charge
carriers in nanocrystals affect the optical and electrical
properties of the obtained films. The possibility of the
controlled formation of crystalline-phase nuclei with
the aim of obtaining polycrystalline Si films with spec-
ified parameters is of interest from the standpoint of
applications. Since the formation of arrays of thin-film
transistors on inexpensive (nonrefractory) glass sub-
strates is required for the production of liquid-crystal
displays, amorphous films should be crystallized under
conditions that exclude the heating of the substrates to
a temperature higher than the glass-softening point. In
this context, it is expedient to use pulsed exposures to
ultraviolet radiation [2]. In this case, radiation is
absorbed in the film and does not heat the substrate, so
the substrate has no time to be heated to a temperature
above the softening point during the pulse. The main
disadvantage of polysilicon films formed by liquid-
phase epitaxy is the fact that the films are nonplanar [3],
1063-7826/02/3601- $22.00 © 0102
which is related to the necessity of scanning treatments
for obtaining large-area films. In this context, one of the
promising methods for crystallization of the a-Si films
is the formation of crystalline-phase nuclei (nanocrys-
tals) using pulsed laser treatments with the subsequent
growth of these nuclei under the conditions of solid-
phase crystallization [4–7]. In the context of growing
the textured polysilicon films with improved electrical
characteristics and with high uniformity of the parame-
ters, the possibility of forming a system of nanocrystals
that are aligned in the same direction, owing to the self-
organization effects under the nonequilibrium condi-
tions of nanosecond laser treatments, is of particular
interest [8]. In this study, we attempted to elucidate the
mechanisms for the origination of the preferred orien-
tation of Si nanocrystals and to gain insight into the
polarization-related features of the Raman scattering in
a system of oriented nanocrystals.

2. EXPERIMENTAL

The samples to be studied were 100-nm-thick a-Si
films formed on a Corning 7059 glass substrate using
plasma-chemical deposition at a temperature of 230°C.
For laser treatments of the films, we used an XeCl exci-
mer laser with a radiation wavelength of 308 nm. The
pulse duration was 5 ns. For the above wavelength, the
2002 MAIK “Nauka/Interperiodica”
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absorption coefficient for a-Si is 1.5 × 106 cm–1; as a
result, the laser-radiation energy is completely
absorbed within the a-Si film. The substrate tempera-
ture measured at the rear surface remained close to
~300 K under the employed conditions of the laser
treatment. In our experiments, the densities of the laser-
radiation energy in a pulse were either higher or lower
than the threshold density that is required for the origi-
nation of macroscopic molten regions in the a-Si film.
The melting threshold determined from an experiment
with optical reflection with nanosecond-scale time res-
olution amounted to 120–150 mJ/cm2 [9]. Our samples
were irradiated either with a single laser pulse or with a
series of up to thousand pulses with low energy density
in order to form a high concentration of Si nanocrystals.
The pulse repetition rate was 2 Hz, which excluded the
possibility of heating the substrate. The laser-beam
aperture was rectangular, with an aspect ratio of 3 : 1.
The pulse energy was stable in time to within 3%. The
laser radiation was unpolarized.

The Raman spectra were measured at room tempera-
ture in the configuration of quasi-backscattering. We
used a system automated in the CAMAC standard and
based on a DFS-52 monochromator (LOMO, St. Peters-
burg). We used the 488-nm line of an Ar laser as the
pump for the Raman process. In order to implement the
various polarization configurations for the Raman scat-
tering, we employed a half-wave plate to rotate the
plane of the light polarization, a Glan prism, and a
depolarizing wedge.

3. RESULTS AND DISCUSSION

3.1. Formation of Nanocrystals in the a-Si Films 
Exposed to Pulsed Ultraviolet Radiation

As a result of the absence of translational symmetry,
optical transitions in a-Si are not restricted by the law
of conservation of momentum; therefore, the Raman
spectrum of a-Si in the optical range is characterized
by the effective density of vibrational states and is rep-
resented by a broad band peaked in the vicinity of
480 cm–1 [10]. The vibrational eigenmodes of nanoc-
rystals are spatially localized; as a result, the Raman
spectrum of nanocrystals is characterized by a peak, the
position of which depends heavily on the size of nanoc-
rystals and, as they become larger than 50 nm, does not
differ much from that of the Raman spectrum peak in
single-crystal Si (520 cm–1) [11, 12]. The peak width is
controlled by a spread in nanocrystal sizes and also by
the phonon lifetime. The peak intensity is proportional
to the nanocrystalline-phase fraction. In Fig. 1, we
show the Raman spectra of both the starting a-Si film
and the films subjected to various treatments with exci-
mer-laser radiation. As can be deduced from the Raman
spectrum of the starting film (curve 1), there are no
nanocrystalline inclusions in this film. This is also cor-
roborated by the results of studying the starting films
using electron microscopy.
SEMICONDUCTORS      Vol. 36      No. 1      2002
In Fig. 1 (curves 2–7), we also show the Raman
spectra of the a-Si films subjected to pulsed treatments
by the excimer-laser radiation with energy densities of
75–110 mJ/cm2 and with the number of pulses ranging
from 1 to 1000. We studied the concentration of Si
nanocrystals as a function of the conditions of the laser
irradiation. It can be seen that a single laser pulse with
an energy density of 80 mJ/cm2 is insufficient for the
formation of a significant number of nanocrystals in the
film (curve 2). Only a certain modification of the
“amorphous” Raman peak is observed: its intensity
increased, and the peak shifted to higher frequencies.
A band caused by scattering at optical phonons localized
in silicon nanocrystals (nc-Si) is observed in the Raman
spectrum of the sample subjected to the excimer-laser
irradiation with an energy density of 110 mJ/cm2

(curve 3). This “nanocrystalline” band is peaked at
512 cm–1, which corresponds to the average crystallite
size of 4–5 nm [12]. The fraction α of the nanocrystal-
line phase can be determined from the ratio between the
integrated intensities of the “amorphous” and “nanoc-
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Fig. 1. The Raman spectra of the a-Si:H films formed by
plasma-chemical deposition (curve 1 corresponds to the
starting film) after laser-radiation treatments under the fol-
lowing conditions (the energy density in a pulse and the
number of pulses are given): (2) 80 mJ/cm2, 1 pulse;
(3) 110 mJ/cm2, 1 pulse; (4) 75 mJ/cm2, 1000 pulses;
(5) 80 mJ/cm2, 1000 pulses; (6) 90 mJ/cm2, 500 pulses; and
(7) 100 mJ/cm2, 500 pulses.
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rystalline” peaks (Ia and Inc, respectively) using the fol-
lowing expression:

(1)

Here, σ is the ratio between the integrated cross sec-
tions for scattering by nc-Si and a-Si (Σnc/Σa); this ratio
is equal to 0.88 [13]. According to calculations, the
fraction of crystalline phase in this sample is 0.08. In
order to form a significant number of nanocrystals in
the case of laser-pulse treatments with lower energy
densities, we have to use a treatment with a series of
pulses. The Raman spectra of the samples subjected to
a series of pulses are also shown in Fig. 1 (curves 4–7);
the parameters of the treatments are given in the caption
to Fig. 1. In all of these samples, the fraction of nanoc-
rystalline phase was larger than one-half. As can be
seen, as the energy density of laser irradiation varies,
the “nanocrystalline” peak shifts; as is well known, the
position of this peak is governed by the average size of
nanocrystals. The mean size of nanocrystals can be
determined using the convolution of effective density of
vibrational states [14, 15]. According to calculations,
the mean size of nanocrystals was 1.8 nm for sample 4,
2.0 nm for samples 5 and 6, and 3.0 nm for sample 7
(the sample numbers correspond to the numbers at the
curves in Fig. 1). The general tendency is the following:
an increase in the energy density in a pulse leads to an

α Inc/ σIa Inc+( ).=

80 90 100 110 120 130 140 150 160
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Fig. 2. Fraction of crystalline phase in silicon films after
exposure to a single pulse of the excimer-laser radiation as
a function of the energy density in a pulse.
increase in the mean size of the forming nuclei of the
crystalline phase (nanocrystals). The data obtained
using high-resolution electron microscopy (HREM)
corroborated the data of Raman spectroscopy [7, 8].
The electron microscopy data also indicate that nucle-
ation during pulsed exposures to ultraviolet radiation
occurs homogeneously. The technology for preparing
the samples for HREM includes the removal of silicon
films from the glass substrates by chemical etching. As
a result, the film thickness decreases from 1000 to 200–
300 Å, both from the surface side and from the hetero-
interface side. Since the nanocrystals are surrounded by
an amorphous matrix, they are formed in the depth of
the film itself, rather than as a result of heterogeneous
nucleation at the surface or heterointerface [7, 8].

Dependence of the nanocrystalline-phase fraction
on the energy density in a pulse was studied for the
samples exposed to a single pulse. The results are gen-
eralized in Fig. 2. If we approximate the obtained
experimental data by straight lines, we can see that a
kink is observed in the lines in the vicinity of the power
density of 120 mJ/cm2. Apparently, if the energy den-
sity exceeds this value, a transition to the liquid-phase
crystallization occurs, which is consistent with the pub-
lished data [9]. Thus, we may assume that laser treat-
ments with an energy density no higher than 120 mJ/cm2

do not give rise to macroscopic molten regions.

3.2. Raman Scattering in a System
of Oriented Nanocrystals

It is well known that the light scattered inelastically
by the crystal-lattice vibrations is polarized; its polar-
ization is governed by the Raman scattering tensor and
the polarization of the incident radiation. Under the
conditions far from those for the resonance Raman
scattering (scattering by the mechanisms of either the
deformation potential or the Vol’kenshtein additive
polarizability of the bonds [16, 17]), the tensors of
quasi-backscattering Raman process in the principal
crystallographic axes X = [001], Y = [010], and Z =
[100] can be represented as

where the axes X, Y, and Z correspond to the directions
of deformation-related displacements induced by
phonons [16]. For the quasi-backscattering by the (110)
surface and for the choice of the axes as X = [001], Y =

R' X( )
0 a 0

a 0 0

0 0 0 
 
 
 
 

, R' Y( )
0 0 a

0 0 0

a 0 0 
 
 
 
 

,= =

R' Z( )
0 0 0

0 0 a

0 a 0 
 
 
 
 

,=
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[ ], and Z = [110], the Raman scattering tensors are
transformed to the following form:

According to the symmetry selection rules for the
Raman process, the scattering intensity ICS is propor-
tional to (EiREs)2, where Ei and Es are the polarization
vectors of the incident and scattered light, respectively.
For the quasi-backscattering, the vectors Ei and Es lie in
the plane that is perpendicular to the direction of the
incident light; in the case under consideration, this
direction is designated as Z = [110], and the configura-
tion is designated as Z(EiEs) . In this configuration,
scattering by longitudinal phonons is forbidden for any
polarizations Ei and Es, the transverse phonon TOX

(atoms are displaced in the X direction) is active in the
Z(YY)  configuration, and the transverse phonon TOY

(atoms are displaced in the Y direction) is active in the
Z(XY)  configuration [16]. If the sample is rotated by
an angle ϕ, the basis vectors of the laboratory frame are
represented by the following formulas in the system of
coordinates linked to the principal axes of the sample:

The Raman scattering intensity for the TOX phonon in
the X'X', Y'Y', and X'Y' configurations is then propor-
tional to

For the TOY phonon and for the same scattering config-
urations, this intensity is proportional to

In relation to the angle of rotation about the Z-axis, the
total Raman scattering intensity for transverse phonons
(TOX + TOY) is proportional to

in the X'X' configuration;

in the Y'Y' configuration; and
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in the X'Y' configuration.
Thus, if the crystallographic axis [110] of all silicon

nanocrystals were oriented along the normal to the film
surface and if, in addition, all the nanocrystals were
mutually aligned in the planar direction, then, by rotat-
ing either the sample or the polarization plane of inci-
dent light and the analyzer for scattered light, we could
observe the modulation of the Raman scattering inten-
sity in various configurations; as a result, the intensity
may vary from zero to the largest value.

We now assume that the [110] axis of a fraction of
nanocrystals γ is oriented along the normal to the film
surface, whereas the remaining nanocrystals are ori-
ented randomly. A fraction of [110]-oriented nanocrys-
tals are mutually oriented in the planar direction,
whereas the remaining nanocrystals are oriented ran-
domly in the planar direction. Designating the fraction
of mutually oriented crystalline nuclei by ρ, we now
average the intensity of Raman scattering due to nanoc-
rystals that remain misoriented in the planar direction;
as a result, we obtain the following polarization depen-
dences for the Raman scattering intensity:

(2)

Here, 0 ≤ ρ ≤ 1 and 0 ≤ γ ≤ 1. It is noteworthy that, for
completely random orientation, the ratio between the
Raman scattering intensities in the transverse and lon-
gitudinal configurations is equal to 3/4 [18]. The contri-
bution of misoriented silicon nanocrystals is accounted
for by the isotropic second terms in expressions (2),
whereas the mutually oriented nanocrystals yield the
anisotropic (dependent on the angle ϕ) component of
the Raman scattering intensity.

In Fig. 3, we show the Raman spectra obtained when
the sample was rotated in reference to the polarization
vector of the incident light. Depending on the angle of
rotation about the Z-axis, we observed a variation in the
ratio between the Raman scattering intensities in the
X'X', Y'Y', and X'Y' configurations. When the ratio
between the Raman scattering intensities in the X'Y' and
X'X' configurations (IX'Y'/IX'X') attains its maximum, then,
according to formulas (2), this corresponds to the con-
dition ϕ = 0°; i.e., the X'-axis is parallel to the crystal-
lographic direction of the [001]-oriented nanocrystals.
The smallest ratio between the intensities IX'Y'/IX'X' was
observed for the rotation angle ϕ = 45° (Fig. 3). Ana-
lyzing the spectra shown in Fig. 3, we may note that a
different Raman scattering intensity is observed for dis-
similar polarization configurations; furthermore, rota-
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tion of the sample appreciably affects the ratio between
the intensities, which indicates that the Raman scatter-
ing cross section is anisotropic. Thus, the anisotropic
behavior of the Raman scattering intensity can be
attributed to the emergence of preferred orientation in a
system of nanocrystals and to correlation in their orien-
tation in the planar direction [19]. The sample under
consideration was subjected to pulsed excimer-laser
radiation (500 pulses with an energy density of
100 mJ/cm2 in a pulse). Based on the position of the
Raman scattering peak (512 cm–1), which corresponds
to the scattering by optical modes localized in the sili-
con nanocrystals, we may conclude that the size of the
nanocrystals is about 3 nm [12]; the fact that the peaks
are fairly narrow (14 cm–1), compared to the published
data [11, 20], indicates that the spread in the nanocrys-
tal sizes is small. A certain asymmetry of the peak and
a low-energy wing of the peaks in the region of 490–
500 cm–1 may be related to the contribution of misori-
ented Si located in the space between the oriented Si
nanocrystals or to scattering by longitudinal modes
localized in the nanocrystals. The special features
observed at 530 cm–1 are related to the plasma mode of
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Fig. 3. The Raman spectra recorded in different polarization
configurations for two orientations of the sample with
respect to the polarization directions of the incident light
(the rotation angle of the sample ϕ is indicated). The sample
is an a-Si/nc-Si film subjected to 500 pulses of laser radia-
tion with energy density of 100 mJ/cm2 in a pulse.
laser radiation at this wave number; this mode is not
completely suppressed by the interference filter. As was
mentioned above, an analysis of the ratio between the
intensities of Raman scattering in nanocrystals and in
amorphous phase [formula (1)] suggests that the con-
tent of crystalline phase is higher than 50%.

The Raman spectra of different samples containing
silicon nanocrystals were measured in relation to the
angle ϕ. All peaks corresponding to scattering by local-
ized optical phonons in nanocrystals were approxi-
mated with Lorentzian curves using computer-based
fitting based on the least-squares method. For all spec-
tra, we calculated the integrated Raman scattering
intensity; all intensities were then normalized to the
intensity in the X'X' configuration. In Fig. 4, we show
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Fig. 4. Experimentally measured ratios between the Raman
scattering intensities in different configurations (1) IY'Y'/IX'X'
and (2) IX'Y'/IX'X' to be compared with the values calculated
using formula (2). The quantity ϕ is an angle between the
crystallographic direction [001] of mutually oriented
nanocrystals and the direction of polarization of the incident
light X'. The solid lines represent the results of calculations
of the ratio IY'Y'/IX'X', whereas the dashed lines correspond
to calculations of IX'Y'/IX'X'. The conditions of laser irradia-
tions (the energy density in a pulse and the number of
pulses) and also the values of the parameters γ and ρ used in
the calculations are indicated.
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the calculated curves compared with experimental
polarization dependences of the Raman scattering
intensities on the angle ϕ for three different samples.
By comparing the results of calculations based on for-
mula (2) with experimental data, we determined the
fraction of the [110]-oriented nanocrystals γ and the
fraction of the nanocrystals oriented mutually in the
planar direction ρ. We observe a quantitative agreement
of the results of theoretical calculations with experi-
mental angular dependences of the ratios between the
Raman scattering intensities in various polarization
configurations. For the sake of comparison, we studied
the polarization dependences of the intensity of the
Raman scattering in different configurations of poly-
crystalline silicon film, in which the crystalline grains
were oriented randomly according to the data obtained
using electron microscopy. In this case, the Raman
scattering intensity was independent of the angle ϕ, and
the Raman scattering intensities in the X'X', Y'Y', and
X'Y' configurations coincided within experimental error.

3.3. Possible Mechanisms for the Origination
of Preferred Nanocrystal Orientation

The effect of the emergence of the preferred orien-
tation of crystalline grains in a film deposited on vitre-
ous substrates has been observed previously in poly-
crystalline films formed using plasma-chemical deposi-
tion. In this case, most of the crystallites are oriented in
such a way that their crystallographic planes, (110),
(100), and (311), are parallel to the growth plane [21],
with the (110) orientation encountered most often. Pre-
sumably, the emergence of the preferred orientations is
caused by the fact that certain surfaces are energetically
more favorable for growth; it is these surfaces that “sur-
vive” during the film deposition. This is related to a dif-
ference in the free surface energies for dissimilarly ori-
ented surfaces [21]. Origination of a preferred crystal-
lyte orientation with respect not only to the structure
normal but also to a certain planar direction, which
resulted in the formation of textured polysilicon layers,
was related to the existence of the preferred direction in
the system, which coincides with the direction of the
gaseous-mixture flow [22]. However, the mechanisms
suggested so far based on the assumption that the crys-
tallization rates are different for dissimilar crystallo-
graphic directions can be used to account for the film
texture only in the course of deposition and in the pro-
cesses of liquid-phase crystallization [3, 23], rather
than in the course of solid-phase crystallization.

In our experiments, using both the electron-micros-
copy and Raman scattering spectroscopy data, we
observed no other preferred orientations of nanocrys-
tals with respect to the film-surface normal (except for
the [110] orientation). The emergence of preferred
[110] orientation along the normal to the film can be
attributed to the effect of stresses both existing in the
(amorphous film)–substrate system and emerging
SEMICONDUCTORS      Vol. 36      No. 1      2002
around the forming nanocrystal, owing to the difference
in the densities of amorphous and crystalline phases.
Consideration of stresses in the film–substrate system
yields an addition of 0.27 meV/kbar per atom to the dif-
ference between the chemical potentials in the crystal-
line and amorphous phases [6, 7]. Consideration of
stresses in nanocrystal–(amorphous medium) systems
yields an even larger contribution to the chemical-poten-
tial difference. This addition amounts to 11.4 meV per
atom [6, 7] if the spherical nanocrystal is considered as
the dilatation center in an amorphous medium; this may
affect appreciably the nucleation dynamics. Appar-
ently, if the nucleus concentration is sufficiently high, it
is necessary to take into account an additional contribu-
tion to the free energy; this contribution arises due to
the interaction of nuclei via the stress fields. Since the
formation of a crystalline nucleus in the amorphous
phase gives rise to additional symmetry in the planar
direction, it may be expected that the formation of
interacting nanocrystals is accompanied with the emer-
gence of preferred orientation in the planar direction. It
is also well known that, for cubic crystals with a high
degree of symmetry (silicon represents such a crystal),
an elastic contribution to the Gibbs free energy depends
on the crystal orientation in the fields of both uniaxial
and biaxial stresses [24]. Therefore, one of the possible
explanations of the correlation between the orientations
of nanocrystals is based on their orientation in the fields
of thermoelastic stresses that arise during the pulsed
laser heating.

The dependence of the fraction of oriented nanonoc-
rystals on the energy density in a laser pulse is also
important (Fig. 4). A decrease in the energy density
and, as a result, a decrease in the average size of nanoc-
rystals resulted in a reduction in the correlation
between their mutual orientations. This fact also con-
firms the hypothesis that the mutual orientation occurs
owing to the effect of stresses, because, for smaller
nanocrystals, the stresses around the nanocrystal as a
dilatation center are lower, and the contribution of the
elastic component to the Gibbs free energy for the crit-
ical nucleus is smaller.

3.4. Formation of Textured Polysilicon Films
on Nonoriented Substrates. Optical Properties
of Amorphous Films Containing Nanocrystals

As was mentioned above, the application-related
interest in the processes of self-organization and mutual
orientation of nanocrystals is caused by the possibility
of forming polysilicon films with improved structural
and electrical characteristics and also by the new opti-
cal properties of an nc-Si/a-Si:H system. Solid-phase
crystallization during an in-furnace annealing (at
550°C) of the films that contained the silicon nanocrys-
tals nucleated by previous laser treatment resulted in
the formation of the [110]-oriented polysilicon texture
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on the nonoriented glass substrates. Under optimal con-
ditions of preliminary treatment of a-Si films with the
excimer-laser pulses with low energy density and sub-
sequent thermal annealing, the relative area occupied by
textured regions was as large as 80%, and the lateral sizes
of textured regions were no smaller than 20–30 µm [6].
In this situation, a close correspondence (with the devi-
ation in the orientation of neighboring crystallites no
larger than 6°) between the orientations of grains is
observed. This correspondence was observed not only
in the direction along the normal to the structure surface
but also in the planar direction, which gave rise to a sys-
tem of point reflections in electron diffraction patterns
that were similar to the pattern of reflections character-
istic of single-crystal, [110]-oriented silicon [6]. The
lower estimation of the charge-carrier mobility in such
structures, which was obtained from experiments with
steady-state photoconductivity and from the decay
time of transient photoconductivity, yielded the value
of 70 cm2 V–1 s–1; in contrast to this, the mobility in the
films that were not preliminarily subjected to laser radi-
ation was several times lower. In the photoconductivity
spectra of a-Si films containing nanocrystals, which
had an average size of about 2 nm and were formed in
the course of pulsed laser treatment, a peak at 1.15 eV
was observed. In these films, the content of nanocrys-
talline phase was lower than 1%; as the volume occu-
pied by nanocrystalline phase increased (as a result of
using laser pulses with higher energy densities), the
magnitude of photoresponse decreased, which can be
caused by the partial dehydrogenation of the films.
Photoluminescence in the visible region of the spec-
trum has been observed at room temperature in the
a-Si:H films with Si nanocrystals [25]. The nanocrys-
tals were formed either directly during plasma-chemi-
cal treatment or as a result of exposure to high-power
laser radiation; the latter could give rise to partial evap-
oration of the Si film accompanied with formation of
nanoislands [25]. In the films under consideration, we
observed a peak at about 1.5 µm in the photolumines-
cence spectrum excited by a solid-state laser with
wavelength of 1.06 µm. Nanocrystals in these films
were also formed using pulsed laser treatments; the
average size of the nanocrystals was 4 nm, and the frac-
tion of nanocrystalline phase was 70%. Photolumines-
cence in the above spectral region was not observed in
the starting a-Si films, which suggests that the observed
effect was related to the formation of nanocrystals.

4. CONCLUSION

The treatments of a-Si:H films with pulses of ultra-
violet-laser radiation, with energy densities below the
melting threshold for the films result in the formation of
nanocrystals in these films; nanocrystal sizes are no
smaller than 2 nm and depend on the energy density in
a pulse. It was found that silicon nanocrystals have a
preferred [110] orientation along the normal to the
structure surface. Anisotropic behavior of the cross sec-
tion for the Raman scattering is observed in a system of
oriented nanocrystals. An analysis of the angular
dependences of the Raman scattering intensities in dif-
ferent polarization configurations in the context of the
suggested model makes it possible to determine the
fraction of mutually oriented nanocrystals. The emer-
gence of the preferred mutual orientation of nanocrys-
tals in the planar direction in the initially isotropic
amorphous silicon film grown on the glass substrate
may be caused by their orientation in the fields of elas-
tic stresses and also by the phenomenon of self-organi-
zation as a result of interaction between nanocrystals
via the deformation-related mechanism.
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Abstract—The effect of annealing on the electron density of states in amorphous carbon a-C and amorphous
hydrogenated carbon a-C:H has been studied. a-C and a-C:H layers were grown by magnetron sputtering of a
graphite target in, respectively, argon and argon–hydrogen plasmas. Optical transmission spectra were studied
experimentally in the range 1.5–5.6 eV, and ellipsometric parameters were measured at the He–Ne laser wave-
length. The spectral dependence of the imaginary part of the dielectric function was reconstructed. A model
describing the optical response of amorphous carbon was developed on the basis of the hypothesis that there
are fluctuations of the sp2 fragment sizes in the allotropic composition of amorphous carbon. The optical gap
Eg in both types of material is accounted for by the presence of fragments of critical size. Experimental data
were used to reconstruct, with the use of model parameters, the energy dependence of the density of states in
the ground and excited bands, and the plasma frequencies for electrons involved in optical transitions are found.
It is shown that the bands of both the ground and excited states are inhomogeneously broadened sets of levels,
which are symmetrical about the Fermi level. The behavior of the model parameters Eg and EG (energy corre-
sponding to the peak of the Gaussian distribution) and the plasma frequency with annealing temperature shows,
for materials of both types, a substantial rise in the size and number of critical fluctuations with increasing tem-
perature. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The problem of the energy spectrum of amorphous
semiconductors cannot be formulated in a unified way
because of the wide diversity of their structural types.
This is manifested in the fact that the quantitative
description of the fundamental absorption edge in a suf-
ficiently wide spectral range is complicated. As is
known, the most general approach to this problem,
allowing comparison with experiment, was developed
by Tauc [1], who relied upon the assumption that the
energy spectrum of electrons is quadratic in momen-
tum. This assumption is insufficiently justified for nar-
row bands, which, presumably, is the case for amor-
phous carbon. It seems that the inconsistency of
approaches taken by different researchers to the analy-
sis of the shape of the fundamental absorption edge in
amorphous carbon [2, 3] is due to this circumstance.

In the present study, we develop a model of the
energy spectrum of amorphous carbon, which repre-
sents the structure of a-C as a homonanocomposite
containing nanosize fragments of sp2-bound carbon. It
is well known that there is no gap in the energy spec-
trum of π electrons in bulk graphite. The small size of
graphite-like fragments in sp2-bound carbon [2, 3]
leads to quantum-confinement effects and gives rise to
a gap. Averaging of the contributions of optical transi-
tions in these fragments causes inhomogeneous broad-
1063-7826/02/3601- $22.00 © 20110
ening of quantum-well levels into bands, which imparts
a Gaussian shape to the density-of-states function. Sim-
ilar concepts were developed in the preceding works of
the authors of [2], but only in the present study was the
density-of-states function obtained in an analytical
form that is applicable to the quantitative description of
the experimental fundamental absorption edge.

The proposed model of the electronic structure of
amorphous carbon is used to describe the dependence
of the absorption edge in a-C and a-C:H on the thermal
annealing temperature; this model ensures good agree-
ment with the experiment. The employed model is
based on a self-similarity hypothesis according to
which a certain macroscopic fragment of size L is
regarded as a structural unit of amorphous carbon, with
the volume L3 containing a set of molecular structures
of size a, and fluctuations of this parameter govern the
optical properties of the material.

In section 2, the experimental procedure and exper-
imental results are briefly considered. A structural
model of amorphous carbon is presented and its quan-
titative description is given in Section 3. The calcula-
tion is compared with experiment in Section 4, and the
effect of annealing on the density of states in amor-
phous carbon is analyzed quantitatively in Section 5.
002 MAIK “Nauka/Interperiodica”
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2. EXPERIMENTAL

Amorphous carbon layers were deposited by dc
magnetron sputtering of a graphite target onto fused sil-
ica substrates. A 1 : 4 mixture of hydrogen and argon
was used as the working gas to obtain a-C:H films, and
pure argon, in the case of a-C. The substrate tempera-
ture during growth was 200°C, the gas pressure in the
working chamber constituted 8–9 mTorr, and the mag-
netron power was maintained at 0.36 kW. The time of
a-C and a-C:H film growth was chosen to be 40 and
30 min, respectively, which gave the layer thicknesses
of 770 and 740 Å.

The transmission of the films deposited onto fused
silica in the visible spectral range (200–850 nm) was
measured on a Hitachi U-3410 double-beam spectropho-
tometer. The light spot on a sample was 0.5 × 0.5 cm2 in
size. Ellipsometric measurements were carried out with
an LEF-3M ellipsometer at a photon energy of 1.96 eV
in reflection arrangement. The grown films were sub-
jected to successive isochronous annealings in a vac-
uum (at residual pressure of 1 mtorr) in the temperature
range 260–475°C. The spectral and ellipsometric mea-
surements were done in air immediately after every
annealing. According to ellipsometric data, the param-
eters of annealed films remained unchanged during a
month of exposure to air.

The obtained ellipsometric data (film thicknesses,
refractive index of the material, and its extinction coef-
ficient at He–Ne laser wavelength) were used to recon-
struct the spectral dependence of the extinction coeffi-
cient.

The dependence of the extinction coefficient on
wavelength was obtained using the Kramers–Kronig
relation. From the spectral dependences of the refrac-
tive index and extinction coefficient, the spectral depen-
dence of the imaginary part of the dielectric constant
shown in Figs. 1 and 2 was determined. It can be seen
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Fig. 1. Spectral dependences of the imaginary part of the
dielectric constant of (1) an unannealed a-C:H film and films
annealed at (2) 310, (3) 360, (4) 415, and (5) 475°C. Points,
experimental data; curves, fitting with expression (5).
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from Fig. 1 that the imaginary part of the dielectric con-
stant of an a-C:H film is a monotonic function of
energy at low annealing temperatures, but, at a certain
temperature, a spectral feature appears, which becomes
more pronounced and shifts to lower energies with
increasing annealing temperature. A similar type of
behavior is observed for the dependence for a-C (Fig. 2).

3. DIELECTRIC FUNCTION OF AMORPHOUS 
CARBON

3.1. Structural Model of Amorphous Carbon

In considering the structural model of amorphous
carbon, let us adopt, to a first approximation, the fluctu-
ation hypothesis, according to which spatial fluctua-
tions of the density of π electrons are present in the
material. It is assumed in the present study that the fun-
damental optical absorption edge of amorphous carbon
is formed by averaged contributions from optical tran-
sitions in separate fragments of the sp2 phase with
Gaussian distribution. In view of the existence of cer-
tain kinetic limitations imposed on the growth of struc-
tures with a large number of π electrons, their size dis-
tribution function is limited by the largest possible, i.e.,
critical, fluctuation, and the number of fragments
exceeding the critical fluctuation in size is small.

A characteristic feature of the electronic spectrum
within a fragment is that the minimum energy of the
quantum absorbable by the system is the energy of the
first allowed optical transition between the highest
occupied (HOMO) and lowest unoccupied (LUMO)
states. Hence, it follows that the critical fluctuation is
responsible, in the formation of the fundamental optical
absorption edge, for the minimum energy Eg of the
absorbed quantum (Fig. 3).
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Fig. 2. Spectral dependences of the imaginary part of the
dielectric constant of (1) unannealed a-C film and films
annealed at (2) 310, (3) 360, (4) 415, and (5) 475°C. Points,
experimental data; curves, fitting with expression (5).
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3.2. Calculation of the Dielectric Function

Let us now obtain basic relations that will enable an
interpretation of experimental data. For this purpose, let
us consider an optical transition between the energy

levels  and  in the region of fluctuation of the
amorphous carbon film composition, which can be rep-
resented as a potential well of certain effective width a.
To describe the optical response of such a system to the
action of an electromagnetic wave, we consider a sin-
gle-electron model of the resulting optical electron
transition. Let an electron pass from an occupied state

o in l-th fragment with energy  and wave vector k0

into a n-th unoccupied state u (n = l) with energy 
and wave vector ku. Taking into account the fact that the
fragment is spatially limited, as well as the uncertainty
relation between the electron momentum and the coor-
dinate, we neglect the momentum conservation law and
write an expression for the dielectric constant of a two-
level system, lo–nu, in the form
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Fig. 3. Scheme of energy levels responsible for the optical
properties of amorphous carbon. The Fermi level lies
between the lowest unoccupied and highest occupied states.
Let us introduce the density-of-states functions

(1a)

where N0 is the number of pairs of levels in a sample of
volume V. This gives

(2)

When making  approach V = L3, it is assumed that

 = |Pou|2; i.e., the matrix element tends towards
its mean value, and Eo, to Eg/2. Here, the value Eg cor-
responds to the energy of a HOMO–LUMO transition
in a critical fluctuation. In this case, expression (2)
tends to

(3)

Expression (3) is an equation with unknown integrand.
To solve this equation, we use, as a first approximation,
a Gaussian density-of-states function [2]:

(4)

Here, parameter D is defined by normalization condi-
tions requiring that the integral of the density-of-states
function over energy in the interval from Eg/2 to infin-
ity be equal to N0/V; su = so = s is the dispersion; Eu =
EG*, |Eo| = EG; and EG = EG* are the energies corre-
sponding to the peak in the Gaussian distribution. It is
noteworthy that a correction to the solution of Eq. (3)
can be found by refining the coefficients of the further
expansion of (4) in Gaussians. However, as shown
below, the first approximation is suitable in the case in
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question for fitting the results of calculation to experi-
mental data with sufficient accuracy. Integrating (3), we
finally have

(5)

Assuming that Eg = 0, we have the case considered in
[2]. It can be readily seen from (5) that ε'' vanishes at
"ω = Eg, being the largest at "ω ≈ 2EG.

4. COMPARISON OF THE MODEL
WITH EXPERIMENT

Let us analyze the experimental frequency depen-
dence of the imaginary part of the dielectric constant.

ε'' "ω( ) A

"ω( )2
--------------

2EG "ω–( )2

4s2
------------------------------– erf

"ω Eg–
2s

------------------- 
  ,exp=

A
C2D

2s π
-------------, C

KV2

N0
2

---------- Pou
2.= =

Photon energy, eV
1 2 3 4 5 6

1.00

0.75

ε''/εm

Fig. 4. Normalized dielectric function of a-C film subjected
to 1-h annealing at 475°C. Points, experiment; solid line,
calculation at s = 1.495 eV, EG = 2.947 eV. εm = ε''("ωm).
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For this purpose, we use expression (5) containing four
fitting parameters. In this connection, particular atten-
tion was given in the present study to the uniqueness of
the obtained solutions, and, therefore, the problem of
finding the parameters was solved in stages. In the ini-
tial stage, expression (5) was used for the value Eg = 0,
and three fitting parameters had to be determined: A,
EG, and s. Expression (5) was normalized to the maxi-
mum value of the dielectric function ε''("ωm) for each
curve processed. Coefficient A was thereby eliminated
from Eq. (5), the number of unknowns was reduced to
2, and the equation was transformed into

(6)

Figure 4 presents a normalized frequency dependence
of the imaginary part of the dielectric function.

It can be shown that a system of two equations
formed with the use of (6) at two ω values has a unique
solution for the pair EG and s (see APPENDIX). Fig-
ure 4 shows, by a solid line, the values calculated by
means of (6) for the solutions obtained for EG and s.
Further, the least-squares method was applied, with
the thus-found approximate solution used as a starting
approximation. A search for the minimum of the func-
tional composed of the difference of squared expres-
sion (5) and experimental data was done using the New-
ton method to give the results listed in Tables 1 and 2.

In a similar way, Eq. (5) was solved at finite Eg val-
ues, but with an additional fitting parameter introduced
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Table 1.  Parameters of the first stage of fitting and plasma frequencies for a-C

T, °C A, eV2 EG, eV s, eV ("ωp)2, eV2 χ2, 10–5

200 38.25 ± 2.23 3.13 ± 0.06 1.21 ± 0.03 18 205

310 38.78 ± 1.01 2.93 ± 0.04 1.15 ± 0.02 18 239

360 42.34 ± 1.12 2.92 ± 0.03 1.74 ± 0.02 20 177

415 51.24 ± 0.42 2.96 ± 0.02 1.39 ± 0.01 29 26

475 54.75 ± 0.37 3.01 ± 0.01 1.56 ± 0.01 34 23

Table 2.  Parameters of the first stage of fitting and plasma frequencies for a-C : H

T, °C A, eV2 EG, eV s, eV ("ωp)2, eV2 χ2, 10–5

200 27.83 ± 0.95 3.19 ± 0.04 1.02 ± 0.02 11 32

310 30.43 ± 1.03 2.96 ± 0.04 0.98 ± 0.02 12 112

360 34.37 ± 0.86 2.89 ± 0.03 1.02 ± 0.02 14 131

415 42.34 ± 0.68 2.84 ± 0.02 1.13 ± 0.03 20 114

475 54.03 ± 0.58 2.82 ± 0.02 1.28 ± 0.01 30 100
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in this stage. To eliminate this parameter, the experi-
mental data were supplemented using a polynomial
extrapolation into the low-energy part of the spectrum.
As a first approximation to Eg, the value obtained from
the intersection of the curve representing the supple-
mented dielectric constant with the energy axis was
used. A further approximation in solving Eq. (5) was
done by successively applying the Newton method to
the starting EG, s, and K values set using Tables 1 and 2.
The results of fitting for different groups of materials
are presented in Tables 3 and 4. Let us introduce for two
stages (Eg = 0, Eg ≠ 0) a fitting criterion χ2 in the form
of a sum of average squared discrepancies between the
calculated and experimental data. Let us compare the
fitting criteria for Eg = 0 and Eg ≠ 0. As follows from
Tables 1–4, the condition Eg ≠ 0 (Tables 3 and 4) better
describes the experimental data. It should be noted,
however, that at relatively high annealing temperatures

2 3 4 5 6

1.2

1.0

0.8

0.6

0.4

0.2

0

Photon energy, eV

ε''

Fig. 5. Final result of a calculation optimization procedure.
Points, experiment; solid line, calculation by expression (5)
at Eg ≠ 0; dashed line, calculation at Eg = 0.
the difference between the solutions obtained in the
first and second stages vanishes, which reflects the
decrease in the Eg value upon annealing.

