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The kinetics of isotopic phase separatior’ble—*He solid mixtures for various molar volumes

has been studied by precision pressure measurements at a constant volume. It is found that

the attainment of equilibrium between coexisting phases formed as a result of stratification is
described correctly by an exponential dependence for various modes of crystal cooling

and heating. The characteristic phase separation time decreases with temperature, thus confirming
the athermal quantum nature of the growth of a new phase during the phase transition. The
phase separation time is found to increase considerably with crystal pressure. It is shown that the
prevailing theory can provide only a qualitative description of the established regularities. A
quantitative description of experimentally observed decay times requires an analysis of diffusion
processes in a gas of impurity excitations in the presence of a concentration gradient.

© 1998 American Institute of Physid$1063-777X98)00109-1

INTRODUCTION excitations in the mixture. As expected, the process depends
significantly on the concentration 8He in the mixture.

It is well known that the phase separation of dilute solid A unique feature of helium crystals associated with their
mixtures of*He in “*He at quite low temperatures leads to the extremely high compressibility leads to another factor which
formation of clusters of the concentrated phase consistinghay change the kinetic behavior of the system radically. It
almost entirely of puréHe. In contrast to the phase separa-was shown experimentally in Ref. 17 that pressure is the
tion in liquid *He—*He mixtures where the lighter concen- factor responsible for such a behavior. Since the exchange
trated phase floats in the gravity field, the clustersSksé in  energy of the pair of atoniHe and*He (nearest neighboys
solid mixtures are distributed all over the host matrix, and adecreases sharply with increasing pressure, an increase in
unique interface does not exist. Under these conditions, thpressure at a constant concentration suppresses quantum dif-
growth of the concentrated phase is mainly determined bjusion of *He quasiparticles and leads to their localization.
diffusion processes in such a system. This circumstance affects the kinetics of isotopic phase

Another distinguishing feature ofHe—*He solid mix-  separation. The present publication marks the beginning of
tures is that owing to a large amplitude of zero-point vibra-systematic experimental studies of the effect of pressure on
tions, the®He impurity atoms are delocalized as a result ofgrowth kinetics of the concentrated phase through precision
quantum tunneling and are transformed into quasiparticlegieasurements of pressure during isotopic phase separation
(impuritong. For a low impurity concentration, we can treat of *He—*He solid mixtures at a constant volume.
them as a rarefied gas of quasiparticles moving practically
freely over the entire crystal. This results in a special type of

e . 4 R EXPERIMENTAL TECHNIQUE
diffusion processes ifHe—*He solid mixtures.

In spite of the fact that some aspects of the kinetics of We studied a mixture with initial concentration 2.04
isotopic phase separation ®He—*He solid mixtures have at.% 3He. The crystalline sample was grown by capillary
been studied for over 30 yedrs:? the correlation between blocking method. Samples were annealed at a temperature
the growth kinetics for the concentrated phase and diffusiomear the melting point for two days to improve the quality of
processes in the solid mixture has been established onlye crystal, which was estimated from the reproducibility of
recently*>~*°It was shown that the characteristic phase sepathe temperature dependence of pressure in the single-phase
ration time decreases with temperature, which means that thregion before phase separation as a result of multiple cool-
diffusion processes are not thermally activated. An agreeing. The experimental cell is shown schematically in Fig. 1.
ment with the experimental results was attained under th@he sample was taken in the form of a flat cylinder of diam-
assumption that the evolution of new phase clusters is deteeter 9 mm and height 1.5 mm to facilitate cooling of the
mined by quantum diffusioi of delocalized impurity crystal. The coupling between the measuring cell and the
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FIG. 1. Schematic diagram of the experimental cell: saniplemembrane 5 31.81F
of capacitive pressure gau@®, inlet capillary tubg3), body of the cel(4), o B
dilution chamber platé5). D: 31.79F
N . 31.77F
dilution chamber was ensured through a detachable conic R
thermal contact® We did not use a sintered heat exchanger 31.75k
in the measuring cell since fine pores may considerably af- L
fect the phase separation proc&ss. 31.73 YN Y W N NN W N NS SO 1
The thermal relaxation time for the sample associated "2 02 6 10 14 18 22

with its finite thermal resistance is estimated-at s, while
the relaxation time associated with Kapitza resistance is es-
timated as 25-50 s. FIG. 2. Cooling kinetics of sampl& (a) and the corresponding dependence
Ultralow temperatures were attained by using a new in-of crystal pressure on tim@) (molar volume 20.54 cfimole).
digenous powerful®He—*He dilution refrigerator distin-
guished by outer circulation oHe forceq bY a mephamcal orking pressure range, the pressure gage has a resolution
pump NVPR-16, as well as by cryogenic circulation createc)getter than 8 Pa.
by two adsorption pumps. The dual circulation system en-
ables a rapid attainment of the desired temperature with the
help of two adsorption pumps, which can then be maintaine
just by the mechanical pump. Such a working cycle consid-
erably decreases the consumption of helium in the outer After growth and annealing, the samples were cooled to
bath. The minimum temperature attained by cooling with ara temperature close to the phase separation fiQiat a rate
empty experimental cellwithout heat leakage through the of 34=10 mK/h. Below~400 mK, the pressure in the crys-
filling capillary) was 4.2 mK. tal practically did not change right down to the temperature
The sample temperature was measured by a meltinds, at which a sharp increase in pressure indicating the phase
curve thermometé? mounted on the dilution chamber plate. transition was observed. Subsequent cooling of the sample in
The temperature resolution of the thermometer was 0.3 mkthe phase separation region was carried out in small steps
Several resistance thermometers were also used at the safolowed by temperature stabilization. Figure 2 shows a typi-
time, and their readings were recorded by using an a.c. cryaal cooling thermogram of the sample in the phase separation
bridge R441 and a specially designed digital a.c. bridge withregion, as well as the corresponding pressure variation in the
a power dissipation below T6°W.?! Temperature was sta- crystal reflecting the growth kinetics for the concentrated
bilized by a heater which was mounted on the dilution champhase.
ber plate and connected to the outlet circuit of the digital In each step, the equilibrium state between the coexist-
bridge. ing phases was established after a certain timeharacter-
The phase transition was studied by cooling the samplé&ing the attainment of a plateau. The value of this time
in the phase separation region in small steps with temperadecreases as we go over to steps at lower temperatures. Such
ture stabilization at each step. In some cases, cooling in a behavior was also observed in NMR experiméfts.
single large step was carried out for comparison. Some samples were studied in the phase separation re-
Isotopic phase separation kinetics was studied by recordyion during cooling, as well as during subsequent warming
ing the pressure variation in the sample. For this purpose, wélso in small temperature stepgght up to transition of the
used a Straty—Adams pressure gauge in which one of théecomposed mixture into a homogeneous state. Such a ther-
experimental cell walls served as the mobile membi(&ig mogram and the corresponding temperature variation are
1). The pressure variation in the sample was recorded bghown in Fig. 3. It can be seen that there is no significant
using an a.c. bridge General Radio 1615-A. In the entiraifference in the pressure jump during phase separation and

t,h

OOLING THERMOGRAMS AND KINETICS OF PRESSURE
ARIATION



Low Temp. Phys. 24 (9), September 1998 Ganshin et al. 613

300 closed volume. After this, the pressure in the cell was low-
ered or increased by using a vaporizer filled with an identical
250 a mixture. The newly formed crystal was then subjected to
« annealing once again in order to eliminate possible heteroge-
c neities and stresses. For comparison, some crystals were in-
- 200 vestigated before and after annealing.
Table | also shows the phase separation temperalures
150+ recorded at the instant of pressure variation during cooling of
the crystal. Note that the phase transition in samples grown
100} without preliminary annealing begins at higher temperatures
than in properly annealed samples. The highest valuds of
were obtained during cooling of the samples after a transition
50— ——t—— from a two-component system into a homogeneous mixture.
35.98 This points towards the existence of metastable phase re-
gions, which is a characteristic feature of first-order phase
35.92- b transitions.
8 35.84}1
a CHARACTERISTIC PHASE SEPARATION TIME DURING
35 761 STEPWISE COOLING. COMPARISON WITH THEORY
In order to describe qualitatively the kinetics of the iso-
35.68} topic phase separation, the time variation of pressure for the
nth step was approximated by the exponential dependence
090 20 30 40 50 Pn=Pro=Aexp—t/), @
t.h where the minus sign corresponds to cooling and the plus

o _ , sign to heatings is the characteristic time determining the
FIG. 3. Kinetics of cooling followed by warming of sampléaBand the Kineti fd iti h izati ithi
corresponding time dependence of the variation of crystal pregsufeo- Inetics or decomposition or OmOgemZa_ 1on W'_ _'n_ one
lar volume 20.28 ciimole). step, the parametd?,,o corresponds to the final equilibrium
pressure for each step, and paraméteo the difference in
final and initial pressures.

homogenization in a single temperature stepespective of The obtained experimental data are described quite well
its variation and over the entire pressure variation duringby formula(1), as shown in Fig. 4 on a magnified scale for
multiple stratification followed by homogenization. the case of cooling of a two-phase mixture within one tem-

Table | shows the basic characteristics of the investiperature step. Approximation was carried out by the method
gated samples. A transition from one sample to another wasf least squares, and Table Il contains the values of param-
carried out by heating the crystal up to the melting point in aeters obtained for each crystal.

TABLE |. Characteristics of investigated samples.

Pressure at Molar volume,
Sample No. T=T,, bar cm®/mol Ts, mK Type of cooling Remark
1 31.66 20.54 180 Rapil step Annealing for 3 days; cooling
and heating
2 31.72 20.54 216 Rapi® steps Cooling after homogenization of
sample 1 and repeated heating
3 31.73 20.54 215 Step-wise Step-wise cooling after homogenization
of sample 2
4 30.18 20.64 202 Rapid Without preliminary annealing;
cooling and heating
5 35.61 20.29 207 Rapid Without preliminary annealing;
cooling and heating
6 35.61 20.29 221 Rapid After homogenization of sample 5;
cooling and heating
7 31.28 20.56 200 Rapid Without preliminary annealing;
cooling
8 35.67 20.28 194 Step-wise Annealing for 1.5 days;
cooling and heating
9 35.67 20.28 220 Rapid After homogenization of sample 8;

cooling and heating




614 Low Temp. Phys. 24 (9), September 1998 Ganshin et al.

P, bar T,mK 6
35.990 130
5}
35.980 120 41
<
P
3l
35.970 110
2 =
35960 1 1 1 1 100 1 o
235 240 245 250 255 26.0 g o
t,h » ' |
FIG. 4. Variation of crystal pressure as a result of cooling within a step 50 80 110 140 170 200
(T;=100 mK, T{=99 mK). Circles correspond to the experimental mea- T,mK

surements and the solid curve to formgia.
FIG. 5. Temperature dependence of the characteristic isotopic phase sepa-
ration time for different molar volumes: 20.54 &mole (circles, 20.28

Figure 5 shows the temperature dependence of the is(?m?'/mole (squares Dark symbols correspond to cooling in one step, and

. . . . . . he solid curves to calculation ing formuB.
topic phase separation timesobtained in this way. As ex- Sold cutves Hations tsing @
pected, the isotopic phase separation is considerably slowed

down upon an increase in pressitecrease in molar vol-

ume. Upon a change in temperature in the course of ph(,isgigniﬁcantly. We assume that the rate of liberation of heat of
separation, the concentration of the dilute phase changes R{1as€ transition is determined by the growth of the new
conformity with the equilibrium phase diagrafdefining pha_se in af:cordance with fgrmu{&) and that the Kapitza

the concentration dependence of the timehich is found to resistance is the bottleneck in the process of heat removal. It

be nearly linear and in accord with the results presented iﬁhen fo!lows from the heat balance eqqqtion that_on account
Ref. 13. of the liberation of heat of phase transition, the time depen-
It should be remarked that, according to rough estimated€Nce of the sample temperature has a small peak of about

the heat of phase transitibnliberated during isotopic phase 2-> MK as a result of abrupt cooling and about 0.5 mK dur-
separation does not alter the kinetics of the procest!d Stepwise cooling. This peak corresponds to the first min-
utes of phase separation, when the sample temperature has

not attained stabilization. After the peak, the sample tem-
TABLE Il. Parameters characterizing phase separation. perature levels out according to an exponential law.
The experimental data shown in Fig. 5 can be compared

Initial and Final equilibrium —yith the recently developed thedfydescribing the mobility
Sample final T concentration, . . .
No. of astep, MK Py, bar +h % 3He of interface in a quantum crystal. According to the authors of
this theory'* the experimentally observed growth of the new
i;g‘igg 21;22 2-83 é-% phase is associated with the movement of the interphase
3 177:168 31.703 074 0.6 boundary. The characteristic time of phase separation was
168—139 31.814 0.40 0.2 calculated from the interface velocity for the case when the
139-110 31.827 0.27 0.04 temperature stepT is much smaller than the temperatdre
110-100 31.829 0.37 0.017 3
w2 aRy[ T, 2T,
194-169 35.772 5.07 0.67 ™ exd D\ T ex -] (2
169-148 35.910 3.69 0.28 Xo 0
148-125 35.942 0.90 0.11 wherex, is the concentration of the decomposed mixtare,
1257110 35.959 0.42 0.04 the separation between atonasthe dimensionality of clus-
110-99 35.967 0.65 0.02 P 1€ y
8 99-62 35.974 1.20 0.0002 ters of the concentrated phadg,the critical temperature of
62-95 35.968 0.73 0.015 phase separation, ariR}) the cluster size which is equal to
95-107 35.958 0.54 0.035 the radius of a sphere far=3 (spherical clustejsradius of
121_1421‘31 gg-gg; 8-23 8-;(13 a cylinder ford=1 (cylindrical clustery, and half the plate
143:169 35.842 0.67 0.7 thickness ford=2 (flat clusterg. The parameteD,, which
169—294 35.672 0.61 20 depends on pressure, appears in the expression for the diffu-

sion coefficient:
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Do Xc—X\"” 36.0
D(x)= 7( X ) , () o
which follows from the theors? and was confirmed by NMR
measurements of the coefficient of quantum spin diffusion in

solid mixtures containing 0.12—4.98%He in the range

19.9-20.7 criimole of molar volume$? The quantityx, in 359
formula(3) corresponds to the critical concentration marking
the suppression of the band motion of impuritons which
leads to quantum diffusion, and the onset of localization of b 110 mK
3He quasiparticles. It has been shown in experinféritsat b
the value ofx; increases with molar volume and amounts to
3.2-7.0%°%He depending on pressure variation, the critical 358
exponentr being 1.7-0.3 everywhere.

A comparison of the experimental data with formy(a J
shows that the theot§ can describe qualitatively the tem- °
perature dependence ef The solid curves in Fig. 5 were ;
obtained by calculations according to formuyB@ for both "‘IJ
molar volumes. The quantitR,/Dyd, which is equal to 357
4.9x 10" s/cm for V=20.28 cni/mole and 9.& 10 s/cm 0 2 4 t h 6 8 10
for V=20.54 cni/mole was chosen as the fitting parameter. '

Assuming that the radius of the spherical clusRy=2 FIG. 6. Change in the crystal pressure during a one-step cooling and warm-
X 1074 cm for d=3,5’9'25 the obtained values of the fitting ing of sample Q(molar volume 20.28 cifmole). The solid curve corre-
parameter correspond to the valDg~ 10'° cné/s. This is sponds to calculations based on form(fx

about three orders of magnitude lower than the analogous

values of the constant obtained from NMR measurements ofnd heating can be clearly seen in this case. Note that a
the spin diffusion coefficienD(x)** for the corresponding  similar asymmetry is also observed during stepwise cooling
values of the molar volume. and heatingFig. 3.

Note that at temperatures belowl10 mK, the timer An analysis of the kinetics of pressure variation during
remains practically unchanged upon a decrease in tempergre isotopic phase separation shown in Fig. 6 indicates that
ture. In some cases, even a slight increase in the decay timge attainment of equilibrium between coexisting phases is
was observed. Theof§ does not predict such a low- described correctly by a single exponential dependence.
temperature dependence. Table Il shows the corresponding values of the characteris-

The pressure dependence of the phase decay tilBe tjc phase separation timefor this as well as other samples.
found to be only in qualitative agreement with the thédry The characteristic timer* corresponding to the reverse

(see Fig. 5. Apparently, the quantitative disagreement is as+ransition from a dissociated two-phase mixture to the homo-
sociated with the fact that the value of the param&gr

appearing in formul&2) should not be taken from the NMR

measurements. This means that the growth of the new phadéBLE lll. One-step cooling and warming of samples.
in the process of isotopic phase separation is determined by
the diffusive process occurring under conditions different Inital and ~ __— "
from those of the NMR experiment. It would probably be Sample final temperatures*, during 7, during

P, bar

294 mK

Separation time, h

appropriate to use the coefficient of heterodiffusion occur¥° of step cooling heating Remark
ring in a two-phase solid mixture in the presence of a con- After annealing for
centration gradient. It was mentioned by Antsygitaal® 1 184-113 0.33 3 days
that strong elastic stresses may appear at the interface be- 216-198 0.76 After sample
tween coexisting phases due to different crystal structures » homogenization
and molar volumes of these phases. Under such conditions, 198-103 0.20
the diffusion coefficient must also vary significantly. Unfor- 207—112.5 0.64
tunately, these aspects of the quantum crystal mixtures have g Without annealing
not been subjected to theoretical or experimental investiga- 112.5-300 0.10
tion so far. Values of r

6 84-300 0.12 measured only during

heating

PHASE SEPARATION UNDER RAPID COOLING

7 200-115 0.30 Without annealing

Figure 6 shows an example of pressure variation upon a 30110 042

rapid cooling of the sample following its thermal cycling 9 After homogenization

(one large stegpand subsequent heating to the homogeneous 110-296 0.11 of sample 8
state. The asymmetry in the pressure variation upon cooling
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The values of the phase separation time under rapigreparing the a.c. digital bridge for resistance measurements,
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The range of applied magnetic fieldl corresponding to the stability of mixed state with a fixed
magnetic inductiorB is determined for a higfi superconducting YB&ZuO, single

crystal forH_L c-axis. For this purpose, the field dependences of the contribytjoto the
dynamic magnetic permeabilify,. are analyzed for the hysteresis logpgH) in the temperature
range from 70 to 84 K. It is shown that the,(H) hysteresis can be interpreted in terms of
the interaction between the vortex lattice and the surface and is associated vBitHthaysteresis
as a manifestation of the Bean—Livingston surface barrier. As a resul ftt¢) hysteresis
loops corresponding to different temperatures can be described by a universal curve in
dimensionless coordinates. The obtained estimates and the available experimental data reveal a
significant suppression of the surface barrier in actual YBaCuO single crystals as compared
to the barrier predicted for a perfect surface. The lower branch okliel) hysteresis loop, which
corresponds to increasirtg, is found to be close to the equilibriupa,(H) curve, and the
surface barrier appreciably affects the behaviorug{H) only for decreasing field, i.e., the
emergence of magnetic vortices from the sample surface19@8 American Institute of
Physics[S1063-777X98)00209-

INTRODUCTION In this connection, an analysis of effects associated with
peculiarities in the behavior of vortex lattice near the super-
Abrikosov’s vortices interact with the surface of a super-conductor surface is of special importance. One of such phe-
conductor. One of the results of this interaction is the emernomena(which is very sensitive to the structure and dynam-
gence of a surfacéBean—Livingstol' barrier hampering ics of surface vorticess the magnetic hysteresis of dynamic
free vortices entering or emerging from the sample surfacenagnetic permeability.
For example, when the applied magnetic fiéldincreases This effect was observed for YB@uO, single crystals
from zero, the magnetic flux starts entering the sample with @nd studied by a number of authbréwho investigated the
perfect surface when the value Bf becomes equal to the response of HTSC to an ac magnetic field of low frequency
thermodynamic critical fieldH., (rather than the lower criti- (w/27=3 kHz) and small amplitudeh(<10 Oe) in the pres-
cal fieldH,; as in the absence of the Bean—Livingston sur-ence of a constant parallel magnetic fiéid In these publi-
face barriey. cations, the real component of the fundamental harmafjc
However, an analysis of a large number of available dat#®f the complex magnetic permeabiliy} is the object under
suggests to a high confidence level that the Bean—Livingstoivestigation. The quantity.;. is defined as a coefficient in
barrier in highT, superconductor§HTSC) is noticeably the Fourier expansion of the volume-averaged magnetic in-
lower than predicted for a perfect surface. Nevertheless, thiduction B(t) varying periodically with time. In a magnetic
fact is not trivial since the value dfl, in HTSC is much field H(t)=H+h sin(wt), we can write the following ex-
higher thanH,, in view of a considerable value of the Pression foru;. (which will be henceforth referred to as
Ginzburg—Landau parameter=100. For this reason, strong Permeability. for the sake of brevity
local fields associated with the roughness of the surface can
suppress the surface barrier by not more than 10-20% of its 1 (27l dB
value for a perfect surface according to estimat&ome r=5 0 J coq wt) gt dt. (N
authors attribute the barrier suppression effect to the pres-
ence of surface defec{see, for example, Ref))3However,
guantitative estimates concerning this problem have not been It was proved in Ref. 4 that the change in the magnetic
obtained as yet. induction in the sample due to the varying component of the

0
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magnetic field(and hence permeabilitycan be represented
as the sum of two terms. The first temy, associated with 12 ~
Meissner’s current oscillations is defined as .

wm=2\ID, 2)

where\ is the London penetration depth aBdthe sample ” . .
thickness in the direction perpendicular to the magnetic field. 2 8 . .
The second termu,, is associated with displacements of vor- =1 .
tices in the superconductor. For large values of the amplitude . *
h of the ac magnetic field, vortices get separated from pin- . <
ning centers and can enter and leave the sample. For mall . .
vortices perform small vibrations near equilibrium positions, 41+ o o b
their total number in the volume remaining unchanged. The H R 000 Sucket 3
vibrational contributiorw, is due to a strong dependence of
the surface flow of vortices on their position relative to the *
surface. The analysis carried out in Refs. 4—7 revealed that it SR |
is the contribution from vortex vibration that determines the 0 200 ! 200
hysteresis loop in the magnetic permeability of YBaCuO ap-
pearing upon a cyclic variation of the constant fieldIt was H,Oe
found that all the changes occurring in, during the appli- £, 1. Field dependences of the vibrational contribution to dynamic per-
cation or removal of the field are completely determined bymeability 1, of a YBa,CuO; single crystal at different temperaturgs K:
the variation of distancg, between the first row of vortices 70 (), 73.4 (b), 77.3 (c), 80 (d), and 83.8(e). Lower branches of the
and the surface. The shape of tpe(x;) curve was also zglsc}erree;lgvgops correspond to field application and the upper branches to
determined. However, the origin of the hysteresis loop in the '
vibrational contributioru,(H) (i.e., the reason for which the
hysteresis ok,(H) takes placehas not been clarified com- i this way is proportional to the real componenj, of the
pletely. complex permeability. This technique, which ensures com-
In this publication, we analyze this effect in terms of pjete compensation of the diamagnetic signal associated with
interaction between the vortex lattice and the surface angample shielding by Meissner surface currents, makes it pos-
derive an analytic expression connecting the contributign  sjple to detect relatively weak effects associated with vortex
to dynamic permeability from the vibrations of vortices with dynamics in the surface layer at the ac magnetic field pen-
the induction of the vortex lattice in the surface layer of agtration depth.
single crystal. The magnitude of the sought vibrational contributjop
It will be proved that a comparison of the theoretical (which is independent of amplitutieras determined for each
curves with the experimentally obtained hysteresis loops o{zjue of the constant fielth during its increase as well as
n,(H) makes it possible to reconstruct the range of the apgecrease by extrapolating the experimental cyr{gh) to
plied magnetic field§H na(B) —Hmin(B)] in which the mixed  zerg amplitude according to the procedure described in detail
state with a fixed value of magnetic induction can exist. Thisy, Ref. 4.
allows us to estimate the height of the surface barrier in Figure 1 shows the.,(H) hysteresis loops obtained for
actual HTSC single crystals and compare it with the valugy YBaCu,0, single crystal at temperatures varying from 70
for a perfect surface. to 84 K. It can be seen that the vibrational contributignto
dynamic permeability increases noticeably with temperature,
the width of the hysteresis loop varying insignificantly. It can
also be noted that the width of segments formed upon a
Permeability measurements on YBakO, single crys- transition from one hysteresis branch to the other upon a
tals in the temperature range 70—-84 K were made with thehange in the direction of field sweep becomes considerably
help of an ac bridge by using the technique described irsmaller(from ~50 to ~15 Oe) upon heating.
detail in Ref. 4. The constant field (varying from 0 to 1 In the case when the effects under investigation can be
kOe was applied parallel to the ac field of amplitutte  described in terms of interaction of vortices with one another
(0.1-10 O¢ and frequency 3 kHz. Thec-axis of a and with the sample surface, and the pinning of vortices and
YBa,Cus0, single crystal T,=92 K) having the shape of a their thermal activation are insignificant, it is convenient to
1.18x1.26x1.67 mm parallelepiped was oriented at right use dimensionless units introduced in the London or the
angles to the fieldd (HLc). In order to measure the field Ginzburg—Landau theory. In this case, with an “appropri-
dependences of permeability, the bridge was balanced at tlee” normalization from the physical point of view, we can
minimum ac field amplitude after sample coolingle T in expect that the magnetic field dependeneggéH) measured
zero constant magnetic field. The real component of the firsat different temperatures behave similarly. We measure
harmonic was determined from the disbalance voltage inlength in the units ok and the magnetic field in the units of
duced as a result of application of the fig#tl by using a H.;=(@o/47mA%) X (In k+0,5), where ¢, is the magnetic
selective amplifier and a phase detector. The signal obtainetux quantum. For the corresponding normalization of the
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FIG. 2. Normalized field dependences of the vibrational contribution to
dynamic permeabilityw, of a YBaCuO, single crystal at different tem-
peraturesT, K: 70 (a), 73.4(b), 77.3(c), 80(d), and 83.8(€). The symbols
correspond to the experimental data. Solid cutveorresponds to calcula-
tions for a thermodynamically equilibrium statto averagedu,(H) de-
pendence for field removal, corresponding to cudvie Fig. 3, 3 to calcu-
lations for the region of transition from one hysteresis branch to the othe
under the conditiorB,=const. The arrows show the directions of field

variation. The inset shows the temperature dependence of the magnetic field

penetration depth in the surface layer of a YB&0O, single crystal.

vibrational contribution to the permeabilify, , it is reason-
able to use the Meissner contributign, to the permeability,
which depends on according to formuld?2). (The physical
meaning of such a normalization will be clarified in the sub-
sequent analysis.

It should be noted that, in our geometiyi ), vortices
anisotropic in cross section are characterized by the values
Nap and A along the crystallographic axis and in the
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It should be noted that the procedure of “scaling” the
experimental dependencgs(H) in this case presumed the
measurement of magnetic field penetration degssfitting
parameters only to within the scaling factor. In order to
determine the absolute values)afwe had to use additional
information, e.g., concerning the valueofit a certain tem-
perature, or refer to a certain theoretical cupygH) whose
shape is known. The value afshown by way of an example
on the inset to Fig. 2 correspond to the latter case, i.e., the
reference to an equilibriunr,(H) curve (see below for de-
tails). It will be clear from subsequent analysis that these
values of\ are of special importance for interpreting experi-
mental data.

The scaling behavior of.,(H) suggests that the vortex
dynamics near the surface is in all probability determined by
the interaction between vortices as well as their interaction
with the surface rather than by interactions with pinning cen-
ters.

It would be interesting to obtain the theoretigal(H)
curves for HTSC single crystals, correctly describing the ex-
perimental behavior of this quantity and thus clarifying the
nature of the observed effect.

THEORY

In our previous publication we investigated the contri-
ution of vortex vibrations near their equilibrium positions to
permeability and derived an analytic expression gqr.

2(,00 eX[Z(—Xll)\) )
B,

Mo~ Dan 1—exp(—d/n)
wherex; is the equilibrium position of the first row of vor-
tices near the sample surfagethe vortex lattice constant in
the rows, andl=v3a/2 the separation between rows of vor-
tices in a regular triangular lattice. The differentiation is car-
&ied out for a constant number of vortices in the sample or
(which is the samefor a constant magnetic inductidsy, of

X,
aH

()

ab-plane, respectively. For this reason, we must describe th§€ vortex lattice, which is defined as

experimental data by using the mean values of the magnetic B, = ¢o/da.

field penetration deptih =\ 5= VA oA = V5\ 4 (COnsider-
ing that the anisotropy parameter for YBaCuO is
=N\c/Agp=5).2 In the same geometry Hlc), the
Ginzburg—Landau parameter i&= k5= VAaphe/ VEabée
=N\./&5,=350. The size of an anisotropic samitee val-
ues ofd, and d,, along thec-axis and in theab-plane,
respectively should be recalculated to the size of its isotro-
pic analog:D.=d.\'y; Dap=0d.,/\/y. Besides, we must

take into account the possibility of penetration of vortices

from the end faces of the sampii@ view of its finite sizg.
In this case, the quantitidd, and D,, are connected with
the thicknes® of a model plate through the relation

D=Da,Dc/(DaptDe)= \/;dabdc/( ydc+dap)-

Figure 2 shows the experimenta) (H) curves obtained

4

While deriving formula(3), we assumed that vortex
rows near the surfacestarting from the second opare ar-
ranged regularly with the same separattbnThis statement
is valid to a high degree of accuracy for a perfect surface
with which vortices interact strongR° Such an approxima-
tion is the more so valid for a “damaged” surface with
which they interact much less intensely. Thus, in conformity
with (3), the permeability hysteresis is completely deter-
mined by the hysteresis of the equilibrium position of the
first row of vorticesx;(H) as a result of magnetic field ap-
plication and removal. The hysteresis in the position of the
first row of vortices can be associated with the interaction of
vortices either with pinning centers, or with the surface. Let
us consider the first case.

When vortices move from the surface to the bulk or

at different temperatures in normalized coordinates. It can bback, they are trapped in the pinning centers, which obvi-
seen that all the curves indeed behave similarly, i.e., we obsusly leads to a decrease in the distance betweerthhrew

serve the scaling behavior associated with the values of ma
netic field penetration depths for each temperature.

@nd the surface as a result of entrance and to an increase in
this distance as a result of exit of vortices. In accordance
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with (3), such a process leads to a hysteresis loop, but witha ¢, exp(—d/\)+exp(—2x;/\)

polarity opposite to that observed in experiments. Besides, 5+ 1—exg —diN) —H exp(—x1/N)=0,
the magnitude of the effect is quite small since the critical
current densityj.<10* A/lcm? associated with pinning is X1=Xq1(H), )

smaller than the density of Meissner currerjtsgcH/4m\

for H=100 Oe(even if we assume that the effective value of and the periodic force acting on a vortex in the first row is

N\ near the “damaged” surface is an order of magnitudeg'ven by
larger than in the bulk of the single crystarhus, the effect @oh )
of pinning on the hysteresis of(H) is weak. F= 2 XA~ x(H)/A]sin(wt). 8

Let us now consider the second possible reason behind
the hysteresis in the position of the first row of vortices rela- ~ Equation (7) is quadratic in exptx,/A). Solving this
tive to the surface, and hence in the quanjity, i.e., the €duation, we obtain
interaction of vortices with the surface. The position of the H H\2 1/2
first vortex row near the surface was calculated by different exp(—xll)\)zexp(—d/Z)\){ri {(N_) — 11 J ,
methods%-12 either numerically, or by using various ap- B, v
proximations. It would be expedient to obtain a simple ana- 9)
lytic expression forx; and ., by direct summation of the \yhere the following notation has been introduced:
contributions of vortices to the Gibbs energy of the vortex
lattice near the surface, following the approach developed in d

Y 2\ sinh(d/2\n)

Ref. 12.
We write the Gibbs free energy for a vortex in the first It can be easily seen that the Gibbs free energy minimum
corresponds to the larger value xf, i.e., the plus sign in

B,=B (10)

row (per unit length'®:

N o Eqg. (9). Finally, we can write the following expression for
GU:4— E Hv(x,—xl)—z H, (X +Xq) the position of the first row corresponding &, :
m|i=2 I=1
@y(Xx1)H (H) d+>\ A (11)
v X1 X =— arccosh =—|.
-~ "G, (5 ! 2 ,

Thus, the hysteresis loop can emerge onxtf{él) curve due

where ~ H,(x)=(gg/2a\)exp(—[X/N), ¢, = ol 1—exp to the hysteresis in the magnetic inductBp(H) appearing
(=x/\)] the summation is carried out over vortex rows, the h i fl dl h |
first and second term in the braces describe the interaction &s the magnetic flux _enters and leaves the sampie.

In accordance with formulé&3), the calculation of per-

the first vortex row with the remaining rows and with their meability in the case of a small amplitude of the sinusoidal

Lrgr?ﬁ?i(l(g(;hég'rr:gsltir?;vsn t'gﬁ?friifs;?t';ﬁy\;viﬂd&t;;mg external field is reduced to the problem of small oscillations
P of the position of the first vortex row near its equilibrium

;:iulrcrjenrt. '[hg Suan\t/'tlﬁﬁxv(rlevar:d (Pdvi()t() aréer tgeitmﬁgntﬁtlc position corresponding to the Gibbs free energy minimum
€ld created by a vortex tow at a distancero a € fora given value oH. In the low-frequency limit, in which

magnetic flux of a vortex separated by the distakdeom the amplitude of forced oscillations is independent of fre-

the su_rface respectlvely_. The_ constaﬁ_@ contains all the guency, we can use formu(&) for obtaining the expression
terms independent of; (including the internal energy of a . )
for the coercive force:

vortex.

