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AC transport losses in multifilamentary „Bi, Pb …2Sr2Ca2Cu3Ox /Ag tapes
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The results of ac transport losses measurements are presented for multifilamentary HTSC
composite Bi-2223/Ag tapes with the number of filamentsN57, 19, 37, 61, 91, 127, 169, and
703. The measurements have been made under the self-field conditions as well as in a
constant magnetic field applied to the tapes at different angles. The dependence of AC losses on
the amplitude and frequency of the alternating transport current have been obtained. It is
found that the dependence of the AC losses on the current amplitudes for all the tapes are in accord
with the Norris theoretical predictions for an elliptical or strip geometry of the wire. The
external magnetic field increases the magnitude of the AC losses. It is concluded that transport
AC losses in multifilamentary HTSC composites are ‘‘saturation losses.’’ ©1999
American Institute of Physics.@S1063-777X~99!00202-9#
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INTRODUCTION

High-temperature superconductors~HTSC! have found a
wide technical application in various electrical-engineer
systems in which high densities of electric current are
quired. Electric energy transmission cables, permanent
ac magnets, as well as transformers are examples of suc
ful application of HTSC materials. Unfortunately, some fa
tors requiring optimization hinder the application of HTS
in real electrical engineering devices. Above all, we a
speaking of low mechanical strength and low critical curr
density. The HTSC response to the applied varying elec
magnetic field and ac energy losses in such fields includ
self-field ac transport losses are equally important.

In many electrical systems, external magnetic fields
various configurations are applied to a superconductor ca
ing alternating transport current. Consequently, it is imp
tant to know the effect of the applied field on transport los
in real HTSC tapes. In spite of intense investigations
transport losses in mono-1–4 and multifilamentary5–9 tapes,
the effect of external magnetic field has not been stud
comprehensively. Experimental data1–9 can be successfully
described by the model of the critical state created for tra
tional low-temperature superconductors. Self-field losses
described by the expression obtained from the Lond
theory for round wires.10 Solutions for elliptical and rectan
gular cross sections were obtained by Norris.11 These models
were based on the assumption that the critical current den
is independent of magnetic field, and the superconducto
isotropic relative to its electromagnetic properties. The m
els under consideration were not intended for describing
behavior of transport losses in the magnetic field of hete
1001063-777X/99/25(2)/5/$15.00
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geneous multifilamentary composite materials. Neverthel
the experimental results obtained by Ciszeket al.12 who
studied the effect of magnetic field on transport losses
mono- and 37-filamentary composite HTSC were succe
fully explained on the basis of the Norris equations.

In this communication, we report on the results
analysis of transport losses in multifilamenta
~Bi, Pb!2Sr2Ca2Cu3Ox /Ag composite tapes in a~Bi-2223/Ag!
silver coating in magnetic fields applied at different angles
the tape plane. We consider a set of eight tapes with
number of filaments varying from 7 to 703. The measu
ments made by us show that the magnetic field chan
transport losses only though a change in the critical curr
of the superconductor in a magnetic field. Our results,
well as those obtained in Ref. 12, are successfully explai
by the Norris model. In addition, we prove that transp
losses in composite HTSC are not purely hysteresis los
but are ‘‘saturation losses’’ as in the case of low-temperat
superconducting wires. The main difference between th
types of losses lies in that ‘‘saturation losses’’ decrease u
an increase in the critical current. Hysteresis losses are
termined by the area of the magnetization loop of a sup
conductor and increase with the critical current.

SAMPLES AND EXPERIMENTAL TECHNIQUE

Composite~Bi, Pb!2Sr2Ca2Cu3Ox tapes with the numbe
of filamentsN57, 19, 37, 61, 91, 127, 169, and 703 we
prepared by the ‘‘oxide powder in tube’’~OPIT! method
which is described in the literature in detail.13 The character-
istic size of the tapes were 0.1– 0.233 – 4330 mm for the
HTSC-to-silver ratio;20:80.
© 1999 American Institute of Physics
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We measured the synphase component of the first
monic of voltage across the sample under investigation
function of the amplitude of alternating transport current
various frequencies. The voltage for each value of freque
was determined by using a selective amplifier. The induc
component of voltage was compensated by using a tr
former loop in the current circuit. The power of total tran
port losses was defined as the product of the synphase
rent and voltage. The frequency and amplitude depende
of losses were determined in the range 30 Hz, f ,150 Hz for
I ,30 A from the frequency and amplitude, respectively, o
the current. The ac frequency was fixed by a sine-wave g
erator, and the current was amplified by a low-frequen
amplifier and a transformer. In order to avoid possible ind
trial noise, we ensured that the transport ac frequency an
first harmonics were not multiple of 50 Hz.

It was noted in Refs. 9, 14, and 15 that the losses m
sured in HTSC tapes are determined to a considerable e
by the position of potential contacts on the sample. In or
to obtain the ‘‘correct’’ value of losses~i.e., the value inde-
pendent of the position of the contacts!, potential leads mus
have the shape of a loop whose size is 1.5–2 widths of
tape and must be located in the tape plane.16–18 All the re-
quirements of the ‘‘correct’’ arrangement of potential prob
were satisfied in our experiments.

We measured critical current by the standard four-pro
method according to the criterion 1mV/cm. The value of the

TABLE I. Values of critical current and normalized losses.

N
I c , A

T577 K, B50
Q, 1026 W/cycle•m

(I 5I c)
Q/I c

2

(I 5I c)

7 14.8 12.4 0.05
19 13.3 13.1 0.07
37 12.1 11.6 0.08
61 14.1 11.6 0.06
91 13.7 9.8 0.05

127 13.6 9.8 0.05
169 19.0 8.3 0.02
703 18.6 20.0 0.05
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currentI c in zero magnetic field atT577 K varied from 12
to 19 A for different samples~see Table I!. The table also
contains the value of losses per cycle forI 5I c as well as
losses normalized to the square of critical current.

For measurements in an external magnetic field,
samples were placed in a special magnetic system so tha
anglea between the direction of the magnetic field and t
plane of the sample could be varied from 0 to 360° with
step of 5°. The angle between the directions of the field a
current was always 90°. The magnitude of the magnetic fi
was controlled through the current in the magnetic syste
The losses in the magnetic field were measured as a func
of the ac amplitude at a frequencyf 533 Hz for different
anglesa and several values of the magnetic field. The va
of critical current was also measured for each anglea for all
values of the magnetic field. All measurements were mad
T577 K.

EXPERIMENTAL RESULTS

Self-field AC transport losses

Figure 1 shows the specific loss powerW ~per unit length o
the wire! as a function of the amplitudeb5I /I c of transport
current normalized to the critical current at zero frequen
~i.e., dc critical current! for composite tapes with variou
number of filamentsN. For subcritical currents, i.e., fo
b,1, the curves measured at different frequencies are
ferent, while theW(b) dependences measured forb>1 co-
incide. Indeed, forI .I c , the samples are in the normal sta
in which the loss power is independent of frequency. Ho
ever, theW(b) curves do not coincide forb51. This can be
due to strongly blurred current transition from the superc
ducting to the normal state~with an IVC!, which makes prac-
tical determination of critical current from the fixed voltag
threshold rather conditional. Also, the discrepancy in the
W(b) dependences forb51 can be attributed to the differ
ence between intergranular and intragranular critical c
rents. It can seen from Fig. 1a and 1b that the freque
dependence vanishes at a current amplitude approxima
twice as large as the critical current. For such current am
ith
FIG. 1. Specific transport loss power as a function of the normalized amplitudeb5I /I c of transport current at different frequencies for composite HTSC w
N537 ~a! and 169~b!.
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tudes, all experimental points approach asymptotically
universal curveW}b2 characterizing the normal ohmic be
havior of the conductor.

Figure 2 shows the dependence of specific energy lo
Q per cycle on b at different frequencies for a 127
filamentary sample. All the samples exhibited virtually t
same behavior ofQ(b) described by a power functio
Q}bn, wheren53 – 4 for smallb.

Norris11 proved long ago that theQ(b) dependence for
b,1 for elliptical and rectangular cross sections of the wi
can be described by the following equations:

Q5
m0I c

2

p F ~22b!
b

2
1~12b!ln~12b!G ~1!

and

Q5
m0I c

2

p
@~11b!ln~11b!1~12b!ln~12b!2b2#. ~2!

For smallb, these equations can be reduced to

Q'm0I 3/6pI c , ~3!

and

Q'm0I 4/6pI c
2, ~4!

while for b51 they approach the following equations:

Q50,16m0I c
2, ~5!

and

Q50,12m0I c
2. ~6!

The results of our experiments correspond to both
pendences~1! and~2! for different composites. This is prob
ably due to the deviation of the shape of wire cross sec
from the rectangular and elliptical shape.

Having chosen a constant value ofbÞ1, we can con-
struct frequency dependences of losses. In this case,
expedient to use the value of total losses since their
quency dependences are different functions for differ

FIG. 2. Dependence of specific transport losses per cycle onb5I /I c at
different frequencies.
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sources. It was noted above that ohmic losses are frequ
independent. These occur either in a sample in the nor
state, or when a current flows through the silver matrix. H
teresis losses occurring in superconductor materials incr
linearly with frequency, while eddy-current losses in the s
ver matrix are proportional to the square of frequency.

We observed a linear dependence for all samples, wh
indicates that the losses were of the hysteresis type. Figu
shows the frequency dependence of specific transport lo
for a composite withN57.

Effect of external magnetic field

Figure 4 shows the angular dependence of critical c
rent I c ~normalized toI c0 for B50! for different values of
applied magnetic fieldB for a composite withN561. The
anglea590° corresponds to a transverse configuration~the

FIG. 3. Frequency dependence of specific transport losses for a comp
material withN57 for various values ofb.

FIG. 4. Angular dependence of the normalized critical current for vario
values of the external magnetic field for a composite withN561.
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field is perpendicular to the tape plane!. The dependences o
I c /I c0 on the applied magnetic field fora50, 40, 60, and
90° are shown in Fig. 5. In a field applied at right angles
the tape plane, the critical current decreases at a much hi
rate than for a parallel configuration.

The effect of external magnetic field on the losses
shown in Fig. 6, where specific current losses are plotted
a composite material withN561 as a function of the curren
amplitude for different magnetic fields of perpendicular a
parallel configurations. The magnetic field increases
magnitude of losses significantly. The angular dependenc
transport losses is shown in Fig. 7. Since the magnitude
direction of the magnetic field alter simultaneously the m
nitude of critical current as well as the losses, it is interest
to plot the dependence of losses onI c . An example of such
a dependence is shown in Fig. 8~the critical current is nor-
malized toI c0 for B50!. It can be seen that experiment
results fit to the general dependence, the magnitude of lo
increasing upon a decrease in critical current.

FIG. 5. Dependence of normalized critical current on magnetic field
various orientations.

FIG. 6. Specific transport losses as a function of current amplitude
various values of magnetic field. Light an dark symbols correspond to a
perpendicular and parallel to the tape plane respectively.
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DISCUSSION OF EXPERIMENTAL RESULTS

Let us try to find out what type of losses occurs in t
composite materials under investigation and estimate p
sible values of losses. For this purpose, we generalize
experimental results as follows:

~1! the current dependence of transport losses per cycl
W}I n, wheren53 – 4;

~2! the frequency dependence of losses is linear;
~3! transport losses decrease with increasing critical curr
~4! the losses increase with the magnetic field.

It follows from these results that, as in the case of tra
tional low-temperature superconductors, transport losse
composite HTSC are ‘‘saturation losses’’~see, for example,
Ref. 17!. What are ‘‘saturation losses’’ and what is the d
ference between these and hysteresis losses? It is
known17 that current flows in a composite superconduc
near its surface, occupying larger and larger region as

f

r
ld

FIG. 7. Angular dependence of transport losses for various values of
external magnetic field for a composite withN561.

FIG. 8. Dependence of transport losses on the normalized critical curren
a composite withN519.
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transport current becomes stronger. In this region known
the saturation zone~saturation layer or saturation region!, the
current density is equal to its critical value. Ac power
liberated just in this region and not in the bulk of the sup
conductor. Saturation losses are of the hysteresis type. H
ever, the volume of the saturation layer for a fixed curr
amplitude depends on the critical current. The higher
value of I c , the smaller the volume of the saturation regio
and accordingly the smaller than total value of loss
‘‘Pure’’ hysteresis losses exhibit a different behavior. Hy
teresis losses increase with the critical current since they
determined by the magnetization loop of the superconduc

Saturation losses are successfully described by the N
ris equations~1! and ~2!. Among other things, it follows
from these equations thatQ/I c

2 is the value losses normalize
to I c

2 , which is a general function for a given geometr
Figure 9 shows the experimental dependence ofQ/I 2 on b,
where losses as well as critical current change under
action of a magnetic field. It can be seen that the result
into the universal curve as predicted. A similar behavior
losses upon a change in temperature was recently obse
by Yang et al.19 in a monofilamentary Ag/Bi-2223 tape
Moreover, the normalization of losses atI 5I c ~i.e., when the
entire conductor is in the saturated state! to the square of
critical current gives close values for the tapes under inv
tigation ~see Table I!. The Norris equations~5! and ~6! for
b51 can be used to estimate the upper limit of transp
losses. It was noted that the calculated values of trans
losses can differ from actual values due to ambiguity in
determination of the critical current from the blurred IVC.

FIG. 9. Dependence ofQ/I c
2(b) for a composite withN561 for various

orientations of the magnetic field.
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CONCLUSION

The results of measurements of ac transport losse
multifilamentary superconducting Bi-2223/Ag tapes in
external magnetic field proved that transport losses are s
ration losses differing from ‘‘pure’’ hysteresis losses. Sa
ration losses increase with decreasing critical current, wh
was observed in experiments. An applied constant magn
field causes an increase in losses, correlating with the
crease in the critical current in the samples under invest
tion. The value of transport lossesQ/I c normalized to the
square of critical current and plotted as a function of t
normalized transport current amplitude fit to the same cu
in accordance with the Norris equations.
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Dynamics of vortex lattice in the current state in high-temperature superconductors:
Monte Carlo method

M. E. Gracheva, V. A. Kashurnikov, and I. A. Rudnev
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The current–voltage characteristics~IVC! of real defective high-temperature layered
superconductors are calculated by simulating the vortex lattice by means of the Monte Carlo
method. The temperature dependence of the defect activation energy is obtained. It is shown that
IVC singularities in different temperature ranges are due to the change in the phase
conditions of the vortex system and, in particular, the presence of the ‘‘rotating lattice’’ phase in
a wide temperature range. ©1999 American Institute of Physics.@S1063-777X~99!00302-3#
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INTRODUCTION

In recent years, considerable attention is paid to ph
transformations and their dynamics in the vortex lattice
HTSC.1 Wide application of numerical methods~especially
the Monte Carlo method, see the review in Ref. 2! has made
it possible to simulate the phase states and phase trans
in various vortex systems and to demonstrate the pecul
ties of the vortex lattice melting dynamics in the presence
the pinning centers.3

Problems associated with dynamic interaction of the v
tex lattice with pinning centers in the presence of transp
current and current–voltage characteristics~IVC! are impor-
tant for practical application of superconducting materia
First computations of IVC by the Monte Carlo method a
peared only in 1996.4–7 Current–voltage characteristics we
calculated in the presence of a large number of defects~rela-
tive to the number of vortices! with different potential
energies.4 However, defects with different values of activ
tion energy and temperature dependences of IVC have
been studied.

The results on various phase modes of current flow
tained recently from an analysis of IVC of HTSC deser
special attention~see Ref. 7 as well as Refs. 8–10!. The
modes of pinned vortex glass, plastic flow of vortex liqu
and flowing vortex glass were observed. These phase s
of the Abrikosov lattice as well as transitions between th
are close to the phase transitions between the states of
tating lattice’’ and ‘‘vortex liquid’’ considered by us re
cently, but now in the current state.3

In this communication, we report on the results of c
culations of IVC in model layered superconductors and co
pare them with the experimental IVC. We shall demonstr
the modification of IVC upon a change in temperature and
a result of an increase in the number of defects. Our aim
also to demonstrate the potentialities of the Monte Ca
method as applied for determining real physical characte
tics of HTSC and for analyzing the phase states of the vo
lattice.
1051063-777X/99/25(2)/4/$15.00
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MODEL AND COMPUTATIONAL METHOD

Let us consider a two-dimensional vortex lattice simul
ing a superconducting HTSC layer on a periodic rectangu
mesh under the assumption of weak coupling between
ments in a direction perpendicular to theab plane and in the
presence of pinning centers. The discreteness of the sp
mesh is chosen in such a way that its period is much sma
than the period of a perfect triangular vortex lattice.

If we disregard the interaction between vortices and
ternal field, the effective Hamiltonian of such a system h
the form11

H5
1

2 (
iÞ j

N

H~r i ,r j !ninj1(
i 51

N

Up~r i !ni , ~1!

where

H~r i ,r j !5
F0

2d

2pl2~T!m0
K0S ur i2r j u

l~T! D
5U0~T!K0S ur i2r j u

l~T! D . ~2!

HereUp(r i) is the energy of interaction between a vo
tex and a defect at thei th lattice site,ni the occupation
numbers of vortices~0 or 1! at thei th site of the spatial mesh
with the total number of nodesN,F05hc/2e the magnetic
flux quantum,K0 Bessel’s function of the imaginary argu
ment, d the superconducting layer thickness,l(T)5l0@1
2(T/Tc)

3,3#21/2 the depth of magnetic field penetration in
the superconductor, andm054p31027 H/m.

We choose for simulation a real high-temperature sup
conductor Bi2Sr2CaCu2O8 with the following parameters
d52.7 Å; l(T50)51800 Å; Tc584 K9 in the external field
B50.1 T. The experimental IVC were obtained for the sa
parameters.

The calculations were mainly carried out on a spa
mesh with 2003200 cells under periodic boundary cond
tions with the help of the standard Monte Carlo method
using the Metropolis algorithm. The discreteness of the s
tial mesh with 2003200 cells means that if the system co
tains Nn5150 vortices, each vortex corresponding to a
© 1999 American Institute of Physics
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106 Low Temp. Phys. 25 (2), February 1999 Gracheva et al.
proximately 260 cells. Such a discreteness is sufficient
constructing a nearly perfect triangular lattice at zero te
perature and current.

The actual concentration of vortices corresponding to
given fieldB was attained by changing the value of the
vision of a spatial cell so that the periodan of the triangular
vortex lattice satisfied the relation

an5S 2F0

)B
D 1/2

. ~3!

In order to analyze the behavior of the system with d
fects, we introduced pinning centers with different conce
trations. In this case, the energy of interaction with a pinn
center was chosen in the form

Up~T!52aU0~T!, ~4!

which corresponds, for example, toUp(T52 K)5
23.5 meV fora50.1.

The chosen values of the depth of the potential well
a pinning center are close to those observed in actual pra
in HTSC.11,12Calculations were made for strong pinning, t
potential well depth beingUp(T52 K)52100 meV. We
analyzed various types of~one- and two-dimensional! de-
fects, but main calculations were made for point defects
defect occupying a single cell of the spatial mesh. This c
responds to the size of a defect;j ~vortex core size of 20 Å!
so that only one vortex could be pinned at such a defect.
range of two-dimensional concentrations of defects was fr
1012– 331014m22 ~from one to 100 defects corresponded
150 vortices in the system under investigation!.

Dynamic processes were investigated by introducin
transport current in the system. In this case, the Hamilton
describing the behavior of the entire system was sup
mented with the term due to the action of the Lorentz fo
on each vortex. In the case of elementary motion of a vor
the termdU5F0JDx was subtracted from the total energy
the direction of vortex movement coincided with the dire
tion of the Lorentz force exerted to it, and added to it if t
vortex moved against the Lorentz force. The transport c
rent was directed along they-coordinate. In the case of
nonzero current, vortex tubes could move at random o
any distance within the size of the system~i.e., the value of
Dx was chosen in accordance with the Gibbs distributio!.
The voltage emerging across the boundaries of the sys
was calculated from the relationV5Bndr , whereB is the
applied field andndr5Xcm /t the drift velocity of a vortex,
i.e., the displacement of the center of massXcm of the vortex
tube per unit timet. The unit of time was conventionally
chosen to be equal to an elementary step in the Monte C
method, i.e., the indeterminacy is manifested in the arbitr
ness of the choice of the voltage scale. This indetermin
can be eliminated by normalization to an actual IVC.

In order to take into account the boundary conditio
correctly, it is necessary that a vortex tube not be able
reach the edge of the system as a result of a single ran
displacement under the action of the current. This condit
in fact determined the maximum possible current for cal
lations and was verified every time. Figure 1 shows by w
r
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of an example a typical distribution of vortex tube displac
ments relative to the center of mass~actually, the distribution
of drift velocities! at T570 K and J/Jp55 (Jp55
31010A/m2). Averaging was carried out over all vorte
tubes and over 60 000 MC steps. It can be clearly seen
the distribution has the form of an ellipsoid prolate perpe
dicularly to the direction of the current and that the distrib
tion does not reach the boundaries of the system.

DISCUSSION OF THE RESULTS OF CALCULATIONS

We calculated the current–voltage characteristics
systems containing from 1 to 100 defects at temperatures
20, 30, 40 K, etc.~up to 83 K!. In the vicinity of the critical
temperature, the characteristics were calculated with an
terval of 1 K up to thecritical region. Typical IVC are pre-
sented in Fig. 2 forT520 K and for various concentration
of defects.

These results were compared with experimental IVC~for
small currents! obtained for Bi2Sr2CaCu2Ox films bombarded
by high-energy ions.12 Such a comparison of experiment
and theoretical IVC makes it possible to determine the ac
scale of electric field strength~i.e., the value ofEp!. In our
case, for example,Ep5531022 V/m, which indeed corre-
sponds to the actually observed values. Moreover, know
the magnetic field, we can estimate the vortex relaxat
time t. In our calculations,t.10212s, which is in accord
with physical estimates.1

There is another coincidence. According to our es
mates, the characteristic values of critical currents obtai
as a result of calculations differ from actual currents
HTSC approximately by a factor of five. But exactly th
numerical factor corresponds to the approximate fraction
superconducting layers~of thickness 2.7 Å! in the entire vol-
ume of a unit cell in the compound Bi2Sr2CaCu2Ox!

Let us analyze the results of calculations. It can be s
that as the concentration of defects decreases, IVC
‘‘straightened,’’ demonstrating an increasing tendency to
simple ohmic behavior of the system for strong curren
This is also observed as the temperature approaches the
cal value~Fig. 3!. An analysis of the initial segment of IVC
~for small currents! leads to the following result: the current

FIG. 1. Drift velocity distribution atT570 K andJ/Jp55. The intensity is
given in terms of the number of vortex jumps over 20 000 MC steps.
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voltage characteristic on the log–log current and volta
scale is strictly linear~see the inset to Fig. 2!, which confirms
the existence of magnetic flux creep under these conditi

Figure 3 shows IVC of the system for a fixed concent
tion of defects, but at different temperatures. The conditio
thresholdJ/Jp50.5 ~chosen as the critical current! can be
used to obtain an important physical parameter of point
fects from these results, viz., the activation energyU ~as a
function of temperature! on the basis of the relation

U5kT lnS ]~E/Ep!

]~J/Jp! D U
E→0

. ~5!

The results of calculations are shown in Fig. 4. The
results are in accord with the known experimen
dependences.9

Concluding the section, we make the following rema
It was proved in our recent publication3 that the melting of a
vortex lattice occurs through an intermediate phase in wh
lattice deformation and violation of its long-range ord
away from defects take place, and the triangular lattice sp

FIG. 2. Typical IVC atT520 K and various numbers of defectsNd : 1
~curve1!, 10 ~curve2!, 40 ~curve3!, 60 ~curve4!, and 100~curve5!. The
inset shows IVC forNd5100 and 300 on the log–log scale.

FIG. 3. IVC at various temperatures andNd5100.
e

s.
-
l

-

e
l

.

h

ts

into islands attached to pinning centers~the rotating lattice
phase!. This phase can apparently be identified with the o
served phase of pinned vortex glass.7

Our results of calculation of the motion of a vortex sy
tem in the field of defects in the presence of current dem
strate different modes of IVC behavior depending on
phase state of the system. For example, Fig. 3 shows
groups of curves conditionally divided by the temperatu
boundaryTm2.70 K ~the temperature of transition from
‘‘rotating lattice’’ to a ‘‘vortex liquid’’ according to the ter-
minology adopted in Ref. 3!. A visual analysis of the density
of vortex distribution shows that a ‘‘rotating lattice’’ is ob
served atT,Tm2 and a ‘‘vortex glass’’ atT.Tm2 . In the
‘‘rotating lattice’’ phase, IVC change slowly upon heatin
which can be explained by a still strong interaction w
pinning centers. On the contrary, atT.Tm2 we observe a
strong influence of temperature~a virtually equidistant in-
crease in voltage upon an increase in temperature by
two degrees! up to the critical region. Thus, the observe
difference in the temperature behavior of IVC of a re
HTSC can be attributed to different states of the vortex s
tem, which is in accord with the results obtained in Ref.

CONCLUSION

In this communication, we described the results of sim
lation of actual current–voltage characteristics of defect
layered HTSC. The method used by us makes it possibl
obtain real characteristics of defects~like activations energy!
as well as information on the dynamics of motion of vort
tubes, i.e., the distribution of their drift velocities, relaxatio
times, etc. The adaptability of the approach makes it poss
to analyze IVC in an arbitrary preset field of defects by sim
lating technological, radiation, and other defects in hig
temperature superconductors.

This research was carried out under the financial sup
of the States Scientific and Engineering Program ‘‘Conte
porary Problems in Physics of Condensed State,’’ subp
gram ‘‘Superconductivity,’’ project Nos. 95019 and 96026

FIG. 4. Temperature dependence of theoretical activation energy.
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Nonlinear mixed-state longitudinal and transverse resistivities of superconductors
with anisotropic pinning—a phenomenological approach
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In the presence of anisotropic pinning due to unidirected twins, the nonlinear vortex dynamics is
discussed in terms of phenomenologically introduced anisotropic drag and pinning
viscosities. A theoretical basis for experimental reconstruction of these viscosities is proposed. A
nonlinear Ohm’s law is derived. Assuming the anisotropic pinning alone~a-pinning model!:
a! new scaling relations for the anisotropic Hall conductivity are predicted; b! nonlinear guiding
effects are discussed; c! specific current and angular behavior of current-voltage
characteristics are analyzed. ©1999 American Institute of Physics.@S1063-777X~99!00402-8#
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The influence of twin boundaries~TB’s! on the transport
properties of high-Tc superconductors is a topic of great cu
rent interest.1–11,16–18One of the reasons for this interest
that the TB’s are naturally occurring planar defects that
easily be formed in a high-Tc YBa2Cu3O72d ~YBCO! com-
pound.

It is generally recognized that the order parameter
slightly suppressed at TB’s.1 As a result, an isolated TB at
tracts vortices and pins them.1 The TB pinning force acting
on the vortices directed along thec-axis ~and the TB! of the
crystal is often strongly anisotropic, because it is usua
considerably weaker for the motion of vortices along tw
than across them.2

Recently, the problem of twin influence on the vort
motion in plane geometry has been studied numerically3,4

The simulations in3,4 were performed for the interaction o
moving vortices with only one isolated TB. Some interesti
dynamic peculiarities of this interaction were elucidate
However, it is worth noting that, in a real transport expe
ment2,5–10we usually probe a certain ‘‘self-averaged’’ vorte
dynamics, which results from the interaction of vortices w
many TB’s, distributed with some average density betwe
voltage leads. Obviously, this self-averaging will ‘‘smea
some subtle details of the vortex interaction with an isola
TB, which were detected in.3,4

Several Hall experiments5–7 were performed on YBCO
samples, where TB’s were oriented basically in two mutua
orthogonal directions. Because the transport response o
crystals was always measured as an integral property,
pinning anisotropy of twins in this case was common
masked, i.e., the influence of TB’s pinning onab-plane trans-
port in theHzc geometry is, on the average, isotropic, as
point pins~neglecting smallab-axis anisotropy!.

A much different type of situation~anisotropic! occurs if
we measure theab-plane transport response of single crys
with unidirected twins.2,8–10It is generally believed11 that the
main special feature of this response lies in the possibility
the ‘‘guided’’ motion ~GM! of vortices along the easies
1091063-777X/99/25(2)/6/$15.00
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direction ~in the case of TB’s—mostly along them!. This
GM generates a new, specific contribution to the transve
~with respect to the current direction! resistivity of the
sampler'

1 , which is even with respect to the magnetic fie
reversal~in addition to the odd Hall contributionr'

2 , inher-
ent in the isotropic pinning contribution!.

Earlier, experimental and certain theoretical aspects
anisotropic pinning and GM of vortices moving in the flu
flow regime ~for cold-rolled Nb–Ta sheets! have been dis-
cussed in detail by Niessen and Weijesenfeld in.12 Interest in
these problems was renewed after detection of TB’s
YBCO. Apart from the experimental works,2,5–10 we should
also mention in this connection the recent theoretical pa
by Mawatari,11 where the single-vortex anisotropic pinnin
dynamics has been discussed within the frame-work of
‘‘microscopic’’ approach based on the Fokker–Planck eq
tion.

Another approach to the anisotropic pinning was fi
suggested by Sonin and Kholkin in.13 They proposed the
general form of a linear Ohm’s law in uniaxially anisotrop
media, which was formulated~on the basis of symmetry con
siderations! in terms of four phenomenologically introduce
‘‘intrinsic’’ resistivities.13 In this approach, besidesr'

1 ~and
in addition to the usually measured even longitudinal con
bution r i

1), a new, angle-dependent, odd longitudinal res
tivity r i

2 also appears, due to a possible anisotropy of
Hall drag coefficient in the twinned sample. The last effe
has recently been observed for the first time in a YBC
single crystal with unidirected twins.9

Note, however, that there are no reasons to expect
change of the Hall drag coefficienta i due to point pins, for
isotropic pinning.14,15 This directly implies a simple scaling
relationr'

2;a i(r i
1)2 between current-dependent, nonline

resistivitiesr'
2( j ) andr i

1( j ) for r'
2!r i

1 .14,15

In order to study possible scaling relations within t
frame-work of the phenomenological approach,13 we have
generalized its results to the nonlinear case. In so doing,
follow the phenomenological approach used recently
© 1999 American Institute of Physics



d
ea
s
-

ve
o

nt

ac
c
e
th
en
ne
si

n

he

w
le
o

on
b

c
ev

d
th
ra

s
-
n

e-

e

s-
ec-
e

nd

c-

re

as

110 Low Temp. Phys. 25 (2), February 1999 Valerij A. Shklovskij
Vinokur et al. in14 for the case of isotropic pinning. Below
we use the method of14 for considering both the isotropic an
anisotropic pinning, and so we can derive the nonlin
Ohm’s law, which was postulated earlier for the linear ca
in.13 In this way we clarify the origin of the four phenom
enological resistivities, earlier introduced in13, in terms of
drag and pinning viscosities, i.e., at a more detailed le
Below we also show that these viscosities can be rec
structed ~for purely anisotropic pinning! from current-
voltage measurements in two simple special experime
LT-geometries~see Figs. 1.b,c!.

The main advantage of this phenomenological appro
~for example, in comparison with the microscopic approa
in11! lies in the possibility of predicting and explaining th
most general aspects of self-averaged vortex motion in
presence of TB’s anisotropy in simple, physically transpar
terms. We can than elucidate the appearance of two
anisotropic contributions to longitudinal and transverse re
tivities ~odd r i

2 and evenr'
1 , respectively!, the scaling of

anisotropic Hall conductivities, the nontrivial angular depe
dence of current-voltage characteristic’s~CVC’s! in a non-
linear regime, the peculiarities of nonlinear guiding of t
vortices, and some other general results.

a! Discussion of the model and nonlinear Ohm’s la
derivation.To be specific, let us consider the YBCO sing
crystal with unidirected twins in the geometry, where a h
mogeneous transport current of densityj flows in the ab-
plane and external magnetic fieldH is directed along the
c-axis. We ignore below smallab-plane anisotropy of the
detwinned crystal; so, all the anisotropic effects under c
sideration are caused by TB’s with the average distance
tween themd@a0 , wherea0 is the intervortex distance. In
this limit we can suppose that«[a0 /d is the relative frac-
tion of vortices trapped by the twins. The TB’s presen
changes both electronic and pinning properties of the pr
ously isotropic crystal. Leth i and a i be isotropic ~bulk!
vortex drag and Hall drag viscosities, respectively. In ad
tion, we attribute the anisotropy of these viscosities to
vortices being at the TB’s. Then for appropriate viscous d
and Magnus forces we have

FIG. 1. The schematic sample configuration for three cases with diffe
values of anglea between the current density vectorj and the unit vectormi

directed along TB’s, which are shown by thin parallel lines: general c
aÞ0, p/2 ~a!; longitudinal L-geometry,j'mi

L , a5p/2 ~b!; transverse
T-geometry,j'mi

T , a50 ~c!; in all casesE' and Ei are transverse and
longitudinal~with respect toj -direction! electric-field components,m'mi .
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a52h iv2h tvt2h lvl , ~1!

f M
i 52a iv3n,

f M
a 52a iv3n2a tvt3n2a lvl3n.

~2!

Herevt andvl are transverse and longitudinal~with respect
to TB! average vortex velocities, respectively (v5vl1vt ,
see Fig. 2!; h t , h l anda t , a l are the corresponding exces
anisotropic viscosities~as compared to isotropic contribu
tions!; n is the unit vector in the magnetic field directio
(n[H/H). As for now, we also consider both bulk~isotro-
pic! and anisotropic~TB’s! pinning forces. Also, for the
former, we assume, as in,14 that f p

i 52g i(y)v, whereg i(y)
.0 is the nonlinear phenomenological viscosity, which d
pends only on the magnitude ofy[uvu. The anisotropic pin-
ning force f p

a , which acts on the vortices at TB’s, can b
written as

f p
a52g i~y!v2g t~ uvtu!vt2g l~ uvl u!vl , ~3!

where g t and g l are the average phenomenological tran
verse and longitudinal vortex pinning viscosities, resp
tively. Equations~1!–~3! allow us to write the force balanc
equation for thekth vortex in much the same way as in:14

Then, on averaging it over disorder, thermal fluctuations, a
also vortex twin and bulk positions,14 we arrive at the fol-
lowing dynamic equation for the average velocity of ‘‘effe
tive’’ vortex in the crystal with unidirected TB’s

ĥ iv1a iv3n1«~ĥ tvt1a tvt3n1ĥ lvl1a lvl3n!5fL ,
~4!

ĥ i[h i1g i~y!, ĥ t[h t1g t~ uvtu!, ĥ l[h l1g l~ uvl u!,
~5!

nt

e,

FIG. 2. Theab-plane geometry ofv and f components in two coordinate
systems:~l,t! coordinates with unit vectorsmi ~along j ! andm; ~',i! coor-
dinates with unit vectorsei ~along j ! and e' ; v—average vortex velocity,
fL—Lorentz force,j—current density. Anglesa, b, c—see text.
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where fL5(F0 /c) j3n is the Lorenz force (F0 is the flux
quantum andc is the velocity of light!. Let m and mi[z
3m be the unit vectors of~t,l! coordinate system~see Fig.
2!, directed perpendicularly and parallel to the TB’s, and
be the unit vector along thez-axis, which is perpendicular to
the sample plane (n5nz, wheren561). Then, taking into
account thatv5(c/H)E3n, whereE is the in-plane electric
field, we can arrive at a nonlinear Ohm’s law in the form

j5~c2/HF0!$ĥ iE1a iE3n

1«@ĥ tEl1a tEl3n1ĥ lEt1a lEt3n#%. ~6!

