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A theoretic analysis of magnon-induced dampingG of quasiparticle states in the normal phase of
doped copper-oxide high-Tc materials is developed, based on a microscopic model which
accounts for the specific 2D structure of their electron and magnon spectra. Among the obtained
energy and temperature dependencies ofG in different regimes, the most peculiar is the
anomalously early onset of linear temperature dependenceG}T with a doping-independent
coefficient. © 1998 American Institute of Physics.@S1063-777X~98!00107-8#
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1. INTRODUCTION

The studies of coexistence and interplay between m
netic and electric properties of layered copper oxides are
of the most immediate problems in high-Tc superconductiv-
ity ~HTSC!. The general scenario for development of pha
states in these systems with their doping was already es
lished from the very early experimental data.1 The initial
compounds are AFM-ordered Mott insulators with suf
ciently high Néel temperatureTN , but this long-range mag
netic order is very rapidly lost under small dopingc, as evi-
denced by a sharp drop ofTN with c ~until the AFM phase
gets absorbed by the low temperature spin-glass and fu
spin-liquid phases!; this process is followed by the insulato
metal transition. However, the metallic phase of HTSC co
pounds cannot be considered as ordinary paramagnetic
in the usual sense, since it still preserves the short-ra
AFM order which is clearly revealed in its either static a
dynamic properties~see, e.g., Refs. 2–6 and also t
reviews7,8!. It should be stressed that, in copper-oxide ma
rials, unlike common magnetic metals, there are two diff
ent kinds of fermions responsible for the conducting a
magnetic properties. The conductivity is mainly determin
by the charge carriers~holes, either mobile or localized! from
the doping, whereas the strong magnetic correlations
mainly produced by the localized ‘‘core’’ spins. Also, the
two kinds of particles are spatially separated: the carr
predominantly occupy the oxygen sites, and the core s
are those at copper sites. Notably, the destroying of lo
range magnetic order in cuprate CuO2 layers precedes th
4631063-777X/98/24(7)/5/$15.00
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appearance of metallic conductivity in them; hence, at l
concentrationc of dopants, the HTSC compounds are s
typical doped semiconductors with shallow acceptor lev
and hopping type of conductivity~in particular, for the lan-
thanum system this is true atc,5%, while the acceptor
binding energy is«0'35 meV!.9,10 It follows from the afore-
said that the proper theoretic description of the breakdown
magnetic order and of the insulator-metal transition in HT
~at least, for smallc! perhaps cannot be based on commo
used translationally-invariant models.~The very number of
such models, including different magnetic mechanisms
pairing, is too long to be counted, many of them are d
cussed in the reviews, Refs. 11–15!.

At the same time, attempts have been made16,17~see also
Refs. 18 and 19! to consider these problems, starting fro
the primordial importance of disordered~impurity! character
of weakly doped HTSC compounds. Initially, mainly due
the change of the oxygen component, the acceptor le
with localized holes on them appear in AFM-ordered cupr
planes~this localization is greatly facilitated by the strikin
2D character of HTSC electronic properties!. At low c, these
‘‘impurity’’ holes give rise to a disordered spin subsystem
which the regular spin excitations~magnons! are scattered
and hence damped. As a result, the long-range magnetic
der gets destroyed and there appears such a minimum v
kmin of wavevector that the magnons withk,kmin cannot
exist because of strong damping. At lower concentratio
this value is estimated askmin;ca21, but at higher concen-
trations~metallic ones including~see Ref. 20!! it is changed
© 1998 American Institute of Physics
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for kmin;Ac/cflB
21, where lB is the Bloch domain wall

width andcf is the concentration where the decayingTN(c)
meets the freezing temperature of spin-glass transit
Hence the material can be considered magnetically di
dered at distancesr .kmin

21[jmag, wherejmag is the magnetic
correlation length. This finite length is determined by t
doping rather than by the temperature. Nevertheless, m
nons withk.kmin still exist and the magnetic order at di
tancesr ,jmagis preserved~at least, at time scale,jmag/vs ,
wherevs is the magnon velocity!.

When the concentration grows up toc.c0 , where
c05«0 /W is the characteristic concentration for insulato
metal transition~W is the whole conduction bandwidth!,
the Fermi level of free~hole! carriers is formed, manifesting
the onset of metallic conductivity. It was shown tha
within the scope of Lifshitz’s impurity model, which is ap
propriate for HTSC materials, the 2D systems are in fac
more favorable~at smallc! for this transition than the 3D
ones.17

However, the two above mentioned problem
were treated in Refs. 16–18 independently: the destroyin
magnetic order was calculated with neglect of the band
free carriers~the indirect interaction between localized ho
spins was only considered as mediated by the spin-w
band!. On the other hand, the localized core spins w
ignored as possible scatterers for electronic excitations
calculating the characteristic concentrationc0 . Undoubtedly,
a more conclusive description of HTSC compounds sho
take both factors into account simultaneously: scattering
free carriers on localized spins and indirect interact
between localized spins via the conduction band~in real
cuprates, the valence band!. This determines the purpos
of the present work, to study the influence of magne
order in cuprate layers on electronic processes at metal
tion.

The consideration below is restricted to only effects
magnon ~Bloch-like! excitations with k.kmin , leaving
mostly aside the low-energy spin excitations which are
described by the wavevector~spin fluctuation states!. In
other words, we consider the presence of magnon excitat
in addition to the delocalized charge carriers, although
long-range magnetic order is absent. The main results of
analysis are the energy and temperature dependencies fo
magnon-controlled inverse lifetimeG of electronic quasipar-
ticles near the Fermi level, specific for 2D system. In par-
ticular, a linear temperature dependenceG(T) is found to be
concentration independent and to begin from lower temp
tures than follows from the known estimates in literatu
This behavior can contribute considerably to the broadly d
cussed linear temperature resistivity in the normal phas
high-Tc materials.

2. HAMILTONIAN AND GREEN FUNCTIONS

We choose the basic model which joins in a simple w
the models previously used for description of the magnet16

and electronic17 parts of the HTSC system~bearing in mind
for instance the compound La2CuO41d!:
n.
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H5Hel1Hs1Hs2el ,

Hel5(
k,s

«kak,s
1 ak,s2

D«

N (
p,k,k8,s

ei ~k2k8!pak,s
1 ak8,s ,

Hs5(
q, j

V j~q!bqj
1bqj , ~1!

Hs2el5 (
k,q, j

@g1~q!~ak,↑
1 ak2q,↓2ak,↓

1 ak2q,↑!

3~bq12b2q1
1 !1g2~q!~ak,↑

1 ak2q,↓1ak,↓
1 ak2q,↑!

3~bq21b2q2
1 !#.

HereN is the number of elementary cells in the lattice,ak,s

and bqj are respectively the Fermi and Bose operators
electronic and magnon excitations. They are labelled by tw
dimensional wavevectorsk andq, with s5↑,↓ related to the
carrier spin states andj 51,2 to FM-like and AFM-like mag-
non branches, and characterized by the isotropic disper
laws in the long wavelength region:«k5\2k2/2m and
V j

2(q)5Vg j
2 1\2vs

2q2. The effective massm, the magnon
velocity vs and the spin-wave gapsVg j can be expressed in
terms of microscopic interaction parameters:

m52\2/ta2, vs5Ja/\,

Vg15szA2JDJrh, Vg25szA2JDJt . ~2!

For illustrative purposes, we shall use throughout t
paper the parameter values for La2CuO4: the oxygen-oxygen
hopping matrix elementt'0.6 eV, the AFM exchange con
stantJ'0.1 eV, the rhombic anisotropyDJrh'1023 meV,
the tetragonal anisotropyDJt'831023 meV, the Cu21 spin
s51/2, the in-plane coordination numberz54, and magnetic
lattice parametera'5.4 Å. This givesm of the order of the
free electron mass, the bandwidthW5pt'2 eV, Vg1

'1 meV, Vg2'2.5 meV, andvs'107 cm/s ~note that the
latter value is comparable to typical values of the Fer
velocity vF in the metallic phase of HTSC compounds!.
Finally, D«.0 in ~1! is the shift of the local oxygen leve
from its initial position because of Coulomb field of th
doped ions~see Ref. 17!.

The spin-electron couplingHs– el is derived from the
standard Shubin–Vonsovsky model, using the specifics
spin structure for La2CuO4,

16 then the coupling parameter
are

g j~q!'J8S zV j~q!

2NJ D 1/2

, ~3!

whereJ8 is the exchange parameter between the core s
and a carrier spin at the nearest neighbor oxygen site~it is
supposed to be of the order of or even greater thanJ!. Thus,
formally this interaction is quite similar to the commo
electron-phonon coupling in metals, which was studied
detail by Yu. Kagan and co-workers~see, for example, Ref
21!. However, as will be seen below, the model under co
sideration possesses certain specifics, due to the 2D disper-
sion of either electron and magnon bands and to the abs
of the usual adiabatic relation between the correspond
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velocities. Of course, one can also derive the electr
electron coupling~d-wave superconducting! from Hs– el but
the analysis below will be restricted only to normal phas

In addition to the above discussed translationa
invariant terms, the Hamiltonian, Eq.~1!, namely, itsHel

part, also contains the perturbation from dopants on oxy
sitesp, distributed chaotically with concentrationc ~the mi-
nus sign beforeD« accounts explicitly for attraction of car
riers to charged dopants resulting in hole conductivity!. In
this study we focus mainly on the effects in electronic sp
trum, so that impurity perturbations~such as, e.g., modifica
tion of the parametersJ andJ8 near impurity sites, due to th
evident shifts of the on-site electronic levels! are not in-
cluded inHs and Hs– el. The corresponding effects can b
accounted for implicitly by restricting the sums in the ma
non wavevector toq.kmin and adding instead certain sum
over ~chaotic! spin fluctuation excitations. But to begin wit
such a so complicated problem, we shall at this first st
simply ignore the disorder effects in spin spectrum, and, o
after obtaining the physical results, they will be checked w
respect to the effects of spin disorder.

As usual, we shall infer the single-particle electron
properties from the Fourier-transformed two-time Gree
functions~GF!

gk~«!5^^ak,suak,s
1 &&«5 i E

0

`

ei ~«1 i0!t^$ak,s~ t !,ak,s
1 %&dt,

~4!

where $.,.% is the anticommutator and̂...& the quantum-
statistical average. Their poles in the complex ene
plane determine the energy spectrum and damping of qu
particles.

A necessary pre-requisite for studying the impurity
fects is a detailed knowledge of dynamics for the ‘‘bac
ground’’ uniform system~often this presents an independe
problem in complex systems such as HTSC compoun!.
Hence, as a first step, we omit the impurity term even inHel .
Then the equations of motion for GF, Eq.~4!, to the lowest
order in spin-electron coupling, readily yield the result:

gk~«!5@«2«k2Pk~«!#21,
~5!

Pk~«!5(
q, j

g j
2~q!S 12 f uk2qu1nqj

«k2« uk2qu2V j~q!

1
f uk2qu1nqj

«k2« uk2qu1V j~q! D ,

where f k5$exp@(«k2«F)/T#11%21 and nqj5$exp@Vj(q)/
T#21%21 are the Fermi and Bose occupation numbers,
«F is the Fermi energy of the free holes; this coincides w
the well-known expressions, e.g., from Ref. 22. Below
consider in detail how the properties of electron and mag
spectra, specific for our system, are reflected in the beha
of this otherwise comprehensively studied self-energy te
Pk(«). Firstly we consider the broadening of electron
states close to the very Fermi level at zero temperature,
to inelastic electron-electron scattering with creation
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magnons. Then we pass to the damping of electronic st
on the Fermi level itself at finite temperatures, including p
cesses with thermal magnons.

3. DAMPING NEAR THE FERMI LEVEL AT T50

As long as we neglect the impurity perturbationD«, but
consider some finite doping levelc, a well-defined Fermi
level «F5cW/2 exists in the 2D electronic spectrum.17,18

The broadeningGk of quasiparticle levels close to«F is
given byGk5Im Pk(«k). However, bearing in mind that, in
fact, the metallic state in HTSC compounds onsets well a
the breakdown of long-range magnetic order, we should
consider quasiparticle energies closer to«F than to the lower
boundary energy of magnons,Vmin . Since the latter value
exceeds both spin-wave gapsVg j ,

16 we can take the magno
dispersion law in the relevant region to be identical for t
two branches and linear:V j (q)5Vg'\vsq. Moreover, we
extend this law to the whole magnon band, forgetting fo
moment the long-wave limitation~we shall recall it at the
end of this Section!. Then, using Eq.~5! at T50, and taking
into account the 2D character of spin-wave spectrum, w
arrive at:

Gk5G0aE
0

qmax
qdqE

0

2p

dw@d~2k cosw2q12ks!

3u~«F2«k2\vsq!1d~2k cosw2q22ks!

3u~«k2«F2\vsq!#, ~6!

where G054pzJ82/W, ks5bkF , and b[vs /vF . The
Fermi velocity depends directly on the doping levelc:
vF5vaAc, whereva5Ap/2 a(t/\), and, with our choice of
parameters,va'73107 cm/s. ThevF is close tovs ~the ra-
tio b is close to unity! for c being a few percent~this is in
striking contrast with the usual situation for electron-phon
coupling in conventional metals where the sound velocity
about three orders of magnitude lower thanvF!. After el-
ementary integration, Eq.~6! yields an analytic result:

Gk52G0aFAk22ks
22Ak22~ks2qk!21ksS arcsin

ks

k

2arcsin
ks2qk

k D Gu~k2ks!u~k2ks1qk!, ~7!

where qk5(«k2«F)/(2b\vF). The u-functions in Eq.~7!
determine thatGk drops to zero below certain thresho
quasimomentum value, namely: fork,(8ks

21kF
2)1/222ks if

b,1, and fork,ks if b.1. Close to the Fermi surface~at
b,1! we obtain a quadratic dependence ofGk5G(«) on the
quasiparticle energy«5«k2«F :

G~«!'
G0

akFA12b2 S «

4JD 2

, ~8!

which is characteristic of 2D dispersion, unlike the usual«3

law in 3D systems.22 Note that, since the relationakF

5A2pc, this function increases withdecreasingconcentra-
tion. In no way does the presence of the enhancement fa
(12b2)21/2 in the latter formula mean divergence ofG~«! in
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the ‘‘relativistic’’ limit b→1 ~reached when the concentr
tion decreases down toc→cs52p(J/W)2!: in this case the
quadratic law, Eq.~8!, is simply changed for a«3/2 law:
G(«,cs)'0.6(J8/J)2W21/2«3/2. With the parameter value
adopted in Sec. 2, we come to the conclusion~at least, when
T50! that the usual Fermi-liquid conditionG(«)/«,1 is
well assured for the considered magnon-induced dampin
a rather broad vicinity of the Fermi surface at all releva
concentrationsc.c0 .

To conclude this Section, we estimate the region of
lidity of Eqs. ~7! and~8! with respect to the above mentione
neglection of spin fluctuation states. In fact, the integrat
overq in Eq. ~6! is only legal forq.kmin ~see Sec. 1!, hence
the result, Eq.~7!, will not make sense ifqk&2kmin . Then,
with the estimatekmin;c(J8/J)2a21 for a minimum magnon
wavevector atT50 @Ref. ~16!# the formula, Eq.~8!, is found
to fail only within a narrow fluctuation region:u«u&« f

;cJ82/J. At the boundary of this region, we have the Ferm
liquid ratio G(« f)/« f;Apc/2 J84/WJ3, which is consider-
ably smaller than unity. At least, the simplest assertion
the behavior ofG within the fluctuation region is obtained b
changing the ‘‘magnon density of states’’ factorq in Eq. ~6!
by a constant value;kmin at q,kmin , which givesG(«)
;G(« f) at u«u&« f , when it is impossible to speak abo
undamped quasiparticles.

4. DAMPING OF FERMI STATES AT FINITE TEMPERATURES

Using explicitly thed-function relations in the occupa
tion numbersf uk2qu and nqj in Im Pk(«k) at «k5«F , the
temperature dependent broadening at the very Fermi l
can be obtained from Eq.~5! in the simple form:

GF~T!52G0akFF E
0

12b xdx

sinh~2JakFx/T!A12~b1x!2

1E
0

11b xdx

sinh~2JakFx/T!A12~b2x!2G . ~9!

This expression exhibits a crossover from quadratic func
of temperature:

GF~T!'
G0

2akFA12b2 S pT

J D 2

~10!

at low temperatures:T!2JakF ~which decreases as a fun
tion of c alike G~«!, Eq. ~8!!, to linear function of tempera
ture atT@2JakF[2V j (kF) which, remarkably, is concen
tration independent:

GF~T!'G0

pT

J
. ~11!

Such a crossover is rather clear, if we notice that the ther
magnon wavevectorqT5T/\vs exceeds the diameter 2kF of
the Fermi circle just atT.2JakF , but the independence o
Eq. ~11! on kF is another characteristic feature of 2D disper-
sion, also in striking contrast with 3D systems. The cross
over temperature found from comparison of the values, E
~10! and~11!, is Tc2o52JakFA12b2/p. In fact, this cross-
over, as seen from direct numeric calculations, using Eq.~9!
in
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n
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n
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and the parameter values chosen in Sec. 2~Fig. 1!, occurs
even earlier, at about 0.6Tc2o , which is essentially lower
than the commonly considered valueTc2o;J.23

Taking into mind the estimate, in the end of the previo
section, for the fluctuation limitG(« f) of the broadening
close to the Fermi level, it follows that this constant limit ca
be reached forGF(T), with lowering temperature, at som
valueTf;Ac(J8/J)Tc2o , which is yet much lower than the
crossover temperature value.
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Mechanisms of critical current limitation in YBCO thin film structures
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The limitation of critical current in highTc superconducting YBCO thin films has a varied
nature according to the quality of YBCO films. Our results showed that in strips from granular
films the weak links of superconductor–normal metal–superconductor and superconductor–
constriction–superconductor types were responsible for critical current limitation. In the YBCO
strips with improved~preferential! crystallographic orientation a flux-creep critical current
limitation was found and in the highly oriented YBCO strips the Ginzburg–Landau depairing
mechanism approximated the critical current limitation for temperature close toTc .
© 1998 American Institute of Physics.@S1063-777X~98!00207-2#
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1. INTRODUCTION

The critical current~or critical current density! is one of
the most important parameters of the transport electr
properties of high temperature superconducting thin fi
strips. Various critical current limiting mechanisms~CCLM!
take part according to the thin film quality. The nature
CCLM can be recognized from the critical current vs. te
perature dependence@ I c(T)#. The important contribution to
these problems in lowTc film strips have been made by th
I. M. Dmitrenko group from Kharkov~see the excellent re
view paper1 and papers cited therein!. In this contribution we
review some of our results concerningI c(T) studies on high
Tc superconducting thin films, strips and junction
stimulated by Prof. I. M. Dmitrenko’s results and person
contacts.

2. EXPERIMENTAL, RESULTS AND DISCUSSION

The YBa2Cu3O72x ~YBCO! thin films were deposited
by dc magnetron sputtering or vacuum coevaporat
method on MgO, SrTiO3, or YSZ and CeO2 buffered Al2O3

single crystal substrates. The strips were patterned by we
ion beam etching.

In Fig. 1 we summarizeI c(T) dependencies in norma
ized units, whereI c(T)/I c(0)[ j c(T)/ j c(0) and t5T/Tc .
We analyzed thej c(t) dependencies of superconductin
strips prepared from granular YBCO films~solid and open
circles in dependenciesa, b! in terms of weak link connec
tions between grains, where the power dependencej c(t)
5 j c(0)(12t)a occurs anda characterizes the type of cu
rent transport through weak links. The fitted dependenc
with a>2.5 ~dashed line, curvea! are characteristic for
YBCO films with depressedTc and low critical current den-
sity @ j c(0),103 A/cm2 at self-field conditions# and can be
ascribed to nonhomogeneous superconductors with large
persion of individual connections in weak link network
our granular films.2,3 In case of YBCO films, where
a'1.5–2 ~dashed lineb in Fig. 1!, weak links of ScS
~superconductor–constriction–superconductor! or SNS
4681063-777X/98/24(7)/3/$15.00
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~superconductor–normal metal–superconductor! type domi-
nate. The maximal critical current density of these samp
was j c(0)'104 A/cm2. On the basis of experimental obse
vations one can conclude that the dc transport propertie
granular films are determined by weak links between
superconducting grains, thus strongly reducing much hig
critical current density of film grains.2

The temperature dependence of critical current den
of stripes, patterned from preferentially oriented YBCO th
films, exhibits downward curvature ofj c(t) ~solid and open
triangles on curvec!. In this case a new mechanism of crit
cal current limitation begins to dominate. We ascribe t
CCLM to the flux creep, and the full line~curvec! represents
the fit of experimental data computed from relation4,5

j c~ t !5 j c~0!~12mt2nt2!, ~1!

where m50.5, n50.53, and j c(0)52.63106 A/cm2. Be-
cause this type ofj c(t) is characteristic for samples wit
j c(0)'106 A/cm2 we suppose that the intergranular we
links are not responsible for critical current limitation. Th
current-voltage (I -V) characteristics of these samples in t
low voltage range~just aboveI c) also confirmed the flux-
creep dissipation process.5

The strips patterned from YBCO thin films epitaxial
grown on SrTiO3 single crystal substrate @ j c(0)
>107 A/cm2# usually displayed thej c(t) dependence corre
sponding to curved in Fig. 1. The study of these temperatu
dependencies of critical current indicated a Ginzbur
Landau~GL! depairing mechanism in the temperature ran
close to Tc .6 The critical current of the microstrip ap
proaches GL depairing currentI d(t)1,7 when the widthw and
thicknessd of the strip are smaller or comparable to th
transverse magnetic penetration depth of the thin film

l'5lcoth~d/2l!, ~2!

where l is London penetration depth. If we consider th
temperature dependence of magnetic field penetration d
l(t)5l(0)/(12t4)1/2 for temperature close toTc we obtain
l''5 – 10 mm which fulfill the conditionsw<l' and d
© 1998 American Institute of Physics
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!l' @l(0)5200 nm andd550 nm were used in Eq.~2!#, i.e.,
homogeneous cross-sectional distribution of transport cur
in the strip. In Fig. 2 the experimentalj c(t) dependence
~solid squares! is compared with GL depairing current de
sity ~full line!

j d~ t !5 j d~0!~12t !3/2, ~3!

where j d(0)5@F0/3A3m0pl2(0)j(0)# is the depairing cur-
rent density atT50; F0 is magnetic flux quantum andj~0! is
coherence length. The valuej d(0)'23107 A/cm2 extrapo-
lated from experimental dependence is in reasonable ag
ment with the value computed from Eq.~3!: j d(0)'8
3107 A/cm2 for l~0!'200 nm andj~0!'3 nm. These ex-
perimental results have shown thatj c(t) close toTc may
approach the GL depairing current as a limiting mechani

In the low temperature range~the dependenced in
Fig. 1, t,0.6! wherew.l'~wide strip! another CCLM takes
place. Due to current concentration at the strip edges,

FIG. 1. Temperature dependence of the critical current density of YB
thin film strips of different quality~see text!.

FIG. 2. Ginzburg–Landau depairing critical current density limitation~full
line! for ‘‘narrow’’ YBCO strips close to the critical temperature.
nt

e-

.

e

edge barrier to vortex entry is lowered, and dissipation p
cess in microstrip starts at the current value8

I c1'~F0 /m0l'!ln~d/4j!, ~4!

the ‘‘lower’’ critical current. The depression ofj c(t) more
than one order of magnitude@for wide stripsw.l'(t)], in
comparison toj d(t), can be explained by the entering o
Abrikosov vortices into the superconductor and their mot
across the strip.6

Phase-slip phenomena~PSP! in the one-dimensional su
perconducting strips9 as well as in wide strips~moving
phase-slip centers or phase-slip lines!, may occur as CCLM.1

In this case the temperature dependence of the critical
rent density is described by the relationj c(t)5 j c(0)
3(12t)3/2, predicted by GL theory@Eq. ~3!, but j c(0)
, j d(0)], and thedissipation process is characterized
‘‘quantized’’ increases of differential resistance in theI-V
characteristic. We observed properties similar to PSP
10-mm wide and 100mm long granular YBCO strips.10 The
estimated quasi-particle diffusion length~'25 mm! and tem-
perature dependence of current at voltage steps~i.e., differ-
ential resistance increases! are in accordance with the PS
theory. We have concluded that grain boundaries and qua
of the strip edges play very important roles in the PSP, an
the critical current limitation in wide as well as narro
YBCO strips.

We also investigated theI c(T)dependencies of YBCO
grain boundary Josephson junctions of bicrystal type.11 The
most adequate fit~full line in Fig. 3! to the experimental
I c(T) dependence~solid squares! we explained by the mode
of the temperature dependent ratioL/jN , where L is the
length of a normal region in the YBCO strip at a bicryst
boundary in the direction of current flow andjN is the co-
herence length of the normal region. In this case the temp
ture dependent transparency of the junction norm
region for superconducting carriers is the main factor

O

FIG. 3. The dependence of critical currentI c vs temperature of a bicrysta
grain boundary Josephson junction. Full line: modified Usadel equation
L/jN50.6– 4.2.
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CCLM. The Ambegaokar–Baratoff12 I c(t) dependence~AB
in Fig. 1! in our studies is not suitable for approximation
any one dependence for YBCO strips, sandw
YBCO/PrBaCuO/YBCO13 or bicrystal grain boundary SNS
junctions.

3. SUMMARY

In this contribution we reviewed various mechanisms
critical current limitation in highTc superconducting YBCO
thin film strips and structures. We analyzed these mec
nisms on the base of the temperature dependence of the
cal current and corresponding models that are valid for
Tc superconductors. The weak links, mainly of SNS and S
types, flux-creep, Ginzburg–Landau depairing current, ph
slip phenomena and temperature dependent ‘‘transparen
of the bicrystal junction for transport superconducting c
rent are responsible for critical current limitation in hig
temperature superconducting thin film samples.

The authors are obliged to Professor I. M. Dmitrenko
a great many fruitful working discussions and human c
tacts in Bratislava and Kharkov, and they wish dear I.
even better years of productive work, health, and furt
close contacts with the group in Bratislava.
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10V. Štrbik, R. Adam, and Sˇ. Beňačka, in Proceedings of Weak Supercon
ductivity Symposium, Smolenice~Slovak Republic! ~ 1989!, p. 75.
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Frequency and temperature dependences of impedance of HTSC ceramics
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Anomalies in ohmic losses in HTSC ceramics are considered in the low- and radio-frequency
ranges. It is found experimentally that the width of theN–S transition in the ceramics
(YBa2Cu3O711% 57Fe), SmBa2Cu3O7, and YBa2Cu32xScxO7 in a weak magnetic field~up to 50
Oe! becomes smaller in the frequency interval betweenf c and f F at which the resistance
does not depend on temperature. It is shown that, for some types of HTSC and for different
samples of the same type, the frequencyf c does not correlate with the superconducting
transition temperatureTc . © 1998 American Institute of Physics.@S1063-777X~98!00307-7#
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INTRODUCTION

In our previous publications,1–4 we reported on the pe
culiarities in ohmic lossesR for high-temperature supercon
ductors ~HTSC! in the low- and radio-frequency range
(0 – 108 Hz) where the magnitude and sign of the tempe
ture derivative]R/]T are complex functions of frequency
Among other things, we proved that the derivative]R/]T
changes sign in a certain frequency rangeD f 5 f F2 f c , and
hence ohmic losses at frequenciesf F and f c, f F do not de-
pend on temperature (]R/]T50).2,3 This property of resis-
tanceR, which has been observed for most types of HTSC
the normal state,3 can be explained qualitatively in the two
band model of a superconductor with narrow and wide e
tron bands.2

According to Ref. 4, the frequencyf c and the tempera
ture derivative of the dc resistivityr reduced tor0 (S
5(]r/]T)/r0) are interrelated.~Herer0 is the resistivity on
the initial segment of the linear dependencer(T) at low
temperatures.!

In the frequency rangeD f , the temperature-, frequency
and magnetic-field dependence of the resistanceR display
singularities in the superconducting state of HTSC also.
example, the effect of the magnetic fieldH on R in the range
D f is observed not at the superconducting transition te
peratureTc measured in direct current or at frequencies o
side the rangeD f , but at a temperatureTc1 which can be
lower thanTc by several kelvins~up to ten!. ~HereTc is the
temperature at which the resistance changes under the e
of a weak magnetostatic field during theN–S transition.! In
the temperature rangeDT5Tc2Tc1 , ohmic lossesR are vir-
tually independent of temperature.

Thus, the properties typical of a superconduc
(]R/]T.0 and ]R/]H.0) start being manifested atT
,Tc1 in the frequency rangeD f and atT,Tc outside this
frequency interval.

These peculiarities ofR in the rangeD f are observed
virtually for all samples being investigated and for all typ
of HTSC except ceramics with ferromagnetic impuriti
(YBa2Cu3O711% 57Fe) or with paramagnetic propertie
~PMP! SmBa2Cu3O7

3 and YBa2Cu32xScxO7.
3,5
4711063-777X/98/24(7)/2/$15.00
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By way of an example, it was proved3 that a weak mag-
netic field YBa2Cu3O711% 57Fe ceramic atT,Tc partially
reduces ohmic losses in the rf rangeD f , while outside this
range the field enhances the losses.

Here we report on the results of further investigations
this effect atT,Tc in HTSC ceramics with a low value off c

and consider the interrelation betweenTc and f c .

DISCUSSION OF RESULTS

We measured theR(T,H, f ) dependences atT,Tc in
the HTSC ceramic YBa2Cu2.95Sc0.05O7 with the following
parameters:Tc592 K, Tc1591.8 K, f c533103 Hz, and
f F5105 Hz.

Figure 1 shows temperature dependences of the re
tanceR reduced toR(92 K) and measured at frequencie
103 Hz ~curves1 and 2!, 53103 Hz ~curves3 and 4!, and
107 Hz ~curves5 and6! in zero magnetic field~odd curves!
and in a magnetostatic field of 50 Oe~even curves!.

It can be seen from Fig. 1 that at frequencies belowf c

~curves1 and2! and abovef F ~curves5 and6!, ohmic losses
in the ceramic in the magnetostatic field become higher,
the effect of magnetic field on the resistanceR starts being
manifested at the temperatureTc(92 K). Thus, the ceramics
under investigation at these two frequencies exhibits o
nary properties of a superconductor.

A different situation is observed at frequencies in t
interval D f . In a certain temperature rangeDT5Tc2Tc1 ,
the resistanceR is independent of temperature as in HTS
without ferromagnetic impurities or PMP. The resistance
creases atT,Tc1 and attains instrumental zero atT579 K.
However, the effect of a magnetic field on ohmic lossesR
starts being manifested in this case not atTc1 as in HTSC
without ferromagnetic impurities or PMP, but atTc . In this
case,]R/]TuH.0.]R/]TuH50 , and hence the resistanceR
in a magnetic field attains instrumental zero even at 84 K

Thus, the width of theN–S transition in a HTSC with
PMP or ferromagnetic impurities in a weak magnetic fieldH
in the frequency rangeD f becomes narrower than in zer
magnetic field.

Since ohmic lossesR are manifested in HTSC in the
© 1998 American Institute of Physics
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rangeD f at temperatures above and belowTc , it would be
interesting to find out whetherTc is connected withf c .

In this connection, we investigated various HTSC ma
rials and samples made of them. The samples were anne
repeatedly in oxygen, and the values ofr0 , ]r/]T, Tc , and
f c for these materials were measured after each annea
and heating–cooling cycle.

Figure 2 shows the Tc( f c) dependences fo
some samples of HTSC ceramics: SmBa2Cu3Ox (1),
YBa2Cu3Ox (2,3), YBa2Cu2.95Ti0.05Ox (4) and
Bi2.16Sr1.33Ca0.566CuOx (5).

It can be seen that the shapes of theTc( f c) curves for
different HTSC type or sample are different. The stro
~curve1, 2! and weak~curves3, 4! Tc( f c) dependences ar
observed, while in some cases the value ofTc is virtually
independent off c ~curve 5!. Different samples of the sam
HTSC material can exhibit different relations betweenTc

and f c ~curves2 and 3!. At the same time, there exists
certain relation betweenf c andS for all values off c , which
was established in Ref. 4 and is presented in Fig. 2.

Thus, the entire body of the data described above in
cate the absence of a correlation between the values off c and
Tc measured in direct current.

CONCLUSION

It has been established experimentally that a weak m
netic field in HTSC ceramics with ferromagnetic impuriti
or paramagnetic properties reduces the width ofN–S

FIG. 1. Temperature dependence of ohmic losses in YBa2Cu2.95Sc0.05O7

ceramics, which are reduced toT592 K, at frequencies 103 Hz ~curves1,
2!, 53103 Hz ~curves3, 4!, and 107 Hz ~curves5, 6! in zero magnetic field
~curves1, 3, 5! and in a magnetic field of 50 Oe~curves2, 4, 6!.
-
led

ng

i-

g-

transition in the frequency rangeD f bounded by the frequen
cies f c and f F at which the resistanceR is independent of
temperature (]R/]T50).

It is shown that the critical temperatureTc measured in
direct current does not correlate with the frequencyf c .

The authors are grateful to the Editorial Board for t
opportunity to congratulate Igor’ Mikhailovich Dmitrenk
on his jubilee. We were brought up in his department a
cherish fond memories of our association with him. We w
him many more years of creative achievements.