Figure 5 presents, as an example, the final result
achieved in optimizing the calculation procedure for
curve 3 in Fig. 1. It can be seen that the case when the
parameter Eg is nonzero gives the best fit to the experi-
mental data.

Thus, the problem of determining a set of unknowns
can be solved at the minimum number of fitting param-
eters with the use of symmetric Gaussians.

5. EFFECT OF THERMAL ANNEALING

Let us apply the developed procedure to study the
effect of thermal annealing on the fundamental absorp-
tion edge in a-C and a-C:H.

We characterize the effect of annealing by the values
of Eg and EG and the concentration of electrons
involved in optical transitions (an increase in this con-
centration corresponds to graphitization of the material
in annealing). For this purpose, we use the expression
for the frequency of plasma oscillations of electrons,
ωp, related to the imaginary part of the dielectric func-
tion of the material by

(7)

The values calculated using (7) are also presented in the
tables. It follows from Tables 3 and 4 that, in the case of
a-C, the plasma frequency depends on the annealing
temperature nonmonotonically, in agreement with the
data of [3]. It was shown in [3] that for a-C films the
temperature dependence of the film thickness has the
form of a curve peaked at around T = 360°C, whereas

"ωp( )2 2
π
--- "ωε'' ω( ) "ω.d

0

∞

∫=
Table 3.  Parameters of the second stage of fitting and plasma frequencies for a-C

T, °C A, eV2 Eg, eV EG, eV s, eV ("ωp)2, eV2 N, 1022 cm–3 χ2, 10–5

200 80.36 ± 5.88 1.35 ± 0.01 4.52 ± 0.13 2.35 ± 0.08 45.2 3.15 18

310 54.69 ± 1.41 1.26 ± 0.01 3.57 ± 0.04 1.89 ± 0.04 30.3 2.1 17

360 52.60 ± 1.06 1.12 ± 0.02 3.36 ± 0.03 1.74 ± 0.03 29.1 2.1 21

415 52.84 ± 0.64 0.27 ± 0.07 3.06 ± 0.02 1.49 ± 0.03 30.5 2.1 23

475 54.75 ± 0.37 0 3.01 ± 0.01 1.56 ± 0.01 34.2 2.4 23

Table 4.  Parameters of the second stage of fitting and plasma frequencies for a-C : H

T, °C A, eV2 Eg, eV EG, eV s, eV ("ωp)2, eV2 N, 1022 cm–3 χ2, 10–5

200 47.13 ± 2.05 1.77 ± 0.02 3.99 ± 0.06 1.65 ± 0.04 21.8 1.53 3

310 46.08 ± 1.16 1.79 ± 0.01 3.67 ± 0.04 1.73 ± 0.03 22.8 1.6 4

360 42.67 ± 0.60 1.63 ± 0.01 3.28 ± 0.02 1.52 ± 0.02 20.8 1.5 5

415 47.48 ± 0.52 1.26 ± 0.02 3.10 ± 0.02 1.60 ± 0.02 25.4 1.78 9

475 59.43 ± 0.55 0.95 ± 0.03 2.95 ± 0.01 1.65 ± 0.03 34.4 2.41 13
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the thickness of a-C:H films steadily decreases with
temperature. This nonmonotonic behavior was attrib-
uted to relaxation of elastic strains in thermal treatment
of a-C films. Presumably, the nonmonotonic variation
of the film thickness in the course of annealing leads to
nonmonotonic changes in its density and, consequently,
in plasma frequency. With the temperature increasing
further (T > 360°C), the plasma frequency grows
steadily with temperature. At the same time, in the case
of a-C:H films, the plasma frequency remains virtually
constant in the temperature range 200–360°C and then
grows steadily, also in agreement with [3]. In both cases
the energy gap Eg of a-C and a-C:H decreases steadily.
Changes in the parameter Eg reflect the behavior of the
critical fluctuation of the sp2 phase in annealing, and,
therefore, a conclusion can be made that the size of the
critical fluctuation grows with temperature. The simul-
taneous increase in the plasma frequency indicates an
increase in the total number of fluctuations per unit vol-
ume at temperatures exceeding 360°C. It also follows
from the presented data that, in the optimal-size fluctu-
ations, the distance between the centers of bands of
energy levels is within the range 6–8 eV for samples of
both types. The comparatively high transition energies
suggest that the energy terms of optimal fragments,
formed in part by σ electron states, contribute to the
absorption. In the course of annealing, the distance
between the centers of the bands composed of levels
decreases somewhat.

It should also be noted that, since all structural
changes in a film in the course of its annealing are
accompanied by loss of hydrogen, the role of the latter
in limiting the size of the critical fluctuation both in the
formation of the material and in its thermal degradation
during annealing should not be underestimated.

1 2 6

1

2

3

3

4

4

5

5

0

s, eV

EG, eV

Fig. 6. Set of roots for equations formed with expression
(6). The intersection point corresponds to solution s =
1.495 eV, EG = 2.947 eV.
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6. CONCLUSION

Thus, a model that can account for the experimental
dependences of the optical characteristics on the
annealing temperature was developed. The fundamen-
tal absorption edge is presented analytically in the form
of the Tauc model generalized to the case of amorphous
carbon and related materials. The spectral dependence
of the imaginary part of the dielectric function reflects
the existence of a sp2 phase fragment of critical size,
which depends on the hydrogen concentration in a film.

The developed model was used to reconstruct the
energy spectrum of electrons. It is shown that the
energy spectrum is formed by symmetrically lying
bands of levels, which are broadened according to the
Gaussian law. This broadening is associated with the
inhomogeneous broadening of energy levels, whose
number grows with annealing temperature.

APPENDIX

If we substitute in the left-hand side of Eq. (6) two
experimental values of the normalized dielectric func-
tion, we obtain a system of two equations with two
unknowns that has a unique solution. For this purpose,
let us choose two points in the normalized dependence
ε''("ω)/ε("ωm) (Fig. 4), one at low (2.59 eV) and the
other at high energies (5.64 eV). Using the enumerative
technique, we find all roots s, EG of Eq. (6) for both
experimental values.

Figure 6 presents a set of roots for equations formed
with the use of expression (6) for an a-C film. The solu-
tion of the problem corresponds to the intersection of
the sets of roots. Thus, it can be seen from Fig. 6 that,
in the case in question, a unique solution exists in the
energy range 1–6 eV. Apparently, at known ε''("ω), EG,
and s, the A value can be found using (5), which, in the
case under consideration, is A ≈ 80 eV2.
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Abstract—The current response of AlxGa1 – xAs graded-gap layers to optical and X-ray radiation was studied.
A graded-gap electric field in the 15-µm-thick AlxGa1 – xAs layers, with x varying from 0 to 0.4, ensures the com-
plete collection of charges generated by ionizing radiation and makes it possible to attain the value of 0.25 A/W
for the current–power sensitivity of AlxGa1 – xAs. In the layers with a lowered doping level of the narrow-gap
region of the graded-gap AlxGa1 – xAs layer, the voltage–power sensitivity to X-ray radiation with energy lower
than 15 keV is as high as 1.6 × 103 V/W in the photovoltaic mode. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

Semiconductor layers whose band gap varies with
thickness (the so-called graded-gap structures) can be
used as ionizing-radiation detectors with either optical
[1, 2] or current [3, 4] responses. In the first case, the
detector sensitivity is controlled by the quantum yield
of the ionizing-radiation conversion to optical radiation
and by the efficiency of extracting the latter radiation
through a wide-gap window of the graded-gap crystal
in the direction of an external photodetector. Although
an optical-response detector has a clear advantage in
that it makes it possible to observe the luminescence
pattern of ionizing radiation incident on the crystal with
high spatial resolution, the external quantum yield of
such a detector is low [2].

In the second case, the graded-gap field is used to
collect the charge generated by ionizing radiation in the
bulk of the graded-gap layer. The difference between
the built-in fields for holes and electrons and also
between their mobilities makes it possible to separate
the charges and observe the graded-gap photovoltage
[3, 4]. A fairly high graded-gap field can ensure the
highly efficient collection of generated charges in the
crystal.

In this paper, we report the results of studying the
current response of graded-gap AlxGa1 – xAs layers to
optical and X-ray radiation. We determined the condi-
tions for the complete collection of nonequilibrium
charge carriers generated by ionizing generation using
only the graded-gap field, without applying any exter-
nal voltage. We considered the means for a drastic
increase in the voltage–power sensitivity of graded-gap
detectors in the case of the AlxGa1 – xAs-layer doping
which is nonuniform over the thickness.
1063-7826/02/3601- $22.00 © 20116
2. THE GRADED-GAP PHOTOVOLTAGE
AND CURRENT RESPONSE
IN A GRADED-GAP LAYER

When a graded-gap semiconductor is illuminated,
photovoltage arises owing to the band-gap gradient;
this photovoltage has been experimentally observed
[3, 4]. Let us determine the photocurrent and photovolt-
age in the graded-gap structure represented in Fig. 1a
when nonequilibrium electrons ∆n and holes ∆p are
generated by external ionizing radiation. The electron jn
and hole jp currents in such a structure are given by

(1)

(2)

(3)

where e is the elementary charge; n0 and µn, and p0 and
µp are the equilibrium concentrations and mobilities of
electrons and holes; Fv is the electric field caused by the
graded-gap photovoltage; F0 is the field caused by
external voltage sources; and EC and EV are the energies
corresponding to the conduction-band bottom and the
valence-band top. The fields of the graded-gap structure

for holes  and electrons  are related to the

gradient of the band gap Eg by the formula

(4)
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According to (1), (2), and (4), the current flowing
through the graded-gap structure is equal to

(5)

The current response to the generation of nonequil-
brium electrons and holes ∆n = ∆p is given by

(6)

where

(7)

In formula (6), it is implied that  is unaffected by

the nonequilibrium-carrier generation if the latter is
uniform across the layer.

We use the condition F0 + Fv = 0 to determine the
short-circuit current as

(8)

For F0 = 0, we use the condition j∆n = 0 to obtain the fol-
lowing formula for the graded-gap field:

(9)

The graded-gap photovoltage is given by

(10)

For a doped p-type semiconductor, we have  ≈ 0,

so that the short-circuit current can be represented as

(11)

For the graded-gap photovoltage in a p-type semicon-
ductor layer with thickness L in the case of uniform
doping over the coordinate z and the photogeneration
∆n = ∆p, we obtain

(12)

where b = µn/µp and

(13)
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The current sensitivity of a graded-gap crystal is
identical to that of a conventional homogap photoresis-

tor to which the voltage inducing the field F0 = 

is applied. However, the fact that it is unnecessary to
apply an external voltage ensures a drastic decrease in
the current-noise level in a graded-gap photoconductor
compared to a homogap photoconductor. The high
valence-band electrical conductivity of a graded-gap
crystal ensures a low level of thermal noise, which offers
many points in favor of a graded-gap detector compared
to a photodetector based on the p–i–n junction.

The current sensitivity of a graded-gap p-AlxGa1 – xAs
structure is controlled by the drift velocity of electrons in
the graded-gap field of the conduction band. If there is no
drift of electrons, the steady-state number of charge-car-
rier pairs involved in recombination is equal to

(14)

where d∆N/dt is the number of pairs generated by ion-
izing radiation per unit time in unit volume, and τ is the
recombination time. In the doped AlxGa1 – xAs semicon-
ductor, the recombination time is τ ≈ 10–9 s.

If there is drift, a fraction of electrons leaves the
layer with thickness L without having a chance to
recombine, and this fraction is involved in the photo-
current

(15)

where tdr is the time it takes for an electron to pass the
L-thick layer with the drift velocity v dr. The photoelec-
tric gain

(16)

represents what fraction of electron–hole pairs, gener-
ated in the layer L, is involved in the photocurrent. For
K = 1, we have a complete collection of the charge car-
riers generated in the crystal.

In a uniformly doped graded-gap crystal, the time of
transit through the layer L is given by

(17)

For AlxGa1 – xAs with x varying in the range of 0–0.4,
the transit time tdr ≈ L2/2.2 × 103 s. For L = 15 µm, tdr

becomes almost equal to the lifetime τr = 10–9 s, so that
K ≈ 1. We can decrease or increase the transit time tdr by
applying an external voltage U0 to the layer.

The number of electron–hole pairs generated in
unit time as a result of the absorption of ionizing radi-

1
e
---

dEg

dz
---------

∆n
d∆N

dt
-----------τ ,=

j e∆nv dr e
d∆N

dt
-----------L

τ
tdr
-----,= =

K τ /tdr=

tdr
L2

µ 1
e
--- Eg L( ) Eg 0( )–[ ] Uv U0+ +

 
 
 

--------------------------------------------------------------------------------.=



118 PO ELA et al.Ž
ation with power WX(L) in a layer with thickness L is
equal to

(18)

where ET is the average energy required for the genera-
tion of a pair. Substituting (18) into (15), we obtain the
following expression for the current–power sensitivity:

(19)

For AlxGa1 – xAs, we obtain ET ≈ 4 eV and βj = 0.25 A/W
if the charge carriers generated within the layer are
completely collected (K = 1). In the case of ∆n = ∆p !
p0, the voltage–power sensitivity is given by

(20)

For p0 = 1016 cm–3, µp = 400 cm2 V–1 s–1, and L = 10–3 cm,
we obtain βv = 0.4 × 10–3 V/W. Such voltage–power
sensitivity of a graded-gap layer has been observed
experimentally [3, 4].

The low voltage–power sensitivity is caused by the
high electrical conductivity of the active layer in a
graded-gap structure. A high electrical conductivity
results in a fast dielectric relaxation of nonequilibrium
charges separated by the graded-gap field. The voltage–
power sensitivity can be enhanced by reducing the elec-
trical conductivity of even a fraction of the graded-gap
layer.

We now consider a p-type graded-gap layer with
nonuniform doping over the layer thickness. Let the
doping be such that EV changes linearly over the layer
thickness (Fig. 1b). According to (8) and (9), the
graded-gap field in this layer is given by

(21)
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Fig. 1. Schematic representation of variations in the ener-
gies of the conduction- (EC) and valence-band (EV) edges
with depth z in the graded-gap p-AlxGa1 – xAs layers for
(a) a uniformly doped layer with a thickness L and (b) a
nonuniformly doped layer with a thickness l. EF stands for
the Fermi level, and Eg denotes the band gap.
For σp0 @ σ∆n > σ∆p > σn0, we obtain

(22)

Correspondingly, the graded-gap photovoltage is equal to

(23)

where it is assumed that the following relations are
valid for the layer with thickness l:

It is noteworthy that, in view of ∆Eg ≠ 0, the photovolt-
age across the graded-gap p–p+ junction exceeds the
photovoltage across the homogap p–p+ junction.

Nonuniform doping gives rise to two important
effects. First, the short-circuit current increases owing

to the emergence of the field , which is combined

with the graded-gap field  and has the same sign

as the latter. Second, the graded-gap photovoltage
increases drastically owing to the reduction of the
majority-carrier concentration in the depletion region
p0(0). For ∆EV = 0.3 eV, the graded-gap photovoltage in
this sensitive layer increases by more than six orders of
magnitude compared to that in the heavily doped region
of the graded-gap crystal.

It is expedient to form the sensitive layer in the nar-
row-gap region of the graded-gap crystal. This layer
then also serves as a collector for nonequilibrium
charge carriers coming from the remaining part of the
graded-gap structure with the thickness of L ≈ τv dr.

An increase in resistivity of the high-sensitivity
layer is limited by the requirement for the rapid estab-
lishment of voltage across this layer. If we stipulate that
the relaxation time for voltage should be no longer than
the recombination time τ for charge carriers in the
structure, the highest resistivity of the depletion layer
ρm is limited by the inequality

(24)

where the dielectric constant of AlxGa1 – xAs is equal to
ε = 9 × 10–13 s/(Ω cm). If τ = 10–9 s in AlxGa1 – xAs, the
resistivity is ρm ≤ 1.1 × 103 Ω cm, which corresponds to
p0 ≥ 1.4 × 1013 cm–3 in the p-type layer.
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3. EXPERIMENT

Liquid-phase epitaxy was used to grow 15–50-µm-
thick Zn-doped AlxGa1 – xAs layers on GaAs substrate.
The hole concentration in the layers was about 1018 cm–3.
The aluminum fraction changed linearly across the
layer depth from x = 0.4 at the substrate to x = 0 at the
outer layer surface. A lightly doped region was formed at
the upper (x = 0) layer surface. The grown layers were
separated from the substrate, and small-area (10–2 cm2)
current contacts were deposited on both sides of the
layers. The sample area was about 10–1 cm2.

Experimental measurements of the photovoltage
spectral dependences in the obtained samples verified
the presence of a high-sensitivity region at the narrow-
gap surface of the AlxGa1 – xAs layer. If the layers are
illuminated from the narrow-gap side (x = 0), high pho-
tovoltages are observed; these photovoltages increase
as the carrier-generating light penetrates deeper into the
layers (see Fig. 2).

If the layers are illuminated from the wide-gap side,
the effects of the transit time and the coefficient K on
the photovoltage are observed. For λ = 0.6 µm, the
charge carriers are generated near the wide-gap surface
of the layer, and the time of their transit through the
entire 15-µm-thick layer is τdr ≈ 10–9 s. As the wave-
length increases, the generation region shifts to the
wide-gap portion of the crystal according to the linear
variation in the band gap; as a result, the transit time
decreases. If the wavelength is changed to λ = 0.8 µm,
the transit time decreases by several times, and the cur-
rent amplification (K > 1) is observed. Correspond-
ingly, the graded-gap photovoltage increases by a factor
of 4. When the excitation-photon energy is decreased
further to E < Eg, the electron–hole pairs cease to be
generated and the graded-gap photovoltage is no longer
observed (see Fig. 2).

In Fig. 3, we show the results of measuring the
dependence of the graded-gap photovoltage in the
AlxGa1 – xAs crystals on the intensity of X-ray radiation
emitted at the Cu and Cr anodes. The intensity is
assumed to be proportional to the anode current in the
source of X-ray radiation.

The integrated power of radiation emitted by the
source with a Cu anode and measured at the location of
the graded-gap detector is Wv = 43 × 10–6 W/cm2 for
Ia = 20 mA and Ua = 30 kV. About 50% of the power
incident on the crystal is absorbed in the AlxGa1 – xAs
layer with a thickness of L = 15 µm. Hence, we find that
the voltage–power sensitivity of the graded-gap detec-
tor is equal to βv ≈ 1.6 × 103 V/W.

Consequently, the sensitivity of the nonuniformly
doped, graded-gap AlxGa1 – xAs layer is found to exceed
the sensitivity of uniformly doped layers reported pre-
viously [3, 4] by five–six orders of magnitude.

Such a high sensitivity verifies the determining role
of the depletion layer in the formation of graded-gap
photovoltage. Such a high photovoltage is observed
SEMICONDUCTORS      Vol. 36      No. 1      2002
only in the structures with a lightly doped surface layer.
The photovoltage was lower than 10–3 V in the struc-
tures that did not contain a depletion layer and incorpo-
rated the low-resistivity current contacts.

Measurements of the dependence of the graded-gap
photovoltage on the structure thickness verified the
important role of transit time in the formation of photo-
voltage. The experimentally observed photovoltage in
an AlxGa1 – xAs structure with a thickness of L = 15 µm
(Fig. 3, curve 1) is higher by a factor of 6 than that in a
structure with a thickness of L = 50 µm (curve 2), which
corresponds to a variation in the amplification coeffi-
cient K for the same ∆Eg ≈ 0.4 eV.
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Fig. 2. Dependence of the graded-gap photovoltage Uv  on
the wavelength of photons in the case of illumination of the
graded-gap AlxGa1 – xAs crystal from the wide-gap side (x =
0.4, curve 1) and from the narrow-gap side (x = 0, curve 2).
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Fig. 3. Dependences of the graded-gap photovoltage Uv
(curves 1, 2, 5) and the X-ray-excited luminescence inten-
sity VCCD (curves 3, 4) on the X-ray-radiation intensity
expressed in terms of the anode current Ia of the X-ray
source. The source anode is made of (1, 2) Cr and (3–5) Cu.
The anode voltage is Ua = 30 kV. The quantity VCCD corre-
sponds to the output of the luminescence detector based on
the charge-coupled devices (CCD) for the exposure time of
0.3 s. The thickness of the samples L was equal to (1, 4, 5)
15 and (2, 3) 50 µm.
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In Fig. 3, we also show the results of measuring the
luminescence intensity of the same crystals as a func-
tion of the flux of X-ray radiation; a video camera
incorporating the charge-coupled devices (CCD) was
used in the measurements. An inverse pattern is
observed: the intensity of radiative recombination in
the sample with L = 50 µm (curve 3) exceeds by a factor
of 11 the corresponding intensity in the sample with
L = 15 µm (curve 4).

Thus, the experiments lend support to the view that
a reduction in the current export of charge carriers in a
graded-gap layer enhances the intensity of lumines-
cence in the crystal; in contrast, an increase in the cur-
rent export quenches the luminescence.

It follows from the above that the graded-gap
AlxGa1 – xAs structures with current response can be used
with good results to detect ionizing radiation with the

absorption coefficient α > , where LK ≈ 1.5 × 10–3 cm
is the layer thickness for which K = 1. Such a coefficient
of absorption in AlxGa1 – xAs corresponds to the X-ray
photons with energies below 15 keV. In order to detect
the radiation that penetrates deep into AlxGa1 – xAs, one
has to use thick graded-gap layers. In these layers, we
have K < 1, and, thus, it is appropriate to use a graded-
gap radiation detector with the luminescence response.

4. CONCLUSION
(i) The graded-gap field in an AlxGa1 – xAs layer with

a gradient of x = 0–0.4 and a thickness of 15 µm ensures
the complete collection of the charge generated by ion-
izing radiation in the layer. The relatively small mean
energy required for the formation of an electron–hole
pair in AlxGa1 – xAs (4 eV) makes it possible to attain a
high yield of the nonequilibrium-charge generation
when the ionizing radiation is absorbed. Both factors are

LK
1–
conducive to obtaining the current–power sensitivity of
an AlxGa1 – xAs detector at a level of βj = 0.25 A/W.

(ii) The voltage–power sensitivity of the detector is
directly proportional to the ohmic resistance of the
AlxGa1 – xAs layer. A layer with increased resistance
from the narrow-gap side of the graded-gap structure
enhances the sensitivity of the AlxGa1 – xAs detector by
several orders of magnitude. The experimental voltage–
power sensitivity of the 15-µm-thick graded-gap
AlxGa1 – xAs layer with a lightly doped surface region is
higher than βv ≈ 1.6 × 103 V/W under X-ray irradiation
using a Cu anode with Ua = 30 kV.

(iii) It is appropriate to use the graded-gap AlxGa1 – xAs
layers with current response to detect the ionizing radi-
ation with a penetration depth no greater than 15 µm.
The fact that there is no need for external current and
voltage sources and also the low internal resistance of
the layer ensure a reduction of the noise level in the
graded-gap detectors compared to conventional photo-
detectors.

REFERENCES

1. J. Po ela, K. Po ela, A. il nas, et al., Nucl. Instrum.
Methods Phys. Res. A 434, 169 (1999).

2. J. Po ela, K. Po ela, A. il nas, et al., Lith. Phys. J. 39,
139 (1999).

3. A. N. Imenkov, N. Nazarov, B. S. Suleœmenov, et al.,
Fiz. Tekh. Poluprovodn. (Leningrad) 12, 2377 (1978)
[Sov. Phys. Semicond. 12, 1413 (1978)].

4. Zh. I. Alférov, V. M. Andreev, Yu. M. Zadiranov, et al.,
Pis’ma Zh. Tekh. Fiz. 4, 369 (1978) [Sov. Tech. Phys.
Lett. 4, 149 (1978)].

Translated by A. Spitsyn
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Abstract—Passivation of p-Si by hydrogen through its diffusion was simulated by solving diffusion–kinetic
equations with allowance made for hydrogen–acceptor-pair formation, internal electric field, and the screening
effect. Screening of hydrogen and acceptor ions by free carriers leads to a decrease in the radius of interaction
between the ions and to the weakening of the concentration dependence of hydrogen diffusivity in heavily
doped Si. At a binding energy of the pairs of 0.70–0.79 eV, calculated and experimental concentration profiles
of holes and the hydrogen–acceptor pairs are in agreement over a wide range of boron concentrations, from
4 × 1014 to 1.2 × 1020 cm–3. The radius of the Coulomb interaction of hydrogen and boron ions is 35 Å in lightly
doped Si and decreases as the dopant concentration increases. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The treatment of single-crystal Si doped with accep-
tor impurities (B, Al, Ga, In, Tl) in hydrogen-contain-
ing plasma, water vapor, or aqueous solutions in the
temperature range from 65 to 200°C results in an
increase of surface-layer resistivity [1–3]. This effect is
found to be related to the passivation of acceptors with
hydrogen ions via the formation of neutral hydrogen–
acceptor pairs A–H+ (A– is an ionized acceptor) [1, 2]
rather than to compensation by hydrogen donors as pre-
sumed by Pantelides [4]. The structure and symmetry
of the A–H+ pairs in the Si lattice was discussed by
Pearton et al. [2]. They suppose that a hydrogen atom is
most probably located near the center of the bond
between a host Si atom and an acceptor atom (bond-
centered configuration), as well as at the extension of
this bond beyond the impurity atom (dopant-antibond-
ing configuration). The width of the passivated region is
proportional to the square root of time and decreases as
the dopant concentration increases; depth profiles of
hydrogen are step-shaped, with the step height equal to
the dopant concentration; and hydrogen accumulation
near the surface is observed [1, 2].

A series of models is proposed for describing hydro-
gen diffusion in p-Si. These models take into account
different charge states of hydrogen atoms with corre-
sponding different diffusion coefficients [5–7], the
influence of the internal electric field on diffusion of
ionized hydrogen [5–9], the interaction between hydro-
gen and dopant atoms [6–10], the formation of H2 mol-
ecules [6, 11], and multiple capture of H atoms by
acceptors [11]. The step-like shape of the depth profiles
1063-7826/02/3601- $22.00 © 20021
of hydrogen is explained by its trapping at acceptors
with the formation of immobile complexes [6–11], as
well as by the effect of the internal electric field [8]. The
accumulation of hydrogen, which is not involved in
passivation, in the surface layer is related to its trapping
at surface defects produced by treatment in plasma [6,
7], as well as to the repeated capture of hydrogen atoms
by acceptors in heavily doped Si [11]. The effect of
dopant concentration on the width of the passivated
region was studied elsewhere [8, 10, 12]. This effect is
explained by the increase in hydrogen diffusivity owing
to the influence of the internal electric field in the
region where acceptors are compensated by hydrogen
donors [8]. However, hydrogen diffusion in p-Si was
found to result in passivation rather than compensation
of acceptors [1, 2]. Moreover, in this case, the plateau
in the hydrogen profiles should narrow down as the
dopant concentration decreases, which is inconsistent
with the experimental data. Kalejs and Rajendran [10]
and Herrero et al. [12] explained the observed narrow-
ing of the passivated region with increasing dopant con-
centration by intensification of the formation of (hydro-
gen ion)–(ionized acceptor) complexes. The width of
the passivated region, L, is estimated from the effective
diffusion coefficient, Def = L2/t, where t is the passiva-
tion time. According to Kalejs and Rajendran [10], Def

varies inversely with the boron concentration CB (at
150°C):

(1)Def

8.5 10
14

DH×
CB

-------------------------------,=
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where DH is the diffusivity of free hydrogen. Herrero et al.
[12] reported the following dependence:

(2)

where EB is the binding energy of the hydrogen–boron
complexes [EB = (0.6 ± 0.1) eV], r is an empirical
parameter (r = 7 × 10–5/5 × 1022), k is the Boltzmann
constant, and T is the absolute temperature. Figure 1
presents dependences (1) and (2) along with experi-
mental values of L2/t (at 150°C) reported elsewhere
[12–14]. As can be seen from Fig. 1, formula (1) ade-
quately describes the experimental results only at low
concentrations, and formula (2), only at high concen-
trations. It can also be seen that the exponent m in the

experimental Def( ) dependence varies from m = –1
to m ≅  –0.5 as the dopant concentration increases. In
my opinion, this finding points to weakening of the
interaction of H+ ions with A– acceptors in the heavily
doped material, which is attributable to the effect of
screening of the ions by free carriers.

This study is devoted to simulation of the passiva-
tion of p-Si by hydrogen with allowance made for the
screening effect.

2. EQUATIONS OF THE MODEL

We presume that hydrogen in p-Si can exist in a
two charge state: neutral H0 and positive H+, which

Def

DH

1 rCB EB/kT( )exp+
-------------------------------------------------,=

CB
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Fig. 1. Dependences of effective hydrogen diffusivity on the
boron concentration in Si. Dots represent the published data
(1) [13], (2) [14], (3) [12], and (4) [18] for T = (1–3) 150 and
(4) 122°C. Curves represent model calculations for (5) EB =
0.73 eV and T = 150°C and EB = 0.79 eV and T =122°C and
calculations by (6) formula (1) and (7) formula (2).
are related to each other by the charge-exchange
reaction

(3)

where h+ denotes a hole. A positively charged hydrogen
ion H+ interacts with a negatively charged acceptor ion
A– to form an immobile donor–acceptor pair H+A–:

(4)

Diffusion of the neutral and positively charged hydro-
gen species with the formation of the immobile hydro-
gen–acceptor pairs is described by the following sys-
tem of diffusion–kinetic equations:

(5)

(6)

(7)

Here,  and  are the diffusivities of free hydrogen
in the neutral and ionized states, respectively; k1 and k2
are the rate constants of direct and reverse reactions (3),
respectively; k3 and k4 are the rate constants of direct
and reverse reactions (4), respectively; W is the concen-
tration of the pairs; and p is the hole concentration

(8)

where ni is the intrinsic carrier concentration. The last
term of Eq. (6) accounts for the effect of the internal
electric field on the diffusion of H+ ions. Combining
Eqs. (5)–(7), we obtain

(9)

where H = H0 + H+ + W is the total hydrogen concen-
tration, and hE accounts for the effect of the internal
electric field on the diffusion of H+ ions:

(10)

The conditions for local equilibrium in reactions (3)
and (4) are

(11)
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respectively. Here, k12 = k1/k2 is the rate constant of
reaction (3), and k34 = k3/k4 is the rate constant of reac-
tion (4). If these conditions are satisfied, we can trans-
form Eq. (9) into a diffusion equation with the diffusion
coefficient dependent on the component concentra-
tions:

(13)

where

(14)

The boundary condition for the diffusion problem is the
requirement for a constant concentration of neutral

hydrogen at the surface (at x = 0): H0(0, t) =  = const.
Then, for the total hydrogen concentration at the sur-
face, we obtain the boundary condition

(15)

where ps and  are the surface concentrations of holes
and free acceptor ions, respectively.

3. PARAMETERS OF THE MODEL

Parameters of the model are , , k12, k34, and

. Since a large body of data show that the diffusivity
of hydrogen in intrinsic, i.e., containing no traps, Si [1–

3] is high, we use the experimental value of ,
which provides the maximum diffusivity obtained by

extrapolation to the passivation temperature:  =
9.4 × 10–3exp(–0.48/kT) [15]. Seager and Anderson [9]

demonstrated that, at temperatures of ~300 K,  was
close to the value obtained by the extrapolation [15].

Therefore, we set  = .

The rate constant of charge-exchange reaction (3) is
determined by the level produced by H+ in the band gap:
(k12)–1 = pH = Nvexp[(  – EV)/kT], where Nv is the

effective density of states in the valence band, (  – EV)
is the energy position of the H+ level in the Si band gap
relative to the valence-band top (  = EV + 0.60 eV [6,
7]), and pH is the hole concentration when the Fermi

level coincides with the  level. The rate constant of
reaction of the hydrogen–acceptor-pair formation (4)
k34 = k3/k4, where k3 = 4πR , k4 = v exp[–(EB +
EM)/kT], R is the radius of interaction between the H+

and A– ions, ν is the frequency of vibrations of the ions
within the pair, EB is the binding energy of the ions
within the pair, and EM is the activation energy for
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migration of the H+ ions. Zundel and Weber [16] deter-
mined the vibration frequencies and the activation
energy for annealing of the hydrogen–acceptor pairs in
Si, EA = EB + EM. For example, for the B–H pairs, v  =
2.8 × 1014 s–1, and EA = (1.28 ± 0.03) eV [16], whence
it follows that EB ≅  0.8 eV at EM = 0.48 eV.

Choosing the surface concentration of neutral

hydrogen , we started from the assumption that the
passivation of p-Si resulted from the formation of the
H+A– pairs rather than from the compensation by

hydrogen donors. More precisely, the concentration 
cannot exceed the acceptor concentration in Si, CA. The

condition  < CA is satisfied at  < pH, where pH ≅

3 × 1011–1 × 1012 cm–3 for  = EV + 0.60 eV and at the
passivation temperature T = 122–150°C.

There is a wide scatter in values of R predicted by
different models: from 0.5 Å [10] to 50–100 Å [9]. We
can estimate the interaction radius based on the condi-
tion that the energy of the interaction between the ions
is equal to the thermal energy kT. For the Coulomb
interaction between the H+ and A– ions in the Si lattice,
we obtain R ≅  35 Å at T = 122–150°C. For high doping
levels, the interaction radius apparently cannot be
greater than the Debye length. In this context, we
assume that, with allowance made for the screening
effect, the effective radius of the interaction between
the H+ and A– ions is described by the relation

(16)

where LD =  is the Debye length, ε is the rela-

tive permittivity of Si, ε0 is the permittivity of free
space, and q is the elementary charge. At low acceptor
concentrations (CA < 2 × 1016 cm–3), we have LD > 10R,
and RL ≅  R. At high acceptor concentrations (CA > 2 ×
1020 cm–3), LD < 0.1R and RL ≅  RD.

For the used values of the parameters, characteristic
lifetimes of the H+ ions in the free and bound states
(1/(k3A–) and 1/k4, respectively), as well as the times of
the charge exchange in reaction (3), are much shorter
than the used passivation times. In this case, because of
a fast exchange of particles between the states [17],
conditions for local equilibrium (11) and (12) are actu-
ally met, the surface concentration Hs is independent of
time, and the diffusion coefficient DH is a function of
the total hydrogen concentration.

4. RESULTS OF CALCULATIONS
AND DISCUSSION

Diffusion Eq. (13) with diffusion coefficient (14)
and the boundary condition at the surface (15) was
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solved numerically by the finite-difference method
using the implicit difference scheme. The concentra-
tions of the diffusion components were determined
from the total hydrogen concentration by the iteration
method, using the conditions for local equilibrium (11)
and (12) and the condition for constant local concentra-
tion of the acceptor impurity.
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Fig. 2. Depth profiles of the components in boron-doped sil-
icon (CB = 1.3 × 1018 cm–3): (1, 1') H0, (2, 2') H+, (3, 3') W,

and (4, 4') B–. The profiles were calculated (1–4) with and
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experimental data [12]. The solid lines represent model cal-
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Hs
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Figure 2 shows depth dependences of the compo-
nent concentrations H0, H+, W, and A– in silicon con-
taining uniformly distributed boron with a concentra-
tion of CB = 1.3 × 1018 cm–3. At the obtained values of
the parameters, W > H+ > H0 at all depths. Near the sur-
face, the concentration of the complexes is close to the
acceptor concentration, W ≅  CA, which results in a cor-
responding decrease in the concentrations of free
acceptor ions and holes and, consequently, in passiva-
tion of the surface layer of silicon. The width of the pas-
sivated region is larger if the screening effect is taken
into account (compare curves 1–4 and 1'–4'). Figure 3
presents calculated profiles of the hydrogen-acceptor
pairs in silicon heavily doped with boron (1 × 1019–1.2 ×
1020 cm–3) and corresponding experimental profiles
obtained by Herrero et al. [12] from infrared-reflec-
tance spectra for a passivation temperature of 150°C.
As can be seen from Fig. 3, the calculated profiles are
in reasonable agreement with the experimental data at

 = 1 × 1012 cm–3 and EB = 0.73 eV. Figure 4 shows
calculated profiles of holes in silicon doped to lower
boron concentrations (from 4 × 1014–7.5 × 1018 cm–3)
and corresponding experimental profiles obtained by
Pankove [18] by the spreading-resistance method for a
passivation temperature of 122°C. The experimental

profiles fit the calculated ones reasonably well at  =
1 × 109 to 2 × 1010 cm–3 and EB ≅  0.79 and 0.70 eV for low
(4 × 1014 to 7.4 × 1015 cm–3) and high (5 × 1018 cm–3) con-
centrations, respectively. Calculated dependences of
Def = L2/t on the dopant concentration for T = 150 and
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Fig. 4. Depth profiles of holes in passivated Si doped with
boron to concentration CB = (1) 4 × 1014, (2) 1.3 × 1015,

(3) 7.4 × 1015, and (4) 5 × 1018 cm–3. Dots correspond to
experimental data [18]. The solid lines represent the model

calculations for  = (1, 4) 2 × 1010, (2) 1.3 × 1010, and

(3) 109 cm–3; EB = (1–3) 0.79 and (4) 0.70 eV; T = 122°C;
and t = (1–3) 1 and (4) 4 h.
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122°C are shown in Fig. 1 (solid curves). The depth at
which the concentration of the pairs or holes is half the
dopant concentration is taken as the width of the passi-
vated region L. As can be seen from Fig. 1, the depen-
dences calculated in the context of the model with
allowance made for the screening effect allow us to
adequately describe the dependence of Def on the
dopant concentration both at low and high acceptor
concentrations. With the used values of the parameters
appearing in formula (14), k12p @ 1 and k34A @ 1 in
the entire range of the dopant concentration; there-

fore, DH ≅  . At low acceptor concentrations

(CA < 2 × 1016 cm–3), k34 is independent of the concen-
tration, and DH ~ 1/CA at A– ≅  CA at the diffusion front.
At high acceptor concentrations (CA > 2 × 1020 cm–3),

k34 ~ 1/ , and we have DH ~  at A– ≅  CA at the
diffusion front.

