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Abstract—Physical and physicochemical processes potentially responsible for the gradient in the composition
of the liquid phase in epitaxial growth of GaAs1 – xSbx films were analyzed. It is shown that gravity-induced
liquation is the dominant mechanism in the case under consideration. © 2002 MAIK “Nauka/Interperiodica”.
When ternary solid solutions based on GaAs are
grown, the introduced minority component has either a
larger or smaller atomic weight compared to similar
parameters of the host atoms (Ga and As). In the course
of the liquid-phase epitaxy (LPE) of GaAs-based solid
solutions, this circumstance may give rise to the grav-
ity-induced height profile of the solution–melt compo-
sition. In addition, one has to take into account the
effect of segregation phenomena, which occur owing to
the state of pronounced nonequilibrium between the
liquid and gas phases in the course of saturating the
solution–melt.

The objective of this study was to gain insight into
the effects of gravity and segregation during the LPE
growth of GaAs1 – xSbx films from Ga-based solution–
melts for various contents of Sb.

Film growth experiments were carried out using a
Splav-4 LPE system with a sodium heat pipe. The
radial and longitudinal variations in temperature did not
exceed 0.1°C within the heated zone of the reactor, with
a length of 300 mm and diameter of 80 mm. The graph-
ite sample holder was of the three-level type and could
accommodate three GaAs (111) substrates spaced ver-
tically by 8 mm. The liquid-phase column itself was
30 mm high, had a free area of 10 × 15 mm2, and was
kept in the graphite sample holder for 1.5 h at 800°C in
an atmosphere of flowing high-purity hydrogen with a
flow rate of 8 l/h. Thereafter, the sliders were moved in
order to separate the solution–melt into three thin zones
each with a thickness of 2 mm; the solution–melt was
then deposited onto substates. The remaining (unuti-
lized) part of the solution–melt column was poured off
into a free cell of the graphite sample holder. Epitaxial
layers were grown on substrates using conventional
LPE. Batches 1, 2, and 3 of the samples correspond to
the lower, middle, and upper levels in the arrangement
of substrates in the sample holder (Table 1).
1063-7826/02/3612- $22.00 © 21323
The Sb content in GaAs1 – xSbx epitaxial layers was
determined from the photoluminescence (PL) spectra
measured at room temperature. The accuracy of deter-
mining the position of the PL-line peak was ±1 meV.
The dependence of the band gap on the composition of
GaAs1 – xSbx solid solution reported previously [1] was
used. The results of measurements are listed in Table 1.
In the three runs, the liquid-zone column in a Ga–As–Sb
system was formed for three different fixed weighed
portions of the solution–melt.

It can be seen from Table 1 that, in all three runs, the
antimony content (x) in the epitaxial layers formed at
the lower (first) level of the sample holder exceeds this
content in the layers crystallized at the upper levels.
Relative variations in the composition of epitaxial lay-
ers (∆x/x) range from 2% (batch 1) to 3.4% (batch 3)

Table 1.  Composition of solid phase in GaAs1 – xSbx epitaxial
layers for three runs of growth experiments with different
content of Sb in the liquid phase

No. of
the run

The sample 
no. (no. of 
the level in 
the holder)

Position of 
the PL line 
peak, eV

Antimony 
content, x

Relative vari-
ation in the 

composition, 
%

1 3 1.269 0.091 2.17

2 1.267 0.092

1 1.264 0.093

2 3 1.199 0.133 2.96

2 1.196 0.135

1 1.194 0.137

3 3 1.138 0.174 3.40

2 1.135 0.176

1 1.129 0.180
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and tend to increase as the average content of antimony
in the solid phase increases.

Let us now direct our attention to the processes that
occur in the solution–melt in the course of homogeni-
zation (during saturation of the liquid phase for 1.5 h at
a fixed temperature). Since the column of the solution–
melt arranged in the graphite sample holder was not
enclosed from above in the case of saturation, the evap-
oration of highly volatile components of this solution–
melt into the reactor’s gaseous phase evidently
occurred. In a Ga–As–Sb system, arsenic and antimony
are highly volatile components. The pressure of As
vapors above the solid As phase is lower than that above
liquid As since the rate of evaporation of As in the
former case is lower [2]. The calculated As pressure at
temperatures of 800 and 850°C is equal to 26 and
42 Torr, respectively. In this temperature range, arsenic
evaporates in both its molecular (As2) and atomic (As)
forms [2]. The aforementioned results of calculations
agree within an order of magnitude with the pressure of
As vapors above both the Ga–As melt [3] and the (100)
GaAs substrate [4]. At the same temperatures, the pres-
sure of antimony vapors is lower than that of arsenic
vapors by an order of magnitude [2]. In this situation,
the free surface and surface region of the solution–melt
column should be depleted in arsenic to a greater extent
compared to depletion in antimony. If mixing of As and
Sb in the liquid phase and their diffusion from the lower
layers of the column during homogenization have no
time to level off the evaporation process, the ratio of the
As and Sb concentrations (NAs/NSb) should change in
the direction of Sb excess. This would result in enrich-
ment of the solid phase with antimony when the film is
grown from the upper part of the solution–melt column.

Experimentally, the opposite situation is observed:
the content of antimony in the layer grown at the first
(lowest) level is higher than that in the layers grown at
higher levels of the sample holder. Such a situation may
take place if the work of gravity forces is not compen-
sated completely by the processes occurring in the
course of homogenization of the liquid phase.

Another approach (independent of the first one) is
based on physical factors related to the surface segrega-
tion in a system consisting of the liquid and gas phases.
Typically, such an approach involves several criteria
[5]. In the case under consideration, two criteria are
most appropriate; these are the criteria for the minima
of the surface-tension and surface energies. If these two

Table 2.  Physicochemical characteristics of Ga, Sb, and Bi
in the liquid phase

Element Surface tension, 
erg/cm2

Surface energy, 
103 cal/mol

Ga 735 60–65

Sb 389 No data

Bi 390 42
criteria are fulfilled, the elements that have the lowest
surface-tension energy and the lowest surface energy
are accumulated in excess at the solution–melt surface.
Table 2 lists the relevant physical characteristics of the
elements that are constituents of the solution–melt. As
can be seen, even when these factors are taken into
account, the ratio of the As and Sb surface concentra-
tion is such that one may expect an excess of antimony
in the surface region of the solution–melt, i.e., an
excess of Sb at the upper level of the epitaxial structure.

A thermodynamic approach is also indicative of
competition between two factors, one of which is
related to diffusion (D ∝  exp(–W/kT)) and causes the
entropy of the system to increase and the other is grav-
ity-related and reduces the entropy (η ∝  Texp(W/kT))
(D is the diffusion coefficient, W is the activation
energy, ηis the dynamic viscosity, T is temperature, and
k is the Boltzmann constant). In addition, it is well
known that the diffusion coefficient decreases when a
one-component system is replaced by a multicompo-
nent one; in the latter case, this coefficient is reduced as
the content of the minority component increases. In
other words, the gradient of antimony concentration in
the vertical liquid phase is preserved under the effect of
gravity after 1.5-h saturation and homogenization of
the solution–melt. For GaAs1 – xSbx, this results in a
noticeable (up to several percent) difference in the
solid-phase compositions of the samples that were
grown from three zones of the solution–melt column
whose height reaches 30 mm. This circumstance was
used in order to obtain the GaAs/GaAs1 – xSbx photocath-
ode structures with negative electron affinity and a nar-
row spectral-sensitivity band [6] for precise correspon-
dence to the specified wavelength.

A similar phenomenon, referred to as gravity-
related liquation, was observed when polycrystalline
CdHgTe was melted in order to obtain single crystals
[7]. In this case as well, the heavier component (cad-
mium telluride) was concentrated in the bottom part of
the container, so that the composition of the ingot var-
ied along its length. The required content of cadmium
was attained only in a narrow part of the ingot.

