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The results of ac transport losses measurements are presented for multiflamentary HTSC
composite Bi-2223/Ag tapes with the number of filameNts 7, 19, 37, 61, 91, 127, 169, and

703. The measurements have been made under the self-field conditions as well as in a

constant magnetic field applied to the tapes at different angles. The dependence of AC losses on
the amplitude and frequency of the alternating transport current have been obtained. It is

found that the dependence of the AC losses on the current amplitudes for all the tapes are in accord
with the Norris theoretical predictions for an elliptical or strip geometry of the wire. The

external magnetic field increases the magnitude of the AC losses. It is concluded that transport
AC losses in multifilamentary HTSC composites are “saturation losses.1999
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INTRODUCTION geneous multifilamentary composite materials. Nevertheless,
the experimental results obtained by Ciszekal?> who
High-temperature superconductdETSC) have found a  studied the effect of magnetic field on transport losses in
wide technical application in various electrical-engineeringmono- and 37-filamentary composite HTSC were success-
systems in which high densities of electric current are refully explained on the basis of the Norris equations.
quired. Electric energy transmission cables, permanent and In this communication, we report on the results of
ac magnets, as well as transformers are examples of successalysis of transport losses in  multifilamentary
ful application of HTSC materials. Unfortunately, some fac-(Bi, Pb),Sr,CaCu;0, /Ag composite tapes in @i-2223/Ag
tors requiring optimization hinder the application of HTSC silver coating in magnetic fields applied at different angles to
in real electrical engineering devices. Above all, we arethe tape plane. We consider a set of eight tapes with the
speaking of low mechanical strength and low critical currentnumber of filaments varying from 7 to 703. The measure-
density. The HTSC response to the applied varying electroments made by us show that the magnetic field changes
magnetic field and ac energy losses in such fields includingransport losses only though a change in the critical current
self-field ac transport losses are equally important. of the superconductor in a magnetic field. Our results, as
In many electrical systems, external magnetic fields ofwell as those obtained in Ref. 12, are successfully explained
various configurations are applied to a superconductor carryby the Norris model. In addition, we prove that transport
ing alternating transport current. Consequently, it is impordosses in composite HTSC are not purely hysteresis losses,
tant to know the effect of the applied field on transport lossedut are “saturation losses” as in the case of low-temperature
in real HTSC tapes. In spite of intense investigations ofsuperconducting wires. The main difference between these
transport losses in mono# and multifilamentary® tapes, types of losses lies in that “saturation losses” decrease upon
the effect of external magnetic field has not been studie@n increase in the critical current. Hysteresis losses are de-
comprehensively. Experimental d&tdcan be successfully termined by the area of the magnetization loop of a super-
described by the model of the critical state created for tradiconductor and increase with the critical current.
tional low-temperature superconductors. Self-field losses are
described by the expression obtained from the London
theory for round wire<® Solutions for elliptical and rectan-
gular cross sections were obtained by Nottighese models Composite(Bi, Pb),SrL,CaCusO, tapes with the number
were based on the assumption that the critical current densityf filamentsN=7, 19, 37, 61, 91, 127, 169, and 703 were
is independent of magnetic field, and the superconductor iprepared by the “oxide powder in tube{OPIT) method
isotropic relative to its electromagnetic properties. The modwhich is described in the literature in det&lThe character-
els under consideration were not intended for describing théestic size of the tapes were 0.1-&3—-4x30mm for the
behavior of transport losses in the magnetic field of heteroHTSC-to-silver ratio~20:80.

%AMPLES AND EXPERIMENTAL TECHNIQUE
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TABLE I. Values of critical current and normalized losses. currentl . in zero magnetic field af =77 K varied from 12

I, A 0, 10°° Wicyclem E to 19 A for different samplegsee Table)l The table also
N T=77K, B=0 (I1=1y) (I1=1y) contains the value of losses per cycle forl. as well as
losses normalized to the square of critical current.

7 14.8 12.4 0.05 F ts i : | tic field. th
19 133 131 0.07 or measurements in an external magnetic field, the
37 121 11.6 0.08 samples were placed in a special magnetic system so that the
61 14.1 11.6 0.06 angle @ between the direction of the magnetic field and the
o1 137 9.8 0.05 plane of the sample could be varied from 0 to 360° with a

127 13.6 9.8 005 gtep of 5°. The angle between the directions of the field and
169 19.0 8.3 0.02 o : e
703 18.6 200 005 current was always 90°. The magnitude of the magnetic field

was controlled through the current in the magnetic system.
The losses in the magnetic field were measured as a function
of the ac amplitude at a frequendy=33 Hz for different

We measured the synphase component of the first hagnglesa and several values of the magnetic field. The value
monic of voltage across the sample under investigation as @f critical current was also measured for each angfer all
function of the amplitude of alternating transport current ofvalues of the magnetic field. All measurements were made at
various frequencies. The voltage for each value of frequency =77 K.
was determined by using a selective amplifier. The inductive
component of voltage was compensated by using a trangxpPERIMENTAL RESULTS
former loop in the current circuit. The power of total trans-
port losses was defined as the product of the synphase cu?
rent and voltage. The frequency and amplitude dependences Figure 1 shows the specific loss powki(per unit length of
of losses were determined in the range 36Hz 150Hz for  the wire as a function of the amplitud@=1/1 of transport
| <30 A from the frequency and amplitude, respectively, of current normalized to the critical current at zero frequency
the current. The ac frequency was fixed by a sine-wave gerii.e., dc critical current for composite tapes with various
erator, and the current was amplified by a low-frequencynumber of filamentsN. For subcritical currents, i.e., for
amplifier and a transformer. In order to avoid possible indus3<1, the curves measured at different frequencies are dif-
trial noise, we ensured that the transport ac frequency and iferent, while thew(,8) dependences measured &&= 1 co-
first harmonics were not multiple of 50 Hz. incide. Indeed, fot >1., the samples are in the normal state

It was noted in Refs. 9, 14, and 15 that the losses medn which the loss power is independent of frequency. How-
sured in HTSC tapes are determined to a considerable exteater, thewW(B) curves do not coincide fg8=1. This can be
by the position of potential contacts on the sample. In ordedue to strongly blurred current transition from the supercon-
to obtain the “correct” value of losse@.e., the value inde- ducting to the normal statgvith an IVC), which makes prac-
pendent of the position of the contagtpotential leads must tical determination of critical current from the fixed voltage
have the shape of a loop whose size is 1.5-2 widths of théhreshold rather conditional. Also, the discrepancy in the
tape and must be located in the tape pl#hé8 All the re-  W(B) dependences fg8=1 can be attributed to the differ-
quirements of the “correct” arrangement of potential probesence between intergranular and intragranular critical cur-
were satisfied in our experiments. rents. It can seen from Fig. 1a and 1b that the frequency

We measured critical current by the standard four-probelependence vanishes at a current amplitude approximately
method according to the criteriondV/cm. The value of the twice as large as the critical current. For such current ampli-

elf-field AC transport losses

10!
a
10"—
102 2
Fay
E 10‘2" E <
oy -~
= = 109
z 103 2
4L °
104} 10
o
[
10'5 L 10'5 1 I il 1 [N DS I |
0.1 1
B 0.1 B 1

FIG. 1. Specific transport loss power as a function of the normalized ampjitedél . of transport current at different frequencies for composite HTSC with
N=37 (a) and 169(b).
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FIG. 2. Dependence of specific transport losses per cyclgen/l . at

FIG. 3. Frequency dependence of specific transport losses for a composite
different frequencies. quency dep p p p

material withN=7 for various values of3.

tudes, all experimental points approach asymptotically theSO rces. It was noted above that ohmic losses are frequenc
universal curvéWN« B2 characterizing the normal ohmic be- u LW v ! quency

havior of the conductor independent. These occur either in a sample in the normal
Figure 2 shows the dependence of specific energy Ioss%séate’ or when a current flows through the silver matrix. Hys-

Q per cycle ong at different frequencies for a 127- eresis losses occurring in superconductor materials increase

filamentary sample. All the samples exhibited virtually thelinearly with frequency, while eddy-current losses in the sil-

same behavior ofQ(B) described by a power function ver \r/nvatn)é are p;op?rtlona(ljto thz squa:ce of”frequelncy. hich
Qo 8", wheren=3—4 for smallg, e observed a linear dependence for all samples, whic

indicates that the losses were of the hysteresis type. Figure 3

Norrist! proved long ago that th&(8) dependence for >
B<1 for elliptical and rectangular cross sections of the WiresShOWS the frequency dependence of specific transport losses

can be described by the following equations: for a composite wittN=7.

2
Q= 'U“;’TIC (2_,3)§+(1_,3)|n(1_ﬁ) (1) Effect of external magnetic field
Figure 4 shows the angular dependence of critical cur-
and rentl. (normalized tol ., for B=0) for different values of
ol applied magnetic field for a composite witilN=61. The
Q= oc [(1+B)In(1+B)+(1-B)In(1—B)—B?]. (20 anglea=90° corresponds to a transverse configurafibie
v
For small B, these equations can be reduced to 10
Q~ pol /67, ©) '
and o 14 mT
o 28 i
Q~ ol #6712, (4 ) s 42 o
‘. 56 S,
while for B=1 they approach the following equations: 0.8 °© ,’p/
Q=0,164/?, GRS A\ I
~ | JA v/ .}
and P Wb, LB N
) W “0.\ 0'"0' d ,/ ;
=0,12u,l L. 6 L ‘A, O--al S !
Q 2:“0 c ( ) 0.6 g --0. o ’,U /I,,é
The results of our experiments correspond to both de- \‘n. \R‘ g‘,—"’"'ﬁ/
pendencesl) and(2) for different composites. This is prob- R °'~~02110§20\ o
ably due to the deviation of the shape of wire cross section R4
from the rectangular and elliptical shape. o4l v o4 aa
Having chosen a constant value gf# 1, we can con- 0 60 d 120 180
struct frequency dependences of losses. In this case, it is @, deg

expedient to use the value Pf total |OSS§S since th.eir freriG. 4. Angular dependence of the normalized critical current for various
qguency dependences are different functions for differentalues of the external magnetic field for a composite Wth 61.
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FIG. 7. Angular dependence of transport losses for various values of the
FIG. 5. Dependence of normalized critical current on magnetic field ofexternal magnetic field for a composite with=61.

various orientations.

field is perpendicular to the tape plan&he dependences of DISCUSSION OF EXPERIMENTAL RESULTS

lc/1¢o on the applied magnetic field far=0, 40, 60, and Let us try to find out what type of losses occurs in the
90° are shown in Fig. 5. In a field applied at right angles tocomposite materials under investigation and estimate pos-
the tape plane, the critical current decreases at a much highgple values of losses. For this purpose, we generalize the
rate than for a parallel configuration. experimental results as follows:

The effect of external magnetic field on the losses is )
shown in Fig. 6, where specific current losses are plotted fofl) the current dependence of transport losses per cycle is
a composite material witN=61 as a function of the current Weel ", wheren=3-4; o
amplitude for different magnetic fields of perpendicular and(?) the frequency dependence of losses is linear;
parallel configurations. The magnetic field increases thé3) transportlosses decrease with increasing critical current;
magnitude of losses significantly. The angular dependence &f) the losses increase with the magnetic field.

transport losses is shown in Fig. 7. Since the magnitude and |t follows from these results that, as in the case of tradi-
direction of the magnetic field alter simultaneously the mag+ijonal low-temperature superconductors, transport losses in
nitude of critical current as well as the losses, it is interesting;omposite HTSC are “saturation losse&ee, for example,

to plot the dependence of losseslgn An example of such  Ref. 17. What are “saturation losses” and what is the dif-

a dependence is shown in Fig(®e critical current is nor-  ference between these and hysteresis losses? It is well
malized tol, for B=0). It can be seen that experimental known'” that current flows in a composite superconductor

results fit to the general dependence, the magnitude of loss@gar its surface, occupying larger and larger region as the
increasing upon a decrease in critical current.
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FIG. 6. Specific transport losses as a function of current amplitude for
various values of magnetic field. Light an dark symbols correspond to a fieldFIG. 8. Dependence of transport losses on the normalized critical current for
perpendicular and parallel to the tape plane respectively. a composite witiN=19.
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10°2 CONCLUSION
The results of measurements of ac transport losses in
multifilamentary superconducting Bi-2223/Ag tapes in an
N external magnetic field proved that transport losses are satu-
- 1074 ration losses differing from “pure” hysteresis losses. Satu-
E ration losses increase with decreasing critical current, which
§. °°‘=20° was observed in experiments. An applied constant magnetic
o 48 field causes an increase in losses, correlating with the de-
~ " 60 crease in the critical current in the samples under investiga-
G 10 80 tion. The value of transport loss€¥ 1. normalized to the
90 square of critical current and plotted as a function of the
100 normalized transport current amplitude fit to the same curve
— Norris (1) in accordance with the Norris equations.
10-8 11 ol L1113k ) )
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transport current becomes stronger. In this region known as _
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current density is equal to its critical value. Ac power is
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liberated just in this region and not in the bulk of the super-

conductor. Saturation losses are of the hysteresis type. How-
ever, the volume of the saturation layer for a fixed current
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The current—voltage characteristid¥C) of real defective high-temperature layered

superconductors are calculated by simulating the vortex lattice by means of the Monte Carlo
method. The temperature dependence of the defect activation energy is obtained. It is shown that
IVC singularities in different temperature ranges are due to the change in the phase

conditions of the vortex system and, in particular, the presence of the “rotating lattice” phase in

a wide temperature range. ®9399 American Institute of Physid§1063-777X99)00302-3

INTRODUCTION MODEL AND COMPUTATIONAL METHOD

In recent years, considerable attention is paid to phasg Letus consuder_a two-dimensional vorte>§ IaFUce simulat-

. . L . dng a superconducting HTSC layer on a periodic rectangular
transformations and their dynamics in the vortex lattice o h under th . f K lina b fil
HTSC?! Wide application of numerical methodsspeciall mesh un er't e.assumpt|on.o weak coupiing etvyeen ra-

' PP S P Y ments in a direction perpendicular to thb plane and in the
fche Mo_nte Carl_o method, see the review in Refhas made_ _ presence of pinning centers. The discreteness of the spatial
it possible to simulate the phase states and phase transitiopsssh is chosen in such a way that its period is much smaller
in various vortex systems and to demonstrate the peculiarihan the period of a perfect triangular vortex lattice.

ties of the vortex lattice melting dynamics in the presence of  |f we disregard the interaction between vortices and ex-

the pinning centers. ternal field, the effective Hamiltonian of such a system has
Problems associated with dynamic interaction of the vorthe formt!

tex lattice with pinning centers in the presence of transport N N

current and cyrrent—vpltage characteristid&C) are impor- H= EZ H(ri,rning+ 2, Ug(ron;, (1)

tant for practical application of superconducting materials. i#] i=1

First computations of IVC by the Monte Carlo method ap-yhere

peared only in 1998-7 Current—voltage characteristics were ®2d

calculated in the presence of a large number of defeeta- H(r )= 0 o( |ri_ri|>

tive to the number of vorticgswith different potential VT 2N o A(T)

energieé‘. However, defects with different values of activa- Ir—r

tion energy and temperature dependences of IVC have not =U0(T)Ko(ﬁ). 2
been studied.

The results on various phase modes of current flow ob- HereU(r;) is the energy of interaction between a vor-
tained recently from an analysis of IVC of HTSC deservetex and a defect at theth lattice site,n; the occupation
special attentior(see Ref. 7 as well as Refs. 8910he numbers of vorticef0 or 1) at theith site of the spatial mesh
modes of pinned vortex glass, plastic flow of vortex liquid, With the total number of nodel,®,=hc/2e the magnetic
and flowing vortex glass were observed. These phase statfléX quantum,K, Bessel's function of the imaginary argu-
of the Abrikosov lattice as well as transitions between then{"e"t d ;he_f/lszerconductlng layer thickness(T) =X 1
are close to the phase transitions between the states of “r - (T/Te)>] the depth of magnetic field penetration into

; . - . i =47Xx10 " H/m.
tating lattice” and “vortex liquid” considered by us re- ?he superconductor,_arydo .477 10 H/m

. We choose for simulation a real high-temperature super-
cently, but now in the current state.

conductor BjSr,CaCyOg with the following parameters:

In this communication, we report on the results of cal-4_, 7 &. M(T=0)=1800A; T.=84K?in the external field
culations of IVC in model layered superconductors and comg _q 1 T The experimentaly I\;C were obtained for the same

pare them with the experimental IVC. We shall demonstratebarameters_

the modification of IVC upon a change in temperature and as  The calculations were mainly carried out on a spatial
a result of an increase in the number of defects. Our aim ighesh with 20x 200 cells under periodic boundary condi-
also to demonstrate the potentialities of the Monte Carlaions with the help of the standard Monte Carlo method by
method as applied for determining real physical characterisasing the Metropolis algorithm. The discreteness of the spa-
tics of HTSC and for analyzing the phase states of the vortexial mesh with 20 200 cells means that if the system con-
lattice. tains N,=150 vortices, each vortex corresponding to ap-

1063-777X/99/25(2)/4/$15.00 105 © 1999 American Institute of Physics
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proximately 260 cells. Such a discreteness is sufficient for 10
constructing a nearly perfect triangular lattice at zero tem- I 350 - 400
perature and current. sH =%:%

The actual concentration of vortices corresponding tothe ¢ =f°53:%
given field B was attained by changing the value of the di- ¢ ;g'gg;;gg
vision of a spatial cell so that the periag of the triangular g 6 0- 50
vortex lattice satisfied the relation g -

( 2@0) 12 4+ J
a,=|—| . 3
V3B 2l

In order to analyze the behavior of the system with de- é ‘; é é 10
fects, we introduced pinning centers with different concen- 0.3x10"%m
trations. In this case, the energy of interaction with a pinning
center was chosen in the form FIG. 1. Drift velocity distribution aff =70 K andJ/J,=5. The intensity is

given in terms of the number of vortex jumps over 20 000 MC steps.

Up(T)=—aUo(T), @
which corresponds, for example, tdJ,(T=2K)= of an example a typical distribution of vortex tube displace-
—3.5meV fora=0.1. ments relative to the center of masstually, the distribution

The chosen values of the depth of the potential well forof drift velocities at T=70K and JJ,=5 (J,=5
a pinning center are close to those observed in actual practice 10'°A/m?). Averaging was carried out over all vortex
in HTSC!*?Calculations were made for strong pinning, the tubes and over 60 000 MC steps. It can be clearly seen that
potential well depth beindJ,(T=2K)=—-100meV. We the distribution has the form of an ellipsoid prolate perpen-
analyzed various types dbne- and two-dimensionade-  dicularly to the direction of the current and that the distribu-
fects, but main calculations were made for point defects, @&on does not reach the boundaries of the system.
defect occupying a single cell of the spatial mesh. This cor-
responds to the size of a defeet (v_ortex core size of 20 A BISCUSSION OF THE RESULTS OF CALCULATIONS
so that only one vortex could be pinned at such a defect. The
range of two-dimensional concentrations of defects was from We calculated the current—voltage characteristics for
10'2-3x10*m~2 (from one to 100 defects corresponded to systems containing from 1 to 100 defects at temperatures 10,
150 vortices in the system under investigajion 20, 30, 40 K, etc(up to 83 K). In the vicinity of the critical
Dynamic processes were investigated by introducing demperature, the characteristics were calculated with an in-
transport current in the system. In this case, the Hamiltoniaterval d 1 K up to thecritical region. Typical IVC are pre-
describing the behavior of the entire system was supplesented in Fig. 2 folf=20K and for various concentrations
mented with the term due to the action of the Lorentz forceof defects.
on each vortex. In the case of elementary motion of a vortex, = These results were compared with experimental (¥4
the termsU = ®,JAx was subtracted from the total energy if small currentsobtained for BjSr,CaCyO, films bombarded
the direction of vortex movement coincided with the direc-by high-energy iond? Such a comparison of experimental
tion of the Lorentz force exerted to it, and added to it if theand theoretical IVC makes it possible to determine the actual
vortex moved against the Lorentz force. The transport curscale of electric field strengtti.e., the value o). In our
rent was directed along thg-coordinate. In the case of a case, for examplef,=5X 10 2V/m, which indeed corre-
nonzero current, vortex tubes could move at random ovesponds to the actually observed values. Moreover, knowing
any distance within the size of the systéne., the value of the magnetic field, we can estimate the vortex relaxation
Ax was chosen in accordance with the Gibbs distribytion time 7. In our calculations;=10"*?s, which is in accord
The voltage emerging across the boundaries of the systemith physical estimates.
was calculated from the relatioi=Bwvy,, whereB is the There is another coincidence. According to our esti-
applied field andvy,=X.,/7 the drift velocity of a vortex, mates, the characteristic values of critical currents obtained
i.e., the displacement of the center of massg, of the vortex as a result of calculations differ from actual currents in
tube per unit timer. The unit of time was conventionally HTSC approximately by a factor of five. But exactly this
chosen to be equal to an elementary step in the Monte Carloumerical factor corresponds to the approximate fraction of
method, i.e., the indeterminacy is manifested in the arbitrarisuperconducting layef®f thickness 2.7 Ain the entire vol-
ness of the choice of the voltage scale. This indeterminacyme of a unit cell in the compound BrL,CaCy0,!
can be eliminated by normalization to an actual IVC. Let us analyze the results of calculations. It can be seen
In order to take into account the boundary conditionsthat as the concentration of defects decreases, IVC are
correctly, it is necessary that a vortex tube not be able td'straightened,” demonstrating an increasing tendency to a
reach the edge of the system as a result of a single randosimple ohmic behavior of the system for strong currents.
displacement under the action of the current. This conditiorThis is also observed as the temperature approaches the criti-
in fact determined the maximum possible current for calcu<cal value(Fig. 3). An analysis of the initial segment of IVC
lations and was verified every time. Figure 1 shows by way(for small currentsleads to the following result: the current—
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FIG. 2. Typical IVC atT=20K and various numbers of defedt;: 1
(curvel), 10 (curve 2), 40 (curve 3), 60 (curve4), and 100(curve5). The

inset shows IVC foiN,=100 and 300 on the log—log scale. FIG. 4. Temperature dependence of theoretical activation energy.

into islands attached to pinning centdtke rotating lattice
voltage characteristic on the log—log current and voltagghasg. This phase can apparently be identified with the ob-
scale is strictly lineafsee the inset to Fig.)2which confirms  gerved phase of pinned vortex gldss.
the existence of magnetic flux creep under these conditions.  our results of calculation of the motion of a vortex sys-
Figure 3 shows IVC of the system for a fixed concentra-em in the field of defects in the presence of current demon-
tion of defects, but at different temperatures. The conditionaktrate different modes of IVC behavior depending on the
thresholdJ/J,=0.5 (chosen as the critical currgntan be phase state of the system. For example, Fig. 3 shows two
used to obtain an important physical parameter of point degroups of curves conditionally divided by the temperature
fects from these results, viz., the activation enetgyas a boundaryT,,=70K (the temperature of transition from a
function of temperatuneon the basis of the relation “rotating lattice” to a “vortex liquid” according to the ter-
minology adopted in Ref.)3A visual analysis of the density
&(E/Ep)) (5) of vortex distribution shows that a “rotating lattice” is ob-
(I Jp) served afT<T,,, and a “vortex glass” atfT>T,,. In the
“rotating lattice” phase, IVC change slowly upon heating,
The results of calculations are shown in Fig. 4. Thesavhich can be explained by a still strong interaction with
results are in accord with the known experimentalpinning centers. On the contrary, &t>T,, we observe a
dependences. strong influence of temperatuf@ virtually equidistant in-
Concluding the section, we make the following remark.crease in voltage upon an increase in temperature by only
It was proved in our recent publicatidthat the melting of a two degreesup to the critical region. Thus, the observed
vortex lattice occurs through an intermediate phase in whicldifference in the temperature behavior of IVC of a real
lattice deformation and violation of its long-range order HTSC can be attributed to different states of the vortex sys-
away from defects take place, and the triangular lattice splitéem, which is in accord with the results obtained in Ref. 3.

U=kTIn( .
E—0

CONCLUSION

In this communication, we described the results of simu-
-6— 10K lation of actual current—voltage characteristics of defective
3;":: layered HTSC. The method used by us makes it possible to
——50K obtain real characteristics of defe¢like activations energy

—a— 60K as well as information on the dynamics of motion of vortex
—v—T70K tubes, i.e., the distribution of their drift velocities, relaxation
iz: times, etc. The adaptability of the approach makes it possible
—a— 78K to analyze IVC in an arbitrary preset field of defects by simu-
—@—80K lating technological, radiation, and other defects in high-
——82K temperature superconductors.

1 1
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E/Ep of the States Scientific and Engineering Program “Contem-
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In the presence of anisotropic pinning due to unidirected twins, the nonlinear vortex dynamics is
discussed in terms of phenomenologically introduced anisotropic drag and pinning

viscosities. A theoretical basis for experimental reconstruction of these viscosities is proposed. A
nonlinear Ohm’s law is derived. Assuming the anisotropic pinning aler@nning model:

a) new scaling relations for the anisotropic Hall conductivity are predictg¢dionlinear guiding
effects are discussed) specific current and angular behavior of current-voltage

characteristics are analyzed. 99 American Institute of Physid$S1063-777X99)00402-§

The influence of twin boundarié¢3B’s) on the transport direction (in the case of TB’s—mostly along themThis
properties of highF, superconductors is a topic of great cur- GM generates a new, specific contribution to the transverse
rent interest~1116-180ne of the reasons for this interest is (with respect to the current directiprresistivity of the
that the TB’s are naturally occurring planar defects that carsamplep;”, which is even with respect to the magnetic field
easily be formed in a higfiz, YBa,CuO,_5 (YBCO) com-  reversal(in addition to the odd Hall contributiop| , inher-
pound. ent in the isotropic pinning contributidn

It is generally recognized that the order parameter is Earlier, experimental and certain theoretical aspects of
slightly suppressed at TB%sAs a result, an isolated TB at- anisotropic pinning and GM of vortices moving in the flux
tracts vortices and pins thehilhe TB pinning force acting flow regime (for cold-rolled Nb—Ta sheetshave been dis-
on the vortices directed along tleeaxis (and the TB of the  cussed in detail by Niessen and Weijesenfel&Pimterest in
crystal is often strongly anisotropic, because it is usuallythese problems was renewed after detection of TB's in
considerably weaker for the motion of vortices along twinsYBCO. Apart from the experimental works;1°we should
than across therh. also mention in this connection the recent theoretical paper

Recently, the problem of twin influence on the vortex by Mawatarii! where the single-vortex anisotropic pinning
motion in plane geometry has been studied numeri¢dlly. dynamics has been discussed within the frame-work of the
The simulations if* were performed for the interaction of “microscopic” approach based on the Fokker—Planck equa-
moving vortices with only one isolated TB. Some interestingtion.
dynamic peculiarities of this interaction were elucidated. = Another approach to the anisotropic pinning was first
However, it is worth noting that, in a real transport experi-suggested by Sonin and Kholkin 4.They proposed the
ment>~we usually probe a certain “self-averaged” vortex general form of a linear Ohm'’s law in uniaxially anisotropic
dynamics, which results from the interaction of vortices withmedia, which was formulate@n the basis of symmetry con-
many TB'’s, distributed with some average density betweersideration in terms of four phenomenologically introduced
voltage leads. Obviously, this self-averaging will “smear” “intrinsic” resistivities.'® In this approach, besidgs  (and
some subtle details of the vortex interaction with an isolatedn addition to the usually measured even longitudinal contri-
TB, which were detected ih? bution p,"), a new, angle-dependent, odd longitudinal resis-

Several Hall experiments’ were performed on YBCO tivity p, also appears, due to a possible anisotropy of the
samples, where TB’s were oriented basically in two mutuallyHall drag coefficient in the twinned sample. The last effect
orthogonal directions. Because the transport response of thes recently been observed for the first time in a YBCO
crystals was always measured as an integral property, thgingle crystal with unidirected twirss.
pinning anisotropy of twins in this case was commonly Note, however, that there are no reasons to expect the
masked, i.e., the influence of TB’s pinning ab-plane trans- change of the Hall drag coefficient due to point pins, for
port in theH|c geometry is, on the average, isotropic, as forisotropic pinning:**° This directly implies a simple scaling
point pins(neglecting smalbb-axis anisotropy. relation pj~ai(p“+)2 between current-dependent, nonlinear

A much different type of situatiofanisotropig occurs if  resistivitiesp; (j) andp; (j) for p| <p; .24*°
we measure thab-plane transport response of single crystal  In order to study possible scaling relations within the
with unidirected twing:®-°It is generally believet that the ~ frame-work of the phenomenological approdthye have
main special feature of this response lies in the possibility ofjeneralized its results to the nonlinear case. In so doing, we
the “guided” motion (GM) of vortices along the easiest follow the phenomenological approach used recently by

1063-777X/99/25(2)/6/$15.00 109 © 1999 American Institute of Physics
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FIG. 1. The schematic sample configuration for three cases with different ) \ 4 vl
values of angler between the current density vecjaand the unit vectom; V(
directed along TB's, which are shown by thin parallel lines: general case, m
a#0, ©/2 (a); longitudinal L—geometry,jJ_mHL, a=m/2 (b); transverse
T-geometry,j L m{, a=0 (c); in all casesE, andE; are transverse and 1o B >
longitudinal (with respect tg-direction electric-field componentsnL m, . ,‘g 0 e

Vinokur et al. in'* for the case of isotropic pinning. Below mit
we use the method Hffor considering both the isotropic and _ _
anisotropic pinning, and so we can derive the nonlineaf'S: 2 Theab-plane geometry of andf components in two coordinate
. . . systems{(l,t) coordinates with unit vectons, (alongj) andm; (L,Il) coor-
Ohm’s law, which was postulated earlier for the linear casgjinates with unit vectorg, (alongj) ande, ; v—average vortex velocity,
in.23 In this way we clarify the origin of the four phenom- f,—Lorentz force j—current density. Angles, 3, —see text.
enological resistivities, earlier introduced'inin terms of
drag and pinning viscosities, i.e., at a more detailed level.
Below we also show that these viscosities can be recon-
structed (for purely anisotropic pinning from current- f,=—mv, f5=—mv—nvi—nv, 1)
voltage measurements in two simple special experimental _;
. . fu=—a;vXn,

LT-geometriegsee Figs. 1.b)c M ! )

The main advantage of this phenomenological approach ja _ — VX N— aV X N— aV XN
(for example, in comparison with the microscopic approach
in'Y) lies in the possibility of predicting and explaining the Herev; andv, are transverse and longitudin@ith respect
most general aspects of self-averaged vortex motion in thto TB) average vortex velocities, respectively=(v;+v,
presence of TB’s anisotropy in simple, physically transparensee Fig.  »;, 7 ande;, « are the corresponding excess
terms. We can than elucidate the appearance of two new@nisotropic viscositiesas compared to isotropic contribu-
anisotropic contributions to longitudinal and transverse resistions); n is the unit vector in the magnetic field direction
tivities (odd p; and evenp, respectively, the scaling of (n=H/H). As for now, we also consider both buflsotro-
anisotropic Hall conductivities, the nontrivial angular depen-pic) and anisotropic(TB'’s) pinning forces. Also, for the
dence of current-voltage characteristi¢®VC’s) in a non-  former, we assume, as Hfithatf,=—y(v)v, wherey;(v)
linear regime, the peculiarities of nonlinear guiding of the>0 is the nonlinear phenomenological viscosity, which de-
vortices, and some other general results. pends only on the magnitude o |v|. The anisotropic pin-

a) Discussion of the model and nonlinear Ohm'’s law ning forcefg, which acts on the vortices at TB’s, can be
derivation. To be specific, let us consider the YBCO single written as
crystal with unidirected twins in the geometry, where a ho- a_ _ _
mogeneous transport current of dengitfiows in the ab- Fo= = mv=mlvhvi=m(vihw, @
plane and external magnetic field is directed along the where v, and vy, are the average phenomenological trans-
c-axis. We ignore below smakb-plane anisotropy of the verse and longitudinal vortex pinning viscosities, respec-
detwinned crystal; so, all the anisotropic effects under contively. Equationg(1)—(3) allow us to write the force balance
sideration are caused by TB’s with the average distance bequation for thekth vortex in much the same way as th:
tween themd>a,, whereay is the intervortex distance. In  Then, on averaging it over disorder, thermal fluctuations, and
this limit we can suppose that=a,/d is the relative frac- also vortex twin and bulk positior$,we arrive at the fol-
tion of vortices trapped by the twins. The TB’s presencelowing dynamic equation for the average velocity of “effec-
changes both electronic and pinning properties of the previtive” vortex in the crystal with unidirected TB'’s
ously isotropic crystal. Lety; and «; be isotropic(bulk)
vortex drag and Hall drag viscosities, respectively. In addi-
tion, we attribute the anisotropy of these viscosities to the
vortices being at the TB’s. Then for appropriate viscous drag =7+ vi(v), %=+ %), n=m+n(v),
and Magnus forces we have

VT aiVX N+ e( v+ avi XN+ v+ agvp Xn) =1,

4
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wheref =(®dy/c)jXn is the Lorenz force @ is the flux E.=xE,—YE, E,=YE +XE,
guantum andc is the velocity of lighj. Let m and m;=z [E|=yE+XEL; [EL:XEI_yEt’
Xm be the unit vectors oft,l) coordinate systenisee Fig. o
2), directed perpendicularly and parallel to the TB's, and Zvherex=m-eg, andy=m;-g . Then, in view of(12), we
be the unit vector along treaxis, which is perpendicular to have

(12

the sample planen=nz, wheren=*1). Then, taking into E=(p+np )i, E, = +np)ij: (13)

account thav=(c/H)EXn, whereE is the in-plane electric 1= Pi)l: L=PL TP

field, we can arrive at a nonlinear Ohm’s law in the form [,‘)"*Exzﬁﬁyzi)t_ [ﬁLEXZﬁHﬁ-yZi)Ht 149
j=(c?H®){HE+a;EXn Pr=xy(pi—p)" | by =xY(Pri—prp)