Thanks are also due to Prof. V. D. Fil’ for fruitful dis
cussions.
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FIG. 2. TheTc( f c) curves for ceramics SmBa2Cu3Ox ~curve1!, YBa2Cu3Ox

~curves 2, 3, different samples!, YBa2Cu2.95Ti0.05Ox ~curve 4!, and
Bi2.16Sr1.33Ca0.566CuOx ~curve5!.
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Low-temperature properties of uniaxial paramagnets in a tilted magnetic field
O. B. Zaslavskii, V. V. Ulyanov, and Yu. V. Vasilevskaya

Physics Department, Kharkov State University, 310077 Kharkov, Ukraine*
~Submitted February 12, 1998; revised March 11, 1998!
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The behavior of uniaxial paramagnets in a tilted magnetic field is considered as a function of
temperature. The structure of the energy spectrum as well as magnetization and
susceptibility components are determined. Exact formulas for the spinS51/2 are obtained.
Thermodynamic parameters of the system are studied for arbitrary values ofS in an easy-axis and
easy-plane cases in different approximations~weak and strong magnetic fields, low and
ultralow temperatures, etc.!. It is shown that in the easy-plane case, the transverse magnetization
and longitudinal susceptibility as functions of magnetic field at low temperatures exhibit
peculiarities in the form of a series of sharp spikes, while the longitudinal components of these
quantities in the easy-axis case display only a single spike. ©1998 American Institute
of Physics.@S1063-777X~98!00407-1#
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1. INTRODUCTION

In various branches of physics,1,2 one frequently encoun
ters systems whose Hamiltonian is constructed from spin
erators and which are therefore called ‘‘spin systems.’’ W
shall consider a specific type of such systems with a s
Hamiltonian of the form

H5aSz
22BxSx2BzSz , ~1!

appearing in the theory of magnetism and describing
uniaxial paramagnet in an arbitrarily directed magnetic fie
whereSj is the spin component,Bj the magnetic field com-
ponents, anda the anisotropy constant. When such syste
are studied in conventional dimensionless variables~the di-
mensionless energy is introduced as the ratio of energy to
magnitude of anisotropy constant, which also leads to
corresponding dimensionless characteristic of the magn
field Bj ),

1,2 only the sign ofa is actually important. For this
reason, we shall henceforth consider thata assumes only
two values:a521 corresponds to the easy-axis type
anisotropy, while a511 corresponds to the easy-plan
anisotropy.

Some properties of the systems of the type~1! have al-
ready been investigated.1–3 Special attention was paid to th
case when the magnetic field is perpendicular to the ani
ropy axis (Bz50 anda521). The other case with a longi
tudinal magnetic field (Bx50 anda511) was partly con-
sidered in Refs. 4 and 5. We shall consider here the gen
case of a tilted magnetic field for both types of anisotro
(a561) and pay special attention to the thermodynam
properties of anisotropic paramagnets at low temperatur

Turning to the origin of the problem, we must refer th
reader to our earlier publication1 in which the physical prop-
erties of uniaxial paramagnets were analyzed in detail pu
from the standpoint of the quantum theory, though only i
4731063-777X/98/24(7)/6/$15.00
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transverse magnetic field at ultralow temperatures. In Re
an important method of effective potentials was develop
This method was subsequently used for studying vari
physical properties of uniaxial and biaxial paramagnets
to discover new classes of exact solutions of the Schro¨dinger
equation.2,3,6

Some preliminary remarks are appropriate here.
shall study five main parameters of the system: two com
nents of the magnetization vector (Mx and Mz) and three
components of the magnetic susceptibility tensorxxx , xxz ,
and xzz. In stationary states marked by the subscr
n50, 1, ..., 2S, these quantities are connected with the r
evant derivatives of energy levelsEn with respect to the
magnetic field componentsBx andBz :

Mk
~n!5^Sk&n52^~]H !/]Bk&n52

]En

]Bk
, ~2!

xkl
~n!52

]Mk
~n!

]Bl
522

]2En

]Bk]Bl
~k,l 5x,z!. ~3!

The factor 2 introduced for convenience in Ref. 1 will b
preserved for matching the results.

It can be easily proved that thermodynamic quantit
can be expressed in terms of corresponding mean value

Mk
T5M̄k , xkl

T 5xkl1
1

2T
~MkMl2M̄ kM̄ l !, ~4!

where the bar over a certain quantityf indicates averaging o
the type

f̄ 5 (
n50

2S

f ~n! exp~2En /T!Y (
n50

2S

exp~2En /T!. ~5!

Taking into account the fact that we are dealing w
three extrinsic parameters (Bx ,Bz ,T) and two intrinsic
© 1998 American Institute of Physics



to
l o

pi

n

it

th

i

re

n

ve
s

a
ve
rs
e
y

are
or

of
nd
e

n-
ect
er-
he

gi-
s
ial
rgy

rba-
ix
mil-

e

t
is:

oxi-

474 Low Temp. Phys. 24 (7), July 1998 Zaslavskii et al.
parameters (S,a), we must clearly pay special attention
certain selected quantities that reflect peculiarities typica
all other parameters most clearly and comprehensively.

2. EXACT RESULTS FOR SPIN S51/2

This is a unique case, when two types of anisotro
paramagnets~easy-axis and easy plane! actually coincide
~the energy spectra differ only by a constant that does
play any role in the characteristicsM andx̂ under investiga-
tion!.

If the spin is equal to 1/2, we obtain two simple explic
formulas for the two available energy levels,

E0,15a/47B/2, B5ABx
21Bz

2,

so that the magnetization components are given by

Mk
~0!52Mk

~1!5
Bk*
2B

, i.e. M ~0,1!iB,

while the magnetic susceptibility tensor components have
form

xzz
~0!52xzz

~1!5Bx
2/B3, xxz

~0!52xxz
~1!52BxBz /B3,

xxx
~0!52xxx

~1!5Bz
2/B3.

This leads to the following expressions for thermodynam
quantities:

Mk
T5

1

2

Bk

B
tanh

B

2T
, xzz

T 5
Bx

2 sinh~B/T!1Bz
2~B/T!

2B3 cosh2~B/2T!
,

xxz
T 52BxBz

sinh~B/T!2~B/T!

2B3 cosh2~B/2T!
,

xxx
T 5

Bz
2 sinh~B/T!1Bx

2~B/T!

2B3 cosh~B/2T!
.

For example, we have

xzz
T 5

1

2T cosh2~Bz/2T!

for Bx50,

xzz
T 5

1

uBxutanh~ uBxu/2T!
, xxx

T 5
1

2T cosh2~Bx/2T!

for Bz50, while forBx5Bz50, the nonzero components a
xzz

T 5xxx
T 51/(2T).

The exact formulas for energy levels, magnetization, a
susceptibility can also be obtained forS51 andS53/2, but
these formulas are more cumbersome and will not be gi
in explicit form. We shall use them in graphic illustration
and as test examples.

3. THERMODYNAMIC PARAMETERS OF EASY-AXIS
PARAMAGNETS

For a521, the main parameters in the ground state c
be obtained by using the formula for the ground energy le
The algorithm of the solution is split into two stages. Fi
we consider a system in a purely transverse weak magn
field (Bz50, uBxu,1). In this case, the structure of energ
f

c

ot

e

c

d

n

n
l.
t
tic

spectrum of a paramagnet is such that the energy levels
arranged in pairs~except the highest solitary energy level f
integral S) as a result of splitting due toBx in the case of
double degeneracy in zero magnetic field. For the pair
energy levels under investigation, viz., the ground level a
the first excited level, the following formulas hold for th
shift that is common for this pair and the energy gap:

E0,1
0 52S22

S

2~2S21!
Bx

21O~ uBxu3!, S.1,

E0,1
0 5212Bx

21O~Bx
4!, S51, ~6!

D~0!5DuBz505E1
02E0

05
S2

22S23~2S!!
uBxu2S

1O~ uBxu2S12!. ~7!

The first of these results follows directly from the conve
tional perturbation theory, while the second is a finer eff
which was obtained by using a special modification of p
turbation theory, taking into account the specific form of t
perturbation operatorV52BxSx ~see Ref. 2!. We shall also
write a more exact expression for the gap:

D~0!5
S2

22S23~2S!!
uBxu2SF12

S11

2~2S21!2 Bx
2G . ~8!

Such a formula ensures a very high accuracy up touBxu
;AS. For example, foruBxu5AS/2, the relative error does
not exceed 1%.

The second step involves taking into account the lon
tudinal componentBz of the magnetic field, which enhance
the splitting of energy levels. This is done by using a spec
version of the perturbation theory for closely spaced ene
levels.7 If the Hamiltonian of the system isH5H01V, we
have

E0,15
1

2
~E0

01E1
0!7

1

2
A~E0

02E1
0!214uV01u2, ~9!

where we have taken into account the fact that the pertu
tion V52BzSz in our case has strictly zero diagonal matr
elements in the representation of the unperturbed Ha
tonianH052Sz

22BxSx , and the nondiagonal elementsV01

52Bz^0uSzu1& can also be obtained with the help of th
perturbation theory:

u^0uSzu1&u2'S2F12
1

~2S21!2 Bx
2G , S.1/2. ~10!

Thus, for uBxu!1, relations~8!, ~9!, and ~10! lead to
‘‘symmetric repulsion’’~Fig. 1! between the ground and firs
excited energy levels, which is important for further analys

E0,152S22
S

2~2S21!
Bx

27
D

2
, S.1, ~11!

where the terms of higher order of smallness inBx and Bz

have been omitted, and the energy gap in the first appr
mation is given by

D5AD~0!214S2Bz
2 ~12!
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with D~0! from ~7!. A more exact equation forD can be
obtained on the basis of~8! and by replacing the coefficien
of 4Bz

2 in ~12! by S22S2Bx
2/(2S21)2 in accordance with

~10!. It should be noted that in subsequent calculations
shall use explicitly for the sake of brevity formula~12!, al-
though it should be borne in mind that it can be refined
the above method. Going over to the magnetic paramete
the ground state, we obtain from~11! and ~12! the magneti-
zation

Mz
~0!~Bz!5

2S2Bz

AD~0!214S2Bz
2

~13!

and the susceptibility

xzz
~0!~Bz!5

4S2D~0!2

@D~0!214S2Bz
2#3/2 ~14!

~other components are not written here!. This leads to the
following conclusions. First, forS51/2 these results coin
cide with exact formulas. Second, the susceptibility com
nentxzz

(0) has, like the functionBz , the form of the so-called
two-dimensional Student distribution for allS. Third, for
Bz→0, we can write, taking into account corrections,

xzz
~0!~0!5

22S21~2S!!

uBxu2S F11
S21

2~2S21!2 Bx
2G , S.1/2.

A typical profile of this susceptibility component is shown
Fig. 2 forBx50.5 andS51, where the exact solid curve, th
approximate dashed curve obtained by formula~14!, and the
refined approximate thin curve illustrating the efficiency
the used approximation virtually coincide.

Going over to thermodynamic parameters, we note t
the results obtained for the ground state correspond
ultralow temperaturesT!D at which the contribution of ex-
cited states to all thermodynamic parameters is exponent
small. However, the role of these results is not exhausted
what has been said above since forT!2S21 a pair of lower
energy levels is separated from the remaining levels, so
the contribution to all the thermodynamic parameters com

FIG. 1. Structure of energy spectrum of an easy-axis paramagne
Bx50.1 andS51 (Ej are energy levels!.
e
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to
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only from the ground and first excited states, while the s
ond and next excited stated states give exponentially sm
corrections. Such temperatures will be referred to as low,
the corresponding approximation is called the two-level
proximation.

Using formulas~11! for ‘‘symmetric repulsion’’ between
the ground and first excited energy levels, we note that
quantitiesMz

(1) , xzz
(1) , andxxz

(1) in the first excited state differ
from the corresponding quantities in the ground state only
sign. Consequently, it follows from formulas~2!–~4! that

Mz
T5Mz

~0! tanh
D

2T
,

xzz
T 5xzz

~0! tanh
D

2T
1

~Mz
~0!!2

2T cosh2~D/2T!
. ~15!

Similar formulas can also be obtained forMx
T , xxz

T , andxxx
T ,

the effect of temperature being similar to the effect ofBx . In
both cases, sharp spikes ofxzz are smoothed, becomin
broader and lower at the center.

In order to have a comprehensive pattern of variation
xzz

(0) as a function of magnetic field, we must consider th
quantity to be a function of the variables ofBx andBz , i.e.,
as a surface over the plane (Bx ,Bz). It will be more conve-
nient, however, to consider the cross sectionxzz

(0)(Bz) of this
surface for certain fixed values ofBx . In other words, we
must consider variations of the longitudinal componentBz

for a fixed transverse componentBx .
The obtained formulas and corresponding illustratio

give a full idea of the behavior of the parameters under
vestigation in weak magnetic fields. In strong fields, ho
ever, the magnetization attains saturation, and susceptibil
decrease rapidly. Nevertheless, we consider the result
calculations in this case also, assuming that the first
terms in the HamiltonianH52BxSx2BzSz2Sz

2 are princi-
pal and taking into account the magnetic anisotropy term
a correction. It is convenient in this case to choose the co
dinate axes so that one of them is directed along the m
netic field. In this case, the Hamiltonian assumes the fo
H52BSz82cos2 wSz8

21cosw sinw(Sx8Sz81Sz8Sx8)2sin2 wSx8
2,

where cosw5Bz/B; sinw5Bx /B; B5(Bx
21Bz

2)1/2. The first
term is principal, while the remaining terms are perturb

or

FIG. 2. Magnetic susceptibilityxzz
(0) as a function ofBz for Bx50.5 and

S51.
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tions. Taking into account quadratic corrections for t
ground energy level in perturbation theory, we obtain

E052BS2S2 cos2 w2
S

2
sin2 w1O~B21!

52SABx
21Bz

22S21SS S2
1

2D Bx
2

Bx
21Bz

2 1O~B21!.

Using these expressions for calculating the magnetic mom

Mz
~0!5

SBz

~Bx
21Bz

2!1/21S~2S21!
Bx

2Bz

~Bx
21Bz

2!2 1OS 1

B2D ,

Mx
~0!5

SBx

~Bx
21Bz

2!1/2 2S~2S21!
Bz

2Bx

~Bx
21Bz

2!2 1OS 1

B2D ,

we obtain the magnetic susceptibility component

xzz
~0!5

2SBx
2

~Bx
21Bz

2!3/212S~2S21!
Bx

2~Bx
223Bz

2!

~Bx
21Bz

2!3 1OS 1

B3D ,

in particular,

xzz
~0!uBz505

2S

uBxu
1

2S~2S21!

Bx
2 1OS 1

uBxu3D .

The other susceptibility tensor component is given by

xxx
~0!5

2SBz
2

~Bx
21Bz

2!3/2 22S~2S21!
Bz

2~Bz
223Bx

2!

~Bx
21Bz

2!3 1OS 1

B3D ,

so that

xxx
~0!uBz505OS 1

uBxu3
D .

Moreover,

xxx
~0!uBx505

2S

uBzu
2

2S~2S21!

Bz
2 1OS 1

uBzu3D .

Finally,

xxz
~0!52

2SBxBz

~Bx
21Bz

2!3/2 24S~2S21!BxBz

Bx
22Bz

2

~Bx
21Bz

2!3

1OS 1

B3D .

Similar results can also be obtained for easy-plane p
magnets in a strong magnetic field~see below!, the only
difference being the sign of the corrections.

4. THERMODYNAMIC PARAMETERS IN EASY-PLANE
PARAMAGNETS

As in the case of easy-axis paramagnets, the results
tained for easy-plane paramagnetic (a511) are also based
on the formula for symmetric splitting of energy levels of t
ground state. However, we now have a sequence of point
nt

a-

b-

on

the Bz axis, for which junctions in the energy spectrum a
formed, forBx50.

The eigenvalues of the Hamiltonian for the unperturb
problem in a purely longitudinal magnetic fieldH05Sz

2

2BzSz can be classified according to the representation
Sz , which leads to a broken–reticular form of the ener
spectrum.4 For small values of the transverse magnetic fie
componentuBxu!1, the network of energy levels is slightl
deformed so that gaps are formed in regions of broken ju
tions with double degeneracy~this is illustrated by Fig. 3 for
S52 anduBxu50.1!. These gaps are correctly described
perturbation theory for double degeneracy~at the points of
junctions! or for closely spaced energy levels~in the neigh-
borhood of these points!.

The junction points for the ground and first excited e
ergy levels correspond to values ofBz5Bm , for which

Bm52m21, cm5~S1m!~S2m11!,

m52S11, 2S12, ...,S21, S ~16!

for integralS and

Bm52m, cm5~S11/2!22m2,

m52S11/2, 2S13/2, ...,S23/2,S21/2 ~17!

for half-integralS. Using the result obtained in the perturb
tion theory for double degeneracy or close energy levels,
obtain the following local formulas in the vicinity of eac
point Bm:

E0,15m22m11/22~m21/2!Bz

7
1

2
AcmBx

21~Bz2Bm!2 ~18!

for integerS and

E0,15m221/42mBz7
1

2
AcmBx

21~Bz2Bm!2 ~19!

for half-integerS.
It is important to emphasize that the root term in~18!

and~19! plays a leading role in the subsequent application
the obtained formulas to lower-lying energy levels. In th
connection, we shall refer to results~18! and ~19! as sym-
metric splitting. It should also be added that results~18! and

FIG. 3. Typical structure of the energy spectrum of an easy-plane p
magnet in a tilted magnetic field (S52).
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~19! are of independent interest in connection with the pr
lem of spin tunneling,8,9 where the splitting of energy level
forms the main subject of investigation.

Let us consider the magnetizationMx
(0) in the ground

state as a function of the longitudinal magnetic fieldBz for
various values of the transverse componentBx . In accor-
dance with formulas~18! and~19! of symmetric splitting, the
required quantityMx

(0)52]E0 /]Bx for the ground energy
level for small values ofuBxu!1 in the vicinity of values
Bz5Bm with junctions between this energy level and the fi
excited level given by

Mx
~0!~Bz!5

1

2

cmBx

@cmBx
21~Bz2Bm!2#1/2, uBz2Bmu,1,

~20!

whereBm andcm are defined by~16! and ~17!.
The number of spikes ofMx

(0) on the entireBz axis is
equal to 2S. Each peak has a typical sharpened shape wi
maximum value ofAcm/2 at the pointsBz5Bm and a width
;AcmuBxu so that the central spikes are slightly higher a
wider than the peripheral spikes. For example, in the cas
half-integralS, the height of the tallest~central! peak is (S
11/2)/2, while the height of the lowest peak isAS/2 ~in the
case if integralS, we accordingly have 1/2AS(S11) and
AS/2). Since the separation between the peaks on theBz axis
is equal to 2, these peaks have a tendency~with increasing
uBxu! to overlapping and merging into one to form
‘‘crown’’ which acquires the shape of a bell upon a furth
increase inuBxu. This is illustrated clearly by a series o
curves presented in Fig. 4 for the spinS52.

The second example is the magnetic susceptibility co
ponentxzz

(0) as a function ofBz for various values ofBx . In
analogy withMx

(0) , this quantity can also be obtained fro
the formula for symmetric splitting. Being connected wi
the energy through the formulaxzz

(0)522]2E0 /]Bz
2, the sus-

ceptibility in the vicinity of broken junctions is given by

xzz
~0!~Bz!5

cmBx
2

@cmBx
21~Bz2Bm!2#3/2, uBz2Bmu,1,

~21!

FIG. 4. Magnetization of an easy-plane paramagnet as a function of m
netic field forS51.
-

t

a

of

-

where the quantitiesBm and the coefficientscm are the same
as in formula~20!.

In many respects, the properties of magnetic suscept
ity are similar to those of magnetization, although in som
respects they differ significantly. For example, the spikes
sharper in view of a more rapid decrease with increas
distance from the kink pointsBm ~following the two-
dimensional Student’s distribution!, and the approximation
~21! covers successfully not only the neighborhoods of kin
Bm , but also the regions between these points in which
spikes overlap. In this case, we can use a ‘‘global’’ repres
tation of xzz

(0) in the form of the summation formula

xzz
~0!~B2!5 (

m5m1

m2 cmBx
2

@cmBx
21~Bz2Bm!2#3/2,

where m152S11, m25S for integer S and m152S
11/2, m25S21/2 for half-integerS. For xzz

(0) , the height
1/(AcmuBxu) of spikes decreases with increasinguBxu ~the
width AcmuBxu remaining unchanged!, and higher peaks are
located at the center and not at the periphery. The co
sponding illustrations are presented in Fig. 5. The effect
temperature is the same as in the easy-axis case, and i
scribed by formulas of the type~15! and illustrated by the
curves in Figs. 6 and 7.

5. CONCLUSION

The variety of quantities and special cases still allows
to draw some generalizing conclusions concerning the
havior of the systems under investigation on the whole. T
main thing is that all peculiarities in the physical paramet
mentioned above are observed in the range of small value
transverse magnetic field component, where the energy s
trum experiences a considerable rearrangement. Conver
for large values of magnetic field, the magnetization atta
saturation, while the susceptibility becomes negligibly sm

The type of magnetic anisotropy, i.e., the sign of t
constanta, plays a significant role. In the language of su
ceptibility, we have solitary spikes fora521 and a system

g-
FIG. 5. Susceptibility of an easy-plane paramagnet as a function of
transverse magnetic field componentBx for S55/2 ~the dashed curve cor-
responds to the symmetric splitting approximation!.
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of 2S spikes fora511. This variety is generalized by un
versal formulas, e.g., in the form of the two-dimension
Student’s distribution forxzz.

The effect of temperature is reduced to a certain smo
ing or blurring of peaks. In the case of purely longitudin
field, point-like singularities of susceptibility in the form o
d-function are replaced by spikes of finite height and wid
Similarly, the susceptibilityxxx in a transverse magneti

FIG. 6. Effect of temperature on the behavior of magnetization of an e
plane paramagnet forBx50.1 andS52.

FIG. 7. Effect of temperature on magnetic susceptibility spikes for an e
plane paramagnet forBx50.2 andS55/2.
l

h-
l

.

field for S51/2 becomes nonzero at a finite temperature
should also be noted that a tilted magnetic field, i.e., the fi
with a Bx component, affects the shape ofxzz in the same
way as temperature.

It should be emphasized once again that, in order
describe low-temperature properties of anisotropic param
nets under investigation in the most interesting range of m
netic fields, it is sufficient to know the behavior of th
ground energy level.

For brevity, only main results are given, and cumb
some formulas are omitted. Whenever it is possible, we co
pensate this omission by graphic illustrations.

It is also appropriate to make certain remarks concern
the method of calculations. The analysis of physical prop
ties of uniaxial paramagnets was based, first, on exact
lytic and various approximate calculations, and second,
analytic and numerical computations as well as on grap
illustrations. These approaches are mutually controlled
supplemented. It is the graphical method, which is an ana
of a physical experiment, that often stimulates analytic c
culations.

The authors express their deep gratitude to V. M. Ts
ernik with whom they made their first calculations in th
theory of spin systems.

This research is dedicated to A. M. Kosevich who is he
as an example of devotion to science by us.
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The spin dynamics of a domain wall is studied in an infinite ferromagnetic chain with an easy-
axis anisotropy as well as in a chain of finite size. The dependence of the intrinsic mode
frequency of the domain wall on the exchange interaction is studied for all admissible values of
the latter. It is shown that this dependence is considerably modified in the region of
transition of the domain wall from collinear structure to canted form. ©1998 American
Institute of Physics.@S1063-777X~98!00507-6#
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In this communication, we report on the investigation
nonlinear dynamics of spin systems. Magnetic solitons w
first studied in Kharkov more than 25 years ago, and P
A. M. Kosevich was one of the pioneers in this field. T
authors are indebted to him for introducing them to this
teresting field of physical research at different times.

Nonlinear excitations of magnetically ordered med
~domain walls, magnetic solitons! have been studied exten
sively for traditional magnets both from theoretical and e
perimental points of view.1,2 As a rule, the theoretical studie
of these objects are carried out by using differential eq
tions in the longwave approximation. However, it has be
reported in a number of recent publications3–5 that magnets
with a weak exchange interaction~in which the exchange
integral J becomes of the order of, or smaller than, t
single-ion anisotropy constantb! undergo qualitative varia
tions in structure and domain wall dynamics, and the res
obtained from a longwave description of such systems
come inapplicable.

This problem has attained significance in recent ye
following the synthesis of new magnetic materials which s
isfy the conditionJ;b. Examples of such materials are th
quasi-one-dimensional magnets~CH3!3NH#NiCl32H2O,
~C9H7NH!NiCl3•1,5H2O,6 and layered antiferromagne
with a ratio J/b;1022, e.g., (CH2)n(NH3!2MnCl4,
(CnH2n11NH3)2MnCl4,

7–11and most of the high-temperatur
superconductors and their isostructural analogs. Sig
cantly, it is possible to change in the above layered anti
romagnets the numbern of organic molecules intercalatin
the magnetic layers, thus opening the possibility of exp
mental investigation of the dependence of the structure
dynamic properties of such magnets on the value of the
change integralJ.
4791063-777X/98/24(7)/5/$15.00
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Van den Broek and Zijlstra3 were the first to show tha
for comparable values of the exchange interaction cons
and the anisotropy constant, a domain wall ‘‘collapses’’ in
a collinear structure of the size of atomic spacing with p
allel and antiparallel spin orientations. Stepanov a
Yablonskii12 studied experimentally the resonance propert
of layered antiferromagnets and observed an additional
sorption band in the magnon spectral gap. The authors at
uted this band to the emergence of an intrinsic mode in
main walls. Since such modes do not exist in the longwa
description of a magnet, their emergence is associated
the discreetness of the magnetic medium and the transfo
tion of domain walls to collinear form. Goncharuket al.4

actually established theoretically the existence of an intrin
mode in a domain wall for values of the exchange integraJ
below the critical value corresponding to collapse of t
wall.

In the present work, we demonstrate the existence o
intrinsic mode in a noncollinear domain wall for exchan
interaction exceeding the critical value, and describe
variation of this mode in the vicinity of the critical value o
J. This question is of importance not only for the investig
tion of magnetically ordered media, but also for the gene
development of ‘‘nonlinear physics’’ where the interest h
been shifting in recent years towards essentially discrete
tems.

The magnetization dynamics is studied in the framew
of Heisenberg’s classical one-dimensional discrete mode
an easy-axis ferromagnet, i.e., by using the Landau–Lifs
discrete equation without damping. The total energy o
spin chain can be represented in the form
© 1998 American Institute of Physics
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E5(
n

F2
J

a2 SnSn112
b

2
~Snez!

2G , ~1!

where Sn is the spin of a lattice site (uSnu251), J is the
exchange interaction constant (J.0 for a ferromagnet!, and
b the single-ion anisotropy constant (b.0 for an easy-axis
ferromagnet with the easy axis along theez-axis. In this case,
the Landau–Lifshitz equation can be written in the form2

1

v0

dSn

dt
1S l 0

a D 2

@Sn ,~Sn111Sn21!#1@Snez#~Sn•ez!50,

~2!

wherev052bm0S0 /\ is the frequency of a uniform ferro
magnetic resonance (m0 is the Bohr magneton,S0 the nomi-
nal magnetization, andl 05AJ/b the characteristic scale o
spatial inhomogeneity of magnetization in a domain w
~‘‘magnetic length’’!. It is convenient to go over to the com
plex quantityCn5Sn

x1 iSn
y ~the classical analog of the mag

non creation operator! and spin projection onto thez-axis
(Sn

z[mn). In this case, if we measure time in units ofv0
21

and introduce the parameterl5( l 0 /a)2, we can write
Eq. ~2! in the form

i
dCn

dt
1l~Cnmn112Cn11mn1Cnmn212Cn21mn!

1Cnmn50. ~3!

It was shown in Refs. 3 and 4 that this equation ha
static solution for a collinear domain wall with the followin
spin orientation:

mn51~n<0!, mn521~n.0! ~4!

~the domain wall is located between spins with number
and 1! for values of the parameterl smaller than the critica
valuel* 53/4. Substituting into Eq.~3! the solution~4! and
the functionCn in the formCn5Cn exp(iVt), we can easily
obtain the intrinsic mode4 of the domain wall forl,l* :

V25
1

6
@624l2l22lA418l1l2#. ~5!

Curve 1 in Fig. 1 shows the dependenceV~l!. For l
!l* , we obtainV.12l/2, while V'(8/A39)(l* 2l)1/2

near the critical point.
Let us consider the possibility of the existence of

intrinsic mode in a domain wall for exchange interactio

FIG. 1. Dependence of the intrinsic mode frequencyV of a domain wall on
the discreetness parameterl5J/(ba2) of an infinite ferromagnetic chain
for collinear ~curve1! and canted~curve2! forms of the DW.
l

a

0

exceeding the critical value (l.l* ). In this range of values
of l, the collinear structure corresponding to the solution~4!
becomes unstable and the spin distribution in the dom
wall becomes noncollinear (mnÞ61). Using the smallness
of the parameter (l2l* ), we can find this distribution in
the vicinity of the critical valuel5l* . For a noncollinear
structure, it is convenient to represent Eq.~3! in terms of the
componentsSn

i :

dSn
x

dt
1l@Sn

ymn11
z 2mn

zSn11
y 1Sn

ymn21
z 2mn

zSn21
y #1Sn

ymn
z50,

~6!

dSn
y

dt
1l@mn

zSn11
x 2Sn

xmn11
z 1mn

zSn21
x 2Sn

xmn21
z #1Sn

xmn
z50,

~7!

wheremn
z5@12(Sn

x)22(Sn
y)2#1/2.

To begin with, let us determine the static configurati
of the domain wall by puttingSn

y50 for the sake of definite-
ness. It follows from symmetry consideration thatmn

z5
2m12n

z andSn
x5S12n

x (n.0). In the main~linear! approxi-
mation, the system of equations~6! and~7! can be reduced to
the system

~12l!S1
x2lS2

x50, n51,

~2l11!Sn
x2l~Sn11

x 1Sn21
x !50, n.1, ~8!

whose solution has the simple form

Sn
x5

A

3n21 , l5
3

4
, n>1, ~9!

where the constantA is determined from the next approx
mation in perturbation theory. We introduce the small p
rameter of expansion

«5l2l* ~10!

and present the approximate solution in the form

Sn
x5

A

3n21 1Zn , ~11!

whereA2A« andZn2«3/2!A. Retaining terms of the orde
of «3/2 in the static equations~6! and ~7!, we obtain the
following system of difference equations:

2
4

3
«A1

1

4
Z12

3

4
Z11

1

3
A350, n51,

2
4

9
«A1

5

2
Z22

3

4
~Z11Z3!2

8

81
A350, n52, ~12!

................................................................

2
4

3n «A1
5

2
Zn2

3

4
~Zn211Zn11!2

8

32n12 A350.

It can be shown easily that the solution of this syste
can be chosen in the formZ15Z250, Zn(n>3)Þ0. This
corresponds to the following expression for the constantA:

A52A« ~13!
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~a different choice of the sequenceZn leads only to an addi-
tional expansion of the approximate solution with a differe
value of the small parameter of the expansion.! The first
terms in the sequenceZn and the asymptotic form for larg
values ofn are given by

Z15Z250, Z352
32

35 «3/2'20.126«3/2,

Z452
1432

37 «3/2'20.644«3/2,... ~14!

...Zn'
2n

3n «3/2, n@1.

Thus, in the main approximation in the small parameter«,
the solution for the static configuration of a domain wall h
the form

Sn
y~0!50, Sn

x~0!5S12n
x~0! 5

2A«

3n21 , n>1. ~15!

It can be easily verified that this solution satisfies t
system of static equations in which the nonlinear terms~cu-
bic in S1

x ,S0
x ,S2

x ,S21
x ! are considered only in two equation

for spins in the vicinity of the center of the domain wa
while all the remaining equations are linearized in spin
viationsSn

x :

S 1

4
2« DS1

x2S 3

4
1« DS2

x1
1

4
~S1

x!31
3

8
~S1

x!2S2
x

2
3

8
~S1

x!~S2
x!250, n51, ~16!

5

2
Sn

x2
3

4
~Sn11

x 1Sn21
x !50, n.1.

Solving the dynamic problem in the same approximat
and with the same accuracy, we retain nonlinear terms o
with numbersn50,1 in the dynamic equations~6! and ~7!,
and linearize them subsequently in small corrections to
static solution~15!:

Sn
x5Sn

x~0!1&Wn~ t !, Sn
y5&Vn~ t !, ~17!

whereWn ,Vn!Sn
x(0) .

Substituting a solution in the form

Vn5vn cosVt, Wn5wn sin Vt ~18!

into the obtained system of equations, we arrive at the fi
form of the system of linear differential equations forvn

andwn :

5

2
wn2

3

4
~wn111wn21!6Vvn50, ~19!

5

2
vn2

3

4
~vn111vn21!6Vwn50 ~20!
t

s

-

n
ly

e

al

and

S 12
2

3
« Dw12

3

4 S 12
14

3
« Dw02

3

4 S 11
2

3
« Dw2

1Vv150,

S 12
2

3
« Dw02

3

4 S 12
14

3
« Dw12

3

4 S 11
2

3
« Dw21

2Vv050, ~21!

S 12
2

3
« D v12

3

4 S 12
2

3
« D v02

3

4 S 12
2

3
« D v2

1Vw150,

S 12
2

3
« D v02

3

4 S 12
2

3
« D v12

3

4 S 12
2

3
« D v21

2Vw050,

where the signs ‘‘plus’’ and ‘‘minus’’ in Eqs.~19! and ~20!
correspond to numbersn.1 and n,0, respectively, and
Eqs. ~21! describe the dynamics of spins with numbersn
51 and 0 adjoining the center of the domain wall. The
trinsic mode of the domain wall localized near its cen
corresponds to the following solutions of Eqs.~19!–~21!:

wn5A exp@2j1~n21!#1B exp@2j2~n21!#, n>1,

vn5A exp@2j1~n21!#2B exp@2j2~n21!#, n>1,

~22!
wn5C exp~j1n!1D exp~j2n!, n<0,

vn52C exp~j1n!1D exp~j2n!, n<0,

where

exp~2j1,2!5
1

3 F562V24S 16
5V

4
1

V2

4 D 1/2G . ~23!

Substituting the solutions~22! and ~23! into the system
of equations~21!, we arrive at the final expression for th
dependence of the intrinsic mode frequency on the discr
ness parameterl of the spin chain. In the main approxima
tion in the small parameter«, this dependence has the form

V'
32

3A39
Al2l* . ~24!

Segment2 of the dependenceV~l! in Fig. 2 shows this
dependence. Segment3 of the same dependence shows t
asymptotic form of the frequency dependence of the intrin
mode obtained numerically by Bogdanet al.13 for large val-
ues of the parameterl.

Thus, we have shown that the domain wall in an ea
axis ferromagnet has an intrinsic mode over the entire ra
of values of the discreteness parameterJ/b, and the fre-
quency dependence of this mode changes sharply in the
cinity of the critical value of this parameter corresponding
a transition of the domain wall from collinear to cante
structure.

Unfortunately, the domain wall dynamics in an infini
spin chain with exchange interaction exceeding the criti
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value can be studied only in a narrow range of values oJ
near the critical value by making a number of simplifyin
assumptions. Hence it should be interesting to study the
dynamics of such a system by using a simplified model c
taining a finite number of spins. Since the width of a doma
wall for small values of the exchange integral is close to
atomic spacing and the value of spin deviation decrea
rapidly with increasing distance from its center, the intrin
dynamics of the wall is determined actually by a small nu
ber of spins near the center.

