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The gauge transformation of the hydrodynamic equations of superfluidity and superconductivity
is considered. The vortex and heat momentum densities are defined and their evolution
equations are derived. The physical meaning of these quantities is analyzed. The Lagrangian
invariants of the new set of equations, which are similar to those obtained by Hollman for classical
hydrodynamics, are derived. @999 American Institute of Physid§1063-777X99)00101-3

1. INTRODUCTION two velocity fields, and there are two types of vortices and
waves. The evolution of such a complex system may be
Macroscopic properties of superfluid and superconductregular or random. The latter case is associated with quan-
ing systems are described by equations analogous to the hym turbulencé?® As in the case of classical hydrodynamics,
drodynamic equations. Classical equations for an ideal fluidt is expedient to use the gauge transformation of equations
possess a set of invariants which include intedesdergy, and the existing invariants of motion in a theoretical analysis
momentum, angular momentum, helidihas well as local  of the interaction of superfluid vortices and waves.
invariants. The most common among these are the Lagrang- In this work, we consider the analogs of the classical
ian and freeze-in invariants. vortex momentunt, i.e., vortex and heat momentum of a
The Lagrangian invariants are preserved along the trasuperfluid and superconducting liquid. Equations for the den-
jectories of fluid particles. The rati@/p of vorticity to the  sity of these quantities are derived, their invariants of motion
density defines another type of invariants, viz., the field fro-are determined and the decomposition of complete motion
zen into an ideal fluid. Moiseev et al>® have proposed into vortices and waves is analyzed for an arbitrary nonlin-
methods for obtaining new integrals of freeze-in andearity. The hydrodynamic model of superconductivity is con-
Lagrangian invariants from known invariants. A wide rangesidered from analogous positions.
of invariants was determined by HollmArThese invariants
are obscure in Euler equations, but are revealed in the Weber
representation. 2. DENSITY OF VORTEX MOMENTUM IN AN

Earlier, we carried odf a gauge transformation of the INCOMPRESSIBLE FLUID

classical hydrodynamics equations, which were presented in e shall call a bounded vorticity cloud a vortex in this
a form clearly admitting the presence of many additionakyork. Vorticity patches induce in the surrounding space ve-
invariants. In the particular case of the equations of hydr01ocity fields u(r,t) which decrease in proportion to a power
dynamiCS of a homogeneous incompreSSibIe fluid, the tl’anfbf the Separation from the vortices. The momentﬁmdv
formation involves a transition from the conventional mo-and the angular momentum of the vortex are defined by di-
mentum densityv to the vortex momentum densitywhich  verging integrals since the rate of decrease of integrands at
differs from pv by the gauge function gradient. The new infinity is insufficient. In order to obtain finite integral char-
form of equations has a number of advantages that are maricteristics of vortices, certain infinite constants have to be
fested during simulation of vortices, waves and theirsubtracted. The finite quantities obtained as a result are ex-
interaction’ pressed in terms of the vorticity field and are called the
Equations for the field) were also derived by Oseled®ts vortex momentunp and the vortex angular momentuth!®
and Buttk€ and have been used for computing various
flows**!For a complete reflection of the geometrical mean-  ,_ ~ j FX wdV
ing of the equations, the theory was also reformulated in 2 '
terms of differential forms2'3 A more complete review of 1 (1)
the problem and an extensive list of references can be found J= —f rXx(rxw)dV.
in Refs. 12-14. 3
A superfluid liquid also moves in the form of vortices Let us determine the distribution of these characteristics
and waves. The mechanics of such a liquid is described bin space. The integrand in Eg4) cannot be treated as the
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Lamb’s vortex momentum density since, at the point where a  gw; JT IV nj
certain liquid particle is located,X » depends on the origin i T Vwi=— = —wj — = F[wX(VXVy) i,
of coordinates. According to Batchelbp is equal to the ' ' (5)

force impulse required for instant generation of the given )
motion from the state of rest. Similarly, is equal to the WhereT is the temperature. . _
angular momentum of the force impulse. It is usually assumed in the hydrodynamics of superfluid
Consequently, we can associate a vortex patch boundé@uids_that the velocity of the superfluid component is of the
in space with the densitg(r,t) of the force impulse, which Potential type everywher¢probably, except the axes of su-
is bounded in space and is called the vortex momenturRerfluid vortices:VxXv,=0. Hence we shall disregard the
density® Its value at a given point does not depend any/@st term on the right-hand side of E@). At first, Egs.(2),
longer on the origin. The velocity is equal to the solenoidal(3. and (5) are considered in the framework of classical
component of the vortex momentum density. It differs fromMmechanics. Then the quantization conditions are imposed.
q(r,t) by the gradient of a certain gauge function. Hence, a
transition fromu(r,t) to q(r,t) can be treated as a change in

the gauge of the hydrodynamic field. 4. HEAT MOMENTUM DENSITY
The separation of the solenoidal component induces po-
tential “tails” of the velocity field in the surrounding homo- Let 51 be an element of length ant a surface element

geneous liquid. It is obvious that the hydrodynamic struc-which move with a fluid having the velocity field It is well
tures can be described more locally in this case than in termigown’ that the time evolution of the element$ and 5S is
of the velocity field. Exaggerating slightly, we can state thatdescribed by the equations
the vortex momentum field is just the velocityr,t) di- ds dos _

. e S poOS v
vested of its potential “tails.” This idea can be extendedtoa —=(§.V)y, ——= —p8S; — (6)
stratifief and compressible fluid. In such cases, the total dt oXi
motion can be decomposed into the density of Lamb’s mowhere is the density of the fluid. It is also known that the
mentum (which is equivalent to the force impulse required frozen-in fieldsw are similar tosl. It will be proved below
for instant generation of the non-wave component of mgtionthat w evolves in the same way gsS under appropriate
and waves. It is expedient to develop this concept for supelgauging. This imparts a geometrical meaningspand the

fluid liquids also. algorithm for the quest of Lagrangian invariants becomes
obvious.
3. HYDRODYNAMICS OF SUPERFLUIDITY The vector fieldw can be decomposdib within a har-

monic function into the curlwg,, and the divergencev;,

components. In an unbounded liquid which is at rest at in-
efinity, the harmonic correction is zero, and the decomposi-
tion can be carried out by using the projection integral op-

(%ratorsﬂ,Q whose kernels are given by

Two-velocity hydrodynamic equations are used for a
macroscopic description of superfluid helium. If we choos
the velocitiesv,, andv; of the normal and superfluid compo-
nents, the densityp and the entropy density per unit mass
as the complete set of variables, the complete system

equations of motion can be presented in the fdrm 1 4?2 1

M= —————, Wg,=1w,
p 1 4w oxiax; [x—X| div
—=+V-(paVatpsVs) =0,

ot , A
Qij=8jjo(x—x")—1IL;,  Weyn=Qw.
%+V -(psvy) =0, 2 Herew,, is induced by the vorticity, and/, is induced by
ot the divergence of the field. It is natural to associate heat
9 vortices with the component,,, and the sound with the
pn +Vg- V) Ve=—Vu, 3 componenwgy,=—Vy.
Let us consider the field evolution equatiap,=w
IppUnitpLsi 0 B +V.z//.(x,t), whe.rew(x.,t) is a certain gauge fgnction. If we
o o (Pt pavnivnj T psUsivs) =0, additionally define this function by the condition
j
4 P
where p,+ ps=p. Dissipative terms are not taken into ac- 7t TV V] (g x)+T=0, @)

count since they are defined by the specific models which are )

insignificant for the main subject of this communication. the eguation fox,, assumes the form

Their inclusion in the analysis complicates the formulas and

may be done at a later stage. We assume that the equations of

state that express the density, pressurep, and the chemi-

cal potentialu in terms ofp, s and (,—v,)? are known. The fieldq,, is gauged by Eq(7) and the initial condi-
Instead of the equatio) for the total momentum, we tion for y or g,,. It can easily be seen that E®) coincides

shall use below the equation=p,(v,—Vs)/Sp, which de- with Eq. (6) for pdS. If we form the scalar product of the

scribes, among other thingseat vorticessee Ref. 1} field g,, and the element of lengthl, we obtain a quantity

&+ \%
gt

Qwi= — Qwj o (8
i
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similar to an element of mass that is conserved along the a
Lagrangian trajectory. A direct verification shows that
(aldt+v,-V)(gy: 81)=0.

Having chosen an arbitrary contour in the fluid and di-
vided it into a sum of small elemen®l, we find that the
integral [q,,- 8l is conserved over any contoarvhich need
not be closefentrained by the fluid with a velocity, . In
the particular case of a closed contour, the circulations of the
fieldsqg, andw coincide since these fields differ by the scalar
function gradient. Hence circulation is conserved over a
closed contour of the fieldv. The overall method of con-
struction of invariants is considered in Sec. 6.

The fieldw is found to be divided into two components,
the first of which is defined by the fielgl, and corresponds \
to the heat vortices. The second component is defined by the +

scalar fieldys and corresponds to waves. The motion of the
superfluid component will be considered in the following

section. / /

5. VORTEX MOMENTUM DENSITY OF THE SUPERFLUID
COMPONENT

FIG. 1. Replacement of a vortex loop by a system of small vortex I@ops
Side view(a). Equivalent replacement of flow by the double layer potential.

Using transformations analogous to the ones carried out"® diPole moment density corresponds to the figld

above, we can write Ed3) for the superfluid component in

the form the state of rest is also possible in the case of a superfluid
d I liquid. For a two-velocity medium, two types of external
E”LVS‘V)%: ~0sj (7_X. agencies are required. Mass forces generate the total motion
J 5 of the components. The relative motigheat vortices are
_ v generated by thermal agencies.
ot TV V) (Xst )= pt 2 The connection between the vorticity and the vortex mo-

mentum density can be explained by using the following

simple example. Let us consider the motion of a classical
incompressible liquid generated by an impact on a mem-
brane placed in it. The membrane is then removed. A thin
Qortex tube is formed near the membrane edge. The density
of the corresponding vortex momentum is equal to the dis-
tribution of the force impulse on the membrane.

6. LAGRANGIAN INVARIANTS Let us consider the inverse problem. Let a closed vortex

A comparison with Eq(8) shows thafy evolves in time loop of intensityx be a source of velocitysee Fig. 1L We

in the same way agsS. Any field of quantities of this type divide the surface stretched over this loop into small area
is denoted by Frozen-in fields existing in the liquid satisfy €léments and place a vortex tube of the same intensity
the equation forsl. An example of such a field i&/p, along the perimeter of each element. Each vortex loop has
where w=V X w. Fields similar tol are denoted byd. the vortex momenturpx3dS, wheredSis the area. Since the
Fields of the third type, which are similar to an element ofVOrtiCity on segments lying within the main loop are mutu-

mass of the liquidsm=p4&S- 81, are “Lagrangian invari- ally compensated, the total flux induced by small loops co-
ants” and are denoted by incides with the initial field of the flow. The surface can be

This analogy showéand direct computations provthat deformed arbitrarily, which leads to gauge freedom of the

any fields of the type curt()/p or [QXQ']/p are frozen-in  VOrtex momentum densitisee Ref. 5 for details _
fields, the fieldsp[JxJ'],VI belong to theq type, while A similar construction can be carried out for the solenoi-

div(pd/p),(j-q) are Lagrangian invariants Using these re- d_al components of the sgperfluiq vglocity and fiald The_
lations, we can obtain new fields of the same type frorCirculation of the superfluid velocity is conserved. Following
known fields of the typed, Q, and 1. In this way, fields Onsager, we impose on it the quantization condition

similar to the Hollman invarianfscan be obtained. x=nh/m, wheren is an integerm the mass of a helium
atom, andh the Planck constant. The available experimental

data are in accord with these assumption. According to the
above relations, the vortex momentum density should also be
regarded as quantized.

The interpretation of a vortex momentum as a force im- It can be seen from Fig. 1 that the distribution of the
pulse required for the generation of the given motion fromvortex momentum density in a superfluid flow can be put in

whereV y,=1Ilvg, gs= QVS+V¢. Calibration of fields is de-
fined by the equation fox+ 5 and the initial conditions.
Vortices of two types and waves are employed in the two
fluid hydrodynamics while superfluid vortices and waves ar
described by the fieldgs and x;.

7. PHYSICAL INTERPRETATION AND QUANTIZATION
CONDITIONS
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correspondence with a double layer. The state of a weaklg. CONCLUSIONS
nonideal Bose gas is described by an averaged wave )
function”” ¥ = \/psexp(), the superfluid velocity being I_n terms _of the vortex momentum density, the h_yqlrody-
proportional to the phase gradient=(h/m)Vs. In order ~Namic equations of sgpercondqctlvny and super_ﬂwdlty ac-
to define the wave function unambiguously, it is necessarlUiré a clear geometrical meaning. These equations lead to
that the phase change by a multiple integer af @on a directly the existence of many fields similar to an elementary
circumvention of the vortex loop. Consequently, the phase i§"€@ element, length, or a passive impurity. The existence of
not single-valued. In order to make it single-valued, we musguch fields restricts the evolution of the system of vortices
make a cut. The phase jump appearing at the cut is propoAnd waves, which simplifies the theoretical analysis of the
tional to gs. Since the position of the cut surface can berélaxation in a superfluid flow. _
varied arbitrarily,qs possesses gauge freedom which can be ~ The vortex momentum density can be used in vortex
eliminated by fixing the initial conditions. models of phase transition to the superfluid stitas the

The circulation of the fieldv is also preserved, but the temperature increases from absolute zero, the emerging vor-
available experimental data are not sufficient to assume th&ces become Iarggerlm size. The role of the smallest blocks is
any quantization conditions are satisfied for’itConse- Played by rotons? viz. elementary quantum excitations of
quently, the heat momentum densify is not quantized. By ~the vortex momentum density. According to the model,
choosing the gauge properly, we can make it equal to zerdcale-invariant distributions of such blocks are of special in-
outside the regions where the vorticity of the fislddiffers  terest. It should be noted that Lagrangian invariants may in-
from zero(cf. Refs. 5 and B In the given case, the fiel,, ~ fluence the phase equilibrium in a moving continuffin.
can be put in correspondence with a layer of heat dipoles. The obtained invariants can also be useful in the case of
The combination of the force impulse and heat momentun® Weak dissipation. Different invariants have different dissi-

of some invariants for fixed values of other invariants, and to

solve the appropriate variational problems.

