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The kinetics of isotopic phase separation of3He–4He solid mixtures for various molar volumes
has been studied by precision pressure measurements at a constant volume. It is found that
the attainment of equilibrium between coexisting phases formed as a result of stratification is
described correctly by an exponential dependence for various modes of crystal cooling
and heating. The characteristic phase separation time decreases with temperature, thus confirming
the athermal quantum nature of the growth of a new phase during the phase transition. The
phase separation time is found to increase considerably with crystal pressure. It is shown that the
prevailing theory can provide only a qualitative description of the established regularities. A
quantitative description of experimentally observed decay times requires an analysis of diffusion
processes in a gas of impurity excitations in the presence of a concentration gradient.
© 1998 American Institute of Physics.@S1063-777X~98!00109-1#
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INTRODUCTION

It is well known that the phase separation of dilute so
mixtures of3He in 4He at quite low temperatures leads to t
formation of clusters of the concentrated phase consis
almost entirely of pure3He. In contrast to the phase separ
tion in liquid 3He–4He mixtures where the lighter concen
trated phase floats in the gravity field, the clusters of3He in
solid mixtures are distributed all over the host matrix, an
unique interface does not exist. Under these conditions,
growth of the concentrated phase is mainly determined
diffusion processes in such a system.

Another distinguishing feature of3He–4He solid mix-
tures is that owing to a large amplitude of zero-point vib
tions, the3He impurity atoms are delocalized as a result
quantum tunneling and are transformed into quasiparti
~impuritons!. For a low impurity concentration, we can tre
them as a rarefied gas of quasiparticles moving practic
freely over the entire crystal. This results in a special type
diffusion processes in3He–4He solid mixtures.

In spite of the fact that some aspects of the kinetics
isotopic phase separation of3He–4He solid mixtures have
been studied for over 30 years,1–12 the correlation between
the growth kinetics for the concentrated phase and diffus
processes in the solid mixture has been established
recently.13–15It was shown that the characteristic phase se
ration time decreases with temperature, which means tha
diffusion processes are not thermally activated. An agr
ment with the experimental results was attained under
assumption that the evolution of new phase clusters is de
mined by quantum diffusion16 of delocalized impurity
6111063-777X/98/24(9)/6/$15.00
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excitations in the mixture. As expected, the process depe
significantly on the concentration of3He in the mixture.

A unique feature of helium crystals associated with th
extremely high compressibility leads to another factor wh
may change the kinetic behavior of the system radically
was shown experimentally in Ref. 17 that pressure is
factor responsible for such a behavior. Since the excha
energy of the pair of atoms3He and4He ~nearest neighbors!
decreases sharply with increasing pressure, an increas
pressure at a constant concentration suppresses quantum
fusion of 3He quasiparticles and leads to their localization

This circumstance affects the kinetics of isotopic pha
separation. The present publication marks the beginning
systematic experimental studies of the effect of pressure
growth kinetics of the concentrated phase through precis
measurements of pressure during isotopic phase separ
of 3He–4He solid mixtures at a constant volume.

EXPERIMENTAL TECHNIQUE

We studied a mixture with initial concentration 2.0
at. % 3He. The crystalline sample was grown by capilla
blocking method. Samples were annealed at a tempera
near the melting point for two days to improve the quality
the crystal, which was estimated from the reproducibility
the temperature dependence of pressure in the single-p
region before phase separation as a result of multiple c
ing. The experimental cell is shown schematically in Fig.
The sample was taken in the form of a flat cylinder of dia
eter 9 mm and height 1.5 mm to facilitate cooling of th
crystal. The coupling between the measuring cell and
© 1998 American Institute of Physics
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612 Low Temp. Phys. 24 (9), September 1998 Ganshin et al.
dilution chamber was ensured through a detachable c
thermal contact.18 We did not use a sintered heat exchang
in the measuring cell since fine pores may considerably
fect the phase separation process.19

The thermal relaxation time for the sample associa
with its finite thermal resistance is estimated at;1 s, while
the relaxation time associated with Kapitza resistance is
timated as 25–50 s.

Ultralow temperatures were attained by using a new
digenous powerful3He–4He dilution refrigerator distin-
guished by outer circulation of3He forced by a mechanica
pump NVPR–16, as well as by cryogenic circulation crea
by two adsorption pumps. The dual circulation system
ables a rapid attainment of the desired temperature with
help of two adsorption pumps, which can then be maintai
just by the mechanical pump. Such a working cycle cons
erably decreases the consumption of helium in the o
bath. The minimum temperature attained by cooling with
empty experimental cell~without heat leakage through th
filling capillary! was 4.2 mK.

The sample temperature was measured by a me
curve thermometer20 mounted on the dilution chamber plat
The temperature resolution of the thermometer was 0.3 m
Several resistance thermometers were also used at the
time, and their readings were recorded by using an a.c. c
bridge R441 and a specially designed digital a.c. bridge w
a power dissipation below 10215W.21 Temperature was sta
bilized by a heater which was mounted on the dilution cha
ber plate and connected to the outlet circuit of the dig
bridge.

The phase transition was studied by cooling the sam
in the phase separation region in small steps with temp
ture stabilization at each step. In some cases, cooling
single large step was carried out for comparison.

Isotopic phase separation kinetics was studied by rec
ing the pressure variation in the sample. For this purpose
used a Straty–Adams pressure gauge in which one of
experimental cell walls served as the mobile membrane~Fig.
1!. The pressure variation in the sample was recorded
using an a.c. bridge General Radio 1615-A. In the en

FIG. 1. Schematic diagram of the experimental cell: sample~1!, membrane
of capacitive pressure gauge~2!, inlet capillary tube~3!, body of the cell~4!,
dilution chamber plate~5!.
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working pressure range, the pressure gage has a resol
better than 8 Pa.

COOLING THERMOGRAMS AND KINETICS OF PRESSURE
VARIATION

After growth and annealing, the samples were cooled
a temperature close to the phase separation pointTs at a rate
of 34610 mK/h. Below;400 mK, the pressure in the crys
tal practically did not change right down to the temperatu
Ts , at which a sharp increase in pressure indicating the ph
transition was observed. Subsequent cooling of the samp
the phase separation region was carried out in small s
followed by temperature stabilization. Figure 2 shows a ty
cal cooling thermogram of the sample in the phase separa
region, as well as the corresponding pressure variation in
crystal reflecting the growth kinetics for the concentrat
phase.

In each step, the equilibrium state between the coex
ing phases was established after a certain timet, character-
izing the attainment of a plateau. The value of this tim
decreases as we go over to steps at lower temperatures.
a behavior was also observed in NMR experiments.12,13

Some samples were studied in the phase separation
gion during cooling, as well as during subsequent warm
~also in small temperature steps! right up to transition of the
decomposed mixture into a homogeneous state. Such a
mogram and the corresponding temperature variation
shown in Fig. 3. It can be seen that there is no signific
difference in the pressure jump during phase separation

FIG. 2. Cooling kinetics of sample3 ~a! and the corresponding dependen
of crystal pressure on time~b! ~molar volume 20.54 cm3/mole).
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613Low Temp. Phys. 24 (9), September 1998 Ganshin et al.
homogenization in a single temperature step~irrespective of
its variation! and over the entire pressure variation duri
multiple stratification followed by homogenization.

Table I shows the basic characteristics of the inve
gated samples. A transition from one sample to another
carried out by heating the crystal up to the melting point i

FIG. 3. Kinetics of cooling followed by warming of sample 8~a! and the
corresponding time dependence of the variation of crystal pressure~b! ~mo-
lar volume 20.28 cm3/mole).
i-
as
a

closed volume. After this, the pressure in the cell was lo
ered or increased by using a vaporizer filled with an identi
mixture. The newly formed crystal was then subjected
annealing once again in order to eliminate possible hetero
neities and stresses. For comparison, some crystals wer
vestigated before and after annealing.

Table I also shows the phase separation temperatureTs

recorded at the instant of pressure variation during cooling
the crystal. Note that the phase transition in samples gro
without preliminary annealing begins at higher temperatu
than in properly annealed samples. The highest values oTs

were obtained during cooling of the samples after a transi
from a two-component system into a homogeneous mixtu
This points towards the existence of metastable phase
gions, which is a characteristic feature of first-order pha
transitions.

CHARACTERISTIC PHASE SEPARATION TIME DURING
STEPWISE COOLING. COMPARISON WITH THEORY

In order to describe qualitatively the kinetics of the is
topic phase separation, the time variation of pressure for
nth step was approximated by the exponential dependen

Pn5Pn06A exp~2t/t!, ~1!

where the minus sign corresponds to cooling and the p
sign to heating,t is the characteristic time determining th
kinetics of decomposition or homogenization within o
step, the parameterPn0 corresponds to the final equilibrium
pressure for each step, and parameterA to the difference in
final and initial pressures.

The obtained experimental data are described quite w
by formula ~1!, as shown in Fig. 4 on a magnified scale f
the case of cooling of a two-phase mixture within one te
perature step. Approximation was carried out by the meth
of least squares, and Table II contains the values of par
eters obtained for each crystal.
tion
TABLE I. Characteristics of investigated samples.

Sample No.
Pressure at
T5Ts , bar

Molar volume,
cm3/mol Ts , mK Type of cooling Remark

1 31.66 20.54 180 Rapid~1 step! Annealing for 3 days; cooling
and heating

2 31.72 20.54 216 Rapid~2 steps! Cooling after homogenization of
sample 1 and repeated heating

3 31.73 20.54 215 Step-wise Step-wise cooling after homogeniza
of sample 2

4 30.18 20.64 202 Rapid Without preliminary annealing;
cooling and heating

5 35.61 20.29 207 Rapid Without preliminary annealing;
cooling and heating

6 35.61 20.29 221 Rapid After homogenization of sample 5;
cooling and heating

7 31.28 20.56 200 Rapid Without preliminary annealing;
cooling

8 35.67 20.28 194 Step-wise Annealing for 1.5 days;
cooling and heating

9 35.67 20.28 220 Rapid After homogenization of sample 8;
cooling and heating
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Figure 5 shows the temperature dependence of the
topic phase separation timest obtained in this way. As ex-
pected, the isotopic phase separation is considerably slo
down upon an increase in pressure~decrease in molar vol
ume!. Upon a change in temperature in the course of ph
separation, the concentration of the dilute phase change
conformity with the equilibrium phase diagram22 defining
the concentration dependence of the timet which is found to
be nearly linear and in accord with the results presente
Ref. 13.

It should be remarked that, according to rough estima
the heat of phase transition11 liberated during isotopic phas
separation does not alter the kinetics of the proc

FIG. 4. Variation of crystal pressure as a result of cooling within a s
(Ti5100 mK, Tf599 mK!. Circles correspond to the experimental me
surements and the solid curve to formula~1!.

TABLE II. Parameters characterizing phase separation.

Sample
No.

Initial and
final T

of a step, mK Pn0 , bar t, h

Final equilibrium
concentration,

% 3He

216–188 31.768 0.76 1.0
188–177 31.784 1.07 0.76

3 177–168 31.793 0.74 0.6
168–139 31.814 0.40 0.2
139–110 31.827 0.27 0.04
110–100 31.829 0.37 0.017

194–169 35.772 5.07 0.67
169–148 35.910 3.69 0.28
148–125 35.942 0.90 0.11
125–110 35.959 0.42 0.04
110–99 35.967 0.65 0.02

8 99–62 35.974 1.20 0.0002
62–95 35.968 0.73 0.015
95–107 35.958 0.54 0.035
107–124 35.937 0.33 0.11
124–143 35.907 0.37 0.26
143–169 35.842 0.67 0.7
169–294 35.672 0.61 2.0
o-

ed

se
in

in

s,

s

significantly. We assume that the rate of liberation of hea
phase transition is determined by the growth of the n
phase in accordance with formula~1! and that the Kapitza
resistance is the bottleneck in the process of heat remova
then follows from the heat balance equation that on acco
of the liberation of heat of phase transition, the time dep
dence of the sample temperature has a small peak of a
2.5 mK as a result of abrupt cooling and about 0.5 mK d
ing stepwise cooling. This peak corresponds to the first m
utes of phase separation, when the sample temperature
not attained stabilization. After the peak, the sample te
perature levels out according to an exponential law.

The experimental data shown in Fig. 5 can be compa
with the recently developed theory14 describing the mobility
of interface in a quantum crystal. According to the authors
this theory,14 the experimentally observed growth of the ne
phase is associated with the movement of the interph
boundary. The characteristic time of phase separation
calculated from the interface velocity for the case when
temperature stepDT is much smaller than the temperatureT:

t5
pA2

6x0d

aR0

D0
S Tc

T D 3

expS 2
2Tc

T D , ~2!

wherex0 is the concentration of the decomposed mixturea
the separation between atoms.d the dimensionality of clus-
ters of the concentrated phase,Tc the critical temperature o
phase separation, andR0 the cluster size which is equal t
the radius of a sphere ford53 ~spherical clusters!, radius of
a cylinder ford51 ~cylindrical clusters!, and half the plate
thickness ford52 ~flat clusters!. The parameterD0 , which
depends on pressure, appears in the expression for the d
sion coefficient:

p

FIG. 5. Temperature dependence of the characteristic isotopic phase
ration time for different molar volumes: 20.54 cm3/mole ~circles!, 20.28
cm3/mole ~squares!. Dark symbols correspond to cooling in one step, a
the solid curves to calculations using formula~2!.
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D~x!5
D0

x S xc2x

xc
D n

, ~3!

which follows from the theory23 and was confirmed by NMR
measurements of the coefficient of quantum spin diffusion
solid mixtures containing 0.12–4.98%3He in the range
19.9–20.7 cm3/mole of molar volumes.24 The quantityxc in
formula ~3! corresponds to the critical concentration marki
the suppression of the band motion of impuritons wh
leads to quantum diffusion, and the onset of localization
3He quasiparticles. It has been shown in experiments24 that
the value ofxc increases with molar volume and amounts
3.2–7.0%3He depending on pressure variation, the critic
exponentn being 1.760.3 everywhere.

A comparison of the experimental data with formula~2!
shows that the theory14 can describe qualitatively the tem
perature dependence oft. The solid curves in Fig. 5 were
obtained by calculations according to formula~2! for both
molar volumes. The quantityR0 /D0d, which is equal to
4.931011 s/cm for V520.28 cm3/mole and 9.831010 s/cm
for V520.54 cm3/mole was chosen as the fitting paramet
Assuming that the radius of the spherical clusterR052
31024 cm for d53,5,9,25 the obtained values of the fittin
parameter correspond to the valueD0;1015 cm2/s. This is
about three orders of magnitude lower than the analog
values of the constant obtained from NMR measurement
the spin diffusion coefficientD(x)24 for the corresponding
values of the molar volume.

Note that at temperatures below;110 mK, the timet
remains practically unchanged upon a decrease in temp
ture. In some cases, even a slight increase in the decay
was observed. Theory14 does not predict such a low
temperature dependence.

The pressure dependence of the phase decay timet is
found to be only in qualitative agreement with the theor14

~see Fig. 5!. Apparently, the quantitative disagreement is
sociated with the fact that the value of the parameterD0

appearing in formula~2! should not be taken from the NMR
measurements. This means that the growth of the new p
in the process of isotopic phase separation is determine
the diffusive process occurring under conditions differe
from those of the NMR experiment. It would probably b
appropriate to use the coefficient of heterodiffusion occ
ring in a two-phase solid mixture in the presence of a c
centration gradient. It was mentioned by Antsyginaet al.15

that strong elastic stresses may appear at the interface
tween coexisting phases due to different crystal structu
and molar volumes of these phases. Under such conditi
the diffusion coefficient must also vary significantly. Unfo
tunately, these aspects of the quantum crystal mixtures h
not been subjected to theoretical or experimental invest
tion so far.

PHASE SEPARATION UNDER RAPID COOLING

Figure 6 shows an example of pressure variation upo
rapid cooling of the sample following its thermal cyclin
~one large step! and subsequent heating to the homogene
state. The asymmetry in the pressure variation upon coo
n
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and heating can be clearly seen in this case. Note th
similar asymmetry is also observed during stepwise coo
and heating~Fig. 3!.

An analysis of the kinetics of pressure variation duri
the isotopic phase separation shown in Fig. 6 indicates
the attainment of equilibrium between coexisting phases
described correctly by a single exponential dependen
Table III shows the corresponding values of the characte
tic phase separation timet for this as well as other samples
The characteristic timet* corresponding to the revers
transition from a dissociated two-phase mixture to the hom

FIG. 6. Change in the crystal pressure during a one-step cooling and w
ing of sample 9~molar volume 20.28 cm3/mole). The solid curve corre-
sponds to calculations based on formula~1!.

TABLE III. One-step cooling and warming of samples.

Initial and
Separation time, h

Sample final temperaturet* , during t, during
No. of step cooling heating Remark

After annealing for
1 184–113 0.33 3 days

216–198 0.76 After sample
2 homogenization

198–103 0.20

207–112.5 0.64
5 Without annealing

112.5–300 0.10

Values oft
6 84–300 0.12 measured only durin

heating

7 200–115 0.30 Without annealing

230–110 0.42
9 After homogenization

110–296 0.11 of sample 8
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geneous single-phase state is also given in the Table. It
be seen thatt* is always much smaller thant.

The values of the phase separation time under ra
cooling are also shown in Fig. 5 where they can be compa
with the corresponding values obtained during stepwise c
ing. Experiments show that the values oft coincide in both
cases for the same value of the final temperature.

Some of the investigated samples were subjected to
topic phase separation without preliminary annealing. In t
case, the phase separation time was found to be much lo
than for samples after annealing.

Note that phase transition under conditions of rapid co
ing or heating always occurs under conditions of a la
concentration gradient which, in addition, varies rapidly
time. Apparently, this circumstance must affect significan
the process of transport of3He from the surrounding mixture
to the clusters of the concentrated phase. Assuming that
a transport is only diffusive in nature, we can estimate,
diffusion coefficient for a phase separation with characte
tic time t.

Suppose that stable clusters of the concentrated
phase with a mean radius 231024 cm are formed in an hcp
mixture containingx52.04% 3He for a molar volume 20.28
cm 3/mole. In this case, the mean cluster density can be
fined as

n5
3x

4pR3

Vc

Vd
, ~4!

whereVc andVd are the molar volumes of the concentrat
and dilute phase respectively. Assuming half the mean s
ration between clustersl 5n21/3 as the diffusion length, we
can write the effective diffusion coefficient in the form

Deff5S pVd

6Vc
D 2/3 R2

tx2/3. ~5!

Using this equation, we can estimate the valueDeff

;1010cm2/s, which is about an order of magnitude high
than the diffusion coefficient measured by the NMR meth
in the solid mixture3He–4He.24 This also indicates that th
quantum diffusion of impuritons during phase separat
may occur in a different manner than in NMR experime
with a homogeneous mixture.

Transport of3He atoms may occur diffusively as well a
through hydrodynamic flow of3He quasiparticles. Thes
questions also require additional experimental and theo
cal studies.
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The range of applied magnetic fieldH corresponding to the stability of mixed state with a fixed
magnetic inductionB is determined for a high-Tc superconducting YBa2Cu3Ox single
crystal forH'c-axis. For this purpose, the field dependences of the contributionmv to the
dynamic magnetic permeabilitymac8 are analyzed for the hysteresis loopsmv(H) in the temperature
range from 70 to 84 K. It is shown that themv(H) hysteresis can be interpreted in terms of
the interaction between the vortex lattice and the surface and is associated with theB(H) hysteresis
as a manifestation of the Bean–Livingston surface barrier. As a result, themv(H) hysteresis
loops corresponding to different temperatures can be described by a universal curve in
dimensionless coordinates. The obtained estimates and the available experimental data reveal a
significant suppression of the surface barrier in actual YBaCuO single crystals as compared
to the barrier predicted for a perfect surface. The lower branch of themv(H) hysteresis loop, which
corresponds to increasingH, is found to be close to the equilibriummv(H) curve, and the
surface barrier appreciably affects the behavior ofmv(H) only for decreasing field, i.e., the
emergence of magnetic vortices from the sample surface. ©1998 American Institute of
Physics.@S1063-777X~98!00209-6#
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INTRODUCTION

Abrikosov’s vortices interact with the surface of a sup
conductor. One of the results of this interaction is the em
gence of a surface~Bean–Livingston!1 barrier hampering
free vortices entering or emerging from the sample surfa
For example, when the applied magnetic fieldH increases
from zero, the magnetic flux starts entering the sample wi
perfect surface when the value ofH becomes equal to th
thermodynamic critical fieldHc ~rather than the lower criti-
cal field Hc1 as in the absence of the Bean–Livingston s
face barrier!.

However, an analysis of a large number of available d
suggests to a high confidence level that the Bean–Livings
barrier in high-Tc superconductors~HTSC! is noticeably
lower than predicted for a perfect surface. Nevertheless,
fact is not trivial since the value ofHc in HTSC is much
higher thanHc1 in view of a considerable value of th
Ginzburg–Landau parameterk.100. For this reason, stron
local fields associated with the roughness of the surface
suppress the surface barrier by not more than 10–20% o
value for a perfect surface according to estimates.2 Some
authors attribute the barrier suppression effect to the p
ence of surface defects~see, for example, Ref. 3!. However,
quantitative estimates concerning this problem have not b
obtained as yet.
6171063-777X/98/24(9)/7/$15.00
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In this connection, an analysis of effects associated w
peculiarities in the behavior of vortex lattice near the sup
conductor surface is of special importance. One of such p
nomena~which is very sensitive to the structure and dyna
ics of surface vortices! is the magnetic hysteresis of dynam
magnetic permeability.

This effect was observed for YBa2Cu3Ox single crystals
and studied by a number of authors4–7 who investigated the
response of HTSC to an ac magnetic field of low frequen
(v/2p53 kHz) and small amplitude (h,10 Oe) in the pres-
ence of a constant parallel magnetic fieldH. In these publi-
cations, the real component of the fundamental harmonicmac8
of the complex magnetic permeabilitymac* is the object under
investigation. The quantitymac8 is defined as a coefficient in
the Fourier expansion of the volume-averaged magnetic
duction B(t) varying periodically with time. In a magnetic
field H(t)5H1h sin(vt), we can write the following ex-
pression formac8 ~which will be henceforth referred to a
permeabilitym for the sake of brevity!:

m5
1

2ph E
0

2p/v

cos~vt !
dB

dt
dt. ~1!

It was proved in Ref. 4 that the change in the magne
induction in the sample due to the varying component of
© 1998 American Institute of Physics
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magnetic field~and hence permeability! can be represente
as the sum of two terms. The first termmm associated with
Meissner’s current oscillations is defined as

mm52l/D, ~2!

wherel is the London penetration depth andD the sample
thickness in the direction perpendicular to the magnetic fie
The second termmv is associated with displacements of vo
tices in the superconductor. For large values of the amplit
h of the ac magnetic field, vortices get separated from p
ning centers and can enter and leave the sample. For smah,
vortices perform small vibrations near equilibrium position
their total number in the volume remaining unchanged. T
vibrational contributionmv is due to a strong dependence
the surface flow of vortices on their position relative to t
surface. The analysis carried out in Refs. 4–7 revealed th
is the contribution from vortex vibration that determines t
hysteresis loop in the magnetic permeability of YBaCuO
pearing upon a cyclic variation of the constant fieldH. It was
found that all the changes occurring inmv during the appli-
cation or removal of the field are completely determined
the variation of distancex1 between the first row of vortice
and the surface. The shape of themv(x1) curve was also
determined. However, the origin of the hysteresis loop in
vibrational contributionmv(H) ~i.e., the reason for which the
hysteresis ofx1(H) takes place! has not been clarified com
pletely.

In this publication, we analyze this effect in terms
interaction between the vortex lattice and the surface
derive an analytic expression connecting the contributionmv
to dynamic permeability from the vibrations of vortices wi
the induction of the vortex lattice in the surface layer o
single crystal.

It will be proved that a comparison of the theoretic
curves with the experimentally obtained hysteresis loops
mv(H) makes it possible to reconstruct the range of the
plied magnetic fields@Hmax(B)2Hmin(B)# in which the mixed
state with a fixed value of magnetic induction can exist. T
allows us to estimate the height of the surface barrier
actual HTSC single crystals and compare it with the va
for a perfect surface.

EXPERIMENT

Permeability measurements on YBa2Cu3Ox single crys-
tals in the temperature range 70–84 K were made with
help of an ac bridge by using the technique described
detail in Ref. 4. The constant fieldH ~varying from 0 to 1
kOe! was applied parallel to the ac field of amplitudeh
~0.1–10 Oe! and frequency 3 kHz. Thec-axis of a
YBa2Cu3Ox single crystal (Tc592 K) having the shape of a
1.1831.2631.67 mm parallelepiped was oriented at rig
angles to the fieldH (H'c). In order to measure the fiel
dependences of permeability, the bridge was balanced a
minimum ac field amplitude after sample cooling toT,Tc in
zero constant magnetic field. The real component of the
harmonic was determined from the disbalance voltage
duced as a result of application of the fieldH by using a
selective amplifier and a phase detector. The signal obta
.
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in this way is proportional to the real componentmac8 of the
complex permeability. This technique, which ensures co
plete compensation of the diamagnetic signal associated
sample shielding by Meissner surface currents, makes it p
sible to detect relatively weak effects associated with vor
dynamics in the surface layer at the ac magnetic field p
etration depth.

The magnitude of the sought vibrational contributionmv
~which is independent of amplitude! was determined for each
value of the constant fieldH during its increase as well a
decrease by extrapolating the experimental curvemac8 (h) to
zero amplitude according to the procedure described in de
in Ref. 4.

Figure 1 shows themv(H) hysteresis loops obtained fo
a YBa2Cu3Ox single crystal at temperatures varying from 7
to 84 K. It can be seen that the vibrational contributionmv to
dynamic permeability increases noticeably with temperatu
the width of the hysteresis loop varying insignificantly. It ca
also be noted that the width of segments formed upo
transition from one hysteresis branch to the other upo
change in the direction of field sweep becomes considera
smaller~from ;50 to ;15 Oe) upon heating.

In the case when the effects under investigation can
described in terms of interaction of vortices with one anot
and with the sample surface, and the pinning of vortices
their thermal activation are insignificant, it is convenient
use dimensionless units introduced in the London or
Ginzburg–Landau theory. In this case, with an ‘‘approp
ate’’ normalization from the physical point of view, we ca
expect that the magnetic field dependencesmv(H) measured
at different temperatures behave similarly. We meas
length in the units ofl and the magnetic field in the units o
Hc15(w0/4pl2)3(ln k10,5), wherew0 is the magnetic
flux quantum. For the corresponding normalization of t

FIG. 1. Field dependences of the vibrational contribution to dynamic p
meability mv of a YBa2Cu3Ox single crystal at different temperaturesT, K:
70 ~a!, 73.4 ~b!, 77.3 ~c!, 80 ~d!, and 83.8~e!. Lower branches of the
hysteresis loops correspond to field application and the upper branch
field removal.
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619Low Temp. Phys. 24 (9), September 1998 Kugel’ et al.
vibrational contribution to the permeabilitymv , it is reason-
able to use the Meissner contributionmm to the permeability,
which depends onl according to formula~2!. ~The physical
meaning of such a normalization will be clarified in the su
sequent analysis.!

It should be noted that, in our geometry (H'c), vortices
anisotropic in cross section are characterized by the value
lab and lc along the crystallographic axisc and in the
ab-plane, respectively. For this reason, we must describe
experimental data by using the mean values of the magn
field penetration depthl5lav5Alablc5A5lab ~consider-
ing that the anisotropy parameter for YBaCuO isg
5lc /lab55).8 In the same geometry (H'c), the
Ginzburg–Landau parameter isk5kav5Alablc/Ajabjc

5lc /jab>350. The size of an anisotropic sample~the val-
ues of dc and dab along thec-axis and in theab-plane,
respectively! should be recalculated to the size of its isotr
pic analog: Dc5dcAg; Dab5dab /Ag. Besides, we mus
take into account the possibility of penetration of vortic
from the end faces of the sample~in view of its finite size!.
In this case, the quantitiesDc and Dab are connected with
the thicknessD of a model plate through the relation

D5DabDc /~Dab1Dc!5Agdabdc /~gdc1dab!.

Figure 2 shows the experimentalmv(H) curves obtained
at different temperatures in normalized coordinates. It can
seen that all the curves indeed behave similarly, i.e., we
serve the scaling behavior associated with the values of m
netic field penetration depths for each temperature.

FIG. 2. Normalized field dependences of the vibrational contribution
dynamic permeabilitymv of a YBa2Cu3Ox single crystal at different tem-
peraturesT, K: 70 ~a!, 73.4~b!, 77.3~c!, 80 ~d!, and 83.8~e!. The symbols
correspond to the experimental data. Solid curve1 corresponds to calcula
tions for a thermodynamically equilibrium state,2 to averagedmv(H) de-
pendence for field removal, corresponding to curve3 in Fig. 3, 3 to calcu-
lations for the region of transition from one hysteresis branch to the o
under the conditionBv5const. The arrows show the directions of fie
variation. The inset shows the temperature dependence of the magnetic
penetration depth in the surface layer of a YBa2Cu3Ox single crystal.
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It should be noted that the procedure of ‘‘scaling’’ th
experimental dependencesmv(H) in this case presumed th
measurement of magnetic field penetration depths~as fitting
parameters! only to within the scaling factor. In order to
determine the absolute values ofl, we had to use additiona
information, e.g., concerning the value ofl at a certain tem-
perature, or refer to a certain theoretical curvemv(H) whose
shape is known. The value ofl shown by way of an example
on the inset to Fig. 2 correspond to the latter case, i.e.,
reference to an equilibriummv(H) curve ~see below for de-
tails!. It will be clear from subsequent analysis that the
values ofl are of special importance for interpreting expe
mental data.

The scaling behavior ofmv(H) suggests that the vorte
dynamics near the surface is in all probability determined
the interaction between vortices as well as their interact
with the surface rather than by interactions with pinning ce
ters.

It would be interesting to obtain the theoreticalmv(H)
curves for HTSC single crystals, correctly describing the
perimental behavior of this quantity and thus clarifying t
nature of the observed effect.

THEORY

In our previous publication,5 we investigated the contri
bution of vortex vibrations near their equilibrium positions
permeability and derived an analytic expression formv :

mv5
2w0

Dal

exp~2x1 /l!

12exp~2d/l! S ]x1

]H D
Bv

, ~3!

wherex1 is the equilibrium position of the first row of vor
tices near the sample surface,a the vortex lattice constant in
the rows, andd5)a/2 the separation between rows of vo
tices in a regular triangular lattice. The differentiation is ca
ried out for a constant number of vortices in the sample
~which is the same! for a constant magnetic inductionBv of
the vortex lattice, which is defined as

Bv5w0 /da. ~4!

While deriving formula ~3!, we assumed that vorte
rows near the surface~starting from the second one! are ar-
ranged regularly with the same separationd. This statement
is valid to a high degree of accuracy for a perfect surfa
with which vortices interact strongly.9,10 Such an approxima-
tion is the more so valid for a ‘‘damaged’’ surface wit
which they interact much less intensely. Thus, in conform
with ~3!, the permeability hysteresis is completely dete
mined by the hysteresis of the equilibrium position of t
first row of vorticesx1(H) as a result of magnetic field ap
plication and removal. The hysteresis in the position of
first row of vortices can be associated with the interaction
vortices either with pinning centers, or with the surface. L
us consider the first case.

When vortices move from the surface to the bulk
back, they are trapped in the pinning centers, which ob
ously leads to a decrease in the distance between thei th row
and the surface as a result of entrance and to an increa
this distance as a result of exit of vortices. In accordan
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with ~3!, such a process leads to a hysteresis loop, but wi
polarity opposite to that observed in experiments. Besid
the magnitude of the effect is quite small since the criti
current densityj c<104 A/cm2 associated with pinning is
smaller than the density of Meissner currents:j c!cH/4pl
for H>100 Oe~even if we assume that the effective value
l near the ‘‘damaged’’ surface is an order of magnitu
larger than in the bulk of the single crystal!. Thus, the effect
of pinning on the hysteresis ofx1(H) is weak.

Let us now consider the second possible reason be
the hysteresis in the position of the first row of vortices re
tive to the surface, and hence in the quantitymv , i.e., the
interaction of vortices with the surface. The position of t
first vortex row near the surface was calculated by differ
methods5,10–12 either numerically, or by using various ap
proximations. It would be expedient to obtain a simple a
lytic expression forx1 and mv by direct summation of the
contributions of vortices to the Gibbs energy of the vort
lattice near the surface, following the approach develope
Ref. 12.

We write the Gibbs free energy for a vortex in the fir
row ~per unit length!10:

Gv5
w0

4p F(
l 52

`

Hv~xl2x1!2(
l 51

`

Hv~xl1x1!G
2

wv~x1!H

4p
1G0 , ~5!

where Hv(x)5(w0/2al)exp(2uxu/l), wv5w0@12exp
(2x/l)# the summation is carried out over vortex rows, t
first and second term in the braces describe the interactio
the first vortex row with the remaining rows and with the
images~including its own image! respectively, and the third
term in ~5! corresponds to the interaction with Meissne
current. The quantitiesHv(x) and wv(x) are the magnetic
field created by a vortex row at a distancex from it and the
magnetic flux of a vortex separated by the distancex from
the surface respectively. The constantG0 contains all the
terms independent ofx1 ~including the internal energy of a
vortex!.

It was mentioned above that in accordance with the
sults of analysis,9,10 we can putxl5x11( l 21)d to a high
degree of accuracy. Consequently, we obtain after sum
tion the following expression for the force acting on a u
length of a vortex in the first row:

F52
]Gv

]x1
5

w0

4pl F w0

2al

exp~2d/l!1exp~22x1 /l!

12exp~2d/l!

2H exp~2x1 /l!G . ~6!

In accordance with experimental conditions, the ma
netic field varies according to the lawH1h sin(vt). We
shall assume that the system corresponds to the minimu
Gibbs’ free energy for each value of the constant compon
of the magnetic fieldH, i.e., F(H)50. Under the condition
H@h, we obtain the following equation for the equilibrium
position of the first vortex rowx1(H):
a
s,
l
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w0

2al

exp~2d/l!1exp~22x1 /l!

12exp~2d/l!
2H exp~2x1 /l!50,

x15x1~H !, ~7!

and the periodic force acting on a vortex in the first row
given by

F5
w0h

4pl
exp@2x1~H !/l#sin~vt !. ~8!

Equation ~7! is quadratic in exp(2x1 /l). Solving this
equation, we obtain

exp~2x1 /l!5exp~2d/2l!H H

B̃v

6F S H

B̃v
D 2

21G 1/2J ,

~9!

where the following notation has been introduced:

B̃v5Bv

d

2l sinh~d/2l!
. ~10!

It can be easily seen that the Gibbs free energy minim
corresponds to the larger value ofx1 , i.e., the plus sign in
Eq. ~9!. Finally, we can write the following expression fo
the position of the first row corresponding toGmin :

x1~H !5
d

2
1l arccoshS H

B̃v
D . ~11!

Thus, the hysteresis loop can emerge on thex1(H) curve due
to the hysteresis in the magnetic inductionBv(H) appearing
as the magnetic flux enters and leaves the sample.

In accordance with formula~3!, the calculation of per-
meability in the case of a small amplitude of the sinusoi
external field is reduced to the problem of small oscillatio
of the position of the first vortex row near its equilibrium
position corresponding to the Gibbs free energy minim
for a given value ofH. In the low-frequency limit, in which
the amplitude of forced oscillations is independent of f
quency, we can use formula~8! for obtaining the expression
for the coercive force:

x1~ t,H !5x1~H !1
w0h exp@2x1~H !/l#

4pkl
sin~vt !. ~12!

Here k is the retrieving force corresponding to small ha
monic oscillations of the first vortex row in the effectiv
potential well. Substituting~11! and~12! into expression~3!
for mv , we obtain

mv5
w0

2pDkl
exp~2d/2l!

B̃v
3

@H1~H22B̃v
2!1/2#2

. ~13!

This formula expresses permeability in terms of the v
tex lattice induction and the retrieving forcek. Thus, in order
to describe the behavior ofmv upon a change in the applie
magnetic field, we must first of all know the form of th
Bv(H) dependence. If we assume that vortices penetrate
plate in a quasi-equilibrium way~i.e., in the absence of an
mechanisms of overcoming of the barrier by vortices!, this
dependence assumes the form12
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H5~Hs
21B̃v

2!1/2, ~14!

where Hs is the field corresponding to the penetration
vortices in the plate forBv50. In fact, formula~14! is a
generalization of the expression for the Bean–Livings
barrier to the case of a nonzero magnetic induction of
vortex lattice. It should be recalled thatHs5Hc for a per-
fectly smooth surface,13 while in the general caseHc1,Hs

,Hc . The condition for the emergence of vortices from t
plate is given by the relation12

H5B̃v . ~15!

This leads to the hysteresis behavior ofmv(H), the width of
the hysteresis loop being a function of the form ofBv(H) as
well as the value of the parameterk.

If we assume thatk is mainly determined by the inter
actions of vortices with one another and with Meissner c
rents rather than by pinning~which is natural just for the
vortex row nearest to the surface, where the Meissner cur
exceedsj c), it can easily be proved that expression~13!
assumes the form

mv5
2l

D

B̃v
2

~H22B̃v
2!1/2@H1~H22B̃v

2!1/2#
. ~16!