Let us consider a chain formed by four spins in the ‘‘d
main wall’’ configuration. In other words, we shall assum
that, for small values of the exchange integral, the spin s
tem has a collinear structure of the type~4!: m15m2521,
m05m2151. In the collinear phase, the system of equatio
~3! can be split into four linear equations for solutions of t
type Cn5cn exp(iVt):

~V21!c11l~c21c0!50,

~2V21!c01l~c11c21!50,
~25!

~V212l!c21lc150,

~2V212l!c211lc050.

These equations describe the frequency spectrum of
given system with a finite number of degrees of freedom
its dependence on the discreteness parameterl, as well as
the critical valuel* at which the domain wall goes ove
from collinear to canted form. The eigenfrequency spectr
is symmetric in the sign ofV and contains four values. Th
dependenceV~l! has the form

V25l21l116lAl216l15, ~26!

where the minus sign corresponds to the intrinsic mode
the domain wall. By putting its frequency equal to zero,
get the value of the critical parameterl* 51/&.0.71 which
is quite close to the corresponding value of the param

FIG. 2. Eigenfrequency spectrum of a finite spin chain containing a D
in
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-
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-

s-

s

he
d

f
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l* 50.75 for an infinite chain. Curve1 in Fig. 2 shows the
dependence~26! for the intrinsic mode. This dependence
identical to the function~5! for an infinite spin chain. The
plus sign in formula~26! corresponds to a nonlocalized mod
with c2.21.6c1 . In the limit of an infinite chain, this state
passes into antiphase spin vibrations of the upper boun
of the spin wave spectrum. Curve3 in Fig. 2 shows the
dependenceV~l! for this mode.

In the regionl.l* , the problem for a four-spin com
plex is solved exactly~in contrast to an infinite chain! even
for a domain wall of canted form. It can be shown that
static configuration is described by the following solutions
the system of equations~6! and ~7!:

m152m052@16~1/2!A11z/~2l21!2#1/2,

S1
x5S0

x5@17~1/2!A11z/~2l21!2#1/2,
~27!

m252m2152@16~1/2!A~11z!#1/2,

S2
x5S21

x 5@17A~11z!#1/2,

where

z~l!5
4l2~2l221!~2l224l11!

~2l21!~4l212l21!
. ~28!

In the above formulas, we must take the upper signs
the region l* ,l,l1 , upper ~for n52,21! and lower
signs ~for n50,1! in the interval l1,l,l2 , and lower
signs for alln in the intervall2,l,l1 , wherel1.0.84 is
the root of the equationz(l)1(2l21)251, while l2

.1.24 is the root of the equationz(l)1150. The pointsl1

and l2 are not critical points, and all dependences at th
points are smooth.~At these points, the rotation angles fo
spins withn51 and 2 pass through the valuep/4.! At the
second critical pointl5l15111/&, the ‘‘domain wall’’
type configuration disappears, and all spins turn in a dir
tion perpendicular to the easy axis. In this unstable confi
ration, the intrinsic mode frequency again becomes equa
zero and the spin complex goes over to the homogene
ground state. However, the description of a domain wall
the framework of a four-spin complex becomes physica
invalid for values of the parameterl close tol1 .

In order to describe the transformation of a spectrum
the regionl.l* , we linearize the dynamic equations~6!
and~7! in the vicinity of the static configuration~27! ~for the
system with a finite number of spins under consideration,
must put in Eqs.~6! and~7! Sn

x5Sn
y5mn50 for all n>3 and

n<22!:

Sn
x5Sn

x~0!1Wn~ t !, Sn
y5Vn~ t !,

mn5mn
~0!2Sn

x~0!Wn /mn
~0! , ~29!

where the quantitiesmn
(0) andSn

x(0) are defined by~27! and
Wn ,Vn!mn

(0) andSn
x(0) . As in the case of an infinite chain

we seek the solution of the linearized equations in the fo
Wn5wn sinVt, Vn5vn cosVt and obtain a system of eigh
linear equations for the quantitieswn and vn . Putting the
determinant of this system equal to zero, we arrive at
final equation for determining the dependence of frequen
V~l! for modes in the canted phase of the domain w

.
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Nontrivial solutions forV2(l) ~with VÞ0! satisfy cubic
equations with a complex dependence of the coefficients
the parameterl. We shall not write this equation here since
is quite cumbersome. However, we calculated the asymp
dependencesV~l! near the critical valuesl5l* and l
5l1 , and numerically plotted these dependences in the
tire admissible range of values ofl ~curves2 and4 in Fig.
2!. The functionsV~l! have a root dependence nearl
5l* . This is the bifurcation point for the high-frequenc
mode whose degeneracy is removed due to violation of s
metry in the domain wall. For the ‘‘intrinsic mode,’’ curve2
in Fig. 2 is quite close to the corresponding dependence
an infinite chain:V2.3.09(l2l* ). ~For an infinite chain, it
follows from ~24! thatV2.2.92(l2l* ).! For not too large
values ofl, curve2 in Fig. 2 is also quite close to the co
responding dependence2 in Fig. 1.

Thus, it can be seen that the model of spin chains
finite length can correctly describe the dynamics of a dom
wall in the region of its transition from collinear to cante
configuration. This is also confirmed by the correctness o
assumptions and approximations used in the analysis o
infinite spin chain containing a domain wall.
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Bose gas with nontrivial particle interaction and semiclassical interpretation
of exotic solitons
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Many-particle bound states in a Bose gas with a complex pair interaction between particles are
considered. It is shown that the combination of attraction and repulsion between particles
leads to the emergence of bound states with peculiar physical properties. In the limit of a large
number of bound states in the Hartree approximation, these states are close in the structure
and properties to exotic solitons~compactons and peakons! in classical systems with weak spatial
dispersion. Examples of exotic solitons of various types in magnetically ordered media are
considered. ©1998 American Institute of Physics.@S1063-777X~98!00607-0#
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At the end of the sixties, comprehensive studies of s
ton dynamics of nonlinear evolutionary systems acqui
considerable significance. The investigation of this probl
in Kharkov was started virtually at this time, Prof. A. M
Kosevich being a pioneer in this field. In 1990, Kosevi
et al. published a review1 in which they proposed new type
of solitons, viz., magnetic compactons. This article is d
voted to the study of compactons and their semiclassica
terpretation.

The reason behind the existence of dynamic spati
localized excitations of nonlinear evolutionary systems~dy-
namic solitons! is the action and competition of two physic
factors: the nonlinearity and spatial dispersion of t
system.1 The form of the energy–momentum relationv
5v(k) of linear waves affects considerably the properties
soliton states. Their structure differs significantly in syste
with strong dispersion, when the dispersionD5]2v/]k2 re-
mains finite in the long-wave limitk→0 and in weakly dis-
persive media for whichD→0 for k→0. It has been estab
lished that even in the case of zero dispersion of lin
waves, soliton solutions may exist due to so-called nonlin
dispersion, but solitons acquire peculiar ‘‘exotic’’ form. Th
was noted for the first time in the review by Kosevichet al.2

in the description of Ising ferromagnets.
In the case of a one-dimensional Heisenberg ferrom

with uniaxial exchange and one-ion anisotropy, the energ
the system has the form

E5
a

2 S ]m

]x D 2

1
a1

2 S ]mz

]x D 2

2
b

2
mz

2, ~1!

wherem is the magnetization vector andb.0 for an easy-
axis ferromagnet. If we measure time in the units of 1/v0 ,
wherev052bm0M0 /\ is the frequency of uniform ferro
magnetic resonance, and introduce dynamic variablec
4841063-777X/98/24(7)/5/$15.00
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5mx1imy and m5mz5(12ucu2)1/2, the equations of mag
netization dynamics~Landau–Lifshitz equations! acquire the
following simple form1:

i
]c

]t
2 l 2m

]2c

]x2 1L2c
]2m

]x2 1mc50, ~2!

where two ‘‘magnetic lengths’’ are denoted byl 5(a/b)1/2

andL5@(a1a1)/b#1/2.
In the simplest case of stationary envelope soliton w

c5(12m2(x))1/2 exp(ivt), we can write Eq.~2! after the
first integration in the form

S ]u

]xD 2

5u2
~12v!2u2

4~L22 l 2!u21 l 2/~12u2!
, ~3!

where we have introduced a new variableu5A(12m)/2.
In the limit of an Ising ferromagnet withl 50, the soliton

solution of Eq.~3! ~Fig. 1a! has the form

u5A12v cos~x/2L !, uxu,pL,

u50, uxu.pL. ~4!

Since the field in the given case differs from zero only
a finite region of space, such solutions were later called co
pactons. The frequency dependence of the amplitudes
compactons is the same as for envelope solitons, but
region of localization is not connected with frequency and
determined only by material constants. It is important to n
that Eq.~2! linearized inc in the Ising limit has zero disper
sion, andv(k)[1. In magnets close to Ising magnets wi
l !L, Eq. ~3! in the small-amplitude limit (12v!1) can be
reduced to a simpler equation

S ]u

]xD 2

5u2
~12v!2u2

l 214L2u2 . ~5!

The interest in compactons was stimulated by the pu
cation of articles by Rosenau,3,4 who proposed a new versio
© 1998 American Institute of Physics
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of the well-known Korteweg–de Vries~KdV! equation with
a nonlinear dispersion term and proved that this version
a compact soliton solution with a stationary profile, an a
plitude proportional to the velocity, and with a localizatio
region independent of the velocity.

At the same time, Kosevich5,6 considered compact enve
lope solitons for antiphase high-frequency oscillations in
anharmonic chain taking into account nonlinear dispers
terms. In this case, the dynamic equation for atomic displa
mentsv(x) has the form

]2v
]t2 1«

]2v
]x2 1v1v31lv

]2~v2!

]x2 50. ~6!

For l.0, the solution of Eq.~6! in the resonance ap
proximation v'W(x)sin(vt) disregarding linear dispersio
(«50) has the form of a compacton close to expression~4!.
Holm and Kamassa proposed in 1994 their own modificat
of the KdV equation which assumes the existence of a lo
ized wave of a stationary profile of the formA exp(2Bux
2V0tu) with definite values of the constantsA and B for a
certain value of velocity~see Fig. 1b!. This new type of
exotic solitons was called peakon. In analogy with this ty
of solitons, we can also find the envelope solitons of
peakon type which also exist only for a certain critical val
of frequency of the solution.

If we take into account weak linear dispersion («Þ0) in
the anharmonic chain considered above and change the
of the nonlinear dispersion term (l,0), the wave amplitude
W(x) in the resonance approximation satisfies the equat

S ]W

]x D 2

5W2
~v21!23W2/8

«23uluW2/2
. ~7!

It can be easily seen that the solution of Eq.~7! for the
critical value of frequencyv5A11«/4ulu assumes the form
of a peakon:

W5S 2«

3ulu D
1/2

exp~2uxu/~2Al!!. ~8!

It should be noted that, for solutions of Eq.~6! of the
type of standing wavesv5W sin(kx)sin(vt), the nonlinear
energy–momentum relation has the formv2512«k2

19W2/1613uluk2W2/2. Thus, the dispersionD5]2v/]k2

vanishes for the selected amplitudeW5A2«/3ulu coinciding
with the amplitude of the peakon~8!.

Equations~5! and ~7! are typical of problems in which
solitons close to compactons and peakons are formed
connection with a peculiar field distribution in exotic so
tons, it would be interesting to consider quantum system
which states with analogous properties can exist. It is w

FIG. 1. Profiles of the compacton~a! and peakon~b! solutions.
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known that classical nonlinear evolutionary equations can
put in correspondence with certain quantum systems of
teracting particles.7–12 For example, soliton excitations in
weakly nonlinear systems are normally described on the
sis of the nonlinear Schro¨dinger equation~NSE!1

i
]c

]t
2

]2c

]x2 1c2gucu2c50, ~9!

whose solution for dynamic solitons is well known and h
the standard form

c5A2/g« sech~«x!exp~2 ivt !, «5A12v. ~10!

The properties of these solitons are similar in many
spects to the properties of coupled many-boson station
states in a quantum one-dimensional Bose gas with ad-
shaped attraction between particles.1 The wave function
F(x1 ,x2 ,...,xN) of such states satisfies the following Schr¨-
dinger equation:

2(
i

d2F

dxi
2 1NF1(

i , j
Ui j F5EF,

Ui j 52gd~xi2xj !. ~11!

~We put \51 andm51/2.) The classical nonlinear Schro¨-
dinger equation can be integrated completely by the met
of the inverse scattering problem, while the quantum Sch¨-
dinger equation with ad-shaped interaction can be integrat
completely by the Bethe ansatz method.13,14 The energy
spectrum of the bound many-boson complex has the fo
E5N2g2N(N221)/48 and coincides with the result o
semiclassical quantization of the soliton solution~9! taking
into account the dependence«(N)5gN/4. The boson den-
sity distribution in the bound state coincides with the env
lope of the functionucu2 for soliton ~9! in the limit of a large
number of particlesN@1.

However, the description of soliton dynamics in terms
the NSE is justified only in the small-amplitude limit~small
N) and leads to soliton collapse in the limitN→`. Limita-
tions imposed on the increase of the amplitude for largeN
are usually taken into account by introducing into Eq.~9!
additional terms with a higher degree of nonlinearity~‘‘satu-
rated nonlinearity’’!. In this case, the NSE is modified a
follows1,15:

i
]c

]t
2

]2c

]x2 1c2guc2uc1ducu4c50. ~12!

The soliton solution of this equation has the form of
function with a ‘‘plateau’’ and corresponds to a ‘‘drop’’ in
the condensed state. A semiclassical analog of the ‘‘N
with saturation’’ ~12! is a one-dimensional Bose gas wi
paired and three-particled-type interaction,15 in which the
parameter 2d characterizes the intensity of the three-partic
interaction.

However, the soliton solution of~12! shows that the soli-
ton amplitudeucu and the spatial derivative]/]x in the main
approximation have the same order of smallness (ucu,]/]x
;«). For this reason, we must generally take into accoun
Eq. ~12! cubic terms containing two spatial derivatives alo
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with nonlinear terms;c5. For example, the Landau
Lifshitz equation~2! written to within «5 inclusively has the
form

i
]c

]t
2 l 2

]2c

]x2 1c2
1

2
ucu2c5

1

8
ucu4c2

l 2

2
ucu2

]2c

]x2

1
L2

2
c

]2~ ucu2!

]x2 . ~13!

Sincec;« and ]/]x;«/ l in the main approximation
we must retain only the last terms on the right-hand side
~13! for ferromagnets close to Ising ferromagnets withL
@ l , writing it in a simpler form:

i
]c

]t
2 l 2

]2c

]x2 1c2
1

2
ucu2c2

L2

2
c

]2~ ucu2!

]x2 50. ~14!

This equation contains only cubic nonlinear terms, a
hence this classical system must be put in corresponden
a quantum system with a paired particle interaction m
complex than in~11!.

We choose for the potentialUi j in ~11! a more complex
function including both the attraction and repulsion at diffe
ent distances. Such a potential is usually employed in sta
tical physics in which the repelling core at small distanc
and weak attraction at large distances are normally taken
account. In our case, bound states of the soliton type e
when the total potential is attractive. For simplicity, w
simulate the potential by a system ofd-functions. In this
case, two versions~Fig. 2a and 2b! of such a potential are
possible:

Ui j 52Vd~xi2xj !22U@d~xi2xj1a!1d~xi2xj2a!#.
~15!

In the first case~a!, V.0, U.0, and V22U52W.0,
while in the second case~b!, V,0, U,0, and V22U5
2W,0 ~see Figs. 2a and 2b, respectively!. Equation~11!
with potential ~15! can be integrated by the Bethe ansa
method, but in view of the cumbersome calculations
volved, we simplify the problem, replacing potential~15! by
the point-like potential

Ui j 522Wd~xi2xj !22Ua2
]2

]xi
2 d~xi2xj !. ~16!

It will be proved below that exotic solitons under inve
tigation correspond to extremely large numbersN for which
the Hartree approximation is applicable. In order to descr

FIG. 2. Pair particle interaction potential leading to compacton~a! and
peakon~b! solitons.
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nonstationary states of a nonideal Bose gas, the ti
dependent Hartree approximation~TDHA! proposed by
Dirac is normally used. This approximation leads to an eq
tion of the type~14! for the Hartree function. However, it is
sufficient to analyze stationary soliton states by using
ordinary approximation in which the wave functio
F(x1 ,x2 ,...,xN) in ~11! has the form of a product of one
particle functions:F5Pw(xi), wherew(x) is the normal-
ized Hartree function (* uwu2dx51). Substituting the expres
sion for F into ~11!, multiplying both its sides by
w* (x2)...w* (xN), and integrating with respect to
x2 ,x3 ,...,xN , we can easily obtain the equation for the fun
tion w(x) in the case of potential~16!:

d2w

dx2 2«w12~N21!Ww312~N21!Ua2w
d2~w2!

dx2 50,

~17!

where the Hartree energy« and the total energyE can be
expressed in terms of the solution of Eq.~17! as follows:

«5E dxF2S dw

dxD 2

12~N21!Ww4

22~N21!Ua2w2S dw

dxD 2G , ~18!

E5N1NE dxF S dw

dxD2~N21!Ww4

1~N21!Ua2w2S dw

dxD 2G . ~19!

~For stationary states, the functionw can be chosen as rea
valued.! It can be seen that Eq.~17! has the same structure a
Eq. ~14! for an Ising ferromagnet.

The solution of Eq.~17! depends on« andN as param-
eters. Substituting the solution into the normalization con
tion gives the dependence of the Hartree energy« on the
number of particlesN. The dependenceE(N) can then be
determined from Eq.~19!.

The differential equations can be used in the case
small spatial derivativesd/dx. The last term in~17! should
be taken into account only under the conditionUa2/W@1,
i.e., the total potential must be small, or the finiteness of
rangea of paired interaction must be manifested clearly.
however, we proceed from the potential energy~15!, we can
prove that a transition to the simplified potential~16! is pos-
sible when the additional inequalityWUa2!1 is satisfied.
The fulfillment of both inequalitiesW2!UWa2!1 requires
that the total potential be small:W!1.

After the first integration, Eq.~17! can be reduced to a
form permitting an analysis in the phase plane (w,dw/dx):

S dw

dxD 2

5w2
«2NWw2

114NUa2w2 , ~20!

where we assume thatN@1.
In the case (a), Eq. ~20! has qualitatively the same form

as Eq.~5!, permitting compact solutions in the limiting ver
sion. On the other hand, In the case (b), when U,0,
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Eq. ~20! coincides qualitatively with Eq.~7! having a peakon
solution for the critical value of the parameter.

Equation~20! can be integrated, although its soliton s
lutions can be obtained only in an implicit form.

In the case (a) for U.0, this solution has the form

1

AA
ln

AA2 f

AA1 f
2arcsin

f 221

f 211
52x

A«

AA
, ~21!

where A54Ua2«/W and f 5@(4Ua2/W)3(«2WNw2)/(1
14Ua2Nw2)#1/2.

In the case (b) for U,0, the solution can also be writte
in an implicit form:

1

AB
ln

F2AB

F1AB
22 ln @~12F !A124uUuNa2w2#

5S W

4uUua2D 1/2

x, ~22!

whereB54uUua2«/W and

F5@~4uUua2/W!3~«2WNw2!/~124uUua2Nw2!#1/2.

Solutions ~21! and ~22! contain the dependence«
5«(N) to be determined. It can be found by using the n
malization condition and Eq.~20!.

If we introduce the characteristic value of the Hartr
energy«* 5W/4Ua2 and the characteristic number of pa
ticles N* 51/A4WUa2, the dependenceN5N(«) in the
case (a) has the form

N

N*
5S «

«*
D 1/2

1S 11
«

«*
D arcsinS «

«1«*
D 1/2

. ~23!

Consequently, for small values ofN (N!N* ), the Hartree
energy is proportional to the square ofN: «'(NW/2)2,
while for largeN@N* , this dependence is transformed in
the linear dependence«'(NW/2p)3(4W/Ua2)1/2 ~curve1
in Fig. 3!.

In the case (b), the dependenceN5N(«) changes as
follows:

N

N*
5S «

«*
D 1/2

1S 12
«

«*
D ln S A«* 1A«

A«* 2A«
D 1/2

, ~24!

where we have made the substitutionU→uUu in the defini-
tion of «* andN* . For smallN, the dependence«5«(N)
coincides with that for the case (a). However, in the case
(b) the value ofN is bounded from above by the value
N* for which « assumes the maximum value«* ~curve2 in
Fig. 3!.

For a small numberN!N* of bound bosons, the solu
tions in the cases (a) and (b) virtually coincide and have the
standard form

w5
ANW

2
sechS NW

2
xD . ~25!

It should be noted that the inequalities considered ab
imply thatN* @1. Consequently, solution~25! also exists for
large values ofN: 1!N!N* .
-

e

In the opposite limitN@N* , the soliton amplitude tends
to a finite value (W/p2Ua2)1/4, and the soliton is localized
in a finite region of space 2D52/A«* . For N→`, we have

w5A2/pD cos
x

D
, uxu.pD/2,

w50, uxu,pD/2, ~26!

i.e., the soliton has a typical compacton form@see~4!# shown
in Fig. 1a. Although the boson densityr5Nw2 in the soliton
increases withN to infinity, the soliton size remains finite
and its collapse differs from the collapse in a Bose gas w
a conventionald-function interaction.

Substituting the compacton solution~26! into the expres-
sion ~19! for energy, we can easily verify that the depe
denceE5E(N) for such solutions is also peculiar:

E5N~11«* !2N2
11«*

12pN*
. ~27!

Thus, the eigenenergy of a particle in a compacton
renormalized, and the correction to energy nonlinear inN is
proportional toN2 and not toN3 as in conventional solitons
It should be noted that the dependenceE5Nv02gN2 is
typical of an anharmonic oscillator, i.e., a compacton p
sesses some features of a localized nonlinear oscillator du
its peculiar localization. The same result is also preserved
the magnetic compacton~4! in an Ising ferromagnet. Substi
tuting solution~4! into the expression for energy~1! for a
50 and for spin deviationsN5*(12m)dx52*u2dx, we
arrive at the same dependence

E5N2N2/8pL. ~28!

In conclusion, we consider the limit of a large numb
N→N* of bound bosons in the case (b) with a negative
parameterU. In this limit, Eq. ~20! assumes the form

~A«* 2w2!S D2S dw

dxD 2

2w2D50, ~29!

FIG. 3. Dependence of the Hartree energy of a bound many-boson com
on the number of bound particles in it in the case of potential~a! ~curve1!
and ~b! ~curve2!.
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and its soliton solution has the form of a peakon~see
Fig. 1b!:

w5
1

AD
exp~2uxu/D!, ~30!

where D51/A«* as before. Solution~30! formally has a
jump in the derivative at the junction point (x50). How-
ever, the soliton amplitude is not arbitrary at this point, b
coincides with the homogeneous solutionw25A«* of the
nonlinear equation~29!. Substituting solution~30! into for-
mula ~19!, we obtain the relation between the total ener
and the number of bosons in a soliton:E5N* (113«* /8).

The energy of a peakon was found to be larger than
energy ofN* free particles, and the same states are proba
unstable.

Thus, bound many-particle complexes in a on
dimensional quantum system of bosons with a complex
interaction possess in the limit of a large number of bou
particles the properties of classical exotic solitons~compac-
tons and peakons! in the mean-field approximation and ca
be described by analogous nonlinear evolutionary equat
with a small spatial anisotropy.
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ELECTRONIC PROPERTIES OF METALS AND ALLOYS

Spin waves in a two-dimensional non-ferromagnetic electron liquid with electron
impurity states in a magnetic field

N. V. Gleizer and A. M. Ermolaev

Kharkov State University, 310077 Kharkov, Ukraine*
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Spin waves in a non-ferromagnetic electron liquid in a magnetic field are studied in the random
phase approximation. The electron bound states in the field of impurity atoms are
considered. It is shown that electron localization facilitates the propagation of spin waves. New
branches of wave spectrum are found in the frequency region where propagation of
Silin’s waves is not possible. The spectrum and damping decrement of waves are obtained.
Intersection of the dispersion curve for a Silin wave with the resonance frequency of electron
transitions between Landau levels and local levels results in a cross situation typical of
coupled waves. The differential cross-section of magnetic scattering of neutrons by a two-
dimensional electron liquid in a magnetic field is calculated. The energy spectrum of scattered
neutrons contains additional peaks associated with one-particle excitations of localized
electrons and spin waves. The positions and widths of these peaks provide information about the
spectrum of electron impurity states as well as the spectrum and damping of spin waves.
© 1998 American Institute of Physics.@S1063-777X~98!00707-5#
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INTRODUCTION

The existence of spin waves in nonferrromagnetic me
in a magnetic field was predicted by Silin1 who proceeded
from Landau’s Fermi-liquid theory.2 Soon afterwards, such
waves were detected experimentally in alkali metals3,4

These waves are associated with the spin resonance of
duction electrons forming a degenerate electron liquid in
metal. The spin branch of the spectrum of excitations i
system of interacting electrons corresponds to the dyna
spin susceptibility pole lying outside Stoner sectors.1,4 The
damping of spin waves at low temperatures is caused
collisions of electrons with impurity atoms and lattice d
fects, which are usually taken into account by introduc
the collision frequency determined by the relaxation of el
tron momentum and spin.4

For a sample containing impurity atoms attracting el
trons and in a magnetic field, other types of resonance e
tron transitions can also be induced by a varying magn
field. Such transitions include those involving spin trans
between quasilocal levels,5 as well as between magnetic im
purity levels,6 and Landau levels. New branches of sp
4891063-777X/98/24(7)/6/$15.00
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wave spectra, called magnetic impurity branches, are situ
in the vicinity of these transition frequencies.7,8

The existence of additional poles of dynamic spin s
ceptibility associated with the above-mentioned resona
transitions of electrons can be verified by using a sim
approximation in the random phase approximation tak
into account the electron– electron interaction.4 This ap-
proximation takes into account the exchange energy of e
trons, and their mutual scattering is considered in the lad
approximation.4 The random phase approximation for d
scribing spin waves in nonferromagnetic metals in a m
netic field was used by Edwards.9 Moriya10 has presented a
review of works devoted to the effect of impurity atoms o
the spin susceptibility dynamics without taking into accou
the electron impurity states.

The growing interest towards two-dimensional electr
systems11 has made it necessary to find the effect of impur
atoms on the properties of spin waves propagating in a t
dimensional electron liquid in a magnetic field. The impo
tance of this problem is associated with the fact that in
two-dimensional system of electrons in a magnetic field,
impurity of even the lowest intensity removes degeneracy
the electron ‘‘orbit’’ center position under even the weake
electron–impurity interaction, and detaches local levels fr
each Landau level. The positions of these levels were de
mined by Kosevich and Tanatarov12 who obtained the elec
tron energy spectrum in a dislocation field and in a magn
field. Batakaet al.13 considered a strictly two-dimensiona
electron gas in the field of a special type of impurity pote
tial in the presence of a magnetic field. In contrast to
three-dimensional case,6 local levels exist in a two-
© 1998 American Institute of Physics
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dimensional system in attractive as well as repulsive im
rity atoms. Resonance transitions of electrons between l
levels and Landau levels must be accompanied by the e
gence of new branches in the wave spectrum.

In this work, we present the results of computations
the spectrum and attenuation of spin waves in a tw
dimensional electron liquid taking into account the loc
electron states at impurity atoms in a magnetic field. T
electron–electron interaction is taken into consideration
the random-phase approximation. Rare impurity atoms
assumed to be distributed randomly. Spin waves of differ
polarizations are considered in Secs. 1 and 2, while Sec.
devoted to their detection in experiments with slow neutro

1. SPIN WAVES WITH ‘‘NEGATIVE’’ POLARIZATION

Let us consider a two-dimensional electron liquid in t
planez50 with a constant magnetic fieldH at right angles to
this plane. The energy-momentum relation for electrons
assumed to be isotropic and quadratic, while the potentia
randomly distributed impurity atoms with a low concentr
tion is assumed to be short-range potential. In the rand
phase approximation, the dispersion equation for spin wa
propagating in a two-dimensional electron liquid at rig
angles to the applied magnetic field has the form9

12
I

2m2 x6~q,v!50, ~1!

where m is the spin magnetic moment of an electron,x6

5xxx6 ixyx are the circular components of the dynamic sp
susceptibility tensor which depend on the wave vectorq and
the frequencyv, and I is the Fourier component of th
electron–electron interaction energy taking into consid
ation only thes-wave part of the amplitude of mutual sca
tering of particles. The magnetic susceptibility of the m
dium into which the sheetz50, occupied by electrons i
immersed, is equal to unity. The quantityI in the semiclas-
sical approximation is associated with the parameterB0 fig-
uring in the Fermi-liquid theory through the following rela
tion

B05mI/~2p\2!

~m is the effective electron mass.! The constantB0 is pro-
portional to the zeroth-order term in the expansion of
spin component of the Landau interaction function in Le
endre polynomials.4 Its sign is opposite to that of the con
stant used by Platzmanet al.4

We shall use the semiclassical longwave approxima
for the componentsx6

(0) of the susceptibility of a pure
sample:

x6
~0!~q,v!5x0

V0

V06v F11
1

2 S qvF

V06v D 2G , ~2!

where vF is the Fermi velocity,V052mH/\ is the EPR
frequency, andx05mm2/p\2 is the Pauli susceptibility of
two-dimensional electrons. Substituting formula~2! into the
dispersion equation~1!, it can be verified that spin wave
having a ‘‘positive’’ ~1! polarization in~1! and ~2! cannot
-
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propagate in the electron system. Waves with ‘‘negativ
~2! polarization obey the following energy–momentum r
lation:

v~q!5V0~12B0!F12
1

2B0
S qvF

V0
D 2G . ~3!

This relation differs from the corresponding relation f
a three-dimensional sample1 only in the numerical factor be
fore q2. The damping decrement of waves with the spectr
~3! is equal to the frequencyn of electron collisions with
impurity atoms associated with the relaxation of moment
and spin.4

In an earlier work,14 we showed that, if local levels ar
taken into account in the energy spectrum of tw
dimensional electrons, the tensors of high-frequencyv
@n) susceptibility acquire resonance contributionsdx6 .
These contributions must be taken into account in the dis
sion equation~1!. Near the frequenciesvs

6 of resonant elec-
tron transitions between Landau levels and local levels,
circular components of spin susceptibility contain, in ad
tion to ~2!, a term14

dx6
~s!5x0as

6
vs

6

vs
62v2 in0

, ~4!

whereas
6 are the oscillator forces for resonance transitio

and\n0 is the local level width. The quantitiesas
6 depend

on the wave vector. This dependence is manifested in te
of the order of (qR)2 ~R is the cyclotron radius!, which
cause a weak renormalization of the group velocity of wa
and will be disregarded in the subsequent analysis.

For electron transitions from a Landau level to a loc
level with a spin flip6→7, the resonance frequencies a
given by14

vs
65svc7V02v0 , ~5!

wherevc is the cyclotron frequency of an electron,\v0 is
the separation between the Landau level and a local le
detached from it, ands is the resonance number. In th
present case, we have

as
65

vcni

\2~svc2v0!2vs
6 (

k
r k

7@ f ~«~k2s!6!2 f ~«k7
l !#,

~6!

where«ns and«ks
l are the positions of thenth Landau level

and thekth local level with a spin projections56, f is the
Fermi function,r k

6 is the residue of the electron–impurit
scattering amplitude at the pole«k6

l 2 i\n0 , andni the num-
ber density of impurity atoms. Summation in Eq.~6! is car-
ried out over pairs of levels participating in transitions at t
frequencyvs

6 . The Fermi function difference obeys Pauli
exclusion principle. The number of terms in Eq.~6! depends
on the position of the Fermi energy«F of degenerate elec
trons.

The frequencies of electron transitions from a local le
to the Landau level with spin flip6→7 are defined as

vs
65svc7V01v0 . ~7!

The corresponding oscillator forces have the form14
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as
65

vcni

\2~svc1v0!2vs
6 (

k
r k

6@ f ~«k6
l !2 f ~«~k1s!7!#.

~8!

Let us consider the neighborhood of the frequencyv0
2

5V02v0 of electron transitions from the Landau level«N2

to the local level«N1
l . Since«N2,«F,«N1

l , the sum over
k appearing in formula~6! retains only one term withk
5N. Other transitions at the frequencyv0

2 are forbidden by
Pauli’s exclusion principle. It is assumed thatV0.v0 . If, in
addition, v0.B0V0 , the resonance frequencyv0

2 will be
lower than the boundary frequencyV0(12B0) of a wave
whose spectrum is defined by~3!. In this case the dispersio
curve ~3! for a Silin wave intersects with the straight lin
v5v0

2 and a cross situation similar to the one observed
the spectrum of crystal lattice with quasilocal vibratio
arises.15 Taking into consideration the contributions fro
Eqs.~2! and ~4!, we can present the dispersion equation~1!
for boundary frequencies (q50) in the spin wave spectrum
in the form

12B02v/V0

12v/V0
5B0

a

12v/v r
, ~9!

wherev r5v0
2 , and

a5a0
25

vcr N
1ni

~\v0!2v0
2 . ~10!

This equation has two rootsv6 corresponding to the low
and high-frequency branches of the spin wave spectrum

v65
1

2
v r~12aB0!1

1

2
V0~12B0!6

1

2
$@v r~12aB0!

2V0~12B0!#214V0v raB0
2%1/2. ~11!

The boundary frequencyv2 lies belowv r , while v1 lies in
the interval@V0(12B0),V0#. The parametera defines the
splitting of branch~3! into two branches. Asa→0, the fre-
quency v2 approachesv r , and v1 approachesV0(1
2B0). The spin wave spectrum contains a gap@v2 ,v r # in
which wave propagation is not possible. The width of th
gap is defined as

dv5V02v02v2 . ~12!

Curve ~3! intersects the linev5v r at the point

q05
V0

vF
F2B0~v02B0V0!

V0~12B0! G1/2

.

For q!q0 , we can confine the expansion of solutions of t
dispersion equation~1! into a power series inq. In the long-
wave approximation, the energy–momentum relation for
spin wave branches under consideration assumes the fo

v6~q!5v62
1

2

~qvF!2

V02v6
F11a

v r

V0
S V02v6

v r2v6
D 2G21

.

~13!

The dispersion of these waves is anomalous. They const
a nonuniform precession of magnetization around the c
stant magnetic field direction, propagating in the pla
n

e

te
n-
e

z50. In waves with spectrum~13!, the ratio of the compo-
nents of the spin magnetization vectorm induced by a vary-
ing magnetic field is defined as

my

mx
5

xyx

xxx
5 i

x22x1

x21x1
.