8. TYPE Il SUPERCONDUCTIVITY This research was carried out under partial support from

) ) o the Russian Foundation of Basic Resea(@hants Nos. 98-
Hydrodynamic equations for the electron liquid in a type 31-00681 and 97-01-00773.

Il superconductor are similar to those considered above, Su-
perfluid vortices correspond to fluxoids, viz., quantized mag-
netic flux tubes. The equation for the superfluid component

of the electron liquid has the foritsee Refs. 17 and 19 *E-mail: kuz'min@itp.nsc.ru
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Temperature dependences of low-frequency impedéhe&0 Hz) and heat capacity of

LuFe,Alg are studied at low temperature in the intervals 4.5-300 K and 1.5-120 K, respectively.
The observed singularities suggest that antiferromagnetic phase ordering ocEyrs at

=100.5K. A sharp increase in the resistance is observed at a certain temp@&raturg below

which a negative magnetoresistive effect is detected in a weak magneticHiel&@ Oe).

It is shown that the low- temperature anomalied at25 K are associated with the

superconducting transition. This is supported by the presence of the Meissner effect, levitation, a
decrease in ohmic losses, as well as the influence of a static magnetic field and direct

current on the resistance of the compound. A magnetostructural phase transition, which is assumed
to occur atT;<Ty, may be responsible for the peculiarities observed in the physical

properties of LUFgAlg. © 1999 American Institute of Physid$1063-777X99)00301-1

INTRODUCTION measurements of heat capacity and low- frequency imped-

ance of some complex compounds makes it possible to de-
The crystal structure and magnetic propertigsscepti-  tect and explain the origin of anomalies in these properties.

bility and magnetizationof ternary compounds of the type However, the available literature does not contain, to our

RM,Alg (R stands for the rare-earth metals La, Ce, Pr, Ndknowledge, any information about the electrical and thermal

Sm, Gd, Thb, Dy, Ho, Er, Tm, Yb, Lu, as well as the elementsproperties of ternary compounds of the type FRWj.

Y and Th, while M denotes V, Cr, Mn, Fe, Co, Ni and Cu In this paper, we present the results of experimental

were described by Buschoet al1~3 The magnetic structure studies of the temperature dependence of low-frequency im-

of compounds like RE&l is distinguished by the fact that pedance of the compound Luffdg in weak magnetic fields

it contains three magnetic sublattices, viz., an R-sublatticas well as its heat capaci(T).

and two M-sublattices. Hence, following Ref. 3, such mate-

rials can be divided into two groups, i.e., compounds in

which only atoms of the Fe group have a magnetic moment/MPLES AND MEASURING TECHNIQUE

(R denotes La, Ce, Lu, Th, and)‘and those in which the Samples of LuFgAlg; were synthesized by inductive
magnetic moment is possessed by M-atoms as well agelting in a cold crucible in argon. The crystal structure of
R-atoms. the obtained crystallites was determined by a four- circle

Materials of the first group experience antiferromagneticgiffractometer and was found to match with the available
ordering at Nel's temperaturd y which has a characteristic datal
value for each one of them. Some compoufidswhich R The surface resistand®; in the rf range was measured
stands for La, Thdisplay a dependence of magnetization onpy the resonance technique. Since the concept of surface
a strong magnetic fielt at T<Ty. It was showf by con-  resistance becomes meaningless for direct current, and its
sidering YFgAIlg as an example that a magnetic field of tensmeasurement at low frequencies is complicated, we also
of kilooersted can destroy the antiferromagnetic structure amneasured the total resistanZe(modulus of impedangeat
low temperatures. low and radio frequencies by the four-probe method. The

An analysis of the results presented in Refs. 1-3 indiinvestigated samples of length up to 6 mm and cross-
cates that the investigated materials [#Fg have a complex sectional area 1-10nfmwere obtained from the same
magnetic system that has not been studied extensively so fanonolithic polycrystal.
This is evidenced if only by the fact that the values of the  Figure 1a shows the apparatus used for measuring the
phase-transition temperature obtained by various methodstal and surface resistance in a weak static magnetic field as
differ considerably according to the available data. Hence itvell as in zero field over a wide range of temperatures.
is expedient to carry out further investigations by using tra-  The investigated samplé was fixed to the substra@
ditional methods of measuring magnetic parameters as we#ind placed in the cavit® of the inductance coi#t of the
as the results of measurements of other characteristics lik@easuring oscillatory circuit together with the temperature
thermal and electrical propertiés. gauge. Coil4 was placed in a copper screbrhaving sole-

It was shown that a comparison of the results ofnoid 6 on its surface. The inductance coil with the sample

1063-777X/99/25(1)/8/$15.00 10 © 1999 American Institute of Physics
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9 10 % Looslid as the thread. In contrast to the instrument described in Refs.
_.@ — \ / ; 1 3 9 and 10, the sample in the device shown in Fig. 1b did not
[/ 7 //2 twist the thread during levitation, but inclined it, thus ap-
2 | g,/ % — /4 proaching coil6. The presence of levitation of the sample
| | —3 was detected from the changeecreasgin the Q-factor of
2 1l /6 2 5 the oscillatory circuit.
7 O ; The temperature dependence of the heat capacity in the
[/ Z 1\ =Y 6 interval 1.5-120 K was studied by the method of absolute
; 8\ .,4 -5 calorimetry. The experimental error did not exceed 0.5%.
f VAR A |6 n Polycrystalline samples having a mass of 2.5 g each were
n / \ ng used for measuring heat capacity.
¢ L
91 8 7 L4
] EXPERIMENTAL RESULTS
a b Heat capacity of LuFe ,Alg

FIG. 1. Apparatus for determining impedance and surface resistance: Figure 2a shows the temperature dependence of heat ca-

sample(1), substraté2), temperature gauge), Oscillatory circuit coil4),  pacityC, in the interval 1.5-120 K. Fragments of Fig. 2a are
screen(5), solenoid(6), current contact$8,9), potential contact§7, 10 (a), shown on a magnified scale in FigS 2pb and 3a

and for observing levitation of the sample: permanent maghetrod (2), It b f the fi ”'1 tatl ¢ f. ¢
platform (3), thread(4), sample(5), and oscillatory circuit6) (b). can be seen from the Tigures that at least tour tempera-

ture intervals with heat capacity anomalies exist on a regular
temperature dependen@g(T).

could be oriented along any direction relative to the solenoid  The first anomaly is observed in the form of “spikes”
axis. Samplel was connected to external current circ#{8  with an appreciable amplitude at temperatures 99-102 K.
and potential spring-loaded contagtd0made of beryllium  The peak ofC,~194.5J/moleK corresponds to the tem-
bronze. The apparatus shown in Fig. 1a is located in a systeferatureTy=100.5K (see Figs. 2a and RaAccording to
permitting a variation of the sample temperature from 4.5 tlBuschow et al.’ the antiferromagnetic transition was de-
300 K by the coolant vap8mwith an error not exceeding tected from magnetic measurements just at this temperature.
+0.25K in the range 30-300 K ant0.1K below 30 K. The second group o€, anomalies is also manifested as
The sample impedancg was defined as the ratio of the a series of “spikes” of heat capacity values relative to the
amplitudes of the voltage across the samples and the currefgular dependenc€,(T) at temperatures 75-90 Ksee
flowing through it. Figs. 2a and 3a

While measuringR; by the resonator technique, we de-  The third series of anomalies @, is observed at tem-
termined ohmic losses taking into account the surface resigeratures 50—65 K, but the amplitude is much smaller than in
tance of the standard sampl€or this purpose, a mould was  the first and second grougsee Fig. 2a
prepared and filled with molten met@hdium) with a known The fourth group of singularities a, below 30 K(see
surface resistandgs.. In turn, the value oRs. was checked Fig. 2b has the form of a few\-shaped “spikes.” The
by using another standard material with surface resistancgyaximum value of heat capacig,=1.9 J/moleK is ob-
Rsq (copper or aluminum annealed at an optimal temperaserved atT=24K. At lower temperatures, heat capacity
ture). anomalies are less pronoundsgée Fig. 2l but their values

For investigating the weak dependence of resistance ogre considerably larger than the experimental errors.
such physical quantities as temperatlitefrequencyf, cur-

rentl, or a static magnetic fielth (by measuringZ or Rg
within the limits of experimental errgr we measured the
same quantity repeatedly. The results of measurements were The impedanceZ and the surface resistandg, of

Temperature and frequency dependences of resistance

averaged. LuFe,Alg were measured in the frequency range 019
While studying the effect of transport current 8 of  and in the temperature interval 4.5-300 K.

the material, we passed the current through conteisd 8 Figure 4a shows the temperature dependences of the im-

(Fig. 19 and determined th@-factor of the circuit. pedance of a LuR@lg sample reduced td=300K for the

It will be proved below that the results of some measurefollowing values of the frequency, Hz: 0 (curve 1), 8
ments suggest the presence of an insignificant amount ok 10° (curve?2), 4x 10 (curve3), and 10 (curve4). It can
superconducting phase in the compound$a25K. In or-  be seen that starting from room temperature up to 100 K, the
der to verify this, we tested the ability of a Lufjfdg to = samples exhibit a virtually linear dependert@) or p(T).
levitation in a static magnetic field with the help of the de-The dc resistivity of the samplesp(300)=5x10"°

vice shown in Fig. 1b. Q-m:apldT=7.5x10"8Q-m-K~ 1, and @p/aT)/p(300)
A permanent magnet was fixed rigidly to platform3 =1.5x10 3K ! (curvel in Fig. 49.
through rod2. The samples under investigation was sus- Figure 4b shows th&(f) dependence at 30@urve 1)

pended to the platform on threatiso that it was located and 95 K(curve?2). The impedanc& of a sample with the
between the magnétand the coib of the oscillatory circuit.  cross-sectional areax33 mm is virtually independent of fre-
As in Refs. 9 and 10, we used a silk fibre of diametgrrid@  quency for G<f<10° Hz, while for frequencies higher than
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FIG. 3. Temperature dependendgg(T) in the temperature range 75-110

L . K (a) andRg(T)/R4(110) obtained in simultaneous measurements for all the
10’ Hz it increases according to the power I&-f". The samples in the same temperature range at a frequeRcy02Hz in zero
exponentn=1.5 at T=300K and increases upon cooling, magnetic fieldcurve 1, ®) and in a magnetic field of 50 Ogurve 2, O)
attaining the value of 2 for some samples. For this reasorb):
dZ1dT has a complex frequency dependence. The value of
dZIJT decreases with increasing frequency, is equal to zero
for certain frequencie$, andf,, and assumes negative val- 15 _hymp increase in ohmic losses correlated in temperature
ues in the interval fronf, to f, (Fig. 43. A series ofZ(T)  \yith similar anomalies in heat capacitgee Fig. 3a and
curves shown in Fig. 4a was plotted just for frequencies typi'curve 1in Fig. 3. (The latter figure shows the results of
cal of the given samplef=0 (curve 1), f=f; (curve2),  gimyitaneous measurementsRy for all samples under in-

fy<f<f, (curve3), andf>f; (curved). vestigation at a frequency of>210° Hz in zero magnetic
We can note some typical peculiarities 0in the tem- a4 (curve 1) and in a magnetic field of 50 Ourve 2.)
perature range under investigation. According to Fig. 4b, a negative value &b/JT is observed

1. The compound under investigation exhibits anat this frequency.
anomaly inRg nearTy, which is manifested in the form of a 2. For each sample, there exists a characteristic tempera-
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magnetic field of 50 Oécurve 2).
0.01 LuFeAlg samples under investigation as well as other
materialst!
3 5. Anomalies in the impedance exhibited in the tempera-
10 105 107 ture intervals 250—-270 K and 160—-210 K have the form of
f, Hz deviations from the values corresponding to the reggliar

ean temperatures dependencg€l) in both directions(see
FIG. 4. Temperature dependences of the impedance of JAlfFsamples Fig 43
normalized toT =300 K at frequencie$, Hz: 0 (curvel), 8x 10° (curve2), ’ ’
4x10° (curve3), and 10 (curve4) (a). Frequency dependences of imped- One of typical features of the electrical properties of

ance at 300 Kcurvel) and 95 K(curve2). The inset shows the frequency | Fe,Al, is that it exhibits a negative magnetoresistance at
dependence of anomalous decrease in the sample resigbance T<T, in a weak constant magnetic field. Curten Fig 5
shows the temperature dependenceRgfmeasured in zero

ture T,;< Ty at which the resistance increases jumpwise ovef2gnetic field, while curv@ shows the same dependence in
a step of 2—3 K. This temperature correlates with that aft magnetic field of 50 Oe. It can be seen that the magnetore-

which heat capacity anomalies are manifesga Fig. 3gin sistive effect is not observed in weak magnetic fields at
the temperature range 75-90 K. T>T,, and the effect oH on Z or R starts being manifested

. ) . only at T<T;. The magnetic field dependence Bf at
Figures 4a and 5 show such jumps in the valueZ ahdRs,  t—70K is shown in Fig. 6. The resistanég does not de-
respectively, for the same sample wilh==85K. pend on the fieltH up to values ofH~ 15 Oe, after which
3. The derivativedZ/JT reverses its sign not in all the resistance decreases with increasing field almost linearly.
samples in spite of the fact that all of them were obtained=or H>40 Oe, theR,(H) curve attains saturation. No tem-
from the same monolithic Luiz&lg polycrystal. perature or magnetic hysteresis is observed in these singu-
4. The value ofZ decreases insignificantly in a certain larities.
frequency range preceding the frequencies at which the fre- It should be noted that a constant transport electric cur-
guency dependence of impedance is manife@ed the inset rent creating a magnetic field of a few oersted around the
to Fig. 4b. This phenomenon is observed for most ofsample aff<T; does not affect the value &; either.
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FIG. 6. Magnetic field dependence of the surface resistRyad LuFe,Alg
atT=70K andf=10" Hz.