The binding energy obtained for lightly doped Si,
EB ≅  0.79 eV, agrees with the experimental data [16],
whereas the value obtained for heavily doped Si, EB =
0.70–0.73 eV, is slightly lower. This result is attribut-
able to the influence of the screening not only on the
interaction radius but also on the binding energy. It
should be noted that the theoretical value of the binding
(dissociation) energy of the B–H+ pair in the bond-cen-
tered configuration is 0.70 eV [19], which is fairly close
to the value obtained in this study. The surface concen-

tration of neutral hydrogen (  < pH) is apparently
determined by the particular experimental conditions
for hydrogenation. The value R = 35 Å corresponds to
the interaction radius in the case of a pure Coulomb
interaction between the H+ and A– ions in the Si lattice.
This value lies between 0.5 Å [10] and 50–100 Å [9]
and approaches the values of 30 and 40 Å, determined
by Mathiot [6] and Zundel and Weber [16], respec-
tively.

It should be noted that the above-listed models [2,
9–11] ignore the decomposition of the hydrogen–
acceptor pairs, whereas the present model implies that
the formation of the pairs is a reversible process
because of their short lifetime (1/k4 < 100 s) at passiva-
tion temperatures. The decrease in the effective interac-
tion radius owing to the screening effect [see (16)]
allows us to describe the passivation of p-Si over a wide
range of dopant concentrations without considering the
formation of H2 molecules and the multiple capture of
H atoms by acceptors [6, 11].

5. CONCLUSION

Hydrogen passivation of p-Si with various dopant
concentrations was simulated by solving the diffusion–
kinetic equations for free hydrogen in the neutral and
positive charge states. The formation of the hydrogen–
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0 hE
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CA CA
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acceptor pairs, the internal electric field, and the screen-
ing effect were taken into account. Quantitative agree-
ment between the calculated and experimental profiles
over a wide rage of boron concentrations (from 4 × 1014

to 1.2 × 1020 cm–3) was obtained using the data on
hydrogen diffusivity in intrinsic silicon [15], the donor

level  = EV + 0.60 eV [6, 7], the surface concentra-

tion of neutral hydrogen  < pH, and the binding
energy of the pairs EB = 0.70–0.79 eV that was close to
the data reported by Zundel and Weber [16]. The radius
of the interaction between hydrogen and acceptor ions
in the Si lattice is governed by the Coulomb interaction
(R = 35 Å for lightly doped Si). As the dopant concen-
tration increases, the interaction radius decreases
according to formula (16), owing to the screening of the
ions by free carriers.
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Abstract—At T = 4.2–125 K, the electrical conductivity and Hall effect were studied in p-Hg0.78Cd0.22Te
crystals that contained 3 × 1016 cm–3 Cu atoms and 1.83 × 1016 cm–3 of Hg vacancies (either simultaneously
or independently of each other). In such crystals, the ε1 conductivity over the valence band is dominant at
temperatures above 10–12 K, whereas the hopping conduction is prevalent at temperatures below 8–10 K. In
the samples containing copper atoms and mercury vacancies simultaneously, conductivity with variable-
range hopping is observed. It is found that the ε1 conductivity of the copper-doped crystals is independent of
the presence of mercury vacancies, whereas the hopping conductivity increases appreciably if these vacan-
cies are introduced into the undoped crystal. This phenomenon is attributed to attachment of holes to the neu-
tral mercury vacancies. The energy of this attachment is calculated, and it is found that this energy is equal
to 3.7 meV for the ground state. The fluctuation-related broadening of the impurity band in the solid solutions
gives rise to the overlap of the impurity bands formed by the copper acceptor levels and by the levels of holes
attached to vacancies. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An impurity band in a semiconductor crystal is typ-
ically considered as the band of allowed levels in the
band gap which correspond to the lowest energy for
detachment of electrons (holes) that are trapped by the
impurity-atom electrostatic field and neutralize the
impurity-atom charge. The position of this band, the
structure of the corresponding density of states, and the
parameters of the states have been adequately studied,
both experimentally and theoretically (see, for exam-
ple, [1]).

Less commonly, another impurity-level band, i.e.,
an analogue of the upper Hubbard band in ordered sys-
tems [2], is included in the impurity band. This addi-
tional band emerges if a semiconductor incorporates
neutral donors or acceptors (i.e., at fairly low tempera-
tures and under conditions of slight or partial compen-
sation) due to their ability to accept an additional
charge carrier. A donor accepts an excess electron and
becomes negatively charged (the D– state), whereas an
acceptor acquires an excess hole and becomes posi-
tively charged (the A+ state).

Specificity of filling the upper Hubbard impurity
band consists in the fact that only the D– levels located
below the Fermi level F or the A+ levels lying above the
Fermi level can be occupied at T = 0. On the other hand,
being located (theoretically) within the band gap, these
impurity levels are almost adjacent to the correspond-
ing intrinsic band of allowed energies. In particular, for
an isolated hydrogen-like donor (acceptor), the attach-
ment energy amounts merely to ~10% of the corre-
sponding ionization energy [3, 4]. Accordingly, the rel-
ative positions of the Fermi level and the D– or A+ levels
1063-7826/02/3601- $22.00 © 20026
is typically quite reversed. Because of this, the upper
Hubbard impurity band rarely manifests itself in phys-
ical phenomena observed in lightly doped crystals [1];
correspondingly, there are scarcely any direct experi-
mental data on the parameters of the states in this band.

Experimentally, the existence of the D– band (or the
A+ band) can be indirectly verified by studying the
properties of heavily doped semiconductors. In partic-
ular, the metal–insulator transition in doped, lightly
compensated semiconductor crystals (the Mott transi-
tion) is typically related to overlap of the upper and
lower Hubbard impurity bands [2]. In addition, the ori-
gin of the ε2 conduction observed in the above crystals
in the vicinity of the Mott transition is generally attrib-
uted to activation of the charge carriers from the lower
Hubbard band to the corresponding upper band [1, 2].
However, the validity of this hypothesis has been ques-
tioned [1].

In this context, the issue concerning the localization
of states in the D– and A+ bands is of interest. As a rule,
it is assumed that these states have a fairly large radius,
because the attachment energy is low, and that, as a
result of their overlap, a wide band is bound to be
formed even in the case of moderate-level doping [1, 2].
In contrast, it has been assumed recently [4, 5] that the
charge carriers bound by an isolated donor or acceptor
are identical; therefore, the binding energy is assumed
to be distributed uniformly between these charge carri-
ers. In this situation, the radius of a state in the upper
Hubbard band must exceed only slightly the neutral-
center radius, whereas the attached charge carriers must
be localized if the doping level is moderate.
002 MAIK “Nauka/Interperiodica”
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Experimentally, the D– (or A+) states can be
detected and identified at low dopant concentrations
owing to specificity of occupation of these states at
T = 0. In this context, it seems pertinent to study nar-
row-gap p-Hg1 – xCdxTe crystals [4]. On the one hand,
conduction over the impurity band of this semiconduc-
tor is comparatively easy to observe, because this con-
duction dominates over the ε1 conduction in the valence
band at comparatively high temperatures [6]. On the
other hand, in this case there are two types of shallow-
level acceptors with appreciably different ionization
energies. The simple impurity acceptors (for example,
copper atoms at the cationic lattice site CuHg) have a
low binding energy (about 7.5 meV [7]), whereas the
energy of detachment of a hole from a neutral mercury
vacancy VHg (the doubly charged acceptor) exceeds
15 meV [8]. The defects of both types can be easily intro-
duced into Hg1 – xCdxTe crystals using annealing and dif-
fusion-induced doping [4]. By varying the concentra-
tions of CuHg and VHg, one can change the relative posi-
tion of the Fermi level and the A+ VHg-type levels, which
may be conducive to detection of these levels in the elec-
tron-transport phenomena at low temperatures. In what
follows, we report the results of such an experiment.

2. EXPERIMENTAL

In our studies, we used homogeneous and structur-
ally perfect single-crystal undoped Hg1 – xCdxTe (x =
0.218–0.222) wafers, 0.12-cm thick. The wafers were
cut from ingots grown by vertical planar crystallization
with a solid-phase feeding and were annealed in satu-
rated Hg vapors in order to eliminate the Hg vacancies.
After this annealing, the extrinsic electron concentra-
tion in the crystals was about 3 × 1014 cm–3, with the
mobility being higher than 2 × 105 cm2 V–1 s–1 and the
lifetime longer than 2 × 10–6 s at 77 K. The dislocation
density in the annealed wafers was no higher than 3 ×
105 cm–2. There were no inclusions or dislocation
rosettes.

The reference samples were cut from the wafers; a
thin Cu layer (~3 × 1015 at/cm3) was deposited in vac-
uum onto the remaining part of the wafers. Copper was
fired in the crystals for 3 days at 200°C in an atmo-
sphere of saturated mercury vapors until its complete
dissolution. According to the previous data [9], the
above heat treatment ensured a fairly uniform distribu-
tion of copper across the wafer section.

After introduction of copper, the wafers were cut
into samples about 1.2 × 0.3 cm2 in area and 0.1 cm
thick. The samples were polished in a Br2 solution in
HBr in order to remove the damaged layer, and the Hall
coefficient (RH) of each of the samples was measured at
77 K in a magnetic field of B = 2 T, in which case Cu
atoms were completely ionized and RH was almost
independent of B [10]. We used the value of RH to deter-
mine the concentration of free holes p77, which we
SEMICONDUCTORS      Vol. 36      No. 1      2002
identified with the electrically active copper concen-
tration.

The doped samples were divided into two groups.
The samples of the first group were brought into the
two-phase equilibrium state by annealing either in mer-
cury vapors at 420°C or in tellurium vapors at 240°C in
order to generate a certain number of VHg vacancies in
the bulk of the samples. The duration of annealing was
chosen according to the requirement that the entire
sample bulk would be in complete equilibrium with the
vapor phase by the end of annealing [11]. The reference
(undoped) Hg0.78Cd0.22Te samples cut from the same
starting wafers were annealed together with the doped
samples.

The concentration of the active Hg vacancies in
undoped reference samples was determined after the
above heat treatment from the value of p77 measured
using the Hall effect method. The concentration of the
VHg vacancies in the doped samples was identified with
that in undoped reference samples. According to the
measurements, all the crystals contained about 1.8 ×
1016 cm–3 of active Hg vacancies.

The samples of the second group were not subjected
to additional annealing; thus, they were nearly stoichi-
ometric and did not contain the VHg vacancies.

We then measured the temperature dependences of
the Hall coefficient (in a field of B = 0.03 T) and the
electrical conductivity of the samples in the tempera-
ture range of 4.2–125 K. The results of measuring the
dependences of electrical conductivity σ on 1/T in the
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Fig. 1. Temperature dependences of electrical conductivity in
the p-Hg0.78Cd0.22Te crystals. (1, 2) The crystals doped with
Cu and annealed in Hg vapors at T = (1) 420 and (2) 280°C;
[CuHg] = 3.1 × 1016 cm–3; and concentration of vacancies

[VHg] = (1) 1.8 × 1016 and (2) <1014 cm–3. (3) Undoped crys-

tals annealed in Hg vapors at 420°C ([CuHg] ! 1015 cm–3

and [VHg] = 1.8 × 1016 cm–3). (4) Undoped crystals

annealed in Te vapors at 240°C ([CuHg] ! 1015 cm–3 and

[VHg] = 1.8 × 1016 cm–3).
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region of freezing out of extrinsic conductivity are
shown in Fig. 1 for a number of the samples under
investigation. The results obtained for the remaining
crystals are similar.

The ε1 conductivity caused by free holes in the
valence band is dominant in all crystals at temperatures
higher than 10–15 K. The ε1 conductivity competes
with hopping conductivity at intermediate temperatures
(in the ranges of 5.5–8.5 K for Cu-doped stoichiometric
samples and 7–12 K for the samples containing Hg
vacancies). The hopping mechanism of the charge
transport with low activation energy is prevalent at the
lowest temperatures.

In doped crystals, the value of the ε1 conductivity in
the freezing-out region is nearly independent of the
presence of Hg vacancies and of the conditions of their
introduction into the crystal. At the same time, this con-
ductivity far exceeds the conductivity of undoped crys-
tals with the same concentration of VHg vacancies. In
contrast to this, in the region of hopping charge trans-
port, the conductivity of the samples that are doped
with copper and simultaneously contain Hg vacancies
far exceeds the conductivity of the samples containing
only one type of these two acceptors.

In the temperature range where ε1 conductivity is
prevalent, the Hall coefficient RH is positive and
increases as the temperature T is lowered (Fig. 2). In the
region of transition to hopping conductivity, RH
remains positive but decreases with decreasing T. The
maximum of RH corresponds to the temperature at
which the contributions of the hopping and valence-
band mechanisms are almost identical. At the lowest
temperatures, in which case ε1 conductivity is frozen
out completely, the Hall effect voltage cannot be mea-

107

106

105

104

103

102

101

0 50 100 150
1000/T, ä

1

2

3

4

200

RH, cm3/ë

Fig. 2. Temperature dependences of the Hall coefficient for
p-Hg0.78Cd0.22Te crystals in a weak magnetic field (the
numbers at the curves correspond to those in Fig. 1).
sured, which indicates that the mobility of the charge
carriers in the acceptor band is extremely low.

Evidently, such behavior of the Hall effect is caused
by the change in the prevalent charge-transport mecha-
nism as the temperature is lowered [1]. Under these
conditions (i.e., when several types of the charge carri-
ers are present), it is more convenient to use the nondi-
agonal components σxy of the conductivity tensor,
rather than the coefficient RH, in the analysis of experi-
mental data. As is well known, in contrast to RH, the
tensor σik is an additive quantity and is formed as a
result of summing the contributions made by the charge
carriers of all types.

It is sufficient to take into account only the light
and heavy holes in the valence band and the charge
carriers in the impurity band in the σik tensor of the
p-Hg0.78Cd0.22Te crystals at low temperatures. Since the
field was weak (B = 0.03 T) in our experiments, a strong
inequality (µB)2 ! 1 was valid for all the above charge
carriers. Therefore, we calculated the components of
the tensor σik using the formulas

(1)

where σ is the electrical conductivity of the sample for
B = 0.

The results of calculating the quantity σxy are shown
in Fig. 3. It can be seen that the portion of the depen-
dence σxy(T) with low activation energy, which corre-
sponds to hopping conductivity, is not observed in all
cases. In other words, the hopping mechanism in
p-Hg0.78Cd0.22Te hardly gives rise to the Hall voltage,
which is quite consistent with theoretical predictions
[2]. This makes it possible to calculate the contribution
σ1 of the valence-band conductivity in the region of the

σxx σ, σxy RHσ2B,= =
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Fig. 3. Temperature dependences of the component σxy of
the electrical-conductivity tensor for p-Hg0.78Cd0.22Te
crystals in a magnetic field of B = 0.03 T (the numbers at the
curves correspond to those in Fig. 1).
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mixed charge-transport mechanism using the equality
σxy/σ = µHB, which is valid under the condition
(µHB)2 ! 1, where µH = RHσ. When calculating the
quantity ε1, we took into account that µH ∝  T3/2 at tem-
peratures below 12 K, because, in this case, free holes
are scattered predominantly by impurity ions, whereas
the ε1 conductivity is almost completely frozen out;
therefore, the number of scattering centers is tempera-
ture-independent [7].

Subtracting the value of σ1 (calculated for a given
temperature using the above-described method) from
the electrical conductivity σ, we obtain the contribution
σh of the hopping conductivity. In Fig. 4, we show the
thus obtained curves that represent the dependences
σh(T) for the samples containing both CuHg and VHg
defects. It can be seen that, in this case, the hopping-con-
ductivity variation with temperature obeys the Mott law
[12] at T < 10 K; i.e., we have σh = σ0exp[–(T0/T)1/4].
The parameter T0 varies from sample to sample in a
very narrow range: T0 = (1.1 ± 0.2) × 105 K.

3. MODEL

According to [1, 2], the behavior of conductivity via
the acceptor band of a p-type semiconductor is con-
trolled to a great extent by the structure of the density
of states in this band. If there are only simple shallow-
level acceptors in the crystal, the impurity band consists
of two narrow peaks (the lower and upper Hubbard
bands) under the conditions of light doping. At T = 0,
the lower Hubbard band is separated from the valence
band by the neutral-acceptor ionization energy,
whereas the A+ band is spaced from this band by the
attachment energy of an excess hole.

The ionization energy EA1 of a simple shallow-level
acceptor in a diamond-like semiconductor has been cal-
culated [13] by numerical simulation performed in
terms of the effective-mass method. In the limit of
mlh/mhh  0, where mlh and mhh are the masses of the
light and heavy holes, we obtain

(2)

According to [14], the same relation is yielded by the
variational method under the condition of mlh/mhh  0.
In particular, we obtained EA1 ≈ 7.9 meV for the Cu
acceptor in Hg0.78Cd0.22Te, in which case mlh/mhh ≈ 10–2,
mhh ≈ 0.4m0 [10], and ε0 = 17.4 [15]; this value of EA1 is
in good agreement with experimental data [7].

The energy of attachment of a hole to a simple shal-

low-level acceptor in Hg0.78Cd0.22Te ( ) has been

estimated using the variational method at  ≈
0.07EA1 [4]; this energy governs the energy position of
the A+ band.

For slight compensation with donors, a fraction of
the acceptor levels on the order of ND, where ND is the
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number of donors, is split off and is shifted to the
valence band [1]. As a result, an additional peak
emerges in the acceptor band; the position of this peak
is shifted from that of the main peak by [1]

(3)

In this case, the Fermi level F is located below the iso-
lated-acceptor level by 0.61εA at T = 0 [1].

Assuming that NA = 3 × 1016 cm–2 and ε0 = 17.4 [14]
in (3), we obtain εA ≈ 4.2 meV. Consequently, at T = 0,
the maximum of the split-off peak of the impurity
acceptor band and the Fermi level are located at about
3.7 meV and at 5.3 meV, respectively, above the
valence-band top in the Hg0.78Cd0.22Te crystals under
investigation that contain 3 × 1016 cm–3 of Cu atoms and
no vacancies.

If Hg vacancies are introduced into the Cu-doped
Hg1 – xCdxTe narrow-gap crystal, the second (vacancy)
acceptor band composed of two peaks and also the
vacancy-related A+ band emerge in the band gap; as a
result, the acceptor band acquires a more complicated
structure.

The ionization energy  of a neutral vacancy and

the ionization energy  of a singly charged Hg
vacancy have been estimated theoretically [4]. It has

been found that  = 4EA1 and  ≈ 2EA1. For

Hg0.78Cd0.22Te, we obtain  ≈ 16 meV, which is also
quite consistent with experimental data [8].
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Fig. 4. Temperature dependences of hopping conductivity
σh in p-Hg0.78Cd0.22Te crystals (1) doped with Cu and

annealed in Hg vapors at 420°C ([CuHg] = 3.1 × 1016 cm–3

and [VHg] = 1.8 × 1016 cm–3) and (2) doped with Cu and

annealed in Te vapors at 240°C ([CuHg] = 3.1 × 1016 cm–3
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Parameters of multiparticle states of mercury vacancy

M1 M2 M3

–3/2 –1/2 1.078 1.73 5.99 4 1.99 +1/2 1.468 6.46 0.47

+3/2 1.455 6.35 0.36

+1/2 1.078 1.73 5.99 4 1.99 –1/2 1.468 6.46 0.47

+3/2 1.455 6.35 0.36

+3.2 1.116 1.72 5.925 4 1.925 –1/2 1.455 6.35 0.425

+1/2 1.455 6.35 0.425

–1/2 +1/2 1.040 1.74 6.055 4 2.055 –3/2 1.468 6.46 0.405

+3/2 1.468 6.46 0.405

+3/2 1.078 1.73 5.99 4 1.99 –3/2 1.455 6.35 0.36

+1/2 1.468 6.46 0.47

+1/2 +3/2 1.078 1.73 5.99 4 1.99 –3/2 1.455 6.35 0.36

–1/2 1.468 6.46 0.47
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The energy  of attachment of a hole to the Hg
vacancy was estimated here as the difference W2 – W3
of the energies of the two- and three-particle states of a
doubly charged acceptor (Z = 2). The calculation was
performed in terms of the effective-mass approxima-
tion using the Rietz variational method. According to
this method, we considered a system that consisted of
either two or three holes bound by an acceptor with the
core charge of –Ze, and we calculated the mean value
of the Hamiltonian of this system in the ground state.
The trial wave functions of the ground state were repre-
sented as the product of the corresponding number of
single-particle wave functions of holes bound by an
acceptor with the effective core charge of –Z*e. For
these functions, we took the wave functions FjM(r) of
the acceptors in a diamond-like semiconductor with the
Luttinger Hamiltonian derived previously [13]. Here,
j = 3/2 is the eigenvalue of the total-momentum opera-
tor in the ground state and M is the corresponding com-
ponent along the quantization axis [13]. For the radial
part of FjM(r), we used the trial wave function reported
previously [14].

The potential energy  of a hole bound by a
Z*-charged acceptor in the one-particle state was calcu-
lated using the virial theorem, according to which  =
–2EAZ*, where EAZ* is the absolute value of the binding
energy in this state.

The repulsion energy  for two bound holes in
the many-particle state depends on the components M1
and M2 of the total momentum for the first and second
holes, respectively. Calculation of  yields the fol-
lowing expression:

(4)

EA2
+

U

U

UM1M2

UM1M2

UM1M2
βM1M2

Z*EA1.=
The values of the coefficients  for various
allowed combinations of the total-momentum compo-
nents were calculated using the trial wave functions
[13, 14] and are listed in the table.

By minimizing the mean value of the Hamiltonian
with respect to the parameter Z*, we obtain the follow-
ing expressions for the two-particle state of a Z-charged
acceptor:

(5)

Here, W2(Z) is the energy of the two-particle state,  is
the radius of this state, and ah = 3ε0"

2/(2mhhe2). Similar
expressions for the three-particle state of a Z-charged
acceptor are written as

(6)

The results of calculations performed for Z = 2 are
listed in the table. It can be seen that the energy of
numerous states of an isolated mercury vacancy
depends on the combinations of components M of the
total momentum of bound holes along the quantization
axis. In particular, the energy W2 of a neutral vacancy
can have three different values, whereas the energy W3

of a vacancy in the A+ state can have two values. As a
result, a neutral Hg vacancy in Hg0.78Cd0.22Te gives rise

to three acceptor levels with the energies  equal to
15.2, 15.7, and 16.2 meV and to four A+ levels with the

energies  equal to 2.8, 3.2, 3.4, and 3.7 meV, if we

βM1M2

Z2* Z βM1M2
/4,–=

W2 2 Z2*( )2
EA1, a2

*– ah/Z2*.= =

a2*

Z3* Z
βM1M2

βM1M3
βM2M3

+ +

6
-----------------------------------------------------,–=

W3 2 Z3*( )2
EA1, a3*– ah/Z3*.= =

EA2
1( )

EA2
+
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assume that EA1 = 7.9 meV. It is clear that the higher
lying levels correspond to the ground state of the
vacancy.

Thus, the calculation shows that the level of the A+

state of an isolated Hg vacancy is located in the region
of the peak in the impurity acceptor band and is found
to be below the Fermi level; the above peak is split off
owing to interaction with positively charged donors.
Consequently, in this model, the vacancies cannot
affect the low-temperature conductivity, and this con-
tradicts the experimental data.

Therefore, an additional broadening of the acceptor
band in the crystals of semiconductor solid solutions
was taken into account; this broadening is caused by the
effect of microscopic fluctuations in the composition
[14]. As a result, under the conditions of light doping,
the density of states in each of the peaks of this band is
described by the split Gaussian distribution with the
following root-mean-square (rms) deviation:

(7)

Here, N is the concentration of lattice sites in the metal
sublattice and a is the radius of the state.

We assume that, for Hg0.78Cd0.22Te, ε0 = 17.4 [15],
|∂EV/∂x| = 0.35 eV [16], mhh ≈ 0.4m0 [10], and N = 1.5 ×
1022 cm–3; we also take into account that a = ah/Z*. We
then obtain the following rms deviations for various
peaks in the density of impurity states of the semiconduc-

tor: 〈EA1〉 ≈ 0.8 meV, 〈 〉  ≈ 0.5 meV, 〈 〉  ≈ 1.8 meV,

and 〈 〉  ≈ 1.4 meV. As a result, the calculated density
of states gA(E) in the impurity band of Cu-doped,
lightly compensated p-Hg0.78Cd0.22Te crystal contain-
ing Hg vacancies acquires the form shown in Fig. 5.
The peak corresponding to the energy of detachment of
a hole from a singly charged vacancy is not shown,
because this peak emerges only if there are such vacan-
cies, and there are none of these in the case under con-
sideration. The values of gA(E) were calculated using
the data reported in [1, 14] on the assumption that the
degree of compensation of the crystals is equal to 0.05,
which corresponds to the average donor concentration
of ND = 1.5 × 1015 cm–3 in the material under consider-
ation [17].

It can be seen that the tails of the lower Hubbard
impurity band and the vacancy A+ band overlap. In this
situation, at T = 0, some of the holes will be transferred
from the impurity acceptor levels to the higher lying A+

levels of Hg vacancies, so that the Fermi level will be
found pinned in the region of overlap of the peaks (see
Fig. 5).

EA〈 〉 0.22 ∂EA

∂x
---------

x

πNa2
-------------.≈

EA1
+ EA2

1( )

EA2
+
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4. DISCUSSION

The suggested model makes it possible to account
for almost all qualitative special features of hopping
conductivity in the crystals under consideration.

In fact, the calculations show that the Hg vacancies
in Hg0.78Cd0.22Te have deeper acceptor levels compared
to the CuHg defects. Therefore, the vacancies can appre-
ciably enhance the number of free holes in the crystal,
either under the condition of complete compensation of
CuHg acceptors by donors or at sufficiently high temper-
atures in which case the conductivity caused by the
impurity acceptors is exhausted. This pattern is clearly
illustrated in Fig. 1. In the region of freeze-out, the ε1
conductivity in undoped crystals containing only VHg
vacancies is much lower than the conductivity of the
doped samples. However, in the crystals containing
both VHg vacancies and Cu atoms, the conductivity is
higher than that in the doped (but stoichiometric) crys-
tals only at temperatures above 50–70 K, i.e., in the
region of exhaustion of the extrinsic ε1 conductivity.
Thus, the acceptor levels of vacancies are indeed
located above the Cu-induced levels. The A+ levels of
vacancies accept holes. Therefore, occupation of these
levels can cause only an insignificant decrease in the

0 5 10 15 20
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16

20

24

28

1'

2'

1

2

F

gA, 1018 cm–3 eV–1

E– EV, meV

Fig. 5. The calculated density of states in the acceptor band
of p-Hg0.78Cd0.22Te crystals at T = 0 K. The following
parameters were used in the calculation: [CuHg] = 3.1 ×
1016 cm–3, [VHg] = 1.8 × 1016 cm–3, and ND = 1.5 × 1015 cm–3.
The solid lines correspond to the lower Hubbard band, and
dashed lines correspond to the upper Hubbard band
(curves 1 and 1' outline the impurity bands, and curves 2
and 2' outline the vacancy bands). The hatched areas corre-
spond to the Cu levels free of holes and the occupied A+ lev-
els of the Hg vacancies. The Fermi level position is denoted
by F.
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occupancy of the valence band; thus, these vacancies
most likely act as donors.

The hopping conductivity of p-Hg0.78Cd0.22Te crys-
tals containing both CuHg and VHg defects far exceeds
the hopping conductivity of the samples that contain
only a single type of acceptor (Fig. 1). Consequently,
after introduction of vacancies, the density of states gA

in the vicinity of the Fermi level at T = 0 changes. It is
clear that this effect cannot be related to the emergence
of new acceptor levels (for example, the levels belong-
ing to the CuHg–VHg complexes), because an addition of
VHg defects to the doped samples has no affect on the
resistivity of these samples in the region of the ε1 con-
ductivity. Therefore, the observed phenomenon can
best be explained on the basis of the notion about the A+

band formed by the Hg vacancies.
It can be seen from Fig. 5 that the Hubbard vacancy

band overlaps with the split-off peak of the acceptor
impurity band. In this situation, the density of states at
the Fermi level gA(F) ≠ 0; therefore, we should observe
here either the hopping conductivity that features a
decreasing activation energy and obeys the Mott law
σh = σ0exp[–(T0/T)1/4] if the states in both overlapping
bands are localized or metallic conductivity if the states
in the A+ band are delocalized. This conclusion, based
on the model, is supported by experimental data, with
the first of the above possibilities being realized (see
Fig. 4).

The actual density of acceptor states that are located
in the vicinity of the Fermi level and control the hop-
ping conductivity in the crystals under investigation can
be estimated on the basis of the theory [1, 2] according
to which

(8)

The characteristic size of the localized hole state should
evidently be used here for the quantity a; this size con-
trols the asymptotic behavior of the wave function of
the corresponding state at large distances (see [1]),
because the hopping range is appreciable in the condi-
tions under consideration.

Assuming that, in the situation under consideration,
the hops via the impurity atoms, the sizes of which
exceed by 50% those of the VHg vacancies in the A+

state, are prevalent, we obtain a = al = "/  [1].
For the Hg0.78Cd0.22Te crystals, al = 25 nm [1]; there-
fore, for T0 ≈ 105 K (see Fig. 4), we use relation (8) to
obtain gA(F) ≈ 1.5 × 1017 cm–3 eV–1, which is much less
than predicted by calculation (see Fig. 5). Moreover,
the aforementioned value is smaller than the density of
states in the middle part of the split-off peak in the
acceptor impurity band where gA ≈ ND/εA (see [1]):
ND/εA ≈ 3 × 1017 cm–3 eV–1 for ND = 1.5 × 1015 cm–3 and
for the copper concentration [CuHg] = 3.1 × 1016 cm–3.

gA F( ) 21.2

kBT0a3
-----------------.=

2mlhEA1
We may assume that this discrepancy is caused, for
example, by overestimating the contribution of the
composition fluctuations to broadening of the impurity
peaks in calculations of gA(E) or by underestimating the
actual density of states at the Fermi level owing to the
emergence of the Coulomb gap [1]. However, it is more
plausible to assume that the hops occur predominantly
over the A+ states of vacancies. In this situation, a =
al/ ; as a result, the value of gA(E) calculated using
the experimental data increases and becomes as large as
5 × 1017 cm–3 eV–1. This value is fairly close to the
results of calculations (see Fig. 5).

Comparing the magnitude of the hopping conduc-
tivity σh for the first and second cases using the theory
[1] and taking into account the value of the factor σ0
in the Mott law convinces us that the above assump-
tion is realistic. The point is that, at 4–10 K, the ratio
(T0/T)1/4 ≈ 10; i.e., it is not too large. In this situation,
the value of σh is controlled to a great extent by the
value of σ0 that depends heavily on the localization
radius (see [1]). According to estimations, the value of
σ0 is larger by 1.5 orders of magnitude for conductivity
over the A+ vacancy band than for hopping conductivity
via the CuHg impurity centers. In addition [8], the level
of VHg in the Hg0.78Cd0.22Te samples saturated with tel-
lurium is located 15–20% higher than that in similar
samples saturated with mercury (for equal concentra-
tion of VHg). Correspondingly, in the Te-saturated and
Cu-doped crystals, the value of T0 must be somewhat
larger, whereas, on the contrary, the value of σ0 is
bound to be smaller. This is consistent with experimen-
tal data (see Fig. 4).

5. CONCLUSION

(i) Narrow-gap p-Hg1 – xCdxTe crystals are good
model material for studying the special features of hop-
ping conductivity and the acceptor-band structure in
semiconductors. On the one hand, hopping conductiv-
ity is observed at relatively high temperature (as high as
10 K) in these crystals, and, on the other hand, it is easy
to control the acceptor concentration in this material.

(ii) The magnitude and behavior of hopping conduc-
tivity over the acceptor band depend not only on the
presence of compensating donors, but also on the pres-
ence of other types of acceptors. In particular, the pro-
nounced hopping conductivity obeying the Mott law
σh = σ0exp[–(T0/T)1/4] is observed at T < 10 K in the
p-Hg0.78Cd0.22Te samples that contain both Hg vacan-
cies and Cu atoms. The mobility in the range of hop-
ping conductivity is so low that the Hall voltage cannot
be measured.

(iii) The properties of the p-Hg0.78Cd0.22Te crystals
containing Cu atoms and Hg vacancies simultaneously
can be satisfactorily accounted for if both the existence
of the upper Hubbard band, formed by vacancies due to
their ability to accept excess holes, and the broadening

Z3*
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of the acceptor band, due to the effect of composition
fluctuations, are taken into account. According to the
results of variational calculation, the hole-attachment
energy for an Hg vacancy in Hg0.78Cd0.22Te is equal to
3.7 meV.

The states in the upper Hubbard band are localized
if the acceptor concentration is not too high, and hop-
ping conductivity can occur via these states. It is this
mechanism that most likely governs the low-tempera-
ture conductivity in the p-Hg0.78Cd0.22Te crystals which
simultaneously contain Cu atoms and Hg vacancies.
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Abstract—The influence of Ga doping and irradiation with high-energy electrons on the galvanomagnetic
effects in n-Pb1 – xGexTe:Ga (0.04 & x & 0.06) was investigated. Transitions to the metal-type conduction
were found to occur both with an increase in the impurity content and as a result of irradiation. It is con-
cluded that the impurity level does not pin the Fermi level. It is demonstrated that gallium doping and elec-
tron irradiation are the most effective complementary methods for controlling the electrical properties of
alloys. © 2002 MAIK “Nauka/Interperiodica”.
At the present time, the pinning of the Fermi level by
a deep impurity level is considered as one of the most
important properties of IV–VI semiconductors doped
with impurities with a variable valence [1–3]. This effect
is most pronounced for In-doped Pb1 – xSnxTe alloys. For
these alloys, the introduction of other impurities, intrin-
sic defects, or radiation defects does not affect the posi-
tion of the Fermi level and electrical properties as long
as the impurity or defect content is no higher than the
In content [1, 2, 4].

It is possible that the Ga impurity is an exception
from the general rule.

First, it was found that the charge-carrier density in
PbTe:Ga depends anomalously on the impurity content
[5–8]. Initially, with the introduction of Ga, a decrease
in the hole density is observed. Subsequently, the
charge-carrier density is close to the intrinsic one over
a rather narrow range of the Ga content. In this case, the
Fermi level turns out to be pinned by the deep impurity
level EGa 1, which is located in the band gap [2]. How-
ever, with a further increase in the Ga content, the p–n
conversion occurs and the electron density increases
and apparently tends toward a constant value.

Second, the electron irradiation of the Pb1 – xSnxTe:Ga
alloys (x = 0, 0.19, 0.23) with the integrated flux Φ
leads to the p–n conversion and a steady increase in the
electron density n with an anomalously high rate
(dn/dΦ ≈ 4 cm–1) [9, 10]. This value is approximately
an order of magnitude larger compared to those charac-
teristic of undoped IV–VI semiconductors [11].

The anomalies mentioned are probably associated
with the existence of the second deep level EGa, which
is induced by the Ga impurity and is located in the con-
duction band of PbTe [12]. As the Ge content increases,
1063-7826/02/3601- $22.00 © 20034
this level in the Pb1 – xGexTe alloys approaches the bot-
tom of the conduction band, and, at x * 0.03, it enters
the band gap. For this reason, we may expect that an
increase in the Ga content and electron irradiation will
only slightly affect the electrical parameters of crystals
due to the pinning of the Fermi level by the deep level
EGa. In order to verify this assumption, we investigated
galvanomagnetic effects in the Pb1 – xGexTe:Ga alloys
(x = 0.04, 0.06), for which deep levels of Ga are located
in the band gap, with the variation of the Ga content and
electron integrated flux.

The single-crystal samples of n-Pb1 – xGexTe:Ga
with the Ga content CGa ≈ 1.5–3 mol %, which were
investigated in this study, were synthesized by vapor
phase sublimation. The Ge content in the samples was
monitored using the X-ray diffraction technique,
whereas the impurity content was determined from the
Ga content in the charge with allowance made for the
impurity distribution along the ingot length. A portion
of the samples was irradiated at room temperature
using an ÉLU-6 linear electron accelerator with the
electron energy E = 6 MeV, dΦ/dt ≈ 1012 cm–2 s–1, and
Φ & 2.4 × 1016 cm–2. For each sample, temperature
dependences of resistivity and the Hall coefficient were
investigated prior to irradiation and for several inte-
grated fluxes. The magnetic field was B & 0.1 T, and the
temperature range was 4.2 K ≤ T & 300 K. Major
parameters of the samples at 4.2 K are listed in the
table.