The Cartesian components of the susceptibility tensor ca
determined easily from~2! and ~4!.

The damping of spin waves propagating at right ang
to the magnetic field is caused by collisions of electrons w
impurity atoms. These collisions are taken into acco
through parametersn and n0 characterizing the impurity
broadening of Landau levels and local levels, respectiv
Taking into account the small imaginary corrections in t
expansions of~2! and ~4!, we can show that the solution o
the dispersion equation~1! has the form v5v6(q)
2 ig6(q), wherev6(q) is the energy–momentum relatio
~13! for waves, andg6 is the damping decrement defined

g65Fv1v0a
v r

V0
S V02v6

v r2v6
D 2G

3F11a
v r

V0
S V02v6

v r2v6
D 2G21

. ~14!

The small quantitiesn andn0 ensure that the inequalityg6

!v6 is satisfied. Fora→0, formulas~13! and ~14! lead to
the spectrum and damping decrement of spin waves in
absence of electron localization.

The dispersion equation has two roots~13! for v0

,B0V0 also. In this case, however,

v2,V0~12B0!, v0
2,v1,V0 .

Let us consider electron transitions from the local lev
«N2

l to the Landau level«N1 . The transition frequency is
defined asv r5V01v0 , while the oscillator force is defined
as

a5
vcr N

2ni

~\v0!2~V01v0!
. ~15!

In the present case, the dispersion equation for bound
frequencies has the same form~9!, except that we now have
v r5V01v0 and the oscillator forcea is defined by~15!.
The limiting frequencies are confined in the intervals

v2,V0~12B0!, V0,v1,v r .

The low-frequency spectral branch overlaps with the S
wave band~3!. The high-frequency branch lies in the fre
quency range where Silin’s semiclassical waves can
propagate. The solutions of the dispersion equation di
from ~11!, ~13! and ~14! in the resonance frequency and o
cillator force have different values. The spin waves with t
energy–momentum relationv1(q) attenuate weakly in a
transparency band@v1 ,v r # of width

Dv5V01v02v1 . ~16!
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2. WAVES WITH A ‘‘POSITIVE’’ POLARIZATION

It can be seen from formula~2! that in the absence o
localization of electrons, a weakly attenuating solution of E
~1! for spin waves with a ‘‘positive’’ polarization can exis
only for B0.1. However, the electron liquid becomes u
stable in this case.4 For a positive contribution~4! from local
levels to the real part of spin susceptibility in the regionv
,vs

1 , the propagation of such waves becomes possi
This situation is reminiscent of antihelicons in an electr
gas,16 whose propagation becomes possible owing to the
istence of a subsystem of localized electrons, the directio
whose rotation is defined not only by the magnetic field,
also by the impurity center.

The resonance frequency of electron transitions from
Landau level« (N21)1 to the local level«N2

l with a spin-flip
1→2 is defined asv1

15vc2V02v0 . The oscillator force
is defined as

a1
15

vcr N
2ni

\2~vc2v0!2v1
1 @ f ~«~N21!1!2 f ~«N2

l !#. ~17!

In this case, the dispersion equation for boundary frequen
of spin waves has the form

v1V0~12B0!

v1V0
5aB0

v r

v r2v
, ~18!

where v r5v1
1 and a5a1

1 . In the interval v,v r , this
equation has two roots:

v65
1

2
v r~12aB0!2

1

2
V0~12B0!6

1

2
$@v r~11aB0!

1V0~12b0!#224aB0v r~v r1V0!%1/2. ~19!

As a→0, the upper branch of~19! approaches the resonan
frequencyv r , while the rootv2 becomes negative.

In the longwave approximation, the solutions of Eq.~1!
can be defined for the case under consideration as

v6~q!5v61
1

2

~qvF!2

V01v6
F12a

v r

V0
S V01v6

v r2v6
D 2G21

,

~20!

wherev6 are the boundary frequencies~19!. These waves
have a normal dispersion. They attenuate weakly as a re
of electron collisions with impurity atoms in the transpa
ency bands between boundary frequencies~19! and the reso-
nance frequencyv1

1 .
The frequency of transitions of electrons from the loc

level «N1
l to the Landau level« (N11)2 is equal tov r5vc

2V01v0 , while the oscillator force is defined as

a5
vcr N

1ni

\2~vc1v0!2v r
@ f ~«N1

l !2 f ~«~N11!2!#. ~21!

In this case, two branches of the spin wave spectrum lie
the interval (0,v r). The solutions of the dispersion equatio
are given by formulas~19! and ~20! in which v r5vc2V0

1v0 and the oscillator force is defined by formula~21!.
.
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3. MAGNETIC SCATTERING OF NEUTRONS BY SPIN
WAVES

The spin waves considered in Secs. 1 and 2 may
observed in experiments with slow neutrons. The differen
cross section of magnetic scattering of neutrons by a t
dimensional electron liquid per unit area is defined as17

d2s

dO8d«8
5

1

4p S gr 0

m D 2 k8

k
~nv11!

3(
ik

~d ik2eiek!Im x ik
s ~q,v!, ~22!

wherex ik
s is the symmetrized spin susceptibility tensor,r 0

5e2/mc2 the classical electron radius,g51.91 the gyro-
magnetic ratio for neutrons,q5k2k8 and \v5«2«8 the
change in the electron wave vector and neutron energy
scattering in a solid angledO8, nv is the Planck’s distribu-
tion function, ande5q/q. Since the scattering vectorq is
perpendicular to the magnetic field, the sum appearing
~22! is defined as

1

2
~x11x2!1xzz, ~23!

where the spin susceptibility tensor components are ca
lated in the random phase approximation. In the absenc
electron–electron interaction, the contribution from loc
levels to the longitudinal component of dynamic spin susc
tibility is given by

dxzz~v!5
1

2
x0\vcni(

nks

r k
s

~«n2«k
l !2 @ f ~«ks

l !2 f ~«ns!#

3S 1

«n2«k
l 1\v1 io

1
1

«n2«k
l 2\v2 io D .

This function has resonance singularities at frequenc
u«n2«k

l u/\ of electron transitions between Landau levels a
local levels without spin flip.

The contribution of one-particle excitations of electro
localized at the impurity atoms in inelastic magnetic scatt
ing cross section of neutrons can easily be obtained fr
formula ~22!. Terms withx6 in ~23! contribute to scattering
cross section with spin flip6→7, while terms withxzz

contribute to scattering cross section without spin flip.
particular, the cross section of scattering accompanied
electron transitions from a local level to a Landau level w
spin flip 6→7 is defined in the vicinity ofv5vs

6 ~7! as

d2s6

dO8d«8
5

1

8p S gr 0

m D 2 k8

k
x0vs

6as
6

n0

~v2vs
6!21n0

2 .

~24!

Here, it is assumed that the temperature is low in compari
with the transition energy. The energy spectrum of scatte
neutrons contains symmetric peaks~24! associated with one
particle excitations of localized electrons. Similar pea
formed as a result of electron transitions from Landau lev
to local levels must also be observed atv5vs

6 ~5!. Note that
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such peaks are asymmetric in the three-dimensional ca18

This is due to the asymmetry of electron density of state
Landau levels.

In addition to the peaks described by formula~24!, the
spectrum of scattered neutrons also contains a series of
entz peaks formed as a result of scattering by spin wa
with a spectrum~13! and~20!. The cross section of scatterin
with the emission of a spin wave quantum with the energ
momentum relationvq is defined as

d2ss

dO8d«8
5

1

2mV0
S \gr 0

I D 2 k8

k
~vq2V0!2

3F11a
v r

V0
S vq2V0

vq2v r
D 2G21 gq

~v2vq!21gq
2 ,

~25!

where v r is the resonance frequency~5! or ~7!, a is the
oscillator force~6! or ~8!, andgq is the damping decremen
of the waves. Fora→0, formula ~25! leads to the cross
section of neutron scattering by spin waves with a spect
~3!.19

So far, we have not discussed specifically the charac
istics of local electron states~positions and widths of loca
levels, residues of amplitude of electron scattering by an
purity atom!. We have only used the fact that electron
impurity scattering amplitude has poles. These characte
tics may be obtained by comparing theory with experime
or calculated by using a certain model for the impurity p
tential. In particular, the scattering amplitude residue for
short-range potential of an impurity atom and a weak sp
ting of local level from the Landau level (v0!vc) can be
represented in the form14

r 52p\3v0
2/mvc .

In order to estimate the magnitude of peaks of differe
tial cross section of neutron scattering obtained in this s
tion, we use the values of parameters typical of thin se
metal films and inversion layer at silicon–silicon dioxid
interface:11 m510231 g, the number density of a two
dimensional electron liquidne51016 m22, ni /ne50.01,
v0 /V050.2, B050.1, n5n0 . Hence we obtainV051.9
31012 s21 in a magnetic field with induction 10 T, and th
ratios of the maximum values of cross-sections~24! and~25!
to the peak of cross section of scattering by a Silin wave
equal to 0.23 and 0.12, respectively. In this case, the rati
widths of the gap~12! and transparency band~16! to V0 are
0.74 and 0.02, respectively.

CONCLUSIONS

In two-dimensional systems, impurity atoms exert a co
siderable influence on the energy spectrum of quasipartic
In such systems, an impurity can form a local electron le
at the edge of the conduction band for an indefinitely we
electron–impurity interaction. In a quantizing magnetic fie
perpendicular to the plane in which the electrons move,
local levels get ‘‘multiplied.’’ They are split upwards o
downwards from each Landau level depending on the sig
the impurity potential. Such a structure of the spectrum o
.
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two-dimensional electron system in a magnetic field affe
its high-frequency characteristics. Among other things,
dynamic spin susceptibility has resonance singularities at
quencies of electron transitions accompanied by a spin
between Landau levels and local levels. New branches
spin wave spectra are formed at these singularities in a n
ferromagnetic two-dimensional electron liquid.

We have shown in this work that localization of ele
trons at impurity atoms competes with dissipative proces
and facilitates the propagation of spin waves. New spec
branches of collective vibrations of spin magnetization ex
in frequency regions where Silin waves cannot propag
The spectrum and damping decrement of such waves
calculated.

If the frequency of a Silin wave coincides with the fre
quency of resonance transitions of electrons between Lan
levels and local levels, the spin wave spectrum underg
rearrangement due to a coupling of spin wave magnetiza
vibrations with vibrations at resonance. The dispersion cu
for a Silin wave in a two-dimensional electron liquid is sp
into a low-frequency branch and a high-frequency bran
These branches are separated by a gap in which waves
not propagate.

The spin waves considered here can be detected in
periments on measurement of differential cross-section of
elastic magnetic scattering of neutrons by the spin magn
zation current of two-dimensional electrons. The ene
spectrum of scattered neutrons contains peaks assoc
with one-particle excitations of electrons localized at imp
rities, as well as with spin waves. The symmetric peaks
sulting from one-particle excitations are formed at resona
frequencies of electron transitions between Landau lev
and local levels. The width of these peaks is determined
the width of levels participating in transitions. The positio
of Lorentz peaks in the cross-section of scattering by s
waves can be used to obtain the wave spectrum, while t
width gives the damping decrement.

The results presented in this communication can be u
for studying two-dimensional metals, inversion layers a
semiconductor–insulator interface, layered systems, and
films of metals in which the electrons are at the lower ene
level formed as a result of size quantization.

*E-mail: alexander.m.ermolaev@univer.kharkov.ua

1V. P. Silin, Zh. Éksp. Teor. Fiz.35, 1243~1959! @Sov. Phys. JETP8, 870
~1959!#.

2L. D. Landau, Zh. E´ ksp. Teor. Fiz.30, 1058~1956! @Sov. Phys. JETP3,
920 ~1956!#.

3S. Schultz and G. Dunifer, Phys. Rev. Lett.18, 283 ~1967!.
4P. Platzman and P. Wolf,Waves and Interactions in Solid State Plasma,
Academic Press, New York~1973!.

5I. M. Lifshitz, S. A. Gredeskul, and L. A. Pastur,Introduction to the
Theory of Disordered Systems, Wiley, New York, 1988.

6A. M. Ermolaev and M. I. Kaganov, JETP Lett.6, 395 ~1967!.
7A. M. Ermolaev, Fiz. Tverd. Tela~Leningrad! 30, 1065 ~1988! @Sov.
Phys. Solid State30, 618 ~1988!#.

8A. M. Ermolaev and N. V. Ul’yanov, Fiz. Nizk. Temp.18, 1375 ~1992!
@ Sov. J. Low Temp. Phys.18, 960 ~1992!#.

9D. M. Edwards, J. Phys. C2, 84 ~1969!.
10T. Moriya, Spin Fluctuations in Itinerant Electron Magnetism, Springer,

Heidelberg~1985!.



494 Low Temp. Phys. 24 (7), July 1998 N. V. Gleizer and A. M. Ermolaev
11T. Ando, A. Fowler, and F. Stern,Electronic Properties of Two-
dimensional Systems, American Physical Society, New York~1982!.

12A. M. Kosevich and L. V. Tanatarov, Fiz. Tverd. Tela~Leningrad! 6, 3423
~1964! @Sov. Phys. Solid State6, 2738~1964!#.

13E. P. Bataka and A. M. Ermolaev, Izv. Vuzov. Fizika No. 1, 111~1983!.
14N. V. Gleizer, A. M. Ermolaev, and A. D. Rudnev, Fiz. Nizk. Temp.23,

1092 ~1997! @Low Temp. Phys.23, 820 ~1997!#.
15A. M. Kosevich,Theory of Crystal Lattice@in Russian#, Vishcha Shkola,

Kharkov ~1988!.
16E. A. Kaner and A. M. Ermolaev, Zh. E´ ksp. Teor. Fiz.92, 2245 ~1987!
@Sov. Phys. JETP65, 1266~1987!#.

17Yu. A. Izyumov and R. P. Ozerov,Magnetic Neutron Spectroscopy@in
Russian#, Nauka, Moscow~1966!.

18A. M. Ermolaev and N. V. Ul’yanov, Fiz. Tverd. Tela~Leningrad! 34,
1676 ~1992! @Sov. Phys. Solid State34, 891 ~1992!#.

19E. A. Pamyatnykh, V. P. Silin, and A. Z. Solontsov, Zh. E´ ksp. Teor. Fiz.
70, 2286~1976! @Sov. Phys. JETP43, 1193~1976!#.

Translated by R. S. Wadhwa



LOW TEMPERATURE PHYSICS VOLUME 24, NUMBER 7 JULY 1998
Size-effect of Kondo scattering in point contacts „revisited …
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The size-effect of Kondo-scattering in nanometer-sized metallic point contacts is measured with
the simplified, mechanically-controlled break–junction technique for CuMn alloy of
different Mn concentrations: 0.017; 0.035; and 0.18~60.017! at.%. The results are compared
with our previous publication on nominally 0.1 at. % CuMn alloy.1,2 The increase of
width of the Kondo resonance and enhanced ratio of Kondo-peak intensity to electron–phonon
scattering intensity is observed for contacts with sizes smaller than 10 nm. From the
comparison of electron–phonon scattering intensity for the pressure-type contacts, which
correspond to the clean orifice model, we conclude that the size effect is observed incleancontacts
with the shape of achannel~nanowire!. © 1998 American Institute of Physics.
@S1063-777X~98!00807-X#
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1. INTRODUCTION

Recently the size-effect of Kondo scattering has be
observed in point contacts.1,2 This appears to be opposite
the suppression of the Kondo effect in thin films and wire3

The effect was observed in ballistic contacts of nanome
size and explained as being due to the strong enhanceme
Kondo temperature by fluctuations of local electron dens
of states. These fluctuations are the result of the lateral e
tron resonances in the narrow part of the metallic brid
connecting bulk electrodes.4 In the present work we hav
found additional confirmation of the model, proposed
Ref. 4.

Initially, it was noticed that the estimates of the Kond
temperature made by the quasi-classical theory1,2,5,6 is too
large compared to the bulk value. Unfortunately, the exp
mental conditions do not satisfy the weak coupling limit
Kondo scattering which is assumed in the theory. Anot
problem is an unknown geometry and electron mean
path in a constriction, which are often encountered in
point-contact study and which force one to use the ideali
clean-orifice model.7 Roughly speaking, due to this mod
any dependence of a normalized Kondo-peak intensity
zero biasdRK /R0 ~Fig. 1! on a contact diameterd slower
than proportional tod would result in the increase of th
apparent Kondo temperature according to the formulas1

kBTK5EF exp~22EF/3J!, ~1!

J

EF
520.044F 1

cAR0

dRK

d~ log10 V!G 1/3

, ~2!

since d(log eV) are approximately constant andd}R0
21/2.

HereEF andc are the Fermi energy and impurity concentr
tions, respectively. There are many reasons for the expo
4951063-777X/98/24(7)/6/$15.00
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n in dRK /R0}dn to be smaller than one. One of them is th
finite electron mean path,8 the other is changing the conta
shape while studying thed-dependence. The theory6 is valid
in the limit when the average distance between magn
impuritiesr 0 is much smaller than the contact sized which is
not the case for the smallest contacts. Hence, the applica
of formula ~2! can’t be justified.

Fortunately, forr 0!d the ratio of size-dependent pho
non and Kondo scatterings does not depend on the geom
and mean free path in the contact, and can be taken
reliable evidence of different behavior of these two types
scatterers. Another important experimental feature is
widening of the Kondo peak while decreasing the cont
sized1,2 which also qualitatively points to an increase of t
Kondo temperature.

In the present work we use these properties to sh
qualitatively that the Kondo temperature indeed greatly
creases for nanometer-sized contacts in the form of a c
channel~wire!. We prove that the clean channel~wire! model
is essential for clear observation of the effect. In the previo
publication9 we have noted this feature, but only in th
present work~based on a great amount of experimental da!
we do find it to be the necessary condition for observing
size effect. The effect is shown for different known conce
trations, and this enables us to correct our previous res
for CuMn with nominal concentration 0.1 at.%,1,2 which cor-
responds to the measured concentration of 0.028 at.%~un-
certainty60.017 at.%!. The size-effect is maximal when th
wire diameter is of the order or less than the average dista
between impurity, and decreases with shortening of the e
tron mean free path. These conclusions correspond pr
well to the Zarand–Udvardi theory.4

A more direct way of showing the enhanced Kondo te
perature is to study nanosize contacts in magnetic fields
© 1998 American Institute of Physics
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was shown that Kondo resonance becomes less sensiti
the field for decreased sizes.1,2,10,11Despite the experimenta
difficulties of preserving high resistance contacts dur
magnetic field measurements, these experiments would
not only qualitative but also the quantitative informatio
These remain for future studies.

2. EXPERIMENTAL

We study CuMn dilute alloys of three concentratio
determined by x-ray analysis: 0.18; 0.035; and 0.017 at.%
addition, we repeat the measurements for our previous a
which was nominally about 0.1 at.%1,2 but appears to be
0.028 at.% by x-ray. The accuracy of concentration deter
nation is about 0.017 at.%. Thus, the alloys with concen
tion of 0.017; 0.028; and 0.035 at.% give the same result
the limits of data-point scattering.

The measurements were carried out on the break ju
tions shown schematically in the inset of Fig. 1~lower
panel!. The sample~1! is a wire with diameter 0.2 mm
notched~2! at the center by a sharp knife, then etched a
annealed at 700 °C during 2.5 h with spontaneously coo
down. The annealing seems to be important for obtain

FIG. 1. Upper panel: differential resistance of MCB junction of CuMn~0.18
at.%!. In the inset the magnified Kondo peak is shown.R0 is a resistance
connected with contact diameterd via Sharvin formula~Eq. ~4!!. dRph is the
increase of resistance due to the phonon backscattering atV520 mV. dRK

is Kondo-peak height. Lower panel: the second derivative of curre
voltage characteristic of the same contact.M is the maximum intensity of
electron–phonon interaction background subtracted, according to form
~Eq. ~3!. In the inset: the schematic view of mechanically-controlled bre
junction: 1—the CuMn alloy; 2—notch; 3—Staycast glue;4—bending
beam;5—push-pulling rod,T51.6 K.
to
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elongated neck while breaking the notch. The sample
glued to the substrate~4! with Staycast~3!. The rod~5! is
pushed mechanically to bend the substrate~4!. The whole
system is immersed in superfluid He at a temperature
1.6 K. This improves the sample cooling and greatly simp
fies the measurements which enable us to collect a h
amount of experimental data.

After breaking the neck the contact is readjusted for
initial resistance of the order of 1V. The continuous pulling
off the electrodes~1! enable us to obtain the successive ser
of resistances up to several hundreds Ohm until the nec
completely broken. Each series containing about 10 cont
is repeated several times. Sometimes the contact resist
inside the same series jumps to unwanted high values. T
it was readjusted back by pushing the electrodes sligh
After a number of breakings, the metal in the contact reg
becomes so defective that the making of an elongated c
neck appears to be difficult. These series show a suppre
Kondo size-effect.

For each contact three successive recordings are ta
each of about 5–10 minutes long. These are thed2V/dI2(V)
and dV/dI(V) characteristics taken in the range of phon
energies235–35 mV, anddV/dI(V) taken at about28–8
mV near zero bias for Kondo-peak recorded separately~see
Fig. 1!. Usually, the non-linearities ofV(I ) characteristics
due to phonons and Kondo-effect are the same on diffe
recordings, showing that the contact is stable during the m
surements. Sometimes, especially for low impurity conc
tration and small size contacts, the intensity of Kondo pe
changes due to the electromigration of impurities. For th
cases we use either the maximum intensity~which is ob-
served for the previous recording!, or the average of two
since we assume that the maximum current density in
center of the contact forces the impurities to move from
center to the periphery.12

Care is taken to have the temperature and modula
smearing13 less than the changes of the measurable quant
discussed below.

3. RESULTS

Typical first and second derivatives of current–volta
characteristic are shown in Fig. 1. The Kondo peak at z
bias is seen on thedV/dI(V)-characteristic. The phonon
backscattering sharply increases the resistance at about620
mV. In the ballistic limit thedR/dV(V) characteristic is di-
rectly proportional to the electron-phonon interaction~EPI!
function gPC(eV) through the relation7

1

R

dR

dV
~V!5

8

3

ed

\vF
gPC~eV!, ~T.0!. ~3!

The Sharvin resistanceR0 which we identify with shal-
low minima in dV/dI(V) is connected in copper with con
tact diameterd through the formula

d'
30

AR0@V#
@nm#. ~4!

This formula is valid both for the model of orifice an
for long wire only in the case of specular reflections fro

–

la
k
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inner boundaries. We shall used as a parameter characteri
ing the contact diameter although it should be remembe
that it is model dependent in the general case. We recall
the true experimental parameter is the contact resistancR0

which can be restored through Eq.~4!.
As the quantitative estimates of phonon and Kondo s

tering intensity we choose the increase of differential re
tance fromR0 to the value atV5620 mV (dRph) and the
height of Kondo peak (dRK) shown in Fig. 1, upper pane
respectively. One more parameter proportional to the pho
scattering is the intensity of maximumM in dR/dV(V) spec-
tra which can be connected with the maximum of EPI fun
tion through Eq.~3!. This quantity has an advantage that t
background@approximated by a straight line~shown in the
lower panel of Fig. 1!# can be subtracted.

3.1. Contact-size dependence of phonon and Kondo
scatterings

Figure 2 shows the cumulative results of our measu
ments. The phonon~open! data points follow the same tren
for all concentrations, namely, at small sizes they are prop
tional tod while for large diameters they are flattened. The
new data correspond well to our previous results cited
Refs. 1, 2 and 9. The pure copper follows the same dep
dence ~not shown!. The solid straight line denotes th
dRph/R0 vs. d for a clean orifice model according to tab
lated experimentalgPC(eV) function in Ref. 7:

S dRph

R0
D

V520mV

5
8

3

ed

\vF
E

0

20mV

gPC~v!dv

54.0531023d@nm#. ~5!

It is important that the experimental points lie above t
clean orifice line for sizes smaller than 10 nm. For larg
diameters the experimental points coincide with and lie
low this line since the elastic electron mean free path
comes smaller than the contact diameter.

FIG. 2. Normalized increase of differential resistances due to phonon~open
data points! and Kondo~solid data points! scatterings. Triangles, square
and circles stand for CuMn alloys of 0.026; 0.028; and 0.18 at.%, res
tively. The solid straight line stands for the clean-orifice phonon-scatte
intensity. Dotted straight lines are the apparent linear fits for Kondo sca
ing of three concentrations.
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In general, the Kondo data points rise less steeply w
increasingd than to the phonons; this is especially clear f
lower concentrations. The apparent linear fits fordRK /R0 vs.
d amounts

~a! log Y50.51(0.06)logX22.68(0.05) for 0.18%,
~b! log Y50.21(0.11)logX22.99(0.12) for 0.028%,
~c! log Y50.14(0.08)logX23.05(0.08) for 0.026%,

which are shown in Fig. 2 with the straight dotted lines. He
X5d @nm#, Y5dRK /R0 and in brackets we denote the sta
dard deviation. We join the experimental data for concen
tions of 0.035 and 0.017 at.% in one set with an avera
concentration 0.026 at.%, since they are indistinguishabl
view of large uncertainty~0.017 at.%!.

The scattering of data points is rather high which is d
to the dispersion between different series. The scattering
side each series is much less. Thus, we can conclude tha
property of the metal differs from sample to sample, a
from the series to series for the same alloy.

The alloy with nominal concentrations of 0.1 at.% whic
we have studied in previous works1,2,9 yields quite a similar
exponent b! ~in the limits of errors! dependence9,14 in the
present study despite the quite different experimental co
tions ~T51.6 K instead of 0.5 K, an environment of liqui
helium instead of high vacuum!.

For pure copper the zero-bias Kondo peakdRK /R0 is of
the order of 1e24 which corresponds to the purity of our C
metal. Previous studies in the analogous break-junc
devices15,16 also have not revealed the zero-bias Kon
peaks in pure copper. The ratio between Kondo and pho
intensities are plotted in Fig. 3. As we have noted above
ratio does not depend upon the constriction geometry
elastic mean free path. It is seen thatdRK /dRph increases by
almost an order of magnitude for diameters smaller than
nm. For higher concentration~0.18 at.%! this dependence is
masked. Here we want to notice that, while 0.017; 0.028;

c-
g
r-FIG. 3. The ratio of resistance increase due to Kondo and phonon scatt
as a function of diameter. Squares, triangles, and circles stand for C
alloys of 0.028; 0.026; and 0.18 at.%, respectively. The dashed line se
as the guide to the eye for 0.026 at.%.
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0.035 at.% correspond to different series and samples~and
this is a cause of big scattering of data points! the results for
0.18 at.%, represent only a single series and are more
tinuous.

3.2. Energy dependence of Kondo scattering

The energy dependence for the normalized Kondo re
tance is shown as a function of contact diameter for 0.0
at.% alloy in Fig. 4. For other concentrations these dep
dences look similar. The new measurements are practic
the same as already reported~see Fig. 2~b! in Ref. 10
and Fig. 5~b! in Ref. 11!, but are more detailed since th

FIG. 4. The normalized Kondo maximum for CuMn~0.028 at.%! for dif-
ferent contact diameters. In the inset: the width of the maximum at the
height ~see the horizontal dotted line in the main panel! is shown as a
function of diameter.

FIG. 5. The width of the Kondo maximum as a function of contact diame
Squares, triangles, and circles stand for CuMn alloys of 0.028; 0.026;
0.18 at.%, respectively. The dashed line connects data-points of s
series.
n-

s-
8

n-
lly

simplified experimental technique enables us to collect m
data. The logarithmic voltage dependences ofdRK /dRK,max

are quite evident for all curves. In the inset to Fig. 4 t
voltage width at the half-maximum height vs. diameter
plotted as shown with the dotted horizontal line in the ma
panel. More data points are plotted in the inset since not
all curves are shown in the main panel. The observed s
tering is due to the data points from different series.

The widths of the Kondo-resistance-peaks are shown
different concentrations as a function of contact diamete
Fig. 5. In spite of the large data scattering, the increase
dV0.5(d) for diameters smaller than 10 nm is clearly see
This increase can be observed for each concentration, inc
ing 0.18 at.%. It proves that even for this alloy we did o
serve increased energy-scale for Kondo-effect, althoug
may not be so evident from Fig. 3. It is important to note th
the increase of Kondo-peak width was not observed
Cu~Fe!-contacts10,11 with comparable and higher resistance
The difference between Mn and Fe impurities proves that
widening of Kondo-peak is not due to extrinsic effects~like
quantum diffraction of electron wave functions at small co
strictions! but is connected with the Kondo-mechanism
self. Note also, that at thelarge diameters the width of the
Kondo-peak increases at the increasing Mn concentration
the row 0.028; 0.035, and 0.18 at.%, as expected due to
spin-glass effects. Indeed, for low-resistance contacts w
c50.0018 we observe the splitting of Kondo-peak due to
internal field~not shown here!.

4. DISCUSSION

The PC EPI spectral functions are summarized
pressure-type point contacts in Refs. 7 and 17. These
made either by pressing together the sharp needle to the
surface~other version: by pressing together the sharp ed
of metallic electrodes! or by electrical microwelding by a
current pulse. In all these cases the probability of format
of the metallic contact with a length much smaller than
width ~diameter! is high enough. These contacts are satisf
torily modelled as an orifice in an infinitely thin partition
Indeed, the experimentally observed maximum intensity
PC EPI spectra are saturated at a constant value. For co
this value is aboutgPC

max50.24 ~linear background being sub
tracted!. Theoretical calculation for the simplest metal—
sodium—gives a value coinciding with the experiment, th
can be taken as a quantitative proof of observing the cl
orifice.17 With invention of nanofabricated thin film
junctions,18 STM,19 and mechanically-controllable brea
~MCB! junctions20 a new possibility appears. The shape o
contact can be fabricated as a channel~wire! whose length is
equal or greater than a diameter. According to Ref. 21,
shape of a contact for STM~and evidently, for MCB22! de-
pends on the fabrication procedure, and can be made sim
to both orifice and channel for different prehistories. It w
shown in Ref. 21 for gold STM junctions that the gent
touch of a needle to the flat surface leads to observing
contact whose shape was close to the orifice, while the m
deep intrusion results in producing a long wire. Someth
like this one could expect also for the MCB junctions.
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We show thegPC
max for our contacts of different concen

tration in Fig. 6. It is seen that the maximum intensiti
exceed the orifice value by 2–3 times. This was never
served for pressure-type contacts. If we assume a linea
terpolation between theoretical limits for clean orifice a
channel7

1

R

dR

dV
~V!5

8

3

eS d1
3p

4
L D

\vF
gPC~eV!, ~T.0!, ~6!

then this means that the length of the ‘‘wire’’~or channel! is
approximately equal to its diameter.

Correspondingly, the experimental data points
dRph/R0 in Fig. 2 lie about twice as high than the straig
solid line which stands for the clean orifice model accord
to the Eq. ~5!. Thus, we can state that our contacts w
diameter smaller than.10 nm are similar to nanosized wir
~channel!. More about the length, shape, and purity of th
wire can be said from thed-dependence of phonon intensi
but this lies beyond the scope of this work.

Figure 7 shows schematically what may happen. Af
the first breaking there are presumably hillocks seeing e
other~a! and separating by the least distance. First, the p
sure type contact gives the shape more like an orifice~b!.
These correspond to contact diameter greaters than 20
The more pressure—the more defects are introduced,
this leads to a decrease in the phonon intensity below
clean orifice value~Fig. 6! for the largest diameters. Pullin
off the electrodes results to a shape similar to a wire~chan-
nel!, but the greater the separation distance the more de
are introduced to the thinner wire, and this probably lead
a decrease in the intensity at the least contact diame
Other causes may be quantum diffraction effects for elec
and phonon, since their wavelengths become comparab
the wire diameter.23

FIG. 6. Maximum of the electron-phonon interaction spectral function a
function of contact diameter. Squares, triangles, and circles stand for C
alloys of 0.028; 0.026; and 0.18 at.%, respectively. Horizontal dotted
shows the maximumgPC of clean orifice value.
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Recently, Kolesnichenkoet al.24 have predicted a classi
cal mesoscopic size effect for impurities whose average
terimpurity distance is comparable or greater than the con
diameter. This effect is a version of the classical correlat
phenomena in point contacts considered by Gal’perin
Kozub in Ref. 25. Due to the scattering probability which
proportional to the solid angle by which an orifice is se
from the impurity location, the maximum scattering pro
ability has the impurity located at the interface of the orifi
model. It is easy to see that the number of these impuri
increases if the shape of the contact deviates from an or
to a wire ~Fig. 7!. Qualitatively, this effect can explain non
linear ind dependence of Kondo scattering~with increase at
small size contacts!, but it hardly can be responsible neith
for the increase of width of the Kondo peak~Fig. 5!, nor for
the loss of sensitivity to external magnetic field for ult
small contacts.

5. CONCLUSION

The results of the present work proves the corresp
dence of Zarand–Udvardi model4 to the experiments. This
model ascribes the enhancement of the Kondo tempera
of magnetic impurities in metallic point contacts due to flu
tuations of the local electron density of states. There are
fluctuations for a pure orifice since lateral quantization
electron wave function is smeared out.26 On the other hand,
for dirty channels~wires! quantization is destroyed by sca
terings, especially if they involve spin flip. Note, that fo
large biases~of the order of phonon characteristic freque
cies! Kondo scatterings with spin flip are negligible. Thu
we conclude that the size effect can be observed in cl
enough nanosized wires, in accordance with Ref. 4. The n
essary conditions for observing the Kondo size effect
point contacts are that the phonon intensity should be not
ably greater than that of a clean orifice model.7

We are indebted to A. I. Yanson who settled the au
matic data recording in our lab, which enabled us to ca
out this work. Our thanks are to V. V. Demirski for makin
the quantitative analysis of alloys. I. K. Y. and N. L. B

a
n

e

FIG. 7. Schematic view of MCB junction: before touching~a!; first touch
starting from the low resistance contact~b!; successively forming the neck
while pulling the electrodes off~c and d!. Small stars denote the magnet
impurities.



. Y
th
al-

p
th

A.

A.

f

A.

an

an

to

bo-

ett.

k.

on,

r-

as

500 Low Temp. Phys. 24 (7), July 1998 Yanson et al.
appreciate the financial support of Soros Foundation. I. K
is grateful to Alexander von Humboldt Foundation and to
Physikalishes Institute of Karlsruhe University for hospit
ity in the frame of Humboldt-Forschungspreistra¨ger
Program.