The absence of the gravity effect [8] in the case of
isovalent doping of GaAs with Bi in a Ga–As–Bi sys-
tem can be caused by a number of factors, the main one
of which is the larger (compared to Ga and As) atomic
weight of the metal solvent Bi, which resulted in the
fact that there were no significant variations in the gal-
vanomagnetic properties of GaAs:Bi in a wide range of
liquid-phase compositions (from 0 to 75% of Bi).
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¸

                                                           

ELECTRONIC
AND OPTICAL PROPERTIES

OF SEMICONDUCTORS

           
Temperature Dependence of the Width of the Deep-Level Band
in Silicon with a High Concentration of Defects

J. Partyka*, P. W. ukowski*, P. W gierek*, A. Rodzik*,
Yu. V. Sidorenko**, and Yu. A. Shostak**
* Lublin Technical University, 20-618 Lublin, Poland

** Belarussian State University, ul. Leningradskaya 14, Minsk, 220080 Belarus
e-mail: pawel@elektron.pol.lublin.pl

Submitted February 28, 2002; accepted for publication March 19, 2002

Abstract—Temperature dependences of the peak location and the half-width of the absorption band related to
neutral divacancies in the spectrum of Si irradiated with neutrons at a dose of 1019 cm–2 were studied. The
results were analyzed in terms of the concept of the defect-level band, whose width depends on the degree of
compensation and on temperature. © 2002 MAIK “Nauka/Interperiodica”.

Ž ȩ
1. INTRODUCTION

Formation of impurity bands is typical of semicon-
ductors containing high concentrations of shallow-level
impurities. In semiconductors doped with shallow-level
impurities of the same type, the formation of an impu-
rity band first results in a decrease in the ionization
energy. A further increase in the impurity concentration
leads to degeneracy. In compensated semiconductors,
the impurity band undergoes an additional broadening
at low temperatures, which is caused by fluctuations of
the electrostatic potential [1].

In Si irradiated with high doses of fast neutrons [2–4]
and ions [5], compensation by radiation defects results
in an exchange of charges between neutral defects via
the hopping mechanism. Most radiation defects in Si
are amphoteric, and their main charge state is the neu-
tral state [6]. In this context, the compensation by such
defects differs from the compensation in the case of
simultaneous doping by shallow-level donors and
acceptors, for which the degree of compensation Ksh =
Na/Nd (for an n-type semiconductor, in which Nd > Na).

This means that the concentration of positively
charged donors in a doped compensated n-type semi-
conductor equals the concentration of negatively
charged acceptors at low temperatures, and the number
of donors that are in the neutral charge state amounts to
Nd – Na. The concentrations of shallow-level donors
and acceptors should be nearly equal in order to obtain
a high degree of compensation.

In the case of compensation by amphoteric deep-
level defects using irradiation with high doses of neu-
trons, the following condition is fulfilled:

(1)

where ND is the concentration of amphoteric defects
and Nsh is the concentration of shallow-level impurities.

ND Nsh,>
1063-7826/02/3612- $22.00 © 21326
It follows from inequality (1) that amphoteric deep-
level impurities cause no overcompensation at low tem-
peratures. When ND > Nd, all electrons are transferred
from donor levels to deep levels of defects, and a fur-
ther increase in the ND concentration results in an
increase in the concentration of defects in the neutral
charge state.

In this context, in the absence of hopping charge
exchange, heavily irradiated n-Si (ND @ Nd) is only
slightly compensated by amphoteric deep-level defects,
because

(2)

There is an additional decrease in the degree of com-
pensation due to the formation of irradiation-induced
impurity–defect complexes, for example, a phospho-
rus–vacancy complex. Such complexes, being deep-
level centers, reduce the concentration of shallow-level
donors. In this case, the degree of compensation of
heavily irradiated Si can be written as

(3)

Inequality (3) means that the degree of compensation of
Si with a high concentration of defects cannot be
expressed as Nd/ND and should be sought in another
form.

It has been shown [5, 7] that the hopping exchange
of electrons between neutral amphoteric deep-level
defects gives rise to pairs of positively and negatively
charged defects. The concentrations of such pairs are
given by

(4)

Nd

ND

------- ! 1.

Kir ! 
Nd

ND

------- ! 1.

N+ N– NDP T( )τ
2P T( )τ 1+
----------------------------,= =
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where P(T) is the probability of the hopping charge
exchange, which can be written, for example, in the
form suggested in [8]; and τ is the lifetime of a defect
in a charge state.

Then we have

(5)

As can be seen from (5), in Si compensated by
amphoteric deep-level defects, the degree of compensa-
tion is a function of temperature T, because P(T) and τ
depend on temperature. The impurity-band width
depends both on the impurity concentration and on the
degree of compensation [9].

Fluctuations of the electrostatic potential in a semi-
conductor can be described by the mean effective mag-
nitude B. In accordance with [10],

(6)

In the case under consideration, Na + Nd ≈ ND and Na –
Nd is the concentration of defects in the neutral charge
state. In accordance with [7],

(7)

Then,

(8)

The energy distribution of deep centers in the impu-
rity band [10] can be written as

(9)

where the energy E is reckoned from the middle of the
deep-level band. Substitution of expression (8) for B
into (9) yields

(10)

The half-width of the deep-level band can be writ-
ten as

(11)

Kir T( ) N+

ND

-------
P T( )τ

2P T( )τ 1+
----------------------------.= =

B
e2 Na Nd+( )2/3

χ Na Nd–( )1/3
----------------------------------.≈

N0 Na Nd–
ND

2P T( )τ 1+
----------------------------.= =

B
e2ND

1/3 2P T( )τ 1+[ ] 1/3

χ
-----------------------------------------------------.≈

N E( )
ND

2πB
--------------- E2–

2B2
--------- 

  ,exp=

N E( )
ND

2/3χ

2πe2 2P T( )τ 1+[ ] 1/3
------------------------------------------------------=

× E2

2
----- χ

e2ND
1/3 2P T( )τ 1+[ ] 1/3

----------------------------------------------------- 
 

2

– .exp

∆E T( ) 8 2ln B=

=  8 2ln
e2ND

1/3 2P T( )τ 1+[ ] 1/3

χ
-----------------------------------------------------,
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or, taking into account (5), as

(12)

Here, ∆E(0) is the band half-width in the absence of
compensation and at temperatures close to absolute
zero. Thus, ∆E(0) may be regarded as the inherent half-
width of the deep-level band; this half-width results
from the interaction between similar defects. The elec-
trostatic interaction between defects and atoms of shal-
low-level impurities, as well as the change in the charge
state of the defects due to the hopping exchange by
electrons, should result, as can be seen from (12), in
additional band broadening.

2. EXPERIMENTAL RESULTS AND DISCUSSION

Divacancies are among the dominant intrinsic
amphoteric defects in Si heavily irradiated with neu-
trons [11]. The production rate of divacancies is about
1 cm–1 [12]. Therefore, for the irradiation dose we used
(1019 cm–2), the concentration of divacancies far
exceeds that of impurity-atom–defect complexes that
include atoms of both shallow-level and residual impu-
rities [13]. The infrared-absorption band around 1.8 µm
is related to divacancies in the neutral charge state. In
this study, we measured the infrared transmission and
reflectance spectra of Si with a concentration of shal-
low-level donors of about 1014 cm–3. The spectra were
recorded using a double-beam spectrometer with PC
storage. Both the transmittance and reflectance were
measured with an error no greater than 0.03%. The
measurements were performed in the temperature
range of 77–420 K. The sample temperature was main-
tained at a preset value with an accuracy of ±2 K.

Figure 1 shows the spectral dependences of the
transmittance and absorption coefficient measured at
different temperatures. The absorption coefficient α
was calculated using the formula reported in [14],
which accounts for multiple reflections from both sur-
faces of a sample:

(13)

Here, d is the sample thickness,  is the transmittance,
and R is the reflectance.

Generally, when α(E) is calculated, tabulated data
for the reflectance R(E) are used. Such data can be
found, for example, in [15].

The value of R(E) depends both on the quality of the
surface treatment and on the irradiation conditions.
Therefore, when calculating the absorption coefficients
of irradiated Si samples, we used the experimentally
determined dependences R(E) for similarly treated irra-

∆E T( ) 8 2ln
e2ND

1/3

χ 1 2Kir–( )1/3
---------------------------------=

=  ∆E 0( ) 1 2Kir–( ) 1/3– .