A series ofRg andZ anomalies observed in the tempera-
ture range 40-65 K correlates with heat capacity anomalies
(at 40, 50, and 60 K

The derivative|dRs/dH| changes its sign at a certain
temperaturdl . which typical of each sample and at which a
N-shaped anomaly in the temperature dependence of heat
capacity C(T) is observed. For the sample whoRg(T)
curve is shown in Fig. 5T.;=12K.

Figure 7 shows the temperature dependerRg3) of
the resistance of the same sample in the vicinity of the tem-
peratureT., which were measured in zero magnetic field
(curve 1, dark circle$, in a static magnetic field of 50 Oe) ! oL
(curve 2, dark triangle§ in the presence of a transport cur-
rent passing through the sample in zero magnetic f=idve
3, light circles, and a transport current passing through the
sample in a static magnetic field of 50 Qeurve 3, light
triangles. The curves in Figs. 7a and 7c were obtained in the 0 ———
first cycle of sample “cooling,” while those in Fig. 7b were 6 9 12 1'5 18
obtained in the sixth cycle. T, K

We also measured the temperature dependencéfof
= fp(H = 0)_ fp(H =50 Oe), Wherefp(H = 0) and fp(H FIG. 7. -Temperature dgpgndence of the sgrface resista_mcg at a frequency of
=50 Oe) are the resonance frequencies of the measuring 015Q7 Hz in zero n_1agnet|c fielddark C|.rcle$,.|n a magnetlc field of'50'Oe

. N . . L . (dark triangleg with a current of 1 A(light circles and in a magnetic field
C|Ilat0ry_C|r_CU|t with the sample 'n zerp magnetlc_ f'_eld and in of 50 Oe with a current of 1 Alight triangles (a). The same dependence
magnetic field of 50 Oe respectivellFig. 79. A similar re- after thermal cycling of the samplé). Temperature dependence of the
lation betweemAf and T was established for the case when difference between the resonance frequencies of the measuring oscillatory
Af is the same difference in the frequencies of the OSCiIIa—C_"CUit with a LuFgAlg sample in zero magnetic field and in a magnetic

. . .. . L field of 50 Oe(c).
tory circuit containing the sample in zero magnetic field
without a direct current and with a transport current passing
through it.

It should be noted that the value &f is proportional to 1. atT<T,., the resistanc&; of the compound in zero
the change in the reactive component of the surface resisnagnetic field decreases abnormdltyirve 1 in Fig. 73;
tance of the compound, and its positive value indicates an 2. atT=T,, the derivativedRs/dT changes its sign and
enhancement of diamagnetism of the samplel &tT; in becomes positive af<T,;
zero magnetic field. The mutual orientation of the magnetic 3. at temperatures beloW,, the derivativedR;/dl >0
field and transport current does not affect the results of med<curve 3), while IRs/dT=0 atT>T.. We also obtained he
surements. dependence oR; at a frequency 10Hz on the value of

It can be seen from Figs. 7a and 7b that the peculiaritietransport current passing through the sampleb &K (T,
of the resistance at<T. can be described as follows: =12K) (Fig. 8);

4
, Hz

Af-10

Cc




Low Temp. Phys. 25 (1), January 1999

285
G
» 280
o
[32]
=4
2.75¢ | | | | |
0.1 0.3 0.5

I, A

FIG. 8. Dependence of the surface resistance of LAkesamples on direct

current at frequency=10" Hz and atT=5 K.

0.7

Gurovich et al. 15

Variation of electrical parameters of LuFe
thermocycling

4Alg during

One of peculiarities of the samples under investigation is
the change in their electrical parameters during thermocy-
cling from room to helium temperatures. In this case, new
anomalies appear on the temperature dependences of resis-
tanceR; or impedance&Z. As the number of thermal cycles
increases, the shape of the anomalies changes, or the tem-
perature at which they are observed is displaced.

The magnetic properties of the compound also change.
By way of an example, Fig. 7b shows the electromagnetic
characteristics of the samplezhoseR; in the first cycle is
shown in Fig. 7aafter thermocycling.

After five thermal cycles 4.5-300 K, the sign of the
derivative JRs/9H did not change(see Fig. 7l and the
value of T; is actually the temperature at which the direct
current starts affecting the value Bf (curves3 and4 in Fig.
7b). After 10—12 cycles, the value @R/JH decreases for
all samples and becomes equal to zero after some time both
in the temperature range from, to T, and belowT.. The
value of gR;/dl does not change either, and no levitation is

4. atT<T,, the reactive component of the surface im- observed.

pedance of LUF&lg changes anomalouslgee Fig. 7h

Levitation of LuFe 4Alg sample in a magnetic field

DISCUSSION OF RESULTS

The linear temperature dependence of resistivity in the

The levitation of a sample was detected from the changp@aramagnetic region is typical not only of Luffég or a
in the Q-factor of the measuring oscillatory circuit. Figure 9 pure lutetium single crysti but also of other materials like

shows the temperature dependences of @kkactor of the

complex metaloxides for which it is explained on the basis of

same sample reduced to tRefactor of the measuring oscil- the two- band model of conductot$The electrical proper-

latory circuit & 7 K with the sample fixed at the magnd®{]

ties of rare-earth metals and their alloys are also analyzed in

and with a free sampl®). It can be seen from the figure that many cases with the help of the band model assuming the

the temperature variations of tt@@factor in both cases co-
incide atT<T, (T,=4.8K in the given samp)e while the
Q-factor of a freely suspended sampleTat 4.8 K decreases,
which confirms the existence of levitation.

presence of twgwide and narrowbands whose interaction
causes hybridizatiohlt should be noted that both Lufzl g,

and metaloxides exhibit a linear dependemd) in the
temperature range where paramagnetism exists and where

Similar results were obtained during measurements obhmic losses are due to both electron—phonon interaction
the resonance frequency of the oscillatory circuit. Its resoand scattering at localized magnetic mome(sise, for ex-

nance frequency increases &K T, indicating that the

sample approaches the inductance coil.

1.10
[ X
[ ]
..
i~ .°o
S 1.05 ° Cco,
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FIG. 9. Dependence of th@-factor of the measuring oscillatory circuit

normalized toT=7 K for fixed (@) and free O) sample.

ample, Ref. 12 and the literature cited thejelProbably, the
linear segment oR(T) for all these compounds can be ex-
plained on the basis of the same model.

The derivative 9Z/dT for LuFgAlg changes its sign
only at frequencies corresponding to the beginning of the
Z(f) dependence. Consequently, the anomalyaioT in
LuFe,Alg is apparently due to the layered nafdr® of the
material in contrast to metaloxides in which the change in
sign is explained by the two-band model. The sample should
be treated as a segment of a layered Yfinavith a
longitudinal’ and transversé transient resistance between
the layers.The complex interaction between these resistances
is probably responsible for the decrease in the valug iof
the frequency range preceding the emergence ofZf¢
dependencésee the inset to Fig. 4b

The anomalies in heat capacity and resistance during
phase transitions appear as quite natural. Such singularities
correspond to antiferromagnetic ordering B=100.5K
and coincide with the results of magnetic measurements on
the temperature scal@ig. 3.2 The anomalies observed in
the temperature range 75—-90(ee Fig. 3and clearly mani-
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fested for one of the samples in Figs. 4a and 5 are astonist superconducting state is formed as the temperature de-
ing. The resistance increases by 10-20% at temperatureseases below .. The emergence of such a state is unlikely
10-20 K belowTy and decreases in a weak magnetic field atin regions with clearly manifested magnetic moments. As-
least in the vicinity ofT\,. The saturation field has a value of suming that two adjacent layers are coupled antiferromag-
just 40 Oe. The curve in Fig. 6 closely resembles the analoretically, it can be surmised that the small boundary region
gous dependence obtained by Baibiehal?® for artificial  between the layers is nonmagnetic, and superconductivity
FeCr magnetic superlattices.It is interesting to note thaemerges just in this region. This explains the low concentra-
negative magnetoresistance and saturation field in such artion of the superconducting phase. The magnetostructural
ficial layered structures depend significantly on the separgehase transition, and hence the nonuniform state of the
tion between adjacent magnetic layers with antiparallel magsample also explain the peculiarities of thermal cycling and
netic moments. Note that the resistance jum@/Z at the spread in transition temperatures. Since the samples were
T=T, is practically independent of frequency. In some polycrystalline, the orientational dependences were not ob-
samples, the resistance was doubled &fT;. served.

The dependencBi(H) observed in our case in a weak
field indicates the existence of a weak magnetic interactio©ONCLUSION
in the magnetic subsystgm and agonsiderable ipterac_:tion of The most important properties observed by us in
conduction eIec_trons with magnetic moments, just like 'nLuFe4AI8 can be summarized as follows.
layered magnetic structures and in heavy fermion systems.

Below 30 K, the dependend®,(T) can be described by (1) A singularity on the temperature dependence of heat
the expressionC,=yT+ BT?, where y=0.07 J/moleK?. capacity indicating an antiferromagnetic phase ordering
Such a value ofy also suggests that the system contains  at Ty=100.5K.
heavy fermions. Additional investigations must be carried(2) A sharp increase in the sample resistanc& at Ty .
out in order to find the origin of the weak-field magnetore- Orientational magnetoresistance is observed below this
sistance effect with the negative magnetoresistance in the temperature in a weak{<50 Oe) static magnetic field.
interval betweerT; andT,. (3) The emergence of a small amount of the superconduct-

The obtained results of complex studies of heat capacity ing phase at temperatures bel@w=24 K.
as well as the electrical and magnetic parameters of4) The existence of heavy fermions in Lufé¢g is indi-

LuFeAlg at T<25K lead to the conclusion that this com-  cated by heat capacity investigations.
pound contains a small amount of the superconducting phase It can be assumed on the basis of the entire body of
(SP with a transition temperaturé.<24 K. experimental data that a layered magnet— nonmagnet—

First, the increase in the reactive component of impedmagnet superlattice is formed at temperatufes Ty, . Be-
ance(see Fig. 7tand the levitation of the sample &< T, low temperatureslT.<T,, this superlattice is transformed
indicate an augmentation of the magnetic flux expulsiorinto a magnet—superconductor— magnet superlattice.
from the compound, i.e., the existence of the Meissner effect. Thus, the compound LufAlg possesses interesting

Second, a decrease in ohmic losses is observed in thghysical properties and serves as a promising object for fur-
dependenc®(T) at T<T,. ther investigations.