The Kharkov authors are delighted to dedicate this pa
to Academician I. M. Dmitrenko on the occasion of his 70
birthday.

*E-mail: yanson@ilt.kharkov.ua

1I. K. Yanson, V. V. Fisun, R. Hesper, A. V. Khotkevich, J. M. Krans, J.
Mydosh, and J. M. van Ruitenbeek, Phys. Rev. Lett.74, 302 ~1995!.

2I. K. Yanson, V. V. Fisun, A. V. Khotkevich, R. Hesper, J. M. Krans, J.
Mydosh, and J. M. van Ruitenbeek, Fiz. Nizk. Temp20, 1062 ~1994!
@Low Temp. Phys.20, 836 ~1994!#.

3M. A. Blachly and N. Giordano, Phys. Rev. B51, 12537~1995!.
4G. Zarand and L. Udvardi, Phys. Rev. B54, 7606~1996!.
5A. G. M. Jansen, A. P. van Gelder, P. Wyder, and S. Stra¨ssler, J. Phys. F:
Metal Phys.11, L15-21 ~1981!.

6A. N. Omel’yanchuk and I. G. Tuluzov, Fiz. Nizk. Temp.11, 388 ~1985!
@Sov. J. Low Temp. Phys.11, 211 ~1985!#.

7A. V. Khotkevich, I. K. Yanson, inAtlas of Point Contact Spectra o
Electron-Phonon Interactions in Metals, Kluwer Academic, New York
~1995!.

8In the limit of dirty contactn50 @Ref. 7#.
9I. K. Yanson, V. V. Fisun, R. Hesper, A. V. Khotkevich, J. M. Krans, J.
Mydosh, N. van der Post, and J. M. van Ruitenbeek, Physica B218, 77
~1996!.

10N. van der Post, F. L. Mettes, J. A. Mydosh, J. M. van Ruitenbeek,
I. K. Yanson, Phys. Rev. B53, R476~1996!.

11N. van der Post, F. L. Mettes, J. A. Mydosh, J. M. van Ruitenbeek,
I. K. Yanson, Fiz. Nizk. Temp.22, 313 @Low Temp. Phys.22, 245
~1996!#.

12K. S. Ralls, D. C. Ralph, and R. A. Buhrman, Phys. Rev. B40, 11561
~1989!.
.
e

er

d

d

13The smearing of the first and second derivatives are equal
d(eV1)5@(2.45eV1)21(3.53kBT)2#1/2 and d(eV2)5@(1.72eV1)2

1(5.44kBT)2#1/2, respectively, according to7,27 V1 , T are the effective

values of modulation voltage and temperature, respectively.
14Equation cited in Ref. 9 reads: logY50.16(0.05)logX22.62(0.05).
15N. van der Post, Thesis, Leiden University~1997!.
16F. Roche, Diplomarbeit, Max-Planck-Institut fu¨r Festkörperforschung,

Centre National de la Recherche Scientifique, High Magnetic Field La
ratory, Grenoble.

17I. K. Yanson, Fiz. Nizk. Temp.9, 676 ~1983! @ Sov. J. Low Temp. Phys.
9, 343 ~1983!#.

18K. S. Ralls, R. A. Buhrman, and R. C. Tiberio, Appl. Phys. Lett.55, 2459
~1989!.

19N. Agraı̈t, J. G. Rodrigo, S. Vieira, Phys. Rev. B47, 12345~1993!.
20C. J. Muller, J. M. van Ruitenbeek, and L. J. de Jongh, Phys. Rev. L

69, 140 ~1992!.
21C. Untiedt, G. Rubio, S. Vieira, and N. Agraı¨t, Phys. Rev. B56, 2154

~1997!.
22A. M. Bratkovsky, A. P. Sutton, and T. N. Todorov, Phys. Rev. B52,

5036 ~1995!.
23I. F. Itskovich and R. I. Shekhter, Fiz. Nizk. Temp.11, 373 ~1985! @Sov.

J. Low Temp. Phys.11, 202 ~1985!#.
24Yu. A. Kolesnichenko, A. N. Omel’yanchuk, and I. G. Tuluzov, Fiz. Niz

Temp. 21, 851 ~1995! @Low Temp. Phys.21, 655 ~1995!#; Yu. A.
Kolesnichenko, A. N. Omelyanchouk, N. van der Post, and A. I. Yans
Czech. J. Phys.46, Suppl. S4, 2383~1996!, Proc. of the LT-21; Fiz. Nizk.
Temp.23, 1309~1997! @Low Temp. Phys.23, 983 ~1997!#.

25Yu. M. Gal’perin and V. I. Kozub, Fiz. Nizk. Temp.18, 494~1992! @ Sov.
J. Low Temp. Phys.18, 336 ~1992!#.

26J. A. Torres, J. I. Pascual, and J. J. Saenz, Phys. Rev. B49, 16581~1994!.
27A. M. Duif, Doctoraalscriptie, Nov. 1983, KUN Nijmegen, The Nethe

lands.

This article was published in English in the original Russian journal. It w
edited by R. T. Beyer.



LOW TEMPERATURE PHYSICS VOLUME 24, NUMBER 7 JULY 1998
New size effects in the conductivity of metal–insulator–metal tunnel junctions
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A simple theory that makes it possible to calculate the characteristics of metal–insulator–thin
metal film tunnel junctions is developed. Along with the well-known oscillations in the
voltage dependences(V) of tunneling conductance due to commensurate states, it predicts a
number of new effects. For example, even in the case of a symmetric tunnel junction
formed by the identical materials with a rectangular potential barrier, thes(V) curve displays a
noticeable asymmetry. The branch of thes(V) curve corresponding to tunneling to the thin-
film electrode contains a structure consisting of conductance dips. ©1998 American Institute of
Physics.@S1063-777X~98!00907-4#
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1. INTRODUCTION

The possibility of observing standing waves in th
metal films by using the electron tunneling method was p
dicted at the beginning of the sixties~‘‘golden age’’ of tun-
neling spectroscopy!,1 but their experimental studies wa
started only after a decade.2 The main factor hampering ex
perimental studies was the extremely high sensitivity of
effect to the thickness of the film under investigation, whi
makes its observation in real films difficult. Jaklevic a
Lambe2 took into account the fact that the thicknessL of a
polycrystalline film can change by only a discrete value m
tiple to the lattice constanta, and hence the film has th
so-called commensurate states with the transverse wave
tor component

kz5
S

Q

p

d
~1!

~S/Q is an irreducible fraction andd the barrier thickness!,
whose energiesEnz5(\pn)2/2mL2 are independent o
thickness. The size quantization effect has been observe
various materials~Pb, Au, Ag, Bi!3,4 by using the tunneling
method and can be regarded as a well studied phenome
It can be applied for determining the positions of some s
cial points of the band structure as well as the slope
energy–momentum curves«(k) near these points. The effec
of external agencies on the quantum size effect has also
studied. For example, the effect of high hydrostatic pressu
(;10 kbar) was studied in Refs. 5 and 6.

In all publications mentioned above, however, peculia
ties emerging in tunneling parameters were considered
finite bias voltagesV across the junction. The present r
search aims at studying the effect of standing waves on
behavior of the tunneling conductivitys(V)5dI/dV in a
wide voltage range~of the order of a volt!.
5011063-777X/98/24(7)/6/$15.00
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2. FORMULATION OF MODEL AND ANALYSIS
OF OBTAINED RESULTS

Let us consider a metal–insulator–thin metal film tunn
junction. We assume that both electrodes are made of
same metal with a quadratic energy–momentum relat
The Fermi energies of these electrodes have the same v
EF15EF25EF . We also assume that the first electrode ha
geometrical size such that its electron spectrum can be
garded as continuous, while the thicknessL of the second
electrode is small enough for the quantum size effect to
observed. Spatial quantization leads to a quasi-continu
energy spectrum. The energy band splits into tw
dimensional subbands

«n~ki!5
~\ki!

2

2m
1

~p\!2

2mL2 n2, n51,2,3..., ~2!

whereki is the wave vector component parallel to the tunn
barrier plane.

Since we are interested primarily in large-scale volta
effects, it is convenient to assume that the measuring t
peratureT is equal to zero. AtT50, the occupied states fo
the nth subband of the thin-film electrode lie in the circ
whose radius isk15A2m(EF2Enz)/\ ~all energies are mea
sured from the bottom of the conduction band of the init
electrode!. We supply the bias voltageV to the thin-film
electrode and calculate the contribution to the tunneling c
rent due to thenth subband. For a finite negative bias volta
V across the thin-film electrode, all the electrons who
states lie within the ring~see Fig. 1a! defined by the radiik1

and k25A2m(EF2Enz2eV)/\, can take part in tunneling
since all of them have a corresponding free state at the
posite bank of the junction. Dividing the areaS of the disk
by the two-dimensional density of states (2p)2, we obtain
the number of electronsN participating in tunneling. Multi-
plying this number by the chargee and the transverse
© 1998 American Institute of Physics
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velocity componentvnz , we obtain the contribution from
one subband to the current incident on the plane of the ju
tion:

Jin~Enz ,V!52evnzN52e
S

~2p!2 vnz5
m

p\2 e2Vvnz ,

eV,EF2Enz . ~3!

~The factor 2 in this formula appeared due to the inclusion
the electron spin.! In the one-band model, all the electron
lying in the plane perpendicular to thez-axis have the same

FIG. 1. ~a! Reciprocal space for a quantized film. The Fermi level of t
film is shifted upwards byV relative to that of an ordinary metal electrod
Electrons from thenth subband participating in tunneling lie in the ring o
area 2pmeV/\. ~b! Reciprocal space for an ordinary metal electrode w
the Fermi level shifted upwards by the bias voltageV relative to the Fermi
level of the film. For tunneling planes lying below the Fermi level (Enz

,EF) for V50, electrons participating in tunneling lie in the ring. F
tunneling planes lying above the Fermi level (Enz>EF) for V50, electrons
participating in tunneling lie on the disc.
c-

f

tunneling probabilityP(Enz ,V). Consequently, the calcula
tion of the tunneling current does not require integration:

J~Enz ,V!5
e2

p\2 VA2mEnzP~Enz ,V!,
~4!

eV,EF2Enz .

The tunneling probabilityP(Enz ,V) for a trapezoidal barrier
with heightsw1 andw2 and thicknessd appearing in~4! in
the WKB approximation has a relatively simple form7

P~Enz ,V!5expH 2
Ad

w22eV2w1

3@~w22eV2Enz!
3/22~w12Enz!

3/2#J , ~5!

where Ad54A2md/3\ ~for simplicity, we assume that the
effective electron massm in the forbidden band of the insu
lator and in the metallic electrodes is equal to the mass
free electron!. If eV.EF2Enz , it can easily be seen from
Fig. 1a that a further increase in voltage does not lead to
increase in the number of electrons participating in tunnel
since the subband is open completely, and all its electr
lying in the circle of the area 2pm(EF2Enz)/\

2 are already
involved in the tunneling process. The contribution to t
tunneling current from a solitary subband in this case
given by

Jn~V!5
e~EF2Enz!

p\2 A2mEnzP~Enz ,V!,

eV.EF2Enz . ~6!

The currentJn(V) for small bias voltages (eV,EF2Enz) is
determined by two factors: the increase in the number
electrons participating in tunneling and the change in
tunneling probabilityP(Enz ,V), while for large bias volt-
ages (eV.EF2Enz) its variation is associated only with th
latter factor.

Differentiating the total current

J~V!5(Enz,EF
J~Enz ,V!

with respect to voltageV, we obtain the following expres
sion for the tunneling conductivity:

s~V!5 (
Enz,EF

s~Enz ,V!, ~7!

where

s~Enz ,V!

55
e2

p\2 A2mEnz@P~Enz ,V!1VP8~Enz ,V!#,

eV,EF2Enz

e

p\2 A2mEnz~EF2Enz!P8~Enz ,V!,

eV.EF2Enz

. ~8!
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The derivativeP8(Enz ,V)5dP(Enz ,V)/dV of the tunneling
probability with respect to bias voltage can be calcula
analytically:

P8~Enz ,V!

5
eAd@~w223w12eV12Enz!Aw22eV2Enz12A~w12Enz!

3#

2~w22eV2w1!2

3P~Enz ,V!. ~9!

Thus, we can expect the emergence of kinks in the volt
dependence of the tunneling currentJ(V) at voltageseV
5EF2Enz and the emergence of steps in the differen
conductivitys(V).

Let us suppose that the bias voltage is supplied to
ordinary electrode. In spite of the fact that the energy sp
trum of the initial electrode is continuous, only those ele
trons which can find in the final electrode~i! allowed and~ii !
free states can take part in tunneling. In the case of spec
and elastic tunneling, the first condition indicates that all
tunneling electrons must lie on the planesEnz8 5Enz2eV.
These planes will be henceforth referred to as tunne
planes. The total tunneling current can obviously be de
mined by summing up the contributionsEnz8 from all the
tunneling planes of the initial electrode or, which is t
same, by carrying out summation over the correspond
subbandsEnz of the final electrode. Let us first consider tu
neling planes for which the subbandsEnz lie above the Fermi
level Enz.EF . In this case, the second condition is satisfi
automatically since all final states are unoccupied. Howe
for eV,Enz2EF , the current from thenth tunneling plane
is zero since this plane contains no occupied states. S
states are formed only wheneV exceeds the energy differ
ence between the tunneling plane under investigation and
Fermi surface. ForeV.Enz2EF , all these states in the re
ciprocal space lie on a disk~see Fig. 1b!, the transverse en
ergy component of this disk decreasing continuously w
voltage (Enz8 5Enz2eV), while the radiusk increases in pro-
portion toAEnz2EF1eV. The contribution to the total tun
neling current from the electrons under consideration is
fined by the formula

J1~Enz8 ,V!

5H 0, eV,Enz2EF

e

p\2 ~EF2Enz8 !P~V,Enz8 !A2mEnz8 , eV.Enz2EF
. ~10!

Let us consider the tunneling planes whose correspon
subbands lie below the Fermi level (Enz<EF). In this case,
free states are available on the opposite bank of the junc
only for electrons lying in a ring of radiik1 andk2 ~see Fig.
1b. As the bias voltage increases, the areaS of this ring
increases in proportion to the bias voltage (S52pmeV/\),
and the ring moves along thez-axis towards the bottom o
the band. ForeV.Enz2EF , the initial electrodes has n
states from which an electron could get in the subband un
investigation by tunneling. The contribution to the total tu
neling current made by a tunneling plane is given by
d
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J2~Enz8 ,V!5H e2

p\2 VA2mEnz8 P~V,Enz8 !, eV<Enz

0, eV.Enz

. ~11!

The total tunneling current is the sum of the contrib
tions from all the tunneling planes of individual subbands

J~V!5 (
Enz,EF

J1~Enz8 ,V!1 (
EF,Enz,EF1eV

J2~Enz8 ,V!. ~12!

Differentiating this expression with respect to voltage, w
obtain the formula

s~V!5 (
Enz,EF

s1~Enz,V!1 (
EF,Enz,EF1eV

s2~Enz,V!,

~13!

for tunneling conductivity, where

s1~V!

55
eA2m

p\2 H [(EF2Enz1eV)P18(V,En)1eP1(V,Enz)]

3AEnz2eV2
e

2

EF2Enz1eV

AEnz2eV
P1(V,Enz)J ,

eV<Enz2EF

0, eV.Enz2EF;

~14!

and

s2~V!

55
e2A2m

p\2 H @VP18~V,Enz!1P1~V,Enz!#

3AEnz2eV2
e

2

V

AEnz2eV
P1~V,Enz!J ,

eV<Enz

0, eV,Enz

. ~15!

The tunneling probabilityP1(V,Enz and its derivative
P18(V,Enz) in this case are defined by the formulas

P1~Enz ,V!5exp H 2
Ad

w22eV2w1

3@~w22Enz!
3/22~w12Enz1eV!3/2#J , ~16!

P18~V,Enz!5AdP1~V,Enz!eF A3 w12Enz1eV

2~w11eV2w2!

2
A~w12Enz1eV!32A~w22Enz!

3

~w11eV2w2!2 G . ~17!

Figure 2 shows the results of calculations of different
conductivity of a metal–insulator–thin metal film tunn
junction, which were made under the assumption that
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electrodes of the junction are made of a certain hypothet
metal with the Fermi energyEF54 eV and the lattice con
stanta52 Å. The film was assumed to be uniform over t
thicknessL equal to 1000 Å and the barrier was assumed
be rectangular of heightw54 eV and thicknessd511 Å.
The curve clearly displays singularities located strictly
expected regions, but having an oscillating rather than s
shape. This is in complete agreement with the assumpt
made by Daviset al.,4 according to which size quantizatio
effects are superimposed on the parabolic voltage de
dence of conductance, leading ultimately to oscillations
s(V). It should be noted, however, that the effects obser
for a positive bias voltage corresponding to electron tunn
ing from an ordinary metal to a quantum-size film are mu
stronger than those observed for a negative voltage. In
opinion, the noticeable~although nonmonotonic! asymmetry
of the curve should also be classified as an unexpected re

For a heterogeneous film whose thickness varies fr
470 to 530 Å according to the Gaussian lawL;L̄

3exp$2@a(L̄2L)/L̄#2%, wherea51/6 andL̄5500 Å, the re-
sults of similar calculations are presented by the solid cu
in Fig. 3. In complete agreement with what has been s
above, the welldefined oscillating structure was preser
only for the voltageeV5178 meV, which corresponds to th
value of S/Q53/2, and hencekz53p/(2d). The dashed
curve in Fig. 3 describes the tunneling conductivity calc
lated for the same barrier parameters, but under the assu
tion that both banks of the tunnel junction are bulk ele
trodes. A comparison of the two curves shows that
quantum size effect changes significantly the right branch
the s(V) curve, leaving its left branch corresponding to t
tunneling from the quantized film to the metal virtually u
changed. In the case of the tunneling from the metal to

FIG. 2. Differential conductivitys(V) of a tunnel junction~solid curve!
formed by a metal, insulator, and a quantized film of uniform thickn
L51000 Å. The electrodes are assumed to be made of a hypothetical m
with EF54 eV and the lattice constanta52 Å. The height of the rectangu
lar potential barrierw15w254 eV and the thicknessd511 Å.
al
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quantized film, the conductivity first decreases, pas
through a minimum, and only after this increases at a not
ably lower rate than in the left branch. As a result, the en
s(V) dependence, which remains parabolic in general, is
if shifted by a certain finite quantityVsh towards positive
voltages. Similar shift effects for thes(V) are well known
from experiments. For a long time, these effects were
plained, as in Ref. 8, by the potential barrier asymmetry
clusively. It was proved recently9,10 that this shift can also be
due to the difference in the values of Fermi energy for
electrodes of the tunnel junction provided that one of th
values is of the order of several volts, and the other va
does not exceed one volt. It should be noted that the p
posed model can readily give the values ofVsh of the order
of several hundreds millivolts, which are observed in so
cases and which can hardly be explained by the asymm
of the trapezoidal barrier.

Let us consider the reason behind the asymmetry of t
neling parameters of symmetric junctions with a rectangu
barrier and electrodes made of the same material. When
bias voltageV is supplied to the electrode with a quasico
tinuous spectrum, the main contribution to conductiv
comes from the subbands which lie below the Fermi ene
and have transverse energy componentsEnz belonging to the
interval EF.Enz.EF2eV. In the case of tunneling from
the ordinary electrode, the tunneling conductivity is det
mined by the subbands lying above the Fermi energy (EF

,Enz,EF2eV). For a quadratic energy–momentum rel
tion, the number of such subbands is smaller than in
previous case. It should be noted that their ratio depends

s
tal

FIG. 3. Differential conductivitys(V) of a tunnel junction~solid curve!
formed by a metal, insulator, and a heterogeneous quantized film wi
Gaussian distribution over thickness. The electrodes are assumed to be
of a hypothetical metal withEF54 eV and the lattice constanta52 Å. The

film thickness varies from 470 to 530 Å,L̄5500 Å, anda51/6. The height
of the rectangular potential barrierw15w254 eV and the thickness
d511 Å. The dashed curve corresponds to the differential conductivity
junction with ordinary metal electrodes, which was calculated for the sa
parameters.
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the Fermi energy, lattice constant, and the interval be
measured, but is generally independent on the thicknessL of
the quantized film. This means that, in the case of sim
increase in the thicknessL, our model does not indicate
limiting transition to the conventional metal–insulator–me
tunnel junction with nonquantized electrodes. Asymmetry
tunneling parameters will be preserved as long as the e
tron spectrum is continuous for one of the electrodes
discrete for the other electrode, which determines the co
tions for the applicability of the proposed model.

The model under consideration predicts one more t
of singularities associated with standing waves. It can
seen from formulas~14! and ~15! that s(V)→2` for a
negative potential supplied to the bulk electrode
eV→Enz . This value of voltage across the junction corr
sponds to the instant of departure from thenth tunneling
plane to the lower edge of the conduction band. Gener
speaking, the fact that the receding subband can be res
sible for a singularity in the tunneling conductivity is qui
unexpected since the contribution of lower subbands to
total tunneling current is negligibly small as a rule. The co
tribution of higher-lying subbands is dominating. It follow
from formulas~14! and~15!, however, that this contribution
in the immediate vicinity of the band edge tends to zero
rapidly that it overtakes the increase in all the remain
terms in formula~13!. The resulting dip in the conductivity
in this case must be extremely narrow. Indeed, accordin
numerical calculations, the width of the dip in tunnel co
ductivity shown in Fig. 3 varies from a few nanovolts~for
subbands lying at the bottom of the conduction band! to
several tens of microvolts~for subbands lying near the Ferm
level!. For this reason, the dips are not manifested in
s(V) dependence shown in Fig. 3, which is calculated wit
step of 1 mV. However, the singularities under investigat
start being manifested in the theoreticals(V) dependences
~Fig. 4! under more favorable conditions, e.g., upon a furt
decrease in the Fermi energy, in the form of random peak
resistance, which leaves a hope of their experimental ob
vation under certain experimental conditions.

CONCLUSION

Thus, the theory of a tunnel junction with size quantiz
tion in one of the electrodes that has been constructed b
predicts a number of previously unknown effects. The fi
effect is associated with the general behavior of differen
conductivitys(V) in a wide range of voltages. It was foun
that the branch of this curve corresponding to electron t
neling from the conventional to the quantized electrode
haves anomalously. At low voltages, the conductivity for t
polarity first decreases, passes through the minimum,
then starts increasing, this increase occurring at a lower
than for the opposite bias voltage across the junction. A
result, the entire dependence of conductivity on the bias v
age has in general the shape of a parabola shifted relativ
zero voltage. It should be noted in connection with the s
ond effect that resistive peaks are often observed in the
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neling conductivity of metal-oxide superconductors and c
be explained exclusively on the basis of their supercond
ing properties ~mainly as breaking of ‘‘superconductin
bridges’’!. Similar effects were also detected in the tunneli
to the normal state of metal oxides11 and have not been ex
plained so far. The proposed model is the only model p
dicting narrow dips in the conductivity of tunnel junction
with nonsuperconducting banks. In our opinion, the qua
periodic resistance peaks observed in tunneling parame
of metal-oxide compounds indicate the presence of qu
two-dimensional subbands with a small number of cha
carriers in their electron spectra.

This article was written to commemorate the 70th bi
anniversary of Academician I. M. Dmitrenko who indicate
the elegance of tunneling ‘‘probing’’ of solids even at th
beginning of the sixties to one of the authors~V.M.S.!.
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Phonon spectrum of Bi2223 for different carrier concentrations
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Tunneling experiments with Bi2223 reveal that a decrease in the carrier concentration shifts the
boundary frequencyv0 of the cuprate phonon spectrum towards higher frequencies from
v0598 mV(Tc5113 K) to v05106 mV(Tc5107 K) with an insignificant suppression of the
energy gap parameterD. © 1998 American Institute of Physics.@S1063-777X~98!01007-X#
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INTRODUCTION

The relation between the superconducting transition te
perature and charge carrier concentration in metal oxides
been established quite reliably.1 The relation betweenTc and
the phonon spectrum of cuprates has been studied less
prehensively. The establishment of such a relation can b
sound argument in an analysis of the high-Tc superconduc-
tivity mechanism. The carrier concentration in cuprates
be varied with the help of high pressure,2 which increases3

the ratio 2D/kTc and softens the high-frequency part of t
phonon spectrum.4,5 Such a behavior should be expected
the strong electron–phonon mechanism of superconduct
if the main contribution to the change in 2D/kTc comes from
high-frequency phonon modes.6 However, the mechanism o
the effect of pressure on the carrier concentration is q
complicated.2 Besides, pressure can only increase the car
concentration in cuprates. Consequently, the inverse prob
in which the carrier concentration decreases is of interes

Here we use the hardening of samples, in which
carrier concentration is changed by varying the oxygen in
d, the cationic stoichiometry of the remaining core of a me
oxide remaining unchanged. The obtained results lead
relation betweenTc(d) and the energy gapD and phonon
frequencies of Bi2223.

EXPERIMENT

We studied tunnel junctions of the break junction typ
prepared on ceramic plates of a Bi-based metal oxide of
2223 phase. The initial ceramics~95% of the
Bi1.6Pb0.4Sr1.8Ca2.2Cu3Ox phase withTc5110 K) was ob-
tained by solid-phase synthesis from chemically pure oxid
Ten 130.1312 mm plates with silver current and potenti
contacts obtained by high-temperature annealing were
pared in each experimental cycle. The methods of prepa
thin ceramic plates is described in detail in Ref. 5. The
sults of measurements proved that the superconducting
sition temperatures of plates prepared in the same batch
virtually identical. In order to obtain samples with oxyge
deficiency, half the plates in a batch were heated in a furn
5071063-777X/98/24(7)/3/$15.00
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to 845 °C and held there for 2 h. Then the plates were coo
rapidly ~approximately during 3 min! to room temperature
As a result of such a quenching, the sample resistance
creased, while the superconducting transition tempera
decreased~Fig. 1!. It is well known that the annealing tem
perature required for obtaining optimally doped~in oxygen!
ceramics of the Bi2223 phase under atmospheric pres
lies in the range 820– 830 °C.7 According to the data of
differential thermal analysis~DTA!,8 the oxygen concentra
tion decreases at higher annealing temperatures. The an
ing temperature chosen by us ensures oxygen removal. I
rapidly cool the sample, the oxygen concentration in it w
be frozen at a level below the optimal value, and the car
concentration decreases accordingly. This will lead to an
crease in the sample resistance and a decrease in the t
tion temperature. The method of variation of the numb
density of charge carriers used by us has considerable l
tations since the Bi2223 phase starts decomposing aT
.860 °C ~see, for example, Ref. 9!. For this reason, the
change in the superconducting transition temperature ass
ated with quenching is less than ten degrees. It should
noted that a change in the superconducting transition t
perature of the Bi2223 phase is also observed for an ex
oxygen concentration in the sample. For this purpose,
sample should be annealed under a high oxygen pressu
530 °C. The change inTc in this case amounts to approx
mately 10 K.10

Thus, the conditions of sample treatment used by us l
to a decrease in the concentrationp of hole carriers relative
to the equilibrium concentration. Consequently, the values
p should be determined from the left-hand side of the we
known Gaussian dependence1 Tc(p):

Tc~p!5Tc,max@1282.6~p20.16!2#.

In order to obtain a tunnel junction, a ceramic samp
was mounted on a flexible steel substrate and coated b
lacquer layer. The substrate was bent until a microcrack
formed in the ceramic, which was monitored by measur
the change in the sample resistance. The lacquer layer c
ing the ceramic plate not only protected the ceramic relia
© 1998 American Institute of Physics
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from degrading, but also fixed the parameters of the br
junction, which allowed us to obtain tunnel junctions stab
in resistance. For a small bias voltageV55 mV, the resis-
tance of the obtained tunnel junctions increased upon c
ing, reflecting the emergence of an energy gap. The rati
the values of the resistanceRT of the junction foreV,D and
eV.D in the temperature rangeT;4.2– 20 K was
RT(0)/RT(V.D);102. The resistance of the junctions i
the normal state wasRT;50– 100V.

Figure 2 shows the conductance of symmetric SIS ju
tions of the break junction type atT54.2 K. The values of
energy gaps were determined from the separation of

FIG. 1. Characteristics of the resistiveR(T) transition of the reference
sample 1 (Tc5113 K) and the annealed sample 2 (Tc5107 K) of Bi2223
metal oxide. The value ofTc was determined from the middle of theR(T)
transition.

FIG. 2. Reflection of the energy gap in the tunneling conductance
Bi2223–I–Bi2223 junctions atT54.2 K for sample 1 (Tc5113 K) and
sample 2 (Tc5107 K).
k

l-
of

-

e

peaks on thedI/dV curves. The spread in the values of e
ergy gaps obtained for ceramics with equilibrium charge c
rier concentration was small, and the mean value ofD was
D53760.5 meV. The spread in the value ofD for ceramics
with a deficiency of charge carriers was much largerD
533.562.5 meV). The increase in the spread in the valu
of parameterD in oxygen-depleted samples is of univers
nature. Such a spread was observed in the spectra of b
junctions11 as well as in the characteristics of these me
oxides obtained with the help of scanning tunneling mic
scope~STM!.12 This spread is probably associated with loc
fluctuations of carrier concentration emerging at a tempe
ture below a certain temperatureT* of the junction.13,14 A
certain decrease in the energy gap parameter upon a dec
in the carrier concentration is observed in our case even if
take into account the spread in the measured value ofD, the
ratio 2D/kTc decreasing thereby from 7.6 to 7.2. It wa
noted by several authors11–14 that the parameterd for under-
doping does not change~or even increases! upon a decrease
in the hole concentrationp. Among other things, such a
behavior can be due to strong energy gap anisotropy in
muth cuprates. Strongly directional tunneling effect realiz
in an acute cone angle makes it possible to determine
parameterD only in one of crystallographic directions. Fo
this reason, the energy gapD observed in tunnel junctions i
not the maximum gapDmax as a rule. At the same time, th
increase in the gap width noted in Refs. 11 and 12 does
exceedDmax for the equilibrium state of a bismuth cuprate4

The characteristics of energy gaps for the reference samp
as well as for the hardened sample 2 were blurred rap
upon heating~see Fig. 2!. For this reason, it is impossible t
establish the extent to which theD(T) dependence corre
sponds to the BCS theory. The absence of a clearly m
festedD(T) dependence for tunnel samples was noted
some authors and is attributed at present to the emergen
a ‘‘pseudogap.’’13,14 The singularity~dip! in the tunneling
conductance of junctions foreV'3D is apparently also con
nected with the emergence of a ‘‘pseudogap’’~see Fig. 2!.

All tunnel junctions under investigation displayed
zero-point anomaly~peak! in conductance, which vanishe
upon a transition of the banks to the normal state. The a
plitude of this anomaly increased linearly upon cooling in t
entire temperature rangeT54.2– 100 K. The magnetic field
up to 3 kOe did not produce any noticeable effect on
anomaly.

The minima in the tunnel conductance derivati
d2I /dV2 ~Fig. 3! for bias voltages satisfying the relatio
eVi52D1\v i correspond to phonons of frequenciesv i in
the cuprate. The spectroscopic nature of these singularitie
confirmed by the constancy of their position on the ene
scale for the entire series of the junctions under investiga
as well as by the independence of their position of tempe
ture in the range ofT54.2– 77 K. It should be noted tha
different samples from the same batch can display amplit
variations in the tunneling spectrum, but the position of s
gularities on the energy scale~measured from the gap! re-
mains unchanged in this case. It can be seen that, for cer
samples with different concentrationsp of holes, the minima
in the initial region of the spectra ofd2I /dV2 virtually coin-

f
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509Low Temp. Phys. 24 (7), July 1998 Svistunov et al.
cide, The strongest difference is observed in the hi
frequency region, in which the shift in the boundary fr
quency of the phonon spectrum for an underdoped sam
towards higher energies amounts to 8 mV.

CONCLUSIONS

The experimental results obtained by us indicate t
high-frequency phonons associated with optical oscillati
of oxygen atoms and their surroundings in the Bi2223
prate experience the most significant variation upon a cha
in the carrier concentration. Acoustic and optical modes
the phonon spectrum with energies\v,40 meV virtually
remain unshifted, which is in accord with the known data
neutron and Raman spectroscopy.2,15 The decrease in the
hole concentration in cuprates in neutron diffracti
experiments16–19 was accompanied by an increase in the
ergy of high-frequency modes in the phonon spectrum
similar effect was also observed by us here: a decrease iTc

upon a decrease in the charge carrier concentration is ac
panied by an increase in the energy corresponding to u
frequencies of the phonon spectrum. An additional mode
pears in the boundary region of the spectrum~Fig. 3!. A
similar behavior of this mode was also noted in tunnel
experiments under pressure.5 The bifurcation effect is prob-
ably of quite universal nature: the bifurcation of the hig

FIG. 3. Phonon spectra in characteristics of tunnel break junctionsT
54.2 K). Curve1 corresponds to the optimal concentration of charge c
riers for Tc5113 K, curve2 describes the sample with oxygen deficien
andTc5107 K; v0 is the boundary frequency of the spectrum subjected
considerable variations upon a change in the charge carrier concentra
-

le

t
s
-
ge
f

f

-
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frequency mode in YBCO associated with vibrations of a
cal oxygen O4 was observed by using optical spectrosc
for an oxygen-deficient composition YBa2Cu3O6.9.20

The authors are grateful to N. A. Chernoplekov for n
merous fruitful discussions on the electron–phonon inter
tion in high-temperature superconductors.

This research was supported by a grant from the Te
communication Advancement Organization of Japan.