Here Et5Etm, El5Elmi and Et5m•E, El5mi•E. Be-
cause ofEl5(nH/c)y t andEt52(nH/c)y l , viscosities~5!,
actually, depend on corresponding electric-field compone

Vector Eq.~6! can be represented in the scalar form

H ŝ lEt2sHtnEl5 j t

sHlnEt1ŝ tEl5 j l
, ~7!

where j t[m• j , j l[mi• j , and the quantities

ŝ l[~c2/HF0!@ĥ i~E!1«ĥ l~ uEtu!#[s i~E!1s l~ uEtu!,
~8a!

ŝ t[~c2/HF0!@ĥ i~E!1«ĥ t~ uEl u!#[s i~E!1s t~ uEl u!,
~8b!

sHt[2~a i1«a t!~c2/HF0!,

sHl[2~a i1«a l !~c2/HF0!
~8c!

are the additive functions of the appropriate viscosities
have a physical meaning of the corresponding componen
the conductivity tensor~in t2 l representation!:

ŝ[S ŝ l 2nsHt

nsHl ŝ t
D . ~9!

The formal solution of Eqs.~7! as linear equations~but
with nonlinear coefficients!! allows one to deduce the non
linear Ohm’s in theE~j ! form ~see also16!:

E5 r̂ lm~m• j !1 r̂ tmi~mi• j !

1n@ r̂Hlmi~m• j !2 r̂Htm~mi• j !#, ~10!

r̂ l[ŝ/Ds , r̂ t[ŝ l8/Ds ,

r̂Hl[2ŝHl /Ds , r̂Ht[2ŝHt /Ds ,
~11!

whereDs[ŝ l ŝ t1sHlsHt , and Eqs.~11! give the elements
of resistivity tensorr̂ which is the reciprocal ofŝ. Although
Eq. ~10! formally resembles a similar expression for the li
ear Ohm’s law in,13 its physical meaning is wider, becaus
generally, the resistivitiesr̂ l , r̂ t , r̂Hl , r̂Ht , are the nonlinear
functions ofE @see Eqs.~8!#, and this circumstance is de
noted by the superscript ‘‘ˆ ’’ If E-dependence ofr̂ is irrel-
evant, then Eq.~10! is equivalent to the similar equation in13

~see also17!.
In experiment, one usually measures the longitudinalEi

and transverseE' ~with respect toj -direction! components
of E. In these~',i! coordinates~see Fig. 2! the unit vectors
areei[ j / j , e'[z3 j / j , andE5Eiei1E'e' . Then there are
simple relations betweenEt , El andEi , E' of the form
z

s.

d
of

HEt5xEi2yE'

El5yEi1xE'
; H Ei5yEl1xEt

E'5xEl2yEt
, ~12!

where x[m•ei and y[mi•ei . Then, in view of ~12!, we
have

Ei5~ r̂ i
11nr̂ i

2! j , E'5~ r̂'
11nr̂'

2! j ; ~13!

H r̂ i
1[x2r̂ l1y2r̂ t

r̂'
1[xy~ r̂ t2 r̂ l !

; H r̂'
2[x2r̂Hl1y2r̂Ht

r̂ i
2[xy~ r̂Hl2 r̂Ht!

. ~14!

Note that the experimentally measuredr̂',i
6 values generally

depend, as defined by Eqs.~14!, on the anglea betweenmi

andj ~see Fig. 2! in two ways. The explicit dependence ona
can easily be seen from Eqs.~14!, provided that the element
of the tensorr̂ do not depend onE, i.e., if r̂→r, wherer is
the tensor of the linear Ohm’s law. However, in nonline
regimes there appears an additional nonlinear angular de
dence ofr̂',i

6 through the implicit dependence ofr̂-tensor
elements onEl , Et fields, which, in their turn, depend on th
a value throughj t5x j and j l5y j by Eqs.~7!. Below we pay
a special attention to thisa-dependence due to its nontriv
ality.

b! Scaling and ‘‘reconstruction’’ ofŝ in the a-pinning
model.Equations~14! show that, in the case of linear Ohm
law, resistivitiesr i ,'

6 (a) can be found for the sample with a
arbitrary a value ~see Fig. 1a!, if four current-independen
intrinsic resistivitiesr l , r t , rHl , rHt are known. In their
turn, they can be measured experimentally~‘‘recon-
structed’’! in two special~‘‘reduced’’! geometries of experi-
ment~see Figs. 1b, 1c!, namely,r l , rHl—in the longitudinal
L-geometry (j'TB’s), and r t , rHt—in the transverse
T-geometry (j iTB’s). In these reduced LT-geometries th
sample with unidirected twins behaves isotropically, b
cause, by virtue of Eqs.~14!, the two new resistivity compo-
nentsr'

1 andr i
2 , which are specific to anisotropic geomet

of general type (aÞ0, p/2!, are equal to zero. Below we
show that for the case of purely anisotropic pinni
@a-pinning model,g i(y)50], the above-mentioned situatio
can be generalized to the nonlinear regime.

Actually, it can be shown that Eqs.~7! can be written for
both L-geometry (x[xL51, y[yL50) and T-geometry
(xT50, yT51) as

H ŝ l~Ei
L!Ei

L2sHtE'
L 5 j

ŝ t~E'
L !E'

L 1sHlEi
L50

, H ŝ l~E'
T !E'

T1sHtEi
T50

ŝ t~Ei
T!Ei

T2sHlE'
T5 j

.

~15!

Now we assume that four CVC’s, namelyEi
L( j ), E'

L ( j ),
Ei

T( j ), E'
T ( j ), are experimentally known. Let alsoEi

L

5 f L(E'
L ) and Ei

T5 f T(E'
T ), where the functionsf L(x) and

f T(x) are also known. Then, after some algebra with E
~15! we arrive at

H sHt52 j /@E'
L 1 f T~Ei

L!#

sHl52 j /@E'
T1 f L~Ei

T!#
,

H ŝ l~x!5@ j i
L~x!/x#/@11 f L

21~x!/ f T~x!#

ŝ t~x!5@ j i
T~x!/x#/@11 f T

21~x!/ f L~x!#
,

~16!

where j i
L(Ei

L), j i
T(Ei

T) are the functions inverted to the func
tions Ei

L( j ), Ei
T( j ), respectively. Equations~16! give the
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complete and exact solution of theŝ-tensor reconstruction
problem in thea-pinning model. They allow us to expres
exactly the longitudinal and transverse CVC’s of the sam
with arbitrary anglea ~see Fig. 1a! in terms of four CVC’s
experimentally measured in LT-geometries17 at arbitrary
constant values ofsHl , sHt ; the expressions for the last ar
in fact, the desired scaling relations in thea-pinning model.
If, as is often the case in experiment,5,9 the Hall components
of the ŝ-tensor are considerably smaller then the diago
components, then Eqs.~16! are greatly simplified to

H sHt52 j / f T@Ei
L~ j !#

sHl52 j / f L@Ei
T~ j !#

, H ŝ l~x!5 j i
L~x!/x

ŝ t~x!5 j i
T~x!/x

. ~17!

Physical realization of pure anisotropic pinning cons
ered here is most probable in the temperature rangeTdp

i ,T

,Tdp
i , whereTdp

i and Tdp
i are depinning temperatures1 for

the point pins and the longitudinal motion of vortices
TB’s, respectively.

c! Guiding analysis.Below we present the main resul
of studying the GM in thea-pinning model. For simplicity,
we here neglect generally small nondiagonal Hall terms
the ŝ-tensor~Eq. ~13!!.

First we consider the linear case, wherer l5r i
1L , r t

5r i
1T , i.e., r l , r t values can be measured in LT

geometries. At arbitrary angleaÞ0, p/2, the directions ofv
andf do not coincide~see Fig. 2!, if h lÞh t ~i.e.,r tÞr l). Let
us define the auxiliary anglec as a measure of competitio
between guided (2y l) and transverse (2y t) motion of vor-
tices across TB’s~‘‘slipping,’’ in terms of12!. It follows from
Eq. ~4! that

tanc[y t /y l5tanac /tana, ~18!

where tanac[rt /rl . In general, 0,ac,p/2, however,
normally2,8 r t,r l and ac,p/4. We also introduce anothe
angle b[a1c ~see Fig. 2!, which can be measure
experimentally,12 because

cotb[2E'
1/Ei

152r'
1~a!/r i

1~a!. ~19!

As it follows from ~19! and the definition ofb,

cotb5tana~12tanac!/~ tan2 a1tanac!. ~20!

From Eq.~20! one can deduce that theb~a! dependence is
always nonmonotonic~see Fig. 3!. The extreme value ofbext

(bmax at ac.p/4 or bmin at ac,p/4) is attained at the
tana05(tanac)

1/2 andbext52a0 . Experimentally, of specia
interest are the cases where cotb@1, i.e., the transverse elec
tric field E'

1 is considerably greater than the longitudin
field Ei

1 due to the dominant role of the GM. More detaile
examination of Eq.~20! shows that the most favorable co
ditions for that case will be at tanac!1 and tana!1. In fact,
there are two limiting cases, wereuE'

1u@uEi
1u, namely

cotb'H tana

tanac
@1, tan2 a!tanac!tana

t

tana
@1, tanac!tan2 a

.

~21a!

~21b!

The situation is quite real experimentally, because
experiment8 it was shown that tanac,1026 at T'87 K for
e

l

-

n

l

n

YBCO ~see Fig. 1, curves1 and 5 in8!. Note also that the
distinction between cases a! and b! in Eq. ~21! follows from
the fact that the angleb always shows an extreme behavi
in the vicinity of anglea0 ~see Fig. 3!.

The linear result can be generalized to the nonlinear
gimes if we replace tanac by tanâc[r̂t(uElu)/r̂l(uEtu), i.e., we
take into account thatac→âc(a, j ). It can be demonstrated
~see Eqs.~8! and ~11!! that

tanâc5rT~ j l !/rL~ j t!5FEi
T~ j cosa!

Ei
L~ j sina! G tana, ~22!

where, as previously,Ei
L( j )5 j rL( j ) andEi

T( j )5 j rT( j ) are
longitudinal CVC’s in LT-geometries, respectively. Becau
âc5âc(a, j ), the nonlineara2 j dynamics of cotb̂ may be
more complicated than in the linear case. The two lim
(a→0 anda→p/2) are of particular interest. For exampl
if a→p/2, then in the creep regime~for the power-law
CVC’s! we may haverT( j cosa)→rT@ j(p/22a)#!rT( j ),
whereasrL( j sina)'rL(j). So, if for LT-geometries at fixed
j the values ofrT( j ) and rL( j ) are of the same order, i.e
tanâc&1 for a'p/4 ~weak guiding!, then in the limit a
→p/2 there should be tanâc!1, i.e., we can expect an es
sential nonlinear enhancement of the guiding effect. Sim
reasoning fora→0 shows that tanâc@1 is feasible; then it is
possible that in the process ofa increase from 0 top/2 at
fixed j the observed voltageV'

1 changes its sign, passin
over V'

150 at tanâc51. Yet, from the experimental view
point, it is of greater interest to realize this transition for t
given sample (a5const) by changing the current; qualitativ
analysis of these effects for the power-law CVC has be
made.17

Now we show that both longitudinalEi
a( j ) and trans-

verseE'
a ( j ) CVC’s of the sample with an arbitrarya value

in the model under study can be expressed through the
gitudinal CVC’s in LT-geometries. Actually, in the
a-pinning modelEt5Et( j t) and El5El( j l) @see Eqs.~7!,
where small Hall terms are ignored#. Then it follows from
Eqs. ~12!, if we apply them to the LT-geometries, tha
Et( j t)5Ei

L( j t) andEl( j l)5Ei
T( j l). The repeated use of Eqs

~12! yields

FIG. 3. Schematic nonmonotonic dependence ofb on a, whereb is the
angle betweenj and v ~see Fig. 2! and a is the angle betweenj and mi :
ac5ac

, , b5b, ~a!; ac5ac
, , b5b. ~b!.
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H Ei
a~ j !5xEi

L~x j !1yEi
T~y j !

E'
a~ j !5xEi

T~y j !2yEi
L~x j !

. ~23!

Note the nontrivial angular dependence in the argument
Ei

L andEi
T functions. Equations~23! also show how the pe

culiarities of CVC’s in the ‘‘basic’’ LT-geometries are man
fested in the Ei ,'

a ( j ) CVC’s. First we shall study the
a-dependence of critical current densitiesj c(a) in terms of
the basic critical current densities of our modelj c

L

[ j c(p/2) andj c
T[ j c(0) in LT-geometries, respectively. Fo

the analysis we assume the simplest form of CVC’s in L
geometries

Ei
L~ j !5r l~ j 2 j c

L!u~ j 2 j c
L!;

~24!
Ei

T~ j !5r t~ j 2 j c
T!u~ j 2 j c

T!,

whereu(x)51 for x.0 andu(x)50 for x,0. Using these
‘‘ideal’’ CVC’s we ignore the creep and, at the same tim
we fix the singularities of CVC’s in the form of a kink atj
5 j c . Substitution of Eqs.~24! into Eqs.~23! gives the ana-
lytical form of CVC’s.

But it is more instructive to analyze these equations
the (j t , j l) plane. In Fig. 4 the first quadrant of the plane
divided by straight linesj l5 j c

T and j t5 j c
L into four regions.

The end of the vectorj with the coordinates (j sina, j cosa)

FIG. 4. Schematic diagram of the dynamic states of the vortex system
( j l , j t) plane. There are four regions: FP—full pinning, FS—full slippin
FG—full guiding, GS—guiding and slipping.j c

L and j c
T—critical current

densities in L- and T-geometries, respectively.
of

-

,

n

dependent onj, a values, can belong to each of these regio
with different physical meaning of dynamic states of the v
tex system.

The region of ‘‘full pinning’’ ~FP in Fig. 4!, where
Ei

a( j )5E'
a ( j )50, is shown by the unshaded rectangle a

its diagonal determines the critical anglea* (tana*
[jc

L/jc
T). Then it is easy to see that

j c~a![H j c
.~a!5 j c

L/sina a.a*

j c
,~a!5 j c

T/cosa a,a*
. ~25!

In the region of ‘‘full slipping’’ ~FS in Fig. 4!, shaded by
vertical lines,a,a* , j t(a), j c

L , and the vortices are mov
ing normally to the TB’s, i.e.,vFS5vtim. The ‘‘full guid-
ing’’ ~FG! region is shaded in Fig. 4 by horizontal lines,
represents the fully GM of vortices withvFG5vl imi , be-
cause ata.a* we always havej l(a), j c

T . And lastly, the
‘‘slipping and guiding’’ ~SG! region, shaded by crosse
lines, realizes the coexistence of slipping and guiding, wh
v5vt1vl with vtÞ0 andvlÞ0.

If, for the given sample with fixeda5a j , the transport
current is increasing from zero, then, depending on thea, j
values it is possible to realize sequentially different varia
of intersection by the end ofj -vector of the boundaries be
tween the neighboring regions~see Fig. 4!. For example, if
a.a* , then the series of intersections FP→FG→GS exists.
Since a new source of dissipation appears, at each of
intersection, the longitudinal CVC of the sampleEi

a( j ,a)
acquires a kink~inflection point! at corresponding values o
j. In general, there are two such kinks on the CVC~if a
Þa* , 0, p/2!; only in the casea5a* these two kinks
merge into one.

In conclusion, we note, that anisotropic transport effe
caused by unidirected twins have only begun to be obser
experimentally; until now, all the measurements were tak
on YBCO single crystals.8–10 However, recently fabricated18

c-axis-oriented YBCO thin films with unidirected twins, ow
ing to a more pronounced anisotropy of their resistive pr
erties and attainability of higher current densities witho
overheating, might appear more suitable for observation
the predicted here nonlinear effects than the crystals.

I am grateful to A. K. Soroka and A. A. Soroka for the
help in preparing this paper for publication.
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Magnetic helix in MnO 2

O. V. Kovalev
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The paper pursues the following two goals: to demonstrate the principle of concordance of the
basic sets of representations and to investigate possible incommensurate magnetic
structures proceeding from the previously developed theory of induced representations. The
methods and the results obtained differ essentially from those obtained on the basis of Lifshitz
invariants. The effect of exchange energy spectrum smoothing as a result of inclusion of a
nonexchange interaction is established The role of dipole interaction in the magnetic helix
orientation is elucidated. ©1999 American Institute of Physics.@S1063-777X~99!00502-2#
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Let us illustrate the general results obtained in Ref. 1
an example in order to elucidate the problems emerging
the method of induced representations applied for describ
the energy spectrum and analyze a noncommensurate
netic structure on the basis of Refs. 1–3 as well as our ea
publications~the list of these works is given in Ref. 3!. We
proposed a rule for concordance of basic vectors~BV! of
irreducible corepresentations~ICR! at symmetric points, ob-
tained and analyzed the coefficients of invariant combi
tions ~IC!, elucidated the role of dipole interaction, and i
troduced the concept of energy spectrum ‘‘smoothing.’’ T
MnO2 crystal was chosen, among other things, to comp
the method proposed by us with the approach develope
Dzyaloshinskii.4 The results differ significantly. In Ref. 4
they are based on an error of fundamental nature: the au
attributed the existence of an incommensurate structur
the Lifshitz invariant which in fact is equal to zero at th
point ks characterizing the helix.

In the following analysis, the information and notatio
from Refs. 1–3 are used.

1. We give information about the crystal and reduce re
resentations to the form required for calculations. The
dorov group isG5D4h

145P42 /mnm, and Mn atoms occupy
in the zeroth cell the positions~1,0! and~2,0! with the coor-
dinatesr15(0,t,t/2) andr25(t,0,3t/2). We consider vec-
tors ~points! k050, k15(0,0,k) andk195b3/2 and denote by
T, t, and t the irreducible representations~IR! associated
with them and byD, d, andd the ICR. Since all the vector
listed above contain onlyZ-components, we omit in the fur
ther analysis theX- and Y-components of vectorsk and
translationsa in elementsg5(a/h). The main elements o
groupG arehi and (0,0,t/hj ), wherei 51,...,4,37,...,40 and
j 513,...,16,25,...,28. Thelocal groupG(1,0)5mmmof the
first position contains elements gi with i
51, 4, 37, 40, 13, 16, 25, 28. TheH(k1) group contains rota-
tions with numbers 1, 14, 4, 15, 26, 37, 27, and 40, a
G(k0)5G(k19)5G. All IR considered below generate ICR
of the a type. We speak of an ICR when antiunita
1151063-777X/99/25(2)/7/$15.00
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symmetrization of the basic sets is implied~Eq. ~19! in
Ref. 3!.

We use the information on induced representations~IR!
presented in Ref. 3. In the exchange approximation, we m
use representations induced by unit representationsG1 of the
group G(1,0). That is, G1→T11T7; t11t4; t3 for
k0 ,k1 ,k19, respectively. If we are speaking of all interactio
~magnetic spectrum!, we must induce all IR of theG(1,0)
group according to which the components of the magn
moment of an atom in the~1,0! position are transformed. Fo
the Z-component, we haveG7→T31T5, t21t3, t4. For
components in theXY-plane,G3→T9, t5, t1 G5→T9, t5,
t2.

Table I is the occurrence table1 divided into two parts for
exchange and magnetic representations~the lines containing
only zeros are omitted; numbers of IR are given according
Ref. 3!.

In order to avoid misunderstanding, and going sligh
ahead, we make the following remark. Not the unit vectorsex

and ey , but the unit vectorse1 and e2 directed along the
rotational axesh13 andh16 are transformed according to th
IR G3 andG5. It appears at first sight that the evolution
the BV during motion from pointk0 to pointk19 must occur
in two ways:~1! BV of IR T9→BV of IR t5→BV of IR t1,
and ~2! BV of IR T9→BV of IR t5→BV of IR t2. Supply-
ing IR T9 andt5 with the additional superscripts 1 and 2, w
should write these evolutions in the formT91→t51→t1;
T92→t52→t2, and the problem on evolution of basic se
would be solved unambiguously. However, such argume
~which unfortunately appear sometimes in the literature! are
erroneous for the following reason. A mixed second-order
containing magnetic symmetrized coordinatesm(5ik) exists
for the BV of two identical IRt5 @formula ~1! from Ref. 2#
on the entirek1 line ~except the single pointk19! irrespective
of the choice of the basic sets for these two IRt5. Actual
basic sets on thek1 line are determined not from symmetr
considerations, but through the solution of a secular equa
by reducing the quadratic form to the sum of squares. T
© 1999 American Institute of Physics
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TABLE I.

t 1 7 3 t 3 5 9 1 2 4

1 1 0 1 2 1 0 0 0 0 1
4 0 1 1 3 0 1 0 0 0 1

5 0 0 1 1 1 0
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mixing of the basic sets of two identical IR starts at the po
k0 , proceeds continuously along thek1 line, and it is only at
the point k19 that the basic sets are determined from
requirement on concordance of the basic sets at this poin
any problem on the energy spectrum~electron, phonon, mag
netic, or exciton! of this type, calculations are controlled
the concordance points of basic sets, which is especially
portant in approximate calculations.

We believe that the proposed method can be used
readers for solving other problems also. For this reason,
present the required minimum of tabulated data, the mor
that the information given in Ref. 3 should be partially mod
fied. First we transform ICR matrices. We proceed from IC
tables T147, T119, and T159 from Ref. 3 for the pointsk0 ,
k1 , and k19. The two-dimensional matricesM in these
tables are replaced by the matrices

An
1M̂ ~h!An , An

1M ~Kg!An* ~M5D,d,d!,

whereK is the complex conjugation operator. We have tw
goals. First, we reduceT9 and t5 to the real-valued form
~this is not a necessary transformation, but it facilitates co
putations!. Second~which is of primary importance!, we ob-
tain the reduced form for limitationsd3↓ andd4↓ of ICR d̂3

and d̂4 imposed on the subgroupG(k1) in accordance with
the recommendations given in Ref. 1. The matricesd̂1 and
d̂2 are transformed in order that the limitations of these IC
imposed onG(k1) coincide with the ICR matricesd̂5. New
ICR matrices for generating elements and unitary matriceA
ar given in Table II,&g051, &g15exp(ip/4). Table III
contains the rules of positions transformation~only the
Z-components are indicated!. These tables are also require
for constructing BV and for determining the relations b
tween constantsF of the exchange interaction.
t

e
In

-

y
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We shall calculate the magnetic energy spectrum by
ing the method developed in Ref. 2. Let us recall its ba
concepts. The magnetic density can be written in the follo
ing three forms:

M ~r !5( m~apa!eaw~pa!5( m~aF jik !eaw~F ji k!

5( m~F ji k!c~F ji k!, ~1!

wherea5x,y,z; ea are magnetic unit vectors,p is the num-
ber of a position in the unit cell, andw(pa) the position
function localized in the position (p,a). The second sum is
the expansion ofM ~r ! in the ICR basisw contained in the
transposition corepresentationP5I (G1). In this case,F is
the class of equivalence~the number of ICR in their com-
plete table!, j the number of the ICR classF in P, andi the
number of the basic vector of the small ICR of theG(k)
group. The summation is carried out over all possible val
of indicesF, j ,i whose ranges are determined by the com
sition of P. In the absence of limitations of any kind, i.e., fo
an arbitrary vectorM ~r !, the second and third sums involv
all vectorsk from the Brillouin zone. However, in our prob
lem on the incommensurate structure~which will be some-
times referred to simply as a helical structure!, only two
vectors~k and2k! appear in the above-mentioned sums.
the third sum,M ~r ! is not decomposed into its componen
c(F jI k) are the BV of the magnetic corepresentationDm

5P3V, the unit vectorsea being transformed according t
V. The set of indicesF, j ,i in the third sum is determined b
the composition of the corepresentationDm5I (Gm), where
Gm is the corepresentation of the local groupG(1,0) accord-
ing to which the unit vectorsea are transformed. In the
crystal under investigation,Gm5G31G51G7. In the
TABLE II.

h14 h26 h25 Kg25 An

d̂5, T5 S 0 1

21 0
D S1 0

0 21
D S1 0

0 1
D S1 0

0 1
D g0S1 2i

1 i
D

d̂1 S 0 1

21 0
D S1 0

0 21
D S0 i

i 0
D S1 0

0 1
D g1S 1 i

21 i
D

d̂2 S 0 1

21 0
D S1 0

0 21
D S 0 2i

2i 0
D S1 0

0 1
D g1* S1 i

1 2i
D

d̂3 S1 0

0 21
D S1 0

0 21
D S 0 2i

2i 0
D S2i 0

0 2i
D S1 0

0 2i
D

d̂4 S1 0

0 21
D S21 0

0 1
D S 0 2i

2i 0
D S2i 0

0 2i
D S2i 0

0 1
D
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subsequent analysis, the casesGmxy5G31G5 and Gmz
5G7 are considered separately. The former case co
sponds to the densityM (r )'Z, while the second corre
sponds toM (r )iZ.

A transition from one some to another in~1! is carried
out through the relations

w~pk!5n21«~p!( w~pa!exp~ ik•a!,

s~F ji k!5( R3~p/F ji !w~pk!, ~2!

w~apk!5eaw~pk!,

c~F ji k!5( R21~ap/F ji !c~apk!, ~3!

«~p!5expik•@~r ~p,0!2a0/2!#, ~4!

where a0 is the translation in an antiunitary elementa0

5Kg05K(a0 /h0). Henceforth, we putg05g25. Owing to
the factor«, the matricesR3 and R21 are analytically inde-
pendent of the vectork.

The quantitiesm(apa) can be referred to as local mag
netic coordinates, and the quantitiesm(aF ji k) andm(F ji k)
can be regarded as symmetrized. IfM ~r ! contains only the
basic vectorsc with fixed values ofF andK , the energy has
the form

H~FK !5
1

2 ( w~ j i / j 8i 8;k!m~F ji k!* m~F j 8i 8k!, ~5!

w~ j i / j 8i !5w~ j 1/j 81!

5( D~ap/a8p8!R21~ap/ j 1!* R21~a8p8/ j 81!,

~6!

D~ ...!5«~p!* «~p8!( F~apa/a8p80!exp~2 ik•a!, ~7!

w5w1, D5D1, D~2k!5D~k!* ,

w~ j i / j 8i 8!50 for iÞ i 8. ~8!

In the exchange approximation, i.e., fora5a8,
F(apa/ap8a8)5w(pa/p8a8) we have

He~FK !5
1

2 ( we~ j 1/j 81!(
a,i

m~aF ji k!* m~aF ji k!,

~9!

we~ ...!5( De~p/p8!R3~p/ j 1!* R3~p8/ j 81!, ~10!

TABLE III.

p g1,4,37,40 g14,15,26,27 g2,3,38,39 g13,16,25,28

1 r1 r2 r22a3 r1

2 r2 r11a3 r12a3 r22a3
e-

De~ ...!5«~p!* «~p8!( F~pa/p80!exp~2 ik•a!. ~11!

We assume that the magnetic phase transition is ass
ated with a certain single starK and one equivalence classF.
Having determined the values of the second sums in~9!
through the minimization of thermodynamic potential, w
must refine the result by including nonexchange interactio

2. Let us consider our specific case. The functio
w(pk) are defined as

w~1k!5n21( w~1a!exp~ ik•a!,

w~2k!5n21m( w~2a!exp~ ik•a!, ~12!

where «(1)51, «(2)5m5exp(ikt). The BV w8(F ji k) of
the IR t1 andt4 can be obtained by the formulas

w8~111k!;( t3~g!11* gw~1k!,

w8~411k!;( t3~g!21* gw~1k!, ~13!

wheregPG(k19), F51 and 4,j 5 i 51. We use the relation
gw(pa)5w@g(r p1a)#. After antiunitary symmetrization
and normalization, we arrive at the BV of ICRd1 andd4:

&w~111k!5w~2k!1w~1k!,

&w~411k!5w~2k!2w~1k!. ~14!

These relations lead to the following value of the matrixR3 :

R3~p/F ji ;k!5
1

2 S 1 21

1 1 D .

Formulas~13! contained our proposition concerning in
duces representations. That is, we propose that the BV o
and ICR be constructed at a nonsymmetric point on the b
of exactly the same rules as those used for constructing
BV of IR and ICR at a symmetric point. In this case, th
compatibility relations should be taken into account~see
Table I!. This leads to concordance of basic sets and t
correct physical pattern. The specific rules~matricesR! can
in general be different for neighborhoods of the pointsk0

andk19.
Using formulas~17!–~19!, we obtain the exchange en

ergy branches from Ref. 2. In our case,j 5 j 851 and i 5 i 8
51 so that the first sum in~17! is reduced to a single term
The second sum overa5x,y,z written in Ref. 2 will be
denoted byc1c1* for F51 andc4c4* for F54. Finally, we
obtain

He~1K !5w1c1c1* , He~4K !5w4c4c4* , ~15!

w1,45( F~1a/10!cosk•a6F~2a/10!cosk•~a

1a3/2!. ~16!

It should be recalled thatF(pa/p80) is the magnitude of
exchange interaction between atoms in positions (p,a) and
(p8,0). Here, we use the relations
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F~pa/p8a8!5F~p8a8/pa!,

F~r p1a/r p81a8!5F@g~r p1a!/g~r p81a8!#. ~17!

Let us analyze relations~15! and~16!. The functionsw1

andw4 of the vectork are the branches of the energy spe
trum, and hence their dependence onk can be shown graphi
cally by specifying certain values of the constantsF.

a. w1(k19)5w4(k19), i.e., two spectral branches interse
at the pointk19. This is a visual illustration of compatibility
relations. Besides, it can be seen that the value of energ
k19 is determined only by the interaction between atoms
positions~1,a!.

b. The starK1 contains two rays:k1 and2k1 . It can be
verified that the following equalities hold:

c~111,2k19!52c~411,k19!,

c~411,2k19!52c~111,k19!.

These equalities clarify the result obtained in Ref. 1: a lin
dependence between the BV of complete IR~ICR! in contact
is observed at symmetric points.

c. It follows from ~15! and ~16! that

]

]k
w1~k0!5

]

]k
w4~k0!50,

]

]k
w1~k19!52

]

]k
w4~k19!Þ0. ~18!

The two branches have extrema at the pointk0 , but there are
not extrema at the pointk19, i.e., a magnetic structure cha
acterized by the vectork19 cannot exist. This statement an
the fact that there is no interaction between atoms in p
tions ~1,a! and (2,a8) in w1(k19) and w4(k19) are closely
related. This aspect, however, has not been investigate
us.

d. The existence of a helical structure is determined
the values of quantitiesF(pa/p80), and a possible magneti
structure in the exchange approximation is described ei
by the ICR d1, or the ICRd4, but not by these two ICR
simultaneously. Thed1 helix degenerates to ferromagnetis
for k15k0 and will be henceforth referred to as ferroma
netic. Similarly, thed4 helix will be referred to as antiferro
magnetic since the equalitym(1,a)52m(2,a8) holds for
k15k0 .

e. We assume for definiteness thatw1,w4 in the entire
range of the vectork1 except the pointk19. If we take into
account a small number of positions in~16!, the w1 curve
may have no minimum fork.0. The absence of a minimum
at the pointk19 does not indicate at all the existence of
helix. The existence of a helix is a consequence of a co
paratively strong interaction of atoms separated by a la
distance. In the case of several minima, the absolute m
mum corresponds to a helix. In some cases, an abso
minimum exists at a certain pointks1 , while a relative mini-
mum is observed at another pointks2 at a certain tempera
ture. At another temperature, however, the situation can
reverse. Accordingly, we can speak of the jumpwise va
tion of the parameterks of the helix, a first-order phase tran
sition, metastable states, domain helical structure,
-
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Naturally, a smooth variation of the helicity parameter c
also take place upon the variation of external parameter
turns out that the situation is determined by the values oF
almost completely.

It should be noted that, in order to obtain the helic
parameterks , we must actually minimize not energy, bu
thermodynamic potential. This formally means that we m
at least minimize the expression containing high-order IC
the exchange approximation under investigation, we m
speak of IC composed of the quantitiesc1 ~or c4! written in
~4!. Constructing IC according to the algorithm adopted he
we obtain the coefficients of IC in the form of a sum overa
of expressions containing cosines~and probably sines! of
k•a and k•(a1a3/2). The problem becomes virtually un
solvable. However, the magnetic moments of atoms at t
peratures much lower than the magnetic ordering temp
ture are close to possible limiting values, and we can o
the minimization inc. The role of high-order IC is formally
reduced to a renormalization of the quantitiesF in the sum
~16!, which is more significant for large vectorsa. Conse-
quently, an additional tendency towards a change in the v
tor ks appears below the magnetic ordering temperature. T
circumstance can probably explain the fact that a helix
pears in many crystals below the temperature of phase t
sition from the paramagnetic to the magnetic state.

f. We can assume in principle that the curvesw1 andw4

intersect. consequences of this effect can be easily foun
3. Let us consider the common magnetic spectrum. T

magneticXY-density on thek1 line is transformed according
to ICR d51 andd52. Their BV are linear combinations of th
functions

w~x1!5exw~1,k!, w~x2!5exw~2,k!,

w~y1!5eyw~1,k!, w~y2!5eyw~2,k!. ~19!

It is expedient to choose the linear combinations at the p
k19 and the pointks characterizing the helix in differen
ways.

For the pointk19, we require the concordance of bas
sets. Let the BV of the ICRd51 be transformed atk19 into the
BV of the ICR d1, while the BV of the ICRd52 be trans-
formed into the BV of the ICRd2. We proceed as follows.

~1! We apply the operator projecting onto the space of
ICR d1 to a function from~19! at k15k19. We use the
matricesd1 from Table II and carry out summation ove
the basic elements of the groupG(k19). The obtained
basis vectors are subjected to antiunitary symmetriza
and normalization. The BV for the ICRd2 is determined
in a similar way.

~2! The obtained matrixR21(ap/F ji ;k19) is applied directly
for writing the BV for the ICRd51 andd52.

It should be noted that since we introduced a factor«(p)
into formula ~2! in Ref. 2, the elements of the matrixR are
just numbers and not functions of the vectork. These num-
bers must satisfy only two requirements:R is a unitary ma-
trix, and the matrixR ensures a transition to the BV of co
responding ICR.
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We can write the BV of the ICRd51 andd52 concordant
at k19 in the form

2c~511!195w~x1!1w~x2!2w~y1!1w~y2!,

2c~512!195w~x1!2w~x2!2w~y1!2w~y2!, ~20!

2c~521!195w~x1!1w~x2!1w~y1!2w~y2!,

2c~522!195w~x2!2w~x1!2w~y1!2w~y2!. ~21!

The choice concordant basic sets has an important pecu
ity. Since the limiting BV of the ICRd51 andd52 carry out
the nonequivalent ICRd1 and d2, the coefficient of the
mixed IC at the pointk19 must vanish. If, however, we tak
discordant basic sets, this coefficient does not vanish, and
must solve a secular equation in order to obtain spec
branches at the pointk19.

We choose the basic sets in the neighborhoods of
points k0 and ks in accordance with the direct productst51

5t13V1 andt525t43V1, whereV1 is the representation
according to whichex andey are transformed:

&c~511!5w~x1!1w~x2!,

&c~512!52w~y1!2w~y2!; ~22!

&c~521!5w~y2!2w~y1!,

&c~522!52w~x2!1w~x1!. ~23!

We ensured that the matrices of ICR have the same f
as in Table II.

Naturally, the result of calculation of the energy spe
trum does not depend on the choice of the basic sets for
ICR d51 andd52. Let us find out why the choice of~22! and
~23! is preferable in certain cases. We shall consider
general formulas~12!–~15! from Ref. 2. Since the vectork
appears in the factor exp(ik•r ) in all formulas, a transition
from the vectork to the vector2k is equivalent to complex
conjugation. In the given case, the star contains only
vectorsk1 and2k1 . We write the expression for the energ
Hxy associated with theXY-density in the form

Hxy5w11i 111w12i 121w21i 211w22i 22, ~24!

w j j 85w~ j 1/j 81!, i j j 85( m~ j i k!* m~ j i k!. ~25!