Note that the experimentally measur?,ejj,H values generally
depend, as defined by Ed44), on the anglex betweenm,

Here E;=Eim, E;=Em; and E;:=m-E, E;=m-E. Be- andj (see Fig. 2in two ways. The explicit dependence an
cause off,=(nH/c)v, andE;= —(nH/c) v, viscosities(5), can easily be seen from Eq44), provided that the elements
actually, depend on corresponding electric-field componentsf the tensolp do not depend oE, i.e., if p—p, wherep is

Vector Eq.(6) can be represented in the scalar form  the tensor of the linear Ohm’s law. However, in nonlinear
regimes there appears an additional nonlinear angular depen-

(7 dence off)f” through the implicit dependence @ftensor

+8[;7tE|+atE|><n+ ?7|Et+a|Et><n]}. (6)

0 Ei—opnE =],

TuNE -+ o =] elements ork, , E; fields, which, in their turn, depend on the
wherej=m-j, jj=m,-j, and the quantities a value throughj,=xj andj,;=y]j by Egs.(7). Below we pay
. ) . . a special attention to thia-dependence due to its nontrivi-
&51=(PIHP) [ (E)+emy(IENI=ai E)+oi(ED, Ly,
(8a) b) Scaling and “reconstruction” ofo- in the a-pinning
o=(C?IHD)[ 7 (E)+ e (|EN]1=0i(E) + ar(|E]), model.Equations(14) show that, in the case of linear Ohm'’s

law, resistivitieSp‘fL(a) can be found for the sample with an
B ) arbitrary « value (see Fig. 1p if four current-independent
o=~ (a;+eay)(c/HDy), 80 intrinsic resistivitiesp;, p;, pui, Pur are known. In their
o= —(a;+ea))(CAIHD,) c turn, the;_/ can be. measured experimeptalﬂyrecon-_
structed”) in two special(“reduced”) geometries of experi-
are the additive functions of the appropriate viscosities angnent(see Figs. 1b, J¢namely,p,, py—in the longitudinal
have a physical meaning of the corresponding components efgeometry {LTB's), and p;, pu—in the transverse

the conductivity tensofin t—1 representation T-geometry {ITB's). In these reduced LT-geometries the
& —now sample with unidirected twins behaves isotropically, be-

&E( ) ) (9)  cause, by virtue of Eq$14), the two new resistivity compo-
Noy Oy nentsp,” andp, , which are specific to anisotropic geometry

The formal solution of Eqs(7) as linear equationgout ~ Of general type ¢#0, w/2), are equal to zero. Below we
with nonlinear coefficient!allows one to deduce the non- Show that for the case of purely anisotropic pinning

linear Ohm'’s in theE(j) form (see als¥): [a-pinning model,y;(v) =0], the above-mentioned situation
A o _ can be generalized to the nonlinear regime.
E=pim(m-j)+ pymy(my-j) Actually, it can be shown that Eq€7) can be written for

(10) both L-geometry x=x,=1, y=y, =0) and T-geometry
(XT:Ov YT::L) as
(11) 5(ENEf—owEL =]  [6(EDE] +opyE =0

pri=—n /Dy,  pu=—0n /Dy, G(ED)E[ + oy Ef=0" a«EDEI—vH'EI:j(' )
15

+n[pymy(m-j)—pym(mg-j)],

i)|Ea'/D(,., ﬁtE&I,/D(r!

whereD ,= 60+ oy 04, and Eqs(11) give the elements , _ L

of resistivity tensoi which is the reciprocal of. Although ~__ Now we assume that four CVC's, namey (), EL()),

Eq. (10) formally resembles a similar expression for the lin- Ei (i), Ei(j), are experimentally known. Let als&,

ear Ohm’s law ir2 its physical meaning is wider, because, = fL(ET) and E[=f(E]), where the functions,(x) and
generally, the resistivities; , p;, pui» Put, are the nonlinear fr(x) are also known. Then, after some algebra with Egs.

functions of E [see Eqgs(8)], and this circumstance is de- (15 we arrive at

noted by the superscript™ If E-dependence op is irrel- - —j/[EL+f (EY]

evant, then Eq(10) is equivalent to the similar equation't [ Ht_ S S

(see alsd). on=—JI[E +f.(E)] 16
In experiment, one usually measures the longitudigal a.l(x):[jlll—(x)/x]/[l+f[l(x)/fT(X)]

and transvers&, (with respect to-direction components [frt(X)=[jI(X)/X]/[1+fT_l(x)/f,_(x)]’

of E. In these(L,ll) coordinategsee Fig. 2 the unit vectors
areg=j/j, e, =zXjlj, andE=Ee+E, e, . Then there are Wherej'[(Ef;), j, (E]) are the functions inverted to the func-
simple relations betweeh;, E, andE,, E,; of the form tions E;(j), E,(j), respectively. Equation$l6) give the
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complete and exact solution of thietensor reconstruction pm
problem in thea-pinning model. They allow us to express >
exactly the longitudinal and transverse CVC's of the sample "‘a"} b ﬁ>

with arbitrary anglex (see Fig. 1ain terms of four CVC's
experimentally measured in LT-geometfiesat arbitrary
constant values af,, o ; the expressions for the last are,
in fact, the desired scaling relations in taginning model. a

If, as is often the case in experimeritthe Hall components <
of the o-tensor are considerably smaller then the diagonal i B
components, then EqéL6) are greatly simplified to B;in

ow=—iTEf()]  [5100=7(0)/x
ow=—ifLE[(D]" [ &00=][(x)/x"

Physical realization of pure anisotropic pinning consid-
ered here is most probable in the temperature ra‘d)ggT FIG. 3. Schematic nonmonc_ntonic depe_ndenchojn a, wher_e,B is the
<Tgp, WhereTy, and Ty, are depinning temperatureor nglzfagi?f(gva(sfif '%i;@d(ﬁ)'s the angle betweepandm,:
the point pins and the longitudinal motion of vortices on = °° e '
TB's, respectively.

¢) Guiding analysisBelow we present the main results ygco (see Fig. 1, curved and5 in®). Note also that the
of studying the GM in thea-pinning model. For simplicity, gistinction between cases and b in Eq. (21) follows from
we here neglect generally small nondiagonal Hall terms inpe fact that the angl@ always shows an extreme behavior
the o-tensor(Eq. (13)). _ L in the vicinity of anglea, (see Fig. 3

lerst_we consider the linear case, wherg=p, -, py The linear result can be generalized to the nonlinear re-
=pj , 1€, pi, py values can be measured in LT- gimes if we replace tan, by tana.=p(|E|)/p(E), i.e., we
geometries. At arbitrary angle# 0, 7/2, the directions of  take into account that.— &.(a,j). It can be demonstrated

andf do not coincidgsee Fig. 2, if 7, # n; (i.e.,p#p;). Let (see Eqs(8) and(11)) that
us define the auxiliary anglgQ as a measure of competition

between guided- v;) and transverse-{v,) motion of vor-
tices across TB'$"slipping,” in terms of*?). It follows from
Eq. (4) that

NI

—
(17) 0ag o

2 bin
Q
(=]
R
(o]
NI

E((j cosa)

W tana, (22)

tana'c:pT(jl)/PL(jt):{

where, as previoushE (j)=jpL(j) andE[(j)=]p+(j) are
tany=v,/y=tana./tane, (18)  longitudinal CVC's in LT-geometries, respectively. Because
where tar=p,/p. In general, 6<a.<w/2, however, &=ac(a]), the nonlinearx—j dynamics of coB may be

normally?® p,<p, and a< /4. We also introduce another More complicated than in the linear case. The two limits
angle B=a+¢ (see Fig. 2, which can be measured (@—0 anda—m/2) are of particular interest. For example,

experimentally’? because if a— /2, then in the creep regimg‘or the power-!aw
N N . CVC’s) we may havep+(j cosa)—p]j(7/2— a)]<p+(]),
cotp=—E[/E/ =—p, (a)/p (). (19 whereasp, (j sina)~p_(j). So, if for LT-geometries at fixed

j the values ofp1(j) andp,(j) are of the same order, i.e.,
tana,=<1 for a~ /4 (weak guiding, then in the limita
cotB=tana(1—tana,)/(tarf a+tanac). (200 — /2 there should be taip<1, i.e., we can expect an es-

From Eq.(20) one can deduce that th&«) dependence is sential nonlinear enhancement of the guiding effect. Similar

always nonmonotonitsee Fig. 3. The extreme value QB reasoning fow— 0 shows that ta@>1 is feasible; then it is
(Brmax @t ac> /4 of B, at a.<wl4) is attained at the possible that in the process afincrease from 0 tor/2 at

tana,=(tana,)? and Be,= 2a,. Experimentally, of special fixed j the observed voltag® changes its 'sign, pas;ing
interest are the cases where @ot1, i.e., the transverse elec- OVer V. =0 at tand=1. Yet, from the experimental view-
tric field E is considerably greater than the longitudinal ppint, it is of greater interest to rgalize this transition _for_the
field E;" due to the dominant role of the GM. More detailed 91ven sample &= const) by changing the current; qualitative
examination of Eq(20) shows that the most favorable con- analysis of these effects for the power-law CVC has been

As it follows from (19) and the definition of3,

ditions for that case will be at tap.<1 and tarw<1. In fact, made’ o _
there are two limiting cases, wefE; |>|E; |, namely Now we show that both longitudindtj’(j) and trans-
verseE{(j) CVC's of the sample with an arbitrary value
tana >1  tarf a<tana.<tana (21a in the model under study can be expressed through the lon-
tana, ¢ gitudinal CVC’'s in LT-geometries. Actually, in the
cotp~ ¢ : a-pinning modelE,=E,(j,) and E,=E,(j,) [see Egs.7),
tana>1’ tana <tarf (21b) where small Hall terms are ignorgdrhen it follows from

Egs. (12), if we apply them to the LT-geometries, that
The situation is quite real experimentally, because inEt(jt)th(jt) andE|(j,):E[(j|).The repeated use of Egs.
experimertft it was shown that tan, <10 ® at T~87K for  (12) yields
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/ . dependent ol « values, can belong to each of these regions

T+ with different physical meaning of dynamic states of the vor-

tex system.

.S A ) The region of “full pinning” (FP in Fig. 4, where

h : / yENL-. E(j)=ET(j)=0, is shown by the unshaded rectangle and
AT e its diagonal determines the critical angle* (tana*

=jL/j)). Then it is easy to see that

sen

<
= n
Hpm
L4
(o)
~

T / ic(a)=jtlsine  a>a*
( ! i (a)= _ 25
Je(e) jc(@)=jicosa a<a* @9

EP — In the region of “full slipping” (FS in Fig. 4, shaded by
E=0 : vertical lines,a<a*, j(@)<jL, and the vortices are mov-
: ing normally to the TB'’s, i.e.vgs=V{Im. The "“full guid-
ing” (FG) region is shaded in Fig. 4 by horizontal lines, it
represents the fully GM of vortices withig=v|lIm, be-
FG cause ar>a* we always havg,(a)<j!. And lastly, the
‘ Y =0 “slipping and guiding” (SG region, shaded by crossed
I lines, realizes the coexistence of slipping and guiding, where
: v=V;+Vv, with v;# 0 andv,#0.
a If, for the given sample with fixedv = «;, the transport
current is increasing from zero, then, depending ondhg
o values it is possible to realize sequentially different variants
' of intersection by the end gtvector of the boundaries be-
: tween the neighboring regior{see Fig. 4. For example, if
T s . a>a*, then the series of intersectionsFFG—GS exists.
Ie I I Since a new source of dissipation appears, at each of the
FIG. 4. Schematic diagram of the dynamic states of the vortex system o :\ntersectlon the longitudinal CVC of the Samrﬂiﬁ(j @)
(i1 J,) plane. There are four regions: FP—ful pinning, FS—full slipping, acquires a kinkinflection poin} at corresponding values of
FG—full guiding, GS—guiding and slipping and j—critical current j- In general, there are two such kinks on the CUC «
densities in L- and T-geometries, respectively. #a*, 0, w/2); only in the casea=a* these two kinks
merge into one.
In conclusion, we note, that anisotropic transport effects
caused by unidirected twins have only begun to be observed
Ef()= XEH (xi)+YE[(y]) (23  experimentally; until now, all the measurements were taken
ES(j)=xE[(Yi)—YE[(X])’ on YBCO single crystal&-1° However, recently fabricatéd
c-axis-oriented YBCO thin films with unidirected twins, ow-
Note the nontrivial angular dependence in the arguments ghg to a more pronounced anisotropy of their resistive prop-
E; andE[ functions. Equation§23) also show how the pe- erties and attainability of higher current densities without
culiarities of CVC's in the “basic” LT-geometries are mani- overheating, might appear more suitable for observation of
fested in theEf (j) CVC's. First we shall study the the predicted here nonlinear effects than the crystals.
a-dependence of critical current densitig$a) in terms of
the basic critical current densities of our modei | am grateful to A. K. Soroka and A. A. Soroka for their
=j.(m/2) andj.=j(0) in LT-geometries, respectively. For help in preparing this paper for publication.
the analysis we assume the simplest form of CVC'’s in LT-
geometries

0 m
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The paper pursues the following two goals: to demonstrate the principle of concordance of the
basic sets of representations and to investigate possible incommensurate magnetic

structures proceeding from the previously developed theory of induced representations. The
methods and the results obtained differ essentially from those obtained on the basis of Lifshitz
invariants. The effect of exchange energy spectrum smoothing as a result of inclusion of a
nonexchange interaction is established The role of dipole interaction in the magnetic helix
orientation is elucidated. €999 American Institute of Physid$€1063-777X99)00502-2

Let us illustrate the general results obtained in Ref. 1 bysymmetrization of the basic sets is impliéqg. (19) in
an example in order to elucidate the problems emerging ifRRef. 3.
the method of induced representations applied for describing We use the information on induced representatioR$
the energy spectrum and analyze a noncommensurate mggresented in Ref. 3. In the exchange approximation, we must
netic structure on the basis of Refs. 1-3 as well as our earliarse representations induced by unit representatidnsf the

publications(the list of these works is given in Ref).3Ne
proposed a rule for concordance of basic veci@¥) of
irreducible corepresentatiolklCR) at symmetric points, ob-

group G(1,0). That is, I'1—-T*+T" +7% 3 for
ko,K1,kqg, respectively. If we are speaking of all interactions
(magnetic spectruipwe must induce all IR of th&(1,0)

tained and analyzed the coefficients of invariant combinagroup according to which the components of the magnetic
tions (IC), elucidated the role of dipole interaction, and in- moment of an atom in thel,0) position are transformed. For
troduced the concept of energy spectrum “smoothing.” Thethe Z-component, we hav& 7—T3+T°, 72+ 73, t*. For
MnO, crystal was chosen, among other things, to compareomponents in th&Y-plane,I'3—T®, °, t! [5—-T°, °,

the method proposed by us with the approach developed k.

Dzyaloshinskii* The results differ significantly. In Ref. 4,

Table | is the occurrence taBldivided into two parts for

they are based on an error of fundamental nature: the authexchange and magnetic representati@hse lines containing
attributed the existence of an incommensurate structure tonly zeros are omitted; numbers of IR are given according to
the Lifshitz invariant which in fact is equal to zero at the Ref. 3.

point k¢ characterizing the helix.

In order to avoid misunderstanding, and going slightly

In the following analysis, the information and notations ahead, we make the following remark. Not the unit vecgrs

from Refs. 1-3 are used.

and e , but the unit vectorse, ande, directed along the

1. We give information about the crystal and reduce rep+otational axes 3 andh,g are transformed according to the
resentations to the form required for calculations. The FeiR I'3 andI'5. It appears at first sight that the evolution of

dorov group isG=D}#=P4,/mnm and Mn atoms occupy
in the zeroth cell the positiond,0) and(2,0) with the coor-
dinatesr,=(0,r,7/2) andr,=(7,0,37/2). We consider vec-
tors(point9 ko=0, k;=(0,0k) andk,9=bs/2 and denote by
T, 7, andt the irreducible representatiorifR) associated
with them and byD, &, andd the ICR. Since all the vectors
listed above contain onlg-components, we omit in the fur-
ther analysis theX- and Y-components of vectork and
translationsa in elementsgg= (a/h). The main elements of
groupG areh; and (0,07/h;), wherei=1,...4,37,..,40 and
j=13,...,16,25,.,28. Thdocal groupG(1,0)= mmmof the
first  position contains elements g; with i
=1,4,37,40, 13,16, 25, 28. Thé(k;) group contains rota-

the BV during motion from poink, to pointk,g must occur

in two ways:(1) BV of IR T°-BV of IR 7°—BV of IR t?,
and(2) BV of IR T°-BV of IR °—BV of IR t2. Supply-

ing IR T° and 7° with the additional superscripts 1 and 2, we
should write these evolutions in the forf™— r°1—t!;
T92- 752t2, and the problem on evolution of basic sets
would be solved unambiguously. However, such arguments
(which unfortunately appear sometimes in the literatare
erroneous for the following reason. A mixed second-order IC
containing magnetic symmetrized coordinatebik) exists

for the BV of two identical IR [formula (1) from Ref. 2]

on the entirek, line (except the single poirk;g) irrespective

of the choice of the basic sets for these two 4R Actual

tions with numbers 1, 14, 4, 15, 26, 37, 27, and 40, andasic sets on thk, line are determined not from symmetry
G(kg)=G(kg)=G. All IR considered below generate ICR considerations, but through the solution of a secular equation
of the a type. We speak of an ICR when antiunitary by reducing the quadratic form to the sum of squares. The

1063-777X/99/25(2)/7/$15.00
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TABLE I.

T 1 7 3 T 3 5 9 1 2 4

1 1 0 1 2 1 0 0 0 0 1

4 0 1 1 3 0 1 0 0 0 1
5 (0] 0 1 1 1 0

mixing of the basic sets of two identical IR starts at the point ~ We shall calculate the magnetic energy spectrum by us-
ko, proceeds continuously along tke line, and it is only at  ing the method developed in Ref. 2. Let us recall its basic
the pointk,q that the basic sets are determined from theconcepts. The magnetic density can be written in the follow-
requirement on concordance of the basic sets at this point. limg three forms:
any problem on the energy spectriefectron, phonon, mag-
netic, or exciton of t_his type, c_alculations_ are control!ed at M(r)=> u(apa)e,e(pa)=>, u(aFjik)e,o(Fjik)
the concordance points of basic sets, which is especially im-
portant in approximate calculations.

We believe that the proposed method can be used by =2 m(Fjik)¥(Fjik), (1)
readers for solving other problems also. For this reason, we
present the required minimum of tabulated data, the more soherea=x,y,z; e, are magnetic unit vectorsg, is the num-
that the information given in Ref. 3 should be partially modi- ber of a position in the unit cell, ang(pa) the position
fied. First we transform ICR matrices. We proceed from ICRfunction localized in the positionp(a). The second sum is
tables T147, T119, and T159 from Ref. 3 for the poikgs  the expansion oM(r) in the ICR basise contained in the
k,, and k9. The two-dimensional matriced in these transposition corepresentatiéh=1(I'1). In this caseF is

tables are replaced by the matrices the class of equivalencghe number of ICR in their com-
e . N plete tablg, j the number of the ICR clags in P, andi the
AnM(hA,,  AyM(Kg)A, (M=D,s.d), number of the basic vector of the small ICR of t&€k)

whereK is the complex conjugation operator. We have twodroup. The summation is carried out over all possible values
goals. First, we reduc@® and 7° to the real-valued form of indicesF,j,i whose ranges are determined by the compo-
(this is not a necessary transformation, but it facilitates comsition of P. In the absence of limitations of any kind, i.e., for
putations. Secondwhich is of primary importandewe ob- ~ @n arbitrary vectoM(r), .the .second and third sums involve
tain the reduced form for limitationg®] andd*| of ICR 3 all vectorsk from the Brillouin zone. However, in our prob-

~a . . lem on the incommensurate structuehich will be some-
4
andd™ imposed on the subgroup(k,) in accordance with times referred to simply as a helical strucfyrenly two

the recommendations given in Ref. 1. The matridésand vectors(k and —k) appear in the above-mentioned sums. In
d? are transformed in order that the limitations of these ICRthe third sumM (r) is not decomposed into its components,
imposed orG(k;) coincide with the ICR matrice8®. New  (Fjlk) are the BV of the magnetic corepresentatidp,
ICR matrices for generating elements and unitary matices =P XV, the unit vectors, being transformed according to
ar given in Table [IV2y,=1, v2y,=exp(n/4). Table Il V. The set of indice§,j,i in the third sum is determined by
contains the rules of positions transformatigonly the the composition of the corepresentatibp,=I(I'm), where
Z-components are indicatedThese tables are also required I'm is the corepresentation of the local gro@p1,0) accord-
for constructing BV and for determining the relations be-ing to which the unit vectors, are transformed. In the

tween constant®d of the exchange interaction. crystal under investigationI'm=T3+I'5+17. In the
TABLE II.
his hae has Kgas Aq
&, T° 0 1) (1 0) (1 0) (1 0) (1 —i)
(—1 0 0 -1 0 1 0 1 LCEI
d ( 0 1) (1 o) 0 i) (1 0) ( 1
-1 0 0 -1 (. 0 0 1 Mo
d? ( 0 1) (1 0) (o —i) (1 0) (1 i )
-1 0 0 -1 -i 0 0 1 nl
¢ 1 0) (1 0) (o —i) (—i 0) (1 o)
(o -1 0 -1 -i 0 0 i 0 i
d* 1 0) (—1 0) (o —i) (—i o) (—i 0
(o -1 0 1 -i 0 0 i 0 1)
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TABLE III.

p 91,4,37,40 914,15,26,27 92,3,38,39 913,16,25,28
1 ry ry r,—ag ry

2 r, ri+ag ri—ag r,—ag

subsequent analysis, the cadésxy=I'3+I'5 andI'mz

=I'7 are considered separately. The former case corr
sponds to the densiti(r)L Z, while the second corre-

sponds taM (r)IIZ.
A transition from one some to another (h) is carried
out through the relations

e(pk)=n"te(p)> ¢(pa)expik-a),

a(Fjik)=2 Rs(p/Fji)e(pk), )
¢(apk)=e,¢(pk),

Y(Fjik)=2 Roy(ap/Fji)y(apk), 3)
&(p)=expik-[(r(p,0) — ay/2)], (@)

where ag is the translation in an antiunitary elemeag

=Kgo=K(ag/hg). Henceforth, we pugy=g,s. Owing to

the factore, the matricesR; and R,; are analytically inde-
pendent of the vectdk.

The quantitiesu(apa) can be referred to as local mag-

netic coordinates, and the quantitigéaF ji k) andm(Fjik)
can be regarded as symmetrizedM{r) contains only the
basic vectorsy with fixed values ofr andK, the energy has
the form

1
H(FK)=§2 e(ji/j i k)m(Fjik)*m(Fj'i"k), ©)
e(jilj'H=e(j1/'1)

=2 D(apl/a’p’)Ry(aplj1)* Ry(a’'p'lj'1),

(6)

D(...)=8(p)*e(p) 2 P(apala’p’0)exp—ik-a), (7)
¢=¢", D=D", D(—k)=D(k)*,

e(jilj'i"y=0 for i#i’. (8)

In the exchange approximation, i.e., for=a’,

O(apalap’a’)=¢p(pa/p’a’) we have

1
He(FK)=5 2 <pe<11/j'1>2i p(aFjik)* u(aFjik),
(9)

¢e(-.)=2 De(p/p")Ra(P/j1)*Ra(p’/j'1),  (10)
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De(..)=e(p)*e(p’) X, d(pa/p’0)exp(—ik-a). (11)

We assume that the magnetic phase transition is associ-
ated with a certain single stir and one equivalence claBs
Having determined the values of the second sumg9jn
through the minimization of thermodynamic potential, we
must refine the result by including nonexchange interactions.

2. Let us consider our specific case. The functions
egg(pk) are defined as

e(1k)=n"1>, o(lajexpiik-a),

e(2k)=n"1u> ¢(2a)expik-a),

wheree(1)=1, (2)=u=explk?). The BV ¢'(Fjik) of
the IR 7t and 7* can be obtained by the formulas

(12

@' (11K)~ >, t%(g)5g¢(1k),

@' (41K)~ >, t%(9)59¢(1k),

wherege G(kqg), F=1 and 4,j =i=1. We use the relation
ge(pa)=e¢[g(rp+a)]. After antiunitary symmetrization
and normalization, we arrive at the BV of ICR and 5*:

V2(111k) = ¢(2k) + ¢(1k),
V2p(411K) = o(2K) — ¢(1K). (14)

These relations lead to the following value of the maRix

(13

11 -1
R3(p/FJ|;k)=§ 1 1]

Formulas(13) contained our proposition concerning in-
duces representations. That is, we propose that the BV of IR
and ICR be constructed at a nonsymmetric point on the basis
of exactly the same rules as those used for constructing the
BV of IR and ICR at a symmetric point. In this case, the
compatibility relations should be taken into accoueee
Table ). This leads to concordance of basic sets and to a
correct physical pattern. The specific rulesatricesR) can
in general be different for neighborhoods of the poikgs
andkg.

Using formulas(17)—(19), we obtain the exchange en-
ergy branches from Ref. 2. In our cage;j'=1 andi=i’
=1 so that the first sum ifl7) is reduced to a single term.
The second sum over=Xx,y,z written in Ref. 2 will be
denoted byc,c} for F=1 andc,c; for F=4. Finally, we
obtain

He(1K)=@1C1CT,  He(4K)=p4CaCy (15
@14= >, ®(1la/10)cosk-a+ d(2a/10)cosk-(a
+ay/2). (16)

It should be recalled tha®(pa/p’0) is the magnitude of
exchange interaction between atoms in positiong) and
(p',0). Here, we use the relations
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d(pa/p’a’)=d(p’'a'/pa), Naturally, a smooth variation of the helicity parameter can
also take place upon the variation of external parameters. It
O(rptalry+a’)=o[g(rp+a)/g(ry+a’)]. (17 turns out that the situation is determined by the value® of
Let us analyze relationd5) and(16). The functionsp, ~ @lmost completely. . _ o
and ¢, of the vectork are the branches of the energy spec- It should be noted that, in order to obtain the helicity
trum, and hence their dependencekogan be shown graphi- Parameterks, we must actually minimize not energy, but
cally by specifying certain values of the constasits thermodynamic potential. This formally means that we must

a. 1(Ky0) = @4(k10), i.€., two spectral branches intersect at least minimize the expression containing high-order IC. In
at the pointk,o. This is a visual illustration of compatibility 1€ €xchange approximation under investigation, we must

relations. Besides, it can be seen that the value of energy §P€aK of IC composed of the quantities (or c,) written in
ko is determined only by the interaction between atoms in4). Constructing IC according to the algorithm adopted here,

positions(1,a). we obtain t.he coeﬁicignts of IC_in the form of a sum oeer
b. The starK , contains two raysk, and—k; . It can be of expressions containing cosinéand probably_ singsof
verified that the following equalities hold: k-a andk-(a+ay/2). The problem becomes virtually un-
solvable. However, the magnetic moments of atoms at tem-
#(111,-Ky9) = — (411K, peratures much lower than the magnetic ordering tempera-

LN ture are close to possible limiting values, and we can omit
(411~ kie) =~ (111ky9). the minimization inc. The role of high-order IC is formally

These equalities clarify the result obtained in Ref. 1: a lineareduced to a renormalization of the quantitiesn the sum

dependence between the BV of completg(lBR) in contact  (16), which is more significant for large vectoes Conse-

is observed at symmetric points. guently, an additional tendency towards a change in the vec-
c. It follows from (15) and (16) that tor ks appears below the magnetic ordering temperature. This
P P circumstance can probably explain the fact that a helix ap-
ﬁ%(ko) = %%(ko) =0, pears in many crystals below the temperature of phase tran-

sition from the paramagnetic to the magnetic state.

P P f. We can assume in principle that the curygsand ¢,

—¢1(Ki9) = — — @a(Kk1) #0. (18) intersect. consequences of this effect can be easily found.

dk ok 3. Let us consider the common magnetic spectrum. The
The two branches have extrema at the pijtbut there are  magneticXY-density on thek; line is transformed according
not extrema at the poirk,g, i.e., a magnetic structure char- to ICR 6°* and 6°2. Their BV are linear combinations of the
acterized by the vectdr;q cannot exist. This statement and functions
the fact that there is no interaction between atoms in posi-

tions (1,a) and (2a’) in ¢;(kie) and @4(kyg) are closely e(x1)=¢eg(1k), @(X2)=e(2k),
related. This aspect, however, has not been investigated by
us. ey =ee(1k), o¢(y2)=¢p(2K). (19

d. The existence of a helical structure is determined by
the values of quantitie® (pa/p’0), and a possible magnetic It is expedient to choose the linear combinations at the point
structure in the exchange approximation is described eithdt,;g and the pointks characterizing the helix in different
by the ICR &, or the ICR 6% but not by these two ICR ways.
simultaneously. Thé' helix degenerates to ferromagnetism For the pointk,9, we require the concordance of basic
for k;=ko and will be henceforth referred to as ferromag- sets. Let the BV of the ICR®! be transformed &4 into the
netic. Similarly, thes* helix will be referred to as antiferro- BV of the ICR d*, while the BV of the ICR&%? be trans-
magnetic since the equality(1,8)=—(2,a’) holds for formed into the BV of the ICRI2. We proceed as follows.
ki=kp.

e. We assume for definiteness that<<¢, in the entire
range of the vectok, except the poink,q. If we take into
account a small number of positions (f©6), the ¢; curve
may have no minimum fok>0. The absence of a minimum
at the pointk,q does not indicate at all the existence of a
helix. The existence of a helix is a consequence of a com-
paratively strong interaction of atoms separated by a Iarg?z)
distance. In the case of several minima, the absolute mini*
mum corresponds to a helix. In some cases, an absolute
minimum exists at a certain poift;, while a relative mini- It should be noted that since we introduced a faetgy)
mum is observed at another poif, at a certain tempera- into formula(2) in Ref. 2, the elements of the matrik are
ture. At another temperature, however, the situation can bpist numbers and not functions of the veckorThese num-
reverse. Accordingly, we can speak of the jumpwise variabers must satisfy only two requiremenk:is a unitary ma-
tion of the parametek, of the helix, a first-order phase tran- trix, and the matrixR ensures a transition to the BV of cor-
sition, metastable states, domain helical structure, etaesponding ICR.

(1) We apply the operator projecting onto the space of the
ICR d* to a function from(19) at k;=k;9. We use the
matricesd® from Table Il and carry out summation over
the basic elements of the growp(kig). The obtained
basis vectors are subjected to antiunitary symmetrization
and normalization. The BV for the ICB? is determined

in a similar way.

The obtained matriR,,(ap/Fji;k,o) is applied directly

for writing the BV for the ICR5° and 6°2



Low Temp. Phys. 25 (2), February 1999 O. V. Kovalev 119

We can write the BV of the ICR®! and 6° concordant  shift in the energy levels. The actual basic sets of the 8R

at kg in the form and 6°2 corresponding to the roobs; and\ , differ insignifi-
cantly from the basic set@2) and (23).
2(51D)19= (x1) + @(x2) — @(y1) + 0(y2), The above inequality is violated only in the vicinity of
2(512) 1= o(x1)— @(x2) — o(y1) — o(y2), (20) the pointk,q as well as the points at which the branchkgs
and ¢, intersect. In these regions, nonexchange interaction
21(521) 19= o(X1) + 0(Xx2) + o(y1) — @(y2), leads to a peculiar effect of energy level “smoothing” and to
a considerable rearrangement of basic sets of ICR.
24(522) 19= ¢(X2) — p(X1) — @(y1) — (y2). (21 Choosing(20) and (21), we have
The choice concordant basic sets has an important peculiar-
ity. Since the limiting BV of the ICR5°! and 6°2 carry out 0112 2 [P(x1a/x10) ¥ D(yla/x10)]cosk-a, (26)

the nonequivalent ICRI' and d?, the coefficient of the
mixed IC at the poink,9 must vanish. If, however, we take
discordant basic sets, this coefficient does not vanish, and we
must solve a secular equation in order to obtain spectral
branches at the poirit;q.