This article was written to commemorate the 70th bi
anniversary of Academician I. M. Dmitrenko. One of th
authors ~V.M.S.! warmly recalls the breathtaking yea
1962–65 during which he worked in the department hea
by Acad. Dmitrenko who guided us to the fascinating wo
of superconductivity through an elegant, and yet enigma
tunnel.
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On spin wave scattering by a soliton in a two-dimensional isotropic ferromagnet
B. A. Ivanov and V. M. Muravyov
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Scattering of magnons by a two-dimensional topological Belavin–Polyakov soliton in an
isotropic ferromagnet is studied analytically. It is shown that the problem of spin wave scattering
by a soliton with an arbitrary value of the topological chargen can be analyzed completely
in the longwave limit. General principles of the soliton–magnon interaction are studied, especially
the relation between scattering and the behavior of the mode as the magnon wave vectork
approaches zero. It is found that the scattering intensity has its maximum value for partial waves
with the azimuthal numberm50,61,62 (m5n21). Although the mode with the maximum
scattering always passes to a local mode fork→0 according to the general law, this fact is not
crucial for the scattering intensity. In particular, the scattering intensity is stronger for a
partial wave withm521 for n51 ~there is no local mode fork→0) than for a partial wave
with m511 ~a local mode exists fork→0). © 1998 American Institute of Physics.
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1. It is well known that solitons play a special role in th
thermodynamics of one- and two-dimensional (1D and 2D)
nonlinear models of ordered media, including magnets
systematic analysis of the thermodynamic quantities requ
a knowledge not only of the structure of solitons, but also
the properties of magnon modes in the presence of a sol
Local modes~LM !, especially the zeroth modes, are qu
important for constructing the soliton thermodynamics in
1D case~see Refs. 1–3!. For example, these modes dete
mine the temperature dependence of the density of 1D soli-
tons in soliton phenomenology.4 Resonance in LM can be
observed directly in experiments.5,6 A number of exact solu-
tions are known for 1D magnets, and solitons as well a
magnon modes can be described against their backgrou

The situation is much more complicated in the tw
dimensional case. As a rule, an analysis of solitons was
ried out by using numerical methods. Studies of magn
modes against the background of soliton modes have
just begun. In this connection, it becomes especially imp
tant to analyze models for which analytical results can
obtained and general laws governing the soliton–magnon
teraction can be determined.

For physically interesting models of 2D magnets, we are
aware of only the exact solution obtained by Belavin a
Polyakov7 to describe a topological soliton in an isotrop
ferromagnet~FM! whose energy can be presented in t
form

W5A5E ~¹m!2dxdy, ~1!

whereA is the exchange constant andm5M /M0 is a unit
vector defining the direction of the magnetizationM (M0

5uM u). In view of the gauge invariance of the model and t
5101063-777X/98/24(7)/4/$15.00
A
es
f
n.

e

.

r-
n
ly
r-
e
n-

d

existence of self-duality equations, general staticN-soliton
solutions are also known for this model~see Refs. 7, 8 for
details!. The magnon spectrum in the presence of this soli
was studied in Ref. 9, where it was shown that a soliton w
a topological chargen possesses 2n local magnon modes
with zero frequency. These modes are limiting points of p
tial cylindrical waves with an azimuthal number2n,m
<n for k→0.

We shall show that for the Landau–Lifshitz equatio
~LLE! describing an FM with energy~1!, the problem of
scattering of a spin wave by a soliton can be analyzed c
pletely in the long-wave approximation.

2. In order to analyze small oscillations of magnetiz
tion, it is convenient to introduce a rotating system of u
vectors e1 ,e2 ,e3 , where e35e2 cosu1sinu(ex cosw
1ey sinw) coincides with m in a soliton, and e25
2ex sinw1ey cosw, e15@e13e3#. Here,u andw are angu-
lar variables form. The soliton solution can be represent
in an explicit form as follows:7 tan(u/2)5(R/r ) unu, w5nx
1w0 , wheren561,62,... is the topological charge,r and
x are polar coordinates in the FM plane, while the solit
radius R and w0 are arbitrary parameters. Linearizing th
LLE in m1 andm2 , we can represent the equation for sp
waves against a soliton background in the form of a tw
dimensional Schro¨dinger equation for the quantityc5m1

1 im2 :

S 2¹21
n2

r 2 cos 2u Dc22i cosu
n

r 2

]c

]x
1 i

2A

gM0

]c

]t
50,

~2!

whereg is the gyromagnetic ratio. The solution of this equ
tion has the form of a superposition of cylindrical waves:
© 1998 American Institute of Physics
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c5 (
m52`

m5`

Fm~r !exp~ imx2 ivt !, ~3!

where m is the azimuthal quantum number. The functi
Fm(r ) satisfies an equation having the form of a rad
Schrödinger equation:

2
1

r

d

dr S r
d

dr DFm1
1

r 2 @m212mn cosu1n2 cos 2u#

5Fm5k2Fm ,

k25
vM0

2gA
. ~4!

The ‘‘potential’’ in this equation is not low, but it can b
analyzed quite comprehensively in the longwave limitkR
!1. For this purpose, we use the fact that forv50 Eq. ~4!
possesses an exact solution:9

Fm
~0!5@ tan~u/2!#m/n sin u5~R/r !sm sin u,

s5n/unu. ~5!

The existence of these exact solitons is associated
the restoration of the gauge invariance forv→0 and the
validity of the self-duality equation characteristic of a sta
2D LLE ~see Ref. 9 for a detailed analysis of this problem!.

An analysis of Eq.~5! reveals that forr→0 the solution
Fm

(0)(r )}(r /R)n2m ~for definiteness, we shall discuss in th
following the casen.0; to analyze solitons withn,0, it is
sufficient to replacem by 2m). This means that form<n,
this solution does not have a singularity forr→0, and can be
used for analyzing magnon modes in a soliton (r<R). Away
from the soliton (r→`), Fm

(0)}(r /R)2(n1m). For n.2m,
the functionFm

(0) decreases as we go away from the solito
This at once leads to the existence of 2unu zeroth modes with
2unu,m<unu localized in the vicinity of the soliton.9

The physical meaning of two such modes is obvious:
m51, the function F1

(0)}u08 and describes translationa
modes, i.e., the displacement of a soliton as a whole.
casem50 corresponds to the variation of free soliton para
etersw0 and R. As regards the remaining LM withv50,
which may exist forn.1, their emergence is associated w
a high latent symmetry of the static LLE in model~1!, i.e.,
with the fact that the general Belavin–Polyakov soluti
with the topological chargen depends on 2n free parameters
~see Refs. 1–3, 8!.

For m,2n, the functionFm
(0)(r ) decreases asr→`.

Hence it can be used only as an asymptotic solution for
gionsr<R. The casem52n is special sinceF2n

(0)→const as
r→`. It will be proved below that a singularity in the mag
non scattering by a soliton exists in this case also.

For m.n, the solutionFm
(0) has a singularity at zero an

is not applicable for describing regions in the vicinity of th
soliton center. In this case, we can use the second line
independent solution~4! which can be easily represented f
k50 in the form
l

th

.

r

e
-

-

rly

Fm
~1!5sin uS r

RD mF 1

m1n S r

RD 2n

1
2

m
1

1

m2n S R

r D 2nG .
~6!

Thus, forv50 ~or k50), we can construct at least on
solution of the problem~4! that does not have a singularity a
zero. For small but finite values of frequency, this soluti
can be used as an approximate solution in the regior
!1/k, when the termck2 in ~4! is small in comparison with
terms containingd2c/dr2 or c/r 2. If, however, r is quite
large ~to be more precise,r @R), another simplification is
possible: forr @R, the angleu→0 and ~4! is transformed
into the standard Bessel equation whose solution is w
known:

Fm5Jn~kr !1sn~k!Nn~kr !, n5m1n, ~7!

whereJn(x) and Nn(x) are the Bessel and Neumann fun
tions of the integral indexn ~the notationn5m1n will be
used at later stages also!.

3. The quantitysn(k) can be associated easily with th
magnon scattering matrix. For this purpose, we must c
sider the asymptotic form of solution~7! at extremely large
distances from the soliton~for r @max$(1/k),R%) and com-
pare it with the solution of the problem on free movement
magnons, i.e., on magnon states without a vortex.10 To com-
pare the solutions of this problem, it is convenient to intr
duce the variablec̃5c exp(inx2ivt) which is transformed
for r→` into (mx1 imy)exp(2ivt) and describes a spin
wave against the background of the homogeneous s
miez . Taking formulas~3! and ~7! into consideration, we
can write the asymptotic form of the solution in terms of th
variable forr @R as follows:

c̃5 (
n52`

n5`

Cn@Jn~kr !1sn~k!Nn~kr !#exp~ inx2 ivt !,

~8!

whereCn are arbitrary constants. Obviously, this express
for free motion must be valid for allr including r 50. In
other words, free motion corresponds tosn(k)50. In this
case, for an appropriate choice of the constantCn , we obtain
the wave function for free motionc;exp(ik•r ). On the
other hand, forsn(k)Þ0, the asymptotic form ofc for r
@1/k can be represented as

c̃5 (
n52`

n5`

Cn@e2 ikr1Sn~k!eikr #exp~ inx2 ivt !, ~9!

where

Sn~k!5
12 isn~k!

11 isn~k!
. ~10!

The quantitySn(k) has the meaning of an element of th
S-matrix for scattering of a partial wave with a givenn.

4. Let us now calculate the scattering matrix in the lon
wave limit (k@1/R). It was mentioned above that the fun
tions ~5! or ~6! describe correctly the solution in the regio
r !1/k. In other words, the solution in this region can b
sought for small but finite values ofk in the form
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Fm~r !5Fm
~0.1!~r !@11a~r !#, ~11!

whereFm
(0,1) is one of the functions~5! or ~6!, a(r )!1. Sub-

stituting~11! into ~4! and retaining terms withk2Fm
(0) or a(r )

only, we obtain fora(r ) an inhomogeneous equation

F ~0!Fd2a

dr2 1
1

r

da

dr G12
da

dr

dF~0!

dr
5k2F ~0!. ~12!

The solution of this equation without a singularity
zero can be presented in the form

a~r !52k2E
0

r du

u@F ~0!~u!#2 E
0

u

v@F ~0!~v !#2dv. ~13!

As r→0, the functiona(r )→0. Hence the above correc
tion is obviously small for small values ofr (kr!1, but
perhapsr;R). For larger , this function increases and fo
quite larger , whenkr;1, the quantitya(r )Fm

(0) cannot be
treated as a small correction toFm

(0) , and Eq.~12! is no
longer applicable. However, this region is not significant
our problem, i.e., for determining the scattering amplitu
for kR!1. Indeed, over a wide range of values ofr , for R
!r !1/k, we can use the asymptotic form~8! on one hand,
assuming on the other hand thata(r )!1, and describea(r )
with the help of Eq.~13!. Moreover, we can use for cylin
drical functions in this region their asymptotic forms f
small arguments z5kr!1, Jn(z)5(1/n!)(z/2)nNn(z)5
2@(n21)!/p#(2/z)n, which simplifies the specific task o
computingsn(k).

5. Let us discuss some specific results. For a tran
tional mode (m51 or n5n11), a(r ) can be calculated
exactly and the required asymptotic solution can be rep
sented in the form

Fm5S R

r D sin uF12
~kR!2

4n S r

RD 2

2
~kR!2

4n~n11! S r

RD n11G .
It can easily be seen that, forR!r !1/k, the second

term in the brackets is small in comparison with the oth
two terms. Forr @R, we can write

Fm5S R

r D n11

2
~kR!2

4n~n11! S r

RD n11

. ~14!

Using the asymptotic form of the cylindrical function
Jn(z),Nn(z), we find that

s~k!5
p

n! ~n21!! S kR

2 D 2n

~15!

for m51, and the scattering intensity decreases fork→0
even more rapidly than for solitons with a large topologic
charge.

We can also carry out overall computations for anyn
andn51, i.e., form52n11. In this case, computations a
more cumbersome, and we shall directly present the resu
calculations:

s~k!5
p

2 ln~1/kR!
. ~16!

An analysis shows that for this mode the intensity
scattering of magnons is maximum, althoughs(k)→0 as
r
e

a-

e-

r

l

of

f

k→0, andds(k)/dk diverges for smallk. Such a behavior
was detected during a numerical analysis of magnon sca
ing for m50 by a magnetic vortex in an easy-plan
antiferromagnet.10

For other values ofn andm, it is not possible to obtain
general formulas fors(k). However, this problem can b
solved for any specific values ofn andm after simple~albeit
cumbersome at times! calculations.

We present below the results of calculations forn
51,2,3 and for certain values ofm which cannot be de-
scribed by general formulas~15! and ~16!.

For n51 andm521,22, we can write

s21~k!5p~kR!2 ln@1/~kR!#,

s22~k!5~p/4!~kR!2$12~kR!2 ln@1/~kR!#%.

In the region of existence of quasilocal modes (2n,m
<n), we can restore the general dependence

sm~k!}~kR!2~n1m21!. ~17!

In particular, for a soliton withn52, the values ofsm

for certain values ofm are defined by formulass0(k)
5(kR)2, s2(k)5(1/9)(kR/2)6. For n53, we obtain

s21~k!535/2~kR/4!2, s0~k!5~35/2/8!~kR/2!4,

s2~k!52331/2~kR/4!8.

Together with formulas~15! and ~16!, which give the
values ofs(k) for m51 and anyn, as well as the values o
s(k) for m50,21,22 andn51,2,3, these results also lea
to certain general conclusions concerning the nature of m
non scattering by a soliton.

It was found that the scattering intensity is not maximu
for partial waves with the smallestm561,0 ~this assump-
tion is also valid for magnetic vortices10,11!.

The fact that the limiting pointk50 is a local mode for
partial waves with a givenm is not critical for scattering
intensity. In particular, for a soliton withn51, the scattering
intensity of a partial wave withm521 ~there is no local
mode fork→0) is stronger than withm511 ~a local mode
exists fork→0). The only regularity is that the mode wit
the maximum scattering always passes into a local mode
k→0.

The third singularity lies in that for Belavin–Polyako
solitons there are no simple laws describing the connec
of scattering intensities form51umu and m52umu. For
magnon scattering by vortices in easy-plane magnets, s
regularities were found by numerical analysis:sm(k)
5s2m(k) for antiferromagnets,10 while for ferromagnets,
the values ofsm(k) and s2m(k) are obtained from each
other by reversing the sign of the magnon frequency.11

The authors are indebted to D. D. Sheka for help a
discussions, and to V. G. Bar’yakhtar, A. K. Kolezhuk, F.
Mertens, H. J. Schnitzer, and G. M. Wysin for a discuss
of the results. This research was partially supported b
grant ~No. 2.4./27! from the Ukrainian State Foundation fo
Fundamental Research.
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We are pleased to dedicate this publication to the jub
of Prof. A. M. Kosevich, the author of fundamental works
the theory of magnetic solitons.
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Giant oscillations of the sound attenuation decrement in organic conductors
in a magnetic field

O. V. Kirichenko and V. G. Peschansky

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of the Ukraine, 310164 Kharkov, Ukraine*
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Attenuation of sound wave energy in low-dimensional organic conductors with several charge
carrier groups is investigated theoretically. It is shown that the existence of a Fermi
surface sheet in the form of a corrugated plane affects considerably the behavior of the sound
attenuation rateG in a magnetic fieldH. Giant oscillations ofG as a function of 1/H,
which are not associated with quantization of charge carrier energy, are predicted. Oscillations
with a period dependent on the wavelength of sound appear in a quantizing magnetic
field in addition to the oscillations described by the Lifshitz–Kosevich formula. ©1998
American Institute of Physics.@S1063-777X~98!01207-9#
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Many organic conductors have a metal type conduc
ity, and their electron energy spectrum can be studied w
the help of methods developed for metals. Independentl
Onsager,1 Lifshitz and Kosevich2 formulated the inverse
problem of reconstructing the electron energy spectrum
studying experimentally the magnetic susceptibility of m
als at low temperatures in a strong magnetic field. Sub
quently, other methods were also proposed for reconstruc
the main characteristic of the spectrum~Fermi surface! by
experimental investigation of galvanomagnetic effects3 and
propagation of electromagnetic and acoustic waves in a m
netic field.4–7

Organic conductors have a layered or filamental str
ture with a sharp anisotropy of the electrical conductiv
resulting apparently from the sharp anisotropy of velocit
at the Fermi surface. This considerably narrows the clas
possible types of Fermi surface. The specific nature of lo
dimensional electron energy spectrum leads to a large n
ber of diverse effects which are not observed in ordin
metals. This simplifies considerably the solution of the
verse problem of reconstructing the energy spectrum
charge carriers.

From topological point of view, the simplest model
the Fermi surface of a quasi-two-dimensional conductor
weakly corrugated cylinder, which is in good accord with t
results of experimental studies of galvanomagnetic phen
ena and Shubnikov–de Haas oscillations in some salt
tetrathiafulvalene.8–13 However, the replacement of haloge
in them by a more sophisticated complex of the ty
MHg~SCN!4 where M is one of the metals from the grou
~K, Rb, Tl!, leads to a quite complicated dependence of
sistance on the magnetic field. According to the band ca
lations of the electron energy spectrum, the Fermi surfac
the salts~BEDT-TTF!2MHg~SCN!4 consists of a weakly cor
rugated cylinder and weakly corrugated planes.14–15 The au-
thenticity of such a version for the spectrum of charge ca
ers can be verified by studying the attenuation of acou
waves in such conductors.
5141063-777X/98/24(7)/4/$15.00
-
th
of

y
-
e-
ng

g-

-

s
of
-
-

y
-
f

a

-
of

-
u-
of

i-
ic

Let us consider the propagation of acoustic waves
layered conductors placed in a magnetic field, whose e
tron energy spectrum consists of two bands with an ener
momentum relation

«~p!5 (
n50

`

«n~px ,py!cosS anpz

\ D ; ~1!

«8~p!5 (
n,m,q

`

AnmqcosS a1npx

\ D cosS a2mpy

\ D cosS aqpz

\ D .

~2!

The coefficients of cosines in formulas~1! and ~2! de-
crease rapidly with increasing indices over which summat
is carried out, and hence the maximum value of the funct
«1(px ,py) on the Fermi surface«(p)5«F , which is equal to
max«1(px ,py)5h«F , is much smaller than«F . The coeffi-
cients A0105h1U and A0015hU are much smaller than
A1005U, while all the remaining coefficients in~2! except
A000 are assumed to be equal to zero in specific calculatio
Such a choice of the dispersion relation for charge carr
takes into account a weak dependence of the charge ca
energy on the projection of the momentumpz5n•p onto the
normal n to the layers and the preferred motion of char
carriers with a quasi-one-dimensional spectrum~2! along the
x-axis. In many layered organic conductors, the normal
the layers does not coincide with the symmetry axis of
crystal, and the arguments of cosines in formulas~1! and~2!
must be supplemented by a phase taking into account
deviation of the axespx , py , pz from the symmetry axes o
the crystal. However, the results obtained by us did
change significantly when these phases or terms in form
~2! with higher indices of summation were taken into co
sideration.

The acoustic wave attenuation decrement in a condu
can be determined by solving the equation in the theory
elasticity
© 1998 American Institute of Physics
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2v2rui5l i j lm

]ulm

]xj
1Fi , ~3!

wherer andl i j lm are the density and elastic moduli tensor
the crystal andulm is the deformation tensor. The forceF
acts on the crystal lattice from the side of the electron sys
excited by a spin wave which we shall assume to be mo
chromatic with a frequencyv.

The electric fieldE excited by an acoustic wave shou
be sought from the Maxwell equation

curl curl E5
4p iv

c2 j1S v

c D 2

E ~4!

and the condition of electroneutrality of the conductor, wh
is equivalent to the condition of continuity of the electr
current:

div j50. ~5!

The current densityj and forceF are determined by
solving the kinetic equation for the distribution functio
f 0$«(p)2p•u̇%2c] f 0 /]«, which can be presented in linea
approximation in weak perturbation of the electron system
an acoustic wave in the form

v
]c

]r
1

]c

]t
1S 1

t
2 iv D5g, ~6!

where e and v are the electron charge and velocity,t the
duration of its motion in a magnetic field,c the velocity of
light, andg52 ivL i j (p)ui j 1eẼ•v.

The collision integral, which vanishes as a result of t
substitution of the equilibrium Fermi functionf 0$«(p)
2p•u̇% in a reference frame moving with the ion velocityu̇,
is taken into account in the approximation of the mean f
time t of charge carriers, i.e., in the form of the operator
multiplication of the nonequilibrium correction2c] f 0 /]«
to the Fermi distribution functionf 0 by the collision fre-
quency 1/t.

At quite low temperatures, when the temperature bl
ring of the Fermi distribution function of charge carriers
much smaller than the separation between their quant
levels in a magnetic field\V, the response of the electro
system to the external perturbation should be sought by s
ing the quantum kinetic equation16–20 or by using Kubo’s
method21 (V5eH/m* c is the rotational frequency of a
electron around a closed orbit, andm* is its cyclotron effec-
tive mass!. We shall assume that the energy spectrum
charge carriers is not too close to two-dimensional, so th

\V/«F!h!1 ~7!

and the Fermi surface contains many electron states
quantized momentum projectionpH in the direction of the
magnetic field. In this case, the semiclassical description
nonequilibrium processes is valid for the electron syste
and the use of Boltzmann’s kinetic equation~6! is fully jus-
tified for determining the acoustoelectron coefficients.

Perturbation of the conduction electrons of an acou
wave is associated not only with the action of the elec
field
f

m
o-

f

e

e
f

-

ed

v-

f
t

th

of
,

ic
c

Ẽ5E2
iv

c
@u3H#1

muv2

e
~8!

on them in the reference frame associated with the vibra
lattice, but also with renormalization of the energy spectr
under the action of crystal deformation

d«5l i j ~p!ui j . ~9!

The tensor components of the deformation poten
l i j (p) appear in the kinetic equation in which the number
charge carriers is preserved, i.e., in the form

L ik~p!5l ik~p!2^l ik~p!&/^1&, ~10!

where angle brackets denote averaging over the Fermi
face andm is the free electron mass.

Using the solution of the kinetic equation~6!, we obtain
a relation connecting the current density

j i52
2

~2p\!3 E ev ic
] f 0

]«
d3p[^ev ic& ~11!

and the force

Fi5
1

c
@ j3H# i1

m

e
iv j i1

]

]xk
^L ikc& ~12!

with the displacementu of ions and the electric fieldẼ.
Let an acoustic wave propagate in the plane of lay

along thex-axis.
In Fourier representation, Eqs.~3!–~5! can be reduced to

a system of linear algebraic equations for Fourier com
nents of the displacementu(k) of ions and the electric field
Ẽ(k). The condition for the existence of a nontrivial solutio
of this system of equations~equality of its determinant to
zero! is the energy-momentum relation. The imaginary pa
of the roots of this equation define the decrement of atte
ation of an acoustic wave and an electromagnetic wave g
erated by it, while the real parts of these roots describe re
malizations of the wave velocities.

The solution of the kinetic equation in Fourier represe
tation has the form

c5E
2`

t

dt8g~ t8!exp$ ik@x~ t8!2x~ t !#1n~ t82t !%5R̂g.

~13!

Formula ~13! where n51/t2 iv, g(t)5vL j i (t)kiuj (k)
1ev(t)•Ẽ(k) can be used to present the fluxes characte
ing the response of the electron system to the perturba
caused by sound in the following form:

j i~k!5s i j ~k!Ẽj~k!1ai j ~k!kvuj~k!, ~14!

^L ixc~k!&5bi j ~k!Ẽj~k!1ci j ~k!kvuj~k!, ~15!

where the Fourier transforms of the electrical conductiv
s i j (k) and acoustoelectronic tensorsai j (k), bi j (k), and
ci j (k) are described by the expressions

s i j ~k!5^e2v i R̂v j&; ai j ~k!5^ev i R̂L jx&,
~16!

bi j ~k!5^eL ixR̂v j&; ci j ~k!5^L ixR̂L jx&.
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The attenuation of acoustic waves is described by a
of the dispersion equation that is close tov/s. Presenting it
in the form

k5
v

s
1k1 ~17!

and confining ourselves in the solution of the dispers
equation just to the main approximation in the small quan
k1 , we arrive at the following expression for the dampi
decrementG of a longitudinal acoustic wave:

G5Im k15Im
ik2

2rs

1

~12js̃yy!
H j~ ãyxb̃xy2 c̃xxs̃yy!

1 c̃xx2 i ~ ãyx2b̃xy!
Hz

kc
1s̃yy

Hz
2

k2c2J U
k5v/s

. ~18!

Here,

j5
4p iv

k2c22v2 , rs25lxxxx,

s̃ab5sab2
saxsxb

sxx
, ãa j5aa j2

ax jsax

sxx
,

b̃ib5bib2
bixsxb

sxx
, c̃i j 5ci j 2

bixax j

sxx
, a,b5y,z.

~19!

If the magnetic fieldH5(0,H sinu,H cosu) does not lie
in the plane of the layers, i.e., ifu is not equal top/2, the
charge carriers with the quasi-two-dimensional energ
momentum relation~1! move along a closed orbit in a mag
nd
-

to
r

fa
u
e

or
si
r

sc
ow
ot

n
y

–

netic field. For magnetic fields in which the electron orb
radiusr exceeds considerably the acoustic wavelength, bu
much smaller than the electron mean free pathl , the contri-
butions from this group of electrons to the electrical cond
tivity tensor components and all acoustoelectronic coe
cients oscillate upon a variation of the inverse magnetic fi
~Pippard effect5!. If krh!1, the oscillations are formed
practically by all charge carriers with a quasi-tw
dimensional energy spectrum and the oscillation amplitud
comparable with the part of the acoustoelectronic coe
cients varying smoothly with the magnetic field.

Conduction electrons with a quasi-one-dimensional
ergy spectrum respond weakly to the presence of a magn
field, but their presence may considerably affect the dep
dence of the decrement of sound attenuation on magn
field for 1!kr!kl.

If the acoustic wave propagates along thex-axis, the
asymptotic behavior of the decrement of sound attenua
remains the same as in the case of just one group of ch
carriers with a quasi-two-dimensional energy spectrum,
the sound attenuation decrement experiences resonanc
cillations upon a variation of the inverse magnetic field.

If the energy–momentum relation for quasi-tw
dimensional conduction electrons has the form

«~p!5
px

21py
2

m
1h

\

a
v0 cosS apz

\ D , v05
2«F

m
, ~20!

and a strong magnetic field is directed at right angles to
layers along thez-axis, the following relation holds for the
sound attenuation decrement for indefinitely small values
the parameterh1

2:
G5
Nmvv0

4prs2 Vt ReF ~pg!21~kRh!2/21 im@11sin~2kr0!#

12sin~2kr0!1~pg!2/21~kRh!2/211/2~3/4kr0!21 im G
k5v/s

, ~21!
he

nal
s of
the

tor
tions
wherem5pv0c2v/2s3v0
2Vt, v0 is the frequency of plasma

oscillations,r 05v0 /V; V5eH/mc; R52\c/eHa; and N
is the number density of charge carriers.

If h1 differs considerably from zero, the numerator a
denominator of formula~21! acquire additional terms pro
portional toh1

2.
However, upon a deviation of the acoustic wave vec

from the preferred direction of the velocity of charge carrie
with energy–momentum relation~2!, their role in the acous-
tic wave attenuation increases sharply. This is due to the
that the contribution of these electrons to electrical cond
tivity in a direction orthogonal to the wave vector increas
with the anglew between the vectork and thex-axis, thus
causing a decrease in the resonance denominator. Fw
@(kr)21/2, there will be no resonance if the number den
ties of both types of charge carriers are of the same orde
magnitude. Instead of resonance, we now obtain giant o
lations of sound attenuation decrement which has the foll
ing form for w5p/2:
r
s

ct
c-
s

-
of
il-
-

G5
Nmvv0

4prs2 VtH 11sin~2kr0!1
~pg!2

2
1

~kRh!2

4

1
7

2

1

~kr0!2J U
k5v/s

. ~22!

Instead of sharp peaks which are observed forw50 in
the dependence of sound attenuation decrement on 1/H for
sin(2kr0)51, the peak ofG for the same values of 2kr0 is
attained upon a smooth variation of the magnetic field. T
asymptotic behavior of the sound attenuation decrement~22!
in magnetic fields satisfying the condition 1!kr!1/h re-
mains unchanged for an arbitrary quasi-two-dimensio
electron energy spectrum also, and only numerical factor
the order of unity in the last three terms are sensitive to
type of energy–momentum relation for charge carriers.

In high-purity conductors withklh@1, a decrease in the
magnetic field for any orientation of the acoustic wave vec
leads to a replacement of the resonance and giant oscilla
of G by Pippard oscillations forkrh@1, their amplitude be-
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ing (krh)1/2 times smaller than the part ofG varying
smoothly with magnetic field.

At low temperatures, when energy quantization
charge carriers in a magnetic field is significant, the quan
oscillations described by the Lifshitz–Kosevich formula2

Gosc

Gmon
5 (

n51

`

c~nj!S \V

n«Fh D 1/2

cosS ncS0

eH\
1

p

4 D cos
pnm

m*
,

~23!

are supplemented by quantum oscillations of the sound
tenuation decrement with a phase shift of 2kr0 and a period

DS 1

H D5
2p\e

cS0~16klB!
, ~24!

differing from the period of oscillations defined in~23! by a
small amountklB , equal to the ratio of the de Broglie wave
length of an electron to the acoustic wavelength.

Here,S0 is the extremal area of cross-section of a c
rugated cylinder by the planepH5const; c(j)5j/sinh j;
and j52p2Q/\V, whereQ is the temperature of blurring
of the Fermi function of distribution of conduction electron
i.e., temperature in energy units.

For Q!\V, the acoustic wave energy is absorb
mainly by charge carriers with an energy–momentum re
tion ~2!, for which states at the Fermi surface with a dr
velocity alongk equal to the velocity of sound are allowe
for almost any value of the magnetic field. For electrons
closed orbits, the momentum projectionpH assumes discret
values, and the absorption of an acoustic phonon having
energy \v by a charge carrier with a drift velocity

v̄x cosa5s is possible only for certain valuesHn of the
magnetic field~a is the angle between the vectorsk andH!.
For H5Hn , this leads to the emergence of sharp absorp
peaks of acoustic wave energy at the instants when con
tion electrons with a quasi-two-dimensional energy spectr
participate in this process.

Thus, in the case of existence of a Fermi surface shee
the form of a corrugated plane, quantum oscillations p
dicted by Gurevichet al.7 occur against the background of
smooth dependence ofG on 1/H.
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Broken symmetry phase transition in solid HD: a manifestation of quantum
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A. Jeżowski

Trzebiatowski Institute for Low Temperatures and Structure Research, Polish Academy of Sciences,
P.O. Box 937, 50-950 Wroclaw 2, Poland**

R. J. Hemley

Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington,
5251 Broad Branch Road, NW Washington, DC 20015, USA***
~Submitted March 19, 1998!
Fiz. Nizk. Temp.24, 683–688~July 1998!

Theoretical study of the broken symmetry phase~BSP! transition line in solid HD reveals that its
anomalous features provide evidence for quantum orientational melting. The observations of
unusual reentrant behavior is a consequence of the symmetry properties of the system, namely, the
fact that in HD all rotational states and transitions between them are allowed, in contrast to
the behavior of the homonuclear isotopes H2 and D2. The systematic underestimation of the
transition pressure characteristic of all theories of the BSP transition can be removed if
crystal-field effects are taken into account. ©1998 American Institute of Physics.
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1. INTRODUCTION

The large isotopic family of hydrogens~H2, HD, D2,
HT, DT, T2! presents a unique possibility for studying th
diversity of quantum isotopic effects.1 The differences in
properties of the isotopic substances cannot be, as a
related solely to the de Boer quantum parameter,
symmetry-related nuclear-spin effects turn out to be far m
essential. Due to symmetry requirements, hydrogen and
terium have two species: para-H2 and ortho-D2 correspond to
the even rotational quantum numberJ, whereas ortho-H2 and
para-D2 correspond to oddJ states. In the case of HD mo
ecules, the nuclei are distinguishable and the molecules
not possess a center of inversion. As a result, the HD m
ecules do not have ortho-para species and all angular
mentum statesJ50,1,2,... and transitions between all
them are allowed.

To a very good approximation, the electron density d
tributions in the H2 and HD molecules are the same. But
the HD molecule the center-of-charge does not coincide w
the center-of-mass. Since the molecule rotates around
center-of-mass but the intermolecular interactions are rel
to the center-of-charge, rotations of the molecules are
companied by translational displacements of the center
mass. Thus, the rotation and translation of the molecule
coupled dynamically. As a result of such off-center rotatio
an additional Heisenberg-like term appears in the anisotro
part of the intermolecular potential, as first has been sho
5181063-777X/98/24(7)/5/$15.00
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by van Kranendonk.2 Evidence for differences in propertie
of asymmetric and symmetric hydrogens, which are a con
quence of the coupling of the rotation and translation of
molecule in the condensed state, has been reported sinc
sixties.3 A large negative deviation of thec/a ratio from the
ideal hcp value ofA8/3 found by Prokhvatilovet al.4 for HD
at zero pressure by x-ray diffraction was attributed by
authors to features of the intermolecular interaction of H
molecules. Subsequent calculations by Strzhemechny5 sup-
port this conclusion.

But the most striking differences between the hom
nuclear hydrogens (H2 and D2) and HD are evident by prop
erties of the solids under very high pressures. At low pr
sure, the free rotor quantum numbersJM remain good
quantum numbers for molecules in solid H2 and D2, and at
low temperatures only lowest statesJ50 in the evenJ spe-
cies are occupied. Since theJ50 state has a spherically sym
metric spatial distribution, there is no orientational order
p-H2 ando-D2 at low pressures down toT50 K. The inter-
molecular interaction admixes the higher rotational sta
into the ground state wave function, but this admixture is
small to produce the ordering at zero pressure. With incre
ing pressure, the anisotropic intermolecular interaction
creases, and admixtures of higher rotational states into
ground state wave function become more appreciable, e
tually resulting in the transition into a phase characterized
orientational order. This transition has been called the bro
© 1998 American Institute of Physics
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symmetry phase~BSP! transition. This transition was fore
told by Raich and Etters in 1972@Ref. 6# and found experi-
mentally by Silvera and Wijngaarden in 1981 ino-D2

7 and
then by Lorenzana, Silvera and Goettel in 1989 inp-H2.

8

Moshary, Chen and Silvera9 experimentally studied the BS
transition in HD and reported evidence for a non-monoto
phase line~i.e., aP-T minimum and thus reentrant behavio!
that contrasted markedly with that found forp-H2 ando-D2.

The BSP transition in HD was found at 68.3 GPa a
3 K, which gave by extrapolating the temperature dep
dence a transition pressurePtr at T50 K of P0'69.0
(62) GPa. The minimum point was located atPm

'53 GPa andTm'30 K or in reduced units atTm /B'1/2
~B is the rotational constant!. The disordered phase is ree
trant, that is, for fixed pressure in the range betweenPm and
P0 , as temperature is increased, the solid goes from a d
dered to an ordered and then to a disordered phase
again. The slope of the orientational melting curvedPtr /dT
is negative at temperatures less thanTm and positive atT
.Tm . At T'65 K (T/B'1) the transition pressure be
comes equal toP0 . Above this temperature, the studied po
tion of the transition curve is approximately linear with tem
perature.