It was mentioned above that in accordance with the re- eoh exd —x1(H)/\]
sults of analysi§;*® we can putx,=x;+(1—1)d to a high x1(t,H)=xy(H)+ A7kN
degree of accuracy. Consequently, we obtain after summa- ) o )
tion the following expression for the force acting on a unitHéré k is the retrieving force corresponding to small har-

S

sinfwt). (12

length of a vortex in the first row: monic oscillations of the first vortex row in the effective
potential well. Substitutingl1) and(12) into expressiorn3)
96, o | ¢o exp—d/N)+exp(—2x%;/N) for u,, we obtain
9%y 4w\ |2an 1—exp(—d/N) ~3
®o BU
Mo exp(—d/2n (13

_ ©) " 27Dk )[H+(H2—E§)1’2]2'

—H exp(—x1/\)
This formula expresses permeability in terms of the vor-

In accordance with experimental conditions, the mag-ex lattice induction and the retrieving forke Thus, in order
netic field varies according to the laW +h sin(wt). We  to describe the behavior @f, upon a change in the applied
shall assume that the system corresponds to the minimum ofagnetic field, we must first of all know the form of the
Gibbs’ free energy for each value of the constant componer,(H) dependence. If we assume that vortices penetrate the
of the magnetic fielH, i.e., F(H)=0. Under the condition plate in a quasi-equilibrium wayi.e., in the absence of any
H>h, we obtain the following equation for the equilibrium mechanisms of overcoming of the barrier by vorticehis
position of the first vortex row;(H): dependence assumes the f&fm



Low Temp. Phys. 24 (9), September 1998 Kugel' et al. 621

H=(H2+B%)¥ (14)

where Hy is the field corresponding to the penetration of
vortices in the plate foB,=0. In fact, formula(14) is a
generalization of the expression for the Bean-Livingston
barrier to the case of a nonzero magnetic induction of the 8-
vortex lattice. It should be recalled thet;=H_ for a per-
fectly smooth surfac&® while in the general cask . <H,
<H.. The condition for the emergence of vortices from the
plate is given by the relatidh

H=B,. (15) 4+

This leads to the hysteresis behaviorgf(H), the width of
the hysteresis loop being a function of the formBy{H) as L
well as the value of the parameter

If we assume thak is mainly determined by the inter-
actions of vortices with one another and with Meissner cur- 0

| i | I ] L

rents rather than by pinningvhich is natural just for the 4 H/ Hey 8

vortex row nearest to the surface, where the Meissner current
exceedsj.), it can easily be proved that expressiiB) FIG. 3. Magnetic induction as a function of the applied magnetic field.

assumes the form Curvel corresponds to a thermodynamically equilibrium state of the vortex
lattice, curve2 is theB(H) dependencél4) corresponding to the entrance
2\ Eg of vortices in the sample foHs=3H_,, curve 3 is reconstructed from a
My="—" = = . (16) comparison of experimental values @f(H) for field removal with depen-
D (H2— Bv)llz[H +(H?- Bv)llz] dences calculated by formu(&6), and curve4 is the lower stability bound-

. . ary for the mixed state in the case of an ideal barrier. The dot-and-dash line
Here we assume tha&tis determined by the second de- corresponds t®=H, andA is the point of intersection of curvelsand 2.

rivative of the Gibbs free energip) with respect to the po-
sition of the first row for a fixed magnetic induction. Formula
(16) establishes a simple analytic relation between the per- ) . )
meability and the vortex lattice induction, which allows us to (@nd Playing the role of fitting paramejeis close to the
use this formula for describing experimental data. It can bdOWer critical field:He; <Hs<3H.,, while for a decreasing
seen that the quantify,,= 2\/D is the natural scaling factor Magnetic field we have finite values gi, instead of the
in the dependence gf, on H, which justifies the above expected sharp increase pm, corresponding to condition

normalization used for plotting experimental results in di-(15: H=B,.
mensionless unitésee Fig. 2 This result allows us to draw several conclusions. First,
It should be noted that expressiét) is formally inap-  the closeness of the valuesidf andH; suggests that in an
plicable for calculatingu,(H) for a sample with a perfect increasing field the values gf,(H) can correspond to a
surface with a magnetic flux emerging from it since condi-magnetic induction in the sample, which is close to the equi-
tion (15) is satisfied in this case, and,(H) turns to infinity. ~ librium value.
In this case, we must take into account the contribution from ~ We can obtain thig.,(H) curve by putting in(16) the
pinning centers to the retrieving foréeand/or deviation of B, (H) dependence corresponding to thermodynamic equilib-
the B,(H) dependence from the quasi-equilibrium lgup).  fium: B=Be(H). [An approximate formula correctly de-
scribing the equilibrium dependenkiB) is given in Ref. 5,
and theBg(H) curve is shown in Fig. Jcurve 1).] The
results of calculation of,(H) for the equilibrium curveB
=Be(H) are presented in Fig. 2 in the normalized coordi-
Thus, according td16), we can obtain the theoretical nates chosen by usurvel). It was noted above and follows
curves u,(H) by assuming a definite form of thB,(H) from Fig. 2 that the scaling experimental dependences shown
dependence upon an increase or decrease in the magnetiche same figure and observed for increasing magnetic field
field. For example, we can use for this purpose expressionsan be matched with the given equilibrium theoretical curve
(14) and (15) obtained by us earli&t and corresponding to  u,(H) for the values of magnetic field penetration depth
“superheating” and “supercooling” of the Meissner state illustrated in the inset to Fig. 2.
due to the existence of an appreciable surface barrier for Let us consider in greater detail the values\afbtained
vortices entering and leaving the superconductor. Howevels a result of such a procedure. The absolute values of this
direct substitution of14) and (15) into (16) and a compari- quantity are slightly larger than the available dé&ae, for
son of the theoretical values @f (H) with the experimental example, Refs. 14 and I5he difference amounts approxi-
data suggests that the surface barrier in a YBaCuO singlmately to 10% aff=70 K and increases with temperature,
crystal(if it exists) is much lower than the one predicted for attaining~40% atT=284 K. Such a result appears as quite
a perfect surface. Indeed, as the magnetic field increases, theasonable if we assume that slightly larger values of mag-
value of the fieldH corresponding to penetration of vortices netic field penetration depth than bulk values are realized for

COMPARISON OF THEORY WITH EXPERIMENT.
DISCUSSION OF RESULTS
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some reason in the surface layethose response is observed w,(H) observed during field removal indicate that vortices

in experiments For example, this can be due to oxygenleave the sample in the case when the position of the row

deficiency in the surface layer. Qaai al,'® who measured closest to the surface still corresponds to the minimum of the

local values of the crystal lattice parametem the bulk of  Gibbs free energyand not to the point of inflection A

the sample proved that the oxygen content at the surfaggossible mechanism of such an emergence of vortices in the

does not exceed=6.82 even in high-quality YBZ£u;O,  case of an insignificant barrier is apparently the thermally

single crystals. Using the results obtained by Zimmermanmctivated process.

et all” and establishing the relation between the values of The region bounded by curves(or a combination of

N ap(0) and the oxygen content, we can verify that this curvesl and 2) and curve3 in Fig. 3 can apparently be

value of oxygen index indeed corresponds to the values of regarded on the whole as the region of mixed state with a

increased by 30—40% as compared to the value in the bulfixed value ofB in an actual YBaCuO single crystélor

for which x=6.95. H.1 c). We can assume that the existence of this region, i.e.,
The above arguments suggest that the experimental vathe hysteresis behavior &,(H) due to the surface barrier

ues ofu,(H) obtained upon an increase in the field can befor vortices leaving the sample is mainly responsible for the

quite close to the equilibrium dependeneg(H), and hence hysteresis loop observed jin,(H). (Taking into account our

the surface barrier for vortices entering the sample is actuallgxperimental geometry as well as the size and shape of the

not observed. It should be noted that the equilibrium curve irsample, we can conclude that barriers other than the Bean—

the range of weak fields still lies slightly higher than experi- Livingston one(e.g., a geometrical barri€y cannot make

mental points, and hence the statement thaendH., co-  any noticeable contribution to the magnetic flux distribution

incide exactly is not quite correct. However, estimates showin the range of magnetic fieldd>H.; under investigation

that even an insignificant surface barr{drit exists) makes It should be noted that the results obtained above for the

the root dependencel4) approach the equilibriunB.(H) stability region of the vortex state in YBaCuO single crystals

dependence very rapidly. For exampleHif=3H,,, thisis  are very close to the results obtained ealfiéor small-grain

observed for field$Hd~6H,, which indicates an inevitable samples of the same composition. These data suggest the

transition to the equilibrium dependence fdr6H_; (curve  existence of an objective reason associated in all probability

2 in Fig. 3). Consequently, the application of formuld4)  with peculiarities in the boundary conditions observed for

with 2H.;<H <3H_; instead of the equilibrium depen- HTSC (and not with technological conditions determined by

dence Bg(H) for calculating u,(H) by formula (16)  the method of sample preparatjpmhich is responsible for

changes the theoretical dependepg€H) insignificantly. such a strong suppression of the surface barrier in HTSC. As
The other conclusion concerns the upper branch of the result, an increase in magnetic field in such objects leads to

hysteresis loogu,(H) corresponding to a decreasing mag- a virtually equilibrium value of magnetic induction.

netic field. Let us reconstruct thB,(H) dependence ob-

served for vortices leaving the superconductor by comparing

the experimental data with formuld6). The results of cal- CONCLUSION

culations are presented in .F|g.(ajrve.3). . An analysis of peculiarities in the behavior of a vortex
The existence of a barrier for vortices leaving the Samplefatti

suggests that the number of vortices does not chande upca ce near the surface leads to an analytic expression for the
99 ge up magnetic field dependence of the vibration contribution

the reversal of the direction of magnetic field scanning in %o the dynamic permeability, which correctly describes the
certain transition region. This only shifts vortices towards theex erimental data under th,e followina conditions: for in-
surface, whileB,=const. The transition region obviously P 9 X

corresponds to a transition from the lower branch of thegreuaill?l';%rzebdéljr;;valn'";s \?vihvil(:?o\rllglejsggaggreﬁglgnti:e
1, (H) hysteresis loop to the upper branch. The substitution q efH), 9

of the conditionB, = const into Eq(14) gives the theoretical exists a Sma" barrier for vortices Ieavmg the sar_nple, which
v ) . is responsible for the observed hysteresis behavigr,0H)
curve (curve 3 in Fig. 2) for the given region. It should be . inal |
noted that this curve is characterized by a comparativel)'/n a YBaCUO, single crystals. . .
Thus, a comparison of experimental curyegH) with

Iarge steepness, which is in qualitative agreement with Xiheoretical dependences makes it possible to estimate quan-
perimental data.

The transition region exists until the repulsive force eX_tltatlvely the stability region for the mixed state for a given

erted by the Meissner current becomes smaller that the forc;éalue of induction and indicates that magnetic field penetra-

of interaction between vortices. At this value kif=H; . ion depth in the surface layer of the single crystal under

: . : investigation has slightly higher values than in the bulk.
the barrier for vortices emerging from the sample must van- ; ; - .
This probably explains the origin of a considerable sup-

ish. The lower stability boundary for the mixed state corre- : : . . .
o pression of the surface barrier, but this question requires fur-
sponds to the position of the vortex row nearest to the sur; S N
ther detailed investigations.

face, in which it is at the point of inflection of the Gibbs free
energy (for a perfect surface, this point correspondsBo This research was supported by the Russian Foundation
=H; curve 4 in Fig. 3), i.e., at the point of instability to of Fundamental Studigproject No. 95-02-05398as well as
small variations ofH. It was noted above that the value of the State Research Program “Current Trends in Physics of
M, in this case much increase abrupffgrmally tending to  Condensed State’(section “Superconductivity,” project
infinity). Finite and not very large experimental values of No. 96083.
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It is shown that a consistent analysis of the nonlocal interlayer exchange in semi-confined
metallic magnetic superlattice of the ferromagnet—nonmagnetic metal type with antiferromagnetic
coupling between ferromagnetic layers leads to the formation of new types of collective
dipole—exchange spin-wave excitations near the surface of the magnetic superlattit898©
American Institute of Physic§S1063-777X98)00309-0

The conductivity of the layers of a nonmagnetic metal incalculation of the spectrum of collective spin—wave excita-
magnetic superlatticeEMSL) of the magnet—nonmagnetic tions in such a magnetic system on the basis of simultaneous
type determines the most fascinating properties of such magmnalysis of the exchange and magnetic—dipole mechanisms
netic systems, which are associated with magnetic dipole inef interlayer exchange and corresponding boundary condi-
teraction, as well as spin—spin interaction between magnetitons (between the layers and at the edgesolves the ap-
layers due to conduction electrons of the nonmagnetic fayerplication of the method of T-matri%.For this reason, the
It was shown, in particular, that indirect interaction of mag-calculations and the subsequent analysis of the results be-
netic moments of adjacent magnetic layers can be of theome extremely cumbersome. However, we can confine our
ferro- or antiferromagnetic type depending on the thicknessnalysis to the long-wave range of magnon spectrum of the
of the nonmagnetic interlayer. However, in spite of a largeMSL under investigation since the thickness of magnetic lay-
number of publications devoted to an analysis of resonangrs in them varies from a few tens to several hundreds ang-
properties of MSL, the role of this type of magnetic inter- stroms[Ref. 1], and assume that magnetic layers are ultrathin
layer interaction was taken into account only in an analysisn their dynamic propertiesk(d;<1,k, being the wave
of equilibrium spin configuratioA® At the same time, this vector of magnetic oscillations in the plane of a magnetic
type of interlayer exchange also contains the spatially nonlayen. Besides, it was shown by Bass al® that since the
homogeneous component in view of its nonlocal nature, buinterval between two eigenfrequencies in the case of spin—
the effect of this component on spin dynamics of metallicwave resonance in an individual ferromagnetic layer with the
MSL has been disregarded so far. saturation magnetizatiod , is equal togMqa(7/d,)? (@ is

In this communication, we shall show for the first time the nonuniform exchange constant agmdhe gyromagnetic
that the inclusion of spatially nonhomogeneous componemntatio), oscillations of magnetization over the film thickness
of interlayer spin—spin exchange along with magnetic dipolecan be regarded as quasi-uniform if the following relation
interaction in addition to the spatially homogeneous compoholds:
nent leads to the emergence of qualitatively new anomalies 1
in the surface as well as volume dipole—exchange spin dy- dy<mCoAd (@)
namics of the MSL of the type “ferromagnetic—nonmagneticwhere ¢, is the velocity of light andA the frequency of
metal.” uniform ferromagnetic resonan€EMR). Thus, the magne-
tization of each ferromagnetic film constituting the MSL and
magnetized to saturation in XY plane (ll0Z) can be rep-
resented in the fort

By way of an example, we consider &hperiodic (N _
>1) superlattice formed by a system of isotropic ferromag- M;(xy,2)=Ms(x.y)d15(2). @
netic layers of thicknessl; each, which are connected In this case, the exchange interaction of identical uniformly
through layers of a nonmagnetic metal of thickndss(for magnetized ferromagnetic laygrandj + 1 with magnetiza-
example, Y-Gd systent We shall henceforth assume that tions M;=ms (|M;|=My) through conduction electrons of
the interlayer exchange through conduction electrons is antthe nonmagnetic interlayer in MSL under investigation can
ferromagnetic by nature, and the external magnetic fitld be represented in the for@M ;M ; in the phenomenologi-
is applied in the plane of the layerBl|(0Y) whose normah cal theory of magnetisrh? In the applied magnetic fielt,
to the interface is parallel to 20 Strictly speaking, the the magnetizations of magnetic layers with labgland J

BASIC RELATIONS
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+2v (v=1,2,..) in theequilibrium state have the same spa-

tial orientation. If we describe the direction of equilibrium
magnetization in thgth layer of the MSL in the spherical

S. V. Tarasenko 625
a [[al\% [al\?] adl\?
X ay 2 \9z

w= 2 met
—2MTY

system of coordinates with the polar axis directed along a{om\? a, [[om\%2 [om\?] b )
(nll0Z): Mj=My(sin 6; cosg;;sin ¢; sin ¢;;cos ) the fol- T2\ 9z +7 X + ay +§ I
lowing relations hold for the magnetic moments of adjacent
i a

magnetic layers +2 M2—M(H+H,), )

M;=Mq(sin ¢; cose; 0); where

_ _ a=4md,/L; b=8m a=éd5;
M;+1=Mo(—sing; cose; 0), sine=H/26Mg.
(3) m:M1+M2; |:M1_M2.

) ) ) ) ) Thus, in the concept of effective medium with the anti-
_If we confine our analysis to collective spin-wave exci- ferromagnetic type of interlayer exchange, the density of
tations which are quasi-uniform over the superlattice perioghermodynamic potential?) of the MSL under investigation

L=d;+dy, i.e, has a structure corresponding to the model of an easy-plane
(EP) antiferromagnet (2 being the difficult axigin the ex-
k L<1, (4)  ternal magnetic fieldH[0Y applied in the easy plang¢Y.5®

The dipole—exchange spin dynamics of such a magnetic me-

the analysis of the magnon spectrum of such an MSL can b@ium is determined by a coupled system of dynamic equa-
carried out on the basis of the concept of effective mediunf'ons cc')ns[stlng of the Landau-Lifshitz .equatlo'n for the
developed in Refs. 2 and 3 for calculating the spectrum offf@gnetization vectoM, , and magnetostatic equations. The
collective spin-wave excitations of the magnetostatic typestandard procedure of calculatiofsee, for example, Ref)6

under conditions4). By virtue of (3), the magnetic layers Shows that the magnetic susceptibility teng¢w, k) for the
with labelsj = 2v andj+2(v+1) (v=1,2,..) can becom-  MSL under investigation with nonlocal inter- and intralayer

bined into two magnetic sublatticesM;.,,=M;; exchange in the limit4) can be presented in the form
M+ 2+1)=M2 (IM1|=|My[=My). In this case, under 0
o . . . Xxx Xxz
conditions(1)—(4), the density of thermodynamic potential ~
W of a metallic MSL with spatial inhomogeneity of inter- x(k)=| 0 Xy 0 |, (8)
layer exchange can be represented in the form Xzx O X2z
where
N o
W=53, MiMj.1+ —= (VM= (M; ,H+Hpy). (5) o Aec Ay Ay
=1 2 Xxx—m, ny—m, Xzz—m,
Here & is the exchange integral of interlayer exchange ( R L
=6(d,)>0), a, the constant of nonuniform spin—spin ex- Xxz™ = Xax wi—w?'
change in the plane of ferromagnetic layer§,

=(alax,d/dy), H the applied magnetic field, anid,; the wp=0g%(8+a+ Bik)) aikfI5+ g’ (H+ Biikimo)
magnetic-dipole field in th¢th magnetic layer of the MSL.
In view of the concept of effectivéfine-layered medium,
the expression for the component of the magnetic induc-
tion vectorB (y=x,y,z) averaged over the peridd of the

MSL can be presented in the form

X (H+ BiimokZ+amy);

mo=H/8, 13=(2Mg)3(1—md);

war= 07 (8+ BiikD)I5+ a;ik?m3l(b+ a;ik?);
Ayy: 92(b+ i k|2)| 2;

dy
(By)=5 [hyythyy+4m(Myy+My,)] A =g?(H+amy+ B;mok?)my;

d, A= g% (H+ Bik?me)mo+ a; k2151, A=gmy;
—+ R (hay-l- hby), (6)

QAyx= ayy:ﬁxxzﬁyy: a; Bgmmama

(indicesa andb correspond to adjacent nonmagnetic layers @i=By=0 fori#k.
of thicknessd, each, separated by a ferromagnetic layer of  An analysis of expressiofi8) shows that fora, =«
thicknessd,).? =0, these expressions coincigxcept for the notatiognwith

In this case, taking into account the standard electrodythe relevant relations for the permeability of a metallic MSL
namic boundary conditions at the interfaces in the MSL, refrom Ref. 2. Comparing expressid®) for a,a; #0 with
lation (5) can be transformed to similar expressions for an EP AFM in an external magnetic
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field perpendicular to the difficult axfs,? we must empha- excitation by high-frequency magnetic fiell as quasi-
size that the corresponding terms fgr~ 0 andk, ,#0 have  ferromagnetic hliH(wg) and quasi-antiferromagnetic
opposite signs. This difference is due to the type of thenllH(wag). Thus, these two modes in the model of an infi-
ground state of the magnetic structure under investigatiomite MSL can interact only through long-range magnetic di-
the magnetic moments are ordered ferromagneticallf¥h  pole fields. It follows from(8) that the frequenciesg(k
layers and antiferromagnetically along the normal to the in=0) and wap(k=0) can differ significantly depending on
terface @ between the layers. The validity of relatiof® is  the applied magnetic field|0Y. This circumstance allows
confirmed by the fact that the expressions for the spectrum afs to neglect the effect of high-frequency mode of antiferro-
normal magnon excitationsg ar for a two-sublattice anti- magnetic resonancéAFMR) in the analysis of low-
ferromagnet in the limidH =0, b=0, a=0 coincide with the frequency dipole-exchange dynamics of MSL. We shall
long-wave limit of the spectrum for a one-dimensional anti-henceforth assume that the relatioR << wg holds for the

ferromagnetic chaff: MSL under investigation:
wir= 0f=(2gMo)%[ 8+ a, (Ki+kJ) — akl] , L, Ota H\?
6°—H*< b \ome (13
X[a, (Kz+k7)+akZ]. (9) 0

. . ) In this case, it follows from(12) for the wave vectors
Since the actual magnetic multilayered structure has 2 LH satisfying the conditions
L

finite size, this circumstance can be taken into account cor- ) )
rectly only by supplementing the system of dynamic equa- 8>a, ki, ak{, |4m(d;—dy)2Mg/H|<1, (14

tions with a sys't'em of boundary .co.n'dltlons. The sys'tem Of[hat collective dipole-exchange spin-wave excitations propa-
boundary condltlons for a semi-infinite MSLZ{O_) _W'th gating along the surface of the MSL under investigation form
completely free_ spins on the surface<(0) in the limit (4) a two-partial type wave in view of the nonlocal nature of the
can be written in the form interlayer exchange. Accordingly, the structure of magneto-

om  dl static potentiaky,,,, for example, forz<0, can be presented

E:5:0; B,,-n=B-n; in the form (K, lI0Y)

[Hp,Xn]=[HXn], z=0 (10) om= > A, expliot—ik, y)exp —q,z). (15)
A=12

(nll0Z,m andT are small oscillations of the ferromagnetism

. . . Here are positive roots of the following characteristic
and antiferromagnetism vectarsandl| respectively near the b2 P 9

equation obtained fror(il2) and conditiong13) and(14) for

equilibrium orientation, an®,, andH,, (B andH) are the 2_ _ 2.
magnetic induction and magnetic field vectors for the mag- * q-
netic (honmagnetic media respectively q*—P,q%°+P,=0;

Since we are interested in dipole-exchange oscillations 2 12144 21K — 2
localized near the surface=0 of the MSL under investiga- 1:‘"0 Le*( 77)20) LK~ 0"

tion, the following conditions must also hold in addition to c

the boundary condition€L0): (cfkf+w§)(l+4rr)(o)—w2

2 - (16)

~ _ L2
1] [T],[Hol 0 for z——ce; Pa=ki
|[H|—0 for z—o. (11) Here  w3=g%(2Mg)26b;  c?=g?84M3a;  C°
=g264M3a, ; xo=1/6.

Using expressiongl5) and (16), we can study the de-
endence of the localization of a dipole-exchange spin wave
ear the surface of the MSL under investigation on the wave

numberk, and the frequencw of spin oscillations.

An analysis shows that in the modél) of a semi-
infinite MSL. the magnon spectrum taking into account the
spatially inhomogeneous component of interlayer exchang
for k, L<1 can be written in the form

Kxx SIMP O COS @i+ pyy SI? Gy SIN? @+ u,, COS 6, =0

(tarf ¢, =k2/KZ; cof 6, =k2/(K2+k2); B=ph). POSSIBLE TYPES OF DIPOLE-EXCHANGE SPIN-WAVE
(12)  EXCITATIONS

It can be easily seen that if we disregard the nonlocal An analysis shows that if the frequenayof spin oscil-
nature of the inter- and intralayer spin—spin exchange ( lations and the wave numbeé&r satisfy the conditions
=a, =0), the energy—momentum relatidi2) coincides
with the analogous relation for the spectrum of spin waves of
an infinite _magnetic sup_erlattice pf the ferrqmagnetic— 5 w§(1+47r)(0)
nonmagnetic metal type with the antiferromagnetic exchange K=
between layers from Ref. 2 An analysis of expressi®)s
and(12) shows that, in the absence of magnetic-dipole inter- 2 > »2>0:
action, normal modes of the magnon spectrum of an infinite 5 - 9 2 2
MSL (7) can be classified according to the type of their ~ @%=A—2c°k]=2ck, (c°k{ +B—-A)™

0’ <w?<B; K*>k2;

c?(1+4myo)—4mxoc’’
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A=[c?+cX(1+4mxo) K: + wd; momentum relatior(22), whose range on the plane of the
s s parameterss andk, is restricted by the conditiok? >k?2
B=(wg+ciki)(1+4mxo), (17 fork, .

In order to obtain the spectrum of the surface collective
spin-wave mod€21), (22) in the long-wave limit, we must
take into account the finite size of the MSLD2NL <
(—D<z<D). If the boundary condition$10) are satisfied
) s 5 on both surfaces of the MSL, the energy—momentum relation
0 <w'<wi, (18)  for the spectrum of the mode of collective spin-wave excita-
tions of the dipole-exchange type localized near the MSL
surface forD < can be presentefaking into account re-
lations(17), (18) and the symmetry of spin oscillations rela-
tive to the planez=0) in the form

a two-partial surface dipole-exchange spin Waqé,2(>0)
can be formed near the surfaze-0 of the MSL under in-
vestigation in view of the nonlocal nature of interlayer ex-
change ¢#0). If, however, the relation

holds, a two-partial generalized surface spin wave qﬁe
#0; Im qizi 0) can be formed in the MSL under consider-
ation. If the frequencyw of spin oscillations and the wave
numberk, do not satisfy simultaneously relatiofs8) and

(19, the formation of two-partial dipole-exchange excita- ) w3+ ¢’k — w?
tions localized near the surface of the MSI) is ruled out. Q| ——(z [d,+k, coth(g,D)]
In particular, for
2, 212 2
ws+Cci kK —w
w?>(wg+cTkD) (1+4mxo) (19 =qz(tﬁ—% [gs+k, coth(g,D)];

collective dipole-exchange spin-wave oscillations propagat- s 29
ing along the surface of the MSL form a two-partial pseudo- , @otCiki—w
surface spin waveq?>0, q5<0). Finally, the formation of 1( 92~ c?
two-partial bulk @§’2< 0) dipole-exchange excitations in the

MSL under investigation takes place for

[d.+k, tanh(g,D)]

2 2,2 2
_wo-i-chL 0}

CZ

2

ZQZ(% [d;+k, tani(q;D)].

02 <w?<(w3+c2k3)(1+4my,); K2<k2. (20)
23
However, relationg17) and (18) are only necessary condi- @3

tions for the localization of collective dipole-exchange spin-It ¢an easily be verified that, in the limiting cakeD — <,

wave excitations with the structure of the magnetic potentia[€@tions(23) coincide with the energy—momentum relation
¢, (15) near the surface of the MSL in question. for the spe_:ct_ru_rr(Zl), (22) of surface spin—wave excitations
in a semi-infinite MSL.

In the long-wave limitk, D<1, it follows from (23) that
the spectrum of mode of dipole-exchange spin wave excita-
SURFACE DIPOLE-EXCHANGE SPIN WAVE tions, which is quasi-homogeneous over the thickness of the

The energy—momentum relation for a surface Olipole_MSL under investigation, can be written in the form

exchange spin wave in the case of a semi-infinite M80), w?=[ w3+ c?k?+ Dk, (w3+Cc?k*)(1+4mxo)]
(11) is a nontrivial solution of systerfll) for the amplitudes .
A1, (15) provided thatw and k, satisfy relations(17) or X(1+Dky) " (24
(18): A comparison of this expression with the results of the above
w(z)JrCf kf — w2 classification of possible types of collective dipole-exchange
0102(01+0p) —k, | ——————q102|=0. (21)  spin-wave excitations in MSI(7) shows that if the MSL
¢ thickness D is smaller than a certain critical thickness
It can be easily seen that if we disregard the nonlocal nature 2c 4 112
) . . mX0
of interlayer exchanged=0), this type of surface spin- D,=——|—%| , (25)
wave excitations does not exist. In the short-wave limit 1+dmxo | wp

(cik?>4myow5), the energy—momentum relation for the relation (24) for small k, defines a dispersion curve of the
surface spin wave under consideration can be derived fromylk mode @2 ,>0) of the spectrum of dipole-exchange os-

(21) in an explicit form: cillations, which is quasi-homogeneous over the MSL thick-
(02+c2K2)2 ness D, transformed into the dispersion curve for a two-
w?=(w3+c?k?)(1+4mxo) — 4(7x0)? 0 2 L2 - partial generalized surface spin wave for+#0.
ki (22) If, however, the conditio®>D, is not satisfiedwhile

the condition of the fine-layer structure of the magnetic su-
A comparison of(22) with (17) and (18) shows that as perlattice is observed as befgrdormula (24) defines the

the value of the wave numbér, decreases, the nature of energy—momentum relation for a generalized surface spin

spatial localization of collective dipole-exchange spin-wavewave (Regf ,#0; Im ¢Z ,#0) for anyk, D<1.

excitations with the energy—momentum relati®1) near As regards other modes of the spectrim of bulk

the MSL surface changes since the type of collective dipoledipole-exchange spin-wave excitations in MSL, whose

exchange spin-wave excitations in MSL in the short-waveenergy—momentum relations are defined by formuy2®

limit are two-partial q§,2> 0) spin waves with the energy— under the condition&9) and(10), it can be easily shown that
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the nonlocal nature of interaction between the layers ( provided than.L hilk, [IH, and the spins on the surface of the
#0) can lead to a resonant interaction between propagatingiagnet are completely free. If, however, the low-activation
bulk dipole-exchange oscillations with labelsandp. In the mode in the magnon spectrum is a gquasi-ferromagnetic
vicinity of the point of intersection, their energy—momentum mode, the necessary condition for the formation of a gener-
relation can be written in the form alized surface dipole-exchange spin wave on the basis of this
(wz_Qi)(wz_Qi)_ §§p959i50’ mode iskl+ HilnL h under 'Fhe same boundary conditions.
According to calculations, the type of the surface

) 2, 2.2, of TV 2 kf (26) dipole—exchange spin wave analyzed by us can also be ob-
O, =|wptciki+c D 1+4mxo m : served for a ferromagnet—nonmagnetic metal type MSL with

Hin.

(1&,)<1; v,p=1.2,.). | |
; The author is deeply indebted to A. N. Bogdanov, V. N.
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A compensated ferro—antiferromagnet interface is studied in the framework of a discrete

classical spin model. The phase diagram is presented for the possible collinear and canted magnetic
structures of the interface. The change in magnetization upon a transition from a collinear
structure to canted form is studied. €998 American Institute of Physics.
[S1063-777X%98)00409-5

The problem of coexistence of ferromagndgffévl) and  ture in a direction parallel to the interface coincides with the
antiferromagneti¢éAFM) phases was first encountered while lattice period, while in the second case it is equal to double
studying cobalt microparticles with an oxidizé800O) sur-  the atomic spacing. Hence the collinear structure with “cor-
face. Meiklejohn and Beardiscovered the phenomenon of rect” ordering of FM and AFM halfspaces in modelFig.
hysteresis loop displacemef@xchange biggor this system. 18 corresponds to the ground state of the system for all
Almost simultaneously, Vlasov and Mitsekegan their in-  values of the parameters of the magnets. In model Il, a col-
vestigations of disordered alloys of the type Co/CoO condinear structure with such an ideal ordéfig. 1b corre-
taining inclusions of AFM grains in the FM matrix. The sponds to a totally frustrated FM/AFM interface. In case |,
discovery of the giant magnetoresistance effect triggered inthe domain walls parallel to the FM/AFM interface may in-
tensive theoretical and experimental studies of multilayeredersect it and get transformed from FM to AFM wallhe
magnetic systems with alternating FM and AFM layéfe/  existence of such domain walls was first indicated by Mauri
Cr, Co/CoO, etd.® The theoretical description of magnetic et al* Hence a description and classification of nontrivial
properties of interfaces is usually based on classical modeRfates in a layered AFM was naturally carried out in terms of
of magnets in the exchange approximation. For examplegollinear and canted domain walls interacting with the inter-
Mauri et al* and Koor? describe the phenomenon of ex- face of the magnetsin the case of a compensated FM/AFM
change bias using the micromagnetic approach. Stamgsterface, the domain wall vanishes at the interface. Hence
et al® studied FM resonance in two-layered FM/FM and possible collinear and canted magnetic structures in this case
FM/AFM systems and, in particular, in the system Co/CoQ differ significantly from those in model I.

In all these works, layers of finite thickneéseveral atomic In the present work, we study the static configurations of
spacing$ are considered. It is found that the structure ofthe interface between an FM and an AFM with a “staggered
boundaries and frequencies of spin waves are determine@rdering” (model I)). An analogous model without one-ion
essentially by this thickness. anisotropy was considered by Matsushiteal® The mag-

In this work as well as in our previous publicatibnye ~ netic structure of the interface changes radically if the easy-
have proposed simple theoretical models for the interface o&xis anisotropy is taken into consideration, leading to local-
semi-infinite easy-axis FM/AFM systems. These models cafgation of magnetization nonuniformity in its vicinity. Unlike
be used to analyze the magnetic structure of the interface artfie case of a layered AFM, this problem cannot be reduced
the existence of localized spin-wave modes in its vicinity.to the investigation of a one-dimensional spin chain normal
Two models with identical primitive cubic lattices of FM and to the FM/AFM interface: it can be seen from Fig. 1b that
AFM halfspaces but with different magnetic ordering of the©dd and even spin columns are in different states.

AFM are considered. It is shown that for a layered AFM  In the classical Heisenberg’s model, the system is de-
(Fig. 1a, model | proposed in Ref) &nd an AFM with a  Scribed by the Hamiltonian

staggered orderingFig. 1b, model Il proposed in the present 3 B

work), the systems have quite different static and dynamic _ “m,s Pm 2

properties. Although real systems usually have a more com- H—n% 2 (5w S“”)Jr% 2 (Sm®)% @
plicated geometry, the models proposed here provide a quali-

tative description of uncompensatédand compensatéd wherem is a lattice site its nearest neighbors,, the spin
FM/AFM interfaces, respectively. vector at this siteJ, 5= —Js andJ,, s=J,, respectively, for

From topological point of view, models | and Il are quite FM and AFM halfspacesl],, s=J;, for exchange across the
different. In the first model, the period of the magnetic struc-interface ¢;,J,,J;s>0), B,,=B; andB,,=B, are one-ion

1063-777X/98/24(9)/4/$15.00 629 © 1998 American Institute of Physics
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undergoes a transition with a spontaneous symmetry break-
ing. Using the magnetization dynamics equation in polar co-
ordinates(the z-axis coincides with the anisotropy axis

dom 1 oH dé, 1 oH
modt A4S, 96, m dt  AS, dem’
4

where S,,= Siy(sin 6, Cos¢,,Sin 6, Sin ¢,,c0s6,,), we find
that the quantityde,,/dt=w in a CS defines the spin pre-
cession frequency around the easy axis, which vanishes at
the CS—NS transition point.

In the equilibrium position of collinear structures, angle
0 is equal to 0 orr. At the sites corresponding #,= 7 in
equilibrium, we introduce a new notation for the small angle

sin 6 sin @

FIG. 1. Interface between an FM and an AFM for the case of a layeredyf spin rotationd,,— 6,,+ . The CS—NS transition is deter-

AFM (a), and for its “staggered” orderingb).

anisotropy constants for FM and AFM halfspaces respec-

tively, andBs, B,>0 for the easy-axis anisotropy.
Depending on the values of the parameteendB, the

mined by the condition of existence of nontrivial solutions of
linearized static equations

oH
a6

m 0y—0

=0. 5

ground state of the system for model Il is one of the threerpe pyk Hamiltonian of the ferromagnet can be written in

collinear structuresA, B, andC), or the canted structur®

(see Fig. 2. Other collinear and canted structures are also
possible for very large values of the anisotropy constant.
They correspond to domain walls confined by the Peierls

relief at a finite distance from the FM/AFM interface, and

local energy minima. Since we are interested only in the
ground state of the system, we shall not discuss such Struﬁ\?ith

tures here.
Instead of the initial seven parameters of the model, it i
expedient to consider four dimensionless quantities

Bf Ba (Ja v Sa . ‘]fa
=7, =7, =\ 7 = = . 2
Bf \]f Ba ‘]a P \]f Sf J \/E ( )

The collinear structure energy valugser unit cell on
the interface are given by

, , 10E
EAZZJfaSanZZon, EB:].OJfo: P y

Ec=100,S2=10Ep, )

whereEy=J:J;S;S, -

S

the form

HF:_E

m, &

J;S? BS?
O 0L O, O )+ S —— sir? 6,
2 ~ 2

(6)

It can be seen from Fig. 1b that the system is periodic
a period 21 in the plane of the interface being the
lattice constant. Denoting bgt!) and 6) the polar angles of
even and odd spin columns, respectively, we obtain f(6m
and(6) the equations for the ferromagnetic halfspace:

o0 (6+ By~ 467~ 62~ 01,0,
026+ —46 -2, —62),=0, @)

where n is the layer number. These equations must be
supplemented by the condition of decreasitly and 6%
for n— + . The general solution of systef#) has the form

Let us find the relations between parameters correspond-

ing to a bifurcation transition from collinedC9) to canted
(noncollineay structure(NS). It is well known that if one of

1/2
the eigenfrequencies of the system becomes equal to zero, it P(8)=1+ g— ( B+ Z) .