Here we assume thatk is determined by the second d
rivative of the Gibbs free energy~5! with respect to the po-
sition of the first row for a fixed magnetic induction. Formu
~16! establishes a simple analytic relation between the p
meability and the vortex lattice induction, which allows us
use this formula for describing experimental data. It can
seen that the quantitymm52l/D is the natural scaling facto
in the dependence ofmv on H, which justifies the above
normalization used for plotting experimental results in
mensionless units~see Fig. 2!.

It should be noted that expression~16! is formally inap-
plicable for calculatingmv(H) for a sample with a perfec
surface with a magnetic flux emerging from it since con
tion ~15! is satisfied in this case, andmv(H) turns to infinity.
In this case, we must take into account the contribution fr
pinning centers to the retrieving forcek and/or deviation of
the Bv(H) dependence from the quasi-equilibrium law~15!.

COMPARISON OF THEORY WITH EXPERIMENT.
DISCUSSION OF RESULTS

Thus, according to~16!, we can obtain the theoretica
curvesmv(H) by assuming a definite form of theBv(H)
dependence upon an increase or decrease in the mag
field. For example, we can use for this purpose express
~14! and ~15! obtained by us earlier12 and corresponding to
‘‘superheating’’ and ‘‘supercooling’’ of the Meissner sta
due to the existence of an appreciable surface barrier
vortices entering and leaving the superconductor. Howe
direct substitution of~14! and ~15! into ~16! and a compari-
son of the theoretical values ofmv(H) with the experimental
data suggests that the surface barrier in a YBaCuO si
crystal~if it exists! is much lower than the one predicted f
a perfect surface. Indeed, as the magnetic field increases
value of the fieldHs corresponding to penetration of vortice
f
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~and playing the role of fitting parameter! is close to the
lower critical field:Hc1<Hs<3Hc1 , while for a decreasing
magnetic field we have finite values ofmv instead of the
expected sharp increase inmv corresponding to condition
~15!: H5B̃v .

This result allows us to draw several conclusions. Fi
the closeness of the values ofHs andHc1 suggests that in an
increasing field the values ofmv(H) can correspond to a
magnetic induction in the sample, which is close to the eq
librium value.

We can obtain thismv(H) curve by putting in~16! the
Bv(H) dependence corresponding to thermodynamic equ
rium: B5Beq(H). @An approximate formula correctly de
scribing the equilibrium dependenceH(B) is given in Ref. 5,
and theBeq(H) curve is shown in Fig. 3~curve 1!.# The
results of calculation ofmv(H) for the equilibrium curveB
5Beq(H) are presented in Fig. 2 in the normalized coor
nates chosen by us~curve1!. It was noted above and follow
from Fig. 2 that the scaling experimental dependences sh
in the same figure and observed for increasing magnetic fi
can be matched with the given equilibrium theoretical cu
mv(H) for the values of magnetic field penetration dep
illustrated in the inset to Fig. 2.

Let us consider in greater detail the values ofl obtained
as a result of such a procedure. The absolute values of
quantity are slightly larger than the available data~see, for
example, Refs. 14 and 15!: the difference amounts approx
mately to 10% atT570 K and increases with temperatur
attaining;40% atT584 K. Such a result appears as qu
reasonable if we assume that slightly larger values of m
netic field penetration depth than bulk values are realized

FIG. 3. Magnetic induction as a function of the applied magnetic fie
Curve1 corresponds to a thermodynamically equilibrium state of the vor
lattice, curve2 is theB(H) dependence~14! corresponding to the entranc
of vortices in the sample forHS53Hc1 , curve 3 is reconstructed from a
comparison of experimental values ofmv(H) for field removal with depen-
dences calculated by formula~16!, and curve4 is the lower stability bound-
ary for the mixed state in the case of an ideal barrier. The dot-and-dash
corresponds toB5H, andA is the point of intersection of curves1 and2.
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some reason in the surface layer~whose response is observe
in experiments!. For example, this can be due to oxyg
deficiency in the surface layer. Qadriet al.,16 who measured
local values of the crystal lattice parameterc in the bulk of
the sample proved that the oxygen content at the sur
does not exceedx56.82 even in high-quality YBa2Cu3Ox

single crystals. Using the results obtained by Zimmerma
et al.17 and establishing the relation between the values
lab(0) and the oxygen contentx, we can verify that this
value of oxygen index indeed corresponds to the valuesl
increased by 30–40% as compared to the value in the
for which x56.95.

The above arguments suggest that the experimental
ues ofmv(H) obtained upon an increase in the field can
quite close to the equilibrium dependencemv(H), and hence
the surface barrier for vortices entering the sample is actu
not observed. It should be noted that the equilibrium curve
the range of weak fields still lies slightly higher than expe
mental points, and hence the statement thatHs andHc1 co-
incide exactly is not quite correct. However, estimates sh
that even an insignificant surface barrier~if it exists! makes
the root dependence~14! approach the equilibriumBeq(H)
dependence very rapidly. For example, ifHs53Hc1, this is
observed for fieldsH'6Hc1 , which indicates an inevitable
transition to the equilibrium dependence forH.6Hc1 ~curve
2 in Fig. 3!. Consequently, the application of formula~14!
with 2Hc1<Hs<3Hc1 instead of the equilibrium depen
dence Beq(H) for calculating mv(H) by formula ~16!
changes the theoretical dependencemv(H) insignificantly.

The other conclusion concerns the upper branch of
hysteresis loopmv(H) corresponding to a decreasing ma
netic field. Let us reconstruct theBv(H) dependence ob
served for vortices leaving the superconductor by compa
the experimental data with formula~16!. The results of cal-
culations are presented in Fig. 3~curve3!.

The existence of a barrier for vortices leaving the sam
suggests that the number of vortices does not change u
the reversal of the direction of magnetic field scanning in
certain transition region. This only shifts vortices towards
surface, whileBv5const. The transition region obviousl
corresponds to a transition from the lower branch of
mv(H) hysteresis loop to the upper branch. The substitut
of the conditionBv5const into Eq.~14! gives the theoretica
curve ~curve 3 in Fig. 2! for the given region. It should be
noted that this curve is characterized by a comparativ
large steepness, which is in qualitative agreement with
perimental data.

The transition region exists until the repulsive force e
erted by the Meissner current becomes smaller that the f
of interaction between vortices. At this value ofH5Hmin ,
the barrier for vortices emerging from the sample must v
ish. The lower stability boundary for the mixed state cor
sponds to the position of the vortex row nearest to the s
face, in which it is at the point of inflection of the Gibbs fre
energy ~for a perfect surface, this point corresponds toB̃
5H; curve 4 in Fig. 3!, i.e., at the point of instability to
small variations ofH. It was noted above that the value
mv in this case much increase abruptly~formally tending to
infinity!. Finite and not very large experimental values
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mv(H) observed during field removal indicate that vortic
leave the sample in the case when the position of the
closest to the surface still corresponds to the minimum of
Gibbs free energy~and not to the point of inflection!. A
possible mechanism of such an emergence of vortices in
case of an insignificant barrier is apparently the therma
activated process.

The region bounded by curves1 ~or a combination of
curves1 and 2! and curve3 in Fig. 3 can apparently be
regarded on the whole as the region of mixed state wit
fixed value ofB in an actual YBaCuO single crystal~for
H'c). We can assume that the existence of this region,
the hysteresis behavior ofBv(H) due to the surface barrie
for vortices leaving the sample is mainly responsible for
hysteresis loop observed inmv(H). ~Taking into account our
experimental geometry as well as the size and shape of
sample, we can conclude that barriers other than the Be
Livingston one~e.g., a geometrical barrier18! cannot make
any noticeable contribution to the magnetic flux distributi
in the range of magnetic fieldsH.Hc1 under investigation!.

It should be noted that the results obtained above for
stability region of the vortex state in YBaCuO single crysta
are very close to the results obtained earlier19 for small-grain
samples of the same composition. These data sugges
existence of an objective reason associated in all probab
with peculiarities in the boundary conditions observed
HTSC ~and not with technological conditions determined
the method of sample preparation!, which is responsible for
such a strong suppression of the surface barrier in HTSC
a result, an increase in magnetic field in such objects lead
a virtually equilibrium value of magnetic induction.

CONCLUSION

An analysis of peculiarities in the behavior of a vorte
lattice near the surface leads to an analytic expression for
magnetic field dependence of the vibration contributionmv
to the dynamic permeability, which correctly describes t
experimental data under the following conditions: for i
creasing field, the values ofmv(H) virtually correspond to
equilibrium valuesBeq(H), while for decreasing field there
exists a small barrier for vortices leaving the sample, wh
is responsible for the observed hysteresis behavior ofmv(H)
in a YBa2Cu3Ox single crystals.

Thus, a comparison of experimental curvesmv(H) with
theoretical dependences makes it possible to estimate q
titatively the stability region for the mixed state for a give
value of induction and indicates that magnetic field pene
tion depth in the surface layer of the single crystal und
investigation has slightly higher values than in the bulk.

This probably explains the origin of a considerable su
pression of the surface barrier, but this question requires
ther detailed investigations.

This research was supported by the Russian Founda
of Fundamental Studies~project No. 95-02-05398! as well as
the State Research Program ‘‘Current Trends in Physic
Condensed State’’~section ‘‘Superconductivity,’’ project
No. 96083!.
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Effects of nonlocal interlayer exchange in spin dynamics of a magnetic metal
superlattice
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It is shown that a consistent analysis of the nonlocal interlayer exchange in semi-confined
metallic magnetic superlattice of the ferromagnet–nonmagnetic metal type with antiferromagnetic
coupling between ferromagnetic layers leads to the formation of new types of collective
dipole–exchange spin-wave excitations near the surface of the magnetic superlattice. ©1998
American Institute of Physics.@S1063-777X~98!00309-0#
in
c
a
i

e
e
g
th
es
g
a
r-
s

on
b
llic

e
e
ol
po
lie
d
tic

g
d

at
n

ta-
ous

isms
ndi-

be-
our
the

ay-
ng-
hin

tic

in–
the

ss
on

nd

ly

f
an
The conductivity of the layers of a nonmagnetic metal
magnetic superlattices~MSL! of the magnet–nonmagneti
type determines the most fascinating properties of such m
netic systems, which are associated with magnetic dipole
teraction, as well as spin–spin interaction between magn
layers due to conduction electrons of the nonmagnetic lay1

It was shown, in particular, that indirect interaction of ma
netic moments of adjacent magnetic layers can be of
ferro- or antiferromagnetic type depending on the thickn
of the nonmagnetic interlayer. However, in spite of a lar
number of publications devoted to an analysis of reson
properties of MSL, the role of this type of magnetic inte
layer interaction was taken into account only in an analy
of equilibrium spin configuration.2,3 At the same time, this
type of interlayer exchange also contains the spatially n
homogeneous component in view of its nonlocal nature,
the effect of this component on spin dynamics of meta
MSL has been disregarded so far.

In this communication, we shall show for the first tim
that the inclusion of spatially nonhomogeneous compon
of interlayer spin–spin exchange along with magnetic dip
interaction in addition to the spatially homogeneous com
nent leads to the emergence of qualitatively new anoma
in the surface as well as volume dipole–exchange spin
namics of the MSL of the type ‘‘ferromagnetic–nonmagne
metal.’’

BASIC RELATIONS

By way of an example, we consider anN-periodic (N
@1) superlattice formed by a system of isotropic ferroma
netic layers of thicknessd1 each, which are connecte
through layers of a nonmagnetic metal of thicknessd2 ~for
example, Y–Gd system!.2 We shall henceforth assume th
the interlayer exchange through conduction electrons is a
ferromagnetic by nature, and the external magnetic fieldH
is applied in the plane of the layers (Hi0Y) whose normaln
to the interface is parallel to 0Z. Strictly speaking, the
6241063-777X/98/24(9)/5/$15.00
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calculation of the spectrum of collective spin–wave exci
tions in such a magnetic system on the basis of simultane
analysis of the exchange and magnetic–dipole mechan
of interlayer exchange and corresponding boundary co
tions ~between the layers and at the edges! involves the ap-
plication of the method of T-matrix.4 For this reason, the
calculations and the subsequent analysis of the results
come extremely cumbersome. However, we can confine
analysis to the long-wave range of magnon spectrum of
MSL under investigation since the thickness of magnetic l
ers in them varies from a few tens to several hundreds a
ströms@Ref. 1#, and assume that magnetic layers are ultrat
in their dynamic properties (k'd1!1,k' being the wave
vector of magnetic oscillations in the plane of a magne
layer!. Besides, it was shown by Basset al.5 that since the
interval between two eigenfrequencies in the case of sp
wave resonance in an individual ferromagnetic layer with
saturation magnetizationM0 is equal togM0ã(p/d1)2 (ã is
the nonuniform exchange constant andg the gyromagnetic
ratio!, oscillations of magnetization over the film thickne
can be regarded as quasi-uniform if the following relati
holds:

d1!pc0D21, ~1!

where c0 is the velocity of light andD the frequency of
uniform ferromagnetic resonance~FMR!. Thus, the magne-
tization of each ferromagnetic film constituting the MSL a
magnetized to saturation in itsXY plane (ni0Z) can be rep-
resented in the form5

M j~x,y,z!5M s~x,y!d1d~z!. ~2!

In this case, the exchange interaction of identical uniform
magnetized ferromagnetic layersj and j 11 with magnetiza-
tions M j5ms (uM j u5M0) through conduction electrons o
the nonmagnetic interlayer in MSL under investigation c
be represented in the formdM jM j 11 in the phenomenologi-
cal theory of magnetism.1,2 In the applied magnetic fieldH,
the magnetizations of magnetic layers with labelsj and J
© 1998 American Institute of Physics
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62n (n51,2,...) in theequilibrium state have the same sp
tial orientation. If we describe the direction of equilibriu
magnetization in thej th layer of the MSL in the spherica
system of coordinates with the polar axis directed alongn
(ni0Z): M j5M0(sinuj coswj ;sinuj sinwj ;cosuj) the fol-
lowing relations hold for the magnetic moments of adjac
magnetic layers2:

M j5M0~sin w; cosw; 0!;

M j 615M0~2sin w; cosw; 0!, sin w5H/2dM0 .
~3!

If we confine our analysis to collective spin-wave ex
tations which are quasi-uniform over the superlattice per
L5d11d2 , i.e.,

k'L!1, ~4!

the analysis of the magnon spectrum of such an MSL can
carried out on the basis of the concept of effective medi
developed in Refs. 2 and 3 for calculating the spectrum
collective spin-wave excitations of the magnetostatic ty
under conditions~4!. By virtue of ~3!, the magnetic layers
with labels j 62n and j 62(n11) (n51,2,...) can becom-
bined into two magnetic sublatticesM j 62n5M1 ;
M j 6(2n11)5M2 (uM1u5uM2u5M0). In this case, unde
conditions~1!–~4!, the density of thermodynamic potenti
W of a metallic MSL with spatial inhomogeneity of inte
layer exchange can be represented in the form

W5d(
j 51

N

M jM j 611
a'

2
~¹'M j !

22~M j ,H1Hm j!. ~5!

Here d is the exchange integral of interlayer exchanged
5d(d2).0), a' the constant of nonuniform spin–spin e
change in the plane of ferromagnetic layers,¹'

[(]/]x,]/]y), H the applied magnetic field, andHm j the
magnetic-dipole field in thej th magnetic layer of the MSL
In view of the concept of effective~fine-layered! medium,
the expression for theg component of the magnetic induc
tion vectorB (g5x,y,z) averaged over the periodL of the
MSL can be presented in the form

^Bg&5
d1

2L
@h1g1h2g14p~M1g1M2g!#

1
d2

2L
~hag1hbg!, ~6!

~indicesa andb correspond to adjacent nonmagnetic lay
of thicknessd2 each, separated by a ferromagnetic layer
thicknessd1).2

In this case, taking into account the standard electro
namic boundary conditions at the interfaces in the MSL,
lation ~5! can be transformed to
t

d

e

f
e

s
f

y-
-

W5
d

2
m21

a'

2 F S ] l

]xD 2

1S ] l

]yD 2G1
a

2 S ] l

]zD
2

2
a

2 S ]m

]z D 2

1
a'

2 F S ]m

]x D 2

1S ]m

]y D 2G1
b

2
l z
2

1
a

2
mz

22M ~H1Hm!, ~7!

where

a54pd2 /L; b58p; a5dd2
2;

m5M11M2 ; l5M12M2 .

Thus, in the concept of effective medium with the an
ferromagnetic type of interlayer exchange, the density
thermodynamic potential~7! of the MSL under investigation
has a structure corresponding to the model of an easy-p
~EP! antiferromagnet (0Z being the difficult axis! in the ex-
ternal magnetic fieldHi0Y applied in the easy planeXY.6–9

The dipole–exchange spin dynamics of such a magnetic
dium is determined by a coupled system of dynamic eq
tions consisting of the Landau–Lifshitz equation for t
magnetization vectorM1,2 and magnetostatic equations. Th
standard procedure of calculations~see, for example, Ref. 6!

shows that the magnetic susceptibility tensorx̂(v,k) for the
MSL under investigation with nonlocal inter- and intralay
exchange in the limit~4! can be presented in the form

x̂~v,k!5S xxx 0 xxz

0 xyy 0

xzx 0 xzz

D , ~8!

where

xxx5
Dxx

vF
22v2 ; xyy5

Dyy

vAF
2 2v2 ; xzz5

Dzz

vF
22v2 ;

xxz52xzx5
ivD

vF
22v2 ;

vF
25g2~d1a1b i i ki

2!a i i ki
2l 0

21g2~H1b i i ki
2m0!

3~H1b i i m0ki
21am0!;

m05H/d; l 0
25~2M0!2~12m0

2!;

vAF
2 5g2@~d1b i i ki

2!l 0
21a i i ki

2m0
2#~b1a i i ki

2!;

Dyy5g2~b1a i i ki
2!l 0

2;

Dxx5g2~H1am01b i i m0ki
2!m0 ;

Dzz5g2@~H1b i i ki
2m0!m01a i i ki

2l 0
2#; D5gm0 ;

axx5ayy5bxx5byy5a' ; bzz52azz52a;

a ik5b ik50 for iÞk.

An analysis of expression~8! shows that fora'5a
50, these expressions coincide~except for the notation! with
the relevant relations for the permeability of a metallic MS
from Ref. 2. Comparing expression~8! for a,a'Þ0 with
similar expressions for an EP AFM in an external magne
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field perpendicular to the difficult axis,6–9 we must empha-
size that the corresponding terms forkzÞ0 andkx,yÞ0 have
opposite signs. This difference is due to the type of
ground state of the magnetic structure under investigat
the magnetic moments are ordered ferromagnetically inXY
layers and antiferromagnetically along the normal to the
terface 0Z between the layers. The validity of relations~8! is
confirmed by the fact that the expressions for the spectrum
normal magnon excitationsvF,AF for a two-sublattice anti-
ferromagnet in the limitH50, b50, a50 coincide with the
long-wave limit of the spectrum for a one-dimensional an
ferromagnetic chain10:

vAF
2 5vF

25~2gM0!2@d1a'~kx
21ky

2!2akz
2#

3@a'~kx
21ky

2!1akz
2#. ~9!

Since the actual magnetic multilayered structure ha
finite size, this circumstance can be taken into account
rectly only by supplementing the system of dynamic eq
tions with a system of boundary conditions. The system
boundary conditions for a semi-infinite MSL (z,0) with
completely free spins on the surface (z50) in the limit ~4!
can be written in the form

]m̃

]z
5

] l̃

]z
50; Bm•n5B•n;

@Hm3n#5@H3n#, z50 ~10!

(ni0Z,m̃ and l̃ are small oscillations of the ferromagnetis
and antiferromagnetism vectorsm andl respectively near the
equilibrium orientation, andBm and Hm ~B and H! are the
magnetic induction and magnetic field vectors for the m
netic ~nonmagnetic! media respectively!.

Since we are interested in dipole-exchange oscillati
localized near the surfacez50 of the MSL under investiga
tion, the following conditions must also hold in addition
the boundary conditions~10!:

um̃u,u l̃u,uHmu→0 for z→2`;

uHu→0 for z→`. ~11!

An analysis shows that in the model~7! of a semi-
infinite MSL. the magnon spectrum taking into account t
spatially inhomogeneous component of interlayer excha
for k'L!1 can be written in the form

mxx sin2 uk cos2 wk1myy sin2 uk sin2 wk1mzz cos2 uk50

~ tan2 wk5ky
2/kx

2; cot2 uk5kz
2/~kx

21ky
2!; B5m̂h!.

~12!

It can be easily seen that if we disregard the nonlo
nature of the inter- and intralayer spin–spin exchangea
5a'50), the energy–momentum relation~12! coincides
with the analogous relation for the spectrum of spin waves
an infinite magnetic superlattice of the ferromagneti
nonmagnetic metal type with the antiferromagnetic excha
between layers from Ref. 2 An analysis of expressions~8!
and~12! shows that, in the absence of magnetic-dipole int
action, normal modes of the magnon spectrum of an infin
MSL ~7! can be classified according to the type of th
e
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excitation by high-frequency magnetic fieldh as quasi-
ferromagnetic hiH(vF) and quasi-antiferromagneti
hiH(vAF). Thus, these two modes in the model of an in
nite MSL can interact only through long-range magnetic
pole fields. It follows from~8! that the frequenciesvF(k
50) and vAF(k50) can differ significantly depending o
the applied magnetic fieldHi0Y. This circumstance allows
us to neglect the effect of high-frequency mode of antifer
magnetic resonance~AFMR! in the analysis of low-
frequency dipole-exchange dynamics of MSL. We sh
henceforth assume that the relationvAF!vF holds for the
MSL under investigation:

d22H2!
d1a

b S H

2M0
D 2

. ~13!

In this case, it follows from~12! for the wave vectors
k''H satisfying the conditions

d@a'k'
2 , ak'

2 , u4p~d12d2!2M0 /Hu!1, ~14!

that collective dipole-exchange spin-wave excitations pro
gating along the surface of the MSL under investigation fo
a two-partial type wave in view of the nonlocal nature of t
interlayer exchange. Accordingly, the structure of magne
static potentialwm , for example, forz,0, can be presented
in the form (k'i0Y)

wm5 (
l51,2

Al exp~ ivt2 ik'y!exp~2qlz!. ~15!

Here q1,2 are positive roots of the following characterist
equation obtained from~12! and conditions~13! and~14! for
kz

2[2q2:

q42P1q21P250;

P15
v0

21@c2~114px0!1c'
2 #k'

2 2v2

c2 ;

P25k'
2

~c'
2 k'

2 1v0
2!~114px0!2v2

c2 . ~16!

Here v0
25g2(2M0)2db; c25g2d4M0

2a; c'
2

5g2d4M0
2a' ; x051/d.

Using expressions~15! and ~16!, we can study the de
pendence of the localization of a dipole-exchange spin w
near the surface of the MSL under investigation on the w
numberk' and the frequencyv of spin oscillations.

POSSIBLE TYPES OF DIPOLE-EXCHANGE SPIN-WAVE
EXCITATIONS

An analysis shows that if the frequencyv of spin oscil-
lations and the wave numberk' satisfy the conditions

v1
2 ,v2,B; k2.k

*
2 ;

k
*
2 [

v0
2~114px0!

c2~114px0!24px0c'
2 ;

v2
2 .v2.0;

v6
2 [A22c2k'

2 62ck'~c2k'
2 1B2A!1/2;
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A[@c'
2 1c2~114px0!#k'

2 1v0
2;

B[~v0
21c'

2 k'
2 !~114px0!, ~17!

a two-partial surface dipole-exchange spin wave (q1,2
2 .0)

can be formed near the surfacez50 of the MSL under in-
vestigation in view of the nonlocal nature of interlayer e
change (cÞ0). If, however, the relation

v2
2 ,v2,v1

2 , ~18!

holds, a two-partial generalized surface spin wave (Req1,2
2

Þ0; Im q1,2
2 Þ0) can be formed in the MSL under conside

ation. If the frequencyv of spin oscillations and the wav
numberk' do not satisfy simultaneously relations~18! and
~19!, the formation of two-partial dipole-exchange excit
tions localized near the surface of the MSL~7! is ruled out.
In particular, for

v2.~v0
21c'

2 k'
2 !~114px0! ~19!

collective dipole-exchange spin-wave oscillations propag
ing along the surface of the MSL form a two-partial pseud
surface spin wave (q1

2.0, q2
2,0). Finally, the formation of

two-partial bulk (q1,2
2 ,0) dipole-exchange excitations in th

MSL under investigation takes place for

v1
2 ,v2,~v0

21c'
2 k'

2 !~114px0!; k'
2 ,k

*
2 . ~20!

However, relations~17! and ~18! are only necessary cond
tions for the localization of collective dipole-exchange sp
wave excitations with the structure of the magnetic poten
wm ~15! near the surface of the MSL in question.

SURFACE DIPOLE-EXCHANGE SPIN WAVE

The energy–momentum relation for a surface dipo
exchange spin wave in the case of a semi-infinite MSL~10!,
~11! is a nontrivial solution of system~11! for the amplitudes
A1,2 ~15! provided thatv and k' satisfy relations~17! or
~18!:

q1q2~q11q2!2k'S v0
21c'

2 k'
2 2v2

c2 2q1q2D 50. ~21!

It can be easily seen that if we disregard the nonlocal na
of interlayer exchange (a50), this type of surface spin
wave excitations does not exist. In the short-wave lim
(c'

2 k'
2 @4px0v0

2), the energy–momentum relation for th
surface spin wave under consideration can be derived f
~21! in an explicit form:

v2>~v0
21c'

2 k'
2 !~114px0!24~px0!2

~v0
21c'

2 k'
2 !2

c2k'
2 .

~22!

A comparison of~22! with ~17! and ~18! shows that as
the value of the wave numberk' decreases, the nature o
spatial localization of collective dipole-exchange spin-wa
excitations with the energy–momentum relation~21! near
the MSL surface changes since the type of collective dipo
exchange spin-wave excitations in MSL in the short-wa
limit are two-partial (q1,2

2 .0) spin waves with the energy
-

t-
-

-
l

-

re

t

m

e

-
e

momentum relation~22!, whose range on the plane of th
parametersv and k' is restricted by the conditionk'

2 .k
*
2

for k' .
In order to obtain the spectrum of the surface collect

spin-wave mode~21!, ~22! in the long-wave limit, we must
take into account the finite size of the MSL: 2D5NL,`
(2D,z,D). If the boundary conditions~10! are satisfied
on both surfaces of the MSL, the energy–momentum rela
for the spectrum of the mode of collective spin-wave exci
tions of the dipole-exchange type localized near the M
surface forD,` can be presented~taking into account re-
lations~17!, ~18! and the symmetry of spin oscillations rela
tive to the planez50) in the form

q1S q2
22

v0
21c'

2 k'
2 2v2

c2 D @q21k' coth~q2D !#

5q2S q1
22

v0
21c'

2 k'
2 2v2

c2 D @q11k' coth~q1D !#;

q1S q2
22

v0
21c'

2 k'
2 2v2

c2 D @q21k' tanh~q2D !#

5q2S q1
22

v0
21c'

2 k'
2 2v2

c2 D @q11k' tanh~q1D !#.

~23!

It can easily be verified that, in the limiting casek'D→`,
relations~23! coincide with the energy–momentum relatio
for the spectrum~21!, ~22! of surface spin–wave excitation
in a semi-infinite MSL.

In the long-wave limitk'D!1, it follows from ~23! that
the spectrum of mode of dipole-exchange spin wave exc
tions, which is quasi-homogeneous over the thickness of
MSL under investigation, can be written in the form

v2>@v0
21c'

2 k'
2 1Dk'~v0

21c'
2 k'

2 !~114px0!#

3~11Dk'!21. ~24!

A comparison of this expression with the results of the abo
classification of possible types of collective dipole-exchan
spin-wave excitations in MSL~7! shows that if the MSL
thickness 2D is smaller than a certain critical thickness

D* >
2c

114px0
S 4px0

v0
2 D 1/2

, ~25!

relation ~24! for small k' defines a dispersion curve of th
bulk mode (q1,2

2 .0) of the spectrum of dipole-exchange o
cillations, which is quasi-homogeneous over the MSL thic
ness 2D, transformed into the dispersion curve for a tw
partial generalized surface spin wave fork'Þ0.

If, however, the conditionD.D* is not satisfied~while
the condition of the fine-layer structure of the magnetic
perlattice is observed as before!, formula ~24! defines the
energy–momentum relation for a generalized surface s
wave (Req1,2

2 Þ0; Im q1,2
2 Þ0) for anyk'D!1.

As regards other modes of the spectrum~7! of bulk
dipole-exchange spin-wave excitations in MSL, who
energy–momentum relations are defined by formulas~23!
under the conditions~9! and~10!, it can be easily shown tha
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the nonlocal nature of interaction between the layersc
Þ0) can lead to a resonant interaction between propaga
bulk dipole-exchange oscillations with labelsn andr. In the
vicinity of the point of intersection, their energy–momentu
relation can be written in the form

~v22Vn
2!~v22Vr

2!2jnr
2 Vn

2Vr
2>0,

~26!

Vn
25Fv0

21c'
2 k'

2 1c2S pn

D D 2GF114px0

k'
2

k'
2 1~pn/D !2G .

~ ujnr
2 u<1; n,r51,2,...!.

The dimensionless parameterjnr
2 is equal to zero if both

outer surfaces of the MSL of finite thickness under inve
gation are metallized, while spins are rigidly fixed.

CONCLUSION

The results of this research show that the nonlocal na
of indirect interlayer interaction through conduction ele
trons of a nonmagnetic layer in a magnetic superlattice of
ferromagnet–nonmagnetic metal type~taken into account
consistently! may lead to the formation of a dipole-exchan
spin wave near the MSL surface. It is shown that the loc
ization of this type of collective spin-wave excitations ne
the MSL surface is determined to a considerable exten
the magnitude of the wave numberk' and by the thickness
D of the magnetic superlattice.

The quasi-diagonal structure of the magnetic suscept
ity tensor~8! analyzed here is typical of many kinds of equ
librium magnetic configurations, including antiferro
magnets.6 It can easily be proved that if a quas
antiferromagnetic mode plays the role of the low-frequen
mode in the spin-wave spectrum of such an infinite mag
all the above calculations and conclusions remain in fo
ng
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re
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e

l-
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e

provided thatn'hik'iH, and the spins on the surface of th
magnet are completely free. If, however, the low-activati
mode in the magnon spectrum is a quasi-ferromagn
mode, the necessary condition for the formation of a gen
alized surface dipole-exchange spin wave on the basis of
mode isk''Hin'h under the same boundary conditions

According to calculations, the type of the surfa
dipole–exchange spin wave analyzed by us can also be
served for a ferromagnet–nonmagnetic metal type MSL w
Hin.

The author is deeply indebted to A. N. Bogdanov, V.
Krivoruchko, E. P. Stefanovski�, and T. N. Tarasenko for
their support of this research and for fruitful discussions.
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A compensated ferro–antiferromagnet interface is studied in the framework of a discrete
classical spin model. The phase diagram is presented for the possible collinear and canted magnetic
structures of the interface. The change in magnetization upon a transition from a collinear
structure to canted form is studied. ©1998 American Institute of Physics.
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The problem of coexistence of ferromagnetic~FM! and
antiferromagnetic~AFM! phases was first encountered wh
studying cobalt microparticles with an oxidized~CoO! sur-
face. Meiklejohn and Bean1 discovered the phenomenon
hysteresis loop displacement~exchange bias! for this system.
Almost simultaneously, Vlasov and Mitsek2 began their in-
vestigations of disordered alloys of the type Co/CoO c
taining inclusions of AFM grains in the FM matrix. Th
discovery of the giant magnetoresistance effect triggered
tensive theoretical and experimental studies of multilaye
magnetic systems with alternating FM and AFM layers~Fe/
Cr, Co/CoO, etc.!.3 The theoretical description of magnet
properties of interfaces is usually based on classical mo
of magnets in the exchange approximation. For exam
Mauri et al.4 and Koon5 describe the phenomenon of e
change bias using the micromagnetic approach. Sta
et al.6 studied FM resonance in two-layered FM/FM a
FM/AFM systems and, in particular, in the system Co/Co
In all these works, layers of finite thickness~several atomic
spacings! are considered. It is found that the structure
boundaries and frequencies of spin waves are determ
essentially by this thickness.

In this work as well as in our previous publication,7 we
have proposed simple theoretical models for the interfac
semi-infinite easy-axis FM/AFM systems. These models
be used to analyze the magnetic structure of the interface
the existence of localized spin-wave modes in its vicini
Two models with identical primitive cubic lattices of FM an
AFM halfspaces but with different magnetic ordering of t
AFM are considered. It is shown that for a layered AF
~Fig. 1a, model I proposed in Ref. 7! and an AFM with a
staggered ordering~Fig. 1b, model II proposed in the prese
work!, the systems have quite different static and dynam
properties. Although real systems usually have a more c
plicated geometry, the models proposed here provide a q
tative description of uncompensated4,6 and compensated5

FM/AFM interfaces, respectively.
From topological point of view, models I and II are qui

different. In the first model, the period of the magnetic stru
6291063-777X/98/24(9)/4/$15.00
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ture in a direction parallel to the interface coincides with t
lattice period, while in the second case it is equal to dou
the atomic spacing. Hence the collinear structure with ‘‘c
rect’’ ordering of FM and AFM halfspaces in model I~Fig.
1a! corresponds to the ground state of the system for
values of the parameters of the magnets. In model II, a
linear structure with such an ideal order~Fig. 1b! corre-
sponds to a totally frustrated FM/AFM interface. In case
the domain walls parallel to the FM/AFM interface may i
tersect it and get transformed from FM to AFM wall.~The
existence of such domain walls was first indicated by Ma
et al.4! Hence a description and classification of nontriv
states in a layered AFM was naturally carried out in terms
collinear and canted domain walls interacting with the int
face of the magnets.7 In the case of a compensated FM/AF
interface, the domain wall vanishes at the interface. He
possible collinear and canted magnetic structures in this c
differ significantly from those in model I.

In the present work, we study the static configurations
the interface between an FM and an AFM with a ‘‘stagger
ordering’’ ~model II!. An analogous model without one-io
anisotropy was considered by Matsushitaet al.8 The mag-
netic structure of the interface changes radically if the ea
axis anisotropy is taken into consideration, leading to loc
ization of magnetization nonuniformity in its vicinity. Unlike
the case of a layered AFM, this problem cannot be redu
to the investigation of a one-dimensional spin chain norm
to the FM/AFM interface: it can be seen from Fig. 1b th
odd and even spin columns are in different states.

In the classical Heisenberg’s model, the system is
scribed by the Hamiltonian

H5(
m,d

Jm,d

2
~Sm•Sm1d!1(

m

Bm

2
~Sm•e!2, ~1!

wherem is a lattice site,d its nearest neighbors,Sm the spin
vector at this site,Jm,d52Jf andJm,d5Ja, respectively, for
FM and AFM halfspaces,Jm,d5Jf a for exchange across th
interface (Jf ,Ja ,Jf a.0), Bm5Bf and Bm5Ba are one-ion
© 1998 American Institute of Physics
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anisotropy constants for FM and AFM halfspaces resp
tively, andBf , Ba.0 for the easy-axis anisotropy.

Depending on the values of the parametersJ andB, the
ground state of the system for model II is one of the th
collinear structures (A, B, andC), or the canted structureS
~see Fig. 2!. Other collinear and canted structures are a
possible for very large values of the anisotropy consta
They correspond to domain walls confined by the Peie
relief at a finite distance from the FM/AFM interface, an
local energy minima. Since we are interested only in
ground state of the system, we shall not discuss such s
tures here.

Instead of the initial seven parameters of the model, i
expedient to consider four dimensionless quantities

b f5
Bf

Jf
, ba5

Ba

Ja
, r5S Ja

Jf
D 1/2 Sa

Sf
, j 5

Jf a

AJaJf

. ~2!

The collinear structure energy values~per unit cell on
the interface! are given by

EA52Jf aSaSf52E0 j , EB510JfSf
25

10E0

r
,

EC510JaSa
2510E0r, ~3!

whereE05AJfJaSfSa .
Let us find the relations between parameters correspo

ing to a bifurcation transition from collinear~CS! to canted
~noncollinear! structure~NS!. It is well known that if one of
the eigenfrequencies of the system becomes equal to ze

FIG. 1. Interface between an FM and an AFM for the case of a laye
AFM ~a!, and for its ‘‘staggered’’ ordering~b!.

FIG. 2. Collinear interface structures (A,B,C) and the canted structureS
b f50.2, ba50.3, r50.4, j 50.9.
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o
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undergoes a transition with a spontaneous symmetry br
ing. Using the magnetization dynamics equation in polar
ordinates~the z-axis coincides with the anisotropy axis!9

sin um

dwm

dt
52

1

\Sn

]H

]um
, sin um

dum

dt
5

1

\Sm

]H

]wm
,

~4!

where Sm5Sm(sinum coswm,sinum sinwm,cosum), we find
that the quantitydwm /dt5v in a CS defines the spin pre
cession frequency around the easy axis, which vanishe
the CS–NS transition point.

In the equilibrium position of collinear structures, ang
um is equal to 0 orp. At the sites corresponding toum5p in
equilibrium, we introduce a new notation for the small ang
of spin rotationum→um1p. The CS–NS transition is deter
mined by the condition of existence of nontrivial solutions
linearized static equations

]H

]um
U

um→0

50. ~5!

The bulk Hamiltonian of the ferromagnet can be written
the form

HF52(
m,d

JfSf
2

2
cos~um2um1d!1(

m

BfSf
2

2
sin2 um .