T̃
1 R–( )2 αd–( )exp

1 R2 2αd–( )exp–
---------------------------------------------.=

T̃
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diated samples that were much thicker (d = 0.3 and
2.5 mm for the samples used in the measurements of
the transmission and absorption spectra, respectively).
Examples of reflection spectra recorded at different
temperatures are shown in Fig. 2. In the studied spectral
region, we observed two absorption lines: a wide line
peaked at ~0.7 eV (related to absorption by neutral
divacancies) and a narrow line peaked at ~0.56 eV with
a half-width of ~0.02 eV. In addition, near-edge absorp-
tion was also observed. In order to determine the main
parameters of the absorption band related to divacan-
cies (the peak location Ew and the band half-width
∆Ew), we subtracted the value of the near-edge-absorp-
tion coefficient (that may affect Ew and ∆Ew) from
α(E). The values of Ew and ∆Ew, determined in this
way, are shown as functions of temperature in Figs. 3
and 4, respectively.

As can be seen from Fig. 3, in the temperature range
of 77–420 K, Ew first decreases sublinearly with an
increase in T (up to ~200 K) and then decreases virtu-
ally linearly with a further increase in T. In the range of
200–420 K, the temperature coefficient of variation in the
band-peak location is about (–2.1 ± 1.5) × 10–4 eV K–1.
The value of Ew changes with temperature in the same
way as the bandgap does (the latter decreases with
temperature nonlinearly at T < 220 K and linearly at
T > 220 K). The temperature coefficient of variation in
∆Eg amounts to –2.84 × 10–4 eV K–1 [16].

It is generally agreed that the absorption band
around 0.7 eV is related to intracenter electronic-vibra-
tional transitions in neutral divacancies.

300

200

100

0.5 0.8 1.1

0.05

0.03

0

α, cm1 T, arb. units
~

hν, eV

1

2

3
4

Fig. 1. (1) Transmission and (2–4) absorption spectra of Si
irradiated with fast reactor neutrons at a dose of 1019 cm–2;
the spectra were measured at (1, 2) 77, (3) 293, and (4) 413 K.
If we assume that the absorption band around 0.7 eV
is related to transitions of electrons from the levels of
the ground state of neutral divacancies, a considerable
portion of the band half-width (about 0.1–0.12 eV, see
Fig. 4) is due to the formation of a band by the deep lev-
els of divacancies. As can be seen from Fig. 4, the half-
width of the divacancy-absorption band increases with
temperature at T > 100 K, remains constant in the range
of 250–350 K, and decreases with temperature at T >
350 K. Thus, both the location of the peak of the deep-
level band and the band width depend on temperature.

For the irradiation dose we used, divacancies are
prevalent defects. Therefore, hopping exchange of elec-
trons occurs between neighboring neutral divacancies.
It follows from formula (11) that at sufficiently low
temperatures, when the probability of hopping
exchange is low (i.e., P(T)τ ≈ 0), the inherent width of
the deep-level band ∆E(0) depends on the defect con-
centration ND. Assuming that P(T)τ = 0 in (11), we find
a correlation between the inherent width of the deep-
level band and the defect concentration

(14)

Formula (14) allows us to calculate the defect con-
centration using the results of low-temperature measure-
ments of the half-width ∆E(0) of the absorption line.

As can be seen from Fig. 4, ∆E(0) = 0.10 eV for neu-
tral divacancies at T = 77 K. In accordance with (14),
the divacancy concentration of about 4 × 1019 cm–3 cor-
responds to this value of ∆E(0). This is consistent with

ND
∆E 0( )χ

8 2ln e2
--------------------- 

  3

.=

0.30

0.25

0.20

0.15
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

hν, eV

R, arb. units

0.23

0.21

0.19

0.17
0.50 0.60

1

2

3

1

2

3

0.55 0.65

Fig. 2. Spectral dependences of reflectance of neutron-irra-
diated Si at (1) 77, (2) 293, and (3) 413 K.
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the results of the spectroscopic measurements reported
in [12].

Bourgoin and Lannoo [17] obtained an expression
that makes it possible to estimate approximately the
impurity-band width:

(15)

where R ≈  is the average distance between impu-
rity atoms or defects. In accordance with formula (15),
the width of the deep-level band of about 0.1 eV corre-
sponds to the divacancy concentration of 4 × 1019 cm–3

(the result of our calculations using formula (14) on the
basis of the experimental data). Thus, the model we
developed is in good agreement with the known data
[17] for low temperatures, in which case ∆E = const.
Our taking into consideration the degree of compensa-
tion and temperature results in an additional broaden-
ing of the impurity band (see formula (12)). When the
degree of compensation is close to 0.5, the band width
may increase several times in comparison with the sit-
uation where there is no compensation at low tempera-
tures.

Divacancies introduce different levels (four in total)
into the band gap, depending on the divacancy charge
state. The levels Ev + 0.21 eV (Ec – 0.94 eV) and Ec –
0.39 eV correspond to the positive and negative charge
states, respectively; and the level Ec – 0.22 eV corre-
sponds to the doubly negative charge state [13, 17].

The band of levels corresponding to the neutral
charge state of divacancies is located between the levels
of the positive and negative charge states. Depending
on temperature, the band-peak location ranges from
Ec – 0.72 eV at T = 77 K to Ec – 0.67 eV at T = 400 K
(see Fig. 3). Notably, the half-width of the neutral-diva-
cancy band (Fig. 4) is only a few times smaller than the
energy intervals between the band peak and the levels
of positive (for ∆E(0/+) = 0.18 eV) and negative (for
∆E(0/–) = 0.33 eV) charge states. This means that, for
a Gaussian distribution of neutral-divacancy levels over
energies (11), a certain portion of these levels is located
above the negative-divacancy level and another portion
is located below the positive-divacancy level. Thus,
even at low temperatures, when the probability of hop-
ping recharge is zero, a certain portion of neutral diva-
cancies is in the positive and negative charge states due
to the formation of the band of neutral-divacancy lev-
els. In this case, the concentration of charged divacan-
cies can be determined from the formula

(16)

where

(17)

∆E
2e2

χR
--------,≈

ND
1/3–

N ±( ) 4 2ln
π

-----------
ND

∆E T( )
---------------- ξ2

2
-----– 

 exp ξ ,d

∞–

c ±( )

∫=

c +( ) 8 2ln
∆E 0/+( )
∆E T( )

---------------------–=
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for positive divacancies and

(18)

for negative divacancies.
The calculations based on formulas (16)–(18) showed

that, at ND = 4 × 1019 cm–3, N(+) is about 1015 cm–3 at liq-
uid-nitrogen and lower temperatures and becomes as
high as approximately 1 × 1016 cm–3 at room tempera-
ture. The concentration of negative divacancies is about
2.5 × 106 cm–3 at low temperature and increases to
~1011 cm–3 at room temperature. Thus, in crystals con-
taining a region with clusters of defects introduced by
neutron irradiation, a small portion of divacancies may
undergo transition to positive- and negative-charge
states even at low temperatures. The degree of compen-

c –( ) 8 2ln
∆E 0/–( )
∆E T( )

--------------------–=

0.66

T, K
100 150 200 250 300 350 400 450

0.68

0.70

0.72

0.74

50
0.64

Ew, eV

Fig. 3. Position of the peak of the divacancy-related absorp-
tion band in neutron-irradiated Si as a function of tempe-
rature.

0.09

T, K
100 150 200 250 300 350 400 450

0.10

0.11

0.12

0.13

50
0.08

∆Ew, eV

Fig. 4. Temperature dependence of the width of the absorp-
tion band related to divacancies in neutron-irradiated Si.
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sation is about 2.5 × 10–5 in these conditions. At tem-
peratures above the liquid-nitrogen temperature, hop-
ping charge exchange between neutral divacancies
occurs, which results in an additional broadening of the
impurity band (Fig. 4).

When the degree of compensation differs from zero
(which is typical of higher temperatures, for example,
room temperature), formula (11) allows us to determine
the product of the probability of hopping recharge P(T)
and the lifetime of a defect in a charge state τ

(19)

The calculations of the Kir(T) and P(T)τ values per-
formed on the basis of the experimental temperature
dependence of ∆Ew using formulas (5) and (19) are
shown in Fig. 5. As can be seen, the degree of compen-
sation becomes as high as 0.23 at T = 300 K; i.e., the
concentration of defects in charge states is about
0.46ND. A further increase in temperature to T = 350 K
virtually does not affect the half-width of the absorption
band and the degree of compensation. At T > 350 K, the
values of Kir(T) and P(T)τ decrease with temperature.