Third, it was shown above that a constant transport cur- The authors are indebted to M. L. Almeida and A.
rent as well as a static magnetic field affect the ohmic losse&onsalves for supplying the samples, and to A. G. Anders
in the compound af <T.. In this case,dRs/dH>0 and and N. I. Glushchuk for fruitful discussions.
dRg/ 9l >0 (see Fig. 7a and)8Such a behavior is typical of
the superconducting phase at temperatures below the transimtemational Laboratory of Strong Magnetic Fields and Low Tempera-
tion temperaturel,, and the shape of the current depen- tures, 53-421 Wroclaw, Poland
denceRy(1) (see Fig. $indicates the presence of the critical **'E-mail: dmitriev@ilt.kharkov.ua
current in the sample. In this case, weakanomalies of the ———

\-type observed at the temperatures 5, 10, 15, 19, and 24 KJK- Iis‘;.c?cl)]rflﬁngyl\/l Je-s"é- ’1\145\/8%;/5“' and W. W. van den Hoogenhof,
probably reflect_the superconducting transitions of the het-, "~ kraan and K. H. J. Buschow, Physkf 93 (1977).
erogeneous regions of the sample. The absence of a hystetx. H. J. Buschow and A. M. van der Kraan, J. Phys. F: Metal Phygics
esis in this temperature range allows us to attribute the ob; 921(1978,. _ _ _
served peculiarities to second-order phase transitions. S A N|k_|t|n, Magnetic Properties of Rare-Earth Metals and Their Alloys

The model that can describe qualitatively the observeds[m Russiaf) MGU, Moscow(1989. < N

V. M. Dmitriev, V. N. Eropkin, A. M. Gurevichet al, Fiz. Nizk. Temp.
peculiarities can be described as follows. As the temperature17, 53 (1991 [Sov. J. Low Temp. Phy<7, 28 (1991)].
decreases below the antiferromagnetic ordering temperaturgM. N. Ofitserov, N. N. Prentslau, N. A. Kucheryavenkoal., Preprint
Ti, @ magnetOStrucFural pha_se transition .takes place, Which\,\/l.oll\ﬂé.lg_rgi?r’iéc,sﬁ\.ﬂfol\rl.Lg},i\;szerg\]/r,).a';zyl\sl: Ehg}’eﬁrs?gﬁégggi.otekhnika, No.
results in the formation of antiferromagnetically coupled iron g7 93 (1903,
layers separated by the layers of nonmagnetic lutetium. IréN. N. Prentslaau, A. P. Bezkorsyi, I. F. Kharcherdtoal, Radiotekhnika,
this case, the spin-dependent scattering of charge carrierngOM87br}1i2t(r>i(el\?83- \. Ofitserov. N. N. Prentslau. and K. Rogatski. Fix
which is responsible for negative magnetore_ssta?ﬁ'ééb_e- Nizk, Temp. 19, 268(1993 [Low Temp. Phys19 '188(19%].9 iz
comes significant, and the resistance experiences a jump. #y, u. pmitriev, M. N. Ofitserov, and N. N. Prentsla®roc. Contrib.
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A nonuniform distribution of magnetic disclination type magnetization connected with the atomic
size step on the ferro/antiferromagnetic boundary is studied. The obtained results are
generalized to the case of periodic stepped ferro/antiferromagnetic interfacé99® American
Institute of Physicg.S1063-777X99)00401-9

In the light of technical applications of the phenomenonthe ground state with collinedin FM) and anticollineagin
of giant magnetoresistance in recent years, layered magnethM) distribution of spins for any kind of exchange inter-
structures and interfaces between different magnetically oraction through the interface. In a magnet with “staggered”
dered materials have been subjected widely to theoreticalrdering and a compensated AFM surface, a noncollinear
and experimental investigations. Multilayer systems containstructure may be formed at the surf&cdn the presence of
ing alternating layers of ferro- and antiferromagfhétsave  an atomic size step at this boundary, ideal ferro- and antifer-
been drawing special attentiginterface between Co and romagnetic ordering in half-spaces can emerge only in the
CoO is an example of such a systeiim experimental inves- absence of exchange interaction through the interface. Even
tigations of layered magnets, some interlayers are oftea weak exchange interaction between the half-spaces makes
wedge-shaped with a small divergence arigle.this case, the spin distribution noncollinear in the ground state and the
the interface between the magnets has a regular stepped fosystem acquires a magnetic disclination having Frank’s in-
with large separation between steps of atomic size. The preslex k=1 (Fig. 1) and its center at step. In Ref. 10, such a
ence of a step at the boundary of a layered antiferromagneonfiguration was associated with the presence of a screw
leads to local variation of the micromagnetic structure andlislocation in the AFM. In the case being considered here,
the possibility of emergence of a “topological surface the crystal structure is perfect and the presence of a step is
antiferromagnetism.*® A large number of theoretical works equivalent in the magnetic sense to a “magnetic disloca-
have been devoted to this problésee, for example, Ref)6  tion,” i.e., to the inclusion of an additional spin layer. Since
In this communication, we shall show that the presence of awe are interested in the magnetization distribution over dis-
atomic step at the interface between isotropic ferro- and artances larger than atomic dimensidsize of a step we can
tiferromagnets necessarily leads to the emergence of a nomeplace a plane interface by a step at the ideal boundary,
uniform distribution of the magnetic disclination type mag- having reversed the sign of the exchange interaction through
netization throughout the entire volume of the magnets. Thé along one of the semi-axésn one side of the stgp
nature of such a distribution depends on the relation between Let us consider a two-dimensional quadratic lattice with
the exchange constants in ferro- and antiferromagnetic halthe FM/AFM interface along th&-axis (the directionz of

spaces. antiferromagnetic ordering is perpendicular to the intenface
Confining ourselves to the classical Heisenberg model in the
1. MAGNETIZATION DISTRIBUTION FOR AN ISOLATED exchange approximation, we can represent the Hamiltonian
ATOMIC SIZE STEP AT THE BOUNDARY of the system in the form
Let us consider a plane interface between a ferro- and an
antiferromagnetic subspace. For simplicity, we shall assume H:sgz Jnm €0 ©n— @m)s (1)
that both magnets have a strong easy-plane one-ion anisot- nm

ropy, and disregard the additional weak anisotropy in the ) ) ) _ ) )
easy plane. In this case, it was shown by Gouseal.’ that whereS; is the lattice site sping, the spin rotation angle at

all spins in the magnetic vortex or magnetic disclination conh€ siten in the (x,z) plane, andJ,, the exchange interac-
figuration, rotate in the easy plane without leaving it, whiletion between spins at lattice sitesand m (summation is
the spins at lattice sites are characterized simply by theif@rmied out over the nearest sites of the quadratic lattloe
rotation angle in this plane. Thus, the geometry of statidh® ferromagnetic half-spacex0), Jnn=—J; and—J in
configurations is described by using the scalar model. In &1€x andz directions, respectively, while in the antiferrom-
layered antiferromagnet with layers ordered parallel to theédgetic part ¢<0), J,n,=—J; and J, in these directions,
ideal ferro/antiferromagnet interface, both half-spaces are iwhereJ; andJ;>0. In accordance with our model descrip-

1063-777X/99/25(1)/6/$15.00 18 © 1999 American Institute of Physics
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Here, we have introduced the following standard notation for
the Hilbert transformation:

bt 5 s fF— 1fd , F(X") 7
- ; X (X_X/) . ( )
i [ ’_ 7 _' _ J_ 4 For the AFM half-spaceZ<0), formula(6) is replaced
4 -4 P '_ )] by
S R P ~~ . de_ .
0 X (J2dp) V3 - =Hf_(x), ®)
N M

wheref_(x) are the effective forces acting at the boundary
N f_= —32a<p/az|z=,o of the lower region. The dependence
of the forcesf.(x) on relative orientation of spins at the
FM/AFM boundary follows from formuld3) for the surface
energy
FM/AFH terface in the partcular case of dentcal exchange iteracton i 1 (X) = FSGIX) 5 Sin(@.. — ). ©
magnets Substituting formuld9) into Eqgs.(6) and(8), we obtain,
after adding and subtracting, a closed equation for relative
spin rotationsy= ¢ , — ¢ _ in the layers adjoining the bound-
tion of the interface containing a step, we propakg, ary and the relation of the functions, and¢_ with the
=J,sgnk) as the constant of exchange interaction througtfistribution ¢(x):
this interface. It is convenient to go over in the antiferromag- [ dy
netic half-space from the angles, to ¢,+ 7 in even- sing+1 sgr(x)H(&)=0, (10
numbered layergsee Fig. 1 After this we can provide a
longwave description for the fields of magnetization and the

F.5.\12
antiferromagnetism vector in both half-spaces within the = (JiJa) ,
framework of Laplace equations: (J3135) Y2+ (3,3,)%?
+ = >
J1exxtJo@,,=0, z>0, (J1J2)1/2
~ ~ ) p=- op— (11)
J1exxtJ29,,=0, z<O0. (3135) Y24 (3,3,) 12

Since the relation between exchange integdals); and  \yhere we have introduced the parameter
Js is assumed to be arbitrary, relative deviations of spins
¢, =¢(z=+0) and¢_=¢(z=—0) may be quite large | =(3135313,) Y213 (3135) Y2+ (3,3,) V2],
(:.Tr). n Iaygrs adjoining the interface and hence thg rnag'characterizing the extent of nonuniformity in the distribution
netic interaction between these layers must be taken into ac- o2
count exactly: of magnet_|zat|on around the sgrface §tep. .

Equation(10) was studied in detail by us in Ref. 10. It

W,=sgnx)Sscog ¢, —¢_). (3) was shown that it has a local topological soliton solution
whose asymptotic forms at large distances from the center

The nonuniform distribution of the magnetization field and behavior in the vicinity of the step can be described as

in the FM half-spacez>0) can be expressed in terms of the

density distribution of the effective forcds (x) acting at the follows:
boundaryz=0:!! (1
) K_>_m1
(x2>0) 1 fd . [(x—xr)2+22f o K ,
X,Z = X' In|———+ —|f . (X"), T
¢ 27313, NP Wx)={ 5|kl k<1, (12
4
4 1
where T——, K—+0»,
\ K
f+(x):‘]2ﬁ (55 where we have introduced the dimensionless coordinate
92|, 10 k=xIl.
(we have put the lattice constant and the sBinequal to Spin deviation field distributions at the FM/AFM bound-
unity). Formula(4) leads to the following expression for the &7 and in the bulk of the magnets are expressed in terms of
magnetization gradient at the interface: the obtained function/{x). Thus, spin rotations in layers
adjoining the interface are defined by formuldsl). The
md% —Af,(x) ©) boundary region in which the spin rotation angles are not
=Hf.,(x).

12 dx small is of the order of. Hence a decrease in the interaction
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through the boundary leads to an increase in the size of thehere A=1(J;/J,)¥? is the characteristic size along the
disordered region in proportion toJL/. Since the total varia- z-axis. For a weak spatial anisotropy in the cdge-J,, the

tion of the angley upon a variation ok from —o to +o quantities\ and| are of the same order of magnitude. The
amounts torr, we can easily calculate the total rotation of theintegral in formula (15 is evaluated in elementary
ferro- and antiferromagnetism vectors in the correspondindunctions!® and the obtained expression can be expanded in

half-spaces: powers ofl/x and\/z at distancex>1 andz>\. In terms
of the initial variables, the first terms of this expansion have
™ the f
B¢+ =@+ (+5) =@ (=)= s e om
1% J
(13) 78 % 2>0)="2f(x,2), (16)
oo =@ (+0)—@ (—x == —,
S (1+9) where
where we have introduced the parameger(J;J,/J;J,)Y? f(x.7)— X/l
characterizing the difference in magnetic properties of FM (x.2) X212+ 22I\?
and AFM. It follows from formulag13) that the total varia- 3 .3
tion of the anglee during circumvention of the step at the x| 1— 24|22| s (I_gig) . @1
interface along a closed contours and this spin configu- Aa(X/1°+2°/\%) X"z

ration indeed Corresponds to magnetic disclination with The Corresponding expression for the derivative of the

Frank’s indexk=1. However, in contrast to the magnetic fie|d of the antiferromagnetism vector in the AFM half-space
disclination associated with dislocation in a homogeneou$z<0) has the form

AFM (see Ref. 1)) the total spin rotation is different in FM

: i d Js~
and AFM hfalf spaces in the present case and depends on the ¢ %,2<0)= 2¥(x.2), (18
parameteg: 97 3,
5+ -—g (14) where T differs from f in the replacement of\ by
o A=1(3,/3)"2 In the case of a weak spatial anisotropy,
If magnetic interaction in the AFM half-space is much When Ji1=J; and J,;=J,), the functionsf and f actually
coincide and

stronger than the exchange interaction in a ferromaghet
>J;, “frozen” AFM ), the rotation of magnetization occurs deldz(z>0) J?
mainly in the FM region through an angle closertoln this m% 3. (19
case, if we consider even a weak anisotropy in the easy 2 S _ _
plane, the magnetic disclination is transformed into a ferro-This means that the spin distribution is quite asymmetric
magnetic domain wall in the FM half-space which terminategelative to the interface in the case of a considerable differ-
at the step in the interface. ence between the exchange constants in FM and AFM.