~6!

It can be seen from Fig. 1b that the system is perio
with a period 2a in the plane of the interface,a being the
lattice constant. Denoting byun

(1) andun
(2) the polar angles of

even and odd spin columns, respectively, we obtain from~5!
and ~6! the equations for the ferromagnetic halfspace:

un
~1!~61b f !24un

~2!2un21
~1! 2un11

~1! 50,

un
~2!~61b f !24un

~1!2un21
~2! 2un11

~2! 50, ~7!

where n is the layer number. These equations must
supplemented by the condition of decreasingun

(1) and un
(2)

for n→1`. The general solution of system~7! has the form

un
~1!5A1Pf 1

n 1A2Pf 2
n , un

~2!5A1Pf 1
n 2A2Pf 2

n , ~8!

where

Pf 15P~b f !, Pf 25P~81b f !, ~9!

and

P~b!511
b

2
2S b1

b2

4 D 1/2

. ~10!

The solution for an antiferromagnet can be presented
an analogous form:

un
~1!5B1Pa1

2n211B2Pa2
2n21,

un
~2!5B1Pa1

2n212B2Pa2
2n21, ~11!

where

Pa15P~ba!, Pa25P~81ba!. ~12!

Substituting the relations~8!–~12! into the static equa-
tions for four nonequivalent sites near the interface, we
tain a system of four linear homogeneous equations in

d
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known parametersA1 , A2 , B1 and B2 . For the collinear
configurationA, for example, the equations for spin devi
tions ~the numbern50 corresponds to the first layer in th
FM halfspace!

u0
~1!~51b f1r j !24u0

~2!2u1
~1!2r j u21

~1!50,

u0
~2!~51b f2r j !24u0

~1!2u1
~2!1r j u21

~2!50,
~13!

u21
~1! ~51ba1 j /r!24u21

~2!2u22
~1!2 j /ru0

~1!50,

u21
~2! ~51ba2 j /r!24u21

~1!2u22
~2!1 j /ru0

~2!50,

lead to the relations

A1F f 11A2r j 2B2r j 50,

A2F f 21A1r j 2B1r j 50,
~14!

B1Fa11B2 j /r2A2 j /r50,

B2Fa21B1 j /r2A1 j /r50,

where

F f ,a15F~b f ,a!, F f ,a25F~81b f ,a!, ~15!

F~b!5
b

2
1S b1

b2

4 D 1/2

. ~16!

The equality to zero of the determinant of the system
equations~14! gives a relation between the critical values
the parametersj , r, b f , andba :

j 5
F f 1F f 2Fa1Fa2

~F f 1 /r1Fa1r!~F f 2 /r1Fa2r!
. ~17!

Analogously, we obtain

~b f1F f 11Gf 1!~281b f1F f 21Gf 2!

5F f 1F f 2~b f1Gf 1!~281b f1Gf 2!; ~18!

for structureB, and

~ba1Fa11Ga1!~281ba1Fa21Ga2!

5Fa1Fa2~ba1Ga1!~281ba1Ga2!, ~19!

for structureC, where

FIG. 3. Phase diagram of the FM/AFM interface forb f5ba5b and
r51.
f

Gf 1,25 j rS 12
1

11Fa1,2r/ j D ,

~20!

Ga1,25 j /rS 12
1

11F f 1,2/~r j ! D .

Formulas~17!–~19! and~3! can be used to determine th
ground state of the system as a function of the parame
b f , ba , r, and j . In other words, we can construct the pha
diagram of the system in the four-dimensional space of th
parameters.

Parameterr characterizes the difference in the magne
properties of FM and AFM, while parameterj describes the
role of the interface as a localized magnetic defect. Fo
graphic representation, let us first consider the particular c
b f5ba5b and r51, when magnets in two halfspaces a
characterized by the same anisotropy constants and the
value of the exchange interaction. In this case, the interf
affects the form of the ground state as a magnetic point
fect. Figure 3 shows theb vs. j plane and the interface
between various phases. In this case, formulas~18! and~19!
coincide, and the collinear structuresB andC have the same

FIG. 4. Phase diagram of the FM/AFM interface forb f50.2, ba50.3 ~a!,
andb f54, ba55 ~b!. Curves1, 2, 3 are described by Eqs.~17!, ~18! and
~19! respectively.



-
l
a

of
t t

la
e

-
s
r

are

ight
with

for
ear
iate

ed
w-
sys-
phase
tion
nti-
the

he
he

B.

-
e

632 Low Temp. Phys. 24 (9), September 1998 A. G. Grechnev and A. S. Kovalev
energy. The collinear phaseA is the ground state in regionsI
and I 8. In addition to the principal energy minimum corre
sponding to phaseA, the regionI 8 also contains additiona
local minima with higher energies corresponding to colline
phasesB and C. The principal minimum in regionsII and
II 8 corresponds to phasesB andC ~the metastable phaseA
can also exist in the regionII 8). Finally, the regionsIII and
III 8 correspond to the canted phasesS, while metastable
phasesB andC can exist in the regionIII 8.

In order to study the effect of nonidentical nature
magnets on the ground state of the system, we construc
phase diagram in the (lnr,ln j) plane for fixed values ofb f

andba ~Fig. 4!. Figure 4a shows the phase diagram for re
tively small b f and ba . In this case, the regions of thre

FIG. 5. Variation of the canted phase structure withj for Sf5Sa51, b f

50.2, ba50.3, r50.4; dependence of thex-component of the total mag
netization ~a!. Angle of rotation of the antiferromagnetism vector in th
AFM layer adjoining the interface~b!.
r

he

-

collinear structuresA, B, andC are separated from one an
other by a canted structureS. On the straight line segment
j 55/r, j 55r, and r51, the energies of two collinea
phases become equal. Curves1, 2, and3 separating the re-
gions of collinear phases from the region of canted phase
described by Eqs.~17!, ~18! and~19! respectively. The phase
diagram changes for large values ofb f andba ~Fig. 4b!. As
before, the energies of collinear phases are equal on stra
line segments, but these segments can now intersect
lines 1, 2, 3 defined by Eqs.~17!–~19!. The interfaces are
marked in the figure by solid lines. It can be seen that
large anisotropies, a direct transition between collin
phases can occur without the formation of an intermed
canted phase. An analysis of formula~18! shows that the
structureB does not exist forb f,0.011324, while forb f

.8.234057 it is a local energy minimum for all values ofr
and j , and the bifurcation transitionB→S does not occur.
The same is also true forba and the structureC.

The specific form of the canted structure was determin
through a numerical search of the configuration with the lo
est energy using the relaxation method. A change in the
tem parameters causes a rearrangement of the canted
structure accompanied by a change in the total magnetiza
of the system and a rotation of the magnetization and a
ferromagnetism vectors. Figure 5a shows the variation of
x component of total magnetization~thex-axis is chosen in a
direction perpendicular to the FM/AFM interface! upon a
change in the parameterj for fixed values ofr,b f and ba

(r50.4,b f50.2,ba50.3) i.e., along the lineaa8 in Fig. 4a.
Figure 5b shows the variation of the angle of rotation of t
antiferromagnetism vector in the atomic layer adjoining t
FM/AFM interface from the valuew50 in the A-phase to
the valuew5p/2 in theC-phase.

The authors are grateful to S. L. Gnatchenko and A.
Beznosov for fruitful discussions.
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It is shown by using the exact quantum-mechanical solution that a one-dimensional
antiferromagnetic Heisenberg spin chain is unstable to the emergence of an easy-plane magnetic
anisotropy in a real three-dimensional crystal. It is shown that the magnetic anisotropy is
due to a Jahn–Teller type effect, i.e., a strong spin–lattice coupling. A change in the equilibrium
position of ligands induces magnetic anisotropy in the spin chain. ©1998 American
Institute of Physics.@S1063-777X~98!00509-X#
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Many theoretical and experimental works have been
voted in recent years to investigations of low-dimensio
quantum antiferromagnets~AFM! at low temperatures. Low
dimensional low-symmetry magnets began to be studie
Kharkov over 30 years ago. The late A. I. Zvyagin, Cor
sponding Member of the National Academy of Sciences
the Ukraine, whose 60th birthday was celebrated recen
was one of the pioneers in the field of experimental studie
this field. One of the authors~A.A.Z! is deeply indebted to
late A. I. Zvyagin for introducing him to this interesting fiel
of physics.

Among other things, several quantum AFM in which t
interaction of spins along certain directions is 102– 104 times
stronger than along other directions of the crystal lattice h
been synthesized during the last decade.1,2 Such magnets
usually undergo a phase transition to the ordered~three-
dimensional! magnetic state at very low temperatures (Tc

;1 K). At temperatures higher thanTc but lower than, or of
the order of, the characteristic energy of exchange interac
along a preferred direction, such magnets display the p
erties of one-dimensional magnetic chains. Quantum fluc
tions in one-dimensional systems are often enhanced du
singularities in the density of states. Hence approximate
oretical methods can give even qualitatively erroneous
sults for one-dimensional quantum systems. Thus, theore
studies of essentially many-particle effects in a on
dimensional AFM spin chain require a precise quantu
mechanical approach like Abelian and non-Abeli
bosonization and the Bethe ansatz method.3

Among the large number of low-dimensional spin sy
tems studied in recent years, systems with lattice site s
S51/2 ~e.g., Cu21 @Ref. 1# or V41 @Ref. 2# ions! are espe-
cially significant. The magnetic behavior of many rare-ea
ions at low temperatures can be described by the effec
Hamiltonian of spinsS51/2. In other words, the lowes
spin-doublets play the dominant role at low temperatures
6331063-777X/98/24(9)/6/$15.00
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should be noted, however, that such a description introdu
a strong anisotropy in the magnetic properties of such m
els: these systems are transformed into Ising-type orXY-type
systems depending on which two levels~doublets! of the
total angular momentum of the correspondingf -orbital of the
magnetic ion have a lower energy.4

It is well known that magnetic anisotropy plays a signi
cant and fundamental role in the spin systems during a
oretical analysis of the magnetic properties of such syste
at low temperatures.5 Magnetic anisotropy is manifested i
the removal of degeneracy~in the direction of quantization
of the total spin of the system!. Such a situation emerges i
many-particle AFM spin systems in which the Heisenbe
AFM spin–spin interaction is isotropic, and hence the s
directions along all lattice vectors are equivalent from t
energy point of view. Magnetic anisotropy leads to a situ
tion when some crystallographic directions become more
vantageous from the energy point of view. In this case,
total spin of the system is no longer an integral of motion~in
other words, its operator does not commute with the s
Hamiltonian of the system!. The magnetic anisotropy is
manifestation of the crystal~electric! field of ligands~i.e., of
the neighboring nonmagnetic ions!.4 This field interacts with
the spin subsystem of electrons of magnetic ions thro
spin–orbit coupling~which is usually weak!. Hence the
variation ~emergence! of magnetic anisotropy is due to
variation of the symmetry of neighboring nonmagnetic ion
lattice sites. The emergence of an axial magnetic anisotr
in the spin subsystem lowers the symmetry of spins fr
SU(2) for the Heisenberg model toU(1) for the axial
model. The magnetic anisotropy may be of single-ion or
terionic type.4,5 In this work, we shall consider essential
many-particle spin systems, and hence consider the effe
interionic magnetic anisotropy at the very outset. As a ma
of fact, the spin systemS51/2 can exhibit only this type of
anisotropy.
© 1998 American Institute of Physics
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We shall show that at low temperatures, a on
dimensional AFM Heisenberg chain of spinsS51/2 is un-
stable to the emergence of an easy-plane type magnetic
isotropy. This magnetic anisotropy appears owing to a sli
distortion of nonmagnetic ions, i.e., of the three-dimensio
~nonmagnetic! lattice and, as a result, a change in their cr
tal fields. The results are obtained in the mean-field appr
mation. This approximation is well substantiated since
lattice is three-dimensional in spite of the fact that the sp
spin exchange interaction in this system is one-dimensio
Hence we can certainly use the mean-field approach in
case. Moreover, we shall study the instability of magne
cally isotropic homogeneous systems to uniform deforma
which produces a uniform magnetic anisotropy along the
tire chain. This means that we shall not consider the pr
ability of phase transition to the noncommensurate pha
~states!. In other words, the phonon which removes the s
degeneracy has a commensurate wave vector~quasimomen-
tum! and the instability of the AFM Heisenberg chain
mainly determined by this phonon. We shall also consi
the effect of an external magnetic field and nonzero temp
ture on the above-mentioned instability.

The instability considered in this work is quite similar
a Peierls-type phase transition in the chain of spinsS51/2 in
the XY-model.6,7 The spontaneous emergence of the biax
magnetic anisotropy in theXY-model with spinsS51/2 was
predicted by Borovik and Zvyagin.8 In all the above-
mentioned works, the Hamiltonian of theXY chain of spins
was mapped~by using Jordan–Wigner transformation9! onto
the Hamiltonian of a noninteracting linear chain of spinle
fermions~whose Hamiltonian is a quadratic form of fermio
operators of creation and annihilation of spinons!. In other
words, effectively noninteracting fermion systems were c
sidered in Refs. 6, 7, and 8. We shall consider a o
dimensional Heisenberg AFM chain of spinsS51/2 which
can be mapped with the help of Jordan-Wigner transform
tion onto a one-dimensional spinless fermion system w
two-particle interaction. Hence we shall essentially study
many-particle cooperative Jahn– Teller effect in an intera
ing one-dimensional quantum spin system.

The Hamiltonian of a periodic chain ofN spinsS51/2
with antiferromagnetic interaction has the form

H052
1

2 (
n51

N

~sn
xsn11

x 1sn
ysn11

y 1Dsn
zsn11

z !, ~1!

where sn
a (a5x,y,z) are Pauli operators of thea-

component of the spin in thenth position, the exchange con
stant is equal to unity, andD is the parameter of~interionic!
magnetic anisotropy~note that uDu.1 corresponds to the
‘‘easy-axis’’ type anisotropy, whileuDu,1 describes the
‘‘easy-plane’’ type magnetic anisotropy. The caseD521
corresponds to an isotropic AFM spin chain!. The wave
function with M spins oriented downwards may be dete
mined in the form of Bethe ansatz, i.e., in the form of
superposition of plane waves:
-

an-
t
l

-
i-
e
–
l.
is
-
n
-
-

es
n

r
a-

l
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-
-

-
h
e
t-

-

C5 (
x1,x2,...,xM

(
P

AP expS i (
j 51

M

pPj
xj D ux1 ...xM&,

~2!

wherexj are coordinates of the downward orientedj -spin,p
are quasimomenta~conjugate to coordinates!, and P stands
for all possible transpositions. The vectorux1 ...xM&
5sx1

2 ...sxM

2 u0& where u0& is the state with completely po

larized spins: all spins are directed upwards~ferromagnetic
state!, andsn

65sn
x6 isn

y are the operators corresponding
an increase and decrease in thez-component of the spins
The energy of such an AFM chain withM spins directed
downwards is defined as

Emag52
ND

2
12(

j 51

M

~D2cospj !. ~3!

The values of the quasimomenta parametrizing the eig
functions and eigenvalues of the Schro¨dinger equation are
obtained from the periodic boundary conditions in the fo
of the familiar Bethe ansatz equations:

Npj52pI j2 (
l 51,lÞ j

M

u~pj ,pl !, ~4!

where

u~pj ,pl !52 arctan

3F D sin~~pj2pl )/2!

cos~~pj1pl )/2!2D cos~~pj2pl )/2!G ,
~5!

andI j are integral~half-integral! numbers for odd~even! M .
These numbers parametrize the eigenfunctions~2! and eigen-
values~3! in the quantum-mechanical problem under cons
eration. Obviously, the system is transformed into an iso
pic XX spin chain in the limitD→0, and Eqs.~4! are
transformed into the well-known periodic boundary con
tions for a free one-dimensional lattice gas of fermions. L
D5211xd, where the parameterxd characterizes the
emergence of magnetic anisotropy (x is the magnetoelastic
constant and the parameterd describes the distortion of sym
metric configuration of nonmagnetic ligands!. The magnetic
anisotropy emerges due to a change in the crystal field
ligands and is therefore connected with a shift in the equi
rium position of the three-dimensional lattice of~nonmag-
netic! ligands. In the first approximation ind, this process
leads to an increase in the energy of the elastic subsyste

Eel5NC
d2

2
, ~6!

whereC is the elastic constant. This means that a decreas
the magnetic energy in Eq.~3! caused by the magnetic an
isotropy is accompanied~as expected! by an increase in the
elastic energy. In other words, the removal of degenerac
a Heisenberg AFM spin chain occurs owing to an effect
the type of the cooperative Jahn–Teller effect,4 i.e., due to
the effect of elastic subsystems on the electron subsyste
The energy of the spin subsystem defined by Eq.~3! can be
determined exactly by using well-known results of classi
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studies.10 Let D[211xd52cosm(xd.0) for the easy-
plane type magnetic anisotropy. In this case, the Bethe an
equations~4! for an AFM spin chain can be solved in th
thermodynamic limit~i.e., forN→`, M→`, and for a fixed
value ofM /N). These equations assume the form

sin m

cosha2cosm
52pr~a!

1E
2Q

Q

dbr~b!
sin 2m

cosh~a2b!2cos 2m
,

~7!

where we have executed a change of variables from qu
momentapj to speedsa ~r~a! is the density of quantum
speedsa and these are the variables that will parametrize
eigenvalues and eigenvectors of the spin subsystem b
considered here!. The limits of integration (2Q,Q) are de-
fined by the quantityM (M5*2Q

Q dar(a)), i.e., they are
connected with the total magnetization of our system!. It was
rigorously proved by Yang and Yang10 that in the absence o
an external magnetic fieldh, the speedsa completely cover
the interval@2`,`# for the AFM spin chain. The solution o
Eq. ~7! is obtained by using Fourier transformation. Subs
tuting this solution into the thermodynamic limit of Eq.~3!

Emag52
ND

2
2NE

2Q

Q

dar~a!
2 sin2 m

cosha2cosm
, ~8!

we obtain forh50(Q5`)

Emag52N sin mE
2`

`

dx
sinh~p2m!x

cosh~mx!sinh~px!
2ND. ~9!

Let us find the minimum of the sumEtot5Emag1Eel over the
distortiond in the nonmagnetic lattice. The energy minimu
for an AFM chain with ‘‘easy plane’’ type anisotropy is de
fined by the solution of the equation

Cdeqv5
]

]d Fsin$m~d!%

3E dx
sinh@~p2m~d!!x#

sinh~px!cosh@m~d!x#
1D GU

d5deqv

. ~10!

We construct the dependence of the total energy of
ground state~the lattice is assumed to be in the ground st
irrespective of the complexity of the analysis! of the elastic
and magnetic subsystems on the displacementd of the three-
dimensional nonmagnetic lattice of ligands. This depende
is shown in Fig. 1a for the valueC50.46 of the elastic
constant~note that we measure all quantities in units of is
tropic exchange constant!. It can be seen that the total energ
minimum corresponds to a nonzero value of the lattice d
tortion. This means that the minimum energy in the grou
state is associated with the displacement of thr
dimensional nonmagnetic ions which, in turn, genera
an electric field leading to a nonzero magnetic anisotropy
the one-dimensional AFM spin subsystem due to spin–o
coupling.
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It can be asked whether such a behavior is observed
all values of the elastic constantC. Figure 1b shows the
dependence of the total energy of the ground state of
system on displacementd for several values of the elasti
constantC. It can be observed that the minimum ind asso-
ciated with a nonzero displacement of ligand lattice is shif
towards decreasingd upon an increase in the elastic consta
C, while no minimum is observed for smallC. This is ob-
vious since the observation of the magnetic anisotropy ef
in spin subsystems~which is usually quite small! requires
quite large elastic displacements.

The analogous effect forD,21, i.e., for ‘‘easy axis’’
type magnetic anisotropy, can be studied in a similar man
The Bethe ansatz equations~4! for this system are solved in
the same way. After long but obvious computations, it
found that for all values of the elastic constant, the to
energy minimum for the ground state of the spin and ela
subsystems corresponds to zero distortiond of the three-
dimensional ligand lattice. This means that there is no ad
tional ligand electric field in this case, and hence there is
‘‘easy axis’’ type magnetic anisotropy. This is an expect
result since it is well known that in the case of Ising~‘‘easy
axis’’! type magnetic anisotropy, the spectrum of low-lyin
excitations of an AFM chain of spinsS51/2 in zero or weak
magnetic fields is of gap~activation! type.

Let us try to determine the behavior of such an unsta

FIG. 1. Dependence of the total energy of the ground state of a mag
and an elastic subsystemsEtot on the displacementd of the position of
nonmagnetic ions~ligands! in a crystal lattice for the elastic constantC
50.46 ~a! and for different values ofC:0.84 ~1!; 0.24 ~2! and 0.14~3! ~b!.
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one-dimensional Heisenberg AFM spin chain as a resul
the emergence of ‘‘easy plane’’ type anisotropy in an ext
nal magnetic fieldh. We shall first consider the case of sma
magnetic fieldsh!1. In this case, the Hamiltonian of th
spin subsystem has the form

H5H02h(
n

sn
z , ~11!

whereh5gmBH, g is the gyromagnetic ratio,H the mag-
netic field, andmB the Bohr magneton. Using the resul
obtained by Yang and Yang,10 i.e., solving the integral equa
tion ~7! by the Wiener–Hopf method for very weak magne
fields, we obtain

Emag5Emaguh502Nh2
m

4p~p2m!sin m
. ~12!

Having found the minimum of the total spin and elastic e
ergy in the lattice displacementd, we can see that the groun
state minimum energy for any weak fieldh corresponds
to the emergence of a nonzero minimum deformationd.
The dependence of the total energy of the ground state o
spin and elastic subsystems on the external magnetic fieh
and displacementd of ligands in the three-dimensional la
tice is shown in Fig. 2. It can be seen that for all magne
fieldsh there exists a minimum~corresponding to a nonzer
displacementd! on the dependence of total energy on def
mation.

In quite strong magnetic fieldsh.hc , wherehc is the
critical field corresponding to a transition to the spi
polarized~‘‘ferromagnetic’’! state, the total energyEtot can
be minimized ind, which gives

deqv5x/4C. ~13!

This means that in the present case, a strong external m
netic field also does not alter the situation significantly:
cooperative effect in the electric crystal spin subsystem
the distortion of the three-dimensional ligand lattice in t
elastic subsystem lead to a nonzero ‘‘easy plane’’ type m
netic anisotropy. This means that the emergence of a ‘‘e
plane’’ type magnetic anisotropy in a Heisenberg AFM sp
chain is independent of the applied magnetic field.

FIG. 2. Dependence of the total energy of the ground state of a mag
and an elastic subsystemsEtot on the displacementd and a weak applied
magnetic fieldh.
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Earlier, we studied the properties of a Heisenberg qu
tum spin chain in the ground state. However, the behavio
the system at nonzero temperaturesT remains unclear. It can
be easily shown that~in the present case of interionic mag
netic anisotropy! the isotropic spin system will be stable
very high temperatures. This also follows from symme
considerations: the high-temperature phase usually co
sponds to a higher symmetry. It can be asked whether
critical temperatureTc of such a cooperative Jahn–Telle
type phase transition is equal to zero~which is usually true
for one-dimensional systems in which 0 is the only singu
point in temperatureT), or a phase with a nonzero ‘‘eas
plane’’ type magnetic anisotropy exists in a certain tempe
ture interval for the spin chainS51/2. In order to answer
this question, we can use the thermal Bethe ansatz11 ~for
simplicity, we can consider only the low temperatures!. At
low temperatures, the familiar Sommerfeld expansion
valid ~see, for example, Ref. 12!:

Emag5Emag2N
pT2

6vF
, ~14!

wherevF is the Fermi velocity of lowest excitations of th
AFM chain ~spinons!. For zero magnetic field, this velocit
can be determined easily:vF5p sin(m)/m.10 We determine
the minimum of the total free energyEtot5Emag1Eel from
the deformationd of ligands ~it should be recalled that we
consider very low temperatures, i.e., assume that the ela
subsystem is still in the ground state!. The assumption tha
the elastic subsystem is in the ground state is justified s
its energy scale is usually higher than the energy scale of
magnetic subsystem. Figure 3 shows the dependence o
total free energy of the system on deformationd and tem-
perature~we consider the case of very low temperatur
only!. It can be seen that the minimum in the dependence
d ~corresponding to a nonzero displacement of the equi
rium, and hence to a nonzero magnetic anisotropy! exists at
low temperatures and begins to vanish as the temperatu
increased.

tic
FIG. 3. Dependence of the total free energy of a system on temperatuT,
lattice deformationd, and a weak applied magnetic fieldh. The tempera-
tures are quite low in comparison with the exchange constant~unity!.
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It can be assumed that an ‘‘easy axis’’ type magne
anisotropy can also be expected for a fairly strong magn
field ~the field must be higher than the gap in an element
spin excitation!.

Note that the effect is independent of the manner
which a connection is established between the elastic
spin subsystems. The results are manifested qualitative
we considerEmag as a function ofm and present the elasti
energy in the formEel5NCm2/2 ~see, for example, Ref. 7!.
Figures 4 and 5 show the dependence of the total energ
the magnetic and elastic subsystems in the ground stat
displacement~m in the present case!, elastic constantC, and
the magnetic fieldh in the ground state. Figure 6 shows th
dependence of the total free energy on temperature and
placement~at low temperatures!. It can be seen that the en
ergy minimum corresponds to a nonzero displacement of
ligand lattice. It is also obvious that the dependence of
total energy of the magnetic and elastic subsystems on
distortion of the three-dimensional nonmagnetic lattice d
not depend qualitatively on the manner in which the d
placement is caused, i.e., the effect does not depend on
choice of the model.

Unfortunately, we are not aware of experiments in s
tems with one-dimensional quantum AFM spin chainsS
51/2 which could explicitly demonstrate the emergence
the spontaneous magnetic anisotropy. However, the re
of recent experiments13 on quasi-two-dimensional antiferro
magnets Ba2CuGe2O7 with Cu21 magnetic ions reveal tha
even for a fairly isotropic~square! spin lattice, the magnetic
anisotropy must be taken into consideration for explain
the dependence of magnetization on the applied magn
field. In our opinion, such an effect is an indirect confirm
tion of the predicted manifestation of the magnetic anis
ropy, at least for a two-dimensional AFM Heisenberg syst
of spins 1/2. However, we believe that this effect mu
emerge for any AFM system of spins 1/2, whose grou
state is not magnetically ordered and whose lowest exc
tions are gapless.

Summing up the results of our investigations, it can
stated that in this work we have studied a quantum o

FIG. 4. Dependence of the total energy of the ground state of a mag
and an elastic subsystemsEtot on the displacementm of nonmagnetic ions in
the crystal lattice. The dependence of the magnetic anisotropy on the
placement parameterm is nonlinear.
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dimensional Heisenberg AFM chain of spins 1/2. It is sho
that under the action of a three-dimensional lattice of n
magnetic ions~ligands!, the Heisenberg spin chain becom
unstable to the emergence of an ‘‘easy plane’’ type magn
anisotropy. This cooperative Jahn-Teller type magnetoela
effect is independent of the applied magnetic field. It is a
shown that the phase with nonzero magnetic anisotropy
ists in a certain nonzero interval of low temperatures. T
instability studied in this work is analogous to the we

tic

is-

FIG. 5. Dependence of the total ground state energy of a magnetic an
elastic subsystems on the displacementm and the elastic constantC of the
lattice ~a! and on the weak applied magnetic fieldh ~b!.

FIG. 6. Dependence of the total free energy of the system on temperatuT
and lattice deformationm.
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known Peierls instability of spin chains withS51/2.6,7 How-
ever, this is the first theoretical work to our knowledge
which such cooperative effects are studied in a strongly
teracting many-particle system. The microscopic source
the instability considered by us is the removal of degener
of the spin subsystem with an isotropic exchange interac
as a result of the emergence of magnetic anisotropy ass
ated with a change in the electric field of nonmagnetic latt
ions.
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research.
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Experimental results of investigations of monocrystalline samples of Hg12x2yCrxMnySe solid
solution indicate, first, a considerable influence of manganese atoms introduced in
Hg12xCrxSe on the absolute values of physical parameters such as magnetic susceptibility, phase-
transition temperature, mobility of conduction electrons, and the period of time during
which the samples go over to the equilibrium state, and second, the formation of materials with
improved electrophysical and clearly pronounced magnetic characteristics as compared
with Hg12xCrxSe samples with the same concentration of chromium ions. ©1998 American
Institute of Physics.@S1063-777X~98!00609-4#
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Intense development of science and technology in
field of fundamental and applied physics of semiconduct
poses new and new problems whose solution involves ap
cation of new specially synthesized semiconducting mat
als and a detailed analysis of their physical properties. Th
materials include narrow-band semimagnetic semicondu
~SMSC!. The continued interest of many researchers in t
type of materials is due to their specific properties that m
it possible to use them for solving problem in thermal det
tion, and quantum electronics, space communication in
infrared range by synthesizing material of appropriate co
position. Practical application of narrow band SMSC
based on the effects of strong spin splitting of energy lev
and Faraday’s rotation due to thesp–d exchange interaction
Spin splitting in mercury chalcogenides with Mn is man
fested most clearly at liquid helium temperature. Hence
devices developed on the basis of these materials~like
magnetic-field-controlled IR detectors and generators! can
operate only in the helium temperature range. Experime
studies carried out by us on a number of representative
this class of semiconductors made it possible to discov
wide spectrum of new physical effects in the Hg12xCrxSe
system1–3 and to verify that strong spin splitting can tak
place in this system in the nitrogen temperature range.2 This
important practical advantage of Hg12xCrxSe solid solutions
determines preferences given to the study of this mate
over other SMSC. However, the arrangement of energy
els of Cr ions in the conduction band of Hg12xCrxSe leads to
additional scattering of conduction electrons at the
levels,1,3,4 and hence to deterioration of electrical and phy
cal parameters of this material. In this connection, attem
were made to obtain~on the basis of Hg12xCrxSe) a material
with a lower concentration of Cr ions, but with the same
even improved magnetic and electrophysical parameter
the material. Since the impurity levels of Mn ions in mercu
chalcogenides get in the valence band in contrast to en
6391063-777X/98/24(9)/4/$15.00
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level of other impurity ions,5 it should be expected that th
introduction of Mn atoms into Hg12xCrxSe) would make it
possible to obtain a material satisfying all these requ
ments. Following these principles, we obtained a new q
ternary system Hg12x2yCrxMnySe which will be described
below.

1. ELECTRON SPIN RESONANCE AND MAGNETIC
SUSCEPTIBILITY

In our previous investigations of the Hg12xCrxSe sys-
tem, we discovered and studied the electron spin resona
~ESR! spectrum on Cr31 ions.1,3,4 The spectrum was ob
served in the range from helium to room temperatures
was determined by the concentration of Cr ions and temp
tureT. ESR and magnetic susceptibility studies revealed t
a crystal cooled below a certain temperatureTf displays cu-
bic symmetry breaking in the lattice, and at a certain te
peratureTg,Tf a phenomenon interpreted by us as a tran
tion of Hg12xCrxSe to the spin glass phase takes place.

In order to establish the effect of Mn atomic impurity
Hg12xCrxSe on the values of temperatureTf at which the
lattice starts being distorted and the phase-transition t
peratureTg , as well as on magnetic susceptibility, we ca
ried out complex studies based on ESR and magnetic sus
tibility x measurements on a number of Hg12x2yCrxMnySe
samples with the concentrationsNCr'1020cm23 of chro-
mium ions andNMn'531018cm23 of the manganese ions
which were cut from different regions of an ingot.

The ESR spectrum was analyzed on a radiospectrom
with a working frequency 36.04 GHz. The values ofx were
measured by using inductive technique on a setup which
a differential magnetometer with low-frequency field mod
lation, which was modified by us.6 The setup was calibrate
with a help of the superconducting lead replica of the sam
under investigation. The amplitude of the ac magnetic fi
© 1998 American Institute of Physics
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inducing emf in the measuring coils of the setup and
frequency were varied smoothly in the intervals 0 – 5 Oe a
60– 1100 Hz respectively. The temperature of the sam
was stabilized during measurements and was measure
within 60.1 K with the help of an electronic device.7

The temperature variation of ESR spectrum of Cr31 ions
is shown in Fig. 1 for the Hg12x2yCrxMnySe samples inves
tigated by us. Until the temperature is lowered to a cert
value, the spectrum contains a single symmetric isotro
line indicating that Cr31 is in a strictly cubic crystal field.8

The resonant fieldHr of the absorption line is independent
T in this case. As the temperature decreases further tT
<Tf , the value ofHr becomes a function ofT, and the
spectrum becomes axially anisotropic, which follows fro
the angular dependence of the ESR line. A subsequent
crease inT gives rise to a fine structure of the spectrum, a
the degree of anisotropy increases.

A comparison of the obtained temperature depende
of Hr of the ESR spectrum on Cr31 ions in the
Hg12x2yCrxMnySe system with a similar dependence for t
Hg12xCrxSe system3 with the same concentrationNCr shows
that the nature of variation of the spectral structure with te
perature is the same for both systems, but the temperatuTf

corresponding to the beginning of symmetry distortion in
lattice of the Hg12x2yCrxMnySe system is (2063) K higher
than in Hg12xCrxSe system. The error in the measureme
of Tf was determined on the basis of a number ofHr values
obtained in this temperature range. It should be noted tha
EPR spectrum of Mn21 ions was detected in our case f
some reason.

Figure 2 shows the temperature dependencex(T)
of magnetic susceptibility measured on the sa

FIG. 1. Temperature dependence of resonant fields in the ESR spectru
Hg12x2yCrxMnySe corresponding to transition of Cr31 from top to bottom

at 50 K<T<120 K): u1 1
2 &↔u1 3

2 &, u1 1
2 &↔u2 1

2 &, u2 1
2 &↔u2 3

2 &.
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Hg12x2yCrxMnySe samples immediately after the crys
growth ~curve 2! and after three months of storage und
natural conditions, during which the system goes over to
equilibrium state~curve3!. For the sake of comparison, th
same figure shows thex(T) curve3 for Hg12xCrxSe with
NCr'1020cm23 ~curve1!. A comparison of these curves in
dicates that thex(T) curves for both materials are simila
the only difference being that the absolute values ofx in the
phase-transition temperature region and atT<Tg differ sig-
nificantly. Besides, the phase-transition temperatureTg for
the Hg12x2yCrxMnySe system is 12.5 K higher than for th
Hg12xCrxSe system with the same concentrationNCr .

Thus, it follows from an analysis of the ESR spectru
on Cr31 ions and susceptibility measurements
Hg12x2yCrxMnySe that the addition of Mn atoms t
Hg12xCrxSe changes the values of temperatureTf corre-
sponding to the beginning of lattice symmetry distortion
the crystal and the spin-glass phase transition temperaturTg

as well as the value of magnetic susceptibility in the ph
transition temperature region and atT<Tg . This means that
the addition of Mn atoms to Hg12xCrxSe improves its mag-
netic characteristicx(T) which becomes more expressive.

2. GALVANOMAGNETIC MEASUREMENTS

In order to determine the effect of Mn atoms introduc
into Hg12xCrxSe on the kinetic coefficients of the ne
system Hg12x2yCrxMnySe obtained as a result, w
chose Hg12xCrxSe samples with the concentratio

of

FIG. 2. Temperature dependence of magnetic susceptibility in Hg12xCrxSe
samples withNCr'1020 cm23 ~curve 1! and Hg12x2yCrxMnySe samples
with NCr'1020 cm23 andNMn'531018 cm23 ~curve2! recorded immedi-
ately after sample growth and after equilibrium stabilization in the sec
system~curve3!.
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NCr'231020cm23 since, according to Ref. 3, the magne
susceptibility in this material in the temperature ran
T<Tg is the same as that measured by us
Hg12x2yCrxMnySe with NCr'1020cm23 and NMn'5
31018cm23 ~see Fig. 2!. This allowed us to determine th
variation of the Hall mobilitym in the quaternary system
relative to the ternary system for equivalent magnetic par
eters of the two systems.

Galvanomagnetic measurements proved that the con
tration of electrons in both systems is'4.231018cm23 and
is independent of temperatureT, while their mobilities differ
significantly and are functions ofT ~Fig. 3!.

Thus, a comparison of the experimentally obtainedm(T)
curves~see Fig. 3! shows that for similar magnetic chara
teristicsx(T) of both systems, the Hall mobility of conduc
tion electrons in Hg12x2yCrxMnySe is considerably highe
than in the Hg12xCrxSe system.

3. DISCUSSION AND CONCLUSIONS

The experimental results obtained by us and availa
data from the literature lead to the following interpretation
the phenomena observed in the Hg12x2yCrxMnySe and
Hg12xCrxSe systems.