The probability of hopping recharge P(T) should
increase with temperature. In our opinion, the observed
decrease in P(T)τ and Kir(T) at T > 350 K is related to
the heterogeneous structure of neutron-irradiated Si. It
is known [6] that irradiation of this kind induces diva-
cancies to agglomerate mainly in the regions containing
clusters, where the divacancy concentration can be as
high as 1020 cm–3. The concentration of divacancies
outside the cluster regions is much lower. As a result,
the hopping exchange sets in exactly in cluster regions.
When nearly all defects become charged in these
regions, neutral divacancies remain only outside cluster
regions. Since the concentration of divacancies in the

P T( )τ 1
2
--- ∆E T( )

∆E 0( )
---------------- 

 
3

1– .=

0.2

T, K
100 150 200 250 300 350 400 450

0.3

0.4

0.5

0.6

50
0

P(T)τ, arb. units; K, arb. units

P(T)τ

K

0.1

Fig. 5. Temperature dependences of the P(T)τ product (15)
and the degree of compensation Kir (5).
less damaged regions is much lower than that in cluster
regions, in accordance with formulas (11) and (12), the
half-width of the absorption band related to neutral
divacancies should decrease at T > 350 K.

The formula for the static dielectric susceptibility
related to the hopping exchange of electrons between
neutral amphoteric defects contains the P(T)τ product
[5]:

(20)

On the basis of measurements of the width of the
optical-absorption line related to neutral divacancies
(Fig. 4) and with the use of (19), we can determine the
P(T)τ product in formula (20). This formula describes
the temperature dependence of the additional polariza-
tion of semiconductors with high concentrations of
defects. We carried out direct room-temperature mea-
surements of the permittivity of an Si sample (similar to
that which we used in the aforementioned optical mea-
surements) at a frequency of 100 Hz to obtain the value
of χp ≈ 50. Substitution of the ND and P(T)τ values (for-
mulas (14) and (19), respectively), which were calcu-
lated on the basis of the data derived from the absorp-
tion spectra recorded at T = 300 K (Fig. 3), into (20)
yields χp ≈ 70, which is in good agreement with the
value obtained from the direct measurements.

3. CONCLUSION

We have shown that hopping charge exchange
results in the formation of dipoles in semiconductors
compensated by amphoteric deep-level defects. These
dipoles lead to an increase in fluctuations of the electro-
static potential and to broadening of the band formed by
deep levels of the main (neutral) state of defects. These
phenomena may manifest themselves in a variation in
the width of the optical-absorption band related to neu-
tral defects. The temperature dependence of the width
of the infrared-absorption band related to neutral diva-
cancies was studied for Si irradiated with fast reactor
neutrons at a dose of 1019 cm–2. The value of the band
half-width was used to evaluate the divacancy concen-
tration (it was found to be 4 × 1019 cm–3) and the dielec-
tric susceptibility of the irradiated sample (χp ≈ 70).
The obtained values are in agreement with the results of
the direct measurements.
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Abstract—The resistivity and Hall effect were investigated in p-Hg0.8Cd0.2Te crystals that contained from
1.5 × 1015 to 1.7 × 1018 cm–3 Cu atoms. The measurements were carried out in the temperature range of
4.2−100 K. It is demonstrated that, in order to correctly determine the Hall mobility of holes at low tempera-
tures, one should exclude the contribution of hopping charge transfer. It was found that heavy holes are scattered
at 77 K by each other, by impurity ions, by composition fluctuations, and by lattice vibrations. In compensated
crystals, holes are scattered only by lattice vibrations at low temperatures. For uncompensated crystals, when
calculating the mobility, it is necessary to make allowance for the hole scattering by positively charged centers
formed due to trapping of excess holes by acceptors. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As many researchers believe, the mobility µh of free
holes in p-Hg0.8Cd0.2Te crystals at low temperatures is
substantially lower than expected for scattering by
impurity ions [1–3]. Various explanations have been
suggested for this phenomenon. However, none of them
can be accepted as satisfactory. For example, low hole
mobilities were explained by scattering at elastic fields
of neutral defects [1] and by scattering at composition
fluctuations [2]. At the same time, µh is proportional to
T3/2 at T < 15 K, which corresponds to scattering pre-
cisely by charged centers and is inconsistent with the
mechanisms suggested in [1, 2]. Tsidil’kovskii et al. [3]
believe that at low temperatures the holes that contrib-
ute to charge transport are in the tail of the density of
states of the valence band. Because of this, the dynamic
properties of holes can in no way be characterized by
the band effective mass. It is also believed [3] that the
energy of interaction between the holes and scattering
centers is not low compared with their kinetic energy.
As a result, the classical concepts of mobility are inap-
plicable in this case. The question of the angular depen-
dence of overlapping intensity also remains open. This

dependence is written as Iα(k', k) = r uαk, where

uαk is the periodic part of the Bloch wave function for
the αth branch of the spectrum, and integration is car-
ried out over the unit-cell volume. On the one hand, it

is generally agreed that for holes (k', k) = (1 +
3cos2θk)/4, where θk is the angle between the vectors k
and k' (see [3, 4]). On the other hand, uhhk = uhh0 in the
Kane model; because of this, Ih(k', k) = 1.

d3∫ uαk'*

Ih
2

1063-7826/02/3612- $22.00 © 21332
For these reasons, the concentration and tempera-
ture dependences of the mobility of free holes in
Cu-doped uncompensated and In-compensated
p-Hg0.8Cd0.2Te at T < 100 K under the conditions of
light and moderate doping were investigated.

2. EXPERIMENTAL

Single-crystal n-Hg1 – xCdxTe (x = 0.21…0.22)
wafers with a thickness of d ≈ 0.1 cm were used in the
experiment. The wafers were cut from ingots grown by
vertical planar crystallization with a solid-phase feed-
ing in batch production. The wafers were annealed in
saturated Hg vapors. The dislocation density in the
wafers was lower than 3 × 105 cm–2.

Most starting ingots were manufactured using com-
ponents of 99.9999% and 99.99999% purity and con-
tained background impurities only. For annealed wafers
of this type, the extrinsic-electron density at low tem-
peratures was no higher than 3 × 1014 cm–3. Several
crystals were doped with In from the melt and con-
tained from 1015 to 1.6 × 1017 cm–3 excess donors. The
In concentration NIn in such samples was identified
with the extrinsic-electron density at T = 77 K, which
was determined from the Hall coefficient RH in a mag-
netic field of B = 1 T.

The p-type samples were obtained from the starting
wafers by diffusion doping with Cu. A Cu film of spec-
ified thickness was deposited onto the wafer surface by
resistive evaporation in vacuum. The amount of evapo-
rated Cu and the distance from the source to the sample
were chosen such that the required concentration NCu of
active Cu was attained after the film dissolved. The Cu
002 MAIK “Nauka/Interperiodica”
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diffusion was carried out during the isothermal anneal-
ing of the wafers in saturated Hg vapors. The annealing

time t was chosen from the condition  > 5d,
where DCu is the Cu diffusivity. The values of DCu for
Hg0.8Cd0.2Te determined in [5] were used. In this case,
the Cu distribution in the crystals was fairly uniform.

In the case of relatively light doping (NCu < 7 ×
1017 cm–3), the Cu diffusion was carried out at 473 K
for 72 h. According to [6], the Cu solution is quite sta-
ble at T ≈ 300 K in this case. More concentrated Cu
solutions in stoichiometric crystals are unstable and are
prone to rapid decomposition. Because of this, heavily
doped samples were annealed at higher temperatures
(670–680 K). In this case, about 1016 cm–3 Hg vacan-
cies were introduced into the samples. This stabilized
the Cu solution due to a decrease in the Cu-migration
rate [7]. At the same time, the number of vacancies in
such samples is small compared with the number of Cu
atoms, and the vacancies exert no effect on the hole
mobility.

As a result, a series of uniformly doped p-Hg1 – xCdxTe
crystals containing from 1.5 × 1015 to 1.7 × 1018 cm–3

dissolved active Cu atoms were obtained. The number
of active Cu atoms in uncompensated crystals was iden-
tified with the number of free holes p at 77 K, since
such defects are ionized completely under these condi-
tions, while background donors and acceptors in the
material under investigation were mutually compen-
sated. The Cu concentration in In-compensated p-type
samples was determined from the electroneutrality con-
dition in the form NCu = p + NIn.