- - — —
e
1—.—»—»—0

0——ems

— —> —> —

— — — —

— — — —

— - - —

— . —>

..1—».——..—
——
— — — —

— - — -

A

— — — —
——— — —
— — — —

— — — —»

B
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C
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—
— e -

— — e —p

S

FIG. 2. Collinear interface structure#\(B,C) and the canted structul®
B:=0.2,8,=0.3,p=0.4,j=0.9.

o) =APY+APY,, 02=APR - AP, 8
where
Pi1=P(B1), Pia=P(8+pBs), 9
and
2
b (10

The solution for an antiferromagnet can be presented in
an analogous form:

o) =B1Po " 1+ BP

0 =B1Po" = BoP (12)
where
Palzp(ﬂa)a Pa2=P(8+Ba). (12

Substituting the relation§8)—(12) into the static equa-
tions for four nonequivalent sites near the interface, we ob-
tain a system of four linear homogeneous equations in un-
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@
T

@

0

FIG. 3. Phase diagram of the FM/AFM interface f@;=p8,=8 and
p=1.

known parameter®\;, A,, B; and B,. For the collinear
configurationA, for example, the equations for spin devia-
tions (the numbem=0 corresponds to the first layer in the
FM halfspace

05 (5+ Bi+pi) —464"— 017~ pj 61 =0
05" (5+ Bi—pi) 464"~ 017+ pj 605=0,
00)(5+ BotIp)— 407 — 09— j1pod =0, 1
0%)(5+ Ba—ilp)— 46— 62 +jlpoP =0,
lead to the relations
AiFt1+Azp] —Bopj =0,
AzFta+Asp] —B1pj=0,
BiFa1+Byj/p—Asjlp=0, a4
BoFax+B1j/p—A4j/p=0,
where
Fra1=F(Bra), Fra2=F(8+Ba), (15)

B ﬁZ 1/2

F(B)=§+ B+ (16)
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inp

FIG. 4. Phase diagram of the FM/AFM interface f8r=0.2, 8,=0.3 (a),
and B;=4, B,=5 (b). Curvesl, 2, 3 are described by Eq$17), (18) and
(19) respectively.

i 1
]
SN PR “”
2 VP T TRl (eD) )

The equality to zero of the determinant o_f .the system of  Formulas(17)—(19) and(3) can be used to determine the
equations(14) gives a relation between the critical values of ground state of the system as a function of the parameters

the parameter§, p, B, andB;:
j= FiiFioFaiFa
(Ft1/p+Fap)(Fi2lp+Faop)’
Analogously, we obtain
(Bi+Fi1+Gi1)(—8+ Bi+Fio+Gyo)
=F1F2(Bi+ G (—8+ Bi+ Gya); (18
for structureB, and
(ﬁa+ Fa1+Ga1)(_8+IBa+ I:a2‘|'Ga2)

:FalFaZ(ﬁa+Gal)(_8+ﬁa+Ga2)a (19)
for structureC, where

17

Bi. Ba, p, andj. In other words, we can construct the phase
diagram of the system in the four-dimensional space of these
parameters.

Parametep characterizes the difference in the magnetic
properties of FM and AFM, while parametgidescribes the
role of the interface as a localized magnetic defect. For a
graphic representation, let us first consider the particular case
Bi=Ba=pB and p=1, when magnets in two halfspaces are
characterized by the same anisotropy constants and the same
value of the exchange interaction. In this case, the interface
affects the form of the ground state as a magnetic point de-
fect. Figure 3 shows thg vs. | plane and the interfaces
between various phases. In this case, forml&s and (19)
coincide, and the collinear structurBsandC have the same
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FIG. 5. Variation of the canted phase structure witfor S;=S,=1, B¢
=0.2, B,=0.3, p=0.4; dependence of thecomponent of the total mag-
netization (a). Angle of rotation of the antiferromagnetism vector in the
AFM layer adjoining the interfacéb).

energy. The collinear phageis the ground state in regiorms

A. G. Grechnev and A. S. Kovalev

collinear structureg\, B, andC are separated from one an-
other by a canted structuf® On the straight line segments
j=5lp, j=5p, and p=1, the energies of two collinear
phases become equal. Cungks2, and3 separating the re-
gions of collinear phases from the region of canted phase are
described by Eqg17), (18) and(19) respectively. The phase
diagram changes for large values®f and 3, (Fig. 4b. As
before, the energies of collinear phases are equal on straight
line segments, but these segments can now intersect with
lines 1, 2, 3 defined by Egs(17)—(19). The interfaces are
marked in the figure by solid lines. It can be seen that for
large anisotropies, a direct transition between collinear
phases can occur without the formation of an intermediate
canted phase. An analysis of formula8) shows that the
structureB does not exist for3;<0.011324, while forg;
>8.234057 it is a local energy minimum for all valuesf
and j, and the bifurcation transitioB— S does not occur.
The same is also true fg8, and the structur€.

The specific form of the canted structure was determined
through a numerical search of the configuration with the low-
est energy using the relaxation method. A change in the sys-
tem parameters causes a rearrangement of the canted phase
structure accompanied by a change in the total magnetization
of the system and a rotation of the magnetization and anti-
ferromagnetism vectors. Figure 5a shows the variation of the
x component of total magnetizatidthe x-axis is chosen in a
direction perpendicular to the FM/AFM interfaceipon a
change in the parametg¢rfor fixed values ofp,8; and B,
(p=0.4,B:;=0.2,8,=0.3) i.e., along the linaa’ in Fig. 4a.
Figure 5b shows the variation of the angle of rotation of the
antiferromagnetism vector in the atomic layer adjoining the
FM/AFM interface from the valuep=0 in the A-phase to
the valuep= /2 in the C-phase.

The authors are grateful to S. L. Gnatchenko and A. B.
Beznosov for fruitful discussions.
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It is shown by using the exact quantum-mechanical solution that a one-dimensional
antiferromagnetic Heisenberg spin chain is unstable to the emergence of an easy-plane magnetic
anisotropy in a real three-dimensional crystal. It is shown that the magnetic anisotropy is

due to a Jahn—Teller type effect, i.e., a strong spin—lattice coupling. A change in the equilibrium
position of ligands induces magnetic anisotropy in the spin chain1988 American

Institute of Physics.S1063-777X98)00509-X]

Many theoretical and experimental works have been deshould be noted, however, that such a description introduces
voted in recent years to investigations of low-dimensionala strong anisotropy in the magnetic properties of such mod-
guantum antiferromagnet&FM) at low temperatures. Low- els: these systems are transformed into Ising-typ¢\otype
dimensional low-symmetry magnets began to be studied isystems depending on which two levdldoublets of the
Kharkov over 30 years ago. The late A. |. Zvyagin, Corre-total angular momentum of the correspondfrgrbital of the
sponding Member of the National Academy of Sciences oimagnetic ion have a lower energy.
the Ukraine, whose 60th birthday was celebrated recently, It is well known that magnetic anisotropy plays a signifi-
was one of the pioneers in the field of experimental studies irant and fundamental role in the spin systems during a the-
this field. One of the author\.A.Z) is deeply indebted to oretical analysis of the magnetic properties of such systems
late A. I. Zvyagin for introducing him to this interesting field at low temperature$Magnetic anisotropy is manifested in
of physics. the removal of degeneradyn the direction of quantization

Among other things, several quantum AFM in which the of the total spin of the systemSuch a situation emerges in
interaction of spins along certain directions i€40(* times  many-particle AFM spin systems in which the Heisenberg
stronger than along other directions of the crystal lattice havé\FM spin—spin interaction is isotropic, and hence the spin
been synthesized during the last dechflé&Such magnets directions along all lattice vectors are equivalent from the
usually undergo a phase transition to the ordefdmlee- energy point of view. Magnetic anisotropy leads to a situa-
dimensiongl magnetic state at very low temperaturég, (tion when some crystallographic directions become more ad-
~1 K). At temperatures higher than, but lower than, or of vantageous from the energy point of view. In this case, the
the order of, the characteristic energy of exchange interactiototal spin of the system is no longer an integral of mofiion
along a preferred direction, such magnets display the propsther words, its operator does not commute with the spin
erties of one-dimensional magnetic chains. Quantum fluctuadamiltonian of the systein The magnetic anisotropy is a
tions in one-dimensional systems are often enhanced due toanifestation of the crystdelectrig field of ligands(i.e., of
singularities in the density of states. Hence approximate thethe neighboring nonmagnetic iofsThis field interacts with
oretical methods can give even qualitatively erroneous rethe spin subsystem of electrons of magnetic ions through
sults for one-dimensional quantum systems. Thus, theoreticabin—orbit coupling(which is usually weak Hence the
studies of essentially many-particle effects in a one-variation (emergence of magnetic anisotropy is due to a
dimensional AFM spin chain require a precise guantum-~variation of the symmetry of neighboring nonmagnetic ionic
mechanical approach like Abelian and non-Abelianlattice sites. The emergence of an axial magnetic anisotropy
bosonization and the Bethe ansatz method. in the spin subsystem lowers the symmetry of spins from

Among the large number of low-dimensional spin sys-SU(2) for the Heisenberg model ttJ(1) for the axial
tems studied in recent years, systems with lattice site spinsiodel. The magnetic anisotropy may be of single-ion or in-
S=1/2 (e.g., C&" [Ref. 1] or V*" [Ref. 2] ions) are espe- terionic type*® In this work, we shall consider essentially
cially significant. The magnetic behavior of many rare-earthmany-particle spin systems, and hence consider the effect of
ions at low temperatures can be described by the effectivimterionic magnetic anisotropy at the very outset. As a matter
Hamiltonian of spinsS=1/2. In other words, the lowest of fact, the spin systerB=1/2 can exhibit only this type of
spin-doublets play the dominant role at low temperatures. lanisotropy.

1063-777X/98/24(9)/6/$15.00 633 © 1998 American Institute of Physics
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We shall show that at low temperatures, a one- M
dimensional AFM Heisenberg chain of spis-1/2 is un- v= > > Ap exp(iE pp,xj) X1+ Xm),
stable to the emergence of an easy-plane type magnetic an- X1<Xp<.<xm P =1 5
isotropy. This magnetic anisotropy appears owing to a slight e
distortion of nonmagnetic ions, i.e., of the three-dimensionawherex; are coordinates of the downward orienfeslpin, p
(nonmagnetiglattice and, as a result, a change in their crys-are quasimomentéconjugate to coordinatgsand P stands
tal fields. The results are obtained in the mean-field approxifor all possible transpositions. The vectdx;...xy)
mation. This approximation is well substantiated since the= U;l...U;M|0) where|0) is the state with completely po-
lattice is three-dimensional in spite of the fact that the spinHarized spins: all spins are directed upwarésromagnetic
spin exchange interaction in this system is one-dimensionaktate, ando,, = o+ i0?, are the operators corresponding to
Hence we can certainly use the mean-field approach in thign increase and decrease in theomponent of the spins.
case. Moreover, we shall study the instability of magneti-The energy of such an AFM chain withl spins directed
cally isotropic homogeneous systems to uniform deformatiojownwards is defined as

which produces a uniform magnetic anisotropy along the en- NA M
tlref.cham. This mean;ithat we shall not consider the prob- Emag= — 2425 (A-cos p)). &)
ability of phase transition to the noncommensurate phases 2 j=1

(state$. In other words, the phonon which removes the spi
degeneracy has a commensurate wave veguasimomen- : : Sy .
g y d functions and eigenvalues of the Satliriger equation are

tum) and the instability of the AFM Heisenberg chain is . — L :
mainly determined by this phonon. We shall also considerObtalned ff‘.’"‘ the periodic bounda_\ry c.ondltlons in the form
g of the familiar Bethe ansatz equations:

the effect of an external magnetic field and nonzero tempera-
ture on the above-mentioned instability.

The instability considered in this work is quite similar to Np;=2ml; _|_§¢- 0(p;j,p1), (4)
a Peierls-type phase transition in the chain of sj@irsl/2 in -
the X Y-model®’ The spontaneous emergence of the biaxiaWhere
magnetic anisotropy in th¥Y-model with spinsS=1/2 was

predicted by Borovik and Zvyagih.In all the above-

r]The values of the quasimomenta parametrizing the eigen-

M

6(p;j,p))=2 arctan

mentioned works, the Hamiltonian of th€Y chain of spins A sin((pj—py/2)

was mappedby using Jordan—Wigner transformatiponto X cog(p;+p/2)—A cod(p;—py/2) |’

the Hamiltonian of a noninteracting linear chain of spinless : .
fermions(whose Hamiltonian is a quadratic form of fermion ®

operators of creation and annihilation of spinpris other  andl; are integralhalf-integra) numbers for oddeven M.
words, effectively noninteracting fermion systems were con-These numbers parametrize the eigenfuncti@sand eigen-
sidered in Refs. 6, 7, and 8. We shall consider a onevalues(3) in the quantum-mechanical problem under consid-
dimensional Heisenberg AFM chain of spiBs-1/2 which  eration. Obviously, the system is transformed into an isotro-
can be mapped with the help of Jordan-Wigner transformapic XX spin chain in the limitA—O0, and Eqgs.(4) are
tion onto a one-dimensional spinless fermion system withtransformed into the well-known periodic boundary condi-
two-particle interaction. Hence we shall essentially study theions for a free one-dimensional lattice gas of fermions. Let
many-particle cooperative Jahn— Teller effect in an interactA=—1+x68, where the parametexd characterizes the

ing one-dimensional quantum spin system. emergence of magnetic anisotropy i6 the magnetoelastic
The Hamiltonian of a periodic chain & spinsS=1/2  constant and the paramei@describes the distortion of sym-
with antiferromagnetic interaction has the form metric configuration of nonmagnetic ligand3he magnetic

anisotropy emerges due to a change in the crystal field of
ligands and is therefore connected with a shift in the equilib-

1 N rium position of the three-dimensional lattice @gfonmag-
To=— > > (k0% +ado?  +Adkot, ), (1)  netig Iigand;. In the 'first approximation i, thi's process
n=1 leads to an increase in the energy of the elastic subsystem:
52
Ee|: N C ?, (6)

where oy (a=x,y,z) are Pauli operators of thex-

component of the spin in theth position, the exchange con- whereC is the elastic constant. This means that a decrease in
stant is equal to unity, andl is the parameter dfinterionic  the magnetic energy in E@3) caused by the magnetic an-
magnetic anisotropynote that|A|>1 corresponds to the isotropy is accompanieths expectedby an increase in the
“easy-axis” type anisotropy, whilgdA|<1 describes the elastic energy. In other words, the removal of degeneracy of
“easy-plane” type magnetic anisotropy. The case —1 a Heisenberg AFM spin chain occurs owing to an effect of
corresponds to an isotropic AFM spin chgifThe wave the type of the cooperative Jahn—Teller effece., due to
function with M spins oriented downwards may be deter-the effect of elastic subsystems on the electron subsystems.
mined in the form of Bethe ansatz, i.e., in the form of aThe energy of the spin subsystem defined by Bjcan be
superposition of plane waves: determined exactly by using well-known results of classical
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studiest® Let A=—1+x8=—cosu(xs>0) for the easy- -0.35
plane type magnetic anisotropy. In this case, the Bethe ansatz -0.36}
equations(4) for an AFM spin chain can be solved in the )
thermodynamic limifi.e., forN—o, M —o, and for a fixed -0.37
value of M/N). These equations assume the form 8
w —0.38
sin
—Mzzﬂ.p(a) -0.39
cosha—cosu
-0.40}
+fQ dBp(B) sin 0.41
p _ _ ’ -V, [ N ry " N N s
-Q cosfa—f5) —cos 0 01 02 03 04 05 06

()

where we have executed a change of variables from quasi-
momentap; to speedsa (p(a) is the density of quantum

speedsy and these are the variables that will parametrize the
eigenvalues and eigenvectors of the spin subsystem being

-0.40

S

considered heje The limits of integration ¢ Q,Q) are de-
fined by the quantityM (M=f9Qdap(a)), i.e., they are
connected with the total magnetization of our systdtwas
rigorously proved by Yang and Yattthat in the absence of
an external magnetic field, the speedsr completely cover
the interval — o, ] for the AFM spin chain. The solution of
Eq. (7) is obtained by using Fourier transformation. Substi-
tuting this solution into the thermodynamic limit of ER)

o NA NJ‘Q q 2 sirt u 8
mag=~ 5 N | den(e) o s ®
we obtain forh=0(Q=x)
) o sinh(7r— w)X
Emag=—N sin ,uf_mdx CoSH @x)Sinf( %) —NA. (9

Let us find the minimum of the sui,=Ey,5t E¢ OVer the
distortion § in the nonmagnetic lattice. The energy minimum
for an AFM chain with “easy plane” type anisotropy is de-
fined by the solution of the equation

Cde sin{u(8)}

d
SV

dex

sini (7 — u(6))X]
sinh(7rx)cosh w(8)X]

(10

)

8= beqy

We construct the dependence of the total energy of the

-0.42
I-IJ:—O.44
-0.46
-0.48

0

0.2

FIG. 1. Dependence of the total energy of the ground state of a magnetic
and an elastic subsystenis,, on the displacemens of the position of
nonmagnetic iongligands in a crystal lattice for the elastic consta@t
=0.46 (a) and for different values o€:0.84(1); 0.24(2) and 0.14(3) (b).

It can be asked whether such a behavior is observed for
all values of the elastic consta@@. Figure 1b shows the
dependence of the total energy of the ground state of our
system on displacemerd for several values of the elastic
constantC. It can be observed that the minimum dasso-
ciated with a nonzero displacement of ligand lattice is shifted
towards decreasingupon an increase in the elastic constant
C, while no minimum is observed for small. This is ob-
vious since the observation of the magnetic anisotropy effect
in spin subsystem$which is usually quite smallrequires
quite large elastic displacements.

The analogous effect foh<—1, i.e., for “easy axis”

ground statdthe lattice is assumed to be in the ground stateype magnetic anisotropy, can be studied in a similar manner.

irrespective of the complexity of the analysi the elastic
and magnetic subsystems on the displaceraftthe three-

The Bethe ansatz equatiot® for this system are solved in
the same way. After long but obvious computations, it is

dimensional nonmagnetic lattice of ligands. This dependenctound that for all values of the elastic constant, the total

is shown in Fig. 1a for the valu€=0.46 of the elastic
constant(note that we measure all quantities in units of iso-

energy minimum for the ground state of the spin and elastic
subsystems corresponds to zero distortibof the three-

tropic exchange constgntt can be seen that the total energy dimensional ligand lattice. This means that there is no addi-
minimum corresponds to a nonzero value of the lattice distional ligand electric field in this case, and hence there is no
tortion. This means that the minimum energy in the ground‘easy axis” type magnetic anisotropy. This is an expected
state is associated with the displacement of threeresult since it is well known that in the case of Isifigasy
dimensional nonmagnetic ions which, in turn, generatesxis”) type magnetic anisotropy, the spectrum of low-lying
an electric field leading to a nonzero magnetic anisotropy oéxcitations of an AFM chain of spirS8=1/2 in zero or weak
the one-dimensional AFM spin subsystem due to spin—orbiimagnetic fields is of gagactivation type.

coupling. Let us try to determine the behavior of such an unstable
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FIG. 2. Dependence of the total energy of the ground state of a magnetic

and an elastic subsysterig, on the displacemend and a weak applied FIG. 3. Dependence of the total free energy of a system on tempefature

magnetic fieldh. lattice deformations, and a weak applied magnetic fiehd The tempera-
tures are quite low in comparison with the exchange constanity).

one-dimensional Heisenberg AFM spin chain as a result of
the emergence of “easy plane” type anisotropy in an exter-
nal magnetic fieldh. We shall first consider the case of small
magnetic fieldsh<1. In this case, the Hamiltonian of the
spin subsystem has the form

Earlier, we studied the properties of a Heisenberg quan-
tum spin chain in the ground state. However, the behavior of
the system at nonzero temperatufeemains unclear. It can
be easily shown thatin the present case of interionic mag-
netic anisotropy the isotropic spin system will be stable at
very high temperatures. This also follows from symmetry
considerations: the high-temperature phase usually corre-
whereh=gugH, g is the gyromagnetic ratidd the mag-  sponds to a higher symmetry. It can be asked whether the
netic field, andug the Bohr magneton. Using the results critical temperatureT,, of such a cooperative Jahn—Teller
obtained by Yang and Yari,i.e., solving the integral equa- type phase transition is equal to zewhich is usually true
tion (7) by the Wiener—Hopf method for very weak magnetic for one-dimensional systems in which 0 is the only singular
fields, we obtain point in temperaturel), or a phase with a nonzero “easy
u plane” type magnetic anisotropy exists in a certain tempera-
(12)  ture interval for the spin chai®=1/2. In order to answer
this question, we can use the thermal Bethe ahsdfar
Having found the minimum of the total spin and elastic en-simplicity, we can consider only the low temperatQrest
ergy in the lattice displacement we can see that the ground low temperatures, the familiar Sommerfeld expansion is
state minimum energy for any weak fiell corresponds valid (see, for example, Ref. 12
to the emergence of a nonzero minimum deformatin
The dependence of the total energy of the ground state of the
spin and elastic subsystems on the external magnetictield Emag= Emag— N
and displacemend of ligands in the three-dimensional lat-
tice is shown in Fig. 2. It can be seen that for all magnetic
fieldsh there exists a minimurfcorresponding to a nonzero whereuvg is the Fermi velocity of lowest excitations of the
displacemen®) on the dependence of total energy on defor-AFM chain (spinong. For zero magnetic field, this velocity
mation. can be determined easily:= 7 sin(u)/u.’° We determine
In quite strong magnetic fields>h., whereh, is the  the minimum of the total free energy,=En.st Ee from
critical field corresponding to a transition to the spin-the deformations of ligands (it should be recalled that we
polarized(“ferromagnetic”) state, the total energlf,,; can  consider very low temperatures, i.e., assume that the elastic
be minimized ing, which gives subsystem is still in the ground statdhe assumption that
5. —x/AC (13) f[he elastic subsystem is in f[he ground state is justified since
eqv ' its energy scale is usually higher than the energy scale of the
This means that in the present case, a strong external magragnetic subsystem. Figure 3 shows the dependence of the
netic field also does not alter the situation significantly: thetotal free energy of the system on deformatiéand tem-
cooperative effect in the electric crystal spin subsystem angerature(we consider the case of very low temperatures
the distortion of the three-dimensional ligand lattice in theonly). It can be seen that the minimum in the dependence on
elastic subsystem lead to a nonzero “easy plane” type magé (corresponding to a nonzero displacement of the equilib-
netic anisotropy. This means that the emergence of a “easgum, and hence to a nonzero magnetic anisoty@xysts at
plane” type magnetic anisotropy in a Heisenberg AFM spinlow temperatures and begins to vanish as the temperature is
chain is independent of the applied magnetic field. increased.

F=Ho—h>, o, (11)
n

= - 2—
Emag Emadh:o Nh Ada(m—pp)sinu’

7T

60’ (14
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FIG. 4. Dependence of the total energy of the ground state of a magnetic

and an elastic subsysterg, on the displacement of nonmagnetic ions in

the crystal lattice. The dependence of the magnetic anisotropy on the dis- E
placement parametex is nonlinear.

-0.382

It can be assumed that an “easy axis” type magnetic -0.386
anisotropy can also be expected for a fairly strong magnetic
field (the field must be higher than the gap in an elementary -0.390
spin excitatiom.

Note that the effect is independent of the manner in -0.394
which a connection is established between the elastic and
spin subsystems. The results are manifested qualitatively if
we considerE,,g as a function ofu and present the elastic
energy in the formE,=NCu?/2 (see, for example, Ref)7

Figures 4 and 5 show the dependence of the total energy %G 5. Depend ; .

. . . . 5. pendence of the total ground state energy of a magnetic and an
the magnetic and elastic subsystems in the ground state Qihstic subsystems on the displacemerdnd the elastic constaft of the
displacementu in the present cageelastic constanC, and  Jattice (8) and on the weak applied magnetic figidb).
the magnetic fieldh in the ground state. Figure 6 shows the
dependence of the total free energy on temperature and dis-
placement(at low temperaturgsit can be seen that the en- dimensional Heisenberg AFM chain of spins 1/2. It is shown
ergy minimum corresponds to a nonzero displacement of théhat under the action of a three-dimensional lattice of non-
ligand lattice. It is also obvious that the dependence of thenagnetic iongligands, the Heisenberg spin chain becomes
total energy of the magnetic and elastic subsystems on thgnstable to the emergence of an “easy plane” type magnetic
distortion of the three-dimensional nonmagnetic lattice doesinisotropy. This cooperative Jahn-Teller type magnetoelastic
not depend qualitatively on the manner in which the dis-effect is independent of the applied magnetic field. It is also
placement is caused, i.e., the effect does not depend on tisown that the phase with nonzero magnetic anisotropy ex-
choice of the model. ists in a certain nonzero interval of low temperatures. The

Unfortunately, we are not aware of experiments in sys4nstability studied in this work is analogous to the well-
tems with one-dimensional quantum AFM spin chai®s
=1/2 which could explicitly demonstrate the emergence of
the spontaneous magnetic anisotropy. However, the results E ot
of recent experiments on quasi-two-dimensional antiferro- ~037
magnets BgCuGeO; with Ci?" magnetic ions reveal that )
even for a fairly isotropidsquarg spin lattice, the magnetic ~0.39
anisotropy must be taken into consideration for explaining
the dependence of magnetization on the applied magnetic _q 41
field. In our opinion, such an effect is an indirect confirma-
tion of the predicted manifestation of the magnetic anisot- _(g.43
ropy, at least for a two-dimensional AFM Heisenberg system

of spins 1/2. However, we believe that this effect must IRGY XS 0.2
emerge for any AFM system of spins 1/2, whose ground ’

state is not magnetically ordered and whose lowest excita- T 18 u

tions are gapless. 06 ™

Summing up.the results of our inVG.Stigationsa it can berig. 6. Dependence of the total free energy of the system on tempeTature
stated that in this work we have studied a quantum oneand lattice deformatiop.
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Magnetic transport properties of semimagnetic semiconductor Hg 1-x-yCryMn, Se
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Experimental results of investigations of monocrystalline samples of {HgCr,Mn,Se solid

solution indicate, first, a considerable influence of manganese atoms introduced in

Hg, _,Cr,Se on the absolute values of physical parameters such as magnetic susceptibility, phase-
transition temperature, mobility of conduction electrons, and the period of time during

which the samples go over to the equilibrium state, and second, the formation of materials with
improved electrophysical and clearly pronounced magnetic characteristics as compared

with Hg,; _,Cr,Se samples with the same concentration of chromium ions19€8 American

Institute of Physicg.S1063-777X98)00609-4

Intense development of science and technology in théevel of other impurity ions, it should be expected that the
field of fundamental and applied physics of semiconductorsntroduction of Mn atoms into Hg ,Cr,Se) would make it
poses new and new problems whose solution involves applpossible to obtain a material satisfying all these require-
cation of new specially synthesized semiconducting materiments. Following these principles, we obtained a new qua-
als and a detailed analysis of their physical properties. Thesernary system Hg ,_,Cr,Mn,Se which will be described
materials include narrow-band semimagnetic semiconductdvelow.

(SMSQ. The continued interest of many researchers in this

type of materials is due to their specific properties that make

it possible to use them for solving problem in thermal detect: ELECTRON SPIN RESONANCE AND MAGNETIC
. ) C SUSCEPTIBILITY

tion, and quantum electronics, space communication in the
infrared range by synthesizing material of appropriate com-  In our previous investigations of the kg.Cr,Se sys-
position. Practical application of narrow band SMSC istem, we discovered and studied the electron spin resonance
based on the effects of strong spin splitting of energy level§ESR spectrum on G ions®* The spectrum was ob-
and Faraday'’s rotation due to thp—d exchange interaction. served in the range from helium to room temperatures and
Spin splitting in mercury chalcogenides with Mn is mani- was determined by the concentration of Cr ions and tempera-
fested most clearly at liquid helium temperature. Hence theure T. ESR and magnetic susceptibility studies revealed that
devices developed on the basis of these mateliid®  a crystal cooled below a certain temperat@iredisplays cu-
magnetic-field-controlled IR detectors and generataen  bic symmetry breaking in the lattice, and at a certain tem-
operate only in the helium temperature range. ExperimentgderatureT ;<<T; a phenomenon interpreted by us as a transi-
studies carried out by us on a number of representatives dion of Hg, ,Cr,Se to the spin glass phase takes place.

this class of semiconductors made it possible to discover a In order to establish the effect of Mn atomic impurity in
wide spectrum of new physical effects in the HgCr,Se  Hg;_,Cr,Se on the values of temperatufg at which the
systeni— and to verify that strong spin splitting can takes lattice starts being distorted and the phase-transition tem-
place in this system in the nitrogen temperature r&rigleis peratureTy, as well as on magnetic susceptibility, we car-
important practical advantage of Hg,Cr,Se solid solutions ried out complex studies based on ESR and magnetic suscep-
determines preferences given to the study of this materidibility y measurements on a number of Hg ,Cr,Mn,Se

over other SMSC. However, the arrangement of energy levsamples with the concentration$c,~10°°cm 3 of chro-

els of Crions in the conduction band of HgCr,Se leads to  mium ions and\y,,~5% 10"¥cm™2 of the manganese ions,
additional scattering of conduction electrons at thesevhich were cut from different regions of an ingot.
levels>**and hence to deterioration of electrical and physi-  The ESR spectrum was analyzed on a radiospectrometer
cal parameters of this material. In this connection, attemptsvith a working frequency 36.04 GHz. The valuesyofvere
were made to obtaifon the basis of Hg ,Cr,Se) a material measured by using inductive technique on a setup which was
with a lower concentration of Cr ions, but with the same ora differential magnetometer with low-frequency field modu-
even improved magnetic and electrophysical parameters détion, which was modified by sThe setup was calibrated
the material. Since the impurity levels of Mn ions in mercury with a help of the superconducting lead replica of the sample
chalcogenides get in the valence band in contrast to energynder investigation. The amplitude of the ac magnetic field

1063-777X/98/24(9)/4/$15.00 639 © 1998 American Institute of Physics
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FIG. 1. Temperature dependence of resonant fields in the ESR spectrum of
Hg,—x-yCr,Mn,Se corresponding to transition of Crfrom top to bottom
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FIG. 2. Temperature dependence of magnetic susceptibility in iy, Se
samples withNe~107cm™3 (curve 1) and Hg_,_,Cr,Mn,Se samples
with Ne,~10%°cm™2 and Ny,,~5x 108 cm™2 (curve 2) recorded immedi-
inducing emf in the measuring coils of the setup and thextely after sample growth and after equilibrium stabilization in the second
frequency were varied smoothly in the intervals 0—5 Oe andYStemcurves)
60—1100 Hz respectively. The temperature of the samples
was stabilized during measurements and was measured

within 0.1 K with the help of an electronic devie. It-?gl,x,yCrXMnySe samples immediately after the crystal

o . growth (curve 2) and after three months of storage under
: The tgmpgrature variation of ESR spectrum o?tpns natural conditions, during which the system goes over to its
'.S shown in Fig. 1 for the ng,yCernySe samples inves- _equilibrium state(curve 3). For the sake of comparison, the
tigated by us. Until the temperature is lowered to a certain o figure shows the(T) curvé® for Hg, ,Cr.Se with
value, the spectrum contains a single symmetric isotropi(NC%1§ocm,3 (curve ). A comparison of thésexcurves -
line indicating that Ct" is in a strictly cubic crystal field. i< ioc that they(T) curves for both materials are similar,
Thg respnant fieltH, of the absorption line is independent of the only difference being that the absolute values af the

T in this case. As the temperature decreases furthéf to phase-transition temperature region and stT, differ sig-

<T;, the value ofH, pecomgs a fu.nction. of, and the nificantly. Besides, the phase-transition temperaflyefor
spectrum becomes axially anisotropic, which follows fromthe Hg Cr,Mn,Se system is 12.5K higher than for the
the angular dependence of the ESR line. A subsequent de ey '

T i . , fth q 01 -,Cr,Se system with the same concentrathdg, .
crease inT gives rise to a fine structure of the spectrum, an Thus, it follows from an analysis of the ESR spectrum

the degree of anisotropy increases. n CP" jons and susceptibility measurements in

. ; 0
A comparison of the obtained tempera_ture d_ependencggl_x_yCrXMnySe that the addition of Mn atoms to
of H, of the ESR spectrum on €F ions in the

H Cr.MNS th 2 similar d q for th Hg; _,Cr,Se changes the values of temperatiie corre-
Hgl‘xc‘:y er Ny eﬁ?ystﬁn:]wn asimiiar epe_r(;menc;]a ort esponding to the beginning of lattice symmetry distortion of

G1-xChSe syste W't .t e same concentratidic, S OWS " the crystal and the spin-glass phase transition temperagure
that the nature of variation of the spectral structure with tem

) as well as the value of magnetic susceptibility in the phase
perature is the same for both systems, but the temperature

. . . e transition temperature region andla& Ty. This means that
corresponding to the beginning of symmetry distortion in they, o 2 qdition of Mn atoms to Hg Cr, Se improves its mag-
lattice of the Hg_,_,Cr,Mn,Se system is (263) K higher XX

- . netic characteristige(T) which becomes more expressive.
than in Hq _,Cr,Se system. The error in the measurements

of T; was determined on the basis of a numbeHopfvalues > GALVANOMAGNETIC MEASUREMENTS

obtained in this temperature range. It should be noted that no

EPR spectrum of Mfi" ions was detected in our case for In order to determine the effect of Mn atoms introduced

some reason. into Hg, _,Cr,Se on the kinetic coefficients of the new
Figure 2 shows the temperature dependendd) system Hg . ,Cr,Mn,Se obtained as a result, we

of magnetic susceptibilty measured on the samechose Hg_,Cr,Se samples with the concentration
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This concept is based on the formation of clusters with a
short-range antiferromagnetic order, which begins from local
fluctuations in spin distribution. The size of clusters in-
creases upon cooling. We can expect that at a certain tem-
perature the cluster size will become large enough for corre-
lated regions to “touch” one another. Such a process of
establishment of contact between different clusters can be
identified with spin freezing, and hence a transition of SMSC
to the spin glass phase whose temperafyres an increasing
function of the magnetic ion concentration and the integral of
exchange interaction between them. Consequently, an in-
crease in the temperature corresponding to such a transition
1 I ) . . )

0 100 200 300 due to the introduction of Mn atoms into kg,Cr,Se is
T, K attributed by us to an increase in the number of clusters per
unit volume, and hence their closer arrangement relative to
FIG. 3. Temperature dep_endence of ccg)nduggion electron mobility inpne another. Besides, it was found by us ea"'yﬁahat a
o e i b vy CIANGE In the defect sructéfan the Hg. ,CrSe system-
recorded immediately after sample growth and after equilibrium stabiliza—ChangeS appreciably the magnitude and the form of variation
tion in the second systefcurve 3). of x(T) as well as the stabilization of equilibrium state in the

system, which is characterized by a decrease in the number
of point defects and their ordering facilitating an increase in

Ner~2x 10?°cm™3 since, according to Ref. 3, the magnetic the values ofy and u. The results of our experiments indi-

susceptibility in this material in the temperature rangecate that a transition to the spin glass phase in samples with

T<T, is the same as that measured by us instabilized equilibrium state occurs at a higher temperature

Ha, g CrMn.Se with Ne~10%cm 3 and Ny.~5 (see curvex and 3 in Fig. 2) and is accompanied by an
—X— X r n - . . . .

><1018c¥n*3 (sée Fig. 2 This allowed us to determine the increase iny in the temperature range<Ty and inu in the

variation of the Hall mobilityx in the quaternary system entire temperature range under investigaticree curves?

relative to the ternary system for equivalent magnetic paramfEmdg in Fig. 3. The expenm_ental res‘%'ts obtained for the

eters of the two systems. two systems and the conception described above apparently
Galvanomagnetic measurements proved that the conceHa-ad to the conclusion that the defect structure of a sample

tration of electrons in both systems-s4.2x 108 cm™3 and under investigation affects the conditions of the formation of

is independent of temperatufe while their mobilities differ a certain number of C'“.SteTS as well as the rate Of. their
significantly and are functions af (Fig. 3 growth upon cooling, which in turn leads to a change in the

Thus, a comparison of the experimentally obtaiped) values ofT; and y and to a differenf(T) dependence in the

; P, ; ionT<T,.
curves(see Fig. 3 shows that for similar magnetic charac- region 9 . .
teristics y(T) of both systems, the Hall mobility of conduc- . Thus, the analygls of thg effect of Mn atoms introduced
tion electrons in Hg_,_,Cr,Mn,Se is considerably higher into Hg, _,Cr,Se on its physical parameters leads to the fol-

: lowing results.
than in the Hg_,Cr,Se system. ;
8-xMh€ Sy 1. Immediately  after  crystal  growth, the

Hg; x-yCr,Mn,Se system is metastable as well as the
3. DISCUSSION AND CONCLUSIONS I_—Igll_XCrXSe s_ystem, but the time qf stab|l|z§t|on of the equi-
librium state in the former system is approximately one third

The experimental results obtained by us and availabl®f the corresponding time for the latter systénther condi-
data from the literature lead to the following interpretation oftions being equal
the phenomena observed in the ;Hg ,Cr,Mn,Se and 2. The introduction of Mn atoms into Hg,Cr,Se in-
Hg; - «Cr,Se systems. creases the phase transition temperature significantly.