A comparison of experimental results obtained by
here for Hg12x2yCrxMnySe samples (NCr'1020cm23 and
NMn'531018cm23) and for Hg12xCrxSe samples with the
same concentration of Cr atoms3,4 leads to the conclusion
that electrophysical and magnetic parameters of these
tems display the same qualitative behavior, but differ qu
titatively. For example, the introduction of Mn atoms wi
concentration 531018cm23 into Hg12xCrxSe causes a con
siderable increase in the temperature of transition
Hg12x2yCrxMnySe to the spin glass phase. This experim
tal fact can be explained by using the concept of transition
SMSC to the spin glass state, which was proposed
Furdyna.9

FIG. 3. Temperature dependence of conduction electron mobility
Hg12xCrxSe samples with NCr'231020 cm23 ~curve 1! and
Hg12x2yCrxMnySe withNCr'1020 cm23 andNMn'531018 cm23 ~curve2!
recorded immediately after sample growth and after equilibrium stabil
tion in the second system~curve3!.
-
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This concept is based on the formation of clusters wit
short-range antiferromagnetic order, which begins from lo
fluctuations in spin distribution. The size of clusters i
creases upon cooling. We can expect that at a certain t
perature the cluster size will become large enough for co
lated regions to ‘‘touch’’ one another. Such a process
establishment of contact between different clusters can
identified with spin freezing, and hence a transition of SMS
to the spin glass phase whose temperatureTg is an increasing
function of the magnetic ion concentration and the integra
exchange interaction between them. Consequently, an
crease in the temperature corresponding to such a trans
due to the introduction of Mn atoms into Hg12xCrxSe is
attributed by us to an increase in the number of clusters
unit volume, and hence their closer arrangement relative
one another. Besides, it was found by us earlier3,4 that a
change in the defect structure1! in the Hg12xCrxSe system
changes appreciably the magnitude and the form of varia
of x(T) as well as the stabilization of equilibrium state in th
system, which is characterized by a decrease in the num
of point defects and their ordering facilitating an increase
the values ofx andm. The results of our experiments ind
cate that a transition to the spin glass phase in samples
stabilized equilibrium state occurs at a higher temperat
~see curves2 and 3 in Fig. 2! and is accompanied by a
increase inx in the temperature rangeT<Tg and inm in the
entire temperature range under investigation.~see curves2
and 3 in Fig. 3!. The experimental results obtained for th
two systems and the conception described above appar
lead to the conclusion that the defect structure of a sam
under investigation affects the conditions of the formation
a certain number of clusters as well as the rate of th
growth upon cooling, which in turn leads to a change in t
values ofTg andx and to a differentx(T) dependence in the
regionT<Tg .

Thus, the analysis of the effect of Mn atoms introduc
into Hg12xCrxSe on its physical parameters leads to the f
lowing results.

1. Immediately after crystal growth, th
Hg12x2yCrxMnySe system is metastable as well as t
Hg12xCrxSe system, but the time of stabilization of the eq
librium state in the former system is approximately one th
of the corresponding time for the latter system~other condi-
tions being equal!.

2. The introduction of Mn atoms into Hg12xCrxSe in-
creases the phase transition temperature significantly.

3. The temperature dependence of magnetic suscep
ity of Hg12x2yCrxMnySe in the temperature rangeT<Tg is
pronounced more clearly, and the value ofx is several times
higher than in Hg12xCrxSe with the same concentration o
Cr ions.

4. The mobility of conduction electrons is higher in th
quaternary system, provided that the magnetic paramete
the two systems are identical.

It can be stated in conclusion that the introduction
531018cm23 Mn atoms into the solid solution o
Hg12xCrxSe results in the formation of th
Hg12x2yCrxMnySe system with a more clearly manifeste
magnetic characteristic and with a considerably improv
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electrophysical characteristic for the same concentration
Cr ions in both systems.

*E-mail: prohorov@host.dipt.donetsk.ua
1!Here we apply the term ‘‘defect structure’’ to a system formed by intrin
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Formation and growth dynamics of domains under phase transitions in an external field
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The formation and the growth dynamics of 180°-domains in ferroelectrics in external field are
investigated with the use of the statistical approach within the Ginzburg–Landau model.
It is shown that despite the polarizing role of an external field the formation of an intermediate
polydomain structure is found to be more preferable than immediate transfer to the
monodomain ordering state. ©1998 American Institute of Physics.@S1063-777X~98!00709-9#
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INTRODUCTION

The fact that the really observed structure of solids
often nonequilibrium is largely determined by the dynam
of transformations occurring there. These transformati
may have the character of both phase separation

1
and

ordering2. In multicomponent alloys both of the aforesaid proces
can proceed simultaneously3. In this paper we are concerned wit
the ordering processes and in large measure their dynamic as
which consists in tracing the paths of establishing one or ano
stable or metastable state and in revealing the reasons influen
this choice.

The structural phase transitions in ferroelectrics ass
ated with the appearance of macroscopic regions of the c
tal where the spontaneous electric polarization is not equa
zero are the basic object of our investigation in this work

To characterize quantitatively the state change of a s
tem passing through the critical temperature pointTc of a
phase transition, one or more values called order parame
are introduced. In the case of the ferroelectric phase tra
tion the projection of the polarization vector on a certa
crystallographic direction is used as a long-range or
parameter.

It is known4 that, in the absence of external field at t
temperatures belowTc , i.e., in low-symmetrical phase, th
states correspond to the different~with respect to the sign!
values of the order parameter6h. In the early stages of the
ordering, when the relaxation of the short-range order
already been proceeded basically, the appearance of
structures of the type1h or 2h proves to be quite accidenta
and therefore the regions of both the signs6h ~called usu-
ally 180°-domains! must exist in different points of the crys
tal. It is obvious that the spatial size of the domains is
sumed to be much larger than the lattice parameter. As
shown by us earlier2, the evolution of these inhomogeneitie
of the order parameter in the absence of the external fi
will proceed along one of two basic paths, depending on
initial conditions—either the formation of a single-doma
state or the formation of a polydomain structure followed
increasing~for diffusion time! the spatial scale of this struc
ture up to the crystallite size.

Our goal is to clear up how the long-range ord
6431063-777X/98/24(9)/4/$15.00
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evolution character will change in an initially disordered sy
tem if at the moment of quenching is finished some exter
field « conjugating with the order parameterh will be im-
posed on it rapidly enough. The question is, if the homo
neous ~monodomain! ordering will occur, or can a suffi-
ciently developed polydomain structure formed, in som
situations? In the case of a ferroelectric an uniform stea
state electric field should be meant when speaking abou
external field. The time of its establishing (t«5«/ «̇) is con-
sidered to be small in comparison with the time of the for
ing (td) and certainly it is much less than the time of co
lescence (tc) of the domain structure (t«!td!tc).

GENERAL DESCRIPTION OF THE MODEL

In order to describe the ordering within the framewo
of Landau theory we shall assume further that, despite
proximity of temperature to the critical one (Tc2T)/Tc!1
the system lies outside the fluctuation region. In this situat
a nonequilibrium addition to the thermodynamic potential
the presence of external field can be presented in the form
Ginzburg–Landau functional5:

F$h,¹h%5E F1

2
Ah21

1

4
Bh41

1

2
d~¹h!22hEGdV.

~1!

Here the coefficientA is proportional to (Tc2T). Since the
characteristic energy scale in this problem isTc it may be
considered thatB;Tc , andd;Tcr 0

2, wherer 0 is the inter-
action radius; i.e., the value of the order of interatomic d
tance;E is the external field, which we believe for the sim
plicity to be homogeneous one.

In order to describe the dynamics of nonequilibrium sy
tem we shall use the Landau–Khalatnikov equation2 for a
nonconserved order parameter:

]h

]t
52g

dF

dh
, ~2!

whereg is the kinetic coefficient which can be represented
the form (tTc)

21, so t can be interpreted to be the tim
© 1998 American Institute of Physics
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required for an elementary rearrangement of the system~for
example, a displacement of an atom or interchange of ne
boring atoms!.

If, now, distance is measured in units ofr 0 and time in
units of t, then Eq.~2! can be written, in view of Eq.~1!, in
the form:

]h/]t5Dh1ah2h31«. ~3!

HereD is the Laplacian and we have introduced two para
eters:a5(Tc2T)/Tc is a dimensionless parameter that ch
acterizes the proximity of temperatureT, up to that of the
specimen cooled, to the temperature of orderingTc ;
«5E/Tc is the external field in corresponding units.

It should be emphasized that the initial state of ord
disorder system must be given statistically, considering t
first, inhomogeneities of an order parameter are formed
result of rapid cooling of specimen randomly arranged
space; second, there are thermal fluctuations of order pa
eters all along. The spatial scale of appropriate inhomoge
ities is assumed to be much larger than the lattice param

To solve the problem it is necessary to have an ini
condition to Eq.~3!, i.e., the meaning of order paramet
h(r ,t) at the initial moment of time should be given
h(r ,0)[h0(r ). Since this initial function is random, the o
der parameter is a random function of coordinates fortÞ0 as
well. Therefore, Eq.~3! will describe spatial-time evolution
of the order parameter random field operating in the spati
uniform ~and determinate! field «.

THE DERIVATION OF BASIC EQUATIONS

To describe the relaxation processes taking place in
system undergoing the phase transition, there is no nee
know the spatial distribution of the order parameterh(r ,t) in
detail over the total specimen. Therefore, we shall deal w
the search for the main physically significant characteris
of this function in the subsequent discussion, such, for
ample, as the average~over crystalline grain! value of the
order parameter̂h(r ,t)&[h̄(t) and the two-point correla
tion function

^j~r ,t !j~r ,t !&[K~s,t !, s5r2r 8, ~4!

where we have introduced the centered order param
j(r ,t)[h(r ,t)2h̄(t), and have used the standard assum
tion that the order parameter field is statistically uniform.

The equations forh̄(t) andK(s,t) are derived from the
basic equation~3! both by averaging the equation itself an
by averaging after premultiplying both sides of Eq.~3! by
h(r 8,t).

To obtain a closed system of equations forh̄(t) and
K(s,t), the possible asymmetry are neglected here, i.e.,
suppose that

^j2~r !j~r 8!&50 ~5!

for all the r and r 8. For correlation function of the type
^j3(r ,t)j(r 8,t)& we shall use the unlinking of the form

^j3~r ,t !j~r 8,t !&5^j2~ t !&^j~r ,t !j~r 8,t !&

[K~0,t !K~s,t !. ~6!
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One of the justifications for this procedure is the availabil
of only one spatial scale in the problem considered.

It would appear natural, then, that the functional dep
dence of the fourth order correlation function^j3(r )j(r 8)&
of ur2r 8u would be an accurate copy the functional depe
dence of the distance between pointsr andr 8 for the second
order correlation function̂ j(r )j(r 8)&[K(ur2r 8u). It has
been known that for the Gaussian random field the unlink
~6! will be an accurate one, if the right-hand side of Eq.~6! is
multiplied by a coefficient which is equal to three. In o
case the Eq.~6!, without any doubt, is an approximation, i
which the choice of the coefficient is determined by the f
that in the problem considered, for long times in particul
the one-point distribution function is significantly differen
from Gaussian form. It follows from physical consideratio
based on the equivalency of states that are equal in ma
tude but opposite in sign, of order parameters, that for
sufficiently long times (t@a21) are close to the curve with
two sharp maxima at the equilibrium values of the ord
parameter. Here, of course, we are dealing with a cente
order parameterj. As it is immediately evident from the
calculation, for such a distribution function the coefficie
mentioned above is close to unity.

As a consequence of Eq.~3! and assumptions~5! and
~6!, we obtain, finally, the system of equations for the fun
tions: h̄(t) andK(s,t)

H dh

dt
5

1

2
~ah̄23K~0, t !h̄2h̄31«!,

]K~s,t !

]t
5DK~s,t !1@a2K~0, t !23h̄2#K~s,t !.

~7!

~8!

The system of Eqs.~7! and ~8! contains two physically
meaningful parameters:a and «. Owing to the nonlinearity
contained in the right-hand sides of Eqs.~7! and ~8!, our
system cannot be solved by analytical methods. Howeve
shown in2, due to the distinctive degeneracy, the similar s
tem can be reduced to a system of nonlinear ordinary dif
ential equations for the average value of order param
h̄(t) and dispersion of itD5D(t) with the help of the
Fourier transformation of the Eq.~8! on the spatial variables

H dh

dt
5

1

2
@~a23D2h̄2!h̄1«#,

dD

dt
5~aeff~ t !2D23h̄2!D,

~9!

where the following notations are introduced:D5D(t)
5K(0, t);

aeff~ t ![a21/r c
2~ t !. ~10!

Here we have used a natural determination of the correla
radiusr c(t) by Fourier transform,K̃(q,t), of the correlation
function:

1

r c
2~ t !

[Eq2K̃~q,t !d3qY E K̃~q,t !d3q. ~11!

As it is shown in Ref. 2, the correlation radius at an arbitra
moment of time is determined by the value of the correlat
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function K(s,t) at the initial moment of time, i.e.,K(s,0).
The last must be specified as the initial condition of t
problem. The temporal dependence of the coefficientaeff , in
accordance with~10!, is determined completely by the evo
lutionary character of the system correlation radiusr c(t) ~in
our case it is associated with the characteristic spatial s
of ordered region or domain size!.

For all the ‘‘acceptable’’ initial correlation functions
K(s,0), as it is shown in Ref. 2, the temporal dependence
the correlation radiusr c(t) has the form:

r c~ t !5Ar c
2~0!12t/3, ~12!

where r c(0) is the correlation radius of the system at t
initial moment of time (t50). The last formula confirms the
well-known conclusion that domain sizes grow with tim
according to a diffusion law in proportion toAt @provided, of
course, thatt@r c

2(0)]. Thus, the system of equations~9! for
h̄(t) andD(t), in the terms of the Eqs.~10! and~12!, takes
the form

H dh̄

dt
5

1

2
@~a23D~ t !2h̄2!h̄1«#,

dD~ t !

dt
5@a2$2/3t1r c

2~0!%212D~ t !23h̄2#D~ t !.

~13!

ASYMPTOTIC BEHAVIOR OF SYSTEM FOR LONG-TIMES

It is of greatest interest to study the system of Eqs.~13!
close to the ordering temperatureTc , when a!1 and the
initial correlation length is not too large, so that the conditi
r c

2(0)!(1/a)!d2 can satisfied, whered is the characteristic
crystallite size~we recall that time is measured in units oft
and distance is measured in units ofr 0 , i.e., the interatomic
interaction length!. Then, asymptotically, i.e., at time
t@1/a, the system of Eqs.~13! transforms into a system o
equations with constant coefficients

H dh̄

dt
5

1

2
@$a23D~ t !2h̄2%h̄1«#,

dD~ t !

dt
5@a2D~ t !23h̄2#D~ t !,

~14!

with the initial conditions

h̄~0!5h̄0 ; D~0!5D0 . ~15!

The solution of the system of Eqs.~14! with initial condi-
tions ~15! allows us to obtain information about the closin
stages of the ordering process.

Let us perform qualitative analysis of the system~14!
with use of the concept of phase pattern6 ~in the present case
in the variablesh̄ andD ~see Fig. 1!.

As it is shown, the singular~stationary! points of the
system~14! can be found from the fact that (dh/dt)→0 and
(dD/dt)→0 ast→`; therefore,

H «1ah̄23Dh̄2h̄350,
~a2D23h̄2!D50. ~16!
le

f

This is a system of two algebraic equations in variablesh̄
and D. The roots of the above-mentioned system yield
coordinates of singular points in the plane (h̄, D).

For a,0, i.e., at a temperature above the critical poi
there is only one singular point, which is a stable node. T
coordinates of this point for the small« are h̄5«/uau,
D50. This means that, irrespective, of the initial condition
the system will pass into a disordered state. First of all
should be noted here that, even though the field« is as small
as possible, the average value of order parameterh̄ becomes
nonvanishing everywhere over the temperature region. O
ing to the external field, among other things, the phase tr
sition appears to be ‘‘blurred’’ i.e., it takes place some te
perature interval away from critical pointTc .

For a.0, i.e., atT,Tc , and not-too-strong field there i
a whole system of singular points. However, only the poi
located in the upper half-plane of the phase pattern~in vari-
ables h̄, D! will have physical meaning. Let us analyz
initially, the positions of the singular points in the case
weak field («!a3/2).

The first singular point I@h̄52(«/a), D50], which
corresponds to a homogeneous disordered state, is an
stable node~Fig. 1!.

The second point II@h̄5Aa1(«/2a), D50] corre-
sponds to a homogeneous ordered state ‘‘aligned with
external field’’ and it is a stable node~Fig. 1!.

The third point III @h̄52Aa1(«/2a), D50] corre-
sponds to homogeneous ordering, but it is ‘‘opposite to
field.’’ This point is also a stable node~Fig. 1!.

Both the second and the third singular points corresp
to single-domain types of the specimen ordering.

All the rest of the singular points~with DÞ0) corre-
spond to inhomogeneous ordering, i.e., to one or the ano
polydomain structures.

The fourth point IV (h̄5«/2a; D5a23«2/4a2)

FIG. 1. Phase pattern of order-disorder system. The singular points o
system~14! at «50 are marked by symbol~X!; the singular points~I–VI !
for the system~14! at «Þ0 are marked by circles~s! and separatrices are
indicated by dotted lines. The bifurcation points~at «5«c) for the system
~14! (hc andKc) are shown by black circles~d!. Here solid lines a–c are
the phase trajectories as a result of numerical integrating of the total sy
~13! for a50.04; «50.001; r c(0)510 at different initial conditions
$h̄0 ,D0%: $20.08; 0.001% ~a!; $0; 0.003% ~b!; $0; 0.001% ~c!.
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~Fig. 1! is a stable node and corresponds to the possibility
the polydomain structure realization. The fact thath̄Þ0 in
this state corresponds to some non-equivalency of dom
of two types. However, in weak fields this distinction
small ~to the extent of the ratio«/a!.

And finally, there are another two singular points of t
saddle type. One of them V~‘‘right saddle’’! with coordi-
nates (h̄5Aa/22«/4a; D5a/413«/4Aa) ~Fig. 1! corre-
sponds to a possibility for realizing such a quasi-station
polydomain structure, where the volume fraction of doma
of the same type~e.g., with polarization vector, aligned wit
field! substantially exceeds the volume fraction of the ot
type domains~opposed to the field!.

The other point~‘‘left saddle’’! with coordinates (h̄
52Aa/22«/4a; D5a/423«/4Aa) ~the point VI, Fig. 1!
corresponds to a possibility for realizing the quasi-station
polydomain structure as well. However, in this situation t
volume fraction of domains with the polarization vector o
ented opposite to the field substantially exceeds a volu
fraction of domains aligned with the field.

Two separatrices, leaving the origin of coordinates a
passing through the ‘‘left’’ and ‘‘right’’ saddle points, divide
the phase pattern into the three sectors. The upper ce
sector~1! is the ‘‘attraction region’’ of the inhomogeneou
~polydomain! state, the lower right-hand~2! and lower left-
hand sectors~3! correspond to two attraction regions of h
mogeneous single-domain states. Depending on the in
conditions (h̄0 ,D0) the phase trajectories of the system w
be located in one of the above-mentioned sectors. Thi
illustrated on the phase pattern~Fig. 1!, where, apart from
the singular points founded analytically and the separatr
of the asymptotic system of equations~14!, a number of
results of numerical integrating~curves a–c! of the complete
system of equations~13! are presented.

If in the initial state the average value of order parame
uh̄0Þ0u and it is greater than the fluctuations of order para
eter, the system will transfer immediately into one of t
single-domain states. The sign of the order parameter in
state of thermodynamic equilibrium is determined by wh
side of the first singular point the valueh̄0 is located on. We
emphasize that the availability of external field («Þ0), with
weak inhomogeneity of order parameter, will make the s
tem to go over into single-domain state, even thou
h050. The choice between two single-domain states is p
determined by the field direction.

The deflection of the system to one or another side
magnitude of the order parameter with respect to the
singular point can occur, in general, for various reasons, b
random and determinate character.

If, however, at the initial state inhomogeneities are s
ficiently developed and the average value of the order par
eter at the initial moment of timeh̄0 is close to2~«/a!, the
developed polydomain structure will be formed in the syst
over a timet;a21. The characteristic size of the domain
just as the characteristic size of the transition layer~domain
boundary! between them, will achieve the value of ord
a21/2 by this moment.

Further, in accordance with~12!, the domain sizes will
grow in keeping with the diffusion law;At, while the
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thickness of the domain boundaries remains unchange
the levela21/2.

Strictly speaking, if the long-range interaction is n
counted, the polydomain state is not stable thermodyna
cally. The state of interest may be considered to be lo
lived and its characteristic lifetime isa21!t!d2. That is, in
the situation being considered the system will pass to
thermodynamically stable monodomain state as well. Ho
ever, this transition does not proceed immediately, bu
goes through the stage of forming and growing the doma
This growth proceeds for as long as the domain sizes
become of the order of the crystallite size, when by the
fluence of external field« the system will give the preferenc
to the domain of certain sign.

CONCLUSIONS

In this paper we have used a statistical approach1 to in-
vestigate the ordering dynamics under the second o
phase transitions in the presence of the external field. T
has allowed us to show that the imposition of a not-to
strong field to the ordering system leads to the asymmetr
the ordering process, removing the degeneracy on the sig
the order parameter, i.e., it makes monodomain states
the order parameters1h and 2h nonequivalent. However
both in the weak field and at the absence of the field
formation of a polydomain ordered structure is most like
Despite its thermodynamic instability, the structure of th
kind will evolve rather slowly to the thermodynamic equilib
rium monodomain type of ordering. The influence of a we
external field on the polydomain structure lies only in t
fact that the volume redistribution of an energetically disa
vantageous regions~oriented opposite to the field! and ad-
vantageous regions~aligned with the field! will occur in fa-
vor of the latter. The homogeneous~monodomain! state of
ordering is realized just in sufficiently strong fields in exce
of the critical value«c ~which is generally dependent on th
temperature!, irrespective of the initial conditions. The fiel
«c is nothing but a coercive field.

The author thanks to Prof. E. P. Feldman for fruitf
discussions. This work was supported in part by the S
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It is shown that in addition to equal-module exchange structures satisfying the criterion for the
existence of the Andreev–Marchenko and Bar’yakhtar–Yablonskii spin scalar, other equal-
module exchange structures also exist. In contrast to the structures obtained from the condition
for the existence of a spin scalar, the latter follow from thermodynamic conditions and
correspond to thermodynamically stable phases. Besides, these structures are not related to the
restrictions imposed on the dimensionality of irreducible representation typical of the
structures of the former kind. ©1998 American Institute of Physics.@S1063-777X~98!00809-3#
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INTRODUCTION

The magnetic symmetry of magnetically ordered cryst
in the exchange approximation is higher than in the c
when relativistic interactions are taken into consideration
group theory method of determining the symmetry of e
change structures was proposed by Andreev and Marche1

and by Bar’yakhtar and Yablonskii2 on the basis of the con
dition for the existence of a certain invariant function form
by spin components~spin scalar!. The exchange magneti
structures obtained by using this approach are equal-mo
structures, i.e., the magnitude of spin moment is the sam
all magnetic positions of the crystal. Gufanet al.3 used a
model example to prove the existence of exchange struct
with different modules. We propose a method for obtain
exchange magnetic structures which is more general
magnetic classes obtained from the condition for the e
tence of a spin scalar.

For this purpose, a general approach is required, wh
would not require any information other than that provid
by the magnetic symmetry group of the paramagnetic ph
and the population density of magnetic atoms in positions
the space group of the crystal. If such information is ava
able, all possible types of exchange structures for the gi
crystal can be determined on the basis of the group the
method of determining low-symmetry phases proposed
Refs. 4–6.

GENERAL METHOD OF DETERMINING EXCHANGE
MAGNETIC STRUCTURES

The magnetic symmetry of the paramagnetic phase
crystal is characterized by the exchange paramagnetic g
M that can be reduced to a direct product of the space gr
G and the three-dimensional group of spin rotationsO(3),
i.e., M5G3O(3).7 Each space group is characterized by
set of crystallographic orbits or a regular system of poi
~RSP!.8 Any point belonging to a RSP is transformed into
point from the same RSP under the action of symmetry
ments of the space groupG, i.e., RSP is transformed int
itself under the action of elements from groupG. Accord-
ingly, any system of functions defined on RSP is transform
6471063-777X/98/24(9)/5/$15.00
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into itself under the action of symmetry elements fromG,
i.e., forms the basis of the irreducible representation~IR! of
this group. In addition to the symmetry group, a given crys
is characterized by the diagram of population of various R
by atoms. Some crystallographic orbits in a magnetic cry
are populated completely or partially by magnetic atom
Each such orbit can be presented by the spin density func
S~r !. We expand this function in the basis functions from t
IR of the groupM :

S~r !5 (
a51

3

(
i 51

n

Sa
i w i~r !ea5(

i
Siw i~r !, ~1!

wherew i(r ) are the basis functions of the IR of the groupG,
ea is the orthonormal basis in the spin space~the basis of the
vectorial IR of theO(3) group!, a the index labelling unit
vectors in the spin space, andi the index labelling basis
functions of the IR. Thus, the type of magnetic ordering
determined by the set of the mixing coefficientsSa

i . The last
two factors on the right-hand side of formula~1! form the IR
D5G3V of theG3O(3) group, whereG is the IR of theG
group, whose basis is just formed by functions appearing
~1!, and V is the vectorial IR of the group of three
dimensional spin rotations. Spin group transformations c
respond to transpositions of atoms within a crystallograp
orbit. In addition to lattice site coordinates, magnetic ato
are also characterized by spin. However, the direction
magnitude of spin do not change upon a transposition o
atom, i.e., spin rotations and space transformations are
ried out independently. This is a formally logical realizatio
of the condition corresponding to the absence of a coup
between the spin subsystem and the lattice, which is
ecuted by relativistic interactions. Thus, the transformat
properties of each component of the spin density function
similar to transformation properties of variation of electr
charge density. Let us clarify this statement. The variat
dr~r ! of electric charge density has two components9: the
variation of the form of the functiondr~r ! and the variation
of the function due to a change in the argument:
© 1998 American Institute of Physics
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dr~r !5dr~r !1
]r

]r
u~r !, ~2!

whereu~r ! is the vector function of atomic displacements
The variation of the form of the function describe

purely phase transitions associated with atomic ordering.
second term on the right-hand side of~2! characterizes
purely displacement-type transitions. The transformat
properties of the spin density function components are id
tical just with the transformation properties of the functi
dr describing atomic ordering. The~reducible! representa-
tion according to which the functiondr~r ! is transformed is
called the transposition representation.8 Thus, the spin den-
sity function can be expanded in the basis functions of the
appearing in the transposition representation.8

Atomic ordering can be described by a set of scalar b
functions and a set of mixing coefficientsc5(c1 ,c2 ,...,cn)
forming the so-called stationary vector~statvector!.3,6 In or-
der to describe the exchange magnetic ordering, we ne
set of scalar basis functions and three statvectors
y
th

h
m
.

m
ix
a

hic
s
ie
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ea
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d
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e
on
R

e

n
n-

R

is

a

~S1
1,S2

1,...,Sn
1!,~S1

2,S2
2,...,Sn

2!,~S1
3,S2

3,...,Sn
3!. ~3!

The statvectorc can be regarded a vector of a certa
vector space~«-space in the terminology of Gufanet al.3!
Different symmetry positions of the statvector in this spa
correspond to different subgroups of the groupGD,G of the
high-symmetry phase. Each of these subgroups describe
crystal symmetry corresponding to atomic ordering wit c
tain mixing coefficients.

The three statvectors~3! can be conveniently combine
into a stationary matrix~statmatrix! of dimensionality n
33:

Ŝ5S S1
1,S2

1,...,Sn
1

S1
2,S2

2,...,Sn
2

S1
3,S2

3,...,Sn
3
D . ~4!

The exchange magnetic ordering symmetry is de
mined by the least symmetric of the three statvectors app
ing in statmatrix~4!. If we go over to the spherical coordi
nates in the spin space, the statmatrix assumes the form
Ŝ5S S1 sin u1 cosw1 ; S2 sin u2 cosw2 ; ...; Sn sin un coswn

S1 sin u1 sin w1 ; S2 sin u2 sin w2 ; ...; Sn sin un sin wn

S1 cosu1 ; S2 cosu2 ; ...; Sn cosun

D . ~5!
rom
ko

to

in-

ng

of
In the general case, statmatrix~5! defines an essentiall
three-dimensional magnetic structure. If, however, one of
spherical anglesu i or w i does not depend on the numberi of
the column, the statmatrix can be reduced to a form wit
single zero line by rotation of the spin axes. Such a stat
trix corresponds to two-dimensional exchange structures
the other spherical angle is also the same for all the colu
the rotation of spin axes can nullify two rows of the matr
S, and such a matrix corresponds to a collinear antiferrom
netic exchange structure.

A unit IR of the space groupG corresponds to the
ferromagnetic spin ordering within each crystallograp
orbit. Other one-dimensional IR appearing in the transpo
tion representation at the crystal lattice sites occup
by magnetic atoms correspond to collinear antifer
magnetic exchange structures. Two-dimensional IR app
ing in the transposition representation correspond tw
dimensional antiferromagnetic structures. Irreduci
representations with a dimensionality higher than three
appearing in the transposition representation correspon
essentially three-dimensional antiferromagnetic structu
Obviously, a change in the number of independent par
eters in the statmatrix corresponds to a transition from
exchange phase to another as in the case of an atomic o
ing.

It should be noted that by the dimensionality of an IR w
meant the dimensionality of real-valued IR or the dimensi
ality of physically-irreducible representations of complex I
e

a
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EQUAL-MODULE EXCHANGE STRUCTURES

Let us consider the exchange structures obtained f
the condition for the existence of the Andreev–Marchen
spin scalar. Raising both sides of equality~1! to the second
power, we obtain

S2~r !5(
a,i

(
b,k

Sa
i Sb

kw i~r !wk~r !ea
•eb. ~6!

The left-hand side of this equation is a scalar relative
transformations from space groupG. Consequently, the
right-hand side of this relation must also assume a form
variant to spatial transformations:

S2~r !5(
a

Sa
2(

i
uw i~r !u2. ~7!

A comparison of the right-hand sides of~6! and ~7!
shows that the mixing coefficients must satisfy the followi
orthogonality condition:

Sa
i Sb

k5Sa
2d ikdab , ~8!

where d ik and dab are Kronecker deltas. For the sake
visualization, it is convenient to write relations~1!, ~6!–~8!
in matrix form. We introduce the column vector

w~r !5S w1~r !

w2~r !

.......
wn~r !

D ,
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and denote the line vector byw~r !. Then expansion~1! can
be written in the matrix form

S~r !5Ŝw~r !,

and expression~7! can be written as

S2~r !5w~r !ŜTŜw~r !,

where ŜT is the transposed statmatrix. We present the s
matrix Ŝ in the form of the row

Ŝ5~S1 ,S2 ,...,Sn!,

where the vectorsSi are defined in the three-dimension
spin space. In such a case, the condition~8! of invariance of
the square of spin density module assumes the form

ŜTŜ5S S1

S2

...
Sn

D ~S1 ,S2 ,...,Sn!5S2Ê. ~9!

This relation~9! indicates that then vectorsSi forming
the statmatrix are mutually orthogonal and have equal m
ules. However, the three-dimensional spin space cannot
more than three such vectors. Consequently, the maxim
dimensionality of IR describing equal-module exchan
structures does not exceed three in accordance with the
sults obtained in Refs. 1 and 2.

EQUAL-MODULE EXCHANGE PHASES WITH COINCIDING
MAGNETIC AND CRYSTALLOCHEMICAL UNIT CELLS
IN CRYSTALS WITH SPINEL STRUCTURE

Let us consider crystals with a spinel structure by way
illustration of the above discussion. These crystals have
stoichiometric formula AB2O4, where A and B are cations o
metals and O anions of oxygen. Figure 1 shows a primit
cell of a spinel. The crystal lattice symmetry of the spine
characterized by the space groupOh

7 . The A and/or B ions
can be magnetic ions of 3d elements. These ions occup
crystallographic orbits of the type 8(a) ~tetrahedral sub-

FIG. 1. Primitive cell of a spinel crystal. Light circles correspond to 32~e!
positions occupied by anions, dark circles to 16~d! positions ~octahedral
sublattice!; and hatched circles to 8~a! positions~tetrahedral sublattice!.
t-

d-
ve
m
e
re-
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lattice! and 16(d) ~octahedral sublattice! of the space group
Oh

7 , while anions occupy positions of the type 32(e).
Let us consider commensurate magnetic structures

duced by the IR of a space group, which satisfy the Lifsh
condition.10 For the space groupOh

7 , the Lifshitz condition
is satisfied by 22 IR.6,8 However, the dimensionality of the
IR belonging to the star of the wave vectork1150 does not
exceed three. Here and below, we use the same notatio
the wave vector stars and IR as in Ref. 8. The dimensiona
of the remaining Lifshitz-type IR is higher than three. It
well known11 that the parameters of magnetic and cryst
lochemical unit cells for exchange structures described
the star of a wave vector equal to zero coincide.

From the ten IR of the wave vectork11, the transposition
representation includes5 11-1 and 11-4 IR in positions 8(a),
11-1 and 11-7 IR in positions 16(d), 11-1 IR being a unit IR
according to which magnetic ordering takes place~within a
crystallographic orbit!. Thus, each sublattice is characteriz
by a spontaneous magnetization vector. The crystal is fe
magnetic as a whole if the magnetizations of the sublatti
are parallel, while the spinel is ferrimagnetic if the magne
zations are antiparallel. Finally, if the magnitudes of mag
tization are equal in the latter case, the spinel is a collin
antiferromagnet. Obviously, considerations based on
group theory give no information on mutual orientation
the magnetizations of sublattices, and we must use pu
physical arguments concerning the magnitude and sign
intersublattice exchange constants. Let us consider a
dimensional even IR 11-4 describing an atomic 1:1 order
in a tetrahedral sublattice. Such an ordering in excha
magnets corresponds to a collinear antiferromagnetic st
ture. The emergence of the 1:1 ordering lowers the cry
symmetry:Oh

7→Td
2 . For ordinary phase transitions of th

order–disorder type, such a symmetry lowering has the
vious meaning. What is the meaning of such a lowering fo
magnetic exchange ordering? The crystal lattice symmetr
a spinel in the paramagnetic and magnetically ordered ph
is the same~Fig. 2!. This means that neutron diffraction stud
ies of the magnetic structure makes it possible to detect
symmetry groupTd

2 , while x-ray diffraction analysis gives
the symmetry groupOh

7 of the crystal lattice. Thus, the trans
formation of the magnetic symmetry of an exchange-orde
crystal requires two space groups. Exchange ordering

FIG. 2. Projection of tetrahedral ions on the (x,y) plane in a unit cell of the
spinel. Disordered~paramagnetic! phase~a! and ordered~antiferromagnetic!
phase~b!. The orientation of the average value of spin in positions mark
by dark circles is opposite to the orientation of atomic spins occupy
positions marked by light circles. The direction of the antiferromagnet
vector relative to crystallographic axes is arbitrary.
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cording to the 11-4 IR leads to a magnetic structure wh
symmetry is described by a binomial symbol (Oh

7 ,Td
2).

Let us now consider the exchange ordering according
the three-dimensional IR 11-7. Table I contains station
vectors and corresponding symmetry groups for the IR 11

In order to determine the exchange structures induced
the IR 11-7, we supplement Table I with one more ta
giving the basis functions of this IR in positions 16(d). The
number 16 in the notation of a crystallographic orbit is t
number of points belonging to the given crystallographic
bit and located in a unit cubic cell of the space groupOh

7 .
The primitive cell~see Fig. 1! of this symmetry group con
tains four nonequivalent positions of the type 16(d). In the
calculation of basis functions, these four positions are stri
labelled and have the coordinates given in Table II. The v
tors of the primitive cell in Table II can be expressed
terms of the vectors of the fcc Bravais unit cell8:

a15
1

2
~A21A3!; a25

1

2
~A11A3!;

a35
1

2
~A11A2!.

We can now obtain scalar basis functions calculated
these four atoms12 ~Table III!.

Substituting the basis functions from Table III and t
elements of statmatrix from Table I into formula~1!, we
obtain the average value of the spin moment for each m
netic atom in the position 16(d) ~Table IV!.

Table IV shows that the total magnetic moment of
primitive cell is equal to zero for all the four phases as
should be in the case of the antiferromagnetic ordering. O
parametric phases~S,S,S! and~S,0,0! correspond to collinea
antiferromagnetic structures, the latter phase correspon
to an Andreev–Marchenko equal-module exchange st
ture. The two-parametric phase (S1 ,S2 ,S2) corresponds to a
two-dimensional antiferromagnetic structure. The thr
parametric phase with the lowest symmetry correspond
an essentially three-dimensional antiferromagnetic struct
If the three vectorsS1 ,S2 ,S3 have equal magnitudes and a
mutually orthogonal, they satisfy conditions~8! and~9!, and
we again have a three-dimensional equal-module antife
magnetic structure. Under certain thermodynamic conditio

TABLE I. Exchange structures induced by the IR 11-7 of groupOh
7.

S,S,S S, 0, 0 S1 , S2 , S2 S1 , S2 , S3

D3d
5 D2h

28 C2h
2 Ci

l

TABLE II. Coordinates of atoms in 16(d) position.

Atom number Position of atom in primitive cell

1 (5/8)(a11a21a3)
2 (1/8)(a115a215a3)
3 (1/8)(5a11a215a3)
4 (1/8)(5a115a21a3)
e

to
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three vectorsS1 ,S2 ,S3 can accidentally become equal
magnitude and mutually orthogonal, but these conditions
not correspond to any thermodynamic phase since the
ditions ~7! and ~8! for the existence of an equal-modu
structure are not thermodynamic conditions. Conversely,
equal-module structure corresponding to the one-param
solution ~S,0,0! is obtained under certain thermodynam
conditions and corresponds to a stable~in certain limits!
equal-module exchange structure.