Several uncompensated samples that contained
3.5 × 1016 cm–3 active Cu atoms were additionally
annealed at various temperatures and Hg-vapor pres-
sures. The annealing conditions where chosen such that
the equilibrium concentration of intrinsic acceptors
(VHg vacancies) in these samples was about 1.8 ×
1016 cm–3. The annealing conditions, the methods of
determining the VHg concentration, and the temperature
dependences of the conductivity and Hall effect were
reported in detail in [8].

The mobility and density of electrons and holes
were determined by the six-probe Hall method. Sam-
ples shaped as rectangular parallelepipeds of about
1.2 × 0.3 × 0.1 cm3 in size were cut from the wafer, and
their resistivity σ and Hall coefficient RH were mea-
sured. The measurements were carried out either at a
fixed temperature of 77 K in a magnetic field B ranging
from 0.5 to 2 T or in the temperature range from 4.2 to
125 K in a fixed field of B = 0.030 T.

In order to calculate the concentration p and the
mobility µh of heavy holes in p-type samples at 77 K,
the RH values for magnetic fields that are strong with
respect to light holes were used. The dependence
RH(B), obtained for B in the range from 0.5 to 2 T, was

DCut
SEMICONDUCTORS      Vol. 36      No. 12      2002
extrapolated to the region of B > 3 T. According to [9],
the presence of light holes in such fields does not affect
the value of RH. For correct extrapolation, the RH(B)
dependence was represented as a polynomial in degrees
of B–2. Relevant examples were reported in [9]. It was

assumed that the Hall factor for heavy holes  ≈
1.02 [9].

The concentration dependences of the electron
mobility for n-type crystals at 4.2 K and the heavy-hole
mobility for uncompensated p-type crystals at 77 K are
shown in Figs. 1 and 2, respectively.

rH
hh( )
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µe, cm2 V–1 s–1

Fig. 1. Electron mobility in the n-Hg0.78Cd0.22Te:In crys-
tals at 4.2 K. Circles and lines represent the results of mea-
surements and calculations, respectively. NA = (1) 0.5 ×
1015, (2) 1 × 1015, and (3) 1.5 × 1015 cm–3.
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Fig. 2. Mobility of heavy holes in the p-Hg0.8Cd0.2Te:Cu
crystals at 77 K. Circles correspond to experimental data.
Lines represent the results of calculations for Ih = (1–5) 1
and (6) 1 – (3/4)sin2θk. (1) Mobility limited by scattering at
polar optical phonons; (2) mobility limited by scattering at
composition fluctuations; (3) mobility limited by scattering
at acoustic phonons; (4) mobility limited by scattering at
charged centers; and (5), (6) total mobility.



1334 BOGOBOYASHCHIŒ
101

0 50 100 150 200 250

100

10–1

10–2

10–3

10–4

102

0 50 100 150 200 250

101

10–1

10–2

10–3

10–4

100

1000/T, 1/K

σxx, Ω–1 cm–1 σxy, Ω–1 cm–1

(a) (b)

1
3
2
4

12

3
4

Fig. 3. Temperature dependences of (a) diagonal and (b) off-diagonal components of the electrical-conductivity tensor for
p-Hg0.78Cd0.22Te crystals. Circles, squares, and triangles correspond to experimental data; solid and dashed lines represented the

results of fitting and interpolation, respectively. (1) NCu = 3.5 × 1016 cm–3, NIn < 1015 cm–3, [VHg] < 1014 cm–3; (2) NCu = 3.5 ×
1016 cm–3, NIn < 1015 cm–3, [VHg] = 1.8 × 1016 cm–3; (3) NCu = 1.5 × 1015 cm–3, NIn < 1015 cm–3, [VHg] < 1014 cm–3; (4) NCu =

1.14 × 1017 cm–3, NIn = 9.2 × 1016 cm–3, [VHg] < 1014 cm–3.
The temperature dependences of σ and RH for sev-
eral p-type samples were studied using a system
described previously [10]. The sample temperature was
determined from the reading of a calibrated resistance
thermometer with an error of a few tenths of a percent.
To reduce the degree of surface oxidation, the contacts
were soldered in cooled N ambient onto the freshly
etched samples and rinsed in warm deionized water.
Then, the samples were immediately placed in a cry-
ostat filled with He so as to perform σ and RH measure-
ments. During such treatment, the crystals had no time
to oxidize noticeably, and no effect of surface electrons
was observed. Indium contacts were used. According to
[11], it is quite possible to regard such contacts as non-
rectifying.

On the basis of the measurements of σ and RH, the
σxx and σxy components of the electrical-conductivity
tensor were calculated. This form of representing the
results is more convenient in the case of mixed conduc-
tivity. Since the magnetic field was extremely weak, it
was assumed that σxx = σ and σxy = BRHσ2.

Typical results obtained for various types of investi-
gated p-Hg0.8Cd0.2Te:Cu samples are shown in Fig. 3. It
can be seen that ε1 conduction is dominant at relatively
high temperatures (above 10–15 K in slightly compen-
sated crystals and above 20–30 K in the nearly com-
pletely compensated crystal). The conduction of this
type is governed by the valence-band holes. In all cases,
considerable hopping conductivity over the acceptor
band is observed at lower temperatures. The magnitude
and the type of hopping conductivity depend on the
presence of Hg vacancies and compensating donors.
Specifically, in slightly compensated crystals (Fig. 3a,
curve 1), hopping conductivity whose activation energy
is independent of T is observed (ε3 conduction):

(1)

In compensated samples (curves 3, 4), as well as in
the sample with an appreciable concentration of Hg
vacancies (curve 2), the hopping conductivity with a
variable hop range (the Mott conductivity [12]) is
observed:

(2)

The sign of the Hall effect in the region of ε1 con-
duction below the inversion point that is caused by
freezing of intrinsic electrons is positive. At the same
time, the temperature dependence of the off-diagonal
component σxy of the conductivity tensor below 20–
30 K, in contrast with σxx(T), follows the activation law
with a single activation energy. This is in good agree-
ment with the theory of the hopping Hall effect [13, 14].
According to this theory, localized holes cannot gener-
ate a noticeable Hall voltage. For the same reason, the
Hall effect was not detected in the region of pure hop-
ping conductivity.

The Hall voltage in the p-Hg0.8Cd0.2Te crystals is
caused by light and heavy valence-band holes at low
temperatures, whereas the conduction is caused by
charge carriers localized at acceptors. Because of this,
in order to determine the mobility of heavy holes µh

σ3 σ30 ε3/kBT–[ ] .exp=

σM σM0 T0/T( )1/4–[ ] .exp=
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correctly, one should exclude the contributions of other
charge carriers to σxx and σxy.

The effect of the hopping mechanism can be
excluded relatively easily. Taking into account the addi-
tivity of the components of the electrical conductivity
tensor, we assumed that σxx = σ1 + σ3 or σxx = σ1 + σM.
Here, σ1 is the conductivity caused by free holes. The
choice depends on whether the hopping conduction of
type (1) or type (2) is dominant. Then, the high- and
low-temperature portions of the σxx(T)dependence
were mutually extrapolated, and the parameters of the
relevant activation laws were matched. It was consid-
ered that, for the region of mixed conductivity, the
σ1(T) dependence has an activation character with a
constant activation energy. The results of fitting are
shown in Fig. 3a (solid lines). It can be seen that this
method of fitting is quite acceptable. Specifically, since
the ε1 conductivity is negligible below 7–10 K, the
parameters of hopping conductivity were rather reli-
ably determined by this method. In this case, the σ1
summand can be separated successfully by subtracting
the hopping component from the total conductivity σxx.
As indicated above, the contribution of the hopping
charge transfer to the σxy component was negligibly
small.

The effect of light holes was taken into account as
follows. It is well known that the presence of mobile
light holes causes an additional field dependence of the
Hall coefficient in p-Hg0.8Cd0.2Te crystals. Specifically,
the ratio RH(B)/RH(∞) at 77 K decreases from 1.35 ±
0.05 to 1 when B increases from 0 to 3 T [9]. The effec-
tive mass of light holes varies only slightly below 77 K.
At the same time, the relaxation time of light holes is
nearly independent on their mass because they trans-
form into heavy holes due to scattering [15]. Therefore,
it was assumed that the contribution of light holes to the
Hall effect at T < 77 K is independent of T. Let us use
the definition of the σxx and σxy quantities and neglect
the contribution of light holes to the σ1 quantity. In this
case, the Hall mobility and the density of heavy holes
are equal to

(3)

It is noteworthy that the effect of hopping conduc-
tion leads to a substantial decrease in the effective Hall
mobility RHσ. Thus, at the lowest temperatures in the
investigated range, the mobility derived from formula (3)
exceeds the RHσ quantity by more than an order of
magnitude. It is probable that this is precisely the main
cause of the low hole mobility found in [1–3], where no
allowance was made for the effects of the hopping con-
duction.