The investigation of galvanomagnetic effects dem-
onstrated that the electrical properties of alloys depend
heavily on both the Ga content and the electron inte-
grated flux. The samples with a low dopant content
were found to have fairly high resistivity. The tempera-
002 MAIK “Nauka/Interperiodica”
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Parameters of investigated n-Pb1 – xGexTe:Ga samples at T = 4.2 K prior to and subsequent to irradiation with fast electrons

Sample x
Impurity content 

CGa, mol %
Integrated flux 
Φ, 1016 cm–2

Resistivity
ρ, Ω cm

Electron density 
n, cm–3

Mobility
µH, cm2 V–1 s–1

Ge-4-7 0.04 1.5 0 9.1 × 102 <3 × 1014 <1
1.2 4.8 × 10–1 2.1 × 1016 6.2 × 102

2.4 1.5 × 10–2 9.3 × 1016 4.5 × 103

Ge-4-7' 0.04 1.5 0 2.5 1.4 × 1015 <2 × 103

Ge-4-9 0.04 2 0 9.9 × 10–1 1.6 × 1016 4.0 × 102

1.2 3.7 × 10–3 1.2 × 1017 1.4 × 105

Ge-4-3 0.04 3 0 2.1 × 10–2 6.8 × 1017 4.4 × 102

1.2 9.7 × 10–3 1.0 × 1018 6.5 × 102

Ge-6-2 0.06 1.5 0 4.8 <1013 <4 × 103

Ge-6-4 0.06 1.5 0 3.4 × 10 <4 × 1011 <3 × 103

1.2 4.6 <2 × 1015 <5 × 10
ture dependences of resistivity ρ and the Hall coeffi-
cient RH have a semiconductor character (Figs. 1 and 2,
curves 1) with a pronounced activation portion of
extrinsic conductivity. This is indicative of the exist-
ence of deep level EGa induced by Ga in the band gap of
the alloys [12]. At the lowest temperatures (T < 20 K),
the resistivity tends toward a constant value, the Hall
mobility of charge carriers decreases rapidly, and the

103
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100

10–1

10–2

0 5 10
100/T, K–1

ρ, Ω cm

3
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2

1

Fig. 1. Temperature dependences of resistivity for the
Pb0.96Ge0.04Te:Ga alloy for the Ga content in the samples
CGa = (1, 2) 1.5, (3) 2, and (4) 3 mol %.
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signal from Hall contacts becomes undetectable (Figs. 1
and 2, curves 1). Such behavior is apparently associated
with the change in the prevalent mechanism of conduc-
tion. At low temperatures, this mechanism can be the
conduction via the impurity level EGa or the surface
conduction.

As the Ga content in the alloys increases, ρ and the
absolute value of RH decrease by more than 3 orders of
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Fig. 2. Temperature dependences of the Hall coefficient for
the Pb0.96Ge0.04Te:Ga alloy in relation to variation in the
Ga content in the samples. Numbers at the curves denote the
same as in Fig. 1.
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magnitude at low temperatures. The activation charac-
ter of their temperature dependences gradually varies to
the metallic one (Figs. 1 and 2, curves 2–4). The free
electron density calculated from the Hall coefficient
increases and attains the value n ≈ 7 × 1017 cm–3. It is
evident that such a character of the variation in electri-
cal parameters is indicative of the transition of the sam-
ples from the insulating state to the metallic one. In this
case, the band conduction of the electron type is the
prevalent mechanism of conduction over the entire tem-
perature range investigated.

The electron irradiation of the alloys investigated
leads to variations in the character of the temperature
dependences of resistivity and the Hall coefficient,
which are similar to those caused by an increase in the
dopant content (Fig. 3). It is clearly seen that the transi-
tion to the metallic-type conduction occurs with an
increase in the integrated flux. We may assume that,
similarly to the Pb1 – xSnxTe:Ga alloys [10], irradiation
leads to the generation of predominantly donor-type
radiation defects and to the appearance of correspond-
ing resonance donor-type level Ed in the conduction
band. In this case, during irradiation, the electrons from

0 5 10
100/T, K–1

2''
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1'
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2'

3

104
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101

100
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10–3

10–2

102

ρ, Ω cm

Fig. 3. Temperature dependences of resistivity in electron-
irradiated Pb1 – xGexTe:Ga alloys in relation to the inte-
grated flux. (1–3) sample Ge-4-7 (CGa = 1.5 mol %),
(1', 2') sample Ge-4-9 (CGa = 2 mol %), and (1", 2") sam-
ple Ge-6-4 (CGa = 1.5 mol %). Φ = (1, 1', 1") 0, (2, 2', 2")

1.2 × 1016, and (3) 2.4 × 1016 cm–2.
the Ed level initially occupy free states at the impurity
level EGa. After that, the insulator–metal transition
occurs, the Fermi level is brought into the conduction
band, and the electron density may increase up to the
pinning of the Fermi level by the donor level Ed.

However, it should be noted that, similarly to the
Pb1 – xSnxTe:Ga alloys, the rate of variation in the elec-
tron density with irradiation dose turned out to be anom-
alously high. The estimations yield dn/dΦ = 5–6 cm–1,
which is difficult to explain taking into account only the
emergence of the resonance radiation-defect level Ed.
The increase in uniformity of the Ga distribution over
the lattice and in the content of electrically active impu-
rity atoms under the effect of irradiation may serve as
the additional mechanism responsible for the high rate
of defect formation [10].

The character of varying the electrical parameters of
the alloys investigated suggests that no pinning of the
Fermi level by the Ga level EGa is observed. An increase
in the Ga content and radiation defect density leads to
the transition of the Fermi level to the conduction band
and to a steady increase in the electron density. Doping
by Ga and electron irradiation are effective comple-
mentary methods for controlling the electrical proper-
ties of the Pb1 – xGexTe alloys. These methods make the
fine adjustment of the Fermi level possible, as well as
the attainment of a more uniform impurity distribution
over the sample bulk.
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Abstract—The effect of boron dopant of microcrystalline hydrogenated silicon films on the temperature
dependence of photoconductivity and photoresponse time was studied. The measurements were carried out in
the temperature range of 130–450 K under irradiation with 1.4-eV photons. It is established that the steady-state
photoconductivity and photoresponse time increase with doping level. A model of nonequilibrium charge car-
rier recombination, which takes into account the mixed-phase structure of microcrystalline silicon, is suggested.
The model satisfactory explains the results obtained. © 2002 MAIK “Nauka/Interperiodica”.
In spite of the wide use of microcrystalline hydroge-
nated silicon films (µc-Si:H) in optoelectronic devices,
the mechanism of generation and recombination of
nonequilibrium carriers responsible for their photocon-
ductivity remains unclear.

It is known that a correlation exists between varia-
tions in dark conductivity (σd) and steady-state photo-
conductivity (∆σph) when the films are doped with
donors (phosphorus) or acceptors (boron) [1–4].The
value of (∆σph) grows with an increase in σd as the films
are doped. The smallest value of ∆σph is observed in
films that have the smallest σd. Such µc-Si:H films have
the highest photosensitivity (∆σph/σd). Similar corre-
lated changes in σd and ∆σph with doping are observed in
the films of amorphous hydrogenated silicon (a-Si:H)
[5]. For a-Si:H, it is assumed that such behavior is
caused by the increase in concentration of the prevalent
recombination centers of nonequilibrium carriers (i.e.,
the neutral dangling bonds as a result of recharging [5])
due to the shift of the Fermi level to the conduction or
valence bands. At present, it is also assumed that the
dangling bonds play an important part in the recombi-
nation of nonequilibrium carriers in µc-Si:H [6]. At the
same time, the results of ESR studies in µc-Si:H [7, 8]
show that the concentration of neutral dangling bonds
in µc-Si:H does not change as a result of a considerable
shift of the Fermi level (over 0.5 eV) with doping of
this material. Thus, the effect of doping of µc-Si:H on
∆σph and on its temperature dependence calls for fur-
ther studies.

In this paper, we report the results of studying the
effect of doping µc-Si:H films with boron on steady-
state photoconductivity and its relaxation after the
termination of illumination. The films of µc-Si:H,
1063-7826/02/3601- $22.00 © 20038
0.6−0.7 µm thick, were deposited onto a quartz substrate
at a temperature of 220°C by the decomposition in glow
discharge of a silane-hydrogen mixture containing 1.5%
of monosilane SiH4. The doping was performed by the
introduction of diborane B2H6 into the reaction chamber.
The volume ratio of gases ([B2H6]/[SiH4]) was 4 × 10–6

(sample 1), 5 × 10–6 (sample 2), and 10–5 (sample 3).
According to thermoelectric-power measurements, the
films had the p-type of conductivity. The magnesium
contacts were deposited on the film surface. The mea-
surements were performed in a vacuum chamber with a
residual pressure of 10–3 Pa. The films were annealed
prior to the measurements for 30 minutes at a tempera-
ture of 180°C. The photoconductivity of the films was
measured in the temperature range of 130–450 K under
exposure to radiation from an infrared light-emitting
diode with the photon energy hv  = 1.4 eV and intensity
4 × 1016 cm–2 s–1. The relaxation of the photoconductiv-
ity was recorded using a digital storage oscilloscope.

The temperature dependences of σd and ∆σph of
µc-Si:H films are shown in Fig. 1. Within the temper-
ature range used, the σd(T ) curves show the activa-
tion-type dependences with the activation energy Ea =
0.43 eV (sample 1), 0.27 eV (sample 2), and 0.23 eV
(sample 3). The value of σd increases and that of Ea
decreases with increasing doping level. As can be seen
from Fig. 1, ∆σph also increases with the doping level,
and the character of its temperature variation virtually
remains inchanged. In the region of T < 220 K, the
value of ∆σph in the films increases almost exponen-
tially with the activation energy of about 0.13 eV. The
further increase in temperature makes the growth of
∆σph less steep, and in a high-temperature range ∆σph
begins to fall.
002 MAIK “Nauka/Interperiodica”
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The increase in ∆σph with doping can be related both
to the increase in lifetime of nonequillibrium charge
carriers and to the increase in their mobility. Informa-
tion about the effect of doping on lifetime can be
obtained from the measurements of the relaxation of
photoconductivity after the termination of illumination.
Figure 2 shows the influence of the doping level on the
relaxation of photoconductivity at T = 120 K. As can be
seen from Fig. 2, the relaxation of photoconductivity
after the termination of illumination for all of the sam-
ples studied does not obey the exponential law and has
a low-rate component. Increasing the doping level
reduces the relaxation rate. This result is consistent
with the data obtained in [4].

The measurements showed that the relative reduc-
tion of the relaxation rate of the photoconductivity
with doping varies with temperature. The temperature
variations of the photoresponse time (τph) for the sam-
ples studied are shown in Fig. 3. A half-decay time of
photoconductivity after the termination of illumina-
tion was measured as a parameter of (τph). Note that
the values of τph were close to the instantaneous photo-
response time τph(0) obtained from the relation τph(0) =
(∆σph/(∂(∆σph)/∂t)–1)t = 0. As follows from Fig. 3, the
magnitude of τph increases with doping, the relative
change in τph with doping being smaller at T > 220 K.

Let us analyze the results obtained. In our opinion,
the increase in ∆σph with doping (Fig. 1) is mainly
caused by the increase in the lifetime of carriers. This
increase in lifetime may be responsible for the observed
increase in τph with doping (Fig. 3). A slow relaxation
of photoconductivity (Fig. 2) indicates that there is an
appreciable concentration of traps of nonequilibrium
carriers in µc-Si:H.

It is known that the µc-Si:H films have a mixed-
phase structure consisting of crystalline and amorphous
silicon phases, voids, and intercrystalline boundaries.
According to electron microscopy data, the films stud-
ied have columnar structure normal to the substrate sur-
face, the diameter of the columns being 30–100 nm.
The columns consist of crystals from 3 to 30 nm in size
[9]. The crystalline component in the Raman spectra is
equal to 85% of the total area of a peak. According to
data published in [10], the generation and transport of
carriers in such films are controlled by the crystalline
phase.

A possible energy-band diagram for the boundary of
a column with amorphous and crystalline phases in
µc-Si:H is shown in Fig. 4. The analysis of ESR data in
µc-Si:H shows that most dangling-bond defects are
concentrated at the boundaries of the columns [8]. The
studies of the heterojunctions a-Si:H/c-Si show that the
concentration of dangling bonds at the boundary of a
heterojunction is as high as 1018 cm–3 [11]. The consid-
erable density of localized states at the boundaries of
columns, including the boundaries with amorphous
phase, must result in the formation of barriers for the
SEMICONDUCTORS      Vol. 36      No. 1      2002
majority charge carriers (holes, in our case). The trans-
port of carriers occurs via the parts of columns which
are in contact with each other. The possible recombina-
tion transitions inside the columns (1) and at the bound-
aries (2) are shown by arrows. From the results of mea-
suring ∆σph, one will find that the product of mobility (µ)
and carrier lifetime (τ) exceeds 4 × 10–8 cm2 V. Corre-
spondingly, the carrier diffusion length L = (kTµτ/e)1/2 >
200 nm exceeds the sizes of columns in the temperature
range studied (here, k and e are the Boltzmann constant
and the elementary charge). Because of this, the trap-
ping and recombination of carriers at the states located
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Fig. 1. Temperature dependences (1–3) of dark conductivity
σd and (1'–3') steady-state photoconductivity ∆σph in
µc-Si:H films. The numbers correspond to the numeration
of samples.
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Fig. 2. Relaxation of photoconductivity in µc-Si:H films at
T = 120 K. The numbers correspond to the numeration of
samples.
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near the surfaces of the columns can be responsible
both for the relaxation of photoconductivity and the
lifetime of nonequilibrium carriers. As can be seen
from Fig. 4, the occurrence of a barrier at the boundary
with an amorphous phase causes the separation of
majority carriers from the minority ones. In this pro-
cess, the recombination via the states at the column
boundaries must include the tunneling of a majority
carrier with its subsequent recombination via the states
of defects. Tunneling processes must be responsible for
the recombination at low temperatures. This may
account for the weak temperature dependence of τph at
T < 220 K. The increase in temperature can activate the
formation of holes, which should result in the observ-
able decrease of τph. It should be noted that the increase
in temperature initiates the activation of electrons from
the potential wells near the surface of columns. Corre-
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Fig. 3. Temperature dependences of photoresponse time τph
in µc-Si:H films. The numbers correspond to the numera-
tion of samples.
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Fig. 4. Energy-band diagram of the interfaces between a
microcrystalline column and crystalline and amorphous
phases in boron-doped µc-Si:H. 1', possible recombination
transitions of nonequilibrium carriers; 2', transitions corre-
sponding to carrier transport.
spondingly, one should expect the enhancement of
recombination flow (1) inside a column (if the concen-
tration of recombination centers inside the column is
sufficiently high).

A high density of states at column boundaries
increases the potential-barrier height at a boundary
with doping, in particular at the boundary with an
amorphous phase. This must intensify the effective sep-
aration of the majority and minority carriers and reduce
the probability of recombination transitions near the
column surfaces. Correspondingly, the lifetime of car-
riers, the photoconductivity relaxation time, and the
magnitude of photoconductivity must also increase. The
increase in barrier height should enhance the tempera-
ture dependence of τph in the high-temperature range,
which is in fact observed in the experiment (Fig. 3).

Thus, a qualitative model of recombination of carri-
ers in µc-SI:H is suggested. This model suggests the
dominant role of column boundaries with a-Si:H in the
course of recombination of nonequilibrium carriers and
provides a qualitative explanation of the effect of dop-
ing on the photoconductivity of µc-SI:H.
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Abstract—Estimation of dielectric, optical, electrooptical, magnetic, elastic, photoelastic, piezoelectric, and
phonon characteristics of XN (X = B, Al, Ga, In) crystals is performed by simple methods using quantum-
mechanical and semiempirical approaches. The values of deformation potentials and magnetic susceptibilities
are determined. The results of calculations are compared with the available experimental data and the calcula-
tions of other authors. © 2002 MAIK “Nauka/Interperiodica”.
In spite of the fact that much attention has been
paid in recent years to the experimental studies of the
Group III metals (III-nitrates; see, for example, Pro-
ceedings of the Conference [1] and references therein),
many characteristics, even for the most commonly used
polytypes, are still not available. Consequently, theoret-
ical investigation of III-nitrates is quite a topical prob-
lem. The ab initio numerical methods are usually
employed for the calculation of various characteristics
of these nitrates [1]. However, it is obviously of interest
to use a simplified Harrison’s method based on the
bonding orbitals [2, 3]. This method allows one to
obtain analytical expressions for a large number of
physical characteristics of semiconductor crystals. We
used various modifications of the bonding-orbital
method in [2, 3] for the description of wide-gap semi-
conductors. In this study, we have applied the above
method to III-nitrates, including indium nitrite, which
we have not yet investigated. In contrast to [4–10], here
we use the values of atomic terms taken from the tables
complied by Herman and Skillman [2]. The input
parameters for calculation are given in Table 1. Note
that the covalence (αc) of the compounds in the BN 
InN series decreases, and the polarity (αp) increases.

Table 2 presents the results of the calculation of high
frequency (ε∞) and static (ε0) dielectric constants per-
formed using the formulas given in [4]. In contrast to
[2, 3], the calculation of (ε0) was made taking into
account the contribution of ion cores to screening. The
bracketed values are the experimental ones taken from
the reference book [11]. According to the data given in
[2], ε∞ = 4.5 for BN, and ε∞ = 4.8 for AlH. The values
of ε∞ for BN and AlH given in [12, 13] are equal to 4.53
and 4.46, respectively. The agreement between the cal-
culated and experimental data is quite satisfactory. It is
notable that almost identical results are obtained by the
ab initio calculations [14]. Thus, in accordance with the
experiment, both high frequency and static dielectric
1063-7826/02/3601- $22.00 © 0041
constants obtained theoretically increase in the BN 
InN series with increasing polarity of bonding αp.

Table 2 also gives the values of electronic quadratic

susceptibility , the linear electrooptical coefficient
r41, and photoelastic constants pij calculated for cubic

χ14
e

Table 1.  Input parameters for the calculations: d is the nearest-
neighbor distance in a crystal [2], V2 and V3 are the covalent
and ionic energies [3], αc and αp are the covalence and polarity
[3], and γ is the adjustable parameter in calculation of dielectric
properties [2]

Quantity BN AlN GaN InN

d, Å 1.57 1.89 1.94 2.15
–V2, eV 9.95 6.87 6.52 5.31
V3, eV 3.12 4.09 3.92 4.16
αc 0.95 0.86 0.86 0.80
αp 0.30 0.51 0.52 0.59
γ 1.25 1.50 1.50 2.00
Note: The values of atomic terms are taken from the tables of Her-

man and Skillman [2]. 

Table 2.  Results of the calculation of high-frequency (ε∞)
and static (ε0) dielectric constants, electronic quadratic sus-

ceptibility ( ), linear electrooptical coefficient (r41), and
photoelastic constants (pij) for cubic crystals

Quantity BN AlN GaN InN

ε∞ 4.40 5.32 5.38 (5.8) 8.04 (9.3)
ε0 4.87 8.41 10.74 (12.2) 14.86

 × 10–7, CGSE 0.20 0.81 0.89 2.78

r41 × 10–7, CGSE –0.05 –0.21 –0.14 –0.29
p11 × 102 –29.7 –0.86 –7.3 1.1
p12 × 102 –10.4 –3.0 –2.6 0.4
p44 × 102 –15.2 –4.4 –3.7 0.6
Note: Experimental data [11] are shown in brackets.

χ14
e

χ14
e
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Table 3.  Results of the calculation of quadratic susceptibility
(χij) and photoelastic constants (pij) for hexagonal crystals

Quantity BN AlN GaN InN

χ33 × 108, CGSE 0.92 5.4 3.7 17.4

(χ31 = χ15) × 108, CGSE –0.46 –2.7 –1.8 –8.7

–p11 × 102 34.7 10.0 8.6 –1.4

–p33 × 102 37.0 10.7 9.1 –1.4

–p12 × 102 9.2 2.7 2.3 –0.3

–p13 × 102 6.7 1.9 1.7 –0.2

–p44 × 102 11.0 3.2 2.7 –0.4

–p66 × 102 12.8 3.7 3.2 –0.5

Table 4.  Dimensionless Keating’s force constants (α* and

β*), elastic constants for cubic ( ) and hexagonal ( )

crystals, and corresponding bulk moduli (Bc and Bh) (in GPa)

Quantity GaN AlN InN

α* 4.36 4.61 4.20

β* 0.92 1.12 0.80

322 325 178

156 142 92

138 147 73

Bc 211 203 121

373(390) 369(345) 204

398(398) 395(395) 217

105(105) 96(118) 50

123(123) 112 60

130(145) 145(125) 85

106(106) 120(120) 72

Bh 203 211 120

Note: The experimental data [14] are shown in brackets. 

Cij
c Cij

h

C11
c

C12
c

C44
c

C11
h

C33
h

C44
h

C66
h

C12
h

C13
h

Table 5.  Results of the calculation of the charge of a metallic
ion (z*), the relative internal displacement (ζ), piezoelectric
charge ( ), and piezoelectric constant (e14) for cubic crystals

Quantity BN AlN GaN InN

z* 0.20 1.04 1.06 1.76

ζ 0.62 0.72 0.72 0.77

–0.25 0.65 0.67 1.46

e14, C/m2 –0.19 0.54 0.53 0.95

ep*

ep*
crystals by the formulas given in [4, 5]. The values of

susceptibility  increase with increasing polarity αp;
the elecrtooptical coefficients, remaining negative,
increase in magnitude in the BN  InN series. In
contrast to the original approach [2, 3], we took into
account the band effects in frames of the extended
method of bonding orbitals. The photoelastic constants
pij, obtained from the expressions derived previously by
analogy with the elastic constants, change from large-
magnitude negative values for BN to small positive val-
ues for InN. Unfortunately, the corresponding experi-
mental data are not available to us. The same is true for
the values χ33, χ13, and pij for hexagonal crystals. From
the calculations, it follows that the magnitudes of the
susceptibilities χ33 (>0) and χ13 (<0) increase in the
BN  InN series; the changes in pij have the same
tendency as for cubic crystals.

The results of the calculations of elastic constants

for cubic, , and hexagonal, , crystals and the cor-
responding bulk moduli (Bc and Bh), derived by us pre-
viously in terms of the Keating–Harrison model [15, 6],
are given in Table 4. In calculations, we used the exper-
imental data on elastic properties of GaN hexagonal
crystals [16] and polycrystalline AlN films [17]. It
should be pointed out that the ab initio calculations [18]
yield Bc = 195 and 195 GPa, Bh = 195 and 194 GPa, for

GaN and AlN, respectively. The values of , which
are close to those calculated by us, were obtained theo-
retically in [19].

Table 5 contains the results of the calculations of
piezoelectric parameters performed by the method pub-
lished in [7] for cubic crystals. The calculations show
that the charge of a metallic ion z*, the relative internal

displacement ζ, piezoelectric charge , and piezo-
electric constant e14 increase in the BN  InN series.
Unfortunately, the constant e14 is known only from one
publication [20], which gives e14 = 0.375 C/m2 for
cubic indium nitrate. This value is 2.5 times smaller
than the value obtained by us. Generally speaking, such
a discrepancy is not surprising (see, for example, [2])
because the calculation of e14 is a complicated problem.
In this context, it is worth mentioning that there is a lack
of theoretical studies in this field. We know only one
publication [21] devoted to the calculation of the piezo-
electric constant for hexagonal AlN and ZnO crystals.

The results of the calculation of phonon frequencies
(in cm–1) for cubic crystals using the formulas given in
[8] are listed in Table 6. According to [22], the exper-
imental frequencies of transverse and longitudinal
optical phonons are equal to ωTO(0) = 478 cm–1 and
ωLO(0) = 694 cm–1, which is in excellent agreement
with our results. The ab initio calculations [18] yield
ωTO(0) = 648 and 558 cm–1 for AlN and GaN, respec-
tively, which is, on average, 1.5 times larger than our

χ14
e

Cij
c Cij

h

Cij
h

ep*
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values. Similar results for the same compounds are
given in [23]. The results of ab initio calculations [24]
for GaN are also close to ours. Using the data for hex-
agonal GaN and AlN obtained in [25], we calculated
the following frequencies at T = 300 K: ωTO(0) = 532 –
A1(TO), 599 – E1(TO), ωLO(0) = 734 – A1(LO), 741 –
E1(LO) for GaN; ωTO(0) = 611 – A1(TO), 670 – E1(TO),
ωLO(0) = 881 – A1(LO), 922 – E1(LO) for AlN (hence-
forth, all frequencies are given in cm–1). Comparison
with our results obtained for cubic crystals shows that
the agreement is quite satisfactory for thallium nitrate,
while our values for aluminum nitrate are approxi-
mately 1.5 times smaller than the experimental ones. As
for the low-frequency modes, the authors of [25]
reported the following frequencies for transverse
acoustic phonon ωTA(2π/a) (E2(low)): 144 and 245 for
GaN and AlN, respectively. These values are in excel-
lent agreement with our results for indium nitrates and
smaller by a factor of 0.7 with respect to our value
obtained for aluminum nitrate. The results of ab initio
calculations of low-frequency modes of transverse
acoustic phonons ωLA(2π/a)(B1(low)) in [26] differ
from those obtained by us, on average, by 1.5 times.
Thus, a simplified approach to the calculation of fre-
quencies proposed in [8] yields a semiquantitative
agreement with the experiment.

Table 7 contains the results of the calculation of the
deformation potential (Edc) of the conduction band and
the orbital diamagnetic (χL), paramagnetic (χP), core
diamagnetic (χC), and total (χ) magnetic permittivities
for cubic crystals. The calculations were performed
according to the method suggested in [9, 10] for cubic
crystals. One can easily see the trends in the change of

Table 6.  Results of the calculations of phonon frequencies
(in cm–1) for cubic crystals

Quantity AlN GaN InN

ωTO(0) 454 545 474

ωLO(0) 606 703 640

ωTA(2π/a) 205 246 213

ωLA(2π/a) 368 442 383

Table 7.  Results of the calculation of deformation potential
of the conduction band (Edc) and orbital diamagnetic (χL),
paramagnetic (χP), core diamagnetic (χC), and total magnetic
(χ) permittivities for cubic crystals

Quantity BN AlN GaN InN

–Edc, eV 6.76 4.49 4.43 3.54

χL × 106 –2.43 –2.02 –1.97 –1.78

χP × 106 2.01 1.22 1.18 0.86

χC × 106 –0.01 –0.18 –0.56 –1.49

χ × 106 –0.43 –0.98 –1.85 –2.41
SEMICONDUCTORS      Vol. 36      No. 1      2002
polarity αp. Unfortunately, the corresponding experi-
mental data are not available.

In conclusion, we suggest a relationship between the
covalence αc, according to Harrison, with ionicity fi,
according to Phillips (see, for example, [8]):

Then, in the BN  AlN  GaN  InN series, we
have f1 = 0.13, 0.36, 0.37, and 0.49.

To summarize, we may state that the simplified
method developed by us for calculating the physical
characteristics of semiconductor crystals, on the basis of
a modification of Harrison’s bonding-orbitals method
and in combination with crystallographic analogies and
some semiempirical models (like Keating’s model),
can provide a reasonable description of properties of
III-nitrates. Such an approach allows one to estimate in
a simple way a required property of both pure com-
pounds and alloys.
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ELECTRONIC AND OPTICAL PROPERTIES
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Optical Absorption by Transitions between Subbands
of Light and Heavy Holes in p-MnxHg1 – xTe
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Abstract—Absorption spectra of p-MnxHg1 – xTe epitaxial films with x = 0.12–0.19 in the wavelength range of
2–24 µm at 300 and 80 K were measured. The absorption caused by transitions of charge carriers between sub-
bands of light and heavy holes is calculated according to Kane’s theory taking into account the effect of remote
bands. The values of the effective masses of heavy and light holes are obtained as functions of solid-solution
composition and temperature. The analysis of low-temperature absorption spectra was carried out; the ioniza-
tion energy of the acceptor level is evaluated. © 2002 MAIK “Nauka/Interperiodica”.
† The advantage of an MnxHg1 – xTe (MMT) semi-
magnetic semiconductor in comparison with widely
used CdxHg1 – xTe (MCT) solid solutions is a higher sta-
bility of electrical properties. The presence of Mn in the
lattice of a ternary compound results in the hardening of
the Hg–Te chemical bond, whereas, in MCT, a strong
loosening of this bond takes place, which results in the
instability of the material. The Mn-bond in MMT is
mainly caused by the linkage of the s-states of the metal
with the tellurium p states in the presence of a limited
d–p hybridization.

The main physical properties of MMT (as well as
MCT) solid solutions are defined by their energy struc-
ture near the Γ point (the center point of the Brillouin
zone); in kp calculations, one should take into account
at least three neighboring bands: Γ6, Γ7, and Γ8. The
level (narrow d-band) located in the valence band by
~3 eV lower than its top corresponds to the partially
filled and highly localized 3d5 shell of Mn2+ ions. This
level does not affect the band structure in the vicinity of
the Γ point and, consequently, the electrical properties
of the material. However, one can explain a number of
special features observed in the transport phenomena
under high magnetic field and in magnetooptical phe-
nomena at low temperatures (T < 40 K) taking into
account only the exchange interaction of band charge
carriers with the localized d electrons of manganese
ions [1].

The electrical properties of MCT solid solutions
have been studied adequately, whereas the properties of
single crystals and MMT layers are poorly understood.
It is necessary to refine the values of band parameters,
such as effective masses of charge carriers, scattering
mechanisms of free charge carriers, and temperature
dependences of a number of energy gaps.

† Deceased.
1063-7826/02/3601- $22.00 © 20045
In this paper, we report the results of studying the
hole dispersion laws in the valence band of MnxHg1 – xTe
solid solutions; we also determined of the effective
masses of heavy- (m1) and light-hole (m2) density of
states as functions of the composition (x) and tempera-
ture (T). The analysis of low-temperature absorption
spectra is carried out, and the ionization energies of the
acceptor level (Ea) as a function of x are determined at
T = 80 K.

The authors of publications [2–4] used the values
m1 = (0.5–0.55)m0 in theoretical processing of experi-
mental data on MMT samples with x = 0.08–0.30; in
[5], it was assumed that m1 = 0.4m0 for the samples with
x = 0.20–0.22. The electronic parameters of surface lay-
ers of MMT single crystals with x = 0.00–0.019 were
studied in [6]; the values of m1 = (0.10–0.21)m0 were
obtained.

We studied the absorption spectra of p-MnxHg1 – xTe
(x = 0.12–0.19) epitaxial films prepared by liquid-
phase epitaxy from tellurium solutions–melts. With the
aim of reducing the hole concentration, the layers were
subjected to long-term annealing in mercury vapor; as
a result, samples with a concentration of uncompen-
sated acceptors p = 1015–1016 cm–3 at 300 K were
obtained. Absorption spectra were measured using an
IKS-21 spectrometer in the range of 2–24 µm at T =
300 and 80 K.

In the materials with p-type conduction and Kane’s
band structure, the absorption from the long-wave-
length side of the fundamental band edge (at photon
energies less than the band gap, hv  < Eg) is caused
mainly by hole transitions between subbands of the
valence band. It has been shown previously [7] that this
absorption plays a significant role for InAs, InSb, and
CdHgTe. The theoretical processing of experimental
spectra allows us to determine the dispersion law and
effective masses both for heavy and light holes.
002 MAIK “Nauka/Interperiodica”
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The MMT samples with p-type conduction and with
x > 0.12 were chosen for studies, because the absorp-
tion due to charge carrier transitions between subbands
of heavy and light holes, V1  V2, is not obscured for
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Fig. 1. Absorption spectra of a p-MnxHg1 – xTe sample
with x = 0.186: 1 and 2 are experimental spectra; 3–5 are the
results of calculations (3, 4) with and (5) without consider-
ation of upper bands. T = (1, 3, 5) 300 and (2, 4) 80 K.

Fig. 2. Structure of MnxHg1 – xTe (x = 0.186) valence band:
EV1 is the heavy-hole band, EV2 is the light-hole band.

Table 1.  Electrical parameters of p-MnxHg1 – xTe sample

x T, K Eg, eV
1/eRH , 
cm–3

σRH ,
cm2 V–1 s–1

0.186 300 0.387 3.6 × 1016 2.0 × 102

77 0.376 3.3 × 1016 1.5 × 102
these compositions by the edge of the fundamental
band (band-to-band transitions). The absorption coeffi-
cient (α spectra) for one of the samples with x = 0.186
are shown in Fig. 1; the electrical parameters of this
sample are presented in Table 1. The concentration and
mobility of holes were determined from the measure-
ments of the Hall coefficient RH and conductivity σ by
the Van der Pauw method; the band gap Eg and the con-
tent of Mn x were determined from optical measure-
ments and the dependence Eg(x, T) [2]. As can be seen
from Fig. 1, in the region of free carrier absorption (at
the wavelength λ > 4 µm), an additional absorption is
observed. As the temperature is lowered, the absorption
is enhanced and has a more complex structure. To some
extent, this is caused by the fact that, as the temperature
decreases, the degree of acceptor level ionization
decreases and the role of impurity absorption with par-
ticipation both of conduction and valence bands
increases.

We carried out calculations of the absorption coeffi-
cient related to the charge-carrier transitions between
the subbands of heavy and light holes V1  V2. Cal-
culations were carried out according to Kane’s theory
(Eg < ∆) taking into account the nonparabolicity of the
light-hole band and corrections to the dispersion laws
of holes in bands V1 and V2; these corrections account
for the effect of more remote bands located above the
conduction band and below the valence band. The
effects of upper and lower bands were estimated
according to the second-order perturbation theory. Cal-
culations were carried out similarly to those in [7, 8].
According to Kane’s theory, band V2 is nonparabolic
and the value of m2 was defined as [9]

where EV2 is the dispersion law of light holes and k is
the absolute value of the wave vector.

For the MnxHg1 – xTe solid solution, several sets of
band parameters have been reported, in which the effect
of remote bands on the main bands, as well as the inter-
action of the conduction band and valence band via the
other bands, has been taken into account. On the basis
of experimental data, the band parameters were deter-
mined in [10] for x = 0.005, and in [5], for x = 0.20–
0.22. In review [1], the values of band parameters for
x = 0.155 obtained by calculations in [11] are given:
γ1 = 27.5, γ2 = γ3 = 12.5, χ = 15 (in the Luttinger nota-
tion). Calculations were carried out with three sets of
band parameters. We have achieved the best agreement
between theory and experiment by using the band
parameters presented in [1] (Fig. 1, curves 3 and 4). The
values of density-of-states effective masses for heavy
and light holes are calculated. The results of calcula-
tions in the vicinity of the Γ point for compositions with
x = 0.119, 0.135, and 0.186 at T = 300 and 80 K are
listed in Table 2. The dispersion laws of heavy and light
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holes as a function of wave-vector squared for a MMT
solid solution with x = 0.186 are illustrated in Fig. 2.

As can be seen from Fig. 1, the calculated spectra at
T = 300 K for transitions V1  V2 satisfactorily
describe the experiment. The absorption spectra at T =
80 K in the region of λ = 5–10 µm have features which
are not described by intersubband transitions V1 
V2. We assumed that this structure was caused by
charge-carrier transitions from the acceptor level either
to the conduction band or to the subband of light holes.
The analysis of low-temperature spectra allowed us to
estimate the ionization energy Ea of an acceptor level as
a function of the composition (see Table 2).

Thus, the analysis of the absorption spectra for the
long-wavelength side of the fundamental band of epi-
taxial layers of p-MnxHg1 – xTe ternary solutions with
x = 0.12–0.19 was carried out at 300 and 80 K. The dis-
persion laws and the values of the effective masses of
heavy and light holes are calculated as functions of
composition and temperature; the estimate of ioniza-
tion energy at T = 80 K as a function of the composition
is carried out.

Table 2.  Band parameters of p-MnxHg1 – xTe ternary solid
solutions

x T, K m1/m0 m2/m0 Eg, eV Ea, eV

0.199 300 0.27 0.0286 0.217

80 0.0261 0.175 0.062

0.135 300 0.27 0.0320 0.253

80 0.0304 0.228 0.073

0.186 300 0.27 0.0446 0.387

80 0.0435 0.376 0.128
SEMICONDUCTORS      Vol. 36      No. 1      2002
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Abstract—A new technique for studying the multicomponent photoreflection spectra in semiconductors involves
spectra measurements at different laser fluences and wavelengths in combination with spectrum phase analysis.
To demonstrate the possibilities offered by the technique, the multicomponent photoreflection spectrum of the pas-
sivated homoepitaxial Si3N4/n-GaAs/n+-GaAs wafer is analyzed. © 2002 MAIK “Nauka/Interperiodica”.
Photoreflection (PR) is a widely used modulation-
optical technique for studying the electronic properties
of semiconductors. On the one hand, the method is sim-
ple to realize in experiment and, on the other, it pro-
vides a great variety of data. This advantageous combi-
nation motivated its widespread use. However, the PR
spectra measured in experiment can only be interpreted
using qualitative analysis, which implies simulation
(fitting) of the entire spectrum line.

As has been shown [1–4], the PR spectra of a single
GaAs crystal measured at room temperature in the fun-
damental transition region E0 are generally multicom-
ponent. This fact is due to a set of closely spaced elec-
tron-optical transitions of various natures in the vicinity
of the E0 transition, as well as to the diversified pro-
cesses accompanying the photogeneration of the high-
density nonequilibrium plasma of charge carriers.
Another problem for PR measurements in homoepitax-
ial and heteroepitaxial structures is associated with the
interfaces buried as deep as 5–10 µm, which may, under
certain conditions, contribute to the PR spectrum.
Therefore, for high-precision quantitative analysis of
multicomponent PR spectra, one should determine the
number of spectral components, the measurability
energy range for each of the components, the corre-
sponding electron-optical transition type, and the mod-
ulation mechanism responsible for the component.