A comparison of experimental results obtained by us 3. The temperature dependence of magnetic susceptibil-
here for Hg_,_,CrMn,Se samplesN¢~10cm 2 and ity of Hg; _,_,CrMn,Se in the temperature ranges<T, is
Nyn~5x10*¥cm~3) and for Hg _,Cr,Se samples with the pronounced more clearly, and the valueyois several times
same concentration of Cr atoffsleads to the conclusion higher than in Hg_,Cr,Se with the same concentration of
that electrophysical and magnetic parameters of these sy&r ions.
tems display the same qualitative behavior, but differ quan- 4. The mobility of conduction electrons is higher in the
titatively. For example, the introduction of Mn atoms with quaternary system, provided that the magnetic parameters of
concentration % 10'¥cm™2 into Hg, _,Cr,Se causes a con- the two systems are identical.
siderable increase in the temperature of transition of It can be stated in conclusion that the introduction of
Hg; - «—yCrMn,Se to the spin glass phase. This experimen5x10'¥cm™3 Mn atoms into the solid solution of
tal fact can be explained by using the concept of transition oHg; _,Cr,Se  results in the formation of the
SMSC to the spin glass state, which was proposed byig, , ,Cr,Mn,Se system with a more clearly manifested
Furdyna® magnetic characteristic and with a considerably improved
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The formation and the growth dynamics of 180°-domains in ferroelectrics in external field are
investigated with the use of the statistical approach within the Ginzburg—Landau model.

It is shown that despite the polarizing role of an external field the formation of an intermediate
polydomain structure is found to be more preferable than immediate transfer to the
monodomain ordering state. ®998 American Institute of Physids$1063-777X98)00709-9

INTRODUCTION evolution character will change in an initially disordered sys-
tem if at the moment of quenching is finished some external

The fact that the really observed structure of solids isfield £ conjugating with the order parameterwill be im-
often nonequilibrium is largely determined by the dynamicsposed on it rapidly enough. The question is, if the homoge-
of transformations occurring there. These transformationsieous (monodomaii ordering will occur, or can a suffi-
may have the character of both phase separationi ciently developed polydomain structure formed, in some
orderind. In multicomponent alloys both of the aforesaid processessituations? In the case of a ferroelectric an uniform steady-
can proceed simultaneoudlyin this paper we are concerned with state electric field should be meant when speaking about an
the ordering processes and in large measure their dynamic aspeetxternal field. The time of its establishing.&¢e/¢) is con-
which consists in tracing the paths of establishing one or anothesidered to be small in comparison with the time of the form-
stable or metastable state and in revealing the reasons influenciigg (74) and certainly it is much less than the time of coa-
this choice. lescence f.) of the domain structurer(<7y<<7.).

The structural phase transitions in ferroelectrics associ-
ated with the appearance of macroscopic regions of the crys-
tal where the spo_ntan_eous electr!c pola}rlza}tlorl_ is n_ot equal thNERAL DESCRIPTION OF THE MODEL
zero are the basic object of our investigation in this work.

To characterize quantitatively the state change of a sys- In order to describe the ordering within the framework
tem passing through the critical temperature pdiptof a  of Landau theory we shall assume further that, despite the
phase transition, one or more values called order parametepgoximity of temperature to the critical ond {—T)/T.<1
are introduced. In the case of the ferroelectric phase transihe system lies outside the fluctuation region. In this situation
tion the projection of the polarization vector on a certaina nonequilibrium addition to the thermodynamic potential in
crystallographic direction is used as a long-range ordethe presence of external field can be presented in the form of

parameter. Ginzburg—Landau functioral
It is knowrf* that, in the absence of external field at the
temperatures below,, i.e., in low-symmetrical phase, the _J T, 1,1 5
. . . D 7n, = —An°+-Bn*+ = 6V —nE|dV.
states correspond to the differeftith respect to the sign {n.Vn} 20T P TR (V"=
values of the order parametery. In the early stages of the (1)

ordering, when the relaxation .of the short-range order ha]s_|ere the coefficient is proportional to T,—T). Since the
already been proceeded basically, the appearance of tr2:(?1aracteristic energy scale in this problemTisit may be
structures of the typ&por —y proves to pe quite accidental considered thaB~T,, and 5~Tcr§ wherer, is the inter-
a|r|1d iggte;ore the regKt)ns.oI _bo(;hﬁthe stlgngt(calfletg USU= — 4ction radius; i.e., the value of the order of interatomic dis-
aly 1ob- ornam}smus existin cifierent points ot the crys- tance;E is the external field, which we believe for the sim-
tal. It is obvious that the spatial size of the domains is as- licity to be homogeneous one

sumed to be much larger than the lattice parameter. As WE;‘PS In order to describe the dynamics of nonequilibrium sys-
shown by us earliér the evolution of these inhomogeneitiest m we shall use the Landau—Khalatnikov equaitor a

of the order parameter in the absence of the external fiel onconserved order parameter:

will proceed along one of two basic paths, depending on the '

initial conditions—either the formation of a single-domain an 5P

state or the formation of a polydomain structure followed by 7=~ 7 5—77 2
increasing(for diffusion time the spatial scale of this struc-

ture up to the crystallite size. wherevy is the kinetic coefficient which can be represented in

Our goal is to clear up how the long-range orderthe form (rT.) !, so 7 can be interpreted to be the time

1063-777X/98/24(9)/4/$15.00 643 © 1998 American Institute of Physics
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required for an elementary rearrangement of the sysfem One of the justifications for this procedure is the availability
example, a displacement of an atom or interchange of neiglef only one spatial scale in the problem considered.
boring atomg It would appear natural, then, that the functional depen-
If, now, distance is measured in units gf and time in  dence of the fourth order correlation functig&®(r)&(r’))
units of 7, then Eq.(2) can be written, in view of Eq(1), in  of |[r—r’| would be an accurate copy the functional depen-
the form: dence of the distance between poinndr’ for the second
_ 3 order correlation function(&(r)&(r’))=K([r—r'|). It has
Inlt=Antan=mnte. © been known that for the (rS(aL(Js)sifEm )r;ndo(rL fieldl)the unlinking
HereA is the Laplacian and we have introduced two param<{6) will be an accurate one, if the right-hand side of E).is
eters.a=(T,—T)/T. is a dimensionless parameter that char-multiplied by a coefficient which is equal to three. In our
acterizes the proximity of temperatuiie up to that of the case the Eq(6), without any doubt, is an approximation, in
specimen cooled, to the temperature of orderilig;  which the choice of the coefficient is determined by the fact
e=E/T, is the external field in corresponding units. that in the problem considered, for long times in particular,
It should be emphasized that the initial state of orderthe one-point distribution function is significantly different
disorder system must be given statistically, considering thafrom Gaussian form. It follows from physical considerations
first, inhomogeneities of an order parameter are formed as lsased on the equivalency of states that are equal in magni-
result of rapid cooling of specimen randomly arranged intude but opposite in sign, of order parameters, that for the
space; second, there are thermal fluctuations of order paramufficiently long times (=« ') are close to the curve with
eters all along. The spatial scale of appropriate inhomogenawo sharp maxima at the equilibrium values of the order
ities is assumed to be much larger than the lattice parametgsarameter. Here, of course, we are dealing with a centered
To solve the problem it is necessary to have an initialorder parameteg. As it is immediately evident from the
condition to Eq.(3), i.e., the meaning of order parameter calculation, for such a distribution function the coefficient
n(r,t) at the initial moment of time should be given, mentioned above is close to unity.
7(r,0)=7y(r). Since this initial function is random, the or- As a consequence of E¢3) and assumption§5) and
der parameter is a random function of coordinates #0 as  (6), we obtain, finally, the system of equations for the func-
well. Therefore, Eq(3) will describe spatial-time evolution tions: 7(t) andK(s,t)
of the order parameter random field operating in the spatially

uniform (and determinadefield «. d_’7: E — — 3 7
at (an—3K(0,t) np— n°+e), (7)
JK(st)

THE DERIVATION OF BASIC EQUATIONS =AK(st)+[a—K(0,t)—37%]K(st). (8)

ot

To describe the relaxation processes taking place in th
system undergoing the phase transition, there is no need
know the spatial distribution of the order parame#ér,t) in
detail over the total specimen. Therefore, we shall deal wit
the search for the main physically significant characteristic%
of this function in the subsequent discussion, such, for ex
ample, as the averagever crystalline grainvalue of the
order parametet7(r,t))=7(t) and the two-point correla-
tion function

Fhe system of Egs(7) and (8) contains two physically
meaningful parameterse and e. Owing to the nonlinearity
contained in the right-hand sides of Edg) and (8), our
ystem cannot be solved by analytical methods. However, as
hown irf, due to the distinctive degeneracy, the similar sys-
tem can be reduced to a system of nonlinear ordinary differ-
ential equations for the average value of order parameter
7(t) and dispersion of itD=D(t) with the help of the
Fourier transformation of the E¢B) on the spatial variable

(&(r,0&(r,))=K(st), s=r—r’, (4) dr
where we have introduced the centered order parameter EZE[(Q—3D—?)77+8],
&(r,t)=n(r,t)— n(t), and have used the standard assump- dD 9
tion that the order parameter field is statistically uniform. E:(aeﬁ(t)_D_‘?’;z)Da

The equations for(t) andK(s,t) are derived from the
basic equatiort3) both by averaging the equation itself and \where the following notations are introduce®=D(t)
by averaging after premultiplying both sides of Eg) by =K(0,t);

n(r',1). .
To obtain a closed system of equations feft) and ae(t)=a—1rg(t). (10

K(st), the possible asymmetry are neglected here, i.e., WElere we have used a natural determination of the correlation

suppose that radiusr(t) by Fourier transformR(q,t), of the correlation

(E4(N&r'))=0 (5)  function:
for all ther andr’. For correlation function of the type 1 ~ ~
(£3(r,1)&(r' 1)) we shall use the unlinking of the form r—zmzfqu(q,t)&q/ fK(q,t)d3q. (12)
C

3 ’ — /&2 ’
(£ DEr, D) =(EONETDET. 1) As it is shown in Ref. 2, the correlation radius at an arbitrary
=K(0,H)K(st). (6) moment of time is determined by the value of the correlation
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function K(s,t) at the initial moment of time, i.eK(s,0).

The last must be specified as the initial condition of the

problem. The temporal dependence of the coefficiegt, in
accordance witl{10), is determined completely by the evo-
lutionary character of the system correlation radiyd) (in

our case it is associated with the characteristic spatial scale

of ordered region or domain size
For all the “acceptable” initial correlation functions,

K(s,0), as itis shown in Ref. 2, the temporal dependence of

the correlation radius.(t) has the form:

ro(t)=r2(0)+2t/3, (12)

wherer(0) is the correlation radius of the system at the —0".2

initial moment of time {=0). The last formula confirms the
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well-known conclusion that domain sizes grow with time FiG. 1. Phase pattern of order-disorder system. The singular points of the

according to a diffusion law in proportion t¢ [provided, of
course, that>r§(0)]. Thus, the system of equatiof@) for
7(t) andD(t), in the terms of the Eqg10) and(12), takes
the form

dy 1 B
=5 [(a=3D()— )+l -
—d[;it) =[a—{2/3t+r5(0)} "'~ D(t)~37*]D(t).

ASYMPTOTIC BEHAVIOR OF SYSTEM FOR LONG-TIMES

It is of greatest interest to study the system of H4S)
close to the ordering temperatufe, when a<<1 and the

system(14) ate=0 are marked by symbdKX); the singular pointgl—VI)

for the system(14) at e #0 are marked by circle€D) and separatrices are
indicated by dotted lines. The bifurcation poiriet e =¢.) for the system

(14) (n. andK.) are shown by black circle@®). Here solid lines a—c are

the phase trajectories as a result of numerical integrating of the total system
(13) for @=0.04; £=0.001; r,(0)=10 at different initial conditions
{70,Dg}: {—0.08; 0.00} (a); {0; 0.003 (b); {0; 0.00% (c).

This is a system of two algebraic equations in variabjes
and D. The roots of the above-mentioned system yield the
coordinates of singular points in the plang, D).

For <0, i.e., at a temperature above the critical point,
there is only one singular point, which is a stable node. The
coordinates of this point for the small are p=¢/|al,
D=0. This means that, irrespective, of the initial conditions,

initial correlation length is not too large, so that the conditionthe system will pass into a disordered state. First of all, it

r§(0)<(1/a)<d2 can satisfied, wherd is the characteristic
crystallite size(we recall that time is measured in units of
and distance is measured in unitsrgf i.e., the interatomic
interaction length Then, asymptotically, i.e., at times
t>1/a, the system of Eq913) transforms into a system of
equations with constant coefficients

d 1 _

St = 5 [a—3D) =7 7+el,
(14
—— =[a=D()—37°D(V),

with the initial conditions
7(0)=1n; D(0)=Dy. (15

The solution of the system of Eg&l4) with initial condi-
tions (15) allows us to obtain information about the closing
stages of the ordering process.

Let us perform qualitative analysis of the systéia)
with use of the concept of phase patfefin the present case,
in the variablesy andD (see Fig. L

As it is shown, the singulafstationary points of the
system(14) can be found from the fact thatl /dt) —0 and
(dD/dt)—0 ast—x; therefore,

e+an—3Dy—7°=0,

(a—D—37%)D=0. (16

should be noted here that, even though the fieilslas small

as possible, the average value of order parametezcomes
nonvanishing everywhere over the temperature region. Ow-
ing to the external field, among other things, the phase tran-
sition appears to be “blurred” i.e., it takes place some tem-
perature interval away from critical poifit; .

Fora>0,i.e., atT<T., and not-too-strong field there is
a whole system of singular points. However, only the points
located in the upper half-plane of the phase patterrvari-
ables 7, D) will have physical meaning. Let us analyze,
initially, the positions of the singular points in the case of
weak field £<a®?).

The first singular point [ 7=—(e/a), D=0], which
corresponds to a homogeneous disordered state, is an un-
stable noddFig. 1).

The second point I[ 7=+/a+(e/2a), D=0] corre-
sponds to a homogeneous ordered state “aligned with the
external field” and it is a stable nod&ig. 1).

The third point Ill [7=— \Ja+(e/2a), D=0] corre-
sponds to homogeneous ordering, but it is “opposite to the
field.” This point is also a stable nodgig. 1).

Both the second and the third singular points correspond
to single-domain types of the specimen ordering.

All the rest of the singular pointéwith D #0) corre-
spond to inhomogeneous ordering, i.e., to one or the another
polydomain structures.

The fourth point IV (p=&/2a; D=a—3&%/4a?)
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(Fig. 1 is a stable node and corresponds to the possibility ofthickness of the domain boundaries remains unchanged at
the polydomain structure realization. The fact that0 in  the levela ™2

this state corresponds to some non-equivalency of domains Strictly speaking, if the long-range interaction is not
of two types. However, in weak fields this distinction is counted, the polydomain state is not stable thermodynami-
small (to the extent of the ratie/«). cally. The state of interest may be considered to be long-

And finally, there are another two singular points of thelived and its characteristic lifetime i8~1<t<d?. That is, in
saddle type. One of them Y‘right saddle”) with coordi- the situation being considered the system will pass to the
nates (= Jal2—elda; D= ald+ 38/4\/5) (Fig. 1) corre-  thermodynamically stable monodomain state as well. How-
sponds to a possibility for realizing such a quasi-stationarever, this transition does not proceed immediately, but it
polydomain structure, where the volume fraction of domaingoes through the stage of forming and growing the domains.
of the same typée.g., with polarization vector, aligned with This growth proceeds for as long as the domain sizes will
field) substantially exceeds the volume fraction of the othebecome of the order of the crystallite size, when by the in-
type domaingopposed to the field fluence of external field the system will give the preference

The other point(“left saddle”) with coordinates §  to the domain of certain sign.
=—Jal2—el4a; D= ald—3sl4\a) (the point VI, Fig. 2
corresponds to a possibility for realizing the quasi-stationarycONCLUSIONS
polydomain structure as well. However, in this situation the
volume fraction of domains with the polarization vector ori-
ented opposite to the field substantially exceeds a volum
fraction of domains aligned with the field.

Two separatrices, leaving the origin of coordinates an
passing through the “left” and “right” saddle points, divide
the phase pattern into the three sectors. The upper cent
sector(1) is the “attraction region” of the inhomogeneous
(polydomain state, the lower right-han(®) and lower left-
hand sector$3) correspond to two attraction regions of ho-
mogeneous single-domain states. Depending on the initi
conditions (79,D,) the phase trajectories of the system will
be located in one of the above-mentioned sectors. This i
illustrated on the phase pattetRig. 1), where, apart from
the singular points founded analytically and the separatrice
of the asymptotic system of equatio$4), a number of

results of numerical integratingurves a—gof the complete X . . . . .
grating L P vantageous region@ligned with the fieldd will occur in fa-

system of equation€l3) are presented. ,
y d €3 P yor of the latter. The homogeneogsonodomaiin state of

If in the initial state the average value of order paramete L . S - . :
| 70#0| and it is greater than the fluctuations of order param_ordermg is realized just in sufficiently strong fields in excess

eter, the system will transfer immediately into one of theOf the critical valuee; (which is generally dependent on the

single-domain states. The sign of the order parameter in thgemperatu_r)a Irrespective .Of the initial conditions. The field
£ is nothing but a coercive field.

state of thermodynamic equilibrium is determined by what

side of the first singular point the valug is located on. We The author thanks to Prof. E. P. Feldman for fruitful

weak inhomogeneity of order parameter, will make the sysggundation of Fundamental Investigations of Ukraine
tem to go over into single-domain state, even thoughpnrough the Grant No 2.4/220-97.

170=0. The choice between two single-domain states is pre-

determined by the field direction. OE-mail: listef@host.dint.donetsk
The deflection of the system to one or another side in E-mail: listef@host.dipt.donetsk.ua
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In this paper we have used a statistical approactin-
gestigate the ordering dynamics under the second order
phase transitions in the presence of the external field. This
d’las allowed us to show that the imposition of a not-too-
strong field to the ordering system leads to the asymmetry of
r%e ordering process, removing the degeneracy on the sign of
the order parameter, i.e., it makes monodomain states with
the order parameters » and —» nonequivalent. However
both in the weak field and at the absence of the field the
6[prmation of a polydomain ordered structure is most likely.
Despite its thermodynamic instability, the structure of this
Eind will evolve rather slowly to the thermodynamic equilib-
rium monodomain type of ordering. The influence of a weak
sxternal field on the polydomain structure lies only in the
act that the volume redistribution of an energetically disad-
vantageous region®riented opposite to the fieldand ad-
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It is shown that in addition to equal-module exchange structures satisfying the criterion for the
existence of the Andreev—Marchenko and Bar’yakhtar—Yablonskii spin scalar, other equal-
module exchange structures also exist. In contrast to the structures obtained from the condition
for the existence of a spin scalar, the latter follow from thermodynamic conditions and
correspond to thermodynamically stable phases. Besides, these structures are not related to the
restrictions imposed on the dimensionality of irreducible representation typical of the

structures of the former kind. @998 American Institute of Physids$$1063-777X98)00809-3

INTRODUCTION into itself under the action of symmetry elements fr@n

The magnetic symmetry of magnetically ordered crystals"e" forms the basis of the irreducible representati®) of

in the exchange approximation is higher than in the casé?'ihggfaﬂé:n :Si't'?ﬁ;%.tzergnm;]ezy glr;%% ?fgl\;?g c;y;éa;)
when relativistic interactions are taken into consideration. A 2 y 'ag populal variou

group theory method of determining the symmetry of ex- y atoms. Some crystallographic orbits in a magnetic crystal
re populated completely or partially by magnetic atoms.

change structures was proposed by Andreev and Marcﬁenk§ . . : ;
, - : _ Each such orbit can be presented by the spin density function
and by Bar'yakhitar and Yablonskion the basis of the con S(r). We expand this function in the basis functions from the

dition for the existence of a certain invariant function formedIR £ th M-
by spin componentgspin scalar. The exchange magnetic ot the groupv
structures obtained by using this approach are equal-module

structures, i.e., the magnitude of spin moment is the same in 3 n

all magnetic positions of the c;rystal. Gufa al® used a S(r)= >, 2 Sggoi(r)ea=2 Sei(r), (1)
model example to prove the existence of exchange structures a=1li=1 [

with different modules. We propose a method for obtaining

exchange magnetic structures which is more general thanh he basis f . fthe IR of the arc@
magnetic classes obtained from the condition for the exis'" .eregpi(r) are the basis functions of the IR of the gradp
tence of a spin scalar. €? is the orthonormal basis in the spin spdtte basis of the

For this purpose, a general approach is required, whicP{eCtorial_ IR of thep(3) groupz a thg index Iabe.IIing uni't
would not require any information other than that providedveCtorS in the spin space, andthe index labelling basis

- - functions of the IR. Thus, the type of magnetic ordering is
by the magnetic symmetry group of the paramagnetic pha?g , . NP
and the population density of magnetic atoms in positions i etermined by the ;et of the mixing coefficieSs The last
the space group of the crystal. If such information is avail- W0 factors on the right-hand side of formulH form the IR

able, all possible types of exchange structures for the giveP:FXV of theG>_<O_(3_) group, wherd is tr_\e IR of theq i
crystal can be determined on the basis of the group theor§fOUP, Whose basis is just formed by functions appearing in

method of determining low-symmetry phases proposed i l,)' a”?' Vs .the veptorial IR of the group of.three-
Refs. 4—6. dimensional spin rotations. Spin group transformations cor-

respond to transpositions of atoms within a crystallographic
orbit. In addition to lattice site coordinates, magnetic atoms
are also characterized by spin. However, the direction and
magnitude of spin do not change upon a transposition of an

The magnetic symmetry of the paramagnetic phase of atom, i.e., spin rotations and space transformations are car-
crystal is characterized by the exchange paramagnetic groujied out independently. This is a formally logical realization
M that can be reduced to a direct product of the space grougpf the condition corresponding to the absence of a coupling
G and the three-dimensional group of spin rotati@3), between the spin subsystem and the lattice, which is ex-
i.e., M=GxO(3).” Each space group is characterized by aecuted by relativistic interactions. Thus, the transformation
set of crystallographic orbits or a regular system of pointsproperties of each component of the spin density function are
(RSP.2 Any point belonging to a RSP is transformed into asimilar to transformation properties of variation of electric
point from the same RSP under the action of symmetry eleeharge density. Let us clarify this statement. The variation
ments of the space group, i.e., RSP is transformed into &p(r) of electric charge density has two componénthe
itself under the action of elements from gro@ Accord-  variation of the form of the functiodp(r) and the variation
ingly, any system of functions defined on RSP is transformeaf the function due to a change in the argument:

GENERAL METHOD OF DETERMINING EXCHANGE
MAGNETIC STRUCTURES

1063-777X/98/24(9)/5/$15.00 647 © 1998 American Institute of Physics
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1 <1 1 2 Q2 2
5p(r):5p(r)+a_pu(r), @ (S1.S5,...50).(S1.S5,...50).(S1.S5,...S)). 3

or The statvectorc can be regarded a vector of a certain
whereu(r) is the vector function of atomic displacements. Vector spacge-space in the terminology of Gufaet al?)

The variation of the form of the function describes Different symmetry positions of the statvector in this space
purely phase transitions associated with atomic ordering. Theorrespond to different subgroups of the gréapC G of the
second term on the right-hand side ¢f) characterizes high-symmetry phase. Each of these subgroups describes the
purely displacement-type transitions. The transformatiorfrystal symmetry corresponding to atomic ordering wit cer-
properties of the spin density function components are identain mixing coefficients.
tical just with the transformation properties of the function ~ The three statvector) can be conveniently combined
8p describing atomic ordering. Theeducible representa- into a stationary matrix(statmatrijy of dimensionality n
tion according to which the functiofp(r) is transformed is X3!
called the transposition representatfofihus, the spin den- stsl...st
sity function can be expanded in the basis functions of the IR = Sg <2 4
appearing in the transposition representafion. S3§Sg :

Atomic ordering can be described by a set of scalar basis =20 n
functions and a set of mixing coefficients-(c4,c5,...,Cp) The exchange magnetic ordering symmetry is deter-
forming the so-called stationary vecttstatvector.>® In or-  mined by the least symmetric of the three statvectors appear-
der to describe the exchange magnetic ordering, we neediag in statmatrix(4). If we go over to the spherical coordi-

set of scalar basis functions and three statvectors nates in the spin space, the statmatrix assumes the form
|
S; 8in 61 cosey; S, sinf, coSe,;  ...; S, Sin 6, cos e,
S= S;sinf; singy; S;sinf,sing,; ...; S,sind,sing, |. (5)
S, cosbq; S, cos b5; S, cosé,

In the general case, statmat(®) defines an essentially EQUAL-MODULE EXCHANGE STRUCTURES
three-dimensional magnetic structure. If, however, one of the

spherical angles, or ¢; does not depend on the numbest Let us consider the exchange structures obtained from

the condition for the existence of the Andreev—Marchenko

the column, .the statmat_rlx can be rgduced to a form with aSpin scalar. Raising both sides of equality to the second
single zero line by rotation of the spin axes. Such a Statm%ower we obtain

trix corresponds to two-dimensional exchange structures. If
the other spherical angle is also the same for all the column,
the rotation of spin axes can nullify two rows of the matrix

S, and such a matrix corresponds to a collinear antiferromag-
netic exchange structure.

52(r>=; bEk SLSKei(N ep(r)er-e. 6)

The left-hand side of this equation is a scalar relative to
transformations from space group. Consequently, the

A unit IR of _the spape grgupE corresponds 1o the_ right-hand side of this relation must also assume a form in-
ferromagnetic spin ordering within each crystallographlcvariam to spatial transformations:

orbit. Other one-dimensional IR appearing in the transposi-
tion representation at the crystal lattice sites occupied
press Y . SRS 2=3 &3 e
by magnetic atoms correspond to collinear antiferro- a i
magnetic exchange structures. Two-dimensional IR appear- . . .
. g_ g . . bp A comparison of the right-hand sides ) and (7)
ing in the transposition representation correspond two- - 2 . .
. . . . . ._shows that the mixing coefficients must satisfy the following
dimensional antiferromagnetic  structures. Irreducible - L
. . . ) o orthogonality condition:
representations with a dimensionality higher than three and _
appearing in the transposition representation correspond to S,k = S26iSap (8)
essentially three-dimensional antiferromagnetic structures.
. Y . . 9 where &, and &,, are Kronecker deltas. For the sake of
Obviously, a change in the number of independent param-. ST . : .
¢ in the statmatri ds t ¢ tion f visualization, it is convenient to write relatiori$), (6)—(8)
eters in the statmatrix correqun s lo a fransition rqm ONG matrix form. We introduce the column vector
exchange phase to another as in the case of an atomic order-
ing. @a(r)
It should be noted that by the dimensionality of an IR we - @o(r)
meant the dimensionality of real-valued IR or the dimension- o= . ’

ality of physically-irreducible representations of complex IR. on(r)

@)
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FIG. 2. Projection of tetrahedral ions on they) plane in a unit cell of the
spinel. Disorderedparamagneticphase(a) and orderedantiferromagnetic
phase(b). The orientation of the average value of spin in positions marked
by dark circles is opposite to the orientation of atomic spins occupying
positions marked by light circles. The direction of the antiferromagnetism
vector relative to crystallographic axes is arbitrary.

FIG. 1. Primitive cell of a spinel crystal. Light circles correspond t¢eB2 . .
positions occupied by anions, dark circles to(d)6positions (octahedral lattice) and 16(@) (octahedral sublattigeof the space group
sublattice; and hatched circles to(& positions(tetrahedral sublattige Oﬁ, while anions occupy positions of the type 8)(
Let us consider commensurate magnetic structures in-
) ) duced by the IR of a space group, which satisfy the Lifshitz
and denote the line vector hy(r). Then expansioitl) can  congition® For the space grou@/, the Lifshitz condition

be written in the matrix form is satisfied by 22 IR:® However, the dimensionality of the
=S IR belonging to the star of the wave vector;=0 does not
S(r)=Se(r), :
) ) exceed three. Here and below, we use the same notation for
and expressiofi7) can be written as the wave vector stars and IR as in Ref. 8. The dimensionality
Sz(r)=¢(r)§Té¢(r), of the remaining Lifshitz-type IR is higher than three. It is

R well known'! that the parameters of magnetic and crystal-
where ST is the transposed statmatrix. We present the stattochemical unit cells for exchange structures described by

matrix S in the form of the row the star of a wave vector equal to zero coincide.
- From the ten IR of the wave vectky,, the transposition
S=(S1,S,-+Sh), representation includeé41-1 and 11-4 IR in positions 8§,

where the vectorsS are defined in the three-dimensional 11-1 and 11-7 IR in positions 18], 11-1 IR being a unit IR
spin space. In such a case, the conditi®nof invariance of ~according to which magnetic ordering takes pléegthin a

the square of spin density module assumes the form crystallographic orbjt Thus, each sublattice is characterized
by a spontaneous magnetization vector. The crystal is ferro-
Sy magnetic as a whole if the magnetizations of the sublattices

STS= S, (Sl,Sz,...,Sq)=82|%. (9 are parallel, while the spinel is ferrimagnetic if the magneti-
zations are antiparallel. Finally, if the magnitudes of magne-
Sy tization are equal in the latter case, the spinel is a collinear

This relation(9) indicates that tha vectorsS forming antiferromagnet. Obviously, considerations based on the

the statmatrix are mutually orthogonal and have equal moddroupP theory give no information on mutual orientation of
ules. However, the three-dimensional spin space cannot hajg€ magnetizations of sublattices, and we must use purely

more than three such vectors. Consequently, the maximufphysic@l arguments concerning the magnitude and sign of

dimensionality of IR describing equal-module eXchamgemtersublattice exchange constants. Let us consider a one-

structures does not exceed three in accordance with the rdimensional even IR 11-4 describing an atomic 1:1 ordering
sults obtained in Refs. 1 and 2. in a tetrahedral sublattice. Such an ordering in exchange

magnets corresponds to a collinear antiferromagnetic struc-
ture. The emergence of the 1:1 ordering lowers the crystal
symmetry: O/ —T3. For ordinary phase transitions of the
order—disorder type, such a symmetry lowering has the ob-
vious meaning. What is the meaning of such a lowering for a
Let us consider crystals with a spinel structure by way ofmagnetic exchange ordering? The crystal lattice symmetry of
illustration of the above discussion. These crystals have tha spinel in the paramagnetic and magnetically ordered phases
stoichiometric formula ABO,, where A and B are cations of is the saméFig. 2). This means that neutron diffraction stud-
metals and O anions of oxygen. Figure 1 shows a primitivaes of the magnetic structure makes it possible to detect the
cell of a spinel. The crystal lattice symmetry of the spinel issymmetry groupT?, while x-ray diffraction analysis gives
characterized by the space gro(]ﬁ. The A and/or B ions the symmetry grou@ﬁ of the crystal lattice. Thus, the trans-
can be magnetic ions ofdelements. These ions occupy formation of the magnetic symmetry of an exchange-ordered
crystallographic orbits of the type 8) (tetrahedral sub- crystal requires two space groups. Exchange ordering ac-

EQUAL-MODULE EXCHANGE PHASES WITH COINCIDING
MAGNETIC AND CRYSTALLOCHEMICAL UNIT CELLS
IN CRYSTALS WITH SPINEL STRUCTURE
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TABLE I. Exchange structures induced by the IR 11-7 of gr@fp TABLE Ill. Scalar basis functions for IR 11-7 for positions H(

SSS S0,0 S, S, S, S, S, S Basis functions

D3, D% cZ, cl Atom number @1 ©, @3
1 1 1 1
2 -1 -1 1
3 -1 1 -1
4 1 -1 -1

cording to the 11-4 IR leads to a magnetic structure whose

symmetry is described by a binomial symb@/(,T3).
Let us now consider the exchange ordering according to

the three-dimensional IR 11-7. Table | contains stationary

vectors and corresponding symmetry groups for the IR 11-7three vectorsS,;,S;,S; can accidentally become equal in
In order to determine the exchange structures induced bfpagnitude and mutually orthogonal, but these conditions do

the IR 11-7, we supplement Table | with one more tablenot correspond to any thermodynamic phase since the con-

giving the basis functions of this IR in positions #§( The ditions (7) and (8) for the existence of an equal-module

number 16 in the notation of a crystallographic orbit is thestructure are not thermodynamic conditions. Conversely, the

number of points belonging to the given crystallographic or-equal-module structure corresponding to the one-parametric

bit and located in a unit cubic cell of the space gr@ﬁ) solution (S,0,0) is obtained under certain thermOdynamiC

The primitive cell(see Fig. 1 of this symmetry group con- conditions and corresponds to a staljile certain limitg

tains four nonequivalent positions of the type d(In the ~ equal-module exchange structure.

calculation of basis functions, these four positions are strictly

labelled and have the coordinates given in Table Il. The vec-

S . ~ "CONCLUSION
tors of the primitive cell in Table Il can be expressed in
terms of the vectors of the fcc Bravais unit &ell We can summarize the results of the above analysis as
1 1 follows. Equal-module exchange structures that can be
al:i (A, +Ay); aZ:E (Aj+Ay); formed in crystals belong to two essentially different classes.

The first class includes thermodynamically stable exchange
1 structures characterized by their own magnetic symmetry.
a3=§(A1+A2). The second class includes the structures appearing under
conditions(7) and (8). These structures can be singled out
We can now obtain scalar basis functions calculated fofrom a thermodynamically stable exchange structure by im-
these four atont$ (Table I1I). posing the additional nonthermodynamic conditi@ and
Substituting the basis functions from Table Il and thehave no magnetic phase with its own magnetic symmetry
elements of statmatrix from Table | into formuld), we  corresponding to them. The problem of exchange structures
obtain the average value of the spin moment for each magds not only of academic interest and does not serve just as an
netic atom in the position 16) (Table IV). exercise in the methods of the group theory. The results of
Table IV shows that the total magnetic moment of anumerous experiments show that magnetic phéses Refs.
primitive cell is equal to zero for all the four phases as it13 and 14 whose thermodynamic properties are determined
should be in the case of the antiferromagnetic ordering. Onesnly by the exchange interaction can be formed in some
parametric phase$,S,S) and(S,0,0 correspond to collinear magnetic crystals. For this reason, the symmetry of exchange
antiferromagnetic structures, the latter phase correspondirgtructures exactly corresponds to the symmetry of isotropic
to an Andreev—Marchenko equal-module exchange struamagnetic phases in these crystals.

ture. The two-parametric phasg,(S,,S,) corresponds to a ] . . ) ]
two-dimensional antiferromagnetic structure. The three-  ThiS research was carried out under financial assistance

parametric phase with the lowest symmetry corresponds t8f the Foundation Supporting Research sponsored by the
an essentially three-dimensional antiferromagnetic structurén@yor of Cherkassk. The author expresses his gratitude to
If the three vectors, ,S,,S; have equal magnitudes and are the mayor and the expert council of the Foundation for the
mutually orthogonal, they satisfy conditiof® and(9), and ~ SuPport.

we again have a three-dimensional equal-module antiferro-

magnetic structure. Under certain thermodynamic conditions, ) ) - )
TABLE IV. Magnetic moments of atoms in positions tj(for antiferro-

magnetic exchange structures induced by IR 11-7.