CONCLUSION

We can summarize the results of the above analysis
follows. Equal-module exchange structures that can
formed in crystals belong to two essentially different class
The first class includes thermodynamically stable excha
structures characterized by their own magnetic symme
The second class includes the structures appearing u
conditions~7! and ~8!. These structures can be singled o
from a thermodynamically stable exchange structure by
posing the additional nonthermodynamic condition~8! and
have no magnetic phase with its own magnetic symme
corresponding to them. The problem of exchange structu
is not only of academic interest and does not serve just a
exercise in the methods of the group theory. The results
numerous experiments show that magnetic phases~see Refs.
13 and 14! whose thermodynamic properties are determin
only by the exchange interaction can be formed in so
magnetic crystals. For this reason, the symmetry of excha
structures exactly corresponds to the symmetry of isotro
magnetic phases in these crystals.

This research was carried out under financial assista
of the Foundation Supporting Research sponsored by
mayor of Cherkassk. The author expresses his gratitud
the mayor and the expert council of the Foundation for
support.

TABLE III. Scalar basis functions for IR 11-7 for positions 16(d).

Atom number

Basis functions

w1 w2 w3

1 1 1 1
2 21 21 1
3 21 1 21
4 1 21 21

TABLE IV. Magnetic moments of atoms in positions 16(d) for antiferro-
magnetic exchange structures induced by IR 11-7.

Atom number

Statmatrices

S,S,S S, 0, 0, S1 , S2 , S2 S1 , S2 , S3

1 3S S S112S2 S11S21S3

2 2S 2S 2S 2S12S21S3

3 2S 2S S 2S11S22S3

4 2S S S122S2 S12S22S3
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Phase diagram of Ising model „S51… with easy-plane anisotropy in a magnetic field
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The surfaces corresponding to the loss of stability and equilibrium of paramagnetic and
antiferromagnetic states are found in the mean field approximation with temperature, field, and
anisotropy as variables. The characteristic temperatures at which the topology of phase
diagram sections changes are determined. ©1998 American Institute of Physics.
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1. INTRODUCTION

This paper is devoted to an analysis of the phase diag
for an Ising antiferromagnet with a spinS51 at each lattice
site, which exhibits one-ion anisotropy of the type of an ea
plane normal to the Ising axis and is in a magnetic fieldH
parallel to this axis. Such a model is exotic from the point
view of magnetic systems since Ising anisotropy of spi
spin interactions is usually associated with a strong one
anisotropy of the easy-axis type. However, such a model
exist as an equivalent model for some structural phase t
sitions. For example, if the coordinate which is active in
transition under consideration has an effective crystal po
tial with three minima, the classical configuration integral
states in the first approximation at low temperatures can
reduced to the partition function in the Ising modelS
51). This is true if the minima differ insignificantly in en
ergy and are all deep enough to be approximated by q
dratic potentials in the temperature range significant for
transition in question. In this case, the partition function fro
the Ising model is obtained if the elastic constants of
potential wells have the same values. If the values of th
constants are different, the partition function is modified
additional weight factors determined by the ratio of elas
constants. We shall not go beyond these tentative cons
ations concerning the possible origin of the model under
vestigation. Its behavior is quite peculiar, and the problem
of independent interest from the point of view of the ‘‘zoo
ogy’’ of phase diagrams. The relation between such a mo
and the experimentally observed structural phase transit1

induced by a magnetic field is based on considerations
scribed in Ref. 2 and will be analyzed more thoroughly in
separate publication.

We shall analyze the model in the mean field appro
mation.

2. FORMULATION OF EQUATIONS

The model under investigation is described by t
Hamiltonian

Ĥ5
1

2 ( Jf gSf
zSg

z2H( Sf
z1D( ~Sf

z!2, ~1!
6521063-777X/98/24(9)/6/$15.00
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whereJf g.0 is the exchange interaction parameter,H the
magnetic field~in energy units!, D.0 the one-ion anisotropy
constant, andSf

z is thez-component of spin at thef th lattice
site,Sf

z50,1,21. The summation is carried out over neare
pairs of sites of the three-dimensional lattice containingN
sites.

The model free energy2 in the molecular field approxi-
mation in the class of two sublattice structures~we assume
that the nearest neighbors at one lattice site cannot be ne
neighbors relative to each other! has the form

Fmod5NJ0f , J05(
g

Jf g ,

f 5s1w~x1!1s2w~x2!1w~x1!w~x2!2t@ ln Z~x1!

1 ln Z~x2!#, ~2!

Z~x!5q1coshx, w~x!5
] ln Z

]x
5

sinh x

q1coshx
,

xi5~s i2h!/t ~ i 51,2!, q5
1

2
exp~d/t !,

where t5T/J0 , h5H/J0 , d5D/J0 , and s1,2 are self-
consistence parameters. The values ofs can be determined
from the conditions of the minimum value off . The stability
condition for f in s can be expressed by the equations

s11w~x2!50, s21w~x1!50 ~3!

and coincide with the self-consistency conditions

s15^S1
z&, s25^S2

z&, ~4!

where the averaginĝ...& is carried out over the Gibbs stat
with the molecular field Hamiltonian of the form

Ĥm52J0s1s21~J0s22H !S1
z1~J0s12H !S2

z

1D@~S1
z!21~S2

z!2#. ~5!

The necessary condition for stability loss, i.e.,

detI ]2f

]s i]s j
I

i , j 51,2

50 ~6!

can be reduced to the form
© 1998 American Institute of Physics



ee

on

-

M

n
c
er

r
an

ro

th

c

o
s

ace

to
e

the

the
ordi-
ction
e
line

653Low Temp. Phys. 24 (9), September 1998 A. A. Loginov and Yu. V. Pereverzev
w8~x1!w8~x2!5t2 ~7!

and defines, together with Eqs.~3!, the boundaries for the
existence and stability of all local minima of the model fr
energy. It should be noted that since the inequalityw8(x)
.0 is satisfied identically in the case under considerati
the necessary condition for stabilityw8(x1)w8(x2),t2 is
also a sufficient condition since]2f /]s1

25t21w8(x1) at the
stationary points.

Equations~3! have paramagnetic (s15s2) and antifer-
romagnetic~AFM, s1Þs2) solutions. It is convenient to de
scribe these solutions by the order parameterl 0 ~the antifer-
romagnetism parameter! and the mean spinm0 :

s15m01 l 0 , s25m02 l 0 . ~8!

We can write the steady-state conditions~3! in these vari-
ables for the paraphase (l 050) and AFM (l 0Þ0) solutions
separately. Forl 050, we obtain

m052w~m!, m5~m0-h!/t. ~9!

In view of the monotonicity of the functionw, the paraphase
solution obviously exists in all cases and is unique. For AF
solutions, Eqs.~3! have the form

t5j@q coshm1coshl #/D, j5sinh l / l , l 5 l 0 /t,
~10!

h52mt2sinh m@q coshl 1coshm#/D, ~11!

D5@q coshl 1coshm#22~q221!sinh2 l . ~12!

In these variables, condition~7! assumes the form

~q coshm11!Z22~m!5t; ~13!

for paraphase solutions, and

coshm5@~12q22!~j221!21#1/2 sinh l 2q21 coshl ,
~14!

for AFM solutions. We do not write here standard equatio
of phase equilibrium, which are also required for constru
ing a phase diagram in the regions of existence of sev
stable time-independent solutions.

A complete analysis of Eqs.~3!, ~7!, or ~9!–~14! ~as well
as phase-equilibrium conditions! cannot be carried out. Fo
this reason, we shall use the combination of numerical
analytic methods in various limiting cases.

Let us study the phase diagram in the space of cont
ling parameters (h,t,d). Since the planeh50 is a symmetry
plane, we shall assume thath.0. We shall henceforth indi-
cate explicitly only states withl .0 (s1.s2) since if (l ,m)
is a solution of steady-state equations, (2 l ,m) is also a so-
lution. Taking this into consideration, we can write 0<s1

<1 and21<s2<min(1,h) ~it should be noted thats2<0
for h<s1).

The most important element of the phase diagram is
stability loss surface for the paraphase state~PS!. We begin
the analysis of the results with the description of this surfa

3. STABILITY LOSS SURFACE FOR PARAPHASE STATES

The boundary of the PS stability region in the space
controlling parameters (h,t,d) is described by the equation
,

s
t-
al

d

l-

e

e.

f

h5hi~ t,d!, i 51,2, ~15!

where

hi~ t,d!5d1t lnFyi1~yi
224t2/q2!1/2

4t G
1

~yi
224t2/q2!1/2

yi12t
,

y1,25122t6~124t14t/q2!1/2.

These equations together with the initial equations~9! and
~13! make it possible to describe the shape of the surf
under investigation. Its projection on the (t,d) plane is the
region

12q22<~4t !21 for d> 1
3 ln 4, t<1/3, ~16!

11q>t21 for 0<d< 1
3 ln 4, t>1/3. ~17!

The boundary of this region~adjoining thed-axis! is shown
in Fig. 1 by the CAG curve. The curve CA corresponds
the equality in~17!, while the AG curve corresponds to th
equality in ~16!, the latter having the asymptotic formt
51/4. The entire curve OAC can also be described by
equality in~17! ~if t varies in the interval~0, 2/3)) and is the
intersection of the surface~15! with the (t,d) plane. The

FIG. 1. Schematic phase diagram in the variablest, h, andd. Fine curve
KE and bold curve AKE are spatial curves, the remaining curves lie on
coordinate planes. Fine curves are the intersections of the PT2 with co
nate planes and with the PT1 surface, the dotted curve AG is the proje
of the PT2 surface on the planeh50. Dashed lines are intersections of th
stability loss surfaces with the coordinate planes. The dot-and-dash
describes the divergence of]m/]h.
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field h2 is not defined at points under the OAC curve. The
instability region for these points is described by the inequ
ity h,h1 . A part of the (t,d) plane bounded by the OAG
curve is covered by surface~15! twice. In this case, the re
gion of unstable PS lies in the field intervalh2,h,h1 . The
surface~15! intersects the (t,h) plane along the curve CF
described by the equationh5h1(t,0). For t→0, its
asymptotic form is

h1~ t,0!.12t ln t. ~18!

In general, the asymptotic form of the fieldsh1 ,h2 for t
→0 is

h1~ t,d!.d112t ln t, h2~ t,d!.d1t ln t. ~19!

It can be seen that the surface~15! touches the planet50
along two parallel straight linesh5d and h5d11 (OEE8
and FF8), respectively!. The PS instability region in this
plane lies between these straight lines and goes to infin
Other sections of the surface~15! by the planest5const are
shown in Fig. 2 and can be described as follows. Fort be-
longing to the interval~0, 1/4), these are two lines OE8 and
FF8 going to infinity as before~see Fig. 2a!, which converge
for t→1/4 for largeh. For t.1/4, it is a single curve OF
~see Figs. 2b and 2c! bounding a finite PS instability region
For t.2/3, there are no points of stability loss.

We must now consider the existence of stable AFM
lutions other than the AFM solutions generated in the cas
paraphase stability loss. This is associated with the poss
ity of first-order phase transitions~PT1!. It is well known4

that a general mechanism of such transitions is associ
with degeneracy of the ground state for certain values
controlling parameters. If the Peierls stability condition4 is
satisfied in this case, such values of the parameters mus
at the edge of the PT1 surface existing for smallt.0 ~The
Peierls condition indicates that the energy of local exc
tions above the ground state increases not more slowly
the number of boundary excitation sites!. For this reason, it
is expedient to analyze the phase diagram first in the l
temperature range.

4. LOW-TEMPERATURE RANGE

Let us first describe the phase diagram fort50, which is
obtained from an analysis of the ground states of the mole
lar field Hamiltonian~5!. It must correspond to the phas
diagram constructed on the basis of free energy fort→0.

In the regionh,d on the planet50 ~above the ray OE8
in Fig. 1!, the state (S1

z ,S2
z)5(0,0) is the self-consisten

ground state for the Hamiltonian~5! ~the stability condition
for the state att50). In the regionh1d,1 ~under the BF
curve in Fig. 1!, the self-consistent ground state is (1,21).
Thus, there exist two stable states within the triangle B
with energies coinciding on the segment DE of the strai
line d51/2. Consequently, a PT1 occurs on this segm
from the AFM state (1,21) which is in equilibrium ford
,1/2 to the PS~0,0! which is in equilibrium ford.1/2.

In the region on the plane bounded by the line E8EFF8
(0,h,d11 and h1d.1), the only stable state is~1,0!,
while the only stable state in the regionh.d11 ~under the
S
l-
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-
of
il-

ed
f

lie

-
an

-

u-

t
t

line FF8) is the PS~1,1!. The stability loss lines EE8, EF,
and FF8 are equilibrium lines for adjacent pairs of state
This distinguishes them significantly from the PT1 line D
although the equilibrium states also change jumpwise in
case. The lines FF8 and OE8 correspond to the limiting (t
→0) expression for the PS stability loss surface~19!.

It is expedient to compare these results with the res
of analysis of the ground states of the exact Hamiltonian~1!
and the Peierls condition mentioned above. The grou
states of Hamiltonian~1! at all internal points in the above

FIG. 2. Temperature sections of the phase diagram fort50.05 ~a!, 0.3 ~b!,
and 0.55~c!. Fine curves correspond to PT1, thick line to PT1, while dash
curves characterize the loss of stability.



e
o
io
of
er

e

o-
-
ry
th
n

t
re
on
he
s

FM
as
-
ne

p
-

-
th

-

t

ir
w

las
(

d

e

s
c-

ram

d

e
M

se.

ity

iga-
-

tes
-

of
ain
T
a

the

o
eg-
nd

he
for
f

se
ting

655Low Temp. Phys. 24 (9), September 1998 A. A. Loginov and Yu. V. Pereverzev
described regions coincide with equilibrium states obtain
by the molecular field method. The ground state is also d
bly degenerate on the DE line, the Peierls stability condit
being satisfied in this region. This ensures the existence
PT1 surface emerging from the segment DE at low temp
tures. As regards the line E8EFF8, we can easily verify that
the number of ground states on this line is infinitely larg
For example, proceeding from the state (1,21) on EF, we
can transform any number of sites withSz521 to a state
with Sz50 so that neighboring sites are only typical of c
existing phases~1,0! and (1,21). In particular, we can con
struct in this way periodic ground states with an arbitra
period and relative concentration of coexisting phases on
line. In the situation described above, the Peierls conditio
violated, and the lines EE8 and FF8 can be continued to the
region t.0 as surfaces of a continuous PT2 according
~19!. Conversely, the line EF has no continuation to the
gion t.0 ~this will be clear from the subsequent descripti
of all possible states! and remains isolated special line on t
phase diagram fort50. It is manifested in actual practice a
a line on which the susceptibility]m/]h diverges as we
approach the line from the regiont.0 ~for example, if we
approach the EF line along the surfaced1h51, we can
prove that]m/]h;1/(8t) for t→0).

Let us now consider the phase diagram for smallt. The
PS stability loss surface is described above by formulas~19!,
and hence it remains for us to describe the behavior of A
solutions. Let us consider the asymptotic form of the ph
diagram fort/d→0. The region of existence of AFM solu
tions is bounded by stability loss surfaces which are defi
by the system of equations~10!, ~11! and ~14!. As t→0 on
this surface,l 0 necessarily tends tod. Taking this into con-
sideration, we omit rapidly decreasing terms of the ty
t21 exp(2d/t) or t21 exp(2l/t) in the equations of the sur
face~this can be done ifd does not tend to zero fort→0). In
this case, Eqs.~10!, ~11!, and~14! can be written in the form

d5 l 02t ln r , ~20!

r 5~ l 020.5!t211@~ l 020.5!2t2211#1/2,

m05t@~ l 2r !221#1/2, ~21!

h5m01t ln~ l 2r 1m0 /t !. ~22!

These formulas~20!–~22! define thel 0-parametric represen
tation of cross sections of the stability loss surface by
planes t5const!d ( l 0 varies in the interval @0.5
20.5A124t; 0.510.5A124t)]. These formulas are equi
librium asymptotic approximations~for t→0) for exact
equations in the entire range of controlling parametersh and
d except a small neighborhood of points withd50. As a
result of the latter restriction, the solutions corresponding
values of l 0 in the vicinity of the lower boundary of the
admissible interval of its variation are incorrect and requ
the inclusion of the omitted terms. It should be noted, ho
ever, that even in the vicinity of such points, the formu
give a correct limiting value of the surface cross sectiont
50).

The calculation of the derivatives]d/] l 0 and ]h/] l 0

shows that the cross sections of the surface un
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consideration by the planest5const have two branches. On
branch corresponds to values ofl 0,0.5 and is described by a
monotonically increasing functiond1(h) with zero deriva-
tive at the point withl 050.5. The other branch correspond
to l 0.0.5 is described by a monotonically decreasing fun
tion d2(h) whose derivative at the point withl 050.5 is also
equal to zero. Figure 2a shows a section of the phase diag
by the planet50.05, where the functionsd1,2 are described
by the curves TS and BS~the curve corresponding tod1 for
small values ofl 0 is plotted according to exact solutions, an
the point T corresponds tol 050). These curves form a
‘‘beak’’ ( l 050.5) with the coordinates (h,d) and the mag-
netization given by

h5A1/42t1t ln@0.5t212110.5t21A124t#

'0.51t ln~1/t !, d50.5, ~23!

m05A1/42t'0.52t. ~24!

A comparison with~19! shows that the ‘‘beak,’’ and henc
both surfaces corresponding to the loss of stability of AF
solutions are within the region of instability of the parapha
Using formulas~20!–~22!, we can verify that the extreme
positions of thed1 andd2 curves fort50 coincide with the
segments OE and BE respectively in Fig. 1. The curved1 for
low temperatures lies completely in the region of instabil
of the paraphase solution~see Fig. 2a!. There is no continu-
ation to the region withtÞ0 for segment EF in Fig. 1~see
above!.

It was mentioned above that the surface under invest
tion for a fixed ~although small! temperature cannot be de
scribed correctly by formulas~20!–~22! for points with small
d. In fact, thed1 curve terminates at a certain point T~see
Fig. 2a! lying on the stability loss line OE8 for the paraphase
solution. At this point, the AFM and the paraphase sta
coincide ~‘‘merging of curves’’!. We can obtain the condi
tion for merging the surfaces corresponding to the loss
stability of paraphase and AFM solutions along a cert
curve~the curve of tricritical points whose section is point
in Fig. 2a! as well as the equation for this curve from
qualitative analysis of the steady-state equation.

Such an analysis allows us to interpret the section of
phase diagram corresponding to low temperatures~see Fig.
2a! as follows. In region1 lying above the BPE8 curve, only
one ~paraphase! solution exists. In region2 bounded by the
curve BPTO, two stable~PP and AFM! solutions exist. Re-
gion 3 bounded by the ‘‘triangle’’ TSP corresponds to tw
stable AFM solutions one of which is generated on the s
ment TP of the stability loss curve for the paraphase a
loses its stability on the TS curve. The condition for t
emergence of AFM minima on the stability loss surface
the paraphase~which is not connected with the low value o
temperature! is the inequality

3@w9~x!#222tw-~x!>0, x5~s2h!/t. ~25!

The equality in~25! and Eqs.~3! and~13! (m5x in the latter
case! are equations of the curve of tricritical points. The
equations can be used for obtaining relations connec
magnetizations and temperature
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s622s4~122t !1s2~124t15t2!22t2~1/32t !50
~26!

as well as expressions for the field and anisotropy:

h5s20.5t ln@~ t1s22s!~ t1s21s!21#, ~27!

d5t ln$2~12t2s2!@~ t1s2!22s2#21/2%. ~28!

For smallt, the only solution satisfying the system of equ
tions ~3!, ~13!, and~26! corresponds to the root of equatio
~26! tending to zero ast→0. For small t, this gives the
coordinates (d,h) of the point T:

s'A2/3t, d't ln~ t21!10.5t ln 12,

h't@A2/31 ln~)1& !#. ~29!

This point marks the segment OT on the stability loss cu
for the paraphase, on which no AFM solutions are genera
We shall return to the tricritical curve while considerin
higher temperatures after completing the description of
structure of the low-temperature section of the phase diag
~see Fig. 2a!. In each of the regions2 and3 described above
two minima coexist, and hence each of these regions c
tains an equilibrium curve, i.e., the PT1 curve. We are aw
of two point on this curve: one point can be obtained as
asymptotic curve for the parameterd for h50 and t→0
~Sec. 5!, and the other point is the ‘‘beak.’’ Intermedia
points were obtained numerically, the corresponding line
ing DS~bold line!. In region4 bounded the OTSPE8 and FF8
curves, only one AFM minimum is observed, while region5
corresponds to the paraphase solution only.

Thus, the low-temperature section of the phase diag
~see Fig. 2a! contains the PT1 curve~DES!, the PT2 curve
branching from it at point E (EE8), and the PT2 curve
(FF8). On the segment DE, a PT1 from the AMF phase
the paraphase takes place~upward motion!, while on seg-
ment ES a PT1 between AFM states occurs~terminating with
the critical state at point S!.

5. GENERAL STRUCTURE OF PHASE DIAGRAM

Let us first consider the section of the diagram by
planeh50 ~shown in Fig. 1!. The stability loss curve OAC
for the paraphase is described in Sec. 3. A qualitative an
sis of Eqs.~3! leads to the conclusion that the stability lo
curve BA of the AFM phase merges with it at the tricritic
point A with the coordinates

t51/3, d5 1
3 ln 4'0.462. ~30!

This point is the intersection of the tricritical points curv
described above with the planeh50. The equilibrium curve
for the phases coexisting in the ‘‘triangle’’ OAB connec
point A with the pointd51/2, t50 ~the AD line! and can be
described in the vicinity of points D and A by the asympto
formulas

d'0.52~12t !exp~20.5t21!,

s512exp~20.5t21!; ~31!

for t→0 and
-

e
d.

e
m

n-
re
n

-

m

e

y-

d'
1

3
ln 41S 3

2
2 ln 4D S 1

3
2t D1

27

32 S 1

3
2t D 2

,

s2'
15

2 S 1

3
2t D ~32!

for t→1/3. It should be noted for comparison that thed(t)
dependence near point A for stability loss curves of the AF
and paraphase solutions~AB and AO curves! differ from
~32! only in the coefficient of the last term, which is equal
9/4 and227/8, respectively in these cases.

It can be seen thatt51/3 is one of the points at which
the topology of the temperature sections of the phase
gram changes.

Another characteristic temperature is that at which
tricritical point T merges with the critical point S~see Fig.
2a!. We shall call such a point a degenerate critical point.
this temperature, region3 shrinks to a point and vanishe
upon a further increase in temperature. From the point
view of phase states, two AFM minima and a paraphase p
merge in this case. The corresponding equations can be
rived on the basis of the following considerations.

Using the second equation from~3!, we can express the
free energy~2! as a function of only one parameters1 , i.e.,
f 1(s1)5 f @s1 ,s2(s1)#. The remark following formula~7!
and the expressions for the second derivative of the func
f 1 at its stationary points, i.e.,

f 195t21w8~x1!@12t22w8~x1!w8~x2!# ~33!

lead to the conclusion that local minima of the functionf 1

correspond to local minima of the model free energyf , and
vice versa. Consequently, equating to zero the first cons
tive derivatives of the functionf 1 , we obtain successively
the steady-state equations for the stability loss surface
well as the lines of critical, tricritical, and finally the dege
erate critical point. The equality to zero of the third, fift
and seventh derivatives is a consequence of the prev
equations ifl 050. For the critical points, we obtain a syste
consisting of Eqs.~3! and ~7!, and the equalityf 1-50:

@w8~x1!#3~w9~x2!!25@w8~x2!#3@w9~x1!#2. ~34!

For the tricritical points, we obtain the system~26!–~28!
again, while for the degenerate critical point this system
supplemented with the equality to zero of the sixth deriv
tive. Taking into account other equations of the system
can be presented in the form

2tw~5!215w~4!w~2!1 40
3 ~w~3!!250, ~35!

w~k![]kw/]xk.

The system~26!–~28!, ~35! has a unique solution and give
the following parameters for the degenerate critical poin
~see Fig. 1!:

tk5
62

225
'0.276,

hk5
2&

225
2

31

225
lnF ~723& !2

31 G'0.382,
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dk5
31

225
ln 31'0.473, sk5

2&

15
'0.189. ~36!

Thus, the segment KA of the curve for tricritical points lie
at the edge of the surface PT1, while the remaining par
the curve~connecting points O and K and not shown in t
figure! lies under this surface in the region of metasta
states~point T in Fig. 2a!.

The sequence of temperatures at which the topology
temperature sections of the phase diagram changes is g
by

0,0.25,tk,1/3,2/3. ~37!

The phase diagram shown in Fig. 1 is described in Sec.
t50. The first rearrangement takes place at the emergen
a nonzero temperature. The OE line~see Fig. 1! bifurcates,
giving rise to a ‘‘triangular’’ region TPS~see Fig. 2a in
which two AFM minima exist. As the value oft increases,
this region first expands, and then shrinks to a point a
temperaturetk . The structure of the section in the interval~0,
0.25! is shown in Fig. 2a and is described in the same Sec
In the interval (0.25,tk), the PT1 in the AFM phase stil
exists, but the stability loss line of the paraphase beco
connected, and the region of AFM states becomes boun
We shall not illustrate this by a figure which can be eas
visualized, but is difficult to plot on a scale such that both
singularities mentioned above are seen clearly since the
ment SE is very small, and the OE and FF8 lines merge far
away. In the temperature interval (tk ,1/3), there is no critical
point in the AFM phase, and the PT1 curve passing the
critical point is transformed into the PT2 line. A typical se
tion is shown in Fig. 2b fort50.3. The interval (1/3, 2/3)
contains only the PT2 line~see Fig. 2c! which contracts to
the origin upon an increase in temperature, and only
paraphase solution exists fort.2/3.

Thus, the general pattern of phase diagram can be
plained by the set of the figures presented in this work. T
PT1 surface is a nearly horizontal piece of the surfa
bounded by the bold AKED curve in Fig. 1~AD is the line of
its section by the planeh50, while the surface itself can b
continued symmetrically to the regionh,0). The PT2 sur-
face emerges from the fine line on this surface connec
points K and E.~The point on this line in Fig. 2a correspon
to point E, while the line EE8 corresponds to the PT2 su
f

e

of
en

at
of

a

4.

es
d.

e
g-

i-

e

x-
e
e

g

face.! The remaining ‘‘reference’’ elements on the PT2 su
face are the arcs AK, AC, CF, FF8, and EE8. The curve of
critical points~bold line EK! is covered by this surface an
lines within this surface in the instability region of the PS

6. CONCLUSION

We studied the general structure of the phase diagram
the Ising model under investigation. Figure 1 shows qual
tively its main elements. The results of numerical calcu
tions of the temperature sections of the phase diagram
presented in Fig. 2. The described geometric structure of
diagram and the asymptotic formulas derived for vario
limiting cases as well as the values of some character
parameters makes it possible to calculate reliably various
ements of the phase diagram. A typical feature of the P
surface is that it is concentrated in the anisotropy param
d in a very small neighborhood of its value equal to 1/2. T
deviation ~in the downward direction! amounts to less than
0.03. If we consider direct interpretation of the model
question, experimental observation of such a transition i
hampered in view of limited possibility of controlling th
parameterd. It was mentioned in Introduction, however, th
this model is equivalent to a certain model of structu
phase transition induced by a magnetic field. In this case,
parameterd can be controlled by the same field a over wi
interval of values. It should also be noted that as we
proach another observable element of the phase diag
viz., segment EF~see Fig. 1,t50) from the region where
t.0, the susceptibility]m/]h diverges~this is analogous to
Lifshitz transitions in electron systems!.5
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It is stated that an electron can be in a state localized at an intercrystallite or twin boundary or
stacking fault irrespective of the specific structure of the transition region. It is important
that the crystal containing such a boundary must be non-periodic ‘‘as a whole.’’ The one-
dimensional model~two abutting Kronig–Penney lattices for which the spectrum of
localized states is determined! is considered. The bands containing one or two discrete levels
alternate in a complex way in the spectrum. ©1998 American Institute of Physics.
@S1063-777X~98!01009-3#
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1. It was established by Tamm1 that an electron can b
bound by the external surface of a crystal. The electron w
function in such a state localized near the surface decre
exponentially towards the bulk of the crystal and in the o
ward direction. The electron is as if trapped by the poten
barrier from the outer side and by the periodic potential re
from the inner side. Tamm proposed a simple on
dimensional model that makes it possible to prove the em
gence of discrete levels, to estimate their position in the b
structure, and to find the radii of localization of the corr
sponding wave functions. Essentially, the presence of a
face in Tamm’s model is not reduced to a local change
potential energy. The corresponding quantum-mechan
problem can be solved exactly and not in accordance w
the perturbation theory.

In real crystals, the electron spectrum can be affec
significantly not only by outer surfaces, but also by inn
interfaces. We are speaking primarily of intercrystall
boundaries separating regions with identical structure, wh
are disoriented and/or shifted relative to each other. Spe
larly symmetric crystallites are in contact along twin boun
aries.

Interfaces of this type violate the periodicity globally~on
a macroscopic scale! so that a polycrystal as a whole is ce
tainly not periodic in spite of the periodicity of the structu
of individual crystallites. This peculiar nonhomogeneity
the material is responsible for qualitatively new propert
such as the emergence of grain-boundary sound waves,2 and
extra electrical and thermal resistance.3 The curves describ
ing the dependence of the energy of a bicrystal on the a
of disorientation of adjacent crystallites acquire sha
minima for preferred angles corresponding to a high den
of coinciding lattice sites, i.e., to a small size of the lattice
coinciding sites.4 At the same time, these boundaries intr
duce local imperfections in the polycrystal, which are as
ciated with the structure of the transition layer~the thickness
of the layer is usually of the order of atomic spacing!, which
6581063-777X/98/24(9)/4/$15.00
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differs considerably from the structure of adjacent cryst
lites.

Such type of boundaries determines the specific form
potential energy of an electron moving in the crystal~we use
the one-electron approximation!. For simplicity, we consider
a bicrystal with an interface coinciding with theyz plane.
Obviously, the potential of the electron in the b
crystal in the general case cannot be represented as the
of the potential periodic in the entire space and a pertur
tion localized nearx50. Such a representation ignores t
lack of global periodicity and takes into account only t
changes in the structure of the transition region.

For example, for a symmetric tilt boundary~see Fig. 1!
or a twin, the potential of the right crystallite (x.0) is a
mirror image of the left crystallite potentialU(x)
5U(2x). If the boundary is a stacking fault, the right cry
tallite is shifted relative to the left one by a distance differi
from the lattice period. In these examples, the structure of
bicrystal as a whole is non-periodic, the local distortions
the transition layer being virtually absent.

In contrast to the situation analyzed by Tamm, localiz
tion of states at intercrystallite boundaries is associated w
electron trapping between two potential lattices. The elect
energy can be higher or lower than the height of the poten
barrier that may or may not exist in the transition region. T
parameters of a barrier affect only the details of the spect
~e.g., the arrangement of discrete levels in forbidden band
a perfect crystal! but not the very fact of localization or th
classification of states. The latter is determined only by
loss of global periodicity. Thus, for an arbitrarily small ang
of disorientation of the crystallites~in the case of a tilt
boundary! or an arbitrarily small relative shift of the crysta
lites ~in the case of a stacking fault or a microcrack!,
the potential energy of an electron cannot be presen
as the sum of an unperturbed periodic potential and a lo
perturbation. Accordingly, some important parameters of
discrete spectrum formed~naturally, against the backgroun
© 1998 American Institute of Physics
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of the band structure of a perfect crystal! differ from the
characteristics of the spectrum which can be determined
example, by the method of degenerate local Lifshits per
bations~see, for example, Refs. 5 and 6. For example, t
discrete levels can emerge in certain forbidden bands~for an
arbitrary shift of the lattices!, while the theory of local per-
turbations predicts the emergence of not more than one l
in each such band. This difference is due to rotation of
entire macroscopic region, e.g., the right crystallite relat
to the left one.

2. A rigorous analysis of the problem of localization in
real three-dimensional crystal involves the following ma
difficulties: ~a! atoms in the boundary layers are displac
relative to their positions in a perfect crystal;~b! volume
energy bands in a three-dimensional crystal can overlap,
~c! the solution of the Schro¨dinger equation is generally no
factorized into the product of functions each of which d
pends on only one coordinate.

However, the main parameters of localized states~local-
ization radius and energy! as well as the classification o
states can be obtained by generalizing the results of ana
of one-dimensional models. The arguments used in this c
~and given, for example, in Refs. 1, 10 and 11! are the same
for the outer surface and for internal interfaces and can
reduced to the statement that the modulating factor exp(ik–r )
plays a decisive role in Bloch’s function. Instead of one~lo-
calized! state in the one-dimensional model, we have a la
number of states in the three-dimensional case differing
the projection of the quasiwave vector on the plane of
boundary. The remaining characteristics of these states a
the same type and can be determined from an analysis o
one-dimensional model in a direction perpendicular to
plane of the boundary.

In order to obtain a quantitative~and if possible simple!
estimate of the localization of states generated by inte
boundaries, we introduce a symmetric one-dimensional re
shown in Fig. 2. This relief is a potential barrier of heightU0

for 2s/2,x,s/2, while on the intervals2`,x,2s/2 and
s/2,x,` it is a Kronig–Penney lattice. In other words, th
potential relief in Fig. 2 is constructed from an ideal Kronig
Penney lattice, which is infinitely large in both directions,
cutting it at the pointx50 and subsequent displacement
the right-hand part relative to the left-hand part by 2c1s

FIG. 1. Schematic diagram of a symmetric tilt boundary. The circles sh
the lattice of coinciding sites.
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2a (a is the lattice constant! and inserting a potential barrie
in the formed gap. Such a model was considered by Soko7

for energiesE,U0 and for macroscopic values ofs@a.
Naturally, Tamm’s surface states must be formed in the li
s→`. We shall be interested in the states localized near
origin. The corresponding wave functions must decrease
ponentially on both sides of the boundary~i.e., for x→` as
well as forx→2`). Forx.s/2, the required wave function
has the Bloch formc(x)5exp(iax)ua(x), and the complex ex-
ponenta must have a positive imaginary component~such a
function corresponds to states in the forbidden band o
perfect lattice!. Since the potential is symmetric, the wav
function are either symmetric, or antisymmetric. If the righ
hand ‘‘half-lattice’’ is shifted relative to the left-hand one b
a microscopic distanceu2c1s2au;a, it is expedient to
analyze localized states not only with energiesE,U0 , but
rather with energies exceeding the barrier heightE.U0.

The calculation of the wave functions of localized sta
and corresponding energy levels of the discrete spectrum
the one-dimensional model under investigation is a stand
quantum-mechanical problem. For this reason, the detail
calculations are not given here. However, some aspect
the solution should be clarified and the required formu
will be considered.

The analysis is carried out in the framework of the e
actly solvable model. The relation between the decremena
and the electron energyE in the Kronig–Penney model ha
the familiar form1:

cos~aa!5P
sin j

j
1cosj[S~j!. ~1!

Here P is the dimensionless power of the potential,j
[(A2mE/\)a.

The energy values for whichuS(j)u,1 correspond to
allowed bands, while foruS(j)u.1 we are dealing with for-
bidden bands. It is well known that forbidden bands in on
dimensional models of periodic structures alternate with
lowed bands, i.e., the bands do not overlap. In the Kron
Penney model, the upper edges of the allowed bands~i.e., the
lower edges of forbidden bands! are located at the point
jn5np (n51,2,...). Each energy intervalnp,j,(n
11)p (n50,1,2,...) contains one forbidden band~below!
and one allowed band~above!. In accordance with such a

wFIG. 2. Schematic diagram of a potential relief.
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arrangement, it is convenient to label the forbidden band
0,1,2,... . In thenth forbidden band, the inequalitynp,j
,(n1gn)p is observed, the quantitygn defining the posi-
tion of the upper edge of this band being smaller than un
(gn,1). For asymptotically largen such thatn@P, we
havegn;2P/(np). Another relation betweena and E ~in
addition to~1!! follows from the condition of joining wave
functions and their derivatives at the pointsx56s/2. If the
electron energy is larger than the barrier height, we can w
for even wave functions

eiaa5
2P sin j

j
1cosj2sin j

3
cos~«Aj22q2!sin dj1A12~q2/j2!sin~«Aj22q2!cosdj

cos~«Aj22q2!cosdj1A12~q2/j2!sin~«Aj22q2!sin dj
,

~2!

where the following notation is introduced:q2

[2ma2U0 /\2; «[s/2a; d[c/a.
A relation similar to~2! was also obtained for odd wav

functions, but it will not be given here. For energies sma
than the barrier height, Eq.~2! is transformed by analytic
continuation. Equations~1! and ~2! form a system whose
solutions give energy levels and localization radii for wa
functions. It should be emphasized once again that local
states correspond only to solutions for whicha is a complex
quantity with a positive imaginary component, Ima
.0, Rea5np/a, wheren is an arbitrary integer. The elimi
nation of a from Eqs. ~1! and ~2! leads to the following
equation for the required energy levels:

S j sin j

P
2cosj D F12

q2

2j2 6
q2

2j2 cos~2«Aj22q2!G
56cos@j~122d!#F S 12

q2

2j2D cos~2«Aj22q2!

6
q2

2j2G6S 12
q2

j2D 1/2

sin@j~122d!#

3sin~2«Aj22q2!. ~3!