The peculiar features of HD responsible for the rema
able behavior of its BSP transition line and the nature of
transition itself are thus of obvious interest. Two differe
mechanisms have been proposed in the literature. On
them, called quantum orientational melting,10,11 was studied
for the model system of all-J quantum rotors before th
phase transition in HD was found experimentally. A differe
approach to the problem was proposed by Strzhemech5

According to the latter model, the mechanism of t
pressure-driven orientational ordering in solid HD is co
pletely different from that in H2 and D2, and is related to the
creation of a single delocalizedJ51 state that is a direc
analog of the zero-point vacancy waves in quantum cryst
Thus, this mechanism is directly tied with the Heisenbe
like term in the intermolecular potential that is specific
HD and its off-center rotation.

The BSP transition has attracted considerable inte
from both experiment and theory for many years~see, for
example,1,12–14 and references therein!. The main efforts in
theory have been made either to calculate the transition p
sure at zero temperature15–20or to predict the lattice structur
for the BS phase.21–26 After the BSP transition was foun
experimentally, it became clear that the critical densities
termined in the first theoretical studies6,15,16 were consider-
ably underestimated relative to experiment. In more rec
work, several basic assumptions and simplifications of th
early treatments have been subjected to careful analysis
attempts were made to go beyond the most questionable
proximations. One of the most significant approximations
the mean field~MF! approximation. The effect of correla
tions neglected in the MF approximation was taken into
count ~in different ways! by Lagendijk and Silvera18 and by
Sprik and Klein,19 the effect of translation-rotation couplin
was studied by Janssen and van der Avoird,20 and the
consequences of different forms of the intermolecu
potential were tested by Aviramet al.17 Though a number of
c
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important results emerged from these studies, only sm
changes were found in the predicted transition pressure
was suggested20 that many-body effects are responsible f
the systematic underestimation of the transition pressure
the present paper, we propose a new approach to this p
lem. It is shown that the main discrepancy between the
and experiment can be removed even in the MF approxi
tion if crystal field effects are taken into account.

Another problem that has been intensively studied in
context of the BSP transition is the question of the struct
of the BS phase. In early theoretical studies,6,15,17,18 the
structure assumed to bePa3 a-nitrogen structure. The
crystal structure of the high-temperature phase to 120 G
~phase I! was found to be hcp,21 but the structure of the BS is
still unknown. Recent theoretical search for the lowe
energy structure of the BS phase based on the local den
approximation22–24 and ab initio molecular dynamics
simulations25,26suggest a four-molecular orthorhombic stru
ture of Pca21 symmetry. On the other hand, recent spect
scopic data do not rule outPa3, at least forp-H2.

27

In the present paper the phase diagram of solid HD
been calculated. We show that quantum orientational mel
can readily account for the unusual features of the BSP t
sition in this system. The behavior of the phase transit
line in solid HD as compared with H2 and D2 is a conse-
quence of the symmetry properties of the system, namel
the fact that in HD transitions between all the rotation
states are allowed in contrast to H2 and D2.

2. BASIC EQUATIONS

In the MF approximation, the Hamiltonian of the syste
of linear rotors interacting via quasiquadrupolar forces c
be written in the following form:28

H5BL22~U0h1U1!Y201U0h2/2, ~1!

whereL is the operator of angular momentum;U0 and U1

are molecular and crystal field constants;B is the rotational
constant;h5A4p/5^Y20& is the order parameter; and̂...&
denotes thermodynamic averaging with the Hamilton
@Eq. ~1!#.

The MF constant

U052(
f f 8

(
abgd

Vf f 8
abgdQf

abQf 8
gd , ~2!

whereVf f 8
abgd is the interaction matrix, defined by the param

eters of the intermolecular potential and by the lattice para
eters;Qf

ab5VaVb2(1/3)dab , f numbers the lattice sites;V
is a unit vector along the equilibrium orientation of the mo
ecule in the sitef.

While the molecular field is generated by the coupli
terms in the intermolecular interaction potential, the cryst
field term2

U152
4p

5 (
d

B~Rd!Y20~Vd! ~3!

originates from single-molecular terms in the intermolecu
potential. HereB(Rd) is the radial function characterizin
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the anisotropic pair potential;2 Rd is the radius-vector of the
nearest neighbors,Vd5Rd /Rd , and d are indices of the
nearest neighbors.

The orientational state of the system is determined
values and signs of the molecular and crystal constants,
can be described by positive and negative order parame
In the case ofa-N2 and the low-temperature phase ofo-H2,
U0.0 andU150 ~more precisely, the second-degree term
zero, but higher-degree terms do exist!; for b-O2, U0,0 and
U1.uU0u and the order parameter is positive. Forg-O2,
both molecular and crystal field constants are negative
negative order parameter describes precession of disc
molecules. The states with the negative order parameter
be treated as the orientational analog of the easy-plane-
ordering in magnets.

As shown in Ref. 28, even very small crystal fields c
substantially change the behavior of the system. For pos
U1 , the main difference with the case ofU150 lies in the
fact that the orientational phase transitions, instead of se
rating orientationally ordered and disordered states hav
generally speaking different symmetry, separate more
less ordered states of the same symmetry. Thus, these p
transitions are of the order-order type.

The most characteristic feature of the system at nega
values of the crystal field~compared with that atU150! is
that states with a negative order parameter can exist as
modynamically stable states of the system along with
states having a positive order parameter. The phase tra
tions occurring in the system at negative crystal fields are
transitions between two different ordered states, the e
axis orientational states with the positive order parame
and the easy-plane orientational states withh,0.

In principle, the crystal-field term can be deduced fro
Eq. ~3!. It is proportional to a product of such quantities
jc5c/a2A8/3, the deviation ofc/a from the ideal hcp
value;jm5b/a2), the deviation ofb/a from the ideal hcp
value in the case of the monoclinic distortion, a
P2(cosu0)5(3/2)cos2 u021/2, whereu0 is the polar angle of
the central molecule with respect to thec-axis. None of these
quantities are known to sufficient accuracy either from
periment or theory. That is why the reduced crystal field w
be treated in the present study as a parameter of theory

3. RESULTS AND DISCUSSION

To find the phase diagram of the system of rotors
scribed by the Hamiltonian@Eq. ~1!#, we used the same com
putational scheme as in Refs. 10 and 11. First, the ene
spectrum of the linear rotors in the fieldVY20 was calculated,
where V52(U0h1U1). We used the basis of spheric
functions Ylm in which the kinetic energy operatorL2 is
diagonal. The basis set was restricted tol 57, which, within
the studied range ofV, ensures sufficient accuracy of calc
lations for lower levels of the system. Making use of t
spectrum obtained, we have calculated the free energyF as a
function of the order parameter and of the temperature
given values of the molecular field and crystal field consta
U0 andU1 . Then we found the temperature dependence
the order parameter from the condition that the free energ
y
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the system is a minimum (dF/dh50). Data on the variation
of the order parameter with temperature and molecular fi
constantU0 allow us to obtain the phase transition line f
the given value of the crystal field constant in the coordina
U02T. The locus of equationdh/dT5` for differentU0 is
the curve of absolute instability of the orientationally order
phase. The locus of equationF(h tr)5F(h50) for different
U0 is the curve of the thermodynamically equilibrium tra
sitions~h tr is the value of the order parameter for which t
free energy of the ordered phase becomes equal to the
energy of the disordered phase!.

Using van Kranendonk’s analytical representation1,2 of
the short-range valence potential of Ree and Bender,29 we
have calculated the molecular field constantU0 as a function
of relative compressionR0 /R, whereR0 andR are the near-
est neighbor distances at zero pressure and pressureP, re-
spectively. It was assumed that the BS phase in solid HD
the same supposedly lowest energy structurePca21 as was
predicted for solid H2.

22–26 Finally, to map the BSP transi
tion line into P-T space, we must use the pressure-volu
equation of state. Although noP-V experimental data have
been reported for solid HD at these pressures, isotopic
ferences~at least between H2 and D2! in the megabar range
are very small. Thus, we use the recent x-ray press
volume equation of state for H2 and D2 measured by
Loubeyreet al.21 ~Vinet functional form!.

As expected, the phase transition pressure calculated
der the assumption of zero crystal field underestimates
experimental value by a factor of four. As shown in o
study of the model system given by the Hamiltoni
@~Eq. ~1!#,28 negative values for the crystal field shift th
phase transition line upward to higher pressures. Figure
shows a set of theoretical curves that give the best agreem
with the experimental data from Ref. 9. These curves co
spond to reduced crystal fieldsU1 /U0 of 20.13,20.14, and
20.15. The theory succeeds in reproducing the distingu
ing feature of the HD phase transition line, i.e., the no
monotonicity of the curve and a correct position of the mi
mum. The steeper temperature dependence characteris
the experimental data is principally due to the effect of o
entational correlations, and in part to the Heisenberg-l
term in the HD-HD intermolecular potential omitted in th
study.

In the present paper we consider the crystal field a
parameter in the theory, and thus the question exists as to
value and the sign of this parameter required to gain ag
ment between theory and experiment. As follows from t
analysis of Eq.~3!, the negative sign of the crystal field i
definite, and the values given above correspond to the v
of jc5c/a2A8/3, the deviation ofc/a from the ideal hcp
value, which was found in the recent x-ray high-press
study.21 A detailed analysis of this point will be given else
where. Here we would like to point out that the deformati
of the lattice that gives rise to the negative crystal field a
response of the lattice to the applied pressure is in acc
with the general Le–Chatelier–Braun principle.

As one can see, the BSP transition line in solid HD
similar to theP-T melting curve of3He ~Fig. 1b!. It is es-
tablished that the presence of the minimum in the3He melt-
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ing curve stems from the fact that the entropy of the so
phase exceeds the entropy of the liquid at low temperatu
where the thermal properties of the condensed phases
dominated by spin properties. Liquid3He obeys Fermi sta
tistics, with the entropy proportional to the temperature.
the other hand, the entropy of solid3He is that of weakly
interacting spin 1/2 nuclei; that is, the entropy of solid3He is
independent of temperature and equals toR ln 2 ~Fig. 2a!. In
this temperature region, the entropy contribution to the f
energy is an additional factor that stabilizes the solid pha

A similar situation occurs in the case of the system
rotors. The molecular field gives a doublet-shape grou
state of the system; this provides an extra contribution to
entropy of the ordered phase, which is equal toR ln 2. As a
result, in the low-temperature region the entropy of the o
entationally ordered phase is larger than that of the dis
dered phase~Fig. 2b!. Similar to the case of3He, this is an
additional factor that stabilizes the ordered phase. Above
point of intersection, the situation becomes ‘‘normal’’ an
the entropy factor stabilizes the disordered phase.

FIG. 1. Broken phase transition line in solid HD. Symbols:experimen
data by Moshary, Chen, and Silvera.9 Solid curves: present theory. Differen
curves are labeled by values of the reduced crystal field~a!. Melting curve in
3He ~b!.
d
s,
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e.
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4. CONCLUSIONS

The broken symmetry phase transition line in solid H
has been shown to be an example of quantum orientati
melting. The unusual behavior of the phase transition l
~i.e., its P-T minimum! is a consequence of the symmet
properties of the system, namely, the fact that in HD
rotational states and transitions between them are allowe
contrast to homonuclear isotopes H2 and D2. The systematic
underestimation of the transition pressure characteristic o
theories of the BSP transition can be removed if crystal-fi
effects are taken into account. It was suggested that the e
of orientational correlations, and specifically for HD, th
Heisenberg-like term in the intermolecular potential, sho
be taken into account to obtain quantitative agreement
tween theory and experiment.
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Theory of orientational relaxation in the low-temperature phase of fullerite C 60
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A microscopic extension of the phenomenological model of double-well orientational states, viz.,
pentagonal and hexagonal configurations of molecules, which is widely used for describing
the low-temperature phase of fullerite C60, is proposed. A simple kinetic equation and a set of
thermodynamic relations connecting the crystal lattice deformation, the concentration of
orientational excitations of molecules, and temperature are derived. Basic physical properties of
the low-temperature phase, including orientational glass transition, heat capacity, thermal
expansion, rheological properties and damping of elastic vibrations are described on a unified
basis. The conclusions of the theory are compared with the experimental data, and
empirical estimates are obtained for the parameters of double-well states and the
lattice–orientational interaction. It is shown that the large values of thermal expansion and acoustic
damping above the orientation glass-transition temperature of fullerite are due to high-
intensity lattice–orientational interaction. ©1998 American Institute of Physics.
@S1063-777X~98!01407-8#
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INTRODUCTION

Recent studies following the synthesis of crystalli
fullerene~fullerite! C60 in 1990 revealed peculiarities in th
structural parameters as well as in thermal, acoustical,
mechanical characteristics of this crystal in the lo
temperature range, which are associated with the therma
citation of rotational degrees of freedom of molecules.1–11

These peculiarities were explained qualitatively on the ba
of phenomenological concepts of the structural–orientatio
phase transition near 260 K and double-well orientatio
states in the low-temperature phase, which are referred t
the pentagonal~p! and hexagonal~h! configurations.5 This
research aims at a microscopic extension of phenomeno
cal concepts concerning double-well orientational states
molecules and at constructing of a simple kinetic theory p
viding a description of peculiarities in the temperature b
havior of most physical properties of the low-temperatu
phase of fullerite C60 on a unified basis. In order to avoi
terminological ambiguity and formulate the problem mo
clearly, it is expedient to characterize briefly the structu
features of fullerite, which are associated with rotational
grees of freedom and orientational states of molecules.

A molecule of fullerene C60 has the shape of a truncate
icosahedron whose surface is formed by 12 pentag
framed by single covalent bonds C–C and by 20 hexag
framed by alternating single C–C and double C5C bonds.
The large set of symmetry axes of the molecule contains
third-order axes passing through the centers of diametric
opposite hexagons. Pentagon and hexagon configura
of electron orbitals and third-order symmetry axes of
5231063-777X/98/24(7)/11/$15.00
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molecule play a significant role in the classification of stru
tural states of crystalline fullerene.

The formation of a crystal from C60 molecules is ensured
by the forces of paired Van der Waals~dispersion! interac-
tion, which have a significant noncentral component de
mined by the mutual orientation of molecules and associa
with the nonuniformity of electron density on the surfaces
molecules. Fullerite C60 exists in three structural modifica
tions differing in the ordering of molecular orientation. Th
critical temperature4 Tc'260 K separates two crystallo
graphic modifications: the high-temperature face-cente
cubic ~fcc! phase and the low-temperature simple cubic~sc!
phase. Thermal excitation of rotational degrees of freedom
T.Tc leads to random rotation of molecules, which effe
tively ‘‘smooths’’ the angular dependence of pair molecu
interaction potential and ensures the energy expedienc
densely packed fcc structure. In the region of low tempe
turesT,Tc , the centers of gravity of molecules also form
lattice of sites of the fcc structure, but their third-order sy
metry axes acquire ordered orientations in view of the
creasing role of the noncentral component of dispers
forces: nearest neighbors are divided into symmetrica
equivalent groups containing four molecules each~tetrahe-
dra! with different orientations of third-order axes along sp
tial diagonals of an elementary cube within a group~the
^111& type directions!, and the centers of such tetrahed
form a lattice of sites of a sc structure.

At the same time, the sc phase possesses one more
portant structural feature, viz., partial orientational disord
associated with the possible retarded rotations of molec
about ordered axes between two orientational configurat
© 1998 American Institute of Physics
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nonequivalent from the energy point of view: pentagonal~p!
and hexagonal~h!. Both configurations correspond to th
minima in the angular dependence of molecular interac
energy: a deeper~global! minimum is attained as the doub
bond of a molecule approaches the center of a pentago
the surface of a neighboring molecule~p-configuration!; a
shallower~local! minimum takes place when a double bo
approaches the center of a hexagon on the surface of a n
boring molecule~h-configuration!. The difference in the en
ergies of p- and h-configurations per intermolecular bond
of the order of 0.01 eV, and the energy barrier separating
configurations is of the order of 0.3 eV.2,3,6 For this reason,
molecular rotations~i.e., transitions between these config
rations! can be stimulated by thermal fluctuations at mod
ately low temperatures. Thus, the ideal thermodynamic
equilibrium structure of the sc phase of fullerite C60 corre-
sponds to p-configurations of all molecules, while
configurations should be regarded as thermally excited lo
orientational defects of the crystal structure. Various exp
mental methods of structural analysis and theoretical e
mates show that a thermodynamically equilibrium relat
concentration of defective h-configurations in a wide te
perature range 90–260 K has a high value of the orde
20–40%, and thermally activated local transitions~rotations!
between p- and h-configurations occur during time period
the order of or less than 10 s, i.e., rapidly on the laborat
time scale. Consequently, the orientational subsystem of
sc phase in this temperature range can be regarded as
of orientational liquid~OL!. On the other hand, in the case
cooling of fullerite belowTg'90 K, thermodynamic equilib-
rium between p- and h-configurations has no time to be
tablished over reasonable laboratory time intervals. This
lows us to treat the sc phase under these conditions
orientational glass~OG! with a relative concentration of fro
zen defective h-configurations of the order of 20% and
refer to the temperatureTg as the temperature of orienta
tional glass transition.4

1. PHYSICAL MODEL AND KINETIC EQUATION FOR
DESCRIBING ORIENTATIONAL RELAXATION IN SC PHASE

The orientational structure of the sc phase of fullerite C60

described in Introduction can be put in correspondence~con-
ditionally to a certain extent! with the energy states of neigh
boring molecules shown in Fig. 1.3–5,9Strictly speaking, ori-
entational states of molecules and transitions between t
in a crystal are of cooperative nature, and hence the angu
has the meaning of a generalized coordinate describing l
disorientation of neighboring molecules. The introduction
such a coordinate in the description of orientational mole
lar dynamics in fullerite C60 has not been substantiated m
croscopically. Nevertheless, the phenomenological mode
local ‘‘one-particle’’ double-well states illustrated in Fig. 1
found to be constructive and makes it possible to constru
description of thermal, acoustic, and mechanical proper
of the low-temperature sc phase of fullerite which match
the experimental results.

An individual unit cell of fullerite contains four
molecules each of which has 12 nearest neighb
n
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Consequently, the volume concentration ofN0 paired inter-
molecular bonds satisfies the relationN0a3524, wherea is
the length of an edge of an elementary cube. Since e
intermolecular bond can be in two metastable states, we
also introduce in our model instantaneous local concen
tionsNp(r ,t) andNh(r ,t) of pentagon and hexagon configu
rations respectively, which satisfy the balance equation~con-
servation law!

Np~r ,t !1Nh~r ,t !5N0 , ~1!

where the spatial coordinater is determined to within the
lattice parametera.

Refining the model of double-well states formulat
above, we note that its application presumes that it is p
sible to single out a set of identical independent collect
angular variablesu among the aggregate of rotational d
grees of freedom of crystalline C60 molecules, whose num
ber is normalized to the parameterN0 , and classical dynam
ics for each such variable is determined by an equation
motion of the type

I
d2

dt2
u52

d

du
U~u!1Ks~ t !. ~2!

Here I is the effective moment of inertia corresponding
the variableu, andKs(t) is the moment of forces describin
the interaction of the singled out degree of freedom with
remaining degrees of freedom of the crystal. The mac
scopically large number of the remaining degrees of freed
allows us to consider their effect on the singled out ‘‘pa
ticle’’ with the dynamic variableu as an action of a certain
effective medium~thermostat! and to treat the functionKs(t)
as a complex random process whose statistical param
are determined by the state of thermal motion of the mediu

The phenomenological model described above make
possible to analyze the orientational relaxation in the
phase of fullerite C60 by using the results of the theory o
one-dimensional Brownian motion of a particle in a potent
relief of a complex shape.12 We shall assume that th

FIG. 1. Schematic diagram of a double-well potentialU(u) characterizing
the dependence of the interaction energy of adjacent fullerite molecule
the generalized angular variable.
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medium~the majority of degrees of freedom of the crystal! is
in thermodynamic equilibrium with temperatureT and con-
sider only relaxation processes associated with deviatio
the dynamic variableu from equilibrium. According to
Kramers,12 we can introduce for each of the potential we
depicted in Fig. 1 a mean timetp or th over which a particle
which was first localized near the bottom of the correspo
ing well leaves it through the barrierUp or Uh under the
action of thermal impacts exerted by the medium. For l
temperatureskT!Up

9 ,Uh (k is the Boltzmann constant!,
these times are determined by an activation formula of
form

tp,h5t0 exp
Up,h

kT
. ~3!

In the general case, the pre-exponential factort0 in this
formula has a complex structure. The typical values oft0 are
of the order of effective period 2p(I /Up,h9 )1/2 of molecular
librations, whereUp,h9 is the value of the second derivative
the functionU(u) near the bottom of the corresponding we
This means that, strictly speaking,t0 has different values for
pentagonal and hexagonal configurations. Besides, exact
ues oft0 also depend on the parameters of the medium, v
the temperature of the crystal and the viscous friction eme
ing if we take into account the relation between molecu
librations and translational vibrations of the crys
~phonons! and vibrations of the atomic core of the molecu
A quantitative description of such dependences on the b
of the phenomenological model under investigation is imp
sible; we can only expect that the dependence of the
exponential factort0

(p,h) on temperature and parameters
the potentialU(u) is much weaker than the dependence
termined by the exponent. For this reason, we shall hen
forth assume that the factort0

(p,h) in ~3! is a constant the
which is the same for both configurations (t0

(p)'t0
(h)5t0

5const) and treat the parametersUp , Uh , D5Up2Uh , and
t0 as microscopic characteristics of the phenomenolog
model under investigation.

Using the timestp andth and the balance equation~1!,
we can easily write a simple kinetic equation describing
time variation of the concentrationNh or Np5N02Nh :

]

]t
Nh52

Nh

th
1

N02Nh

tp
. ~4!

The effect of orientational transitions in the system
molecules on the thermal, acoustic, and mechanical pro
ties of fullerite can be taken into account in the model un
investigation by supplementing this model with some m
relations and parameters which also have microscopic
semimicroscopic meaning. In order to describe the rela
between rotational degrees of freedom of molecules with
fullerite lattice, we must introduce corrections associa
with elastic deformations of the lattice to the parameters
the double-well potentialU(u). Assuming that the deforma
tions are small, we can neglect their effect on the param
t0 in the first approximation and to confine our analysis o
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linear approximation for the dependence of the barriersUp

and Uh on the components of the symmetric strain ten
« ik :

Up,h
~«! 5Up,h2v ik

~p,h!« ik , ~5!

where v ik
(p,h) is the symmetric matrix whose componen

have the dimensions of energy. Here and below, recur
coordinate indices indicate summation. For a crystal of cu
symmetry, the matrix of deformation potential constan
v ik

(p,h) in crystallographic coordinates must have the fo
v ik

(p,h)5vp,hd ik (d ik is the Kronecker symbol!, i.e., linear cor-
rections to scalar energy parameters are determined by
one scalar combination, i.e., the sum of diagonal compon
of the strain tensor« l l 5d ik« ik . Thus, taking into account the
cubic symmetry of fullerite, we can write the deformatio
corrections~5! to the parameters of the double-well potent
in the form

Up,h
~«! 5Up,h2vp,h« l l ,

D~«!5D2vD« l l , ~6!

wherevD5vp2vh .
It should be noted that the dependence of the scalar

rametersUp,h on the shear components of elastic strain in
linear approximation in the case of a cubic crystal can app
only if we take into account the rotational modes of defo
mation in the nonsymmetric theory of elasticity.13 This pre-
sumes a correction to the right-hand sides of relations~6! of
the scalar terms proportional to spatial derivatives of the fi
of rotational vectors for macroscopic elements of the crys
line medium, which is equivalent to the inclusion of spat
dispersion effects in the continuum mechanics of the crys

Replacing the timestp,h in the kinetic equation~4! by
tp,h

(«) 5t0 exp(Up,h
(«)/kT) we obtain an equation determining th

kinetics of orientational relaxation of molecules in the pre
ence of macroscopic elastic deformations in the fuller
crystal. In the further analysis, it is convenient to go over
the relative concentrationsnp5Np /N0 and nh5Nh /N0 of
pentagon and hexagon configurations. The variation of th
quantities is described by the following equations:

H t~«!
]

]t
nh1nh5

t~«!

tp
~«!

np1nh51
, ~7!

tp,h
~«! 5t0 expS Up,h2vp,h« l l

kT D , t~«!5
tp

~«!th
~«!

tp
~«!1th

~«! . ~8!

Let us consider one more important aspect pertaining
the conditions of applicability of Eqs.~7! for describing pro-
cesses associated with varying strain fields« ik5« ik(r ,t).
Expression~3! for the mean time of emergence of a partic
from a potential well was derived by Kramers12 for the time-
independent potentialU(u). In this case, the role of minima
time intervals appearing in the corresponding diffusion pro
lem is played by the time of correlation of a random proce
Ks(t) and the periodt0 of oscillations of the particle near th
bottom of the well; these time intervals are equal to char
teristic molecular time and are of the order of or less th
10212 s. This means that the quantitytp,h defined by
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formula ~3! preserves the meaning of ‘‘instantaneous’’ val
of the mean time of emergence of the particle from the
tential well for time-dependent values of the barriersUp,h

only if the characteristic time of their variation is muc
longer than these minimal time intervals. Consequently,
can expect that the kinetic equation~7! is also applicable for
describing orientational relaxation processes excited by
varying strain fields« ik(r ,t) if these strains vary insignifi-
cantly over time intervals of the order of the molecular libr
tion periodt0 .

The effectiveness of the microscopic refinement of
phenomenological model of double-well orientational sta
in fullerite C60 proposed in this section is determined by t
possibility of indicating and carrying out experiments who
results make it possible to obtain empirical estimates for
the model parameters introduced above: the barrier hei
Up and Uh and their differenceD5Up2Uh , the effective
libration periodt0 , the deformation potential constantsvp

andvh , and their differencevD5vp2vh .

2. THERMODYNAMIC EQUILIBRIUM AND ORIENTATIONAL
GLASS FORMATION

If the temperature of the crystal and local deformatio
remain unchanged for a long time, the local densities of p
tagon and hexagon configurations assume thermodyn
cally equilibrium valuesn̄p(r ;T) and n̄h(r ;T) which are de-
scribed by the time-independent solutions of Eq.~7!:

n̄h~r ;T!5n̄h
~«!~T!5F11expS D2vD« l l ~r !

kT D G21

,
~9!

n̄p~r ;T!5n̄p
~«!~T!5F11expS 2

D2vD« l l ~r !

kT D G21

.

It should be noted that equilibrium nonuniformities
orientational ordering in fullerite emerging due to static no
uniform strains« ik(r ) of the crystal can appear in the anal
sis of the fullerite structure by the x-ray and neutron sp
troscopy method; their inclusion can be essential
describing acoustic and mechanical properties of the cry
For example, considerable nonuniformity of orientational
dering must be observed in fullerite containing dislocatio
Formulas~9! make it possible to describe nonuniform dist
butions of pentagon and hexagon configurations appea
around stationary dislocation lines~an analog of the Cottrel
or Snoek impurity atmospheres which are encountered in
physics of alloys!.14 For this purpose, we must substitute in
formulas~9! the expressions for the strain fields of individu
dislocations.

For pure and well-annealed fullerite samples, we c
neglect nonuniform strains (« ik[0). In this case, the relation
betweenn̄h and n̄p is determined only by the value of th
temperatureT and the parameterD5Up2Uh :

kT ln
n̄p~T!

n̄h~T!
5D. ~10!

This formula makes it possible to obtain an empirical e
mate of the parameterD by using the results of experiment
study of the temperature dependence of orientational orde
-
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fullerite ~e.g., the results of x-ray of neutron diffraction spe
troscopy!. The generally accepted estimate at the pres
time is D.(11– 13)31023 eV.2–6

The factort («) appearing in front of the time derivativ
in the kinetic equation~7! has the meaning of relaxation tim
over which the local thermodynamic equilibrium in molec
lar orientation is restored if it was violated by a fast chan
in internal stresses or external conditions~e.g., change in
temperature!. Indeed, it can easily be seen that, for tim
independent values ofT and « ik , the approach to orienta
tional equilibrium is described by solutions of equations~7!
of the type

np,h~ t !2n̄p,h
~«! 5@np,h~0!2n̄p,h

~«! #expS 2
t

t~«!D , ~11!

wherenp,h(0) are the initial nonequilibrium concentration
of pentagonal and hexagonal configurations. The explicit
pendence oft («) on temperature and coordinates is given

t~«!5
t0 exp@$Uh2vh« l l ~r !%/kT#

11expS 2
D2vD« l l ~r !

kT D . ~12!

Relations ~11! and ~12! form the basis of the forma
description of the orientational glass transition in fullerit
We shall consider this phenomenon for quite perfect cryst
neglecting random strain fields, but presuming the prese
of bulk compression « l l by the hydrostatic pressur
P52B(0)« l l , whereB(0) is the isothermal bulk compressio
modulus. Lett lab be the characteristic laboratory time, i.e
the total time of temperature stabilization for the sample a
of carrying out the physical experiment at a given const
temperature. Reasonable values of this quantity can be
mated ast lab;103 s with a possible spread within an order
magnitude. The orientational glass transition temperat
Tg(P) can be naturally determined as the solution of t
equation

t~P!~T!5t lab. ~13!

Using formula ~12! and taking into account the inequalit
D!Uh and a considerable indeterminacy of the numeri
values of the parameterst0 and t lab, we can write the ap-
proximate solution of Eq.~13! determining the temperatur
Tg with a relative error of the order of 10%:

Tg~P!.S k ln
t lab

t0
D 21S Uh1

vh

B~0! PD . ~14!

In experimental investigation of the temperature dep
dence of the physical parameters of fullerite, certain sin
larities, whose recording makes it possible to obtain emp
cal values ofTg , are observed in some cases in the vicin
of the orientational glass-transition temperature. For
ample, such a singularity was observed in experiments on
thermal conductivity of fullerite C60 under pressure;11 these
experiments confirm the linear form of the functionTg(P) in
a very wide range of pressures, while under zero pressure
obtain the value ofTg(0).90 K. Formula~14! together with
experimental data on theTg(P) dependence can be used f
obtaining empirical values of the parametersUh and vh of
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the theory. The positive slope of theTg(P) curve recorded in
Ref. 11 indicates the positive sign of the deformation pot
tial constantvh.0.

Assuming thatt lab.33103 s and using the empirica
estimatest0'3310214 s andB'10 GPa obtained in acous
tic experiments,15,16 as well as the estimatedTg /dP
'60 K/GPa obtained in Ref. 11, we obtain the values
Uh.0.3 eV andvh.2.0 eV.

3. THERMODYNAMICS OF DEFORMATION, THERMAL
EXPANSION, AND HEAT CAPACITY OF THE SC PHASE

In this section, we propose a thermodynamic descript
of the influence of rotational degrees of freedom of m
ecules on deformation and thermal properties of fullerite
the temperature range (Tg ,Tc). In an analysis of this phe
nomenon, we shall use basic principles of the thermodyn
ics of irreversible processes, the phenomenological mode
double-well orientational states, and microscopic refinem
of this model described in Sec. 1.

We shall assume that a thermodynamically equilibriu
state of the fullerite lattice is undeformed at a certain pre
temperatureT and in the absence of external forces. Let
suppose that fullerite becomes nonequilibrium as a resu
quite small long-wave strains« ik(r ,t). These strains caus
small local deviations of temperature from its initial valueT
and violate the equilibrium orientational ordering of mo
ecules, i.e., generate small deviations of local concentrat
of hexagonal and pentagonal configurations from their eq
librium valuesn̄h

(0)(T) andn̄p
(0)(T)512n̄h

(0)(T). In order to
describe these deviations, we introduce the variable temp
ture T1Q(r ,t) and the nonequilibrium correction to th
number density of hexagon excitations:nh(r ,t)5n̄h

(0)

1nh(r ,t). According to the basic concepts of the thermod
namics of irreversible processes~see, for example, Ref. 17!,
we can describe a nonequilibrium state of the crystal by
troducing the free energy densityF̃(T1Q,« ik ,nh) which is
regarded as a function of temperature, extrinsic parame
« ik and the intrinsic parameternh , the latter being treated a
an independent thermodynamic variable, For the given in
temperatureT, the total differential of free energy is define
by the thermodynamic identity

dF̃5
]F̃

]Q
dQ1

]F̃

]« ik
d« ik1

]F̃

]nh
dnh , ~15!

while equilibrium states of the crystal must correspond to
minima of the functionF̃(T1Q,« ik ,nh) under preset exter
nal conditions.

For example, for given values of the strain tensor co
ponents« ik , the thermodynamic equilibrium state is defin
by the equation

F ]F̃~T1Q,« ik ,nh!

]nh
G

Q,« ik

50. ~16!

The solution of this equation for the variablenh must de-
scribe an equilibrium distribution of hexagonal configur
tions n̄h

(«)(T)5n̄h
(0)(T)1 n̄h

(«)(T), in a statically deformed
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crystal, which is equivalent to distribution~9! obtained from
microscopic considerations in statistical mechanics.

The mechanical stress tensor componentss ik are defined
in thermodynamics as generalized forces conjugate to
strain tensor components« ik :

s ik5F ]F̃~T1Q,« ik ,nh!

]« ik
G

Q,nh

. ~17!

Specific calculations require the knowledge of the e
plicit form of the functionF̃(T1Q,« ik ,nh). For small val-
ues of nonequilibrium correctionsQ, « ik , andnh , this func-
tion can be approximated by the truncated power series

F̃5F0~T!2a~T!Q« ikd ik2b~T!Qnh2g~T!nhd ik« ik

2~1/2!j~T!Q21~1/2!h~T!nh
21~1/2!l iklm~T!« ik« lm

1... . ~18!

In order to describe the thermal and rheological propertie
fullerite in the approximation of linear response, it is suf
cient to confine our analysis only to the quadratic terms
this expansion. The free energyF0 of the initial state and the
coefficient of expansion~18! are certain functions of the ini
tial temperatureT, and their explicit form can be obtaine
only from an analysis of the thermal motion of the crystal
microscopic level by using the methods of statistical m
chanics. It should also be noted that the tensor structur
the terms proportional to the strain tensor« ik presumes the
cubic symmetry of the crystal and disregard of spatial d
persion effects associated with the interaction of hexago
excitations with gradients of local lattice rotations~see the
discussion of this question in Sec. 1!.