TABLE Il. Coordinates of atoms in 16@l) position. Statmatrices

Atom number Position of atom in primitive cell Atom number  SSS  §0,0, S, 8,5 SRR
1 (5/8)(a, + ap+ ag) 1 35 S $+2S, Sit5+5
2 (1/8)(a; +5a,+ 5a3) 2 -S -S -S -S,—-S+S;
3 (1/8)(5a, +a,+5a3) 3 -S -S S -S+S,-S;
4 (1/8)(5a, + 5a,+ ag) 4 -S S $,-2S, $-5-S;
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The surfaces corresponding to the loss of stability and equilibrium of paramagnetic and
antiferromagnetic states are found in the mean field approximation with temperature, field, and
anisotropy as variables. The characteristic temperatures at which the topology of phase
diagram sections changes are determined. 1998 American Institute of Physics.
[S1063-777X98)00909-9

1. INTRODUCTION where J;4>0 is the exchange interaction parametérthe

This paper is devoted to an analysis of the phase diagrarwagnetlc fieldin energy units; D>0 the one-ion anisotropy

Z . .
for an Ising antiferromagnet with a sp#=1 at each lattice constant, and; is thez-component of spin at théth lattice

L ez A L .
site, which exhibits one-ion anisotropy of the type of an easys'te’ Sr=0,1,~1. The summation is carried out over nearest

plane normal to the Ising axis and is in a magnetic field pairs of sites of the three-dimensional lattice containiig 2
parallel to this axis. Such a model is exotic from the point ofS'teS'

) 1 . . . . The model free enerdyin the molecular field approxi-
view of magnetic systems since Ising anisotropy of spin mation in the class of two sublattice structufesee assume

spin interactions is usually associated with a strong one-ionh . . .
. ; that the nearest neighbors at one lattice site cannot be nearest
anisotropy of the easy-axis type. However, such a model can

. ) neighbors relative to each othdras the form
exist as an equivalent model for some structural phase tran-
sitions. For example, if the coordinate which is active in a
transition under consideration has an effective crystal poten- Fmod=NJof, JO:% g

tial with three minima, the classical configuration integral of

states in the first approximation at low temperatures can be f=01¢0(X1) + 02¢0(X2) + @(X1) @(X2) —t[In Z(x,)
reduced to the partition function in the Ising modeb (

. ) L . L : +1In Z(x5)], 2
=1). This is true if the minima differ insignificantly in en-
ergy and are all deep enough to be approximated by qua- dlnz sinh x
dratic potentials in the temperature range significant for the = Z(X)=g+coshx, ¢(x)=— —= q+ coshx’
transition in question. In this case, the partition function from
the Ising model is obtained if the elastic constants of the
potential wells have the same values. If the values of these

constants are different, the partition function is modified by _ _ _
additional weight factors determined by the ratio of elastic\'\’her.e t=T/Jo, h=H/Jy, d=D/Jo, and o, are S?"_
onsistence parameters. The valuesrafan be determined

constants. We shall not go beyond these tentative conside]- . . .
ations concerning the possible origin of the model under infrorr:j.tthe cfon?lt_lons of thbe minimum \éaLuetﬁf The S‘t‘?‘b"'ty
vestigation. Its behavior is quite peculiar, and the problem igondition fortin o-can be expressed by the equations
of independent i.nterest from the p_oint of view of the “zool- 01+ ¢(X2)=0, o+ @(Xx)=0 3
ogy” of phase diagrams. The relation between such a mOdezlind coincide with the self-consistency conditions

and the experimentally observed structural phase tranition

induced by a magnetic field is based on considerations de- o,=(S}), 0,=(S}), 4
scribed in Ref. 2 and will be analyzed more thoroughly in a

separate publication where the averaging..) is carried out over the Gibbs state
P P ) with the molecular field Hamiltonian of the form

xi=(o;—h)/It (i=1,2, q= % exp(d/t),

We shall analyze the model in the mean field approxi-

mation. Hm:_J00-10-2+(JOO-Z_H)SE—’—(‘]OO-]._H)SE
+D[(S5)%+(S5)?]. 5
2. FORMULATION OF EQUATIONS [(S)™+(S)7] ®)
. L . . The necessary condition for stability loss, i.e.,
The model under investigation is described by the )
iltoni o°f
Hamiltonian de\{ 0 ©
(90'i(90'j -
i,j=1,2

~ 1
_ - 7oz z Z\ 2
H= 2 2 19SSy H2 SHHD2 (% @ can be reduced to the form

1063-777X/98/24(9)/6/$15.00 652 © 1998 American Institute of Physics
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@' (X))@' (Xp) =t? (7) d G

3

and defines, together with Eg&3), the boundaries for the
existence and stability of all local minima of the model free
energy. It should be noted that since the inequatityx)

>0 is satisfied identically in the case under consideration,
the necessary condition for stability’ (x;) ¢’ (X,)<t? is
also a sufficient condition sinc&f/do2=t"1¢'(x,) at the
stationary points.

Equations(3) have paramagnetico(=o0,) and antifer-
romagnetidAFM, o, # o) solutions. It is convenient to de-
scribe these solutions by the order paramgjethe antifer-
romagnetism paramejeand the mean spimg:

O'l:mo+|0, (Tzzmo_lo. (8)

We can write the steady-state conditio{® in these vari-
ables for the paraphasé,E0) and AFM (,#0) solutions
separately. Foly=0, we obtain

1/3 2/3 t
Me=—¢(m), m=(mg-h)/t. )

In view of the monotonicity of the functiop, the paraphase

solution obviously exists in all cases and is unique. For AFM F Y1
solutions, Eqs(3) have the form
t=¢[q coshm+coshl /A, g=sinhl/l, 1=Iy/t, h
(10)

FIG. 1. Schematic phase diagram in the variahles, andd. Fine curve

KE and bold curve AKE are spatial curves, the remaining curves lie on the

coordinate planes. Fine curves are the intersections of the PT2 with coordi-

(12) nate planes and with the PT1 surface, the dotted curve AG is the projection
of the PT2 surface on the plame=0. Dashed lines are intersections of the

h=—mt—sinhm[q coshl +coshm]/A, (11
A=[q coshl+coshm]?—(g?—1)sint? |.

In these variables, conditiof?) assumes the form stabili_ty loss su_rfaces with the coordinate planes. The dot-and-dash line
describes the divergence o/ dh.
(q coshm+1)Z~?(m)=t; (13
for paraphase solutions, and
coshm=[(1—q~2)(£&2-1)"1]¥2sinhl1—q~* coshl, h=h;(t,d), =12, (19
(14)
where
for AFM solutions. We do not write here standard equations
of phase equilibrium, which are also required for construct- yi+(y2—4t2g?)Y?
ing a phase diagram in the regions of existence of several hi(t,d)=d+tIn At
stable time-independent solutions. ) o1 21
A complete analysis of Eq$3), (7), or (9)—(14) (as well N (yi —4tq%)
as phase-equilibrium conditionsannot be carried out. For yi+2t '
this reason, we shall use the combination of numerical and
analytic methods in various limiting cases. y12=1-2t=(1-4t+4t/g>)"

Let us study the phase diagram in the space of control- . . I .
ling parametershi,t,d). Since the planb=0 is a symmetry These equations together with the initial equati¢®sand

plane, we shall assume that-0. We shall henceforth indi- (13 mgke it_pogsible 0 d«_ascr_ibe the shape of th_e surface
cate éxplicitly only states With>.0 (01> 05) since if (,m) under investigation. Its projection on thgd) plane is the

. . ) . region

is a solution of steady-state equations,I(m) is also a so-

lution. Taking this into consideration, we can write<@; 1-q2<(4t)"! for d=1In4, t<1/3 (16)
<1 and—1<o,=<min(1h) (it should be noted that,<0 S '

for h=<o). 1+g=t"! for O<d<1iIn4, t=1/3. (17)

The most important element of the phase diagram is the
stability loss surface for the paraphase st@&§. We begin  The boundary of this regiotadjoining thed-axis) is shown
the analysis of the results with the description of this surfacein Fig. 1 by the CAG curve. The curve CA corresponds to
the equality in(17), while the AG curve corresponds to the
equality in (16), the latter having the asymptotic forin
=1/4. The entire curve OAC can also be described by the
The boundary of the PS stability region in the space ofequality in(17) (if t varies in the intervaf0, 2/3)) and is the
controlling parametersh(t,d) is described by the equations intersection of the surfac€l5) with the (t,d) plane. The

3. STABILITY LOSS SURFACE FOR PARAPHASE STATES
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field h, is not defined at points under the OAC curve. The PS
instability region for these points is described by the inequal-
ity h<h,. A part of the {,d) plane bounded by the OAG
curve is covered by surfadd5) twice. In this case, the re-
gion of unstable PS lies in the field interdal<h<<h;. The
surface(15) intersects thet(h) plane along the curve CF
described by the equatioh=h,(t,0). For t—0, its
asymptotic form is

hy(t,0)=1—t In t. (18)

In general, the asymptotic form of the fields,h, for t
—0is

hy(t,d)=d+1—-tiInt, hy(t,d)=d+tInt. (19

It can be seen that the surfatEs) touches the plane=0
along two parallel straight lines=d andh=d+1 (OEE
and FF), respectively. The PS instability region in this
plane lies between these straight lines and goes to infinity.
Other sections of the surfa¢&5) by the plane$=const are
shown in Fig. 2 and can be described as follows. Fbe-
longing to the interval0, 1/4), these are two lines O&Nd
FF' going to infinity as beforésee Fig. 2a which converge
for t—1/4 for largeh. Fort>1/4, it is a single curve OF
(see Figs. 2b and 2dounding a finite PS instability region.
For t>2/3, there are no points of stability loss.

We must now consider the existence of stable AFM so-
lutions other than the AFM solutions generated in the case of
paraphase stability loss. This is associated with the possibil-
ity of first-order phase transitiond®T1). It is well knowrf
that a general mechanism of such transitions is associated
with degeneracy of the ground state for certain values of
controlling parameters. If the Peierls stability condifida
satisfied in this case, such values of the parameters must lie
at the edge of the PT1 surface existing for small0 (The
Peierls condition indicates that the energy of local excita-
tions above the ground state increases not more slowly than
the number of boundary excitation sitefor this reason, it
is expedient to analyze the phase diagram first in the low-
temperature range.

4. LOW-TEMPERATURE RANGE

Let us first describe the phase diagramtferO, which is
obtained from an analysis of the ground states of the molecu-
lar field Hamiltonian(5). It must correspond to the phase
diagram constructed on the basis of free energytfeD.

In the regionh<<d on the plané¢=0 (above the ray OE
in Fig. 1), the state §;,S5)=(0,0) is the self-consistent
ground state for the Hamiltoniafb) (the stability condition
for the state at=0). In the regiorh+d<1 (under the BF
curve in Fig. 1, the self-consistent ground state is<{1,).

A. A. Loginov and Yu. V. Pereverzev
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i c
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FIG. 2. Temperature sections of the phase diagram=d.05 (a), 0.3 (b),
and 0.55(c). Fine curves correspond to PT1, thick line to PT1, while dashed
curves characterize the loss of stability.

line FF) is the PS(1,1). The stability loss lines EE EF,
and FF are equilibrium lines for adjacent pairs of states.

Thus, there exist two stable states within the triangle BEOThis distinguishes them significantly from the PT1 line DE,
with energies coinciding on the segment DE of the straightalthough the equilibrium states also change jumpwise in this
line d=1/2. Consequently, a PT1 occurs on this segmentase. The lines FFand OE correspond to the limitingt(

from the AFM state (1) which is in equilibrium ford
<1/2 to the PS0,0) which is in equilibrium ford>1/2.

In the region on the plane bounded by the lindkEEF
(0<h<d+1 andh+d>1), the only stable state i€l,0),
while the only stable state in the regibi>d+ 1 (under the

—0) expression for the PS stability loss surfdé).

It is expedient to compare these results with the results

of analysis of the ground states of the exact Hamiltoriign
and the Peierls condition mentioned above. The ground
states of Hamiltoniaril) at all internal points in the above-
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described regions coincide with equilibrium states obtaineadonsideration by the planés- const have two branches. One
by the molecular field method. The ground state is also doubranch corresponds to valueslg& 0.5 and is described by a
bly degenerate on the DE line, the Peierls stability conditiormonotonically increasing functiod,(h) with zero deriva-
being satisfied in this region. This ensures the existence of tive at the point withl j=0.5. The other branch corresponds
PT1 surface emerging from the segment DE at low temperao |,>0.5 is described by a monotonically decreasing func-
tures. As regards the line’'EFF, we can easily verify that tion d,(h) whose derivative at the point with=0.5 is also
the number of ground states on this line is infinitely large.equal to zero. Figure 2a shows a section of the phase diagram
For example, proceeding from the state{1) on EF, we by the planet=0.05, where the functiond, , are described
can transform any number of sites wii=—1 to a state by the curves TS and B8he curve corresponding b, for
with S*=0 so that neighboring sites are only typical of co- small values of, is plotted according to exact solutions, and
existing phase¢l,0 and (1,-1). In particular, we can con- the point T corresponds tby=0). These curves form a
struct in this way periodic ground states with an arbitrary“beak” (1,=0.5) with the coordinatesh(d) and the mag-
period and relative concentration of coexisting phases on thisetization given by

line. In the situation described above, the Peierls condition is B B
violated, and the lines EEand FF can be continued to the h=V1/4-t+tIn[0.5"!-1+0.5"V1-4t]

regiont>0 as surfaces of a continuous PT2 according to ~0.5+t In(1t), d=0.5 (23)
(19). Conversely, the line EF has no continuation to the re- ' ’
giont>0 (this will be clear from the subsequent description  m,=/1/4-t~0.5-t. (24)

of all possible statgsand remains isolated special line on the

phase diagram far=0. It is manifested in actual practice as A comparison with(19) shows that the “beak,” and hence

a line on which the susceptibilitym/oh diverges as we both surfaces corresponding to the loss of stability of AFM

approach the line from the regidm=0 (for example, if we  solutions are within the region of instability of the paraphase.

approach the EF line along the surfade-h=1, we can Using formulas(20)—(22), we can verify that the extreme

prove thatdm/dh~1/(8t) for t—0). positions of thed; andd, curves fort=0 coincide with the
Let us now consider the phase diagram for smallhe ~ segments OE and BE respectively in Fig. 1. The cutyéor

PS stability loss surface is described above by form(ilas low temperatures lies completely in the region of instability

and hence it remains for us to describe the behavior of AFMf the paraphase solutidsee Fig. 2a There is no continu-

solutions. Let us consider the asymptotic form of the phasétion to the region witlt#0 for segment EF in Fig. {see

diagram fort/d— 0. The region of existence of AFM solu- above.

tions is bounded by stability loss surfaces which are defined It was mentioned above that the surface under investiga-

by the system of equatior(40), (11) and(14). Ast—0 on tion for a fixed (although sma)l temperature cannot be de-

this surface], necessarily tends td. Taking this into con-  scribed correctly by formula0)—(22) for points with small

sideration, we omit rapidly decreasing terms of the typed. In fact, thed; curve terminates at a certain point(3ee

t~1 exp(—d/t) or t~* exp(=1/t) in the equations of the sur- Fig. 23 lying on the stability loss line OEfor the paraphase

face(this can be done il does not tend to zero far-0). In  solution. At this point, the AFM and the paraphase states

this case, Eqg10), (11), and(14) can be written in the form ~ coincide (“merging of curves’). We can obtain the condi-
tion for merging the surfaces corresponding to the loss of

d=lo—tlInr, (200 stability of paraphase and AFM solutions along a certain
r=(lg— 0.5t 1+[(l,—0.52t 2+1]12 curve (the curve of tricritical points whose section is point T
(10-0.9 [(lo=0.5 ] in Fig. 29 as well as the equation for this curve from a
mo=t[(I—r)2—1]*2, (21)  qualitative analysis of the steady-state equation.
Such an analysis allows us to interpret the section of the
h=mg+t In(l—r+mg/t). (22 phase diagram corresponding to low temperatisee Fig.

These formulag20)—(22) define thel o-parametric represen- 28 s follows. Inregiori lying above the BPEcurve, only
tation of cross sections of the stability loss surface by théN€ (Paraphasesolution exists. In regio2 bounded by the
planes t=consted (I, varies in the interval [0.5 curve BPTO, two stabIéPE and AFM solutions exist. Re-
—0.5/1—4t; 0.5+0.5/1—4t)]. These formulas are equi- 910N 3 bounded by the “triangle” TSP corresponds to two
librium asymptotic approximationgfor t—0) for exact stable AFM solutlons_qne of which is generated on the seg-
equations in the entire range of controlling parameteand ~ Ment TP of the stability loss curve for the paraphase and
d except a small neighborhood of points with=0. As a loses its stability on the TS curve. The condition for the

result of the latter restriction, the solutions corresponding tMergence of AFM minima on the stability loss surface for
values ofl, in the vicinity of the lower boundary of the the paraphaséwhich is not connected with the low value of

admissible interval of its variation are incorrect and requirel€Mperaturgis the inequality

the inclusion of t'he omit’lte.d 'terms. It shou'ld be noted, how- 3[¢"(X)]2—2te"(x)=0, x=(o—h)It. (25)

ever, that even in the vicinity of such points, the formulas

give a correct limiting value of the surface cross sectibn ( The equality in(25) and Eqs(3) and(13) (m=x in the latter

=0). case are equations of the curve of tricritical points. These
The calculation of the derivativedd/dl, and dh/dl,  equations can be used for obtaining relations connecting

shows that the cross sections of the surface undemagnetizatiornr and temperature
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o%—20%(1—2t)+ o?(1— 4t +5t%)—2t%(1/3—t)=0 J 1I A 3 na 1 27(1 \?
(26) ~§ n4+ E—n §—t +3—2 §—t s
as well as expressions for the field and anisotropy: 15 /1
h=0—0.% In[(t+ 02— 0)(t+ 0%+ o) 1], (27) 02~7 (§—t> (32

d=tInf2(1-t=o?)[(t+0?)*~ 0] . (28 for t—1/3. It should be noted for comparison that thet)
For smallt, the only solution satisfying the system of equa-dependence near point A for stability loss curves of the AFM
tions (3), (13), and(26) corresponds to the root of equation and paraphase solutioriéB and AO curves differ from
(26) tending to zero as—0. For smallt, this gives the (32 only in the coefficient of the last term, which is equal to
coordinates @,h) of the point T: 9/4 and—27/8, respectively in these cases.
1 It can be seen that=1/3 is one of the points at which
o= ‘/2_/3t' d~tin(t"9)+0.5 In 12, the topology of the temperature sections of the phase dia-

h~t[\2/3+In(vV3+v2)]. (290  9ram changes. o ' '
Another characteristic temperature is that at which the

This point marks the segment OT on the stability loss curvericritical point T merges with the critical point &ee Fig.

for the paraphase, on which no AFM solutions are generategg). we shall call such a point a degenerate critical point. At
We shall return to the tricritical curve while considering this temperature, regioB shrinks to a point and vanishes
higher temperatures after completing the description of thepon a further increase in temperature. From the point of
structure of the low-temperature section of the phase diagrafjew of phase states, two AFM minima and a paraphase peak
(see Fig. 2 In each of the region8 and3 described above, merge in this case. The corresponding equations can be de-
two minima coexist, and hence each of these regions cortyed on the basis of the following considerations.

tains an equilibrium curve, i.e., the PT1 curve. We are aware  sjng the second equation fro8), we can express the

of two pqint on this curve: one point can be obtained as afyee energy(2) as a function of only one parametes, i.e.,
asymptotic curve for the parametdrfor h=0 andt—0  f (4)=f[0y,0,(04)]. The remark following formula7)

(Sec. 3, and the other point is the “beak.” Intermediate and the expressions for the second derivative of the function
points were obtained numerically, the corresponding line bef, at ts stationary points, i.e.,

ing DS (bold line). In region4 bounded the OTSPEand FF
curves, only one AFM minimum is observed, while regbn fi=t 1o (x)[1-t 20 (X)) ¢’ (Xp)] (33
corresponds to the paraphase solupon only. . lead to the conclusion that local minima of the functibn

Thus, the low-temperature section of the phase diagram

) . correspond to local minima of the model free enefgynd
(see Fig. 2acontains the PT1 curvéDES), the PT2 curve . . ) i
branching from it at point E (EH, and the PT2 curve vice versa. Consequently, equating to zero the first consecu

(FF'). On the segment DE, a PT1 from the AMF phase tot|ve derivatives of the functiorf;, we obtain successively

. . the steady-state equations for the stability loss surface as
the paraphase takes plaggpward motiof, while on seg- y d y

" i well as the lines of critical, tricritical, and finally the degen-
ment I.E.S aPTl betwegn AFM states ocqesminating with erate critical point. The equality to zero of the third, fifth,
the critical state at point)S

and seventh derivatives is a consequence of the previous
equations ifl ;= 0. For the critical points, we obtain a system
consisting of Eqs(3) and(7), and the equalityf} =0:

_ , _ , [o" (x)P(@"(x2))?=[¢" (x2) [ ¢" (1) 1. (34)
Let us first consider the section of the diagram by the
planeh=0 (shown in Fig. ). The stability loss curve OAC For the tricritical points, we obtain the syste{@6)—(28)
for the paraphase is described in Sec. 3. A qualitative analy@gdain, while for the degenerate critical point this system is
sis of Egs.(3) leads to the conclusion that the stability loss SUPPlemented with the equality to zero of the sixth deriva-
curve BA of the AFM phase merges with it at the tricritical tive. Taking into account other equations of the system, it
point A with the coordinates can be presented in the form

5. GENERAL STRUCTURE OF PHASE DIAGRAM

t=1/3, d=}In4~0.462. (30) 2tp®— 15042+ L (o(3)2=0, (35)

This point is the intersection of the tricritical points curve W= gKplaxk.

described above with the plaie=0. The equilibrium curve

for the phases coexisting in the “triangle” OAB connects The systen(26)—(28), (35) has a unique solution and gives
point A with the pointd= 1/2, t=0 (the AD line) and can be the following parameters for the degenerate critical point K
described in the vicinity of points D and A by the asymptotic (€€ Fig. I

formulas 6

d%0.5—(1—t)exq—o_5t_l), tk:2—25%0.276,

o=1—exp —0.5"); (31 2v2 31 [(7—3@2

fort—0 and hk: 225 ﬁln 31 }%0382,
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1 o) face) The remaining “reference” elements on the PT2 sur-
d=55g In 31~0.473, o=~ ~0.189. (36)  face are the arcs AK, AC, CF, FFand EE. The curve of
critical points(bold line EK) is covered by this surface and

Thus, the segment KA of the curve for tricritical points lies jines within this surface in the instability region of the PS.
at the edge of the surface PT1, while the remaining part of

t_he cur\{e(connectlng points O gnd K and.not shown in theG' CONCLUSION
figure) lies under this surface in the region of metastable
states(point T in Fig. 2a. We studied the general structure of the phase diagram of
The sequence of temperatures at which the topology othe Ising model under investigation. Figure 1 shows qualita-
temperature sections of the phase diagram changes is givéiely its main elements. The results of numerical calcula-
by tions of the temperature sections of the phase diagram are
presented in Fig. 2. The described geometric structure of the
0<0.25<t<1/3<2/3. (37 diagram and the asymptotic formSIas derived for various
The phase diagram shown in Fig. 1 is described in Sec. 4 dimiting cases as well as the values of some characteristic
t=0. The first rearrangement takes place at the emergence parameters makes it possible to calculate reliably various el-
a nonzero temperature. The OE litsee Fig. 1 bifurcates, ements of the phase diagram. A typical feature of the PT1
giving rise to a “triangular” region TPSsee Fig. 2a in surface is that it is concentrated in the anisotropy parameter
which two AFM minima exist. As the value dfincreases, d in a very small neighborhood of its value equal to 1/2. The
this region first expands, and then shrinks to a point at aleviation(in the downward directionamounts to less than
temperature, . The structure of the section in the interv@  0.03. If we consider direct interpretation of the model in
0.25 is shown in Fig. 2a and is described in the same Sec. 4uestion, experimental observation of such a transition is is
In the interval (0.25,), the PT1 in the AFM phase still hampered in view of limited possibility of controlling the
exists, but the stability loss line of the paraphase becomegarameted. It was mentioned in Introduction, however, that
connected, and the region of AFM states becomes boundethis model is equivalent to a certain model of structural
We shall not illustrate this by a figure which can be easilyphase transition induced by a magnetic field. In this case, the
visualized, but is difficult to plot on a scale such that both theparameted can be controlled by the same field a over wide
singularities mentioned above are seen clearly since the segmerval of values. It should also be noted that as we ap-
ment SE is very small, and the OE and’HAies merge far proach another observable element of the phase diagram,
away. In the temperature intervdl (1/3), there is no critical viz., segment ERsee Fig. 1t=0) from the region where
point in the AFM phase, and the PT1 curve passing the trit>0, the susceptibilityym/dh diverges(this is analogous to
critical point is transformed into the PT2 line. A typical sec- Lifshitz transitions in electron systenss
tion is shown in Fig. 2b fot=0.3. The interval (1/3, 2/3)
contains only the PT2 linésee Fig. 2& which contracts t0  *g_ail pereverzev@ilt kharkov.ua
the origin upon an increase in temperature, and only the

paraphase solution exists for 2/3. . V. I. Kutko, M. I. Kobets, V. A. Pashchenko, and E. N. Khats’ko, Fiz.
‘Thus, the general pattern of phase diagram can be eX-Nizk. Temp.21, 441(1995 [Low Temp. Phys21, 345(1995].

plained by the set of the figures presented in this work. The?yu. V. Pereverzev, Fiz. Nizk. Tem22, 289 (1996 [Low Temp. Phys.

PT1 surface is a nearly horizontal piece of the surface, 22 226(1996] _ _

bounded by the bold AKED curve in Fig.(AD is the line of S. V. Tyablikov,Methods in the Quantum Theory of Magnetigftenum

: . X : _ Press, NY, 1967.

Its S?C'ﬂon by the p[anb=0, while the surface itself can be 4ya G, sinai,Theory of Phase Transitiofin Russiafl, Nauka, Moscow

continued symmetrically to the regidn<0). The PT2 sur- (1980.

face emerges from the fine line on this surface connectingSQ- Ai Adb”koslcg‘gs'zundamema's of the Theory of MetaNo. Holland,

points K and E(The point on this line in Fig. 2a correspond ~™">¢am '

to point E, while the line EE corresponds to the PT2 sur- Translated by R. S. Wadhwa
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It is stated that an electron can be in a state localized at an intercrystallite or twin boundary or
stacking fault irrespective of the specific structure of the transition region. It is important

that the crystal containing such a boundary must be non-periodic “as a whole.” The one-
dimensional mode{two abutting Kronig—Penney lattices for which the spectrum of

localized states is determineid considered. The bands containing one or two discrete levels
alternate in a complex way in the spectrum. 1©98 American Institute of Physics.
[S1063-777X98)01009-3

1. It was established by Taminthat an electron can be differs considerably from the structure of adjacent crystal-
bound by the external surface of a crystal. The electron wavétes.
function in such a state localized near the surface decreases Such type of boundaries determines the specific form of
exponentially towards the bulk of the crystal and in the out-potential energy of an electron moving in the cryste¢ use
ward direction. The electron is as if trapped by the potentiathe one-electron approximatipriFor simplicity, we consider
barrier from the outer side and by the periodic potential reliefa bicrystal with an interface coinciding with thez plane.
from the inner side. Tamm proposed a simple one-Obviously, the potential of the electron in the bi-
dimensional model that makes it possible to prove the emererystal in the general case cannot be represented as the sum
gence of discrete levels, to estimate their position in the bandf the potential periodic in the entire space and a perturba-
structure, and to find the radii of localization of the corre-tion localized neax=0. Such a representation ignores the
sponding wave functions. Essentially, the presence of a sutack of global periodicity and takes into account only the
face in Tamm’s model is not reduced to a local change irchanges in the structure of the transition region.
potential energy. The corresponding quantum-mechanical For example, for a symmetric tilt boundafyee Fig. 1
problem can be solved exactly and not in accordance witlor a twin, the potential of the right crystallite<t0) is a
the perturbation theory. mirror image of the left crystallite potentialU(x)

In real crystals, the electron spectrum can be affected=U(—x). If the boundary is a stacking fault, the right crys-
significantly not only by outer surfaces, but also by innertallite is shifted relative to the left one by a distance differing
interfaces. We are speaking primarily of intercrystallite from the lattice period. In these examples, the structure of the
boundaries separating regions with identical structure, whiclbicrystal as a whole is non-periodic, the local distortions in
are disoriented and/or shifted relative to each other. Specuhe transition layer being virtually absent.
larly symmetric crystallites are in contact along twin bound- In contrast to the situation analyzed by Tamm, localiza-
aries. tion of states at intercrystallite boundaries is associated with

Interfaces of this type violate the periodicity globalpn ~ electron trapping between two potential lattices. The electron
a macroscopic scaleso that a polycrystal as a whole is cer- energy can be higher or lower than the height of the potential
tainly not periodic in spite of the periodicity of the structure barrier that may or may not exist in the transition region. The
of individual crystallites. This peculiar nonhomogeneity of parameters of a barrier affect only the details of the spectrum
the material is responsible for qualitatively new properties(e.g., the arrangement of discrete levels in forbidden bands of
such as the emergence of grain-boundary sound waaed, a perfect crystalbut not the very fact of localization or the
extra electrical and thermal resistaricéhe curves describ- classification of states. The latter is determined only by the
ing the dependence of the energy of a bicrystal on the angless of global periodicity. Thus, for an arbitrarily small angle
of disorientation of adjacent crystallites acquire sharpof disorientation of the crystallite¢in the case of a filt
minima for preferred angles corresponding to a high densitypoundary or an arbitrarily small relative shift of the crystal-
of coinciding lattice sites, i.e., to a small size of the lattice oflites (in the case of a stacking fault or a microcrack
coinciding siteé. At the same time, these boundaries intro-the potential energy of an electron cannot be presented
duce local imperfections in the polycrystal, which are assoas the sum of an unperturbed periodic potential and a local
ciated with the structure of the transition lay#re thickness perturbation. Accordingly, some important parameters of the
of the layer is usually of the order of atomic spaginghich  discrete spectrum formeghaturally, against the background

1063-777X/98/24(9)/4/$15.00 658 © 1998 American Institute of Physics
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FIG. 1. Schematic diagram of a symmetric tilt boundary. The circles showF

) L . IG. 2. Schematic diagram of a potential relief.
the lattice of coinciding sites. 9 P

of the band structure of a perfect crystaliffer from the ~ —a(ais the lattice constaptind inserting a potential barrier

characteristics of the spectrum which can be determined, fd the formed gap. Such a model was considered by Sokolov

example, by the method of degenerate local Lifshits perturfor energiesE<U, and for macroscopic values ofa.

bations(see’ for examp|e, Refs. 5 and 6. For examp|e, twd\laturally, Tamm'’s surface states must be formed in the limit

discrete levels can emerge in certain forbidden bafaisan s—o, We shall be interested in the states localized near the

arbitrary shift of the lattices while the theory of local per- origin. The corresponding wave functions must decrease ex-

turbations predicts the emergence of not more than one lev@onentially on both sides of the bounddnge., forx—« as

in each such band. This difference is due to rotation of thevell as forx— —o). Forx>s/2, the required wave function

entire macroscopic region, e.g., the right crystallite relativehas the Bloch formy(x) = exp'“Ju,(x), and the complex ex-

to the left one. ponenta must have a positive imaginary componésiich a
2. A rigorous analysis of the problem of localization in a function corresponds to states in the forbidden band of a

real three-dimensional crystal involves the following mainperfect latticg. Since the potential is symmetric, the wave

difficulties: (a) atoms in the boundary |ayers are di3p|acedfuncti0n are either symmetric, or antisymmetric. If the right—

relative to their positions in a perfect crystdh) volume hand “half-lattice” is shifted relative to the left-hand one by

energy bands in a three-dimensional crystal can overlap, ar@l microscopic distanc¢2c+s—a|~a, it is expedient to

(c) the solution of the Schrbnger equation is generally not analyze localized states not only with energies U, but

factorized into the product of functions each of which de-rather with energies exceeding the barrier heightU,.

pends on only one coordinate. The calculation of the wave functions of localized states
However, the main parameters of localized stélesal- ~ and corresponding energy levels of the discrete spectrum in

ization radius and energyas well as the classification of the one-dimensional model under investigation is a standard

states can be obtained by generalizing the results of analys#/antum-mechanical problem. For this reason, the details of

of one-dimensional models. The arguments used in this caglculations are not given here. However, some aspects of

(and given, for example, in Refs. 1, 10 and &te the same the solution should be clarified and the required formulas

for the outer surface and for internal interfaces and can b#ill be considered.

reduced to the statement that the modulating factorikexp) The analysis is carried out in the framework of the ex-

plays a decisive role in Bloch’s function. Instead of dfee  actly solvable model. The relation between the decrement

calized state in the one-dimensional model, we have a largé&nd the electron enerdy in the Kronig—Penney model has

number of states in the three-dimensional case differing ithe familiar fornt:

the projection of the quasiwave vector on the plane of the sin ¢

boundary. The remaining characteristics of these states are of cog§aa)=P —— +cosé=S(¢). D

the same type and can be determined from an analysis of the ¢

one-dimensional model in a direction perpendicular to theHere P is the dimensionless power of the potentidl,

plane of the boundary. =(y2mE/h)a.
In order to obtain a quantitativiend if possible simple The energy values for whichS(¢)|<1 correspond to

estimate of the localization of states generated by internallowed bands, while fofS(&)|>1 we are dealing with for-
boundaries, we introduce a symmetric one-dimensional relidbidden bands. It is well known that forbidden bands in one-
shown in Fig. 2. This relief is a potential barrier of heighy ~ dimensional models of periodic structures alternate with al-
for —s/2<x<s/2, while on the intervals-c<x<—s/2 and lowed bands, i.e., the bands do not overlap. In the Kronig—
s/2<x< it is a Kronig—Penney lattice. In other words, the Penney model, the upper edges of the allowed bérelsthe
potential relief in Fig. 2 is constructed from an ideal Kronig— lower edges of forbidden bandsre located at the points
Penney lattice, which is infinitely large in both directions, by ¢,=n# (n=1,2,...). Each energy intervalnm<<&<(n
cutting it at the pointx=0 and subsequent displacement of +1)# (n=0,1,2...) contains one forbidden bandelow)

the right-hand part relative to the left-hand part by+2s  and one allowed bangbove. In accordance with such an
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arrangement, it is convenient to label the forbidden bands as For large but finite values of, when s/a>1, each

0,1,2,.... In thenth forbidden band, the inequality7<<¢

<(n+y,) is observed, the quantity, defining the posi-

Tamm level splits into two energy levels, the magnitude of
the splitting being exponentially smalexp ¥3). This re-

tion of the upper edge of this band being smaller than unitysults follows directly from Eq(3) (see also Ref.)7

(vn<1). For asymptotically largen such thatn>P, we
have y,~2P/(n). Another relation betweer andE (in

addition to(1)) follows from the condition of joining wave

functions and their derivatives at the points +s/2. If the

2. Let us now suppose that the barrier height is zero (
=0). This means that we neglect the change in the structure
in the transition layer, and the boundary is formed only by
relative displacement of the right- and left-hand “half-

electron energy is larger than the barrier height, we can writéattices” by 2c+s—a=b. The reflection of the structure

for even wave functions
e 2P sin¢
€
y cog e V&2 —g?)sin 5&+ 11— (g% £2)sin(e V€2 — q®) cos 6¢
cog e VE2—q?)cos 8¢+ 1— (g2 £9)sin(e VEZ—g?)sin 8¢
2

+cosé—sin &

where the following notation is introduced:q?

=2ma’U,/h?; e=sl2a; é=cla.

relative to a point separated by a distanae-{)/2 from an
ideal lattice site gives the same result as the displacement.