The actual spectral branches correspond to the rootl1

and l2 of the secular equation appearing whenHxy is re-
duced to the sum of squares. In this way, the basic sets o
ICR d51 andd52 belonging to the rootsl1 andl2 for a given
value ofk1 are established. If we choose~22! and ~23!, the
coefficientsw12 and w21 contain only nonexchange intera
tions, while the coefficientsw11 and w22 also include ex-
change interactions. Consequently, for the pointk0 as well as
the pointsks corresponding to the helix we can write

uw112w22u'uw12w4u@uw12u.

If we assume for definiteness thatw11,w22 andl1,l2 , we
obtain l1'w1 and l2'w4 at the above-mentioned point
The inclusion of nonexchange energy leads to only a sl
ar-
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shift in the energy levels. The actual basic sets of the ICRd51

andd52 corresponding to the rootsl1 andl2 differ insignifi-
cantly from the basic sets~22! and ~23!.

The above inequality is violated only in the vicinity o
the pointk19 as well as the points at which the branchesw1

and w4 intersect. In these regions, nonexchange interac
leads to a peculiar effect of energy level ‘‘smoothing’’ and
a considerable rearrangement of basic sets of ICR.

Choosing~20! and ~21!, we have

w11,225( @F~x1a/x10!7F~y1a/x10!#cosk•a, ~26!

w125w215( F~x2a/x10!cosk•~a1a3/2!. ~27!

If we choose~22! and ~23!, we can write

w11,228 5( F~x1a/x10!cosk•a6F~x2a/x10!

3cosk•~a1a3/2!, ~28!

w128 5w218 5( F~y1a/x10!cosk•a. ~29!

We have used the following relations:

F~a,r p1a/a8,r p8 ,1a8!

5H~h!baH~h!b8a8F@b,g~r p1a!/b8,

g~r p81a8!], ~30!

F~apa/a8p8a8!5F~a8p8a8/apa!, ~31!

whereH(h) is the matrix of rotation ofh. Condition~31! is
hypothetical.

It follows from expressions~26!–~29! that w12(k1

5k19)50; l1Þl2 for k15k19; w128 contains only nonex-
change interactions.

We can verify that the derivatives of the rootsl1 andl2

with respect tok vanish not only at the pointk0 , but also at
the pointk19. This is the effect of ‘‘smoothing’’@cf. ~18!#.

Let us now consider theZ-density. On the linek1 , it can
be expanded in the BV of the ICRd2 and d3. The basis
vectors of the latter ICR are given by

w~21!;ez@w~2k!1w~1k!#,

c~31!;ez@w~2k!2w~1k!#.

The limiting values of these vectors are transformed at
point k0 according to the ICRD3 andD5, respectively, and
the Z-density generates two energy levels:

H2z5w2zi 2 , H3z5w3zi 3 , i 25m~211!* m~211!,

i 35m~311!* m~311!. ~32!

The quantitiesw2z and w3z can be obtained by a forma
replacement of exchange constants by magnetic constan
~16!. In order to avoid misunderstanding, we note that
constantsF(apa/a8p8a8) always contain exchange intera
tions for a5a8 and do not contain them foraÞa8. The
levels w2z and w3z are slightly shifted relative to the level
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w1 and w4, respectively. The branchesw2z and w3z can in-
tersect; they come in contact at the pointk19 and satisfy
inequalities similar to~18!.

Formulas~26!–~28! and~32! correspond to the most ex
act approach but contain the quantitiesF that are in fact
unknown. In addition, the division of interactions into e
change and nonexchange interactions cannot be made u
biguously.

4. We can draw a conclusion concerning the orientat
of the helix under the assumption that a nonexchange in
action can be mainly reduced to the dipole interaction.
this purpose, we calculate the following four quantitie
wdz(w1), wdx(w1), wdz(w4) andwdx(w4). The first and third
quantities can be determined from~16! by substituting the
quantityR25(R22Rz

2) for the quantitiesF appearing in this
formula, whereR is the vector between positions. The qua
tities wdx(w1) and wdx(w4) can be calculated from~28! by
substitutingR25(R22Rx

2) for F, andwdz(w1) andwdx(w1)
and wdz(w4), wdx(w4) are the corrections to the levelsw1

and w4, respectively. The absolute values of these corr
tions are immaterial for our problem, and only their sig
and relative values for different points on the linek1 play an
important role. The periods of the crystal lattice a
a54.44 Å anda35c52.89 Å. We took into account 428
positions arranged over a sphere of radius'14 Å around the
position~1,0! ~we are not sure, however, that this number
sufficient!. We do not describe here the results and only f
mulate some conclusions.

If w4,w1 , and the helix is due to the minimum of th
level w4 , we havewdx(w4),wdz(w4) almost everywhere
Consequently, the magnetic moments of atoms rotate in
XY plane for any value ofk1 . The helix orientation is also
the same whenw1,w4 andkst.50°. Forw1,w4 andkst
,50°, we havewdx(w1).wdz(w1). In this case, it is diffi-
cult to determine the type of the helix. We are probab
dealing with a cycloidal elliptical helix, and the rotation
axes of magnetic moments lie in theXY plane. In such un-
certain cases, we must resort to high-order IC. We shall
consider this problem here.

5. The spectrum ‘‘smoothing’’ effect lies in the follow
ing. It should be recalled thatw1(k19)5w4(k19), the deriva-
tives of the levelsl1 andl2 with respect tok vanish atk19,
and l1'w1 , l2'w4 away from the pointk19. Thus,
l1Þl2 at the pointk19. The upper of thel curves is dis-
placed upwards neark19 and has a minimum at this poin
The other curve is displaced downwards and has a pea
k19 ~we mean deviations from the corresponding curvesw1

andw4!. It follows from ~24! and ~27! that atk19 we have

ul12l2u5uw222w11u5( F~y1a/x10!cosk19•a.

If the curvesw1 andw4 intersect at a certain pointk18 , a
similar ‘‘smoothing’’ is observed at this point. The true e
ergy levelsl1 and l2 do not intersect at the pointk18 , but
simply converge. This point is a point of zero inclination.
should be noted that we haveF(ypa/xp80)50 for a dipole
interaction in MnO2. Among other things, this means th
the existence of the effect and its intensity are determined
the adopted model.
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The ‘‘smoothing’’ effect must also be observed for oth
energy spectra, e.g., in the electron spectrum upon a tra
tion from the zero-spin theory to the theory of an electr
with a spin. The effect was noted by other authors in spe
cases. It is assumed, for example, that in the first approxi
tion the levels belonging to identical ICR intersect. In t
next approximation, mixed IC are introduced, and the int
section is eliminated. This effect is attributed to symmet
namely, it takes place if energy levels belong to nonequi
lent ICR in the first approximation and to equivalent ICR
the next approximation.

6. The componentsm(apa) of atomic magnetic mo-
ments are defined by formulas~8! from Ref. 2. The sum~8!
contains magnetic symmetrized coordinatesm(F ji k) which
must be determined in the course of minimization of t
energy expansion in IC. The coefficients of IC cannot
calculated, and it is expedient to treat them as parame
We shall assume that these parameters satisfy the condi
under which an incommensurate structure with the vec
k15ks is realized. We shall consider the case of a magn
XY density described by the ICRd5 ~i.e., eitherd51 or d52!
and try to gain maximum information on atomic magne
moments.

In our case,F55, j 51 or 2, andi 51,2. We put

m~5 j 1,k!5m1k5c cosu exp~ in1!,

m~5 j 2;k!5m2k5c sinu exp~ in2!,

m~5 j i ,2k!5mi 2k5g25m~5 j i ,k!, c.0. ~33!

These four coordinates are transformed according to the
trices of the ICRD of the groupG1KG ~we assume that the
small ICRd5 leads to the complete ICRD5!. The invariant
combinations of theNth order can be obtained by applyin
the operator of projection onto the unit representation of
group to the product (m1k)

s1(m12k)
s2(m2k)

t1(m22k)
t2. The

obtained expression is subjected to antiunitary symmetr
tion according to expression~19! from Ref. 3. This gives

I N5cN~coss11s2 u sint11t2 u

1cost11t2 u sins11s2 u!cos~s12s2!n, ~34!

where s11s21t11t25N; s11t15s21t2 ; si ,t i50,1,...;
N,s11s2 ,t11t2 are even positive numbers, andn5n1

2n2 . Giving the numberssi and t i possible values, we ob
tain all IC of the orderN.

If the equalitiess11s250 or t11t250 are satisfied, we
can factor out sin 2u to a certain even power in~34! and are
left with the sum cosl u1sinl u in the parentheses, wherel is
an even number. If, however, one of the above equali
holds, the parentheses contain the sum cosN u1sinN u. On the
other hand, ifL is even, the sum cosL u1sinL u is a polyno-
mial in sin2 2u.

It follows from the above considerations that the min
mization of energy expansion leads to two series of parti
lar ~steady-state! solutions:

u5
p

4
1

p

2
n1 , n5

p

2
n2 and u5

p

2
n3 . ~35!
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Let us determine the type of magnetic density. The su
mation in formula~8! from Ref. 2 is carried out over the
vectorsk and 2k. The matrixR21 is chosen in accordanc
with ~22! and ~23! by using definitions~33!. This gives

m~x1a!;cosu cos~k•a1n1!,

m~x2a!;6cosu cos~k•a1kt1n1!,

m~y1a!;7sinu cos~k•a1n2!,

m~y2a!;2sinu cos~k•a1kt1n2!, ~36!

where the upper signs correspond to the ICRD51 and the
lower signs to the ICRD52. Steady-state solutions are o
tained as a result of substitution of~35! into ~36!. For
k5ks , a mixed IC exists, and its coefficient is of the order
the ratio of the nonexchange energy to the exchange ene
i.e., is very small. Nevertheless, the actual magnetic den
must be equal to the corresponding superposition of dens
described by the ICRD51 andD51.

In addition to steady-state solutions, solutions of a m
general type are also possible, for which conditions~35! do
not hold, and the values of the quantitiesu, n1 , andn2 de-
pend strongly on extrinsic parameters. In our opinion,
corresponding structures can be established experimen
only when they are intermediate between steady-state s
tions.

We omit an analysis of the magneticZ-density as well as
the cases when bothXY- and Z-densities differ from zero
simultaneously.

Incommensurate magnetic structures in MnO2 were stud-
ied phenomenologically in Ref. 5. The method worked ou
Ref. 5 is also developed here: the determination of the fo
of coefficients of IC, spectrum ‘‘smoothing,’’ etc. In Ref. 5
it was pointed out~probably, for the first time! that the helix
has an elliptic shape and proposed that Lifshitz invaria
have almost nothing to do with the possibility of the em
gence of a helical structure.

7. The magnetic helical structure in MnO2 was described
by Dzyaloshinskii4 on the basis of the Lifshitz invarian
I L5c1¹c22c2¹c1 . It was noted above thatc1 andc2 are
the limiting values of the basis vectorsc~1...! andc~4...! of
the ICRd1 andd4. At the pointks , we have eitherc(1...)
-
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Þ0, c(4...)50, or c(1...)50, c(4...)Þ0. Consequently,
although the invariantI L exists, it has nothing to do with an
incommensurate structure. It was explained in itemsd ande
that the realization of magnetic incommensurate structu
and transitions between them are determined by the value
the quantitiesF in formula ~16!. The method used in Ref. 4
is probably justified in the case when the ICRd at a symme-
try point is concordant~compatible! only with a single ICR
of the same dimensionality at a nonsymmetric point. If t
limitation imposed by an ICR fromP at a symmetric point
can be decomposed, for example, into two ICRd andd8 for
a nonsymmetric point, it is proposed in Ref. 4 that the BV
the ICR d and d8 should be determined according to th
perturbation theory by expanding them into a series in
differenceÆ5k02ks . But, first, it is incorrect to speak of a
power series expansion inÆ for sums of the type~2!. Second,
such an expansion requires also the fulfillment of the
equality uÆu!ubu. This inequality does not hold for exper
mentally established helical structures~in fact, these struc-
tures are not long-periodic!. The branches of the exchang
spectrum corresponding tod andd8 are separated at the poin
ks by an interval of the order of exchange energy. If the IC
d andd8 are nonequivalent, the mixed IC is of the relativist
nature and can be neglected. If the ICRd andd8 are equiva-
lent, the mixed IC is of the exchange type and plays
important ~sometimes decisive! role in the formation of an
incommensurate structure.6,7
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A new type of quantum size effect in metal-semiconductor superlattices is predicted. Giant
oscillations of the transverse tunnel conductivity arise if size quantization of the electron spectrum
in the metal layers takes place. This effect is due to the fact that the probability of metal
electron tunneling through a semiconductor layer depends sharply on the electron incidence angle.
The oscillations have been found to exist even in disordered systems, provided the electrons
in metal layers undergo low-angle scattering on imperfections. ©1999 American Institute of
Physics.@S1063-777X~99!00602-7#
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Recently new unusual oscillation effects have be
discovered1–4 on metal-semiconductor Mo/Si superlattic
~SL! with a constant thickness of Si layers,ds , and a vari-
able thickness of the metal ones,dm . SL in-plane resistivity,
r l , as well as superconducting characteristics~the transition
temperature,Tc , the transverse critical magnetic field deriv
tive, dHc' /dTuTc

, and the coupling strength! reveal oscillat-

ing periodic dependence ondm . All oscillations are well
pronounced, and in the case of the coupling strength t
reach a giant amplitude. Of even greater importance is
fact that the oscillation effects are inherent only tomultilay-
ers. Three layer samples, Si/Mo/Si, have not revealed
oscillations.3 This fact alone suggests that the oscillatio
cannot be explained in simple terms of the conventio
quantum size effect,5 though their period indm does not
conflict with a value predicted by the size-quantizati
theory for metal single films.

In this note we would like to discuss an anisotropic tu
neling through SL semiconductor layers as a possible ex
nation of the above unusual size effects. To demonstrate
possibility of such effects we shall consider here the tra
verse SL conductivity which originates from the interlay
tunneling of electrons.

The idea is based on the fact that the probability of
tunneling of metal electrons through a semiconducting in
layer, W, differs from zero only for those with a practicall
normal incidence on an interface metal-semiconductor. O
1221063-777X/99/25(2)/4/$15.00
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ing to this sharp dependence ofW on the incidence angle o
a tunneling electron,u, the probabilityW experiences sharp
outbursts as quantized electron energies in the metal
through the Fermi level with adm variation. This effect re-
minds in some sense so-called giant resonance oscillation
the ultrasonic absorption in metals6 with the essential differ-
ence that instead of a small electron group singled out by
resonance condition there is one determined by the sharp
of the functionW(u) mentioned. It is this group that partici
pates in the tunnel current. It is obvious that such an eff
can lead to the giant oscillations of the tunnel current.

At first sight, the effect described seems to be irrelev
to the experiments mentioned above because of a ra
strong disorder in metal layers. Nevertheless we shall sh
that, for the small group of electrons we are interested in,
size quantization results in an enhancement of their lifeti
in dm /a@1 times~a is the interatomic distance in metal!. As
will be shown, such an enhancement is sufficient to prov
giant oscillations of the tunnel current.

To show this we consider a periodic one-dimensio
system comprised of the alternating quantum wells~conduct-
ing layers! and the tunnel barriers~semiconductor layers!.
For simplicity we shall assume further that the electron d
persion law is quadratic and isotropic.

As follows from general quantum mechanics consid
ations,W as a function of the in-plane momentum modulu
pi , and the electron energy,E ~which is considered to be
© 1999 American Institute of Physics
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close to the Fermi energy,EF) can be represented in th
form

W5A expH 2
2dsA~dp!212ms~E2EF!1pi

2

\ J , ~1!

whereds is the thickness of semiconductor layers,

dp5A2msD, ~2!

D is a phenomenological parameter which is of order of
typical energy of the effective tunnel barrier, the const
ms;m0 (m0 is the free electron mass!; the form of the pre-
exponential factorA is irrelevant to further consideration
The D value cannot exceed one-half the semiconductor g
Eg , which is, in turn, much less thanEF . In the case of
amorphous semiconductors, which is realized in SL Mo
there are strong reasons to expect that energy parameteD is
even much less thanEg . It is just the smallness ofD that
causes the sharp dependence ofW on the angleu or, what is
the same, onpi . Formula ~1! shows that the probability
W(pi) reaches its maximum at the normal incidence (pi

50) of an electron on the metal-semiconductor interfa
abating to exponentially small values within an interval
order ofdp!pF5A2mEF ~m is the mass of an electron i
the metal!. Such a behavior ofW(pi) is a main point of our
consideration.

Another important scale in momentum space res
from the size quantization in the metal layers. In the isotro
case under consideration the size-quantization electron s
trum in a metal layer~in the limit W50) is a set of terms

En
0~pi!5@~\pn/dm!21pi

2#/2m, ~3!

wheren is the term number.
It is clear~see Fig. 1! that at zero temperature only qua

tized pi values~we denote them bypn) which are the roots
of the equation

En
0~pi!5EF ~4!

FIG. 1. The size-quantization spectrum in a metal layer. The bold dot
the pi-axis arepn ~quantized values ofpi at E5EF!.
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make a contribution to SL kinetic characteristics. At fini
but rather smallW the situation is not changed essentia
because the broadening of size-quantization levels,dE
;AWDE, which is produced by the electron tunneling
small as compared with the typical distance

DE;\vF /dm ~5!

between nearest terms (vF is the Fermi velocity!. Therefore,
permittedpi values are localized within narrow momentu
intervals that are isolated one from another~their lengths are
}AW) centered atpn .

As follows from ~1!, only thosepi values make the main
contribution to a tunnel current,I, that meet conditionpi

<dp. Taking also into account condition~4!, one finds that
I depends crucially on the ratio betweendp and the smallest
of the quantizedpn values

pmin5S H dmpF

\ J p\

dm
pFD 1/2

. ~6!

Here $...% means the fractional part of a number. Ifpmin

@dp the tunnel current is negligibly small, while atpmin

&dp it essentially increases, reaching a maximum atpmin

50. One can easily see from~6! that the monotonic chang
in the metal layer thicknessdm results in oscillations ofpmin

between the valuepmin50 and its maximum value

Dp5S 2p\

dm
pFD 1/2

2pFS a

dm
D 1/2

. ~7!

As is seen from the figure, these oscillations arise
cause the monotonic change indm produces successive pa
sage of size-quantization terms~3! through the Fermi level.
Such an oscillatory behavior ofpmin results in giant oscilla-
tions of the transverse current if the following conditio
takes place:

Dp*dp ~8a!

or, in terms ofdm :

dm&a~m/ms!EF /D. ~8b!

In the opposite case,Dp!dp, the amplitude ofI oscillations
is bound to be exponentially small in the parameterdp/Dp.
The criterion~8! of existence of the giant oscillations is not
rigid restriction. Though the parameterDp is much less than
pF , it considerably exceeds the typical distance,\/dm , be-
tween quantized valuespn @see~4!#. Therefore, the require
ment~8! can be fulfilled atdm@a. Certainly, the criterion~8!
is not the only one determining appearance of the giant
cillations. Along with it, the common conditions of quantum
size-effect existence must be fulfilled:

\/t&DE;\vF /dm , ~9!

T&DE. ~10!

Heret is the time of electron life in a quantized state,T is the
temperature. The latter condition is weaker than the previ
one, and we can assume, for simplicity, thatT50.

n
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At sufficiently larget ~this statement will be specifie
below! the tunnel current may be calculated directly in ter
of the multilayer electron spectrum. The latter is a set
minibands

E~n,pi ,P !5En
0~pi!1dE~pi ,P ! ~11a!

which are size-quantization terms~3! broadened due to fi
niteness of tunneling probability. This broadening is det
mined by the small correction

dE5
2\vF'~pi!

dm
AW cos~P d/\!, ~11b!

where P is a new quantum number~quasimomentum!
enumerating the stationary states in minibands,vF'

5A2mEF2pi
2/m is the modulus of the transverse veloci

of Fermi electron with a givenpi , d5ds1dm . Taking into
account that the average transverse velocity in a minib
stationary state,v'5]E(n,pi ,P )/]P , has the form

v'52~d/dm!vF'AW sin~P d/\!, ~12!

after some calculations carried out in the relaxation time
proach we obtain the transverse conductivity,s' , in the
form

s'5
me2td

2p\2dm
2 ms

2 @pmin
2 ~dm!1~dp!2#

3expH 2
2ds

\
Apmin

2 ~dm!1~dp!2J . ~13!

This formula describes the limiting caseDp@dp. Here we
have specified the expression for the preexponentialA in ~1!,
assuming for definiteness that the semiconductor layer
be considered as a square-topped barrier. As one can
from the expressions~13! and~6!, the oscillatory dependenc
s' on dm is a periodic succession of sharp spikes who
height is of order of the transverse conductivity itself. Th
arise whendm lies within rather narrow ranges determine
by the relations

H dmpF

\ J ;~dp/Dp!2!1.

Just at thesedm values electrons withpi5pmin tunnel be-
tween adjacent metal layers. Outside these ranges the tu
ing is weak. The formula~13! also shows that the amplitud
of s' oscillations is

;~\/dmpF!2 expH 2
2ds

\
dpJ s0 .

Heres0 is the conductivity of the metal.
The expression~13! holds true only when the collision

broadening\/t is much less than the typical miniband wid
dE;AWDE. It is a very rigid restriction. The situation

dE!\/t&DE

seems to be much more realistic. In such a case the elec
scattering completely destroys quantum coherent inter
ence in the multilayer system as a whole, but it does
markedly affect the size quantization in individual metal la
s
f

-

d

-

ay
see

e

el-

on
r-
t

-

ers. One can show that in this intermediate situation the
mula ~13! holds true with an accuracy of corrections;W3/2.
In such a caset5\/G, whereG is the imaginary part of the
mass operator of the one-electron Green function in meta
normal incident electrons.

In the limiting case

\/t@DE ~14!

collisional broadening destroys not only the minibands
also the terms of size quantization in separate metal laye
is clear that under such conditions the considered oscilla
effects are absent.

As has been mentioned above, the present work
stimulated by the experimental observations1–4 of the oscil-
lations of kinetic and superconducting parameters on Mo
SLs. These investigations have been carried out on ra
disordered Mo/Si multilayers with mean free path of ele
trons which is less thandm .7,8 At first sight the observation
of the oscillatory behavior is impossible under these con
tions. Here we shall show that in a case of soft~low-angle!
scattering on the imperfections the lifetime of the siz
quantized electron states for the electron group which is
sponsible for the tunneling (pi<pmin) can significantly ex-
ceed the typicalt in a metal layer. Such a situation arise
when the typical scale of a space inhomogenity in Mo laye
L, is more thana ~in the experiment citedL was;10a for all
dm values!. Actually, from the general expression for th
inverse lifetime,t21(n,pi), of an electron in a given size
quantization state,un,pi&, we obtain

t21~n,pi!} (
n8,pi8

u^n,piuVun8,pi8&u2d~En
0~pi!2En8

0
~pi8!!.

~15!

HereV5V(r ) is a random potential in the metal layer,r is
the electron radius vector, the line over the matrix elem
means the averaging over the random realization ofV(r ). In
virtue of the fact that the matrix element in~15! is not small
only for momenta transferred<\/L, only transitions with
upn2pn8u<\/L should be taken into account. As is cle
from our preceding reasoning, the distance between the l
pn and its nearest neighbor is;Dp. This value can exceed
\/L despite the fact thatL!dm . For this reasont(n,pi) for
the electrons participating in the tunnel transport turns ou
bedm /a@1 times more than the typicalt value. That is why
the giant oscillations can indeed arise in rather disorde
multilayers.

In summary, we have considered a new quantum os
lation effect arising in metal/semiconductor multilayers d
to combination of size quantization in thin metal layers a
selective tunneling of electrons through the semiconduc
interlayers. It is shown that giant oscillations ofs' appear,
which result from sharpW dependence on an incidence ang
of electron, so that only the electrons belonging to the sm
group with the least of quantizedpi values contribute to the
tunnel current. Another remarkable feature of the quant
oscillations described is that the disorder is not so destruc
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for the above effect as it is for the conventional quantum s
effects. The next step is to show how this phenomenon
fects the in-plane transport and superconducting propertie
the experimental situation.
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Semiclassical quantization condition for magnetic energy levels of electrons in metals
with band-contact lines
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We refine the well-known quantization condition for magnetic energy levels of a semiclassical
electron. The refined condition results in the energy shift of the levels when ink space
the closed electron orbit links to the band-contact line~i.e., surrounds it!. This effect is closely
analogous to that of Aharonov–Bohm provided the band-contact line plays the role of
the infinitely thin ‘‘solenoid’’ with the fixed ‘‘magnetic flux.’’ The predicted shift must manifest
itself in oscillation phenomena. ©1999 American Institute of Physics.
@S1063-777X~99!00702-1#
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It is common knowledge that the degeneracy of elect
energy bands in a metal can occur along symmetry axe
its Brillouin zone. In addition, as was shown by Herring1

there are lines of an accidental contact between the band
crystals. The term ‘‘accidental’’ means that the degener
of electron states is not caused by their symmetry. S
band-contact lines is likely to exist in many metals. Th
statement is easily understood when one takes into acc
Herring’s result obtained for the case of a crystal with
center of inversion: if there is a point of contact between t
energy bands in an axis of symmetry of the Brillouin zon
and the interband matrix element of the velocity operato
nonzero at this point, then a band-contact line has to p
through the point. Most metals have a center of invers
~and only such ones are considered below!. Moreover, it is
known ~see, e.g., Ref. 2! that bands in many metals interse
at points on axes of symmetry. As for the matrix element
the velocity operator, the necessary information on it follo
from the irreducible representations of the intersect
bands. Simple analysis of literature data shows that the l
of the accidental contact must exist, for example, in Be, M
Zn, Cd, Al and other metals~see Fig. 1a and 1b!. Strictly
speaking, any degeneracy of bands along a line of the B
louin zone~excluding spin degeneracy! is lifted by the spin-
orbit interaction. However, if this interaction is weak, th
bands still approach each other, and the energy gap betw
them is small near that line in which the contact of the ba
would take place if we ignored the interaction. Moreover,
inclusion of the weak spin-orbit coupling leaves the ma
netic energy levels practically unchanged.3 For this reason,
to elucidate the heart of the matter, we completely neg
the spin-orbit interaction and spin of an electron in the s
sequent discussion.

Semiclassical magnetic energy levels of electrons p
vide the basis for the analysis of many physical phenom
in metals.4,5 These levels were studied in a number
papers.6–17 It was established that a semiclassical elect
orbit in the space of wave vectors,k, is the intersection of the
constant-energy surface,«5const, with the plane,kz
1261063-777X/99/25(2)/4/$15.00
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5const, wherez is the direction of the magnetic fieldH. In
the case of closed orbits the quantization condition for m
netic energy levels looks like

S~«,kz!5~2pueuH/\c!~n1g!, ~1!

whereS is the cross-sectional area of the orbit ink space;n
is a large integer (n.0); g is a constant (0<g,1), ande is
the electron charge. In what follows we shall consider o
those orbits for which probabilities of intraband and inte
band magnetic breakdowns are negligible. In other wor
the orbit under study does not come close to any other
jectory with the samekz , and its shape differs noticeabl
from an intersecting one. In this case, according to Re
~see also Ref. 18!; g always has the value

g51/2. ~2!

It is this value that is commonly used in describing oscil
tion phenomena in metals5 ~e.g., the de Haas–van Alphe
effect, the Shubnikov–de Haas effect, etc.!. If a magnetic
breakdown occurs,g essentially depends on« and kz

10,11,15

but, as noted above, we shall not consider this situation.
In this paper we show that the equality

g50 ~3!

can be valid if the closed electron orbit ink space associate
with a certain energy band«0(k) surrounds the line of de
generacy of this band with some other one. The above re
depends neither on the form of«0(k) in the neighborhood of
the orbit nor on the shape and the size of this electron
jectory, and is topological in nature. It is due to the fact th
the electron orbit links19 ~see Fig. 1! to the band-contact line
which is the line of singularities for the Bloch wave fun
tions. If the linking is absent, Eq.~2! holds. For the above-
stated effect to be the case the band-contact line must sa
the only condition: in its immediate vicinity the energies
the intersecting bands separate linearly ink ask moves away
from the line. This condition is met for any accidental co
tact between the bands and in the case of degeneracy o
bands along a 3-fold symmetry axis of a crystal.
© 1999 American Institute of Physics
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Equation~3! is obtainable from the results of Blount20,21

and Roth.14,22 In k space the effective one-band Hamiltoni
of an electron in a magnetic field can be represented b
power series inH.21,22 Two terms of this series suffice t
calculateg and thus we can use the following Hamiltonia

Ĥ5«0~ k̂!1~e/c!HM0~ k̂!,

which must be considered as a symmetrized operator, tha
the components ofk̂ always appear symmetrically in it. Her
k̂5k2(e/\c)A( i¹k), A(r ) is the vector potential forH and
the quantityM0(k) is associated with the diagonal matr
element of the orbital angular momentum of the electron
the band under study~this band is designated by subscript 0!.
More precisely,M0 is the periodic part ofz-component of
the above-mentioned element divided by the electron m
The quantityM0 falls into the intraband and interband co
stituents:

M0~k!5@v3V#z1\ (
lÞ0

Im@~vx!0l~vy!0l* #

« l~k!2«0~k!
, ~4!

where (v)0l is the interband matrix element of the veloci
operator at the pointk, v[(1/\)¹k«0(k), andV is the pe-
riodic part of the coordinate operator:

V~k!5 i E druk0* ~r !¹kuk0~r !.

Here the integration is carried out over a unit cell, anduki(r )
denotes the periodic factor in the Bloch wave function of
bandl:

Ckl~r !5exp~ ik•r !ukl~r !.

In the case of interest~the spin-orbit interaction is neglecte
for a crystal with inversion symmetry! M0(k) can be made
to vanish at any pointk of the Brillouin zone. This well-
known statement results from the following consideratio
Electron states are invariant under the transformationU
5KI , whereK and I are the operators of complex conjug
tion and inversion, respectively. Hence, one can take
phases of Bloch factors in such a way as to fulfil the relat

FIG. 1. The schematic sketch of Fermi surfaces for several metals
band-contact lines: the third-band electron ‘‘lens’’ of Zn and Cd~a!; the
second-band hole ‘‘coronet’’~‘‘monster’’! of Be and Mg ~b!; the self-
intersecting Fermi surface of graphite~c!. The band-contact lines are show
as the dash-dot lines. The semiclassical orbits 3 and 4 link to the b
contact lines while the orbits 1 and 2 do not.
a

is,

n

s.

e

.

e
n

Uukl5ukl ~5!

for any l. Under this condition the matrix elementsv0l(k) are
real andV(k)50.20 Thus, Eq.~4! yieldsM0(k)50. To con-
sider M0 in the general situation whenukl have arbitrary
phases and do not satisfy condition~5! let us take the trans
formation

ukl→ukl8 5ukl exp@ iw l~k!#, ~6!

wherew l(k) are some regular functions ofk, andukl before
the transformation obey Eq.~5! in a vicinity of the point
concerned. Then

v0l→v0l8 5v0l exp@ i ~w l2w0!#, ~7!

V→V85V2¹kw0 ~8!

and we find from Eq.~4! that the interband part ofM0 is still
equal to zero while its intraband component becomes non
nishing and depends on the phasew0 .

According to Roth,14 g is determined by the formula

g2
1

2
52

1

2p R
G

M0~k!

v'~k!
dk, ~9!

whereG is the closed semiclassical orbit ink space;dk is the
length of an infinitesimal element ofG: v' is the absolute
value of the projection ofv on the plane of the orbit. Taking
into account that the interband part ofM0 is zero, Eq.~9! can
be rearranged as follows:

g2
1

2
52

1

2p R
G
Vdk, ~10!

wheredk[dk@ iz3v#/v' and iz is the unit vector parallel to
H ~dk is aligned with the tangent toG and udku5dk!. It is
evident from Eqs.~8! and ~10! that, in contrast toM0 , the
measurable quantityg is invariant under transformation~6!.

It is generally believed thatV ~andM0! can be made to
vanish everywhere over the Brillouin zone, and thusg
51/2. This is true in the absence of the degeneracy. H
ever, if a line of the contact between the band under st
and some other one exists, and the energies of the b
separate linearly ink in the vicinity of the line, then, accord
ing to Blount,23 V can be made to vanish locally~i.e., in the
neighborhood of any point that does not lie in the ban
contact line! but this is impossible to attain along the who
length of a closed pathP surrounding the line.24 Moreover,
one has

R
P
Vdk56p, ~11!

where the sign in the right-hand side of the equation is
termined by a direction of the integration. We emphasize t
the integral in Eq.~11! does not depend on the shape and
size of the contourP. This is not surprising, since the equ
tion

¹k3V~k!50 ~12!

holds everywhere out of the band-contact line.25 Finally, one
more comment needs to be made. In general, the term 2pq
must be added to the right-hand side of Eq.~11!23 whereq is

th
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some integer. However it can be shown3 thatq50 when the
spin-orbit interaction is taken into account.~Besides, nonzero
q would modify n and not affectg!.

Now we are able to findg for any mutual arrangement o
the semiclassical electron orbitG and the band-contact line
If G links to this line ~see, e.g., orbits 3 and 4 in Fig. 1!
formula ~3! follows from Eqs.~10! and ~11! ~note that the
valuesg51 andg50 are equivalent!. If the linking is ab-
sent, a surface with boundaryG necessarily exists which doe
not intersect the band-contact line19 ~for the surface in the
case of orbit 1~or 2! we can take a part of the constan
energy one shown in Fig. 1!. Transforming Eq.~10! into the
integral over this surface and taking into account Eq.~12!,
we arrive at formula~2!. Interestingly, Eq.~2! is also ob-
tained whenG links to an even number of band-contact lin
~such a situation takes place, e.g., for any central cro
section of the second-band Fermi surface of Al!.

In the cases of Eqs.~2! and~3! the appropriate sets of th
magnetic energy levels are shifted relative each other.
origin of this shift is easy to understand. As discussed abo
the quantityM0 can be made to vanish for any nondegen
ate electron state with a fixed wave vectork. In essence, this
is the so-called quenching of orbital angular momenta26 ~but
only their periodic parts are quenched in the case of no
calized states considered here!. Then Eq.~10! must be inter-
preted as the lack of the quenching for the semiclassical e
tron moving round the band-contact line. This gives rise
the additional magnetic moment of the electro
(ueu\/2m* c), wherem* is its cyclotron mass:

m* 5
\2

2p S ]S

]« D5
\

2p R
G

dk

v'

.

It is the interaction of this moment withH that leads to the
above-mentioned shift of the magnetic energy levels.

The obtained result is closely analogous to t
Aharonov–Bohm effect.27 As pointed out by Blount20, the
quantity V is similar to a vector potential for a magnet
field @see Eqs.~6! and ~8!#. Taking Eqs.~11! and ~12! into
account, we can treat a band-contact line as an infinitely
‘‘solenoid’’ which carries the fixed flux of the ‘‘field’’@¹k
3V#. With this in mind the above-mentioned analogy b
comes apparent. Although the semiclassical electron mo
round the band-contact line does not reach the region
which the ‘‘field’’ is nonzero, it experiences the ‘‘vector po
tential’’ V that cannot be made to vanish along the wh
length of the orbit. The semiclassical electron state with
ergy determined by Eq.~1! is the standing wave. If the elec
tron orbit surrounds the band-contact line~i.e., the ‘‘sole-
noid’’ !, the interference picture corresponding to this wave
shifted as compared to the case when the line is absent.
shift manifests itself as the change ing.