µhH rH
hh( )µh≡

σxy

1.35Bσ1
--------------------, p

1.35rH
hh( )σ1

2

eRHσxx
2

---------------------------.= =
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Summary results of the measurements of µhH are
shown in Figs. 4 and 5. It can be seen that the low-tem-
perature hole mobility in the compensated crystals is
relatively low and decreases with an increase in the
doping level. In contrast to this, in the slightly compen-
sated crystals at T < 20 K, the mobility is virtually inde-
pendent of the Cu concentration. It should be noted
that, in the presence of Hg vacancies, the holes are scat-
tered noticeably more strongly in such crystals,
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Fig. 4. Temperature dependence of mobility of heavy holes
in Cu-doped and In-compensated p-Hg0.8Cd0.2Te crystals.
Squares and triangles correspond to the results of measure-
ment; lines represent the results of calculations. (1) NA =

1.14 × 1017 cm–3, ND = 9.2 × 1016 cm–3; (2) NA = 2.6 ×
1016 cm–3, ND = 2.2 × 1016 cm–3.
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Fig. 5. Temperature dependence of mobility of heavy holes
in uncompensated p-Hg0.8Cd0.2Te:Cu crystals. Circles and
triangles correspond to results of measurement; lines repre-
sent the results of calculations. (1) NCu = 1.5 × 1015 cm–3,

ND = 4 × 1015 cm–3, [VHg] < 1014 cm–3; (2) NCu = 3.5 ×
1016 cm–3, ND = 4 × 1015 cm–3, [VHg] < 1014 cm–3; (3) NCu =

3.5 × 1016 cm–3, ND = 4 × 1015 cm–3, [VHg] = 1.8 × 1016 cm–3;
(4) NA = ND = 0.



1336 BOGOBOYASHCHIŒ
although the intrinsic acceptors exert no effect on the
density of free holes in p-Hg0.8Cd0.2Te:Cu crystals
below 30 K (see curves 1, 2 in Fig. 3a).

3. MODEL

The mobility of free holes was calculated by numer-
ical integration in the context of the long-wavelength
approximation of the general theory of scattering (see,
for example, [4, 16]). Computational formulas were
written for the case of an arbitrary isotropic dispersion
law, since the nonparabolicity of the heavy-hole band is
quite noticeable even at low energies [9]. The degree of
degeneracy of electrons and holes was assumed to be
arbitrary.

Two approximations were considered for the overlap-
ping integral Ih(k', k). It was assumed that, in one case,
Ih(k', k) = 1 and, in the other case, according to [4],

(4)

The hole scattering by polarization optical vibra-
tions (pol), acoustic phonons (ac), charged centers (I),
and composition fluctuations (fl), as well as hole–hole
scattering were taken into account. According to esti-
mations, the effect of other types of scattering is
small. The matrix elements of the interaction Hamil-
tonian for the first three mechanisms were written
according to [4, 17]:

(5)

(6)

(7)

Here, r0 is the screening radius; nq is the distribution
function for LO phonons; εp = εSε∞/(εS – ε∞), where εS

and ε∞ are the static and high-frequency permittivities,

respectively; NI = Nν, where Zν and Nν are the
charge multiplicity and the concentration of charged
centers of the νth type, respectively; ΞΓ is the deforma-
tion potential; and Cik is the tensor of the elasticity
moduli.

Ih k' k,( ) 2 1 3 θkcos
2

+
4

---------------------------- 1
3
4
--- θk.sin

2
–≡=

k q H pol k±〈 〉 2

=  
2πe2

"ωLO

Vεp

-------------------------
q2 nq 1/2 1/2+−+( )

q2 r0
2–+( )2

------------------------------------------- Ih k q± k,( ) 2,

k q Hac k±〈 〉 2 ΞΓ
2 kBT

2VC11
---------------- Ih k q± k,( ) 2,=

k q HI k±〈 〉 2

=  
16π2e4NI

VεS
2

----------------------- 1

q2 r0
2–+( )2

------------------------ Ih k q± k,( ) 2.

Zν
2∑
The contribution of the scattering by composition
fluctuations was evaluated in the context of the theory
developed in [18]. In the case of an ideal solution and
arbitrary x, the relevant term can be written as

(8)

where N0 is the atomic concentration in the metal sub-
lattice.

The scattering by acoustical phonons, charged cen-
ters, composition fluctuations, and polarization vibra-
tions was taken into account in the relaxation-time
approximation. In the latter case, this approximation is
quite acceptable when T < 80 K, since in this tempera-
ture range exp(–"ωLO/kBT) < 0.1, where ωLO is the fre-
quency of long-wavelength LO phonons. The relevant
formulas for the inverse relaxation time in the case of
an arbitrary isotropic dispersion law can be written as

(9)

(10)

(11)

(12)

Here, Lf l, Lac, Lpol, and LI are multipliers, whose form
depends on the form of the overlap integral Ih(k', k);
and f0(ε) is the equilibrium distribution function of
holes.

If Ih(k', k) = 1, the multipliers corresponding to the
scattering by acoustical phonons, by polar optical
phonons, and by charged centers can be written, respec-
tively, as

(13)

(14)

(15)
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where zk = k2 + k'2 + ; k = phh(ε)/"; k' = phh(ε +

"ωLO)/"; and b = 4 k2.

Let us assume that (k', k) = (1 + 3cos2θk)/4. In
this case,

(16)

(17)

(18)

The hole–hole scattering that cannot be described in
terms of the relaxation time [15, 16] was taken into
account using the variational method (see monograph
[16]). According to [16], in the case of the simultaneous
effect of the above-mentioned scattering mechanisms,
the average drift mobility of nondegenerate holes in the
second-order approximation is equal to

(19)

where

The partial mobility of heavy holes µβ (β is for I, ac,
pol, or fl) can be written as

(20)

where phh(ε) represents the inverse dispersion law for

heavy holes, and mhh(ε) = 0.5 /∂ε is the effective
mass.
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The Hall factor for heavy holes in the absence of
hole–hole scattering was calculated from the formula

(21)

which can be obtained easily by generalizing the
known definition [19] to the case of the nonparabolic

dispersion law. Here, τ = 1/ .

4. RESULTS OF CALCULATIONS
AND DISCUSSION

The results of calculating the electron mobility µe at
4.2 K for n-type crystals for the case of scattering by
impurity ions are shown in Fig. 1. The calculations
were carried out using formulas (12), (15), and (20), in
which the dispersion law and the density of states for
heavy holes were replaced by relevant characteristics of
the conduction band, taken from [9]. It was assumed
that Ie(k', k) = 1. According to [15, 16], no allowance
was made for electron–electron scattering, since the
electrons were degenerate under these conditions.

It can be seen that the measured and calculated data
coincide in the region of high electron densities. In the
region n < 1015 cm–3, a noticeable variance of mobility
is observed due to variation in the impurity composition
of the sample. However, all experimental points lie
between the curves calculated for NA = 5 × 1014 and
1.5 × 1015 cm–3. Thus, all crystals investigated in this
study contained about (1 ± 0.5) × 1015 cm–3 background
donors on average.

The results of calculating the hole mobility at 77 K,
which were performed assuming that Ih(k', k) = 1, are
shown in Fig. 2 (curves 1–5). The calculations were
carried out without fitting, and the numerical values of
the model parameters were taken from independent
reports. Specifically, it was assumed that εS = 20.5 –
15.6x + 5.7x2 and ε∞ = 15.2 – 15.6x + 8.2x2 [20],
|∂EV/∂x | = 0.35 eV [21], and C11 = 5.35 × 1011 erg/cm3

[22]. For the acoustic potential ΞΓ, we used the value
derived from the data on the spectra of absorption by
free holes (see [11]). With allowance made for the cor-
rection to the hole scattering by composition fluctua-
tions, ΞΓ = 10.5 eV. It was assumed that the concentra-
tion of background donors ND = 1 × 1015 cm–3 and Z = 1
for all charged centers. The density of states and the

rH
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dispersion law for the heavy-hole band in Hg1 – xCdxTe
were taken in the form derived recently [23] from the
results of precision measurements of the intrinsic-elec-
tron density as a function of temperature:

(22)

(23)

where mhh(0) = 0.39m0, and ε0 = 0.096 eV.