We choose the basic sets in the neighborhoods of the

P10= @0 = >, ®(x2a/x10)cosk - (a+as/2). 27)

If we choose(22) and(23), we can write

pointsk, andk, in accordance with the direct products! @110~ 2 P(x1a/x10)cosk- a* P (x2a/x10)

=rtx V! and 2= "X V!, whereV! is the representations

according to whicte, ande, are transformed: X cosk- (atag/2), (28)
V2U(51D = (x1)+ ¢(x2), ol=gh= > d(yla/x10)cosk-a. 29
V24(512 = —o(yl)— ¢(y2); (22)

We have used the following relations:
V2¢(521) = p(y2) — p(y1),

V2i4(522) = — p(Xx2) + ¢(X1). (23

(I)(a,rp+a/a’,rp, ,+a’)

=H(h)ﬁaH(h)ﬁ,a,d)[,B,g(rp-i-a)/,B',

We ensured that the matrices of ICR have the same form ra 30
as in Table Il. g(rp+a’)l, (30

Naturally, the result of calculation of the energy spec-  ®(apa/a’p’a’)=®(a’'p’a’/apa), (31)
trum does not depend on the choice of the basic sets for the _ _ _ » _
ICR 6% and 652 Let us find out why the choice d22) and whereH(h) is the matrix of rotation oh. Condition(31) is
(23) is preferable in certain cases. We shall consider th&YPothetical. _
general formulag12)—(15) from Ref. 2. Since the vectde It foII.ows from express,l.ons,(26)—(25_)) that ¢5(ky
appears in the factor ex(r) in all formulas, a transition = K19 =05 Na# X\ for ky=kiq; ¢1, contains only nonex-
from the vectork to the vector—k is equivalent to complex C€hange interactions. o
conjugation. In the given case, the star contains only the Ve can verify that the derivatives of the roatg and\,

vectorsk, and —k; . We write the expression for the energy With respect td vanish not only at the poirko, but also at

H,, associated with th& Y-density in the form the pointkyg. This is the effect of “smoothing’{cf. (18)].
Let us now consider th&-density. On the lind,, it can
Hyy= @11 111 @19 12 @210 211 @24 22, (24 be expanded in the BV of the ICR? and &°. The basis
vectors of the latter ICR are given by
ei=¢(1h'D), =2 mGik*m(jik). (25 o(2D)~ e o(2K) + p(1K)],

The actual spectral branches correspond to the fopts (3D ~e p(2k) — (1K) ].

gzge)‘ d2tgftrfzesjricg:irclsg:gl?g ti?sp\?vzgn?hévgngclzei-of tI:é;he limiting values of these vectors are transformed at the
] : : _ oint ko according to the ICRD® andD®, respectively, and
ICR 6°! and 6°? belonging to the roots ; and\ , for a given 0 9 P y

value ofk; are established. If we choo$22) and(23), the the Z-density generates two energy levels:

coefficients¢q, and ¢,; contain only nonexchange interac- Ho,=@osn, Ha,=@sd3, i,=m(21D)*m(211),

tions, while the coefficientsp,; and ¢,, also include ex- )

change interactions. Consequently, for the phipas well as i3=m(31)*m(31)). (32
the pointskg corresponding to the helix we can write The quantitiesg,, and @3, can be obtained by a formal

replacement of exchange constants by magnetic constants in
(16). In order to avoid misunderstanding, we note that the
If we assume for definiteness tha;<¢,, andA;<\,, we  constantsb(apa/a’p’a’) always contain exchange interac-
obtain \;~¢; and A,~ ¢, at the above-mentioned points. tions for a=a’ and do not contain them fa## «’. The

The inclusion of nonexchange energy leads to only a slighlevels ¢, and ¢, are slightly shifted relative to the levels

|11~ @20 =01~ @4 > 01 -
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¢, and ¢4, respectively. The branches,, and ¢3, can in- The “smoothing” effect must also be observed for other
tersect; they come in contact at the polaly and satisfy  energy spectra, e.g., in the electron spectrum upon a transi-
inequalities similar tq18). tion from the zero-spin theory to the theory of an electron

Formulas(26)—(28) and(32) correspond to the most ex- with a spin. The effect was noted by other authors in special
act approach but contain the quantitidsthat are in fact cases. Itis assumed, for example, that in the first approxima-
unknown. In addition, the division of interactions into ex- tion the levels belonging to identical ICR intersect. In the
change and nonexchange interactions cannot be made unamext approximation, mixed IC are introduced, and the inter-
biguously. section is eliminated. This effect is attributed to symmetry,

4. We can draw a conclusion concerning the orientatiomamely, it takes place if energy levels belong to nonequiva-
of the helix under the assumption that a honexchange intetent ICR in the first approximation and to equivalent ICR in
action can be mainly reduced to the dipole interaction. Fothe next approximation.
this purpose, we calculate the following four quantities: 6. The componentsu(apa) of atomic magnetic mo-

4 @1)s Pax(@1), @aea) andeg(e4). The first and third  ments are defined by formul&8) from Ref. 2. The sun{8)
guantities can be determined frofh6) by substituting the contains magnetic symmetrized coordinated-ji k) which
quantityR~5(R?—R?) for the quantitiesP appearing in this must be determined in the course of minimization of the
formula, whereR is the vector between positions. The quan-energy expansion in IC. The coefficients of IC cannot be
tities ogy(®1) and gq4,(@4) can be calculated fronf28) by  calculated, and it is expedient to treat them as parameters.
substitutingR ~3(R?— Ri) for @, and oy,(¢1) and eyy(¢1) We shall assume that these parameters satisfy the conditions
and ¢4,(@4), e4x(®4) are the corrections to the levels; under which an incommensurate structure with the vector
and ¢,, respectively. The absolute values of these correck, =Kk is realized. We shall consider the case of a magnetic
tions are immaterial for our problem, and only their signsXY density described by the ICB® (i.e., eithers®! or 5°?)

and relative values for different points on the likgplay an  and try to gain maximum information on atomic magnetic
important role. The periods of the crystal lattice aremoments.

a=4.44A anda;=c=2.89A. We took into account 428 In our caseF=5,j=1 or 2, andi=1,2. We put

positions arranged over a sphere of radits4 A around the ) )

position (1,0) (we are not sure, however, that this number is ~ M(3] 1k)=my=ccostexpiv),

sufficieny. We do not describe here the results and only for-
mulate some conclusions.

If o4<¢;, and the helix is due to the minimum of the G N _ o
level 9044. We1 have ggy( @) < ea¢s) almost everywhere. MS]E, ~k)=mi—k=gosm(Sji k), - c=0. 33
Consequently, the magnetic moments of atoms rotate in thghese four coordinates are transformed according to the ma-
XY plane for any value ok;. The helix orientation is also trices of the ICRA of the groupG+KG (we assume that the
the same wherp; < ¢, andks7>50°. Forg;<¢, andkst  small ICR 6° leads to the complete ICR®). The invariant
<50°, we havepq,(¢1)> ¢4 ¢1). In this case, it is diffi-  combinations of théNth order can be obtained by applying
cult to determine the type of the helix. We are probablythe operator of projection onto the unit representation of the
dealing with a cycloidal elliptical helix, and the rotational group to the productrfi;)St(m;_,)%2(my) 1 (m,_,)'. The
axes of magnetic moments lie in teY plane. In such un-  obtained expression is subjected to antiunitary symmetriza-
certain cases, we must resort to high-order IC. We shall nafion according to expressiofl9) from Ref. 3. This gives
consider this problem here.

5. The spectrum “smoothing” effect lies in the follow- In=cN(cos1™%2 gsin1*'2 g
ing. It should be recalled that;(k,g) = ¢4(k4g), the deriva- +t S ts
tives of the levels\; and\, with reZpect tok S\a/anish atk,g, +cost iz 6Sint "% )cogs, — s)v, (34
and Ny~¢;, Ny~¢, away from the pointk;g. Thus, where s;+s,+t;+t,=N; s;+t;=S,+t,; s,t;=0,1,...;
N17# N\, at the pointkyg. The upper of thex curves is dis- N s +s,,t;+t, are even positive numbers, angd= v,
placed upwards ned;q and has a minimum at this point. —,, . Giving the numbers; andt; possible values, we ob-
The other curve is displaced downwards and has a peak @in all IC of the ordem.
kio (We mean deviations from the corresponding curges If the equalitiess; +s,=0 ort;+t,=0 are satisfied, we
and ¢,). It follows from (24) and(27) that atk,o we have  can factor out sin@to a certain even power i(84) and are

left with the sum cds9+sin @ in the parentheses, whekés

IN1—No| = |@ao— @11 = >, ®(yla/x10)coskyg a. an even number. If, however, one of the above equalities

holds, the parentheses contain the sum@assin 6. On the

If the curvesg, and ¢, intersect at a certain poikt;, a  other hand, ifL is even, the sum cb®+sin" ¢ is a polyno-
similar “smoothing” is observed at this point. The true en- mial in sirf26.
ergy levelsh; and\, do not intersect at the poit;, but It follows from the above considerations that the mini-
simply converge. This point is a point of zero inclination. It mization of energy expansion leads to two series of particu-
should be noted that we hade(ypa/xp’0)=0 for a dipole lar (steady-statesolutions:
interaction in MnQ. Among other things, this means that
the existence of the effect and its intensity are determined by o= mm ™ m

the adopted model. 775N, v=5n and 0=3

m(5j2;k)=my=csinfexpiv,),

ns. (35
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Let us determine the type of magnetic density. The sum=£0, #(4...)=0, or ¢(1...)=0, (4...)#0. Consequently,
mation in formula(8) from Ref. 2 is carried out over the although the invariank, exists, it has nothing to do with an
vectorsk and —k. The matrixR,; is chosen in accordance incommensurate structure. It was explained in iteh@nde
with (22) and(23) by using definitiong33). This gives that the realization of magnetic incommensurate structures
and transitions between them are determined by the values of
the quantitiesb in formula (16). The method used in Ref. 4
u(x2a)~ *=cosdcogk-at+kr+wv,), is probably justified in the case when the I@Rt a symme-
try point is concordantcompatible only with a single ICR
of the same dimensionality at a nonsymmetric point. If the
w(y2a)~—singcogk-a+kr+vy), (36) limitation imposed by an ICR fronf® at a symmetric point
can be decomposed, for example, into two IGRnd &’ for
. s i a nonsymmetric point, it is proposed in Ref. 4 that the BV of
lower signs to the ICRA®“ Steady-state solutions are ob- tne |CR 5§ and &' should be determined according to the

tained as a result of substitution @85) into (36). FOr  peryrhation theory by expanding them into a series in the
k=ks, a mixed IC exists, and its coefficient is of the order of yifrerences= ko—Kks. But, first, it is incorrect to speak of a

Fhe rgtio of the nonexchange energy to the exchange energyower series expansion sfor sums of the typé2). Second,
i.e., is very small. Nevertheless, the actual magnetic density,ch an expansion requires also the fulfillment of the in-
must be equal to the corresponding superposition of dens'“ee?quality|x|<|b|. This inequality does not hold for experi-

H 51 51
described by the ICR>"andA™. _ mentally established helical structurée fact, these struc-
In addition to steady-state solutions, solutions of a Morg,res are not long-periodicThe branches of the exchange
general type are also possible, for which conditi@88) do  gpectrum corresponding tandé’ are separated at the point
not hold, and the values of the quantitiésvy, andv, de- ¢ py an interval of the order of exchange energy. If the ICR

pend strongly on extrinsic parameters. In our opinion, thésanq 5’ are nonequivalent, the mixed IC is of the relativistic
corresponding structures can be established experimentally;+re and can be neglected. If the IGRNd &' are equiva-

only when they are intermediate between steady-state solysnt the mixed IC is of the exchange type and plays an

tions. _ . , important (sometimes decisiverole in the formation of an
We omit an analysis of the magng_f[edepsny aswellas hcommensurate structufé.

the cases when botKY- and Z-densities differ from zero

simultaneously.

~ Incommensurate magnetic structures in Mi@re stud- 15 v, kovalev, Fiz. Nizk. Temp25, 160 (1999 [Low Temp. Phys25,

ied phenomenologically in Ref. 5. The method worked out in 115(1999].

Ref. 5 is also developed here: the determination of the form*O. V. Kovalev, Fiz. (Tverg-] TeldLeningrad 32, 2381(1990 [Sov. Phys.

- “ C Solid State32, 1382(1990)].

.Of CoeffIC.IentS of IC, spectrum smqothmg, etc. In Ref. 5 30. V. Kovalev, Representations of the Crystallographic Space Groups

it was pom_teq outprobably, for the first t|m)°.t_hat_the_ hel|>.< Gordon and Breach Science Puti993.

has an elliptic shape and proposed that Lifshitz invariants’l. E. Dzyaloshinskii, Zh. Esp. Teor. Fiz.46, 1420 (1964 [Sov. Phys.

have almost nothing to do with the possibility of the emer- JETP19, 960(1964]. _
gence of a helical structure. 0. V. Kovalev, Fiz. Tverd. TeldLeningrad 7, 103 (1965 [Sov. Phys.

. . . . Solid State7, 77 (1965].
7. The magnetic helical structure in Mp@as described  6o. v. kovalev, Fiz. Tverd. TeldLeningrad 36, 2074(1994 [Phys. Solid

by Dzyaloshinskit on the basis of the Lifshitz invariant State36, 1132(1994].

I.= ¢ Vipo— Vi, . It was noted above that; and, are 0. V. Kovalev, Fiz. Tverd. TeldLeningrad 37, 3382(1995 [Phys. Solid
the limiting values of the basis vectoggl..) and y{4..) of State37, 1859(1999).

the ICR &' and 5*. At the pointks, we have eithegs(1...)  Translated by R. S. Wadhwa

m(xla)~cosédcogk-atvy),

m(yla)~Fsinfcogk-a+v,),

where the upper signs correspond to the IGR and the
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A new type of quantum size effect in metal-semiconductor superlattices is predicted. Giant
oscillations of the transverse tunnel conductivity arise if size quantization of the electron spectrum
in the metal layers takes place. This effect is due to the fact that the probability of metal

electron tunneling through a semiconductor layer depends sharply on the electron incidence angle.
The oscillations have been found to exist even in disordered systems, provided the electrons

in metal layers undergo low-angle scattering on imperfections.1999 American Institute of
Physics[S1063-777X99)00602-7

Recently new unusual oscillation effects have beering to this sharp dependence Wfon the incidence angle of
discovered™ on metal-semiconductor Mo/Si superlattices a tunneling electrong, the probabilityW experiences sharp
(SL) with a constant thickness of Si layexd,, and a vari- outbursts as quantized electron energies in the metal pass
able thickness of the metal oneh,. SL in-plane resistivity, through the Fermi level with d,, variation. This effect re-
pi, as well as superconducting characteris{ibg transition  minds in some sense so-called giant resonance oscillations of
temperatureT ., the transverse critical magnetic field deriva- the ultrasonic absorption in met@isith the essential differ-
tive, dH., /dT]| 7.» and the coupling strengtheveal oscillat-  ence that instead of a small electron group singled out by the
ing periodic dependence ody,. All oscillations are well resonance condition there is one determined by the sharpness
pronounced, and in the case of the coupling strength thegf the functionW(6) mentioned. It is this group that partici-
reach a giant amplitude. Of even greater importance is thgates in the tunnel current. It is obvious that such an effect
fact that the oscillation effects are inherent onlyntaltiay-  can lead to the giant oscillations of the tunnel current.
ers. Three layer samples, Si/Mo/Si, have not revealed any At first sight, the effect described seems to be irrelevant
oscillations® This fact alone suggests that the oscillationsto the experiments mentioned above because of a rather
cannot be explained in simple terms of the conventionabtrong disorder in metal layers. Nevertheless we shall show
quantum size effect,though their period ind,, does not that, for the small group of electrons we are interested in, the
conflict with a value predicted by the size-quantizationsize quantization results in an enhancement of their lifetime
theory for metal single films. in d,,/a>1 times(a is the interatomic distance in mektals

In this note we would like to discuss an anisotropic tun-will be shown, such an enhancement is sufficient to provide
neling through SL semiconductor layers as a possible explagiant oscillations of the tunnel current.
nation of the above unusual size effects. To demonstrate the To show this we consider a periodic one-dimensional
possibility of such effects we shall consider here the transsystem comprised of the alternating quantum weltsduct-
verse SL conductivity which originates from the interlayering layers and the tunnel barrierésemiconductor layeys
tunneling of electrons. For simplicity we shall assume further that the electron dis-

The idea is based on the fact that the probability of thepersion law is quadratic and isotropic.
tunneling of metal electrons through a semiconducting inter-  As follows from general quantum mechanics consider-
layer, W, differs from zero only for those with a practically ations,W as a function of the in-plane momentum modulus,
normal incidence on an interface metal-semiconductor. Owp;, and the electron energ¥ (which is considered to be

1063-777X/99/25(2)/4/$15.00 122 © 1999 American Institute of Physics
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FIG. 1. The size-quantization spectrum in a metal layer. The bold dots on

the p;-axis arep,, (quantized values ob, at E=Ep).

close to the Fermi energyg) can be represented in the
form

2d:\/(8p)2+2my(E—Eg) + p?
W:Aexp{_ sV(3p) ﬁs< DRy
wheredg is the thickness of semiconductor layers,
Sp=+2meA, 2

A is a phenomenological parameter which is of order of the
typical energy of the effective tunnel barrier, the constant

ms~m, (Mg is the free electron magsthe form of the pre-
exponential factorA is irrelevant to further consideration.

The A value cannot exceed one-half the semiconductor ga|

Eg, which is, in turn, much less thaBg. In the case of

amorphous semiconductors, which is realized in SL Mo/Si,

there are strong reasons to expect that energy parathéser
even much less thaRy. It is just the smallness ok that
causes the sharp dependencé\bbn the angled or, what is
the same, orp,. Formula (1) shows that the probability
W(p,) reaches its maximum at the normal incidengg (

=0) of an electron on the metal-semiconductor interface
abating to exponentially small values within an interval of

order of Sp<pg=+v2mEg (mis the mass of an electron in
the metal. Such a behavior oWV(p,) is a main point of our
consideration.

Another important scale in momentum space result

Fogel’ et al. 123

make a contribution to SL kinetic characteristics. At finite
but rather smalW the situation is not changed essentially

because the broadening of size-quantization levéE,
~WAE, which is produced by the electron tunneling is

small as compared with the typical distance

AE~#hve/d,, (5)

between nearest termsg is the Fermi velocity. Therefore,
permittedp, values are localized within narrow momentum
intervals that are isolated one from anotktbeir lengths are
«+/W) centered ap,,.

As follows from (1), only thosep, values make the main
contribution to a tunnel current, that meet conditiorp,
< §p. Taking also into account conditiod), one finds that
| depends crucially on the ratio betweé&p and the smallest
of the quantized,, values

dmPe| 7 vz 6
7 [ PF| (6)
Here {...} means the fractional part of a number. gf;,
>ép the tunnel current is negligibly small, while akt,
=<Jp it essentially increases, reaching a maximumpat,
=0. One can easily see frofB) that the monotonic change
in the metal layer thicknesd,, results in oscillations op
between the valup,,,=0 and its maximum value

Pmin=

2mh 1/2

1/2 a
Ap=(d—pp> —Pr
m

0 @

As is seen from the figure, these oscillations arise be-
cause the monotonic changedp, produces successive pas-
sage of size-quantization tern®) through the Fermi level.
Such an oscillatory behavior @, results in giant oscilla-
tions of the transverse current if the following condition

Rakes place:

Ap=dp (83
or, in terms ofd,,:

dp=<a(m/mg)Ec/A. (8b)

In the opposite caseé\ p<< dp, the amplitude of oscillations

is bound to be exponentially small in the parameipfAp.
The criterion(8) of existence of the giant oscillations is not a
rigid restriction. Though the paramet&p is much less than
Pe, it considerably exceeds the typical distantéd,,, be-
tween quantized valugs, [see(4)]. Therefore, the require-

%ent(S) can be fulfilled ad,>a. Certainly, the criteriori8)

from the size quantization in the metal layers. In the isotropiqS not the only one determining appearance of the giant os-
case under consideration the size-quantization electron SPe&iiations Along with it, the common conditions of quantum-

trum in a metal layefin the limit W=0) is a set of terms
En(py) =[(fin/dy)?+ pf1/2m, @3)

wheren is the term number.

It is clear(see Fig. ]1that at zero temperature only quan-

tized p, values(we denote them byp,) which are the roots
of the equation

Ed(p) =Ee (4)

size-effect existence must be fulfilled:

hlT<AE~#vg/dy, 9

T<AE. (10

Hereris the time of electron life in a quantized stalds the
temperature. The latter condition is weaker than the previous
one, and we can assume, for simplicity, that 0.
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At sufficiently large 7 (this statement will be specified ers. One can show that in this intermediate situation the for-
below) the tunnel current may be calculated directly in termsmula(13) holds true with an accuracy of correctiordV®2,
of the multilayer electron spectrum. The latter is a set ofin such a case=#%/I", wherel is the imaginary part of the

minibands mass operator of the one-electron Green function in metal for
=0 «; normal incident electrons.
E(n,p;, 7)) =En(p)) + SE(py,7) (119 In the limiting case
which are size-quantization tern{8) broadened due to fi-
niteness of tunneling probability. This broadening is deter-  #/r>AE (14)
mined by the small correction
2five, (py) collisional broadening destroys not only the minibands but
i — \/V_Vcos(y?’d/ﬁ), (11b also the terms of size quantization in separate metal layer. It
m

is clear that under such conditions the considered oscillation
where & is a new quantum numbeftquasimomentuin effects are absent.
enumerating the stationary states in minibands;, As has been mentioned above, the present work was
=2mE:— p‘z‘/m is the modulus of the transverse velocity stimulated by the experimental observatidn$of the oscil-
of Fermi electron with a givep,, d=ds+d,,. Taking into  lations of kinetic and superconducting parameters on Mo/Si
account that the average transverse velocity in a miniban8Ls. These investigations have been carried out on rather
stationary statey, =JdE(n,p,,2)/d7°, has the form disordered Mo/Si multilayers with mean free path of elec-
o trons which is less thad,,.”® At first sight the observation
v, =2(d/dm)ve, \Wsin(7d/), 12 of the oscillatory behavior is impossible under these condi-
after some calculations carried out in the relaxation time aptions. Here we shall show that in a case of dtjtv-angle
proach we obtain the transverse conductivity,, in the scattering on the imperfections the lifetime of the size-
form quantized electron states for the electron group which is re-
sponsible for the tunnelingp{<p,) can significantly ex-
_ mé’7d 2 2 ceed the typicalr in a metal layer. Such a situation arises
01 =5 357 2 [Pmin(dm) + (9P)7] : : o
T dyMg when the typical scale of a space inhomogenity in Mo layers,
L, is more thara (in the experiment citetl was~ 10a for all
st‘/ 2 2 d,, values. Actually, from the general expression for the
X ex TR Prin(dm) +(6p)“ . (13 .m o 7%/’ 9 p . .
inverse lifetime,7~*(n,p,), of an electron in a given size-
This formula describes the limiting cagep> dp. Here we ~ duantization staten, py), we obtain
have specified the expression for the preexponeAtial (1),
assuming for definiteness that the semiconductor layer ma p ,
be cons%ered as a square-topped barrier. As oneycan s%/el(n'p”)Oc ,E, |<n,p”|V|n’,p”)|25(Eg(p”)—Eg,(pu)).
from the expressiond 3) and(6), the oscillatory dependence Py
o, ond, is a periodic succession of sharp spikes whose
height is of order of the transverse conductivity itself. They
arise whend,,, lies within rather narrow ranges determined
by the relations

(dmpF

(15

HereV=V(r) is a random potential in the metal layeris

the electron radius vector, the line over the matrix element

means the averaging over the random realizatio¥ (o). In

virtue of the fact that the matrix element (h5) is not small

5 only for momenta transferree:%/L, only transitions with
|pn—pPn/|<A/L should be taken into account. As is clear

Just at thesel, values electrons withp,=ppi, tunnel be-  gom our preceding reasoning, the distance between the least
tween adjacent metal layers. Outside these ranges the tunn?)lr; and its nearest neighbor isAp. This value can exceed

ing is weqk. '!'he fprmulailS) also shows that the amplitude z ;| despite the fact thdt<d,,. For this reasorr(n,p,) for
of o, oscillations is the electrons participating in the tunnel transport turns out to

J~(5p/Ap)2<1.

2d bed,,/a>1 times more than the typicalvalue. That is why
~(ﬁ/dmpp)2exp[ - 75513]00. the giant oscillations can indeed arise in rather disordered
multilayers.
Here o is the conductivity of the metal. In summary, we have considered a new quantum oscil-

The expressiorf13) holds true only when the collision lation effect arising in metal/semiconductor multilayers due
broadeningi/7 is much less than the typical miniband width to combination of size quantization in thin metal layers and
SE~WAE. Itis a very rigid restriction. The situation selective tunneling of electrons through the semiconductor

SE<h/r<AE inte_rlayers. It is shown that giant oscillati0n§ @_j appear,

which result from sharpV dependence on an incidence angle
seems to be much more realistic. In such a case the electrafi electron, so that only the electrons belonging to the small
scattering completely destroys quantum coherent interfergroup with the least of quantizgmj values contribute to the
ence in the multilayer system as a whole, but it does notunnel current. Another remarkable feature of the quantum
markedly affect the size quantization in individual metal lay- oscillations described is that the disorder is not so destructive
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Semiclassical quantization condition for magnetic energy levels of electrons in metals
with band-contact lines
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We refine the well-known quantization condition for magnetic energy levels of a semiclassical
electron. The refined condition results in the energy shift of the levels whkrspace

the closed electron orbit links to the band-contact line., surrounds jt This effect is closely
analogous to that of Aharonov—Bohm provided the band-contact line plays the role of

the infinitely thin “solenoid” with the fixed “magnetic flux.” The predicted shift must manifest
itself in oscillation phenomena. @999 American Institute of Physics.
[S1063-777X99)00702-1

It is common knowledge that the degeneracy of electron=const, where is the direction of the magnetic field. In
energy bands in a metal can occur along symmetry axes @he case of closed orbits the quantization condition for mag-
its Brillouin zone. In addition, as was shown by Herrihg, netic energy levels looks like
there are lines of an accidental contact between the bands in
crystals. The term “accidental” means that the degeneracy S(s k) =(2mle[H/fc)(n+ ), @
of electron states is not caused by their symmetry. SuclvhereSis the cross-sectional area of the orbitkirspacen
band-contact lines is likely to exist in many metals. Thisis a large integerr(>>0); vis a constant (& y<1), andeis
statement is easily understood when one takes into accoutiie electron charge. In what follows we shall consider only
Herring’s result obtained for the case of a crystal with athose orbits for which probabilities of intraband and inter-
center of inversion: if there is a point of contact between twoband magnetic breakdowns are negligible. In other words,
energy bands in an axis of symmetry of the Brillouin zone,the orbit under study does not come close to any other tra-
and the interband matrix element of the velocity operator igectory with the samek,, and its shape differs noticeably
nonzero at this point, then a band-contact line has to pasfsom an intersecting one. In this case, according to Ref. 8
through the point. Most metals have a center of inversion(see also Ref. 18 y always has the value
(and only such ones are considered begloMoreover, it is B
known (see, e.g., Ref.)2hat bands in many metals intersect y=172. 2
at points on axes of symmetry. As for the matrix element ofit is this value that is commonly used in describing oscilla-
the velocity operator, the necessary information on it followstion phenomena in metalge.qg., the de Haas—van Alphen
from the irreducible representations of the intersectingeffect, the Shubnikov—de Haas effect, gtdf a magnetic
bands. Simple analysis of literature data shows that the linelsreakdown occursy essentially depends anand k%115
of the accidental contact must exist, for example, in Be, Mgbut, as noted above, we shall not consider this situation.
Zn, Cd, Al and other metalésee Fig. 1a and 1b Strictly In this paper we show that the equality
speaking, any degeneracy of bands along a line of the Bril- —0 3)
louin zone(excluding spin degeneraris lifted by the spin-
orbit interaction. However, if this interaction is weak, the can be valid if the closed electron orbitknspace associated
bands still approach each other, and the energy gap betwesith a certain energy baney(k) surrounds the line of de-
them is small near that line in which the contact of the bandgeneracy of this band with some other one. The above result
would take place if we ignored the interaction. Moreover, thedepends neither on the form ef(k) in the neighborhood of
inclusion of the weak spin-orbit coupling leaves the mag-the orbit nor on the shape and the size of this electron tra-
netic energy levels practically unchangeBor this reason, jectory, and is topological in nature. It is due to the fact that
to elucidate the heart of the matter, we completely neglecthe electron orbit links (see Fig. 1 to the band-contact line
the spin-orbit interaction and spin of an electron in the subwhich is the line of singularities for the Bloch wave func-
sequent discussion. tions. If the linking is absent, Eq2) holds. For the above-

Semiclassical magnetic energy levels of electrons prostated effect to be the case the band-contact line must satisfy
vide the basis for the analysis of many physical phenomenthe only condition: in its immediate vicinity the energies of
in metals®® These levels were studied in a number ofthe intersecting bands separate linearly iask moves away
paperS~1’ It was established that a semiclassical electrorfrom the line. This condition is met for any accidental con-
orbit in the space of wave vectols, is the intersection of the tact between the bands and in the case of degeneracy of the
constant-energy surfaceg=const, with the plane,k, bands along a 3-fold symmetry axis of a crystal.

1063-777X/99/25(2)/4/$15.00 126 © 1999 American Institute of Physics
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Uuy = Uy 5

for anyl. Under this condition the matrix elementg (k) are
real andQ (k) =0.2° Thus, Eq.(4) yieldsMy(k)=0. To con-
sider Mg in the general situation whea,, have arbitrary
phases and do not satisfy conditi@®) let us take the trans-
formation

Ui — Uy = Uy exd i gy (k) ], (6)

where (k) are some regular functions &f andu,, before
the transformation obey Ed5) in a vicinity of the point
concerned. Then

FIG. 1. The schematic sketch of Fermi surfaces for several metals with r_ ;
Voi— Vo= Vo eXdi (¢ — , 7

band-contact lines: the third-band electron “lens” of Zn and @4 the ol ol ol F[ ((’Dl (’DO)] ( )

second-band hole “coronet(“monster”) of Be and Mg (b); the self- r— 0 _

intersecting Fermi surface of graphig®. The band-contact lines are shown 1-0"=0 Vkeo ©®

as the d'ash-dot. lines. Thz_e semiclassical orbits 3 and 4 link to the bandyng we find from Eq(4) that the interband part o, is still
contact lines while the orbits 1 and 2 do not. R
equal to zero while its intraband component becomes nonva-
nishing and depends on the phasg
According to Rotht* y is determined by the formula
Equation(3) is obtainable from the results of Blodft! 1 1 Mq(k)
and Rotht*?2In k space the effective one-band Hamiltonian = é O dxk, (9)
of an electron in a magnetic field can be represented by a 2 2m Jr v, (k)
power series iH.>*?* Two terms of this series suffice to wherel is the closed semiclassical orbitkrspaceri is the
Calculate'y and thus we can use the fO”OWing Hamiltonian: |ength of an inﬁnitesimal e|ement df: v, is the abso'ute
N ° value of the projection of on the plane of the orbit. Taking
H=20(k) + (e/c)HMo(k), into account that the interband partMf, is zero, Eq(9) can
which must be considered as a symmetrized operator, that ibe rearranged as follows:
the components dt always appear symmetrically in it. Here 1 1
k=k—(e/Ac)A(iV,), A(r) is the vector potential foH and 5 75 Qdk, (10
the quantityM (k) is associated with the diagonal matrix r
element of the orbital angular momentum of the electron invheredk=d«[i,XVv]/v, andi, is the unit vector parallel to
the band under studyhis band is designated by subscript 0 H (dk is aligned with the tangent t6 and |dk|=d«). It is
More precisely,M,, is the periodic part o-component of  evident from Eqs(8) and (10) that, in contrast tiM,, the
the above-mentioned element divided by the electron masgneasurable quantity is invariant under transformatio().

The guantityM, falls into the intraband and interband con- It is generally believed tha (andMg) can be made to
stituents: vanish everywhere over the Brillouin zone, and thus
IM[ (0,01 (0 )] =1/2. This is true in the absence of the degeneracy. How-
Mo(k)=[vXQ],+% 2 X—yo', (4 ever, if a line of the contact between the band under study
7o &1(k)—&o(k) and some other one exists, and the energies of the bands

where /), is the interband matrix element of the velocity Separate Iinegrly ik in the vicinity of th.e line, then, gccord-
operator at the poink, v=(1/)V,&o(k), andQ is the pe-  ing to Blount;” () can be made to vanish localfice., in the

riodic part of the coordinate operator: neighborhood of any point that does not lie in the band-
contact ling but this is impossible to attain along the whole
Q(k):if dru(r) Viyo(r). length of a closed patR surrounding the liné* Moreover,
one has
Here the integration is carried out over a unit cell, apdr)
denotes the periodic factor in the Bloch wave function of the 3§P9dk: *m, (11)
bandl:

W (1) = explik- 1)U (1) where the sign in the right-hand side of the equation is de-
ki kIR termined by a direction of the integration. We emphasize that
In the case of interesthe spin-orbit interaction is neglected the integral in Eq(11) does not depend on the shape and the
for a crystal with inversion symmetnyM (k) can be made size of the contouP. This is not surprising, since the equa-
to vanish at any poink of the Brillouin zone. This well- tion
known statement results from the following considerations.
Electron states are invariant under the t?ansformatldn: Vix (k) =0 (12)
=KI, whereK and| are the operators of complex conjuga- holds everywhere out of the band-contact fiA€inally, one
tion and inversion, respectively. Hence, one can take thenore comment needs to be made. In general, the terap 2
phases of Bloch factors in such a way as to fulfil the relatiormust be added to the right-hand side of Et)?® whereq is
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some integer. However it can be shoWwhatq=0 when the determined by a closed trajectoy of the system in the
spin-orbit interaction is taken into accoufBesides, nonzero parameter space and does not depend on details of the tem-
g would modify n and not affecty). poral evolution. In addition, it was obtain@dhat the phase
Now we are able to fing for any mutual arrangement of is equal tos when the trajectoryP surrounds a point of
the semiclassical electron orfiitand the band-contact line. degeneracy of the Hamiltonian. More recently, Zdhas ar-
If T links to this line (see, e.g., orbits 3 and 4 in Fig) 1 gued that Berry’'s results are applicable to an electron mov-
formula (3) follows from Egs.(10) and (11) (note that the ing in a crystal, withk space playing the role of the param-
valuesy=1 andy=0 are equivalent If the linking is ab- eter space, and the above-mentioned phase is described by
sent, a surface with boundalfynecessarily exists which does the integral given in the left-hand side of E4.1). Then Eq.
not intersect the band-contact Iiigfor the surface in the (3) may be interpreted as a manifestation of Berry’s phase. In
case of orbit 1(or 2) we can take a part of the constant- this connection we emphasize that measurementy of
energy one shown in Fig,)1Transforming Eq(10) into the  crystals with band-contact lines offer a way of detecting this
integral over this surface and taking into account Ed), phase in the physics of met&fs.
we arrive at formula(2). Interestingly, Eq.(2) is also ob- The valuey can be experimentally determined through
tained wherl” links to an even number of band-contact linesthe investigation of oscillation effects in metalSince the
(such a situation takes place, e.g., for any central crossneasurement oj is easiest to make for semiclassical orbits
section of the second-band Fermi surface of. Al corresponding to small extremal cross sections of a Fermi
In the cases of Eq$2) and(3) the appropriate sets of the surface, we point out that such orbits exist, e.g., in beryllium,
magnetic energy levels are shifted relative each other. Themagnesium, graphite, and in these metals they link to the
origin of this shift is easy to understand. As discussed aboveégand-contact line¢see Fig. 1 In Be and Mg the accidental
the quantityM, can be made to vanish for any nondegener-contact between the second and third bands occurs in the
ate electron state with a fixed wave veckonn essence, this basal plane of the crystals. H lies, e.g., in this plane too,
is the so-called quenching of orbital angular mom&htaut  Eq. (3) must be valid for the orbits on the “necks” of the
only their periodic parts are quenched in the case of nonlosecond-band hole “coronet(or “monster”). It should be
calized states considered heréhen Eq.(10) must be inter- noted that in Zn and Cd which are akin, in many respects, to
preted as the lack of the quenching for the semiclassical ele®e and Mg the same band-contact line is located in the third-
tron moving round the band-contact line. This gives rise toband electron “lens” and does not link to the semiclassical
the additional magnetic moment of the electron:orbits(therefore, in this casg=1/2). In graphite the degen-

(|e|#/2m* c), wherem* is its cyclotron mass: eracy of two bands takes place along the vertical edge HKH
of the Brillouin zone(i.e., along the 3-fold symmetry ajis
h?(9S\ 4 dx Thus, Eq.(3) is expected to be true for the extremal orbit
m=—|—|=— — . . . . .
2w\de) 27 Jru,’ surrounding the poinK (see orbit 4 in Fig.