Phase analysis (PA) is one of the most powerful
methods for studying multicomponent PR spectra [4,
5]. For different characteristic time constants, which in
the first approximation are the delay time of the modu-
lated reflection signal with respect to the excitation one,
the multicomponent PR spectrum structure can be
determined on the basis of a phase diagram. In one-
component spectral regions, the corresponding phase
diagram appears as a straight line with its tilt angle
directly related to the characteristic time constant of the
component. In certain cases, comparing the character-
istic time constants obtained by PA may help to clarify
1063-7826/02/3601- $22.00 © 20048
the nature of the modulation mechanism or to localize
the regions of the component’s origin. For two-compo-
nent PR spectra, one can suppress either of the compo-
nents in the x or y direction by choosing a certain phase
of the phase-sensitive amplifier and, thus, yield the true
spectral line of the remaining component. However, the
PA gives no means for the separation of overlapping
components with close or equal time constants. The PA
technique is also ineffective if three or more spectral
components overlap. Therefore, the opportunities that
PA offers for studying multicomponent spectra are gen-
erally limited.

Another possibility for studying the multicompo-
nent spectra of PR is opened by varying the laser exci-
tation wavelength. The reflection modulation associ-
ated with the laser-induced nonequilibrium carriers can
be due to (1) the direct generation of nonequilibrium
carriers in the PR origination region and (2) the diffu-
sion or drift of the generated minority carriers towards
the PR origination region. For a component that arises
from a deeply buried interface, the first modulation
mechanism can be excluded by a decrease in the laser
wavelength. A further decrease in the wavelength may
give rise to a situation where the nonequilibrium carri-
ers are mainly generated in the space-charge region
near the surface. In this case, only an insignificant num-
ber of nonequilibrium minority carriers reach the inter-
face, and the PR signal appearing in this region will be
attenuated or completely suppressed. In contrast, the
use of short-wavelength laser radiation should amplify
spectral components originating in the surface region.
Hence, variation in the laser excitation wavelength
seems to be one of the most reliable means of determin-
ing the spatial origin of the modulation components.

An interesting opportunity is provided by the per-
manent illumination of a sample with one of the
lasers. For example, short-wavelength illumination
together with modulating long-wavelength irradiation
002 MAIK “Nauka/Interperiodica”
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should reduce the spectral contribution of the sample
surface [6, 7].

The third technique connected with multicompo-
nent PR spectrum analysis is the detection of the spec-
tral series as a function of laser excitation density [8].
Since the excitation density governs the number of non-
equilibrium carriers generated and since the compo-
nents of a multicomponent PR spectrum originate from
the region of different electron-optical transitions or
from the different spatial regions, it seems reasonable
that the same variation in the excitation density pro-
duces a different change in the parameters of the corre-
sponding modulation process and, therefore, in the
spectral contribution of various photoreflection compo-
nents [9–11]. Consequently, tracing the behavior of a
spectral line in the spectral series measured for the dif-
ferent excitation densities, in most cases, allows one to
infer the energy range of the components, as well as the
modulation mechanism responsible for their appear-
ance.

A technique combining the PA and the PR spectra
measurements for different laser wavelengths and exci-
tation densities within a single experimental procedure
may not only yield the number of the spectral compo-
nents and their energy ranges but may also suggest the
modulation mechanisms. This is conducive to the
choice of an adequate model for the component spectral
shape and, thus, significantly improves the reliability of
the quantitative analysis of the multicomponent PR
spectrum.

We will demonstrate the potential of the combined
technique by the example of the E0 spectrum of PR
from a (100) Si3N4/n-GaAs/n+-GaAs wafer with the
electron densities in the GaAs epilayer and the sub-
strate n = 7 × 1015 cm–3 and n+ = 3 × 1018 cm–3, respec-
tively; E0(GaAs) = 1.424 eV. The homoepitaxial wafer
was produced by molecular-beam epitaxy; a Si3N4

layer was then formed by the chemical-plasma deposi-
tion. The GaAs epilayer thickness specified by the man-
ufacturer (Institute of Solid-State Physics, Technical
University, Berlin, Germany) was 1 µm; the Si3N4 layer
was about 100 nm thick. The experiments were carried
out at room temperature using the setup described in
detail elsewhere [11]. An SR850 two-channel phase-sen-
sitive amplifier was employed for the phase analysis.
Laser excitation was in the range of L = 0.1–1 W/cm2.
The modulation frequency varied within 50–500 Hz.

Figure 1 shows (a) the experimental photoreflection
spectrum ∆R/R = f(E) measured while being modulated
by a red He–Ne laser (wavelength λ = 632.8 nm, absorp-
tion depth in GaAs 1/α = 250 nm) with L = 1 W/cm2 and
(b) the corresponding x'y' phase diagram (see [5]). As
can be seen from Fig. 1a, the PR spectrum structure is
rather complex. The low-energy region features the so-
called low-energy oscillations. According to [12], the
oscillations stem from the contribution of a broadened
SEMICONDUCTORS      Vol. 36      No. 1      2002
electromodulation E0 component that originates near
the n-GaAs/n+-GaAs interface on the heavily doped
substrate side. During the epitaxial growth of the
n-GaAs films on n substrates, the Fermi level becomes
pinned to the states of traps located near the interface.
The Fermi level is assumed [7] to be located by ~0.5 eV
below the conduction band edge. This value points to
the capture of the minority carriers by the electric field
near the n-GaAs/n+-GaAs interface. Therefore, the
observation of the components that originated in the
vicinity of the n-GaAs/n+-GaAs interface is not sur-
prising.

Franz–Keldysh oscillations observed in the high-
energy spectral range indicate the presence of a mid-
field electromodulation E0 component that originates in
the space-charge region of the GaAs epitaxial film near
the Si3N4/n-GaAs interface. However, the disruption of
continuous oscillations suggests the presence of
another component in the energy range concerned. The
phase diagram (Fig. 1b) also unambiguously confirms
the spectrum’s multicomponent character (loop struc-
tures) but gives no idea of the number of components.

As a next step, we attempted to suppress the compo-
nents originating from the interface region by using a
blue He–Cd laser (wavelength λ = 442.5 nm, absorp-
tion depth in GaAs 1/α = 30 nm). The results obtained
for two densities of excitation are presented in Figs. 1c
and 1d. Low-energy oscillations are seen to be com-
pletely suppressed, which indicates that the near-
interface region does not contribute to the spectrum.
An unexpected considerable simplification of the PR
spectrum structure occurs in the region of Franz–
Keldysh oscillations. Therefore, the distortion of the
Franz–Keldysh oscillations, which was observed with
the red laser irradiation, is due to the superposition of
a component that originated from the homoepitaxial
n-GaAs/n+-GaAs interface. The corresponding phase
diagram (Fig. 1d) remains complex, demonstrating that
the spectrum is multicomponent. Nevertheless, a
change in the main peak structure with the excitation
density (a “shoulder” structure appears) indicates the
presence of an exciton component, which stems from
electromodulation (for details, see [4, 11, 13]). Two-
component simulation data confirm the presence of the
midfield electromodulation and the exciton compo-
nents. Hence, using the blue laser, we managed to iden-
tify the PR spectrum components originating from the
sample surface region.

We pursue our identification of the spectrum com-
ponents using the red He–Ne laser for modulation
and the blue He–Cd laser for steady illumination.
Illumination makes it possible to decrease the elec-
tric-field strength near the Si3N4/n-GaAs interface or
even to suppress it completely, which results in atten-
uation or extinction of components from this region.
The results of measurements are shown in Fig. 2. In
our opinion, the PR spectrum shown originates near
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Fig. 1. (a, c) Photoreflection spectra and (b, d) phase diagrams of Si3N4/GaAs/GaAs. (a, b) He–Ne laser modulation, L = 1 W/cm2.
(c, d) He–Cd laser modulation, L = (the solid line) 0.2 and (dashed line) 0.5 W/cm2.
the n-GaAs/n+-GaAs interface and consists of the mid-
field and the broadened electromodulation components.
Interfering in the film, the latter gives rise to the low-
energy oscillations. This conclusion is supported by the
following reasoning. Since the midfield electromodula-
tion component features a great number of Franz–
Keldysh oscillations, its energy broadening is actually
small [14]. Therefore, this component cannot cause the
low-energy oscillations; moreover, it cannot originate
in the space-charge region of the substrate, since a
heavily doped substrate gives rise to the spectra with
large energy broadening γ. Hence, this component
originates from the region of the homoepitaxial
n-GaAs/n+-GaAs interface in the epilayer space-
SEMICONDUCTORS      Vol. 36      No. 1      2002
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charge region. On the other hand, only a structure with
a high broadening energy is capable of producing low-
energy oscillations. Such a structure may appear in the
substrate region only.
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As is evident from the foregoing, the n-GaAs/n+-GaAs
interface makes two contributions to the resultant spec-
trum. Within the limits of experimental error, the phase
diagram of the measured PR spectrum is represented by
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Fig. 2. Photoreflection spectrum for Si3N4/GaAs/GaAs structure with He–Ne laser modulation and He–Cd laser steady illumina-
tion.
a straight line, which indicates that characteristic time
constants of electromodulation processes are identical
on either side of the interface.

The experimentally observed line shape of the mid-
field electromodulation component, which originates
from a deeply lying interface, may evidently be dis-
torted by the interference in the epilayer. However, the
interference effect on the energies of the Franz–
Keldysh oscillations should not be considerable. This
circumstance enabled the main parameters of the mid-
field component to be evaluated [14]. The electric-field
strengths at the Si3N4/n-GaAs and n-GaAs/n+-GaAs
interfaces are nearly equal: Fs = 4.23 × 106 V/m and
Fi = 3.87 × 106 V/cm. The midfield component origi-
nating near the Si3N4/n-GaAs interface is shifted to
the lower energies (the respective transition energies
E0 were estimated at 1.415 and 1.424 eV) and has a
much greater broadening energy, Γs = 16.5 meV and
Γ i = 4.5 meV. The lower broadening energy typical of
the deeply buried interface can be attributed to the
structure characteristics of the buried interface, which
are superior to those of the Si3N4/n-GaAs surface
region. The low-energy shift of the component that
originated from the Si3N4/n-GaAs surface region will
be discussed below.

Thus, our analysis suggests that the spectrum mea-
sured in the sample (Fig. 1a) is a superposition of four
components: two midfield electromodulation compo-
nents, which originated in the epitaxial film in the
space-charge region near the Si3N4/n-GaAs and
n-GaAs/n+-GaAs interfaces; an exciton component
originating from the homoepitaxial film surface; and an
electromodulation component, which originated at the
homoepitaxial n-GaAs/n+-GaAs interface in the space-
charge region of the heavily doped substrate.

In order to check the results, we carried out layer-
by-layer etching of the wafer (etching step of 200 nm)
and measured the spectra under red He–Ne laser illumi-
nation. The corresponding spectra are plotted in Fig. 3.
Spectrum 1 was measured prior to etching. The shift of
the PR spectrum to higher energies (curve 2) after the
etching of the Si3N4 layer is due to the relief of the
stress that had been present near the heteroepitaxial
Si3N4/GaAs interface. An increase in the low-energy
oscillations period (spectra 2–4) is indicative of a
decrease in the GaAs homoepilayer thickness. With
further etching, the low-energy oscillations vanish, and,
then, the midfield and the exciton components vanish
from the surface region. Concurrently, the contribution
of the broadened spectral structure that originates in the
substrate space-charge region (spectra 4–6) increases.
Additional etching leaves the spectrum unchanged.
Spectrum 6, characterized by a one-component phase
diagram, was associated with a broadened midfield
electromodulation E0 component. Qualitatively, it fea-
tured extremely high values of the electric-field
strength (F > 107 V/m) and the broadening energy (Γ >
50 meV). Furthermore, this component has a broad
low-energy “tail”, whose presence is necessary for the
low-energy oscillations to occur.
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Of course, the broadened electromodulation compo-
nent considered above also contributes somewhat to the
high-energy region of the resultant spectrum taken
from the initial homoepitaxial wafer. However, in the
context of our analysis, this contribution is small and
can be disregarded.

Our data support the assumption that the low-energy
oscillations stem from the modulation of the substrate
space-charge region, while the two midfield compo-
nents stem from the modulation of the space-charge
regions of the epilayer. It should be noted that the data
obtained by etching does not yield any additional infor-
mation except for the partial confirmation of data that
were obtained within the scope of the combined study.
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Fig. 3. Photoreflection spectra of a Si3N4/GaAs/GaAs
structure subjected to layer-by-layer etching.
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In conclusion, we suggest a new technique for
studying multicomponent PR spectra. Our method
combines measurements of spectra for different laser
excitation densities and wavelengths with phase analy-
sis. This combined technique allows one to determine
the number of spectral components, their measurable
energy ranges, the spatial regions of their origin, the
relevant electron-optical transition type, and the associ-
ated modulation mechanism. The multicomponent PR
spectrum of a homoepitaxial GaAs wafer was consid-
ered to demonstrate the potential of this method.
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Abstract—Atomic-force microscopy was applied to compare the topographies of naturally oxidized surfaces
of GaAs(100) substrates and those substrates treated with aqueous solutions of sodium sulfide in various stages
of their preparation for growth of ZnSe-based heterostructures by molecular beam epitaxy (MBE). It was found
that annealing of oxidized substrates strongly disrupts the surface planarity and leads to the appearance of pits
with density of 1010 cm–2. The pit density can be reduced by two orders of magnitude by treating the substrate
surface with an aqueous solution of Na2S. Transmission electron microscopy demonstrated that sulfidation of
GaAs substrates makes it possible to reduce the number of stacking faults at the ZnSe/GaAs interface to ~3 ×
105 cm–2 and, correspondingly, to improve the structural perfection of MBE-grown II–VI layers and hetero-
structures. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Semiconducting II–VI compounds are being widely
used to create light-emitting and photodetector quan-
tum-well structures operating in the green-blue spectral
range. To design heterostructures with desired elec-
tronic and optical properties, structurally perfect epi-
taxial layers of a prescribed chemical composition need
to be obtained. The structural perfection of heteroepi-
taxial layers largely depends on the density of defects
appearing at the interface in the initial stage of epitaxial
layer growth [1]. The main reason for the appearance of
defects at the 〈II–VI〉/〈III–V〉  interface in molecular
beam epitaxy (MBE) is the chemical reaction of the
substrate with Group VI element vapor to give chalco-
genide compounds of Group III elements. For example,
the MBE of ZnSe-based compounds onto GaAs sub-
strates poses a problem concerning the possibility of a
chemical reaction of residual selenium vapor with the
substrate surface prior to epitaxy. After high-tempera-
ture annealing of a GaAs surface covered with natural
oxide, the surface layer is enriched in gallium, and the
reaction between the gallium phase and selenium vapor
leads to the formation of a defect layer, which is coher-
ent with the substrate and close in composition to
Ga2Se3 [2].

The density of growth defects can be substantially
reduced by introducing a buffer GaAs epitaxial layer
grown on a substrate in a separate MBE chamber, with
the substrate then transferred into the chamber for the
growth of II–VI compounds via a high-vacuum line.
This gives, without additional annealing, a clean As-
stabilized surface with (2 × 4) reconstruction recorded
1063-7826/02/3601- $22.00 © 20054
by the high-energy electron diffraction (HEED) tech-
nique and lowers the probability of Ga2Se3 layer forma-
tion [3].

An alternative way to prevent the reaction of the
GaAs substrate with selenium vapor is to create, on its
surface, coherent coatings composed of Group VI ele-
ments, i.e., to perform chemical passivation. Passiva-
tion of the GaAs surface with aqueous solutions of
sodium or ammonium sulfide is presently being inten-
sively studied [4]. In [5], GaAs substrates treated with
(NH4)2S solutions were used for MBE of ZnSe layers.
It was found that the formation of a passivating layer in
ammonium sulfide requires a long time (tens of hours),
and the obtained adsorption coatings contain a consid-
erable amount of oxygen. Moreover, a thick, physically
adsorbed layer of sulfur may be formed on the surface
during treatment in ammonium sulfide solution. The
presence of this layer may result, in the course of
annealing, in the undesirable reaction of sulfur with the
GaAs surface, giving rise to a defective surface phase
and to the doping with sulfur of the surface layer of the
substrate.

The chemical processes occurring on the GaAs sur-
face in Na2S and (NH4)2S and the compositions of the
coatings formed were analyzed in detail in [6]. It was
found that treatment in strongly alkaline solutions of
Na2S yields a GaAs(100) surface coated with a solid
layer of chemisorbed sulfur atoms occupying bridging
positions between arsenic atoms in the surface layer of
the crystal. This suggests that GaAs(100) crystals
treated in Na2S solutions can be used as substrates for
MBE growth of ZnSe layers. Previously, we found that
preliminary passivation of III–V substrates in aqueous
002 MAIK “Nauka/Interperiodica”
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solutions of sodium sulfide or disulfide enables the
substantial improvement of the interface quality in
LPE-grown heterostructures based on AlGaAs solid
solutions [7].

The aim of this study was to analyze in detail the
physicochemical properties of the surface of
GaAs(100) substrates treated with aqueous solutions of
Na2S and the possibility of their use in the MBE growth
of ZnSe-based heterostructures. In the context of this
task, the following investigations were carried out.

(a) Atomic-force microscopy (AFM) was applied to
study the surface morphology of unpassivated and pas-
sivated GaAs substrates before and after annealing in
an ultrahigh vacuum.

(b) Transmission electron microscopy (TEM) was
used to determine the nature and density of growth
defects formed at interfaces of ZnSe/GaAs heterostruc-
tures grown on passivated and unpassivated substrates.

2. EXPERIMENTAL

n+-GaAs(100) substrates were used in all experi-
ments. In order to reveal the influence exerted by the
chemical composition of the substrate surface and its
morphology on the quality of the ZnSe/GaAs interface,
two groups of samples were studied.

The substrates of the first group were processed only
using the conventional technique for pre-epitaxial treat-
ment of gallium arsenide for MBE, which includes
etching in a H2SO4 : H2O2 : H2O (6 : 1 : 1) solution to
remove mechanical surface disruptions. The second
group, in addition to the conventional processing, was
treated with aqueous solutions of Na2S · 9H2O. Sub-
strates of both groups were then glued with indium sol-
der to a molybdenum holder in an atmosphere of nitro-
gen and annealed under high-vacuum conditions in the
growth chamber until a clear striped HEED pattern
appeared. To select the optimal mode of sulfidation, the
solution concentration and treatment time were varied.

The surface morphology of samples belonging to
both groups was analyzed after each pretreatment stage
by the AFM method under atmospheric conditions on a
domestic instrument manufactured by NT-MDT Co.,
operating in the contact mode with an Si3N4 microcan-
tilever with rigidity coefficients of 0.16 and 0.68 N/m,
and a needle tip curvature diameter of less than 20 nm
was used as a probe. The statistical processing of AFM
topography was done using SPM Image Magic soft-
ware [8].

ZnSe-based heterostructures were MBE-grown at
270–280°C without an epitaxial buffer layer using a
domestic EP-1203 MBE machine. As sources, we used
special purity Zn, Se, Cd, Mg, and ZnS. The epitaxy
was started by keeping the GaAs surface in a Zn flow
for 2 min. Then, a 20-nm buffer layer of ZnSe was
grown under Se-enriched conditions, with the HEED
pattern corresponding to (2 × 1) reconstruction.
SEMICONDUCTORS      Vol. 36      No. 1      2002
The structural perfection of the ZnSe/GaAs interface
was analyzed by TEM on a JEM-100C microscope in
cross-sectional arrangement. Samples were prepared by
chemical polishing in a H2SO4 : H2O2 : H2O (3 : 1 : 1)
solution at T = 40°C with subsequent thinning by Ar+

ions.

3. RESULTS

Visual inspection of the starting GaAs substrates
shows their mirror-smooth surface with rms surface
roughness amplitude equal to 0.15 nm according to
AFM. After etching, the rms roughness amplitude
increases to 0.18 nm and becomes 0.14 nm after etching
and passivation.

Figure 1 shows typical AFM images of the surface
topography of the substrates under study after they
were annealed in ultrahigh vacuum until the appearance
of a clear HEED pattern. It can be seen that annealing
strongly changes the surface topography of samples
belonging to both the first and the second groups.
Elongated pits with a depth up to 10 nm and density
n ≈ 1010 cm–2 are formed on the surface of samples
belonging to the first group (Fig. 1a). It should be noted
here that the topographic images of the annealed sur-
faces of samples of the first group and starting sub-
strates not subjected to any pretreatment are virtually
identical. Pits are also present on the surface of sub-
strates of the second group (Fig. 1b), but their density is
three times lower and their depth decreases to 5 nm,
with the pit shape becoming rounded rather than elon-
gated. Separately, the effect of prepassivation etching
on the surface topography upon annealing was studied.
For this purpose, samples were fabricated which were
only treated with a sulfide solution but not etched. In
this case, the pit density decreases by two orders of
magnitude to 108 cm–2, the pit depth does not exceed
3 nm, and the pits are rounded (Fig. 1c).

It should be noted that the temperature of annealing
in the vacuum chamber until the appearance of clear
HEED patterns is much higher for samples of the first
group (Tann = 530–540°C) compared with that for sul-
fided samples (Tann = 500–510°C). It is also noteworthy
that annealing of samples subjected to prolonged sul-
fide treatment (>10 min) gave no clear diffraction pat-
tern.

Thus, preepitaxial annealing of substrates causes
distortion of their surface planarity, which is most pro-
nounced when the surface is oxidized. It would be
expected that oxidized substrates are the least suitable
for MBE.

Figure 2 presents cross-sectional TEM images of
the interface in ZnSe/GaAs structures grown on a sub-
strate subjected to sulfuric acid etching (Fig. 2a), those
treated after etching with a 1 M Na2S solution (Fig. 2b),
and those treated only with a sodium sulfide solution
without preliminary etching (Fig. 2c). Figure 2a clearly
shows pits on the substrate surface, which give rise to
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Fig. 1. AFM images of the surface of substrates annealed in a high vacuum until the appearance of a clear striped HEED pattern.
(a) GaAs substrate processed by the standard technique, (b) that treated both with a sulfuric acid etchant and sodium sulfide solution,
and (c) that treated only with a passivating solution. Measurement units in (a), (b), and (c) are nanometers.
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microcracks and stacking faults in the ZnSe layer. The
total density of defects greatly exceeds 108 cm–2. Fig-
ure 2b shows only pits whose slopes extend into the
layer in the form of stacking faults, with the defect den-
sity decreasing to 7 × 106 cm–2.

Figure 2c presents a cross-sectional TEM image of
a structure formed by three ZnCdSe quantum wells
with different thicknesses confined between ZnMgSSe
layers. The annealing temperature was 500°C, the
reconstruction of the initial substrate surface was,
according to HEED, (4 × 1), and the initial growth stage
proceeded by the two-dimensional layer-by-layer
mechanism. The TEM image demonstrates a planar
interface without any stacking fault or dislocation
nucleation centers. The density of the stacking fault
defects, measured by the cathodoluminescence method
[9], was ~3 × 105 cm–2.

Thus, layers with the best structural perfection were
grown on substrates with the lowest pit density, i.e., on
substrates that were only treated in a sulfide solution
without preliminary etching. This suggests that pits
formed in sample annealing are sources of defects
growing into the epitaxial layer.

4. DISCUSSION

In this section, we analyze qualitatively the mecha-
nisms causing distortion of the (100) surface planarity
in annealing of passivated and unpassivated substrates.
As is known, a 12- to 30-Å-thick amorphous oxide
layer composed of As2O3 · Ga2O3 is present on the
GaAs surface upon etching [10, 11]. On heating to
300°C, the oxide layer decomposes into two compo-
nents: volatile As2O3 and nonvolatile Ga2O3. The sec-
ond component is a thermally stable compound which
can be removed from the surface at higher temperatures
as a monoxide (Ga2O) formed from Ga2O3 and the sub-
strate material by the reaction

(1)

Reaction (1) leads to reactive etching of the substrate
and gives rise to the initial microrelief on the (100) sur-
face. Since complete removal of Ga2O3 from the GaAs
surface in a vacuum occurs at a temperature higher than
the temperature of congruent evaporation of GaAs, the
surface layer is depleted of As. Prolonged annealing
leads to the appearance of gallium clusters that merge
together to produce microdrops, in which arsenic dis-
solves. It is significant that the rate of arsenic evapora-
tion from a drop exceeds the rate of the joint evapora-
tion of arsenic and gallium from the GaAs surface. This
process leads to the further development of the surface
microrelief and the formation of pits with faceted walls.
The pits become deeper with increasing temperature or
annealing duration. The thermal etching pits are elon-

gated along the directions 〈 〉 , which reflects the
anisotropic nature of GaAs dissolution in microdrops
of liquid Ga.

Ga2O3 4GaAs 3Ga2O↑ As4↑.+ +

110
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Let us now consider the processes occurring on the
surface of GaAs(100) crystals in the course of sulfida-
tion and subsequent thermal treatment.

4.1. Processes Occurring on the Exposure of Crystals 
to Aqueous Sodium Sulfide Solution

We have shown previously that two processes occur
in parallel in treatment of GaAs(100) crystals in
strongly alkaline Na2S solutions: layer-by-layer etching
and passivation proceeding via gradual accumulation of
adsorbed sulfur atoms occupying a bridging position
between As atoms on arsenic terraces. The layer-by-
layer etching occurs at the edges of unit steps formed
by Ga atoms, with hydroxyl OH– groups adsorbed on
them. Raising the exposure of (100) surfaces in a sul-
fide solution makes the unit steps denser and enhances
the microroughness of the crystal surface. Minimizing
this effect requires that the treatment be made shorter.

0.2 µm(‡)

(b)

(c)

0.2 µm

0.2 µm

Fig. 2. Cross-sectional TEM images of the interface in
ZnSe/GaAs heterostructures MBE-grown on GaAs sub-
strates (a) processed by the standard technique, (b) treated
both with sulfuric acid etchant and sodium sulfide solution,
and (c) treated only with passivating solution.
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Nevertheless, oxide removal and formation of a pri-
mary adsorption coating composed of SH groups
adsorbed onto As atoms takes several minutes. In the
course of drying and low-temperature annealing, a
reaction occurs in such an adsorption layer, which also
leads to the formation of a passivating sulfide coating:

(2)

The monolayer of chemisorbed undimerized sulfur
atoms, which appears as a result of reaction (2), forms
a two-dimensional lattice with symmetry (1 × 1) on the
surface of (100)As terraces. As shown by our investiga-
tions, the time of treatment in an aqueous solution of
Na2S should be short (5 min) in order to reduce the
microroughness of the surface being treated to the max-
imum possible extent.

4.2. Processes Occurring on the Crystal Surface
in the Course of Annealing in Vacuum Chamber

Heating a sulfided surface in a vacuum to more than
400°C leads to a substitution reaction in the surface
layer, in which sulfur atoms substitute underlying
arsenic atoms to form new Ga–S adsorption bonds. In
the process, the arsenic atoms of the substituted layer,
which originally had saturated hybridized sp3 bonds,
pass into a molecular form, acquiring a structure with
five electrons per atom, and are desorbed. Simulta-
neously, sulfur atoms lose one of the six valence elec-
trons and form dimers with five electrons per atom,
with the total charge of the crystal remaining
unchanged. The process of substitution by the above
mechanism is thermodynamically favorable, since it
leads to the formation of, on the whole, stronger chem-
ical bonds [12]:

Thus, in the course of annealing, GaAs(100) crys-
tals must acquire a surface that ends with Ga atoms
bound to adsorbed S atoms. The HEED pattern of such
a surface corresponds in this case to (2 × 1) recon-
struction.

At places of sulfide film discontinuity at edges of
unit steps and facets formed by them, oxygen bound to
gallium is retained. This leads, in the course of anneal-
ing, to the formation of pits on the GaAs surface by the
same mechanism as in the case of the oxidized surface.
However, the development of pits on passivated sur-
faces is limited by the presence of a sulfide film around
them. As a result, the density and depth of the pits
decrease, and their shape becomes rounded rather than
elongate (Fig. 1b).

It is noteworthy that making the passivation longer
(>10 min) leads to the growth of thick layers of physi-
cally adsorbed sulfur atoms on the initial surfaces. In

2SHad Sad H2S↑ .+

4EGa–As 4EAs–S 4EGa–S 3EAs–As ES–S+ +<+

≈ 4 37.8 4 61.6×+×
< 4 57.9 3 40 63+×+×  kcal/mol.
the course of annealing, the reaction between elemen-
tary sulfur that has no time to be desorbed and GaAs
leads to the formation of a Ga2S3 layer incoherent with
the substrate material. This results in the absence of a
clear HEED pattern. Making the treatment shorter
diminishes the accumulation of polysulfide groups in
the adsorption layer and hinders deposition of an amor-
phous coating composed of elementary sulfur and thio-
arsenious acid (a product of GaAs etching).

At the same time, annealing of GaAs surfaces sub-
jected to short-time treatment in a sodium sulfide solu-
tion and lacking a solid layer of physically adsorbed
sulfur cannot ensure formation of a solid Ga–S mono-
layer coating since, as a result of the photostimulated
dissociation of As–S bonds on the GaAs surface [13],
part of the chemisorbed S atoms have enough time to be
desorbed and are not involved in the substitution reac-
tion. In this case, a mixed Ga–(SxAsy) monolayer can be
formed on annealed surfaces, which must lead to the
appearance of more complex (n × 1) surface reconstruc-
tions.

5. CONCLUSION

The AFM technique was used to perform a compar-
ative analysis of the topography of naturally oxidized
surfaces of GaAs substrates with that of substrates
treated with aqueous sodium sulfide solutions in differ-
ent stages of their preparation for MBE growth of II–VI
layers. It is established that conventional annealing of
unpassivated substrates without arsenic flow leads to
rather strong distortion of the surface planarity. The
appearance of numerous pits on surfaces of this kind is
attributed to reactive etching of GaAs in the course of
gallium oxide removal and subsequent thermal etching
with gallium of the substrate surface. Treatment of sub-
strates with sodium sulfide makes it possible to sub-
stantially reduce the density and depth of pits formed in
annealing and lowers the required temperature of pre-
epitaxial annealing.

TEM was used to establish a direct relationship
between the number of defects in the layers grown and
the density of pits. Layers and heterostructures with the
best structural perfection were obtained in epitaxy onto
GaAs substrates treated for 5 min in a 1 M Na2S solu-
tion without preliminary etching. The investigations
performed clearly indicate that the sulfidation of GaAs
substrates substantially reduces the number of defects
originating at the ZnSe/GaAs interface.

Thus, sulfide passivation of GaAs substrates makes
it possible to substantially reduce the defectiveness of
interfaces and improve the crystal perfection of epitax-
ial ZnSe layers. The results obtained in this study dem-
onstrate that the use of passivating chemisorbed coat-
ings is a possible alternative to the growth of a buffer
GaAs layer with an arsenic coating in a separate MBE
chamber.
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Abstract—Changes induced by annealing the spectrum of states on a Si/SiO2 interface obtained by direct bonding
and on a Si(substrate)/〈thermal SiO2〉 interface in silicon-on-insulator (SOI) structures were investigated by
charge-related deep-level transient spectroscopy. The structures were formed by bonding silicon wafers and slic-
ing one of the wafers along a plane weakened by hydrogen implantation. The SOI structures were annealed at
430°C for 15 min in hydrogen, which corresponded to the conventional mode of passivation of the Si/SiO2-inter-
face states. The passivation of interface states by hydrogen was shown to take place for the Si/〈thermal SiO2〉 inter-
face, as a result of which the density of traps substantially decreased, and the continuous spectrum of states was
replaced by a band of states in the energy range Ec = 0.1–0.35 eV within the entire band. For the traps on the
bonded Si/SiO2 interface, the transformation of the centers occurs; namely, a shift of the energy-state band is
observed from Ec = 0.17–0.36 to 0.08–0.22 eV. The trapping cross section decreases by about an order of magni-
tude, and the density of traps observed increases slightly. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The trap-level spectrum for interfaces in silicon-on-
insulator (SOI) structures plays an important role in
designing devices, especially if the thickness of the
split-off layer is less than 0.2–0.3 µm. The annealing of
MIS structures prepared on bulk silicon is known to
lead to an appreciable (approximately, an order of mag-
nitude) decrease in the density of surface states on the
SiO2/Si interface [1, 2]. A conventional method for
such passivation of the interface states is annealing at a
relatively low temperature (~450°C) in a hydrogen
atmosphere. A widely used method for the formation of
SOI structures is bonding Si wafers and slicing one of
the wafers along a plane weakened by hydrogen
implantation [3, 4]. Because hydrogen implantation is
used in the formation of SOI structures and because
hydrogen is present at both interfaces at relatively high
concentrations (1020–1021 cm–3) [5], the effect of
repeated low-temperature thermal treatment in hydro-
gen on interface states can differ radically from the
effect exerted by the primary annealing of these struc-
tures. Furthermore, one of the Si/SiO2 interfaces in
such structures is formed by bonding rather than by
thermal oxidation. How the thermal treatments in
hydrogen affect the states at such an interface was
unknown until now. The purpose of this study is to verify
the possibility of passivating the traps at the SOI-struc-
ture interfaces using the regime conventional for bulk
silicon.
1063-7826/02/3601- $22.00 © 20060
2. EXPERIMENTAL

To form the SOI structures, we used wafers of 100 mm
in diameter fabricated from Czochralski-grown silicon.
In Table 1, we list the charge-carrier concentrations in
the film and the substrate of the SOI structures mea-
sured by the capacitance–voltage (C–V) method. Car-
rier concentrations before and after hydrogen annealing
virtually coincided both in the film and in the substrate.
The thickness of the Si split-off layer in the structures
amounted to 0.5 µm, and the buried-insulator thickness
was 0.28–0.4 µm. In particular cases, the split-off silicon
layer was additionally implanted with phosphorus (ion
energy E = 300 keV, dose D = 1012 cm–2) with subse-
quent annealing at 1000°C for the activation of the
implanted impurity. In the investigated structures, the
〈split-off silicon layer〉/〈buried oxide〉  interface is a
bonding boundary, whereas the substrate/〈buried
oxide〉  interface is the boundary between Si and a ther-

Table 1.  Parameters of the initial material and the combina-
tion of wafers in the silicon-on-insulator (SOI) structures

Designation of
the SOI structures

Split-off silicon 
layer; concentra-

tion, cm–3

Substrate; concen-
tration, cm–3

SOI-I n-Si; 3 × 1015 n-Si; 1.5 × 1015

SOI-II n-Si; 5 × 1015 n-Si; 1.5 × 1015

SOI-III n-Si; 2 × 1016 n-Si; 3 × 1014
002 MAIK “Nauka/Interperiodica”
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mally grown oxide. An additional thermal treatment was
performed at a temperature of 430°C for 15 min in
hydrogen. For the investigations, we measured the
capacitance–voltage (C–V) characteristics at frequen-
cies of 1 MHz and 100 kHz and the components of the
complex conductivity of structures (G–V characteris-
tics) and used the deep-level transient spectroscopy
(DLTS) method. From the available varieties of DLTSs,
we used the so-called charge-related DLTS (Q-DLTS)
method [6] with wider capabilities for investigating the
interfaces in the metal–insulator–semiconductor (MIS)
structures. The operating frequency in the Q-DLTS
measurements amounted to 1 kHz. The time window
varied within 10–4–2 × 10–3 s, and the filling-pulse dura-
tion was 10–5–2 × 10–4 s. All the measurements were
carried out using the mesa structures. The contacts were
formed using Al deposition. The mesa area varied
within 0.5–1 mm2.

3. RESULTS AND DISCUSSION

In Fig. 1, we show the typical C–V characteristics
for n-Si/SiO2/n-Si structures. In Fig. 1, it is possible to
isolate voltage intervals I and II in which the high-fre-
quency capacitance is modulated from a maximum
value to a minimum one. The voltage region from inter-
val I corresponds to the case when the substrate is
depleted and the silicon film is enriched. Precisely in
this voltage interval, the recharging of states at the
film/oxide interface and the deep levels in the substrate
can be observed in the DLTS measurements. For the
voltages from interval II, the film is depleted, and the
substrate is enriched. Selecting the voltages from this
interval, we can observe the recharging of states at the
film/oxide interface and deep levels in the film.

In Fig. 1, we show the C–V and G–V characteristics
for the SOI-II structure measured at a frequency of
100 kHz before and after the annealing of the structure
in hydrogen. A voltage shift of regions I and II (after
annealing) towards V = 0 corresponds to a certain
decrease in the charge of the buried insulator, but such
an effect is observed only in particular cases. As a rule,
the charge fixed in the insulator varied insignificantly
(Table 2). For an initial SOI structure, the conductivity
peaks associated with each of the structure interfaces
can be seen in Fig. 1. The annealing in hydrogen led to
the virtually complete passivation of traps at the lower
substrate–buried-oxide interface, whereas, at the upper
SiO2/Si interface, only a transformation of traps took
place and was accompanied even with a certain
increase in the height of the peak in the G–V character-
istic. Furthermore, for the upper interface, the carrier
capture cross sections are changed (decreased) for the
interface states. This follows from the fact that the C–V
dependence for this interface changed from the shape
characteristic of high frequencies to the low-frequency
type. For the substrate–buried-insulator interface, no
similar changes occur. In Table 2, we list the data on
charge values in the buried insulator and the trap densi-
SEMICONDUCTORS      Vol. 36      No. 1      2002
ties at the interfaces obtained from C–V and G–V mea-
surements.

In Fig. 2, we show the DLTS spectra for the SOI-I
structure taken before and after annealing in hydrogen
for the voltages from interval II (the depletion mode,
see Fig. 1) when the interface between the split-off sil-
icon layer and the buried insulator is probed. The E
peak in the spectra, obtained for the initial SOI struc-
tures, belongs to the deep-level centers, which are
localized in the near-surface part of the split-off Si
layer, and their parameters are Ec – E = 0.58 eV, σ = 4 ×
10–14 cm2, and N = (3–5) × 1015 cm–3 [7]. As can be seen
from Fig. 2, in the hydrogen-annealed sample, a peak
associated with a deep-level center in the film is virtu-
ally not observed, while the peaks associated with traps
at the interface are shifted to lower temperatures.

Similar changes in the spectra are also observed for
other investigated SOI structures. On the sub-
strate/〈buried insulator〉  interface, we also observed
only the peaks related to the interface states, but which
were shifted to lower temperatures.