The above results can be also understood with the c
cept of Berry’s phase.28 If the Hamiltonian of a quantum
system depends on parameters and the parameters un
adiabatic changes so that they eventually return to their o
nal values, then the wave function of the system can acqu
according to Berry, some constant phase in addition to
familiar dynamical one. This additional phase is complet
s-
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determined by a closed trajectoryP of the system in the
parameter space and does not depend on details of the
poral evolution. In addition, it was obtained28 that the phase
is equal top when the trajectoryP surrounds a point of
degeneracy of the Hamiltonian. More recently, Zak29 has ar-
gued that Berry’s results are applicable to an electron m
ing in a crystal, withk space playing the role of the param
eter space, and the above-mentioned phase is describe
the integral given in the left-hand side of Eq.~11!. Then Eq.
~3! may be interpreted as a manifestation of Berry’s phase
this connection we emphasize that measurements ofg in
crystals with band-contact lines offer a way of detecting t
phase in the physics of metals.30

The valueg can be experimentally determined throug
the investigation of oscillation effects in metals.5 Since the
measurement ofg is easiest to make for semiclassical orb
corresponding to small extremal cross sections of a Fe
surface, we point out that such orbits exist, e.g., in berylliu
magnesium, graphite, and in these metals they link to
band-contact lines~see Fig. 1!. In Be and Mg the accidenta
contact between the second and third bands occurs in
basal plane of the crystals. IfH lies, e.g., in this plane too
Eq. ~3! must be valid for the orbits on the ‘‘necks’’ of th
second-band hole ‘‘coronet’’~or ‘‘monster’’!. It should be
noted that in Zn and Cd which are akin, in many respects
Be and Mg the same band-contact line is located in the th
band electron ‘‘lens’’ and does not link to the semiclassi
orbits ~therefore, in this caseg51/2!. In graphite the degen
eracy of two bands takes place along the vertical edge H
of the Brillouin zone~i.e., along the 3-fold symmetry axis!.
Thus, Eq.~3! is expected to be true for the extremal orb
surrounding the pointK ~see orbit 4 in Fig. 1!.

In summary, we have shown that in quantization con
tion ~1! g is equal to zero when the appropriate semiclass
orbit of an electron links to the band-contact line. This val
differs essentially from the conventional oneg51/2. Thus,
measurements ofg can provide a possibility of detectin
band-contact lines in metals~beryllium, magnesium and
graphite appear to have considerable promise on this po!.

*E-mail: mikitik@ilt.kharkov.ua

1C. Herring, Phys. Rev.52, 365 ~1937!.
2D. A. Papaconstantopoulos,Handbook of the Band Structure of Element
Solids, Plenum, New York~1986!.

3G. P. Mikitik and Yu. V. Sharlai, Zh. E´ ksp. Teor. Fiz.114, 1375~1998!
@JETP87, 747 ~1998!#.

4I. M. Lifshitz, M. Ya. Azbel’, and M. I. Kaganov,Electron Theory of
Metals, Consultant Bureau, New York~1973!.

5D. Shoenberg,Magnetic Oscillations in Metals, Cambridge Univ. Press
Cambridge-Sydney~1984!.

6L. Onsager, Philos. Mag.43, 1006~1952!.
7I. M. Lifshitz and A. M. Kosevich, Zh. E´ ksp. Teor. Fiz.29, 730 ~1955!
@Sov. Phys. JETP2, 636 ~1956!#.

8G. E. Zilberman, Zh. E´ ksp. Teor. Fiz.32, 296~1957! @Sov. Phys. JETP5,
208 ~1957!#.

9G. E. Zilberman, Zh. E´ ksp. Teor. Fiz.33, 387~1957! @Sov. Phys. JETP6,
299 ~1958!#.

10G. E. Zilberman, Zh. E´ ksp. Teor. Fiz.34, 748~1958! @Sov. Phys. JETP7,
513 ~1958!#.
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The behavior of the basis vectors of the complete representation for a nonsymmetric point in the
passage to the limit to a symmetric point is studied. The structure of the limiting
representation and the fact of the emergence of a linear relation between the basis vectors are
established, thus eliminating a number of contradictions. The concept of a limited induced
representation is introduced. The formulas for basis vectors formulated by using this concept are
transformed upon the passage to the limit into the basis vectors of only one irreducible
representation at a symmetric point. The principle that an irreducible representation corresponds
to a single energy level is used. Two versions of the basic vectors are considered: Bloch
functions~electron spectrum! and infinite sums over translations~magnetic, phonon, and exciton
spectra as well as the strong coupling method!. The paper is in a certain sense an extension
of the well-known publication by L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.,
50, 58 ~1936!. © 1999 American Institute of Physics.@S1063-777X~99!00802-6#
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In their fundamental work1 on the electron energy spec
trum of a crystal, Bouckaertet al. pointed out a relationship
between the solutions of the Schro¨dinger equation for a cer
tain symmetric point~SP! k01 and solutions for a neighborin
nonsymmetric pointk1 . The basis vectors~BV! of a small
irreducible representation~IR! ta of the G(k01) group are
transformed into the BV of the sumStb for the IRtb of the

G(k1) group in accordance with the equalityt̂a↓5 t̂b for
loaded representations. It is assumed thatG(k1) is a sub-
group of theG(k01) group. Fork1Þk01, the G(k1) group
does not change upon a transitionk01→k1 ~or k1→k01!. The
downward arrow indicates the limitation of the represen
tion from the group to the subgroup. The IR appearing in
equality are known as compatible. Bouckaertet al.1 pro-
ceeded from the principles of continuity and conservation
the symmetry properties of BV. Compatibility relation
~tables! are widely used in practice.

However, some questions arise in an analysis of the
havior of BV and energy levels. We shall list some of the
under the assumption thatG(k01)5G is the entire Fedorov
group.

~1! The dimensionality of the complete representationSTb

is always higher than the dimensionality of the IRTa

since the star of the IRTb has a large number of rays
What happens to the BV of the IRTb during the passage
to the limit k1→k01? Which of them vanish~if any!? It
is absolutely clear that none of the BV of the repres
tation Tb vanishes atk15k01 unless the BV are sub
jected to some special conditions. What are these co
tions?

~2! If several energy levelsEb belonging to the IRtb merge
into one levelEa at a SP, the BV of the IRtb must
possess some specific properties. What are these pro
ties?
1301063-777X/99/25(2)/7/$15.00
-
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~3! A certain IRtb can be compatible with two IRTa and
Td. Consequently, there must be at least two identical
tb with different basis vectors. What are the propert
of these bases?

~4! If the sumStb contains more than one term, the ener
levelsEb for the IRtb must converge fork1→k01. How
should the bases of the IRtb be chosen for this to occu
in actual practice? Is it possible to make such a choice
general?

~5! If BV are constructed from localized functions, the co
cept of continuity is inapplicable to them. Consequent
an approach that is new in principle is required in th
case. How can a physically reasonable pattern be
tained?

In this paper, the author carries out a complete~to the
maximum possible extent! analysis of the behavior of matri
ces and BV of IR near a SP and establishes the rules
constructing BV that ensure the obtaining of a correct phy
cal pattern. These rules should be used in practical calc
tions of any energy spectra of the crystal.~Naturally, the
answers to the above questions are obtained.! In Sec. 1, the
obtained results are of general nature in the sense that
are independent of the choice of the BV of an IR. Only t
properties of IR matrices are used, and the lemma on
relation between the matrices of complete IR at a SP w
those at a neighboring nonsymmetric point is proved. T
attaches a new meaning to the concept of compatibility.
Sec. 2, Bloch’s functionsc5u exp(ik–r ) are considered, and
the continuity ofu on k is basically used. In Sec. 3, bas
sets of induced representations in the sense of Ref. 2
analyzed. The fact that BV are constructed from a cert
limited number of linearly independent functions is use
© 1999 American Institute of Physics
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Thus, quite different approaches are used in Secs. 2 an
but in both cases the rules of constructing BV ensurin
correct physical pattern are formulated.

It should be noted that we are speaking of two versio
of application of the induction procedure. It can be describ
in general as follows. LetG1 be a subgroup of a finite o
spatial groupG; c i are the BV of a certain IR of the sub
groupG1 . We apply all the elements of the groupG to c i .
The obtained linearly independent functions form the ba
of the induced representations. In the subsequent anal
the induction procedure is used, first, for constructing rep
sentations of the groupG(k01) of the vectork01 ~or the entire
group G! from small IR tb(k1) of the groupG(k1). The
induced representations in this case are irreducible. Sec
in other cases we mean induced representations in the s
of Ref. 2. These induced representations are reducible.
always clear from the text which induced representations
considered. In addition, the concept of limited induced r
resentations~LIR! will be introduced.

In the subsequent analysis, the notation and terminol
from Ref. 2 will be used. Rotationsh and elements
g5(a/h) are sometimes regarded as operators.

1. In this section, we solve the following formal prob
lem: we carry out the substitutionk1→k01 in the matrices of
complete IR of the groupG and determine the compositio
of the obtained representation.

Let us specify the notation more accurately. For defin
ness, we assume that all pointsk1 form a straight line~k1

line! passing through the pointk01, wherek01 is either the
center of the Brillouin zone, or a SP on the surface of
zone,K0 , v0 , H(k01), t(k01) and T(K0) are respectively
the star, the number of its rays, the group of rotations
elements of the groupG(k01), and the small and complet
representations as applied to the SPk01. The notationK , v,
H(k1), t(k1) andT(K ) has a similar meaning for the poin
k1 .

Let us proceed to the limitk1→k01, i.e., replacek1 by
k01 in the matrices of the representationst(k1) and T(K )
and simultaneously replace the vectors of the starK by the
vectors of the starK0 . In this case, not one but several ve
tors from the starK become equivalent to the vectork01. Let
us suppose that these vectors arek1 ,...,ks . We denote the
set of these vectors byKs , and the set of their limiting
valuesk01,...,k0s by K0s . Obviously,v5sv0 .

Let Tb(K ) be a complete IR of the groupG. As a result
of the above transition, it is transformed into a certain rep
sentationT0

b5 lim Tb(k1→k01), belonging to the starK0 and
is reducible in the general case. The number of occurren
of a certain IRTa(K0) in T0

b is given by

m~Ta~K0!→T0
b!5

1

N ( x0
b~g!* xa~g![m, ~1!

where summation is carried out over the main elements
the groupG, andN is the number of these elements.

Let us simplify expression~1!. The BV of the represen
tation T0

b associated with vectors fromK0s form a subspace
invariant to the groupG(k01). These vectors are transforme
according to a certain intermediate representationtb(K0s) of
3,
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the groupG(k01). This follows from the fact that the vecto
hk i belongs to the setKs if k i belongs toKs , and h is a
rotation fromH(k01). The following two considerations ar
important here.

First, tb(K0s) can be interpreted as a small represen
tion of the groupG(k01) which can be used for constructin
the corresponding complete representation of the en
groupG according to general rules. The latter representat
is equivalent to the representationT0

b . Consequently, we can
replace the complete representations of the groupG in ~1! by
the small representations of the groupG(k01):

m5
v0

N ( x@ tb~K0s!,g#* x@ta~k01!,g#, ~2!

where summation is carried out over the main elements
the groupG(k01).

Second, the representationtb(Ks) is equivalent to the
representationt1

b(Ks) which is constructed as follows. W
consider the groupG(k01) as a certain Fedorov groupG1

and construct its complete representation from the small
resentationtb(k1) according to the general induction rule
We introduce the vectorsk1 ,...,ks . As we proceed to the
limit k1→k01, the IR t1

b(Ks) is transformed into a certain
~generally, reducible! representationt1

b(K0s). Sincetb(Ks)
and t1

b(Ks) are equivalent,tb(K0s) and t1
b(K0s) are also

equivalent. Consequently, we have

m5
v0

N ( x@ t1
b~K0s!,g#* x@ta~k01!,g#. ~3!

Further, we can assume that the representationt1
b(K0s)

can be obtained from the IRtb(k01)[tb(k1→k01), as be-
fore, according to the general induction method as a resu
extension from the groupG(k1) to the groupG(k01). Since
ta(k01) is an IR, on the basis of the Frobenius theorem
induced representations we obtain

m5
v
N ( x@tb~k01!,g#* x@ta~k01!,g#, ~4!

where summation is carried out over the main elements
the groupG(k1). Let us go over to loaded representation

m~Ta~K0!→T0
b!5

v
N ( x@t̂b~h!#* x@t̂a~h!#

5m~t̂b→ t̂a↓ !, ~5!

wherehPH(k1). We ave proved the following
Lemma. The number of occurrences of the complete

Ta(K0) in the limiting valueT0
b of the complete IRTb(K )

of the groupG is equal to the number of occurrences of t
loaded IRt̂b in the limitation t̂a↓ of the loaded IRt̂a(k01)
to the subgroupH(k1) of the groupH(k01).

Corollary. If the IR tb is incompatible with the IRta at
the pointk01, the space of the IRTa is orthogonal to the
space of he limiting representationT0

b .
The lemma can also be derived by using the formulas

matrices of complete representations from Refs. 2 and 3
We shall illustrate the lemma and some other results

using as an example the groupG5Oh
75Fd3m with non-
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TABLE I.

k1 k0 , a k10 , a

b 1 2 3 4 5 6 7 8 9 10 1 2 3 4

1 1 0 0 0 1 0 0 0 0 1 0 0 1 0
2 0 1 0 0 0 1 0 0 1 0 0 0 0 1
3 0 0 1 0 1 0 0 1 0 0 0 0 1 0
4 0 0 0 1 0 1 1 0 0 0 0 0 0 1
5 0 0 0 0 0 0 1 1 1 1 1 1 0 0
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symmetric points on the straight linek15(0,0,k1) and two
SPk050, k105(0,0,p/t)5(b11b2)/2. The first starK0 has
only one ray whose number will be omitted. The second s
K10 has three rays.

Let us explain the lemma. We calculate the value om
for all a and b according to~5!. Proceeding to the limits
k1→k0 and k1→k10, we take the characters of loaded I
from Tables T119, T205 and T119, T159 respectively
Refs. 2 and 3. The result~the number of occurrences! is
given in Table I which will be referred to as the table
occurrences. Table T119 contains five IR whose numbeb
are placed in the first column, while Table T205 contains
IR whose numbers are written under the symbolk0 . The
symbol k10 stands for the numbers of IR from table T15
The numbers of occurrencesm(Ta→T0

b)5m( t̂b→ t̂a↓) are
indicated at the intersection of the lineb and the columna.
For example, the line with the numberb55 shows that the
complete IR T5(K ) is transformed into the sum of IR
T71T81T91T10 belonging to the starK0 upon the transi-
tion k1→k0 and to the sum of IRT11T2 belonging to the
starK10 upon the transitionk1→k10.

The table of occurrence and the set of correspond
compatibility tables contain the same information by virt
of the lemma. The information on the compositions of lim
iting representations is required in an analysis of the ene
levels of a crystal, phase transitions, etc. Let us consider o
one problem. In Ref. 2, only the compositions of induc
representations for a SP are presented. It is recomme
that such representations for nonsymmetric points should
determined with the help of compatibility relations, but th
recommendation is not substantiated in Ref. 2. The subs
tiation is contained in the lemma.

2. We shall speak below about the basic sets of rep
sentations. The Frobenius~reciprocity! theorem indicates the
relation between the matrices of representations, and
composition of the induced representation is determined
using this theorem. It can also be obtained in the cours
induction of basic sets, but under the conditions that all
introduced BV are linearly independent. If, however, such
independence is not observed, the induced basis implem
not true Frobenius induced representations, but somew
different representations. Let, for example,H be a certain
point group andH1 its subgroup. We shall induce the unit I
t1 of the subgroupH1 . This leads to an automatically redu
ible rather than unit representation of the groupH. We as-
sume, however, that a spherically symmetric functionc is
taken for the BV of the IRt1. In this case, the basis of th
representation obtained as a result of induction is obviou
r
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exhausted by the functionc. Thus, if the initial BV of the IR
of a subgroup are such that the above principle of lin
independence is not observed, we obtain~as a result of in-
duction of basic sets! an induced representation and its ba
differing from those predicted by the Frobenius classi
theory. Such representations will be referred to as limi
induced representations~LIR!. The composition of a LIR is
determined by the symmetry properties of the BVc i of the
initial IR of the t-subgroup. These properties suppleme
those following from the fact that the BVc i are transformed
according to the IRt.

The motivation of an analysis of LIR can be illustrate
by the following example. According to Table I, the I
T5(K ) is transformed as a result of the transitionk1→k0 into
T0

55T71T81T91T10, while the IT T4(K ) is transformed
into T0

45T41T61T7 ~we are speaking of the IRTa from
Table T205!. In a physical problem~e.g., an analysis of the
energy spectrum!, the energy levelsE correspond to IR. The
IR T5(K ) and T4(K ) on the linek1 correspond to certain
energy levelsE5 and E4 . The concordance at the pointk0

can be presented in the form

T4→E4
0, T6→E6

0, T7→E7
0,...,T10→E10

0 .

It is clear, however, that one energy levelE(K ) cannot be
transformed into several levels atk0 . The levelE5 must be
transformed only into one of the levelsE7

0 , E8
0 , E9

0, or E10
0 ,

while the levelE4 can be transformed only into one of th
levelsE4

0 , E6
0, or E7

0.
We can make the following assumption. On the linek1 ,

we have four IR with identical matricesT5(K ), but with
different basic sets. We denote these IR byT5,7(K ), T5,8(K ),
T5,9(K ) and T5,10(K ). As we proceed to the limitk1→k0 ,
the BV of the IRT5,7(K ) are transformed into the BV of the
IR T7(5), where the number 5 in the parentheses indica
that the basis originates from the BV of the IRT5(K ). Simi-
larly, the BV of the IRT8(5), T9(5), andT10(5) are formed.
The line k1 also contains three IR with identical matrice
T4(K ), but with different basic sets. These areT4,4(K ),
T4,6(K ) and T4,7(K ). As we proceed to the limitk1→k0 ,
their BV are transformed into the BV of the IRT4(4),
T6(4), and T7(4), respectively. On the other hand,T̂7↓
5T7↓5 t̂4(k1)1 t̂5(k1). i.e., the three-dimensional space
the IR T7 is formed by two BV of the small IRt5(k1) and
one BV of the small IRt4(k1) taken after the transition
k1→k0 . The remaining BV of complete limiting IRT0

5 and
T0

4 must be linear combinations of the three BV mention
above. This means that the spaces of the IRT7(5) andT7(4)
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coincide, and the energy levelsE5 and E4 merge into one
level E7

0 at the pointk0 . We shall not consider other possib
versions of matching of the basic sets of IR at the pointsk0

andk10, which can be derived from Table I and which co
respond to a reasonable physical pattern. Let us formu
the following problem: in the general case, find the con
tions that should be imposed on the basic sets of represe
tions to obtain a correct physical pattern in all cases.

Let us start from a related problem. LetH be a finite
point group andH1 its subgroup, whileT andt are the IR of
the group and the subgroup respectively, the IRt appearing
in the limitation T↓ imposed by the IRT on the subgroup
H1 . We assume thatT↓ is taken in the reduced form, and th
matrices of the IRt lie in the left upper part of the matrice
T↓. Let F be a certain position function of the general form
such thathF(r )5F(h21r ). We introduce the function

f i5( T~h! i1* hF, ~6!

wherehPH. The functionf i belongs to thei th line of the IR
T and simultaneously belongs to thei th line of the IRt. If
we apply the induction procedure to it, we obtain exclusiv
the BV of the IRT ~T is a LIR!. The functionf i possesses
some symmetry properties following from~6!, but not just
from the fact thatf i belongs to the space of the IRt.

If we have only the characters of IR at our disposal,
can use@instead of~6!# the formula

f 5( xt~h8!* xT~h!* h8hF, ~7!

where summation is carried out overL8PH1 andhPH. The
function f belongs to the space of the IRt. Applying the
induction procedure tof , we obtain only the BV of the IRT.

It should be noted that in~6! we can replace the sub
script ‘‘1’’ by the number of any column of the IRT. In this
case, we must specially prove thatf i belongs to thei th line
of the IR t.

In an analysis of BV in the vicinity of a SP in the Bril
louin zone, we use formula~6! as a prompt. For brevity, we
shall refer to the representations of the groupG(k01) as com-
plete representations~using the notationTa andTd instead of
ta and td!. These representations are truly complete
G(k01)5G. If, however,G(k01) is a nontrivial subgroup of
the groupG, truly complete representations are construc
from the representations of the groupG(k01) by the conven-
tional induction method. In this case, each IR of the gro
G(k01) generates the corresponding single IR of the gro
G. Consequently, our simplification does not lead to a loss
generality. We can write the BVc il

a belonging to thei th line
of the IR Ta of the groupG(k01) in the form

c il
a ~k01!5uil

a ~k01!expik01r

5( Ta~g! il* g@u~k01!expik01•r #, ~8!

whereu(k01) is an arbitrary periodic function~that will be
referred to as a generating function!. We carry out summa-
tion over the main elements of the groupG(k01). It follows
from ~8! that
te
-
ta-

,

y

e

f

d

p
p
f

uil
a ~k01!5( S~g/a il!gu~k01!,

S~g/a il!5T̂a~h! il* exp@ i b•~a2r !#, ~9!

where b5k012hk01; g5a/h, hPH(k01), and S can be
treated as a matrix.

We assume that the limitation imposed by the IRT̂a on
the subgroupH(k1) is expanded on the IR and that th
expansion contains the IRt̂b of dimensionalityl ~it is known
that l can be equal to 1 or 2!. We arrange the matricest̂(h)
at the left upper corners of the matricesT̂a↓(h) and propose
that the functions

c i1
b ~k1!5uil

b ~k1!expik1r ,

ui1
b ~k1!5( S~g/a i1!gu~k1!, ~10!

be taken as the BV of the IRtb, whereS is the same matrix
as in~9!. We assume thatu(k1) is transformed continuously
into u(k01).

The proposed functions allow us to satisfy all the r
quirements following from physical considerations.

a. It is quite obvious that the transitionk1→k01 leads to
limiting values of the functions~10!, which are BV of the IR
Ta.

b. In order to prove that the functions~10! are the BV of
the IR tb ~for i< l !, we can apply toc i1

b (k1) the element
g85(a8/h8) from the groupG(k1). We must take into ac-
count the relations

Ta~h8! i j 5 t̂b~h8! i j ; i , j < l ;

g8 exp~ ik1•r !5exp@ ik1•~r2a8!#.

c. As a rule, a certain IRTa at a SP is compatible with
not one but several IR at a neighboring nonsymmetric po
We assume for definiteness thatT̂a↓5 t̂b1 t̂g ~tb is a two-
dimensional IR andtg a one-dimensional IR!. Using rela-
tions ~10!, we determinedc11

b andc21
b . In formulas~10!, we

put i 53 and omit the superscriptb for the time being. Let
g8PG(k1). Then

g8c315( exp$ i @~k12h8b!•~r2a8!

1b•a#%T̂a~h!31g8gu,

where summation is carried out over the main elements
the groupG(k01). We go over to the summation over th
elements g95g8g and take into account the fact tha
T̂a(h8) j 350 for j 51,2 and T̂a(h8)335 t̂g(h8)11. We find
thatg8c315tg(g8)11c31(k1). Thus, the functionc31 is a BV
of the IRtg ~and hence can be marked by the superscriptg!.

These considerations can easily be extended to any
of the decomposition ofT̂a↓ into the IR t̂. The result is that
the BV of the IRTa are the limiting values of BV of all IR
t which are compatible withTa.

d. Let us suppose thatT̂a↓5St̂b and T̂a↓ is decom-
posed into the IR. We slightly change the notation of the B
of the representationStb, namely, omit the superscriptb
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and label all BV of the representationStb by a subscript.
Thus, c i1(k1) are the BV of the representationStb,1< i
< l a . We transform the limiting values ofc i1(k01) obtained
as a result of transitionk1→k01 according to the IRTa. Let
us prove that the limiting values of all the BV of the com
plete representationSTb without any exception are linea
combinations of the limiting values of the BVc i1(k01).

Let g85(a8/h) be an element such thath8k15k2 ,
where k2 is a vector from the starK . Moreover,g8 is a
representative of the left co-set of the expansion of the gr
G(k01) in the subgroupG(k1). In this case, according to th
rule for constructing complete IR,2,3 g8c i1(k1)5c i1(k2) are
the BV of the IRTb. On the other hand, we have

g8c i1~k1!5( exp$ i @~h8k12h8b!•~r2a8!1hk01

•a#%Ta~g! i1* g8gu~k1!.

We introduceg95g8g and k5k12k01 and transform the
exponential. This gives

c i1~k2!5exp$ i @h8k•~r2a!2k•r #%Ta~g8! j i c j 1~k1!,
~11!

c i1~k02!5Ta~g8! j i c j 1~k01!. ~12!

Relation~11! indicates that any BV of the complete re
resentationSTb is a sort of ‘‘linear’’ combination of the BV
of the small representationStb. Its coefficients depend on
the vectork. Relation~12! can be obtained from~11! as a
result of the transitionk1→k01(k→0). It should be empha
sized that relations~11! and~12! hold when condition~10! is
satisfied and not at all in the general case. Equality~12!
corresponds to physical pattern.

e. Let us suppose thatT̂a↓5 t̂b1 t̂g, l b52, l g51. We
prove that under the condition~10!, the energy levelsEb(k1)
and Eg(k1) merge into a single levelEa(k01) at the point
k01.

Considering the IRtb, we can write

c1~k1!5c1~k01!1k¹kc1~k01!1..., ~13!

Eb~k1!5^c1~k01!,Hc1~k01!&1k•A1..., ~14!

whereA is the sum of matrix elements emerging as a res
of ~13!. Replacingb by g and the subscript 1 by 3 in~13!
and~14!, we obtain an expression forEg(k1). In accordance
with ~10!, the BVc1(k01) andc3(k01) belong to the first and
third lines of the IRTa. Consequently, we have

Eb~k1!5Ea~k01!1k•A, Eg~k1!5Ea~k10!1k•A8,

if we neglect the terms withk to the second and highe
powers.

f. We assume that a certain IRtb is compatible withTa

and Td at k01, Ta and Td being nonequivalent:T̂a↓5 t̂b1

1(t̂, T̂d↓5 t̂b21(t̂8. We are not interested in the comp
sitions of the sumsSt andSt8, but StÞSt8. The IR tb1

andtb2 have identical matrices, but their basic sets are c
structed according to~10! with the help of nonequivalent IR
Ta andTd. We assume that the limitationsT̂a↓ andT̂d↓ are
taken in the reduced form, and the matricest̂b occupy the
upper left corners.
p

lt

-

Obviously, the mixed matrix element

H12~k1!5^c1
b1~k1!,Hc1

b2~k1!&

of energy differs from zero fork1Þk01. According to physi-
cal considerations, it must vanish atk15k01. We shall prove
that this is indeed the case if definition~10! is used. Taking
into account expansions of the type~13!, we obtain

H12~k1!5^c1
b1~k01!,Hc1

b2~k01!&1k•D, ~15!

whereD is the sum of the relevant matrix elements;DÞ0 in
the general case. According to~10!, c1

b1(k01) belongs to the
first line of the IRTa andc1

b2(k01) belongs to the first line of
the IR Td. Since Ta and Td are nonequivalent,H12(k01)
50.

Remark. In ~10! and other formulas, we use the fir
column of the matrixTa, but any other column can also b
used. The analysis is then complicated, but the results do
change. We can derive the relations (Ta5T)

uin~k1!5(
m

T~g8!wim~h8!, g85~a8/h8!, ~16!

wim~h8!5( 8 exp$ i @~k012hk01!•~a2r !#%

3T̂~h! imgw~h8!, ~17!

w~h8!5exp~2 ik01•r !~g8!21@u~k1!expi ~k01!•r #. ~18!

It can be seen from these relations that the periodic fu
tion uin(k1) obtained by using thenth column of the matrix
T can be expressed in terms of periodic functions obtai
with the help of other columns. In this case, however,
must take another arbitrary generating periodic functi
namely, the function~18!. In particular, if an elementg8
such that the sum~16! can be reduced to a single term~e.g.,
the one with the numberm! exists, the transition from thenth
to themth column in~10! is equivalent just to another choic
of an arbitrary generating function. Such an element ex
for k0150, but can be absent for a SP on the surface of
zone. Probably, practical calculations will necessitate the
of linear combinations of the functionsuim from different
columns of the matrixT.

3. In this section, BV are linear combinations of mut
ally orthogonal localized functions. A transition from the
vectors to the BV of induced representations is assume
be unitary, and hence the BV form an orthogonal system~we
are speaking of a Hermitian scalar product, viz., an integ
over a unit cell!. In this case, the energy spectrum is det
mined by the coefficients of invariant combinations~IC! of
the corresponding local or symmetrized quantities~atomic
displacements, magnetic moments, etc.!.

Further, we consider not IR and their basic sets in g
eral, but only a part of them. This limitation is due to the fa
that we are dealing with a single system of equivalent po
tions, and only one IRG from a local group of positions. The
problem concerning the relation between the BV of a
from i (G,k1) and the BV of a IR fromi (G,k01) is solved just
under these limitations.
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Let l G be the dimensionality of the IRG and m the
number of equivalent positions in a unit cell. ThenmlG is the
dimensionality of the small induced representationi (G,k).
This number is the same for all points of the Brillouin zon
This leads to the following

Theorem 1. All smlG limiting BV which belonged to
the induced representationI (G,Ks) before the transition
k1→k01 and were associated with the vectorsk1 ,...,ks be-
come linear combinations ofmlG limiting values of BV of
the small induces representationi (G,k01) after the transition.

Indeed, first, mlG BV of the induced representatio
i (G,k1) were mutually orthogonal before the transition a
remain the same after the transition. Second, the limiting
mentioned in the theorem belong to the space of the sm
induced representationi (G,k01) whose dimensionality is
mlG .

Thus, if we construct the BVc i(k1),...,c i(ks) of the
representationI (G,Ks) of the groupG(k01) by the general
method of induction frommlG BV c i(k1) of the representa
tion i (G,k1) of the groupG(k1), and then proceed to th
limit k→k01, only mlG BV amongc i(k01),...,c i(k0s) are
linear independent.~It should be noted that, in contrast t
Sec. 2, the transition is now not related to any assumpt
concerning the continuity of the dependence onk and is
simply reduced to the replacement of the vectorsk1 ,...,ks

by the vectorsk01,...,k0s in the corresponding sums ove
unit cells.!

It is expedient to introduce a new concept. We shall s
that the nonequivalent IRtb(k1) and tg(k1) from i (G,k1)
are in contact at the pointk01 if i (G,k01) contains at least one
IR ta(k01) which is compatible both withtb(k1) and
tg(k1). It should be emphasized that the solution of t
problem of contact of two IR is determined by the chos
system of equivalent positions and IRG of a local group.

We illustrate the concept introduced above by the f
lowing examples. We consider the Fedorov system cho
earlier and the vectorsk using Table I. We take a positio
(a) with the local groupG(a)54̄325Td . The IR G are
given in Table T192 in Refs. 2 and 3. According to Ref.
for G5G5 we have

i ~G,k0!5T81T9, i ~G,k1!5t21t312t5,

i ~G,k10!5t11t21t4.

For the above-mentioned IR, we compose auxiliary co
patibility tables~Table II! on the basis of Table I. It can b
seen that the IRt3 andt5 as well as the IRt2 andt5 are in
contact atk0 , while the IRt2 andt3 are not in contact. On

TABLE II.

k0 T8 T9

k1 t31t5 t21t5

k10 t1 t2 t4

k1 t5 t5 t21t3
.

V
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ns

y

n

-
en

,

-

the contrary,t2 andt3 are in contact atk10, while neithert2

and t5 nor t3 and t5 are in contact at this point.~If we
choose a different position or another IR, we obtain differe
results.!

The space of limiting BV of the induced representati
i (G,k1) can be split into mutually orthogonal spaces of t
IR ta(k01). Let us suppose that the IRtb(k1) andtg(k1) are
not in contact atk01, i.e., tb(k1) is compatible with one se
Sb of the IRta(k01) from i (G,k01), andtg(k1) with another
set Sg , the setsSb and Sg containing no identical IR
ta(k01). The BV of the representationtg(K0s) are orthogo-
nal to the basic sets of all IR inSb . Consequently, they are
orthogonal to all BV of the IRtb(k01), i.e., to the BV of the
representationtb(K0s). On the other hand, according t
Theorem 1, the BV of the representationtg(K0s) can be
expressed linearly in terms of the limiting BV of the repr
sentationi (G,k1). Thus, Theorem 1 is refined by

Theorem 2. The BV of the representationtb(K0s) are
linear combinations of the limiting BV of the IRtb(k1), and
probably of small IR fromi (G,k1) that are in contact with
tb(k1).

Let us clarify this theorem by the following example
We proceed to the limitk1→k0 . Let us suppose that th
small IRt2, t3, andt5 in Table II generate the complete IR
T2(K ), T3(K ), andT5(K ), respectively. According to Theo
rem 2, the limiting BV of the complete IRT3(K ) are linear
combinations of the limiting BV of the small IRt3 andt51.
Similarly, the limiting BV of the complete IRT2(K ) are
linear combinations of the limiting BV of the small IRt2

andt52. We introduced for the IRt5 the second superscrip
the basis of the IRt51 leads to the basis of the IRT8, while
the basis of the IRt52 leads to the basis of the IRT9. We
must find the difference between the basic sets of the IRt51

and t52. We continue an analysis of our example. Let
suppose thatk1→k10. We again have two IRt51 and t52.
They have identical matrices, but different basic sets.~By the
way, there are no grounds to assume that the basis of th
t51 near the pointk0 coincides with the basis of the IRt51

near the pointk10.! On the whole, the data contained
Table II suggest the following question: can the basic set
two IR t5 under the transitionk1→k0 be chosen so that th
space of the complete IRT8 contains the limiting BV of only
the IR t51, and the space of the IRT9 only the IR t52? A
similar question also arises under the transitionk1→k10.
The affirmative answer to this question is given in

Theorem 3. If the limitation t̂a↓(k01) imposed from the
groupH(k01) on the subgroupH(k1) is equal to

t̂b1~k1!1...1 t̂bm~k1!,

we can chose the basis of the small induced representa
i (G,k1) so that the limiting BV of the representation

tb1~Ks!1...1tbm~Ks!

of the groupG(k01) form the basis of the small IRta(k01).
We omit the proof since it is quite cumbersome. T

choice of BV mentioned in the theorem is not complicated
specific cases. It is expedient to clarify the meaning of
theorem by considering a few examples.
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According to Table II, we haveT̂8↓(K0)5 t̂(k1)
1 t̂51(k1). The starK with the vectork1 has in all six rays:
(0,0,6k1), (0,6k1,0), (6k1,0,0). In the passage to th
limit k1→0, all these six vectors are transformed into
single vectork050. The IRt(Ks) in this case coincide with
complete IRT(K ) so that the second sum mentioned in t
theorem is equal toT3(K )1T51(K ). The latter representa
tion is 18-dimensional. According to the theorem, its basi
transformed under the transitionk1→0 into the three-
dimensional basis of the IRT8(K0) ~naturally, if the basis of
the representationt3(k1)1t51(k1) is chosen appropriately!.
Since three BV of the small representationt3(k1)1t51(k1)
are orthogonal prior to the limiting transition and after it, w
can take the limiting values of the BV of the representat
t3(k1)1t51(k1) as the basis of the IRT8(K0). All eighteen
limiting BV of the representationT3(K )1T51(K ) are linear
combinations of the three limiting BV of the representati
t3(k1)1t51(k1) ~as stated in Theorem 3!. Similar arguments
can be applied to the sumt2(k1)1t52(k1). According to
Theorem 3, the four-dimensional space of two IRt5(k1) can
be divided into the spaces of the IRt51(k1) andt52(k1).