In summary, we have shown that in quantization condi-

It is the interaction of this moment witH that leads to the tion (1) yis equal to zero when the appropriate semiclassical
above-mentioned shift of the magnetic energy levels. orbit of an electron links to the band-contact line. This value
The obtained result is closely analogous to thediffers essentially from the conventional one=1/2. Thus,
Aharonov—Bohm effect’! As pointed out by Blourif, the =~ measurements of can provide a possibility of detecting
quantity © is similar to a vector potential for a magnetic band-contact lines in metalgberyllium, magnesium and
field [see Eqs(6) and (8)]. Taking Eqs.(11) and (12) into graphite appear to have considerable promise on this)point
account, we can treat a band-contact line as an infinitely thin
“solenoid” which carries the fixed flux of the “field”[V
X Q]. With this in mind the above-mentioned analogy be-
comes apparent. Although the semiclassical electron moving———
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The behavior of the basis vectors of the complete representation for a nonsymmetric point in the
passage to the limit to a symmetric point is studied. The structure of the limiting
representation and the fact of the emergence of a linear relation between the basis vectors are
established, thus eliminating a number of contradictions. The concept of a limited induced
representation is introduced. The formulas for basis vectors formulated by using this concept are
transformed upon the passage to the limit into the basis vectors of only one irreducible
representation at a symmetric point. The principle that an irreducible representation corresponds
to a single energy level is used. Two versions of the basic vectors are considered: Bloch
functions(electron spectruinand infinite sums over translatiofsmiagnetic, phonon, and exciton
spectra as well as the strong coupling mejhddhe paper is in a certain sense an extension

of the well-known publication by L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Rev.,
50, 58 (1936. © 1999 American Institute of Physid$51063-777X99)00802-9

In their fundamental workon the electron energy spec- (3) A certain IR 7 can be compatible with two IR and
trum of a crystal, Bouckaest all.. pointed out a relationship T?. Consequently, there must be at least two identical IR
between the solutions of the Schinger equation for a cer- 8 with different basis vectors. What are the properties
tain symmetric pointSP ko, and solutions for a neighboring of these bases?

nonsymmetric poink;. The basis vectoré8V) of a small  (4) |f the sum3, 7% contains more than one term, the energy

irreducible representatiofiR) t* of the G(ky;) group are
transformed into the BV of the sular” for the IR 7# of the
G(k,) group in accordance with the equality| =t# for
loaded representations. It is assumed Bék,) is a sub-
group of theG(kyy) group. Fork,#kg,, the G(k;) group
does not change upon a transition— k; (or k;—kgq). The

downward arrow indicates the limitation of the representa-
tion from the group to the subgroup. The IR appearing in the

equality are known as compatible. Bouckaettal® pro-

ceeded from the principles of continuity and conservation of

the symmetry properties of BV. Compatibility relations
(tables are widely used in practice.

However, some questions arise in an analysis of the b
havior of BV and energy levels. We shall list some of them
under the assumption th&(kq;) =G is the entire Fedorov
group.

(1) The dimensionality of the complete representafisi®

is always higher than the dimensionality of the TR
since the star of the IR? has a large number of rays.
What happens to the BV of the IR during the passage
to the limit k;—kg;? Which of them vaniskiif any)? It

is absolutely clear that none of the BV of the represen
tation T# vanishes ak;=Kkq; unless the BV are sub-
jected to some special conditions. What are these cond
tions?

If several energy levelg ; belonging to the IR? merge
into one levelE, at a SP, the BV of the IR* must

@

e

levelsE for the IR 78 must converge fok; —Kkq;. How
should the bases of the I be chosen for this to occur

in actual practice? Is it possible to make such a choice in
general?

If BV are constructed from localized functions, the con-
cept of continuity is inapplicable to them. Consequently,
an approach that is new in principle is required in this
case. How can a physically reasonable pattern be ob-
tained?

©)

In this paper, the author carries out a complétethe
maximum possible extenainalysis of the behavior of matri-
ces and BV of IR near a SP and establishes the rules for
constructing BV that ensure the obtaining of a correct physi-
cal pattern. These rules should be used in practical calcula-
tions of any energy spectra of the crystélaturally, the
answers to the above questions are obtajnedSec. 1, the
obtained results are of general nature in the sense that they
are independent of the choice of the BV of an IR. Only the
properties of IR matrices are used, and the lemma on the
relation between the matrices of complete IR at a SP with

those at a neighboring nonsymmetric point is proved. This
pttaches a new meaning to the concept of compatibility. In
Sec. 2, Bloch’s functiongr=u exp(k-r) are considered, and
the continuity ofu on k is basically used. In Sec. 3, basic
sets of induced representations in the sense of Ref. 2 are

possess some specific properties. What are these propémnalyzed. The fact that BV are constructed from a certain

ties?
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limited number of linearly independent functions is used.
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Thus, quite different approaches are used in Secs. 2 and the groupG(ko,). This follows from the fact that the vector
but in both cases the rules of constructing BV ensuring ak; belongs to the seK, if k; belongs toK,, andh is a
correct physical pattern are formulated. rotation fromH (ko). The following two considerations are

It should be noted that we are speaking of two versionsmportant here.
of application of the induction procedure. It can be described  First, t?(K,,) can be interpreted as a small representa-
in general as follows. LeG, be a subgroup of a finite or tion of the groupG(ko;) which can be used for constructing
spatial groupG; ¢; are the BV of a certain IR of the sub- the corresponding complete representation of the entire
groupG;. We apply all the elements of the gro@®1o ¢;.  groupG according to general rules. The latter representation
The obtained linearly independent functions form the basiss equivalent to the representatiajg_ Consequently, we can
of the induced representations. In the subsequent analysigplace the complete representations of the g®up (1) by
the induction procedure is used, first, for constructing reprethe small representations of the groGiko,):
sentations of the grou@(ky,) of the vectorky, (or the entire
group G) from small IR 7%(k;) of the groupG(k;). The _Vo 8 * [ a
induced representations in this case are irreducible. Second, *~ N 2 Xt(Koy) 01 47" (ko). g], @
in other cases we mean induced representations in the SeN¥Rere summation is carried out over the main elements of
of Ref. 2. These induced representations are reducible. It iﬁ] Gk
always clear from the text which induced representations are € groupG(koy). : . .

Second, the representatiof(K ,) is equivalent to the

considered. In addition, the concept of limited induced rep- - o
resentationgLIR) will be introduced. representationt;] (K,) which is constructed as follows. We

) . . consider the grougs(kq;) as a certain Fedorov group,
frorr:n ;zh:f su2bs®ﬁ;1 et:g alrjlg(la):jsmhtgg t?grt;t'Ogn%ndetliz]né?]?sloggnd construct its complete representation from the small rep-
— (alh) ére sometimes re ;elrded as operators resentationr?(k,) according to the general induction rule.

9 ) ) 9 per ' We introduce the vectork,,... k.. As we proceed to the
1. In this section, we solve the following formal prob-

. . B . . .
lem: we carry out the substitutidy— ko, in the matrices of I('me':]ekrgf korlé dH::(iab:)srél (rlégér:tsattifg/gs(flgrm)edsli%t(?etaﬁ(CE rt)a n
complete IR of the grou® and determine the composition 9 Y, P 1\ ™00/ v

B i B B
of the obtained representation. and t{(K,) are equivalentt”(K,,) andtf(Ko,) are also

Let us specify the notation more accurately. For definite-equwalent' Consequently, we have

ness, we assume that all poirkg form a straight line(k,

Uo o
line) passing through the poirkty;, wherekq, is either the = WZ x[t5(Ko,),91* X[ 7*(Ko), 9] 3
center of the Brillouin zone, or a SP on the surface of the
zone,Kq, vg, H(kgy), 7(ko) and T(K,) are respectively Further, we can assume that the representat{¢K )

the star, the number of its rays, the group of rotations incan be obtained from the IR®(kqy) = 7#(k;—Koy), as be-
elements of the grou(ko,), and the small and complete fore, according to the general induction method as a result of
representations as applied to the IgR. The notatiork, v, ~ extension from the groufs(k;) to the groupG(koy). Since
H(k,), 7(k;) andT(K) has a similar meaning for the point 7“(Ko1) is an IR, on the basis of the Frobenius theorem on
K. induced representations we obtain

Let us proceed to the limit;—kq,, i.e., replacek; by v

Ko1 in.the matrices of the representation@;) and T(K) w= NE X[ ™ (Kop),91* x[ 7(Kop), 9], (4)

and simultaneously replace the vectors of the Ktdry the

vectors of the staK,. In this case, not one but several vec- here summation is carried out over the main elements of

tors from the staK become equivalent to the vectas;. Let  the groupG(k,). Let us go over to loaded representations:
us suppose that these vectors kye... k,. We denote the

set of these vectors bi,, and the set of their limiting
valueskgq,... Ko, bY Kq, . Obviously,v =ovy.

Let TA(K) be a complete IR of the group. As a result “B na
of the above transition, it is transformed into a certain repre- = (770, )
sentatiorlT§ = lim TA(k;—koq), belonging to the st and  whereh e H(k,). We ave proved the following
is reducible in the general case. The number of occurrences Lemma. The number of occurrences of the complete IR
of a certain IRT*(K) in T4 is given by T%(Kg) in the limiting valueT5 of the complete IRTA(K)

of the groupG is equal to the number of occurrences of the
w 1 oo loaded IR7# in the limitation 7| of the loaded IRF%(Kq,)

(T (KO)HTg)_NE Xg(g)*)( (Q)=p, @ to the subgroupH (k,) of the groupH(kgy).

Corollary. If the IR 7# is incompatible with the IR at
where summation is carried out over the main elements afhe pointk,,, the space of the IR“ is orthogonal to the
the groupG, andN is the number of these elements. space of he limiting representatid’rg.

Let us simplify expressiofil). The BV of the represen- The lemma can also be derived by using the formulas for
tation Tg associated with vectors frol,,, form a subspace matrices of complete representations from Refs. 2 and 3.
invariant to the grougs(ky,). These vectors are transformed We shall illustrate the lemma and some other results by
according to a certain intermediate representatf¢K ,,) of  using as an example the gro= Oﬁ=Fd3m with non-

(T (Ko = Th) = 3 MH (M (7 (h)]
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TABLE I.

kl ko, [ kloy 24

B 1 2 3 4 5 6 7 8 9 10 1 2 3 4
1 1 0 0 0 1 0 0 0 0 1 0 0 1 0
2 0 1 0 0 0 1 0 0 1 0 0 0 0 1
3 0 0 1 0 1 0 0 1 0 0 0 0 1 0
4 0 0 0 1 0 1 1 0 0 0 0 0 0 1
5 0 0 0 0 0 0 1 1 1 1 1 1 0 0

symmetric points on the straight ling =(0,0k;) and two  €xhausted by the functiop. Thus, if the initial BV of the IR
SPko=0, k;5=(0,0/7)=(b;+b,)/2. The first stak, has  0f a subgroup are such that the above principle of linear
only one ray whose number will be omitted. The second staindependence is not observed, we obt@s a result of in-
K 10 has three rays. duction of basic sejsan induced representation and its basis

Let us explain the lemma. We calculate the valueuof differing from those predicted by the Frobenius classical
for all a and B according to(5). Proceeding to the limits theory. Such representations will be referred to as limited
ki—ko andk;—k;o, we take the characters of loaded IR induced representatiorttIR). The composition of a LIR is
from Tables T119, T205 and T119, T159 respectively indetermined by the symmetry properties of the Byof the
Refs. 2 and 3. The resulthe number of occurrencess  initial IR of the ~subgroup. These properties supplement
given in Table | which will be referred to as the table of those following from the fact that the BY; are transformed
occurrences. Table T119 contains five IR whose numjers according to the IR-.
are placed in the first column, while Table T205 contains ten ~ The motivation of an analysis of LIR can be illustrated
IR whose numbers are written under the symkgl The by the following example. According to Table I, the IR
symbol ko stands for the numbers of IR from table T159. T°(K) is transformed as a result of the transitiop-k, into
The numbers of occurrences(T®—T8) = u(#—7%2|) are  To=T + T8+ T2+ T, while the IT T%(K) is transformed
indicated at the intersection of the liggand the columme.  into Tg=T*+ T+ T (we are speaking of the IR® from
For example, the line with the numbgr="5 shows that the Table T205. In a physical problente.g., an analysis of the
complete IRT3(K) is transformed into the sum of IR energy spectrujnthe energy level& correspond to IR. The
T7+ T8+ 79+ T2 belonging to the stak, upon the transi- IR T°(K) and T%(K) on the linek; correspond to certain
tion k;—ko and to the sum of IRTY+ T2 belonging to the energy levelsEs andE,4. The concordance at the poikg
starK ;o upon the transitiork;— k. can be presented in the form

The table of occurrence and the set of corresponding
compatibility tables contain the same information by virtue ~ T*—Ej, T°—Eg, T'—EJ...T*—EJ,
of the lemma. The information on the compositions of lim-
iting representations is required in an analysis of the energlf is clear, however, that one energy le\&(K) cannot be
levels of a crystal, phase transitions, etc. Let us consider onf{fansformed into several levels le§. The levelEs must be
one problem. In Ref. 2, only the compositions of inducedtransformed only into one of the leve, Eg, Eg, or Eq,,
representations for a SP are presented. It is recommend#dile the levelE, can be transformed only into one of the
that such representations for nonsymmetric points should bevelsE3, Eg, or E3.
determined with the help of compatibility relations, but this ~ We can make the following assumption. On the line
recommendation is not substantiated in Ref. 2. The substate have four IR with identical matrice$°(K), but with
tiation is contained in the lemma. different basic sets. We denote these IRTBY(K), T>§K),

2. We shall speak below about the basic sets of reprel “XK) and T>*qK). As we proceed to the limik;—ko,
sentations. The Frobenigciprocity theorem indicates the the BV of the IRT>"(K) are transformed into the BV of the
relation between the matrices of representations, and th& T'(5), where the number 5 in the parentheses indicates
composition of the induced representation is determined b{hat the basis originates from the BV of the TR(K). Simi-
using this theorem. It can also be obtained in the course darly, the BV of the IRT®(5), T°(5), andT*%(5) are formed.
induction of basic sets, but under the conditions that all the'he linek; also contains three IR with identical matrices
introduced BV are linearly independent. If, however, such anT*(K), but with different basic sets. These afé4K),
independence is not observed, the induced basis implement&(K) and T*(K). As we proceed to the limik;—ko,
not true Frobenius induced representations, but somewhfeir BV are transformed into the BV of the IR*(4),
different representations. Let, for examplé, be a certain  T8(4), and T’(4), respectively. On the other hand; |
point group andH, its subgroup. We shall induce the unit IR =T7| =7%(k,)+ 7°(k,). i.e., the three-dimensional space of
7t of the subgroupH, . This leads to an automatically reduc- the IR T is formed by two BV of the small IR-°(k;) and
ible rather than unit representation of the grddp We as- one BV of the small IR7*(k;) taken after the transition
sume, however, that a spherically symmetric functipis ~ k;—kq. The remaining BV of complete limiting IR and
taken for the BV of the IR, In this case, the basis of the Tg must be linear combinations of the three BV mentioned
representation obtained as a result of induction is obviouslgbove. This means that the spaces of th& {f5) andT’(4)
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coincide, and the energy levels; and E, merge into one )

level E? at the pointk,. We shall not consider other possible ~ Ui(Ko) = > S(g/ain)gu(key),

versions of matching of the basic sets of IR at the pokats

andk,o, which can be derived from Table | and which cor- S(g/aiN)=Te(h)¥ exfib-(a—r)], 9)

respond to a reasonable physical pattern. Let us formulate

the following problem: in the general case, find the condi-V"€r€ P=Koi—hkoi; g=a/h, heH(ko), and S can be

tions that should be imposed on the basic sets of representi€ated as a matrix. .

tions to obtain a correct physical pattern in all cases. We assume that the limitation imposed by theTiRon
Let us start from a related problem. Lkt be a finite  the subgroupH(k,) is expanded on the IR and that this

point group andH, its subgroup, whild and r are the IR of expansion contains the IF¢ of dimensionalityl (it is known

the group and the subgroup respectively, therl@pearing ~ thatl can be equal to 1 or)2We arrange the matricégh)

in the limitation T| imposed by the IRT on the subgroup at the left upper corners of the matrice$| (h) and propose

H,. We assume thdk| is taken in the reduced form, and the that the functions

matrices of the IRr lie in the left upper part of the matrices _ .

T|. LetF be a certain position function of the general form, vii(ka)=ufi (kn)expikar,

such thathF(r)=F(h~'r). We introduce the function

ufi(ky) =2 S(g/ail)guiky), (10

fi=> T(h)4hF, 6
=2 T i © be taken as the BV of the IR?, whereS is the same matrix
whereh e H. The functionf, belongs to théth line of the IR~ @S IN(9). We assume that(k,) is transformed continuously

T and simultaneously belongs to thi line of the IR~ If N0 U(Koy). _ _
we apply the induction procedure to it, we obtain exclusively "€ proposed functions allow us to satisfy all the re-
the BV of the IRT (T is a LIR). The functionf, possesses quirements following from physical considerations.

some symmetry properties following frof8), but not just & Itis quite obvious that the transitida, — Ko, leads to

from the fact thaff; belongs to the space of the IR limiting values of the function$10), which are BV of the IR
If we have only the characters of IR at our disposal, wel - )

can usdinstead of(6)] the formula b. In order to prove that the functiori40) are the BV of

the IR 77 (for i<I), we can apply toy? (k,) the element

_ I iy g’'=(a’/h’) from the groupG(k;). We must take into ac-
f= 2 x(h)* xr()*h'hF, ™ count the relations
where summation is carried out oMefe H, andhe H. The T(h")j; :‘ﬁ(h’)ij N NESE
function f belongs to the space of the IR Applying the ) ) ) )
induction procedure té, we obtain only the BV of the IR 9’ expliky-r)=exdiky-(r—a’)].
It should be noted that ii6) we can replace the sub- ¢ As a rule, a certain IR at a SP is compatible with

script “1” by the number of any column of the IR. Inthis ot one but several IR at a neighboring nonsymmetric point.
case, we must specially prove thatbelongs to theth line We assume for definiteness th'Eﬁl =38+37 (% is a two-

ofthe IR 7. dimensional IR andr” a one-dimensional IR Using rela-

| _In an analysis O]f BV 'In the vicinity oftaFSPtl)n thte Bril- tions (10), we determineds¥; and 5, . In formulas(10), we
ouln zone, we use formu éﬁ). as a prompt. For brevity, we puti=3 and omit the superscrigg for the time being. Let
shall refer to the representations of the gré@i(k,,) as com- g’ € G(ky,). Then

1 .

plete representatior{ssing the notatio* andT? instead of

t® and t°). These representations are truly complete if , ) , ,
G(ko) =G. If, however,G(kgy) is a nontrivial subgroup of 9" =2 explil(ky—h'b)-(r—a’)
the groupG, truly complete representations are constructed .

from the representations of the groGgko;) by the conven- +b-a]}T*(h)319'gu,

tional induction method. In this case, each IR of the grouRypere symmation is carried out over the main elements of

G(kgy) generates the corresponding single IR of the grounpe groupG(koy). We go over to the summation over the
G. Consequently, our simplification does not lead to a loss Ofalementsg”=g’g and take into account the fact that

enerality. We can write the BY} belonging to theth line -, , . A i .
gf the IRXI'“ of the groupG(k ;)ﬁlihn the f(?rmg T(h);5=0 for =12 andT*(h")35=7"(h')1,. We find
0 thatg’ ¢3;= 77(9’) 11¢/31(K4) . Thus, the functionyg, is a BV

iz (Kop) = Ui\ (Kog) expikogr of the IR7” (anq henge can be marked by the supersafipt
These considerations can easily be extended to any type
=> TY(g)%glu(ke)expikoy-r], (8)  of the decomposition of “| into the IR7. The result is that

the BV of the IRT® are the limiting values of BV of all IR
whereu(ko,) is an arbitrary periodic functiofthat will be 7 which are compatible witi.
referred to as a generating functjohVe carry out summa- d. Let us suppose thaf®| =% and T¢| is decom-
tion over the main elements of the groGgkg,). It follows  posed into the IR. We slightly change the notation of the BV
from (8) that of the representatio 7%, namely, omit the superscrigg
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and label all BV of the representatidiir?® by a subscript.
Thus, i;,(k,) are the BV of the representatiahr? 1<i

<l,. We transform the limiting values af;(ky;) obtained
as a result of transitiok;— kg; according to the IRT“. Let

us prove that the limiting values of all the BV of the com-

plete representatiol T# without any exception are linear
combinations of the limiting values of the B¥;,(kq1).

Let g'=(a’'/h) be an element such thdt'k,=k,,
wherek, is a vector from the staK. Moreover,g’ is a

O. V. Kovalev

Obviously, the mixed matrix element

Hia(ky) = (45 (ke), HyH?(ky))

of energy differs from zero fok, # ky;. According to physi-
cal considerations, it must vanishlat=ky;. We shall prove
that this is indeed the case if definitigh0) is used. Taking
into account expansions of the tyfE3), we obtain

Hia(kq) = (45 (kop) , Hy5?(Kop)) + K- D, (15)

representative of the left co-set of the expansion of the group

G(kgyp) in the subgroug(k,). In this case, according to the
rule for constructing complete IR g’ i1(k1) = ¢i1(k,) are
the BV of the IRTA. On the other hand, we have

9’ (k) =2 expli[(h’ky—h'b)-(r—a’)+hke,

-]} T(9)119"gu(ky).

We introduceg”=g’'g and k=k;—kg; and transform the
exponential. This gives

dir(ky)=expli[h' k- (r— @) — - r [} TQ")ji thja(Ka),
(11)

i1(Kod =T9")ji ¥j1(Kon)- (12

Relation(11) indicates that any BV of the complete rep-
resentatior® T# is a sort of “linear” combination of the BV
of the small representatiok 7°. Its coefficients depend on
the vectork. Relation(12) can be obtained frongll) as a
result of the transitiotk;— kg, (,«—0). It should be empha-
sized that relationg&l1) and(12) hold when conditior(10) is
satisfied and not at all in the general case. Equdli)
corresponds to physical pattern.

e. Let us suppose thaf®| =+ +77, 1,=2,1,=1. We
prove that under the conditidd0), the energy levelg 5(k;)
and E,(k;) merge into a single levek ,(ko,) at the point
kol.

Considering the IR, we can write

1(Ky) = 1(Kop) + &V b1 (Kop) + ..., (13
Ep(ky) =(t1(kor) Hp1(Ko)) + k- A+ ..., (14

whereA is the sum of matrix elements emerging as a resul

of (13). ReplacingB by y and the subscript 1 by 3 i(L3)
and(14), we obtain an expression fér,(k;). In accordance
with (10), the BV ¢4 (koq) andys(koq) belong to the first and
third lines of the IRT*. Consequently, we have

Ep(k1) =Ea(kod) + A, E (K1) =Eq(Kig) + 6 A7,

if we neglect the terms withe to the second and higher
powers.

f. We assume that a certain H¢ is compatible withT
and T? at ko;, T* and T? being nonequivalentT®| = 751
+37% T°| =72+ 3% . We are not interested in the compo-
sitions of the sum&rand 7', but3r#3 7. The IR 71

whereD is the sum of the relevant matrix elemers#0 in
the general case. According tb0), 4/%*(ko;) belongs to the
first line of the IRT* and wfz(koj) belongs to the first line of
the IR T°. Since T® and T° are nonequivalentH ;,(ko,)
=0.

Remark. In(10) and other formulas, we use the first
column of the matrixT¢, but any other column can also be
used. The analysis is then complicated, but the results do not
change. We can derive the relation&*& T)

um(kl>=§ T(g)wim(h"), g'=(a'/h"), (16)

Wim(h")=2 " expli[ (Ko~ hkoy) - (@—1)1}

XT(h)imgw(h’), (17)
w(h')=exp(—ikoy 1)(g") " [u(ky)expi(kep)-r]. (18)

It can be seen from these relations that the periodic func-
tion u;,(k4) obtained by using thath column of the matrix
T can be expressed in terms of periodic functions obtained
with the help of other columns. In this case, however, we
must take another arbitrary generating periodic function,
namely, the function(18). In particular, if an elemeng’
such that the suril6) can be reduced to a single tefmg.,
the one with the numbam) exists, the transition from theth
to themth column in(10) is equivalent just to another choice
of an arbitrary generating function. Such an element exists
for kg;=0, but can be absent for a SP on the surface of the
zone. Probably, practical calculations will necessitate the use
bf linear combinations of the functions;,, from different
columns of the matrixT.

3. In this section, BV are linear combinations of mutu-
ally orthogonal localized functions. A transition from these
vectors to the BV of induced representations is assumed to
be unitary, and hence the BV form an orthogonal system
are speaking of a Hermitian scalar product, viz., an integral
over a unit cell. In this case, the energy spectrum is deter-
mined by the coefficients of invariant combinatiofi€) of
the corresponding local or symmetrized quantitiatomic
displacements, magnetic moments, )etc.

Further, we consider not IR and their basic sets in gen-
eral, but only a part of them. This limitation is due to the fact

and 7% have identical matrices, but their basic sets are conthat we are dealing with a single system of equivalent posi-

structed according t610) with the help of nonequivalent IR
T andT?. We assume that the limitatiods| andT?| are
taken in the reduced form, and the matriéésoccupy the
upper left corners.

tions, and only one IR from a local group of positions. The
problem concerning the relation between the BV of a IR
fromi(T",k;) and the BV of a IR fromi (I",kq,) is solved just
under these limitations.
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TABLE II. the contrary,/2 and+° are in contact ak;o, while neither?
K T To and 7° nor 7° and 7> are in contact at this poin(If we
—r E: choose a different position or another IR, we obtain different
Ky T T results)
The space of limiting BV of the induced representation
koo 1 > ” i(I',kq) can be split into mutually orthogonal spaces of the

IR 7%(koy). Let us suppose that the I(k,) and7”(k,) are
Ky ™ 7 7+7%  notin contact aky,, i.e., 7?(k,) is compatible with one set
Sg of the IR 7%(kqy) fromi(I',kqp), and7?(k,) with another
set S,, the setsS; and S, containing no identical IR
7%(ko1). The BV of the representatiar(K,,) are orthogo-
Let I be the dimensionality of the IR and m the nal to the basic sets of all IR i8;. Consequently, they are
number of equivalent positions in a unit cell. Theny. is the  orthogonal to all BV of the IR*(koy), i.e., to the BV of the

dimensionality of the small induced representati¢hi,k). ~ 'epresentatiort’(Ko,). On the other hand, according to

This number is the same for all points of the Brillouin zone. Theorem 1, the BV of the representatiof(Ko,) can be

This leads to the following expressed linearly in terms of the limiting BV of the repre-
Theorem 1. All gmly limiting BV which belonged to ~ Sentationi(T",k). Thus, Theorem 1 is refined by

the induced representation(I',K,) before the transiton  Theorem 2.The BV of the representatiotf(K,) are

k;—Kko; and were associated with the vectés ... Kk, be- linear combinations of the limiting BV of the IR?(k,), and

come linear combinations ofl limiting values of BV of  Probably of small IR fromi(I',k;) that are in contact with
the small induces representatiii’,ko;) after the transition. 7 (K1)-

Indeed, first,mlr BV of the induced representation Let us clarify this theorem by the following example.
i(I',k,) were mutually orthogonal before the transition andWe procezed 3t0 the I5ir_nik1—>ko. Let us suppose that the
remain the same after the transition. Second, the limiting B\vAMall IR 7%, 7°, and7” in Table Il generate the complete IR
mentioned in the theorem belong to the space of the smafl-(K), T3(K), andT°(K), respectively. According to Theo-
induced representation(I’,ko;) whose dimensionality is €M 2, the limiting BV of the complete IR®(K) are linear
mlp. combinations of the limiting BV of the small IR® and 7°~.

Thus, if we construct the B (ky), ..., (k,) of the Similarly, the limiting BV of the complete IRT%(K) are
representation(I',K,) of the groupG(ko,) by the general linear combinations of the limiting BV of the small IR?
method of induction fronmlr BV i;(k,) of the representa- and 7°2. We introduced for the IR® the second superscript:

tion i(T',k,) of the groupG(k,), and then proceed to the the basis of the IR leads to the basis of the IR, while
limit k— Koy, only mly BV among #;(Key),....i(ko,) are  the basis of the IR leads to the basis of the IR°. We

. . K ; ; i 5
linear independent(lt should be noted that, in contrast to MUust find the difference between the basic sets of the’iR

Sec. 2, the transition is now not related to any assumption@nd 7. We continue an analysis of our exgpple- %2et us
concerning the continuity of the dependence lorand is ~ SUPpose thak;—kjo. We again have two IR™" and 7%,
unit cells) % near the poink, coincides with the basis of the IR*

It is expedient to introduce a new concept. We shall sayear the pointk;.) On the whole, the data contained in
that the nonequivalent IR?(k,) and 77(k,) from i(T,k,) Table Il suggest the following question: can the basic sets of
are in contact at the poitiy, if i(I',ko;) contains at least one WO IR 7° under the transitioik; — ko be chosen so that the
IR 7%(koy) which is compatible both withr8(k,) and  Space of the complete IR contains the limiting BV of only
7(ky). It should be emphasized that the solution of thethe IR 7°% and the space of the IR® only the IR 7°*2 A
problem of contact of two IR is determined by the chosenSimilar question also arises under the transitign-ko.
system of equivalent positions and IRof a local group. The affirmative answer to this 9393“0”_'3 given in

We illustrate the concept introduced above by the fol- ~ Theorem 3.1f the limitation 7| (ko,) imposed from the
lowing examples. We consider the Fedorov system chose#oupH(kos) on the subgroupi(k,) is equal to
earller_ and the vectork using Ta_ble I. We take a position LK) + .+ (k)

(a) with the local groupG(a)=432=T,. The IRT are

given in Table T192 in Refs. 2 and 3. According to Ref. 2,we can chose the basis of the small induced representation

for I'=I'5 we have i(I',k,) so that the limiting BV of the representation
i(T,kg)=T8+T%, ([ ,ky)=72+7+27, ALK )+ 4+ tAT(K,)

i 1,2, 4

WL kyg)= 74 724 7, of the groupG(Kep) form the basis of the small IR%(Koy).

For the above-mentioned IR, we compose auxiliary com-  We omit the proof since it is quite cumbersome. The
patibility tables(Table 1l) on the basis of Table I. It can be choice of BV mentioned in the theorem is not complicated in
seen that the IR® and 7> as well as the IR and > are in  specific cases. It is expedient to clarify the meaning of the
contact atk,, while the IR7? and 7° are not in contact. On theorem by considering a few examples.
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According to Table 1, we have'TSL(KO)z%(kl) Theorem 3 in fact implies the same correspondence to a
+%#X(k,). The starK with the vectork,; has in all six rays: feasible physical pattern as that established in Sec. 2. How-
(0,0+k,), (0,2ky,0), (xky,0,0). In the passage to the €ver, itis difficult to obtain at the moment the proofs of some
limit k,—0, all these six vectors are transformed into astatements concerning the energy spectrum: the formula for
single vectok,=0. The IRt(K ) in this case coincide with the coefficients of invariant combination has not been de-
complete IRT(K) so that the second sum mentioned in thefived, the properties of these coefficients have not been es-
theorem is equal td3(K)+T*(K). The latter representa- tablished, and so on.
tion is 18-dimensional. According to the theorem, its basis is  If the basic sets of small IR at a nonsymmetric point are
transformed under the transitiok;—0 into the three- chosen so that they are transformed as a result of passage to
dimensional basis of the IRE(K ) (naturally, if the basis of the limit ky—ko; directly into the BV of an IR at a SP in
the representation®(k,) + 7°%(k,) is chosen appropriately ~accordance with a correct physical pattéue mean the one-
Since three BV of the small representatiot(k;) + 7°%(k,)  to-one correspondence between IR and energy [gvaleh
are orthogonal prior to the limiting transition and after it, we basic sets will be referred to as concordant. The statements

can take the limiting values of the BV of the representationmade in Ref. 1 are valid only for concordant basic sets.