In the opposite case of a “frozen” ferromagnet in the

casel;>1J;, the spin rotation mainly takes place in the AFM
region, and the antiferromagnetism vector turns through ag- MAGNETIZATION DISTRIBUTION FOR A REGULAR
angle close tar upon a variation ok from —o to +o. In ~ STEPPED SHAPE OF THE INTERFACE

this case, a 180° AFM domain wall is formed if the intra- | oy ;5 generalize the obtained results to the case of an

plane anisotropy is taken into account. Figure 1 shows thg, e tace with an infinite number of atomic size steps with a

spin configuration in the intermediate caje=J;. In order  |arge separatiohs a between them. The magnetic exchange

to find the magnetization field distribution in the entire two- interaction through the boundary can now be described by
dimensional region around the interface nonuniformity, Wethe function

must use formul#4) for the upper half-spacezt>0) and the 5
corresponding formula foz<0 after differentiating them W=J(x)Spcos ¢ —¢-), (20

with respect taz and substituting into them formuk®) for  \hereJ(x) has the form of an alternating step function with
the effective forces. Since we are interested in the asymptotiﬁeriod 4 and amplitudel, the constanfls characterizing
form of the solution at distances>1, we app2r01>/<2imate the the exchange interaction between the half-spaces. Formula
function sing. —¢_) by the expression 1/(£ )™ Inthis  (20) |eads to the following dependence of the foréegx)

case, we obtain the following expression for the upper halfpn the relative orientation of spins at the FM/AFM interface:
space:

fL(X)=FIs(X)sin(@—¢_). (21
3_€D(K 2>0)= zJ; i’ sgn(«") Substituting formula21) into Egs.(6) and (8), we ob-
az "’ wIoN J1+ k2 tain (after adding and subtractin@n equation analogous to
) (10) for relative spin rotationg/= ¢, — ¢_ in the layers ad-
| (k=24 | =] |, (15) joining the _boundary and the relation between the functions
N ¢, ande_:
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Jy(x) . ~(dy size of the magnetic nonuniformity associated with the pres-
3, SN Y+1H &) =0, (22)  ence of the step boundary in the system.
Let us analyze the solution of ER2) qualitatively. For
(313,)1? this purpose, we replace the system under consideration by a
-7 ¢ (23 model piecewise linear system in which the Heisenberg ex-

+ 1

7 .\12

(J1J) change interactiof20) of spins through the interface is re-
wherel is the parameter introduced above to characterize thplaced by an interaction in the form

2
8(2)‘]5%—8%‘]5, O=¢p,.—p_<ml2,
Ws— 2 (24
—S(Z)JS[(‘P+ Zi) il +S3),, mR<e@.—¢@_<m.
|
_ In Eq. (22), siny is replaced by a piecewise linear func- - 1
tion @, =—
2 1+(3,3,/3,3,)Y?
) i, (2n—1)L<x<2nL, i
SINY—1 =y 2nL<x<(2n+1)L, (25) . 2 sin(mx/L) 8
1+(3,3,/3,3,)¥2 1+(l7/L)
wheren is an integer, and Eq22) becomes linear. We shall
consider below the simplest case of the ground state of the
system in which magnetization distribution becomes uniform - 1
at large distances from the interface. This situation corre- ¢_=—— ——
sponds to a regular alternation of the signs of magnetic dis- 2 1+(313,13,3) 72
clinations associated with the sequence of surface steps. In .
this case, the distribution of spin deviatiofiis particular, of - 2 sin(mx/L) _ (29)
the functiony(x)) becomes a periodic function &f with a 1+(3,3,13,3,) Y2 1+ (1 m/L)

period 4., and we can use the Fourier transformation. Ap-
plying it to the above-mentioned linear equation, we obtain

the solution for relative deviations of spins near the boundary It follows from these expressions that in the limit of a
in the form of a series: weak bond between the half-spaces, the spin deviation in the

boundary layers is weakly modulated. Spin configuration in
- * sin(2n+ 1) mx/L] both half-spaces is deteLmined by the relation between the
P(X)= §+2§0 Zn+ D1+ 2nt Diail]’ (26) exchange constants andJ; in them. (It should be recalled
that, since there is no anisotropy, we can measure the angles
n®+ and ¢ _ from any direction in the easy plane.

In the particular case when the exchange interaction in
the magnets is identicaiJ{J,=J,J,), the angle between
Limit of weak bond between FM and AFM half-spaces mean directions of spins in the FM and AFM regionsri,

Even in the presence of an infinitely small exchange in-and the amplitude of spin deviations from these mean direc-
teraction through the interface, the spin distribution near itions is defined a1+ (mJ;J;)/2LJs] .
becomes noncollinear. Considering that the size of the inho- If the exchange interaction in AFM is considerably
mogeneity is comparable with the separation between stepgronger than the exchange in FlJ,>J,J,, which cor-
or exceeds itit should be recalled thdt<1/J; and increases responds to the “frozen” AFN| spin rotation mainly occurs
with the weakening of bond between the FM and AFM half-in the FM region in which spins deviate periodically from
spacej we can confine the converging seri@$) containing the mean direction orthogonal to the uniform orientation of
the factor 1/(+1)? (which decreases with increasingto  spins in the AFM half-space.

We shall study the nature of magnetization distributio
in the limit of strong and weak bonds between half-spaces.

the first approximationr{=0): In the opposite case of a “frozen” FMJ(J,>J,J,),
spin rotation mainly occurs in the AFM region.
@ 2sin(wx/L) In order to find the magnetization field distribution in the
(’D+_<P‘_E+ 1+(a/L) - @7 entire two-dimensional region near the step boundary, we

use formula(4) for the upper half-spacezt0) and the cor-
In this case, the spin deviations near the interface areesponding formula foz<<0. We shall take into consider-
obtained by jointly solving Eq923) and (27): ation formulag6) and(8) after carrying out the Hilbert trans-
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formation and substituting the obtained expressi@&s and —> —> —> —» FM
(29) for spin deviations near the interface. For the upper —> — — —
half-space we obtain the relaton .- cemmm T

J 2z f

Y (x,2>0)= — __,,_r_f_JL——— s

9z LIo[1+ (313573, 3,) Y2 (1 +14/L) ~L|—= \ — \

- cogwx'/lL)y o emmmmmmm =TT
fo dx’ . @309 0 Te---T
(x—x")213,+7%13,
Evaluating the integral in Eq.30) and applying -— - - -«—

H-transformation to the result, we finally arrive at an expres-

. f he derivati " . field in th FIG. 2. Schematic representation of magnetization distribution near
sion for the derivative of magnetization field in the UPPEeran FmiaFM step boundary in the limit of strong bond between magnets.

half-space:
Y 27 (I, vz
E(X’Z>O): N J_z spins in the FM half-space also along the interface. A tran-
sition in the upper half-space through the step along the
1 x-axis turns the spins through an angl@s can be seen from
X — = the expression for the exchange interacti@®) and the
[1+(3232/3:32) ") (1+1 /L) shape of the functiod(x) proposed by us.
2 (3\Y] o In the general case of “defrozen” magnets, it is obvious

Xexr{ _7,_(_1) 1sin— (31  from the above arguments that, for a strong bond between

J; L them, the spins rotate through an angt# in each half-

~ B ) space upon a change inby L, while the relative spin de-
(we have used the property{ cosiex)]=—sgnie)sin(ex) of viation varies between 0 and (Fig. 2). Obviously, the de-

the H-transformatioj o ~__rivatives of spin deviations in the layers adjoining the
The expression for the magnetization field distribution inhoundary are described in this case by a sequence of
the lower (AFM) half-space is obtained in an analogous sfynctions:

manner:
g 2m(3,\ 2 LTS (-1 (33
ﬂ- - =75 - - .
_IA(X,Z<O):_ ,.,_1 X 2r|:—oc
0z J,
In order to determine the nonuniform distribution of
1 magnetization in the FM-half-space, we substitute the ex-
X ~ = Y pression(33) (with sign “+" for the FM) into formula (4)
[1+ (323213232 ") (1+1 /L) taking into account the relatiof6) and the skew-symmetry
217 112 X of the H-transformation. Differentiation with respect o
xexpg m—| — sin—. (32) gives
‘]2 L + o
de
It can be seen from Eq$31) and (32) that the charac- —Z(x,z> 0)=-— YRR
2n=-o

teristic size of the nonuniform magnetization distribution re-
gion near the FM/AFM stepped boundary is of the order of . 1
L\3,/3; in the FM half-space and vJ,/J; in the AFM X(_l)nH(X_n|)2/Jl+ZZ/J2' (34)
half-space. However, the nonuniformity in the magnetization

distribution upon a weak interaction through the interface is  This expression can easily be transforntsde Ref. 1P
proportional to the quantity l#Jg and vanishes fod;=0.  into the relation

Note that a decrease in the nonuniformity of magnetization

+ oo

distribution with coordinate depends only on the properties dp (x,2>0)= T 2
of the half-space and not ahy. 9z " 4\/En=*°°
Limit of strong bond between FM and AFM half-spaces x—nl
In the limit of a strong bond between FM and AFM, let X(_l)n(x_n|)2/31+ 2213, (35)
us first consider the case when one of the half-spaftes
definiteness, let it be the AFM half-spads “frozen,” and To calculate the sum of the seri€&5), it is expedient to

the spin distribution in it is uniform. If the spins in the lower decompose it into two sums, one over even values ahd
half-space are collinear to the interface, an indefinitely stronghe other over odd values, and to apply the Poisson summa-
exchange interaction through the interface also “aligns” thetion rule to each of the obtained surls:
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2mimx

> f(x+s|)=E > ex i

S=—o0 m=—ox

+oo —2mimx’
X f dx’f(x’)ex;{ I—) .

(36)

Using this relation, we obtain for the sum over eveim
(35

+ o

X—2nL
E _ 2 2
ne (Xx—2nL)/J,+ 2713,

Jl. —2mimx
J d x’ 27mx’ 3
X 205y o ) @7

Obviously, relation(37) is the Fourier sine-transform of
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0 2 Jl 1/2 X 313 1/277
—(x z2>0)= FTh J_z sin-—ex —2(31135) Tl
(41)

It can be seen from the above equation that, as in the
case of a weak bond between the half-spdéasnulas(31)
and(32)], the decrease in the nonuniform magnetization into
the bulk of the magnet is exponential in nature, and the re-
gion of such a nonuniform magnetization distribution has a
characteristic sizé\gy~L+/J,/J; in the FM half-spacdin
the AFM half-spaceA aey~L VI, /34, i.e., coincides with
the corresponding expression in the limit of weak bond be-
tween the magnexs

CONCLUSION

the integrand, and the final expression for the sum over even A two-dimensional scalar model is proposed for an easy-

n has the form
+ oo

E X—2nL
e (x—2nL)213,+7%13,

Z Jl 1/2
eXF{_WE(J—Z) mj.

_—2 smT

Jy7 = TMX
= (38)
I =1

plane magnet containing a stepped FM/AFM boundary. Us-
ing this model, a system of nonlinear one-dimensional
integro-differential equations is obtained for fields of spin

rotation around a nonuniform interface. Magnetization field

configurations near such a boundary are studied in the limit
of strong and weak bonds between FM and AFM half-

spaces.

Having carried out the above-mentioned transformations

on the sum over odd, we finally arrive at an expression for

the derivative of spin deviations in the FM half-space:

’772 \]1
2L J
m(2n+1)x

XE sin——— 3

cod

(9 1/2
—(x z>0)=—

I_IN

For the AFM half-spaceZ<0), the analogous expres-

sion has the form

e G 31 12
—(X,z<0)=—| =—
0z 2

J2

m(2n+1)x

XZ sin———

Z .
Xex;:[w[(aluz)lfz(znﬂ). (40)

(3113)Y42n+1)|. (39
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The field dependence of the order parameter is investigated theoretically, using a statistical
approach within the framework of the Ginzburg—Landau model with respect to the ferroelectric
phase transition. It is found that, along with the existence of ordinary non-switching

hysteresis is not too high fields(e<e., wheree, is the coercive fielf] hysteresis of a switching
type can be observed at the fields in excess of the coercive ond.999 American

Institute of Physicg.S1063-777X99)00501-0

The influence of a quasi-stationary external field on the dy ——
formation and growth dynamics of 180°-domains was inves- gt~ 2l(e=3D()—n)ntel,
tigated it within the framework of the Ginzburg—Landau 2
model, using a statistical approach. dD(1) =(a—D(t)—379)D(t)

Our goal in this paper is to follow evolution of the do- dt g ’

main structure which has already been formed in ferroelec- _ L . . .
trics depending on the magnitude and the direction of theWhereD(t)fK(o’t)’ a_(.TC NITeis a cﬁmensmnless pa-
external field. rameter which characterizes the proximity of temperafyre

To characterize quantitatively the change of a systerr#p to that the specimen cooled, to the ordering temperature
; e=E/T; is an external field in corresponding units.

. " ) o
state passing through the critical temperature p@gtof a The singular(stationary points of the systent2) corre-

phase transition, one or more valu@gslled order param- ) i .
eterg are introduced. In the case of the ferroelectric phasé pond to the thermodynamic equilibrium _;tates of or(jer|_ng
transition the projection of the polarization vector on a Cer_systgm and. can be fgund from the.condmons of va_n|sh|ng
tain crystallographic direction is used as a long-range orde'® first derivatives with respect to time on the left sides of
parameterp(r t). the Eqs(2) ast— . Hence it follows that the system of two

To describe the relaxation processes taking place in thglgebralc equations in variablesandD takes the form

system undergoing the phase transition, there is no need to (¢4 4% —-3D7%— 7°=0,
know the spatial distribution of order parametgr,t) in D-372D=0
detail over the total macroscopic specimen. Therefore, in the (a 7°)D=0.

subsequent discussion, as beforee shall deal with the The roots of the above-mentioned system vyield the coordi-
search of the main physically significant characteristics ohates of singular points in the plane,D).

()

this function, such, for example, as the averdgeer the In this work we shall consider only the caBecT,, i.e.,
crystalline grai value of the order parameten(r,t)=n(t) >0, when there is a whole system of singular points. How-
and two-point correlation function ever, only the points located in the upper half-plane of the

phase patterfin variablesz,D) will have a physical sense.
Recall that the positions of these singular points, in the case
(&(r,0)é(r' ,1))=K(st), s=r—r’, (1) of weak field < a®?), were found by us in Ref. 1.
The first singular point I[ 7= —(e/a), D=0], which
corresponds to a homogeneous disordered state, is an un-
where we have introduced the centered order parametstable node€Fig. 1).
£(r,t)=y(r,t)— 5(t). The equations describing the tempo- The second point Il §=+a+(e/2a), D=0) corre-
ral evolution of 5(t) and K(s,t) on all stages of ordering sponds to a homogenous ordered state “aligned with the
were introduced ihon the base of Ginzburg—Landau func- external field” and is a stable nod€ig. 1).
tional for nonequilibrium order parameter. The third point lll (5= —\/Z+(s/2a), D=0) corre-
Our interest in this work is with the behavior of the sponds to homogenous ordering, but it is “opposite to the
order-disorder system for times which are greater in comfield.” This point is also a stable nod&ig. 1).
parison with the time of forming4;), but much less than the Both the second and the third singular points correspond
time of coalescencer{) of the domain structure r{j<<t to single-domain type of the specimen ordering.
<71.). Therefore, in the subsequent analysis for field depen-  All the rest of the singular point§with D+#0) corre-
dence of the order parameter=7(e) we shall use the spond to inhomogeneous ordering, i.e., to one or another
asymptotic system of equation obtained in Ref. 1 polydomain structures.