Here the plus and minus signs correspond to even
odd wave functions, respectively. Equation~3! corresponds
just to above-the-barrier states for whichj2.q2. However,
this equation can be easily transformed by analytic conti
ation for under-the-barrier states also. In this case, the co
sponding trigonometric functions are transformed into hyp
bolic functions.

The transcendental equation~3! contains several param
eters; for this reason, its analysis in the general case is c
plicated and is not necessary. For this reason, we shall
sider here the following two most interesting cases.

1. The barrier widths tends to infinity,c5a, and q2

.j2. In this case, Eq.~3! can be transformed into the cla
sical Tamm’s equation1 for surface energy levels:

j cot j5
q2

2P
2Aq22j2. ~4!
as
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d
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For large but finite values ofs, when s/a@1, each
Tamm level splits into two energy levels, the magnitude
the splitting being exponentially small (;exp2s/a). This re-
sults follows directly from Eq.~3! ~see also Ref. 7!.

2. Let us now suppose that the barrier height is zeroq
50). This means that we neglect the change in the struc
in the transition layer, and the boundary is formed only
relative displacement of the right- and left-hand ‘‘ha
lattices’’ by 2c1s2a[b. The reflection of the structure
relative to a point separated by a distance (a1b)/2 from an
ideal lattice site gives the same result as the displaceme

In the case under investigation, Eq.~3! is simplified con-
siderably:

G~j![
j sin j

P
2cosj56cos

b

a
j. ~5!

It should be noted that the magnitude of the functi
G(j) is smaller than unity just in forbidden bands. An ana
sis of the graphs of the functions on the left- and right-ha
sides of Eq.~5! shows that there are two solutions of th
equation in all bands~probably except the zeroth band! ~for
definiteness, we assume thatb/a,1). Localized boundary
~grain boundary! states correspond to only those solutions
~5! whose energy decreases with increasingb. This follows
from simple physical consideration~since the average elec
tron potential in the structure under investigation decrea
with increasingb! and is confirmed by an analysis of th
system of equations~1! and ~2! after the substitution of the
solutions of Eq.~5! into these equations. The main result
this analysis lies in the fact that for an arbitrary value ofb/a,
the spectrum of grain boundary states has as a rule a com
irregular structure of the ‘‘devil’s staircase’’ type and cann
be reduced to the spectrum of a periodic system with a lo
perturbation. For example, it we can find positive integersm
andn such that the inequality

n,m
a

b
,n1gn , ~6!

is satisfied, thenth band will contain two energy levels. Th
bands that do not satisfy inequality~6! contain only one en-
ergy level. Sincegn&1, we can find examples~at least for
not very largen) when inequality~6! holds for a large num-
ber of bands. For example, if the ratioa/b is equal to an
integralM plus a small correctionm!1, i.e., the lattice pe-
riod a is almost a multiple of the shiftb, inequality~6! holds
for bands with numbersn5M , 2M , 3M ,... aslong asmm is
smaller thangn . Since the value ofm can be indefinitely
small, eachM th band will contain in the limit two discrete
levels, while the remaining bands will contain only one lev
In actual practice, the alternation of bands with two and o
energy levels for finitem is extremely complex and cumbe
some and is determined by the shiftb as well as the
‘‘power’’ P of the potential according to the dependen
gn(P).

If the shift almost coincides with the lattice period, a
most all bands contain two energy levels. If the equality
satisfied exactly, half the localized states disappear~are de-
localized and ‘‘drive into’’ allowed bands! so that strictly
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one level remains in each forbidden band. In other words,
b→a, the spectrum is rearranged radically. This statem
corresponds to the actual physical pattern since in contra
the case whenbÞa, the potential energy of an electron fo
b5a can be presented as the sum of an unperturbed per
potential and a local perturbation. However, it was shown
Lifshits and Kosevich5,6 that in this case each band mu
contain exactly one energy level, and hence only one lo
ized state~the rank of the perturbation operator is equal
unity!. A rough estimate of localization radii for grai
boundary states givesr loc;a2/Pb and weakly depends o
the band number.

3. Thus, one of the distinguishing properties of a po
crystal, viz., the absence of a global periodicity as a who
generates~independent of the specific structure of transiti
layers! electron states localized at intergranular bounda
and leads to a generally complicated and intricate seque
of lines in the spectrum. However, the spectrum again
comes regular for boundaries of special type. Apparently
can put in correspondence~at least conditionally to a certai
extent! the commensurability of the shift with the lattice p
rameter in the one-dimensional model considered above
the formation of a lattice with coinciding sites~see, for ex-
ample, Ref. 8! for certain angles of disorientation of thre
dimensional crystallites~see Fig. 1!. It is known4,9 that the
energy of intercrystallite boundaries for these angles
sharp minima relative to neighboring angles. This fact can
attributed to ‘‘sudden’’ ordering of the spectrum of stat
localized at such boundaries.

Naturally, it should be borne in mind that in a real thre
dimensional crystal we are dealing not with discrete leve
but with surface bands corresponding to states localized
boundaries. The number of such states is of the order of
number of atoms at the boundary, i.e., of the order
r
nt
to
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e
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1014 cm22. The density of surface states per unit energy
terval has the form of a step which is ‘‘thrown over’’ th
volume density of states.10 Consequently, the spectrum rea
rangement considered above is manifested in the forma
or disappearance of steps on the spectral density curve.

It should be noted in conclusion that the grain bound
states can play a significant role in the formation of so
properties~such as conductivity!, especially of semiconduc
tors. This role can be comparable with~or even more signifi-
cant than! the role of the outer surface10 since the total area
of internal interfaces is much larger than the area of the o
surface as a rule.

The stimulating factor for the authors was and rema
the contact with Arnold Markovich Kosevich, the study
his works, and the grasping of his ideas and methods
obtaining results.
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QUANTUM EFFECTS IN SEMICONDUCTORS AND DIELECTRICS

Theory of Aharonov–Bohm oscillations resulting from a charge density wave
condensate flowing across an array of columnar defects in a magnetic field
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We propose a microscopic theory for the Aharonov–Bohm oscillations, observed by Latyshev
et al. in the magnetotransport experiment in NbSe3 with a charge density wave~CDW!.
The CDW slides across an array of columnar defects in a high magnetic field. For the charge
carrying quanta of CDW these defects are elementary solenoids carrying a magnetic
flux. The quantum CDW current acquires a component oscillating with the flux, with the period
hc/2e. Its magnitude is proportional to the concentration of columnar defects. The lower
limit to the phase breaking length for these oscillations is set by the minimal Lee–Rice coherence
length. © 1998 American Institute of Physics.@S1063-777X~98!01109-8#
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The sliding charge density and spin-density wav
~CDW and SDW! in quasi-one-dimensional metals represe
amazing examples, apart from the superconductivity, of c
lective transport by a moving quantum ground state at h
enough temperatures.

The most striking feature is the existence of a nonlin
dc-current along the high conducting direction produced
the Fröhlich collective mode~see the review papers1!. The
Fröhlich conductivity emerges in electric fields exceedi
the threshold valueET (E.ET). Until recently, all the
CDW-transport experiments had been more or less succ
fully explained by the theories which had considered CD
in a classical manner: either phenomenologically as a r
object moving in a periodic potential, or microscopically,
a deformable medium in which the topologically stable d
main walls ~the CDW solitons! serve as the elementar
CDW-charge carriers~see Ref. 1!.

The pioneer experiment which had evidently shown
quantum nature of the CDW-solitons was performed
Latyshevet al.,2 A thin film of a CDW-conductor NbSe3 was
irradiated by heavy ions of Xe. The Xe-ions produced
array of identical parallel tracks@columnar defects~CD!#
piercing the film, and the host lattice inside the CD w
destroyed. The radiusR of each CD is of the order of 100 Å
The irradiated film was placed in a strong magnetic fi
H'20 T ~Fig. 1! and the nonlinear conductance was me
sured. In electric fields above the threshold,E.ET , the
transport current appeared to be an oscillatory function of
magnetic field with the period of oscillation

dH>
hc

2epR2 .

The relative magnitude of the oscillatory component of
transport current is of the order of 0.25%.
6621063-777X/98/24(9)/7/$15.00
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The oscillatory dependence onH clearly indicates the
Aharonov–Bohm effect~ABE! nature of the observed phe
nomenon, the period of the ABE-oscillations with the ma
netic flux beingDF5hc/2e.

The striking feature of this ABE is that it is observed
such high temperatures (T'50 K) when single-electron
ABE is totally suppressed by the electron-phonon scatter
Therefore, it was assumed in5 that those oscillations can b
attributed to the quantum CDW-solitons which encircle t
CDs pierced by the magnetic field thus affecting the coll
tive Fröhlich current. In other words, the CDs serve as t
elementary solenoids for quantum solitons.

To summarize, the experiment2 is really the first evi-
dence for a high-temperature quantum coherent effect
non-superconducting material. It brings us to a qualitativ
new level in understanding the nature of a CDW curre
state: it demonstrates unambiguously the quantum origin
collective current which was masked in all the previous st
ies. It demands therefore a new theoretical description
transport phenomena in CDW-conductors.

A theory that aims to describe the ABE in CDW tran
port should include the quantum description of the CD
charge carriers and should explain the anomalously la
CDW phase breaking lengthLw

CDW, strongly exceeding the
one for a single electron transport at such temperatu
which makes ABE observable at high temperatures.

In this paper we develop such a theory, using the c
cepts, formulated in,3,4 where the idea of the CDW charg
carriers quantization has been put forward and the persis
current of the CDW-condensate has been studied for the
time.

It is well known that the ABE in conductors can b
observed in two ways:~i! as oscillations of a diamagneti
moment~of persistent currents! in isolated loops, and~ii ! as
oscillations of conductance in open circuits containing loo
© 1998 American Institute of Physics
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As the ABE is intimately connected to the topological stru
ture of a charge carrier wave function in a multiply co
nected conductor, the basic period of oscillations with flux
both those schemes is the same.

The qualitative theory of persistent currents in CDW
the idealized model of a single-chain CDW loop was fi
proposed by Krive and the author3 and was elaborated late
on in a series of papers.4 It was shown there that the persi
tent current in CDW is formed by the topologically no
trivial CDW-excitations, viz, solitons and instantons. The b
sic period of the persistent current oscillations with magne
flux is found to beFS5hc/2e, just as in the experiment.2

Although the measurements of a persistent current in C
are beyond the present technology facilities, the understa
ing of the role of the topological CDW-excitations in th
ABE is essential for solution of the quantum transport pro
lem. The qualitative picture of the AB-oscillations in th
geometry of interest was first discussed by the author.5

The paper is organized as follows.
In the first chapter, we give a proper method of CD

quantization and formulate an exactly solvable model o
quantum CDW transport along a single chain with a lo
pierced by a magnetic flux. Such a loop mimics a colum
defect.

In the second chapter, we propose a model of a colum
defect in a CDW-material. In the third part, we show that t
long range CDW-coherence allows us to reduce the prob
of a transport current through a dilute array of CDs to the o
studied in the first chapter, and calculate the transport cur
oscillating with flux. The relative magnitude of the oscill
tory current estimated along our formulas for the parame
of the experiment2 is of the order of 1022– 1023, which is in
a good agreement with the experimental data.

FIG. 1. Geometry of the experiment.2 Magnetic fieldH is oriented along the
axis of the columnar defects of radiusR ~z-axis!, the transport currentI
flows along the electric fieldE ~x-axis!.
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1. MATHEMATICAL FORMALISM. AHARONOV–BOHM
OSCILLATIONS OF A CDW TRANSPORT CURRENT IN A
TOY 1D MODEL

The Peierls–Fro¨hlich order parameter isD exp(iw)
where D is the gap in a single electron spectrum and
gradients ofw define, via the Fro¨hlich relations,1 the collec-
tive CDW current,j, and the charge density fluctuations,r,
in a single chain:

j 52
e

p

]w

]t
, ~1a!

r5
e

p

]w

]x
, ~1b!

wheree is the electron charge, andx denotes the coordinat
along the chain.

Note that the Eqs.~1! have, at first glance, an incorrec
vector dimensionality. Indeed, the Eq.~1a! comprises a sca
lar operator that acts on a scalar to give a vector quan
and the Eq.~1b! comprises the vector operator acting on
scalar to give a scalar. It is necessarily the case that the
an implicit direction implied. Such a direction is the on
along the chains. The phasew ~the CDW variable!, strictly
speaking, is a quantum Bose field. This can easily be see
the path integral formulation of the Peierls–Fro¨hlich problem
~see, e.g., the review by Kriveet al. in Ref. 1!. Accordingly,
the Eqs.~1! are the operator equations. The measured cur
is:

j t52
e

p K ]w

]t L 5 j c1 j q , ~2!

where the brackets denote quantum averaging. In elec
field above the threshold,E.ET , the transport current~2!
has two components: the classicj c and the quantum,j q . The
former is produced by the mean component of the order
rameter, and the latter by its fluctuations. The theory o
classic CDW dc-transport is well developed~see Ref. 1!. For
our purposes we must find the quantum dc-currentj q ex-
pressed in terms of wavefunctions of individual CDW
charge carriers. In the Aharonov–Bohm geometry, the wa
functions are sensitive to magnetic flux variations providi
oscillations of a transport current. To quantize CDW, we u
the Bose–Fermi duality transformations in 1D.6 This pow-
erful tool allows us to map the results of the electron the
of metals and semiconductors onto quantum CDW. In p
ticular, quantum solitons of CDW, which serve as eleme
tary charge carriers, turn out to be equivalent to spinl
conduction electrons in a 1D semiconductor~see, e.g., Ref.
7!. Evidently, the oscillatory ABEs, existing in mesoscop
conductors, have their analogs in CDW.

The dual transformations for the normally ordered o
erators are~see, e.g., Ref. 7!:

1

Ap
] tw�c̄sxc ~3!

1

Ap
]xw�2c̄syc,
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wherec is a two-component Dirac spinor,c̄5c1sy , sm are
the Pauli matrices.

The qualitative picture underlying the transformatio
~3! is that the statistics in 1D are ill defined. One canno
merely place two solitons at one point which, roughly spe
ing, allows us to treat them as fermions. The Eqs.~3! intro-
duce explicitly the desired description of a CDW in terms
the wave-functions of the CDW charge carriers~solitons and
antisolitons!.

To show how this scheme works, consider the A
oscillations ofj q in a single chain with a loop, of a perimete
L, pierced by a magnetic fluxF ~Fig. 2!. Consider for sim-
plicity an incommensurate CDW described by Lagrangia

L5N0H 1

2
~] tw!22

c0
2

2
~]xw!2J ~4a!

in linear chains connected to the loop, and

L5N0H 1

2
~] tw!22

2p2c0
2

L2 ~]uw!2J 2
eF

pcL
~] tw! ~4b!

in a loop.
Here N05\/a2vF , a5c0 /vF,1 is the parameter o

adiabaticity in the Peierls–Fro¨hlich theory,c0 is the phase
velocity of CDW.

The Lagrangian~4a! is well known in the theory of
CDW. The Lagrangian~4b! contains the topological term
which describes coupling of a Fro¨hlich current~1a! to a vec-
tor potentialA5F/L in the loop:

L int5
jA

c
. ~4c!

The topological term in~4b! was introduced for the firs
time in the paper by Bogacheket al., Ref. 4. On a micro-
scopic level, it arises nonperturbatively due to the ch
anomaly phenomenon in a 1D CDW.7,8 The doubling of the
electron charge in~4b! is the result of a summation over sp
projections of electrons out of which the CDW is forme

FIG. 2. Schematic view of a CDW-transport along a single chain contain
a loop with a perimeterL, pierced by the magnetic fluxF; j is the transport
current density;u is the angle variable.
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The effective charge 2e leads to the oscillations of the pe
sistent and transport currents with flux with the peri
Fs5hc/2e.4,5

To obtain thej q one has to find the transparency of th
loop. It is highly unacceptable to do it in terms ofw-field
using for example the instanton approach.4 It is more conve-
nient to use the dual fermion language in which this probl
can be reduced to the one already solved in Ref. 9. Inde
the Lagrangians~4a! and ~4b! take the Dirac form:

L5N0i c̄gm]mc ~5a!

and

L5N0i c̄gmS ]m2 i
e

pcL
Fdm,xDc, ~5b!

wheregm5(sy ,c0sx), m5(t,x).
The scattering problem of interest has been solved

Ref. 9 for a nonrelativistic electron. One can easily show t
the results obtained in Ref. 9 remain valid in our case.

The CDW quantum transport current takes the form:10

j q~F!5
2e

h E d« g~«!@ f L~«!2 f R~«!#. ~6!

The integration is performed over the energy«. Here
g(«) is the transmission probability, which depends expl
itly on the CDW wave functions,f R,L are the distribution
functions of the left and right moving dual fermions. F
simplicity, we assume that the relaxation occurs in lea
which means that

f R,L5 f 0~«6pvD!, ~6a!

where f 0 is the Fermi function andvD is the drift velocity.
For sliding CDW,vD is not zero in electric fields above th
thresholdET . It is convenient to rewrite~6! in the form:

j q~F!5 j cE d« g~«!
@ f 0~«1pvD!2 f 0~«2pvD!#

2pvD
, ~7!

where j c is the classic current at zero temperature alon
chain free of a loop:

j c5
ep̃FvD~E!

p\
. ~8!

The Fermi energy for dual fermions is of the order ofD.
This is the maximum kinetic energy which the CDW solito
~the dual fermion! possesses.11 Correspondingly the cut-off
to the Dirac theory, for dual fermions is:

p̃F;
D

c0
;

\

aj0
, ~9!

wherej05\vF /D is the amplitude coherence length.
The functiong(«) was calculated in Ref. 9 to be:

g~«!5
4h2 cos2~pF/Fs!sin2~pk!

h2 sin2~2pk!1p2~k,h,F!
, ~10!

where

g
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p~k,h,F!5b2 cosS 2pF

Fs
D1a22~12h!cos~2pk!,

~11!

k5
«L

2p\c0
.

The phenomenological parameterh, 0<h<1/2, deter-
mines the connection between the linear chain and the lo
The coefficientsa, b are:

a5
1

2
@~122h!1/221#, b5

1

2
@~122h!1/211#. ~12!

The value ofh will be specified in the Ch. 2.
Note that the Eqs.~6! and ~10! are valid when the pe

rimeter of a loop is small compared to the phase break
lengthLw

CDW. In a sliding 1D CDW the lower limit toLw
CDW

is set by the Lee–Rice phase coherence lengthl i which is
typically 1–10mm.1 This clearly shows why the CDW ABE
is observed at sufficiently high temperatures, when the sin
electron ABE, characterized byLw

(e);1032103 Å, is sup-
pressed. A three-dimensional sample of NbSe3 is character-
ized by three coherence lengths:l i along the chains inx-
direction, l' along they direction and l d along the less
conducting axis,z: l d! l'! l i , and, correspondingly, by
three phase velocitiescz!cy!c0 . In an actual experiment,2

the phase breaking length is governed by the sample th
nessd in a less conducting direction. In this context, t
oscillatory effect in CDW is the mesoscopic one in spite o
resemblance to the flux quantization in superconductors.

Under the conditions of the experiment,2 the CD hole
diameter contains several tens of chains and the model h
be reformulated keeping safe two basic features:~i! a quali-
tative picture of the quantum transport of CDW along
single chain@Eqs. ~6! and ~10!#, and ~ii ! the long distance
phase coherence in a sliding CDW.

2. A MODEL OF A COLUMNAR DEFECT IN A CDW
MATERIAL

According to Ref. 2, the CD is a real hole with a diam
eter 10–12 nm surrounded by a damaged region which a
a further 2–4 nm to the effective diameter.

Consider the distribution of a phase around a single
lindric CD with the radiusR ~Fig. 3!. Inside the CD, the hos
material is destroyed and, accordingly,D50. This local de-
fect creates Friedel oscillations of the electron charge
compete with the CDW charge modulation over an atom
distance scaled1;10 Å.12 The suppressedD causes a strong
phase gradientsu]w/]r u@uI u21 localized around the CD
within a strip of widthd2 which is of the order of severa
j0 .12 The potential barrier created by these phase gradien
of the order ofD12 ~Fig. 4!. It separates the phasew insided1

from the bulk. The local phasew in the regionR1d1}r
!R1d2 is adjusted to a certain optimal valuew0 that
matches the Friedel oscillations. The valuew0 differs from
the one established in the bulk, its excitations can be
garded as the edge states. We make a plausible assum
that inside the layer;d1 there exists random 1D chain paths
encircling the CD, along which the CDW current is aga
p.

g

le

k-

t

to

ds

-

at
c

is

e-
tion

given by the Eq.~1a!. The CDW edge state phase veloci
along those 1D paths isc̄ wherecy, c̄,c0 . Such random
chains emerge as the result of a strong damage of a
lattice caused by a heavy ion. The average phasew in the
bulk away from the CD still remains correlated over t
Lee–Rice lengths.12 This qualitative picture is an assumptio
of our model.

Consider the scattering of the classic and quantum CD
excitations on a CD. In the classical picture the excitations
w0 ~the edge states! are confined to a CD in a radial direc
tion, they have only the azimuthal momenta and do not c
tribute to the current flow. The classic current spreads aro
the CD in the way plotted in Fig. 5~a!. The characteristic
spreading lengthLx can be estimated from the equation
motion for a 3D CDW Lagrangian:

L5n2N0E dxdr'H 1

2
~] tw!22

c0
2

2
~]xw!2

2
2ZTc

2

p\vFN0
cos~w r'

2w r'11!J , ~13!

wheren2 is the 2D density of conducting chains,Tc is the
critical temperature of a 3D phase transition, andZ is the
number of the nearest neighbor chains. Assuming the th
ness of a sampled! l d and putting]x;1/Lx , ]y;1/L, we
get an estimate:

FIG. 3. The model of CD adopted in the theory:~a! conducting chains are
oriented along thex-axis; ~b! the real hole;~c! the region of the edge state
of the width;d1 ; ~d! the interface layer of the width;d2 around the CD
containing large phase gradients. The high energy heavy ion produc
round hole which pierces the sample along thez-axis. The CD-hole is sur-
rounded by a layer of widthd1 , within which the phase is confined to
w5w0 ~see the text!. We assume that the positions of conducting chains
not disturbed away from the CD:uxu.Rucosuu, uyu.Rusinuu. I CDW is the
transport current;u is the angle variable.
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Lx;L
c0

cy
;L

« r

Tc
@L, ~14!

where

cy5
A2ZTc

\n2
1/2 a!c0 . ~15!

In NbSe3 cy'0.1c0 . Classic trajectories~14! contribute
to the magnetoresistance but not to the ABE.

Contrary to the classic picture, the quantum CDW
particles encircle the CD in a quite different way~Fig. 5b!.
Quantum particles propagate freely along the chain aw
from the CD, then penetrate under the potential barrier~Fig.
4! and mix with the edge states localized near the hole.
cause the dispersion of the edge state trajectories is sma
far asd1!L and k̃Fd1'1, the CDW quanta encircle the CD
along a path of a fixed lengthL. Quantum paths obviously
contribute to the AB-oscillations.

Now we can formulate a quantum model of a CD
which contains a single CD.

SaveN0 , the excitations of the phase localized in t
chains away from the CD are described by the Lagrangi

L5(
n

i c̄ngm]mcn , ~16!

wheren labels the chain. There areNF chains which connec
the CD:

NF'
Ld

4p
n2 . ~17!

FIG. 4. The potentialU created by the CD for the CDW excitations as
function of the radial coordinater. The destroyed host material occupies t
region r ,R. The potential barrier of the order ofD produced by the large
phase gradients in the regionR1d1,r ,R1d2 separates the edge state
localized atR,r ,R1d1 from the bulk.R is the CD radius.
-

y

e-
as

:

The edge excitations ofw0 are described by the
Lagrangian:

L5(
n

i c̄ngmS ]m2 i
e

pcL
Fdm,xDcn , ~18!

where n runs over the Ld( k̃Fd1) values, ]x→1/R]u ,
vF→vF( c̄/c0).

The phases in all theNF chains that are connected to th
CD ~17! are correlated providedL! l y , d! l d . This means
that all the dual fermions located in these chains have
same transmission probabilityg(«) ~10!, in which k @Eq.
~11!# is replaced byk(c0 / c̄). Thus, the flux-dependent trans
port current carried by the bunch ofNF chains is nothing but
NF j q(F) wherej q(F) is given by Eq.~7!. The parameter of
transparencyh can be estimated quasiclassically:

h;expS 2
d2~mCDWD!1/2

\ D , ~19!

where mCDW5a22m* , m* is the band mass in NbSe3.
Taking m* 51.8m0 , j0530 Å, D5350 K, a'0.5 ~see,
e.g., Grüner2!, we get:

h'0.03– 0.05 ~19a!

for d2 /j0'6 – 7 @Refs. 12 and 13#. Note, however, that the
ratio d2 /j0 was estimated for a point defect. For a CD, t
estimate can differ though not crucially.

3. CALCULATION OF A FLUX-DEPENDENT TRANSPORT
CURRENT

The total currentI CDW is the sum over the single chai
currents. At small concentration of CDs1 one can neglect the
contribution of chains connecting the different loops~ran-
dom loop approximation! we then get

FIG. 5. The trajectories along which the classic current~a! and quantum
current~b! encircle the CD.Lx is the classical current spreading length~14!.
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I CDW'N jc1 (
loops

j q~F!5I 0
CDW1I CDW~F!, ~20!

where N is the total number of chains in a sample,I c
CDW

5N jc .
The sum over loops is estimated as

(
loops

'NFNCD, ~21!

whereNCD is the total number of loops~of CDs! in a sample:

NCD5ndL iL' , ~22!

where nd is the concentration of CDs,L i is the distance
between the electrodes along thex-direction,L' is the size of
a sample in they-direction. Collecting together Eqs.~7!,
~20!, and~21! we obtain

I CDW~F!5
Ld

p
n2ndL iL' j q~F!

5
LL i

2p
ndI 0

CDW 1

p̃FvD
E d« g~«!@ f 0~«

1 p̃FvD!2 f 0~«2 p̃FvD!#. ~23!

To calculate the integral over the energy, we make use of
periodicity of g(«):

g~«!5g~«12pT0!, ~24!

where

kBT05
\ c̄

L
~25!

is the interlevel spacing in a one-dimensional isolated ri
We get:

1

p̃FvD
E d« g~«!@ f 0~«1 p̃FvD!2 f 0~«2 p̃FvD!#

5
1

p̃FvD
E

0

2pT0
d« g~«1 «̃F! (

n52`

`

@ f 0~«1 «̃F12pnT0

1 p̃FvD!2 f 0~«1 «̃F12pnT02 p̃FvD!#, ~26!
e

.

where«̃F is the Fermi energy for dual fermions.
Making use of the Poisson summation formula

(
n

p~n!5E dn p~n!12(
k51

` E dn p~n!cos~2pkn!,

~27!

we get

(
n52`

`

@ f 0~«1 «̃F12pnT01 p̃FvD!2 f 0~«1 «̃F12pnT0

2 p̃FvD!#5
T

T0
(
k51

`
sin~kp̃FvD /T0!sin~k«/T0!

sinh~pkT/T0!
. ~28!

Making use of the inequalityvD! c̄, we eventually obtain
the following equation forI CDW(F):

I CDW~F!5
LL ind

2p

T

T0
I 0

CDW

3 (
k51

`

k sinh21~pkT/T0!F~F,h,T0!, ~29!

where

F~F,h,T0!5E
0

2pT0
d« sin~k«/T0!g~«1 «̃F!. ~30!

In an actual experiment,2 the ratio pT/T0'10 which
allows us to keep only the first harmonics withk51 in the
r.h.s. of Eq.~29!. The exponential decrease with temperatu
is a typical feature of the AB-transport current~see, e.g., Ref.
14!, as well as of the persistent current.4

The integral over the energy~30! has to be calculated a
h!1 @see Eq.~19a!#:
et the
F'4h2 cos2~pF/Fs!E
0

2pT0
d«

sin~«/T0!sin2~~«1 «̃F!/2T0!

h2 sin2~~«1 «̃F!/2T0!1@cos2~pF/Fs!2h2cos~~«1 «̃F!/2T0!#2 . ~31!

The main contribution toF comes from those points in which the denominator of the integrand is close to zero. We g
asymptotes:

1

T0
F'5

2
1

2
h sinS «̃F

T0
D S 11p2S F2nFs

Fs
D 2D , when uF2nFsu!hFs , uF2~n61/4!Fsu@hFs ,

1

4
h cosS «̃F

T0
D S 172pS F2~n61/4!Fs

Fs
D D , when uF2nFsu@hFs , uF2~n61/4!Fsu!hFs ,

1

&
h3/2 sinS «̃F

T0
D2p2S F2~n61/2!Fs

Fs
D 2

, when uF2~n61/2!Fsu!hFs , uF2nFsu@hFs . ~32!
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Heren5@F/Fs# is an integer.
In an actual experiment,2 ndL iL'1032104 and we ob-

tain the following estimate for the relative magnitude of t
oscillatory component ofI CDW:

I CDW~F!

I 0
CDW '102221023 ~33!

which is in good agreement with the experimental data.2

To conclude, we have constructed, for the first time
microscopic theory of the AB-oscillations phenomenon in
transport CDW-current which flows through a sample co
taining a large number of identical tiny holes~CD! placed in
a strong magnetic field. The quantum CDW excitations vi
these holes as elementary solenoids which carry magn
flux and the quantum transport current acquires terms o
lating with the magnetic flux with the periodhc/2e. The
oscillatory component of current is proportional to the co
centration of CDs. Because of the long-range CDW rigid
all the holes contribute additively to the current and the
cillations exist at sufficiently high temperatureT'50 K. At
such temperatures, the single electron oscillations, peri
with hc/e, are exponentially suppressed by the electr
phonon phase-breaking scattering and cannot be observ

The presented theory of the ABE in CDW is based
the quantum description of the CDW charge carriers in o
dimension by means of the Bose–Fermi equivalence pro
dure. This method, together with the idea of a long ran
CDW coherence within an array of 1D chains, allows us to
reduce this 3D problem to an exactly solvable model of
single chain connected to a loop pierced by a magnetic fl
This simple picture gives good agreement with the exp
mental data.
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The structure and the orientational order parameter of Ar–CO 2 solid solutions
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Electron diffraction studies of the structural characteristics of Ar–CO2 solid solutions are carried
out over the entire range of their mutual concentrations. The regions of low concentrations
of both components are analyzed in detail and the relative excess volumesDv/v are determined
for the CO2 impurity in solid Ar (Dv/v.0.8), and for the Ar impurity in solid CO2
(Dv/v.0.28). The experimental results and relationships are compared with the results obtained
from the semi-quantitative theory on the basis of known atom–atom potentials. An
expression relating the intensity of superstructural reflectionsI (super) ~including the reflection 210!
with the long-range orientational order parameterh is obtained. It is found thatI 210}h2 to
a high degree of precision. The experimental dependence of the orientational order parameterh on
the argon concentration in solutions rich in CO2 is obtained. ©1998 American Institute of
Physics.@S1063-777X~98!01209-2#
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1. INTRODUCTION

All molecular cryocrystals made of linear molecul
have orientationally ordered phases.1 In most cases, the sym
metry of these phases under saturated vapor pressure i
scribed by aPa3 group symmetry.1) The physics of the ori-
entational order and the nature of the corresponding ph
transition~if such a transition does occur! to the disordered
phase have been studied quite extensively for classica
well as quantum behavior of the rotational subsystem~see,
for example, Ref. 1!. Doping of the rotationally ordered
phase~of the molecular component M! by particles of ‘‘ori-
entationally neutral’’ modifications or atomic impuritie
~component A! leads to the destruction of the orientation
order. Materials exhibiting this phenomenon include orth
parahydrogen solutions,3 as well as alloys of rare gases wi
linear diatomic4,5 and triatomic (CO2) molecules.6–8 Re-
placement of one of the molecules in the orientationally
dered phase by an ‘‘orientationally neutral’’ rare gas at
leads to the disappearance of the anisotropic interaction c
ponent~which was responsible for the orientational order
the entire ensemble! from the bonds between this atom an
the surrounding molecules. The molecules surrounding
atom will be in a molecular field whose intensity decrea
by 1/z in comparison with its value in the regular casez
is the number of nearest neighbors!.2) It is obvious from
a physical point of view that of substitutional atoms for
certain concentrationxcr, the orientational subsystem lose
its long-range order.

Thus AM-type cryoalloys~i.e., those formed by linea
molecules and rare gas atoms! form a disordered system
in which the multicomponent~quadrupolar in the case con
sidered by us! order is violated as a result of dilution b
6691063-777X/98/24(9)/10/$15.00
de-
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indistinguishable particles~without a quadrupole moment
which is responsible for the long-range order!. The behavior
of dilute systems undergoing ordering and the magnitude
the critical concentrationxcr depend on the nature of th
long-range order, crystal structure and other factors. He
the investigation of any specific system is interesting in
self. Figure 1 shows a phase diagram of AM solid solutio
Such a diagram is characteristic of ortho–parahydrogen
lutions, as well as AM solutions based on a diatomic mole
lar component. States with orientational long-range order
large values ofx are replaced by states without long-ran
order for concentrationsx.50% and below. These two re
gions are separated by the hcp–fcc phase-transition curv
decrease in temperature in high-concentration phases wit
long-range order leads to a freezing of molecular orientati
into a state called the quadrupolar glass.9 For lower concen-
trations (x,15%) of the M-component, a region is forme
whose physical properties are determined by the nature
the system~see below!.

The destruction of the purely quadrupolar order h
been studied most extensively on the example
ortho–parahydrogen,3 where molecules in the sphericall
symmetric para state are the orientationally neutral partic
In this case, the critical concentrationxpara

cr 545%. In the
region of low ortho-concentrations, the thermodynam
is completely determined by the number of ‘‘pair cluster
of closely spaced ortho molecules~isolated ortho molecules
do not contribute to the thermodynamics!.

Dilute quadrupolar systems based on diatomic molecu
N2 and CO have been studied quite intensively~see, for ex-
ample, the reviews by Hochliet al.,4 Strzhemechny
et al.,5 and Manzheliiet al.10!.3) One of the factors hamper
ing the investigation of these disordered systems in
© 1998 American Institute of Physics
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macroscopically homogeneous solid solution is their t
dency to separate into regions rich in molecular and ato
components respectively. In some cases,11 the homogeneity
region is so narrow that it is not even possible to determ
the solubility boundary in the solid solution. However, the
are several examples of highly nonequilibrium alloys ba
on diatomic molecular crystals. For these systems, the l
concentration region ~see Fig. 1! is in a specific
orientational-glass state for which the energy spectrum is
sum of the rotational spectra of isolated molecules, and
domization of each individual spectrum occurs as a resul
the dilatational action of all the remaining impurities.12 The
universal laws governing such a glass-like state have b
studied most intensively in the system Kr–14N2.

10,13

One of the characteristic features of these two system
the presence of an fcc–hcp structural transition, which
apparently induced by a change in the frustrational ene
parameters upon dilution of thePa3 structure by rotationally
neutral impurities4) ~see for example, Ref. 15!. Thus, the
effect of dilution cannot be studied in a cubic structure, a
experiments on orientational glass formation are carried
in structures with a different symmetry, where the existen
of a long-range order imposed by the quadrupole interac
remains doubtful.

In this connection, the use of triatomic linear molecu
as the molecular component has a number of advantage
well as several distinguishing features as compared to
atomic linear molecules. First, it can be expected that
detection of superstructural reflections in mixtures with
suppressed long-range order will be more reliable, espec
in electron diffraction measurements. Second, the inhib

FIG. 1. Typical phase diagram of AM solid solutions. The solid cur
describes the orientational order–disorder phase transition, while the da
curve defines the conditional boundary of orientational glass formation
-
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mobility of individual particles as well as layers in the ca
of triatomic molecules allows us to obtain long-lived met
stable solid solutions with high mutual concentrations. T
leads to the third advantage according to which the lattice
the mixture remains cubic for all mutual concentrations a
it becomes possible to study the effect of dilution on orie
tational order in pure form. These peculiarities have be
reported in our earlier communications about CO2-based sys-
tems with atomic components Kr,6 Ar,7 and Xe.8

An equally interesting problem concerns the thermod
namics in the region of low M-concentrations (x<15%) in
which a glass-like state with predominantly indirect intera
tion ~through the field of elastic deformations! must be real-
ized, the more so because the rotational spectrum in this
must differ from that of solutions based on diatomic mo
ecules. Studies of dilute (x;1%) solutions provide informa-
tion about the regions of mixing which constitute one of t
factors that determine the magnitude of the elastic fie
around the molecular impurity.

The possibility of the formation of a glass-like structu
in orientational states localized at the atomic impurities
the orientationally ordered lattice and interacting throu
elastic static fields remains an open question although s
experimental data speak about the anomalies in the hea
pacity of AM-type solid solutions.16

In this communication, we present the results of detai
investigations of the structure of Ar–CO2 alloys in the entire
range of concentrations. The main attention was paid to
following issues: low concentrations~at both ends of the
phase diagram! for obtaining mixing volumes per Ar atom in
solid CO2 and CO2 molecules in solid Ar, detailed studies o
the behavior of superstructural reflections as functions of
Ar concentration and temperature, and a theoretical estim
of quantities concerning the structural and energy charac
istics of the system under consideration. The obtained
perimental data are compared with the conclusions of
semiquantitative theory constructed on the basis of phen
enological potentials. The mathematical and computatio
problems are considered in the Appendices.