Point k10. In this case, we have, for example,t̂1↓(k10)
5 t̂51(k1). As a result of the transitionk1→k10, the vectors
(0,0,6k1) become equivalent to the vectork10 so that
Ks5$(0,0,k1),(0,0,2k1)%, K0s5$k10,k102b3%. The role
of the second sum mentioned in the theorem is played by
IR t51(Ks). ~It can be regarded as the complete IR of t
groupG(k1)1g25G(k1), obtained from the small IRt51(k1)
according to the general rules.! The IR t51(Ks) has a four-
dimensional basis that is transformed into the tw
dimensional basis of the small IRt1(k10) upon the transi-
tion. In view of the one-to-one correspondence betwe
small and complete IR, we can state that the 12-dimensio
basis of the complete IRT51(K ) is transformed as a result o
the passage to the limit into a six-dimensional basis of
complete IRT1(K10) ~K10 is the star with the vectork10!.
s
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Theorem 3 in fact implies the same correspondence
feasible physical pattern as that established in Sec. 2. H
ever, it is difficult to obtain at the moment the proofs of som
statements concerning the energy spectrum: the formula
the coefficients of invariant combination has not been
rived, the properties of these coefficients have not been
tablished, and so on.

If the basic sets of small IR at a nonsymmetric point a
chosen so that they are transformed as a result of passa
the limit k1→k01 directly into the BV of an IR at a SP in
accordance with a correct physical pattern~we mean the one-
to-one correspondence between IR and energy levels!, such
basic sets will be referred to as concordant. The statem
made in Ref. 1 are valid only for concordant basic se
Theorem 3 indicates that concordance of basic sets is
sible in principle in the case of induced representations,
does not describe the method for attaining it. The metho
similar to that described in Sec. 2 and will be formulated
our subsequent publication devoted to an analysis of
magnetic energy spectrum. The concordance of basic
was apparently carried out for the first time in Ref. 4 f
vibrational spectra. However, Ref. 4 does not contain a g
eral algorithm and substantiation and disregards the em
gence of a linear dependence at SP. The case of Bloch f
tions is not considered either.
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A theory of current–voltage characteristic~IVC! is proposed for a gated Corbino disk with a 2D
spinless electron system and magnetic filling factors close to an integral value. The
described results systematically include the features of the electrochemical potential of the 2D
electron system in a magnetic field, which are responsible for sharp magnetocapacitance
‘‘dips’’ for integral values of the magnetic filling factor. The theory is used for qualitative
interpretation of the observed weakly nonlinear peculiarities of IVC as well as for
prediction of local details in the distribution of electron density and electric potential in a current-
carrying Corbino disc. Corresponding measurements can be made, for instance, by using the
linear electrooptical effect. ©1999 American Institute of Physics.@S1063-777X~99!00902-0#
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The measurements of conductance of a two-dimensio
Corbino disk in a magnetic field normal to its surface gi
the most complete information on the diagonal componen
the conductivity of the 2D system under investigation in
magnetic field. Naturally the expression for conductan
must be exact to the maximum possible extent for extrac
correctly the required conductance from the experime
data. We are speaking, among other things, of the effect
spatial inhomogeneity in the electron density distributio
which inevitably appear in a Corbino disk carrying transp
current and strongly affect its conducting properties, es
cially under the conditions of the quantum Hall effe
~QHE!. In this paper, we consider the influence of the abo
mentioned effects of spatial dispersion on the features of
current–voltage characteristic~IVC! and other parameters o
the Corbino disk being measured. In addition to IVC, th
also include the local distribution of electric potential along
radial direction of the disk, which is accessible for measu
ments based on the linear electrooptical effect.

It should be noted that nonlinear phenomena in the qu
tum Hall effect have been studied by many authors~in addi-
tion to the original communication,1 see, for example Refs
2–10!. Usually, nonlinearities developing in drift fieldseV
much higher than the cyclotron energy\vc are considered
They include overheating instability,1,5 Zener effect,2 injec-
tion of hot electrons from contact regions,9 and so on.
Among various reasons behind IVC nonlinearity, weak
nonlinear phenomena developing even at the stage w
eV,\vc take place. These effects involve the loss of spa
homogeneity in a 2D electron system under the action
transport current. An analysis of these effects started in
1371063-777X/99/25(2)/7/$15.00
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interesting publication by Shashkinet al.8 is a problem of
primary importance in the theory of IVC since strong no
linearities inevitably develop against the background of we
nonlinearities.

The premises for studying of the loss of spatial homo
neity in a 2D electron system with transport current are w
known. The current can flow only in the presence of a g
dient of the electrochemical potentialm:

j i5e21s i i ]m/]xi , ~1!

where s i i is the diagonal component of conductivity. Th
presence of the gradient]m/]xi in 3D systems leads to the
deformation of the electron density]r since

]r}]2m/]xi
2. ~1a!

In two-dimensional systems, however, the charge is c
trolled by the derivatives of electric potential of the ord
lower than in~1a!. For this reason, a uniform driving field
can be sustained in a 2D system only by deforming the elec
tron density. This considerably complicates the kinetics
2D electron systems in a number of important cases.
example, the conditions for the emergence of the QH
which are extremely sensitive to the uniformity of electr
density, are blurred since the integral value of the filli
factor required for this effect is observed only in some lo
regions of the 2D system. As a result, the QHE is manifest
not in individual ‘‘points’’ of the magnetic field or cutoff
voltage, but in an entire range of their values.
© 1999 American Institute of Physics



o
g

-
s

ar
f
ro

y
ba
a
it
o

ne

e

f
re
-

. 1

f-

th
on

t i
in

ce

nt

d
-
e

s of

ion
ns,

the
stant

m
in

-

nce

ll-

clo-

f

e

nly
s

138 Low Temp. Phys. 25 (2), February 1999 V. B. Shikin and Yu. V. Shikina
The paper has two parts. In the first part, the system
equations and approximations used for describing inhomo
neity effects in a magnetized 2D system with transport cur
rent is presented. A special discussion of these equation
required in order to modify some definitions usually appe
ing in the IVC theory for 2D systems under the conditions o
the QHE. The second part contains the solution of the p
posed equations under the conditions of weak nonlinearit
the problem, when a driving electric field causes pertur
tions in the 2D system, which are smaller than or comp
rable with the cyclotron energy. The paper is concluded w
the discussion of the observed consequences of the prop
theory.

SYSTEM OF DEFINITIONS

Let us consider a screened Corbino disk with an in
and outer radiir 0 and r 1 in a magnetic field normal to its
surface and sustaining the 2D electron system in a state clos
to the unit magnetic filling factor. A driving voltageV is
applied to the banks of the Corbino disk. The presence oV
leads to the emergence of a current in the system. The
tion between the total currentJ and the electrochemical po
tential m has the form

J/2pr 5e21s rr dm/dr ~2!

~it should be noted that in Ref. 8 and subsequently in Ref
the currentJ was defined as

J/2pr 5s rr dw~r !/dr, ~2a!

wherew(r ) is the electric potential of the problem; the di
ference between expressions~2! and ~2a! is quite serious if
the diffusion component of current is not smaller than
field component; it will be proved below that the current
the Hall plateau is just of this type!.

As the current increases, the value ofs rr ceases to be a
constant in the theory. Under the conditions of the QHE, i
natural to take into account possible nonlinearities by us
for example, the well-known expression fors rr :7,8,11,12

s rr 5s0e2D/T cosh~dm/T!, ~3!

where the Fermi energy~electrochemical potential! dm is
measured from the midpoint between the Landau levels,D is
the activation energy for zero value ofdm, andT the tem-
perature. Approximation~3! has a meaning in the presen
of changes in the value ofdm(r ) in a 2D system and in the
absence of changes in the behavior of the electric pote
w(r ). For the sake of definiteness, formula~3! will be re-
ferred to as them-representation in subsequent analysis.

The final result obtained by Iordanskii an
Muzykantskii12 @formula ~21!# for the average diagonal con
ductivity in the presence of a random and quite smooth p
turbing potential differs slightly from~3!:

sxx5
e2

\
expF ~m2Vc!

T G E w~E!exp~2E/T!dE

T
. ~3a!
f
e-
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Here Vc is the percolation level,w(E) the probability of
passage through a typical saddle point, expressed in term
characteristics of random potential, andm the electrochemi-
cal potential.

It can be easily seen that the conductance definitions~3!
and ~3a! are qualitatively identical if we assume that

exp~2D/T!→exp~2Vc /T!, «F→m,

s0→
e2

\ E w~E!exp~2E/T!dE

T
,

and take into account the symmetrization of the express
for conductance relative to electron and hole excitatio
which is contained in the definition~3! of conductance.

It should also be noted that we do not calculate here
homogeneous component of conductance, i.e., the con
s0 in definition ~3!. It is only important that this quantity be
finite. An example of the complete solution of the proble
on conductance for a smooth random potential is given
Ref. 12.

Along with ~3!, we also introduce the modified phenom
enological definition of conductance:

s rr 5s0e2D/T cosh@~m2ew2\vc!/T#. ~4!

This expression takes into account the spatial depende
m(x) as well as a possible coordinate dependencew(x). The
explicit form of ~4! presumes that the value of magnetic fi
ing factor is close to unity.

The system of equations~2!, ~3! or ~4! should be supple-
mented with the boundary conditions

dm~r 0!/\vc5dm0 , dm~r 1!/\vc5dm01v,

v5eV/\vc , ~5!

where all the energy characteristics are normalized to cy
tron energy.

In addition to Eqs.~2!–~5!, we must have a definition o
the electrochemical potentialdm(r ). For an ideal spinless
electron system with a filling factor close to unity, we hav

dm~r !5m~r !2\vc52\vc/21ew~r !1z~r !, ~6!

z~r !52T ln S~n!, n,2, ~6a!

S~H,n!5~1/2!~1/n21!

1A~1/4!~1/n21!21«~2/n21!,

n~r !5p l H
2 n~r !, n~r !5ns1dn~r !,

«5expS 2
\vc

T D!1. ~6b!

Heren(r ) is the local value of electron density,ns its aver-
age value for zero current,l H the magnetic length, andvc

the cyclotron frequency.
In the ‘‘dirty’’ limiting case, whenT!G, whereG is the

dispersion of the density of states at the Landau level, o
the relation betweenn andm ~and not the opposite relation a
in ~6!! has a relatively simple form:

n5f~dm1 /G& !1f~dm2 /G& !11,

~7!
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dm15m2\vc/22ew, dm25m23\vc/22ew,

wheref(x) is the error function,f(2x)52f(x).
Using relation~6!, we can write formula~4! as follows:

s rr 5s0e2D/T coshF2\vc/21z~r !

T G . ~7a!

This expression allows us to speak of~4! as of a
z-representation of conductance. Forn51, i.e., in the region
with an integral value of filling factor, the argument of h
perbolic cosine on the right-hand side of~7a! vanishes, and
hence the conductance assumes the minimum value.

To make the system~2!–~7! complete, we must find the
relation between the electric potential and local density
the 2D system. The required relation is of electrostatic orig
and requires in the general case the simultaneous determ
tion of the charge density along the 2D system and the
screening electrode. In this region, it is possible to refine
existing definition quantitatively. However, claiming furth
to only quantitative analysis, we adhere, following Shash
et al., to the popular capacitor approximation in which t
smallness of the distance 2d between the 2D system and the
shutter is regarded as smaller thanr 12r 0 :

2d!r 12r 0 . ~8!

In this case, we have

w~r !.2ed@n~r !2n0#/k l H
2 , ~9!

where n(r ) is the local value of the filling factor,n0 its
magnitude in the absence of current, and¸ the dielectric
constant.

Thus, the complete system of equations for determin
the values ofm, w, andn includes formulas~2!, ~3!, ~5!, ~6!
or ~7! and ~9!. Alternatively, we are speaking of joint solu
tion of Eqs.~2!, ~4!, ~5!, ~6! or ~7! and~9!. The final aim of
the theory is the determination of the relation betweenJ and
V and the obtaining of the local distribution of electric p
tential of the Corbino disk, viz., the quantity accessible
measurements using the linear electrooptical effect.13

The main difference between our definitions and exist
algorithms of calculating IVC for a Corbino disk under th
conditions of the QHE from Refs. 8 and 11 is that we use~2!
instead of~2a! and consider an alternative to~3! and~4!. We
are not aware of any general considerations testifying in
vor of ~3! or ~4! without a preliminary analysis of the prop
erties of these systems of equations.

ANALYSIS OF THE SYSTEM OF EQUATIONS

1. Let us consider a normal ohmic situation for th
Corbino disk under investigation. We are speaking above
of Eq. ~2! with a spatially homogeneous conductances rr

5const. In this case, we can write

m~r !5m01
eJ

ps rr
lnS r

r 0
D , r 0<r<r 1 . ~10!

The currentJ is connected with the potential differenc
V across the metallic banks through the relationm(r 1)
2m(r 0)5eV, m(r 1)[m1 , so that
f

na-

e

n

g

r

g

-

ll

J

2ps rr
lnS r 1

r 0
D5V. ~11!

Consequently, expression~10! can be written in the form
independent ofs rr :

dm0[m~r !2m05eV lnS r

r 0
D Y lnS r 1

r 0
D . ~12!

Using the definition ofm(r ) for a normal 2D system
~the 2D system with a nonintegral filling factor in the give
case!, i.e.,

dm~r !5ew~r !1p\2@n~r !2n0#/m* ~13!

and the relation~9! betweenw andn(r ), we can easily write
the following equation forw(r ) by using~9!, ~12!, and~13!:

dm~r !5ew~r !~11aB* /d!, ~14!

whereaB* is the effective Bohr radius.
Thus, The IVC in the ohmic limit is defined by formul

~11!, and the electric potential distribution is proportional
dm in accordance with~14!, i.e., increases almost linearl
from one bank of the Corbino disk to the other in accordan
with ~10! and~12!. It can also be easily seen that as long
aB* !d, the definitions of current~2! and ~2a! lead to ap-
proximately the same results both for the IVC and for t
electric potential distribution along the Corbino disk. In oth
words, the diffusion component of electrochemical poten
m ~13! under normal conditions is insignificant as compar
to the electric component.

2. Let us now suppose that the filling factor is close
unity. As long ass rr 5const, i.e., in the regioneV,T or
eV,G ~the reasons behind these limitations will be cons
ered below!, expression~12! for m(r ) and ~11! for IVC are
valid. However, according to~6! or ~7!, the main contribu-
tion to the derivativedm/dr comes from the diffusion com
ponent of electrochemical potential. For this reason, the v
sion ~6!, for example, together with~12! leads to the
following definition or the perturbation of the electron de
sity dn on the Hall plateau:

eV lnS r

r 0
D Y lnS r 1

r 0
D52T ln S~11dn!/ ln S~1!,

dn!1, eV,T,T.G, ~15!

The inequalityT.G allows us to combine the assump
tions concerning the ideality of a 2D system and the finite-
ness of conductance.

The smallness of perturbation~15! of the electron den-
sity on the Hall plateau under the action of external effect
a typical general property of magnetized 2D systems. Such
properties lead to the formation of well-known ‘‘incompres
ible’’ bands in equilibrium inhomogeneous 2D electron sys-
tems in the presence of local points with an integral filli
factor on the electron density profile~see Refs. 14–16!. The
same properties of a 2D system on the Hall plateau are re
sponsible for the well-known features of magnetocapacita
of such systems.17

The behavior of dn for ‘‘dirty’’ 2 D systems is
determined by formulas~7! and ~12!. We are speaking of
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qualitatively the same density perturbation scales as in~15! if
the role of temperature is played by the parameterG.

Thus, Ohm’s law on the Hall plateau is similar to~11!,
but the currentJ is mainly of diffusion origin, and the elec
tric potentialw along the Corbino disk remains virtually a
zero point. In other words, the situation justifying the app
cation of them- representation for an analysis of the IVC o
the Hall plateau takes place. This statement is also valid
the regionT,eV,\vc ~this will be used below!. A consid-
erable difference between~2! and~2a! in favor of ~2! is also
obvious.

3. T,eV,\vc . In the m-representation, the gener
problem on the IVC for a Corbino disk splits into two part
At first, we can determine the behavior ofm(r ) with the help
of relations~2!, ~3! and ~5!. Then we can easily finddn(r )
andw(r ) by using~6! or ~7! as well as~9!.

On the basis of~2!, ~3!, and~5!, we can write

dm~x!5t ArcsinhFsinhS dm0

t D S 12
ln x

ln qD
1sinhS dm01v

t D S ln x

ln qD G ,
q5r 1 /r 0 , x5r /r 0 , ~16!

dm05m021521/22t ln S~n0!, dm0~n051!50,

t5T/\vc , 1<x<q. ~16a!

The definition~16a! of dm0 through the filling factorn0

is chosen for convenience. The value ofn and the combina-
tion t ln S(n0) are given by formulas~6!, and the expression
~16a! for dm0 is valid if we are dealing with phenomena
the vicinity of the Landau ground level, i.e., forn,2. The
integral filling of the level withn51 makesdm0 equal to
zero.

The relation between the currentJ and voltageV has the
form

j /t5Fsinh
dm01v

t
2sinh

dm0

t G , j 5
eJe1D/T ln q

2ps0\vc
.

~17!

Naturally the general formulas~16! and ~17! for small V
(eV,T,1) are transformed into the ohmic formulas~11!
and ~12!.

It follows from expression~16! that the distribution of
dm along the direction of current changes noticeably w
increasingv as compared to the logarithmic nonlineari
which is usually observed in the ohmic region@see formula
~12!#. Here, the degree of nonlinearity is determined by
ratio eV/T, i.e., can be quite high even in the regioneV
,\vc . For example, Figs. 1a, 1b and 1c show the res
obtained fordm(x) for various initial valuesdm0 , the reac-
tion of dm(x) to the change inv for a fixedt, as well as the
distribution ofdm(x) for given dm0 ,v and different values
of t.

Obviously, if we ‘‘start’’ from the unit filling factor, the
gradient ofdm has the maximum value at the origin~curve
1!. As the value ofn0 decreases, the system first approac
the region with the unit filling factor and only then increas
the gradient ofdm ~curves2–4!.
or

e

ts

s

Using formulas~16!, we can find the dependencen(x),
and hencew(x) also, with the help of~6!, ~9!, and~16!. The
relevant data form(x) and n(x) are shown in Figs. 2a and
2b. The value ofw can then be estimated with the help of~9!
or

FIG. 1. Dependencesdm(x) ~16! for fixed n050.8, t50.1, q53 for dif-
ferent values ofv: 0.6 ~curve 1!, 0.8 ~curve 2!, and 1.2~curve 3! ~a!; for
fixed v50.3, t50.1, q53 for different values ofn0 : 1.0 ~curve 1!, 0.98
~curve 2!, 0.96 ~curve 3!, and 0.94~curve 4! ~b!, for fixed v50.3, n0

50.96, andq53 for different values oft: 0.2 ~curve1!, 0.1 ~curve2!, and
0.05 ~curve3! ~c!.
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c~x!5ew~x!/\vc.2d* ~n2n0!, d* 5d/aB* . ~18!

A comparison of the quantitiesdm;1 ~see Fig. 2a!,
dn;0.1 ~see Fig. 2b!, andc;0.1 @see formula~18! for d*
>1] readily shows that

dm@c, ~18a!

i.e., the conditions for the existence of them-representation
~3! are fulfilled indeed. Such a situation is conserved up
v<1.

4. In the regionv.1, the electric potential is not sma
any longer. As a result, we have to deal withz from ~4! and
not with the m-representation of conductance from~3!. A
formal consequence of these changes is the impossibilit
uncoupling the system of equations inm, w, andn into sepa-
rate blocks@as was done for calculatingdm in ~16!#. We shall
solve this system below by using successive iterations s
ing from the ohmic limit~10!–~12! for dm0 and the corre-
sponding distributionn0(x) following from Eqs.~6! and~6a!
with the left-hand side from~12!. A formal basis for such a
method of solution of the problem is the analogy with t
problem of integral channels under nonhomogeneous e

FIG. 2. Examples of behavior ofdm(x) from ~16! and corresponding value
of n(x) from ~6!, ~9!, and~16! for them-model of conductance:dm(x) from
~16! for dm050.85, t50.1, v50.8 (a),n(x) from ~6!, ~9!, and ~16! for
dm(x) from ~16! and Fig. 2a; curves1–4 correspond to different values o
d: 1 ~curve1!, 3 ~curve2!, 5 ~curve3! and 10~curve4!.
o

of

rt-

ui-

librium conditions. Chklovskii et al.14,15 proved that the
‘‘shelves’’ in the electron density distribution can be calc
lated by solving first the problem on the density distributi
in a magnetic field, and then the parameters of integ
‘‘shelves’’ in the magnetic can be calculated as a con
quence of perturbation in the zeroth approximation. In o
case, the role of the zeroth approximation leading to the l
of spatial homogeneity of the electron system is played
the solution of the problem~10!–~12!. Then the definition of
electrochemical potential~6! and ~6a! responsible for the
emergence of flattenings in the electron density distribut
comes into play. The examples of the behavior ofn0(x) in
the framework of this program are presented in Figs. 3a
3b. Among other things, the formation of the integral cha
nel in the middle of the Corbino disk and the dependence
its characteristics on various extrinsic parameters can be
clearly.

FIG. 3. Dependence of the filling factorn on x for v51.5, d* 510, n0

50.98 and different values oft: 0.075~curve1!, 0.05~curve2!, and 0.025
~curve3! ~a!; for d* 510, t* 50.05,n050.98 and different values ofv: 1.5
~curve1!, 1.0 ~curve2!, and 0.5~curve3! ~b!.
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It is convenient to present the data on the next iterat
in the form of the ratio of the first approximation to th
zeroth approximation for the same values of the total curr
j . For example, the nonlinear deviation

dv5v~ j !/v0~ j ! ~19!

from Ohm’s law~11! can be written in the form

dv5
1

ln q E1

q dx cosh@21/2t2 ln S~n0!#

x cosh@21/2t2 ln S~n0~x!!#
,

q5r 1 /r 0 , ~20!

v
ln x

ln q
52d* @n0~x!2n0#2t ln

S~n0~x!!

S~n0!
. ~20a!

Heren0(x) is the electron density distribution in the z
roth approximation following from equation~20a!. Such rep-
resentations are presented schematically in Figs. 3a and

The final results fordv from ~20! are shown in Figs. 4a
and 4b. It should be noted that the results presented in F
indicate the roughness of approximation~20! since the itera-
tion possesses the required property~relation ~20! slightly
deviates from unity! only in the vicinity of n051. The main
reason behind this roughness is the actual rearrangeme
fields in the disk as a result of formation of the integ
channel. In this respect, the steady-state problem differs f
the equilibrium problem in which the formation of a chann
perturbs the problem only in the vicinity of the channel.

DISCUSSION OF RESULTS

Let us sum up the obtained results. We studied the lin
region and weakly nonlinear effects in the IVC structure
a 2D electron Corbino disk with a magnetic field normal
its surface under the conditions corresponding to the em
gence of QHE.

In the linear~ohmic! mode, the statement concerning t
diffusive nature of the passing current is most remarka
The electrostatic potential does not participate in sustain
the current, and this prediction can be verified directly w
the help of the linear electrooptical effect.13

The initial premise for the evolution of weak nonlinea
ties of IVC is the loss of spatial homogeneity in the 2D
system carrying current even if this system was perfe
homogeneous in equilibrium. Anomalous evolution of cu
rent nonuniformities under the conditions of QHE against
background of a linear or logarithmic increase in electr
density, which are always observed in any 2D system with
current, occurs through two channels. One of them is typ
of 2D systems with a filling factor close to an integer. W
are speaking of the tendency of a 2D system to oppose ex
ternal perturbations leading to a change in the integral fill
factor. This circumstance also takes place in equilibri
problems, being the main reason behind anomalies in m
netocapacitance of 2D systems and creating ‘‘incompres
ible’’ strips in nonhomogeneous systems. The presence
current modifies the parameters of such strips or lead
conditions required for their formation. This process can e
ily be simulated under the assumption that Ohm’s law~2!
is valid for uniform conductance. In this case, the elect
n
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density distribution in a Corbino disk with current displa
clearly manifested ‘‘shelves’’ with a geometry determin
by extrinsic parameters~see Figs. 3a and 3b!.

As the value ofv increases, the other channel, viz., no
linear sensitivity of conductance tom or z on Hall’s plateaus
discovered for the first time in Refs. 7 and 8 comes in
‘‘play.’’ In actual practice, however, both nonlinearity chan
nels are interconnected. The form of this relation are diff
ent in different intervals of voltageV. The corresponding
features of IVC and electric potential distribution are giv
by formulas ~15!–~19!. We shall mention some of them
First, relation~17! between the parametersv anddm0 for a
fixed j has a peak which loses its symmetry relative to
point dm050 with increasingj . The shiftDv relative to its
position corresponding to small currents is given by the f
mula

Dv5vmax/2, ~21!

FIG. 4. Dependence ofdv on n0 from ~20! for t50.1 and different values of
v: 0.05~curve1!, 0.3 ~curve2!, and 0.5~curve3! for d* 55 ~a! and 10~b!.
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where, according to~17!, the maximum valuevmax is a non-
linear function of the currentj ~the second nonlinear effect!:

vmax52t Arcsinh~ j /2!. ~22!

Both effects are accessible to experimental verificatio
Considering the available experimental data on nonlin

properties of IVC on the Hall plateau, we note above all t
the experiments were mainly made on samples with rec
gular geometry~see Refs. 1–6, 9, and 10!, in which the
breakdown of QHE is of the jump type. As regards t
Corbino geometry, we are aware only of more or less s
tematic results8 obtained under the conditionsv@1 as well
as those from Ref. 18~again withv@1! related indirectly to
the problem under consideration. According to these res
Corbino samples demonstrate IVC nonlinearity of the ty
~22!. Besides, the effect~21! is also observed on the sca
determined by this formula. However, we cannot state t
the results or our calculations are similar quantitatively to
data presented in Ref. 8 since the rangev@1 used in Ref. 8
was not investigated by us in actual practice.

This research was partly financed in the framework
the program ‘‘Physics of Solid Nanostructures,’’ Grant N
97-1059, and supported by the Russian Foundation of F
damental Research, Grant No. 98 02 16 640.
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QUANTUM EFFECTS IN SEMICONDUCTORS AND DIELECTRICS

Surface magnetic-plasma waves at the ferrodielectric–semiconductor boundary
V. L. Fal’ko, S. I. Khankina, and V. M. Yakovenko
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Ukraine*
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The electromagnetic properties of the ferrodielectric–conducting medium system are investigated
in a constant magnetic field at low temperatures. It is shown that new vibrational branches,
viz. pseudosurface waves characterized by collisionless damping, emerge in a strong magnetic field
at sufficiently high concentrations of charge carriers. The mechanism of collisionless
~radiative! damping is connected with the existence of additional electromagnetic fields
propagating into the bulk of the conducting medium. The range of such waves is determined, and
the functional dependences of their frequency and damping on the magnitude and direction
of the external magnetic field are derived. ©1999 American Institute of Physics.
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1. It is well known that oscillations of various type
including magnetic polaritons, magnetostatic oscillatio
and coupled waves can exist on the surface of magnet1–3

The propagation of these waves is determined by the p
erties of a magnet as well as the medium in contact with

The dependence of frequency and damping of surf
waves on the properties of magnetic medium~permeability,
the presence of conduction electrons, gyroanisotropy, e!
has been studied extensively. These effects were analyz
the review by Kaganovet al.3 in which the electromagnetic
properties of a magnet in contact with vacuum are inve
gated. It is shown that the dispersion in the spectrum
surface oscillations is determined by different physi
mechanisms: the frequency- and spatial dispersion of per
ability and permittivity tensor components and delay effe
in the magnet. The inclusion of delay leads not only to
dependence of frequency on the wave vector, but also
attenuation of a nonmagnetic origin. It depends on the w
vector and the dissipative component of permittivity.

The influence of electromagnetic properties of the m
dium bordering a magnet on surface magnetic oscillati
has been studied less extensively. It should be noted
surface waves at the magnetically active plasma–vacuum
terface in radio frequency region exhibit a number of int
esting peculiarities.4 For this reason, an analysis of the pro
erties of electromagnetic waves at the ferrite–magnetic
active plasma interface is undoubtedly of primary imp
tance. Such a composition leads to the formation of n
branches of oscillations as a result of interaction betw
fields and conduction electrons. For instance, coupled
face helicon–spin waves emerge in the ferrit
superconductor structure in a strong magnetic field.5 The
coupling parameter for these waves was found to be of
order of unity, leading to a considerable change in the
quency and damping of oscillations.
1441063-777X/99/25(2)/4/$15.00
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In this communication, the interaction of surface ma
netic oscillations with eigen electromagnetic oscillations
the conducting medium is investigated in a ferrodielectri
semiconductor system at low temperatures in the freque
range in which surface helicons do not exist. In a stro
magnetic field, this interaction leads to a change in the
quency of magnetic surface waves if delay effects in
superconductor are significant. It was found that the f
quency dispersion of magnetic oscillations in this case can
stronger than the dispersion associated with delay effect
the magnet. Moreover, attenuation of collisionless type
observed when surface waves propagate at an angu
Þp/2 to the direction of a constant magnetic field. This
due to the existence in the magnetically active plasma of
semiconductor of partial electromagnetic waves remov
the energy of the field from the boundary. The dispersion a
damping are determined by macroscopic parameters of
magnet, the magnitude and direction of the magnetic fie
and the charge carrier concentration in the semiconducto

2. Let a ferromagnetic dielectric occupy the half-spa
y.0 ~medium ‘‘1’’ ! and a semiconductor fill the regio
y,0 ~medium ‘‘2’’ !. The external constant magnetic fie
H0 and the magnetic momentM are directed along the
z-axis.

The electromagnetic properties of the ferromagnetic
electric are described by the equations of magnetostatics
equations of motion of magnetic moment. Assuming that
dependence of all the variables on coordinates and tim
proportional to exp@i(k•r2vt)#, we can find from these
equations the relation between the wave vectork and fre-
quencyv:

m i j ~v!kikj50. ~1!
© 1999 American Institute of Physics
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If the constant magnetic fieldH0 is directed along the anisot
ropy axis, the permeability tensor componentsm i j (v) in the
absence of spatial dispersion have the form

mxx5myy5m511
vgvM

vg
22v2 ;

mxy52myx5
ivvM

vg
22v2 ; mzz51;

mxz5mzx5myz5mzy50;

vg5g~H01bM !; vM54pgM, ~2!

whereg is the magnetomechanical ratio andb the anisotropy
constant. It follows from~1! that

ky
252kx

22kz
2/m; ~3!

Im ky.0 being the emission condition fory→0. Henceforth,
we assume thatkx

2@kz
2/m, i.e., the wave propagates at a

angle to the magnetic field. The components of the vary
magnetic field in the wave~3! are connected through th
relation

Hx5
kx

ky
Hy ; Hz5

kz

ky
Hy . ~4!

Electromagnetic fields in a conducting medium can
described by Maxwell’s equations and the equations of m
tion for conduction electrons. The wave vectors of transve
waves can be found from the relation

«xx~kx
21ky

2!21F ~«xx1«zz!S kz
22

v2

c2 «xxD2
v2

c2 «xy
2 G

1S kz
22

v2

c2 «xxD 2

«zz1
v4

c4 «xy
2 «zz50, ~5!

where the permittivity tensor components« ik(v) in a one-
component plasma in a strong magnetic field (vH@v,n) are
defined as

«xx5«yy5«01
v0

2~v1 in!

vvH
2 ,

«xy52«yx5
iv0

2

vvH
, «zz5«02

v0
2

v~v1 in!
. ~6!

Here «0 is the dielectric constant of the semiconductor l
tice, andvH5eH0 /mc; v0

254pe2n0 /m; e,m,n0 ,n are the
charge, effective mass, equilibrium concentration, and ef
tive frequency of collisions of charge carriers, respective
We introduce the angleu between the magnetic field direc
tion ~z-axis! and the projection of the wave vector on thexz
plane~kx5k sinu, kz5k cosu!.

The dispersion equation for surface magnetic waves
be derived from the boundary conditions for fields at t
interfacey50 between the media. Such conditions are
continuity of the normal component of the magnetic indu
tion vector and the continuity of the tangential compone
of the varying magnetic field:

Hy
~2!5By

~1!5mHy
~1!1myxHx

~1!uy50 ,
g

e
-
e

-

c-
.

n

e
-
s

Hx
~1!5Hx

~2!uy50 , Hz
~1!5Hz

~2!uy50 . ~7!

3. Let us first analyze the peculiarities of a magne
wave in the simple case when theH-wave propagates at righ
angles to the vectorH0 andM (u5p/2). The depth of pen-
etration of this wave into the semiconductor is determined
the quantity l 5uk22(v2/c2)«zzu21/2, and the energy–
momentum relation has the form

sgnkxv1vg1
vM

2
52

v0
2~v2 in!

2c2v2vM

1

k2

3~sgnkxv1vg1vM !2. ~8!

The solution of this equation exists only forkx,0. In the
region of small values of wave numbersk (k2!v0

2v/c2uv
1 inu), the frequency of a surface magnetic wave is given

v5v1[vg1vM . ~9!

Delay effects in the conducting medium lead to fr
quency dependence of the wave vectork ~to dispersiondv!
and dampingg52Im v:

dv~k!5
vMkc

v0
ReS 11 i

n

v1
D 1/2

,

g5
vMkc

v0
ImS 11 i

n

v1
D 1/2

. ~10!

For large values ofk (k2@v0
2v/c2uv1 inu), a wave

with Damon–Eshbach frequency2 propagates along the inter
face:

v5v2[vg1
vM

2
. ~11!

Its dispersiondv and dampingg are given by

dv5
vM

8

v0
2

k2c2 , ~12!

g5
vM

8

v0
2n

k2c2v2
. ~13!

It should be noted that a surface wave with frequen
~11! emerges in the structure ferromagnet–vacuum3 for wave
numbersk@v2 /c, and its dispersion caused by delay effec
in the ferromagnet isDv252vMv2

2(11«)/8k2c2 ~« is the
permittivity of the ferromagnet!. In the structure under inves
tigation, the wave ~11!–~13! propagates for k@v0 /c
@v2 /c. It can easily be verified that the change in its fr
quency~12! is much larger thanuDv2u.

In the above geometry, attenuation is determined by
dissipative component of the permittivity of the semicondu
tor.

4. Let us analyze waves propagating along the bound
between the media at an arbitrary angle to the vectorH0

(uÞp/2). We consider the frequency range in which t
following conditions hold:

v!vH , v0 /A«0, ~14!

i.e.,

u«zzu@u«xyu@u«xxu
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and

kz
2@~v2/c2!«xx . ~15!

Then it follows from Eq.~5! that two waves~extraordinary
and ordinary! existing in the conducting medium satisfy r
spectively the following conditions:

ky1
2 52~kx

21kz
2!2

v4

c4kz
2 «xy

2 , Im ky1,0, ~16!

ky2
2 52kz

2 «zz

«xx
, Im ky2,0. ~17!

Since uky2u@kx , the characteristics of propagation of the
waves differ strongly, and the components of their fields
connected through the relations

Hx152
kxky11~v2/c2!«yx

kx
21kz

2 Hy1 ,

Hz15
kx~v2/c2!«yx2ky1kz

2

kz~kx
21kz

2!
Hy1 ,

Ez'0, Ex15
v

kzc
Hy1 ,

Ey15
v

kzc

@kxky11~v2/c2!«yx#

kx
21kz

2 Hy1 ; ~18!

for the extraordinary wave and

Hx252
ky2

kx
Hy2 , Hz252

«xy

«xx
Hy2 , Ey25

ky2

kx
Ex2 ,

Ex25
kzc

v«xx
Hy2 , Ez5

kz
2

kx«xx

c

v
Hy2 . ~19!

for the ordinary wave.
Let us analyze different types of semiconductors with

isotropic energy–momentum relation for charge carriers
some of them, the displacement current is smaller than
conduction current, and the following condition holds:

u«zz«xxu'u«xy
2 u; «0!

v0
2uv1 inu
vH

2 v
. ~20!