The physical meaning of individual coefficients in e
pansion~18! can be clarified by analyzing several reversib
processes corresponding to different external conditions
using this expansion. We shall carry out such an analy
following the procedure described by Landau and Lifshitz18

Let us first consider two processes of reversible def
mation of the crystal:~1! quasistatic deformation at a con
stant temperature (Q[0), and~2! extremely rapid deforma-
tion during which heat exchange between different regio
of the crystal and the relaxation of local values of numb
density of hexagonal excitations cannot take place (nh[0).
In the first case, minimization of the free energy~18! in nh

gives the change in the quasiequilibrium concentration
hexagonal excitations, which follows after the slow variati
of strain:

nh
~«!5

g

h
d ik« ik . ~19!

Substituting~19! into ~18! and puttingQ[0, we obtain the
free energy of a reversible isothermal deformation, wh
can be written in the form

F̃ ~T!5F0~T!1~1/2!l iklm
~0! « ik« lm ,

l iklm
~0! 5l iklm2

g2

h
d ikd lm . ~20!
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It can be seen that the parametersl iklm
(0) have the meaning o

tensor components of isothermal elastic moduli.
For the second process under investigation, the entr

S̃52@]F̃/]T#« ik
of individual regions of the crystal mus

remain unchanged, while local values of temperature cha
in proportion to strains. From the conditions of vanishing
the parameter nh and the entropy increment](F̃
2F0)« ik

/]Q50 we obtain

Q~«!52
a

j
d ik« ik . ~21!

Substituting~21! into ~18! and puttingnh50, we obtain the
free energy of adiabatic deformation, which can be written
the form

F̃ ~S!5F0~T!1~1/2!l iklm
~`! « ik« lm ,

~22!

l iklm
~`! 5l iklm1

a2

j
d ikd lm .

Here l iklm
(`) are the tensor components of adiabatic ela

moduli. According to~20! and ~22!, the difference between
adiabatic and isothermal moduli is defined as

l iklm
~`! 2l iklm

~0! 5S a2

j
1

g2

h D d ikd lm . ~23!

The elastic moduli tensor for a cubic crystal has th
independent components. In the crystallographic system
coordinates, we normally usel11115C11, l11225C12 and
l12125l23235C44, as independent components, while t
bulk modulusB is defined by the relation 3B5C1112C12.
Thus, the shear modulusC44 in the approximation used her
has the same value for isothermal and adiabatic deforma
the only difference appearing for the compression modu

B~`!2B~0!5
a2

j
1

g2

h
. ~24!

Let us consider two more reversible processes: s
heating of the crystal at constant volume~i.e., in the absence
of strains« ik[0) and under constant pressure~in the ab-
sence of stressess ik[0). In the former case, minimizatio
of ~18! with respect to the variablenh gives the variation of
the concentration of hexagonal excitations, which is prop
tional to the temperature increment:

nh
~Q!5

b

h
Q. ~25!

Substituting~25! into ~18! and putting« ik50, we obtain the
following expression describing the variation of free ener
as a result of slow heating at constant volume:

F̃ ~V!5F0~T!2
1

2 S j1
b2

h DQ2. ~26!

This formula leads to the relation connecting the coe
cient of expansion~18! with the heat capacity of the crysta
at constant volumeCV52T]2F (V)/]Q2 ~this quantity is re-
duced to unit volume of the crystal!:
py

ge
f

n

c

e
of

n,
s:

w

r-

y

-

CV5TS j1
b2

h D . ~27!

In the case of slow heating of the unstressed cry
(s ik[0), the increase in temperature is accompanied b
change in the concentration of hexagonal excitationsnh

(Q) ,
and the thermal expansion strain« ik

(Q) is generated. These
quantities are solutions of the system of two equations c
responding to the minimization of the free energy~18! over
the variablesnh and« ik :

Hl iklm« lm2gnhd ik5aQd ik ,
gd ik« ik2hnh52bQ. ~28!

Going over to isothermal moduli in accordance with~20!, we
obtain

« ik
~Q!5

ah1gb

3hB~0! Qd ik ,

~29!

nh
~Q!5

B~0!bh1g~ah1gb!

h2B~0! Q.

The substitution of these quantities into~18! leads to the
expression describing the variation of free energy as a re
of slow heating of the crystal under constant pressure (s ik

[0):

F̃ ~P!5F0~T!2
1

2 Fj1
b2

h
1

~ah1gb!2

h2B~0! GQ2. ~30!

This leads to the following expressions for the heat capa
at constant pressureCP52T]2F̃ (P)/]Q2 and the difference
CP2CV in heat capacities:

CP5TFj1
b2

h
1

~ah1gb!2

B~0!h2 G ,
~31!

CP2CV

T
5

~ah1gb!2

B~0!h2 .

Using formulas~29! and ~31!, we can also obtain easily
the expressions for the thermal expansion coefficientk
5]« l l

(Q)/]Q and the well-known thermodynamic relation b
tweenk and the heat capacity difference18 CP2CV :

k5
ah1gb

B~0!h
, CP2CV5TB~0!k2. ~32!

The formulas~24!, ~27!, ~31!, and ~32! derived above
make it possible to connect the formally introduced coe
cients a, b, g, j, h, and l iklm of expansion~18! with the
macroscopic parametersl iklm

(`) , l iklm
(0) , CV , CP , k, of the

crystal which have a clear physical meaning as can be m
sured experimentally. It should also be noted that the te
in these formulas depending on the coefficientsb, g, andh
describe the contribution of thermal excitations of the ro
tional degrees of freedom of molecules to physical para
eters of fullerite, while the terms depending on the coe
cients a and j describe the purely lattice~phonon!
contribution. The possibility and expedience of such a se
ration in the theoretical formulas and in the experimen
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data processing are due to qualitatively different forms of
temperature dependences of each of these contributions

It is also useful to establish the relation between
coefficientb, g, andh characterizing the orientational con
tribution to the thermodynamics of fullerite and the para
eters of the model of double-well orientational states of m
ecules, which was described in Sec. 1. For this purpose
must compare some of the results of the thermodyna
analysis with microscopic relations presented in Sec. 1.
the given time-independent strain« ik and a given tempera
tureT1Q, the minimization of the free energy~18! over the
variablenh leads to the equilibrium distribution

n̄h~Q,« ik!5n̄h
~«!~T1Q!2n̄h

~0!~T!5
g

h
« l l 1

b

h
Q, ~33!

which is equivalent to the distribution~9! derived from the
kinetic equation~7!. If we write ~9! for the temperatureT
1Q and linearize in« ik andQ, we obtain

n̄h
~«!~T1Q!2n̄h

~0!~T!5 f S D

kTD S vD

D
« l l 1

Q

T D , ~34a!

f ~x!5
xex

~11ex!2 . ~34b!

Comparing~34a! and ~33!, we arrive at the following rela-
tions:

g

h
5

vD

D
f S D

kTD ,
b

h
5T21f S D

kTD . ~35!

In an analysis of experimental data, one more relat
connecting the coefficientg with the orientational compo
nent kor5k2a/B(0) of the thermal expansion coefficien
can be found helpful. Using formulas~32! and ~35!, we ob-
tain

g5
B~0!korT

f ~D/kT!
. ~36!

According to~18!, the value of the coefficientg charac-
terizes the intensity of interaction of orientational states
C60 molecules with the lattice deformation. Consequen
the direct proportionality ofg to the orientational componen
kor of thermal expansion is quite natural.

Experiments19 show that orientational ordering of mo
ecules strongly affects the lattice parameter of fullerite:
value ofa(T) changes strongly at the phase-transition po
Tc as well as for gradual ‘‘freezing out’’ of hexagonal exc
tations during cooling of fullerite in the temperature interv
(Tg ,Tc), while thea(T) dependence in the regionT,Tg is
much weaker. This observation suggests thatk'kor in the
range corresponding to orientational liquid. Besides, the th
mal expansion coefficient at these temperatures virtually
mains unchanged and equal tok.631025 K21 ~except a
weak anomaly near 100 K!. Relations~35! and ~36! lead to
the following simple formula for the orientational contribu
tion to the heat capacity per unit volume, which is valid f
k'kor :

CP
~or!5CP2Tj~T!5

B~0!korD

vD
S 11

vDkorT

D D . ~37!
e
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In the case when the lattice and orientational contribution
the measured values ofCP are separable, formula~37! can be
used for obtaining an empirical estimate of the ratiovD /D.

4. EFFECT OF ORIENTATIONAL RELAXATION ON
RHEOLOGICAL PROPERTIES OF FULLERITE

A description of acoustic and deformation properties
solids in the continuum mechanics presumes the knowle
of the basic rheological equation connecting internal stres
s ik(r ,t) and the strains« ik(r ,t) generating them. For per
fectly elastic linear bodies, such a relation is determined
the classical Hooke’s laws ik(r ,t)5l iklm« lm(r ,t), where
l iklm is the tensor of elastic moduli of the material. It
important that this relation is local in space and time, i.
long-range effects as well as aftereffects are absent. H
ever, the presence of quasi-independent internal degree
freedom associated with lattice deformations in the solid v
lates the local nature of the relation between stresses
strains. The basic rheological equation for such bodies in
linear approximation assumes the form20,21

s ik~r ,t !5E
2`

t

dt8E d3r 8L iklm~r2r 8,t2t8!« lm~r 8,t !.

~38!

This equation takes into account aftereffect and internal f
tion inherent in actual solids, and the role of elastic modul
such a generalized Hooke’s law is played by an integral
erator with the kernelL iklm(r ,t).

Equation ~38! assumes the conventional form o
Hooke’s law if instead of the fields« ik(r ,t) ands ik(r ,t) we
consider their Fourier components«̃ ik(q,v) and s̃ ik(q,v)
~hereq andv are the wave vector and cyclic frequency r
spectively!. Applying to ~38! the Fourier transformation in
spatial and time variables, we obtain the linear algebraic
lation

s̃ ik~q,v!5l̃iklm~q,v!«̃ lm~q,v!, ~39!

in which, in contrast to Hooke’s law, the components of t
tensorl̃ iklm are generally complex-values quantities depe
ing on q andv:

l̃iklm~q,v!5E
0

`

dtE d3rL iklm~r ,t !e2 i ~q–r2vt !. ~40!

We can find the explicit form of the kernelL iklm(r ,t) or
complex elastic modulil̃ iklm(q,v) from an analysis of joint
evolution of dynamic variables of the crystal lattice and
ternal degrees of freedom of the crystal associated with i
the methods of thermodynamics and statistical mechanic
irreversible processes~see, for example, Ref. 21!. While de-
scribing the aftereffects and internal friction in fullerite, w
must take into account the relation between dynamic de
mations of the lattice and rotational degrees of freedom
molecules or orientational excitations corresponding to the
Using the formal thermodynamic definition of the stress te
sor~17! and the expansion of free energy~18!, we can obtain
a relation connectings ik with the strain tensor componen
« ik , temperature incrementQ, and concentrationsnh of hex-
agonal excitations. In order to establish the one-to-one c
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respondence between the mechanical stresss ik(r ,t) and the
strain« ik(r ,t) varying according to a preset law, this relatio
should be supplemented with two kinetic equations:
equation of thermal conductivity that makes it possible
describe the relaxation of local temperature variatio
Q(r ,t) emerging due to varying strain« ik(r ,t), and the
equation describing the relaxation of the nonequilibrium c
centrationnh(r ,t) which is also associated with the stra
« ik(r ,t). Thus, the problem is reduced to an analysis of
system of three equations which have the following form
the linear response approximation:

s ik~r ,t !5l iklm« lm~r ,t !2aQ~r ,t !d ik2gnh~r ,t !d ik ,
~41a!

Q̇~r ,t !2xd ik¹ i¹kQ~r ,t !52
a

j
d ik«̇ ik~r ,t !, ~41b!

t~0!ṅh1nh5 f S D

kTD S vD

D
d ik« ik1

Q

T D . ~41c!

Here the dot over a variable indicates the time differentiat
operator,¹ i is the operator of differentiation with respect
the coordinate,xd ik is the thermal diffusivity tensor for a
cubic crystal~the parameterx together with the coefficients
of expansion~18! is a certain function of the initial tempera
ture T), and the right-hand side of the thermal conductiv
equation~41b! describes the rate of variation of local valu
of temperature as a result of adiabatic deformation~see for-
mula ~21!!. Equation~41c! was obtained by linearizing th
kinetic equation~7! with respect to the strain tensor comp
nents« ik and temperature incrementQ.

The choice of single-values solutions of the system
equations~41! is ensured by its supplementing with a fe
additional relations: the initial condition for Eq.~41c!, and
the initial and boundary conditions for Eq.~41b!. If we as-
sume that the strain tensor components« ik vary according to
a preset law from the initial values« ik(r ,2`)[0, it is natu-
ral to take the initial conditions in the formQ(r ,2`)[0
andnh(r ,2`)[0. In the case of an unbounded crystal, w
can assume that the strains« ik(r ,t) are equal to zero at a
infinitely long distance. In this case, the boundary conditio
to Eq.~41b! should be chosen as the natural requirement
Q(r ,t) vanishes at infinity. An analysis of aftereffects
finite fullerite crystals can be carried out only if we know th
conditions of the force and thermal contact between the c
tal surface and the ambient.

If we solve solutions of Eqs.~41b! and ~41c! assuming
that the function« ik(r ,t) is given and substitute them int
~41a!, we obtain the integral relation~38! with an explicit
form of the coordinate and time dependence of the ke
L iklm(r ,t). However, it is most convenient to analyze sp
cific physical problems by converting equations~41! into a
system of algebraic equations. This can be done by exp
ing « ik(r ,t) and the required functionss ik(r ,t), Q(r ,t) and
nh(r ,t) in the eigenfunctions of the corresponding bounda
value problem and by carrying out the Fourier and Lapla
transformations in the time coordinate. By way of an e
ample, we consider deformations of an unbound
crystal and seek solutions of Eqs.~41! in the form of Fourier
e
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expansions in plane waves exp(q•r2vt), which leads to
Hooke’s law in the form~39! with complex moduli of elas-
ticity described by the formula

l̃iklm~q,v!5l iklm
~`! 2F q2xRW

q2x2 iv
1

Ror

12 ivt~0!

1
ivRW0

~q2x2 iv!~12 ivt~0!!GB~`!d ikd lm .

~42!

Here we have used the notation

RW5
a2

B~`!j
, Ror5

g f vD

B~`!D
, RW05

ag f

B~`!jT
. ~43!

These dimensionless parameters determine the relative v
tion of elastic moduli associated with relaxation process
RW andRor characterize the contribution of thermal and o
entational relaxation moduli to dispersion, whileRW0 de-
scribes the interference contribution. As expected, the va
of Ror is proportional to the coefficientg of orientational–
lattice interaction.

It should be noted that the relaxation processes con
ered here lead only to a renormalization of the elastic mod
tensor componentsl1111andl1122 ~i.e., the crystal rigidity to
extension–compression!, but do not affect the shear modulu
l1212. We must also pay attention to spatial dispersion~de-
pendence onq! of elastic moduli associated with therm
relaxation; the emergence of aftereffects in the given cas
quite natural since a relaxation process is the heat excha
between spatially separated extension and compression
gions in a strain wave.

5. ACOUSTIC PROPERTIES OF THE SC PHASE

In a description of acoustic properties of solids, spa
and temporal delocalization of the kernel in the integral
lation ~38! appear in the form of damping effects of acous
waves and dispersion in the velocity of their propagatio
The velocities and damping factors of acoustic waves
determined by the solutionsv~q! of the dispersion equation

deturv2d ik2l̃iklm~q,v!qlqmu50, ~44!

wherer is the crystal density. In the presence of dispers
and imaginary corrections to elastic moduli, the real com
nent Rev(q) of the solutions acquire a more complicate
dependence onq ~dispersion in the velocities of sound!, and
imaginary corrections Imv(q)Þ0 describing attenuation ap
pear.

Acoustical properties of single crystals are often stud
by using the high-frequency echo-pulse method: excitat
and detection of waves having a given frequencyv and
propagating along individual crystallographic directions.
this case,q5nq, wheren is a unit vector with preset com
ponents, and it is convenient to seek the solution of the
persion equation~44! in the form

q~n,v!5
v

s~n,v!
1 iG~n,v!5

v

s~n,v! F11 i
d~n,v!

2p G ,
~45!
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wheres, G, andd are the wave velocity, damping factor p
unit length, and logarithmic decrement respectively. In
crystal with the cubic symmetry, the propagation of hig
frequency elastic waves is studied most often along the
lowing three directions:̂100&, ^110&, and^111&.

At first sight, the use of the complex moduli~42! leads to
the dispersion equation~44! of a complex form. The main
difficulty in the search for exact solutions of this equation
the dependence of the components of the tensorl̃ iklm on the
magnitudeq of the wave vector. However, the method
echo-pulse spectroscopy gives interesting results in the
of a small dispersion of elastic moduli, which is formal
described by the inequalitiesRW!1 andRor!1. These in-
equalities make it possible to obtain approximate solution
the dispersion equations by perturbation theory methods
putting l̃iklm5l iklm

(`) in the zeroth approximation. If we ar
interested only in linear corrections in the parametersRW and
Ror , we can make the replacement

xq25xF v

s~`!~n!G
2

for the substitution~42! into ~44!, i.e., consider the values o
the wave number corresponding to the energy–momen
relation in the zeroth approximation, i.e.,v5s(`)(n)q
3(s(`)(n) are the values of the velocities of sound det
mined by adiabatic moduli of elasticity!. After such a substi-
tution, the difficulties encountered in the solution of the d
persion equation~44! for the variableq are the same as fo
the zeroth approximation~see, for example, Ref. 22!.

If we consider oscillations with the wave vectorq ori-
ented along the crystallographic directions^100&, ^110&, and
^111&, two transverse and one longitudinal waves22 will
propagate in each of these directions without damping in
zeroth approximation. Since the thermal and orientational
laxation do not lead to a renormalization of the shear mo
lus (l1212[C44

(`)), their inclusion leads to frequency dispe
sion of velocity and attenuation of only longitudinal waves1!

For each of these directions, Eq.~44! splits into three simple
equation as in the absence of dispersion. Two of these e
tions describe undamped transverse waves~subscriptt!, and
the third equation describes an attenuating longitudinal w
~subscriptl ). In the linear approximation in the paramete
RW andRor , these equations have the form

v5st1
~`!~n!q, v5st2

~`!~n!q ~46!

for transverse waves and

v5H 12A~n!F Ror

12 i torv
1

ivtWRW

11 i tWv

2
RW0

~12 i torv!~11 i tWv!G J 1/2

sl
~`!~n!q ~47!

for the longitudinal wave. HereA(n) is a dimensionless
combination of the tensor componentsl iklm

(`) , which has a
positive value of the order of unity. This relation also co
tains two parameters having dimensions of time: the orie
a
-
l-

se

f
y

m

-

-

e
e-
-

a-

e

-
a-

tional relaxation timetor5t (0)(T) which depends on time
and the thermal relaxation timetW5tW(n,T) which depends
both on temperature and on the direction of wave propa
tion. The relaxation times are defined as

tor~T!5
t0 exp~Up /kT!

11exp~D/kT!
,

tW~n,T!5x~T!@sl
~`!~n!#22. ~48!

The formulas connecting the velocitiesst1
(`)(n), st2

(`)(n) and
sl

(`)(n) of acoustic waves with adiabatic moduli of elastici
are well known for the crystallographic directions under
vestigation~see, for example, Ref. 22!. The relation between
the coefficientA(n) and the moduli is given by

A5
C11

~`!12C12
~`!

3C11
~`! in the ^100& direction,

A5
2~C11

~`!12C12
~`!!

3~C11
~`!1C12

~`!12C44
~`!!

in the ^110& direction,

A5
C11

~`!12C12
~`!

C11
~`!12C12

~`!14C44
~`! in the ^111& direction. ~49!

Comparing the dispersion equation~47! with expression
~45!, we can easily derive formulas describing the frequen
dispersion of velocity and attenuation of the longitudin
wave. In the approximation linear in the parametersRW ,
Ror , andRW0 , we have

sl
~`!~n!2sl~n,v!

sl
~`!~n!

5
A~n!

2 F Ror

11tor
2 v2 1

RWtW
2 v2

11tW
2 v2

2
RW0~11tortWv2!

~11tor
2 v2!~11tW

2 v2!G , ~50!

d~n,v!5pA~n!F Rortorv

11tor
2 v2 1

RWtWv

11tW
2 v2

2
RW0~tor2tW!v

~11tor
2 v2!~11tW

2 v2!G . ~51!

The velocity and decrement of a wave are determined
its frequencyv and the direction of propagationn, but the
temperature dependence of these quantities is more sig
cant. The latter is determined by the relatively weak dep
dencesRor(T), RW(T), RW0(T) and much stronger depen
dencestor(T) and tW(T). Most informative results can be
obtained by acoustic spectroscopy of crystals in the vicin
of temperaturesTm(v) defined by the relaxation resonanc
condition vt(T)'1: these temperatures of the crystal co
respond to peaks of thed(T) dependence and blurred ste
on thes(T) dependence.

In the case of fullerite C60, each relaxation effect con
sidered here~orientational and thermal relaxation! must gen-
erally correspond to its own relaxation resonance at temp
turesTm

(or)(v) andTm
(W)(v,n), defined by the equations

vtor~T!'1, vtW~n,T!'1. ~52!
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According to Eqs.~51! and ~52!, the heights of absorption
peaks are proportional to the parametersRor andRW and are
connected through them with the initial parameters of
theory as well as a few parameters accessible to direct
perimental measurements:

dm
~or!5d~Tm

~or!!5
pA fgvD

2B~`!D
, ~53!

dm
~W!5d~Tm

~W!!5
pAa2

2B~`!j
. ~54!

The recording of relaxation peaks extends the potent
ties for obtaining empirical estimates of phenomenologi
parameters of the theory. For example, using relations~36!
and ~53! and neglecting the difference betweenB(0) and
B(`), we obtain

vD

D
5

2dm
~or!

pAkorTm
~or! . ~55!

In the first approximation in small relaxation paramete
formulas~37! and~55! also lead to a relation containing on
the quantities accessible to direct experimental meas
ments:

CP
~or!.

pABTm
~or!kor

2

2dm
~or! . ~56!

This relation makes it possible to estimate the relative c
tribution of orientational excitations of molecules to the th
mal parameters of fullerite in the range of orientational liqu
(Tg ,Tc).

The low-temperature phase of fullerite C60 has been
studied comprehensively by high-frequency acoustic sp
troscopy methods, although most of the results unfortuna
pertain to polycrystals. In order to compare the relations
rived above with the experimental data, we shall use
results obtained in Refs. 15 and 16 as well as the result
other authors presented in these publications. Experime
data lead to the following estimates:A'0.5– 0.6, B
'10 GPa, Tm

(or).215 K, and dm
(or)'231022. Substituting

these values andkor'631025 K21 into formula ~56!,
we obtain the following estimate for the orientation
contribution to heat capacity of fullerite:CP

(or)'3.3
3105 J•m23

•K21'150 J•mole21
•K21 ~the possible error in

this estimate is of the order of 20%). The results
experiments15 show that the heat capacityCP in the tempera-
ture range 100–200 K remains unchanged and has the v
coinciding with the estimate obtained above. Such a coin
dence leads to the conclusion that the thermal characteri
of fullerite C60 in the range (Tg ,Tc) of orientational liquid
are mainly determined by thermal excitations of hexago
configurations of molecules: in the first approximation,k
.kor5const andCP5CP

(or)5const in this range. Naturally
this conclusion is not valid for the immediate vicinity of th
temperatureTc where anomalies in thermal parameters as
ciated with the phase transition are manifested.

Substituting the above experimental values of para
eters of fullerite into formula~55!, we obtain the estimate
vD'2D for the deformation potential constant. Taking in
e
x-

i-
l

,

e-

-
-

c-
ly
-
e
of
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lue
i-
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-

account the estimates obtained in Sec. 2, we arrive at
conclusion thatvp.vh , and we can write with an accurac
to within 20%

vp'vh'2 eV, vD'2431023 eV.

Experimental data on the dependence of the peak t
peratureTm

(or) on the ultrasonic frequency15,16 together with
the resonance condition~52! and formula~48! for tor(T) lead
to the following estimates for the parameters of a doub
well potential:

Up'Uh'0.3 eV, t053310214 s.

It is also expedient to estimate the value of the lattic
orientational interaction parameterg, or the dimensionless
parameter«h corresponding to it:

«h5
g

B
5

korD

k
wS D

kTD , w~x!5
~11ex!2

x2ex . ~57!

In the temperature range (Tg ,Tc) we are interested in, the
function w(x) varies approximately from 3 to 17, and hen
the following estimate is valid for the midpoint of this inte
val: «h;831022. The large value of this parameter is act
ally responsible for the decisive effect of orientational ex
tations on the thermal and acoustic properties of fullerite

Concluding this section, we note the highly dampi
properties of the low-temperature phase of fullerite C60. Ac-
cording to the existing classification,23 solids for which the
logarithmic damping factor attains values ofd>1022 belong
to highly damping materials. As a rule, such properties
inherent in complex metal alloys at temperatures of the or
of or above the room temperature. Fullerite C60 belongs to a
few materials preserving highly damping properties ove
wide temperature range. The above analysis shows th
physical reason behind this property is the large value of
lattice–orientational interaction parameter.

CONCLUSIONS

1. The microscopic extension proposed for the pheno
enological model of doublewell orientation states~pentago-
nal or hexagonal configurations! is used extensively for de
scribing various physical properties of the low-temperat
phase of fullerite C60 which exists below the phase transitio
temperatureTc5260 K. A set of microscopic parameter
characterizing the thermally activated transitions betweep
and h configurations~barriers Up ,Uh , their differenceD
5Up2Uh , and the characteristic molecular libration perio
t0) is proposed as well as a set of deformation poten
constantsvp , vh andvD characterizing the effect of fullerite
lattice deformations on these barriers and their difference
simple kinetic equation describing the relaxation of noneq
librium concentrations ofp andh configurations is obtained

2. A semimicroscopic model of double-well orienta
tional states and their corollaries are compared with the th
modynamic relations for macroscopic physical characte
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tics of fullerite obtained from an analysis of the bounda
properties of free energy for the processes of heating, as
as quasistatic and dynamic deformation.

3. Relations connecting the structural and experiment
measurable thermodynamic characteristics of fullerite w
the microscopic parameters of the double-well state par
eters are derived.

4. Expressions are obtained for complex elastic mod
of fullerite, connecting its mechanical characteristics w
the double-well state model parameters, and relaxation
rections to the velocities and sound wave attenuation rate
calculated and analyzed.

5. A comparison of the conclusions of the theory wi
the results of experimental measurements of structural, t
mal and acoustic characteristics of fullerite leads to empir
estimates for microscopic parameters of double-well orien
tion states: Up'Uh'0.3 eV, D'1231023 eV, vp'vh

'2.0 eV, vD'2431023 eV.

6. It is shown that significant effects of thermal expa
sion and acoustic absorption, which are characteristic of
low-temperature phase of fullerite C60, are due to the rela
tively large intensity of interaction of rotational degrees
freedom of molecules with the crystal lattice deformations
formula describing the magnitude and temperature dep
dence of the dimensionless coefficient of lattice-orientatio
interaction in the range of existence of the orientational
uid is obtained as well as an empirical estimate«h.8
31022 for the magnitude of this coefficient.

The authors are privileged to dedicate this publication
Prof. A. M. Kosevich on his 70th birth anniversary, and e
press their gratitude for the honor of belonging to h
school.
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1!For sound propagation in other less symmetric directions along wh

waves cannot be classified strictly as longitudinal and transverse wa
thermal and orientational relaxation must lead to dispersion and atte
tion of all three acoustic modes. Propagation of transverse waves in fu
ite polycrystals must also be accompanied by relaxation effects, sinc
dividual grains in the field of transverse wave are subjected not only
shear strain, but also to compression i.e., extension strain.

1P. A. Heiney, J. A. Fischer, A. R. McGhieet al., Phys. Rev. Lett.66, 2911
~1991!.

2F. Gugenberg, R. Heid, C, Meingastet al., Phys. Rev. Lett.69, 3774
~1992!.

3R. C. Yu, N. Tea, M. V. Salanonet al., Phys. Rev. Lett.68, 2050~1992!.
4M. I. F. David, R. M. Ibberson, T. J. S. Denniset al., Europhys. Lett.18,
219 ~1992!.

5M. I. F. David, R. M. Ibberson, and T. Matsuo, Proc. R. Soc. Lond
A442, 129 ~1993!.

6W. Schranz, A. Fnith, P. Dolinaret al., Phys. Rev. Lett.71, 1561~1993!.
7J. E. Fischer and P. A. Heiney, J. Phys. Chem.54, 1725~1993!.
8V. M. Loktev, Fiz. Nizk. Temp.18, 217~1992! @Sov. J. Low Temp. Phys.
18, 149 ~1992!#.

9J. D. Axe, S. C. Moss, and D. A. Neumann, inSolid State Physics~edited
by H. Ehrenreich and F. Spaepan!, Acad. Press, New York, Vol.48, 150
~1994!.

10V. D. Natsik, S. V. Lubenets, and L. S. Fomenko, Fiz. Nizk. Temp.22,
337 ~1996! @Low Temp. Phys.22, 264 ~1996!#.

11O. Anderson, A. Soldatov, and B. Sundqvist, Phys. Rev. B54, 3093
~1996!.

12H. A. Kramers, Physica7, 284 ~1940!.
13W. Nowacki,Theory of Elasticity, Mir, Moscow ~1975!.
14J. Hirth and J. Lothe,Theory of Dislocations~McGraw-Hill, New York,

NY, 1967!.
15N. P. Kobelev, Ya. M. Soifer, I. O. Bashkinet al., Phys. Status Solidi B

190, 157 ~1995!.
16Ya. M. Soifer and N. P. Kobelev, Mol. Mater.7, 267 ~1996!.
17M. A. Leont’ev, Introduction to Thermodynamics. Statistical Physics~in

Russian!, Nauka, Moscow~1983!.
18L. D. Landau and E. M. Lifshitz,Theory of Elasticity~in Russian!, Nauka,

Moscow ~1987!.
19L. S. Fomenko, V. D. Natsik, S. V. Lubenetset al., Fiz. Nizk. Temp.21,

465 ~1995! @Low Temp. Phys.21, 364 ~1995!#.
20A. M. Kosevich and V. D. Natsik, Fiz. Tverd. Tela~Leningrad! 8, 1250

~1966! @Sov. Phys. Solid State8, 993 ~1966!#.
21V. S. Postnikov,Internal Friction in Metals~in Russian!, Metallurgiya,

Moscow ~1969!.
22C. Kittel, Introduction to Solid State Physics, Nauka, Moscow~1978!.
23K. Sugimoto, Met. Inst. Sci. and Res.35, 31 ~1978!.

Translated by R. S. Wadhwa



LOW TEMPERATURE PHYSICS VOLUME 24, NUMBER 7 JULY 1998
CHRONICLES

Igor Mikhailovich Dmitrenko

„On his 70th birthday …

Fiz. Nizk. Temp.24, 704 ~July 1998!

@S1063-777X~98!01507-2#
or
y
th

gi
o

og
o
n
i
n

tio
od
p
o

of
ing
l of

i-
uit-
July 24, 1998, marks the 70th birthday of Ig
Mikhailovich Dmitrenko, Member of the National Academ
of Sciences of the Ukraine, Head of the Department at
B. Verkin Institute for Low Temperature Physics and En
neering, Kharkov, and a leading specialist in the field
superconductor physics. Dr. Dmitrenko gained wide rec
nition owing to his brilliant experiments on the transient J
sephson effect, quantum interference, magnetic flux qua
zation, and macroscopic tunneling phenomena
superconducting systems. His name is associated with
merous applied investigations aimed at practical applica
of the achievements of superconducting technology in m
ern electronics. As regards his scientific organizational ca
bilities, it is hard to overestimate or overemphasize the r
5341063-777X/98/24(7)/1/$15.00
e
-
f
-

-
ti-
n
u-
n
-

a-
le

of Dr. Dmitrenko as one of the founders and supervisors
the Institute for Low Temperature Physics and Engineer
in Kharkov, and also as an active member of the Editoria
our journal.

We heartily congratulate Igor Mikhailovich on his jub
lee, and wish him health, prosperity and many years of fr
ful scientific activity.

The Editorial Board

Translated by R. S. Wadhwa
© 1998 American Institute of Physics
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The leading Russian theoretical physicist Yurii Mo
seevich Kagan, Member of the Russian Academy of S
ences, turned 70 on July 5, 1998. The field of lo
temperature physics research has been enriched great
his brilliant ideas and results, including the prediction
quasilocal vibrations of crystals with impurities, a micr
scopic analysis of the phonon spectra of metals, descrip
of the metastable metallic phase of hydrogen and tunne
mechanism of phase transitions, prediction of the s
localization effect during quantum diffusion of defects
5351063-777X/98/24(7)/1/$15.00
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crystals, and a comprehensive analysis of the kinetics
spin-polarized hydrogen.

We sincerely wish Yurii Moiseevich many more years
his inherent scientific activity, dynamism and energy
research and his cordial relationship with colleagues
pupils.

The Editorial Board

Translated by R. S. Wadhwa
© 1998 American Institute of Physics
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Arnold Markovich Kosevich, Corresponding Member
the National Academy of Sciences of the Ukraine, Head
the Department at the B. Verkin Institute for Low Temper
ture Physics and Engineering, Kharkov, Professor at
Kharkov State University, and a talented theoretical phy
cist, turned 70 on July 7, 1998. His name is associated w
the solution of numerous fundamental problems in the fi
of low-temperature solid state physics. He was one of
founders of the theory of quantum oscillatory effects in m
als. The results obtained by A. M. Kosevich from investig
tions of phonon spectra and dynamic dislocation proces
are widely used for describing thermal and mechanical pr
erties of crystals. A profound and comprehensive analysi
5361063-777X/98/24(7)/1/$15.00
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dynamic nonlinear excitations in magnetically ordered me
was carried out under his guidance. For many years, he
been an active member of the Editorial of our journal.

Arnold Markovich celebrates his 70th birthday at th
zenith of his scientific career, with an irrepressible capac
to generate new original ideas and to develop them into
portant and brilliantly formulated results. We heartily co
gratulate Dr. Kosevich, and wish him health, prosperity a
many years of fruitful scientific activity.

The Editorial Board

Translated by R. S. Wadhwa
© 1998 American Institute of Physics
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