1063-777X/99/25(1)/4/$15.00 24 © 1999 American Institute of Physics
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D In order to follow the evolution of singular points on the
+ IV phase pattern depending on the fieldle direct our attention
f%« to the system3). From the second equation of a system it
T\ K follows that there are solutions of its satisfying the condition
003 )\ ¢ D(t)=0. In this case the first equation of the systéan
/L \\ takes the form
/ \ —
0020 N P e=n"—an. (4)
/ - \}\(//‘/ The right-hand side of4) has extremes in two symmetric
v, A 1 001+ AN points with respect to the ordinate axis
_\‘_..\\ ®, . P »® %
i /?“\ 2 \\ I 7P ==\al 3. 5
// ~ v L \\.I. ~ .. —_ >
-OW2 01 {0 0.1 02 7 The_ posmvg _value_: of parameter{>0) corresponds to the
e minimum critical field
FIG. 1. Phase pattern of order—disorder system. The singular points of the min_ __ 2a%2 6
system(2) ate =0 are marked by the crosses); the singular pointgl—V1) & = 3\/§ ! (6)

for the system2) at e #0 are marked by circle€O) and separatrices are

indicated by dotted lines. The arrows indicate the directions of motion forand the negatlve Value Of parameta‘f:ﬁ 0) Corresponds the
the singular points with increasing the external field. The bifurcation points . . .
maximum critical field

(ate=g.) for the system2) (5. andK.) are shown by black circle@®).

3/2
pmac 20 %

The fourth point IV[ 7= &/2a;D = a— (3¢?%/4a*)] (Fig. 3.3
1) is a stable node and corresponds to the possibility of &ince, while writing down the thermodynamic potentia)
polydomain structure realization. The fact tha£0 in this  in* we assumed at>0, then it is natural to consider only the
state corresponds to some non-equivalency of domains ehaximum critical field €.=#eg>), which we shall call
two types. However, in weak fields this distinction is small critical field simply. To elucidate its physical sense, we con-
(to the extent of the ratia/«a). sider what will happen with the singular points of the system

Finally, there are another two singular points of the(2) under smooth variation of external field beginning from
saddle type. One of them VY'right saddle”) with coordi- valuese<e..
nates[ 7= \a/2— el4a; D= ald+3¢/(4a)] (Fig. 1) cor- Studying a behavior of the algebraic systésh roots it
responds to a possibility for realizing such a quasi-stationarys easy to verify that as the fieldis increased, the singular
polydomain structure, where the volume fraction of domaingpoints I, Ill and VI located in the second quadrant begin to
of the same typée.g., with polarization vector, aligned with approach each other gradually. Simultaneously, the mutual
field) substantially exceeds the volume fraction of the otherapproach of the singular points IV and V occurs. And only
type domaingopposed to the fie)d the second singlet pintll), corresponding to the homoge-

The other point(“left saddle”) [7=— Jal2— elda; neous(monodomainordering of the systertcrystallite as a
D= a*/4—3¢/(4\/a)] (the point VI, Fig. 2 corresponds to  whole, will recede further and further from the rest of the
a possibility for realizing the quasi-stationary polydomainsingular points, moving towards the right along the abscissa
structure as well. However, in this situation the volume frac-axis.
tion of domains with the polarization vector oriented oppo-  The approach of the above-mentioned groups of singular
site to the field substantially exceeds a volume fraction opoints will cause the sectofsand3 to decreaséFig. 1). It
domains aligned with the field. testifies that the potentialities both for the polydomain and

Two separatrices, leaving the origin of coordinates andor the monodomain ordering “opposite to the field” will be
passing through the “left” and “right” saddle points, divide decreased gradually. The sec®ron the contrary, grows to
the phase pattern into the three parts. The upper central seextend the range of conceivable initial conditions, beginning
tor (1) is the “attraction region”of inhomogeneoypolydo-  with these, the system will be ordered homogeneously,
main) state, the lower right-han@) and lower left-hand sec- “aligned with the field.” That is, the external field specifies
tors (3) correspond to two ‘“attraction regions” of the direction of the preferential ordering.
homogeneous single-domain states. When the critical value of the field=¢. is achieved,

In the context of this work our interest will not be with the confluence of the singular points I, Ill and VI into a
the locations of singular points by itself on a phase pattern asingle points, will occur. Simultaneously, i.e., at the same
fixed value of external field, but their evolution and bifurca- value of critical field, the singular points 1V, V are merged
tion under changes of a value and direction of external fieldnto the singular point . with the coordinates (142a/3;

e. Itis suggested that the field changes slowly endugiasi- 3a/4). At the same momer.e., in merging two groups of
statically in comparison with time of polydomain structure singular points the sectorsl and 3 disappear on the phase
formation (r,>74). Recall that for definiteness we shall pattern(Fig. 1). In other words, at the critical value of the
consider a phase transition in ferroelectrics connected witlexternal field bifurcation of the ordering system trajectories
the appearance of a spontaneous polarizatioh<at ;. takes place.
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The further increasing of the external field up to the |
valuese >¢ gives all the singular points to disappear, ex-
cept point Il. The fields higher than critical ones should be c
considered to be strong. Therewith, in the range of the strong
field (e>¢.), the average value of order parameter in the 2V /3 "/B//
single-domain state does not depend on temperature to a first
approximation, and it is defined only by the value of the field Vo

;N e 1/3. (8)

Let us consider the manner in which the character of the
ferroelectric domain structure will vary under the influence
of the external field. With this in mind we shall trace the
variation of the order parameter average vaju@ relation
to the magnitude and the direction of the applied fie|d
identifying » with the average polarization of the specimen
and the fielde—with the uniform electric field.

Analysis will be based on treating the behavior of the
solutions for the system of Egé3) under slow, continuous
variation of the parametet, i.e., on the study of the influ-
ence of the external field on the evolution of the ordering ¥
system singular points on the phase patiéig. 1).

Initially let us take up the manner in which the ordering E

system which in the polydomain state corresponds to the /_\[&‘
singular point IV on the phase pattefffig. 1), behaves one- =

self with time in a weak varying external field. If the external /B' . 2Na/3
field is changed slowlyquasi-statically (i.e., 7,>a 1), ac- c
cording to the phase diagraffig. 1) at the small deviations FIG. 2. Field dependences of the order parameter average valtiee
of field magnitude from zero, the system is limited by theordinary nonswitching hysteresis is indicated by a dotted line; the hysteresis
polydomain state. The external field brings into disbalancef switching type is marked by a solid line.
between volume fractions of the phases: oriented “opposed
to the field” and “aligned with the fields” in favor of the
latter. In this case under small changes of the fieldfield (e=¢.) any polydomain structure appears to be abso-
(le|<e.) the order parametey turns out to be proportional lutely unstable with respect to further growth of field. In
to the field stronger fields £ >¢.) the singular points 1V, V disappear at
7~ela. 9 all, that is any polydomain gtate becomes ene_rgetically dis-
advantageous and order-disorder system switches sharply
The inhomogeneities of the order parameter are therewitfpractically by a leapto the thermodynamically stable mon-
smoothed out by the external field odomain state oriented “with the field,” with the average
_ . value of the order parameter=2+/a/3 and with dispersion
D=a—3&e4a”. (10 . .
equal to zeroD=0). This single-domain state corresponds
Decreasing the dispersion of the order parameter, in accote the singular point Il on the phase pattéFig. 1).
dance with(10), appears to be a second order effect in the  Further increasing the field will cause polarization, in
field. accordance with{8), i.e., the average value of order param-
On further increasing the external field, as soon as theter 7 at the section of the curve frolito C (Fig. 2) grows
dependence;=7(¢) ceases to obey the linear |a®), the insignificantly (~&3).
order paramete, in cyclic change of the field will not fol- The field dependence of the order paramejet 7(e)
low the lineOAOA. This change of the order parameter will follows the curveCB (Fig. 2) as the value of the field de-
have the form of a hysteretic logdotted line in Fig. 2 The  creases, i.e., decreasing the average value of the order pa-
hysteresis involvedin the limits of the polydomain states rameter up to the field value= ¢ in a reversible way. How-
has nothing to do with the switching one and it will appear toever, when the field: becomes less than a critical one (
be more significant if the amplitude of varying of the exter- <g.), the average value of the order parameter does not
nal field is larger(naturally, within the arede|<e.). return to the polydomain branddA, i.e., the ordering char-
However such a behavior of the order paramejers a  acter of a specimen remains homogene@usnodomain
function of the slowly varied external fiekdtakes place only Furthermore, as the field magnitude decreases, the average
in the range of relatively weak field, whéa<e.. As soon  value of the order parameter will continue to decrease mono-
as the external field reaches its critical valye the conflu-  tonely, following the curveBE (Fig. 2 and attaining the
ence of the singular points IV and V on the phase pattermesidual magnitudeJa in total switching off the field
(Fig. 1 into a single singular poinK., with coordinates (e=0). To relieve this residual value of the order parameter
(1/2\al3, 3al4), occurs. Just at such a value of the externaly, i.e., to switch the specimen into the alternative ordering
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state, it is enough to change the sign of the fieldn in- doubling of the lineCBED with respect to the origin of the
creasing the field of the opposite polarity in the range ofcoordinates. When the field valug has been reached, the
values—e.<e<0 the further decreasing of the average or-order-disorder system falls from the poDt to the pointB’,
der parameter to the valuga/3 (the curveED on Fig. 2 i.e., it switches from one monodomain state into another one.
will proceed. The ordering character will not be changedThus, the large looBDB'D’, known as the switching hys-
here until the critical value of the field-¢. has been at- teresis, is closed.
tained. At the part of the curve froia to D, when the exter- However it should be borne in mind that the hystersis
nal field ¢ and the order parameter have the opposite po- pattern described theoretically above is restricted to the ide-
larity, the states of the system are unstablealized order-disorder system. It is unlikely that “the repolar-
thermodynamically, it would be advantageously energetic foization” of the system from one monodomain state to an-
the system, if the sign of the order parameter coincided wittother monodomain onéunder the changes of an external
the field sign. In other words, the secti®@@D (as well as field sign will proceed over the whole volume of the speci-
E'D’) corresponds to the metastable states of the ordermen (crystallite simultaneously. Actually in a volume of
disorder system. monodomain crystal the energetically “advantageous” re-
The further increasing of the external field magnitudegions with the opposite signs of the order parameter occur in
will produce “the frustration” of the valuey to the magni-  a fluctuational way and grow rapidfyin other words, along
tude —2+/a/3 (the pointB’, Fig. 2. This fact indicates the the way from one monodomain state to another monodomain
switching of the crystallite from the monodomain state withone the system passes through a number of the intermediate
one direction of the spontaneous polarization into a state lik@olydomain states. Besides, different defects and imperfec-
this but with opposite direction of polarization in response totions of the crystalline structure give rise to the obstacles to
the electric field over the whole volume simultaneously.the free motion of the domain boundaries and for their pass-
Thus the field— &, is nothing but a coercive field. In accor- ing out of the volume. All this will make the hysteresis loop
dance with(7), the magnitude of this coercive field dependsto narrow and “to smooth out;” so that, for example, the
on temperature through the parameter=(T.—T)/T,, coercive field may turn out to be less than the vake
which characterizes a proximity of the system considered t@btained theoretically.
the phase transition critical point. To evaluate the coercive  The author thanks to Professor E. P. Feldman for fruitful
field . obtained by us theoretically for really achieved val- discussions. This work was partially supported by the State
ues ofa, one should go to corresponding dimensional notafFoundation of Fundamental Investigation of Ukraine, Grant
tions in (7). The transition in triglycine sulphate crystal is No. 2, 4/220-97.
one of the most completely studied ferroelectric second order
phase transitions. The departure of behavior answering tee-mail: listef@host.dipt.donetsk.ua
Landau theory are not observed in this ferroelectrics up to
a~10"%-10"° For these values of it turns out that the  L1. Stefanovich, Fizika Nizkikh Temperat, 856 (1998 [Low Temp.
magnitude of coercive fieldE, found by us will achieve Zlf’/lhyEs.if‘n 643(%19,2% Clasrincinles and Aoslication of Ferroelectr
quite large values-50-100 kvicm. However, the exper- ). FLUes A 1 Sesinetes nd fopieeion of sk
mental investigations of ferroelectric hysteretic phenomenasg g Fesenko, R. V. Kolesova, and Y. G. Syndeyev, Ferroelecfics
in the fields such as these or even larger oiies 106 V/cm) 177 (1978.
are known(see’ e.g., Refs. 3 and_4 ‘;S. Sawada, T. Yamaguchi, and H. Suzgki, Fe_rrqelecﬁ“B;ﬁ (1985. .
The analysis of the folowing order parameter average g, SWier <20 2.7 Levanyuf el e of Feroeecti
values#n behavior depending on magnitude and direction of
the applied external field indicates that it is described by therhis article was published in English in the original Russian journal. It was
curve C'B'E’'D’ (Fig. 2), which is nothing but symmetric edited by R. T. Beyer.
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It has been found that the field, of a metamagnetic phase transition in;Ma,Ge;O;, garnet
changes as a result of illumination of the crystal with linearly polarized light. The value

of H, decreases under the illumination with the light polarizatidp110] and increases in the

case of the light polarizatioE||[110]. The difference in the values of transition field in

these two cases amounts+al00 Oe at the temperatufie=7 K, for which H;=31.2kOe in an
unexposed crystal. The change in the value of the metamagnetic phase transition field is
attributed to the photoinduced magnetic moment whose magnitude and direction depend on the
polarization of the inducing radiation. @999 American Institute of Physics.
[S1063-777X99)00601-5