As follows from Fig. 2, the results of calculations in
this approximation nearly coincide with the averaged
results of measurements. Alternatively, if one assumed

that (k', k) = (1 + 3cos2θk)/4 [3, 4], the discrepancy
between the results of calculations and the averaged
experimental data becomes rather considerable (see
Fig. 2, curve 6).

The result obtained in this study somewhat contra-
dicts the conclusions made previously in [24], where
the hole mobility in p-Hg0.8Cd0.2Te : Cu at 77 K was
also investigated. However, hole–hole scattering was
not observed in [24]. This discrepancy is explained by
the fact that the degenerate crystals with p > 1018 cm–3

were investigated in [24]. In degenerate crystals, scat-
tering of this type should not manifest itself [15].

It is worth noting that the  values calculated
using formula (21) for moderately doped p-Hg0.8Cd0.2Te
crystals vary in a narrow range from 1.03 to 1.1. This is
in rather good agreement with the experimental data

reported in [9], according to which  ≈ 1.02. This
agreement is attributed to the fact that, in the region ε ≈
kBT, the relaxation time of the hole momentum is
almost independent of the hole energy due to the simul-
taneous effect of five different tantamount mechanisms
of scattering.

The results of calculations of the heavy-hole mobil-

ity µhH = µh in the temperature range of 15–100 K
for the Cu-doped and In-compensated p-Hg0.79Cd0.21Te
crystals are shown in Fig. 4. The calculations were per-
formed using relationships (4)–(14) and (19)–(23). In
the case under consideration, the dopant concentration
was rather high, whereas the Fermi level was located
above the isolated-acceptor level. Due to this, the elec-

troneutrality condition can be written as p =  – NIn.
It follows from this condition that NI = p + 2NIn. It can
be seen (Fig. 4) that the values of hole mobilities calcu-
lated for such crystals coincide with the relevant exper-
imental values in the entire temperature range under
investigation. It should be noted that the hole–hole scat-
tering is weak in nearly completely compensated crys-

Nhh ε( )
2mhh

3 0( )
π2

"
3

------------------------ ε 1 ε/ε0+( ) 1 2ε/ε0+( ),=

phh ε( ) 2mhh 0( )ε 1 ε/ε0+( ),=

Ih
2

rH
hh( )

rH
hh( )

rH
hh( )

NCu
–

tals [16]. In this case, the Hall factor can be calculated
from formula (21) quite accurately.

In slightly compensated crystals and at low tem-
peratures, the Fermi level is located approximately at
the middle of the gap between the valence band and
the isolated-acceptor level. Under these conditions, it
is necessary to make allowance for the capability of
acceptors to attach holes to form positively charged
centers (A+ centers) [25]. The population of the A+

states of singly charged acceptors is determined by the
Gibbs distribution

(24)

Here, ∆E1 is the attachment energy for an excess hole,
EA1 is the ionization energy of an acceptor, and the
Fermi energy F is reckoned from the valence-band top
EV. It was demonstrated in [26] that, for Hg0.8Cd0.2Te
crystals, EA1 ≈ 8 meV, whereas the ∆E1 energy amounts
to about 10% of EA1. Since a single acceptor in the A+

state binds two holes, whereas the single-particle states
are fourfold degenerate [18], the A+ state was consid-
ered as sixfold degenerate.

It follows from expression (24) that, at moderately
low temperatures and moderate levels of doping, the
number of A+ centers in slightly compensated crystals
is comparable with the number of A– centers and the
number of donors. Because of this, an A+ center should
noticeably affect both the hole statistics and hole scat-
tering. In this context, the electroneutrality condition

for slightly compensated crystals was written as  =

p + ND + NCu (F). Taking into account that the
charge of each charged center is ±e, the effective con-
centration of scattering centers equals NI = p +

[NCu (F) + ND].

Figure 5 (curves 1, 2) demonstrates the results of
calculations of the Hall mobility µhH for heavy holes;
formulas (4)–(14) and (19)–(22) were used. The Hall

factor  at T > 15 K was calculated from formula
(23). Under these conditions, the magnitude of this fac-
tor ranged from 1.05 to 1.15. Below 15 K, the Born
approximation is not fulfilled for heavy holes [15].

Because of this, I used the value of  ≈ 1.1 calcu-
lated by the method of partial waves (see [15]). It can
be seen that the calculated dependence µhH(T) is in
rather good agreement with the results of measure-
ments if we assume that ND = 4 × 1015 cm–3. The results
of calculations of the hole mobility in the absence of
donors and acceptors are also shown in Fig. 5 for com-
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parison (curve 4). It can be seen that the scattering by
charged centers becomes dominant below 30–40 K.
Among other scattering mechanisms, the scattering by
composition fluctuations is dominant in these condi-
tions.

The estimated value obtained for ND is independent
of the Cu concentration. However, this value is several
times larger than that determined above from the mea-
surements of the electron mobility. Apparently, the
cause of this discrepancy is that, along with shallow-
level donors, deep-level donors and hole-trapping cen-
ters exist in the investigated Hg0.8Cd0.2Te crystals. Such
centers are observed in the measurements of the elec-
tron and hole lifetimes in p-type crystals (see, for exam-
ple, [27, 28]). These centers are neutral in
SEMICONDUCTORS      Vol. 36      No. 12      2002
n-Hg0.8Cd0.2Te, where the Fermi level lies close to the
conduction band, but are activated in p-type crystals.

The existence of A+ centers well explains the low
hole mobility in the p-Hg0.8Cd0.2Te:Cu crystals that
contain Hg vacancies. These intrinsic defects are dou-
bly charged acceptors. Because of this, their ionization
energy is noticeably higher than that of Cu atoms. The
energies of various levels of VHg were calculated in
[26]. According to [26], a vacancy forms two acceptor

levels with the energies  ≈ 16 meV and  ≈
32 meV as well as the A+ level with the energy ∆E2 ≈
3.7 meV. Therefore, the Gibbs distribution of VHg takes
the following form:
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  4

∆E1 F–
kBT

------------------- 
 exp+exp+ +

-----------------------------------------------------------------------------------------------------------------------------------------------------.=
It is easy to verify that the position of the A+ levels
of vacancies in the band gap of Cu-doped crystals is
close to the Fermi level at low temperatures. Therefore,
the probability of their occupation is high. Figure 5
(curve 3) shows the results of calculations of the hole
mobility in the uncompensated crystal that contained
3.5 × 1016 cm–3 Cu atoms and 1.8 × 1016 Hg vacancies.

In this case, NI = p + 2{[VHg] (F) + NCu (F) +
ND}, where [VHg] is the vacancy concentration. It can be
seen that the results of calculations performed using
relationships (4)–(14) and (19)–(25) are quite consis-
tent with the experimental data if additional scattering
by positively charged vacancies is allowed for.

5. CONCLUSIONS
(i) The low Hall mobility in p-Hg0.8Cd0.2Te crystals

at low temperatures is a consequence of the influence of
the hopping charge transport on the diagonal compo-
nent of the electrical-conductivity tensor.

(ii) The mobility of heavy holes in p-Hg0.8Cd0.2Te
crystals at T < 20 K is limited by the scattering at
charged centers. Among these centers, in the case of
uncompensated crystals, the positively charged accep-
tors and deep-level donors play an important role. The
other scattering mechanisms exert virtually no effect on
the µhH quantity.