2. EXPERIMENT

Investigations were carried out by the transmission el
tron diffraction technique using a special helium cryost
Samples were preparedin situ by depositing gaseous mix
tures at various deposition temperaturesTd . Measurements
were made at temperatures ranging from 6 K to thesublima-
tion temperature of pure argon~28–30 K, depending on the
thickness!. The effective thickness of the deposited films va
ied from 80 to 200 Å. Samples were deposited on substr
made of polycrystalline Al films which also served as t
internal reference material. In the photographic technique
recording, such a reference material ensures a more pre
evaluation of the lattice parametera. Since we dealt with
solid solutions, the diffraction rings could be quite weak a
blurred ~depending on the composition!, thus considerably
increasing the error in determininga, which varied from 0.1
to 0.3%.

The composition was varied over the entire range

ed



o
re

h
d
r

en

en
hi
th

ar

a
av
ns

-
n

to
re

tly
s

p
ou

th

ric

an
s

h
-
n

of
on-
-
to

ow
e

n-

er
e-
rves
he

ur
ence

w
ere

rgon

re

671Low Temp. Phys. 24 (9), September 1998 Strzhemechny et al.
mutual concentrations. The concentration of the gase
phase was determined by measuring the partial pressu
components with the help of a sensitive manometer. T
total volume of the mixture being prepared was increase
order to increase the accuracy of measurements of the p
sure of highly diluted components for argon molar conc
trationsxAr close to 0 and 1.

The supply of the gaseous mixture at low pressures~en-
suring a growth rate from 1 to 3 Å/s! minimized not only the
risk of separation during transportation at liquid nitrog
temperature, but also the condensation overheating w
could cause uncontrollable or undesirable separation in
solid phase. Judging by the experimental data, the prep
solid solutions were found to be quite homogeneous~see
discussions below!.

3. EXPERIMENTAL RESULTS

Analysis of the electron diffraction patterns showed th
in the entire range of compositions, the solid solutions h
cubic symmetry, or an fcc structure for argon-rich solutio
or a Pa3 structure for solutions rich in the molecular com
ponent. Let us consider some peculiarities in the depende
of the lattice parameter of solutions on the composition~Fig.
2!. The concentration range can be divided arbitrarily in
three regions. For solutions in which carbon dioxide p
dominates (0<xAr<35%), we observed a set ofPa3 reflec-
tions which give the lattice parameter varying significan
with the argon impurity concentration. This fact as well a
qualitative theoretical analysis~see Sec. 4! lead to the infer-
ence that we are dealing with a nearly homogeneous im
rity distribution, at least for argon concentrations up to ab
10 percent. For nearly equimolar concentrations (35%<xAr

<55%), we observed a number of reflections against
background of reflections corresponding to the CO2-based
solutions. These reflections were attributed to the argon-
phase. Figure 3 shows a typical densitogram of a CO2–Ar
(37%Ar) sample in the region of principal reflections. It c
be stated on the basis of a rough estimate obtained by u
the values for excess volume~see below! that these reflec-
tions may correspond to the argon-based solutions wit
relatively high ~about 15%) concentration of the M
component. Thus we can speak of the classical separatio

FIG. 2. Lattice parameter of solid Ar–CO2 mixtures as a function of argon
concentration atT525 K. The deposition temperatureTd525 K. Light
circles correspond to the argon-rich phase.
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solutions only in this relatively narrow intermediate range
concentrations of the M-component. For higher argon c
centrations (60%<xAr), we observed only one set of reflec
tions. The lattice parameter of the solutions was found
depend weakly on the composition except in a very narr
interval xCO2

<3% in which a relatively weak dependenc
a(xCO2

) was observed.
A characteristic feature of solid solutions is the no

monotonic dependence of the lattice parameter~and molar
volume! on composition for small admixtures of argon~from
0 to 25%) at deposition temperaturesTd525 K, which was
reported by us earlier.7 In order to find the nature of this
nonmonotonicity, we performed the experiments at low
temperaturesTd56 and 15 K. The obtained results are pr
sented in Fig. 4. It can be seen that the shape of the cu
a(xAr) is preserved although the effect itself is modified: t
height of the peak is lowered considerably asTd decreases;
the peak itself shifts towards lower values ofxAr . The au-
thors are not in a position to explain this effect.

It was mentioned above that one of the aims of o
research was a meticulous measurement of the depend
of the lattice parametera ~molar volume! of the mixtures for
low concentrations of the A- or M-component. For lo
Ar concentrations, presumably homogeneous solutions w
easily obtained, and hence the excess volume per a

FIG. 3. Densitometric profile region for an Ar–CO2 samples with 37% Ar,
T525 K; Td525 K. The indices of peaks for the diffraction pattern a
marked on top;s54p sinu/l is the diffraction vector modulus, whereu is
Bragg’s angle andl is the electron wavelength.

FIG. 4. Lattice parameter of solid Ar–CO2 mixtures as a function of argon
concentration at three deposition temperaturesTd ~in K!; 6 ~circles!, 15
~squares! and 25~triangles!.
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impurity could be determined without any difficulty. In view
of the above peculiarities in the dependence of the lat
parameter on composition for low concentrations of CO2,
we made a number of experiments for extremely low c
centrations of CO2 ~see Fig. 4! at which the attainable degre
of precision allows us to determine the excess volume.

By definition, the relative excess volumeDv/v
5V(A/M) per impurity particle of the substance A in th
crystal M is given by the expression

V~A/M ![ lim
xA→0

V~xA!2V~0!

xAV~0!
, ~1!

wherexA is the concentration of the substance A andV(xA)
is the molar volume of the solution for the concentrationxA .
Using the data from Fig. 3~see also Fig. 7!, we obtain

V~Ar/CO2!5 lim
xAr→0

V~xAr!2V~0!

xArV~0!
50.2860.04, ~2!

i.e., the argon impurity occupies a considerably larger v
ume~1.28! than the CO2 molecule in the crystal. This effec
is discussed in Sec. 4.

Analogous measurements of the molar volume for
tremely low concentrations of CO2 ~below 1%) made it pos-
sible to determine the excess volume of a single CO2 impu-
rity. Using the data of Fig. 5 showing the results
deposition at temperatures 6 and 25 K, we obtain

V~CO2/Ar!50.860.2. ~3!

Within the limits of the error indicated above, the value ofV
is practically independent of the deposition temperature.

4. INTENSITY OF SUPERSTRUCTURE LINES AND
THE ORIENTATIONAL ORDER PARAMETER

A problem of fundamental importance considered in t
work concerns the behavior of the orientational order para
eterh in the investigated solid solutions Ar–CO2. The struc-
tural analysis and, in particular, electron diffraction stud
are among the very few techniques available for obtainin
direct quantitative information about the value ofh. For this
purpose, we use the lines that are present in the spectrum
the Pa3 lattice and do not appear for the fcc structure.

FIG. 5. Lattice parameter of Ar–CO2 solutions for low concentrations
of carbon dioxide at two deposition temperaturesTd56 and 25 K.
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The orientational order parameter of the crystal form
by symmetric linear molecules is, by definition, the therm
dynamic average of the corresponding spherical function

h[~5/4p!1/2P20~v!, ~4!

where the unit vectorv determines the orientation of the ax
of the molecule, while for the reference frame we chose o
of the directions of the typê111& along which the molecules
are oriented in thePa3 structure. In an impurity-free crysta
the quantityh is the same in all four sublattices of this stru
ture. In a doped crystal, the order parameter can be writte
the form

h5^Y20~v!&5(
i

ĉiE dvY20~v!r i~v!. ~5!

Here the summation is carried out over the lattice sitesi ; the
operatorci assumes the value 1 if the site is occupied by
CO2 molecule and 0 if the site is occupied by an argon at
which naturally does not make any contribution to the orie
tational order parameter; the quantityr i(v) is the weight
function which defines the angular distribution of the orie
tation probability of molecules. This distribution is dete
mined by the dynamics of the rotational angular moment
in given molecular and crystal fields, while the latter a
determined by temperature and deviations of the closest
vironment from uniformity~crystals containing impurities o
other defects!. Thus, dilution of solid carbon dioxide by ro
tationally neutral argon atoms leads to two effects causin
decrease in the value ofh, viz., the direct substitution simply
puts some of the sites ‘‘out of play’’~i.e., increases the num
ber of sites at whichci vanishes!, and an additional~apart
from temperature-related! broadening and deformation of th
weight functionr(v) takes place and lowers the value of th
integral in Eq. ~5!. Unlike the temperature broadening b
phonons, which is of a dynamic nature, the latter effect ha
static origin. As a rough approximation which is valid on
for low concentrations of the atomic impurity, Eq.~5! can be
written in the formh5(12xAr)h̃, where h̃ can be condi-
tionally called the order parameter at sites occupied by m
ecules.

For the measure of the orientational order parameter,
chose the intensity of the superstructural reflection 2
whose relative values are presented in Fig. 6 for a numbe
compositions. It will be shown below that, to a good degr
of precision, the intensity of this superstructural reflecti
can be assumed to be proportional to the square of the
entational order parameter:I 210(xAr)}h2(xAr). The values of
the intensity presented in Fig. 3 were obtained for vario
samples with different thicknesses and other paramet
Hence we used a modified reduction procedure6 for reflec-
tion intensities which is substantiated in Appendix 1.

The evaluation of the orientational order parameter
Ar–CO2 alloys requires an analysis of the line intensitie
For pure orientationally ordered crystals, the generally
cepted method for estimating the absolute value of the
entational order parameter is to calculate the intensities
reflection widths by using the effective lengths of molecu
whose shortening is associated with zero-point or ther
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librations.17 Such an approach is applicable for cases
which the librational movement is not too intense. Th
method cannot be used for solutions, especially those wit
appreciable spherical impurity concentration.

We shall consider alloys that are rich in the M
component and whose lattice structure has thePa3 symme-
try. For reasons that will be explained below, we shall d
cuss in detail the lines 200 and 210, the former existing
the sets of both fcc andPa3 structures, while the latter is
superstructural line and is therefore used as a measure o
orientational order.

The intensity of electron scatteringI as a function of the
transferred momentumq can be represented in the gene
case in the form

I 5U(
s51

N

(
g

f sg~q! expiq•RsgU2

5U(
s

Fs~q! expiq•RsU2

.

~6!

Heres stands for summation over unit cells, andg for sum-
mation over scattering centers within a unit cell,Rsg5Rs

1Rg where whereRg is the radius vector of the scatterin
centerg within a unit cell.

Averaging, as usual,18 over the positions of the Ar im-
purity atoms, we obtain the following expression for t
mean structural amplitude:

Fs5(
c

eiq•Rc$xARf AR~q!1~12xAr!FC~q!

1~12xAr!
2f O~q! cos@q•gcx#%. ~7!

Here f i(q) is the scattering factor for thei th atom~for con-
venience, we shall not indicate explicitly the dependence
the scattering factors onq!. Summation overc indicates
summation over positions which can be occupied by car
atoms, while the summation over oxygen atoms for e
positionc can be presented explicitly by using the followin
notation:gc is the unit vector along a CO2 molecule in the
position c,x5d/(aA3)50.0120 for CO2 at low tempera-
tures,d being half the length of the molecule anda the lattice
parameter. The first two terms contribute only to the refl

FIG. 6. Relative orientational order parameter~triangles! as a function of
argon concentration in solid CO2. Squares indicate the relative values of t
intensity of the superstructure reflection 210 in solid Ar–CO2 mixtures, and
the solid line corresponds to the theoretical calculation in the molecular
approximation reflecting only the substitution by argon which leads t
suppressio of the 210 line in proportion to the argon concentration.
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tions that are common for fcc andPa3 structures. The las
term also contributes to the regular reflections, but co
pletely determines the intensity of superstructural am
tudes.

The amplitudeFs can also be presented in the form

Fs5(
c

eiq•Rc$xAr f Ar1~12xAr!~ f C12 f O!

1~12xAr!2 f O~12cos@q•gcx# !%, ~8!

whose only advantage is that the term which vanishes as
length of the molecule formally tends to zero is clea
singled out. This is convenient for determining the relati
between the intensity of the superstructural line and the
entational order parameterh defined by Eq.~4!. It is implied
that the averaging is carried out over dynamic~thermal vi-
brations! as well as static factors~atomic displacements in a
solid solution!.

Let us consider a superstructural line. The amplitude
such reflections is determined only by the last term under
summation sign in Eq.~8!:

Fs
super52 f O~12xAr!(

c
eiq•Rc~12cos@q•gcx# !. ~9!

For simplicity, we shall assume that static displaceme
concern only rotational degrees of freedom of molecul
i.e., the directions of moleculesgc vary from site to site,
while the positions of the centers of gravityRc of molecules
remain unchanged. In this case, averaging ofFs over dy-
namic and static disorder will affect only the cosine. Prese
ing vectorq for the reflection 210 in the formq5qn, where
q52pA5 andn5(1/A5)(2,1,0), we can expand the expre
sion in the parentheses into a series in spherical harmon19

12cos@q•gcx#58p(
l>2

j l~2pxq!@Yl~n!•Yl~gc!#. ~10!

Here j l(y) are spherical Bessel functions, the summation
carried out over evenl , and

@Yl~n!•Yl~gc!#5 (
m521

l

Ylm* ~n!Ylm~gc!, ~11!

where Ylm are spherical functions in standar
normalization.19 It follows from Eq. ~10! that the expansion
over spherical harmonics begins froml 52. Subsequent
terms withl 54,6, . . . arecorrections that cannot be reduce
to h. It can be shown easily that after averaging, the te
with l 52 must give the exact value of the orientational ord
parameter:

Ylm~gc!5hYlm~gc0!, ~12!

wheregc0 are unit vectors along the corresponding diagon
of the cube in thePa3 structure. Equation~12! was derived
under the following assumptions. First, it is assumed t
statically disoriented molecules have a symmetric distri
tion relative to the correspondinggc0 so that we can confine
the analysis to just one order parameterh and disregard the
anisotropy of the order parameterz5(Y222Y22̄). Second,
the averaging is carried out by disregarding significant st

ld
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displacements of centers of gravity of both A and M p
ticles. These displacements can alter the line intensity. H
ever, since we shall adopt in the following a specific pro
dure for reducing the intensity of superlines against regu
ones~of the 200 type!, it can be stated confidently that th
additional intensity variation does not occur in the reduc
variables.

Let us evaluate the role of high-order (l .2) spherical
harmonics in Eq.~10! for the reflection 210 as compare
with the term with l 52. We shall first consider an idea
crystal for T50 andh51. In this case,n5(1/A5)(2,1,0);
x50.120~we shall take the valuexq50.269 for pure carbon
dioxide!. Numerical estimates show that the ratio of the e
pressions under the summation sign in~10! with l 54 andl
52 is about 0.055. Disregarding this correction, we fi
from ~1! that I 210 is proportional to the square of the orie
tational order parameter:I 210}h2.

5. DISCUSSION OF RESULTS

Let us consider in detail the dependence of the mo
volume of Ar–CO2 solid solutions for low Ar concentration
~see Fig. 7!. For solid carbon dioxide diluted weakly wit
argon, two opposing processes are operative. On the
hand, the dissolution of smaller argon particles~the
Lennard–Jones parameters for CO2 is about 17% larger
than for argon, which amounts to about 62% in terms
volume! must lead to a compression of the crystal. On
other hand, it must be taken into consideration that if a C2

molecule at any site is replaced by an argon atom, 12 CO2–
CO2 bonds are replaced by an equal number of much wea
CO2–Ar bonds. This causes a weakening of the attract
due to the anisotropic part of the interaction, and eventu
leads to a swelling of the crystal. The changeDv in the
volume caused by the introduction of a substitutional imp
rity in the cubic lattice can be presented in the form20,21

Dv5
1

3B(
f

RfF~Rf !, ~13!

FIG. 7. Molar volume of Ar–CO2 solid solutions as a function of argo
concentration. The deposition temperatureTd525 K; measurements were
made at 25 K. The solid curve was obtained from the semiquantita
theory taking into account only paired clusters of Ar impurity, while t
dashed curve corresponds to the theory for an analogous model taking
account triple clusters also~see Sec. 4!.
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where the summation is carried out over the lattice sitef
with the radius vectorRf , B is the compressibility modulus
F52VF i0 ; Fi05w i02w00; w i0 andw00 are the potentials
of ‘‘guest–host’’ and ‘‘host–host’’ interactions, respectivel
i.e., F is the impurity-induced additional force acting on th
nearest regular neighbor. In the nearest neighbor approx
tion, this expression assumes the form

Dv5
4R0F~R0!

B
, ~14!

whereR0 is the distance to the nearest neighbor in the n
equilibrium position.

Using an analogous formula, we can also take into c
sideration the second factor~vanishing of the binding energy
due to anisotropic forces!. In this case, we should use for th
additional force in Eq.~13! the expression]Uanis/]R, where
Uanis is the part of the binding energy which vanishes a
result of substitution by argon. Finally, we obtain the follow
ing expression for this part of the dilatational volume:

Dv.
4

B(
i

g iUi . ~15!

Herei labels three~quadrupole, valence, and dispersion! con-
tributions to the energy of anisotropic interaction of CO2

molecules,g i andUi are the corresponding Gru¨neisen con-
stants and the anisotropic interaction energy components
spectively. The values for the latter parameters are borro
from Ref. 22. For CO2, the value of the modulus isB
576.6 kbar.

Using the numerical data~some of which are presente
in Appendix 3!, we obtain for the parameters of all thre
isotropic interaction potentials (CO2–CO2, CO2–Ar and
Ar–Ar! a theoretical estimate for the excess volume per
gon impurity in CO2: Dv/v50.34, which is in quite good
agreement with the magnitude and sign of the experiment
obtained value 0.28@see Eq.~2!#. Thus, it turns out that for
weak dilutions with the argon impurity, the vanishing of th
anisotropic part of the binding energy of two CO2 molecules
is a more significant factor. Hence the introduction
smaller but more weakly interacting argon particles in
solid CO2 ultimately causes a dilatation of the lattice rath
than its compression.

As the concentration of Ar in the solution increases, t
description on the basis of the excess volume per isola
impurity becomes less and less appropriate. The behavio
the molar volume for appreciable concentrations (x.5%)
can be explained by using the cluster approach which ca
applied for concentrations up to 30% if we take triple clu
ters into consideration. If we confine the analysis to p
clusters for simplicity, the average molar volumeV can be
represented in the form

V5VM1xsDvs1xpDvp . ~16!

HereVM is the molar volume of a pure crystal M,xi andDVi

are the molar concentration and excess volume of single
pair clusters respectively, andxAr5xs12xp by definition.
Each isolated~single! argon impurity has an excess volum
associated with it, which is proportional to the numberZ of
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nearest neighbors and to the corresponding additional~nega-
tive for the system considered by us! force: DVs5Zw ~see
below!. If two Ar atoms form a pair cluster, it can be easi
shown that the number of CO2–CO2 bonds vanishing from
the pure crystal is 2Z24 and not 2Z. For simplicity, we
disregard the difference between the isotropic parts of
M–M and M–A interactions. This givesDvp5(2Z24)w.
Transforming~16!, we obtain

V5VM1~x22x2!Dvs . ~17!

Figure 7 shows the dependence of the molar volu
recalculated by using the data of Fig. 4 forTd525 K. The
solid curve corresponds to formula~16! with a theoretical
value Dvs(Ar/CO2) ~see above!. Consideration of triple
clusters lowers the peak and displaces it to the left~dashed
curve in Fig. 7!.

The excess volume for the CO2 impurity in solid argon
was calculated by taking into account the renormalization
the isotropic part of the Ar–CO2 interaction to a finite length
of the molecule~see Appendix 2! and on the basis of the
potentials proposed by Mirsky.27 The excess volume is est
mated theoretically atDv/v52.78, which differs signifi-
cantly from the experimentally obtained value~3!. The the-
oretical result indicates that if dilatation is taken in
consideration, the CO2 molecule occupies a four-times larg
volume than a regular argon atom. Consequently, the de
mations around the CO2 impurity are so large that it may
occupy two different equilibrium positions in the Ar lattice
The value of the excess volume obtained in~3! may be due
to a poor solubility of CO2 in solid argon.

All things considered, the indicated value of quasista
displacements and the estimate of the corresponding ba
heights indicate that the CO2 molecule in argon cannot per
form hindered tunnel rotation~like a nitrogen molecule in
any rare gas crystal!. The rotational transitions of the mo
ecule must occur between librational levels in the appro
ate orientational potential well. In turn, this determines
considerable difference of the glass state of this binary s
tem in the region of indirect interaction between molecu
from solutions with diatomic molecular impurities.

Let us return to our discussion of the phase whose lat
parameters are shown in Fig. 2 in the form of light circle
If we accept the theoretical estimate for the excess volu
per CO2 molecule, we find that the concentration of the co
ponent M is ;2.5– 4%. It should also be noted that th
large linewidth of what was indexed as the 111 reflection
Ar ~Fig. 3! indicates that the crystallites of the precipitat
Ar-based phase are very small.

The behavior of the orientational order parameterh in
CO2-rich solutions differs from that of N2-based solutions
The order parameterh in Ar–CO2 solutions varies smoothly
with the Ar concentration. The dependenceh(xAr) does not
tend to zero for moderate Ar dilutions unlike those in t
case of nitrogen.23 With increasing Ar concentration~above
55%), the CO2 impurity begins to precipitate, apparently
the form of a low-dispersive fraction whose crystallites ca
not form individually detectable coherent reflections in t
course of the experiment. In the absence of such a s
variation in the morphology, it could be expected that t
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orientational order would ‘‘survive’’ until quite large con
centrations of argon~80–85%! are attained since cubic sym
metry, unlike hexagonal symmetry, is not a factor in its
that would obstruct the existence of a long-range orien
tional order. This hypothesis is confirmed by the NMR dat24

obtained in Ar-rich N2–Ar solutions in the range of N2 con-
centrations close to the percolation threshold where th
solid solutions have a fcc structure.

In conclusion, the authors are pleased to express t
gratitude to A. I. Èrenburg for providing an opportunity to g
through some of his unpublished results, and for a discus
of several problems associated with the topics considere
this work. Thanks are also due to V. G. Manzhelii and N.
Krainyukova for discussion of the results and for valuab
comments.

APPENDIX 1: REDUCTION OF SUPERSTRUCTURE
REFLECTION INTENSITIES

The problem of determining the absolute values of
orientational order parameter is quite complex even in p
molecular crystals. In solutions, this problem is considera
complicated in view of the fact that the impurities are r
sponsible for the emergence of several factors which stron
influence the intensity and shape of reflections. Hence
procedure of reduction of reflection intensities becomes q
complicated. The idea behind the procedure laid down in
present work is based on the method described earlie
Sandor and Farrow,17 but modified by taking into account th
results obtained by us, including those described in App
dix 4. We shall carry out the reduction by using the refle
tions 200 and 210. The line 200 is used because it is q
intense and remains clearly distinguishable even for h
mutual concentrations.

The experimental value of the intensity of thehkl line
for a given sample with argon concentrationx ~we ignore the
subscript Ar for the sake of simplification! can be presented
in the form

I hkl
~exp!~x!5B~x!I hkl

~0!~x!, ~A1.1!

where the quantityB(x), which takes into account all param
eters of the experiment~scattering volume, primary beam
intensity, etc.!, is the same for all reflections of the give
sample. Using~8!, we can represent the intensity of the reg
lar reflectionI 200

(0)(x) approximately in the formB(x)F200
2 (x).

On the other hand, the intensity of the superstructural refl
tion 210 from a sample with concentrationx can be given in
the form I 210

(exp)(x)5B(x)I 210
(0)(x).B(x)CF(h), where we

have made use of the conclusion that the scattering inten
for the reflection 210 is proportional toh2(x) with a certain
proportionality factorC.

We introduce a physically significant relation

R~x![
I 210

~exp!~x!

I 200
~exp!~x!

, ~A1.2!

which does not involve the factorB(x) which is difficult to
determine. From~A1.2! we obtain
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R~x!

R~0!
5

I 200
~0! ~0!

I 200
~0! ~x!

F~h~x!!

F~h~0!!
, ~A1.3!

whence

h~x!

h~0!
5S R~x!

R~0! D
1/2F200~x!

F200~0!
, ~A1.4!

whereFhkl are the corresponding structural amplitudes.
Since the random static displacements lead to analog

variations of the intensities of all lines, the reduction proc
dure presented here essentially excludes the effect of
important factor on the estimate for the orientational or
parameter. The structure amplitudeF200 averaged over the
impurity positions and appearing in the above expressio
calculated with the help of Eq.~8! in which we putgc5gc0.

APPENDIX 2: ACCOUNT OF FINITE LENGTH
OF MOLECULES

The anisotropic part of the interaction between two~gen-
erally different! molecules or a molecule and an atom can
presented as the sum of three components, viz., the multi
electrostatic interaction and two components associated
valence and dispersion forces. The form of the direct e
trostatic interaction is obvious. The valence- based an
tropic component is usually estimated by using the ato
atom approach, while the dispersive anisotropic compon
is ‘‘constructed’’ either by using the concept of anisotropy
polarizability of a molecule, or by using the atom–atom a
proach again. We shall use a unified atom–atom approxi
tion for valence as well as dispersive parts of anisotro
interactions. The analytic representation of these interact
is fraught with the problem concerning the choice of t
potential. Usually, one confines the expansion inj52d/R0

to the first nontrivial term (2d is the ‘‘length’’ of the mol-
ecule andR0 the separation between the interacting p
ticles!. Each term in such an expansion ‘‘carries ’’ a corr
sponding spherical function of angles defining the orientat
of the molecule. This function is just the potential acting
the angular variables of the molecule. To a certain exte
such a procedure can be assumed to be justified for s
~diatomic! molecules, although good numerical estimates
such molecules can be obtained by considering the first
terms in the expansion inj in the coefficients of the corre
sponding spherical harmonics. Even for triatomic linear m
ecules, such a procedure becomes quite cumbersome a
respective of the number of terms of the expansion use
the analysis, there is no guarantee that the principal part
been taken into consideration.

Hence we propose an alternative approach for constr
ing the anisotropic part of the interaction.25 By way of an
example whose results have been used actively in the m
text, we consider the part of anisotropic interaction betwe
a molecule and an atom which is associated with vale
forces.

Thus, the repulsive part of the interaction energyEMA of
a linear symmetric molecule M with an atom A is estimat
us
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in the atom–atom approximation. In this case,EMA will have
the form~relative to the axis passing through the atom A a
the center of the molecule!

EMA5(
a

Ea~Ra!. ~A2.1!

Here the summation is carried out over the atomsa of the
molecule, andRa5R01ra is the radius-vector of separatio
between the atom A and the atoma of the molecule (ra is the
radius-vector of the atoma relative to the center of the mol
ecule!. It is assumed that the interaction of the atom A w
the atoma of the molecule is the same as with an isolat
atoma ~the energyEa of this interaction depends only on th
separationRa). It can be easily shown that~A2.1! can be
represented in the form

EMA5(
N

F~N0!YN0~v!, ~A2.2!

where the indexN runs through even values 0,2, . . . for a
symmetric molecule,YN0(v) is a spherical function, andv
is a unit vector along the molecular axis. The coefficie
F(N0) have the form

F~N0!5(
a

Aa~R0! f N~ja!, ~A2.3!

whereja5r a /R0, andAa(R0) is the constant of interaction
energy between the atom under consideration and atoma in
the molecule. The functionf N(r a /R0) is the total ‘‘inten-
sity’’ of the Nth rotational harmonic summed over all powe
of ratio ja .

For valence interaction, a convenient and fruitful a
proximation is the Lennard–Jones representationA(R)
}R212. Experience shows that it is convenient to confine
expansion in spherical functions to terms withN>4. Let us
represent the specific values of the spherical amplitude
interactions of an atom of a rare gas R with a diamotic
trogen molecule N2 and a triatomic carbon dioxide molecu
CO2. Introducing the notation

h5
2j

11j2
, ~A2.4!

we obtain for N2

F~00!54p1/2A
~5110h21h4!

4~12h2!5
; ~A2.5!

F~20!58~p/5!1/2A
h2~71h2!

~12h2!5
; ~A2.6!

F~40!5
192p1/2

5
A

h4

~12h2!5
. ~A2.7!

Here,

A5
ANR

~11j2!6R12
; ~A2.8!
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whereANR is the constant for the valence part of the Van d
Waals potential of interaction between a nitrogen atom
and a rare gas atom R. Note that the only coefficientF(00)
tends to a nonzero value 4p1/2ANR ash ~or j! tends to zero.
Hence the corresponding coefficient in~A2.2! tends to
2ANR.

It can be seen from~A2.5!–~A2.7! that forR5d ~i.e., for
j5h51), all coefficients of expansion in harmonics have
divergence which is quite obvious from physical consid
ations for a Lennard–Jones type hard-core potential. T
moment cannot be revealed for any arbitrarily large and
nite number of terms of expansion inj.

Similarly, we can write the coefficientF(00) for the
interaction between a rare gas atom R and a carbon dio
molecule in the form

F~00!54p1/2A
~5110h21h4!

5~12h2!5
12p1/2

AOR

R12
, ~A2.9!

whereA is defined by formula~A2.8! with the obvious sub-
stitution ACR for ANR, and AOR is the constant of valenc
interaction between an oxygen atom and a rare gas atom

The remaining coefficientsF(N0) coincide with the cor-
responding expressions~A2.5! and ~A2.6! in which the sub-
stitution ANR→ACR is made. The expansion forF(00) for
the exponential form of representation for the valence in
action ~in a diatomic molecule! has the form

F~00!54p1/2
A exp~2r!

r2 F ~11r!
sinhrj

j
2r coshrj G ,

~A2.10!

wherer5aR, a being the spatial parameter of the potenti
The potential can be easily generalized for a symmetric
atomic molecule, as for the representationR212 ~see~A2.8!!.

Let us also consider all terms of the expansion for
anisotropic part of the dispersion interaction. In this case
use functions of the typeB(R)52B/R6 instead of the func-
tions A}R212. As a result, we obtain for the lowest ha
monic amplitude~for the diatomic molecule N2)

F~0,0!524p1/2
BNR

R6

11j2

~12j!4
. ~A2.11!

APPENDIX 3: INTERACTION POTENTIALS

The theoretical estimates obtained in this work are ba
on the following potentials.

The potential of interaction between two argon atoms
the AA potential, has the Lennard–Jones form:

VAA5
AAA

R12
2

BAA

R6
, ~A3.1!

whereAAA54«s12; BAA54«s6; « ands are the Lennard–
Jones potential parameters defined in the standard ma
PresentingR in the above equation in Å and choosing t
values ofs and « as recommended by Barker,26 we obtain
AAA51.1643109 K3Å12; BAA57.473105 K3Å6.

We shall also use the potential proposed by Mirsky27

especially the AA potential
r

-
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de
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e
e
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er.

VAA5CAA exp~2aAAR!2
BAA

R6
, ~A3.2!

where R is in Angströms, BAA57.883105 K3Å6; CAA

53.933107 K; and aAA53.305 Å21.
The potential of interaction of an Ar atom with a CO2

molecule, i.e., theAM potential, consists of an isotropic and
an anisotropic part:

VAM5VAM
~ iso!1VAM

~anis! . ~A3.3!

It can be expected12 that the main contribution to the exces
mixing volume for low concentrations of CO2 comes from
the first term. Hence it must be evaluated with the high
degree of precision, taking into account the nonzero len
of the molecule~see Appendix 2!. For a ‘‘long’’ molecule
like CO2 such a renormalization turns out to be quite sign
cant.

Using the atom–atom approach for valence- as well
dispersive contribution to the anisotropic part of the inter
tion, we can presentVAM

iso in the final form

VAM
~ iso!5Vval

~ iso!1Vdisp
~ iso! . ~A3.4!

Using ~A2.11!, we can write

Vdisp
~ iso!52

BAC

R6
2

2BAO

R6

11j2

~12j!4
, ~A3.5!

whereR is the separation between the center of a CO2 mol-
ecule and an Ar atom.

The form of the valence contribution depends on t
choice of the initial potential. For the formR212, we obtain
~see~A2.9!!

Vval
~ iso!5

2AAO

R212

~5110h21h4!

5~12h2!5
1

AOC

R12
, ~A3.6!

whereAAO andAAC are the constants of valence interacti
between the corresponding atoms. If the valence contribu
is exponential in form, we obtain

Vval
~ iso!5CAC exp~2RaAC!

1
2CAOe2r

r2 F ~11r!
sinhrj

j
2r coshrj G ,

~A3.7!

whereCAC and CAO are the constants of the correspondi
atom–atom valence potentials,r5RaAO ,aAC and aAO be-
ing the spatial parameters of these potentials.

The second term in~A3.3! determines, among othe
things, the energy levels of an isolated impurityM in the
matrix AS, i.e., the thermodynamics of the impurity su
system as well.

The potential of interaction between CO2 molecules, i.e.,
the MM potential, was chosen in the form proposed b
Kohin28 ~see Ref 1 for details!. The isotropic part also in-
cludes a contribution that is of valence origin and is avera
over rotations of both molecules.28 The anisotropic part of
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the interaction consists of the valence and dispersion co
butions plus the direct electrostatic quadrupole–quadrup
interaction.

*E-mail: strzhemechny@ilt.kharkov.ua
1!The only exception is oxygen. Moreover, a large variety of phases w

different positional and orientational structures was observed under
pressures when direct repulsion forces begin to play a significant role2

2!An anisotropic interaction~AM ! of nonmultipole type exists between a
atom ~spherical impurity! and a molecule. Henceforth, we shall disrega
this interaction for two reasons. First, its intensity is much lower than
intermolecular~MM ! anisotropic interaction. Second, this AM interactio
does not contribute to the characteristic crystal field associated with
harmonicP20(v), wherev is the unit vector of the molecular axis orien
tation.

3!Alloys based on O2 form a special case because of a strong additio
contribution to the anisotropic interaction, i.e., the exchange interactio
electron spins.

4!We shall not consider the question of equilibrium of the transition its
This problem has been discussed by Yantsevichet al.14

1V. G. Manzhelii, Yu. A. Freiman, M. L. Klein, and A. A. Maradudin
~Eds.!, Physics of Cryocrystals~Eds.!, AIP Press, New York, 1996!.
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Low-temperature field reconstruction of atomic nanoclusters at tungsten surface
T. I. Mazilova

National Sciences Center ‘‘Kharkov Institute of Physics and Engineering,’’ 310108 Kharkov, Ukraine
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Low-temperature field reconstruction of atomic clusters at a closely packed face of a metal is
observed for the first time by the method of field ion microscopy. It is found that compact
clusters disintegrate into non-closely packed zigzag atomic chains. ©1998 American Institute
of Physics.@S1063-777X~98!01309-7#
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Most of clean metal surfaces have an atomic struct
corresponding to an ideal cross section of a three-dim
sional lattice. The structure of such atomically clean surfa
does not differ from structures lower-lying atomic plane
However, some metals at elevated temperatures under
rearrangement of the first surface layer as a rule, which
called surface reconstruction.1,2 Reconstructed surfaces a
characterized by a modified lattice symmetry or the size o
unit cell ~as compared to an ideal lattice!. In strong electric
fields inducing the dipole–dipole interaction of atoms, a s
cial type of surface reconstruction associated with a virtua
activationless displacement of atoms from the steps
closely packed faces to field-stabilized metastable posit
is observed.3,4 Combined thermal and field influence can le
to the disintegration of compact atomic clusters at clos
packed faces of metals.5 Detailed information on the recon
struction of configurations of atomic complexes in stro
electric fields is required, for example, to ensure reliable
terpretation of images of scanning tunnel microscopes
the reproducibility of maintenance parameters of nanote
nological devices developed on their basis.6,7 Surface relax-
ation and reconstruction of the surface of macroscopic
jects were studied in detail by the methods of slow elect
6791063-777X/98/24(9)/2/$15.00
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diffraction.1,2 However, there is virtually no information con
cerning these phenomena in surface atomic nanocluster

In this communication, we report on the observation
low-temperature field reconstruction of compact atom
nanoclusters at the~110! face of tungsten by using the fiel
ion spectroscopy. The experiments were made in a t
chamber field ion microscope on samples cooled by liq
nitrogen. The sample temperature was monitored from
data on the temperature dependences of the thres
strength of evaporating field and the resolution of t
microscope.3 In electric field measurements, the referen
point was the threshold strength of the evaporating field
tungsten taking into account anisotropy of field evaporatio8

The residual gas pressure in the working chamber w
1028– 1026 Pa, and the pressure of the imaging gas~helium!
was 1023– 1022 Pa. Needle-shaped samples oriented alo
the crystallographic direction@110# were prepared by elec
trochemical etching from grained tungsten wire with a pur
99.98%. After mounting in the microscope, the samp
were subjected to field evaporation in an electric field
strength (5.7– 6.5)3108 V/cm until a perfect atomically
smooth surface was formed. The radii of curvature
samples at the tip after the formation varied from 4.5
FIG. 1. Field ion microscopic images of a compact nanocluster~a! and non-closely packed atomic groups~b and c! formed during low-temperature field
evaporation of the$110% face of tungsten.
© 1998 American Institute of Physics
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50 nm. Evaporation was carried out at 78 K by applying
positive voltage of 1 – 25 kV.