3(ky) + 7°Y(k,) as the basis of the IR®(K,). All eighteen  Theorem 3 indicates that concordance of basic sets is pos-
limiting BV of the representatio3(K)+T°{(K) are linear  sible in principle in the case of induced representations, but
combinations of the three limiting BV of the representationdoes not describe the method for attaining it. The method is
3(k,) + Y(k,) (as stated in Theorem.3Similar arguments Similar to that described in Sec. 2 and will be formulated in

can be applied to the surf(k,)+ °%k;). According to  our subsequent publication devoted to an analysis of the
Theorem 3, the four-dimensional space of two#Rk;) can ~ magnetic energy spectrum. The concordance of basic sets

be divided into the spaces of the lR(k;) and 7°%(k;). was apparently carried out for the first time in Ref. 4 for
Pointky,. In this case, we have, for exampk:| (ko) vibrational spectra. However, Ref. 4 does not contain a gen-

=7Y(k,). As a result of the transitiok;—k;, the vectors eral algorithm and substantiation and disregards the emer-
(0,0+k;) become equivalent to the vectdr,, so that gence of a linear dependence at SP. The case of Bloch func-
K,={(0,0k;),(0,0—k;)}, Ko,={kio,ki0—bs}. The role tions is not considered either.

of the second sum mentioned in the theorem is played by the

IR t%{(K,). (It can be regarded as the complete IR of the

groupG(k,) +g,:G(k,), obtained from the small IR>Y(k,)

according to the general rulgsThe IRt°Y(K ) has a four- L. P. Bouckaert, R. Smoluchowski, and E. Wigner, Phys. Ragy.58
d?mens?onal ba-SiS that is transformed into the t'WO- Zg.gflékovalev Representations of the Crystallographic Space Groups
cﬁmensmngl basis of the small IR(k,,) upon the transi- Gordon and Breach Science PUKI993,

tion. In view of the one-to-one correspondence betweerso. v. kovalev, irreducible Representations of the Space Groupsrdon
small and complete IR, we can state that the 12-dimensional& Breach, NY, 1965.

basis of the complete |FE51(K) is transformed as a result of 40. V. Kovalev, Fiz. Nizk. Temp10, 83 (1984 [Sov. J. Low Temp. Phys.

the passage to the limit into a six-dimensional basis of the 10, 43 (1984].

complete IRTY(K ;) (Ko is the star with the vectdk,). Translated by R. S. Wadhwa
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A theory of current—voltage characterisfi&/C) is proposed for a gated Corbino disk with &2
spinless electron system and magnetic filling factors close to an integral value. The

described results systematically include the features of the electrochemical potential &f the 2
electron system in a magnetic field, which are responsible for sharp magnetocapacitance
“dips” for integral values of the magnetic filling factor. The theory is used for qualitative
interpretation of the observed weakly nonlinear peculiarities of IVC as well as for

prediction of local details in the distribution of electron density and electric potential in a current-
carrying Corbino disc. Corresponding measurements can be made, for instance, by using the
linear electrooptical effect. €999 American Institute of Physids$§1063-777X99)00902-(

The measurements of conductance of a two-dimensionahteresting publication by Shashkit al® is a problem of
Corbino disk in a magnetic field normal to its surface giveprimary importance in the theory of IVC since strong non-
the most complete information on the diagonal component ofinearities inevitably develop against the background of weak
the conductivity of the B system under investigation in a nonlinearities.
magnetic field. Naturally the expression for conductance The premises for studying of the loss of spatial homoge-
must be exact to the maximum possible extent for extractingpeity in a 2D electron system with transport current are well
correctly the required conductance from the experimentaknown. The current can flow only in the presence of a gra-
data. We are speaking, among other things, of the effects afient of the electrochemical potential
spatial inhomogeneity in the electron density distribution,
which inevitably appear in a.COrbino di;k carrying fransport  j =e~ 1oy aulax, (1)
current and strongly affect its conducting properties, espe-

cially under the conditions of the quantum Hall effect h is the di | f . h
(QHE). In this paper, we consider the influence of the aboveyv ere o Is the dlag_ona com_ponent of conductivity. The
i : resence of the gradienju/oxi in 3D systems leads to the

mentioned effects of spatial dispersion on the features of thgeformation of the electron densify since
current—voltage characteristit/yC) and other parameters of
the Corbino disk being measured. In addition to IVC, they
also include the local distribution of electric potential along a Ipoc Pl ox?. (1a
radial direction of the disk, which is accessible for measure-
ments based on the linear electrooptical effect. In two-dimensional systems, however, the charge is con-
It should be noted that nonlinear phenomena in the quartrolled by the derivatives of electric potential of the order
tum Hall effect have been studied by many auth@msaddi-  lower than in(1a). For this reason, a uniform driving field
tion to the original communicatichsee, for example Refs. can be sustained in dPsystem only by deforming the elec-
2-10. Usually, nonlinearities developing in drift fieldsv  tron density. This considerably complicates the kinetics of
much higher than the cyclotron energiy, are considered. 2D electron systems in a number of important cases. For
They include overheating instabilify> Zener effect injec- example, the conditions for the emergence of the QHE,
tion of hot electrons from contact regiohsand so on. which are extremely sensitive to the uniformity of electron
Among various reasons behind IVC nonlinearity, weaklydensity, are blurred since the integral value of the filling
nonlinear phenomena developing even at the stage wheactor required for this effect is observed only in some local
eV<fhw, take place. These effects involve the loss of spatiategions of the B system. As a result, the QHE is manifested
homogeneity in a P electron system under the action of not in individual “points” of the magnetic field or cutoff
transport current. An analysis of these effects started in amoltage, but in an entire range of their values.

1063-777X/99/25(2)/7/$15.00 137 © 1999 American Institute of Physics
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The paper has two parts. In the first part, the system oHere V. is the percolation levelw(E) the probability of
equations and approximations used for describing inhomogegassage through a typical saddle point, expressed in terms of
neity effects in a magnetized™® system with transport cur- characteristics of random potential, andhe electrochemi-
rent is presented. A special discussion of these equations ¢al potential.
required in order to modify some definitions usually appear- It can be easily seen that the conductance definit{@ns
ing in the IVC theory for D systems under the conditions of and(3a) are qualitatively identical if we assume that
the QHE. The second part contains the solution of the pro-
posed equations under the conditions of weak nonlinearity of eXp(—A/T) —exp(=Ve/T),  er—p,
the problem, when a driving electric field causes perturba- e? [ w(E)exp—E/T)dE
tions in the D system, which are smaller than or compa- Uoﬁ%f T '
rable with the cyclotron energy. The paper is concluded with
the discussion of the observed consequences of the proposadd take into account the symmetrization of the expression
theory. for conductance relative to electron and hole excitations,
which is contained in the definitio(8) of conductance.

It should also be noted that we do not calculate here the
homogeneous component of conductance, i.e., the constant
o in definition (3). It is only important that this quantity be

Let us consider a screened Corbino disk with an innefinite. An example of the complete solution of the problem
and outer radiiry andr; in a magnetic field normal to its 0N conductance for a smooth random potential is given in
surface and sustaining thé®2electron system in a state close Ref. 12.
to the unit magnetic filling factor. A driving voltag¥ is Along with (3), we also introduce the modified phenom-
applied to the banks of the Corbino disk. The presence of €nological definition of conductance:
leads to the emergence of a current in the system. The rela- o =0 T costi (u—ep—hwy)/T]. ()

tion between the total curredtand the electrochemical po-
tential u has the form This expression takes into account the spatial dependence

n(x) as well as a possible coordinate dependepicg. The
J2mr=e Yo, duldr (2 explicit form of (4) presumes that the value of magnetic fill-
ing factor is close to unity.
(it should be noted that in Ref. 8 and subsequently in Ref. 11 The system of equation®), (3) or (4) should be supple-

SYSTEM OF DEFINITIONS

the current) was defined as mented with the boundary conditions
JI27r =0, de(r)/dr, (2a) Su(ro)lhiwe==ung, Oou(ri)lhw.=duytv,
where ¢(r) is the electric potential of the problem; the dif- v=eVlfiog, 5

ference between expressiof® and (23 is quite serious if \yhere all the energy characteristics are normalized to cyclo-
the diffusion component of current is not smaller than thegqn, energy.
field component; it will be proved below that the current on In addition to Eqs(2)—(5), we must have a definition of

the Hall plateau is just of this type the electrochemical potentialw(r). For an ideal spinless

As the current increases, the valueaqf ceases to be a gjectron system with a filling factor close to unity, we have
constant in the theory. Under the conditions of the QHE, it is

natural to take into account possible nonlinearities by using, Ou(r)=u(r)—fio.=—fiol2+ep(r)+{(r), (6)

for example, the well-known expression foy, : /81112 [0)=—TInS(y), v<2 63
0'”=0'06_A/T COSI’(&,U//T), (3) S(H,V):(]./Z)(l/V_l)

where the Fermi energyelectrochemical potentialdu is +J(UB(Lv—1)2+e(2lv—1),

measured from the midpoint between the Landau levels,

the activation energy for zero value éfi, and T the tem- v(r)=rr|f|n(r), n(r)=ng+n(r),

perature. Approximatiort3) has a meaning in the presence

of changes in the value afu(r) in a 2D system and in the s=exp< _ @) <1. (6b)

absence of changes in the behavior of the electric potential T

¢(r). For the sake of definiteness, formuf@ will be re-

ferred to as theu-representation in subsequent analysis.
The fiqal result obtained by Iordgnskii and the cyclotron frequency.

Muzykantskit? [formula (21)] for the average diagonal con- In the “dirty” limiting case, whenT<T", whereT is the

duct_ivity in the_ presence Qf a random and quite smooth perdispersion of the density of states at the Landau level, only

turbing potential differs slightly fron{3): the relation between andu (and not the opposite relation as

o2 XF{(“_VC) in (6)) has a relatively simple form:

Oxx= % T

h

Heren(r) is the local value of electron density, its aver-
age value for zero current,; the magnetic length, and.

w(E)exp(—E/T)dE
J T - (33 v= (511 /TVZ)+ $( S ITVI) +1,
(7)
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Su1=p—hoJ2—ee, Sur,=u—3hol2—ep, J | (rl) v 11)
n—|=V.
where ¢(x) is the error functiong(—x)=— ¢(x). 2mo o
Using relation(6), we can write formula4) as follows: Consequently, expressi¢h0) can be written in the form
— B 2+ ¢(r independent obr,, :

op=0e AT cosr{cfg() . (73 ;
Suo=pu(r)—po=eVin —)/In —1). 12

This expression allows us to speak ¢f) as of a Ho=p(1) = to (fo o 12

{-representation of conductance. kot 1, i.e., in the region Using the definition ofu(r) for a normal D system

with an integral value of filling factc_>r, the argu_ment of hy- (the 2D system with a nonintegral filling factor in the given
perbolic cosine on the right-hand side @& vanishes, and cass, i.e.

hence the conductance assumes the minimum value.
To make the systert2)—(7) complete, we must find the Su(r)=ee(r)+ah?[n(r)—ngl/m, (13
relation between the electric potential and local density Ofand the relationi9) betweene andn(r), we can easily write

the 2D system. The required relation is of electrostatic origin,[he following equation for(r) by usina(9). (12). and(13):
and requires in the general case the simultaneous determina- Wing equat k(1) by using(9), (12), (13

tion of the charge density along theD2system and the Su(r)y=ep(r)(1+ag/d), (19
screening elle'c.trode. In t.hIS' region, it is possm!e Fo refine th?/vherea’g is the effective Bohr radius.
existing definition quantitatively. However, claiming further : Co '

o : . . Thus, The IVC in the ohmic limit is defined by formula
to only quantitative analysis, we adhere, following Shashkm(ll) and the electric potential distribution is proportional to
et al, to the popular capacitor approximation in which the ' P brop

smalness of the distanceletween the  system and the e % SESTEREE I (o IREEREes e raance
shutter is regarded as smaller thgr-rg:

with (10) and(12). It can also be easily seen that as long as
2d<ry—ry. (8)  aj<d, the definitions of current2) and (2a lead to ap-
proximately the same results both for the IVC and for the
electric potential distribution along the Corbino disk. In other
o(r)=2ed v(r)—vol/lf, (9)  words, the diffusion component of electrochemical potential
w (13) under normal conditions is insignificant as compared
to the electric component.

2. Let us now suppose that the filling factor is close to
dmity. As long aso,,=const, i.e., in the regioeV<T or
the values ofi, ¢, andv includes formulag2), (3), (5), (6) eV<I (the reasons _behlnd these limitations will be consid-
or (7) and (9). Alternatively, we are speaking of joint solu- ered below, expressior(12) for u(r) and(11) for IVC are

tion of Egs.(2), (4), (5), (6) or (7) and(9). The final aim of valid. However, according t¢6) or (7), the main contribu-

the theory is the determination of the relation betwéeand tion to the derivativaj,u,'/dr COMES from the' diffusion com-
V and the obtaining of the local distribution of electric po- p_onent of electrochemical potential. For this reason, the ver-

tential of the Corbino disk, viz., the quantity accessible forSion (6), for example, together with12) leads to the
measurements using the linear electrooptical effect. following definition or the perturbation of the electron den-

The main difference between our definitions and existing®'y o 0N the Hall plateau:

In this case, we have

where »(r) is the local value of the filling factory, its
magnitude in the absence of current, andhe dielectric
constant.

Thus, the complete system of equations for determinin

algorithms of calculating IVC for a Corbino disk under the r ry

conditions of the QHE from Refs. 8 and 11 is that we (e eVIn(r—) / ln(r_) =-=TInS(1+6v)/InS(1),
instead of(2a) and consider an alternative (8) and(4). We 0 0

are not aware of any general considerations testifying in fa- dv<1, eV<T, T>T, (15

vor of (3) or (4) without a preliminary analysis of the prop-

) ) i ity T> i -
erties of these systems of equations. The inequalityT>T" allows us to combine the assump

tions concerning the ideality of al® system and the finite-
ness of conductance.
ANALYSIS OF THE SYSTEM OF EQUATIONS The smallness of perturbatidd5) of the electron den-
sity on the Hall plateau under the action of external effects is
1. Let us consider a normal ohmic situation for the g typical general property of magnetize® Zystems. Such
Corbino disk under investigation. We are speaking above alproperties lead to the formation of well-known “incompress-
of Eq. (2) with a spatially homogeneous conductangg  ible” bands in equilibrium inhomogeneou$2electron sys-

=const. In this case, we can write tems in the presence of local points with an integral filling
eJ r factor on the electron density profilesee Refs. 14-16The
u(r)=po+ In(r—) ro=r<ry. (10 same properties of a2 system on the Hall plateau are re-
TO 0

sponsible for the well-known features of magnetocapacitance
The current) is connected with the potential difference of such system¥’

V across the metallic banks through the relatiir,) The behavior of év for “dirty” 2 D systems is

—u(rg)=eV, u(r{)=pu,, so that determined by formulag7) and (12). We are speaking of
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qualitatively the same density perturbation scales &&5nif 1.2
the role of temperature is played by the paraméter

Thus, Ohm'’s law on the Hall plateau is similar (bl), 1.0

but the currentl is mainly of diffusion origin, and the elec-
tric potential ¢ along the Corbino disk remains virtually at

zero point. In other words, the situation justifying the appli- 0.8
cation of theu- representation for an analysis of the IVC on
the Hall plateau takes place. This statement is also valid for 0.6
the regionT<eV<% w, (this will be used beloyw A consid- 3
erable difference betwedR) and(2a) in favor of (2) is also 04
obvious.

3. T<eV<hw.. In the u-representation, the general 0.2

problem on the IVC for a Corbino disk splits into two parts.
At first, we can determine the behavior @{r) with the help 0
of relations(2), (3) and(5). Then we can easily findv(r) 1
and ¢(r) by using(6) or (7) as well as(9).

On the basis 0of2), (3), and(5), we can write 0.
. [ Omo Inx

Su(x)=t Arcsmk{sm)’(T) ( 1- ﬁ

) }'(5MO+U In X) 0.

+sin —11,
t Ing

g=rqlrg, X=rlrg, (16) &
5/LOZMO_1:_1/2_t|nS(V0), 5#0(1/0:1):0, 0
t=Tlho,, 1=x=q. (1639

The definition(16a of Suq through the filling factor,
is chosen for convenience. The valuewofind the combina-
tion tIn §(y) are given by formulag6), and the expression
(169 for Sug is valid if we are dealing with phenomena in

the vicinity of the Landau ground level, i.e., for<2. The 0.

integral filling of the level withv=1 makesdu, equal to
zero.
The relation between the currehtand voltageV has the

form 0
Sugtv 8 eJe™TIn
jit=|sinhSEeTY _gipnZe| -2 14
t t 2mogh o, 2
(17
Naturally the general formulagl6é) and (17) for small V 0.

(eV<T<1) are transformed into the ohmic formulékl)
and(12).

It follows from expression16) that the distribution of
Su along the direction of current changes noticeably with
increasingv as compared to the logarithmic nonlinearity
which is usually observed in the ohmic regipsee formula
(12)]. Here, the degree of nonlinearity is determined by thel
ratio eV/T, i.e., can be quite high even in the regieVv ferent values

A
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.0 1.5 20 25 X

3

3

0 1 i 1
1.0 15 2.0 25 X

IG. 1. Dependence8u(x) (16) for fixed v,=0.8,t=0.1, g=3 for dif-

ofb: 0.6 (curvel), 0.8 (curve 2), and 1.2(curve 3) (a); for

fixed v=0.3,t=0.1, g=3 for different values ofv,: 1.0 (curve 1), 0.98

<fiw.. For example, Figs. 1a, 1b and 1c show the resultgcurve 2), 0.96 (curve 3), and 0.94(curve 4) (b), for fixed v=0.3, v,
obtained foréu(x) for various initial valuesSu, the reac-  =0.96, andq=3 for different values of: 0.2 (curvel), 0.1 (curve?2), and

tion of Su(x) to the change iw for a fixedt, as well as the ~0.05(curve3)
distribution of du(x) for given Suq,v and different values
of t.

(0.

Obviously, if we “start” from the unit filling factor, the Using formulas(16), we can find the dependene€x),
gradient ofSu has the maximum value at the origiourve  and hencep(x) also, with the help of6), (9), and(16). The
1). As the value ofvy decreases, the system first approacheselevant data fo(x) and v(x) are shown in Figs. 2a and
the region with the unit filling factor and only then increases2b. The value ofp can then be estimated with the help(8f

the gradient ofdu (curves2-4). or
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1.0 v

1.02
Z 0.5\
1.00
0 1 0.98
1.0 2.0 X
v b 1.0

1.00

0.95
1.02
0.90
1.00
0.854&
1.0 2.0 b

FIG. 2. Examples of behavior &w(x) from (16) and corresponding values

of v(x) from (6), (9), and(16) for the u-model of conductanceiu(x) from 0.98
(16) for Sup=0.85,t=0.1, v=0.8 (@),v(x) from (6), (9), and (16) for

Su(x) from (16) and Fig. 2a; curved—4 correspond to different values of | | |

d: 1 (curvel), 3 (curve?), 5 (curved) and 10(curve4). 1.0 1.1 1.2 13 x

FIG. 3. Dependence of the filling factar on x for v=1.5, d, =10, v,
=0.98 and different values af 0.075(curvel), 0.05(curve2), and 0.025

1,D(X) = e(p(X)/ﬁwC: Zd* (v— VO)’ d* = d/a’é ) (18) (curve3) (a); for d, =10, t, =0.05, v,=0.98 and different values af: 1.5
A comparison of the quantitiesu~1 (see Fig. 2p  (curvel). 1.0(curve2), and 0.5(curve3) (b).
ov~0.1 (see Fig. 2l and¢~0.1[see formula18) for d,

=1] readily shows that

Sus (183 librium condmons. Chklovsku_et al= p'roved that the

' “shelves” in the electron density distribution can be calcu-

i.e., the conditions for the existence of terepresentation lated by solving first the problem on the density distribution
(3) are fulfilled indeed. Such a situation is conserved up tdn a magnetic field, and then the parameters of integral
v=1. “shelves” in the magnetic can be calculated as a conse-

4. In the regionv>1, the electric potential is not small quence of perturbation in the zeroth approximation. In our
any longer. As a result, we have to deal witfrom (4) and  case, the role of the zeroth approximation leading to the loss
not with the u-representation of conductance frof®. A  of spatial homogeneity of the electron system is played by
formal consequence of these changes is the impossibility dhe solution of the probler(l0)—(12). Then the definition of
uncoupling the system of equations;in ¢, andv into sepa-  electrochemical potential6) and (6a responsible for the
rate blockdas was done for calculatingu in (16)]. We shall  emergence of flattenings in the electron density distribution
solve this system below by using successive iterations startomes into play. The examples of the behaviowgfx) in
ing from the ohmic limit(10)—(12) for Suy and the corre- the framework of this program are presented in Figs. 3a and
sponding distributiorvg(x) following from Egs.(6) and(6a)  3b. Among other things, the formation of the integral chan-
with the left-hand side fronil2). A formal basis for such a nel in the middle of the Corbino disk and the dependence of
method of solution of the problem is the analogy with theits characteristics on various extrinsic parameters can be seen
problem of integral channels under nonhomogeneous equélearly.

| 14,15
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It is convenient to present the data on the next iteration 1.2
in the form of the ratio of the first approximation to the
zeroth approximation for the same values of the total current
j. For example, the nonlinear deviation

ov=v(j)vo(]) (19
from Ohm’s law(11) can be written in the form

1 (a dxcosh —1/2t—In S(vg) ]
_ﬁflxcosﬁ—llz—lnS(Vo(x))]'

ov
g=rq/rg, (20

Inx S(vo(X
Uing = 20x[ o)~ vol—t |n(s(+(o))).
Here vy(X) is the electron density distribution in the ze-
roth approximation following from equatia20a. Such rep- 0.2 | |
resentations are presented schematically in Figs. 3a and 3b. ) 0.98 1.00 1.02
The final results fov from (20) are shown in Figs. 4a Vo
and 4b. It should be noted that the results presented in Fig. 4 1.2
indicate the roughness of approximati@®) since the itera- ) b
tion possesses the required propefitglation (20) slightly
deviates from unityonly in the vicinity of vo=1. The main
reason behind this roughness is the actual rearrangement of
fields in the disk as a result of formation of the integral
channel. In this respect, the steady-state problem differs from
the equilibrium problem in which the formation of a channel 0.8
perturbs the problem only in the vicinity of the channel.

(208

1.0

>
w
DISCUSSION OF RESULTS 0.6

Let us sum up the obtained results. We studied the linear
region and weakly nonlinear effects in the IVC structure for
a 2D electron Corbino disk with a magnetic field normal to
its surface under the conditions corresponding to the emer-
gence of QHE.

0.4

In the linear(ohmic) mode, the statement concerning the 0.2 01.98 1300 11_02

diffusive nature of the passing current is most remarkable. Vo
The electrostatic potential does not participate in sustaining
the current, and this prediction can be verified directly withFIG. 4. Dependence afv on v, from (20) for t=0.1 and different values of

the help of the linear electrooptical effdét. v: 0.05(curvel), 0.3(curve2), and 0.5(curve3) for d, =5 (a) and 10(b).

The initial premise for the evolution of weak nonlineari-

ties of IVC IS the loss of spat!al hpmogeneny in the 2 density distribution in a Corbino disk with current displays
system carrying current even if this system was perfectly

. L : clearly manifested “shelves” with a geometry determined
homogeneous in equilibrium. Anomalous evolution of cur-

rent nonuniformities under the conditions of QHE against '[heby extrinsic parametgr@see Figs. 3a and 3b .
As the value ob increases, the other channel, viz., non-

background of a linear or logarithmic increase in electron,. i \
density, which are always observed in ar 2ystem with linear sensitivity of conductance foor ¢ on Hall's plateaus
' ajiiscovered for the first time in Refs. 7 and 8 comes into

current, occurs through two channels. One of them is typic . ; . .
. - . play.” In actual practice, however, both nonlinearity chan-
of 2D systems with a filling factor close to an integer. We . . . .
are speaking of the tendency of ® System to oppose ex- nels are interconnected. The form of this relation are differ-
ent in different intervals of voltag®/. The corresponding

ternal pert.urbe}tions leading to a change in the_integrg! f”."ngreatures of IVC and electric potential distribution are given
factor. This circumstance also takes place in equmbnumby formulas (15—(19). We shall mention some of them.

roblem ing the main r n behind anomalies in mag=’ .
problems, .be g the main reason be d'a 0 aies aq:wst, relation(17) between the parametessand uq for a
netocapacitance of 2 systems and creating “incompress- ..

ible” strips in nonhomogeneous systems. The presence Of*xedj has a peak which loses its symmetry relative to the
P g y ' P oint Suo=0 with increasing. The shiftAv relative to its

current modifies the parameters of such strips or leads t osition corresponding to small currents is given by the for-
conditions required for their formation. This process can eas? P 9 g y

ily be simulated under the assumption that Ohm’s &y mula
is valid for uniform conductance. In this case, the electron Av=v /2, (21
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QUANTUM EFFECTS IN SEMICONDUCTORS AND DIELECTRICS

Surface magnetic-plasma waves at the ferrodielectric—semiconductor boundary
V. L. Fal’ko, S. I. Khankina, and V. M. Yakovenko

Institute of Radiophysics and Electronics, National Academy of Sciences of the Ukraine, 310085 Kharkov,
Ukraine*

(Submitted September 11, 1998

Fiz. Nizk. Temp.25, 195-200(February 1999

The electromagnetic properties of the ferrodielectric—conducting medium system are investigated
in a constant magnetic field at low temperatures. It is shown that new vibrational branches,

viz. pseudosurface waves characterized by collisionless damping, emerge in a strong magnetic field
at sufficiently high concentrations of charge carriers. The mechanism of collisionless

(radiative damping is connected with the existence of additional electromagnetic fields
propagating into the bulk of the conducting medium. The range of such waves is determined, and
the functional dependences of their frequency and damping on the magnitude and direction

of the external magnetic field are derived. 1®99 American Institute of Physics.
[S1063-777X9901002-9

1. It is well known that oscillations of various types In this communication, the interaction of surface mag-
including magnetic polaritons, magnetostatic oscillationsnetic oscillations with eigen electromagnetic oscillations of
and coupled waves can exist on the surface of magn@ts. the conducting medium is investigated in a ferrodielectric—
The propagation of these waves is determined by the promemiconductor system at low temperatures in the frequency
erties of a magnet as well as the medium in contact with itrange in which surface helicons do not exist. In a strong

The dependence of frequency and damping of surfacenagnetic field, this interaction leads to a change in the fre-
waves on the properties of magnetic medigmermeability, quency of magnetic surface waves if delay effects in the
the presence of conduction electrons, gyroanisotropy) etcsuperconductor are significant. It was found that the fre-
has been studied extensively. These effects were analyzed ¢guency dispersion of magnetic oscillations in this case can be
the review by Kaganoet al in which the electromagnetic stronger than the dispersion associated with delay effects in
properties of a magnet in contact with vacuum are investithe magnet. Moreover, attenuation of collisionless type is
gated. It is shown that the dispersion in the spectrum obpserved when surface waves propagate at an afgle
surface oscillations is determined by different physical+ 7/2 to the direction of a constant magnetic field. This is
mechanisms: the frequency- and spatial dispersion of permepe to the existence in the magnetically active plasma of the
ability and permittivity tensor components and delay effectssemiconductor of partial electromagnetic waves removing
in the magnet. The inclusion of delay leads not only to theyne energy of the field from the boundary. The dispersion and
dependence of frequency on the wave vector, but also tgamping are determined by macroscopic parameters of the
attenuation of a nonmagnetic origin. It depends on the wavgagnet, the magnitude and direction of the magnetic field,
vector and the dissipative component of permittivity. and the charge carrier concentration in the semiconductor.

The influence of electromagnetic properties of the me- 5 | ot 4 ferromagnetic dielectric occupy the half-space
dium bordering a magnet on surface magnetic oscillation§,>0 (medium “17) and a semiconductor fill the region
has been studied less exter_lsively. I_t should be noted th L0 (medium “2"). The external constant magnetic field
surfacelwave's at the magnetlgally act!vg plasma—vaculuml J, and the magnetic momend are directed along the
terface in radio frequency region exhibit a number of inter-,_-vis.
esting peculiaritied.For this reason, an analysis of the prop- The electromagnetic properties of the ferromagnetic di-

:\:tli(\a/ Se Of|:;(:rf;r?xgggsgci!vi\:\fjif;tgé? fi:cmeri_mn;?gr}iﬁ'cgll)électric are described by the equations of magnetostatics and
P - y primary -imp equations of motion of magnetic moment. Assuming that the
tance. Such a composition leads to the formation of new ; . ) .
P : . dependence of all the variables on coordinates and time is
branches of oscillations as a result of interaction between . . .
. : ; roportional to exp(k-r—wt)], we can find from these
fields and conduction electrons. For instance, coupled suP . 3
. : : .~ equations the relation between the wave veétand fre-
face helicon—spin waves emerge in the ferrite— LeNncYo:
superconductor structure in a strong magnetic fielthe q yor
coupling parameter for these waves was found to be of the
order of unity, leading to a considerable change in the fre-

guency and damping of oscillations. wij (@)Kik;=0. (D)
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If the constant magnetic__fielldo is directed along the_ anisot- HY = H§(2)|y:01 HY = H<22>|y:0_ (7)
ropy axis, the permeability tensor componenty w) in the i o )
absence of spatial dispersion have the form 3._Let us first analyze the peculiarities of a magnetlc
wave in the simple case when tHewave propagates at right
=14 Wgy angles to the vectdd, andM (6= w/2). The depth of pen-
Foo™ Hyy= =2 2 2 etration of this wave into the semiconductor is determined by
g ; 2 2/.2 —1/2
_ the quantity | =|k®*—(w?/c?)e,/ "% and the energy—
_ ooy .. momentum relation has the form
Mxy= ~Myx="2 2 Hzz=1;
wg— o 2,
Kot ot W wi(w—iv) 1
SgNK,w + w AT T %5 5 1o
Mxz= Mzx= Myz= /~/~zy:0; I 92 ZCzwsz k*
wg=0g(Ho+BM); woy=4mgM, (2) X (sgnkyw + wg+ wy)?. (8)

whereg is the magnetomechanical ratio a@dhe anisotropy The solution of this equation exists only f&;<<0. In the
constant. It follows from(1) that region of small values of wave numbeks(k?< wéw/cz|w
5 P +iv|), the frequency of a surface magnetic wave is given by
ky=—ky— K3/ p; 3

Im k,>0 being the emission condition fgr—0. Henceforth, . . )
we assume thak§>k§/,u, i.e., the wave propagates at an Delay effects in the conducting medium lead to fre-
angle to the magnetic field. The components of the varyingluency dependence of the wave vedtalto dispersionse)
magnetic field in the waveé3) are connected through the and dampingy=—Im o

0=01=0gtoy. 9

relation wyke p\ 12
Sw (k)= Re(1+i—> ,
H K H —kZH (4) e o
X ky y1 z ky y- oy I L V)llz 0
Electromagnetic fields in a conducting medium can be v wq m I wy) (

described by Maxwell’s equations and the equations of mo-
tion for conduction electrons. The wave vectors of transversg\lith
waves can be found from the relation

For large values ok (k> w3w/c?|w+iv|), a wave
Damon—Eshbach frequerfogropagates along the inter-
face:

2 2
(K+K)2+ | (et 22| K= g | — oy 82 Gl
Exx{ Ky T Ky ExxT €z 2 g2 Exx c2 Exy 0= 0=yt - (11
2 2 4
w w Its dispersiondw and dampingy are given b
+ kg_ ?Sxx €471 ?giyszzzoa (5 P @ PIngy 9 y
W\ w(z)
where the permittivity tensor componenig(w) in a one- dw= 8 K22 (12
component plasma in a strong magnetic fielg,& w,v) are
defined as oy WY 13
Y= 2.2
wi(w+iv) 8 kcw,
Exx= Eyy= &0t ol It should be noted that a surface wave with frequency
(11) emerges in the structure ferromagnet—vactifonwave
B _ iwg B w% numbersk> w,/c, and its dispersion caused by delay effects
ExyT TN o B2 B0T iy ©® inthe ferromagnet iR\ w,= — wy w3(1+&)/8k?c? (¢ is the

) ) ) ) permittivity of the ferromagnét In the structure under inves-
Here ¢ is the dielectric constant of the semiconductor Iat'tigation the wave (11)—(13) propagates forks wo/c

H _ .2 _ 2 .

tice, andwy=€eHo/mc; wo=4meno/m; e,m,no, v arethe s, /¢ |t can easily be verified that the change in its fre-

charge, effective mass, equilibrium concentration, and eﬁecquency(lz) is much larger thamA o).

tive _frequency of collisions of charge carriers_, rgspec_tively. In the above geometry, attenuation is determined by the
We introduce the anglé between the magnetic field direc- gissipative component of the permittivity of the semiconduc-
tion (z-axis) and the projection of the wave vector on the

plane (k,=ksin6, k= k cos). _ 4. Let us analyze waves propagating along the boundary
The dispersion equation for surface magnetic waves cafatween the media at an arbitrary angle to the vektgr

be derived from the boundary conditions for fields at the(egﬁ 7/2). We consider the frequency range in which the
interfacey=0 between the media. Such conditions are thefollowing conditions hold:

continuity of the normal component of the magnetic induc-
tion vector and the continuity of the tangential components @<y, wo/Veo, (14

of the varying magnetic field: ie.

(2)_p(1)_ (1) (1)
Hy _By _MHY +'U‘YXHX |y:0’ |SZJ>|8xy|>|8XX|
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and

k2> (0?C?) £y . (15)

Then it follows from Eq.(5) that two wavegextraordinary
and ordinary existing in the conducting medium satisfy re-
spectively the following conditions:

4

Fal'ko et al.