~It should be noted that this condition rules out the propa
tion of a surface helicon.4,5!

Semiconductors of the second type are characterize
a relatively low electron concentration, and the main con
bution to the component«xx comes from displacement cu
rent. In other words, the following inequalities hold:

v0
2

vuv1 inu
@«0@

v0
2uv1 inu
vH

2 v
. ~21!

In semiconductors with a high charge carrier concen
tion, we haveky25kzvH(v2 in)/(v21n2). The simulta-
neous fulfillment of the conditionsky2

2 @kx
2 and~3! indicates

that in this case the wave propagates in the interval of an
whose magnitude is determined by the constant magn
field H0 :
e

n
n
e

-

by
i-

-

es
tic

1

m
!tan2u!

vH
2

v2 . ~22!

The dispersion relation for these waves has the form

vg1vM1~sgn sinu!v

vg1~sgn sinu!v

52
1

usinuucosu H i
v0

2v

k2c2vH
6Fcos2 u

1
2v0

2v~v1 in!

k2c2vH
2 sinu~ i cosu2sinu!

2
v0

4v2

k4c4vH
2 G1/2J . ~23!

Let us consider the limiting cases:

ucosuu@
v0

2v

k2c2vH
,

v0uv~v1 in!u1/2

kcvH
, ~24!

v0uv~v1 in!u1/2

kcvH
!ucosuu!

v0
2v

k2c2vH
. ~25!

When inequalities~24! are satisfied, we can easily obta
from Eq.~23! the frequency of the surface wave propagati
only in the range of angles2p/2,u,0, i.e., only in the
negative of thex-axis ~nonreciprocity effect!:

v~u!5vg1vM

usinuu
11usinuu

. ~26!

The delay effects in the semiconductor lead to the d
persion of frequency~26! and to damping of the form

dv5vM

v0
2v2~u!usinuu3

k2c2vH
2 cos2 u~11usinuu!2 , ~27!

g5vM

v0
2v~u!usinuu

k2c2vH cosu~11usinuu!2 . ~28!

In contrast to the Damon–Eshbach wave~11!–~13!, damping
~28! is of the collisionless type. The mechanism of its em
gence is connected with the following factors. One of par
waves in the semiconductor, viz., the wave with the com
nent ky2 , is a bulk wave in the high-frequency range (v
@n) under the conditions~20!. ~The other partial wave is a
surface wave for whichky152 ikusinuu.! The fields whose
amplitudes decrease exponentially on both sides of
boundary plane between the media are transformed at
boundary into the field of a wave propagating to the bulk
the semiconductor and removing a part of energy.

When inequality~25! is satisfied, the partial wave with
componentky1 defined as

ky152
vv0

2

vHkc2 cosu S 11 i
vn

vH
2 D , ~29!

is also a bulk wave propagating in the conducting medi
for arbitrary relations between the frequenciesv andn.

In this case, the frequency of the surface wave is giv
by
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v5~vg1vM !~12vM /vH!, ~30!

and its dispersion and collisionless damping are defined

dv52
k4c4vH

2 vM

4v0
4v1

2 cot2 u, ~31!

g5
k2c2vHvM

2v0
2v1

cotu, ~32!

where the frequencyv1 is defined in~9!.
Conditions~24! and~25! imply that if the charge carrie

concentration in the semiconductor is such tatv0 /kc,1, a
surface wave of only one type~26!–~28! is formed. For a
high concentration, whenv0 /kc.1, but the inequality
v0

2v/k2c2vH,1 is observed, both types of waves~26!–~28!
and ~30!–~32! exist. These waves can be observed by va
ing the angleu. Finally, when 1,v0

2v/k2c2vH only the
wave ~30!–~32! propagates.

For a low concentration~see~21!!, surface waves exist a
the magnet–semiconductor interface in the range of an
defined by the inequalities

1

m
!tan2 u!

v0
2

vuv1 inu«0
. ~33!

In contrast to~22!, the upper boundary of the angular interv
~33! is determined by the conduction electron concentrat
and does not depend on the external magnetic field.

Expression~17! for ky2 , which has the form

ky2
2 5kz

2
v0

2~v2 in!

«0v~v21n2!
~34!

under conditions~21!, does not depend on the magnetic fie
either. Forv@n, it follows from ~34! that the ordinary wave
is a bulk wave.

As before, surface waves propagate only in the nega
direction of thex-axis. Since their dispersion equation
quite cumbersome, we shall give analytic expressions
frequency, dispersion, and damping only in the limiti
cases:

ucosuu@
v0

2v

k2c2vH
,

v

kc
A«0, ~35!

v

kc
A«0!ucosuu!

v0
2v

k2c2vH
. ~36!

If inequalities~35! are satisfied, the surface magnetic wa
with frequency~26! is characterized by the following value
of dv andg :
s

-

es

l
n

e

r

dv5
vMv0

2v~u!

4k2c2vH

1

cos2 u
, ~37!

g5
vMv0

3v~u!

4k2c2vH
2 A«0

usinuu
cos3 u

. ~38!

In the case~36!, the dispersion and damping for a wave
frequencyv1 ~9! are given by

dv52
vMvHk2c2

v1v0
2 cos2 u, ~39!

g5
vMvHk2c2

v1v0
2

cos3 u

usinuu
. ~40!

It should be noted that the dependences of the freque
dispersion and collisionless damping on the value of a c
stant magnetic field are determined by the angular rang
which surface waves with frequencies~9! and ~26! propa-
gate. In semiconductors of the first type~20!, the functions
dv(H0) and g(H0) change in the angular range~24! as
(const1H0)

2/H0
2 and (const1H0)/H0 respectively, i.e., their

values decrease with increasingH0 , tending to a constan
value. In the angular interval~25!, the values ofdv(H0) and
g(H0) increase with the magnetic field, tending to saturat
according to the lawsdv(H0);H0

2/(const1H0)
2 and

g(H0);H0 /(const1H0).
In semiconductors of the second type~21!, dv(H0)

;(const1H0)/H0, g(H0);(const1H0)/H0
2 if inequalities

~35! are satisfied, and frequency dispersion and damping
values of angles~36! exhibit identical dependences on th
magnetic field:H0 /(const1H0).

The properties of the semiconductor~~20! and~21!! also
affect considerably the form of angular dependencesdv~u!
and g~u!. The effects described above can be observed
perimentally by varying the direction or magnitude of th
constant magnetic fieldH0 .
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Acoustic magnetic resonance in absorption and dispersion of surface elastic waves
in multilayers
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It is shown that magnetic resonances related to excitation of oscillations of the layer
magnetization can appear in the spectrum and absorption of the Love acoustic surface waves
propagating in a multilayered film with a Fe/Cr type magnetic ordering on a massive
substrate. The magnetoelastic resonant contribution to the elastic shear modulus of the film is
calculated and the relation between the resonant frequencies and the frequencies of
electromagnetically excited uniform ferromagnetic resonance is established. ©1999 American
Institute of Physics.@S1063-777X~99!01102-0#
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The nature of magnetic ordering and giant magnetore
tance in multilayers of the Fe/Cr type has been studied
now by using a set of experimental methods providing v
information concerning the magnetic and atomic structure
such films.1,2 Although this information makes it possible i
principle to explain the main features of the observed re
larities, it is insufficient, however, for an unambiguous a
consistent description of the physical nature of magnetic
dering itself and the mechanisms of giant magnetic re
tance on atomic level.

One of the ways for solving related problems is to e
tend the scope of phenomena whose analysis in magn
multilayers makes it possible to determine qualitatively n
microscopic parameters of such films. In our earl
publication,3 we proved that the application of acoust
methods~including the study of frequencies and damping
surface elastic waves in the system comprising a film an
massive crystalline substrate! is promising in this respect
The frequencies of surface waves exhibit the dependenc
elastic moduli of the film on the magnetization and magne
field strength, which provides information on the nature
ordering, while the mechanisms of giant magnetoresista
are manifested in damping.

Along with nonresonant field dependences considere
Ref. 3, the parameters of surface elastic waves can also
hibit magnetic resonance. Such a resonance was obse
for example, in Rayleigh waves propagating in a system c
sisting in a nickel film of thickness 200 Å on a piezoelect
substrate.4 In this communication, we describe the results
the theory describing manifestations of magnetic resona
in absorption and dispersion of surface elastic waves for
Love waves propagating in a multilayer–substrate system

Let us consider the actual situation, when the length o
surface wave is larger than the film thickness. In this ca
1481063-777X/99/25(2)/3/$15.00
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the expression for the phase velocitys of a Love wave can
be written in the form

s5v02
1

2
k2L f

2S r f

r0
2

l f

l0
D 2

v0 , ~1!

wherek is the wave vector,v0 , r0 , andl0 are the velocity
of sound, density, and elastic modulus of the substrate,
L f , r f , andl f the thickness, density, and elastic modulus
the film. The magnetic resonance can be manifested in
contribution emerging in the elastic modulusl f of the mag-
netic film due to the interaction of elastic vibrations wi
magnetization oscillations.

In order to calculate this contribution, we consider ultr
sonic vibrations in an individual magnetic layer occupyi
the region 0,z,L. We assume that the elastic displaceme
vector and equilibrium magnetization are parallel to t
x-axis. Expanding the displacement amplitudeu(z) and the
nonequilibrium magnetization componentm(z) into Fourier
series

u~z!5
2

L (
N50

` S 12
1

2
dN0DuN cosqNz,

m~z!5
2

L (
N50

`

mN sinqNz, qN5
pN

L

and presuming the isotropy in the boundary plane, we ob
the following equation foruN :

2v2r fuN52qN
2 luN1hmeqNmzN

1~21!NF~L !2F~0!, ~2!

wherev is the frequency,l the elastic modulus of the crysta
lattice, hme the magnetoelastic interaction parameter, a
F(L) andF(0) are the values of elastic stress at the bou
ariesz5L andz50.
© 1999 American Institute of Physics
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Solving Eq.~2!, we find the amplitudes of displacemen
u(0) andu(L) at the boundaries, and then use the relatio

u~L !2u~0!5
L

l f

1

2
@F~L !1F~0!# ~3!

~which is valid for a thin layer whose thickness is smal
than the wavelength! to obtain the elastic modulusl f in the
form l f5l1lme, wherelme is the contribution from mag-
netoelastic interaction. Assuming that the multilayered fi
consists of identical fragments, we can apply relation~3! to
our film, replacing the thicknessL of an individual fragment
by the thicknessL f of the entire film. Peculiarities of a mul
tilayered system are manifested in this case in the type
magnetic ordering.

In the case when the recurring fragment consists of
layers with elastic modulil1 and l2 , the value ofl f is
determined by the formulal f

215l1
211l2

21 . For a Fe/Cr
film, one of the contributions comes from the iron layers,
difference in the directions of equilibrium magnetizations
the layers being manifested in that this contribution depe
on the relative orientation of magnetizations of adjacent l
ers.

The value ofmzN can be expressed in terms of the d
placement amplitudeuN from the equation for magnetizatio
with appropriate boundary conditions. The general expr
sion has the form

mzN5hmeqN
2 (

N8
aNN8uN8 . ~4!

The dependence of the coefficientaNN8 on the wave
vectorsqN andqN8 is due to nonuniform exchange intera
tion, and the integral form of relation~4! reflects the emer-
gence of magnetization at the film boundaries due to ela
vibrations. If the contribution of the boundary values can
neglected~rigid fixation of spins in the boundary layers!,
formula ~4! assumes the form

mzN5hmeqN
2 xN

zzuN , ~5!

wherexN
zz is the magnetic susceptibility component due

the varying magnetic field at the boundaryz50. In this ap-
proximation, we can obtain the following simple expressi
for lme:

lme5hme
2 4

L2 (
N51

`
1

qN
@~21!N21#xN

zz. ~6!

This formula describes the resonant dependence of
velocity of the surface wave on the frequency and strengt
the magnetic field. If magnetic oscillations of a layer a
reduced to oscillations of average magnetization~for in-
stance, in the case of parallel orientation of magnetization
all the layers!, the corresponding formula forxN

zz derived
from the well-known equations for magnetization5 has the
form

xN
zz52

1

qN

V0~V f1hqN
2 !

~v1 iG!22~V f1hqN
2 !~V f1hqN

2 14pV0!
,

~7!
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whereV05gM0 ,g is the magnetomechanical ratio,M0 the
equilibrium magnetization,V f the frequency of uniform
resonance in zero demagnetizing field,h the exchange inter-
action parameter, andG the damping factor. Formula~6!
combined with ~7! describes acoustic magnetic resonan
broadened by the exchange interaction as well as spin-w
resonances under definite conditions. If the exchange in
action is insignificant (h!V fL

2), we have

lme5hme
2 V0V f

~v1 iG!22V f~V f14pV0!
~8!

and elastic moduli reflect the uniform magnetic resonanc
For multilayers of the Fe/Cr type, the susceptibilityxN

zz

should be referred to the recurring fragment including ad
cent ferromagnetic layers with different directions of magn
tization in the general case~antiparallel or noncollinear or-
dering!. Resonant frequencies for such systems w
calculated by Bebeninet al.6 Using the results of these ca
culations, we can obtain an expression of the type~8! in the
chosen geometry for uniform resonance, in which the re
nant frequencyAV f(V f14pV0) is replaced by another fre
quency taking into account the difference in the orientatio
of magnetizations of adjacent layers.

The effect of exchange interaction on acoustic magn
resonance is illustrated in Fig. 1 showing the frequency
pendence of the quantitylme under the conditions when ex
change interaction distorts the curve corresponding to u
form resonance and leads to the emergence of a new reso
singularity.

According to the above arguments, the parameters
surface elastic waves can acquire resonances associate
the excitation of natural magnetic oscillations in multilaye
The position and shape of the curves describing such r
nances and their dependence on the magnetic field stre
are determined by the type of magnetic ordering and ot
fundamental properties of films, which can therefore be a
lyzed on the basis of observation of surface acoustic wa

This research was supported by the Russian Fund
Fundamental Research~Grant No. 98-02-17517! and INTAS
~Grant No. 05-31!.

FIG. 1. Acoustic magnetic resonance as a function of the frequenc
elastic modulus of the film with a strong effect of exchange interaction
the line shape;m5hme

2 m2VV0 /v0
2 ,m is the film magnetization normalized

to the saturation magnetization.
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A. Hubert and R. Scha¨fer, Magnetic Domains. The
Analysis of Magnetic Microstructures, Springer-Verlag,
Berlin, Heidelberg, New York~1998!, 720 pp., 400 figs.,
ISBN 3-540-64108-4

An overwhelming majority of magnetic materials us
in science and engineering exist in the polydomain st
Hence the physical properties of magnetic domains and t
evolution in external magnetic fields determine most of
functional characteristics of devices containing magne
components. Decades of intensive studies have yielded
merous methods for observing and analyzing magnetic
mains and a large body of experimental results, as wel
different theoretical methods which were developed for
scribing the polydomain states. Recent advances in the
of nanotechnology have led to the production of basica
new magnetic materials, which has further stimulated fun
mental and applied research of magnetic domains. Thi
mainly due to the fact that at the current level of miniatu
ization of magnetoelectronic instruments, the behavior of
dividual domains affects significantly the functioning of su
devices.

In spite of the large number of monographs and revie
devoted to individual aspects of the physics of magnetic
mains, the present book is the first attempt in the world
erature to present this comprehensive branch of magne
in a single volume. The book is authored by Prof. Al
Hubert, a leading authority in the field of magnetic materi
science, and his pupil Dr. R. Scha¨fer, a specialist in
magneto-optical research. It should be recalled that Hube
monograph entitled ‘‘Theorie der Doma¨nenwände in Geord-
neten Medien’’ ~Theory of Domain Walls in Ordered Media!
~Springer-Verlag, Berlin, 1974!, which was also translate
into Russian in 1977 by Mir Publishers, Moscow, continu
to be one of the most veritable publications on the ba
principles of the physics of domain walls in condensed m
dia.

The authors of the project realized it at the expense
enormous efforts and time. The book was written over a v
long time ~beginning in 1984!. During this period, the au
thors gathered, analyzed and systematized a very large n
ber of publications devoted to the experimental, theoret
and applied aspects of the investigations of domain struct

The monograph has an elegant and carefully plan
structure. The historical review presented in Chapte
is followed by a detailed description of the methods
1511063-777X/99/25(2)/2/$15.00
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observing magnetic domains, as well as their compara
characteristics~Chap. 2!. The third chapter deals with th
theory of domain structures. Numerous theoretical res
obtained by using various approximations and covering
ferent aspects of the domain theory are presented usin
unified approach. Modern methods of numerical microm
netism are described in detail for the first time, and seve
new theoretical results obtained especially for inclusion
this book are presented. Chapter 4 is devoted to an ana
of various physical parameters of magnetic materials and
detailed description of the methods used to determine
magnetic constants to a detailed description of the meth
used to determine the magnetic constants required for c
acterizing domain structures. In Chapter 5, which deals w
an analysis of various polydomain states, the authors h
gone further than providing just a classification and pres
tation of the material. On the basis of the results presente
previous chapters, they consider in detail the physi
mechanisms leading to the formation of the main types of
observed domain textures. Using numerous examples,
have shown how a domain structure is formed depending
the symmetry of a magnet, crystallographic and induced
isotropy, shape of the sample as well as various other c
acteristics. In the last, sixth chapter, the authors study
effect of domains on the magnetic properties of basic ty
of magnets and discuss the role of polydomain states
their evolution in the functioning of various devices based
magnetic materials. Current problems of micromagneti
are discussed and the ways to solve them indicated.

A large number of superbly drawn figures and cha
greatly facilitate the understanding of the material. Most
the illustrations of the domain structures are original a
have been prepared specially for this edition. The exhaus
list of the cited literature at the end of the book will also
appreciated greatly by many specialists. For the first time
decent classification has been provided for publications
the field of magnetic domains research, starting from
very first papers and terminating with the results of lat
investigations.

This monograph by A. Hubert and R. Scha¨fer, in which
a vast body of tangible material on the physics of magne
domains has been gathered and presented systematically
parts a finishing touch and inherent logic to this vital bran
of magnetism. The wide range of the material, the profund
© 1999 American Institute of Physics
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of the analysis and the encyclopedic coverage of the to
make this book a unique example of monographic prese
tion in scientific literature. It should be of considerable inte
est not only for specialists in the field of magnetic resear
but also for physicists from other fields.
cs
a-
-
,

Further information about the book and its autho
can be obtained on the Internet~http://www6.ww.uni-
erlangen.de/hubert/magnetic-domains.html!.

Translated by R. S. Wadhwa
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The role of pair correlations in the formation of the ground state and the elementary
excitation spectrum in a superfluid Bose liquid „A Review …

E. A. Pashitskii

Institute of Physics, National Academy of Sciences of the Ukraine, 252650 Kiev, Ukraine*
~Submitted August 10, 1998; revised October 7, 1998!
Fiz. Nizk. Temp.25, 115–140~February 1999!

The paradoxes and disparities in the contemporary microscopic theory of superfluid helium
~He–II! are discussed along with possible ways of resolving them by taking pair correlations
of 4He atoms into consideration. It is shown that most paradoxes are associated with
the commonly accepted initial assumption concerning the dominating role of single-particle Bose
condensate~SPBC! in the quantum microstructure of the superfluid componentrs . The
existence of intensive SPBC leads to a strong hybridization of the elementary excitation branches
and to a common dispersion law for all boson branches, which is identified with the
quasiparticle spectrumE(p) observed experimentally from slow neutron scattering in liquid
helium. However, the stability of this spectrum during a transition through thel-point and the large
value of the gap in the vicinity of the ‘‘rotonic’’ minimum contradict both the Landau
theoretical criterion of superfluidity and the small value of experimentally measured critical
velocity. At the same time, a strong interaction between particles in the Bose liquid4He strongly
suppresses the SPBC which amounts to less than 1% of all4He atoms and hence cannot be
the main constituent of the superfluid component, unlike the case of a weakly nonideal Bose gas.
Moreover, for a quite strong attraction between particles in a certain region of the momentum
space, bound pairs of bosons can be formed in the superfluid Bose liquid, and a coherent pair
condensate~CPC! analogous to the Cooper pair condensate in superconductors may appear.
Such a strong CPC may completely suppress the weak SPBC. In this case, the one-particle
spectrum«~p! of elementary excitations does not hybridize with the collective~two-
particle! spectrum and does not appear in the structure of the dynamic form factorS(p,«), i.e.,
does not coincide with the spectrum measured from neutron scattering. The dispersion of

one-particle spectrum is defined by the momentum dependence of the pair order parameterC̃(p)
and may have a minimum or a point of inflection atpÞ0. This peculiarity in the one-

particle spectrum of a Bose liquid with CPC but without SPBC vanishes together withC̃(p) at
the temperatureTc5Tl of the phase transition from the superfluid to the normal state
~unlike the rotonic minimum in the collective spectrum!, while the corresponding critical velocity
vc5min@«(p)/p# vanishes at thel-point in accordance with the Landau criterion and the
experimental data. The assumption that the strong ‘‘Cooper-like’’ CPC is responsible for the
quantum structure of the superfluid componentrs is confirmed indirectly by the successful
application of the Justrow approximation~based on strong pair correlations! for describing the
properties of liquid4He and quantum liquid mixtures3He–4He on one hand, and by an
anomalously large effective mass of3He impurity atoms in4He, which is approximately equal to
total mass of3He and4He atoms, thus pointing to the existence of helium atoms in
superfluid liquid He–II. The value of the superfluid velocity circulation quantum in the
Onsager–Feynman vortices in a Bose liquid with CPC but without SPBC is discussed as well as
the critical velocities of superfluid4He in ultrathin films and channels in which the creation
and motion of quantum vortices are ruled out, and the quasiparticle spectrum undergoes
dimensional quantization. ©1999 American Institute of Physics.@S1063-777X~99!00102-4#
um
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1. INTRODUCTION

The elementary excitation spectrum in superfluid heli
~He–II! with a linear~phonon! dispersion relationE(p);p
for small values of the momentum (p→0) and with the ‘‘ro-
tonic’’ minimum at pÞ0 was predicted by Landau1 on the
basis of the superfluidity criterion derived by him for Bos
and Fermi-type quantum liquids.

Such a form of the spectrum subsequently receive
811063-777X/99/25(2)/19/$15.00
a

brilliant confirmation in experiments2 on inelastic scattering
of slow neutrons in liquid helium. Feynman3 attributed the
existence of the ‘‘rotonic’’ minimum in the quasiparticl
spectrumE(p) to the structure of the dynamic form facto
S(p,«) of the Bose liquid 4He, while Brueckner and
Sawada4,5 showed that such a minimum can be obtained
Bogoliubov’s microscopic theory6 of superfluidity for a
weakly nonideal Bose gas if the pseudopotential of
© 1999 American Institute of Physics
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‘‘rigid spheres’’ model is used for describing the interacti
between particles.

The advances made later in the phenomenological~two-
fluid hydrodynamics! and microscopic~Green’s functions
method! theories of superfluidity7,8 subdued some of the
paradoxes associated with the hydrodynamics of the su
fluid liquid as well as with the shape of the quasipartic
spectrum. Let us consider these paradoxes in detail.

Paradox 1. In view of a weak temperature dependen
of the quasiparticle spectrum E(p), the value of the ‘‘ro-
tonic’’ gap D r58.65 K at the minimum ofE(p) dependence
for pr51.9 Å21 remains practically unchanged right up
thel-point (Tl52.17 K). This contradicts the very meanin
of Landau’s superfluidity criterion.1 At the same time, the
superfluidity criterion is satisfied for the spectrum of qua
particles in the electron Fermi liquid in superconductors9 for
the superconducting phase below the transition tempera
Tc , when the spectrum contains a finite energy gapD. This
criterion is not satisfied in the normal state atT.Tc , when
there is no gap in the spectrum.

Paradox 2.The value of the critical velocity

vc5min@E~p!/p#'D r /pr'60 m/s, ~1!

calculated according to the superfluidity criterion1 for the
quasiparticle spectrumE(p) observed from neutron scatte
ing in liquid 4He, is two orders of magnitude higher than t
experimentally measured value of the maximum veloc
vc

exp of superfluid flow in He–II. The velocityvc
exp increases

many times in ultrathin capillaries and wetting films of s
perfluid helium, but still remains much lower than the critic
velocity ~1! corresponding to the rotonic gap and, unlike t
latter, vanishes at thel-point.10 This contradiction is usually
attributed to the generation ofOnsager–Feynman quantum
vorticesor vortex loops~see Ref. 10! in superfluid helium
moving at a low velocity. This results in the emergence o
finite viscosity owing to the force of friction between norm
cores of vortex tubes and the walls~solid surfaces!. Such a
point of view is in accord with the experimentally observ
increase in the critical velocity upon a decrease in the th
ness of superfluid helium films10 since this is accompanie
by an increase in the coupling force between vortices
walls per unit vortex length.

However, such an explanation is inapplicable to ultrat
capillaries~‘‘supergaps’’! in which the generation of quan
tum vertices with a superfluid velocityvs(r )5k/r decreas-
ing slowly with increasing distance from the axis is ruled o
~here k5h/m4 is the velocity circulation quantum,h the
Planck’s constant, andm4 is the mass of a4He atom!. This
situation is analogous to that of thecritical currents in type II
superconductors11: the critical currentj c in bulk supercon-
ductors is determined by forces of ‘‘pinning’’ of norma
cores ofAbrikosov quantum vorticesat crystal lattice defects
while in thin superconducting filaments~wires! whose thick-
ness is smaller than the London penetration depthlL

'3000– 5000 Å of the magnetic field and which ‘‘cann
accommodate’’ vortices of diameterd'2lL , the value ofj c

is determined by the maximum ‘‘depairing current’’ fo
which the flow velocity of conduction electrons exceeds
limiting critical velocity vc'D/pF determined by the band
r-

-

re

y

l

a

-

d

n

t

e

gap in the spectrum of quasiparticles in the superconduc
state (T,Tc) and sufficiently large for the rupture of Coope
pairs ~pF is the Fermi momentum!.

Paradox 3. Unlike the case in a Bose gas, thesingle-
particle Bose condensate~SPBC! in a superfluid Bose liquid
must be depleted in particles even atT50 due to a strong
interaction between bosons. Analysis of the experimen
data on neutron scattering12 shows that, superfluid4He in the
Bose condensate state at low temperatures~with zero values
of energy« and momentump! contains no more than 1% o
all 4He atoms, while classical measurements of viscosity
He–II show13 that thedensity of the superfluid componentrs

at T,1 K is almostequal to the total densityof liquid he-
lium . This means that in spite of the generally accep
view, superfluidity in the Bose liquid4He cannot be attrib-
uted to theconventional Bose–Einstein condensation only,
and the microscopic structure of the superfluid componenrs

must be of a more complex quantum nature in the form o
many-particle coherent effective condensate~CEC!.14–17

Among other things, it cannot be ruled out that thecoherent
pair condensate~CPC!, which consists of bound boso
pairs18 and is analogous to the Cooper pair condensate
superconductors,9 is the main superfluid component in He
II.

Paradox 4. It was shown by Brueckner and Sawada4,5

~see also Refs. 19 and 20! that quite realistic potentials o
interaction between particles can lead to a good agreem
between the Bogoliubov spectrum of quasiparticles in
weakly nonideal Bose gas6:

EB~p!5Ap2uB
2~p!1~p2/2m!2;

~2!
uB~p!5AnV~p!/m,

@V(p) is the Fourier component of the potential of pair i
teraction between the bosons#, and the spectrum of elemen
tary excitations in liquid4He observed from neutron scatte
ing experiments,2 in spite of the fact that SPBC is strongl
suppressed~or is completely absent! in a Bose liquid while a
Bose gas contains an overwhelming majority of partic
n0'n in the SPBC state~n is the total number of particles
per unit volume!.

This review is devoted to a discussion of these pa
doxes and the possible ways of resolving them, in particu
by taking into account thepair correlations between4He
atoms and the formation ofbound pairs of helium atoms.

2. MICROSCOPIC STRUCTURE OF THE SUPERFLUID
COMPONENT IN He–II „PRELIMINARY REMARKS …

The quantum-mechanical structure of the superfl
component in liquid4He below thel-point ~He–II! remains
the main problem in the construction of a consistent mic
scopic theory of superfluidity of Bose liquids~including ex-
otic liquids like the biexciton,21,22 bipolaron,23 and pion24

liquids!.
The microscopic base of the superfluid state in a wea

nonideal Bose gas is an intense SPBC6 with a nonzero mean
value of the field operator̂ĉ0&5n0

1/2. It is usually assumed
that SPBC is also preserved in a quantum Bose liquid,
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the eigenenergy can be presented in the form of a po
expansion inn0

1/2,25,26 i.e., as a sequence of Feynman d
grams with increasing number of external condensate lin
However, if the SPBC is highly ‘‘depleted’’ in a Bose liqui
with a strong interaction between particles~see Ref. 12! so
that n0!n, we can confine the analysis to the lowest-ord
terms in the power expansion inn0

1/2 ~see Ref. 18!.
On the other hand, the formation ofbound pairs of

bosons(4He atoms! or a strong CPC18 is possible on accoun
of a quite strong effective attraction prevailing over a wi
range of the momentum space even for a dominating~but
rapidly decreasing with increasing separation between
ticles! repulsion in the real space.4,5

The possibility of the existence of such a ‘‘Coope
type’’ CPC in superfluid 4He was discussed by man
authors.27–33 However, the coexistence of SPBC and CP
results in a large number of contradictions between
theory and the experiment, as also within the theory itse

First, the formation of CPC must apparently lead,
analogy with theBardeen–Cooper–Schrieffer (BCS) theory
of superconductivity,9 to the emergence of a finitegap D0

Þ0 for p50 in the one-particle branch of the elementa
excitation spectrum.27–33 This must result in heat capacit
anomalies32 which, however, were not observed experime
tally in He–II.

Second, the existence of SPBC must lead to a str
hybridization of one-particle and collective spectr
branches, i.e., to a coincidence of the poles of one- and tw
particle Green’s functions of bosons, as well as all Gree
functions involving a larger number of particles8 ~we con-
sider here excitations with zero helicity!. However, since the
collective~hydrodynamic! branch has an acoustic dispersi
relation E(p)'pc in the limit p→0 ~c is the velocity of
sound in liquid 4He!, the existence of a gapD0Þ0 in a
one-particle spectrum is ruled out forp50.

Third, it was shown by us earlier18 that the coexistence
of a highly depleted SPBC and a strong CPC results in
instability of the one-particle acoustic spectrum if the pha
of the ‘‘pair’’ order parameterC~p! coincides with the phase
of the SPBC ‘‘wave function.’’ If, however, the phase o
C~p! is shifted byp relative to the SPBC phase, the grou
state of the system is unstable to spontaneous creatio
boson pairs with a negative energy.

According to our earlier work,18 a stable Bose liquid
state does not contain any SPBC (n050), and the superflu-
idity is determined by the strong CPC under the condit
that interaction between particles ensures the existence
nontrivial ~nonzero! solution of the homogeneous integr
equation for the complex pair order parameterC(p)
5uC(p)uexpiu with an arbitrary ~degenerate! macroscopic
phaseu. The superfluid component is a pair CEC which co
tains the CPC of bound~‘‘Cooper’’ ! boson pairs and
‘‘higher-order’’ many-particle condensates with an ev
number of unbound particles, since the coexistence of s
eral bound condensates in a one-component Bose liqu
forbidden due to the same gauge invariance of the in
Hamiltonian.

It should be noted that several peculiarities of the sup
fluid Bose liquid without SPBC were studied earlier b
er
-
s.
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Kondratenko15 who showed that the emergence of a gapD0

for p50 in the one-particle branch of the spectrum«~p! is
due to the violation of theHugenholtz–Pines theorem,26

while the Goldstone branchwith an acoustic dispersion re
lation for p→0 (hydrodynamic sound)is the pole of a two-
particle Green’s function. However, the author of Ref. 15 d
not take into account the dynamic factor responsible for
vanishing of SPBC, which involves18 a quite strongattrac-
tion over a wide range of momentapÞ0, that is nearly ca-
pable of forming a bound state of two bosons and leads
the emergence of a CPC.

Hybridization of excitations is restricted in a Bose liqu
with CPC but without SPBC18,34: hybridization occurs only
between those branches of the spectrum which correspon
excitations differing by two particles, i.e., the one-partic
branch hybridizes with all excitations having an odd numb
of particles, while the two-particle branch hybridizes with a
collective excitations with an even number of particles. Co
sequently, the one-particle spectrum«~p! is omitted from the
dynamic form factor:

S~p,«!52
1

p
Im x~p,«!, ~3!

wherex~p,«! is the susceptibility of the Bose system, carr
ing information about the collective~including two-particle!
excitations. Hence, in contrast to the two-particle spectru
the spectrum«~p! cannot be measured in experiments
slow neutron scattering.

It follows from here that the model of a superfluid Bo
liquid 4He with a ‘‘pair’’ base of the superfluid component i
the form of CPC and higher-order even condensates~with no
SPBC and higher-order odd condensates! considered in Ref.
18 can be helpful in resolving the paradoxes formulated
the Introduction owing to the restriction on the hybridizatio
of excitations with different parities and the separation
roles of one-particle and collective branches in the quasip
ticle spectrum. In other words, it can be assumed that
E(p) spectrum observed in neutron scattering experimen2

which is a collective spectrum and is determined by the
namic form factor~3!, has nothing to do with the supefluidit
criterion. However, the one-particle spectrum«~p!, which
does not make any contribution to the dynamic form fac
and is therefore not observed in neutron experiments, is
termined forpÞ0 by the momentum dependence of the
teractionV(p) and can have a minimum at the point corr

sponding to the peak of the modulusuC̃(p)u of the ‘‘pair’’
order parameter. As the critical temperatureTc5Tl of phase
transition from the superfluid to normal state~l-point! is

approached, the order parameterC̃(p) determining the mini-
mum of the ratio«(p)/p, and hence the critical velocityvc ,
become equal to zero in accord with the experimen
results10 and Landau’s superfluidity criterion.1 This resolves
Paradox 1.

Assuming that the ‘‘gap’’D1 at the minimum of«~p!
and atT→0 is much smaller than the ‘‘rotonic’’ gapD r in
the collective spectrumE(p) of elementary excitations~ob-
served from neutron scattering experiments!, the reason be-
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hind the small value of the critical velocityvc in superfluid
4He becomes obvious and,Paradox 2 is resolved.

The absence of SPBC in a Bose liquid with a stro
CPC ~see Ref. 18! also resolvesParadox 3 automatically.

As regardsParadox 4, it is connected with the~coinci-
dental! assumption that both Bogoliubov spectrum~2! and
the form factor ~3! are defined by the nonmonoton
momentum-dependent pair interactionV(p) between par-
ticles ~see below!.

Note that the absence of hybridization between o
particle and collective branches of the spectrum in a B
liquid with CPC but without SPBC solves the problem of t
coexistence of a gapD0Þ0 for p50 in the former branch
for an acoustic type of latter branch. However, it was m
tioned recently by us35 that theexistence of a gapD0 in the
one-particle spectrum«~p! of a Bose liquid with a ‘‘pair’’
CEC is not at all a must. Hence forD050 the one-particle
spectrum is of the acoustic type«(p)'pu ~for p→0! with a
phase velocityu5AC(0)/m* which tends to zero asT
→Tl when C(0)→0. The «~p! spectrum then become
parabolic and does not satisfy Landau’s supefluidity criter
in the normal phase~for T.Tl!.