Circular atomic nanocomplexes~Fig. 1a! were formed in
the course of controlled low-temperature field evaporation
the upper atomic layer~110!. The configuration of the com
plex approximately corresponded to the circular trace left
the intersection of the crystallographic~110! plane with the
hemisphere enveloping the surface. For needle-sha
samples with radii of curvature exceeding 12– 15 nm, cir
lar configuration was preserved during field evaporation
complexes. For smaller radii of curvature, field evaporat
from the steps of the upper~110! layer led to a jumpwise
disintegration of a cluster and to the formation of non-clos
packed atomic groups with various configurations~Figs. 1b
and c!. Evaporation of samples with the radii of curvature
the vertex smaller than 7 – 8 nm was accompanied by
formation of zigzag chains~see Fig. 1c! similar to those ob-
served earlier for thermal and field treatment of microsco
crystals.5 An analysis of the change in the configuration
atomic chains in the course of low-temperature evapora
proved that links of the chains are formed by pairs of ato
separated by distances exceeding the atomic diametera/2
@111#. The accuracy of direct measurements of the ang
between adjacent links of the chains is comparatively low
view of partial overlapping of atomic images, and the er
amounts to 10– 15°. The error of calculations of angles t
ing into account the width and length of zigzag chains a
the number of atoms in them is smaller by a factor of 3–
According to calculations, the angles between pairs of ato
in ion-microscopic images change upon a decrease in
chain length during evaporation. The links of chains cons
ing of 9–10 atoms are oriented along the@11̄3# and @ 1̄13#

FIG. 2. Schematic diagram of arrangement of tungsten atoms on the$110%
face in closely packed~a! and non-closely packed~b! zigzag chains.
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directions to within the errors of measurements. In the cou
of evaporation of the chains, the angle between adjacen
oms increases continuously, attaining the value of (
65)°. In strong electric fields, atoms can go over to a me
stable position corresponding to the arrangement of
lower-lying layer$100% above the triple of atoms.3 The re-
corded continuous change in the angles between adja
atomic dumb-bells on ion-microscopic images cannot refl
the actual distribution of metastable positions of atoms o
closely packed face. An analysis of 100 microphotograph
atomic chains revealed that such a change in angles on
microscopic images is associated with nonuniformity of lo
magnification above a non-axisymmetric cluster. As t
length of the chains decreases, the principal radii of cur
ture of the perturbed region on the effective electron surf
level out, the anisotropy of magnification of the microsco
above the non-axisymmetric cluster decreases,9 and the angle
between pairs of atoms on the images increases, approac
the actual angle between the links in the chains. Figur
shows the schematic diagram of the arrangement of atom
the ~110! face in the nearest lattice sites~a! and in the non-
closely packed zigzag chain formed during low-temperat
field reconstruction~b!. While constructing the diagram in
Fig. 2b, we assumed that surface atoms are in metast
surface states stabilized by the electric field. The driv
force in the observed disintegration of nanoclusters is ap
ently dipole–dipole repulsion4 of atoms in a nanocluster
which is induced by strong electric fields.

Thus, we discovered a special type of low-temperat
field reconstruction, viz., disintegration of atomic nanoclu
ters at a closely packed face.

In conclusion, the author expresses her deep gratitud
A. S. Baka� and I. M. Mikha�lovski� for fruitful discussions.
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Renormalization of acoustic phonon spectrum and space distribution of the induced
charge in a double-layer quantum Hall system

D. V. Fil

Institute of Single Crystals, National Academy of Sciences of the Ukraine, 310001 Kharkov, Ukraine*
~Submitted April 1, 1998!
Fiz. Nizk. Temp.24, 905–909~September 1998!

The frequency renormalization of acoustic phonons interacting with a double-layer composite
fermion system is calculated. The space distribution of the density of the charge induced
by an external electrostatic potential in a double-layer composite fermion system is determined.
It is shown that for a filling factor for which states with the interlayer statistical interaction
and without it can be realized, the emergence of such an interaction causes a jump in the phase
velocity of a finite-frequency acoustic phonon and changes the space distribution of the
charge induced by the external potential. These effects can be used for observing a transition in
a double-layer electron system under the conditions of the fractional quantum Hall effect
to a new ground state upon a decrease in the separation between the layers. ©1998 American
Institute of Physics.@S1063-777X~98!01409-1#
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A double-layer electron system in a strong magne
field is characterized by a hierarchy of noncompress
states with fractional filling factors, which differs from
monolayer hierarchy. The possibility of such states was p
dicted by Halperin1 who proposed a new class of wave fun
tions with are a generalization of the Laughlin function2 to
multicomponent systems. New states were detected ex
mentally by Suenet al.3 and Eisensteinet al.4 who observed
the fractional quantum Hall effect with a filling factorn
51/2.

Lopez and Fradkin5 proposed a model for description o
the fractional quantum Hall effect in a double-layer syste
which is a generalization of the model of composite fermio
developed earlier for monolayer systems.6–8 The concept of
composite fermions lies in that the ground state of the sys
described by the wave function1,2 corresponds to the groun
state of fermions interacting with the Chern–Simons ga
field. As a result of such an interaction, the external magn
field is partially screened, and the fractional quantum H
effect for electrons appears as the integral Hall effect
composite quasiparticles. In the case of a double-layer
tem, a composite fermion can be regarded as a quasipa
carrying a statistical charge~each layer is characterized by i
own type of charge!, the flux of the gauge fieldw corre-
sponding to the statistical charge in the same layer, and
flux of the gauge fields corresponding to charges in the oth
layer. In particular, fors50 the interlayer statistical interac
tion is absent, and the ground state in each layer coinc
with the ground state of the monolayer system. The Fe
statistics of composite quasiparticles imposes constraint
the magnitudes of the fluxes: the parameterw is even ands is
integral ~even or odd! in the units of flux quanta.

In the case of two equivalent layers, the filling facto
corresponding to Hall plateaus are defined as
6811063-777X/98/24(9)/4/$15.00
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n52n i5
2N

N~w1s!61
, ~1!

where n i is the filling factor per layer andN the integer
corresponding to the number of filled Landau levels in t
effective fieldBeff5B@12n(w1s)/2#. The upper~lower! sign
in Eq. ~1! and below corresponds to the parallel,Beff.0 ~an-
tiparallel, Beff,0) direction of effective field relative to the
external magnetic field.

According to Eq. ~1!, different generalized Laughlin
states corresponding to different states of parametersw, s,
andN in the composite Fermi approach can exist for cert
fixed filling factors. As the separationd between the layers
decreases, a phase transition from state withs50 ~existing
for d@ l B , wherel B is the magnetic length! to a state with
the statistical interaction between layers (sÞ0) can occur.9

For example, forn54/7, a transition from the state withw
54, s50, N52 to a state withw52, s51, N52 can be
expected.

The rearrangement of the ground state might be
served experimentally while studying collective properties
a double-layer system. Among other things, a change in
ground state can modify the spectrum of collective mode5

In this communication, we analyze the interaction of acous
phonons with a double-layer system of composite fermio
as well as the screening of external electrostatic potentia
such a system. The above-mentioned effects applicabl
monolayer systems were considered by us in Refs. 10
11. Here we prove that a transition of a double-layer syst
to a new ground state must be manifested in the chang
the frequency of the phonon mode interacting with comp
ite fermions and in a change in the space distribution of
charge induced by an external potential.

Let us consider a double-layer system of completely
© 1998 American Institute of Physics
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larized composite fermions in an external magnetic field p
pendicular to the layers. The Hamiltonian of the system
the form

H5(
i 51

2

d2rC i
1~r !

1

2m
@2 i¹1eAeff~r !2ai~r !#2C i~r !

1
1

2 (
i , j 51

2 E d2r E d2r 8dni~r !Vi j ~ ur2r 8u!dnj~r 8!,

~2!

whereC is the fermion field,m the quasiparticle mass,Aeff

the vector potential of the fieldBeff ,

Vi j ~r !5
e2

«
@d i j r

211~12d i j !~r 21d2!21/2# ~3!

the Coulomb potential,« the dielectric permittivity,

ai~r !5(
j 51

2 E d2r 8@wd i j 1s~12d i j !#

3dnj~r 8!
ẑ3~r2r 8!

ur2r 8u2 ~4!

the sum of vector potentials of gauge field fluctuations,ẑ the
unit vector along the fieldB, dni(r )5C i

1(r ) C i(r )2n0 ; n0

being the average concentration of electrons in the layer
The polarization tensor of system~2! in the random-

phase approximation is defined as

K̂21~q,v!5@K̂ ~0!~q,v!#212V̂~q!, ~5!

whereK̂ (0)(q,v) is the polarization tensor in the zeroth a
proximation andV̂(q) the interaction matrix. In Eq.~5!, the
quantitiesK, K (0), and V are 434 matrices whose eac
component has two indices corresponding to the number
the layers, the other two indices corresponding to the ze
and transverse current components. The matrixK (0) has the
block-diagonal form

Kmn i j
~0! ~q,v!5d i j FDmn

~0!~q,v!1
n0

m
dmn~12dm0!G , ~6!

whereDmn
(0)(q,v) is the Fourier component of the temporal

ordered current–current correlator in the zeroth approxim
tion:

Dmn
~0!~r ,t;r 8,t8!52 i ^T$ j im~r ,t ! j in~r 8,t8!%&0 . ~7!

The calculation ofK (0) at T50 gives

Kmn i j
~0! ~q,v!5d i j

1

2pvc
S q2S0 7 iqvcS1

6 iqvcS1 vc
2~S21N!

D ,

~8!

where vc5euBeffu/m52pn0 /mN is the effective cyclotron
frequency, and

Sk5e2x (
n50

N21

(
m5N

`
n!

m!

xm2n21~m2n!

~v/vc!
22~m2n!2 @Ln

m2n~x!#22k

3F ~m2n2x!Ln
m2n~x!12x

dLn
m2n~x!

dx G k

, ~9!
r-
s

of
th

-

where x5(qleff)
2/2, l eff5(euBeffu)21/2 is the effective mag-

netic length, andLn
m2n(x) is the generalized Laguerre poly

nomial. Expressions similar to~8! and~9! were obtained for
the first time for anyon systems~see, for example, Ref. 12!.

The interaction matrix has the form

V5S V11 V12

V21 V22
D , ~10!

where

V115V225
2p

q S e2«21 2 iw

iw 0 D , ~11!

V125V215
2p

q S e2«21 exp~2qd! 2 is

is 0 D . ~12!

The solution of Eq.~5! for polarization density–density
functions gives

K11005K22005
1
2 ~K in1Kout!, ~13!

K12005K21005
1
2 ~K in2Kout!, ~14!

where

K in~out!5
1

2pvc

q2S0

D in~out!
, ~15!

D in~out!5~w in~out!S171!22w in~out!
2 S0~N1S2!2Vin~out!S0 .

~16!

In the last equation~16!, we havew in5w1s, wout5w
2s, Vin5(e2q/«vc)@11exp(2qd)#, Vout5(e2q/«vc)@1
2exp(2qd)#.

Let us consider the renormalization of the spectrum
acoustic phonons interacting with a double-layer system
composite fermions. Forq'B, Green’s function for phonons
satisfies the following equation:

G21~q,v!5@G~0!~q,v!#212gigjKi j 00~q,v!, ~17!

where G(0)(q,v) is Green’s function for free phonons,gi

5gj5Lq(2rdlvq)21/2 the matrix element of interaction be
tween phonons and composite fermions,L the deformation
potential,r the density of the elastic medium,dl the thick-
ness of the layer in which the phonon mode propagates,1! and
vq5cq the nonrenormalized phonon frequency. Accordi
to Eqs.~13!–~17!, the renormalization of the phonon pha
velocity for finite q has the form

Dc~q!

c
5

L2q2S0~q,vq!

2prdlc
2vcD in~q,vq!

. ~18!

The dependenceDc(q)/c for n54/7, 4/5 is shown in
Fig. 1 for s50, 1. We used the parametersn051011 cm22,
m50.25me , «512.6, c543105 cm/s, L57.4 eV, r
55.3 g/cm3, d53l B anddl5103 Å. It can be seen from the
curves in Fig. 1 that statistical interaction emerging betwe
the layers changes qualitatively the dependence of the re
malization of the phase velocity of an acoustic phonon onq.
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For a givenq, the phase velocity jump observed during t
transition of the system to a new ground state can bec
comparable with the renormalization.

Let us now consider the screening of electrostatic pot
tial in a double-layer system. To be more specific, we a
lyze the situation when a test charge of magnitude2e and
with coinciding x and y coordinates is located near ea
layer. In the random-phase approximation, the Fourier co
ponent of the density of the charge induced in thei th layer is
defined by the equation

er i
ind~q!5e2Ki j 00~q,0!w j~q!, ~19!

where w i(q)5w j (q)52(2pe/«q)@11exp(2qd)# is the
Fourier component of the external electrostatic potential c
ated by test charges. Taking into account Eqs.~13!–~16!, we
obtain the following expression forr i

ind(q):

r i
ind~q!5

VinS0~q,0!

D in~q,0!
. ~20!

The inverse Fourier transform for formula~20! gives the
space distribution of the induced charger ind(r ). Ther ind(r )
curves for the filling factorsn54/7 and 4/5 fors50, 1 are
shown in Figs. 2a and 2b. In our calculations, we used
parameters of the electron system given above. The curv
Fig. 2 are analogs to Friedel oscillations in a system of co
posite fermions. It can be seen that the statistical interac
between the layers changes significantly the space distr
tion of the charge.

Thus, the renormalization of the acoustic phonon f
quency for finite wave vectors and the space distribution

FIG. 1. Dependence of the renormalization of the phase velocity of
acoustic phonon on the wave vector. The solid curves correspond to a
tem with a statistical interaction between layers (s51), while the dashed
curves correspond to a system without a statistical interaction between
ers (s50).
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the charge induced in a double-layer system of compo
fermions are modified significantly upon a transition of t
system to a state with interlayer statistical interaction. T
observation of the effect considered above can be used a
indicator of the formation of a new electron state of
double-layer Hall system upon a decrease in the separa
between the layers.

*E-mail: fil@isc.kharkov.ua
1!In the case of a solitary double-layer system, the physical situation con

ered above can correspond to the propagation of a surface acoustic w
In this case, the parameterdl is the attenuation length for the surface wav
The renormalization of the spectrum of bulk phonons can be observed
superlattice of double quantum wells. In this case,dl is the superlattice
parameter.
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Current-phase relation for a superconducting point contact with a tunneling barrier
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The microscopic theory of the dc Josephson effect for a short clean superconducting point
contact with a tunnel barrier is developed. The influence of the ordinary quasiparticle scattering
on the nondiagonal potentialD of the superconductor is studied. It is shown that such
processes may be significant in high-Tc superconductors for the case of a barrier with high
transmittance. The current-phase relation for a point contact at arbitrary temperatures is calculated.
© 1998 American Institute of Physics.@S1063-777X~98!01509-6#
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The microscopic theory of the current states of cle
superconducting point contacts was first constructed by
lik and Omelyanchouk1,2 They studied the model of a poin
contact in the form of a small orifice in an opaque scre
through which electrons can penetrate ballistically from o
superconducting bank to the other. It was shown that
Josephson current of the point contact is defined as

J5
pD~T!

eRN
sin~F/2!tanh

D~T!cos~F/2!

2kBT
,

2p,F,p, ~1!

where 2D is the band gap of the superconductor,F is the
phase difference in the order parameter of the contac
superconductors,RN the point contact resistance in the no
mal state,T the temperature andkB the Boltzmann constant
Near the superconducting transition temperatureTc , formula
~1! has a form reminiscent of the result obtained by Amb
gaokar and Baratoff3 for a tunnel junction (j ; sinF), but
has a current dependence of the phase in the form sin(F/2) at
T50, the current suffering a discontinuity at the pointsF
56p.

The results obtained in Refs. 1 and 2 were subseque
generalized by Haberkornet al.4 and Zaitsev5 to the case of a
point contact containing a tunnel barrier of arbitrary tran
parency 0,D0,1:

J5
pD~T!

2eRN

sin F

A12D0 sin2~F/2!

3tanhFD~T!

2kBT
A12D0 sin2~F/2!G , ~2!

where RN is the resistance of the point contact,RN
21

5e2kF
2SD0 /(4p2\), kF the Fermi wave vector andS the

contact area.
It can be seen that formula~2! tends to the classica

expression obtained in Ref. 3 forD0!1. Upon an increase
in D0 ~as well as a decrease inT!, the current-phase relatio
deviates from the sinF dependence. In the limit of a clea
contact (D0→1), formula~2! is transformed to formula~1!.
6851063-777X/98/24(9)/4/$15.00
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Beenakker6 derived formula ~2! for the case of a
superconductor-normal metal-superconductor~SNS! junc-
tion, when the normal interlayer can be described by an
bitrary disordered potential.

The current through a weak link is carried by quasip
ticles which are transported coherently from one superc
ducting bank to the other. For a cleanSNSjunction, this was
demonstrated for the first time by Kulik7 who studied the
quantum states of excitations with energyE,D. It was
shown that Andreev reflection of quasiparticles atNS-
boundaries leads to the formation of coupled states~Andreev
levels! in the normal interlayer,8 their spectrum depending
significantly on the phase differenceF of order parameters a
the contact banks. The superfluid current is transpor
through these Andreev levels, and the current states of
weak link are parametrized by the phase differenceF. It was
stated7,9 that Andreev quantization and Josephson tunne
in SNSjunctions are closely related concepts. Later, it w
established remarkably that Josephson current through a
nel junction is also transported through coupled states lo
ized in the vicinity of the tunnel barrier. Furusaki an
Tsukada10,11 showed that the passage of current through
tunnel junction leads to the formation of discrete levels in
band gap (E,D). The emergence of coupled states is a
companied by the processes of conversion of Cooper p
into quasiparticles~and vice versa! near the insulating bar
rier, so that the current is transported through the barrier
quasiparticles. Hence a comparison of formulas~1! and ~2!
leads to the following conclusion. Andreev reflection of qu
siparticles is considered during calculation of the curr
through weak links in both cases. However, normal scat
ing of quasiparticles at the barrier during their passa
through the contact is also taken into consideration wh
deriving formula ~2!. It was shown by Bagwell12 that the
introduction of an individual impurity into a weak link als
suppresses the Josephson current.

In this communication, we report on the influence of
new mechanism of potential scattering of quasiparticles
the Josephson current through a clean point contact con
ing a tunnel barrier~Fig. 1!. This phenomenon is associate
with the normal scattering of excitations at the nondiago
potential D leading to the scattering of a particle into
© 1998 American Institute of Physics
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‘‘particle’’ and a hole into a ‘‘hole’’. The probability of such
processes can be calculated easily and is of the orde
(D/z)2 for energiesE,D ~z is the chemical potential of the
metal!. For conventional superconductors, this probability
so low that such processes are usually disregarded du
calculations of quantum effects in weak links~the so-called
Andreev approximation!. However, it was shown in recen
experiments13,14 that the parameterh0[D/z for a number of
high-Tc superconductors~and may attain values of the orde
of 0.1!. Hence such processes in these materials may be
nificant in the calculations of quantum effects. In a rec
publication,15 we derived a general dispersion equation d
scribing the spectrum of quasiparticles in aSINISstructure
taking into account the Andreev scattering as well as
normal scattering of quasiparticles at the interfaces betw
the media and at the potentialD.

In order to calculate the current, we must calculate
spectrum of quasiparticles in a point contact containing
insulating barrier. We assume that the transition is tran
tionally invariant in the~x,y! plane. The transverse size of
point contact is assumed to be small in comparison with
field penetration depth, and hence we can disregard the
tor potential from the equations.16 We proceed from the
Bogoliubov-De Gennes equation17:

ĤC5EC. ~3!

HereC5(w
c) is the two-component wave function of quas

particles, andE its energy. If thez-axis is directed along the
normal to the tunnel barrier and the nondiagonal potentiaD
of the superconductor and the diagonal potentialU depend
only on z, the matrixĤ describes the one-dimensional pro
lem

Ĥ5S T̂ D

D* 2T̂
D where T̂52

\2

2m S d2

dz2 1
2mz̃

\2 D 1U~z!;

z̃5z2q2/2m; q(qx ,qy,0) is the component of quasimome
tum parallel to the interface, andm the electron mass.

For simplicity, we use a model with thed-functional
potentialU(z)5Wd(z), whereW characterizes the intensit
of normal scattering of electrons at the barrier. The sup
conducting order parameterD(z) on both sides of the barrie
is described in the form

D~z!5H D exp~ iF1!, z.0,

D exp~ iF2!, z,0.
~4!

FIG. 1. Schematic diagram of a short point contact with a tunnel barr
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A point contact is assumed to be short if its lengthL
satisfies the conditionsa0!L!j0 ~herea0 is the lattice con-
stant andj0 the coherence length of the superconducto!.
The spectrum is calculated by using the model of abr
variation of the magnitude of order parameter of anSNS
junction, i.e., by disregarding the proximity effect. The ef
ciency of this model is the higher, the stronger the scatter
of quasiparticles at the insulating barrier.

We are interested in the states of quasiparticles with
ergyE,D. We shall solve the Bogoliubov-de Gennes equ
tions by using the boundary conditions, i.e., the continuity
the two-component wave function at the pointz50 and the
existence of a jump in this derivative at the same point. A
result, we arrive at a homogeneous system of four equat
for determining the unknown coefficients for the amplitud
of wave functions in the media. We shall use the requirem
of zero determinant of the system to find the dispersion eq
tion for the quasiparticle spectrum of a point contact with
barrier. It is convenient to introduce the following quantitie
Z5mW/A2mz̃ ~the dimensionless parameterZ characterizes
the intensity of the potential barrier;Z50 in the absence o
a barrier!, andl5A11 iht, t[t(E)5A12E2/D2 ~l is the
dimensionless quasimomentum inA2mz̃ units!. The param-
eterh5D/ z̃ takes into account normal~potential! quasipar-
ticle scattering at the nondiagonal potentialD ~the caseh
50 corresponds to the Andreev approximation!. Using these
parameters, we can write the dispersion equation in the f

2g2~ ulu211!cosF22ulu2~12g2!22g2

2~12g2!2@2Z21Zht#22ulu2g4

1 iZ~12g2!2~l2l* !50. ~5!

Here

g5
D

E1 iAD22E2
~E,D!;

F5F12F2 is the phase difference for the order para
eters of the banks of the contact. Assuming thatZ is arbi-
trary, we take into account in~5! only the second-order term
in h. In this case, Eq.~5! assumes the form

~12g2!2F11S ht

2 D 2

1S Z1
ht

2 D 2G14g2F11S ht

2 D 2G
3sin2

F

2
50. ~6!

Let us suppose thatZ50; in the absence of an insulatin
barrier, ordinary scattering at a nondiagonal potentialD gives
a correction of the order ofh2 to the quasiparticle spectrum
of a short point contact. Beyond the Andreev approximati
this gives the following expression for energy levels (a
5arccosE/D):

cosa5
E6

D
56Acos2~F/2!1~h2/4!sin4~F/2!, ~7!

which coincides with the result obtained by Hurd a
Wendin.18 For traditional superconductors, the parame

.
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h;102321024, and this correction to the spectrum can
neglected.

It is interesting to consider a point contact made o
HTSC material for which the insulating barrier has a hi
transparency:

1;Z@ht/2. ~8!

We can now retain in Eq.~6! only first-order terms inh.
Then the expression for the spectrum has the form

E6~F;q!56D$12D sin2~F/2!

3@12hDA12D sin~F/2!#%1/2. ~9!

We have introduced the notationD51/(11Z2) for the
transparency of the potential barrier. Spectrum~9! satisfied
the condition dE/dFuF5p50.10–12 Both functions D
5D(q) andh5h(q) depend onq. It can be seen that whe
perturbation~ordinary scattering of quasiparticles at the b
rier and at the potentialD! is taken into consideration, th
spectrum of Andreev levels acquires an energy gap, wh
suppresses the Josephson critical current of the point con
For F5p, the gap is

Eg852DA12D@12hD~12D !1/2#

'2DA12D1DhD2.

In the Andreev approximation (h50) for a point contact
with a barrier, the gap is 2DA12D,12 while for a clean
barrierless point contact (D51) and a finiteh, its value
coincides with the result obtained by Hurd and Wendin.18

Generally speaking, the Josephson current contains
tributions of discrete and continuous spectra of a weak li
However, while calculating the current through a short po
contact, we can confine ourselves to the contribution fr
the discrete spectrum only.6,10–12

The current through discrete Andreev levels can be
culated by the formula19

J~F!5
2e

\ (
q

FdE1

dF
f ~E1!1

dE2

dF
f ~E2!G , ~10!

where f (E) is the Fermi function for quasiparticles. Consi
ering that E152E2 and f (E1)512 f (E2), substituting
spectrum~9! into ~10!, and integrating with respect toq, we
obtain the following expression for current:

J~F!'
pD~T!

2eRN

3
sin F@123/2hD0A12D0 sin~F/2!#

@12D0 sin2~F/2!1h0D0
2A12D0 sin3~F/2!#1/2

3tanhFD~T!

2kBT
@12D0 sin2~F/2!

1h0D0
2A12D0 sin3~F/2!#1/2G . ~11!

Here D0 and h05D/z are the maximum values of th
transparency coefficient and parameterh ~the maximum cur-
rent through the barrier is connected with the valueq50).
-

h
ct.

n-
.
t

l-

Expression~11! is valid for superconductors withh0'0.1
under the condition~8!. It can be seen that the presence
ordinary scattering of quasiparticles at potentialD reduces
the Josephson current.

It is interesting to note that the first-order correction inh
to current vanishes in the following two limiting cases:~1!
the barrier transparencyD0→0(Z→`), and ~2! D0→1(Z
→0). In these cases, the corrections to the current hav
higher order of smallness. For a tunnel junction (Z@1), this
is associated with a suppression of coherence at the co
banks. For a clean contact (Z→0), the processes of norma
scattering of quasiparticles by the potentialD make a contri-
bution just of the order ofh2 to the current@see formula~7!#.
Upon the application of a potential barrier, the intensity
particle-particle scattering processes increases. For a hi
transmitting barrier (Z;1), the contribution to the current i
of the order ofh, i.e., the decrease in current is stronger th
for a clean barrierless point contact.

The experimental detection of an additional contributi
to the contact current from the processes of particle-part
scattering by nondiagonal potentialD is not a simple prob-
lem. The current passing through the contact must be m
sured to a high degree of precision. This imposes sev
constraints on the quality of tunnel junctions in the po
contact. In particular, the interfaces between media mus
perfect to the atomic scale. Bozovic and Eckstein20 have re-
ported on the fabrication of a high-temperatureSIS tunnel
junction. The technology developed by them makes it p
sible to prepare tunnel junctions and multilayers with sh
interfaces on the atomic scale, thus demonstrating the h
reproducibility of the experimental results. The technolo
of obtaining tunnel junctions with a mechanically adjustab
gap ~MAG! between metals21 has its advantages for precis
measurements of current and its comparison with the the
Akimenko et al.22 used the MAG technique to obtai
Bi2Sr2CaCu2O81d single crystal junctions with clean an
sharp cleavage surfaces~on the atomic scale! of quite large
area. For a small gap between electrodes~tunnel regime!, a
microjunction with adjustable contact resistance can be r
ized.
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Spontaneous incommensurate crystal phase in the Jahn–Teller KDy „MoO4…2 crystal?

N. F. Kharchenko and Yu. N. Kharchenko

B. Verkin Institute for Low Temperature Physics and Engineering,
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R. Szymczak and M. Baran
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Investigations of magnetic and spontaneous birefringence properties of a KDy(MoO4)2 crystal
under the Jahn–Teller phase transformation reveal some features indicating the existence
of two spontaneous phase transitions at temperatures close to 14.3 and 11.0 K. The characteristic
changes in birefringence in these transitions suggest that the crystal of KDy molybdate has
a modulated incommensurate lattice structure in the temperature range from 11.0 to 14.3 K.
© 1998 American Institute of Physics.@S1063-777X~98!01609-0#
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The KDy(MoO4)2 crystal ~Fedorov symmetry group
D2h

14(Pbcn)),1,2 which is orthorhombic at room tempera
tures, belongs to the family of layered crystal of doub
alkaline-earth molybdates. Many crystals of this family e
hibit at low temperatures spontaneous instability associa
with cooperative Jahn–Teller effect. A distinguishing featu
of this effect in KDy(MoO4)2 is nonferrodistortion ordering
of its Jahn–Teller distortions.3–6 Paramagnetic compound
based on rare-earth Jahn–Teller ions are characterized
high sensitivity of their crystal lattice structures to magne
field at low temperatures.7–9

Leask et al.5 discovered that a magnetic field in a par
magnetic KDy(MoO4)2 crystal oriented along a directio
close to the direction of the axis with the maximum value
the g-factor of spectroscopic splitting for one half of Dy31

ions ~and along the axis with the lowest value of theg-factor
for the other half of these ions! leads to a structural phas
transition similar to the metamagnetic transition in stron
anisotropic antiferromagnets. Optical and magnetic inve
gations of this transition revealed that the transformat
from the low-field to the high-field crystal phase occurs n
though a single phase transition, but through two phase t
sitions with the formation of an intermediate phase.10,11 Ex-
trapolation of temperature dependences of the two crit
fields led to the conclusion that the intermediate crystal s
must also exist in zero magnetic field.

This research aims at experimental verification of co
clusions concerning the spontaneous formation of the in
mediate crystal phase in a KDy(MoO4)2 crystal.

We analyzed the temperature dependences of spon
ous linear birefringence and magnetization. The magnet
tion was measured in magnetic fields of strength up
10 kOe. The linear birefringence method is widely used
studying magnetic and structural phase transformations.12,13

The application of the magnetic method was dictated by
6891063-777X/98/24(9)/4/$15.00
-
d

e

y a

f

i-
n
t
n-

al
te

-
r-

ne-
a-
o
r

e

fact that the parameters and orientations of the principal a
of g- tensors of magnetic sites in Dy31 change significantly
in the structural transformation under investigation.4,14

The experiments were made on samples having a
;43330.2 mm. The sample quality was tested by conve
tional optical–polarization methods. The samples contai
plane-parallel regions with a size;0.531 mm in which the
extinction of light was uniform. Birefringence was studie
on spots of diameter 200mmm just in these regions. Th
direction of light propagation always coincided with th
c-axis ~a55.07 Å, b57.95 Å, c518.23 Å! perpendicular to
the cleavage plane. The phase shift between normal op
modes emerging from the crystal was measured by using
modulation technique.13

For birefringence measurements at low temperatures
used an optical cryostat without ‘‘cold’’ windows. Th
sample was in vacuum and was ‘‘freely’’ attached to the c
finger by using the technique described earlier.10 The sample
temperature was varied smoothly at a ra
;0.25 K/min.Temperature measurements were made w
the help of a carbon resistance thermometer. The erro
determining the temperature difference for the sample wa
the order of 0.02 K, while the error in the measurement of
absolute value of sample temperature is estimated by u
0.3 K.

The magnetic properties of the crystal were studied o
SQUID magnetometer MPMS-5. In order to avoid the em
gence of mechanical stresses in the sample during coo
which could affect the phase transition, the sample w
placed in a special cell consisting of two quartz plates a
three quartz supports whose thickness was close to
sample thickness. Quartz parts were glued together by
adhesive containing no magnetic impurities. The sample
self was not glued. The error in the sample orientation re
tive to the magnetic field direction did not exceed 2°.
© 1998 American Institute of Physics
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First of all, we studied the extinction of light in th
sample in the temperature interval covering the phase tra
tion temperature. According to visual observations, exti
tion of light in crossed polarizers was complete and unifo
over the entire field of sample image at all temperatur
Extinction of light in polarizers crossed at 45° was studied
quasi-monochromatic light. No changes in the pattern of
tinction and its depth in the course of phase transforma
of the crystal were observed. The invariability of extinctio
conditions indicates that the macroscopic symmetry of o
cal properties of the sample did not change as a result o
phase transformation. This property can be an evidenc
the fact that if the point symmetry of the crystal is lowered
a result of the transition, the twins formed during the tran
tion must have walls parallel to the plane of cleaved surf
of the sample, and domains themselves must have a th
ness smaller than the thickness which could be visually
served in polarized light at step edges of the sample.

Figure 1 shows the temperature dependences of
phase shiftd between the normal optical modes with th
wavelength 550.5 nm in the temperature range of ph
transformation. In order to illustrate high reproducibility
the experimental values, the dependences obtained in
cooling–heating cycles are presented. The change in
phase shiftd over the entire region of the structural transfo
mation is;0.35 rad. If we disregard the change in the crys
size, this value ofd corresponds to a change in birefringen
by ;1.231024.

The d(T) dependences display two clearly manifest
temperaturesT1511 K and T2514.3 K at which singulari-
ties are observed: a jump~nearT1) and a kink (T2). Differ-
ent types of singularities are manifested more clearly on
temperature dependence of the derivative of birefringe
with respect to temperature, which reflects to a certain ex
the temperature variation of heat capacity in the vicinity
the phase transition.12,13

The temperature dependence ofDd/DT is shown in
Fig. 2. The peculiar behavior of birefringence atT1 andT2

can be due to phase transitions in the crystal. It can be cle
seen from Fig. 1 that a temperature hysteresis loop of w

FIG. 1. Variation of phase shift between optical modes propagating
KDy(MoO4)2 crystal at right angles to the cleavage plane during the st
tural phase transformation.
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;0.1 K takes place in the vicinity of 11 K. The hysteresis
slightly asymmetric: its branch corresponding to sam
cooling is less steep than the branch corresponding to h
ing. The hysteresis loop has tails extending to the regi
occupied by neighboring phases. The shape of the hyste
loop depends on the temperature variation rate and the
perature of heating only slightly.

The observed singularities suggest thatT1 andT2 are the
temperatures corresponding to two phase transitions. Ju
wise changes ind and the hysteresis loop indicate that t
transition atT1 is a first-order phase transition. However, th
transition must be close to a second-order phase trans
since the jump-wise variation ofd amounts to less than 20%
of the entire change ind ~from the value near 11 K from the
side of high temperatures to saturation which is almost
tained at the lowest experimental temperature of 6.7 K.

The existence of a phase transition near 14.3 K follo
from the temperature dependence of birefringence. Thed(T)
dependence is close to linear in the temperature range f
11.5 to 13.5 K. A further increase in temperature leads
more rapid changes, after which thed(T) dependence attain
saturation. The absence of a hysteresis loop and the ju
wise change in the derivativeDd/DT nearT2 from the side
of high temperatures suggest that the phase transition atT2 is
a second-order phase transition.

The temperature dependences of crystal magnetiza
which were obtained for different samples with the magne
field orientation along the crystallographicb-axis and at
angles to thec-axis have clearly manifested singularities
the neighborhoods of the same temperaturesT1 and T2.
Figure 3 illustrates the temperature behavior of magnet
tion in a magnetic field oriented along the crystallograp
axis b. For other field orientations, singularities can be o
served in the coordinates (M /H)3T5 f (T) and in the tem-
perature dependences of the derivativesD@(M /H)3T#/DT
5 f 8(T). The observed singularities indicate that the po
tions of O22 ions surrounding a Dy31 ion and determining
the orientation of the axes of theg-tensor of spectroscopic
splitting change in the temperature intervalT1,T,T2.

The peculiarities in the temperature dependence

a
-
FIG. 2. Peculiarities in the behavior of the first derivative of birefringen
of light with respect to temperature in the vicinity of temperaturesT1 and
T2.
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FIG. 3. Behavior of magnetization of a
KDy(MoO4)2 crystal in weak magnetic
fields oriented parallel to the crystallo
graphic axisb (b57.97 Å) in the cleavage
plane during the spontaneous structur
phase transformation.
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z.
birefringence and magnetization considered above indi
that the phase transformation in KDy(MoO4)2 occurs
through two phase transitions. The peculiar behavior of b
fringence, i.e., the continuity in the transition atT2, smooth
and monotonic variation upon a decrease in temperatur
T1, the jump and the small characteristic hysteresis loop
the low- temperature transition atT1, suggests that a modu
lated crystal structure is formed in the temperature inter
T1,T,T2. In this case, the phase transition atT2 must be of
the type of a transition between the normal and modula
structures, while the transition atT1 is a lock-in transition for
the modulation phase. The absence of step-wise chang
the interval fromT1 to T2 and the hysteresis loop in th
vicinity of T1 indicate that higher modulation harmonics b
come significant only nearT1, where the pinning of incom-
mensurabilities formed takes place. Such a temperature
havior of linear birefringence and heat capacity is norma
observed during the normal–modulated–incommensu
phase transformation in many crystals.15–19

The absence of visible crystal domains at temperatu
below T2 has a simple explanation: the symmetry of line
crystallo-optical properties of the incommensurate phas
the same as for the high-temperature normal phase.20

The following remarks can be made regarding the str
ture of the modulated phase and the mechanism of its for
tion. The regularities in the displacement of the lowerm
electron energy bands during phase transition, which w
observed by spectroscopic methods, indicate the Jahn–T
mechanism of this structural transformation.3,4,6 The role of
the soft mode in a transition to the modulated structure
be played by the hybrid mode formed by interacting Jah
Teller vibronic oscillations of the ligand polyhedron su
rounding a Dy31 ion, transverse and longitudinal phono
modes, and rotational oscillations of (MoO4)22 complexes.
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The modulation wave vector is determined by the dep
dence of the intensity of interaction between modes wit
the Brillouin zone on the direction and magnitude of t
wave vector. We can expect that its direction is determin
by the direction of coinciding wave vectors of optical an
acoustic phonons with the lowest energies. According
Refs. 21 and 22, these oscillations propagate along
c-axis. Naturally, an unambiguous answer to the ques
whether the structure of KDy(MoO4)2 is modulated in this
temperature range can be obtained only by direct meth
based on diffraction of x-rays, neutrons and electrons
providing information on the wave vector of this structure
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