2

1 o
;<tanz¢9< —. (22)

The dispersion relation for these waves has the form

wgt+ oyt (sgnsind) o
wg+(sgnsind)w

w 2
K== (K + kD) = —zehy,  Imky; <0, (16) R S U L PUNFR
z [sinflcosh | k’C’wy
2 _ 282z 2 2 ;
=—k>—= <0. wow(w+iv) .
ky2 kzgxx' Imky,<0 (17 Okzczwﬁ sinA(i cosf— sin 6)
Since|ky,|>ky, the characteristics of propagation of these 4 2 112
waves differ strongly, and the components of their fields are W@ 23)
connected through the relations kiclw?| |
Kkt (@?/c?) ey, Let us consider the limiting cases:
1= 2 2 1
* K+ Kz Y waw wolw(w+iv)|Y?
2 2 |cos6|> TP kco , (24)
H :kx(w 1c%) eyx—Ky1K; H H
“ k(K5 + ) - wllw(otin]®_ w5 -

w
E~0, EXl:k_ZcHVl’ When inequalities(24) are satisfied, we can easily obtain
from Eq.(23) the frequency of the surface wave propagating

_ @ [keky1+ (@?/c?)ey,] only in the range of angles 7/2< <0, i.e., only in the

17 k,c k2+k> yi: (18) negative of thex-axis (nonreciprocity effedt
for the extraordinary wave and w(6)= g+ leJ|rsm.0| . 26)
|sin 6|
H ——@H Hyp=— 2YH,,, E —@E : - i
S P e O The delay effects in the semiconductor lead to the dis-
persion of frequency26) and to damping of the form
E ket H E ke © H (19 202(6)|sing|®
x2= Y2 2= » o My2. _ wWow
WEyy kaXx w Sw kaZCZwa COSZ 6(1+|sin0|)2' (27)
for the ordinary wave.
Let us analyze different types of semiconductors with an wczaw( 0)|sin 6| 29)

isotropic energy—momentum relation for charge carriers. In 7=kazcsz cosf(1+]sing|)?

some of them, the displacement current is smaller than thle he D Eshbach wdg 13) d .
conduction current, and the following condition holds: n cqntrast tot € bamon—LEshbac wale)—( : ) amping
(28) is of the collisionless type. The mechanism of its emer-

) wdlo+ivl gence is connected with the following factors. One of partial
|8228xx|%|sxy|; g0 —waw . 20 waves in the semiconductor, viz., the wave with the compo-

_ - nentky,, is a bulk wave in the high-frequency range (

(_It should be noted that this condition rules out the propagas-») under the condition$20). (The other partial wave is a
tion of a surface helicofr?) _ surface wave for whiclk,;=—ik|siné|.) The fields whose

Semiconductors of the second type are characterized ymplitudes decrease exponentially on both sides of the
a relatively low electron concentration, and the main contri-poundary plane between the media are transformed at the
bution to the component,, comes from displacement cur- boundary into the field of a wave propagating to the bulk of
rent. In other words, the following inequalities hold: the semiconductor and removing a part of energy.
When inequality(25) is satisfied, the partial wave with

2 2
+i )
wo. >go> wOlwz vl (21) componenk,, defined as
olo+iv| )

In semiconductors with a high charge carrier concentra- (29
tion, we havek,,=k,wp(w—iv)/(w?+v?). The simulta-
neous fulfillment of the conditionb§2>k§ and(3) indicates is also a bulk wave propagating in the conducting medium
that in this case the wave propagates in the interval of anglefer arbitrary relations between the frequenciesnd v.

whose magnitude is determined by the constant magnetic In this case, the frequency of the surface wave is given

field Hy: by

) ww(z) 14i v
=T T eaeq | LTI ;
1™ wykc? cosé w?
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o= (0gtoy)(l-oy/wy), (30 5 waSw(H) 1 @7
w= ’
and its dispersion and collisionless damping are defined as 4k*c’wy cos 0
kic*wfo 20(0) |sing
Sw=——— 5 cot 0, (31) y=meee(®) |sind (38
4wgwy 4k2c2w?\eq COS 0
_ k’C’wywpy t0 32 In the casg36), the dispersion and damping for a wave of
Y= 2wow, coto, (32 frequencyw; (9) are given by
where the frequency, is defined in(9). wyopkic®
" . : . Sw=— ——5—c0% 6, (39
Conditions(24) and (25) imply that if the charge carrier w0
concentration in the semiconductor is suchagt’kc<1, a 5 5
surface wave of only one typ@6)—(28) is formed. For a Y= wywpk’c? cos ¢ (40)
high concentration, whenwy/kc>1, but the inequality wlwg |sing|

wiwlk?c?wy<1 is observed, both types of wave6)—(28)

. It should be noted that the dependences of the frequency
and (30)—(32) exist. These waves can be observed by vary-,. . . . _
ing the angled. Finally, when & w2w/k2c2a,, only the dispersion and collisionless damping on the value of a con

wave (30—(32) propagates stant magnetic field are determined by the angular range in
For a low concentratiofsee(21)), surface waves exist at which surface waves with frequenciés) and (26) propa-

the magnet—semiconductor interface in the range of angle ate. In semiconductors of the first ty(0), the functions
defined by the inequalities w(Hg) and y(Hy) change in the angular rang@4) as

(consHHO)Zng and (constHg)/H, respectively, i.e., their
wg values decrease with increasihty, tending to a constant
(33)  value. In the angular intervé5), the values 0w (H,) and
) v(Hy) increase with the magnetic field, tending to saturation
In contrast td2_2), the upper boundgry of the angular mterv_al according to the lawsdw(Hq)~H?2/(const-Hg)? and
(33) is determined by the conduction electron concentration, i y~H,/(constHy).
and does nqt depend on the e_xternal magnetic field. In semiconductors of the second tyg2l), dw(H)
Expression(17) for k>, which has the form ~(consttHg)/Hg, ¥(Ho)~ (consttHg)/H3 if inequalities
(35) are satisfied, and frequency dispersion and damping for
(34  values of angle$36) exhibit identical dependences on the
magnetic field:Hy/(const-Hg).
under conditiong21), does not depend on the magnetic field The properties of the semiconduct¢20) and(21)) also
either. Forw> v, it follows from (34) that the ordinary wave affect considerably the form of angular dependenée&))
is a bulk wave. and ¢(0). The effects described above can be observed ex-
As before, surface waves propagate only in the negativeerimentally by varying the direction or magnitude of the
direction of thex-axis. Since their dispersion equation is constant magnetic fielt,.
quite cumbersome, we shall give analytic expressions for
frequency, dispersion, and damping only in the limiting*g_mail: yakovenko@ire.kharkov.ua

1
—<tarf < ——F——.
o o|lo+iv|eg

2 .
22 wo(w—iv)
2" g ow(w?+ vP)

cases:
wiw ) M. A. Gintsburg, Zh. &sp. Teor. Fiz34, 1635(1958 [Sov. Phys. JETP
|cosb|> om—, =Veo (35) 7, 1123(1958)].
k“c“oy’ ke 2| R. Eshbach and R. W. Damon, Phys. R&¢8 1208 (1960.

3M. I. Kaganov, N. B. Pustyl'nik, and T. I. Shalaeva, Usp. Fiz. N4,
w wWow 191 (1997 [sic].
ke Veo<|cosd| < K22m (36) “N. N. Beletski, A. A. Bulgakov, S. I. Khankina, and V. M. Yakovenko,
H Plasma Instabilities and Nonlinear Phenomena in Semicondudiors
If inequalities (35) are satisfied, the surface magnetic wave 5?:\}“8&'\';“"%"% DMum\I((akKIE\(i%ﬁk Fiz. 7126, 19 (1981
with frequency(26) is characterized by the following values "~ o and V. M. Takovenko, LKr. Fiz. £hes, '

of éw andvy: Translated by R. S. Wadhwa
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Acoustic magnetic resonance in absorption and dispersion of surface elastic waves
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It is shown that magnetic resonances related to excitation of oscillations of the layer
magnetization can appear in the spectrum and absorption of the Love acoustic surface waves
propagating in a multilayered film with a Fe/Cr type magnetic ordering on a massive
substrate. The magnetoelastic resonant contribution to the elastic shear modulus of the film is
calculated and the relation between the resonant frequencies and the frequencies of
electromagnetically excited uniform ferromagnetic resonance is establishei99@ American
Institute of Physicg.S1063-777X99)01102-G

The nature of magnetic ordering and giant magnetoresighe expression for the phase veloc#tyf a Love wave can
tance in multilayers of the Fe/Cr type has been studied tilbe written in the form
now by using a set of experimental methods providing vast 1
information concerning the magnetic and atomic structure of  s=v,— —k%?(ﬁ— —) Vo, (1)
such films!2 Although this information makes it possible in
principle to explain the main features of the observed reguwherek is the wave vectory, py, andi, are the velocity
larities, it is insufficient, however, for an unambiguous andof sound, density, and elastic modulus of the substrate, and
consistent description of the physical nature of magnetic ork¢, ps, andx; the thickness, density, and elastic modulus of

dering itself and the mechanisms of giant magnetic resisthe film. The magnetic resonance can be manifested in the
tance on atomic level. contribution emerging in the elastic modulus of the mag-

tend the scope of phenomena whose analysis in magnetf@@gnetization oscillations. o _
multilayers makes it possible to determine qualitatively new N order to calculate this conltr|but|on,.W(|a consider ultra-
microscopic parameters of such films. In our earlier;?n'c \/.lbrag(onz Iin \;avn |nd|V|duathrr1at%netllc ;’:_lyt(ejr_ oTcupylngt
publication® we proved that the application of acoustic € region ~z=1L. Ve assume that the elastic displacemen

. . . . vector and equilibrium magnetization are parallel to the
methods(including the study of frequencies and damping of . . . .

: . . : x-axis. Expanding the displacement amplitudg) and the

surface elastic waves in the system comprising a film and

X . | o - ﬁonequilibrium magnetization componan{z) into Fourier
massive crystalline substratés promising in this respect.

series
The frequencies of surface waves exhibit the dependence of

elastic moduli of the film on the magnetization and magnetic
field strength, which provides information on the nature of ~ Y(2)= T NE:O (1_ §5N0)UN COSOnZ,
ordering, while the mechanisms of giant magnetoresistance
are manifested in damping.

Along with nonresonant field dependences considered in

Ref. 3, the parameters of surface elastic waves can also ex-

hibit magnetic resonance. Such a resonance was observedi!d Presuming the isotropy in the boundary plane, we obtain
for example, in Rayleigh waves propagating in a system cont-he following equation fouy :

sisting in a nickel film of thickness 200 A on a piezoelectric — wzpfuN= —qﬁl)\uNJr NimednM;n

substraté. In this communication, we describe the results of N

the theory describing manifestations of magnetic resonance +(=DTF(L)—F(0), @

in absorption and dispersion of surface elastic waves for theyherew is the frequency) the elastic modulus of the crystal

Love waves propagating in a multilayer—substrate system. |attice, h,,. the magnetoelastic interaction parameter, and
Let us consider the actual situation, when the length of & (L) andF(0) are the values of elastic stress at the bound-

surface wave is larger than the film thickness. In this casegriesz=L andz=0.

[

N

m(z)= 2 my singnz, QN:T
N=0

N

1063-777X/99/25(2)/3/$15.00 148 © 1999 American Institute of Physics
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Solving Eqg.(2), we find the amplitudes of displacements

u(0) andu(L) at the boundaries, and then use the relation 40t
}
L1 0
u(L)—u(0)=— 5 [F(L)+F(0)] 3 3
)\f 2 \g !
(which is valid for a thin layer whose thickness is smaller < -40;

than the wavelengjho obtain the elastic modulus; in the
form Ns=\+ Ao, Whereh . is the contribution from mag- -80¢}
netoelastic interaction. Assuming that the multilayered film -
cons_ists of ider_1tical frag_ments, we can a_p_ply relatignto 0.8 1.0 1.2
our film, replacing the thickneds of an individual fragment

by the thicknes4 ¢ of the entire film. Peculiarities of a mul- (0/0)0

tilayered system are manifested in this case in the type of

magnetic ordering. FIG. 1. Acoustic magnetic resonance as a function of the frequency of

In the case when the recurring fragment consists of tqulast.ic modulus of 2the film with a strong effect of exc.han.ge interact.ion on

X X . he line shape/,L:hmemZQQO/wg ,m is the film magnetization normalized
layers with elastic modulih; and \,, the value of\; iS (o the saturation magnetization.
determined by the formula; *=\;*+\,*. For a Fe/Cr
film, one of the contributions comes from the iron layers, the
difference in the directions of equilibrium magnetizations ofwhereQo=yMy,y is the magnetomechanical rati,, the
the layers being manifested in that this contribution dependgquilibrium magnetization}; the frequency of uniform
on the relative orientation of magnetizations of adjacent layfesonance in zero demagnetizing fiefthe exchange inter-
ers. action parameter, anfl the damping factor. Formulé6)

The value ofm,y can be expressed in terms of the dis- combined with(7) describes acoustic magnetic resonance
placement amplituday, from the equation for magnetization broadened by the exchange interaction as well as spin-wave
with appropriate boundary conditions. The general exprestesonances under definite conditions. If the exchange inter-

sion has the form action is insignificant §<QL?), we have
2 Nme=h? Hofls )
M= hmedy 2 ann'UN - 4) me me(w+ir)2—ﬂf(ﬂf+4wﬂo)

N

The d d f th fici h and elastic moduli reflect the uniform magnetic resonance.
; N epe(zjn ence do te coe '.?'enh’\" ohn © _vv?ve For multilayers of the Fe/Cr type, the susceptibilitff
vectorsay andqy 1S gue to honuniiorm exchange INerac- qpq,; 4 pe referred to the recurring fragment including adja-

tion, anc]{ the mte_gral_ form %f r?.llat'%m r(cajfle_cts (';he emelr- .cent ferromagnetic layers with different directions of magne-
gence of magnetization at the film boundaries due to elastig, ijon in the general cas@ntiparallel or noncollinear or-

vibrations. I.f Fhe _contrlbutlon Qf th_e boundary values can bederin@. Resonant frequencies for such systems were
neglected(rigid fixation of spins in the boundary layers

calculated by Bebeniet al® Using the results of these cal-
formula (4) assumes the form

culations, we can obtain an expression of the t{§en the
M= N2 XU (5) chosen geometry for uniform resonance, in which the reso-
nant frequency/Q(Q¢+47Q,) is replaced by another fre-
where x{7 is the magnetic susceptibility component due toquency taking into account the difference in the orientations
the varying magnetic field at the boundary O. In this ap-  of magnetizations of adjacent layers.
proximation, we can obtain the following simple expression  The effect of exchange interaction on acoustic magnetic
for Nme: resonance is illustrated in Fig. 1 showing the frequency de-
pendence of the quantity,,, under the conditions when ex-
©6) change interaction distorts the curve corresponding to uni-
form resonance and leads to the emergence of a new resonant
) ) singularity.

Thls formula describes the resonant dependence of the According to the above arguments, the parameters of
velocity of the surface wave on the frequency and strength of,iface elastic waves can acquire resonances associated wit
the magnetic field. If magnetic oscillations of a layer aréine excitation of natural magnetic oscillations in multilayers.
reduced to oscillations of average magnetizatiér in-  The position and shape of the curves describing such reso-
stance, in the case of parallel o_rientation of magnetiz_ations iRances and their dependence on the magnetic field strength
all the layers, the corresponding formula fPXZNZ derived  gre determined by the type of magnetic ordering and other
from the well-known equations for magnetizationas the  fyndamental properties of films, which can therefore be ana-

4.5 1
Ame=ne 7z 2 o= [(= D" =11

form lyzed on the basis of observation of surface acoustic waves.
2
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Magnetic Domains. The Analysis of Magnetic Microstructures
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A. Hubert and R. ScHar, Magnetic Domains. The observing magnetic domains, as well as their comparative
Analysis of Magnetic Microstructures, Springer-Verlag, characteristic¥Chap. 2. The third chapter deals with the
Berlin, Heidelberg, New York(1998, 720 pp., 400 figs., theory of domain structures. Numerous theoretical results
ISBN 3-540-64108-4 obtained by using various approximations and covering dif-

An overwhelming majority of magnetic materials used ferent aspects of the domain theory are presented using a
in science and engineering exist in the polydomain stateunified approach. Modern methods of numerical micromag-
Hence the physical properties of magnetic domains and thejietism are described in detail for the first time, and several
evolution in external magnetic fields determine most of thenew theoretical results obtained especially for inclusion in
functional characteristics of devices containing magnetighis book are presented. Chapter 4 is devoted to an analysis
components. Decades of intensive studies have yielded Nyt various physical parameters of magnetic materials and to a
merous methods for observing and analyzing magnetic dogetajled description of the methods used to determine the
mains and a large body of experimental results, as well agagnetic constants to a detailed description of the methods
different theoretical methods which were developed for dey,sed to determine the magnetic constants required for char-
scribing the polydomain states. Recent advances in the fieldcierizing domain structures. In Chapter 5, which deals with

of nanotechnology have led to the production of basically anaiysis of various polydomain states, the authors have
new magnetic materials, which has further stimulated fundagone further than providing just a classification and presen-

mental and applied research of magnetic domains. This IBation of the material. On the basis of the results presented in

mainly due to the fact that at the current level of mm'atur'previous chapters, they consider in detail the physical

|z_a_t|on of mag_netoelectrorjlc _n_]struments, the _behawor of "N mechanisms leading to the formation of the main types of the
dividual domains affects significantly the functioning of such

) observed domain textures. Using numerous examples, they
devices. : . .
have shown how a domain structure is formed depending on

n sp|te_of fch_e large number of monographs and reVIEWhe symmetry of a magnet, crystallographic and induced an-
devoted to individual aspects of the physics of magnetic doi_sotro shape of the sample as well as various other char-
mains, the present book is the first attempt in the world lit- by b P

erature to present this comprehensive branch of magnetis gteristics. In Fhe last, sixth chapter, the guthors st_udy the
in a single volume. The book is authored by Prof. Alex © fect of domains c_m the magnetic properties O_f basic types
Hubert, a leading authority in the field of magnetic materials® Magnets and discuss the role of polydomain states and
science, and his pupil Dr. R. Sdka a specialist in their evolution in the functioning of various devices based on
magneto-optical research. It should be recalled that Hubert8'2gnetic materials. Current problems of micromagnetism
monograph entitied Theorie der Dorimenwade in Geord-  are discussed and the ways to solve them indicated.

neten Medieh (Theory of Domain Walls in Ordered Media A large number of superbly drawn figures and charts
(Springer-Verlag, Berlin, 1974 which was also translated greatly facilitate the understanding of the material. Most of

into Russian in 1977 by Mir Publishers, Moscow, continuesthe illustrations of the domain structures are original and
to be one of the most veritable publications on the basid'ave been prepared specially for this edition. The exhaustive

principles of the physics of domain walls in condensed melist of the cited literature at the end of the book will also be
dia. appreciated greatly by many specialists. For the first time, a

The authors of the project realized it at the expense oflecent classification has been provided for publications in
enormous efforts and time. The book was written over a verghe field of magnetic domains research, starting from the
long time (beginning in 1984 During this period, the au- Vvery first papers and terminating with the results of latest
thors gathered, analyzed and systematized a very large nurvestigations.
ber of publications devoted to the experimental, theoretical ~ This monograph by A. Hubert and R. Sééa in which
and applied aspects of the investigations of domain structur@ vast body of tangible material on the physics of magnetic

The monograph has an elegant and carefully plannedomains has been gathered and presented systematically, im-
structure. The historical review presented in Chapter Iparts a finishing touch and inherent logic to this vital branch
is followed by a detailed description of the methods ofof magnetism. The wide range of the material, the profundity
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of the analysis and the encyclopedic coverage of the topics Further information about the book and its authors
make this book a unique example of monographic presentazan be obtained on the Internghttp://www6.ww.uni-
tion in scientific literature. It should be of considerable inter-erlangen.de/hubert/magnetic-domains.html

est not only for specialists in the field of magnetic research,

but also for physicists from other fields. Translated by R. S. Wadhwa
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The role of pair correlations in the formation of the ground state and the elementary
excitation spectrum in a superfluid Bose liquid (A Review)

E. A. Pashitskii
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Fiz. Nizk. Temp.25, 115—-140(February 1999

The paradoxes and disparities in the contemporary microscopic theory of superfluid helium
(He-1lI) are discussed along with possible ways of resolving them by taking pair correlations

of “He atoms into consideration. It is shown that most paradoxes are associated with

the commonly accepted initial assumption concerning the dominating role of single-particle Bose
condensat¢éSPBQ in the quantum microstructure of the superfluid compongntThe

existence of intensive SPBC leads to a strong hybridization of the elementary excitation branches
and to a common dispersion law for all boson branches, which is identified with the

quasiparticle spectrug(p) observed experimentally from slow neutron scattering in liquid

helium. However, the stability of this spectrum during a transition through {peint and the large

value of the gap in the vicinity of the “rotonic” minimum contradict both the Landau

theoretical criterion of superfluidity and the small value of experimentally measured critical
velocity. At the same time, a strong interaction between particles in the Bose fidaidtrongly
suppresses the SPBC which amounts to less than 1% #flalatoms and hence cannot be

the main constituent of the superfluid component, unlike the case of a weakly nonideal Bose gas.
Moreover, for a quite strong attraction between particles in a certain region of the momentum
space, bound pairs of bosons can be formed in the superfluid Bose liquid, and a coherent pair
condensat¢CPQ analogous to the Cooper pair condensate in superconductors may appear.

Such a strong CPC may completely suppress the weak SPBC. In this case, the one-particle
spectrume(p) of elementary excitations does not hybridize with the collective-

particle spectrum and does not appear in the structure of the dynamic form &(gqar), i.e.,

does not coincide with the spectrum measured from neutron scattering. The dispersion of

one-particle spectrum is defined by the momentum dependence of the pair order pafh(mter
and may have a minimum or a point of inflectionpat 0. This peculiarity in the one-

particle spectrum of a Bose liquid with CPC but without SPBC vanishes togetheﬁprh at

the temperatur&.=T, of the phase transition from the superfluid to the normal state

(unlike the rotonic minimum in the collective spectrynwhile the corresponding critical velocity
v.=mine(p)/p] vanishes at tha-point in accordance with the Landau criterion and the
experimental data. The assumption that the strong “Cooper-like” CPC is responsible for the
quantum structure of the superfluid componepnts confirmed indirectly by the successful

application of the Justrow approximatidbased on strong pair correlatigrfer describing the
properties of liquid*He and quantum liquid mixture$4e—*He on one hand, and by an

anomalously large effective mass e impurity atoms irfHe, which is approximately equal to
total mass ofHe and*He atoms, thus pointing to the existence of helium atoms in

superfluid liquid He—II. The value of the superfluid velocity circulation quantum in the
Onsager—Feynman vortices in a Bose liquid with CPC but without SPBC is discussed as well as
the critical velocities of superfluifHe in ultrathin films and channels in which the creation

and motion of quantum vortices are ruled out, and the quasiparticle spectrum undergoes
dimensional quantization. €999 American Institute of Physid§1063-777X99)00102-4

1. INTRODUCTION brilliant confirmation in experimentson inelastic scattering

The elementary excitation spectrum in superfluid heliun®f slow neutrons in liquid helium. Feynmaattributed the

(He—Il) with a linear(phonon dispersion relatiorE(p)~p existence of the “rotonic” minimum in the_quasiparticle
for small values of the momentunp0) and with the “ro- ~ SPectrumE(p) to the structure of the dynamic form factor

tonic” minimum at p#0 was predicted by Landawn the  S(P.€) gf the Bose liquid 4Hez while Brueckner and
basis of the superfluidity criterion derived by him for Bose- Sawad&® showed that such a minimum can be obtained in

and Fermi-type quantum liquids. Bogoliubov's microscopic theofyof superfluidity for a
Such a form of the spectrum subsequently received aveakly nonideal Bose gas if the pseudopotential of the

1063-777X/99/25(2)/19/$15.00 81 © 1999 American Institute of Physics
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“rigid spheres” model is used for describing the interaction gap in the spectrum of quasiparticles in the superconducting

between particles. state T<T.) and sufficiently large for the rupture of Cooper
The advances made later in the phenomenologteal-  pairs (pg is the Fermi momentuim
fluid hydrodynamics and microscopic(Green’s functions Paradox 3. Unlike the case in a Bose gas, thmgle-

method theories of superfluidify® subdued some of the particle Bose condensat&PBQ in a superfluid Bose liquid
paradoxes associated with the hydrodynamics of the supemust be depleted in particles evenTat 0 due to a strong
fluid liquid as well as with the shape of the quasiparticleinteraction between bosons. Analysis of the experimental
spectrum. Let us consider these paradoxes in detail. data on neutron scatteritfgshows that, superfluitHe in the
Paradox 1.In view of a weak temperature dependenceBose condensate state at low temperatinath zero values
of the quasiparticle spectrum @), the value of the “ro- of energye and momentunp) contains no more than 1% of
tonic” gap A,=8.65K at the minimum oE(p) dependence all “He atoms, while classical measurements of viscosity in
for p,=1.9A! remains practically unchanged right up to He—Il show? that thedensity of the superfluid component
the \-point (T, =2.17 K). This contradicts the very meaning at T<1 K is almostequal to the total densitgf liquid he-
of Landau’s superfluidity criterioh At the same time, the lium. This means that in spite of the generally accepted
superfluidity criterion is satisfied for the spectrum of quasi-view, superfluidity in the Bose liquidHe cannot be attrib-
particles in the electron Fermi liquid in superconductées  uted to theconventional BoseEinstein condensation only
the superconducting phase below the transition temperatund the microscopic structure of the superfluid compopgnt
T., when the spectrum contains a finite energy daffhis  must be of a more complex quantum nature in the form of a
criterion is not satisfied in the normal stateTat T, when  many-particle coherent effective condensat€EC).24-1’
there is no gap in the spectrum. Among other things, it cannot be ruled out that twherent
Paradox 2. The value of the critical velocity pairSlgondensate(CPQ, which consists of bound boson
. pairs® and is analogous to the Cooper pair condensate in
ve=min[E(p)/p]~A,/p;~60 mis, (@) superconductordjs the main superfluid component in He—
calculated according to the superfluidity criterioior the 1.
quasiparticle spectruri(p) observed from neutron scatter- Paradox 4. It was shown by Brueckner and Sawéda
ing in liquid “He, is two orders of magnitude higher than the (see also Refs. 19 and Rhat quite realistic potentials of
experimentally measured value of the maximum velocityinteraction between particles can lead to a good agreement
v of superfluid flow in He—Il. The velocity &P increases between the Bogoliubov spectrum of quasiparticles in a
many times in ultrathin capillaries and wetting films of su- weakly nonideal Bose gés
perfluid helium, but still remains much lower than the critical _ [32 7 7.
velocity (1) corresponding to the rotonic gap and, unlike the Es(p)= \/p ug(p) + (p*/2m)
latter, vanishes at the-point1° This contradiction is usually ug(p)=nV(p)/m, &)

attributed to the generation @nsagerFeynman quantum . . . _
g g y d [V(p) is the Fourier component of the potential of pair in-

vortices or vortex loops(see Ref. 1Din superfluid helium ‘ tion betw the b d th ¢ f el
moving at a low velocity. This results in the emergence of geraction between the osdnand the spectrum of elemen-

finite viscosity owing to the force of friction between normal tary excitations In I|qu!o4He observed from neutron scatter-
cores of vortex tubes and the wallsolid surfacels Such a ing experiment$,in spite of the fact that SPBC is strongly

point of view is in accord with the experimentally observed suppressedor is completely absenin a Bose liquid while a

increase in the critical velocity upon a decrease in the thick-Bose gas contains an overwhelming majority of particles

ness of superfluid helium filM$ since this is accompanied no~n in the SPBC statén is the total number of particles

by an increase in the coupling force between vortices an®®" un!t volu.me. , , )
walls per unit vortex length. This review is devoted to a discussion of these para-

However, such an explanation is inapplicable to uItrathindOXes _and_the possible ways_of resolvmg them, in pzimcular,
capillaries(“supergaps’) in which the generation of quan- by taking into accour_1t theair corrt_alatlons b_etween He
tum vertices with a superfluid velocity,(r) = «/r decreas- atoms and the formation dfound pairs of helium atoms
ing slowly with increasing distance from the axis is ruled out
(here x=h/m, is the velocity circulation quantunh the  , \croSCOPIC STRUCTURE OF THE SUPERFLUID
Planck’s constant, anoh, is the mass of 4He atom. This  coOMPONENT IN HeIl (PRELIMINARY REMARKS )
situation is analogous to that of tkatical currents in type I
superconductors: the critical currentj. in bulk supercon- The quantum-mechanical structure of the superfluid
ductors is determined by forces of “pinning” of normal component in liquid'He below the\-point (He—II) remains
cores ofAbrikosov quantum vorticest crystal lattice defects, the main problem in the construction of a consistent micro-
while in thin superconducting filamentwires) whose thick- ~ scopic theory of superfluidity of Bose liquidscluding ex-
ness is smaller than the London penetration depth otic liquids like the biexcitorf - bipolaron?® and piorf*
~3000—5000A of the magnetic field and which “cannot liquids).
accommodate” vortices of diametdr=2\ , the value ofj, The microscopic base of the superfluid state in a weakly
is determined by the maximum “depairing current” for nonideal Bose gas is an intense SPB@h a nonzero mean
which the flow velocity of conduction electrons exceeds thevalue of the field operatcn(rz%):né’z. It is usually assumed
limiting critical velocity v.~A/pg determined by the band that SPBC is also preserved in a quantum Bose liquid, and
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the eigenenergy can be presented in the form of a powefondratenkd® who showed that the emergence of a gap
expansion inné’2,25'26 i.e., as a sequence of Feynman dia-for p=0 in the one-particle branch of the spectruafp) is
grams with increasing number of external condensate lineslue to the violation of theHugenholtzPines theoren®
However, if the SPBC is highly “depleted” in a Bose liquid while the Goldstone branciwith an acoustic dispersion re-
with a strong interaction between patrticlese Ref. 12so  lation for p—0 (hydrodynamic sound} the pole of a two-
thatny<n, we can confine the analysis to the lowest-orderparticle Green’s function. However, the author of Ref. 15 did
terms in the power expansion 'rri,’2 (see Ref. 1B not take into account the dynamic factor responsible for the
On the other hand, the formation &und pairs of vanishing of SPBC, which involvé%a quite strongattrac-
bosong(*He atoms or a strong CP& is possible on account tion over a wide range of momentz# 0, that is nearly ca-
of a quite strong effective attraction prevailing over a widepable of forming a bound state of two bosons and leads to
range of the momentum space even for a dominatmg  the emergence of a CPC.
rapidly decreasing with increasing separation between par- Hybridization of excitations is restricted in a Bose liquid
ticles) repulsion in the real spaéé. with CPC but without SPBE34 hybridization occurs only
The possibility of the existence of such a “Cooper- between those branches of the spectrum which correspond to
type” CPC in superfluid*He was discussed by many e€xcitations differing by two particles, i.e., the one-particle
authors?’ 33 However, the coexistence of SPBC and CPcbranch hybridizes with all excitations having an odd number
results in a large number of contradictions between th®f particles, while the two-particle branch hybridizes with all
theory and the experiment, as also within the theory itself. collective excitations with an even number of particles. Con-
First, the formation of CPC must apparently lead, insequently, the one-particle spectrep) is omitted from the
analogy with theBardeen-Cooper-Schrieffer (BCS) theory dynamic form factar
of superconductivity to the emergence of a finitgap A
#0 for p=0 in the one-particle branch of the elementary 1
excitation spectrurd’~33 This must result in heat capacity S(p.e)=——Imx(p.e), 3
anomalie¥ which, however, were not observed experimen-
tally in He—II.