In the case under investigation, E§) is simplified con-
siderably:

ésiné

G(&)="5

b
—cosgztcosa £ (5)

It should be noted that the magnitude of the function
G(¢) is smaller than unity just in forbidden bands. An analy-
sis of the graphs of the functions on the left- and right-hand

A relation similar to(2) was also obtained for odd wave Sides of I_Eq.(5) shows that there are two solutions of this
functions, but it will not be given here. For energies smaller®guation in all bandgprobably except the zeroth bandor

than the barrier height, Eq2) is transformed by analytic

definiteness, we assume tHafta<1). Localized boundary

continuation. Equation¢l) and (2) form a system whose (9rain boundarystates correspond to only those solutions of
solutions give energy levels and localization radii for wave(5) Whose energy decreases with increadingrhis follows
functions. It should be emphasized once again that localizeflom simple physical consideratidsince the average elec-

states correspond only to solutions for whigtis a complex
guantity with a positive imaginary component, bn

>0, Rea=nm/a, wheren is an arbitrary integer. The elimi-

nation of @ from Egs. (1) and (2) leads to the following
equation for the required energy levels:

Esiné 2 g?
5 —cosg) 1—2q—§2i2q—§2605(28V§2—q2)}

2
= ico$§(1—25)][(1— Zq—§2> cog2s\E—q°)

2 2\ 1/2
izq—gz} i(l— %) siMé(1—-26)]

X sin(2e&E2—q?). ()

tron potential in the structure under investigation decreases
with increasingb) and is confirmed by an analysis of the
system of equationél) and(2) after the substitution of the
solutions of Eq(5) into these equations. The main result of
this analysis lies in the fact that for an arbitrary valudtd,

the spectrum of grain boundary states has as a rule a complex
irregular structure of the “devil’s staircase” type and cannot
be reduced to the spectrum of a periodic system with a local
perturbation. For example, it we can find positive integars
andn such that the inequality

a
n<m 5<n+yn, (6)

is satisfied, theth band will contain two energy levels. The
bands that do not satisfy inequalit§) contain only one en-
ergy level. Sincey,<1, we can find example&@t least for

Here the plus and minus signs correspond to even andot very largen) when inequality(6) holds for a large num-

odd wave functions, respectively. Equati8) corresponds

just to above-the-barrier states for whi¢h>q2. However,

ber of bands. For example, if the rat&gb is equal to an
integralM plus a small correctiop.<1, i.e., the lattice pe-

this equation can be easily transformed by analytic continuriod a is almost a multiple of the shifs, inequality(6) holds
ation for under-the-barrier states also. In this case, the corréer bands with numbers=M, 2M, 3M, ... aslong asmu is

sponding trigonometric functions are transformed into hypersmaller thany,. Since the value ofx can be indefinitely

bolic functions.

small, eachMth band will contain in the limit two discrete

The transcendental equati¢B) contains several param- levels, while the remaining bands will contain only one level.
eters; for this reason, its analysis in the general case is conm actual practice, the alternation of bands with two and one
plicated and is not necessary. For this reason, we shall cognergy levels for finiteu is extremely complex and cumber-

sider here the following two most interesting cases.
1. The barrier widths tends to infinity,c=a, and g

some and is determined by the shbit as well as the

“power” P of the potential according to the dependence

>¢2. In this case, Eq(3) can be transformed into the clas- y,(P).

sical Tamm’s equatidnfor surface energy levels:

2

£coté= ;—P— NG (4)

If the shift almost coincides with the lattice period, al-
most all bands contain two energy levels. If the equality is

satisfied exactly, half the localized states disapgaes de-
localized and “drive into” allowed bandsso that strictly
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one level remains in each forbidden band. In other words, fon.0'4 cm™2. The density of surface states per unit energy in-

b—a, the spectrum is rearranged radically. This statemenferval has the form of a step which is “thrown over” the
corresponds to the actual physical pattern since in contrast igolume density of state’.Consequently, the spectrum rear-
the case whelb+a, the potential energy of an electron for rangement considered above is manifested in the formation
b=a can be presented as the sum of an unperturbed periodisy disappearance of steps on the spectral density curve.
potential and a local perturbation. However, it was shown by |t should be noted in conclusion that the grain boundary
Lifshits and Kosevich® that in this case each band must states can play a significant role in the formation of some
contain exactly one energy level, and hence only one localproperties(such as conductivily especially of semiconduc-
ized state(the rank of the perturbation operator is equal totors. This role can be comparable wittr even more signifi-
unity). A rough estimate of localization radii for grain cant than the role of the outer surfat®since the total area
boundary states gives,.~a*Pb and weakly depends on of internal interfaces is much larger than the area of the outer
the band number. surface as a rule.

3. Thus, one of the distinguishing properties of a poly-
crystal, viz., the absence of a global periodicity as a whole, ~ The stimulating factor for the authors was and remains
generategindependent of the specific structure of transitionthe contact with Arnold Markovich Kosevich, the study of
layery electron states localized at intergranular boundarie&lis works, and the grasping of his ideas and methods of
and leads to a generally complicated and intricate sequen@®taining results.
of lines in the spectrum. However, the spectrum again be-
comes regular for boundaries of special type. Apparently Weg_mail: feldman@host.dipt.donetsk.ua
can put in correspondencat least conditionally to a certain
exteny th_e commens_urabﬂgy of the shift Wlt!’] the lattice pa- o Tamm, Phys. Z. Soviet Unio, 733 (1932,
rameter in the one-dimensional model considered above withy, pNaberezhnykh, E. P. Feldman, B. I. Selyakov, and V. M. Yur-
the formation of a lattice with coinciding sitésee, for ex- chenko, Poverkhnost': Fiz., Khim., MekB, 21 (1988. .
ample, Ref. 8 for certain angles of disorientation of three- °V.P.Naberezhnykh, V. V. Sinolitskii, and E. P. Feldman, Zks|E Teor.

; ; P P R 9 Fiz. 78, 165(1980 [Sov. Phys. JETB1, 82(1980].
dimensional crystallite¢see Fig. 1 It is knowrf* that the 4V. P. Naberezhnykh, E. P. Feldman, and V. M. Yurchenko, Fiz. Tverd.
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We propose a microscopic theory for the Aharonov—Bohm oscillations, observed by Latyshev

et al. in the magnetotransport experiment in Np8éth a charge density waveCDW).

The CDW slides across an array of columnar defects in a high magnetic field. For the charge
carrying quanta of CDW these defects are elementary solenoids carrying a magnetic

flux. The quantum CDW current acquires a component oscillating with the flux, with the period
hc/2e. Its magnitude is proportional to the concentration of columnar defects. The lower

limit to the phase breaking length for these oscillations is set by the minimal Lee—Rice coherence
length. © 1998 American Institute of Physid$§1063-777X98)01109-§

The sliding charge density and spin-density waves The oscillatory dependence dt clearly indicates the
(CDW and SDW in quasi-one-dimensional metals representAharonov—Bohm effectABE) nature of the observed phe-
amazing examples, apart from the superconductivity, of colnomenon, the period of the ABE-oscillations with the mag-
lective transport by a moving quantum ground state at higmetic flux beingA® =hc/2e.
enough temperatures. The striking feature of this ABE is that it is observed at

The most striking feature is the existence of a nonlineasuch high temperaturesT{&50 K) when single-electron
dc-current along the high conducting direction produced byABE is totally suppressed by the electron-phonon scattering.
the Frdnlich collective mode(see the review papéys The  Therefore, it was assumed’ithat those oscillations can be
Frohlich conductivity emerges in electric fields exceedingattributed to the quantum CDW-solitons which encircle the
the threshold valueE; (E>E1). Until recently, all the CDs pierced by the magnetic field thus affecting the collec-
CDW:-transport experiments had been more or less succesgve Frohlich current. In other words, the CDs serve as the
fully explained by the theories which had considered CDWelementary solenoids for quantum solitons.
in a classical manner: either phenomenologically as a rigid To summarize, the experiménis really the first evi-
object moving in a periodic potential, or microscopically, asdence for a high-temperature quantum coherent effect in a
a deformable medium in which the topologically stable do-non-superconducting material. It brings us to a qualitatively
main walls (the CDW solitong serve as the elementary new level in understanding the nature of a CDW current
CDW-charge carrier¢see Ref. 1 state: it demonstrates unambiguously the quantum origin of a

The pioneer experiment which had evidently shown thecollective current which was masked in all the previous stud-
quantum nature of the CDW-solitons was performed byies. It demands therefore a new theoretical description of
Latyshevet al.2 A thin film of a CDW-conductor NbSgwas transport phenomena in CDW-conductors.
irradiated by heavy ions of Xe. The Xe-ions produced an A theory that aims to describe the ABE in CDW trans-
array of identical parallel trackgcolumnar defectdCD)]  port should include the quantum description of the CDW
piercing the film, and the host lattice inside the CD wascharge carriers and should explain the anomalously large
destroyed. The radiuR of each CD is of the order of 100 A. cpw phase breaking IenglthW, strongly exceeding the
The irradiated film was placed in a strong magnetic fieldone for a single electron transport at such temperatures,
H~20T (Fig. 1) and the nonlinear conductance was mea\yhich makes ABE observable at high temperatures.

sured. In electric fields above the threshoEf>E;, the In this paper we develop such a theory, using the con-
transport current appeared to be an oscillatory function of th@epts, formulated id* where the idea of the CDW charge
magnetic field with the period of oscillation carriers quantization has been put forward and the persistent
current of the CDW-condensate has been studied for the first
SH= hc time.
2emR?” It is well known that the ABE in conductors can be

observed in two ways(i) as oscillations of a diamagnetic
The relative magnitude of the oscillatory component of themoment(of persistent currentsn isolated loops, angii) as
transport current is of the order of 0.25%. oscillations of conductance in open circuits containing loops.

1063-777X/98/24(9)/7/$15.00 662 © 1998 American Institute of Physics
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OSCILLATIONS OF A CDW TRANSPORT CURRENT IN A

Z‘ 1. MATHEMATICAL FORMALISM. AHARONOV-BOHM
TOY 1D MODEL

The Peierls—Fialich order parameter isA exp(e)
where A is the gap in a single electron spectrum and the
gradients ofp define, via the Frolich relations’ the collec-
tive CDW current,j, and the charge density fluctuations,
in a single chain:

y . edy
J==— = (1a)
/ R F T (10

./ 'CD' wheree is the electron charge, anddenotes the coordinate
P along the chain.
X Note that the Egs(l) have, at first glance, an incorrect
I, E vector dimensionality. Indeed, the Ed.a) comprises a sca-
—_— ———— lar operator that acts on a scalar to give a vector quantity,
FIG. 1. Geometry of the experimehMagnetic fieldH is oriented along the and the E‘?"(lb) Comprlse_s the "eCtOT operator acting on a_
axis of the columnar defects of raditi (z-axis, the transport current ~ SCalar to give a scalar. It is necessarily the case that there is
flows along the electric fieleE (x-axis). an implicit direction implied. Such a direction is the one
along the chains. The phage(the CDW variablg strictly
speaking, is a quantum Bose field. This can easily be seen in
the path integral formulation of the Peierls—Rlioh problem
(see, e.g., the review by Krivet al. in Ref. 1). Accordingly,

As the ABE is |nt|mate_ly connected to th(_e topologl_cal StruC-q Egs(1) are the operator equations. The measured current
ture of a charge carrier wave function in a multiply con-._.

nected conductor, the basic period of oscillations with flux in~

both those schemes is the same. ) e /de\ . .
The qualitative theory of persistent currents in CDW in ~ Jt= = <E> “leTlas

the idealized model of a single-chain CDW loop was first

proposed by Krive and the autficand was elaborated later

on in a series of papefdt was shown there that the persis- _ T ;
tent current in CDW is formed by the topologically non- as two components: the clasgicand the quantunij,. The

trivial CDW-excitations, viz, solitons and instantons. The ba-former is produced by the mean component of the order pa-
sic period of the persistent current oscillations with magnetid@mMeter, and the latter by its fluctuations. The theory of a
flux is found to beds=hc/2e, just as in the experimeft. Classic CDW dc-transport is well developeste Ref. 1 For
Although the measurements of a persistent current in CDWPUT Purposes we must find the quantum dc-curignex-

are beyond the present technology facilities, the understand@€Ssed in terms of wavefunctions of individual CDW-
ing of the role of the topological CDW-excitations in the charge carriers. In the Aharonov—Bohm geometry, the wave-

ABE is essential for solution of the quantum transport prob_fungtions are sensitive to magnetic flux variations providing
lem. The qualitative picture of the AB-oscillations in the oscillations of a transport current. To quantize CDW, we use

geometry of interest was first discussed by the author.  the Bose—Fermi duality transformations id £ This pow-
The paper is organized as follows. erful tool allows us to map the results of the electron theory

In the first chapter, we give a proper method of cpw ©f metals and semiconductors onto quantum CDW. In par-

quantization and formulate an exactly solvable model of dicular, quantum solitons of CDW, which serve as elemen-

quantum CDW transport along a single chain with a |Ooptary charge carriers, turn out to be equivalent to spinless

pierced by a magnetic flux. Such a loop mimics a columnafonduction electrons in all semiconductorsee, e.g., Ref.

defect. 7). Evidently, the oscillatory ABEs, existing in mesoscopic
In the second chapter, we propose a model of a columndfonductors, have their analogs in CDW.

defect in a CDW-material. In the third part, we show thatthe ~ 1he dual transformations for the normally ordered op-

long range CDW-coherence allows us to reduce the problerirators arésee, e.g., Ref.)7

of a transport current through a dilute array of CDs to the one

@)

where the brackets denote quantum averaging. In electric
field above the threshold>E+, the transport curren?)

studied in the first chapter, and calculate the transport current — athJoxzp (3
oscillating with flux. The relative magnitude of the oscilla- \/;
tory current estimated along our formulas for the parameters
. . 2_ 3 . . . —
of the experimeritis of the order of 10?—10"3, which is in = 9= — Yoy,

a good agreement with the experimental data. N
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The effective charge & leads to the oscillations of the per-

sistent and transport currents with flux with the period

d=hcl2e.*®

To obtain thej, one has to find the transparency of the

loop. It is highly unacceptable to do it in terms offield
Metal using for example the instanton appro&dhis more conve-
bank nient to use the dual fermion language in which this problem

can be reduced to the one already solved in Ref. 9. Indeed,

the Lagrangian$4a) and (4b) take the Dirac form:

Z=Noi ry,,0,. (5a)

and

Metal
bank

._ - e
= N0| l,b)/lu a//-_l H (I)5/.L,X ¥, (5b)

AUONNONONUNOSUONONUNIONOINONONNYNYN

ASOUNNNNNNNNNNNNNNNNNNN

wherey, = (ay,Cooy), u=(1,X).
FIG. 2. Schematic view of a CDW-transport along a single chain containing The Scattering problem of interest has been solved in
a loop with a perimetek, pierced by the magnetic flu®; j is the transport Ref. 9 for a nonrelativistic electron. One can easily show that
current densityy is the angle variable. - relativist - -an easily show

the results obtained in Ref. 9 remain valid in our case.

The CDW quantum transport current takes the féfm:

whereyis a two-component Dirac spinag= " o, , o, are 2e

the Pa(f/,lli matrices. P PIO= 40y o Jo(®) = f de g(e)[fL(e)—Tfr(e)]. (6)
The qualitative picture underlying the transformations

(3) is that the statistics in @ are ill defined. One cannot The integration is performed over the energyHere

merely place two solitons at one point which, roughly speakg(e) is the transmission probability, which depends explic-

ing, allows us to treat them as fermions. The E@.intro-  itly on the CDW wave functionsfr| are the distribution

duce explicitly the desired description of a CDW in terms offunctions of the left and right moving dual fermions. For
the wave-functions of the CDW charge carriésslitons and  simplicity, we assume that the relaxation occurs in leads,

antisolitong. which means that
To show how this scheme works, consider the AB- _ .
oscillations ofj4 in a single chain with a loop, of a perimeter frL=Tfo(e£pvp), (63

L, pierced by a magnetic flusb (Fig. 2). Consider for sim-  \yheref,, is the Fermi function anay, is the drift velocity.
plicity an incommensurate CDW described by Lagrangiansgor sliding CDW, vy, is not zero in electric fields above the

1 cﬁ thresholdE+ . It is convenient to rewrité6) in the form:
Z= No{z (00)?= 2 (ax<p>2} (4a

[fo(e+pvp)—Tfole—pvp)]

jo(@) =] [ dege) -

()

in linear chains connected to the loop, and

2.2 . .
where . is the classic current at zero temperature along a

Z=Noj 5 (09)"= — 7= (900)"( = o7 (00) (4D cpain free of a loop:

in a loop. ~ €peup(E)

Here No=7%/a’vg, a=cylvg<1 is the parameter of o= (8)
adiabaticity in the Peierls—Hntich theory,c, is the phase
velocity of CDW. The Fermi energy for dual fermions is of the orderof

The Lagrangian(4a is well known in the theory of This is the maximum kinetic energy which the CDW soliton
CDW. The Lagrangiar(4b) contains the topological term (the dual fermioh possesses. Correspondingly the cut-off
which describes coupling of a Fhtich current(1a) to a vec-  to the Dirac theory, for dual fermions is:

tor potentialA=®/L in the loop: A 5
jA Pe~ —~—, ©)
,%;mz%. (40) Flc ad
whereéy=%vg /A is the amplitude coherence length.

The topological term if4b) was introduced for the first The functiong(z) was calculated in Ref. 9 to be:

time in the paper by Bogachedt al, Ref. 4. On a micro-

scopic level, it arises nonperturbatively due to the chiral 472 coZ(md/Dg)sir(mk)

anomaly phenomenon in &21CDW.”® The doubling of the 9(e)= 27 , ; (10
g ) : n° si(27k) +p=(k, ,P)

electron charge if4b) is the result of a summation over spin

projections of electrons out of which the CDW is formed. where
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y

+a2—(1- n)cog27k),
(11

27
p(k, 7,0)=Db2 cos( g

S
elL

- 27TﬁCOI

The phenomenological parametgr 0< n<1/2, deter-
mines the connection between the linear chain and the loop.
The coefficientsa, b are:

a=%[(1—27])1/2—1], b:%[(l—zn)llerl]. (12

The value ofn will be specified in the Ch. 2.

Note that the Eqs(6) and (10) are valid when the pe-
rimeter of a loop is small compared to the phase breaking
lengthLSPY . In a sliding 1D CDW the lower limit toL 5™
is set by the Lee—Rice phase coherence lehgtlthich is
typically 1-10um.! This clearly shows why the CDW ABE
is observed at sufficiently high temperatures, when the single
electron ABE, characterized by®~10°~10° A, is sup-
pressed. A three-dimensional sample of NpBecharacter-

ized by three coherence lengths:along the chains irx- _ _ _
direction. |, along thev direction andl. alona the less FIG. 3. The model of CD adopted in the theofs) conducting chains are
oL . g y d g . oriented along the-axis; (b) the real holejc) the region of the edge states

conducting axis,z 14<I, <l;, and, correspondingly, by of the width~ &, ; (d) the interface layer of the width- 5, around the CD
three phase velocities,<c,<cy. In an actual experimeﬁt, containing large phase gradients. The high energy heavy ion produces a
the phase breaking Iength is governed by the sample thiCI{Qund hole which plerces_the sample_ anng thaxis. The CI_D-hoIe is sur-
nessd in a less conducting direction. In this context. the rounded by a layer of widthS;, within which the phase is confined to

" . . g s ’ h ~ o=@ (see the tejt We assume that the positions of conducting chains are
oscillatory effectin CDW is the_ Mesoscopic one In spite of itnot disturbed away from the COx|>R|cosd, |y|>R|sing. 1V is the
resemblance to the flux quantization in superconductors. transport currentg is the angle variable.

Under the conditions of the experiménthe CD hole
diameter contains several tens of chains and the model has to
be reformulated keeping safe two basic featu(gsa quali-
tative picture of the quantum transport of CDW along a
single chain[Egs. (6) and (10)], and (ii) the long distance
phase coherence in a sliding CDW.

given by the Eq(1a). The CDW edge state phase velocity
along those D paths is?wherecy<?<co. Such random
chains emerge as the result of a strong damage of a host
lattice caused by a heavy ion. The average phase the

bulk away from the CD still remains correlated over the
Lee—Rice length&? This qualitative picture is an assumption

of our model.

According to Ref. 2, the CD is a real hole with a diam- Consider the scattering of the classic and quantum CDW
eter 10—12 nm surrounded by a damaged region which adds<citations on a CD. In the classical picture the excitations of
a further 2—4 nm to the effective diameter. ¢g (the edge statesare confined to a CD in a radial direc-

Consider the distribution of a phase around a single cytion, they have only the azimuthal momenta and do not con-
lindric CD with the radiuR (Fig. 3). Inside the CD, the host tribute to the current flow. The classic current spreads around
material is destroyed and, accordingly=0. This local de- the CD in the way plotted in Fig.(8). The characteristic
fect creates Friedel oscillations of the electron charge thagpreading length., can be estimated from the equation of
compete with the CDW charge modulation over an atomiamotion for a 3 CDW Lagrangian:
distance scalé;~10 A.'? The suppressedl causes a strong

2. A MODEL OF A COLUMNAR DEFECT IN A CDW
MATERIAL

phase gradientgde/ar|>|1|"! localized around the CD 1 5 cs )

within a strip of width 8, which is of the order of several ~ ~=N2No f dxdr,) 5 (de)"= 5 (9xp)

£o.12 The potential barrier created by these phase gradients is

of the order ofA*? (Fig. 4). It separates the phasgeinside §; 27T,

from the bulk. The local phase in the regionR+ &;or ~ whueN, COSpr, —¢r, +1) (13

<R+ 6, is adjusted to a certain optimal valug, that

matches the Friedel oscillations. The valgg differs from  wheren, is the 2D density of conducting chaing,; is the

the one established in the bulk, its excitations can be reeritical temperature of a B phase transition, and is the
garded as the edge states. We make a plausible assumptionmber of the nearest neighbor chains. Assuming the thick-
that inside the layer- §; there exists randomLCl chain paths ness of a sampld<l4 and puttinggx~1/L,, dy~1/L, we
encircling the CD, along which the CDW current is againget an estimate:



666 Low Temp. Phys. 24 (9), September 1998 Alexander S. Rozhavsky

Y y

CDW edge states L

~A
84
\f .
N
\ L
—
r FIG. 5. The trajectories along which the classic curr@tand quantum
FIG. 4. The potentiaU created by the CD for the CDW excitations as a current(b) encircle the CDL, is the classical current spreading len¢tt).
function of the radial coordinate The destroyed host material occupies the

regionr <R. The potential barrier of the order &f produced by the large
phase gradients in the regid®+ §,<r <R+ &, separates the edge states The edge excitations ofp, are described by the

localized atR<r <R+ §; from the bulk.R is the CD radius. Lagrangian:
~ — . €
L= 1| =i —— P, x| (18)
CO & n 7TCL
Le~L —~L —>L 14 T
X Cy T (149 where n _runs over theld(kgo;) values, dx— 1/Rd,,
where ve—ve(c/cy).
The phases in all thH4, chains that are connected to the
V2ZT, CD (17) are correlated provided<l,, d<l4. This means
Cy= fnd? a<Co. (15 that all the dual fermions located in these chains have the

) . ] ) same transmission probability(¢) (10), in which k [Eq.
In NbSe ¢,~0.1c,. Classic trajectoriegl4) contribute  (11)] is replaced by(c,/c). Thus, the flux-dependent trans-
to the magnetoresistance but not to the ABE. port current carried by the bunch Nf, chains is nothing but
Contrary to the classic picture, the quantum CDW'N@jq(CD) wherej,(®) is given by Eq(7). The parameter of

particles encircle the CD in a quite different wéyig. 5b). transparencyy can be estimated quasiclassically:
Quantum particles propagate freely along the chain away

from the CD, then penetrate under the potential barfig. o~ ex F{ B So(Mcpwl) ™
4) and mix with the edge states localized near the hole. Be- h
cause the dispersion of the edge state trajectories is small Bhere Mepw=a 2M*, m* is the band mass in Nb§e
far as; <L andkg6,~1, the CDW quanta encircle the CD Taking m*=1.8my, £&=30A, A=350K, a~0.5 (see,
along a path of a fixed length. Quantum paths obviously e.g., GimeP), we get:
contribute to the AB-oscillations.

Now we can formulate a quantum model of a cDW  7~0.03-0.05 (1939

which contains a single CD. for 5,/£,~6-7[Refs. 12 and 1B Note, however, that the

SaveNy, the excitations of the phase localized in the ratip 5,/£, was estimated for a point defect. For a CD, the
chains away from the CD are described by the Lagrangiangstimate can differ though not crucially.

: (19

Z= ; WY ud ¥ (16) 3 CALCULATION OF A FLUX-DEPENDENT TRANSPORT
CURRENT
wheren labels the chain. There aigy, chains which connect ) ) )
the CD: The total current °®V is the sum over the single chain
currents. At small concentration of Cbsne can neglect the
N ~£ n 17) contribution of chains connecting the different loofan-
4y % dom loop approximationwe then get
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|PW~Njet 2 jo(@)=15""+1PY(@),

oops

(20

where N is the total number of chains in a sampl&P"
=Nj;.
The sum over loops is estimated as

2 ~NgNcp, (22

loops
whereN¢p is the total number of loop®f CDs) in a sample:
(22)

where nq is the concentration of CD4,, is the distance
between the electrodes along thdirection,L , is the size of
a sample in they-direction. Collecting together Eqs7),
(20), and(21) we obtain

Nep=nglyL, ,

Ld )
1PW(®) = — nnglyL . jo(®)

_LL” cbw 1 f
=5 Ndlo . de g(&)[fo(e

+Prup) — fole —Prup)]. (23

To calculate the integral over the energy, we make use of the

periodicity ofg(e):

9(e)=9g(e+27Ty), (24)
where
hc
kgTo=— (25
L
is the interlevel spacing in a one-dimensional isolated ring.
We get:
1 - ~
—— [ de gte)fo(e+Prvo)—fole—Pruo)]
PrUD
l 27TTO ~ * _
=5 f deg(e+3p) > [fole+3p+2mNnT,
Prup Jo n=—cx

+Prup) — fole +ep+27nTo—Prup) ], (26)
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wheres is the Fermi energy for dual fermions.
Making use of the Poisson summation formula

; p(n)zfdn p(n)+2k21fdn p(n)cog 2kn),
(27

we get

oo

2 [f0(8+EF+2WnT0+5FUD)_f0(8+EF+27TnT0

n=—ow

T

—vaD>]=T—O gl

Siﬂ(kf),:vD /To)s|n( kS/To)
sinh(7kT/Tg)

(28)

Making use of the inequalityp<c, we eventually obtain
the following equation foit ©®V(®):

|CDW( _ LLng l CcDW
27T TO 0
X > k sinhm {7k T/To)F (P, 7,To), (29)
k=1
where
27Ty -
F(d’,n,To):f de sin(ke/Ty)g(e+eg). (30
0

In an actual experimertthe ratio 7T/To~10 which
allows us to keep only the first harmonics wkk=1 in the
r.h.s. of Eq.(29). The exponential decrease with temperature
is a typical feature of the AB-transport curréete, e.g., Ref.
14), as well as of the persistent currént.

The integral over the enerd®0) has to be calculated at
7n<1 [see Eq(199]:

sin(e/To)sirf((e +2¢)/2T,)

(31)

27Ty
F~49? cosz(WQDIQJS)J ds772
0

The main contribution t& comes from those points in which the denominator of the integrand is close to zero. We get the

asymptotes:
( ~ 2
1 EE ¢_n(bs) )
— = psin —|| 1+ 72 ,
27 (To D,
1 1 B\ [ ®—(n+1ad,
il - - — _— hen |® —n® > nd,,
T F~13 nCOS(TO)(1+2w( b, , Wwhen | s|>n®s
1 e d—-(n=1/2)d
~ »¥2sin S_F)zwz ¢~ (n*12) 04
V2 To S

\

Sin((e+2g)/2Ty) +[coS(m®/ D) — p—cog (e +&¢)/2To) %

when |® —nd®|< 7Dy,

2
), when |®—(n=1/2)® < ndg, |P—ndy> nd,.

|d— (n+1/4)d > nd,,
|D— (n+1/4)D | < D,

(32
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Heren=[®/d] is an integer. *)Permanent address: B. I. Verkin Institute for Low Temperature Physics
In an actual experimeﬁtndL”L~103— 10* and we ob- and Engineering, 47 Lenin Ave., 310164 Kharkov, Ukraine

tain the following estimate for the relative magnitude of the
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Electron diffraction studies of the structural characteristics of Ar»&@id solutions are carried
out over the entire range of their mutual concentrations. The regions of low concentrations
of both components are analyzed in detail and the relative excess vollmiesare determined
for the CQ impurity in solid Ar (Av/v=0.8), and for the Ar impurity in solid C®

(Av/v=0.28). The experimental results and relationships are compared with the results obtained
from the semi-quantitative theory on the basis of known atom—atom potentials. An
expression relating the intensity of superstructural reflectipse,) (including the reflection 210
with the long-range orientational order parameseis obtained. It is found thalty; ¢ 7? to

a high degree of precision. The experimental dependence of the orientational order paraoreter
the argon concentration in solutions rich in £ obtained. ©1998 American Institute of
Physics[S1063-777X98)01209-3

1. INTRODUCTION indistinguishable particleswithout a quadrupole moment,
which is responsible for the long-range ordérhe behavior

All molecular cryocrystals made of linear molecules of dilute systems undergoing ordering and the magnitude of
have orientationally ordered phases. most cases, the sym- the critical concentratiorx® depend on the nature of the
metry of these phases under saturated vapor pressure is deng-range order, crystal structure and other factors. Hence
scribed by aPa3 group symmetry) The physics of the ori- the investigation of any specific system is interesting in it-
entational order and the nature of the corresponding phasself. Figure 1 shows a phase diagram of AM solid solutions.
transition (if such a transition does ocquto the disordered Such a diagram is characteristic of ortho—parahydrogen so-
phase have been studied quite extensively for classical dgtions, as well as AM solutions based on a diatomic molecu-
well as quantum behavior of the rotational subsystege, lar component. States with orientational long-range order for
for example, Ref. 1 Doping of the rotationally ordered large values ofk are replaced by states without long-range
phase(of the molecular component My particles of “ori-  order for concentrationg=50% and below. These two re-
entationally neutral” modifications or atomic impurities gions are separated by the hcp—fcc phase-transition curve. A
(component A leads to the destruction of the orientational decrease in temperature in high-concentration phases without
order. Materials exhibiting this phenomenon include ortho—-ong-range order leads to a freezing of molecular orientations
parahydrogen solutiorisas well as alloys of rare gases with into a state called the quadrupolar gl&$%or lower concen-
linear diatomié® and triatomic (CQ) molecule® Re-  trations <15%) of the M-component, a region is formed
placement of one of the molecules in the orientationally orwhose physical properties are determined by the nature of
dered phase by an “orientationally neutral” rare gas atomthe systen{see below.
leads to the disappearance of the anisotropic interaction com- The destruction of the purely quadrupolar order has
ponent(which was responsible for the orientational order inbeen studied most extensively on the example of
the entire ensembldrom the bonds between this atom and ortho—parahydrogeh,where molecules in the spherically
the surrounding molecules. The molecules surrounding theymmetric para state are the orientationally neutral particles.
atom will be in a molecular field whose intensity decreasesn this case, the critical concentratiotfy,=45%. In the
by 1/z in comparison with its value in the regular case ( region of low ortho-concentrations, the thermodynamics
is the number of nearest neighbpts It is obvious from is completely determined by the number of “pair clusters”
a physical point of view that of substitutional atoms for a of closely spaced ortho moleculésolated ortho molecules
certain concentratiorx®, the orientational subsystem loses do not contribute to the thermodynamics
its long-range order. Dilute quadrupolar systems based on diatomic molecules

Thus AM-type cryoalloys(i.e., those formed by linear N, and CO have been studied quite intensivige, for ex-
molecules and rare gas atom®rm a disordered system ample, the reviews by Hochlietal,* Strzhemechny
in which the multicomponentquadrupolar in the case con- et al,® and Manzheliiet al1%.®) One of the factors hamper-
sidered by uporder is violated as a result of dilution by ing the investigation of these disordered systems in a

1063-777X/98/24(9)/10/$15.00 669 © 1998 American Institute of Physics
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mobility of individual particles as well as layers in the case
of triatomic molecules allows us to obtain long-lived meta-
stable solid solutions with high mutual concentrations. This
leads to the third advantage according to which the lattice of
the mixture remains cubic for all mutual concentrations and
it becomes possible to study the effect of dilution on orien-
tational order in pure form. These peculiarities have been
reported in our earlier communications about£§ased sys-
tems with atomic components KrAr,” and Xe®

An equally interesting problem concerns the thermody-
namics in the region of low M-concentrations<15%) in
which a glass-like state with predominantly indirect interac-
tion (through the field of elastic deformationsiust be real-
ized, the more so because the rotational spectrum in this case
must differ from that of solutions based on diatomic mol-

ecules. Studies of dilutex(~-1%) solutions provide informa-
stk high tion about the regions of mixing which constitute one of the
fo“r’memra_ ?;222)”"""‘"”5 factors that determine the magnitude of the elastic fields
tions / around the molecular impurity.
%

Disorder

T, arb. units

The possibility of the formation of a glass-like structure

0 50 100 in orie_ntatio_nal states Iocalized_ at the a_tomic impurities of

x % the c_)rienteitionaliy order_ed lattice and |nieract|ng through

’ elastic static fields remains an open question although some

FIG. 1. Typical phase diagram of AM solid solutions. The solid curve €Xperimental data speak about the anomalies in the heat ca-
describes the orientational order—disorder phase transition, while the dashepacity of AM-type solid SOlUtiOh%?
curve defines the conditional boundary of orientational glass formation. In this communication, we present the results of detailed
investigations of the structure of Ar—G@lloys in the entire
range of concentrations. The main attention was paid to the

macroscopically homogeneous solid solution is their tenfollowing issues: low concentration@t both ends of the
dency to separate into regions rich in molecular and atomi®hase diagrajrfor obtaining mixing volumes per Ar atom in
components respective|y_ In some Cajéleg]e homogeneity solid CO and CQ molecules in solid Ar, detailed studies of
region is so narrow that it is not even possible to determindhe behavior of superstructural reflections as functions of the
the solubility boundary in the solid solution. However, thereAr concentration and temperature, and a theoretical estimate
are several examples of highly nonequilibrium alloys based®f quantities concerning the structural and energy character-
on diatomic molecular crystals. For these systems, the lowistics of the system under consideration. The obtained ex-
concentration region(see Fig. 1 is in a specific perimental data are compared with the conclusions of the
orientational-glass state for which the energy spectrum is theemiquantitative theory constructed on the basis of phenom-
sum of the rotational spectra of isolated molecules, and rarenological potentials. The mathematical and computational
domization of each individual spectrum occurs as a result oproblems are considered in the Appendices.
the dilatational action of all the remaining impuriti€sThe
universal laws governing such a glass-like state have bee
studied most intensively in the system RfN,.1013

One of the characteristic features of these two systems is Investigations were carried out by the transmission elec-
the presence of an fcc—hcp structural transition, which igron diffraction technique using a special helium cryostat.
apparently induced by a change in the frustrational energamples were prepardd situ by depositing gaseous mix-
parameters upon dilution of tHea3 structure by rotationally tures at various deposition temperatuigs Measurements
neutral impuritie® (see for example, Ref. 15Thus, the were made at temperatures rangingmr6 K to thesublima-
effect of dilution cannot be studied in a cubic structure, andion temperature of pure argd@@8-30 K, depending on the
experiments on orientational glass formation are carried ouhicknes$. The effective thickness of the deposited films var-
in structures with a different symmetry, where the existencéed from 80 to 200 A. Samples were deposited on substrates
of a long-range order imposed by the quadrupole interactiomade of polycrystalline Al films which also served as the
remains doubtful. internal reference material. In the photographic technique of

In this connection, the use of triatomic linear moleculesrecording, such a reference material ensures a more precise
as the molecular component has a number of advantages, egaluation of the lattice parametar Since we dealt with
well as several distinguishing features as compared to disolid solutions, the diffraction rings could be quite weak and
atomic linear molecules. First, it can be expected that thélurred (depending on the compositipnthus considerably
detection of superstructural reflections in mixtures with aincreasing the error in determinirag which varied from 0.1
suppressed long-range order will be more reliable, especiallio 0.3%.
in electron diffraction measurements. Second, the inhibited The composition was varied over the entire range of

. EXPERIMENT
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FIG. 2. Lattice parameter of solid Ar—G@nixtures as a function of argon ~ FIG. 3. Densitometric profile region for an Ar-GGamples with 37% Ar,

concentration aff=25 K. The deposition temperatuiB,=25 K. Light T=25 K; T4=25 K. The indices of peaks for the diffraction pattern are
circles correspond to the argon-rich phase. marked on tops=4 sin 6/\ is the diffraction vector modulus, whereis

Bragg's angle and is the electron wavelength.

mutual concentrations. The concentration of the gaseous

phase was determined by measuring the partial pressure gplutions o_nly in this relatively narrow intermediate range of
components with the help of a sensitive manometer. Th&oncentrations of the M-component. For higher argon con-
total volume of the mixture being prepared was increased iffentrations (60%x,), we observed only one set of reflec-

order to increase the accuracy of measurements of the predons. The lattice parameter of the solutions was found to

sure of highly diluted components for argon molar concendepend weakly on the composition except in a very narrow

trationsx,, close to 0 and 1. interval xco,<3% in which a relatively weak dependence
The supply of the gaseous mixture at low pressiess  a(Xco,) Was observed.

suring a growth rate from 1 to 3 A/sninimized not only the A characteristic feature of solid solutions is the non-
risk of separation during transportation at liquid nitrogenmonotonic dependence of the lattice paraméserd molar
temperature, but also the condensation overheating whicholume on composition for small admixtures of argfrom
could cause uncontrollable or undesirable separation in thé to 25%) at deposition temperaturés= 25K, which was
solid phase. Judging by the experimental data, the prepareéported by us earlier.In order to find the nature of this
solid solutions were found to be quite homogene@srse  nonmonotonicity, we performed the experiments at lower

discussions below temperature§4=6 and 15 K. The obtained results are pre-
sented in Fig. 4. It can be seen that the shape of the curves
3. EXPERIMENTAL RESULTS a(xa,) is preserved although the effect itself is modified: the

height of the peak is lowered considerablyTasdecreases;

Analysis of the electron diffraction patterns showed thathe peak itself shifts towards lower values .. The au-
in the entire range of compositions, the solid solutions havgnors are not in a position to explain this effect.
cubic symmetry, or an fcc structure for argon-rich solutions, |t \vas mentioned above that one of the aims of our
or a Pa3 structure for solutions rich in the molecular com- yesearch was a meticulous measurement of the dependence
ponent. Let us consider some peculiarities in the dependencs the |attice parametea (molar volume of the mixtures for
of the lattice parameter of solutions on the compositiéiy. 0w concentrations of the A- or M-component. For low
2). The concentration range can be divided arbitrarily intoa; concentrations, presumably homogeneous solutions were

three regions. For solutions in which carbon dioxide Pre-easily obtained, and hence the excess volume per argon
dominates (6=x,,<35%), we observed a set Bfa3 reflec-

tions which give the lattice parameter varying significantly

with the argon impurity concentration. This fact as well as a 562
qualitative theoretical analysisee Sec. flead to the infer- 0 a
ence that we are dealing with a nearly homogeneous impu- 561 N s,
rity distribution, at least for argon concentrations up to about

; : o 5,60 N
10 percent. For nearly equimolar concentrations (35%, N — N
<55%), we observed a number of reflections against the ® 559t - ., a
background of reflections corresponding to the ,@fased ° o o on =
solutions. These reflections were attributed to the argon-rich 5.58f o o % o .
phase. Figure 3 shows a typical densitogram of a-C& 5578

(37%Ar) sample in the region of principal reflections. It can L L 3‘0 40
be stated on the basis of a rough estimate obtained by using 0 10 20 o
the values for excess volunisee below that these reflec- Xpp 2 mol. %

tions may correspond to the argon-based solutions with RiG. 4. Lattice parameter of solid Ar—G@nixtures as a function of argon

relatively high (about 15%) concentration of the M‘ concentration at three deposition temperatuFgs(in K); 6 (circles, 15
component. Thus we can speak of the classical separation Ghuaresand 25(triangles.
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534 . The orientational order parameter of the crystal formed
. by symmetric linear molecules is, by definition, the thermo-
8 dynamic average of the corresponding spherical function
533 _
°<L 7= (5/4m) P w), 4
® where the unit vecto® determines the orientation of the axis
5.32 of the molecule, while for the reference frame we chose one
P of the directions of the typél11) along which the molecules
531 , , N are oriented in th&a3 structure. In an impurity-free crystal,
~'0 2 4 6 8 the quantity is the same in all four sublattices of this struc-
xooz , mol. % ture. In a doped crystal, the order parameter can be written in

the form

FIG. 5. Lattice parameter of Ar—COsolutions for low concentrations
of carbon dioxide at two deposition temperatulgs-6 and 25 K.