In order to construct the distribution of the surface-
state density in the Si band gap based on the spectra
obtained, we used the method suggested in [8]. In this
method, the conventional equation describing the
charge exchange of deep centers is used:

where conventional notation is used. In order to calcu-
late the energy of centers, which mainly contribute to
the DLTS signal for the specified temperature and time
window, we measure the DLTS spectrum correspond-
ing to the recharging of deep centers within the entire

1/τ v σNc Ec– E–( )/kT ,exp=
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Fig. 1. Typical C–V (1, 2) and G–V (3, 4) characteristics for
the silicon-on-insulator structure measured at a frequency
of 100 kHz. The data are displayed for the SOI-II structure
(1, 3) before and (2, 4) after annealing at 430°C for 15 min
in hydrogen. BOX stands for buried oxide.
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Fig. 2. Q-DLTS spectra for the SOI-I structure (a) before and (b) after annealing in hydrogen obtained using voltages from the inter-
val II (see Fig. 1) when the split-off silicon layer and its interface with oxide are tested. A filling-pulse amplitude U1 = –2.0 V. A bias
voltage U2 applied across the structure during the measurements was equal to (a) (1) 8, (2) 10, (3) 12, (4) 14, and (5) 16 V; (b) (1) 2,
(2) 4, (3) 6, (4) 8, and (5) 10 V.
voltage interval I (or II) (see Fig. 1), from which we
determine the distribution of states over the band gap:

For this method, it is necessary to know the capture
cross sections for a level; these cross sections can be
estimated from the DLTS spectra. For determining the
carrier-capture cross sections by a level, it is convenient
to use the DLTS spectra measured for a relatively small
filling-pulse amplitude, when the traps are recharged in
a relatively narrow energy range, and the peaks
obtained can be approximately described using the

Ec E– kT σv Ncτ( ).ln=
expressions for the centers with a fixed energy and
cross section.

Our estimates for the states at the substrate/〈buried
insulator〉  interface showed that the value of the cross
section amounts to 10–18 cm2 for the entire spectrum of
traps and changes insignificantly during the annealing
in hydrogen. The obtained distribution of states at the
substrate/〈thermal oxide〉  interface is shown in Fig. 3.
The density of states after the annealing (curves 2, 3)
decreases, and the wide spectrum of traps is replaced by
traps localized in a relatively narrow energy range. In
Table 2, we list the integrated values of the density of
Table 2.  Fixed charge (Q) in the buried insulator referred to one of the interfaces in the silicon-on-insulator structure deter-
mined from the C–V characteristics measured at a frequency of 1 MHz, and a density of interface states determined from the

G–V and DLTS measurements (  and , respectively)

Designation
of structures

Substrate/SiO2 Si/SiO2

Q, cm–2 , cm–2 , cm–2 Q, cm–2 , cm–2 , cm–2

SOI-I 1 3.7 × 1011 2 × 1011 1.7 × 1010 1.4 × 1011 2 × 1011 5.3 × 109

2 4 × 1011 &5 × 1010 6 × 108 1011 1.7 × 1011 9.3 × 109

SOI-II 1 3 × 1011 7 × 1011 1.8 × 1010 1.6 × 1011 2 × 1011 5 × 109

2 8 × 1010 &5 × 1010 3.6 × 109 5.3 × 1010 8 × 1011 1.7 × 1010

SOI-III 1 5 × 1010 – – 2 × 1011 – 2.2 × 109

2 6 × 1010 – – 2.1 × 1011 – 5.3 × 109

Note: (1) Initial structures; (2) structures annealed in hydrogen.

Dit
GV Dit

DLTS

Dit
GV Dit

DLTS Dit
GV Dit

DLTS
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Fig. 4. Distribution of states at the bonded Si/SiO2 interface for (2) SOI-I and (b) SOI-II structures. A value of the trapping cross

section amounted to 10–18 cm2 in the initial structures and 10–19 cm2 after annealing. (1) initial structures, and (2) annealed struc-
tures.
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Fig. 3. Distribution of density of states Dit at the substrate/〈 thermal oxide〉  interface obtained for (1, 2) SOI-I and (3) SOI-II struc-

tures. A value of the trapping cross section in (1) initial and (2, 3) annealed structures amounted to 10–18 cm2.
states at the given interface before (samples 1) and after
(samples 2) annealing.

The processing of the DLTS spectra for the 〈split-off
silicon layer〉/〈buried insulator〉  interface shows that the
peaks observed even in the initial structures correspond
to a relatively narrow energy range in the Si band gap.
The estimates of the carrier-trapping cross section for
the upper interface show that the cross section was on
the order of 10–18 cm2 before the annealing. A value of
the capture cross section for the traps in the annealed
samples decreased and came to equal approximately
10–19 cm2. In Fig. 4, we show the energy distributions of
states both in initial (curves 1) and annealed (curves 2)
SOI-I and SOI-III structures. After annealing, we
observe a shift of trap energies to the region of lower
values and a certain increase in the peak of distribution.
The integrated values of the density of states at this
interface before and after annealing are also listed in
Table 2.
SEMICONDUCTORS      Vol. 36      No. 1      2002
The results obtained show that annealing SOI struc-
tures in hydrogen has varying effects on the interface
states. At the substrate/〈buried insulator〉  interface
formed by thermal oxidation, a conventional passiva-
tion of centers occurs. During this passivation, some
traps disappear, while the parameters of the remaining
traps remain unchanged (in particular, the trapping
cross section). On the bonded Si/SiO2 interface, the
reconstruction of states apparently takes place. As a
result of this reconstruction, both the energy and the
capture cross section change, and even the trap concen-
tration somewhat increases.

4. CONCLUSION

Annealing in hydrogen is shown to lead to the pas-
sivation of an appreciable fraction of traps on the sub-
strate/〈thermal SiO2〉  interface in silicon-on-insulator
structures. At the same time, at the Si/SiO2 interface
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obtained by bonding, a transformation of the traps
observed occurs: the state-energy band is shifted from
Ec = (0.17–0.36) eV to Ec = (0.08–0.22) eV, the trap-
ping cross section decreases approximately by an order
of magnitude, and the density of traps increases
slightly.
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Abstract—The quantum conductance staircase of the one-dimensional (1D) channel is analyzed for a weak
filling of the lower 1D subbands, when the exchange electron–electron interaction of carriers dominates over
their kinetic energy. Main attention is paid to considering the behavior of the “0.7(2e2/h)” feature split off from
the first quantum step, which is identified as a result of the spontaneous spin polarization of the 1D electronic
gas through exchange interaction at zero magnetic field. The critical linear concentration of electrons above
which fully polarized electron gas starts to depolarize, with the resulting evolution of the split-off substep height
from e2/h to 2e2/h, is determined within the framework of phenomenological theory. Moreover, the temperature
dependence of the height of this substep at the range 0.5(2e2/h) – 0.75(2e2/h), resulting from the partial depo-
larization of the electron gas near the 1D subband bottom, is predicted. The quantum-mechanical consideration
carried out analytically in the context of the Hartree–Fock–Slater approximation with localized exchange
potential shows that consideration of the electron–electron interaction in a quantum wire with an arbitrary car-
rier density leads to spontaneous polarization of the quasi-1D electronic gas in zero magnetic field at small lin-
ear concentrations of carriers. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The development of modern nanotechnology makes
it possible to obtain quantum wires and quantum point
contacts which are one-dimensional (1D) channels con-
necting two-dimensional (2D) electronic gas reservoirs
inside heterojunctions and single quantum wells (QW)
[1–7]. The study of the quasi-one-dimensional (Q1D)
transport in such systems has shown that if the 1D chan-
nel length is less than the mean free path, the carriers
demonstrate ballistic properties resulting in quantiza-
tion of the conductance in units of 2e2/h [2, 3, 8, 9]. The
observation of quantized conductance became possible
due to the use of electrostatically compressed 1D chan-
nels. These ballistic 1D channels appear at the negative
voltage applied to the pair of separated gates, which are
created in 2D structures using electron beam nano-
lithography [1–3]. An increase of the gate voltage Ug
increases the electron density inside the quantum wire
and thereby stimulates filling of a larger number of 1D
subbands. The G(Ug) dependence is a series of the 1D
conductance plateaus separated by steps of the height
2e2/h, since the 1D channel conductance changes
abruptly each time the Fermi level coincides with one
of the 1D subbands:

(1)

where G0 = 2e2/h; N is the number of 1D subbands,
which can be varied by changing Ug and corresponds to
the number of the upper occupied subband; T is the
transmission coefficient, which is equal to unity if the

G G0NT ,=
1063-7826/02/3601- $22.00 © 20065
elastic scattering length is larger than the length of the
ballistic channel.

Thus, the observation of the quantum conductance
staircase, G(Ug), identifies adiabatic transparency of
the spin-nondegenerate 1D subbands [2, 3].

Of particular interest is the study of the quantum
conductance staircase at low filling of 1D subbands
when electron–electron interactions, which lead to the
formation of crystalline [10, 11] and liquid [12–14]
states of Q1D electrons and to their spontaneous spin
polarization [15–24], start to dominate. The Tomo-
naga–Luttinger model of electronic liquid [12, 13] is
the most suitable for estimating the effect of the local
interaction between carriers on features of the Q1D
transport [14]. In this case, the height of the first step of
the quantum staircase G0 = K(2e2/h) can increase or
decrease, respectively, in the case of the dominant
attraction (K > 1) or repulsion (K < 1) component of the
electron–electron interaction (K = 1 for noninteracting
electron gas). In particular, the modified Tomonaga–
Luttinger liquid model made it possible to explain the
enhancement [4] and suppression [14] of the first quan-
tum step in long (>2 µm) quantum wires, as well as
oscillations of the 1D conductance plateau because of
carrier scattering by an impurity center located near
quantum wire boundaries [12, 14].

However, this and other models of 1D channels, tak-
ing into account the contact phenomena at channel
boundaries [25–27] and spin–orbit interaction [28],
define the change in characteristics of the first quantum
002 MAIK “Nauka/Interperiodica”
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step as only resulting from elastic backscattering of car-
riers and decoherence of the 1D transport. At the same
time, it is not possible to interpret, in terms of these
models, the behavior of the “0.7(2e2/h)” feature split-off
from the first quantum step, which is identified as a con-
sequence of the spontaneous spin polarization of the 1D
electronic gas in zero magnetic field [6, 15–24]. We
notice two important experimental facts that provide
evidence of the presence of spontaneous spin-polariza-
tion in 1D channels, notwithstanding the general theo-
retical prediction of the impossibility of a ferromag-
netic state in ideal ferromagnetic systems in the
absence of a magnetic field [29]. First, the electron
g-factor is found to increase severalfold (0.4  1.3)
with a decreasing number of occupied 1D subbands
[15]. Second, the “0.7(2e2/h)” feature of the first quan-
tum step tends toward a value 0.5(2e2/h) with increas-
ing external magnetic field applied along the quantum
wire [15, 18]. These results have stimulated the consid-
eration of possible spontaneous electronic spin polar-
ization, enhanced by disorder in the 1D channel [17,
30]. These mechanisms were developed within the
framework of the spin-polaron concept in conditions of
the Wigner crystallization [11] and for the 1D transport
at an ultralow linear concentration of carriers, when the
exchange interaction begins to exceed their kinetic
energy in zero magnetic field [19–24]. In the latter case,
the numerical calculations conducted in the Kohn–
Sham mean-field approximation [19–21] describe qual-
itatively the current–voltage characteristic of the polar-
ized 1D channel. However, up to now, no analytic proof
of the existence of the electron spin-polarization in the
1D channel has been presented. Besides, no analytic
expression describing the linear carrier concentration
dependence of the “0.7(2e2/h)” feature has been
derived, which significantly complicates analysis of the
spontaneous electron spin polarization in 1D channels
at finite temperature.

EF


E

p
F
Ô kpF

p

E
F
Ô

Fig. 1. The model of filling of the energy states by the par-
tially polarized electron gas. The states near the 1D subband
bottom are unpolarized. The polarization appears near the
Fermi level.
The Hartree–Fock–Slater approximation with the
localized exchange potential was used in the present
work in order to solve this problem. Taking the elec-
tron–electron interaction into account is shown to lead
to a spontaneous spin polarization of the Q1D electron
gas at a small linear density of carriers. First, the
appearance of spontaneous electron spin polarization in
a 1D channel is considered in the context of phenome-
nological theory, which allows for the determining of a
range of exchange-interaction prevalence over the
kinetic energy in dependence on the linear carrier den-
sity. One of the main results of phenomenological the-
ory is the determination of the critical carrier linear
density below which the 1D channel is fully polarized.
This completely lifts the spin degeneracy for the first
quantum conductance step G = e2/h. However, as soon
as the carrier density in the 1D channel exceeds the crit-
ical value, the spontaneous electron spin-polarization
becomes partial, which leads to an increase of the first
quantum step up to the standard value 2e2/h. In addi-
tion, phenomenological theory predicts the temperature
dependence of the split-off substep in the range
0.5(2e2/h) – 0.75(2e2/h). Further, a quantum-mechani-
cal consideration of the electron spin polarization
through exchange interaction in a quantum wire with an
arbitrary carrier density is carried out within the frame-
work of the Hartree–Fock–Slater approximation with
localized exchange interaction. Comparing energy den-
sities for spin-polarized and unpolarized electron gas in
a 1D channel, one can conclude that, in the zero mag-
netic field case, the polarized and unpolarized states are
energetically favorable at, respectively, small and large
carrier densities.

2. SPONTANEOUS SPIN POLARIZATION
OF CARRIERS THROUGH EXCHANGE 
INTERACTION IN QUANTUM WIRES: 

PHENOMENOLOGICAL THEORY

Spin-polarization of carriers in quantum wires
appears basically similarly to processes in multielec-
tron atoms, where, due to exchange interaction, each
subshell is filled so that the total spin is maximal. The
quantum-mechanical theory of the forming of the spin-
polarized state in a quantum wire will be presented in
the next section. First, we investigate the possibility of
the appearance of a spontaneous spin polarization in 1D
channels within the framework of phenomenological
theory.

Let us consider a wire of length L containing N elec-
trons, with Np of these polarized. Consequently, the
wire contains N↑ = (N – Np)/2 electrons with one spin
direction and N↓ = (N + Np)/2 electrons with another.
Let us assume that the unpolarized component occupies

energy levels in the range [0; ] and that the polar-
ized component occupies energy levels in the range

[ ; ] (see Fig. 1).

EF
np

EF
np EF

p
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The energy of the partially polarized electronic liq-
uid is given by

(2)

The first term Ekin > 0 is related to the kinetic energy
that depends both on the total number of electrons and
on the polarized component density. Ekin will naturally
increase with an increasing degree of polarization
because of an increase of the number of levels, each
occupied by a single electron.

The second term ECoul > 0 describes the contribution
of the Coulomb interaction, which depends only on the
total number of electrons.

The third term Eex < 0 accounts for the exchange
interaction energy. We assume that this energy depends
only on the polarized component density, which looks
rather natural since the exchange interaction takes place
only between electrons with the same spin direction.

The polarized component density is determined
from the condition that the energy as a function of Np
should be at a minimum in the range Np ∈  [0; N]. Since
the Coulomb interaction energy does not depend on the
spin state, in what follows it is enough to take into
account only the first and third terms in (2):

(3)

In its turn, the kinetic energy of the partially polar-
ized electronic liquid is the sum of the kinetic energies
of the polarized and unpolarized components:

(4)

The unpolarized component energy reads

(5)

Here, gs = 2 is the spin g-factor, and  is determined
from the condition

(6)

where n = N/L is the linear carrier density. Thus,

(7)
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The polarized component energy is determined simi-
larly:

(8)

where  is determined from the condition

(9)

Thus,

(10)

which determines the linear density of the kinetic
energy per unit of quantum-wire length

(11)

The exchange interaction energy density can be pre-
sented in the form

(12)

which corresponds to the retaining of the first two terms
in the Taylor series. Thus, a minimum of the total
energy as a function of np in the range np ∈  [0; n] should
be found in order to find the density of the polarized
component of the electron gas in the 1D channel:

(13)

where

(14)

Three cases should be considered.
1. 6n < b. The W(np) plot is depicted in Fig. 2. The

function W steadily decreases in the range [0; n]; the
minimum is reached at n = np. Thus, the system is com-
pletely polarized.

2. n > b,  > n. The W(np) plot is given in

Fig. 3. The minimum is also reached at n = np. Thus, if
the linear electron density does not exceed the value

(15)

the system remains completely polarized.
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3. n > ncrit. The function W(np) has a minimum in the
range [0; n] at the point

(16)

which determines the density of the polarized compo-
nent of the electron gas in the 1D channel. It can be seen
that its fraction decreases with increasing total carrier
density. The corresponding density dependence of the
polarization degree α = np(n)/n is shown in Fig. 4.

Let us assume that the momentum dependence of the
state occupancy is given by the following expression:

(17)

where 1 < gs < 2 is the spin g-factor corresponding to
the average number of electrons in a k space cell, which
depends on temperature and chemical potential of the

np
a

12 n b–( )
-----------------------,=

Q p T,( ) gs T ε p( ) µnp–,( ) f T ε p( ) µp–,( ),=

W

n

np

Fig. 2. Dependence of the function W on the density of the
polarized component np at low total linear carrier density
(n < b).

W

npnp

n

Fig. 3. Dependence of the function W on the polarized-com-
ponent density np at high total linear carrier density (n > b).

n

1

α

Fig. 4. Dependence of the degree of polarization, α, on the
total linear carrier density n in a quantum wire.
unpolarized component µnp; f(p, T, µp) is the Fermi dis-
tribution. Then, the conductance of the quantum wire
with a partially polarized electron gas equals

(18)

where V is the longitudinal (pulling) voltage (source–
drain voltage, Vds, applied along the 1D channel, which
is electrostatically compressed using the split-gate
technique [1–3]). In the limit of small V, we have 

(19)

At zero temperature, µnp ≡ , µp ≡ , so that

(20)

and the conductance equals

(21)

Thus, the system remains fully polarized at small
linear carrier densities n < ncrit, which results in the
quantum step height being equal to half the standard
value. As soon as the carrier density exceeds the critical
value, the spontaneous spin polarization becomes par-
tial, which is manifested in an abrupt change in conduc-
tance to the standard level (G0 = 2e2/h).
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It is reasonable to assume at finite temperature (T ≠
0) that, with decreasing energy, gs decreases from 2 to
1 smoothly rather than stepwise (Fig. 5):

(22)

If the temperature is sufficiently low, then it may be
assumed that

(23)

where the small negative addition –ξ to the Fermi
energy of the unpolarized component depends weakly
on the carrier density. It reflects the absence of an

abrupt change in the derivative  at ε = 0, T = 0 for

the fully polarized gas.
Let us consider the case when the system is fully

polarized at zero temperature. Then,  ≡ 0, and µnp =
–ξ is a negative constant. Including temperature into
our consideration leads in this case to the partial depo-
larization of the low-energy states with the probability

1 + exp . Then we can put gs(T, ε – µnp) = 1

and f(T, ε – µp) = 1 in (19). Therefore, taking into con-
sideration the behavior of the spin g-factor at finite tem-
perature (22), we obtain for the 1D channel conduc-
tance

(24)

At moderate temperatures, when µp/kT @ 1 (but it is
not necessary that ξ/kT @ 1), the exponential function
in the denominator of the first term in (24) can be
neglected and the expression can be rewritten as

(25)

This formula describes the conductance of a fully
polarized electron gas within a quantum wire at a non-
zero temperature. Passing to the limit T  0, we
have G = e2/h, which agrees with the result obtained
above. An increase in the temperature at the condition
ξ/kT ! 1 leads to an increase of the conductance up to
the value of g = 3/2 (e2/h).

Thus, the presented phenomenological theory pre-
dicts a temperature dependence of the substep height in
the range from 0.5G0 to 0.75G0. The obtained tempera-
ture dependence of the conductance of the partially
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polarized gas explains the stable observation of the uni-
fied “0.7(2e2/h)” feature of the first quantum step in
studies of quantum wires with various characteristics
[6, 15–24]. These experiments were probably carried
out at temperatures that were not sufficiently low to
ensure, with account taken of the width of the quantum
wires studied, suppression of the electron depolariza-
tion near the bottom of the first 1D subband. At this
subband, the transformation of the “0.7(2e2/h)” feature
into the 0.5(2e2/h) substep occurs only with the appro-
priate increase of the Boltzmann factor, which is
achieved by lowering the temperature [31], raising the
magnetic field [15], or by using narrow [6] or slightly
disordered [17, 30] quantum wires.

We can represent the conductance of a partially
polarized gas as

(26)

Hence, it follows that when the carrier density increases

to the level satisfying the inequality (n)/kT @ 1, the

conductance increases to the standard value (2e2/h). It
is precisely this effect that is realized in experiments on
the study of the quantum conductance staircase in the
case of increasing 1D subband filling accompanied by
quenching of the “0.7(2e2/h)” feature [6, 15, 17, 18].

3. SPONTANEOUS SPIN POLARIZATION
OF CARRIERS THROUGH EXCHANGE 
INTERACTION IN QUANTUM WIRES: 

QUANTUM-MECHANICAL CONSIDERATION

Let us now show, using methods of quantum
mechanics, that exchange interaction can indeed lead to
the forming of the spin-polarized state of the electron
gas in a quantum wire. We consider two examples.
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Fig. 5. Dependence of the mean electron number in the
k-space cell on the momentum.
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3.1. Singlet and Triplet States of a Two-Electron System 
in a Quantum Wire

Let us consider a wire of length L containing a pair
of particles. We assume that the particles are located in
a single quantum-well subband. In the absence of inter-
action, particles 1 and 2 have the wave functions

(27)

where k1 = , k2 = , ϕ(x, y) is the wave function

in the xy plane normal to the wire axis z, and χ is the
spin component of the wave function.

The energy of the pair of noninteracting particles is
equal to

(28)

The total wave function of the system must be antisym-
metric. Disregarding the spin–orbit interaction, the
wave function factorizes into a product of the coordi-
nate and spin components:

(29)

If the total spin equals unity, the spin part X is symmet-
ric relative to the transposition of arguments. Therefore,
the coordinate part must be antisymmetric in this case.
If the total spin is zero, the coordinate part must be, by
contrast, symmetric. We can write in the zero approxi-
mation

(30)

Let us assume that electrons in the singlet state occupy
the level with the lower kinetic energy (k = 0). For the
triplet state, we assume that the momentum of one of
electrons is zero, and that of the other electron, arbi-
trary. Then

(31)
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Let us now assume that electrons repel one another,
and the repulsion potential is V(r1, r2). To a first order
of the perturbation theory, we have

(32)

Let us introduce the short-range repulsive potential

(33)

Then we obtain

(34)

The first-order correction vanishes for the triplet state
and is positive for the singlet state. It can be seen from
the formula that, if the wave number k is small enough
and the “power” a of the repulsive potential is high
enough, so that

(35)

then, with perturbation taken into account, the triplet
state becomes more favorable than the singlet one.

Undoubtedly, the actual potential of the electron–
electron repulsion is Coulombic, rather than delta-like.
However, we assume that taking this factor into consid-
eration will not change the situation drastically. It
would be expected that in narrow wires, where elec-
trons are arranged more densely, the Coulomb interac-
tion matrix element will be larger than in wide wires,
which will lead to an increase of the formation proba-
bility of the triplet state, i.e., the state with a maximum
spin.

3.2. Consideration of the Exchange Interaction
in Electron Gas inside a Quantum Wire

The number of electrons in quantum wires always
exceeds 2. Therefore, it is interesting to consider effects
resulting from the exchange interaction in the case of an
arbitrary number of electrons N in a quantum wire.
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Let us first consider the case of a fully polarized sys-
tem. Then, the coordinate part of the total wave func-
tion is antisymmetric with respect to any pair of indi-
ces. We use the Hartree–Fock–Slater approximation for
the one-particle wave functions to obtain

(36)

where U(r) is the confining potential in the plane per-
pendicular to the wire axis, and Ub is the potential of
interaction with the positive background. The motion
along the quantum wire axis z is free. Thus,

(37)

We have

(38)

The interaction term depends on the coordinate z along
the wire, which leads to a nonharmonic dependence of
one-particle wave functions on this coordinate. How-
ever, it can be readily seen that this dependence disap-
pears for an infinitely long wire, since a shift by z along
the z'-axis is unimportant in this case. Then, we have in
the thermodynamic limit (L  ∞, n = N/L = const)

(39)

where UH corresponds to the local Hartree potential
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and UHF is the nonlocal Fock addition; i.e., it is related
to the consideration of the exchange interaction

(41)

Now we introduce one serious simplification. We
assume that all electrons are in a single quantum-well
subband and that the one-particle wave function does
not depend on the electron momentum. Then, the
equation under consideration must be independent of
kj. In order to satisfy this condition, we assume that

 ≈ 1. The exchange term can then be rewritten
approximately in the local form:

(42)

Now we replace summation over kl by integration using
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This integral can be expressed in terms of hypergeo-
metric functions. The cutoff momentum is determined
from the condition

(45)

where n = N/L is the linear electron density. At large lin-
ear densities, we have

(46)

Thus, in the limit of high linear carrier densities, the
exchange term does not depend on n.

At a low linear concentration, when n ! |r – r'|, i.e.,
at a distance between carriers smaller than the wire
diameter, the integral in (44) can be estimated as fol-
lows:

(47)

In this case, the exchange interaction does not affect
the self-consistent wave functions, but leads to the
appearance of a negative addition to the system energy.

Let us now consider the term UH:
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It is easy to see that, in the limit of infinite L, we
have a logarithmic divergence associated with the long-
range character of the Coulomb potential. However,
according to the general theorem, Hartree’s term will
always be fully compensated by the interaction with the
positive background:

(49)

The general equation for the one-particle wave func-
tion coincides at low densities with the one-particle
Schrödinger equation in the absence of electron–elec-
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tron interaction (surely, with allowance for the negative
addition to the energy due to the exchange)

(50)

The energy density equals

(51)

where the first term corresponds to the constant addi-
tion to the energy of each one-particle level; the second,
to the density of the kinetic energy; and the third, to the
exchange interaction energy.

At a high linear density, the one-particle wave func-
tions are determined from the following equation:

(52)

The term describing the exchange interaction is a nega-
tive addition leading to a downward shift of the one-
particle energies. The magnitude of this shift does not
depend on the density. The energy density equals

(53)

where  stands for the one-particle energy with a cor-
rection for exchange; the second term is related to the
kinetic energy.

Let us now consider the unpolarized system, which
can be represented as a combination of two polarized
systems with opposite spins. The exchange interaction
then shows itself only among the electrons of one sub-
system. Thus, at small carrier densities, the energy den-
sity for the unpolarized gas is given by

(54)

At high densities, when the exchange term does not
depend on the density, the equation for one-particle
wave functions in the unpolarized gas coincides with
the one for the polarized gas. The energy density for the
unpolarized gas is then given by

(55)

Comparing energy densities for the polarized and
unpolarized gas, we conclude that the polarized state is
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energetically favorable at small linear carrier densities,
and the unpolarized state of the electron gas in 1D
channels, at high concentrations.

4. CONCLUSION
Thus, consideration of the electron–electron inter-

action in the Hartree–Fock–Slater approximation with
localized exchange potential may lead to the spontane-
ous spin polarization of the Q1D electronic gas at small
linear carrier densities, whereas the unpolarized state
dominates at large linear densities. This effect of the
exchange interaction shows itself in the splitting of the
first quantum step at zero magnetic field. The obtained
temperature dependence of the height of the substep
split-off, as a result of the spontaneous polarization,
predicts its transformation from e2/h to (3/2(e2/h)), due
to the partial depolarization of the electron gas near the
1D subband bottom. The proposed model accounts for
the stable observation of the unified “0.7(2e2/h)” fea-
ture of the first quantum step when studying various
quantum wires, whose large width prevents the sup-
pression of the depolarization process even at ultralow
temperatures.
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Abstract—A new type of composite active region of a laser, which contains an In0.2Ga0.8As quantum well
(QW) and an array of InAs quantum dots (QDs) embedded in GaAs is studied. The QW acts as accumulator
of injected carriers, and the QD array is the emitting system located in tunneling proximity to the QW. A theory
for the calculation of electron and hole energy levels in the QD is developed. Occupation of the QDs due
to the resonance tunneling of electrons and holes from the QW to the QD is considered; the conclusions
are compared with the results obtained in studying an experimental laser with a combined active region.
© 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Lasers based on arrays of quantum dots (QDs) were
repeatedly described in the literature. In particular,
lasers on InAs QDs embedded in GaAs, emitting in the
photon energy range of 1.2–1.3 eV, are known [1].
Their distinctive feature is the rather low threshold cur-
rent of about 200 A/cm2 at room temperature. These
lasers contain one or a few sheets of QDs in the
undoped part of the p–n structure. A preliminary exper-
imental study shows that certain advantages appear if a
quantum well (QW) is located in the tunneling proxim-
ity to the QD array. The quantum yield of emission
from such a structure hardly depends on the driving
current. The possibility of increasing the carrier capture
rate, since the related cross section is significantly
larger for a QW than for a QD, represents an obvious
advantage of this structure. Moreover, thermal equilib-
rium inside the QW is also bound to be attained faster
than in the QD array.

This work is dedicated to developing a theoretical
approach for the calculation of the electron and hole
energy in a QD. The aim of this study is to establish the
condition for coincidence of the energies of ionization
of electron and hole states in the QW and QD. This res-
onance essentially facilitates tunneling from the QW
into QDs and accelerates filling of the latter.

A semiconductor p–n heterostructure laser is con-
sidered. It comprises a QW—a layer of the InxGa1 – xAs
solid solution with a thickness W, and an array of InAs
QDs embedded in GaAs in tunneling proximity to the
QW. Experiments show that the distance between the
QD array and the QW must be about 40 Å. As men-
tioned above, the QW plays the role of the reservoir,
accumulating electrons and holes when the forward
current is passed through the structure. When the dis-
tance between the QW and the QD sheet is small, car-
riers can easily tunnel from the QW to the QD under
1063-7826/02/3601- $22.00 © 20074
resonance conditions. As will be shown below, the QW
with a thickness W = 80 Å and a In0.2Ga0.8As composi-
tion will have a hole ground state ionization energy
approximately coinciding with that for the unoccupied
QD. The electron energy level in the unoccupied QD is
0.03 eV higher than in the QW. However, when a QD is
occupied by a hole, the electron level in the QD
decreases by an approximately similar value due to the
electron–hole Coulomb interaction. The possibility of a
free resonance electron tunneling from the QW to the
QD occupied by a hole then appears. An electron and a
hole form a bound exciton in the QD, with only singlet
excitons emitting light. The triplet excitons with paral-
lel electron and hole spins recombine nonradiatively
due to the Auger effect. That is why the quantum yield
(at relatively low current value) will be, at most, 25%,
and this agrees with observations.

2. CARRIER DISPERSION LAWS

The heavy hole energy spectrum in the InAs crystal
is well described by the quadratic approximation within
a rather wide range. According to the data presented in
the handbook [2] and in [3], this approximation holds
when the hole energy is lower than 0.4 eV. The disper-
sion law was calculated there using the nonlocal
pseudopotential method, which gives the most reliable
results. Based on these, we assume that the hole energy
is given by the quadratic dispersion law:

(1)

where k is the hole wave vector, and mv = 0.41m0 is the
tabulated hole effective mass in InAs. The energy is
given in electron volts in [3], and the wave vector in
fractions of its maximum value in the [001] direction,
(k' = ka/2π), where a = 6.06 Å is the InAs lattice con-
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stant. One can judge to what extent (1) is satisfied by
inspecting the plots presented in the lower part of the
figure. The two dotted lines describe the band structure
calculation results [3] for the [100] direction (lower
dotted line) and the [111] direction (upper dotted line).
The solid line is a standard quadratic dispersion law
with the tabulated effective mass given by (1). It is seen
that this curve is located exactly in the middle between
the two dashed lines. The discrepancy between the dot-
ted lines is due to corrugation of the heavy-hole energy
surface.

The quadratic approximation for the electron energy
spectrum is valid only within an exceedingly narrow
energy range. We have found that the semiempirical
expressions, similar to the Kane formulas [4], give an
adequate analytic description of the numerical results
obtained in [3]. This approximation for the electronic
energy in the conductance band reads

(2)

Here, Eg = 0.356 eV is the energy gap for InAs, and mc

is the electron effective mass that is considered as a fit-
ting parameter for which the value mc = 0.057m0 is
obtained. This value gives the dependence calculated
using (2), which is presented in the upper part of the fig-
ure by a thick solid line; the dotted line, presenting the
results of [3], practically coincides with it. Moreover,
the thin solid line in the figure depicts the standard qua-
dratic approximation for the conduction band with the
tabulated electron effective mass mc = 0.027m0. This
approximation obviously leads to a significant inaccu-
racy when the electron energy exceeds 0.05 eV. Notice
that, in accordance with calculations [3], the electronic
energy spectrum is isotropic up to an energy Ec ≈ 1 eV,
at which the anisotropy, due to a distinction between
the L and X valleys, becomes essential.

3. SPHERICAL MODEL OF QD

Formula (2) for the nonparabolic dispersion law is
related to the case of a plane wave in an infinite
medium. The InAs QWs embedded in GaAs have a
truncated cone form with the rounded vertex 15 Å in
diameter. The base of the cone is elliptic with axes 150
and 170 Å; the height equals 20 Å. The nonparabolic
Hamiltonian in the effective mass approximation is
absent for an object of such complex shape; such a
Hamiltonian can be constructed only for a spherical
microscopic object. The optimal diameter of a sphere
modeling the cone is chosen in [5], so that its value lies
between the diameter of a sphere inscribed in the cone
and the diameter of a sphere whose surface passes
through the vertex and is tangent to the base. The cone
is similar in shape to the sporting discus; therefore,
these two spheres have very close diameters. Here we
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assume that the optimal diameter equals the height of
an untruncated pyramid, i.e., the diameter of the sphere
whose surface passes through the vertex and is tangent
to the base of the cone, d = 22.2 Å. It is noteworthy that
the energy levels of electrons in a spherical QD lie
higher than those in the cone.

Inside the sphere, at distances r < d/2, the wave
equation has the following form both for electrons and
holes:

(3)

The energy is reckoned from the bottom of the corre-
sponding band in the InAs crystal. Here, T is the kinetic
energy operator, which is obtained from (2) for elec-
trons and from (1) for holes by substituting the operator
(–i∇ ) for the wave vector k. Let us consider the square
root of the operator expression obtained for electrons
from (2). We understand the radical operator as a power

TΨ1 EΨ1.=

–0.2
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Dispersion laws in the valence (lower part) and conduction
bands (upper part). Dotted lines represent the carrier disper-
sion laws obtained by the pseudopotential method in [3].
Thick solid lines show the dispersion laws obtained from
the approximating expressions derived in this study: for-
mula (1) for holes and formula (2) for electrons. Thin solid
line in the upper part of the figure represents the quadratic
dispersion law.
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series expansion of the radical (2) in k2 with the follow-
ing substitution of k2 by the operator (–∇ 2):

(4)

The bound carrier wave function Ψ2 is described
outside the sphere r > d/2 (in GaAs crystal) by the equa-
tion corresponding to the parabolic approximation for
the kinetic energy

(5)

Here, m2 is the carrier effective mass in the GaAs crys-
tal; the potential energy U is equal to the conduction or
valence band discontinuity ∆E for electrons and holes,
respectively.

Let us now consider the boundary conditions at r =
d/2, which will be discussed in detail below. Here, we
only note that the boundary conditions, in fact, consti-
tute an independent part of the mathematical model of
the QD. To describe the bound states, they are chosen
in the form

(6)

These conditions mean the continuity of the wave func-
tion and its derivative along the normal n to the inter-
face. In the spherical model case, the second condition
represents the continuity of the radial component of the
wave function gradient. It is easy to see that the solu-
tions to (3) or (5) read

(7)

This solution is well known for the parabolic dispersion
law (holes in InAs and both types of carriers in GaAs).
The wave function decay parameter for GaAs is given
by the expression

(8)

Parameters k and D can be found from the boundary
conditions (6). However, in the case of electrons in
InAs with nonparabolic dispersion law, we must make
sure that the function Ψ1 in (7) is an eigenfunction of
the operator T from (4). To this end, we use the relations

(9)
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Thus, we obtain the result of action of an arbitrary
power of the Laplacian

(10)

Then the operator series (4) transforms into a power
series, which is an expansion of the radical (2) in k2.
Thus, we have shown that Ψ1 is an eigenfunction, and
the eigenvalue E(k), as a function of the wave vector, is
given by (2). Now, we use two boundary conditions (6)
in order to obtain two values: the wave vector k [or
energy E(k)] and the constant D, appearing in the wave
function Ψ2 for the outer region. This leads to the tran-
scendent equation for the wave vector (or energy):

(11)

where the decay parameter q is given by (8). This equa-
tion is well known in the literature. The new point is
that the electron energy E(k) appearing in (8) is
described by the nonparabolic law (2). Equation (11)
may have a few solutions related to different branches
of the cotangent. We rewrite (11) to make it obvious:

(12)

Here, the integer number M assumes odd values M = 1,
3, 5… to which correspond different solutions of the
transcendent equation. The modulus of the tangent
argument (kd – Mπ)/2 is less than π/2. It is noteworthy
that (12) is valid also for the flat geometry, i. e., for QW
if the boundary conditions (6) are satisfied. In this case,
however, the sphere diameter must be substituted by the
QW thickness W. Moreover, the quantum number M
assumes all whole values, both odd and even, including
zero in the flat geometry case. We note that the similar
form of the dispersion equation both for the spherical
and flat geometry is only obtained in the case of deriv-
ative continuity at the sphere surface.