Second, the existence of SPBC must lead to a stronéx . . . ) )
hybridization of one-particle and collective spectral g information about the collectivencluding two-particlg

branchesi.., to a coincidence of the poles of one- and two-EXCitations. Hence, in contrast to the two-particle spectrum,

particle Green'’s functions of bosons, as well as all Green’%Tgwsggﬁggzi(ggttﬁi?%()t be measured in experiments on
functions involving a larger number of particfegve con- ) .
sider here excitations with zero helicifHowever, since the It follows from here that the model of a superfluid Bose

. . S ~__liquid “He with a “pair” base of the superfluid component in
coIIe.ctlve(hycirody_namm b_ra_nch has an acoustic dls_persmnthe form of CPC and higher-order even condensététh no
relation E(p)~pc in the limit p—0 (c is the velocity of SPBC and hiah der odd densh id édm.tt'R f
sound in liquid*He), the existence of a gap,#0 in a and higner-order odd condens sidered in et

one-particle spectrum is ruled out fpe=0. t1h8e ?atn k:je r;_elpful n retiotlk\]llengetfse_r tpgradm:re]s :]orgmél_atet%m
Third, it was shown by us earlitthat the coexistence ntroduction owing restriction on the hybridization

of a highly depleted SPBC and a strong CPC results in thgf excitations with different parities and the separation of

instability of the one-particle acoustic spectrum if the phaseroIes of one-particle and collective branches in the quasipar-

of the “pair” order paramete’(p) coincides with the phase ticle spectrum. In other vyords, it can be a}ssumed .tr:%t the
of the SPBC “wave function.” If, however, the phase of E(p) spectrum ot_;served n neutron_ scattermg experiments,
W(p) is shifted by relative to the SPBC phase, the groundwh|ch is a collective spectrum and is determined by the dy-

state of the system is unstable to spontaneous creation gpmic form factox3), has nothing FO do with the supeflyldlty
boson pairs with a negative energy criterion. However, the one-particle spectrustp), which
According to our earlier Worlig.a stable Bose liquid does not make any contribution to the dynamic form factor

state does not contain any SPBE,£0), and the superflu- and is therefore not observed in neutron experiments, is de-
idity is determined by the strong CPC under the conditiont("\rm'r?ed forp#0 by the moment_ur_n dependence .Of the in-
that interaction between particles ensures the existence OftgractlonV(p) and can have a minimum at the point corre-
nontrivial (nonzerg solution of the homogeneous integral SPonding to the peak of the modul{® (p)| of the “pair”
equation for thecomplex pair order parameter¥(p) order parameter. As the critical temperattige= T, of phase
=|¥(p)|exp? with an arbitrary (degenerate macroscopic transition from the superfluid~t0 normal stafe-point) is
phasef. The superfluid component is a pair CEC which con-approached, the order paramefefp) determining the mini-
tains the CPC of bound“Cooper’) boson pairs and mum of the ratice(p)/p, and hence the critical velocity.,
“higher-order” many-particle condensates with an evenbecome equal to zero in accord with the experimental
number of unbound particles, since the coexistence of sevesults® and Landau’s superfluidity criteriohThis resolves
eral bound condensates in a one-component Bose liquid Baradox 1
forbidden due to the same gauge invariance of the initial Assuming that the “gap”A; at the minimum ofe(p)
Hamiltonian. and atT—0 is much smaller than the “rotonic” gap, in

It should be noted that several peculiarities of the superthe collective spectruriz(p) of elementary excitation&b-
fluid Bose liquid without SPBC were studied earlier by served from neutron scattering experimgntee reason be-

here x(p,&) is the susceptibility of the Bose system, carry-
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hind the small value of the critical velocity, in superfluid a nearly idealor weakly nonidegl Bose gas. The main ad-

“He becomes obvious anBaradox 2is resolved. vantage of this theory was that it did not use the standard
The absence of SPBC in a Bose liquid with a strongmethods of the perturbation theory employing the series ex-
CPC (see Ref. 1Balso resolvefaradox 3 automatically. pansion in the weak interaction constant. A correct choice of

As regardsParadox 4, it is connected with thécoinci-  the ground state a= 0, when an overwhelming number of
denta) assumption that both Bogoliubov spectry®) and  bosons are at the lowest quantum level with zero energy and
the form factor (3) are defined by the nonmonotonic zero momentum, i.e., in the SPBC stéiteview of the Bose
momentum-dependent pair interactidf(p) between par- gas being weakly nonidgalhelps in a radical simplification
ticles (see below. of the initial Hamiltonian of the system with pair interaction

Note that the absence of hybridization between oneV(q) which is a function of the transferred momentum
particle and collective branches of the spectrum in a Bose=p—p’:
liquid with CPC but without SPBC solves the problem of the )
coexistence of a gap,#0 for p=0 in the former branch H=E ib*b I E E V(q)bib, b.b @)
for an acoustic type of latter branch. However, it was men- 5 2m PP 2 < @0 Dp+aPp Do
tioned recently by US that theexistence of a gap, in the ) i _—
one-particle spectrune(p) of a Bose liquid with a “pair’  Wherem is the particle mass, whilb, andb, are the cre-
CEC is not at all a mustHence forA,=0 the one-particle atl_on and annihilation ope_ratqrs for a boson with momentum
spectrum is of the acoustic typ€p)~pu (for p—0) witha P in the secondary quantization representatifam simplic-

phase velocityu= ¥ (0)/m* which tends to zero aJ ity, the boson spin is put equal to z¢rédndeed, assuming
T, when ¥(0)—0. The &(p) spectrum then becomes that the numben, of particles in SPBC is macroscopically

parabolic and does not satisfy Landau’s supefluidity criterio2r9€ and approaches the total numhesf particles per unit
in the normal phaséor T>T,). volume, we can disregard the noncommutativeness of the

L
The acoustic nature of the one-particle gapless spectruff0S€ operator®, andb, except for terms of the order of
in the long-wave limit(A,=0 for p=0) in the superfluid 1/Mo~1/M<1, which can be replaced leynumbersyn, (the

state T<T,) is in accord with the Hugenholtz—Pines &ccuracy Qf this approximation is much higher than that of
theoren?® as well as with the Reatto—Chester power@nY experiment

asymptotic form®3’ for the pair correlation function Consequently, isolating terms in the Hamiltoniéd)
(HOYI)) ~|r —r"| "2 for |[r— 1’| —c, and does not lead to with zero momentum and considering that the number of

additional singularities in the heat capacitf. Ref. 32. e_that'gTi V<\<"th p#0 %\;er tk;ek-con.d et:nsate IS tstrﬁail

On the other hand, the important role of pair correlations_ <P#0™~p ~p Mo, We obtain, taking into account the mo-
between*He atoms in the superfluid Bose liquid He—Il is mentum conservation law, the following expression for a
indicated by the successful application of the JustrOW_flxed number of particlesn(= const) accurate to within small
Feenberg approximatid®® for describing the ground and ™S of the order oft’/nq:

excited states of liquidHe as well as quantum liquid mix- 1 p2 n

tures®He—*He *’ HB=§n2V(O)+ > > HnV(p) by bp+ 5 2 V(p)
It was reported earlier by @that the experimentally p70 [ M p£0

observet ! anomalously large effective mass; of *He X[ b +bgb . (5)

impurity atoms in*He, which is close to the total mass of
*He and*He atoms:m%=(mz+m,), may serve as an em- This simplified quadratic Hamiltonian can be subjected to
pirical confirmation for the existence of bound pairs of he-strict diagonalization with the help of Bogoliubov’s linear
lium atoms in He—II. This may point towards the formation canonical transformatiofso new creationg, and annihila-

of a bound state ofHe—*He atomic pairs. However, since tion B, operators for noninteracting quasiparticles:

the potentials of interaction betweéHe and*He atoms are + + +

identical and the energy of zero-point vibrations in the bound by =NpBp +upB-p; bp=NpBptupBly. 6)
state for theHe—*He pair is higher than for théHe—*He

. . : i For simplicity, the coefficienta , andu, are assumed to
pair, the formation of pairs ofHe atoms in He—Il becomes e roa) ang even ip and satisfy the normalization condition
easier than the formation oHe—*He pairs, the more so 2

] P ) )\p—,ug= 1 so that the operatogﬁg and g, satisfy the same
when boson-boson correlations facilitating attraction are.ommutation relations as the original operaﬂog‘sandb

. : . p-
taken into consideration. Substituting(6) into (5) and taking into account the ideal

h Ab” thesefqur:astlonslgrs st,ud|ed in ‘?'etf‘" In thf's FEVIEW ONpature of a gas of quasiparticles as well as the normalization
the basis of theBogoliubov's canonical transformations condition, we obtain an expression for the coefficients

method(Sec. 3 and theGreen’s functions methotSec. 4. and i, and finally arrive at the following expression for the

renormalized spectrum of quasiparticlege also Eq(2)]:
3. BOGOLIUBOV'S CANONICAL TRANSFORMATIONS

METHOD FOR NONIDEAL BOSE SYSTEMS p? [ p? 172
_ _ Es(P) =\ 5m|om T2V | - @)
3.1. A weakly nonideal Bose gas with a strong SPBC mizm
The first rigorous microscopic theory of superfluidity It follows hence that fop—0, the spectrum7) is an

was constructed more than 50 years ago by Bogolifibmv ~ acoustic  spectrum Eg(p)~|p|ug(0), where ug(0)
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E Note that the condition

<2 b;bp><n,

p#0

for a weakly nonideal gas, which must be satisfied for the
application of Bogoliubov’s theor§,is reduced to the in-
equality n®a%>1, wherea} = £,%%/4e’m} is the Bohr ra-
dius with effective masmg and charge & in a polar crystal
2 with permittivity eq>1. As in the case of a charged Fermi
gas> this condition corresponds to the high-density approxi-
mation, but it can be satisfied in ionfterroelectrig¢ crystals
ho with an anomalously large value ef=10> even for a rela-
pt 1 tively low concentration of particlesag=10"*cm 3 if mg
- =10m, (wherem, is the free electron magsThe critical
-~ temperatureT ;. of transition to superconductinguperfluid
- pu state, which coincides in the present case with the Bose con-
-~ densation temperatute

- ﬁ2n%/3

(10

*
Ksmg

0 P wherekg is the Boltzmann constant, may attain quite high
FIG. 1. Bogoliubov spectrum of quasiparticles in a weakly nonideal BoseV@luesT.=Tg=200K which exceed the highest values of
gas of point-like neutrafcurve 1) and charged particlegurve2). T. for cuprate-based metaloxide high-temperature
superconductoré discovered by Bednorz and ‘Ner.>¢?
However, there are no souritheoretical or experimental
=ynV(0)/m which is stable only when repulsion between reasons to believe that the bipolaron mechanisnhigh-
particles dominates at large distances whg@)>0. temperature superconductiviHTSC) is realized in these
The basic methodical drawback in the original version ofcompounds.
Bogoliubov’s theor§ is not the omission of quadratic terms  3.1.2. Neutral Bose-gas with finite-size particlemlike
~(n’/ng)?, but the assumption on the model of a Bose gasBogoliuboV’ and Foldy?? Brueckner and Sawa#a consid-
consisting of point particles with an interaction potential ered the model of a Bose gas consisting of finite-size neutral
V(r)=V,d(r), where 4r) is the three-dimensional particles in the shape of rigid spheres of diameteso that
&function, so that the Fourier componend(p)=V, the pair interaction potential corresponds to infinite repulsion
=const. In this case, formulér) describes the superlinear at distances<a and is equal to zero far>a. In this case,
dispersion relationsee curvel in Fig. 1) which satisfies the Fourier component of the effective interaction, taking
Landau’s superfluidity criterioh,but is unstable to the de- into account the quanturfwave properties of particles and

composition of any elementary excitation into two other ex-their mutual diffraction, assumes the foriffi=1)
citations(the energy and momentum are consejved

3.1.1. High-density Charged Bose-gdiswas observed sinpa )
soon after by Foldif that for aBose gas of charged particles V(p):VOWEVoJ o(pa), (11
with Coulomb repulsioV(r)=e?/r and a Fourier compo-
nent V(p) =4me’/p?, the Bogoliubov spectruni7) has a  wherej(x) is the zeroth-order spherical Bessel function and

finite energy gap fop=0 (curve2 in Fig. 1): V,, the positive constant of long-range repulsidor p=0)
Eq(p)= ﬁzwler (pZ2m)2, ®) ensuring the stability of the system to spontaneous compres-

sion (collapsg. However, it follows from(11) that, for quite
where wp= Jame?n/m is the plasma frequency of bosons, large transferred momentdin particular, for =/a<p
andz =h/27. In the first place, such a spectrum is stable to<2/a), the sign of the interactioN'(p) is reversed, which
decay processes. In addition, it also satisfies Landau’s supeterresponds to effective attraction of diffraction quantum
fluidity criterion® owing to a finite value of the critical ve- origin (Fig. 2a. Substitution of the potentialll) into the
locity: Bogoliubov spectruni?7) leads to a nonmonotonic dispersion
o — relation with a minimum ap~3=/2a (Fig. 2b, which is
ve=Min[Eg(p)/p]=2Vhwp/m. ©) qualitatively in accord with the spectrum of elementary ex-
As a matter of fact, this circumstance later served as the basgstations in liquid*He with a “rotonic” minimum, observed
for discussing the possibility of tHeipolar superconductivity in neutron scattering experimerits.
mechanisf°2 in ionic (polan crystals with a strong In the model of “semitransparent” sphefswith a fi-
electron—phonon interaction following from the superfluidity nite repulsionv;>0 in the regionr <a, taking into account
of a charged Bose gas bfpolarons® additionally the weaKVan der WaalsattractionV,<0 in a



86 Low Temp. Phys. 25 (2), February 1999

E. A. Pashitskii
Vv
a Eg b 3
2
Vo 1
c /
P /
/
/
/
/ // o
/ .
®
0 n 27 // 2 °
/
pa 0 P

FIG. 2. Pseudopotential of the pair interaction between Bose particles in the model of “rigid spk@rasd the Bogoliubov spectrum in the “rigid spheres”

model foru=c and for different values of the dimensionless paramgter 4nmafV, /%2 80 (curve 1), 64 (curve2), and 53(curve 3). Dark circles show
the experimental spectrum of quasiparticlegtite (b).

certain intervala<r <b, the Fourier component of pair in- experimentally observed spectrufig. 3b of quasiparticles
teraction potential can be represented in the following formin “He. However, it is obvious that such a coincidence is

(Fig. 3a: accidental to a large extent and does not correspond to the
s B : real situation since Bogoliubov’s thedrig not applicable for
V(p)=Vais(pa)/pa=|Ve|j.(pb)/pb, (12 describing the properties of a Bose liquid with a strongly
whereV;3|V,|, andjy(x) = —3(x cosx—sinx)/x> is a first-  “depleted” SPBC (,<n). Moreover, it was mentioned in

order spherical Bessel function. By choosing the parameterSec. 2 that the structure of the collective spectral branch,

appropriately, we can use the potentiap) to attain a close which was reconstructed from the dynamic neutron scatter-
coincidence between the theoretical spectr(itnhand the ing form

v a Eg bc b .
/' .’
l’
[ ]

ll hd

/ [ ]
Vo 1

/ [ ] L]
)/ LI
0 : \M//—
[¢] 0 P

FIG. 3. Pseudopotential of the pair interaction between Bose particles in the model of “semitransparent spheres” with attraction in e regiofor
parameter$V,|/V,=0.5,a/b=0.1 andV,=V,;—|V,| (a) and the Bogoliubov spectrum in the “semitransparent spheres” model with attraction for the above
values of parameters far=c and 8,=667. Dark circles show the experimental spectrum of quasiparticlédertb).
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factor, has no direct relation with the criterion of superfluid- 7(p)

ity “He. This calls for a more consistent analysis of nonideal Ap= — ;

Bose systems. Vn2(p)—[E(p) — s0(p) ]2

3.2. Nonideal Bose systems with a fixed number of = E(p) — 2o(p) , (20)
particles (Foldy—Brueckner method ) P \/nZ(p) — [E(p) _ so(p)]z

In the Bogoliubov approximatioh,all particles of a = - ; A )
X : . .. whereE(p) is the renormalized quasiparticle spectrum:
weakly nonideal Bose gas, which are not in a SPBC with (P) a P P

densityny~n, combine to form a condensate of free Boson E(p): \/Sg(p)_ 7°(p). (21)
pairs. One can endeavor to improve this approximation, in . o ’
the Hamiltoniar(4) retaining(at least partiallyin the Hamil- !N this case, Eq(16) for the pair “order parameter¥(p)

tonian (4) higher-order terms in the small parametéfn,,  @n be re'prese'nted in the following form if we take E@S)
which describes a condensate of bound Cooper pairs dfto consideration:
bosons with opposite momenta, as was done in Refs. 27-33. o= )

We shall solve this problem by using the technique de- ()= v(p—p) 7(PIE(P’) —&o(p’)]
veloped by us in Ref. 20, in which the Hamiltoniés) con- o’ [E(p")—eo(p) 12— 73(p)
tains terms quadratic ib; andb, as well as fourth-order
terms(second-order im’/ng) which can be presented in the X[1+ 2<,8;,,8p,>], (22
mean-field approximation as combinations of nonzero nor- ~ _ _ o
mal (b} b,) and anomalougb; b ) and (b,b_,) means. Where(B; B,)=[e“P'T—1]"* is the Bose-Einstein distri-
Consequently, Bogoliubov’s, renormalized quadratic Hamil-bution function for quasiparticles dt#0(kg=1).
tonian(5) with a conserved total number of particles assumes ~ Taking Eqgs.(18) into account, we can easily show that

the form the quasiparticle spectruii2l) has the following form for
-~ 1, p? . p—0:
Ha=3noV(0)+ 2, {ﬁ”’(p) b5 by E(p)=p72(0) + A2, (23
1 where
+ 52 [noV(P) =¥ (P))(bg b p+byb-p). (13 H(0) =BT A2\ AVIOTFG). 0
where It follows hence, that for the simultaneous existence of
®(p)=ngV(p)+ ¢(p)— ¢(0)+ ¥ (0); (14) SPBC and CPC(ny#0 and ¥(0)#0), the one-particle

spectrum of elementary excitations has a finite dgpt0
_ Rt ] for p=0 (cf. Refs. 27—33 This is in contrast with the gen-
¢(p) _g V(p—p )<bp’bp’>’ (15 erally accepted concepts about a strong hybridization of one-
particle and collectivétwo-particle branches and the acous-
tic nature of the spectrum fop—O in neutral Bose
systemg:26

. . . According to Eqs(23) and(24), the acoustic dispersion
Applying the canonical transformatiof) to Eq. (13) and relation is obeyed in this case fpr—0 only if the macro-

considering that new noninteracting quasiparticles have . . ; ;
anomalous mean(sB;,BfF):(Bpﬁ,p):O, we can reduce Scopically filled SPBC is completely absent, i.e., only for

the Hamiltonian(13) to the form QO:O w[]enA0=0, .77(p):\lf(p),'and<I>(0)E\I'(.0), spthat
E(p)~pu(0). In this case, the integral equatid®?) is re-
duced to the form

¥(p)=—2 V(p=p')(byb_p). (16)
p

Fle=Eo+ 2 [eo(PYN;+ 415) + 2 pion(P) 16 By

1 W(p)=—2 V(p—p')
2, .2 + ot ]
+ 20 | so(Phpupt 3 (NG + ) n(P) | (B B P

V(p)[E(p')—eo(p")] E(p)

+BpB-p), (17) X — coth , (25)
where [E(p)—eo(p)P-W2(p) 2T
p2 while the phase velocit§i(0)=yW¥(0)/m is real only for
eo(p)= ﬁ+q>(p); 7(p)=noV(p)— ¥ (p); (18 ¥(0)>0, i.e., for a certain type of two-particle interaction

V(p—p’) which must have a quite extended attraction re-
1 gion (see Figs. 2a and Ba
EO=§nSV(0)—2 [eo(P) g+ Npupm(P)]. (19 However, the above approximate approach to the de-
P scription of the superconducting state of a nonideal Bose
The condition of vanishing of the interaction between quasisystem with a constant number of partictes const, which
particles in(17) leads to the expression is often called the~oldy—Brueckner methaqdis not strictly
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consistent from the theoretical point of view, and is analo-

gous in a certain sense to the initial simplified versions of the B= [ 1- (?211(0)} 3,4(0) M

BCS model or to the method of Bogoliubov’s canonical e

uv-transformation® in the theory of superconductivity. In 1 62 -

the next section, we shall describe a more consistent ap- +zw[212(0)]2- (32

proach(the HugenholtzPinesmethod based on th&reen’s

functions methoflwith a fixed value of the chemical poten- In the general case, the spectrum of elementary excitations

tial w=const of a Bose system. with zero helicity is defined by the poles & (p), i.e., by
zeros of the functiorZ(p):

2 12

2
_ 2 3
4. APPLICATION OF THE GREEN'S FUNCTION METHOD 8(p)—( >m S5.p) - } —[314p)| +254(p),
FOR DESCRIBING A SUPERFLUID BOSE LIQUID WITH A (33)
STRONG BOSE PAIR CONDENSATE

. . where
4.1. Dyson—Belyaev equations and Hugenholtz—Pines

method for a Bose liquid with a “depleted” SPBC

~ 1 -~ ~
Sarm) — o
In order to describe the properties of a superfluid Bose *11(P) 2 [211(P.2(P) =2 1a(=p, —2(P))]. (34)

liquid by using the method of Green’s functidryson—
Belyaev equatiorfS are commonly used for expressing the .
one-particle normals,; and anomalou$s,, Green’s func-
tions in terms of the corresponding eigenenergy componen&'gene”ergyzlk(p) written in the form of an infinite se-

The main difficulty in the theory of Bose systems with an
intense SPBC is encountered in the computation of the

S, andS guence of Feynman diagrams with an increasing number of
external condensate linéSwhich corresponds to a power
Gu(P)=[Go (—p)—21(—P)V/Z(p); expansion im%?2.
(26) However, it was proved for the first time in Ref. 18 that
G1a(P) =21AP)/Z(p), the problem can be simplified considerably in the case of a
where Bose liquid with a strong interaction between particles, and

. . hence with a strongly suppressed SPBC, when the inequality
Z(p)=[Go (=pP)=Z1(=P)I[Go "(P) —Z11(p)]
~[Sup) (27) No<<n’ —<§Ob o >~” @9
2

Gal(ip): e 2p_m+“_i5 ; directly opposite to the condition of weak nonideality of a

Bose gas in the Bogoliubov thedryn’ <ny=~n) holds. In
(28)  this case, we can confirfo a fairly high degree of accurary

our analysis of equatlons fcill and 312 to only the first
w is the chemical potential of quasiparticles satisfying theterm in the expansion ing?, which contains only two con-

Hugenholtz—Pines relatiéh densate lines, and neglect hlgher -order termsif.
The corresponding “truncated” system of equations for

p=(p,e); 6—+0;

1“2211(0)_212(0)- (29) im(p) has the forrﬁ8
Instead of conventional formulation of the perturbation  _ ~
theory®?*we shall henceforth use the field thetr$? renor- %11(p) =NoA(P)V(P) +n"V(0) +&(p); (36)
malized in the range of small momenta, where the initial - - ~
variables ¢ are replaced by “adequate” variables= 212(P)=noA(P)V(P) +¥(p), (37)
+ ¢, which are combinations of the long-wave “hydrody- where
namic” variablesy, and short-wave “field” variablesjg,. 4o’
In this theory, the “infrared anomaly of anharmonisr{® ?(p)=i f —p4611(p’)V(p—p’)P(p,p’); (39)
leading to a nonanalytic form of the eigenenergy component (2m)
Sik(p) for p—0 and to the equal_it;Elz(O)fO is elimi- 5 d*p’ 5
nated. In terms of the renormalized variables, we have \If(p):ifWGlz(p')V(p—p’)F(p,p’); (39
2.15(0)#0, so that the same formulas as in the original field
theory’ remain valid for the quasiparticle spectrurp): V(p)=V(p)[1-V(p)TI(p)] L

e(p—0)=clp|; c=[340)/m*]*? (30) A(p)=T(p,0)=T(0,p); (40
where

( dp’
- - H(p)zljW[Gll(p,)Gll(p,_p)
1 2|1 93500 d3140) L 7’
m Bl2m ' dpZ  ap? | (Y

+G1Ap")GiAp —pP) 1T (p,p"). (41)
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) . o _ _ p _ _J’ P | AolP)
v 5 . n n0+|f—(27)4G11(p) "ot 2 | 2m3| =(p) 1)
( ) 1 -
]
)= + -+ "@" and relation(29) together with(36) and(37) can be reduced
v Vo to the form
n/2 g2 p=n"V(0)+%(0)—¥(0). 9
0 0

However, the coexistence of a weak SPBC and a strong
G12 CPC can lead to instability of the ground state of a Bose

.@_, - + @, system(see below.
v

4.2. Instability of the state of a Bose system with a weak

SPBC and a strong CPC
VAAAY = ------- + --==-=1 n , _ _ _
~ o Let us first consider the integral equati¢42) for p
v v v .
=0:
FIG. 4. Diagrammatic representation of the Dyson—Belyaev equations for 3 I/ 2 - =
< < BN ) . ~ d’p ng[A(p)V(p)]°+A(p)V(P)¥(p)
311 and >4, for a Bose liquid with a “depleted” SPBC in the lowest ap- v(0)=— 3 .
proximation in the number of condensate lingsking into accounny-th (2m) 2e(p)
order termg and Dyson’s equation for renormalizétscreened”) pair in- (47)

teractionV between bosons. It can easily be seen that the first term on the right-hand side

of (47), which is proportional ton, and independent of

\Tf(p), is negative for any sign oA(p) and V(p). Conse-
HereI'(p,p’) is the vertextripolar) component of the inter- quently, if we assume that the minus sign of this inhomoge-
action, which describes many-particle effedt{,p) the po- neous term describing the contribution of SPBC determines

larization operator for bosonsY/(p) the renormalized in the whole the sigriphase of the parameteﬁf(p),3> the
("screened”) Fourier component of the pair interaction po- state of a Bose system with a weéklepleted”) SPBC and
tential, and the functiof (p) plays the role of aair order ~ with a strong CPC can be unstable since, according to Eq.
parameter of the superfluid componéntthe boson system. (37),
Figure 4 shows equations fﬁrll, ilz, andV in the graphic
form.

If we disregard the poles of the vorté}p,p’) and the 512(0)
delay effects in the “screened” interactiovi(p), i.e., ne- ie., ¢?=
glect the contribution of two-particle and collective
excitations? the integration with respect to frequencies in for \Tf(o)<o and for a small value of, in spite of the
(38) and(39) can be reduced to the calculation of residues atondgition A (0)V(0)>0 required for ensuring macroscopic
the poles of one-particle Green's functio®,,(p) and  gtapility of the system to spontaneous compressicoi-
GiAp). As a result, the integral equatiori88) and (39)  |apse. In other words, as it was proved for the first time in
combined with(26)—(28), (36), and (37) assume the form Ref. 18, the coincidence of the pha@t{p) with the phase

S 150)=ngA (0)V(0)+ ¥ (0)<0,

ooy <0, (48

(see Ref. 18 induced by zero SPBC leads to arstability of the phonon
- dp’ o , spectrum of the Bose systdar n,<| ¥ (0)|/A (0)V(0).
V(p)= _f (277)§F(p'p V(p=p') It should be noted that, if we neglect the terrm,, Eq.
5 (42) assumes a form similar to the equation for the Fourier
noA(p" )V(p')+W¥(p’) component of the wave function of a pair of particles in
2e(p’) ) (42 vacuum, i.e.,
d3p’ Wo(p')
~ 1 d%’ ~ Ao(p’) v =J—gv —p)— 49
#0)-5 | Wnp,p'w(p—p')[ 1] @3 P TP e s Y
with the zero binding energw,=Q—P?/4m=0 where()
where and P are the total energy and momentum. This analogy
2 shows that a strong CPC is formed only when difective

Ao(P)=noA(P)V(p)+n'V(0)+B(p)+ Zp—m—,u. (44  potential'(p,p’)V(p—p’) corresponds to thattraction in

a considerable part of the momentum spassential to the
In this case, the total number of particles is defined by thentegral with respect tg@’ in (42). Such an attractionI{V
relation <0) must be almost sufficient for maintaining theund
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Vv “rigid spheres” model with an infinitely strong repulsion for
r<a. The inclusion of thevan der Waals forces of attrac-
tion in more realistic models of interaction betwebthe at-
oms (like the Lennard-Jones potential must lead to even
stronger enhancement of effective attraction, which is suffi-
cient for the formation of a strong CPC in He-Il or, prob-
ably, bound pairs ofHe atoms(see below.
According to(47), the formation of a CPC is hampered
by the negative inhomogeneous term proportionatj@nd
0 4 o~ associated with the SPBC, which, in addition, leads to insta-
n 1 2n bility of the phonon spectrum if the CPC phase coincides
\__// with the SPBC phasésee above At the same time, the
nonlinear inhomogeneous integral equatid@) has in prin-

ciple a solution forqf(p)>0 also in the case when the phase
of a strong CPC differs from the SPBC phaseyrhen the

phonon spectrum seems to be stable siﬁqg0)>0 and
¢?>0. In this case, however, the stability of the state of a
Bose system with a CPC in antiphase with the SPBC for the
one-particle brancho€>0) is violated in the channel of
two-particle excitations. Indeed, it was proved in Ref. 18 that
the signs of the first and second terms(42) are opposite
pa (\T’(p)>O,V(p)<0) in the integration domain #/a<p
<2/a) in which a CPC can be formed. For this reason, Eq.

FIG. 5. Dependence of the static “screened” poteriain p for the “rigid (42) can formally be written in the form similar t@19):
spheres” model in the random-phase approximation for the polarization _
operatorII(p,0) for different values of the dimensionless parameter _ d3p’ ~ \p(pf)
=mV(0)/(7a): 0 (curvel), 1 (curve?2), 3 (curved), and 7(curved). \If(p) = J —F(p,p’)V(p— p’) _—
(2m)° wo(p’)—2e(p’)
(51

but with anegative binding energi,<<0. This corresponds
. . . .~ to an unstable state with spontaneous generation of pairs
2&(p), i.e., for the existence of a nontrivial solutionV(  <cciated with the “rotation” of the CPC phase through

#0) of Eq. (42) for n0—>_0. ) i ) till it coincides with the SPBC phase, i.e., the sign reversal in
It should be noted in this connection that the static ef-~

fective potentiaV(p) can differ considerably from the initial W(p), which is advantageous from the energy point of view.

. g . ) : Indeed, it can easily be seen that the negative “pairing en-
potential V(p) describing the interaction between partlcles.ergy,, y ¢ P g
In particular, since the static polarization operdthp,0) is

state of a pair of quasiparticlesvith the kinetic energy

negative for anyp, the repulsion is suppresseih the i d*p ~

“screened” potential V(p)=V(p)[1—V(p)II(p,0)]* in AE:ifW212(p)621(p)

the range of momenta whek&(p)>0 (for example, forp _

<r/a in the “rigid spheres” mode| while attraction is 1 d® [neA(p)V(p)+¥(p)]?
enhancedn the region where/(p)<0 (for potential (11), Y 2m)3 2(p) , (52)

this region corresponds ta/a<p<2s/a). This circum-

stance was taken into account in Ref. 35 in whidtp,0) appearing in the interaction Hamiltonian averaged over the
was replaced for simplicity by its long-wave limikl,  ground state, i.e.,

= —m/a for p—0. The inclusion of the momentum depen- 4

dence in the random-phase approximatiBRA) leads to the (Hmt>:i—f dp p4[ill(p)Gll(p)+§12(p)621(p)]
following expression: 2 ) (2m)

m aB(p) 27 MNg
= |1— . +—, 53
M(p,0)= - 5|1~ —— arctgaﬁ(p) ; 5 (53
50 ~
B(p)=p°lA—2mp. 0 has the maximum absolute value when the signal¢p)

The corresponding effective potenti(p) for =0 is and A (p)V(p) coincide in the momentum range that is most

shown in Fig. 5 for different values of the dimensionlessimportant for(42) and(52) and in whichA(p)V(p)<0. In
parametera=mV(0)/7a. It can be seen that the integral Other words, theground state energy £has the minimum
contribution from the region of enhanced attraction for quitevalue when the phases of CPC and SPBC coindittew-
large values ofa can exceed the contribution from sup- €Ver, the phonon spectrum instability’< 0) appears again
pressed repulsion in Eq42) or (47) for ng=0 even in the for ¥(p)<O0 in the case of small values af,<n.
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Thus, the instability appearing in the Bose system withexpansion ofS;, (p) into a power series imY'2 for a fixed

an intense CPC and a weak SPBC is preserved for any si

of \Tf(p): it appears in the one-particle spectrum ﬁa(p)

<0 when the CPC and SPBC phases coincide and in th

two-particle spectrum foﬁf(p) >0. A possibleway to elimi-

g;5}1::1se of the parametefa_l(p) andilz(p) still holds in our

case(for an arbitrary phaséif) (see Ref. 18
€ Moreover, according to Refs. 18 and 29, a decrease in
the gapA, upon an increase in the number dengityof

nate the instability of the ground state is the complete supparticles(or external pressur®) in a Bose system with a

pression of SPBC with preserved CR@aturally, if a non-
trivial (nonzerg solution of Eq.(42) exists forny=0).

“gap-type” one-particle spectrung(p) leads to the loss of
stability of the system for a certain finite value &+ 0. In

The assumption concerning the absence of a macresther words, the vanishing and emergence of SPBC is ac-
scopically filled SPBC in superfluitHe does not contradict companied by a jump iny andA,. This means that &ran-
the experimental resulfsand allows us to explain the com-  stion from a state with SPB(,+0) and with an acoustic

plete vanishing of the normal component in He—ITat 0,12

spectrumE(p)~ pc of elementary excitations fgg—0 to a

i.e., the equality of the density of the superfluid componenktate with CPC but without SPB@,=0) and with a recon-

to the total density ofHe, in spite of the strong “depletion”

structed gap-type one-particle spectrurig¢0) upon a

of the SPBC due to the interaction between partic|es in th%hange inn or P is afirst-order phase transitian

Bose liquid. In this case, theuperfluid componeni; is de-

Finally, we must take into account the fact that the gap

ternginednot by strong CPC as in a weakly nonideal Bosegpactrume (p) = \/AZ+ p?u? for small values op lies above
gas; but by the “Cooper” CPC and higher many-particle e collective acoustic spectrui{p)~ pc so that we cannot

condensates containing even numbers of free parti€les

4.3. One-particle spectrum of a Bose system with CPC and
without SPBC and the superfluidity criterion

In the absence of SPBQ¢=0), all field diagrams with

condensate lines disappear in the expansiongipﬁp) in

n3’2,% and Eqgs(36) and(37) for n’ =n are transformed into

the identities®

S1(P)=nV(0)+3(p);  S1p)=P(p).
In this case, Eq942)—(45) at T=0 assume the form

(59

~ d3 ’ _ \'i', ’
)= [ S ot VoD 5t 69
1 d3 ' - A /)
?p<p>=§f%Np,pwwp—p')[%—l}; (56
e(p)= VA% (p)—[¥(p)?, (57)
where
p2
A(P)= 5= u+NV(0)+ B(p);
L1 & [A(R 8
”‘Ef 2m®|s(p)

It can be seen that E¢55) for the “pair” order param-

eter\ff(p) for ng=0 becomes homogeneous. This means that”

the CPC phase is independent and arbitraapd character-
izes thedegeneracy of the ground state of the Bose lidind

analogy with the degeneracy of the ground state of

superconductofs
Accordingly, the two-particle spectral branch @)

disregard the contribution from the pol&¢p,p’) andV(p
—p’) while calculating the integrals with respect to frequen-
cies in(38) and(39), and Eqgs(42) and(43) are insufficient
for describing the superfluid state of the Bose liquid.

In this connection, let us consider an alternative possi-
bility of the existence of aracoustic one-particle spectrum
e(p)~p for p—0 in a superfluid Bose liquid with CPC but
without SPBC, which was discussed in Refs. 20 and 35.
Such a possibility is realized under the assumption that the
HugenholtzPines theoreff is valid as beforésee Eqs(29)
and (46) for n’=n]. For arbitrary values ofp, the one-
particle spectrun{57) taking (58) into account assumes the
form

p2 _ 2 - 1/2
s(p)=H%+?o(p)—?p(0)+‘I’(0)} —|¥(p) 2} :
(59)
For p—0, this equation leads to
e(p—0)~|plt; T2=W(0)/m*, (60)
where
1 1 _|aep) aifuo)}
— = =42 = —— . 61
" {m+ P2~ alpP? ] oy

It should be emphasized that the veloditis not equal to the

velocity ¢ of hydrodynamic sound, an@?>0 for \TI(O)

0. For large values of momentum, E&9) becomes qua-
dratic in p, and hence must have a minimuf@r point of
inflection) in the region of intermediate values p#0 in

rder to ensure the stability to quasiparticle decays. Indeed, it
follows from the integral equatiof65) with the difference

kernelV(p—p’) that themodulus oﬁf(p) may have a maxi-

which is determined by the poles of the two-particle Green’smum at the point of a negative minimum of the renormalized
function and contains in the structure of the dynamic form(“screened”) pair interaction potential Yp) (see Fig. % if

factorS(p,e) is theGoldstone modeorresponding téydro-

the main contribution to the integral with respecptocomes

dynamic sound® At the same time, the one-particle branch from the region of small values dp’|<pmn. This means

e(p) may in principle have a finite gayo# 0 for p=0 since
we cannot rightfully assume that relatié29) based on the

that, according tq59), the one-particle spectrunz(p) may
have a local minimurmmear the poinp=p,, (Fig. 6). Con-
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FIG. 6. Predicted form of the gapless one-particle speci(pnfor bosons

in the superfluid Bose liquid with CPC but without SPBC at different tem-
peratures. The dashed curve shows the experimental spectrum of elementd?