77:<Y20(w)>:2i 6if doYoo w)pi(w). 5

Here the summation is carried out over the lattice Sitése
operatorc; assumes the value 1 if the site is occupied by a
CO, molecule and 0 if the site is occupied by an argon atom
which naturally does not make any contribution to the orien-
tational order parameter; the quantipy(w) is the weight

impurity could be determined without any difficulty. In view
of the above peculiarities in the dependence of the lattic
parameter on composition for low concentrations of ,CO

we made a number of experiments for extremely low con
centrations of CQ(see Fig. 4 at which the attainable degree

of precision allows us to determine the excess volume.
By definition, the relative excess voluméu/v

=Q(A/M) per impurity particle of the substance A in the

crystal M is given by the expression
V(xa) —V(0)

Q(AM)= lim V()

Xp—0

D

wherex, is the concentration of the substance A af(c,)
is the molar volume of the solution for the concentratign
Using the data from Fig. 8ee also Fig. )7 we obtain

V(Xar) —V(0)

Q(Ar/CO,)= lim
(ArICOZ) XpV(0)

Xar—0

=0.28:0.04, (2

function which defines the angular distribution of the orien-
tation probability of molecules. This distribution is deter-
mined by the dynamics of the rotational angular momentum
in given molecular and crystal fields, while the latter are
determined by temperature and deviations of the closest en-
vironment from uniformity(crystals containing impurities or
other defects Thus, dilution of solid carbon dioxide by ro-
tationally neutral argon atoms leads to two effects causing a
decrease in the value af, viz., the direct substitution simply
puts some of the sites “out of play(i.e., increases the num-
ber of sites at whicle; vanisheg and an additionalapart
from temperature-relat¢droadening and deformation of the
weight functionp(w) takes place and lowers the value of the
integral in Eq.(5). Unlike the temperature broadening by

i.e., the argon impurity occupies a considerably larger volPhonons, which is of a dynamic nature, the latter effect has a
ume(1.28 than the CQ molecule in the crystal. This effect Static origin. As a rough approximation which is valid only

is discussed in Sec. 4.

for low concentrations of the atomic impurity, E&) can be

Analogous measurements of the molar volume for exawritten in the formz=(1—x,,)7, Where7 can be condi-

tremely low concentrations of CQbelow 1%) made it pos-

sible to determine the excess volume of a single, @Gapu-

rity. Using the data of Fig. 5 showing the results of

deposition at temperatures 6 and 25 K, we obtain
0O(CO,/Ar)=0.8+0.2. (3

Within the limits of the error indicated above, the value(bf
is practically independent of the deposition temperature.

4. INTENSITY OF SUPERSTRUCTURE LINES AND
THE ORIENTATIONAL ORDER PARAMETER

tionally called the order parameter at sites occupied by mol-
ecules.

For the measure of the orientational order parameter, we
chose the intensity of the superstructural reflection 210
whose relative values are presented in Fig. 6 for a number of
compositions. It will be shown below that, to a good degree
of precision, the intensity of this superstructural reflection
can be assumed to be proportional to the square of the ori-
entational order parametér; o Xa,) = 7°(X ;). The values of
the intensity presented in Fig. 3 were obtained for various
samples with different thicknesses and other parameters.
Hence we used a modified reduction procefldce reflec-

A problem of fundamental importance considered in thistion intensities which is substantiated in Appendix 1.
work concerns the behavior of the orientational order param-  The evaluation of the orientational order parameter in
eter» in the investigated solid solutions Ar—GOThe struc-  Ar—CO, alloys requires an analysis of the line intensities.
tural analysis and, in particular, electron diffraction studiesFor pure orientationally ordered crystals, the generally ac-
are among the very few techniques available for obtaining @epted method for estimating the absolute value of the ori-
direct quantitative information about the valueqpfFor this  entational order parameter is to calculate the intensities and
purpose, we use the lines that are present in the spectrum fogflection widths by using the effective lengths of molecules
the Pa3 lattice and do not appear for the fcc structure. whose shortening is associated with zero-point or thermal
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1.00 tions that are common for fcc arféla3 structures. The last
) term also contributes to the regular reflections, but com-
— pletely determines the intensity of superstructural ampli-
S 075
= tudes.
—~ The amplitude-¢ can also be presented in the form
x 050
=t . .
0.25 . + Fa= 2 e Refxufart (1-xXa) (fet2f0)
o U : : : +(1-xa)2fo(1—cogq-gex])}, ®
0 10 20 30 40

whose only advantage is that the term which vanishes as the
length of the molecule formally tends to zero is clearly
FIG. 6. Relative orientational order parametgiangles as a function of ~ Singled out. This is convenient for determining the relation
argon concentration in solid GOSquares indicate the relative values of the between the intensity of the superstructural line and the ori-
intensity of the superstructure reflection 210 in solid Ar—Q@ixtures, and entational order paramete;rdefined by Eq(4). It is implied

the solid line corresponds to the theoretical calculation in the molecular fieltj[h t th . . ied ¢ d ite I Vi
approximation reflecting only the substitution by argon which leads to a a . € averaging Is C‘?‘me ou ove_r _ynar(t rma Y"
suppressio of the 210 line in proportion to the argon concentration. brationg as well as static factor@tomic displacements in a
solid solution.

Let us consider a superstructural line. The amplitude of
librations” Such an approach is applicable for cases insuch reflections is determined only by the last term under the
which the librational movement is not too intense. ThisSummation sign in Eq(8):
method cannot be used for solutions, especially those with an _
appreciable spherical impurity concentration. FSUPPe2f o(1—Xa) > €9 Re(1—cogq- gex]). ©)

We shall consider alloys that are rich in the M- ¢
component and whose lattice structure hasRla8 symme-  For simplicity, we shall assume that static displacements
try. For reasons that will be explained below, we shall dis-concern only rotational degrees of freedom of molecules,
cuss in detail the lines 200 and 210, the former existing in.e., the directions of moleculeg, vary from site to site,
the sets of both fcc anBa3 structures, while the latter is a while the positions of the centers of gravR of molecules
superstructural line and is therefore used as a measure of themain unchanged. In this case, averaging-gfover dy-
orientational order. namic and static disorder will affect only the cosine. Present-

The intensity of electron scatteringas a function of the ing vectorq for the reflection 210 in the formg=qn, where
transferred momenturg can be represented in the generalq= 25 andn=(1/1/5)(2,1,0), we can expand the expres-

Xap mol. %

case in the form sion in the parentheses into a series in spherical harmdnics
N 2 2
1= 2 2 foy(@) expig-Rs,| =| 2 Fu(a) expig-Ry - 1-codq-gex] =82, ji2mxa)[Yi(n)-Yi(go)]- (10)
s= y S =

©) Herej,(y) are spherical Bessel functions, the summation is
Heres stands for summation over unit cells, apdor sum-  carried out over eveh, and

mation over scattering centers within a unit céy,=R;
+R, where whereR,, is the radius vector of the scattering
centery within a unit cell.

Averaging, as usudf over the positions of the Ar im-
purity atoms, we obtain the following expression for the
mean structural amplitude:

|
[Yi(M)-Yi(ge)]= 20 Yifn(n) Vim(Ge), (1)

where Y, are spherical functions in standard
normalization® It follows from Eq. (10) that the expansion
over spherical harmonics begins froh=2. Subsequent
terms withl =4,6, . . . arecorrections that cannot be reduced
to #. It can be shown easily that after averaging, the term
5 with | =2 must give the exact value of the orientational order
+(1-xa)“fo(q) codq- QCX]}- (7 parameter:
Heref,(q) is the scattering factor for thieh atom(for con- varrau
venience, we shall not indicate explicitly the dependence of Yim(Ge) = 7Yim(Geo) (12
the scattering factors om). Summation overc indicates whereg.y are unit vectors along the corresponding diagonals
summation over positions which can be occupied by carbowf the cube in thé?a3 structure. Equatiofil2) was derived
atoms, while the summation over oxygen atoms for eachunder the following assumptions. First, it is assumed that
positionc can be presented explicitly by using the following statically disoriented molecules have a symmetric distribu-
notation: g, is the unit vector along a COmolecule in the tion relative to the correspondirgy, so that we can confine
position ¢,x=d/(ay3)=0.0120 for CQ at low tempera- the analysis to just one order parameteand disregard the
tures,d being half the length of the molecule aadhe lattice  anisotropy of the order parametér=(Y,—Y,). Second,
parameter. The first two terms contribute only to the reflecthe averaging is carried out by disregarding significant static

Fs= z "9 RefXarf ar(Q) + (1 —Xar) Fc(Q)
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275 where the summation is carried out over the lattice sites
with the radius vectoR;, B is the compressibility modulus,
F=—=V®,y; ®io=0i0— ¢oo; ®io and ¢q are the potentials

of “guest—host” and “host—host” interactions, respectively,
i.e., F is the impurity-induced additional force acting on the
nearest regular neighbor. In the nearest neighbor approxima-
tion, this expression assumes the form

_4RGF(Ry)
V=g

27.0

Molar volume, cm3 / mol.

(14)

0 10 20 30 . . . .
X, » Mo, % whereR; is the distance to the nearest neighbor in the new

equilibrium position.
FIG. 7. Molar volume of Ar—C@ solid solutions as a function of argon Using an analogous formula, we can also take into con-
concentration. The deposition temperatdig=25 K; measurements were sjderation the second factoranishing of the b|nd|ng energy

made at 25 K. The solid curve was obtained from the semiquantitativedue to anisotropic forcesln this case, we should use for the
theory taking into account only paired clusters of Ar impurity, while the ’

dashed curve corresponds to the theory for an analogous model taking in@dditi_Onal force in Eq(13)_ th_e expressiora}U_amS/aR,_Where
account triple clusters als@ee Sec. % U.nis iS the part of the binding energy which vanishes as a

result of substitution by argon. Finally, we obtain the follow-
ing expression for this part of the dilatational volume:

displacements of centers of gravity of both A and M par- 4
ticles. These displacements can alter the line intensity. How- Av= EE viU;. (15
ever, since we shall adopt in the following a specific proce- !

dure for reducing the intensity of superlines against regulagereij |abels thredquadrupole, valence, and dispersioon-
ones(of the 200 typg, it can be stated confidently that this triputions to the energy of anisotropic interaction of £O
additional intensity variation does not occur in the reducedmolecules,yi andU; are the corresponding Graisen con-
variables. stants and the anisotropic interaction energy components re-
Let us evaluate the role of high-ordeirX2) spherical  gpectively. The values for the latter parameters are borrowed
harmonics in Eq.(10) for the reflection 210 as compared f\om Ref. 22. For CQ, the value of the modulus i8
with the term withl=2. We shall first consider an ideal —7g.6kbar.
crystal forT=0 and»=1. In this casen=(1/1/5)(2,1,0); Using the numerical datésome of which are presented
x=0.120(we shall take the valueq=0.269 for pure carbon iy Appendix 3, we obtain for the parameters of all three
dioxide). Numerical estimates show that the ratio of the eX-isotropic interaction potentials (GOCO,, CO,—Ar and
pressions under the summation sign1®) with [=4 andl  Ar—Ar) a theoretical estimate for the excess volume per ar-
=2 is about 0.055. Disregarding this correction, we findgon impurity in CQ: Av/v=0.34, which is in quite good
from (1) that 1,0 is proportional to the square of the orien- agreement with the magnitude and sign of the experimentally
tational order parametery; < 7. obtained value 0.28see Eq.(2)]. Thus, it turns out that for
weak dilutions with the argon impurity, the vanishing of the
anisotropic part of the binding energy of two €@olecules
5. DISCUSSION OF RESULTS is a more significant factor. Hence the introduction of

Let us consider in detail the dependence of the molarc,m_aller but more weakly inter.actin.g argon part.icles into
volume of Ar—CQ solid solutions for low Ar concentrations solid CO, ultimately causes a dilatation of the lattice rather

(see Fig. 7. For solid carbon dioxide diluted weakly with than its compression.

argon, two opposing processes are operative. On the on(ia A.S f[he con(‘:[erz]ntrstlo'n offAt\;m the SOIU“?” |ncreasgs,|tr:ed
hand, the dissolution of smaller argon particléthe escription on the Dbasis of the excess volume per 1solate

Lennard—Jones parameter for CO, is about 17% larger impurity becomes less and less appropriate. The behavior of

I 1 0,
than for argon, which amounts to about 62% in terms o he molar volume for appreciable concentrations> (%)

volume must lead to a compression of the crystal. On thec@n be explained by using the cluster approach which can be

other hand, it must be taken into consideration that if g CO appligd for corjcentr_ations up to 30% if we take tr.iple clus_—
molecule at any site is replaced by an argon atom, 12-CO ters into con§|der§tlon. If we confine the analysis to pair
CGO, bonds are replaced by an equal number of much weakeqJUSterS for glmpI|C|ty, the average molar volurifecan be
CO,—Ar bonds. This causes a weakening of the attractior{epresented in the form

due to the anisotropic part of the interaction, and eventually  v=v,,+xAv+ XpAv,. (16)
leads to a swelling of the crystal. The change in the

volume caused by the introduction of a substitutional impu-HereVy is the molar volume of a pure crystal M, andAV;

rity in the cubic lattice can be presented in the &t are the molar concentration and excess volume of single and
pair clusters respectively, and,,=Xs+ 2%, by definition.
1 Each isolatedsing| impurity has a |
Ap= 3_BEf RF(Ry), (13) ach isolatedsingle argon impurity has an excess volume

associated with it, which is proportional to the numBZeof
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nearest neighbors and to the corresponding additiorea-  orientational order would “survive” until quite large con-
tive for the system considered by)usrce: AV,=Z¢ (see centrations of argof80—85% are attained since cubic sym-
below). If two Ar atoms form a pair cluster, it can be easily metry, unlike hexagonal symmetry, is not a factor in itself
shown that the number of GOGCG, bonds vanishing from that would obstruct the existence of a long-range orienta-
the pure crystal is 2—4 and not Z. For simplicity, we tional order. This hypothesis is confirmed by the NMR &4ta
disregard the difference between the isotropic parts of thebtained in Ar-rich N—Ar solutions in the range of Ncon-
M—M and M-A interactions. This giveav,=(2Z—4)e¢. centrations close to the percolation threshold where these
Transforming(16), we obtain solid solutions have a fcc structure.

_ 5 In conclusion, the authors are pleased to express their
V=Vt (x=2x9)Avs. 17) gratitude to A. I. Eenburg for providing an opportunity to go
Figure 7 shows the dependence of the molar voluméhrough some of his unpublished results, and for a discussion

recalculated by using the data of Fig. 4 fo5=25 K. The  of several problems associated with the topics considered in
solid curve corresponds to formuld6) with a theoretical ~this work. Thanks are also due to V. G. Manzhelii and N. V.

value Av(Ar/CO,) (see above Consideration of triple Krainyukova for discussion of the results and for valuable
clusters lowers the peak and displaces it to the (@dished comments.
curve in Fig. 7.
The excess volume for the G@mpurity in solid argon
was calculgted by taking into gccount_the reno_rmalization OPPENDIX 1: REDUCTION OF SUPERSTRUCTURE
the isotropic part of the Ar—CQinteraction to a finite length rerECTION INTENSITIES
of the molecule(see Appendix 2and on the basis of the
potentials proposed by Mirsi&f. The excess volume is esti- The problem of determining the absolute values of the
mated theoretically at\v/v=2.78, which differs signifi- orientational order parameter is quite complex even in pure
cantly from the experimentally obtained val(®. The the- molecular crystals. In solutions, this problem is considerably
oretical result indicates that if dilatation is taken into complicated in view of the fact that the impurities are re-
consideration, the COmolecule occupies a four-times larger sponsible for the emergence of several factors which strongly
volume than a regular argon atom. Consequently, the defoinfluence the intensity and shape of reflections. Hence the
mations around the CQOimpurity are so large that it may procedure of reduction of reflection intensities becomes quite
occupy two different equilibrium positions in the Ar lattice. complicated. The idea behind the procedure laid down in the
The value of the excess volume obtained3h may be due present work is based on the method described earlier by
to a poor solubility of CQ in solid argon. Sandor and Farrow, but modified by taking into account the
All things considered, the indicated value of quasistaticresults obtained by us, including those described in Appen-
displacements and the estimate of the corresponding barrigiix 4. We shall carry out the reduction by using the reflec-
heights indicate that the GOnolecule in argon cannot per- tions 200 and 210. The line 200 is used because it is quite
form hindered tunnel rotatioflike a nitrogen molecule in intense and remains clearly distinguishable even for high
any rare gas crystalThe rotational transitions of the mol- mutual concentrations.
ecule must occur between librational levels in the appropri-  The experimental value of the intensity of thé&l line
ate orientational potential well. In turn, this determines thefor a given sample with argon concentratoftwe ignore the
considerable difference of the glass state of this binary syssubscript Ar for the sake of simplificatipcan be presented
tem in the region of indirect interaction between moleculegn the form
from solutions with diatomic molecular impurities.
Let us return to our discussion of the phase whose lattice |§]%P)(X)= BX)! E&)'(X)’ (ALD
parameters are shown in Fig. 2 in the form of light circles.where the quantit(x), which takes into account all param-
If we accept the theoretical estimate for the excess volumeters of the experimerfscattering volume, primary beam
per CQ molecule, we find that the concentration of the com-intensity, etg), is the same for all reflections of the given
ponent M is~2.5-4%. It should also be noted that the sample. Using8), we can represent the intensity of the regu-
large _IlneW|_dth_ of what was indexed as the 111 refle_ct_lon oflar reflectionl %4(x) approximately in the fornB(x) F24X).
Ar (Fig. 3) indicates that the crystallites of the precipitated On the other hand, the intensity of the superstructural reflec-
Ar-based phase are very small. ~ tion 210 from a sample with concentratigrcan be given in
The behay|or of .the orientational order paramefem  the form 155P(x)=B(x)1%x)=B(x)CF(7), where we
CO,-rich solutions differs from that of Nbased solutions. have made use of the conclusion that the scattering intensity

The order parametey in Ar—CO, solutions varies smoothly  for the reflection 210 is proportional tg%(x) with a certain
with the Ar concentration. The dependenggx,,) does not  proportionality factorC.

tend to zero for moderate Ar dilutions unlike those in the e introduce a physically significant relation

case of nitrogeR® With increasing Ar concentratiofabove

55%), the CQ impurity begins to precipitate, apparently in 1529 (x)

the form of a low-dispersive fraction whose crystallites can- X)= m (AL1.2)
not form individually detectable coherent reflections in the 200

course of the experiment. In the absence of such a shamghich does not involve the factd(x) which is difficult to
variation in the morphology, it could be expected that thedetermine. From{A1.2) we obtain
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R(x) 15940) F(7(x)) in the atom—atom approximation. In this caBg, will have

=0 , (AL3)  the form(relative to the axis passing through the atom A and
R(0)  150dx) F(7(0))

the center of the molecule
whence
_ Epa= E.(R,). A2.1)

7(x) [ R(X)| Y2 20dX) wa= 5 Eu(Ra (

= : (A1.4)
7(0)  {R(0)/ Faz0d0) Here the summation is carried out over the atansf the

molecule, andr,= R+, is the radius-vector of separation
L%etween the atom A and the ata@wof the molecule K, is the
variations of the intensities of all lines, the reduction proce_radlus—vector of the atora relative to the center of the mol-

dure presented here essentially excludes the effect of thi CUIet' Itis afsizjmed Ithatlthg Tr:eractlon of thgthatom. AIWtItTj
important factor on the estimate for the orientational ordefN® atoma of the mo ecule Is the same as with an isolate
parameter. The structure amplituéigyy averaged over the atoma(_the energyE, of this Interaction depends only on the
impurity positions and appearing in the above expression iéeparatlotnF;a). l:] ce;n be easily shown than2.1) can be
calculated with the help of Eq8) in which we putg.=g.. represented in the form

whereF,,, are the corresponding structural amplitudes.
Since the random static displacements lead to analogo

EMA=% F(NO)Yyo( @), (A2.2)

APPENDIX 2: ACCOUNT OF FINITE LENGTH _
OF MOLECULES where the indexN runs through even values 0,2 . for a

symmetric moleculeY \o(w) is a spherical function, anad

The anisotropic part of the interaction between tgen-  is a unit vector along the molecular axis. The coefficients

erally differeny molecules or a molecule and an atom can beF(NO) have the form
presented as the sum of three components, viz., the multipole
electrostatic m'Feractl_on and two components assoqated with F(NO)= 2 ARy Fn(£a), (A2.3)
valence and dispersion forces. The form of the direct elec- a
trostatic interaction is obvious. The valence- based aniso-

tropic component is usually estimated by using the atom—Wherega:ra/RO’ andA,(Ro) Is the constant of interaction

atom approach, while the dispersive anisotropic componelﬁ?ergy between the atom under consideration and atom

is “constructed” either by using the concept of anisotropy of .f,,m?lticull\i'h-rhf tfuncltlgrﬁN(ra/_Ro) IS th% total ||Inten—
polarizability of a molecule, or by using the atom—atom ap-SI y-orthe rotational harmonic summed over all powers

proach again. We shall use a unified atom—atom approximao-f ratio &, . : . . .
For valence interaction, a convenient and fruitful ap-

tion for valence as well as dispersive parts of anisotropic . i < the L d—J tatib
interactions. The analytic representation of these interaction@rm_('lrg aion 15 fhe Lennard-Jones representa (R)
is fraught with the problem concerning the choice of the“R . Experience shows that it is convenient to confine the

potential. Usually, one confines the expansioré in2d/R, expan5|otnt|r:1 spher!]cjal fulnct|0n? :ﬁ termhs WM*IPB“ Lﬁ Lijs f
to the first nontrivial term (& is the “length” of the mol- represent the specilic values ot the spherical amplitudes o

ecule andR, the separation between the interacting par_![nteractmnls oflan atodm c;f_atrar_e gasbR V(Vj't h %dlamlo tic Im-
ticles). Each term in such an expansion ‘“carries " a corre- rogen molecule pland a triatomic carbon dioxide molecule

sponding spherical function of angles defining the orientationcoz' Introducing the notation

of the molecule. This function is just the potential acting on 2¢
the angular variables of the molecule. To a certain extent,. 5= ,
such a procedure can be assumed to be justified for short 1+¢2
(diatomig molecules, although good nume_rica_ll estima_tes forWe obtain for N
such molecules can be obtained by considering the first few
terms in the expansion ié in the coefficients of the corre- (5+107%+ 1%
sponding spherical harmonics. Even for triatomic linear mol- F(00) :4771/2AW'
ecules, such a procedure becomes quite cumbersome and ir- g
respective of the number of terms of the expansion used in
the analysis, there is no guarantee that the principal part has F(20)=8(x/5) :
been taken into consideration. 1-7%)°
Hence we propose an alternative approach for construct-
. . . . . 1/2 4
ing the anisotropic part of the mteractlé'ﬁBy way of an (40)= 1927 A 7 (A2.7)
example whose results have been used actively in the main 5 (1- ,72)5' '
text, we consider the part of anisotropic interaction between
a molecule and an atom which is associated with valenc&l€re,
forces.
Thus, the repulsive part of the interaction enekgy, of - Anr .
a linear symmetric molecule M with an atom A is estimated (1+ £2)R1?

(A2.4)

(A2.5)

2 7+ 2
wp T (A2.6)

(A2.8)
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whereAyr is the constant for the valence part of the Van der
Waals potential of interaction between a nitrogen atom N = Vs =Cap €Xp(— apaR) — — (A3.2)
and a rare gas atom R. Note that the only coefficlef@0) R
2

tends to ;’:1 nonzero valléc_-:'nri ANRﬁf?IS.?](OF_ §)2teznds todzero. where R is in Angstians, Ba,=7.88<10° KXAS Cpa
g:nce the corresponding coefficient (#®2.2) tends to =3.93x 107 K; and ap,=3.305 A L.

NR-

It can be seen fronA2.5)—(A2.7) that forR=d (i.e., for
&= n=1), all coefficients of expansion in harmonics have a
divergence which is quite obvious from physical consider-

BAA

The potential of interaction of an Ar atom with a GO
molecule, i.e., théAM potentia) consists of an isotropic and
an anisotropic part:

ations for a Lennard—Jones type hard-core potential. This VAM:VXSI;/?)"'V(AaI\IA“Q- (A3.3)
moment cannot be revealed for any arbitrarily large and fi-
nite number of terms of expansion i It can be expectéd that the main contribution to the excess

Similarly, we can write the coefficienE(00) for the  mixing volume for low concentrations of G@&omes from

interaction between a rare gas atom R and a carbon dioxid&e first term. Hence it must be evaluated with the highest

molecule in the form degree of precision, taking into account the nonzero length
y 4 of the molecule(see Appendix 2 For a “long” molecule
(5+107°+77) Zwl,zA_OR (A2.9) like CO, such a renormalization turns out to be quite signifi-
' cant.

5(1_ 772)5 R12 ! .
) ) ) ) Using the atom—atom approach for valence- as well as
whereAis defined by formuldA2.8) with the obvious sub-  ispersive contribution to the anisotropic part of the interac-
stitution Acg for Ayg, andAor is the constant of valence on e can presense

interaction between an oxygen atom and a rare gas atom R. A in the final form
The remaining coefficients(NO) coincide with the cor- Vo =V + Vi) (A3.4)
responding expressiori$2.5) and(A2.6) in which the sub-
stitution Ayg— Acg is made. The expansion f¢F(00) for ~ Using (A2.11), we can write
the exponential form of representation for the valence inter-

F(00)=4m""A

2
action(in a diatomic moleculehas the form Vi — Bac 2Bao 1+¢ (A35)
Isp 6 6 4’ )
. R R 1-
F(001—4 1A exp(—p) N sinhpé h (=9
(00)=4m 2 p) g Pcos 29F whereR is the separation between the center of a, @®@I-

(A2.10) ecule and an Ar atom.

_ . : . The form of the valence contribution depends on the
wherep=aR, a being the spatial parameter of the potential. .\ ico of the initial potential. For the forR~ 2 we obtain
The potential can be easily generalized for a symmetric tr"(see(AZ 9)
atomic molecule, as for the representation'? (see(A2.8)). '

Let us also consider all terms of the expansion for the 2,0 (5+ 1072+ 7%)
. . . L . . (iso) __ A0 /)
anisotropic part of the dispersion interaction. In this case we V,, =
use functions of the typB(R) = — B/R® instead of the func-
tions AxR™ 12 As a result, we obtain for the lowest har-

monic amplitudg(for the diatomic molecule N

R 12 5(1-79)° E (A3.6)

whereA,qo andA,c are the constants of valence interaction
between the corresponding atoms. If the valence contribution

LoBar 1 &2 is exponential in form, we obtain
F(0,0=—47?—= . (A2.11) .
R® (1-¢) VIS9=C, . exp — Rapc)
APPENDIX 3: INTERACTION POTENTIALS 2Cp0€ " sinhp¢
+ 2 (1+p) —p coshpé|,
p

The theoretical estimates obtained in this work are based
on the following potentials. (A3.7)

The potential of interaction between two argon atoms, O hereCar and C.n are the constants of the correspondin
the AA potentia) has the Lennard—Jones form: AC AO P 9

atom—atom valence potentials=Ra g, apc and ag be-
Asn Baa ing the spatial parameters of these potentials.
ZE—E, (A3.1) The second term inA3.3) determines, among other
things, the energy levels of an isolated impurldy in the
whereAsa=4s0'% Bap=4c0%; ¢ ando are the Lennard— matrix AS i.e., the thermodynamics of the impurity sub-
Jones potential parameters defined in the standard mannasystem as well.
PresentingR in the above equation in A and choosing the The potential of interaction between g@olecules, i.e.,
values ofo ande as recommended by Bark&rwe obtain  the MM potential| was chosen in the form proposed by
Apa=1.164<10° KXA% Bypa=7.47x10° KxAS. Kohin?® (see Ref 1 for details The isotropic part also in-
We shall also use the potential proposed by Mirsky, cludes a contribution that is of valence origin and is averaged
especially the AA potential over rotations of both moleculé8.The anisotropic part of

AA
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Low-temperature field reconstruction of atomic nanoclusters at tungsten surface
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Low-temperature field reconstruction of atomic clusters at a closely packed face of a metal is
observed for the first time by the method of field ion microscopy. It is found that compact
clusters disintegrate into non-closely packed zigzag atomic chainsl998 American Institute

of Physics[S1063-777X98)01309-7

Most of clean metal surfaces have an atomic structureliffraction? However, there is virtually no information con-
corresponding to an ideal cross section of a three-dimenzerning these phenomena in surface atomic nanoclusters.
sional lattice. The structure of such atomically clean surfaces In this communication, we report on the observation of
does not differ from structures lower-lying atomic planes.low-temperature field reconstruction of compact atomic
However, some metals at elevated temperatures undergonanoclusters at th€l10 face of tungsten by using the field
rearrangement of the first surface layer as a rule, which wa®n spectroscopy. The experiments were made in a two-
called surface reconstructidi. Reconstructed surfaces are chamber field ion microscope on samples cooled by liquid
characterized by a modified lattice symmetry or the size of aitrogen. The sample temperature was monitored from the
unit cell (as compared to an ideal latticén strong electric data on the temperature dependences of the threshold
fields inducing the dipole—dipole interaction of atoms, a spestrength of evaporating field and the resolution of the
cial type of surface reconstruction associated with a virtuallymicroscop€. In electric field measurements, the reference
activationless displacement of atoms from the steps opoint was the threshold strength of the evaporating field for
closely packed faces to field-stabilized metastable positionsingsten taking into account anisotropy of field evaporaftion.
is observed:* Combined thermal and field influence can leadThe residual gas pressure in the working chamber was
to the disintegration of compact atomic clusters at closelyl0 8-10 ° Pa, and the pressure of the imaging aaslium)
packed faces of metalsDetailed information on the recon- was 10 3-10 2Pa. Needle-shaped samples oriented along
struction of configurations of atomic complexes in strongthe crystallographic directionl10] were prepared by elec-
electric fields is required, for example, to ensure reliable introchemical etching from grained tungsten wire with a purity
terpretation of images of scanning tunnel microscopes anf9.98%. After mounting in the microscope, the samples
the reproducibility of maintenance parameters of nanotechwere subjected to field evaporation in an electric field of
nological devices developed on their basisSurface relax-  strength (5.7—6.5%10° V/cm until a perfect atomically
ation and reconstruction of the surface of macroscopic obsmooth surface was formed. The radii of curvature of
jects were studied in detail by the methods of slow electrorsamples at the tip after the formation varied from 4.5 to

FIG. 1. Field ion microscopic images of a compact nanoclug&eand non-closely packed atomic groufiisand ¢ formed during low-temperature field
evaporation of thg110 face of tungsten.

1063-777X/98/24(9)/2/$15.00 679 © 1998 American Institute of Physics
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directions to within the errors of measurements. In the course
of evaporation of the chains, the angle between adjacent at-
oms increases continuously, attaining the value of (60
*+5)°. Instrong electric fields, atoms can go over to a meta-
stable position corresponding to the arrangement of the
lower-lying layer{100 above the triple of atomsThe re-
corded continuous change in the angles between adjacent
atomic dumb-bells on ion-microscopic images cannot reflect
the actual distribution of metastable positions of atoms on a
closely packed face. An analysis of 100 microphotographs of
b atomic chains revealed that such a change in angles on ion-
microscopic images is associated with nonuniformity of local
magnification above a non-axisymmetric cluster. As the
length of the chains decreases, the principal radii of curva-
- ture of the perturbed region on the effective electron surface
(110) [100}7 (110] - level out, the anisotropy of magnification of the microscope
FIG. 2. Schematic diagram of arrangement of tungsten atoms ofitge ~ @bOVe the non-axisymmetric cluster decredsmsd the angle
face in closely packeé) and non-closely packe(b) zigzag chains. between pairs of atoms on the images increases, approaching
the actual angle between the links in the chains. Figure 2
shows the schematic diagram of the arrangement of atoms in
50 nm. Evaporation was carried out at 78 K by applying athe (110 face in the nearest lattice sité® and in the non-
positive voltage of 1-25kV. closely packed zigzag chain formed during low-temperature
Circular atomic nanocomplex€Big. 19 were formed in  field reconstructionb). While constructing the diagram in
the course of controlled low-temperature field evaporation ofig. 2b, we assumed that surface atoms are in metastable
the upper atomic laye(d10. The configuration of the com- surface states stabilized by the electric field. The driving
plex approximately corresponded to the circular trace left byforce in the observed disintegration of nanoclusters is appar-
the intersection of the crystallographit10) plane with the ently dipole—dipole repulsidnof atoms in a nanocluster,
hemisphere enveloping the surface. For needle-shapeshich is induced by strong electric fields.
samples with radii of curvature exceeding 12—15nm, circu- Thus, we discovered a special type of low-temperature
lar configuration was preserved during field evaporation ofield reconstruction, viz., disintegration of atomic nanoclus-
complexes. For smaller radii of curvature, field evaporatiorters at a closely packed face.
from the steps of the uppdi10 layer led to a jumpwise In conclusion, the author expresses her deep gratitude to
disintegration of a cluster and to the formation of non-closelyA. S. Bakd and I. M. Mikhalovskii for fruitful discussions.
packed atomic groups with various configuratiqfggs. 1b
and 9. Evaporation of samples with the radii of curvature at
the Ve.rtex Sma"er thar? /-8 nm Was.a(.:compamed by thelM. A. Vasil'ev, Structure and Dynamics of the Surface of Transition
formation of zigzag chaintsee Fig. 1gsimilar to those ob-  petals[in Russiad, Naukova Dumka, Kiey1988.
served earlier for thermal and field treatment of microscopic2A. G. Naumovets, Fiz. Nizk. Temi20, 1091 (1994 [Low Temp. Phys.
crystals® An analysis of the change in the configuration of ,20, 857(1994)]. _ , , _
atomic chains in the course of low-temperature evaporation E;JZY' gourgzgﬁ;dNTéJ'strz{‘ggg'd lon Microscopy American Elsevier
proved that links of the chains are formed by pairs of atoms« | suvorov, Structure and Properties of Surface Layers of Mefats
separated by distances exceeding the atomic dianafer  Russiad, Energoatomizdat, Mosco(1989.
[111]. The accuracy of direct measurements of the anglesZS- Nishigaki and S. Nakamura, Jpn. J. Appl. PH&.769 (1975.