The acoustic nature of the one-particle gapless spect
in the long-wave limit~D050 for p50! in the superfluid
state (T,Tl) is in accord with the Hugenholtz–Pine
theorem26 as well as with the Reatto–Chester pow
asymptotic form36,37 for the pair correlation function

^ĉ(r )ĉ(r )&;ur2r 8u22 for ur2r 8u→`, and does not lead to
additional singularities in the heat capacity~cf. Ref. 32!.

On the other hand, the important role of pair correlatio
between4He atoms in the superfluid Bose liquid He–II
indicated by the successful application of the Justro
Feenberg approximation38–46 for describing the ground an
excited states of liquid4He as well as quantum liquid mix
tures3He–4He.47

It was reported earlier by us35 that the experimentally
observed48–51 anomalously large effective massm3* of 3He
impurity atoms in4He, which is close to the total mass o
3He and4He atoms:m3* *(m31m4), may serve as an em
pirical confirmation for the existence of bound pairs of h
lium atoms in He–II. This may point towards the formatio
of a bound state of3He–4He atomic pairs. However, sinc
the potentials of interaction between3He and4He atoms are
identical and the energy of zero-point vibrations in the bou
state for the3He–4He pair is higher than for the4He–4He
pair, the formation of pairs of4He atoms in He–II become
easier than the formation of3He–4He pairs, the more so
when boson–boson correlations facilitating attraction
taken into consideration.

All these questions are studied in detail in this review
the basis of theBogoliubov’s canonical transformation
method~Sec. 3! and theGreen’s functions method~Sec. 4!.

3. BOGOLIUBOV’S CANONICAL TRANSFORMATIONS
METHOD FOR NONIDEAL BOSE SYSTEMS

3.1. A weakly nonideal Bose gas with a strong SPBC

The first rigorous microscopic theory of superfluidi
was constructed more than 50 years ago by Bogoliubov6 for
-
e

-

n

m

r

s

–

-

d

e

a nearly ideal~or weakly nonideal! Bose gas. The main ad
vantage of this theory was that it did not use the stand
methods of the perturbation theory employing the series
pansion in the weak interaction constant. A correct choice
the ground state atT50, when an overwhelming number o
bosons are at the lowest quantum level with zero energy
zero momentum, i.e., in the SPBC state~in view of the Bose
gas being weakly nonideal!, helps in a radical simplification
of the initial Hamiltonian of the system with pair interactio
V(q) which is a function of the transferred momentumq
5p2p8:

H5(
p

p2

2m
bp

1bp1
1

2 (
p,p8,q

V~q!bp
1bp1q

1 bp8bp82q , ~4!

wherem is the particle mass, whilebp
1 and bp are the cre-

ation and annihilation operators for a boson with moment
p in the secondary quantization representation~for simplic-
ity, the boson spin is put equal to zero!. Indeed, assuming
that the numbern0 of particles in SPBC is macroscopicall
large and approaches the total numbern of particles per unit
volume, we can disregard the noncommutativeness of
Bose operatorsb0

1 and b0 except for terms of the order o
1/n0;1/n!1, which can be replaced byc-numbersAn0 ~the
accuracy of this approximation is much higher than that
any experiment!.

Consequently, isolating terms in the Hamiltonian~4!
with zero momentum and considering that the number
excitations with pÞ0 over the condensate is smalln8
5(pÞ0bp

1bp!n0 , we obtain, taking into account the mo
mentum conservation law, the following expression for
fixed number of particles (n5const) accurate to within sma
terms of the order ofn8/n0:

HB5
1

2
n2V~0!1 (

pÞ0
F p2

2m
1nV~p!Gbp

1bp1
n

2 (
pÞ0

V~p!

3@bp
1b2p

1 1bpb2p#. ~5!

This simplified quadratic Hamiltonian can be subjected
strict diagonalization with the help of Bogoliubov’s linea
canonical transformations6 to new creationbp

1 and annihila-
tion bp operators for noninteracting quasiparticles:

bp
15lpbp

11mpb2p ; bp5lpbp1mpb2p
1 . ~6!

For simplicity, the coefficientslp andmp are assumed to
be real and even inp and satisfy the normalization conditio
lp

22mp
251 so that the operatorsbp

1 andbp satisfy the same
commutation relations as the original operatorsbp

1 andbp .
Substituting~6! into ~5! and taking into account the idea

nature of a gas of quasiparticles as well as the normaliza
condition, we obtain an expression for the coefficientslp
andmp and finally arrive at the following expression for th
renormalized spectrum of quasiparticles@see also Eq.~2!#:

EB~p!5H p2

2m F p2

2m
12nV~p!G J 1/2

. ~7!

It follows hence that forp→0, the spectrum~7! is an
acoustic spectrum EB(p)'upuuB(0), where uB(0)
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5AnV(0)/m which is stable only when repulsion betwee
particles dominates at large distances whenV(0).0.

The basic methodical drawback in the original version
Bogoliubov’s theory6 is not the omission of quadratic term
;(n8/n0)2, but the assumption on the model of a Bose g
consisting of point particles with an interaction potent
V(r )5V0d(r ), where d~r ! is the three-dimensiona
d-function, so that the Fourier componentV(p)5V0

5const. In this case, formula~7! describes the superlinea
dispersion relation~see curve1 in Fig. 1! which satisfies
Landau’s superfluidity criterion,1 but is unstable to the de
composition of any elementary excitation into two other e
citations~the energy and momentum are conserved!.

3.1.1. High-density Charged Bose-gas.It was observed
soon after by Foldy52 that for aBose gas of charged particle
with Coulomb repulsionVc(r )5e2/r and a Fourier compo
nent Vc(p)54pe2/p2, the Bogoliubov spectrum~7! has a
finite energy gap forp50 ~curve2 in Fig. 1!:

EB~p!5A\2vpl
2 1~p2/2m!2, ~8!

wherevpl5A4pe2n/m is the plasma frequency of boson
and\5h/2p. In the first place, such a spectrum is stable
decay processes. In addition, it also satisfies Landau’s su
fluidity criterion1 owing to a finite value of the critical ve
locity:

vc[min@EB~p!/p#52A\vpl /m. ~9!

As a matter of fact, this circumstance later served as the b
for discussing the possibility of thebipolar superconductivity
mechanism23,53 in ionic ~polar! crystals with a strong
electron–phonon interaction following from the superfluid
of a charged Bose gas ofbipolarons.54

FIG. 1. Bogoliubov spectrum of quasiparticles in a weakly nonideal B
gas of point-like neutral~curve1! and charged particles~curve2!.
f

s
l

-
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Note that the condition

K (
pÞ0

bp
1bpL !n,

for a weakly nonideal gas, which must be satisfied for
application of Bogoliubov’s theory,6 is reduced to the in-
equalitynB

1/3aB* @1, whereaB* 5«0\2/4e2mB* is the Bohr ra-
dius with effective massmB* and charge 2e in a polar crystal
with permittivity «0@1. As in the case of a charged Ferm
gas,55 this condition corresponds to the high-density appro
mation, but it can be satisfied in ionic~ferroelectric! crystals
with an anomalously large value of«0*103 even for a rela-
tively low concentration of particlesnB*1021cm23 if mB*
&10m0 ~where m0 is the free electron mass!. The critical
temperatureTc of transition to superconducting~superfluid!
state, which coincides in the present case with the Bose c
densation temperature55

TB53.31
\2nB

2/3

kBmB*
, ~10!

wherekB is the Boltzmann constant, may attain quite hi
valuesTc5TB*200 K which exceed the highest values
Tc for cuprate-based metaloxidehigh-temperature
superconductors57 discovered by Bednorz and Mu¨ller.56 1!

However, there are no sound~theoretical or experimental!
reasons to believe that the bipolaron mechanism ofhigh-
temperature superconductivity~HTSC! is realized in these
compounds.

3.1.2. Neutral Bose-gas with finite-size particles.Unlike
Bogoliubov6 and Foldy,52 Brueckner and Sawada4,5 consid-
ered the model of a Bose gas consisting of finite-size neu
particles in the shape of rigid spheres of diametera, so that
the pair interaction potential corresponds to infinite repuls
at distancesr<a and is equal to zero forr .a. In this case,
the Fourier component of the effective interaction, taki
into account the quantum~wave! properties of particles and
their mutual diffraction, assumes the form5 (\51)

V~p!5V0

sinpa

pa
[V0 j 0~pa!, ~11!

wherej 0(x) is the zeroth-order spherical Bessel function a
V0 the positive constant of long-range repulsion~for p50!
ensuring the stability of the system to spontaneous comp
sion ~collapse!. However, it follows from~11! that, for quite
large transferred momenta~in particular, for p/a,p
,2p/a!, the sign of the interactionV(p) is reversed, which
corresponds to effective attraction of diffraction quantu
origin ~Fig. 2a!. Substitution of the potential~11! into the
Bogoliubov spectrum~7! leads to a nonmonotonic dispersio
relation with a minimum atp'3p/2a ~Fig. 2b!, which is
qualitatively in accord with the spectrum of elementary e
citations in liquid4He with a ‘‘rotonic’’ minimum, observed
in neutron scattering experiments.2

In the model of ‘‘semitransparent’’ spheres19 with a fi-
nite repulsionV1.0 in the regionr<a, taking into account
additionally the weak~Van der Waals! attractionV2,0 in a

e
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FIG. 2. Pseudopotential of the pair interaction between Bose particles in the model of ‘‘rigid spheres’’~a! and the Bogoliubov spectrum in the ‘‘rigid spheres
model foru5c and for different values of the dimensionless parameterb054nma2V0 /\2: 80 ~curve1!, 64 ~curve2!, and 53~curve3!. Dark circles show
the experimental spectrum of quasiparticles in4He ~b!.
-
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certain intervala,r ,b, the Fourier component of pair in
teraction potential can be represented in the following fo
~Fig. 3a!:

V~p!5V1 j 1~pa!/pa2uV2u j 1~pb!/pb, ~12!

whereV1@uV2u, and j 1(x)523(x cosx2sinx)/x3 is a first-
order spherical Bessel function. By choosing the parame
appropriately, we can use the potential~12! to attain a close
coincidence between the theoretical spectrum~7! and the
rs

experimentally observed spectrum~Fig. 3b! of quasiparticles
in 4He. However, it is obvious that such a coincidence
accidental to a large extent and does not correspond to
real situation since Bogoliubov’s theory6 is not applicable for
describing the properties of a Bose liquid with a strong
‘‘depleted’’ SPBC (n0!n). Moreover, it was mentioned in
Sec. 2 that the structure of the collective spectral bran
which was reconstructed from the dynamic neutron scat
ing form
bove

FIG. 3. Pseudopotential of the pair interaction between Bose particles in the model of ‘‘semitransparent spheres’’ with attraction in the regiona,r ,b for
parametersuV2u/V150.5,a/b50.1 andV05V12uV2u ~a! and the Bogoliubov spectrum in the ‘‘semitransparent spheres’’ model with attraction for the a
values of parameters foru5c andb05667. Dark circles show the experimental spectrum of quasiparticles in4He ~b!.
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factor, has no direct relation with the criterion of superflu
ity 4He. This calls for a more consistent analysis of nonid
Bose systems.

3.2. Nonideal Bose systems with a fixed number of
particles „Foldy–Brueckner method …

In the Bogoliubov approximation,6 all particles of a
weakly nonideal Bose gas, which are not in a SPBC w
densityn0'n, combine to form a condensate of free Bos
pairs. One can endeavor to improve this approximation
the Hamiltonian~4! retaining~at least partially! in the Hamil-
tonian ~4! higher-order terms in the small parametern8/n0 ,
which describes a condensate of bound Cooper pairs
bosons with opposite momenta, as was done in Refs. 27

We shall solve this problem by using the technique
veloped by us in Ref. 20, in which the Hamiltonian~5! con-
tains terms quadratic inbp

1 and bp as well as fourth-order
terms~second-order inn8/n0! which can be presented in th
mean-field approximation as combinations of nonzero n
mal ^bp

1bp& and anomalouŝbp
1b2p

1 & and ^bpb2p& means.
Consequently, Bogoliubov’s, renormalized quadratic Ham
tonian~5! with a conserved total number of particles assum
the form

H̃B5
1

2
n0

2V~0!1(
p

F p2

2m
1F~p!Gbp

1bp

1
1

2 (
p

@n0V~p!2C~p!#~bp
1b2p

1 1bpb2p!, ~13!

where

F~p!5n0V~p!1w~p!2w~0!1C~0!; ~14!

w~p!5(
p8

V~p2p8!^bp8
1 bp8&; ~15!

C~p!52(
p8

V~p2p8!^bp8b2p8&. ~16!

Applying the canonical transformation~6! to Eq. ~13! and
considering that new noninteracting quasiparticles h
anomalous meanŝbp

1b2p
1 &5^bpb2p&50, we can reduce

the Hamiltonian~13! to the form

H̃B5Ẽ01(
p

@«0~p!~lp
21mp

2!12lpmph~p!#bp
1bp

1(
p

F«0~p!lpmp1
1

2
~lp

21mp
2!h~p!G~bp

1b2p
1

1bpb2p!, ~17!

where

«0~p!5
p2

2m
1F~p!; h~p!5n0V~p!2C~p!; ~18!

Ẽ05
1

2
n0

2V~0!2(
p

@«0~p!mp
21lpmph~p!#. ~19!

The condition of vanishing of the interaction between qua
particles in~17! leads to the expression
-
l

h

n

of
3.
-

r-

-
s

e

i-

lp5
h~p!

Ah2~p!2@Ẽ~p!2«0~p!#2
;

mp5
Ẽ~p!2«0~p!

Ah2~p!2@Ẽ~p!2«0~p!#2
, ~20!

whereẼ(p) is the renormalized quasiparticle spectrum:

Ẽ~p!5A«0
2~p!2h2~p!. ~21!

In this case, Eq.~16! for the pair ‘‘order parameter’’C~p!
can be represented in the following form if we take Eqs.~20!
into consideration:

C~p!5(
p8

V~p2p8!
h~p8!@Ẽ~p8!2«0~p8!#

@Ẽ~p8!2«0~p8!#22h2~p8!

3@112^bp8
1 bp8&#, ~22!

where^bp
1bp&5@eẼ(p)/T21#21 is the Bose–Einstein distri

bution function for quasiparticles atTÞ0(kB51).
Taking Eqs.~18! into account, we can easily show th

the quasiparticle spectrum~21! has the following form for
p→0:

Ẽ~p!>Ap2ũ2~0!1D0
2, ~23!

where

ũ~0!5AF~0!/m; D052An0V~0!C~0!. ~24!

It follows hence, that for the simultaneous existence
SPBC and CPC~n0Þ0 and C(0)Þ0), the one-particle
spectrum of elementary excitations has a finite gapD0Þ0
for p50 ~cf. Refs. 27–33!. This is in contrast with the gen
erally accepted concepts about a strong hybridization of o
particle and collective~two-particle! branches and the acous
tic nature of the spectrum forp→0 in neutral Bose
systems.8,26

According to Eqs.~23! and~24!, the acoustic dispersion
relation is obeyed in this case forp→0 only if the macro-
scopically filled SPBC is completely absent, i.e., only f
n050 whenD050, h(p)5C(p), andF(0)[C(0), sothat
Ẽ(p)'pũ(0). In this case, the integral equation~22! is re-
duced to the form

C~p!52(
p8

V~p2p8!

3
C~p8!@Ẽ~p8!2«0~p8!#

@Ẽ~p8!2«0~p8!#22C2~p8!
coth

Ẽ~p8!

2T
, ~25!

while the phase velocityũ(0)5AC(0)/m is real only for
C(0).0, i.e., for a certain type of two-particle interactio
V(p2p8) which must have a quite extended attraction
gion ~see Figs. 2a and 3a!.

However, the above approximate approach to the
scription of the superconducting state of a nonideal B
system with a constant number of particlesn5const, which
is often called theFoldy–Brueckner method, is not strictly
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consistent from the theoretical point of view, and is ana
gous in a certain sense to the initial simplified versions of
BCS model9 or to the method of Bogoliubov’s canonica
uv-transformations58 in the theory of superconductivity. In
the next section, we shall describe a more consistent
proach~theHugenholtz–Pinesmethod! based on theGreen’s
functions method8 with a fixed value of the chemical poten
tial m5const of a Bose system.

4. APPLICATION OF THE GREEN’S FUNCTION METHOD
FOR DESCRIBING A SUPERFLUID BOSE LIQUID WITH A
STRONG BOSE PAIR CONDENSATE

4.1. Dyson–Belyaev equations and Hugenholtz–Pines
method for a Bose liquid with a ‘‘depleted’’ SPBC

In order to describe the properties of a superfluid Bo
liquid by using the method of Green’s function,8 Dyson–
Belyaev equations25 are commonly used for expressing th
one-particle normalG11 and anomalousG12 Green’s func-
tions in terms of the corresponding eigenenergy compon
S11 andS12:

G11~p!5@G0
21~2p!2S11~2p!#/Z~p!;

~26!
G12~p!5S12~p!/Z~p!,

where

Z~p!5@G0
21~2p!2S11~2p!#@G0

21~p!2S11~p!#

2uS12~p!u2; ~27!

G0
21~6p!5F6«2

p2

2m
1m2 idG ;

~28!
p5~p,«!; d→10;

m is the chemical potential of quasiparticles satisfying
Hugenholtz–Pines relation26

m5S11~0!2S12~0!. ~29!

Instead of conventional formulation of the perturbati
theory,8,25 we shall henceforth use the field theory14,16 renor-
malized in the range of small momenta, where the ini
variablesc are replaced by ‘‘adequate’’ variablesc̃5c̃L

1c̃sh which are combinations of the long-wave ‘‘hydrod
namic’’ variablesc̃L and short-wave ‘‘field’’ variablesc̃sh.
In this theory, the ‘‘infrared anomaly of anharmonism’’14,16

leading to a nonanalytic form of the eigenenergy compon
S ik(p) for p→0 and to the equalityS12(0)50 is elimi-
nated. In terms of the renormalized variables, we h

S̃12(0)Þ0, so that the same formulas as in the original fie
theory8 remain valid for the quasiparticle spectrum«~p!:

«~p→0!'cupu; c5@S̃12~0!/m* #1/2, ~30!

where

1

m*
5

2

B
F 1

2m
1

]S̃11~0!

]upu2 2
]S̃12~0!

]upu2 G , ~31!
-
e

p-

e

ts

e

l

nt

e

B5F12
]S̃11~0!

]«
G2

2S̃11~0!
]2S̃11~0!

]«2

1
1

2

]2

]«2 @S̃12~0!#2. ~32!

In the general case, the spectrum of elementary excitat
with zero helicity is defined by the poles ofGik(p), i.e., by
zeros of the functionZ(p):

«~p!5H F p2

2m
1S̃11

s ~p!2mG2

2uS̃12~p!u2J 1/2

1S̃11
a ~p!,

~33!

where

S̃11
s,a~p!5

1

2
@S̃11~p,«~p!!6S̃11~2p,2«~p!!#. ~34!

The main difficulty in the theory of Bose systems with a
intense SPBC is encountered in the computation of

eigenenergyS̃ ik(p) written in the form of an infinite se-
quence of Feynman diagrams with an increasing numbe
external condensate lines,25 which corresponds to a powe
expansion inn0

1/2.
However, it was proved for the first time in Ref. 18 th

the problem can be simplified considerably in the case o
Bose liquid with a strong interaction between particles, a
hence with a strongly suppressed SPBC, when the inequ

n0!n85K (
pÞ0

bp
1bpL 'n, ~35!

directly opposite to the condition of weak nonideality of
Bose gas in the Bogoliubov theory6 (n8!n0'n) holds. In
this case, we can confine~to a fairly high degree of accuracy!

our analysis of equations forS̃11 and S̃12 to only the first
term in the expansion inn0

1/2, which contains only two con-
densate lines, and neglect higher-order terms inn0

1/2.
The corresponding ‘‘truncated’’ system of equations f

S̃ ik(p) has the form18

S̃11~p!5n0L~p!Ṽ~p!1n8V~0!1w̃~p!; ~36!

S̃12~p!5n0L~p!Ṽ~p!1C̃~p!, ~37!

where

w̃~p!5 i E d4p8

~2p!4 G11~p8!Ṽ~p2p8!G~p,p8!; ~38!

C̃~p!5 i E d4p8

~2p!4 G12~p8!Ṽ~p2p8!G~p,p8!; ~39!

Ṽ~p!5V~p!@12V~p!P~p!#21;
~40!

L~p!5G~p,0!5G~0,p!;

P~p!5 i E d4p8

~2p!4 @G11~p8!G11~p82p!

1G12~p8!G12~p82p!#G~p,p8!. ~41!
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HereG(p,p8) is the vertex~tripolar! component of the inter-
action, which describes many-particle effects,P(p) the po-
larization operator for bosons,Ṽ(p) the renormalized
~‘‘screened’’! Fourier component of the pair interaction p

tential, and the functionC̃(p) plays the role of apair order
parameter of the superfluid componentin the boson system

Figure 4 shows equations forS̃11, S̃12, andṼ in the graphic
form.

If we disregard the poles of the vortexG(p,p8) and the
delay effects in the ‘‘screened’’ interactionṼ(p), i.e., ne-
glect the contribution of two-particle and collectiv
excitations,2! the integration with respect to frequencies
~38! and~39! can be reduced to the calculation of residues
the poles of one-particle Green’s functionsG11(p) and
G12(p). As a result, the integral equations~38! and ~39!
combined with~26!–~28!, ~36!, and ~37! assume the form
~see Ref. 18!

C̃~p!52E d3p8

~2p!3 G~p,p8!Ṽ~p2p8!

3
n0L~p8!Ṽ~p8!1C̃~p8!

2«~p8!
, ~42!

w̃~p!5
1

2 E d3p8

~2p!3 G~p,p8!Ṽ~p2p8!FA0~p8!

«~p8!
21G , ~43!

where

A0~p!5n0L~p!Ṽ~p!1n8V~0!1w̃~p!1
p2

2m
2m. ~44!

In this case, the total number of particles is defined by
relation

FIG. 4. Diagrammatic representation of the Dyson–Belyaev equations

S̃11 and S̃12 for a Bose liquid with a ‘‘depleted’’ SPBC in the lowest ap
proximation in the number of condensate lines~taking into accountn0-th
order terms! and Dyson’s equation for renormalized~‘‘screened’’! pair in-

teractionṼ between bosons.
t

e

n5n01 i E d4p

~2p!4 G11~p!5n01
1

2 E d3p

~2p!3 FA0~p!

«~p!
21G ,

~45!

and relation~29! together with~36! and~37! can be reduced
to the form

m5n8V~0!1w̃~0!2C̃~0!. ~46!

However, the coexistence of a weak SPBC and a str
CPC can lead to instability of the ground state of a Bo
system~see below!.

4.2. Instability of the state of a Bose system with a weak
SPBC and a strong CPC

Let us first consider the integral equation~42! for p
50:

C̃~0!52E d3p

~2p!3

n0@L~p!Ṽ~p!#21L~p!Ṽ~p!C̃~p!

2«~p!
.

~47!

It can easily be seen that the first term on the right-hand s
of ~47!, which is proportional ton0 and independent o

C̃(p), is negative for any sign ofL~p! and Ṽ(p). Conse-
quently, if we assume that the minus sign of this inhomo
neous term describing the contribution of SPBC determi

in the whole the sign~phase! of the parameterC̃(p),3! the
state of a Bose system with a weak~‘‘depleted’’! SPBC and
with a strong CPC can be unstable since, according to
~37!,

S̃12~0!5n0L~0!Ṽ~0!1C̃~0!,0,

i.e., c25
S̃12~0!

m*
,0, ~48!

for C̃(0),0 and for a small value ofn0 in spite of the
condition L(0)Ṽ(0).0 required for ensuring macroscop
stability of the system to spontaneous compression~col-
lapse!. In other words, as it was proved for the first time

Ref. 18, the coincidence of the phaseC̃(p) with the phase
induced by zero SPBC leads to aninstability of the phonon

spectrum of the Bose systemfor n0,uC̃(0)u/L(0)Ṽ(0).
It should be noted that, if we neglect the term;n0 , Eq.

~42! assumes a form similar to the equation for the Four
component of the wave function of a pair of particles
vacuum, i.e.,

C0~p!5E d3p8

~2p!3 V~p2p8!
C0~p8!

v022«~p!1 id
~49!

with the zero binding energyv0[V2P2/4m50 whereV
and P are the total energy and momentum. This analo
shows that a strong CPC is formed only when theeffective

potentialG(p,p8)Ṽ(p2p8) corresponds to theattraction in
a considerable part of the momentum spaceessential to the
integral with respect top8 in ~42!. Such an attraction (GṼ
,0) must be almost sufficient for maintaining thebound

or
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state of a pair of quasiparticleswith the kinetic energy

2«~p!, i.e., for the existence of a nontrivial solution (C̃
Þ0) of Eq. ~42! for n0→0.

It should be noted in this connection that the static
fective potentialṼ(p) can differ considerably from the initia
potentialV(p) describing the interaction between particle
In particular, since the static polarization operatorP~p,0! is
negative for anyp, the repulsion is suppressedin the
‘‘screened’’ potential Ṽ(p)5V(p)@12V(p)P(p,0)#21 in
the range of momenta whereV(p).0 ~for example, forp
,p/a in the ‘‘rigid spheres’’ model!, while attraction is
enhancedin the region whereV(p),0 ~for potential ~11!,
this region corresponds top/a,p,2p/a!. This circum-
stance was taken into account in Ref. 35 in whichP~p,0!
was replaced for simplicity by its long-wave limitP0

52m/pa for p→0. The inclusion of the momentum depe
dence in the random-phase approximation~RPA! leads to the
following expression:

P~p,0!52
m

2p F12
ab~p!

2p
arctg

2p

ab~p!G ;
~50!

b~p!5Ap2/422mm.

The corresponding effective potentialṼ(p) for m50 is
shown in Fig. 5 for different values of the dimensionle
parametera5mV(0)/pa. It can be seen that the integr
contribution from the region of enhanced attraction for qu
large values ofa can exceed the contribution from su
pressed repulsion in Eq.~42! or ~47! for n050 even in the

FIG. 5. Dependence of the static ‘‘screened’’ potentialṼ on p for the ‘‘rigid
spheres’’ model in the random-phase approximation for the polariza
operator P(p,0) for different values of the dimensionless parametera
5mV(0)/(pa): 0 ~curve1!, 1 ~curve2!, 3 ~curve3!, and 7~curve4!.
-

.

‘‘rigid spheres’’ model with an infinitely strong repulsion fo
r<a. The inclusion of theVan der Waals forces of attrac
tion in more realistic models of interaction between4He at-
oms ~like the Lennard–Jones potential! must lead to even
stronger enhancement of effective attraction, which is su
cient for the formation of a strong CPC in He–II or, pro
ably, bound pairs of4He atoms~see below!.

According to~47!, the formation of a CPC is hampere
by the negative inhomogeneous term proportional ton0 and
associated with the SPBC, which, in addition, leads to ins
bility of the phonon spectrum if the CPC phase coincid
with the SPBC phase~see above!. At the same time, the
nonlinear inhomogeneous integral equation~42! has in prin-

ciple a solution forC̃(p).0 also in the case when the pha
of a strong CPC differs from the SPBC phase byp. Then the

phonon spectrum seems to be stable sinceS̃12(0).0 and
c2.0. In this case, however, the stability of the state o
Bose system with a CPC in antiphase with the SPBC for
one-particle branch (c2.0) is violated in the channel o
two-particle excitations. Indeed, it was proved in Ref. 18 th
the signs of the first and second terms in~42! are opposite

(C̃(p).0,Ṽ(p),0) in the integration domain (p/a,p
,2p/a) in which a CPC can be formed. For this reason, E
~42! can formally be written in the form similar to~49!:

C̃~p!5E d3p8

~2p!3 G~p,p8!Ṽ~p2p8!
C̃~p8!

ṽ0~p8!22«~p8!
,

~51!

but with anegative binding energyṽ0,0. This corresponds
to an unstable state with spontaneous generation of pa
associated with the ‘‘rotation’’ of the CPC phase throughp
till it coincides with the SPBC phase, i.e., the sign reversa

C̃(p), which is advantageous from the energy point of vie
Indeed, it can easily be seen that the negative ‘‘pairing
ergy’’

DE5
i

2 E d4p

~2p!4 S̃12~p!G21~p!

52
1

2 E d3p

~2p!3

@n0L~p!Ṽ~p!1C̃~p!#2

2«~p!
, ~52!

appearing in the interaction Hamiltonian averaged over
ground state, i.e.,

^H int&5
i

2 E d4p

~2p!4 @S̃11~p!G11~p!1S̃12~p!G21~p!#

1
mn0

2
, ~53!

has the maximum absolute value when the signs ofC̃(p)
andL(p)Ṽ(p) coincide in the momentum range that is mo
important for~42! and ~52! and in whichL(p)Ṽ(p),0. In
other words, theground state energy E0 has the minimum
value when the phases of CPC and SPBC coincide. How-
ever, the phonon spectrum instability (c2,0) appears again

for C̃(p),0 in the case of small values ofn0!n.

n
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Thus, the instability appearing in the Bose system w
an intense CPC and a weak SPBC is preserved for any

of C̃(p): it appears in the one-particle spectrum forC̃(p)
,0 when the CPC and SPBC phases coincide and in

two-particle spectrum forC̃(p).0. A possibleway to elimi-
nate the instability of the ground state is the complete s
pression of SPBC with preserved CPC~naturally, if a non-
trivial ~nonzero! solution of Eq.~42! exists forn050!.

The assumption concerning the absence of a ma
scopically filled SPBC in superfluid4He does not contradic
the experimental results12 and allows us to explain the com
plete vanishing of the normal component in He–II atT→0,13

i.e., the equality of the density of the superfluid compon
to the total density of4He, in spite of the strong ‘‘depletion’’
of the SPBC due to the interaction between particles in
Bose liquid. In this case, thesuperfluid componentrs is de-
terminednot by strong CPC as in a weakly nonideal Bo
gas,6 but by the ‘‘Cooper’’ CPC and higher many-particle
condensates containing even numbers of free particles.18

4.3. One-particle spectrum of a Bose system with CPC and
without SPBC and the superfluidity criterion

In the absence of SPBC (n050), all field diagrams with

condensate lines disappear in the expansions ofS̃ ik(p) in
n0

1/2,25 and Eqs.~36! and~37! for n85n are transformed into
the identities18

S̃11~p![nV~0!1w̃~p!; S̃12~p![C̃~p!. ~54!

In this case, Eqs.~42!–~45! at T50 assume the form

C̃~p!52E d3p8

~2p!3 G~p,p8!Ṽ~p2p8!
C̃~p8!

2«~p8!
; ~55!

w̃~p!5
1

2 E d3p8

~2p!3 G~p,p8!Ṽ~p2p8!FA~p8!

«~p8!
21G ; ~56!

«~p!5AA2~p!2uC̃~p!u2, ~57!

where

A~p!5
p2

2m
2m1nV~0!1w̃~p!;

~58!

n5
1

2 E d3p

~2p!3 FA~p!

«~p!
21G .

It can be seen that Eq.~55! for the ‘‘pair’’ order param-

eterC̃(p) for n050 becomes homogeneous. This means t
the CPC phase is independent and arbitraryand character-
izes thedegeneracy of the ground state of the Bose liquid~in
analogy with the degeneracy of the ground state
superconductors9!.

Accordingly, the two-particle spectral branch E(p)
which is determined by the poles of the two-particle Gree
function and contains in the structure of the dynamic fo
factorS(p,«) is theGoldstone modecorresponding tohydro-
dynamic sound.15 At the same time, the one-particle bran
«~p! may in principle have a finite gapD0Þ0 for p50 since
we cannot rightfully assume that relation~29! based on the
h
gn

e

-

o-

t

e

at

f

s

expansion ofS̃ ik(p) into a power series inn0
1/2 for a fixed

phase of the parametersS̃11(p) andS̃12(p) still holds in our

case~for an arbitrary phaseC̃! ~see Ref. 18!.
Moreover, according to Refs. 18 and 29, a decrease

the gapD0 upon an increase in the number densityn of
particles~or external pressureP! in a Bose system with a
‘‘gap-type’’ one-particle spectrum«~p! leads to the loss of
stability of the system for a certain finite value ofD0Þ0. In
other words, the vanishing and emergence of SPBC is
companied by a jump inn0 andD0 . This means that atran-
sition from a state with SPBC(n0Þ0) and with an acoustic
spectrumE(p)'pc of elementary excitations forp→0 to a
state with CPC but without SPBC(n050) and with a recon-
structed gap-type one-particle spectrum (D0Þ0) upon a
change inn or P is a first-order phase transition.

Finally, we must take into account the fact that the g
spectrum«(p)5AD0

21p2ũ2 for small values ofp lies above
the collective acoustic spectrumE(p)'pc so that we cannot
disregard the contribution from the polesG(p,p8) and Ṽ(p
2p8) while calculating the integrals with respect to freque
cies in~38! and~39!, and Eqs.~42! and~43! are insufficient
for describing the superfluid state of the Bose liquid.

In this connection, let us consider an alternative pos
bility of the existence of anacoustic one-particle spectrum
«(p);p for p→0 in a superfluid Bose liquid with CPC bu
without SPBC, which was discussed in Refs. 20 and
Such a possibility is realized under the assumption that
Hugenholtz–Pines theorem26 is valid as before@see Eqs.~29!
and ~46! for n8[n]. For arbitrary values ofp, the one-
particle spectrum~57! taking ~58! into account assumes th
form

«~p!5H F p2

2m
1w̃~p!2w̃~0!1C̃~0!G2

2UC̃~p!U2J 1/2

.

~59!

For p→0, this equation leads to

«~p→0!'upuũ; ũ25C̃~0!/m* , ~60!

where

1

m*
5H 1

m
12F ]w̃~p!

]upu2 2
]C̃~p!

]upu2 G
p50

J . ~61!

It should be emphasized that the velocityũ is not equal to the

velocity c of hydrodynamic sound, andũ2.0 for C̃(0)
.0. For large values of momentum, Eq.~59! becomes qua-
dratic in p, and hence must have a minimum~or point of
inflection! in the region of intermediate values ofpÞ0 in
order to ensure the stability to quasiparticle decays. Indee
follows from the integral equation~55! with the difference

kernelṼ(p2p8) that themodulus ofC̃(p) may have a maxi-
mum at the point of a negative minimum of the renormaliz

(‘‘screened’’) pair interaction potential V˜ (p) ~see Fig. 5! if
the main contribution to the integral with respect top8 comes
from the region of small values ofup8u!pmin . This means
that, according to~59!, the one-particle spectrum«~p! may
have a local minimumnear the pointp5pmin ~Fig. 6!. Con-
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sequently, there exists a nonzero value ofvc5min@«(p)/p#
Þ0 for p'pmin , i.e., spectrum~59! satisfies the Landau su
perfluidity criterion.1

On the other hand, the one-particle spectrum~59! for

C̃(p)→0 degenerates into a quadratic dependence«(p)
;p2 for small p and does not satisfy the superfluidity crit
rion any longer since in this case min@«(p)/p#50 for p50.
For this reason, the superfluid Bose liquid with vanishi
CPC in the absence of SPBC (n050) must be transformed
to the normal state in spite of the fact that the ‘‘rotonic
minimum is preserved in the collective spectrumE(p) ~i.e.,
E(p) formally satisfies the superfluidity criterion!. It will be
proved below that CPC can vanish upon heating.