E. A. Pashitskii

dp
(2m)3

1

n=ng(T)+ 5 Arlp)

e1(p)
ox(p) O 2T

L 2T L

(64)

where
2

Ar(P)= A DIV(D) + 3= +B1(p) ~B1(0)+ T 1(0),
65

e1(p) is defined by expressio(83), andp and ¥ in Egs.
(36) and(37) are replaced b and¥ .

We first assume that the SPBC densityTat0 is small
(ng<<n), butny>|W¥(0)|/A(0)V(0) so that>;,(0)>0 and
c>>0 (see(48)). However, as the temperature increases,
thermal “depletion” of SPBC must take place, i.e., the value
of ng(T) decreases upon heating and becomes smaller than

|¥+(0)|/A(0)V(0) above a certain valu,. In this case,

the one-particle phonon spectrum becomes unst@ihee
3,,(0)<0 and c?<0), and the Bose system is abruptly
transformed into a state with a CPC but without SPBIg (
=0), i.e., afirst-order transition in temperature occurs at
the point T=To.? If, however, the inequality n,
<|\P(O)|/A(0)V(0) holds even aT =0 due to strong inter-
action between particles, such a transition does not take
!pce(since the SPBC is initially suppressednd the super-

excitationsE(p) in “He for the ratioA, /A, =30, which corresponds to the fluid component of the Bose liquid is determined initially by

maximum critical velocityv.,,=2 m/s atT=0.

sequently, there exists a nonzero valuevgf min[e(p)/p]
#0 for p~pmin, i.€., spectrun{59) satisfies the Landau su-
perfluidity criterion®

On the other hand, the one-particle spectr(88) for
\Tf(p)—>0 degenerates into a quadratic dependeatg)

~p? for smallp and does not satisfy the superfluidity crite-

rion any longer since in this case rifp)/p]=0 for p=0.
For this reason, the superfluid Bose liquid with vanishin
CPC in the absence of SPB@y=0) must be transformed

to the normal state in spite of the fact that the “rotonic”

minimum is preserved in the collective spectrii(p) (i.e.,
E(p) formally satisfies the superfluidity criteriprit will be
proved below that CPC can vanish upon heating.

4.4. Phase transitions in a Bose liquid with strong CPC

At finite temperaturesT#0), the system of equations
(42)—(45) taking into account46) for a Bose liquid with a
“depleted” SPBC and a strong CPC has the féfm

3n7

a(p)=— | Gl (PP V(=P
noA(p)V(p)+T(p')  ex(p') |
2e(p) coth o7 (62
1 d3p’ -
B3 | T (PP VRR)
Adp) erp) ]
X orto) oth—=——1; (63

a “Cooper-type” CPC and higher even condensates that
form a pair CEC in aggregaté.in this case, Eqs(62) and
(64) for any T=0 have the formif,=0)

d3p’ -
‘I’T(p)=—f(27)3F(p,p’)V(p—p’)
Tr(p')  enp)
><28T(p,)coth > (66)
1( & [Ap)  ex(p)
g _=
n—2 2| ex(p) coth >T 1|, (67)

wheree1(p) is defined by formulg59) in which ¢(p) and
q’(p) are replaced bygpt(p) and @T(p) so that et(p)
%p\/ﬁfT(O)/m* for p—0.

It was noted above that a nontrivi@onzerg solution of
the homogeneous integral equati@¥b) at T=0, and hence
of Eq. (66) at T>0 for the pair order parametear (p), is
possible only if the main contribution to the integral with
respect top’ comes from the region of a strong effective
attraction between particled'¥<0). With increasingT,
such an attraction must be enhanced due to an increase in the
thermal factor cotl(p’)/2T in the integrand of(66), i.e.,
the parameteW (p) should apparently increase with

On the other hand, for a boson concentratiomvhich
remains unchanged or decreases upon an increabe time
first term in (67) may remain constant or decrease upon an
increase in the “thermal component - cothe(p)/2T only
if the coefficientA;(p) decreases accordingly, i.e.,ﬁ»fT(O)
in (65) decreases quite rapidly upon an increasd inAc-
cording to Eq.(66), for p=0 we have
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3 proximation (Ginzburg-Landau equation This is due to a
¥+(p) e7(p) : :

2 coth >T strong(on the atomic scajecorrelation lengthor coherence
et(p) length &p) in traditional superconductors, and accordingly
(68) due to an anomalously small value of the dimensionless Gin-

12 59

and the value oﬁ'T(O) must indeed decrease with heating asz.burg number G£10™7 " which characterizes the rela-

a result of the competition between opposite contribution ively large width of th.e fluctuation region neag (in high-
from two regions in the momentum space, i.e., the region of ¢ superconductors with an anomalously small valuggf

llp</a, in which Isi i¥(p)>0 and th the number GE10 3-10 2).%°
smallp</a, in which repulsion prevail¥/(p)>0, and the e corttory. Hiouid e the number Gi 1 so that

regionm/a<p<2mw/a of intermediate values of momentum, critical fluctuationswith frequenciequ~q3’2 play a deci-

in which effective attraction between bosovip) <0 is 0b-  gjye 10lé? in this case near the temperatdfig of transition
serv_ed(see F|g. 5. If the con_trlbutlon from the sec_ond inte- from the superfluidHe—I) to the normal(He—I) state, and
gration domain(corresponding to attractiorprevails atT  the | andau theory of the self-consistent field is inapplicable
=0, we have¥{(0)>0. But as the value off becomes This explains, among other things, thegarithmic diver-
higher, the contribution from the first regidgrepulsion in-  gence of the heat capacity,CT) of liquid helium at the
creases due to the increase in the width and height of the-point,”®* but the transition at T=T, remains a second-
peak of the “thermal” function (ld1(p))cother(p)/2T  order phase transition
~T/p? for p—0 so that the value OE'T(O) decreases and Generally speaking, this is in contradiction with the con-
tends to zero at a certain “critical” temperatufg at which ~ clusion [which follows from Eg.(66)] about afirst-order
the negative and positive integral contributions to the rightPhase transitiorat T=T, with a finite jump in the “pair”
hand side of68) have equal absolute values. order parametew +(0), butwith a smooth vanishing of the
However, for ¥;(0)—0 the one-particle spectrum critical velocity vc(T)=min[er(p)/p] for T—T, (according
e7(p) degenerates into a parabolic spectrum for spdtiee 1o the results of measurements wf for He—II in ultrathin

~ = p?d ~
Tro=- [ 22 AV

above: channels near thet—point).lO It should be borne in mind,

s 1 1 53 however, that the integral equatidf6) for W1(p) essen-

er(p)~ L +(9L('Z) _ (69) fially corresponds to the medself-consistentfield approxi-
2mg’ mg m - d|p| =0 mation and hence cannot be applied in the vicinity of the

critical temperature in view of fluctuation effects for-Gi.

In this case, theorder parameter‘ifT(O) is suppressed by
large-scale critical fluctuationbelow T (and, conversely, is
initiated aboveT,) in a fairly wide temperature rang&T
=|T.—T|=T..

As a result, the “thermal” function [1/e(p)]
X coth(e1(p)/2T)~T/p* for p—0, which leads to the diver-
gence of the integral on the right-hand side(68) at the
lower limit (for p=0) and to an infinitely large negative
contribution due to repulsion (0)V(0)>0. It follows hence

L : g For this reason, the acoustic part of the one-particle
that a nontrivial solution of Eq(66) at T#0 can exist only ) A W T .
whenW¥1(0)>0 ande(p)~p for p—0 due to prevailing spectrume (p)~pUr with Tr= Vi¥'(0)/m™ nearT, mus

attraction. This means that teansition from the superfluid P€ Strong_lty tt_)lurred dl:etfco fluituatio_r;\?;:]n}(O), i'ealﬁ”g'
) L~ o wave excitations must attenuate rapi ime, and hence
state in which¥+(p)#0 andv.=min[er(p)/p]#0 to the cannot make a noticeable contribution to the kinetic and ther-

normal state in which?+(p) =0 andv.=0 is accompanied modynamic properties of liquidHe. In the region of large
by a jump in the value o (0) from a certain finitmini-  momentap, the role of fluctuations is not so important, and
mum) value to zero, and hence is frst-order phase the conclusion following fron{66) and concerning the exis-
transition® The temperaturd . <T* corresponding to this tence of the minimum value of{(p)/p that can vanish at
transition can be put in correspondence with the temperatur€=T, (i.e., at thex-point) remains in forcgsee Fig. §.

at which the minimum of the ratie+(p)/p, and hence the Moreover, it was noted abovésee footnote Bthat a
critical velocity v of superfluidity, vanish(see Fig. § i.e.,  phase transition from the superconducting to the normal state
T. corresponds to the-point in “He. in finite-size systemgthin channels, films, or capillarigs

The situation with disappearing superfluidity in a Bosemay remain a second-order phase transition even in the self-
liquid aboveT.=T, is similar to the mechanism of super- consistent field approximation since the divergence of the
conductivity vanishing in an electron Fermi liquid of metals, integral in (68) is absent at the lower limit for a quadratic
in which the superconducting order parameles, the en-  spectrume(p)~p?, and the poinfT¥ can be lower on the
ergy gapA in the quasiparticle spectrum at the Fermi level,temperature scale than the phase-transition pbistT, in
and the critical velocity .= A/pg determining the maximum the case of a strong attractigim the range ofp>x/a).
critical depairing current vanish simultaneously Tat T, .
However, a transition from theuperconducting to the nor-
mal state in superconductoins zero magnetic field is known
to be asecond-order phase transitiort! Such a transition is
accompanied by a finite jump in the heat capa€ityT) and It was noted in Sec. 3 that over-the-condensate excita-
can be described to a high degree of accuracy by émslau  tions in a weakly nonideal Bose gas with a strong SPBC are
theory of phase transitions the self-consistent field ap- combined into frequnbound boson pairs with antiparallel

4.5, Structure of boson pairs in CPC
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momenta. The wave function of such a gas in the first ordepresent, in accordance witfi5) and (76), anomalous aver-
of the Bogoliubov—Zubarev perturbation the¥nhas the age values for the condensateNdbound boson pairs in the

form configuration and momentum spaces in the frm
1 ~ . n 1/2 n 1/2
|<I>B>=exp|’—mgo us<p)npnp]|0>, (70 (HO)Hr)= U—O) fr=r'); <bpb_p>=(v—o) t(p),
(78)
where ] o
wheren=N/V. It should be emphasized that the possibility
Ug(p)= E Z—TEB(D)—l - A.=b*b.: (72) of considering the pair operatoé+ andO as boson opera-
nip L tors is, strictly speaking, substantiated only in the case when

V is the system volume, arik(p) the Bogoliubov spectrum the size of pairs is smaller than the average distance between
(2). For smallp for which Eg(p)~pug(0), weobtain from  them (o<n”*), and the wave functions of pairs do not

(71) overlap.
) In the case ofoverlapping pairs the wave function of
2mug(0) N vy the condensate taking into account correlations between par-
Us(p)~ nlp| Ug(0) = ynV(0)/m, (72 ticles belonging to different pairs can be chosen in the form

so that the long-wave asymptotic form of the potenitlal(r) of the Justrow functio

for r—oo has the form 1

®y=I1 f(lri—rih=exp =52 U(ri-rh;, (79
mug(0) i< i<

2mnre 73 where U(r) is the potential energy of pair interactions be-
tween particles.

For a Bose system with SPBC, the wave functidn
—r") in (79) correctly describes strong pair correlations at
éhort distances and is determined by the form of the interac-
Hg)n U(r—r'). At the same timegp; at large distance corre-
sponds to the asymptotic form following from the general
postulates of quantum hydrodynamicand hencef (r—r’)
(OF)N for [r—r’|— becomes universal and varies according to a

(D:C(EP) Hl frj=rjc0); (@)= (N—!)UﬂO)’ (74 power(quadrati¢ law.3%3" Indeed, theground state in hydro-

g dynamics is a vacuum of independent acoustic vibrations
whereC is the normalization factor, and the SlET@p) is the (phonon harmonic oscillatorswith frequencies w=pc,
sum over all transpositions of the arguments of the functionwhose wave function is given by

f, while O* is the pair creation operator:

Ug(r)~

Let us prove that a similar asymptotic form is also typi-
cal of strongly bound‘“local” ) boson pairs. The wave func-
tion of the condensate dfl independent boson pairs with
zero total momentum in the configuration space and in th
reprelzgentation of secondary quantization has respectively t
form

2N-1

b p[ S LSRN (80
A rdrdr’ - . p = XD T oy NpN—p (197,
O = [ St =B () Ni=e [pl

(voV)

where
1 / N
=——p 2, f(p)b b’ . 7 ; 1 .
(voV)lzzp: (P)bp b=, 79 np=>, €”i; n(r)=2, 5(r—rj’)=v2 n,eP .
=1 ] p

The prime on the symbols of integral and sum indicates here (81

that the integration or summation domains are bounded bﬁxpression(SO) can be written in the form of the Justrow
the half-space in order to avoid taking into account the same - tion (79):

state twice, and the correlation volurog is defined by the
relations 1
CDph=eXp[ — EE Uph(ri_rj)]

’ 1<]
f drdr/|[f(r—r")|2=v,V;

1
. =exp ~ 2y 2 U PInpN-p. (82
f dr|f(r)|?=ve=5 nrd. (76)
3 where
In analogy with the well-known relations for the Bose con- 2mc
densate of “elementary” bosons, i.e., Upn(p) = m;
1 ~ A
g _ . _ N1 1 . mc
<l/i(r)>_vl/2; fn(r)<bn>x <bn>_N 5[101 (77) Uph(r): VEP Uph(p)elp'r:mz. (83)

where Bn is the annihilation operator anf},(r) the wave Thus, we obtain the Reatto—Chester quadratic asymptotic
function of a particle in thenth quantum state, we can form®® for the wave functiorf(r) of pairs forr—oo:



Low Temp. Phys. 25 (2), February 1999 E. A. Pashitskii 95

an acoustic one-patrticle spectry@y(p)~p] has the regular
f(r*m)“fph(r):e)(p{ - §Uph(r)] hydrodynamic asymptotic form of pair correlations
(~r~?), satisfies the Hugenholtz—Pines theorérand has
1 Up(r) . mc &y ° “pair” structure of the CEC which contains only “even”
2 7 4anr® condensategbound boson pairs existing only in CRGn-

deed, the existence of an “odd¢.g., three-particleconden-
sate( ) #0 would have led to the emergence of a SPBC
owing to the interaction with the CPC. Bosons in higher
“even” condensates do not form bound many-particle states
since different types of bound coherent systéptmsescan-
not co-exist in a one-component Bose liquid contrast to

mc 5 mixtures of different Bose- and Fermi liquids
n[p|’

in analogy with the case of unbound “Bogoliubov’s” pairs
with an infinitely large radiu¢see Eq.(72)].

It should be noted that the wave functi¢r0) of a weakly
nonideal Bose gas also has the form of the Justrow functio
(79.

According to(84), the Fourier component of the wave
function of a pair is given by

1
fph(p)%_ Euph(p):

4.6. Role of pair correlations in Bose liquid “He in mixtures
of quantum liquids 3He—*He

On the other hand, taking into account relati¢d%), we 4.6.1. Experimental evidence of the existence of bound
obtain the following asymptotic form for the anomalous pairs of helium atoms in superfluftHe. The important role
mean: of pair correlations between bosoffse atoms in the super-

112 fluid state of a quantum Bose liquid is indirectly confirmed
n mc N T

(bpb_py~ _(_) - (86) by the successful application of the Justrow approximation

vo/ nlp for the wave function of the ground state in the description of

In a Bose liquid with CPC but without SPBC, the one- Properties of He—17°%° On the other hand, the theoretical
particle spectrun(p) with the gapA,#0 for p=0 corre- results obtained in Refs. 15 and 18 lead to the quite justified

sponds to a Hamiltonian of the Bogoliubov tyfsee Sec. 3 assumption that the structure of the superfluid component in
. . . 4 . . . .
from which we can obtain the following expression for the liquid "He below the\-point is determined by the pair CEC

anomalous mean in the ground stésee Ref. 18 containing a strong CPC with the bound states of boson pairs
as well as higher-order even condensates and absolutely no
¥ (p) SPBC or higher-order odd condensates.
(bgb_py~— (ASTW 87 It was noted in Ref. 35 that the anomalously high value

o _ of the effective masen} of *He impurity atoms in superfluid
Taking into account the universal nature of relati@8), we  “He can serve as a direct experimental evidence of the exis-
obtain the asymptotic form of thigorrelatior) wave function  tence of bound pairs of helium atoms in He—Il. This “hy-

for p—0: drodynamic” effective mass is close to the total massHté
20,7(0) SA2 and “He atoms and is even slightly larger than the latter
~ ~_ ST07 VY. 2 770 quantity*’~4¢
f(p) <bpb7p> TJZ(Kg-l-pZ) y Ko -uz . (88) .
This expression leads to the following relation for the spatial M3 = (Mg +My) = 3 M3=2.33M;. (9D

componentf (r) for r—o _ _
If we assume on the basis of this effect that bound states of
o7(0) 3He and“He atoms are indeed formed in a dilutde—*He
[f(r)—1|~ >z € (89  solution, we immediately arrive at a conclusion concerning
the existence of bound pairs 8ifle atoms also. Indeed, the
In other words, the power asymptotic form of the pair corre-initial potential V(r) of interaction betweeriHe and“He
lation function(86) in the presence of a gap\(#0) in the  atoms is the same as for the interaction between paitslef
one-particle spectrum is transformed to an exponential deatoms® while the energy of zero-point vibrations in the
pendence. bound state in the former case is higher than in the latter case
On the other hand, a comparison(86) and(87) shows  in view of the smaller value of the reduced m&ém,/7 for
that in the absence of a gapA,=0) the conventional a3He—*He pair and ,/3=m,/2 for a *He—*He paip. In
Reatto—Chester power asymptotic fof'is recovered in a  addition, exchange correlations between bosons facilitate ad-
Bose liquid having a CPC but no SPBC and the spectrungitional attraction. Consequently, the existence of bound
e(p)~pu for p—0: pairs of *He and*He atoms must indicate the existence of
-~ ~ ., “He—*He bound pairs.
(bpb_p)~—=W(O)/Tlp[;  [f(r)—1|~W(0)/4mTr~. It should be noted that subsequent measurerrfetitsf
(90) the effective mass of bound pairsife atoms irfHe proved
Thus, the emergence of bound pairs in CPC and théhat the values ofn} =2.33m; are observed only for a large
vanishing of SPBC do not necessarily lead to a change in thapplied pressureR=5 atm), while the value ofnj under
asymptotic form of the pair correlation function. The super-zero pressure does not exceedn®, °* It should be borne in
fluid state having a CPC but no SPBC and characterized bgnind, however, that pairs of boson$He atom$ under nor-
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mal conditions in a CPC are rather “Cooper-typéstrongly  of ®He atoms in @He—*He mixture at ultralow(millikelvin)
overlapping than “local” (strongly boundipairs'® The con-  temperatures as a function on the densityidé (i.e., the
cept of a “bound pair” of *He—"He or “He—"He atoms  applied pressuje

should not be treated literally; such a state should be re-  4.6.3. Quantization of velocity circulation in a superfluid
garded as the result of strong pair and many-particle corregose liquid with CPC but without SPBCet us consider the
lation. _ type of quantization of the superfluid velocigy(r)= «/r in

, 446-2- JustrowFeenberg method for describing Onsager—Feynman quantum vortices and the value of the
He—"He mixtures.The important role of pair and many- cjrcylation quantum in a Bose liquid with CPC but without
particle correlations is confirmed by the results obtained ingpgc. |t was noted above that the superfluid component in

Refs. ‘é24;46’ where - theJustrow-Feenberg variational s case is determined by a pair CEC comprising CPC with
method®*! was used for describing the physical pmpert'esbound(“Cooper”) pairs of bosons and high-order even con-

of mixtures of quantum Bose- and Ferfiie and®He lig- . A n
uids. The essence of this method lies in an optimal choice o AerjsiafgsA with unbound quadruplegijyy), sextuples

the trial wave function of the ground state of a system in th Yy, ete. of particles since .diffe.rent types of b?””d
form of the following “ansatz™163.64 subsystemgcondensatgscannot exist simultaneously in a

one-component Bose liquiti.Indeed, theexchange of par-
ticles between diffrent condensates (vacuums) is forbidden
by energy considerationsince they correspond to local en-
ergy minima and are separated by potential barriers. For this
reason, these condensates should correspond to different

subsystem ofHe, andU is the potential of interaction be- hases like insvstems with spontaneously broken svmme-
tween 3He atoms @¢=3) and*He atoms @=4), which Fries y P ’ ’

kes i h pai ipl lati i . .
takes into account both pair and triple correlations and is Sincebound boson pairsf a “Cooper-type” CPCare

chosen in the form o . )
“fundamental” quasiparticles in a pair CEQwe can expect

, (92

wo<{r§“>}>=<I>o<{r§3>}>exp[%U<{r$“>}>

where @ is the Slater determinant describing the fermion

Ng.Ng

1 that aneffective circulation quantuma* =h/m* is half the
u({riy= 52 > u@f(rir) ordinary quantumk=h/m, (see Ref. 18because the effec-
ep tive mass of a pair isn* =2m,. Experimental observations

1 Na:Ng.Ny of half-integral circulation quanta/2m, in superfluid*He

) > ,Ek ul B (riri.r). (939 could be a direct confirmation of the existence of bound pairs
by b of *He atoms.

Then the variational principle proposed by Campbell and  Such a situation is similar to that withdoubled charge
Feenberf*® is used, which involves the minimization of 2e of Cooper pairs in superconductdrand ahalf-integral
ground-state energy magnetic flux quantunp,=hc/2e in Abrikosov vortices
(as compared to the integral flux quantyns hc/e piercing
the Landau minimum quantum orbit of a normal electron in
in u(*®) andu(*£?) for optimizing the interaction parameters. & strong magnetic fiejd

In a recent publication by Krotscheckt al.? this Jumps of the total circulation of the superfluid and nor-
method was applied for analyzing the dynamics of solitarymal components in He—Il by an integral number of quanta
3He impurity atoms in liquidHe as well as the properties of «4=h/m, were detected in most of experimefits®® How-
solutions of3He in “He, taking into account Fermi-liquid ever, the half-integral value of the velocity circulation quan-
effects in the system oHe atoms. The dependences of thetum in superfluid*He cannot be ruled out completely as yet
effective masgmg of 3He atoms on their concentration is the in view of not very rich statistics of observations and the
solution and external pressuReobtained in Ref. 65 are in  possibility of creation of pairs of vortices with the same di-
good agreement with the experimental f82L A consider- ~ rection of rotational velocity and with conserved total mo-
able increase i} under pressure up tmf=2.9m; at P mentum of the system.
=20atm and 10% concentration &fle indicates not only 4.6.4. Problem of critical velocities in ultrathin films and
the possibility of formation of bound states #fle and*He  capillaries. Concluding the section, let us consider again the
atoms, but also the existence of strong collectimeany- magnitude of the critical velocity in a superflufie flow,
particle effects in the interaction ofHe atoms with®*He  which is almost two orders of magnitude smaller than the
atoms and with one another. Bulaevsktial®® calculated “rotonic” critical velocity v.=A,/p,~60 m/s calculated in
the hydrodynamic mass of a solitaiie atom in*He and the  accordance with the dispersion relation of the experimentally
Fermi-liquid corrections tan} in *He—*He mixtures as well observed(from neutron scatteringspectrum of elementary
as the attenuatiofdrag in the motion of*He quasiparticles excitations in He—IP
in “He, the magnetic susceptibility of tiele subsystem, and According to experimental dafd,°the critical velocity
the phase shift in the scattering matrix’ide—*He mixtures. v of the superfluid componeni in wide channels is virtu-
The calculation of the latter quantity made it possible toally independent of temperature and is connected with the
obtain the critical temperature of the phase transition of thehannel widthd through the relation,~d~** over a very
3He Fermi liquid from the normal to the superfluid state for broad range & 10" ' cm<d<1 cm. The value ob. in nar-
the s-wave (singled and thep-wave (triplet) Cooper pairing rower channels decreases rapidly to zero wiind becomes

Eo=(Wo|H|Wo)/(¥| o)
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a function ofT starting fromd~3x10"°cm.”*~"3This tem-  considerably from the collective spectrui(p) as well as

perature dependenee(T) is especially significant near the from the kinetic energyp?®/2m, of free “He atoms(see Fig.
A-point at which v, vanishes. It was emphasized by 6).
Puttermaf’ that neither the value of the critical velocity, nor ~ As regards the decrease of with d starting from the
the mechanism of its variation in ultrathin films and capillar- minimum thicknessi~80 A and the vanishing of . in ul-
ies has been exp|ained unambiguous|y so far, while thél'athln films haVing a thickness smaller than five atomic
anomalously small value af, in macroscopic He—ll flows layers!*?this effect can be associated with size quantiza-
is generally attributed to the creation of Onsager—Feynma#on of the transverse momentupy of quasiparticles for
quantum vortice¥ or closed vortex loop& which the de Broglie wavelengthp=h/p, is comparable

Proceeding from an analogy with the dynamics of Abri- With the film thicknessd. Sincev. is determined by quasi-
kosov vortices in type—Il superconductors in magneticpart'des in the vicinity of the minimum val_ue pf the ratio
fields™! let us analyze the empirical regularities in the behav-£7(P)/P, and the position of this minimum is displaced to-
ior of the critical velocityv,, in superfluid*He. For example, Wards smaller momenta upon an increasd idue to a de-
we can attribute the increase in upon a decrease in the crease inV'(0) andlir, the quantization conditionp~d at
channel widthd to an increase in couplingrictional) forces  higher T must be observed for thicker films, which is in
between the normal cores of vortex filaments and the wall§ualitative agreement with the experimental dat&
of the channel per unit vortex length, which are similar to  In the ultraquantum limit Xp>d), the quasiparticle
“pinning” forces exerted on Abrikosov vortices at interfaces Spectrum becomes two-dimensional for a film and one-
and surfaces of the crystals. When superfluidity is limited bydimensional for a capillary. It is well knowff,however, that
the effects of creation and dissipative flow of quantum vor-the long-range order in2- and ID-systems, which corre-
tices (in analogy with the resistive state of superconductors$sPonds to the superfluiguperconductingstate of Bose- and
under the conditions of low-temperature dynamic depinning™€'mi liquids, is ruled out af #0 in view of long-wave
of Abrikosov vortice$, the critical velocity should not de- density fluctuations, so that+(0)=0 andv.=0.
pend onT.

On the other hand, the creation and flow of quantums. CONCLUSION
vortices(and the more so, vortex logpis ultrathin films and

capillaries whose thicknesgliametey is comparable to the The analysis of experimental and theoretical publications

. o Indicates that investigations of the unique phenomenon of
size of a normal vortex core are ruled out so that the critica - L . . .
superfluidity of liquid helium, which was discovered 60

velocity of a superfluid Bose liquid with CPC but without years ago by KapitZ4and observed independently by Allen

SPBC must be determined by the maximum possible “de'and Misener? are far from being completed. A number of

pairing™ velocity v ¢y at which boson pairs are ruptured, and discrepancies between the theoretical and experimental re-

CPC is d;strpyedf.] Thisélsituation i.shsimri]lgrkto that in"thinsults include, for example, the 1.5-2 orders of magnitude
superconducting threadBlaments with a thickness smaller  igterence between the theoretical value of critical velocity

than the London penetration depth of a magnetic fieldor —, _ g0 s calculated on the basis of the Landau superflu-
the coherence lengtfy), which cannot accommodate Abri- gty criterion® from the value of the gap, near the rotonic
kosov vortices, and whose critical current dengify €M minimum in the elementary excitation spectrum recon-
attains its limiting value for which Cooper pairs are ruptured.qi,cted from the scattering of slow neutrd#&®on the one
According to the results obtained in Refs. 71 and 72, thé,31d and the experimentally measured values 83 on
maximum critical velocity in ultrathin wetting He—Il films  ha other hand as well as the discrepancy between the theo-
with a thickness of a few atomic layers increases upon coolfetical density of the Bose—Einstein condensate, which is
ing, attaining the value; ma~2m/s atT~1.5K. If we as-  igentified with the density of the superfluid component in
sume that this velocity is equal to the critical depairing ve-He_|| and the experimentally measur@bm the scattering
locity v, the radiusR; of the normal vortex core, which is  of fast neutror) fraction of “He atoms(1—39%) in the state
determined from the condition of equality of the superfluidwith zero momentum at~1 K.
velocity vg(r)=«*/r to the critical valuevy, is Rc The former discrepancy can be partially removed if we
~40A for x* =h/2m,, which coincides with half the mini- take into account the processes of creation of quantum vor-
mum film thickness @»~80A), up to which the value of tices and vortex loops in a superfluid He—Il fié#’5 but
v increases with decreasing'® For d<d,, quantum vor-  cannot be eliminated for the flow of the superfluid compo-
tices are fixed rigidly between the solid wall and the film nent in ultrathin films and capillari€in which the creation
surface and are actually two-dimensiofalanay. and flow of vortices is impossible. An attempt to eliminate
The critical “depairing” velocityv.,~2 m/s should be the second discrepancy by introducing an effective
also attained in ultrathin capillaries of diametd=2R.  condensaté'’ containing higher-order many-particle con-
~80A, in which even a normal vortex core “cannot be densates along with the one-particle condensate did not lead
accommodated.” to a significant improvement in the understanding of the
Since v m<v, the superfluidity criterion for He—Il quantum microstructure of the superfluid component in
(see abovemust be determined by peculiarities of the one-He-Il.
particle spectrune(p) of quasiparticles which was not ob- At the same time, the assumption put forth in Refs. 15
served in neutron-diffraction experiments and which differsand 18 concerning the absence of a SPBC in superitid
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does not contradict the experimental resditéand makes it ferentT by using realistic potentials of interaction between

possible to resolv@®aradox 3 (see Introductionand to for-  “He atoms, as well as a more detailed experimental verifica-
mulate a qualitatively new approach to the description of theion, including precision measurements of the velocity circu-
superfluid state in a Bose liquid on the bases of the concepation quantum in the superfluid component of He—Il and the
of “paired” effective condensate comprising a coherent con-maximum critical velocityv. in ultrathin channels.

densate of bound “Cooper” pairs of bosoiisee, for ex-

ample, Ref. 8% and higher-order even condensates of free  1he author is pleased to place on record his deep grati-
tude to Yu. A. Nepomnyashchii for opening up many new

particles. It was proved in Ref. 18 that a strong CPC is in the th ¢ fuidity dur brief b
formed in the case of a strong effective attraction betwee@SPECtS In the theory of superfluidity during a brief but

bosons in a broad momentum range 0 and leads to the highly fruitful co-operation. Thanks are also due to I. P. Fo-

suppression of a weak SPBC “depleted” due to the interac-min for his active participation in the discussion of the prob-

tion between particles in the quantum Bose liquid. The Sujems considered in this review and also for drawing the au-
perfluid state with CPC but without SPBC is characterizealhors attention to the remarkable closeness of the effective
by a number of singularities, including the absence of hy_masies ofHe |mpur|-ty gtoms irfHe to_thg total mass q°’He
bridization between the one-particle and two-particiellec- and “He atoms indicating the possibility of formation of

tive) branches in the elementary excitation spectrum. Thi%ound pairs of helium atoms in the superfluid Bose liquid

allows us to eliminate the discrepancy between the experi- e-ll
mentally observed form of the quasiparticle spectrurfHe

nd the Lan rfluidi riteriaiPar X 1 and 2 *E-mail: pashitsk@iop.kiev.ua
and the a_dau superf uidity criteridiParadoxes 1 and D this case, w'=(16melng/eomt)2=3.6x108s and o,
formulated in Introduction

p!
. . . =2\/ﬁw;|/m§24>< 10° cm/s, so that the critical current density
However, the assumption concerning the existence of an_ =18 2
. ” 2engu = 10° Alemr.
energy gapA,#0 for p=0 in the one-particle spectrum 2such an approximation is justified if the one-particle excitation branch is
e(p)*>18 (see also Refs. 27—3%ads, in analogy with a gap much lower than the collective excitation bransee below:
in the Spectrum of Superconductarg-'to new paradoxes the 3)The n’?gatlve Slgn Oﬂf(p) is a!SO confirmed by the effective interaction
violation of the Hugenholtz—Pines theor&hior chemical ,"NenV(p)<0 in a certain regiop=0.

tential. th | ¢ of th drod . YA similar first-order phase transition was considered by lordaffsiiid
potenual, e replacement o e powéhly ro ynam|¢ Chernikov&® for a rarefied Bose gas with attraction at large distances.

asymptotic form of a pair correlation functift*’ by the  9For a strong attraction, this may be a first-order phase transition close to
exponential asymptotic form, and to the emergence of singu-second, with a small value of the jumip;(0) atT=T,. A second-order
larities on the temperature dependence of heat cap%icity, phase transition can occur in a spatially limited region with a finite mini-

i i i At lue of the momentum,,,#0 if T*<T,.
which were not observed in experiments. The rejection of the™™ V& in c=Tc
P ) %It should be noted that CPC can be a small fraction of CEC eveh at

gap nature of the one-partlcle spectrum proposed in Ref. 35%0 in contrast to superconductors in which all electréiegsmions are

resolves these paradoxéfer example, reestablishes the va- pound into Cooper pairs at=0.
lidity of the Hugenholtz—Pines theoréfnand the Reatto—
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