. . . . . . °V. A. Ksenofontov, |. M. Mikhailovskij, V. M. Shulaeet al, in Physics,
between adjacent links of the chains is comparatively low in Chemistry, and Application of Nanostructurésd. by V. E. Borisenko

view of partial overlapping of atomic images, and the error et a), Belarusian State University of Informatics and Radioelectronics,
amounts to 10—15°. The error of calculations of angles tak- Minsk, 244(1995.
ing into account the width and length of zigzag chains and S. N. Magonov and M.-H.'Whangb(Surface Analysis with STM and
the number of atoms in them is smaller by a factor of 3—4. 5/ " SPringer-verlag, Berli1996.

X i y . '8|,. M. Mikhailovskii, V. A. Ksenofontov, and T. I. Mazilova, Pis'ma Zh.
According to calculations, the angles between pairs of atoms gksp. Teor. Fiz65, 521 (1997 [JETP Lett.65, 537 (1997)].
in ion-microscopic images change upon a decrease in thél. M. Mikhailovskii and V. S. Gesherik, Radiotekhnika i Elektronikas,

chain length during evaporation. The links of chains consist- 1490(1974.
ing of 9—10 atoms are oriented along t{El3] and[113] Translated by R. S. Wadhwa
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Renormalization of acoustic phonon spectrum and space distribution of the induced
charge in a double-layer quantum Hall system

D. V. Fil
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The frequency renormalization of acoustic phonons interacting with a double-layer composite
fermion system is calculated. The space distribution of the density of the charge induced

by an external electrostatic potential in a double-layer composite fermion system is determined.
It is shown that for a filling factor for which states with the interlayer statistical interaction

and without it can be realized, the emergence of such an interaction causes a jump in the phase
velocity of a finite-frequency acoustic phonon and changes the space distribution of the

charge induced by the external potential. These effects can be used for observing a transition in
a double-layer electron system under the conditions of the fractional quantum Hall effect

to a new ground state upon a decrease in the separation between the laydi$98 @merican
Institute of Physicg.S1063-777X98)01409-1

A double-layer electron system in a strong magnetic 2N
field is characterized by a hierarchy of noncompressible VZZVFW:
states with fractional filling factors, which differs from a
monolayer hierarchy. The possibility of such states was prewhere v; is the filling factor per layer andN the integer
dicted by Halperihwho proposed a new class of wave func- corresponding to the number of filled Landau levels in the
tions with are a generalization of the Laughlin functidn  effective fieldB.s=B[1—¥(¢+5)/2]. The upperlowen sign
multicomponent systems. New states were detected expeiin Eg. (1) and below corresponds to the paralBls>0 (an-
mentally by Sueret al2 and Eisensteiet al* who observed tiparallel, B.4<0) direction of effective field relative to the
the fractional quantum Hall effect with a filling factar  external magnetic field.
=1/2. According to Egq.(1), different generalized Laughlin

Lopez and Fradkihproposed a model for description of states corresponding to different states of paramegers
the fractional quantum Hall effect in a double-layer systemandN in the composite Fermi approach can exist for certain
which is a generalization of the model of composite fermiondfixed filling factors. As the separatiath between the layers
developed earlier for monolayer systefn& The concept of decreases, a phase transition from state wittD (existing
composite fermions lies in that the ground state of the systerfor d>1gz, wherelg is the magnetic lengjhto a state with
described by the wave functibfcorresponds to the ground the statistical interaction between layess#0) can occur.
state of fermions interacting with the Chern—Simons gaugé-or example, forv=4/7, a transition from the state with
field. As a result of such an interaction, the external magnetie=4, s=0, N=2 to a state withp=2, s=1, N=2 can be
field is partially screened, and the fractional quantum Hallexpected.
effect for electrons appears as the integral Hall effect for The rearrangement of the ground state might be ob-
composite quasiparticles. In the case of a double-layer syserved experimentally while studying collective properties of
tem, a composite fermion can be regarded as a quasiparticlkedouble-layer system. Among other things, a change in the
carrying a statistical chargeach layer is characterized by its ground state can modify the spectrum of collective mades.
own type of chargg the flux of the gauge fieldp corre- In this communication, we analyze the interaction of acoustic
sponding to the statistical charge in the same layer, and thghonons with a double-layer system of composite fermions
flux of the gauge field corresponding to charges in the other as well as the screening of external electrostatic potential by
layer. In particular, fois=0 the interlayer statistical interac- such a system. The above-mentioned effects applicable to
tion is absent, and the ground state in each layer coincidamonolayer systems were considered by us in Refs. 10 and
with the ground state of the monolayer system. The Fermil. Here we prove that a transition of a double-layer system
statistics of composite quasiparticles imposes constraints cie a new ground state must be manifested in the change in
the magnitudes of the fluxes: the parametés even andis  the frequency of the phonon mode interacting with compos-

@

integral (even or oddl in the units of flux quanta. ite fermions and in a change in the space distribution of the
In the case of two equivalent layers, the filling factorscharge induced by an external potential.
corresponding to Hall plateaus are defined as Let us consider a double-layer system of completely po-
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larized composite fermions in an external magnetic field perwhere x=(qle1)%/2, | 4= (€lBes]) Y2 is the effective mag-
pendicular to the layers. The Hamiltonian of the system hasetic length, and.[' "(x) is the generalized Laguerre poly-

the form

2
H=2, d&r¥(r) i[—iV+9Aeff(r)—ai(f)]z‘l’i(r)
=31 2m

1 2
+§”2:1 f erJ d2r’ sni(n)Vi([r—r’|)én;(r'),
2

whereV is the fermion fieldm the quasiparticle mas#\
the vector potential of the fielB,

2
V(0= (850 (1= ) (24 6) 2] @

the Coulomb potentials the dielectric permittivity,

2
an=3, [ dres +si1-5,)
=1

5 LoZX(r=r’")
O e

(4)

the sum of vector potentials of gauge field fluctuatianthe
unit vector along the fiel®, on;(r)=V"(r) ¥;(r)—ng; Ny

being the average concentration of electrons in the layer.

The polarization tensor of syste2) in the random-
phase approximation is defined as

K~1(q,0)=[K©(q,0)] - V(q), (5)

whereK(©)(q, ») is the polarization tensor in the zeroth ap-

proximation andV(q) the interaction matrix. In Eq(5), the

nomial. Expressions similar ) and (9) were obtained for
the first time for anyon system(see, for example, Ref. 12
The interaction matrix has the form

_ ( Vll V12> (10)
Vo1 Vo'
where
27 (€% —ip
Vll:VZZZF P o |’ (1)
27 (€% Lexp—qd) —is
V12:V21:F is 0 |- (12

The solution of Eq(5) for polarization density—density
functions gives

K1100= K2200= 7 (Kin+Kow), (13
K 1200= K2100= 7 (Kin— Kow, (14
where
1 %%
in(out — (15

27w, A in(out) ,

Ain(out): (Q"in(out)2 1+ 1)2_ @%(out)zo( N+ 22) - Vin(out)EO(-l6

In the last equatior{16), we havegj,=¢+S, Qo= ¢

=S, Vin:(equswc)[1+exp(_qd)]v Vout:(equswc)[l

quantitiesK, K, andV are 4<x4 matrices whose each —exp(—qd)].

component has two indices corresponding to the numbers of

Let us consider the renormalization of the spectrum for

the layers, the other two indices corresponding to the zerothcoustic phonons interacting with a double-layer system of

and transverse current components. The matff has the
block-diagonal form

n
K{Ohi(d,0)= 85| DOX(G,0)+ 2 8*(1= "), (§)

14

whereD?)(q, o) is the Fourier component of the temporally
ordered current—current correlator in the zeroth approxim

tion:

Dy (r tir’ ') == i(T{ji,(r D (r' t)}o. (7
The calculation oK(® at T=0 gives
KO (q.w)=25 1 9%2o Fiqwc2g

wiif 4, @) = 0 2mw. \ Tiqw2g w5(22+N) '
(8

where w.=e|Bgg|/m=2mn,/mN is the effective cyclotron
frequency, and

N—1
Sc=e Y >

n=0 m=N

nt x™ " Ym-n)
m! (wlw)®—(m—n

)2 [La "0

dL™ "(x)]*

X (m—n—x)an’“(x)JrZXT , 9

composite fermions. Fayl B, Green’s function for phonons
satisfies the following equation:

G Y49,0)=[GV(q,w)] - 0ig;Kij0(d, ), (17)

where G(%(q,w) is Green’s function for free phonons;
=g;=A0q(2pd|0y) " ?the matrix element of interaction be-

%ween phonons and composite fermioAsthe deformation

potential,p the density of the elastic mediurd, the thick-
ness of the layer in which the phonon mode propagatesd
wq=cq the nonrenormalized phonon frequency. According
to Egs.(13)—(17), the renormalization of the phonon phase
velocity for finite g has the form

Ac(q)  A’g°34(q,wq)
c 2'77'pdlCZ‘UcAin(qiwq) '

(18

The dependencéc(q)/c for v=4/7, 4/5 is shown in
Fig. 1 fors=0, 1. We used the parametarg=10'! cm 2,
m=0.25m,, £=12.6, c=4X10°cm/s, A=7.4¢eV, p
=5.3 g/ent, d=3lg andd,;=10° A. It can be seen from the
curves in Fig. 1 that statistical interaction emerging between
the layers changes qualitatively the dependence of the renor-

malization of the phase velocity of an acoustic phonomon
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FIG. 1. Dependence of the renormalization of the phase velocity of an \ /
acoustic phonon on the wave vector. The solid curves correspond to a sys- ~-0.41 v
tem with a statistical interaction between layess=(), while the dashed 1 1 1 1 | 1
curves correspond to a system without a statistical interaction between lay- 0 2 4 6
ers 5=0). -6
r, 10 ~ cm

FIG. 2. Spatial distribution of the induced charge in a double-layer system
For a giveng, the phase velocity jump observed during thefor v=4/7 (a) and 4/5(-b3,' The solid curves correspond &=1 and the
N
transition of the system to a new ground state can becom@&shed curves =0, p™is in units ofno.
comparable with the renormalization.

Let us now consider the screening of electrostatic poten-

tial in a double-layer system. To be more specific, we anathe charge induced in a double-layer system of composite
lyze the situation when a test charge of magnitude and  fermions are modified significantly upon a transition of the
with coinciding x and y coordinates is located near each system to a state with interlayer statistical interaction. The
layer. In the random-phase approximation, the Fourier comppservation of the effect considered above can be used as an
ponent of the density of the charge induced initthelayer is  indicator of the formation of a new electron state of a

defined by the equation double-layer Hall system upon a decrease in the separation
ep:"d(q)=eZKijoo(q,O)qoj(q), (19) between the layers.

where ¢;(q)=¢;(q)=—(2me/eq)[1+exp(—qd)] is the
Fourier component of the external electrostatic potential cre:

ated by test charges. Taking into account E@8)—(16), we E-mail: fil@isc.kharkov.ua o .
btai yh foll .g g. f indy .y . Eﬂ‘ )—~(16) YIn the case of a solitary double-layer system, the physical situation consid-
obtain the following expression fqs(q): ered above can correspond to the propagation of a surface acoustic wave.

VS 0 In this case, the parameteéyris the attenuation length for the surface wave.
ind in 0(q’ ) The renormalization of the spectrum of bulk phonons can be observed in a
pi (q)= - (20) . P phonon: ;
Ain(9,0) superlattice of double quantum wells. In this cadgjs the superlattice
parameter.

The inverse Fourier transform for formul20) gives the
space distribution of the induced charg®(r). The p"(r)
curves for the filling factors/=4/7 and 4/5 fors=0, 1 are
shown in Figs. 2a and 2b. In our calculations, we used the;B- II-BHLalperri]?;]H:LV- F’gy& ALct{Sé% ﬁéﬁ?fgéa
pgrameters of the electr'on system given gbove. The curves '55.' W. sﬁfgn, IL.’ w.yEshgeel,VM.eB. Santat al, Phys. Rev. Lett68, 1379
Fig. 2 are analogs to Friedel oscillations in a system of com- (1995,
posite fermions. It can be seen that the statistical interactiortJ. . Eisenstein, G. S. Boebinger, L. N. Pfeifral, Phys. Rev. Lett68,

between the layers changes significantly the space distribu-1383(1992.

tion of the charge SA. Lopez and E. Fradkin, Phys. Rev.®, 4347(1995.
’ L . 6J. K. Jain, Phys. Rev. Let63, 199 (1989.

Thus, the renormalization of the acoustic phonon fre-7a | gpez and E. Fradkin, Phys. Rev. 4, 5246(1992.

qguency for finite wave vectors and the space distribution of®B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev4B 7312(1993.
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Current-phase relation for a superconducting point contact with a tunneling barrier
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The microscopic theory of the dc Josephson effect for a short clean superconducting point
contact with a tunnel barrier is developed. The influence of the ordinary quasiparticle scattering
on the nondiagonal potentidl of the superconductor is studied. It is shown that such

processes may be significant in high-superconductors for the case of a barrier with high
transmittance. The current-phase relation for a point contact at arbitrary temperatures is calculated.
© 1998 American Institute of Physid$51063-777X98)01509-4

The microscopic theory of the current states of clean Beenakket derived formula (2) for the case of a
superconducting point contacts was first constructed by Kusuperconductor-normal metal-superconduct&NS junc-
lik and Omelyanchoul? They studied the model of a point tion, when the normal interlayer can be described by an ar-
contact in the form of a small orifice in an opaque screerbitrary disordered potential.
through which electrons can penetrate ballistically from one  The current through a weak link is carried by quasipar-
superconducting bank to the other. It was shown that théicles which are transported coherently from one supercon-

Josephson current of the point contact is defined as ducting bank to the other. For a cle&NSjunction, this was
demonstrated for the first time by Kulikvho studied the
- wA(T) sin((I)/Z)tanhA(T)Cogq)/z) quantum states of excitations with energ<A. It was
eRy 2kgT ' shown that Andreev reflection of quasiparticles N&
boundaries leads to the formation of coupled stééexireev

—7<d<r, (1) levels in the normal interlaye?,their spectrum depending

significantly on the phase differendeof order parameters at

where A is the band gap of the superconductdr,is the the contact banks. The superfluid current is transported
phase difference in the order parameter of the contactinghrough these Andreev levels, and the current states of the
superconductorsRy the point contact resistance in the nor- weak link are parametrized by the phase differedcét was
mal state,T the temperature ankk the Boltzmann constant. stated® that Andreev quantization and Josephson tunneling
Near the superconducting transition temperaliyeformula  in SNSjunctions are closely related concepts. Later, it was
(1) has a form reminiscent of the result obtained by Ambe-established remarkably that Josephson current through a tun-
gaokar and Baratofffor a tunnel junction {~ sin®), but  nel junction is also transported through coupled states local-
has a current dependence of the phase in the forPA)i@t  ized in the vicinity of the tunnel barrier. Furusaki and
T=0, the current suffering a discontinuity at the poidts  Tsukadd®!! showed that the passage of current through a
==x. tunnel junction leads to the formation of discrete levels in the

The results obtained in Refs. 1 and 2 were subsequentlyand gap E<A). The emergence of coupled states is ac-
generalized by Haberkoet al* and ZaitseVto the case of a companied by the processes of conversion of Cooper pairs
point contact containing a tunnel barrier of arbitrary trans-jnto quasiparticlegand vice versanear the insulating bar-

parency G<Do<1: rier, so that the current is transported through the barrier by
guasiparticles. Hence a comparison of formulisand (2)

~ @A(T) sin @ leads to the following conclusion. Andreev reflection of qua-

~ 2eRy \/mm siparticles is considered during calculation of the current

through weak links in both cases. However, normal scatter-

A(T) _ ing of quasiparticles at the barrier during their passage

xtan}{m V1-Do i (®/2), @ through the contact is also taken into consideration while

deriving formula(2). It was shown by Bagweéff that the

where Ry is the resistance of the point contad®y® introduction of an individual impurity into a weak link also
=e2k§S Do/(47%%), ke the Fermi wave vector an8 the  suppresses the Josephson current.
contact area. In this communication, we report on the influence of a

It can be seen that formulé) tends to the classical new mechanism of potential scattering of quasiparticles on
expression obtained in Ref. 3 f@y<1. Upon an increase the Josephson current through a clean point contact contain-
in Dy (as well as a decrease M, the current-phase relation ing a tunnel barriefFig. 1). This phenomenon is associated
deviates from the sid dependence. In the limit of a clean with the normal scattering of excitations at the nondiagonal
contact Dy—1), formula(2) is transformed to formulél). potential A leading to the scattering of a particle into a
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S ] s A point contact is assumed to be short if its length
satisfies the conditiorsy,<L <&, (herea, is the lattice con-
stant and¢, the coherence length of the superconductor

UG) The spectrum is calculated by using the model of abrupt
variation of the magnitude of order parameter of @NS

junction, i.e., by disregarding the proximity effect. The effi-

ciency of this model is the higher, the stronger the scattering
of quasiparticles at the insulating barrier.

We are interested in the states of quasiparticles with en-
ergy E<A. We shall solve the Bogoliubov-de Gennes equa-
tions by using the boundary conditions, i.e., the continuity of
FIG. 1. Schematic diagram of a short point contact with a tunnel barrier. the two-component wave function at the pamt0 and the

existence of a jump in this derivative at the same point. As a

o _ o . result, we arrive at a homogeneous system of four equations
particle” and a hole into a “hole”. The probability of Such ¢, qetermining the unknown coefficients for the amplitudes
brocesses can be calculated easily and is of the order ok \yaye functions in the media. We shall use the requirement

(A1§)* for energle£_<A ({is the chemical pqtentlal of.t'he' of zero determinant of the system to find the dispersion equa-

meta). For conventional superconductors, thls probability IStion for the quasiparticle spectrum of a point contact with a

so low that such processes are usually disregarded during, ey 1t is convenient to introduce the following quantities:

calculations of quantum effects in w eak linthe S(_)-called Z= mV\//m (the dimensionless parametécharacterizes

Andreev approximation However, it was shown in recent . v of th | barier—0 i th !

experiments**4that the paramete,=A/{ for a number of the intensity of the potential barrieZ=0 in the absence o
0 a barriey, and\x = \1+igt, t=t(E)=J1—-E%AZ (\ is the

high-T. superconductorénd may attain values of the order i ) W{?_w .
of 0.1). Hence such processes in these materials may be sigimensionless quasimomentum+fZm¢ units). The param-

nificant in the calculations of quantum effects. In a recenft€r 7=A/{ takes into account normgpotentia) quasipar-
publication® we derived a general dispersion equation de-icle scattering at the nondiagonal potentil(the caser
scribing the spectrum of quasiparticles irSéNISstructure =0 corresponds to the Andreev approximafiddsing these
taking into account the Andreev scattering as well as théarameters, we can write the dispersion equation in the form

normal scattering of quasiparticles at the interfaces between

o
N

-1

the media and at the potential 297%(IN[*+1)cos®— 2|\ [3(1—y*) — 297
In order to ca!cula_te the_ curren_t, we must calcu_la_te the —(1- 72)2[222+Z77t]—2|7\|2y4
spectrum of quasiparticles in a point contact containing an
insulating barrier. We assume that the transition is transla- +iZ(1—9y?)%(N—\*)=0. (5)

tionally invariant in the(x,y) plane. The transverse size of a
point contact is assumed to be small in comparison with the
field penetration depth, and hence we can disregard the vec- A
tor potential from the equatiortS.We proceed from the V= (E<A);
Bogoliubov-De Gennes equatitn E+ivA®-E

Here

Qv —EV. 3) o=, —-d_ is the phase difference for the order param-
eters of the banks of the contact. Assuming thas arbi-

HereV = (‘,‘0 is the two-component wave function of quasi- trary, we take into account i) only the second-order terms

particles, ancE its energy. If thez-axis is directed along the in #. In this case, Eq(5) assumes the form

normal to the tunnel barrier and the nondiagonal potertial

2 2 2
of the superconductor and the diagonal poteritiadlepend (1— 221+ =] +|z+ lt) +4y2 1+ _t }
only onz, the matrixH describes the one-dimensional prob- 2 2
lem ®
~ ~ Xsint —=0.
[T A . w2 (& 2mg sir? 5 =0 ©)
H=| |, ~| where T=—= 5= |35+ —57|+tU(2); i i .
A* T 2m \dz h Let us suppose th&@=0; in the absence of an insulating

barrier, ordinary scattering at a nondiagonal potentiglves

a correction of the order of? to the quasiparticle spectrum
of a short point contact. Beyond the Andreev approximation,
this gives the following expression for energy levels (

[=(—q%2m; a(dy.,dy,0) is the component of quasimomen-
tum parallel to the interface, and the electron mass.

For simplicity, we use a model with thé-functional
potentialU(z) =W4&(z), whereW characterizes the intensity

of normal scattering of electrons at the barrier. The super—: arccost/A):

conducting order parametarz) on both sides of the barrier E* ——

is described in the form COS a= —— =+ coS(P/2) + (7 /4)sin(D/2), (V)
Aexpid,), z>0, which coincides with the result obtained by Hurd and

A(z)= . 4 . "
(2) Aexpid_), z<O. @ Wendin® For traditional superconductors, the parameter
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7~10"3-10*4, and this correction to the spectrum can beExpression(11) is valid for superconductors withyo~0.1
neglected. under the conditior(8). It can be seen that the presence of

It is interesting to consider a point contact made of aordinary scattering of quasiparticles at potent\areduces
HTSC material for which the insulating barrier has a highthe Josephson current.
transparency: It is interesting to note that the first-order correctiorvyin

1~ 75 t/2 ®) to current vanishes in the following two limiting case4)

' the barrier transparend®,—0(Z—<), and (2) Dyg—1(Z
We can now retain in Eq(6) only first-order terms iny.  —0). In these cases, the corrections to the current have a
Then the expression for the spectrum has the form higher order of smallness. For a tunnel juncti@»(1), this
. , is associated with a suppression of coherence at the contact
E*(®;q)=+A{1-D sin(®/2) banks. For a clean contad{-0), the processes of normal
X[1— 7D 1—D sin(d/2)]}¥2 (9)  Scattering of quasiparticles by the potentiamake a contri-
bution just of the order of)? to the currenfsee formula7)].

We have introduced the notatid=1/(1+Z2?) for the  ypon the application of a potential barrier, the intensity of
transparency of the potential barrier. Spectr@nsatisfied  particle-particle scattering processes increases. For a highly
the condition dE/d®|y-,=01°"*? Both functions D transmitting barrierZ~1), the contribution to the current is
=D(q) and 7= 7(q) depend ory. It can be seen that when of the order ofy, i.e., the decrease in current is stronger than
perturbation(ordinary scattering of quasiparticles at the bar-for a clean barrierless point contact.
rier and at the potentiad) is taken into consideration, the  The experimental detection of an additional contribution
spectrum of Andreev levels acquires an energy gap, Whicky the contact current from the processes of particle-particle
suppresses the Josephson critical current of the point conta@attering by nondiagonal potentialis not a simple prob-

For ® =, the gap is lem. The current passing through the contact must be mea-
E'=2AV1—Dl1—7D(1-D)¥ sured tp a high degree_ of precision. ThI'S imposes severe

K v [1=7D( ] constraints on the quality of tunnel junctions in the point
~2A\1-D+AyD? contact. In particular, the interfaces between media must be

. . perfect to the atomic scale. Bozovic and Eckstéhave re-
In_ the Andr_eev apprOX|matlon9;(=0)12for a point contact ported on the fabrication of a high-temperati8ts tunnel
with a barrier, the gap is 2y1—D,™ while for a clean  jnction. The technology developed by them makes it pos-
barrierless point contact(=1) and a finite, its value  gjpje 1o prepare tunnel junctions and multilayers with sharp
coincides with the result obtained by Hurd and Wen’@_m. interfaces on the atomic scale, thus demonstrating the high
_ Generally speaking, the Josephson current contains CORaproducibility of the experimental results. The technology
tributions of discrete and continuous spectra of a weak linkof htaining tunnel junctions with a mechanically adjustable
However, while calcul'atlng the current through a shprt pomtgap (MAG) between metafd has its advantages for precise
contact, we can confine ourselves to the contribution fronLeasyrements of current and its comparison with the theory.

the discrete spectrum onfy.~2 Akimenko et al??> used the MAG technique to obtain
The current through discrete Andreev levels can be CaIBi28r2CaCLtOs+5 single crystal junctions with clean and
culated by the formufd sharp cleavage surfacésn the atomic scajeof quite large
e dE* - area. For a small gap between electrottesnel regimg a
D)=~ % a9 f(E")+ a9 [ED|, (100 microjunction with adjustable contact resistance can be real-
ized.

wheref(E) is the Fermi function for quasiparticles. Consid-
ering thatE*=—E~ and f(E")=1—f(E™), substituting
spectrum(9) into (10), and integrating with respect tp we
obtain the following expression for current:
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Spontaneous incommensurate crystal phase in the Jahn—Teller KDy (Mo0O,), crystal?
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Investigations of magnetic and spontaneous birefringence properties of a KDyjMo@stal

under the Jahn—Teller phase transformation reveal some features indicating the existence

of two spontaneous phase transitions at temperatures close to 14.3 and 11.0 K. The characteristic
changes in birefringence in these transitions suggest that the crystal of KDy molybdate has

a modulated incommensurate lattice structure in the temperature range from 11.0 to 14.3K.
© 1998 American Institute of Physid$$1063-777X98)01609-0

The KDy(MoQy), crystal (Fedorov symmetry group fact that the parameters and orientations of the principal axes
D3r(Pbcn)),>? which is orthorhombic at room tempera- of g- tensors of magnetic sites in By change significantly
tures, belongs to the family of layered crystal of doublein the structural transformation under investigatfdfi.
alkaline-earth molybdates. Many crystals of this family ex-  The experiments were made on samples having a size
hibit at low temperatures spontaneous instability associated 4x3x 0.2 mm. The sample quality was tested by conven-
with cooperative Jahn—Teller effect. A distinguishing featuretional optical—polarization methods. The samples contained
of this effect in KDy(MoQ,), is nonferrodistortion ordering plane-parallel regions with a size0.5X 1 mm in which the
of its Jahn—Teller distortion&.® Paramagnetic compounds extinction of light was uniform. Birefringence was studied
based on rare-earth Jahn—Teller ions are characterized byoa spots of diameter 20@mm just in these regions. The
high sensitivity of their crystal lattice structures to magneticdirection of light propagation always coincided with the
field at low temperature$s.® c-axis (a=5.07 A, b=7.95 A, c=18.23 A perpendicular to

Leask et aP discovered that a magnetic field in a para-the cleavage plane. The phase shift between normal optical
magnetic KDy(MoQ), crystal oriented along a direction modes emerging from the crystal was measured by using the
close to the direction of the axis with the maximum value ofmodulation techniqué®
the g-factor of spectroscopic splitting for one half of By For birefringence measurements at low temperatures, we
ions (and along the axis with the lowest value of tpdactor  used an optical cryostat without “cold” windows. The
for the other half of these iohdeads to a structural phase sample was in vacuum and was “freely” attached to the cold
transition similar to the metamagnetic transition in stronglyfinger by using the technique described earifeFhe sample
anisotropic antiferromagnets. Optical and magnetic investitemperature was varied smoothly at a rate
gations of this transition revealed that the transformation~0.25 K/min.Temperature measurements were made with
from the low-field to the high-field crystal phase occurs notthe help of a carbon resistance thermometer. The error in
though a single phase transition, but through two phase trardetermining the temperature difference for the sample was of
sitions with the formation of an intermediate phd%&t Ex-  the order of 0.02 K, while the error in the measurement of the
trapolation of temperature dependences of the two criticahbsolute value of sample temperature is estimated by us as
fields led to the conclusion that the intermediate crystal stat@.3 K.
must also exist in zero magnetic field. The magnetic properties of the crystal were studied on a

This research aims at experimental verification of con-SQUID magnetometer MPMS-5. In order to avoid the emer-
clusions concerning the spontaneous formation of the intergence of mechanical stresses in the sample during cooling,
mediate crystal phase in a KDy(M@ crystal. which could affect the phase transition, the sample was

We analyzed the temperature dependences of spontanglaced in a special cell consisting of two quartz plates and
ous linear birefringence and magnetization. The magnetizahree quartz supports whose thickness was close to the
tion was measured in magnetic fields of strength up tssample thickness. Quartz parts were glued together by an
10kOe. The linear birefringence method is widely used foradhesive containing no magnetic impurities. The sample it-
studying magnetic and structural phase transformatibhs. self was not glued. The error in the sample orientation rela-
The application of the magnetic method was dictated by théive to the magnetic field direction did not exceed 2°.

1063-777X/98/24(9)/4/$15.00 689 © 1998 American Institute of Physics
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FIG. 1. Variation of phase shift between optical modes propagating in &IG. 2. Peculiarities in the behavior of the first derivative of birefringence
KDy(MoOQ,), crystal at right angles to the cleavage plane during the struc-of light with respect to temperature in the vicinity of temperatufgsand
tural phase transformation. T,.

First of all, we studied the extinction of light in the ~0.1K takes place in the vicinity of 11 K. The hysteresis is
sample in the temperature interval covering the phase transslightly asymmetric: its branch corresponding to sample
tion temperature. According to visual observations, extinc-cooling is less steep than the branch corresponding to heat-
tion of light in crossed polarizers was complete and uniforming. The hysteresis loop has tails extending to the regions
over the entire field of sample image at all temperaturesoccupied by neighboring phases. The shape of the hysteresis
Extinction of light in polarizers crossed at 45° was studied inloop depends on the temperature variation rate and the tem-
guasi-monochromatic light. No changes in the pattern of experature of heating only slightly.
tinction and its depth in the course of phase transformation The observed singularities suggest thatandT, are the
of the crystal were observed. The invariability of extinction temperatures corresponding to two phase transitions. Jump-
conditions indicates that the macroscopic symmetry of optiwise changes in5 and the hysteresis loop indicate that the
cal properties of the sample did not change as a result of theansition afT ; is a first-order phase transition. However, this
phase transformation. This property can be an evidence dfansition must be close to a second-order phase transition
the fact that if the point symmetry of the crystal is lowered assince the jump-wise variation @& amounts to less than 20%

a result of the transition, the twins formed during the transi-of the entire change ié (from the value near 11K from the
tion must have walls parallel to the plane of cleaved surfacaide of high temperatures to saturation which is almost at-
of the sample, and domains themselves must have a thickained at the lowest experimental temperature of 6.7 K.
ness smaller than the thickness which could be visually ob- The existence of a phase transition near 14.3K follows
served in polarized light at step edges of the sample. from the temperature dependence of birefringence. A

Figure 1 shows the temperature dependences of théependence is close to linear in the temperature range from
phase shift§ between the normal optical modes with the 11.5 to 13.5K. A further increase in temperature leads to
wavelength 550.5nm in the temperature range of phasmore rapid changes, after which tB€T) dependence attains
transformation. In order to illustrate high reproducibility of saturation. The absence of a hysteresis loop and the jump-
the experimental values, the dependences obtained in twwise change in the derivative§/AT nearT, from the side
cooling—heating cycles are presented. The change in thef high temperatures suggest that the phase transitidn iat
phase shifi§ over the entire region of the structural transfor- a second-order phase transition.
mation is~0.35rad. If we disregard the change in the crystal  The temperature dependences of crystal magnetization,
size, this value ob corresponds to a change in birefringencewhich were obtained for different samples with the magnetic
by ~1.2x10™4. field orientation along the crystallographiz-axis and at

The &(T) dependences display two clearly manifestedangles to thec-axis have clearly manifested singularities in
temperatures;=11K andT,=14.3K at which singulari- the neighborhoods of the same temperatufgsand T,.
ties are observed: a junpearT,) and a kink ({T',). Differ- Figure 3 illustrates the temperature behavior of magnetiza-
ent types of singularities are manifested more clearly on théion in a magnetic field oriented along the crystallographic
temperature dependence of the derivative of birefringencaxis b. For other field orientations, singularities can be ob-
with respect to temperature, which reflects to a certain extergerved in the coordinated/H) X T=f(T) and in the tem-
the temperature variation of heat capacity in the vicinity ofperature dependences of the derivatisd§M/H) X T]/AT
the phase transitioff.*® =f’(T). The observed singularities indicate that the posi-

The temperature dependence &%/AT is shown in  tions of &~ ions surrounding a DY ion and determining
Fig. 2. The peculiar behavior of birefringenceTatandT,  the orientation of the axes of thgptensor of spectroscopic
can be due to phase transitions in the crystal. It can be clearlgplitting change in the temperature interdg<T<T,.
seen from Fig. 1 that a temperature hysteresis loop of width The peculiarities in the temperature dependence of
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birefringence and magnetization considered above indicat€he modulation wave vector is determined by the depen-
that the phase transformation in KDy(M@Q occurs dence of the intensity of interaction between modes within
through two phase transitions. The peculiar behavior of birethe Brillouin zone on the direction and magnitude of the
fringence, i.e., the continuity in the transition Bf, smooth  wave vector. We can expect that its direction is determined
and monotonic variation upon a decrease in temperature oy the direction of coinciding wave vectors of optical and
T4, the jump and the small characteristic hysteresis loop iracoustic phonons with the lowest energies. According to
the low- temperature transition @, suggests that a modu- Refs. 21 and 22, these oscillations propagate along the
lated crystal structure is formed in the temperature intervat-axis. Naturally, an unambiguous answer to the question
T,<T<T,. In this case, the phase transitionfatmust be of = whether the structure of KDy(Mof), is modulated in this
the type of a transition between the normal and modulatetemperature range can be obtained only by direct methods
structures, while the transition &@j is a lock-in transition for based on diffraction of x-rays, neutrons and electrons and
the modulation phase. The absence of step-wise changes pnoviding information on the wave vector of this structure.
the interval fromT,; to T, and the hysteresis loop in the The authors are grateful to V. I. Kutko, N. M.
vicinity of T, indicate that higher modulation harmonics be- Nesterenko, and V. I. Fomin for a discussion of the obtained
come significant only neaf,, where the pinning of incom- results.
mensurabilities formed takes place. Such a temperature be- This research was carried out under partial financial sup-
havior of linear birefringence and heat capacity is normallyport from INTAS Foundatior(grant No. 94-93band Inter-
observed during the normal-modulated—incommensurateational Soros Program Sponsoring Education in Science
phase transformation in many cryst&is:® (ISSEP SPU Grant No. 062067

The absence of visible crystal domains at temperatures
below T, ha_s a simple _explanatior_r the symmetry of Iinear_*)E_ma”: kharchenko@ilt.kharkov.ua
crystallo-optical properties of the incommensurate phase is
the same as for the high-temperature normal pAase. -
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