4. CHANGE IN THE ENERGY GAP
IN A STRAINED STRUCTURE

The QW material is a solid solution containing 20%
In. The lattice constant of the virtual crystal is larger
than for the GaAs matrix. Therefore, the QW material
will be compressed. This effect must be particularly
strong for the InAs QD in GaAs, since, in this case, the
mismatch between the cluster and matrix lattices is
very large. The compression induces an increase of the
material band gap. According to experimental data
summed up in the monograph [6], the gap change δEg
for most of the III–V semiconductors increases with
increasing pressure p at pressures less than 20 kbar with
the proportionality coefficient K = 12 meV/kbar, i.e.,

(13)
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A formula can be derived (and this is done below)
according to which the pressure is related to the relative
lattice mismatch f = ∆a/a by the similar relations for
both the spherical QD and the flat QW:

(14)

where E is Young’s modulus, and ν is the Poisson ratio.
We assume the following for solid solutions on the
basis of InAs: E = 50 GPa, and ν = 1/3 [7]. Both of these
values are approximate with an accuracy of 10%. Tak-
ing into account the magnitudes of E and ν, we have

(15)

and we arrive at the formula for an increase of the
bound gap, with pressure eliminated:

(16)

Let us discuss the magnitude of the lattice mismatch f.
The lattice constant for components of the InAs/GaAs
heterointerface are equal to 6.058 and 5.653 Å that
gives f = 0.067. In the case of the In0.2Ga0.8As/GaAs
interface, the In content in the solid solution is 5 times
less. This means that the lattice mismatch between the
virtual crystal and the GaAs crystal will also be 5 times
less, i.e., f = 0.0133. According to (16), the energy gap
in the In0.2Ga0.8As QW increases by 0.08 eV due to the
compression. The increase of the energy gap inside the
InAs QD is 0.40 eV, which exceeds the initial gap value
of 0.356 eV. Therefore, no pseudomorphic state
appears at the boundary of the cluster, which is a QD.
We shall discuss below, in detail, various aspects of the
discrepancy between experimental data with the esti-
mate given here for the QD. Here, we only notice that
the electronic level must not exist in such a QD, but this
conclusion contradicts the experiment. Perhaps, this is
related to the growth conditions of the QD cone, whose
wide base lies on the wetting layer of InAs. When the
wetting layer is gradually overgrown with GaAs, the
cone is gradually “flooded” with gallium arsenide. This
is our explanation of the absence of a stretched GaAs
crystal, in which the cone is embedded, due to forming
of the amorphous layer at the cone surface.

5. CALCULATION OF ENERGY LEVELS

Let us square both the left- and right-hand sides of
the characteristic Eq. (12). It then takes the form

(17)

The carrier energy E(k) is reckoned from the edge of the
respective band inside the spherical or flat potential
well; I(k) is the ionization potential for a carrier in the
well. Since Eq. (17) is valid for both of the well types,

p
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------------- f ,=
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the ionization potential is given by the same expression
in both cases:

(18)

Let us consider conditions for the appearance of a sin-
gle electron level at the QD. At M = 1 and k = π/d, the
equality (17) yields the threshold value of the conduc-
tion band discontinuity:

(19)

Assuming that d = 2.22 nm, Eg = 0.356 eV, and mc =
0.057m0, we obtain ∆Ete = 0.53 eV.

Let us now consider the conduction band disconti-
nuity ∆Ec at the boundary of the QD. We take into
account the material strain due to the lattice mismatch
and use the standard values for the conduction and
valence band discontinuities: ∆Ec = 0.65∆Eg, and ∆Ev =
0.35∆Eg (∆Eg is the difference of the energy gaps). In
the case of the QD under consideration, Eg = 0.356 eV +
0.40 eV ≈ 0.76 eV; therefore, ∆Eg = 1.43 eV – 0.76 eV =
0.67 eV, and, therefore, ∆Ec = 0.44 eV. The obtained
discontinuity is noticeably less than the threshold value
∆Ete = 0.53 eV. Thus, no bound electronic state exists in
the QD.

For the valence band discontinuity, we obtain ∆Ev =
0.23 eV. The critical hole energy with respect to bound
state formation, reckoned from the valence band top, is
given by

(20)

and equals 0.17 eV. This value is less than the valence
band discontinuity of 0.23 eV. Therefore, a bound hole
state exists in the QD.

An electron can be theoretically bound at a bound
hole because of the Coulomb electron–hole interaction.
However, the electron binding energy will be of the order
of the exciton binding energy in GaAs, i.e., 0.006 eV. All
such bound excitons will be almost completely ionized
at room temperature. Thus, the emission line due to the
electron-hole recombination in the QD should not be
observed. This conclusion contradicts the experimental
data. Therefore, the stress at the QD surface must some-
how relax. We believe that the most likely mechanism
of this relaxation may be related to the amorphous layer
appearing near the cluster surface. That is why we will
assume later that the pressure-induced increase of the
gap in the QD is absent and calculate the energy levels
on this assumption.

Let us introduce the dimensionless variable

(21)
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and use it in Eq. (17). The numerical solving of the tran-
scendent Eq. (17) for holes yields x = 2.02, which leads
to the following hole ionization energy [using (18)]:
Ih = 0.07 eV. A similar procedure yields x = 1.78 for
electrons from whence follows the electron ionization
energy Ie = 0.07 eV. These ionization energies are
related to the case of a QD occupied by only a hole or
an electron. The following electron and hole effective
masses were used: mc = 0.057m0 and mv = 0.41m0 for
InAs and mc = 0.065m0 and mv = 0.45m0 for GaAs. The
diameter of the sphere approximating the QD is equal
d = 22.2 nm. The critical values x = x1, etc. are equal to,
respectively, π/2, 3π/2, etc. They correspond to the
appearance of new energy levels in the well. Values of
x, which are solutions to (17) both for electrons and
holes, are located within the interval (π/2, 3π/2), which
implies the presence of a single level only.

Let us now consider electron and hole energy levels
in the accumulating QW. To this end, we shall find
parameters of the In0.2Ga0.8As QW. The band gap in the
unstressed InxGa1 – xAs material, calculated with the use
of the known empirical formula [2]

(22)

is equal to Eg = 1.14 eV at x = 0.8. Formula (22) is accu-
rate enough at x ≈ 1, but it gives too large an error near
x = 0. This is not important for us, since we are inter-
ested only in the energy gap at x = 0.8. We have men-
tioned above that the pressure-induced increase of the
gap must be about 0.08 eV. Thus, the total width of the
energy gap is Eg( f ) = 1.14 eV + 0.08 eV = 1.22 eV, with
discontinuities ∆Ec = 0.14 eV and ∆Ev = 0.07 eV. Since
the band discontinuities are small and the well is wide
enough, the parabolic approximation is applicable. We
obtain, using linear interpolation, the following effec-
tive masses: mc = 0.057m0 and mv = 0.0442m0. The
width of this well is a = 8 nm. Solving (12) numerically

gives two solutions for electrons [  = 1.01,  = 1.79

(M = 0.1)] and three solutions for holes [  = 1.24,  =

2.4,  = 3.5 (M = 0, 1, 2)]. We are interested in the

ground state levels for electrons and holes:  = 0.04 eV

and  = 0.01 eV. The corresponding ionization levels

are  = 0.1 eV and  = 0.06 eV.

Notice that the ionization energy for a hole in a QW
is close to the ionization energy for a hole in a QD. This
means that there is a resonance for a hole tunneling
between a QW and an unoccupied QD. The ionization
energy for an electron in a QW is 0.03 eV larger than
that for a QD. This means that the resonance electron
tunneling from the QW into the empty QD is hindered.
However, if the QD is occupied by a hole, the situation
changes, since the Coulomb interaction between the
tunneling electron and hole appears [8].

Eg 0.324 0.7x 0.4x2,+ +=

x1
e x2

e

x1
h x2

h

x3
h

E0
e

E0
h

Ie
0 I0

h

Let us estimate the energy of the Coulomb interac-
tion between an electron and a hole in a QD. To this
end, we consider the change of the potential energy of
an electron transferred from the QW boundary toward
a QD occupied by a hole. This potential energy can be
considered as the Coulomb interaction energy of two
point charges only if the distance between the electron
and the QD center is much larger than the effective
radius of the hole wave function localized in the QD.
When the electron approaches the QD boundary, its
potential energy drops on

(23)

where e is the electron charge, ε = 12.9 is the dielectric
constant of GaAs filling the space between the QW and
the QD, and l is the distance between boundaries of the
QW and QD. We assume that l = 4 nm; i.e., we believe
that it equals the distance between the QW boundary
and the QD sheet plane. We then obtain ∆U = 0.03 eV;
and resonance of electronic levels in the QW and the
QD occupied by the hole occurs. When the QD is occu-
pied by an electron and hole, a violation of the reso-
nance of electronic levels takes place and the hole res-
onance is restored, which facilitates capture of the sec-
ond hole. If radiative recombination does not occur
before the second hole is captured, then the nonradia-
tive Auger recombination takes place with overwhelm-
ing probability. Notice that, according to the calcula-
tions carried out above, the total energy of ionization
for an electron and a hole ionization in a QD equals
0.17 eV, and the emitted photon energy is 1.26 eV; this
agrees with the experimental data and confirms the
validity of the used model.

Let us now discuss the boundary conditions for the
wave function at the heterointerface. One condition is
usual and indisputable: the continuity of the wave func-
tion Ψ1 = Ψ2. The second condition must relate the nor-
mal to the boundary derivatives of these functions. In
the literature, these derivatives are usually assumed to
be equal. This is postulated without comments in some
monographs; some proof is given in others. Band bot-
tom discontinuity and absence of effective mass dis-
continuity are generally assumed. We will temporarily
substitute the steplike change in U(x) by a smooth func-
tion. Carrying out the standard procedure similar to the
proof of continuity for the normal component of induc-
tion in electrostatics, we obtain the continuity condition
for the normal derivative of the wave function. In the
presence of the effective mass discontinuity, new possi-
bilities for derivative matching appear. In addition to
the equality of the derivatives, a new relation appears:

(24)

We can give an example when this boundary condition
gives a reasonable result: the problem of the above-bar-
rier transport of an electron across a heterointerface

∆U
1
ε
---e2

l
----,=

1
m1
------

dΨ1

dn
---------- 1

m2
------

dΨ2

dn
----------.=
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with conduction-band bottom and effective mass dis-
continuities.

It is easy to see that the conservation of particle flux
across a single heterointerface is violated if the condi-
tion dΨ1/dn = dΨ2/dn is used. Condition (24) must be
used to obey this law. This can be verified by direct cal-
culation. The boundary condition can be chosen arbi-
trarily, since it is a part of the mathematical model of
the physical problem under consideration. If the prob-
lem of the above-barrier transport of an electron across
a single heterointerface is considered, condition (24)
must be used; however, if the bound state problem at the
double heterointerface is considered (QW), the deriva-
tive continuity is preferable, since the particle flux
equals zero in this case. If it is invalid, only experiment
can suggest a correct substitution.

6. CONCLUSION

1. The electronic level in an unoccupied QD is
higher than that in a QW. This level is lowered upon
occupation of the QD by the hole with a value of the
same order due to the Coulomb electron-hole interac-
tion, which provides its resonance with the electronic
level in the QW.

2. The electron and the hole in the QD form the
bound exciton, and only singlet bound excitons emit
light, while the triplet ones recombine nonradiatively
via the Auger recombination process. This is the reason
why the quantum yield (at relatively small currents)
does not exceed 25 %.

3. The position of the electronic level in the QD crit-
ically depends on the choice of the electronic disper-
sion law. If the parabolic approximation is used with
the tabulated effective mass mc = 0.027m0, the bound
electron state in an unoccupied QD does not exist. Sim-
ilarly, it is absent in the nonparabolic dispersion (2)
case with the same effective mass. If a hole is captured,
a bound electronic state appears [8] with an energy
about 6 meV, which is characteristic for the exciton.
Electrons, however, cannot survive at so shallow a level
at room temperature and, therefore, lasers could not
function at such conditions. This conclusion contra-
dicts the experimental data, which suggests that the
nonparabolic dispersion law with mc = 0.057m0 be
taken into account. This reasoning causes us to disre-
gard the hydrostatic compression of the InAs clusters
and consider it only for In0.2Ga0.8As QWs.

APPENDIX

ELASTIC FIELDS OF QDs AND QWs

Let the crystal lattices of the quantum structure and
the embedding matrix be characterized, respectively, by
parameters a1 and a2. The strain fields due to the mis-
match ∆a = a1 – a2 are proportional to the mismatch
parameter f = ∆a/a1.
SEMICONDUCTORS      Vol. 36      No. 1      2002
1. Spherical QD

The spherical QD with radius R0 can be represented
as an elastic dilatation inclusion. It is assumed, in this
case [9, 10], that an elastic sphere of radius R0 is put
into the spherical void whose volume is smaller than
the inclusion volume by ∆V. By virtue of the symmetry,
the field of displacements both inside, u(1), and outside,
u(2), the sphere has only the radial component depend-
ing only on the radial coordinate r [9]:

(A.1)

(A.2)

where v  is the Poisson ratio (the elastic moduli of the
QD and the embedding matrix are assumed equal), and
the constant C is determined from the boundary condi-
tion

(A.3)

and is equal to

or

(A.4)

In the second equality, we took into account that the
volume change ∆V is related to the mismatch parameter
f by the equation

(A.5)

The displacement field (A.1) and (A.2) determines the
following components of the strain tensor (in spherical
coordinates):

(A.6)

(A.7)

The dilatation δ =  is obviously constant inside
the QD

(A.8)

and vanishes outside the QD

(A.9)
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We determine the elastic strain field from (A.6) and
(A.7) and from the Hooke law:

(A.10)

(A.11)

where E is Young’s modulus. Correspondingly, the
pressures p = 1/3  inside and outside the QD are
the following:

(A.12)

(A.13)

2. Quantum well

Let us choose the Cartesian coordinates so that the
y-axis is perpendicular to the QW boundaries. The x
and y axes are parallel to these surfaces and to the crys-
tallographic planes, along which the mismatch f is set.
Elastic strains and stresses outside the QW are absent.
Inside the QW, they are given by

(A.14)

(A.15)

Correspondingly, the dilatation and the pressure inside
the QW are as follows:

(A.16)

(A.17)
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Thus, the pressure inside the compressed QW and
QD is described by the same expression, (A.17) or
(A.12).
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Abstract—The effect of low-energy CF4 plasma treatment on the stationary photoluminescence (PL) spectra
and PL kinetics in GaAs/AlGaAs quantum-well (QW) structures is investigated. Intensity of the PL from QWs
located deeper than the surface layer damaged by plasma treatment increases. It is established that this is
accompanied by an increase in the PL decay time at temperatures above 30 K. It is shown that the density of
nonradiative recombination centers in the QW located below the damaged surface layer decreases by a factor
of 30 after 40-s exposure to plasma. © 2002 MAIK “Nauka/Interperiodica”.
Dry etching by means of low-energy-plasma treat-
ment is widely used for selective mask removal in the
fabrication of low-dimensional structures and microelec-
tronic devices based on III–V compounds. To ensure the
complete removal of the mask from the surface, it is
overetched. To this end, the surface is bombarded with
plasma ions, which damage the deeper layers of the
semiconductor and leads to a substantial modification of
their electrical and optical properties [1–12]. It was
established that the density of the defects introduced by
exposure to low-energy plasma is highest in the surface
region of thickness from several tens to several hun-
dreds of angstroms and gradually decreases into the
depth of the structure; the electrical properties of the
layers as deep as 1000 Å from the surface are affected.
A convenient method to study the defects induced in the
surface region by plasma treatment is based on the inves-
tigation of photoluminescence (PL) of GaAs/AlGaAs
structures with several quantum wells (QWs) located at
different depths beneath the surface [13, 14]. It was
shown that, upon exposure of such structures to low-
energy plasma, the intensity of the PL from the QWs
located close to the surface decreases due to the forma-
tion and diffusion of point defects acting as nonradia-
tive recombination centers.

In our previous studies, it was found that, along
with a decrease in the intensity of the PL from the
surface layers, exposure of GaAs/AlGaAs QW struc-
tures to low-energy CF4, Ar, or Kr plasma results also
in an enhancement of the PL from the QWs located
1063-7826/02/3601- $22.00 © 20081
deeper than the damaged region [10, 12]. It was sug-
gested that this enhancement is a consequence of pas-
sivation of the defects acting as nonradiative recom-
bination centers (introduced in the structure in the
course of epitaxy) due to their binding into com-
plexes with rapidly diffusing defects introduced by
plasma treatment.

To evaluate quantitatively the variation in the den-
sity of nonradiative recombination centers in the QWs
located below the plasma-damaged region of the
structure, in this study we examine the temperature
dependence of picosecond kinetics of the PL in
GaAs/AlGaAs QW structures exposed to low-energy
CF4 plasma.

GaAs/Al0.3Ga0.7As structures under study were
grown by molecular-beam epitaxy on semi-insulating
(100)-oriented GaAs substrates. They consisted of six
GaAs QWs of thickness 2.2, 2.8, 3.4, 4.2, 5.6, and
8.5 nm, separated by 25-nm-thick Al0.3Ga0.7As barriers.
Thicker QWs were grown at greater distances from the
surface. To prevent diffusion of impurities and defects
from the substrate to the structure, the QWs were grown
on a buffer consisting of a 1-µm-thick GaAs layer and
a 0.5-µm-thick Al0.3Ga0.7As layer; the latter incorpo-
rated a short-period GaAs/AlAs superlattice. To pre-
vent oxidation of the upper Al0.3Ga0.7As layer, the struc-
ture was capped by a 100-nm-thick GaAs layer. The
samples were treated for 40 s in CF4 plasma at a pres-
sure of 0.07 Torr, a power density of 1 W/cm2, and a
002 MAIK “Nauka/Interperiodica”
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self-bias potential of about –300 V. The stationary PL
measurements were carried out using a setup described
in [10]. A He–Ne laser operating at 632.8 nm was used
for PL excitation, with the laser power density being
20 W/cm2. At this wavelength, the absorption coeffi-
cients of GaAs and Al0.3Ga0.7As at 4.2 K are 3 × 104 and
1 × 104 cm–1, respectively; thus, about 3% of the exci-
tation radiation is absorbed in each QW, which
ensures their uniform excitation. The transient PL was
excited by a pulsed dye laser operating at 580 nm and
pumped by a mode-locked Ar+ laser. The parameters
of the dye-laser pulses are the following: duration,
20 ps; repetition rate, 4 MHz; and energy, 0.2 nJ. The
PL signal was analyzed by a CROMEX 250IS spec-
trometer and detected by a Hamamatsu C4334 streak-
camera, with the time resolution being 50 ps. The
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Fig. 1. Low-temperature (T = 6 K) PL spectra of the struc-
ture before (solid line) and after (dashed line) a 40-s treat-
ment in CF4 plasma.
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Fig. 2. The PL kinetics in the sixth QW of the structure
(1) before and (2) after the plasma treatment. The measure-
ment temperature was T = 20 K.
samples were installed in a closed-cycle CTI-Cryo-
genics cryostat.

The PL spectra of the structures before and after CF4
plasma treatment, measured at 6 K, are shown in Fig. 1.
Of the seven lines in the spectra, lines 1–6 correspond
to the transitions between the ground electron and
heavy-hole levels (1e–1h) in the QWs of different
thickness; these lines are split into doublets due to the
fluctuations of the QW width [15]. The line at 1.515 eV
originates from exciton recombination in the GaAs
buffer layer. One can see that, in the spectra of the as-
grown structure, the intensities of the PL from the first
five QWs are roughly the same, while the PL line cor-
responding to the sixth QW, most distant from the sur-
face, is weaker by about an order of magnitude. Appar-
ently, the low intensity of the PL from this QW is
related to the high density of defects, which are intro-
duced during the growth of the structure and act as non-
radiative recombination centers. The 40-s exposure of
the structure to low-energy CF4 plasma has the follow-
ing effect: the PL from the QW closest to the surface is
weakened slightly, and the PL from the QW most dis-
tant from the surface is enhanced significantly and
becomes comparable in intensity to the PL from the
first five QWs.

The kinetics of the sixth QW PL line at 20 K, mea-
sured before and after the plasma treatment of the struc-
ture, is shown in Fig. 2. One can see that the characteris-
tic PL decay time in both cases is τ ≈ 600 ps. In Fig. 3,
we present the temperature dependences of the PL
decay time τ in the sixth QW of the structure before and
after plasma treatment. With a rise in temperature, the
PL decay time in the as-grown structure increases
insignificantly, while, in the plasma-exposed structure,
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Fig. 3. Temperature dependences of the PL decay time in
the sixth QW in (1) as-grown and (2) CF4 plasma-exposed
structure. The dashed lines show the results of calculations.
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τ increases with T up to 150 K by more than an order of
magnitude and then decreases somewhat.

It is known that the PL decay time in QWs is deter-
mined by the ratio between the rates of radiative and
nonradiative recombination of free charge carriers and
excitons. At low temperatures, nonradiative recombina-
tion is suppressed and the charge carriers are mostly
bound into excitons; thus, the annihilation of excitons is
the main recombination channel, and the PL decay time
is determined by their lifetime. At elevated tempera-
tures, two factors become important. On the one hand,
thermal ionization of excitons leads to an increase in
the density of unbound electron–hole pairs, whose life-
time exceeds considerably the exciton lifetime. On the
other hand, the nonradiative recombination rate
increases. Thus, depending on the density of nonradia-
tive recombination centers in the QW, the temperature
variation of the PL decay time can be described in the
following terms. When this density is negligibly small,
the PL decay time increases steadily with the tempera-
ture from the value determined by the exciton lifetime
to that determined by the free charge carrier lifetime. At
higher densities of nonradiative recombination centers,
the PL decay time is determined by the rate of radiative
recombination of excitons and electron–hole pairs at
low temperatures and by the rate of their nonradiative
recombination at high temperatures. Finally, when the
number of nonradiative recombination centers in the
QW is very large, the PL decay time equals the nonra-
diative recombination time in the whole temperature
range.

An increase in the intensity of the peak correspond-
ing to the sixth QW in the stationary PL spectrum indi-
cates that the number of nonradiative recombination
centers in the vicinity of this well is reduced. To evalu-
ate quantitatively the variation in the density of these
centers after plasma treatment, we used the following
method developed recently [16]. In that paper, the for-
mula relating the PL decay time τ in the QW with the
temperature T and the total nonradiative recombination
rate Rnr was obtained:

(1)

where Rr is the radiative-recombination probability; Rx
is the exciton-recombination probability; B is the radi-
ative-recombination coefficient for free charge carriers;
R0 is the temperature-independent contribution to the
nonradiative-recombination probability (proportional
to the density of nonradiative recombination centers);
nc is the ratio of the product of electron and hole densi-

τ T( ) p0 nc T( )+[ ] / p0Rr T( ) nc T( )Rnr T( )+[ ] ,=

Rr T( ) Bnc T( ) Rx,+=

Rnr T( ) R0 Rs EA/kT–( ),exp+=

nc T( ) memh/ me mh+( )[ ] kT /π"
2( ) Ex/kT–( ),exp=
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ties to the exciton density; Ex is the exciton ionization
energy; EA is the thermal activation energy for nonradi-
ative recombination; p0 is the free hole density; and
me = 0.065m0 and mh = 0.5m0 are the electron and hole
effective masses, respectively.

Temperature dependences of the PL decay time in
the sixth QW in as-grown and plasma-treated structures
were fitted by formula (1), and the results are shown in
Fig. 3. The best fit to experimental data was obtained
with the following set of parameters (the same for both
curves): Ex = 8 meV, EA = 90 meV, B = 10–10 cm2 s–1, p0 =
5 × 109 cm–2, Rs = 1.2 × 1010 s–1, and Rx = 1.8 × 109 s–1.
The parameter R0, proportional to the density of nonradi-
ative-recombination centers, changes from 1.17 × 109 s–1

in the as-grown structure to 4.2 × 107 s–1 in the CF4
plasma-treated structure. This indicates that the number
of nonradiative-recombination centers is reduced
almost by a factor of 30. It should be noted that the
above value for Rx, obtained from the fit, agrees well
with that given in [16].

Similar calculations for the temperature dependence
of the PL decay time in the fifth QW of the structure
showed that here the density of nonradiative recombi-
nation centers changes after plasma exposure by no
more than a factor of 2.

Thus, in this study we examined the effect of low-
energy CF4 plasma treatment of GaAs/AlGaAs QW
structures on their PL spectra and kinetics. It is demon-
strated that an increase in the intensity of the QW
located beneath the surface region damaged by plasma
treatment is accompanied by an increase in the PL
decay time, which is more pronounced the higher the
measurement temperature. It is established that the den-
sity of nonradiative-recombination centers in this QW
is reduced by nearly a factor of 30 after the structure is
exposed to plasma for 40 s.
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Abstract—A kinetic model for charge carrier transport in periodic nanodimensional Si/CaF2 structures via
localized states in the insulator was suggested. The appearance of the built-in electric charge in the insulator
due to the polarization of the charge trapped by localized charge centers and the subsequent discharge of these
centers were investigated. It was demonstrated that these phenomena explain the hysteresis of current–voltage
(I–V) characteristics with a change of polarity of the applied external voltage. These phenomena bring about
the portion of negative differential resistance (NDR) in these characteristics. Major factors ensuring the NDR
appearance for the structures under investigation are the charge carrier density at the contacts and the charge
voltage. At temperatures below 250 K, the NDR portion disappears. It was demonstrated that, in the course of
recording the experimental I–V characteristics, the effect of the charging–discharging of localized centers
should decrease. This decrease is in accordance with an increase in the time interval of measuring the current
at a constant voltage and with an increase in the step of the applied voltage. This effect actually disappears for
the measurement time of 20 s and the voltage step of 0.6 V. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

An interest in nanodimensional structures, which
form a system of quantum wells (QWs), arose several
decades ago in connection with the possibility of
designing devices with a negative differential resistance
(NDR) based on these structures. The NDR effect in
nanodimensional structures appears due to the reso-
nance tunneling of charge carriers [1]. This effect was
originally discovered and subsequently investigated in
detail for III–V semiconductor compounds [2].

At the present time, much attention is being given to
Si-based nanodimensional structures, whose main
advantage is associated with the well-developed tech-
nology of integrated circuit fabrication. Recently, the
NDR effect was experimentally observed at room tem-
perature in periodic nanodimensional Si/CaF2 struc-
tures grown on single-crystal Si(111) substrates [3]. It
was demonstrated that the observed effect is associated
with the charge properties of Si–insulator systems [3,
4]. However, the mechanism of the emergence of this
effect and the pattern of its manifestation were not
described in detail theoretically.

The purpose of this study was to analyze the mech-
anism of charge carrier transport in periodic nanodi-
mensional Si–insulator structures and to reveal the con-
ditions for the emergence of the NDR effect in them.
We also developed a model of charge carrier transport
via localized states in the insulator with allowance
made for the dynamics of carrier trapping at these
states, the carrier transport, and detrapping.
1063-7826/02/3601- $22.00 © 20085
2. THEORETICAL MODEL

Charge carrier transport is considered for the peri-
odic nanodimensional Si–insulator structure [4]. This
structure consists of N QWs of Si, which are separated
by N + 1 potential barriers of CaF2. It is assumed that
the structure contains no impurities. It is also assumed
that the charge carrier transport across this structure is
accomplished owing to a series of electron processes.
These are the injection of charge carriers from the con-
tacts, carrier trapping at localized states in the insulator
and depletion of these states, and recombination of non-
equilibrium charge carriers in the semiconductor. The
kinetics of charge variation in the ith QW of the struc-
ture is described by the following set of equations [5]:

(1)

(2)

Here, i is the period of the structure, (i = 1…N), ni(pi) is
the electron (hole) density in the ith layer of the semi-

conductor,  is the rate of electron (hole) transport
through the ith insulator layer with the participation of
traps, and γi is the coefficient of electron (hole) recom-
bination in the ith layer of the semiconductor.

dni

dt
------- gn i 1–,

t ni 1– ni,( ) gn i 1+,
t ni 1+ ni,( )+=

– gn i,
t ni ni 1–,( ) gn i,

t ni ni 1+,( ) γini pi,––

d pi

dt
-------- gp i 1+,

t pi 1+ pi,( ) gp i 1–,
t pi 1– pi,( )+=

– gp i,
t pi pi 1–,( ) gp i,

t pi pi 1+,( ) γini pi.––
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t
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The properties of localized states depend on the
crystal lattice type of the material, and on the condi-
tions and method for the formation of the structure.
Major causes of the appearance of such states are the
stoichiometric defects of the crystal lattice and struc-
tural defects, particularly those related due to dangling
bonds [6]. The localized states manifest themselves as
the traps, which are able to capture the charge carriers.
Thus, they control the flux of charge carriers injected
from the contacts and determine current–voltage (I–V)
characteristics. For single crystals, the trap energy lev-
els in the band gap are usually discrete and are charac-
terized by the energy Et.

The position of the trap level for periodic Si/CaF2
structures was determined previously [7] from the slope
of the curve ln(J/V) as a function of the inverse temper-
ature T–1, where J is the current, and V is the potential.
In the absence of external bias, the energy of the level
is equal to 0.35 eV and decreases linearly with increas-
ing V, i.e., Ea = EC(V) – Et – qV, where q is the elementary
charge. This is in disagreement with the Pool–Frenkel
and Schottky models, according to which the activation
energy of the trap is defined as Ea = EC(V) – Et – ηV1/2,
where η is the coefficient of proportionality. In addi-
tion, for Si/CaF2 structures, the potential barrier height
is Un = 3.3 and Up = 7.6 eV for electrons and holes,
respectively [8]. For this reason, if Ea = 0.35 eV, above-
barrier activated transport via the traps is impossible
because of its nearly zero probability. However, accord-
ing to the experimental data, the current drops by sev-
eral orders of magnitude as the temperature decreases
from 300 to 150 K [7].

Based on the above data, we assume that the charge-
carrier transport in nanodimensional periodic structures
is conducted both by tunneling through potential barri-
ers and via a system of localized states in the band gap

Si i–1 (CaF2)i Si i

ϕ D, i

1 2 2 3

Et

EC
(Si)EF

(CaF2)

ϕ s, i–1

EC
(Si)

Fig. 1. Energy diagram of a period in the Si/CaF2 structure
and charge-carrier transport in this structure. (1) Charge car-
rier trapping from the conduction band of Si by the trap in
the insulator, (2) charge carrier tunneling via the trap level
in the insulator, and (3) carrier tunneling from the trap into
the potential well.
of the insulator. In this case, the experimentally mea-
sured energy is simply the energy of thermally acti-
vated trapping of the charge carriers by traps in a QW.
This energy is equal to Et – Eg/2 – qϕs, i (for an intrinsic
semiconductor), where ϕs, i is the potential drop in the
ith well of the semiconductor, and Eg is the band gap for
Si. The motion of captured charge carriers in the insu-
lator is carried out via trap-to-trap tunneling transitions.
In this case, the distance between the defects, which
generate the localized states, should be on the order of
a = (1/4)a0, where a0 is the lattice parameter. Such a
high defect concentration is characteristic of the intrin-
sic defects of the CaF2 matrix, which are related, for
example, to the dangling Ca–F bonds [9]. On applying
an external voltage, the electron motion will be effected
mainly along the direction of the external field. The
aforementioned processes of charge carrier transport
via the trap level in the insulator are illustrated in the
energy diagram of the ith period of the Si/CaF2 struc-
ture in Fig. 1. The direct tunneling of charge carriers
across the barrier is not taken into account in the model.
The reason is that the calculated estimates [5] and
experimental data [7] demonstrate that the probability
of tunneling is low compared to transport via the traps
in the temperature range of 200–300 K.

The probability of the transition of trapped charge
carriers across the ith layers of the insulator via the trap
states and their subsequent transition into the ith QW is
defined as [10]

(3)

where

is the probability of arrangement of m traps along the tra-
jectory of charge-carrier motion through the insulator;

is the probability of the reverse tunneling transition of
the captured charge carrier into the (i – 1)th well [10];

 is the effective electron (hole) mass; dD is the
insulator thickness; and ϕD, i is the potential drop across
the ith layer of insulator. The number of states along the
trajectory of charge carrier motion via the trap level is
related to the barrier width, the distance between the
trapping centers, and the deviation of the trajectory
from the straight line [10].

The kinetics of variation in the density of charge
carriers, which are located in the ith layer of the insula-
tor, due to the processes of charging and discharging of

Dn p( ) i, ϕD( ) pm( )m!βn p( ) i,
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m 0=

∞

∑=
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m!
-------------------------- Haa2dD–( )exp=

βn p( ) i, ϕD–( )

=  2mn p( )* qUn p( )– Et qϕD i,
a
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2

–
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/a
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localized states in the insulator can be described using
the following equations:

(4)

(5)

Here, α is the coefficient of charge carrier capture by
the traps, which is determined by the product of the
capture cross section S and thermal velocity of charge
carriers

where kB is the Boltzmann constant; (ϕs) and (ϕs)
are the densities of charge carriers captured by the
traps, which depend on the density of empty traps and
can be defined as

(6)

where Ha is the total density of empty and filled trap

states in the insulator; and (ϕs) is the function of fill-
ing the trap levels by charge carriers from the (i – 1)th
QW with allowance made for their reverse transition
into the same well for the case of homogeneous spatial
distribution of traps, which is equal to [11]

(7)

where δ is the factor of degeneracy of trap levels (δ = 2).
In view of Eqs. (4) and (5), the set of Eqs. (1) and

(2), which describes the kinetics of variation in the elec-
tron and hole density in the ith well, takes the form

(8)

(9)
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The charge accumulated in the thin insulator layer is
redistributed and polarized by the applied external
potential. We took this into account by introducing the
Poisson equations for the insulator layer

(10)

and the semiconductor layer

(11)

Solutions to Eqs. (10) and (11) are joined at the
interfaces with respect to the potential and field
strength with allowance made for the complete poten-
tial drop across the structure:

(12)

Here, Vbias is the external bias; ε0 is the dielectric con-
stant of free space; and εs and εD are the relative dielec-
tric constants for the semiconductor and insulator,
respectively.

The set of Eqs. (4), (5), (8)–(11) was solved for the
case when the charge carrier capture by the trap states
is the limiting process. In this situation, it is assumed
that the thicknesses of the insulator and semiconductor
layers, the coefficient of recombination, the energy
position of localized states, and the relative dielectric
constants for all materials are identical for all periods of
the structure. The carrier density at the electron and
hole contacts was assumed to be identical and equal nc.

3. RESULTS OF CALCULATIONS
AND DISCUSSION

It follows from the experimental data [3, 4, 7, 12]
that the I–V characteristics J(Vbias) of the periodic
Si/CaF2 structure depend on its configuration, as well
as on the conditions of electrical measurements such as
the magnitude and time interval of varying the external
bias. For this reason, the I–V characteristics were simu-
lated with allowance made for the above factors. The
parameters used in computations are given in the table.

The results of simulating the I–V characteristic of
the structure, which consists of N = 4 Si/CaF2 periods,
are shown in Fig. 2. With a variation in the voltage from
–Vmax to Vmax and in the opposite direction, the hystere-
sis of the I–V characteristic is observed. This circum-
stance is associated with the appearance of internal
fields in insulators during polarization of the trapped
charge. Internal fields are directed oppositely to the
external field. In this case, variation in the current direc-
tion occurs at the nonzero potential, when internal
fields compensate for the external field.

In addition, the I–V curves are characterized by the
pronounced NDR portion. The peak of the NDR current

d
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is located in the nonzero potential region. This peak
diminishes and shifts to the region of positive voltages
with an increase in the time step of varying the external
bias (Fig. 3). With an increase in the step mentioned,
the hysteresis of the I–V characteristic also becomes
less pronounced.

In this case, the shift of the zero current and NDR
formation are associated with charging–discharging of
localized states in insulator layers of the periodic struc-

10–4

10–5

10–6

10–7

10–8

10–9

–3 –2 –1 0 1 2 3
Vbias, V

J, A/m2

Fig. 2. Hysteresis of the I–V characteristic of the Si/CaF2
structure with the change of polarity of the external bias.
Parameters of computation: ts = 1 s, N = 4, and nc = 5 ×
1024 m–3.

Parameters used for simulating the charge-carrier transport
in layered Si/CaF2 structures

Parameter Value

Thickness of the CaF2 layer 2 nm

Thickness of the Si layer 1.5 nm

Number of periods 4–20

Effective electron mass 0.35m0 [13]

Effective hole mass 0.42m0 [13]

Relative dielectric constant for CaF2 5 [14]

Relative dielectric constant for Si 7.5 [14]

Charge carrier density at contacts 1024–1025 m–3

Trap density 1026 m–3

Cross-section of charge carrier cap-
ture by traps

10–21 m2

Energy position of the trap level
(Et – Eg/2)

0.35 eV [7]

Time interval of maintaining the 
constant voltage

1–20 s

Voltage variation step 0.1–0.6 V
ture in the course of the step-by-step application of
external bias. For a certain step of varying the bias, the
charge trapped in the insulator has no time to disperse
in a time of maintaining the fixed potential. Internal
fields formed by carriers trapped appear in insulator
layers of the structure. At a certain external bias, the
internal field compensates the external one, and, in this
case, the current reaches the smallest value. With a fur-
ther decrease in the negative bias, the oppositely
directed current begins to prevail due to the trap dis-
charge. This current attains its maximum at the zero
potential, which gives rise to the NDR. As the potential
becomes positive, the current caused by the external
bias begins to increase and compensates the discharge
current. These currents are equalized for the smallest
NDR value. The largest NDR current decreases, and
this region smoothens (Fig. 3) as the time step of vary-
ing the external bias increases. This is caused by a
decrease in the internal fields due to the charge density
drop at localized states in the insulator. The reason for
this is that the largest part of this charge has time to dis-
perse, i.e., to escape from the traps.

An increase in the number of periods in the structure
causes the NDR portion to disappear. The reason for
this is that it leads to a decrease in the potential drop
across one period of the structure and to a correspond-
ing decrease in the charge accumulation in each insula-
tor layer, notwithstanding the fact that the total capabil-
ity of the structure to accumulate the charge does not
vary, as shown in Fig. 4. With an increase in the number
of periods, the NDR portion smoothens, and the largest
current lowers.