4.4. Phase transitions in a Bose liquid with strong CPC

At finite temperatures (TÞ0), the system of equation
~42!–~45! taking into account~46! for a Bose liquid with a
‘‘depleted’’ SPBC and a strong CPC has the form18

C̃T~p!52E d3p8

~2p!3 G~p,p8!Ṽ~p2p8!

3
n0L~p8!Ṽ~p8!1C̃T~p8!

2«T~p8!
coth

«T~p8!

2T
; ~62!

w̃T~p!5
1

2 E d3p8

~2p!3 G~p,p8!Ṽ~p,p8!

3FAT~p8!

«T~p8!
coth

«T~p8!

2T
21G ; ~63!

FIG. 6. Predicted form of the gapless one-particle spectrum«~p! for bosons
in the superfluid Bose liquid with CPC but without SPBC at different te
peratures. The dashed curve shows the experimental spectrum of elem
excitationsE(p) in 4He for the ratioD r /D1530, which corresponds to the
maximum critical velocityvcm52 m/s atT50.
n5n0~T!1
1

2 E d3p

~2p!3 FAT~p!

«T~p!
coth

«T~p!

2T
21G , ~64!

where

AT~p!5n0L~p!Ṽ~p!1
p2

2m
1w̃T~p!2w̃T~0!1C̃T~0!,

~65!

«T(p) is defined by expression~33!, and w̃ and C̃ in Eqs.

~36! and ~37! are replaced byw̃T andC̃T .
We first assume that the SPBC density atT50 is small

(n0!n), but n0.uC̃(0)u/L(0)Ṽ(0) so thatS̃12(0).0 and
c2.0 ~see ~48!!. However, as the temperature increas
thermal ‘‘depletion’’ of SPBC must take place, i.e., the val
of n0(T) decreases upon heating and becomes smaller

uC̃T(0)u/L(0)Ṽ(0) above a certain valueT0 . In this case,
the one-particle phonon spectrum becomes unstable~since

S̃12(0),0 and c2,0!, and the Bose system is abrupt
transformed into a state with a CPC but without SPBC (n0

50), i.e., afirst-order transition in temperature occurs a
the point T5T0 .4! If, however, the inequality n0

,uC̃(0)u/L(0)Ṽ(0) holds even atT50 due to strong inter-
action between particles, such a transition does not t
place~since the SPBC is initially suppressed!, and the super-
fluid component of the Bose liquid is determined initially b
a ‘‘Cooper-type’’ CPC and higher even condensates t
form a pair CEC in aggregate.18 In this case, Eqs.~62! and
~64! for any T>0 have the form (n050)

C̃T~p!52E d3p8

~2p!3 G~p,p8!Ṽ~p2p8!

3
C̃T~p8!

2«T~p8!
coth

«T~p8!

2T
; ~66!

n5
1

2 E d3p

~2p!3 FAT~p!

«T~p!
coth

«T~p!

2T
21G , ~67!

where«T(p) is defined by formula~59! in which w̃(p) and

C̃(p) are replaced byw̃T(p) and C̃T(p) so that «T(p)

'pAC̃T(0)/m* for p→0.
It was noted above that a nontrivial~nonzero! solution of

the homogeneous integral equation~55! at T50, and hence

of Eq. ~66! at T.0 for the pair order parameterC̃T(p), is
possible only if the main contribution to the integral wi
respect top8 comes from the region of a strong effectiv
attraction between particles (GṼ,0). With increasingT,
such an attraction must be enhanced due to an increase i
thermal factor coth«T(p8)/2T in the integrand of~66!, i.e.,

the parameterC̃T(p) should apparently increase withT.
On the other hand, for a boson concentrationn which

remains unchanged or decreases upon an increase inT, the
first term in ~67! may remain constant or decrease upon
increase in the ‘‘thermal component ’’;coth«T(p)/2T only

if the coefficientAT(p) decreases accordingly, i.e., ifC̃T(0)
in ~65! decreases quite rapidly upon an increase inT. Ac-
cording to Eq.~66!, for p50 we have

tary
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C̃T~0!52E
0

` p2dp

2p2 L~p!Ṽ~p!
C̃T~p!

2«T~p!
coth

«T~p!

2T
,

~68!

and the value ofC̃T(0) must indeed decrease with heating
a result of the competition between opposite contributio
from two regions in the momentum space, i.e., the region
smallp,p/a, in which repulsion prevailsṼ(p).0, and the
regionp/a,p,2p/a of intermediate values of momentum
in which effective attraction between bosonsṼ(p),0 is ob-
served~see Fig. 5!. If the contribution from the second inte
gration domain~corresponding to attraction! prevails atT

50, we haveC̃T(0).0. But as the value ofT becomes
higher, the contribution from the first region~repulsion! in-
creases due to the increase in the width and height of
peak of the ‘‘thermal’’ function (1/«T(p))coth«T(p)/2T

;T/p2 for p→0 so that the value ofC̃T(0) decreases an
tends to zero at a certain ‘‘critical’’ temperatureTc* at which
the negative and positive integral contributions to the rig
hand side of~68! have equal absolute values.

However, for C̃T(0)→0 the one-particle spectrum
«T(p) degenerates into a parabolic spectrum for smallp ~see
above!:

«T~p!'
p2

2m0*
;

1

m0*
5

1

m
1

]w̃T~p!

]upu2 U
p50

. ~69!

As a result, the ‘‘thermal’’ function @1/«T(p)#
3coth(«T(p)/2T);T/p4 for p→0, which leads to the diver
gence of the integral on the right-hand side of~68! at the
lower limit ~for p50! and to an infinitely large negativ
contribution due to repulsionL(0)Ṽ(0).0. It follows hence
that a nontrivial solution of Eq.~66! at TÞ0 can exist only

when C̃T(0).0 and«T(p);p for p→0 due to prevailing
attraction. This means that atransition from the superfluid

state in whichC̃T(p)Þ0 and vc5min@«T(p)/p#Þ0 to the

normal state in whichC̃T(p)50 andvc50 is accompanied

by a jump in the value ofC̃T(0) from a certain finite~mini-
mum! value to zero, and hence is afirst-order phase
transition.5! The temperatureTc,Tc* corresponding to this
transition can be put in correspondence with the tempera
at which the minimum of the ratio«T(p)/p, and hence the
critical velocity vc of superfluidity, vanish~see Fig. 6!, i.e.,
Tc corresponds to thel-point in 4He.

The situation with disappearing superfluidity in a Bo
liquid aboveTc5Tl is similar to the mechanism of supe
conductivity vanishing in an electron Fermi liquid of metals9

in which the superconducting order parameterCS , the en-
ergy gapD in the quasiparticle spectrum at the Fermi lev
and the critical velocityvc5D/pF determining the maximum
critical depairing current vanish simultaneously atT5Tc .
However, a transition from thesuperconducting to the nor
mal state in superconductorsin zero magnetic field is known
to be asecond-order phase transition.9,11 Such a transition is
accompanied by a finite jump in the heat capacityCv(T) and
can be described to a high degree of accuracy by theLandau
theory of phase transitionsin the self-consistent field ap
s
s
f

e

-

re

,

proximation ~Ginzburg–Landau equation!. This is due to a
strong~on the atomic scale! correlation length~or coherence
length j0! in traditional superconductors, and according
due to an anomalously small value of the dimensionless G
zburg number Gi&10212,59 which characterizes the rela
tively large width of the fluctuation region nearTc ~in high-
Tc superconductors with an anomalously small value ofj0 ,
the number Gi&1023– 1022!.60

On the contrary, inliquid 4He the number Gi;1 so that
critical fluctuationswith frequenciesvq;q3/2 play a deci-
sive role59 in this case near the temperatureTl of transition
from the superfluid~He–II! to the normal~He–I! state, and
theLandau theory of the self-consistent field is inapplicab.
This explains, among other things, thelogarithmic diver-
gence of the heat capacity Cv(T) of liquid helium at the
l-point,7,61 but the transition at T5Tl remains a second-
order phase transition.

Generally speaking, this is in contradiction with the co
clusion @which follows from Eq. ~66!# about afirst-order
phase transitionat T5Tc with a finite jump in the ‘‘pair’’

order parameterC̃T(0), butwith a smooth vanishing of the
critical velocity vc(T)5min @«T(p)/p# for T→Tc ~according
to the results of measurements ofvc for He–II in ultrathin
channels near thel-point!.10 It should be borne in mind,

however, that the integral equation~66! for C̃T(p) essen-
tially corresponds to the mean~self-consistent! field approxi-
mation and hence cannot be applied in the vicinity of t
critical temperature in view of fluctuation effects for Gi;1.

In this case, theorder parameterC̃T(0) is suppressed by
large-scale critical fluctuationsbelowTc ~and, conversely, is
initiated aboveTc! in a fairly wide temperature rangeDT
5uTc2Tu&Tc .

For this reason, the acoustic part of the one-parti

spectrum«T(p)'pũT with ũT5AC̃T(0)/m* nearTc must

be strongly blurred due to fluctuations inC̃T(0), i.e., long-
wave excitations must attenuate rapidlywith time, and hence
cannot make a noticeable contribution to the kinetic and th
modynamic properties of liquid4He. In the region of large
momentap, the role of fluctuations is not so important, an
the conclusion following from~66! and concerning the exis
tence of the minimum value of«T(p)/p that can vanish at
T5Tc ~i.e., at thel-point! remains in force~see Fig. 6!.

Moreover, it was noted above~see footnote 5! that a
phase transition from the superconducting to the normal s
in finite-size systems~thin channels, films, or capillaries!
may remain a second-order phase transition even in the
consistent field approximation since the divergence of
integral in ~68! is absent at the lower limit for a quadrat
spectrum«(p);p2, and the pointTc* can be lower on the
temperature scale than the phase-transition pointTc5Tl in
the case of a strong attraction~in the range ofp.p/a!.

4.5. Structure of boson pairs in CPC

It was noted in Sec. 3 that over-the-condensate exc
tions in a weakly nonideal Bose gas with a strong SPBC
combined into free~unbound! boson pairs with antiparalle
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momenta. The wave function of such a gas in the first or
of the Bogoliubov–Zubarev perturbation theory62 has the
form

uFB&5expH 2
1

4V (
pÞ0

UB~p!n̂pn̂2pJ u0&, ~70!

where

UB~p!5
1

n F2m

p2 EB~p!21G ; n̂p5bp
1bp ; ~71!

V is the system volume, andEB(p) the Bogoliubov spectrum
~2!. For smallp for which EB(p)'puB(0), weobtain from
~71!

UB~p!'
2muB~0!

nupu
; uB~0!5AnV~0!/m, ~72!

so that the long-wave asymptotic form of the potentialUB(r )
for r→` has the form

UB~r !'
muB~0!

2pnr2 . ~73!

Let us prove that a similar asymptotic form is also typ
cal of strongly bound~‘‘local’’ ! boson pairs. The wave func
tion of the condensate ofN independent boson pairs wit
zero total momentum in the configuration space and in
representation of secondary quantization has respectively
form18

F5C(
~P!

)
j 51

2N21

f ~r j2r j 11!; uF&5
~Ô1!N

~N! !1/2 u0&, ~74!

whereC is the normalization factor, and the sumS (P) is the
sum over all transpositions of the arguments of the funct
f , while Ô1 is the pair creation operator:

Ô15E 8 dr dr 8
~v0V!1/2 f * ~r2r 8!ĉ1~r !ĉ1~r 8!

5
1

~v0V!1/2(
p

8 f ~p!bp
1b2p

1 . ~75!

The prime on the symbols of integral and sum indicates h
that the integration or summation domains are bounded
the half-space in order to avoid taking into account the sa
state twice, and the correlation volumev0 is defined by the
relations

E 8dr dr 8u f ~r2r 8!u25v0V;

E dr u f ~r !u25v0[
4

3
pr 0

3. ~76!

In analogy with the well-known relations for the Bose co
densate of ‘‘elementary’’ bosons, i.e.,

^ĉ~r !&5
1

V1/2(n
f n~r !^b̂n&; ^b̂n&5N1/2dn0 , ~77!

where b̂n is the annihilation operator andf n(r ) the wave
function of a particle in thenth quantum state, we ca
r

e
he

n

re
y
e

present, in accordance with~75! and ~76!, anomalous aver-
age values for the condensate ofN bound boson pairs in the
configuration and momentum spaces in the form18

^ĉ~r !ĉ~r 8!&5S n

v0
D 1/2

f ~r2r 8!; ^bpb2p&5S n

v0
D 1/2

f ~p!,

~78!

wheren[N/V. It should be emphasized that the possibil
of considering the pair operatorsÔ1 andÔ as boson opera
tors is, strictly speaking, substantiated only in the case w
the size of pairs is smaller than the average distance betw
them (r 0!n21/3), and the wave functions of pairs do no
overlap.

In the case ofoverlapping pairs, the wave function of
the condensate taking into account correlations between
ticles belonging to different pairs can be chosen in the fo
of the Justrow function38

FJ5)
i , j

f ~ ur i2r j u!5expH 2
1

2 (
i , j

U~ ur i2r j u!J , ~79!

whereU(r ) is the potential energy of pair interactions b
tween particles.

For a Bose system with SPBC, the wave functionf (r
2r 8) in ~79! correctly describes strong pair correlations
short distances and is determined by the form of the inte
tion U(r2r 8). At the same time,FJ at large distance corre
sponds to the asymptotic form following from the gene
postulates of quantum hydrodynamics,7 and hencef (r2r 8)
for ur2r 8u→` becomes universal and varies according to
power~quadratic! law.36,37Indeed, theground state in hydro-
dynamics is a vacuum of independent acoustic vibrati
~phonon harmonic oscillators! with frequencies v5pc,
whose wave function is given by

uFph&5expH 2
1

4N (
upu,Q

2mc

upu
npn2pJ u0&, ~80!

where

np5(
j 51

N

eipr j ; n~r !5(
j

d~r2r j8!5
1

V (
p

npe
ip•r.

~81!

Expression~80! can be written in the form of the Justrow
function ~79!:

Fph5expH 2
1

2 (
i , j

Uph~r i2r j !J
5expH 2

1

4V (
p

Uph~p!npn2pJ , ~82!

where

Uph~p!5
2mc

nupu
;

Uph~r !5
1

V (
p

Uph~p!eip•r5
mc

2pnr2 . ~83!

Thus, we obtain the Reatto–Chester quadratic asympt
form36 for the wave functionf (r ) of pairs for r→`:
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f ~r→`!' f ph~r !5expH 2
1

2
Uph~r !J

'12
Uph~r !

2
512

mc

4pnr2 . ~84!

It should be noted that the wave function~70! of a weakly
nonideal Bose gas also has the form of the Justrow func
~79!.

According to ~84!, the Fourier component of the wav
function of a pair is given by

f ph~p!'2
1

2
Uph~p!52

mc

nupu
, ~85!

in analogy with the case of unbound ‘‘Bogoliubov’s’’ pair
with an infinitely large radius@see Eq.~72!#.

On the other hand, taking into account relations~81!, we
obtain the following asymptotic form for the anomalo
mean:

^bpb2p&'2S n

v0
D 1/2 mc

nupu
. ~86!

In a Bose liquid with CPC but without SPBC, the on
particle spectrum«~p! with the gapD0Þ0 for p50 corre-
sponds to a Hamiltonian of the Bogoliubov type~see Sec. 3!,
from which we can obtain the following expression for t
anomalous mean in the ground state~see Ref. 18!:

^bpb2p&'2
C̃~p!

~D0
21p2ũ2!1/2. ~87!

Taking into account the universal nature of relation~78!, we
obtain the asymptotic form of the~correlation! wave function
for p→0:

f ~p!;^bpb2p&'2
2D0C̃~0!

ũ2~k0
21p2!

; k0
25

2D0
2

ũ2 . ~88!

This expression leads to the following relation for the spa
componentf (r ) for r→`18:

u f ~r !21u;
D0C̃~0!

2pũ2r
e2k0r . ~89!

In other words, the power asymptotic form of the pair cor
lation function~86! in the presence of a gap (D0Þ0) in the
one-particle spectrum is transformed to an exponential
pendence.

On the other hand, a comparison of~86! and~87! shows
that in the absence of a gap(D050) the conventional
Reatto–Chester power asymptotic form36,37 is recovered in a
Bose liquid having a CPC but no SPBC and the spectr
«(p)'pũ for p→0:

^bpb2p&'2C̃~0!/ũupu; u f ~r !21u;C̃~0!/4pũr2.
~90!

Thus, the emergence of bound pairs in CPC and
vanishing of SPBC do not necessarily lead to a change in
asymptotic form of the pair correlation function. The sup
fluid state having a CPC but no SPBC and characterized
n

l
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e-

m

e
e

-
y

an acoustic one-particle spectrum@«(p);p# has the regular
hydrodynamic asymptotic form of pair correlation
(;r 22), satisfies the Hugenholtz–Pines theorem,26 and has
a ‘‘pair’’ structure of the CEC which contains only ‘‘even’
condensates~bound boson pairs existing only in CPC!. In-
deed, the existence of an ‘‘odd’’~e.g., three-particle! conden-
sate^ĉĉĉ&Þ0 would have led to the emergence of a SPB
owing to the interaction with the CPC. Bosons in high
‘‘even’’ condensates do not form bound many-particle sta
since different types of bound coherent systems~phases! can-
not co-exist in a one-component Bose liquid~in contrast to
mixtures of different Bose- and Fermi liquids!.

4.6. Role of pair correlations in Bose liquid 4He in mixtures
of quantum liquids 3He–4He

4.6.1. Experimental evidence of the existence of bo
pairs of helium atoms in superfluid4He. The important role
of pair correlations between bosons~4

He atoms! in the super-
fluid state of a quantum Bose liquid is indirectly confirme
by the successful application of the Justrow approximatio38

for the wave function of the ground state in the description
properties of He–II.39,40 On the other hand, the theoretic
results obtained in Refs. 15 and 18 lead to the quite justi
assumption that the structure of the superfluid componen
liquid 4He below thel-point is determined by the pair CEC
containing a strong CPC with the bound states of boson p
as well as higher-order even condensates and absolutel
SPBC or higher-order odd condensates.

It was noted in Ref. 35 that the anomalously high val
of the effective massm3* of 3He impurity atoms in superfluid
4He can serve as a direct experimental evidence of the e
tence of bound pairs of helium atoms in He–II. This ‘‘hy
drodynamic’’ effective mass is close to the total mass of3He
and 4He atoms and is even slightly larger than the lat
quantity47–49:

m3* *~m31m4!5
7

3
m3.2.33m3 . ~91!

If we assume on the basis of this effect that bound state
3He and4He atoms are indeed formed in a dilute3He–4He
solution, we immediately arrive at a conclusion concern
the existence of bound pairs of4He atoms also. Indeed, th
initial potential V(r ) of interaction between3He and 4He
atoms is the same as for the interaction between pairs of4He
atoms,5 while the energy of zero-point vibrations in th
bound state in the former case is higher than in the latter c
in view of the smaller value of the reduced mass~4m3/7 for
a 3He–4He pair and 2m3/35m4/2 for a 4He–4He pair!. In
addition, exchange correlations between bosons facilitate
ditional attraction. Consequently, the existence of bou
pairs of 3He and4He atoms must indicate the existence
4He–4He bound pairs.

It should be noted that subsequent measurements50,51 of
the effective mass of bound pairs of3He atoms in4He proved
that the values ofm3* *2.33m3 are observed only for a larg
applied pressure (P*5 atm), while the value ofm3* under
zero pressure does not exceed 2.1m3 .51 It should be borne in
mind, however, that pairs of bosons (4He atoms! under nor-
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mal conditions in a CPC are rather ‘‘Cooper-type’’~strongly
overlapping! than ‘‘local’’ ~strongly bound! pairs.18 The con-
cept of a ‘‘bound pair’’ of 3He–4He or 4He–4He atoms
should not be treated literally; such a state should be
garded as the result of strong pair and many-particle co
lation.

4.6.2. Justrow–Feenberg method for describin
3He–4He mixtures.The important role of pair and many
particle correlations is confirmed by the results obtained
Refs. 42–46, where theJustrow–Feenberg variational
method38,41 was used for describing the physical propert
of mixtures of quantum Bose- and Fermi4He and3He liq-
uids. The essence of this method lies in an optimal choic
the trial wave function of the ground state of a system in
form of the following ‘‘ansatz’’41,63,64:

C0~$r i
~a!%!5F0~$r i

~3!% !expF1

2
U~$r i

~a!%!G , ~92!

whereF0 is the Slater determinant describing the fermi
subsystem of3He, andU is the potential of interaction be
tween 3He atoms (a53) and 4He atoms (a54), which
takes into account both pair and triple correlations and
chosen in the form

U~$r i
~a!%!5

1

2! (a,b
(
i , j

Na ,Nb

u~ab!~r i ,r j !

1
1

3! (
a,b,g

(
i , j ,k

Na ,Nb ,Ng

u~abg!~r i ,r j ,r k!. ~93!

Then the variational principle proposed by Campbell a
Feenberg42,43 is used, which involves the minimization o
ground-state energy

E05^C0uĤuC0&/^C0uC0&

in u(ab) andu(abg) for optimizing the interaction parameter
In a recent publication by Krotschecket al.,65 this

method was applied for analyzing the dynamics of solit
3He impurity atoms in liquid4He as well as the properties o
solutions of 3He in 4He, taking into account Fermi-liquid
effects in the system of3He atoms. The dependences of t
effective massm3* of 3He atoms on their concentration is th
solution and external pressureP obtained in Ref. 65 are in
good agreement with the experimental data.50,51 A consider-
able increase inm3* under pressure up tom3* .2.9m3 at P
.20 atm and 10% concentration of3He indicates not only
the possibility of formation of bound states of3He and4He
atoms, but also the existence of strong collective~many-
particle! effects in the interaction of3He atoms with4He
atoms and with one another. Bulaevskiiet al.65 calculated
the hydrodynamic mass of a solitary3He atom in4He and the
Fermi-liquid corrections tom3* in 3He–4He mixtures as well
as the attenuation~drag! in the motion of3He quasiparticles
in 4He, the magnetic susceptibility of the3He subsystem, and
the phase shift in the scattering matrix in3He–4He mixtures.
The calculation of the latter quantity made it possible
obtain the critical temperature of the phase transition of
3He Fermi liquid from the normal to the superfluid state f
the s-wave~singlet! and thep-wave~triplet! Cooper pairing
e-
e-

n

s

of
e

is

d

y

e

of 3He atoms in a3He–4He mixture at ultralow~millikelvin !
temperatures as a function on the density of4He ~i.e., the
applied pressure!.

4.6.3. Quantization of velocity circulation in a superflu
Bose liquid with CPC but without SPBC.Let us consider the
type of quantization of the superfluid velocityvs(r )5k/r in
Onsager–Feynman quantum vortices and the value of
circulation quantumk in a Bose liquid with CPC but withou
SPBC. It was noted above that the superfluid componen
this case is determined by a pair CEC comprising CPC w
bound~‘‘Cooper’’ ! pairs of bosons and high-order even co

densates with unbound quadruples^ĉĉĉĉ&, sextuples

^ĉĉĉĉĉĉ&, etc. of particles since different types of boun
subsystems~condensates! cannot exist simultaneously in
one-component Bose liquid.6! Indeed, theexchange of par-
ticles between diffrent condensates (vacuums) is forbid
by energy considerationssince they correspond to local en
ergy minima and are separated by potential barriers. For
reason, these condensates should correspond to diffe
phases like insystems with spontaneously broken symm
tries.

Sincebound boson pairsof a ‘‘Cooper-type’’ CPCare
‘‘fundamental’’ quasiparticles in a pair CEC, we can expect
that aneffective circulation quantumk* 5h/m* is half the
ordinary quantumk5h/m4 ~see Ref. 18! because the effec
tive mass of a pair ism* 52m4 . Experimental observation
of half-integral circulation quantah/2m4 in superfluid4He
could be a direct confirmation of the existence of bound pa
of 4He atoms.

Such a situation is similar to that with adoubled charge
2e of Cooper pairs in superconductors9 and ahalf-integral
magnetic flux quantumw05hc/2e in Abrikosov vortices11

~as compared to the integral flux quantumw5hc/e piercing
the Landau minimum quantum orbit of a normal electron
a strong magnetic field!.

Jumps of the total circulation of the superfluid and no
mal components in He–II by an integral number of qua
k45h/m4 were detected in most of experiments.66–68 How-
ever, the half-integral value of the velocity circulation qua
tum in superfluid4He cannot be ruled out completely as y
in view of not very rich statistics of observations and t
possibility of creation of pairs of vortices with the same d
rection of rotational velocity and with conserved total m
mentum of the system.

4.6.4. Problem of critical velocities in ultrathin films an
capillaries.Concluding the section, let us consider again t
magnitude of the critical velocity in a superfluid4He flow,
which is almost two orders of magnitude smaller than
‘‘rotonic’’ critical velocity vcr5D r /pr'60 m/s calculated in
accordance with the dispersion relation of the experiment
observed~from neutron scattering! spectrum of elementary
excitations in He–II.2

According to experimental data,69,70 the critical velocity
vc of the superfluid componentrs in wide channels is virtu-
ally independent of temperature and is connected with
channel widthd through the relationvc;d21/4 over a very
broad range 831027 cm,d,1 cm. The value ofvc in nar-
rower channels decreases rapidly to zero withd and becomes
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a function ofT starting fromd'331025 cm.71–73This tem-
perature dependencevc(T) is especially significant near th
l-point at which vc vanishes. It was emphasized b
Putterman10 that neither the value of the critical velocity, no
the mechanism of its variation in ultrathin films and capilla
ies has been explained unambiguously so far, while
anomalously small value ofvc in macroscopic He–II flows
is generally attributed to the creation of Onsager–Feynm
quantum vortices74 or closed vortex loops.75

Proceeding from an analogy with the dynamics of Ab
kosov vortices in type–II superconductors in magne
fields,11 let us analyze the empirical regularities in the beh
ior of the critical velocityvc in superfluid4He. For example,
we can attribute the increase invc upon a decrease in th
channel widthd to an increase in coupling~frictional! forces
between the normal cores of vortex filaments and the w
of the channel per unit vortex length, which are similar
‘‘pinning’’ forces exerted on Abrikosov vortices at interface
and surfaces of the crystals. When superfluidity is limited
the effects of creation and dissipative flow of quantum v
tices ~in analogy with the resistive state of superconduct
under the conditions of low-temperature dynamic depinn
of Abrikosov vortices!, the critical velocity should not de
pend onT.

On the other hand, the creation and flow of quant
vortices~and the more so, vortex loops! in ultrathin films and
capillaries whose thickness~diameter! is comparable to the
size of a normal vortex core are ruled out so that the crit
velocity of a superfluid Bose liquid with CPC but withou
SPBC must be determined by the maximum possible ‘‘
pairing’’ velocity vcm at which boson pairs are ruptured, an
CPC is destroyed. This situation is similar to that in th
superconducting threads~filaments! with a thickness smalle
than the London penetration depthlL of a magnetic field~or
the coherence lengthj0!, which cannot accommodate Abr
kosov vortices, and whose critical current densityj c5envc

attains its limiting value for which Cooper pairs are rupture
According to the results obtained in Refs. 71 and 72,

maximum critical velocity in ultrathin wetting He–II films
with a thickness of a few atomic layers increases upon c
ing, attaining the valuevc max'2 m/s atT'1.5 K. If we as-
sume that this velocity is equal to the critical depairing v
locity vcm , the radiusRc of the normal vortex core, which is
determined from the condition of equality of the superflu
velocity vs(r )5k* /r to the critical value vcm , is Rc

'40 Å for k* 5h/2m4 , which coincides with half the mini-
mum film thickness (dmin'80 Å), up to which the value of
vc increases with decreasingd.10 For d,dmin , quantum vor-
tices are fixed rigidly between the solid wall and the fi
surface and are actually two-dimensional~planar!.

The critical ‘‘depairing’’ velocityvcm'2 m/s should be
also attained in ultrathin capillaries of diameterd&2Rc

'80 Å, in which even a normal vortex core ‘‘cannot b
accommodated.’’

Since vcm!vcr , the superfluidity criterion for He–II
~see above! must be determined by peculiarities of the on
particle spectrum«~p! of quasiparticles which was not ob
served in neutron-diffraction experiments and which diffe
e
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considerably from the collective spectrumE(p) as well as
from the kinetic energyp2/2m4 of free 4He atoms~see Fig.
6!.

As regards the decrease ofvc with d starting from the
minimum thicknessd'80 Å and the vanishing ofvc in ul-
trathin films having a thickness smaller than five atom
layers,71,72 this effect can be associated with size quanti
tion of the transverse momentump' of quasiparticles for
which the de Broglie wavelengthlD5h/p' is comparable
with the film thicknessd. Sincevc is determined by quasi
particles in the vicinity of the minimum value of the rati
«T(p)/p, and the position of this minimum is displaced t
wards smaller momenta upon an increase inT due to a de-

crease inC̃T(0) andũT , the quantization conditionlD;d at
higher T must be observed for thicker films, which is i
qualitative agreement with the experimental data.71,72

In the ultraquantum limit (lD@d), the quasiparticle
spectrum becomes two-dimensional for a film and o
dimensional for a capillary. It is well known,76 however, that
the long-range order in 2D- and 1D-systems, which corre-
sponds to the superfluid~superconducting! state of Bose- and
Fermi liquids, is ruled out atTÞ0 in view of long-wave

density fluctuations, so thatC̃T(0)50 andvc50.

5. CONCLUSION

The analysis of experimental and theoretical publicatio
indicates that investigations of the unique phenomenon
superfluidity of liquid helium, which was discovered 6
years ago by Kapitza77 and observed independently by Alle
and Misener,78 are far from being completed. A number o
discrepancies between the theoretical and experimenta
sults include, for example, the 1.5–2 orders of magnitu
difference between the theoretical value of critical veloc
vcr'60 m/s calculated on the basis of the Landau super
idity criterion1 from the value of the gapD r near the rotonic
minimum in the elementary excitation spectrum reco
structed from the scattering of slow neutrons2,79,80on the one
hand and the experimentally measured values ofvc

69–73 on
the other hand as well as the discrepancy between the t
retical density of the Bose–Einstein condensate, which
identified with the densityrs of the superfluid component in
He–II, and the experimentally measured~from the scattering
of fast neutrons81! fraction of 4He atoms~1–3%! in the state
with zero momentum atT'1 K.

The former discrepancy can be partially removed if w
take into account the processes of creation of quantum
tices and vortex loops in a superfluid He–II flow,74,75 but
cannot be eliminated for the flow of the superfluid comp
nent in ultrathin films and capillaries10 in which the creation
and flow of vortices is impossible. An attempt to elimina
the second discrepancy by introducing an effect
condensate16,17 containing higher-order many-particle con
densates along with the one-particle condensate did not
to a significant improvement in the understanding of t
quantum microstructure of the superfluid component
He–II.

At the same time, the assumption put forth in Refs.
and 18 concerning the absence of a SPBC in superfluid4He
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does not contradict the experimental results12,81and makes it
possible to resolveParadox 3 ~see Introduction! and to for-
mulate a qualitatively new approach to the description of
superfluid state in a Bose liquid on the bases of the con
of ‘‘paired’’ effective condensate comprising a coherent co
densate of bound ‘‘Cooper’’ pairs of bosons~see, for ex-
ample, Ref. 84! and higher-order even condensates of f
particles. It was proved in Ref. 18 that a strong CPC
formed in the case of a strong effective attraction betw
bosons in a broad momentum rangepÞ0 and leads to the
suppression of a weak SPBC ‘‘depleted’’ due to the inter
tion between particles in the quantum Bose liquid. The
perfluid state with CPC but without SPBC is characteriz
by a number of singularities, including the absence of
bridization between the one-particle and two-particle~collec-
tive! branches in the elementary excitation spectrum. T
allows us to eliminate the discrepancy between the exp
mentally observed form of the quasiparticle spectrum in4He
and the Landau superfluidity criterion~Paradoxes 1 and 2
formulated in Introduction!.

However, the assumption concerning the existence o
energy gapD0Þ0 for p50 in the one-particle spectrum
«~p!15,18 ~see also Refs. 27–33! leads, in analogy with a gap
in the spectrum of superconductors,9,11 to new paradoxes: the
violation of the Hugenholtz–Pines theorem26 for chemical
potential, the replacement of the power~hydrodynamic!
asymptotic form of a pair correlation function36,37 by the
exponential asymptotic form, and to the emergence of sin
larities on the temperature dependence of heat capac32

which were not observed in experiments. The rejection of
gap nature of the one-particle spectrum proposed in Ref
resolves these paradoxes~for example, reestablishes the v
lidity of the Hugenholtz–Pines theorem26 and the Reatto–
Chester power asymptotic form36!. In this case,«(p)'pũ
for p→0, where the velocityũ does not coincide with the
velocity c of hydrodynamic sound in liquid helium (ũ!c)

and is determined by the pair order parameterC̃(p) for p

50: ũ5AC̃(0)/m* In the region of large momenta, th
spectrum«~p! may have a minimum~or inflection point! and
determines the critical velocityvc5min @«(p)/p#'D1 /p1

which can be put in correspondence with the maximum c
cal velocity vcm'2 m/s of superfluid4He in ultrathin films
and capillaries.71,72

The hypothesis on the pair structure of the superfl
componentrs in He–II with an intense ‘‘Cooper-type’’ CPC
is confirmed by the important role of pair correlations whi
can be described to a fairly high degree of accuracy by
Justrow–Feenberg method38–46 both for the4He Bose liquid
and for 3He–4He mixtures of quantum liquids. The exper
mentally measured anomalously large effective mass of3He
impurity atoms in liquid4He,47–51whose value is close to th
total mass (m31m4) of 3He and4He atoms, can serve as a
empirical confirmation of the formation of bound pairs
helium atoms in He–II. It indicates the bound state of3He
and4He atoms, and hence3He–4He pairs.35 This hypothesis,
however, requires a more rigorous theoretical substantia
on the basis of numerical calculations of the pair order

rameterC̃T(p) and the one-particle spectrum«T(p) at dif-
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ferent T by using realistic potentials of interaction betwe
4He atoms, as well as a more detailed experimental verifi
tion, including precision measurements of the velocity circ
lation quantum in the superfluid component of He–II and
maximum critical velocityvc in ultrathin channels.

The author is pleased to place on record his deep g
tude to Yu. A. Nepomnyashchii for opening up many ne
aspects in the theory of superfluidity during a brief b
highly fruitful co-operation. Thanks are also due to I. P. F
min for his active participation in the discussion of the pro
lems considered in this review and also for drawing the
thors attention to the remarkable closeness of the effec
masses of3He impurity atoms in4He to the total mass of3He
and 4He atoms indicating the possibility of formation o
bound pairs of helium atoms in the superfluid Bose liqu
He–II.

*E-mail: pashitsk@iop.kiev.ua
1!In this case, vpl* 5(16pe2nB /«0mB* )1/2*3.631013 s21 and vc

52A\vpl* /mB* *43106 cm/s, so that the critical current densityj c

52enBvc*108 A/cm2.
2!Such an approximation is justified if the one-particle excitation branch

much lower than the collective excitation branch~see below!.
3!The negative sign ofC̃(p) is also confirmed by the effective interactio

when Ṽ(p),0 in a certain regionpÞ0.
4!A similar first-order phase transition was considered by Iordanskii82 and

Chernikova83 for a rarefied Bose gas with attraction at large distances.
5!For a strong attraction, this may be a first-order phase transition clos

second, with a small value of the jumpC̃T(0) at T5Tc . A second-order
phase transition can occur in a spatially limited region with a finite mi
mum value of the momentumpminÞ0 if Tc* <Tc .

6!It should be noted that CPC can be a small fraction of CEC even aT
→0 in contrast to superconductors in which all electrons~fermions! are
bound into Cooper pairs atT50.
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