The exposure of GMn,Ge;0,, garnet to linearly polar-  studied by measuring field dependences of the angle of rota-
ized light affects the magnetization reversal in the sublatticetion of the light polarization plane as well as by visual ob-
of this antiferromagnetAFM).! The observed effect was at- servation of the two-phase domain structure formed during
tributed to the emergence of a photoinduced magnetic mathe phase transition. The optical diagram of the experimental
ment in the crystal, the magnitude and direction of this mo-setup used for visual observation of the two-phase domain
ment depending on the polarization of the inducing light.structure is shown in Fig. 1. The light from a incandescent
The photoinduced magnetic moment was measured recentlgmp 1 passing through polarize was incident on the
in CaMn,Ge,0;, on a SQUID magnetometérlts magni-  sample7 whose image was constructed with the help of the
tude~0.03G atT=5K. objective 9 at the photocathode of a television caméda

The change in the magnetic state of a Mn—Ge garneThe image formed was supplied to monifict or recorder by
(MnGeQ under the action of light must not only be mani- a VCR 13. The light from the incandescent lamp was attenu-
fested in the magnetization reversal of the sublattices in thated by filters. Its intensity did not exceed 0.01 W#cand
antiferromagnetic state, but also affect the metamagnetidid not affect the magnetic state of the crystal under inves-
(MM) phase transition observed in this crystal in a magnetidigation. The two-phase domain structure observed in the vi-
field3~° The present research aims at clarifying and analyzeinity of the MM phase transition in MnGeG had a weak
ing the effect of linearly polarized light on the metamagneticcontrast between the domains of the AFM and MM states.
phase transition in GMn,Ge;0;, garnet. For this reason, computer processing of the image was car-

The sample under investigation was a monocrystallingied out to enhance its contrast. The sample was exposed to
plate of thickness-130um, cut at right angles to the tetrag- light from a He—Ne laserl6 having a wavelength
onal axis[001] of the crystal. Surface stresses appearing il\=633nm and a power of approximately 0.1 W/cnThe
the plate after mechanical treatment were eliminated by ameptical system of the setup used for illumination was supple-
nealing fo 6 h at atemperature of 1000 °C. The MnGeG mented with rotating mirrord4 and 15 as well as the field
plate free of mechanical stresses was subjected to additiondlaphragm4 of an appropriate shape, which made it possible
thermal treatment according to the technique described ito illuminate locally the chosen region of the sample. The
Ref. 6 for the sake of monodomainization. As a result ofimage of the diaphragm was formed on the sample by3ens
thermal treatment of the sample, its crystalline domain strucThe setup described above allowed us to observe visually
ture emerging in MnGeG as a result of a Jahn—Teller transiand to record on a tape the transition of MnGeG from the
tion from the cubit to the tetragonal phaseTat520K was AFM to the MM state in an unexposed sample and in a
destroyed:” The sample was placed on the cold finger in ansample exposed to He—Ne laser radiation.
optical He cryostat and was in vacuum. The temperature was The field dependences of the polarization plane of light
measured by a resistance thermometer to within 0.1 K. Avere measured by using the method of light modulation in
superconducting solenoid produced a magnetic field paralléhe polarization plane and synchronous detection. The source
to the tetragonal axis of the crystal and coinciding with theof light in these measurements was a He—Ne laser (
direction of light propagation. =633 nm). In order to eliminate the influence of the mea-

The effect of illumination with linearly polarized light suring beam of light on the magnetic state of the crystal, the
on the first-order MM phase transition in MnGeG was luminous flux density of the measuring light was reduced to

1063-777X/99/25(1)/4/$15.00 28 © 1999 American Institute of Physics
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application of a fieldH~20kOe (H,~20kOe, H, andH,
~1 kOel Just such a value of the external magnetic field
was required for the monodomainization of the sample in our
experiment. The magnetization of the sample was monitored
visually.

After the completion of monodomainization and switch-
ing off the magnetic field, the upper half of the crystal was
exposed to laser radiation with polarizati&f[ 110], while

the lower part was illuminated by light witk|[110] for 5
FIG. 1. Optical system of the experimental setup for visual observation ofnin Then the transition from the antiferromagnetic to the
the domain structure: incandescent lafhp lenseg2, 3, 5, field diaphragm ) . b d vi V. Fi 2 sh

(4), polarizer (6), sample(7), solenoid(8), objective (9), analyzer(10), metamagnetic state was observe Ylsua y. Figure 2 snhows
television camera11), monitor (12), VCR (13), mirrors (14, 15, and  photographs of the two-phase domain structure formed dur-
He—Ne lase(16). ing the field-induced phase transition in the exposed sample.
The dot-and-dash curve denotes the boundary between the
AFM and MM phases, and two dashed lines indicate the

0.01W/ent as in the case of visual observation of the tWo-jnterface between the regions of the crystal exposed to light

phase domain structure, while the sample was illuminated vaith the o - .
X . polarizationsE||[ 110] andE||[110] (the region be-
light from a He—Ne laser having a power of0.1 Wienf. tween the dashed lines is due to inaccuracy in setting the

When the inducing light propagates in the antlferromag—ﬁeld diaphragm for illuminating first one part of the sample

netic CaMn,GeO,, garnet along the tetragonal axis _ . X
Z||[001], the induced magnetic momemt" is parallel to this with E[[110], and then the othe_r part of the sample with
E[[110]). It can be seen from Fig. 2a that the AFM—MM

axis, and its magnitude and direction are defined by the re=!IL—->1/- ,
lation transition in the upper part of the sample occurs earlier than

A . in the lower part. In order to make sure that the difference in
m5"=A cos 2p+ B sin 2¢, (1) the transition fields in the upper and lower parts of the
fSample is due to illumination and not random factdiiee

whereg is the angle between the light polarization plane an

the[100] direction in the crystal, and andB are constants, nternal mechanical stresses or temperature gradjefits
According to this relationm" has opposite signs for the UPPEr part of the sample in the second stage of the experi-

polarizationsE||[ 110] and E||[1T0] of the inducing light. ment was exposed to light with the polarizatiéif 110] and

Therefore, we can expect that illumination of the crystal withthe Power part by light with the polarizatida[ 110]. In this

light having such polarizations produces different effects orf@Se, an inverse effect was observed, i.e., the AFM-MM
the MM transition. In order to verify this assumption, we {ransition in the upper part of the sample was delagféd.
made the following experiment. At first, a uniform antiferro- 20)- Thus, our visual observations lead to the conclusion that
magnetic state was produced in the sample by applying gght with the polarizationEll[ 110] sumulates a phase tran-
magnetic field sufficient for magnetization. It is well kndn Sition from the AFM to the MM state in GMn;Ge;0,, gar-

that monodomainization of an antiferromagnet containinghet, while light with the polarizatiofEll[110] delays it.
collinear domains requires, in addition to the longitudinal  In order to determine the magnitude of the photoinduced
field component,, also theH, andH, components. These displacemenfAH, of the phase-transition field, we measured
field components were present in the experiment due to déhe field dependences(H) of the angle of rotation of the
partures from exact orientation bf along the tetragonal axis Ppolarization plane shown in Fig. 3. These dependences were
of the crystal. According to estimates, the deviation of themeasured on the same segment of the sample having a diam-
field from the tetragonal axis was 3°. Under such condi- €ter~100xm and exposed first to light with the polarization
tions, the monodomainization of the sample requires th&([110], and then to light with the polarizatidal[ 110]. In

FIG. 2. Two-phase domain structure formed in a
CaMn,Ge;0,, garnet plate during an AFM—MM phase tran-
sition upon illumination of the crystal with linearly polarized
light. The dot-and-dash curve marks the AFM—MM interface:
regionl of the plate(above the dashed linés exposed to light
with polarizationE|[110], while region2 (below the dashed
line) to light with polarizationE[|[110] (a); region 1 is ex-
posed to light with polarizatiorE|[110], while region2 to
light with polarizationE|[[110] (b).

0.25 mm
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and taking into account the absence of a spontaneous mag-
netic moment in the AFM state, we can use the condition of
equality of the energies of the AFM and MM states at the
phase-transition point to write the following equation for the
cases when a crystal is exposed to light with the polariza-

tions E||[ 110] and E[[110]:
E. ;11 [110] A_ 2 phy _eM_ 0y 2
ind Eo—xaHa+m; Hy=Eg —m;Hy—xmHa, 4

E g |1 [170]

Eé_XAthz_mEthzzEgﬂ_mgth_XMthz- )

In these equations, the subscriptendM correspond to
the AFM and MM phase respectively, amf is the sponta-
. L . neous magnetization in the MM state. While writing these
H, kOe32 33 equations, we took into account the fact that, in accordance

with (1), mP" has opposite signs fdE|[110] and E|[110].
FIG. 3. Field dependences of the angle of rotation of light polarization

" . X ; Solving the system of equatiorid) and (5), we obtain the
plane, measured in a region of the;®&,Ge;0,, sample having a diameter followi . f h h ind d displ f
~100um and exposed preliminarily to linearly polarized light with polar- 10/10WING €xpression for the photoinduced displacement o

ization E|[ 110] or E|[110]. The sample temperatuie="7 K. the field corresponding to a metamagnetic phase transition:

AH=mB"[2(xy— xa) +MIH,]. (6)

0
30 31

both cases, the intensity and duration of illumination wereWhile deriving this expression, we considered that
the same. The first-order metamagnetic phase transition coH,= (H;;+H;,)/2. Substituting the value oﬁgh obtained in
responds to a jump on the(H) curve. It can be seen from Ref. 2 as well as the values of(;,— x») and mg from Refs.
Fig. 3 that the difference 2H;=H;,—Hy; in the transition 3 and 5 into(6), we obtainAH;=15 Oe. It should be noted
fields for the cases when the crystal was exposed to lighthat the value ofmg was determined by extrapolating the
with polarizationsEll[110] and EI[110] amounts approxi- linear field dependence of magnetization in the MM state to
mately to 100 Oe at the sample temperatlire7 K, i.e., H=0. The calculated value afH; is smaller than the ex-
AH,~50Oe. The field corresponding to the MM transition perimentally measured value by a factor of several units.
in the investigated region of the sample prior to illumination, However, the agreement of the experimental value bf;
which was determined from the position of the midpoint ofand the value estimated fro) can be regarded as quite
the segment on the(H) curve in which the angle of rota- Satisfactory on account of the fact that the valuerdf was
tion changes strongly, wad,~31.2kOe, i.e., close to the measured in Ref. 2 for the direction of light propagation and
value of Hy;+Hyp)/2. the direction of magnetic field along tH&00] axis of the
Using the value of the photoinduced magnetic momengrystal as well as large errors in the measurements of the
obtained in Ref. 2, we can estimate the magnitude of the shiftalues of v — x) andm? in polydomain sample¥?
AH, in the field of the metamagnetic phase transition in ~ Thus, our investigations proved that linearly polarized
MnGeG, induced by illumination with linearly polarized light induces a change on the magnitude of the field corre-
light. For this purpose, we write the energy of the magnet irsponding to a metamagnetic phase transition in
a field in the form of the power expansiontih(see Ref. @  CaMn,Ge;0;, garnet. The magnitude of the transition field
0 can increase or decrease as compared to the valdeiofan
E=Eo—miHi—x;jHiH;+..., 2) unexposed crystal depending on the polarization of the in-

whereE, is the energy of the magnet in zero magnetic field,ducing light.