The degree of filling the traps depends on the charge
carrier density at the contacts and on the potential

10–4

10–5

10–6

10–7

10–8

10–9

10–10

10–11

–3 –2 –1 0 1 2
Vbias, V

J, A/m2

1
2
3
4

Fig. 3. Current–voltage characteristic of the Si/CaF2 struc-
ture at time steps of varying the external bias ts: (1) 1, (2) 3,
(3) 10, and (4) 20 s. Parameters of computation: N = 4 and
nc = 5 × 1024 m–3.
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applied. The results of calculating the I–V characteris-
tics as a function of the carrier density at the contacts
are shown in Fig. 5. We may conclude from the data
obtained that the NDR region widens as the carrier den-
sity at the contacts increases. This is true if the trap den-
sity is substantially higher than the carrier density at the
contacts. However, widening of the NDR portion is
limited by the polarization of the insulator, which
decreases with the increasing degree of filling the traps

10–5

10–6

10–7

10–8

10–9

–2 –1 0 1 2
Vbias, V

J, A/m2

1
2
3

Fig. 5. Current–voltage characteristic of the Si/CaF2 struc-
ture for the value of the initial bias Vmax = –2 V and param-

eters: N = 4 and ts = 1 s; nc = (1) 1025, (2) 5 × 1024, and

(3) 1024 m–3.
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10–6

10–7

10–8

10–9

10–10

–3 –2 –1 0 1 2
Vbias, V

1
2
3

J, A/m2

Fig. 4. Current–voltage characteristic of the Si/CaF2 struc-
ture with varying the number of periods N: (1) 4, (2) 10, and
(3) 20; ts = 1 s, and nc = 5 × 1024 m–3.
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by charge carriers. If this condition is not satisfied, the
hysteresis in the I–V characteristic becomes less pro-
nounced and the NDR region does not widen.

In the computations carried out, the influence of the
temperature on the I–V characteristic of the periodic
Si/CaF2 structure was also assessed. As the results
obtained demonstrated, with the temperature decreas-
ing from 300 to 150 K, the current exponentially
decreases by a factor of 105. The NDR region dimin-
ishes with the temperature decreasing to 280 K and dis-
appears at 250 K; the same is true of the hysteresis
effect. This is caused by the exponential decrease in the
probabilities of charge carrier trapping by localized
states in the insulator and carrier accumulation on these
states. A decrease in the insulator thickness also
reduces the effect caused by the charge accumulation in
the structure.

4. CONCLUSION

A model of charge carrier transport through the
localized states in the insulator is suggested for periodic
nanodimensional Si/CaF2 structures. This model was
used for the analysis of the mechanism of NDR origi-
nation, which is experimentally observed for such
structures. The hysteresis of the I–V characteristics
with changing polarity of applied external voltage is
explained. It is caused by the emergence of the built-in
field in the insulator due to the polarization of the
charge trapped by localized states and the subsequent
discharge of these states. These phenomena lead to the
appearance of the NDR portion in I–V characteristics.
It is demonstrated that the effect of the charging–dis-
charging of localized states should decrease with an
increase in the time interval of the current measurement
to 20 s and a step of variation in the voltage applied to
0.6 V in the course of recording the I–V characteristics.
The charge carrier density at the contacts, the density of
trap centers, and the magnitude of the initial applied
bias most strongly affect the appearance of NDR for the
structures investigated. The decrease in temperature
from 300 K to 250 K leads to the disappearance of the
NDR portion. This takes place at room temperature if
the structure consists of more than 25 periods.
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Abstract—Electron spin relaxation by the D’yakonov–Perel’ mechanism is investigated theoretically in
asymmetrical III–V heterostructures. Spin relaxation anisotropy for all three dimensions is demonstrated for
a wide range of structural parameters and temperatures. Dependences of spin relaxation rates are obtained
both for a GaAs-based heterojunctions and triangular quantum wells. The calculations show a several-orders-
of-magnitude difference between spin relaxation times for heterostructure parameters realized in experi-
ments. © 2002 MAIK “Nauka/Interperiodica”.
1 1. INTRODUCTION

The degrees of freedom of spin have received a great
deal of attention throughout the development of semi-
conductor physics. Recently, the spin properties of car-
ries have been investigated intensely in low-dimen-
sional semiconductor structures. In electronics, much
interest in spin has been aroused by recent proposals to
construct spin transistors and spin computers based on
heterostructures [1, 2].

The spin–orbit interaction, governing the spin
behavior, is much more complex in semiconductor het-
erostructures than in bulk systems. The bulk spin–orbit
terms take a more interesting form in two-dimensional
(2D) systems, and, in addition, new terms appear,
which are absent in bulk.

In [3] we considered electron spin dynamics in
asymmetrical heterostructures. A giant anisotropy of
spin relaxation times caused by interference of different
spin–orbit terms has been revealed. In this work, we
calculate the spin relaxation rates in real asymmetrical
structures. A heterojunction and a triangular quantum
well (QW) are considered in detail. The effect of het-
eropotential asymmetry on spin relaxation is investi-
gated in a wide range of electron concentrations and
temperatures. We show that the giant spin relaxation
anisotropy is governed by external parameters, and this
opens up new possibilities for spin engineering.

2. THEORY

Let us consider a system with a spin–orbit interac-
tion described by the Hamiltonian HSO(k), where k is a
wave vector. HSO(k) is equivalent to a Zeeman term
with the effective magnetic field dependent on k. In the
presence of scattering, the wave vector changes and,

1 This paper was submitted by the authors in English.
1063-7826/02/3601- $22.00 © 20091
hence, the effective magnetic field also changes. There-
fore, in the case of frequent scattering, the electrons
move in a chaotically changing magnetic field. The spin
dynamics in such a system has diffusion character,
which leads to the loss of any specific spin orientation.
This is called the D’yakonov–Perel’ spin relaxation
mechanism [4], which is the main spin relaxation
mechanism in many III–V bulk semiconductors and
heterostructures.

For a 2D system with any HSO(k) (where k lies in the
plane of the heterostructure), one can show, similarly to
[3] (see also [4–6]), that the spin dynamics of electrons
in the presence of elastic scattering is described by the
following equations:

(1)

It should be noted that this is true only for times longer
than the momentum relaxation time but shorter than the
spin relaxation times. In Eq. (1), Si are the spin density
components (i = x, y, z); the integration is performed
over energy ε = "2k2/2m, where m is the electron effec-
tive mass; F±(ε) are distribution functions of electrons
with the spin projection equal to ±1/2; σi are the Pauli
matrices; Hn are the harmonics of the spin–orbit Hamil-
tonian:

(2)
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where ϕk is the angular coordinate of k; and the scatter-
ing times are given by

(3)

where W(ε, θ) is the probability of elastic scattering by
an angle θ for an electron with energy ε.

Equation (1) is valid for 2D electrons with any spin–
orbit interaction HSO(k). We now consider an asymmet-
rical zinc-blende heterostructure. There are two contri-
butions to HSO(k). The first, the so-called bulk inversion
asymmetry (BIA) term, is due to the lack of inversion
symmetry in the bulk material of which the heterostruc-
ture is made. To calculate this term, one must average
the corresponding bulk expression over the size-quan-
tized motion [6]. We investigate a heterostructure with
the growth direction [001] coinciding with the z-axis
and assume that only the first electron subband is pop-
ulated. The BIA term has the form

(4)

where we chose the x- and y-directions to be aligned
with the principal axes in the heterostructure plane.

Here, 〈 〉  is the squared operator (–i∂/∂z) averaged
over the ground state, and γ is the bulk spin–orbit inter-
action constant. It is seen that HBIA contains terms both
linear and cubic in k.

In asymmetrical heterostructures, there is an addi-
tional contribution to the spin–orbit Hamiltonian,
which is absent in the bulk. It is caused by structure
inversion asymmetry (SIA) and can be written as [7–9]

(5)

where α is proportional to the electric field E, acting on
an electron:

(6)

Here, e is the elementary charge and α0 is a second
spin–orbit constant determined by both bulk spin–orbit
interaction parameters and properties of heterointer-
faces. It should be stressed that, in asymmetrical het-
erostructures, E is caused mainly by the difference of
the wave function and by band parameters at the inter-
faces, rather than by the average electric field [10].

HSIA also contains terms linear in k. From Eq. (1), it
follows that the harmonics with the same n are coupled
in the spin dynamics equations. This leads to interfer-
ence (linear in wave vector BIA- and SIA-terms) in spin
relaxation [3].

For HSO = HBIA + HSIA, the system has C2v symme-
try; therefore, Eqs. (1) can be rewritten as follows:

(7)

1
τn

---- dθW ε 0,( ) 1 nθcos–( ),∫°=

HBIA k( ) γ σxkx ky
2 kz

2〈 〉–( ) σyky kz
2〈 〉 kx

2–( )+[ ] ,=

kz
2

HSIA k( ) α σ xky σykx–( ),=

α α 0eE.=

Ṡz
Sz

τ z

----, Ṡx Ṡy±–
Sx Sy±

τ±
----------------.–= =
The times τz, τ+, and τ– are the relaxation times of the

spin parallel to the axes [001], [110], and [ ],
respectively.

If both spin subsystems come to equilibrium before
the onset of spin relaxation, then

(8)

where F0 is the Fermi-Dirac distribution function and
µ± are chemical potentials of the electron spin sub-
systems. If the spin splitting is small, i.e.,

then the expressions for the spin relaxation rates 1/τi

(i = z, +, –) have the form

(9)

where

(10)

Equations (9), (10) are valid for any electron energy
distribution. If the electron gas is degenerate, then the
spin relaxation times are given by

(11)

where kF is the Fermi wave vector determined by the
total 2D electron concentration N:

(12)

In this case, the scattering time τ1 in Eqs. (10) coincides
with the transport relaxation time, τtr, which can be
determined from the electron mobility.

For nondegenerate electrons, the spin relaxation
times are determined, in particular, by the energy

110

F± ε( ) F0 µ± ε–( ),=

µ+ µ––  ! µ+ , µ– ,

1
τ i

---

ε ∂F0/∂ε( )Γ i k( )d

0

∞

∫

ε ∂F0/∂ε( )d

0

∞

∫
--------------------------------------------,=

Γ z k( )
4τ1

"
2

-------- γ2 kz
2〈 〉 2 α2+( )k2 1

2
---γ2 kz

2〈 〉 k4–=

+
1 τ3/τ1+

16
---------------------γ2k6 ,

Γ+ k( )
2τ1

"
2

-------- α γ kz
2〈 〉–( )2

k2 1
2
---γ α γ kz

2〈 〉–〈 〉 k4–=

+
1 τ3/τ1+

16
---------------------γ2k6 ,

Γ– k( )
2τ1

"
2

-------- α γ kz
2〈 〉+( )2

k2 1
2
---γ α γ kz

2〈 〉+〈 〉 k4–=

+
1 τ3/τ1+

16
---------------------γ2k6 .

1
τ i

--- Γ i kF( ),=

kF 2πN .=
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dependences of the scattering times τ1 and τ3. If τ1, τ3 ∝
εv, then τ3/τ1 = const and

(13)

Here, T is the electron temperature and kB is the Boltz-
mann constant. In the particular case of short-range
scattering, v  = 0, and τ1 = τ3 are equal to τtr, which is
independent of temperature.

Spin relaxation times are very sensitive to the rela-
tionship between two spin–orbit interaction strengths,

γ〈 〉 and α. From Eqs. (11), (13), it follows that, at low
concentration or temperature, 1/τz, 1/τ–, and 1/τ+ are

determined by the sum of squared γ〈 〉 and α, by their
squared sum, and squared difference, respectively. This
may lead to a considerable difference between the three

times, i.e., to a total spin relaxation anisotropy if γ〈 〉
and α are close in magnitude.

In real III–V systems, the relations between HBIA
and HSIA may be different. HBIA or HSIAA may be dom-
inant [11, 12], or they may be comparable [13].

The value of 〈 〉  depends on the shape of the het-
eropotential and will be calculated for the given asym-
metrical heterostructures below. The constant γ is
known for GaAs from optical orientation experiments
[5]. Correct theoretical expressions for γ and α0 have
been derived in terms of the three-band k · p model [13,
14]. The heterointerfaces give a contribution to α0 in
addition to that from the bulk [15]. At large wave vec-
tors, α0 starts to depend on k [16, 17]. Here, we assume
concentrations and temperatures to be sufficiently low,
allowing us to ignore this effect.

The spin relaxation rates for two types of asymmet-
rical structures, a heterojunction and a triangular QW,
are calculated below. The scattering is assumed to be
short-range (v  = 0, τ3 = τ1 = τtr). All parameters are cho-
sen to correspond to the GaAs/AlAs heterostructure:
γ = 27 eV Å3, and m = 0.067m0, where m0 is the free
electron mass and α0 = 5.33 Å2. The time τtr is 0.1 ps

1
τ z
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4τ tr

"
2
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2mkBT
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2
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and assumed to be independent of the electron concen-
tration.

3. SPIN RELAXATION IN A HETEROJUNCTION

In a heterojunction, the extent of the spin–orbit
interaction is governed by the 2D carrier concentration

N; 〈 〉  can be estimated as follows [18]:

(14)

where κ is the dielectric constant. The mean electric
field acting on an electron can be taken as equal to half
the maximum field in the junction:

(15)

Figure 1 shows the concentration dependence of the
reciprocal spin relaxation times for degenerate elec-
trons in a GaAs/AlAs heterojunction (κ = 12.55). The

inset shows the spin–orbit interaction strengths, γ〈 〉
and α, and the absolute value of their difference, as
functions of electron concentration.

One can see a spin relaxation anisotropy for all three
directions over a wide range of concentrations. 1/τ+ is
less than 1/τ– at small N and greater than 1/τ– at large
concentrations. This is due to the fact that the first term
in (10) is larger for 1/τ–, and the second, for 1/τ+. There-
fore, at a certain concentration, the times τ+ and τ– must
be equal. From Eqs. (10) and (11) it follows that this
takes place when

(16)

which is fulfilled at N = 1.1 × 1013 cm–2, as illustrated in
Fig. 1. At larger concentrations, the spin relaxation is
again totally anisotropic.

Despite the fact that γ〈 〉 and α are close in magni-
tude over a wide range of concentrations (see the inset
of Fig. 1), all three spin relaxation rates depend mono-
tonically on N. This happens because, as the concentra-
tion increases, kF increases as well, and the terms in
HSO, which are cubic in the wave vector, become
important. The growth of these terms with N dominates

the change in (α – γ〈 〉)2 in (10); hence, the concentra-
tion dependence of 1/τ+ is monotonic.

The situation changes in the case of a Boltzmann
gas. For non-degenerate electrons, the mean wave vec-
tor and the concentration are independent. For temper-
atures up to 300 K, the characteristic k2 ∝  2mkBT/"2 is

much less than 〈 〉 , and the spin relaxation rates are
determined by the first terms in (13). As a result, all
three spin relaxation times are different up to 300 K at

kz
2

kz
2〈 〉 1

4
--- 16.5πNe2m

κ"
2

---------------------------- 
 

2/3

,=

E
2πNe

κ
--------------.=

kz
2

kF
2 4 kz

2〈 〉 ,=

kz
2

kz
2
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a given concentration. The results of relevant calcula-
tions are presented in Fig. 2.

The times τ+ and τ– are equal to each other only at a
certain temperature. According to (13), the correspond-
ing condition is

(17)

With the GaAs parameters and v  = 0 in (14), it can be
seen that (17) is satisfied at T ≈ 100 K for N = 1011 cm–2

and at T ≈ 290 K for N = 5 × 1011 cm–2, in agreement
with Fig. 2.

At a fixed temperature, the spin relaxation rates are
governed by the electron concentration. According to
Eqs. (13), the dependences of 1/τi on N are similar to the
curves in the inset of Fig. 1. In particular, from Eqs. (13)
it follows that 1/τz and 1/τ– must be close in magnitude
and both greatly exceed 1/τ+. In addition, 1/τ+ depends
on concentration nonmonotonically. This is confirmed
completely by the results presented in Fig. 3. One can
see that 1/τ+ ! 1/τz ≈ 1/τ–, and the rate 1/τ+ has a mini-
mum when plotted as a function of concentration. This
minimum is at N = 1.4 × 1013 cm–2 when the terms in
HSO linear in the wave vector cancel out. The corre-
sponding condition is

(18)

T
"

2 kz
2〈 〉

mkB 1 v /2+( )
----------------------------------.=

γ kz
2〈 〉 α .=
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Electron concentration, 1012 cm–2

Spin relaxation rates, ps–1
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Fig. 1. Concentration dependences of the reciprocal spin
relaxation times, 1/τz (solid line), 1/τ– (dashed line), and
1/τ+ (dotted line), for a GaAs/AlAs heterostructure at zero
temperature. The parameters are given in the text. The inset

shows the spin–orbit interaction strengths, γ〈 〉 (solid

line), α (dashed), and |γ〈 〉 – α| (dotted), in eV Å, as func-

tions of the electron concentration N/(1021 cm–2).

kz
2

kz
2

At this concentration, the spin relaxation time τ+ is very
large but remains finite owing to the terms cubic in k.
Therefore, the difference in the spin relaxation times is
more pronounced at a low temperature. At high T, the
cubic (in the wave vector) terms become significant in
HSO, and the minimum in 1/τ+ disappears. However,
1/τ+ is still much less than 1/τ–; i.e., huge spin relax-
ation anisotropy occurs in the plane of the heterojunc-
tion even at room temperature.

4. SPIN RELAXATION IN A TRIANGULAR 
QUANTUM WELL

In this section, we investigate spin relaxation in the
following asymmetrical system. We consider a struc-
ture with an infinitely high barrier at z < 0 and constant
electric field E at z > 0.

In the framework of this model,

(19)kz
2〈 〉 a

2meE

"
2

-------------- 
  2/3

,=

10–2

10–3

10–4

10–2

10–3

10–2

10–3

30 75 120 165 210 255 300
Temperature, K

N = 1012 cm–2

N = 5 × 1011 cm–2

N = 1011 cm–2

Spin relaxation rates, ps–1

Fig. 2. Temperature dependences of spin relaxation rates,
1/τ– (solid line), 1/τz (dashed line), and 1/τ+ (dotted line),
for a GaAs/AlAs heterostructure at different electron con-
centrations.
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Spin relaxation rates, ps–1
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Fig. 3. Concentration dependences of the reciprocal spin
relaxation times, 1/τ+ (solid line), 1/τz (dashed line), and
1/τ– (dotted line), for Boltzmann electron gas in GaAs/AlAs
heterostructure at temperatures T = (1) 30, (2) 77, (3) 150,
and (4) 300 K.
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where

(20)

Here, (–β) is the first root of the Airy function:

The value of α is determined by the difference of
both the wavefunction and band parameters at the inter-
faces [10]. This may lead to a more complicated depen-
dence of α on E than in (6). However, if E is not too high,
we have the linear law, and, therefore, we use Eq. (6) in
our calculations.

In Fig. 4, the spin relaxation rates are plotted for the
triangular GaAs QW at different electric fields. It can
be seen that total spin relaxation anisotropy occurs for
both degenerate and Boltzmann gases in wide ranges of
concentrations and temperatures. The times τ+ and τ–
coincide only at a specific concentration or tempera-
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Fig. 4. Spin relaxation rates, 1/τz (solid line), 1/τ– (dashed line), and 1/τ+ (dotted line), in a triangular GaAs QW at different electric
fields; (a) corresponds to a degenerate electron gas, and (b) is for the Boltzmann gas.
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ture. For degenerate electrons, according to Eq. (16), the
corresponding curves intersect at N ≈ 3.4 × 1012 cm–2

for E = 105 V/cm and at N ≈ 7 × 1012 cm–2 for E = 3 ×
105 V/cm, in agreement with Fig. 4a. For a Boltzmann
gas, the intersection of τ+ and τ– occurs according to
(17), at T ≈ 150 K for E = 104 V/cm and at T ≈ 240 K
for E = 2 × 104 V/cm. This is also confirmed by Fig. 4b.

The behavior of the reciprocal spin relaxation times
in the electric field is illustrated in Fig. 5 for both
degenerate and Boltzmann electron gases. The depen-

dences of γ〈 〉 and α on the electric field are similar to
those in the inset of Fig. 1: their values are close in
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Fig. 5. Spin relaxation rates, 1/τ+ (solid line), 1/τz (dashed
line), and 1/τ– (dotted line), in a triangular GaAs QW as
functions of the electric field; (a) corresponds to degenerate
electrons with concentrations N = (1) 1011, (2) 3 × 1011,
(3) 5 × 1011, and (4) 1012 cm–2; (b) corresponds to the Bolt-
zmann gas at temperatures T, = (1) 30, (2) 77, (3) 150, and
(4) 300 K.
magnitude, so the difference between them is very
small. This leads to a minimum in the dependence of
1/τ+ on E. The cancellation condition (18) is fulfilled at
E ≈ 1.9 × 106 V/cm. The electric field of this strength
can be created in heterostructures containing a gate,
allowing for the experimental observation of the non-
monotonic spin relaxation rate dependence shown in
Fig. 5.

5. CONCLUSION

It has been shown [19–21] that the inclusion of both
the BIA and SIA terms (4) and (5) into HSO leads to
conduction band spin-splitting anisotropy in k-space in
III–V semiconductor heterojunctions. However, the
spin relaxation analysis performed in [20] ignored this
effect.

The authors of [22] showed that the BIA and SIA
terms interfere in weak localization but are additive in
spin relaxation. In this paper, we demonstrate that the
terms in HSO that are linear in the wave vector also can-
cel out in spin relaxation.

In a recent experiment [23], the spin relaxation
anisotropy was observed for uncommonly used (110)
GaAs QWs. In this experiment, the spin relaxation in
the growth direction was suppressed because of the
“built-in” anisotropy of the sample, resulting from the
presence of heterointerfaces. In the present paper, we
predict spin relaxation suppression in the plane of a het-
erostructure. Moreover, all three spin relaxation times
are different in our case, and this effect takes place in
ordinary (001) heterostructures.

To observe the predicted spin relaxation anisotropy,
one can perform time-resolved measurements similar
to those in [23]. In steady-state experiments, spin relax-
ation can be investigated by means of the Hanle effect.
To obtain the spin relaxation times, one has to take into
account the fact that, in asymmetrical heterostructures,
the Landé g-factor not only has diagonal in-plane com-
ponents (gxx) but also off-diagonal ones (gxy) [24]. The
degree of photoluminescence polarization in a mag-
netic field B ⊥  z is described by the following expres-
sion:

(21)

where the upper and lower signs correspond to the

experimental geometry B || [110] and B || [ ],
respectively (µB is the Bohr magneton).

We show that the terms linear in the wave vector in
the spin–orbit Hamiltonian interfere, which leads to a
huge anisotropy of the spin relaxation times. At a high
concentration or temperature, this effect starts to disap-
pear, owing to predominance of the terms cubic in k in
HSO which are present only in HBIA. However, the
higher-order terms in HSIA are not forbidden by symme-
try either. These terms can also interfere with these in

P B( ) P 0( )
1 µB gxx gxy±( )B/"2[ ] 2τ zτ+−+
----------------------------------------------------------------------,=

110
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HBIA and cause additional nonmonotonic special fea-
tures in the dependences of the spin relaxation times on
the structure parameters.

In conclusion, we have calculated the spin relax-
ation times for an III–V heterojunction and a triangu-
lar QW. The observance of spin relaxation anisotropy
in all three directions is predicted in a wide range of
structure parameters and temperatures.
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Abstract—The problem of stabilizing the properties of porous silicon films was studied. A thermodynamical
analysis of electrochemical processes occurring in the course of anodic Si dissolution is performed. A new
description of electrode reaction of silicon interaction with hydrofluoric acid is suggested. It is shown that
hydrogen-induced passivation of the Si surface governs the equilibrium dissolution potential of the silicon elec-
trode. Thermodynamic calculations indicate that it is possible to substitute the chemically and thermally unsta-
ble surface groups (of the SiHx type) for more stable silicon–oxygen compounds directly in the course of for-
mation of porous Si in electrolytes with the addition of strong hydrohalic acids. The results obtained made it
possible to explain thermodynamically the stabilizing effect of an HCl additive in electrolytes used for forma-
tion of porous Si on its chemical and physical properties. © 2002 MAIK “Nauka/Interperiodica”.
INTRODUCTION

The discovery of the visible luminescence of
porous silicon (por-Si) [1] has stimulated numerous
studies aimed at exploring the possibility of the devel-
opment of various devices based on por-Si (see [2, 3]).
In this context, it became urgently necessary to ascer-
tain the laws governing the variations in the photolu-
minescent properties of por-Si and in the physico-
chemical state of the por-Si surface as a result of
exposure to the environment. At the same time, the
problem of ensuring the stability of the por-Si proper-
ties has arisen. It is well known that the hydrogen-
induced passivation of the surface of silicon nanocrys-
tallites is thermally and chemically unstable [4, 5]. As
a result of uncontrolled variations in the chemical com-
position of the porous layer, unpredictable changes in
the optical properties of the material occur. This
makes it difficult to obtain adequate and reproducible
data on the por-Si structure in its relation to lumines-
cent and optical properties.

In order to stabilize the physical and optical charac-
teristics of por-Si, physicists and technologists most
often use either rapid thermal oxidation [6] or deposi-
tion of coatings with special properties [2, 3]. Recently,
attention has been drawn to the methods for enhancing
the stability of the crystallite surface by modifying the
composition of the electrolyte in which the por-Si layer
is formed. It is well known that the stable oxygen-
induced passivation of por-Si is ensured by adding
H2O2 to a conventional solution of HF in a water–etha-
nol mixture [7]. However, no data have been reported
1063-7826/02/3601- $22.00 © 20098
[7] on the luminescent properties of the por-Si layers
obtained, which makes it difficult to advance the infer-
ences about the applicability of this method to the tech-
nology of fabricating light-emitting structures. Previ-
ously, we have found that the stability and the photolu-
minescence intensity of por-Si formed in solutions
based on whether the HF and HCl mixtures are
enhanced [8]. The mechanism of the effect of HCl on
the properties of the formed por-Si layers has been dis-
cussed in a number of publications [9–11]. Reactions of
Si with electrolyte containing HCl have been recently
analyzed in detail [11]. It is assumed [11] that a
decrease in the concentration of the nonradiative-
recombination centers is related to the HCl-activated
formation of silicon–oxygen compounds.

In this paper, we suggest a description of the oxy-
gen-induced passivation of silicon nanocrystals in HF
solutions that contain a certain amount of HCl; this
description is based on the consideration of the condi-
tions for electrochemical equilibrium in aqueous solu-
tions of hydrofluoric acid. The suggested approach
made it possible to refine the mechanism of the anodic
dissolution of Si and to substantiate the possibility of
producing stable silicon–oxygen complexes at the sur-
face of crystallites that compose the por-Si layer when
it is formed in hydrofluoric acid.

EXPERIMENTAL

We used KDB-12 (p-Si:B, ρ = 12 Ω cm) wafers with
both surfaces polished and with (100) orientation as the
002 MAIK “Nauka/Interperiodica”
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starting material. Porous Si was formed under galvano-
static conditions for 300 s, with the anode-current den-
sity being equal to 10 mA/cm2. In the experiments, we
used solutions with various volume fractions of HF,
HCl, and C2H5OH. The samples thus treated were
then kept in an atmosphere of D2O vapors for 10 min.
The absorption spectra in the infrared (IR) range of
wavelengths (300–5000 cm–1) were recorded using an
IFS-113v Fourier-transform IR spectrometer (Bruker,
Germany). The samples were transferred to the vacuum
chamber of the spectrometer within 2 min immediately
after their preparation.

RESULTS AND DISCUSSION

In Fig. 1, we show the transmission spectra of IR
emission from the samples treated in the solutions with
different volume fractions of HF and HCl. It is found
that an absorption band, peaked at 1075 cm–1, emerges
in the spectrum of the sample treated in a solution that
contains HCl and has a low volume fraction of HF. This
band is related to the absorption of light at the vibra-
tions of the Si–O bonds that are incorporated in the
Si−O–Si bridge bonds. The position and shape of the
absorption peak are found to be similar to those
observed in SiO2 that is formed as a result of the high-
temperature oxidation of silicon in dry oxygen [12]. In
Fig. 2, we show the transmission spectra of the samples
exposed to the D2O vapors. By comparing the above
spectra, we can see that the samples prepared in an elec-
trolyte without the addition of HCl react actively with
D2O. This is supported by the fact that, in the vicinity
of 1532 cm–1, a band appears that is related to the
stretching vibrations of the SiDx [13, 14] bonds (for ref-
erence, the corresponding SiHx vibration yields the IR
band, peaked at about 2166 cm–1, in between the bands
related to SiH3 and SiH2).

We should note that the samples passivated by oxy-
gen in the course of preparation with respect to the
heavy water vapors are inert. It is well known that the
water vapor is the major oxidizing agent, which enters
into the composition of the surrounding atmosphere,
for the Si surface coated with the SiHx groups. At room
temperature, the native oxide is formed according to the
mechanism of dissociative adsorption [15]. As a result,
it is mainly the near-surface located Si–OH(D) and
Si−H(D) groups that are formed. Taking into account
the appreciable isotopic shift of the vibration frequen-
cies of Si–D bonds in reference to those of Si–H bonds,
the study of the interaction of por-Si with heavy water
may serve as an informative method for assessing the
chemical stability of the porous layer. Consequently,
the obtained results may indicate that a chemically sta-
ble structure is formed as a result of treatment in diluted
HF solutions. In addition, according to our previous
results, this chemical stability is retained even at ele-
vated temperatures, which makes it possible to record
the photoluminescence spectra at high levels of laser-
radiation excitation [8].
SEMICONDUCTORS      Vol. 36      No. 1      2002
Previously, we also observed an enhanced (close to
ideal) hydrophobicity of the surface of por-Si formed as
a result of treatment in the HCl-containing solutions
[10]. This may be indirectly indicative of the absence of
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Fig. 1. The Fourier transmission spectra of the as-prepared
porous Si samples formed in solutions with different vol-
ume fractions of components: (1) HF : C2H5OH = 1 : 5 and
(2) HF : C2H5OH : HCl = 1 : 5 : 1.
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Fig. 2. The transmission Fourier spectra of the samples of
porous Si formed in solutions with different volume fractions
of components (curve 1 corresponds to HF : C2H5OH = 1 : 5
and curve 2 corresponds to HF : C2H5OH : HCl = 1 : 5 : 1);
prior to measuring the spectra, the samples were exposed to
D2O vapors.



 

100

        

GAVRILOV 

 

et al

 

.

                    
dangling surface bonds and charged chemisorbed
dipoles, which represent the nonradiative-recombina-
tion centers; this inference accounts for an increase in
the intensity of photoluminescence of por-Si prepared
in an unconventional electrolyte [8].

The Fourier spectroscopy data mentioned above
made it possible to ascertain the determining role of
oxygen-induced passivation of the surface of silicon
nanocrystallites in enhancing the stability and inten-
sity of photoluminescence. However, it is generally
believed that silicon–oxygen compounds are thermody-
namically unstable in aqueous solutions of HF. This
contradiction ceases to exist as a result of detailed anal-
ysis and refinement of the conditions for electrochemi-
cal equilibrium in a system that consists of Si and an HF
aqueous solution.

It is typically assumed [16] that formation of porous
Si is described by the following electrode reaction:

(1)

The potential of reaction (1) is defined by the equa-
tion written as

(1a)

Henceforth, the potential E is expressed in V; concen-

trations, in mol/l; and  = / , where  is the

pressure of gaseous hydrogen in the system and  =

1.01325 × 105 Pa. The theoretically predicted value of
the equilibrium potential for reaction (1) is inconsistent
with experimental data. First, the spontaneous disposi-
tion of silicon of both types of conductivity in HF solu-
tions should be observed for such a low value of the
potential. This follows from the energy position of the

Si 6HF SiF6
2– H2 4H+ 2e–.+ + ++

E 2.241– 0.1182 pH– 0.1773 HF[ ]log–=

+ 0.0295 SiF6
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Fig. 3. The calculated diagram of electrochemical equilib-
rium in a system consisting of Si and an aqueous solution of
HF. The curves numbered 0 within the panel represent the
equilibrium lines calculated for log[HF] = 0. Designations
of other lines are expounded in the text.
edges of the allowed-state bands located at 0.45 and
0.65 eV (in reference to the hydrogen electrode) for the
conduction-band bottom (EC) and the valence-band top
(EV), respectively. In addition, hydrogen-induced passi-
vation, which is always prevalent at the silicon surface
in contact with aqueous solutions of HF, does not intro-
duce local states in the silicon band gap [17]. Therefore,
the band edges are pinned at the Si/HF interface; the
energy barrier of such a junction would inevitably be tun-
neling-thin in reference to the potential of reaction (1).

The second experimental result, which contradicts
reaction (1), consists in the fact that, according to a
number of publications, the potential of the anodic
decomposition of silicon is in the range of 0.1–0.3 V (in
reference to the standard hydrogen electrode) [17–19].

In order to ascertain the exact mechanism of the
anodic dissolution of silicon in hydrofluoric acid, we
have to consider the actual crystal surface in more
detail. It is well known that, in an HF aqueous solution,
hydrogen-induced passivation is most favorable ther-
modynamically [20]; i.e., the equilibrium potential of
the silicon electrode in aqueous HF solutions is gov-
erned by the hydrogenated-surface potential. There-
fore, the anodic reaction of silicon dissolution can be
represented as

(2)

(2a)

The potential of reaction (2) was calculated taking into
account the silicon sublimation energy, which is equal
to 112 kcal/mol [21]. Consideration of the hydrogen-
induced passivation of the surface made it possible to
calculate the potential of the silicon anodic-oxide for-
mation and to determine the potential corresponding to
the transition from the por-Si formation to the polishing
etching. These two processes can be described, respec-
tively, by the following reactions:

(3)

(3a)

(4)

(4a)

The adequacy of this description of reactions occur-
ring during the anodic dissolution of silicon in aqueous
HF solutions is supported by in situ studies of the Fou-
rier spectra. Thus, it has been ascertained [18] that the
Si–O–Si bonds appear at the silicon surface at a poten-
tial of 0.7 V (in reference to the hydrogen electrode)
during the anodic dissolution of Si in HF. The hydro-
gen-induced passivation alone is characteristic of the
surface at lower potentials.

Si–SiH2
s 6HF+ SiH2

s SiF6
2– H2 4H+ 2e–,+ + + +=

E 0.187 0.1182 pH– 0.1773 HF[ ]log–=

+ 0.0295 SiF6
2–[ ] pH2

{ }log .

SiH2
s 2H2O+ SiO2 4H+ H2 4e–,+ + +=

E 0.379 0.0591 pH– 0.0148 pH2
,log+=

SiF6
2–

H2 2H2O+ + SiO2 6HF 2e–,++=

E 0.56 0.1173 HF[ ]log+=

– 0.0295 SiF6
2–[ ] pH2

{ } .log
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The calculated potentials for the reactions made it
possible to plot a potential–pH diagram that defines the
stability domains for the dissolved and condensed sub-
stances in a system consisting of Si and an aqueous HF
solution (Fig. 3). Lines 1, 2, and 3 in the diagram rep-
resent the dependence of the potential for reaction (2)
on pH and account for the domains of prevalence of dis-
sociated forms of the hydrofluoric acid, such as HF,

H , and F–. Similarly, lines 4, 5, and 6 define the con-
ditions for the transition to electrochemical polishing of
silicon as a result of the predominant formation of SiO2
[reaction (4)]. Line 7 demonstrates the potential of the
possible SiO2 formation according to reaction (3). Line
8 puts a leftmost bound on the domain of chemical sta-
bility of the formed anodic SiO2. In Fig. 3, the straight
dotted lines indicate the positions of the band edges for
the allowed silicon states EC and EV in reference to the
electrochemical-potential scale.

According to the diagram, the reaction of formation
of silicon–oxygen compounds (mainly, SiO2) at the Si
surface is most favorable for moderate HF concentra-
tions and small values of pH. In Fig. 3, the stability
domain for oxygen compounds at the silicon surface is
bounded from the right by line 9. Since hydrofluoric
acid is a medium-strength acid, small pH values can be
ensured by adding a strong acid (e.g., HCl) to the elec-
trolyte. Consequently, the suggested description of the
electrochemical processes substantiates the thermody-
namic possibility of forming an oxide phase at the sili-
con surface treated in the diluted HF acid solutions and
makes it possible to explain the enhancement in the sta-
bility and intensity of the photoluminescence of por-Si
obtained [8] as a result of Si treatment in the HF : HCl :
C2H5OH solutions. Unfortunately, within the scope of
this study, we failed to determine the exact crystallo-
graphic structure of the oxide phase that is stable during
treatment in HF. This problem is of interest in its own
right and requires additional study.

CONCLUSION

The experimental results reported here made it pos-
sible to demonstrate the determining role of the surface
chemical composition of silicon nanocrystals in ensur-
ing the stability of physical and chemical properties of
porous Si (por-Si). The thermodynamic analysis of
electrochemical processes occurring in the course of
the anodic dissolution of Si made it possible to suggest
a new description for the electrode reaction of interac-
tion between Si and HF. It is shown that the hydrogen-
induced passivation of the Si surface governs the equi-
librium dissolution potential of the silicon electrode.
The thermodynamic calculations showed that it is pos-
sible to replace the chemically and thermally unstable
SiHx groups with more stable silicon–oxygen com-
pounds directly in the course of the por-Si formation in
the electrolytes with the addition of strong hydrohalic

F2
–

SEMICONDUCTORS      Vol. 36      No. 1      2002
acids. The results obtained made it possible to interpret
thermodynamically the stabilizing effect of the HCl
additive to the electrolytes used for formation of por-Si
on the chemical and physical properties of por-Si.
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