O - ’ .
m" the spontaneous magnetic moment, gndhe magnetic The authors are grateful to Dr. J.-M. Desvignes, a scien-

feusé:sep;gbgltzh;:ee|ri1r<]1l{[ﬁte|or;nc;fr magfm:rt]lé: mgmnim{'“ght tist from the Laboratoir de Physique des Solides, CNRS,
9 9y 9 ’ Meudon-Bellevue, France, for supplying MnGeG single

Taking this correction into account and confining the power

expansion inH to the second-order term, we can write ex- crystals for the experiments.
pression(2) for the energy of the magnet in the form This research was partly supported by the INTAS Grant

No. 97.0366.
E=Eo—m’H;— xijHiH;—mP™H; )
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The transverse zero-sound wave in a one-component charged Fermi liquid with quasi-two-
dimensional electron energy spectrum is considered in the framework of the Landau theory. In
contrast to conventional metals, the electromagnetic wave propagation in such media

along the weak conductivity direction is possible even for low intensities of the Fermi-liquid
interaction. The field distribution in the sample under unilateral excitation is determined, the wave
impedance is calculated, and the possibility of observing the effect in the pulse mode is
considered. ©1999 American Institute of Physids§1063-777X99)00701-X|

Conducting synthetic crystals with a layered or chainrelation for collective excitations and calculate the relevant
structure and with a nearly metal-type but strongly aniso-contribution to the impedance.
tropic electric resistance have been studied intensely during Our basic assumption is that all energy characteristics of
recent years in many laboratories. By way of an example, wguasiparticles near the Fermi levéioth the one-particle
can mention polymers based on tetrathiafulvalene, polyHamiltonian and the Landau interaction functioveakly de-
acetylene, dichalcogenides of transition metals and their inPend on thez-component of quasimomentum, i.e., can be
tercalates, as well as HTSC ceramics in the nonsuperco®xpanded into rapidly converging Fourier series in the vari-
ducting phase. Among simple metals, simiafthough not ablet=ap,/% (a is the lattice period in the-direction.
so well pronouncedproperties are observed only in graphite. Retaining only the zeroth and first harmonics and neglecting
The theory of high-frequency properties of layered con-anisotropy in the plane of the layers, we can present the
ductors can be constructed on the basis of concepts of effeglispersion law for charge carriers in the form
tively reduced dimensionality of the motion of charge carri-
ers, i.e., the quasi-two-dimensional nature of the single-
electron energy spectru?ﬁ,g which is in accord with \where pizpi-i- pf,- The corresponding Fermi surface is a
experimental data on the wholsee, for example, Ref.)4  weakly corrugate open cylinder. In the given problem, it is
However, many-electron phenomena, including the propagasufficient to assume that it is either its only sheet, or other
tion of various types of zero-sound vibrations, are also okheets are equivalent to it. For this model, we can write the
considerable interest. The concentration of free charge carrexpression
ers in synthetic conductors is usually lower, i.e., the screen- .
ing of the electron—electron interaction in them is apparently ~ Vz=voSINt,  v,=v, (t)cose,
lower in such materials than in “good” metals. Along with 2

_.2
anisotropy, this can lead to a clearer manifestation of many- vl =vEt(hvo/2majcost, )

particle effects in the electrodynamics of layered materialsthe number of states per unit volume and their energy density
A longitudinal zero-sound wave in a quasi-two-dimensionalare given by the formulas

two-band Fermi liquid and its interaction with elastic waves

were considered earlier in Ref. 5. N=gr(1), (1)y=m/amh? ()

In this communication, we propose a model analysis ofr
the skin effect near the surface parallel to conducting layer
(x,y) on the basis of the Landau Fermi liquid thebrgee
also Refs: 7-P We analyze _th_e conditions for the exIStencenecting the true and effective distributions of quasiparticles
of collective electromagnetici.e., transverge modes and can be written in the form
prove that these conditions are considerably less stringent
than in the isotropic case. We shall determine the dispersion L(p,p’)=Lo(@,¢")+(volveg)Li(e,@’,t,t"). (4)

e(p)=p?/2m— (fivy/a)cost, )

espectively, and the role of the anisotropy parameter is
Splayed by the small ratio of velocitiagy/vg<<1.
In complete analogy witl{l), the Landau function con-

1063-777X/99/25(1)/5/$15.00 32 © 1999 American Institute of Physics
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In this expansion, we confine ourselves only to the first 5
terms. In accordance with the symmetry of the problem, it is
natural to assume that it is an ev@nd, naturally, periodic 4L :
functi’on of the difference between the azimuthal angles SE o= kvo/“ﬁ_— 22
e—¢.
Directing the electric vectoE in the electromagnetic g S
wave along thex-axis, we can present the kinetic equation in ey
the form 2F i . 1o=kvg
kv, ®— 0¥ —iv(®—(P)/(1))=ieEv,; (5) |
o=+ 2m 2| dv [ de'totom e wient, ' | l
o o 0 1 2 3 4
© K/ Kmin

wherek is the wave numberk(0z), w the electromagnetic
wave frequencyy the effective frequency of dissipative scat- FIG. 1. Dispersion relation for collective modkeold curve for A\=0.6.
tering of charge carriers, and the angle brackets indicate, as
before, standard integration over the Fermi surface with the
weight 20 ~1(27%) 3. The system of equatior(§) and (6) Here o2=

can be solved easily by introducing the harmonics of un R 4Ne/m is the "gas” value of the squared
known functionsb, ¥ and the kerneL o by the formula plasma frequency. It should be noted that the transverse plas-

mon spectrum in the chosen model starts frai,
_ T = wp/ \/1_ A.
Fi=(2m) 117 deF(¢)cose. We shall be interested in much lower frequencies for
i which the unity on the right-hand side ¢10) can be ne-
Then it follows from(6) that &,=¥,+¥,L,, where the glected. At the same time, in view of the high purity of
bar indicates averaging over the variabldi.e., overp,). Samples at low temperatures, we assume in subsequent for-
Eliminating ¥ in this way, we obtain front5) the following ~ mulas thatw> v and go over to the collisionless limite.,

expression for the functiofb,(t): w—w+i0). If necessary, the dependence of the results on
_ the relaxation frequency can be easily reconstructed by the
®,=(eE2iD)R[v, +\wRv  (d—AwR) 1], (7) reader.
- . , It is convenient to write the dispersion equatikfc?
wherem=w+iv, R is the resolvent factor defined as o . _ -
=w“e in the variablef=wc/vow,, g=kvy/w (reduced
R(t)=a/[@—kv,(1)], (8)  frequency and wave vector
and the intensity of the Fermi-liquid interacti¢abbreviated 1+f29%(y1—g°—\)=0. (13)

below as FL) is characterized by
A=Lgi/(Loy+1).
A>0.

Using the definitions

In the furth s the Coeff'c'fattAs in the case of a gasee Ref. 2 this equations for any
n the turther analysis, we assume tha frequency has a conventional purely imaginary solution with
the asymptotic forms

ko(w)=~i(wwj/c?vg)™®  (f<1);

ix=—ev®)=—e(1)Dv,, e=1+47ij,/wE, (12
k ~iwylcyl—A=iQylc (f>1).
for current and dielectric function, we obtain the following ol@)=lwp e ( )
expression for the latter quantity: In this case, the FLI is manifested only in the range of “in-
, frared” skin effect, where is slightly accelerates the field
2me(1) | —  ——, Ao damping?
e=1- 0D Rui+(Ro.) D \wR| © The qualitative difference from the gaseous approxima-

tion is that iff \\=1, i.e., o= wmin, EQ.(11) has a real root
The averaged values appearing in this formula can be, describing the collective mode with the phase velocities
easily evaluated by using formu(2): V=uvg4/qy in the interval

R_UiZU'Z:E R_ULZUFE EZZ)/ H)Z_kZUOZ vo$volq1(f)<1)0/\/l—)\ ) wmmepvo/C\/X (13)

(the second of these equalities holds to withiffvo/vg)2  (S€€ Fig. 1 The simple form of the dispersion equatidr2)
in the third equality we choose for the radical the branchMakes it possible to write explicitly the dispersion relation

with arguments between /2 and#/2). Thus, the final ex- OF collective excitations:
pression for the transverse dielectric function has the form

kv
w? VI=N[1— (Knpin/kq)?]?
s(kw) =1+ —— P (10 e
\w —w\/ —k“vg :wp/C\/X). (14

o(ky)= (K1=Kmin
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The frequencyw,i, has the meaning of the “activation collective modg of the type ¢o/wx)", i.e., it attenuates
energy” of the collective mode. Its excitation also requires amuch more rapidly with increasing distance and frequency in
certain degree of spatial inhomogeneiky® wnin/vo. the collisionless limit.

A similar theoretical result is well known for quasi- Formulas(15) and(16) are quite simple and can be used
isotropic metalgsee, for example, Refs. 7 angl ®lowever,  directly for numerical calculations on a PC. The results of
this requires a high-intensity of FLI: the parameter corre-such calculations are presented in Fig. 2.
sponding td_y; must be larger than 3. This is hardly possible For z=0, expressiongl5)—(17) give the surface imped-
for conventional metals with a high density of free chargeance of the metal, which is defined Zs=E(0)/H(0),

carriers, and the electronic zero-sound of the type considereghy make it possible to calculate its frequency dependence.
above has not been observed in these metals soQarthe The imaginary component (o) is connected with the

contrary, the only requirement in our case is that the quantitgyinned component of the field and is determined by the first
)‘EL,Oll(LOPL 1) must. be .posmve. To be MOre Precise, Weterm in (16) (depending orgy). In the range under investi-

require th{:\t?\»volvp In view of the expansions o /ve ation, it increases monotonically with frequency. The real
<1 used in our analysis. Such a condition actually does nc’gomponent of the impedance, which determines the electro-
limit the existence of the effect in layered conductors.  agnetic wave absorption is associated with the collective
~ Let us now discuss the structure of the electromagnetig,gge and quasiwave. Although the collective mode exists
fle_zld in a metal under the conqm(_)ns of the given effect.omy for @=w,;,, the total contribution of the penetrating

Since[v,|<ve, all electrons are incident at small angles on ¢ myonents of the field to the impedance is a smooth func-

the surface parallel to the layers, so that their reflection cagyp, of frequency passing through the peakwat . The
. . . . n-
be rightfully regarded as specuférin this case, the field in real component ofZ increases, while the imaginary de-

a semi-infinite sample is describéske, for example, Refs. 2. ¢ raa5es with increasing intensity of the RFparameteh; see

and 12 by the following integral representations: Fig. 3.
ioH(0) (= ; .
E(z)= f dk 3 the effect in question. For not very small values)gfthe
mC Jo e(kw)oct-k boundary frequencyw,,, lies in the submillimeter range
2H(0)f2v, (= dqg { pr) (wmi,fl(.)lzlsfl) . The quality of synthetic conducting crys-
= J cos qf —|, (15  tals is still inferior to that attained for conventional metals
o D(a) ¢ (especially for refractory or fusible onedNevertheless, the
available information of a sharp cyclotron resonance in lay-
ered conductors such as an—(ET),TIHg(SCN), single
D(q) =22+ [ V(1+10)2—2—\] "1, (16)  Crystal at frequencies-50—100 GHZ* indicates that the
condition wy,>v which is important for us can be easily
and 2H(0) is the amplitude of the magnetic field of the wave satisfied in low-temperature experiments.
at the sample surface. The skin effect itself corresponds to Experiments in the pulse mode which was successfully
the term (residu¢ damping with the decremenk® (see used by Fil's group for observing “electron sound&lastic
(11)). The presence of the collective mode)), i.e., the pole vibrations that are apparently associated with the longitudi-
of the integrand ink=k;(w) indicates that a part of the nal zero sound in a two-component Fermi liquid Al, Ga,
incident electromagnetic wave penetrates the metal to a comnd W are preferabfe However, in our case it is reasonable
siderable depth of the order of the electron mean free pathto use instead of acoustic pulses directly electromagnetic
since we assume thitt,i | = wmin/v=>1. In other words, we pulses which are shorter than the minimum transit time for

exglikz) In conclusion, we consider the possibility of observing

iTC

where

have electrons in the samplerd/v).
5 f2 By way of a simple example, we consider a Gaussian
. Zwp pulse for which the field on the metal surface is defined in
[c/voH(0)1E(2) Z A exp(.qlf . — the form
xJocd \/mexniqutup/c) H(O,t)=hexp(—iQt—t2/47'2), (18)
q ;
1 (1-a %)%+ fia*(g® - 1) and confine ourselves to the so-called radio pulse>1. In
. . . order to obtain the distribution and evolution of the field in
Ai(f)=0a; Y(1+f%g2y1-g))~t, i=0,1, (17 the sample, it is sufficient to multiply the monochromatic

. . ) expression(17) by the Fourier component of the signdl)
whereqo(f) andq,(f) are the imaginary and real solutions 4 carry out the inverse Fourier transformation in fre-

of Eq. (11), respectively. It should be noted that the penetrat- uency. Since we are interested only in the weakly attenuat-
ing component of the field also exists in the gas approximal—ng contribution of the collective mode, we obtain

tion (A\=0): it is the third(quasi-wavéterm in(17), i.e., the

contribution from the branching poitt=®/v of the func- hrvg (=

tion e(k,») associated with the presence of the boundary E(Z,t)“—\/—f doAy(w)exg —ioT—(0—Q)*7],

Fermi velocityv, (see, for example, Refs. 11 angl Plow- evm 19
ever, the asymptotic form of the quasi-wave at a large (
depth @>vq/w) contains small factor&@s compared to the whereT=T(w)=t—q;(w)z/vy.
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FIG. 2. Distribution of monochromatic electromagnetic field in the sample at frequencies lower and higher,théor A=0.5. In the second casd (

=2), the field component penetrating the metal is determined by the collective mode, while in the fir§tea3ét (s a quasiwave attenuating at a relatively
high rate.

However, according td¢13), the dispersion is low: the
quantityg, () remains in the intervdl(1—\?)¥21] in the
entire frequency range fromin=wpvo/c\/f to o~ w,. For
this reason, we can approximately substitiifeo={2) and
A1(w=19Q) into (19 for not very large depthg (at least, up
to z~(Q7)vg7). This gives a self-similar propagation of the

pulse with a velocityv(Q)=v4/94(Q): 1.00
0.95

S
3 - - 0.90
// // 0.85

: 0703, 05,7 '
9. / 0.15
7/

’ 0.10

<
0.05

fsmc/vocop

FIG. 3. Frequency dependences of the reallid curve$ and imaginary
(dashes curveéxomponents of impedand the units ofv,/c) for differ-
ent values of the FLI parametex:

FIG. 4. Dispersion and frequency dependence of the amplitude of collective
vibrations . =0.5).
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