(iii) The mobility of heavy holes in p-Hg0.8Cd0.2Te
crystals at higher temperatures is limited by the hole–
hole scattering as well as by the hole scattering at com-
position fluctuations, at lattice vibrations, and at
charged centers.

f A2
+ f A1

+

(iv) The overlap integral of the Bloch functions for
electrons and holes in the Hg0.8Cd0.2Te crystals is equal
to unity.
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Abstract—Deep-level transient spectroscopy (DLTS) was used to identify a set of deep electronic states in the
band gap of textured p-CdTe polycrystals whose composition was almost stoichiometric. Four hole traps and
two electron traps were observed. It is shown that the deepest hole trap with a level at Ev + 0.86 eV corresponds
to a prevalent defect in this material. Special features of the line shape in the DLTS spectrum and the logarithmic
dependence of population of this level on the duration of the filling pulse correspond to an extended defect
related most probably to dislocations at the grain boundaries. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Control of the magnitude and type of electrical con-
ductivity in growing CdTe crystals still remains a com-
plicated problem. Depending on the degree of deviation
from stoichiometry, on the concentration of uncon-
trolled impurities, and on the structural quality of the
crystals, the resistivity may vary from 103 to 108 Ω cm.
Irrespective of the methods for growing nominally
undoped p-CdTe single crystals, a set of deep electronic
states exists, as a rule, in the band gap of this com-
pound; these states exert a pronounced effect on the
resistivity. At present, the resistivity of undoped CdTe
can be rendered as high as 1010–1011 Ω cm [1]. Since it
is difficult to explain these experimental data on the
basis of existing models of compensation, more and
more attention is being given to the influence of struc-
tural defects (dislocations, grain boundaries, and such)
on the optical and (especially) transport properties of
CdTe. This is related to the fact that extended defects
are electrically active, are involved in scattering the free
charge carriers, represent the sites of build-up (i.e.,
sinks) of the point defects (both intrinsic and extrinsic)
during crystal growth, and give rise to fields of elastic
strains and internal electric fields; the latter induce a
potential relief in the bulk of the crystals.

Deformation of samples is typically used in order to
determine the role of extended defects in the formation
of deep electronic states when these defects interact with
point defects. Apparently, the use of this method is
related to the fact that the background impurities in
unstrained crystals obscure the extended growth defects
and give rise to certain difficulties when interpreting the
spectra of deep electronic states. In addition, the concen-
tration of background impurities in nominally undoped
crystals grown from the liquid phase at high tempera-
tures is typically no lower than 1016–1017 cm–3.
1063-7826/02/3612- $22.00 © 21341
Deep-level transient spectroscopy (DLTS) is a
widely used method for investigating deep band-gap
states in semiconductors. However, It is quite difficult
to ascertain the type and origin of these states using
DLTS. The reason is that extended defects, which are
typically present in actual crystals, can interact with
impurities and form associations with a complex struc-
ture (closely associated pairs). As a result of such inter-
action, a number of deep electronic states are observed
in the band gap even if the concentrations of uncon-
trolled impurities are low; an unconventional line shape
in the DLTS spectrum and the logarithmic law for the
capture of nonequilibrium charge carriers are charac-
teristic of these states [2, 3].

The objective of this study was to identify a set of
deep band-gap electronic states which are characteristic
of p-CdTe polycrystals that are textured along the [111]
direction and have an almost stoichiometric composi-
tion; we also attempted to elucidate the involvement of
extended growth defects (dislocations, grain bound-
aries) in the formation of deep electronic states using
DLTS.

2. EXPERIMENTAL

2.1. Preparation of the Samples

The polycrystals were obtained by free growth in
dynamic vacuum at a temperature of 620°C; a purified
CdTe charge was used. The average diameter of a grain
in the texture was 1.5–2 mm. Misorientation of the
grains in reference to the [111] direction was no larger
than 3°–7°. The dislocation density in a single-crystal
grain in the (111) plane was measured using the etch-
pit method and was found to be no higher than 103 cm–2.
According to mass spectrometric analysis, the concen-
tration of the main background impurities did not
002 MAIK “Nauka/Interperiodica”
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exceed 1015 cm–3. The charge-carrier concentration
measured along the [111] direction at room tempera-
ture was equal to (1–3) × 1013 cm–3, and the hole mobil-
ity was no lower than 80 cm2 V–1 s–1.

Samples with an area of 10 × 10 mm2 and a thick-
ness of 2 mm were cut from polycrystalline ingots per-
pendicularly to the growth direction. After grinding and
thorough polishing, the samples were treated in a bro-
mine–ethanol etchant. The nonrectifying contact was
formed by depositing Au from an AuCl3 solution,
whereas the Schottky barrier contact was obtained by
plating the sample surface with In. The area of the bar-
rier contact was 7.5 mm2.

In order to assess the quality of CdTe and the contacts
and to interpret the DLTS spectra, we measured the cur-
rent–voltage (I–V) and capacitance–voltage (C–V) char-
acteristics in the temperature range from 80 to 380 K.

2.2. The Results of the I–V and C–V Measurements

The I–V characteristics of the structures with a
Schottky barrier were measured at various tempera-
tures. The Schottky barrier resistance (R) determined
from the reverse portion of I–V characteristics varied
from 200 kΩ at 380 K to 2 MΩ and higher at T ≤ 150 K.
The temperature dependence of current for low forward
biases was not consistent with the theory based on ther-
mal emission and diffusion, which gave no way of esti-
mating the Schottky barrier height. In the temperature
range of ~240–340 K, a portion with a rapid increase in
current with a subsequent slower increase was observed
at low forward-bias voltages (< 0.5 V); it is conceivable
that this phenomenon is related to the existence of inter-
nal potential barriers at dislocations or grain bound-
aries. In addition, the I–V characteristics can be
affected by the presence of a thin oxide, tunneling, and
by such processes as recombination and capture by
traps and freezing-out of the charge carriers. The series
resistance (r) of the structure at a given reverse bias was
determined from ac bridge-circuit measurements at a

1
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3

2

1

0

C–2, 104 pF2

0 2 4 6
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Fig. 1. Capacitance–voltage characteristics of a reverse-
biased Schottky structure at temperatures of (1) 150,
(2) 290, and (3) 370 K.
frequency coinciding with that of DLTS measurements.
A substantial increase in r (from ~700 to 6000 Ω) and
a simultaneous decrease in the capacitance C (from ~50
to 25 pF at a bias of Vb = 6 V) were observed as the tem-
perature was lowered from 150 to 110 K.

The dependences of 1/C2 on the reverse-bias voltage
V were nonlinear at all temperatures (Fig. 1), which
could be related to the formation of an inversion layer
near the surface if there was a thin (penetrable by tun-
neling) oxide beneath the Schottky contact [4] and/or to
the effect of the surface states [5]. As will be shown in
what follows, our experimental data are consistent with
the presence of an inversion layer in the vicinity of the
surface. Determination of the Schottky barrier height
from the dependence 1/C2 on V is difficult if there is a
thin oxide layer because of the lack of important data
on structure parameters such as the oxide-layer thick-
ness, the density of surface states, and so on [4]. Varia-
tions in the C–V characteristics with temperature indi-
cate that there is a tendency toward an increase in the
barrier height; in addition, free charge carriers tend to
freeze out as the temperature is lowered. The values of
the free-carrier concentration determined from C–V
characteristics in the case when there is a thin oxide
layer are more accurate if the bias voltage is close to
zero [4]. In particular, the room-temperature charge-
carrier concentration determined from the C–V charac-
teristic in the region of the zero bias voltage was found
to be equal to 2 × 1013 cm–3, which is consistent with the
results of Hall effect measurements. The charge-carrier
concentration was equal to 4 × 1013 cm–3 at 370 K. An
appreciable freezing-out of free charge carriers was
observed at temperatures below 150 K. The carrier con-
centration calculated from the ac series resistance mea-
sured at room temperature is higher by a factor of 2–3
than the concentration determined from the C–V or dc
Hall effect measurements. It is conceivable that this dis-
crepancy is related to the effect of internal barriers in
the polycrystal. At other temperatures, comparison is
difficult since there is no data on the temperature
dependence of mobility in polycrystals.

2.3. Measurements of the Deep-Level Spectra by DLTS

The spectra were recorded using an automated setup
which incorporated a boxcar integrator; the data were
stored in a computer. The setup made it possible to
record the spectra for four emission-rate windows dur-
ing a single temperature pass from 80 to 380 K. The
relaxation times (τ) were measured in the range from 4
to 320 ms. The duration of a filling pulse (≥4 ms) was
sufficient for attaining the highest occupancy of the
deep levels.

Taking into account that the series resistance of a
Schottky diode increases at low temperatures, we deter-
mined the temperature range where the DLTS measure-
ments were feasible. It is well known that the series-
connected capacitance and resistance of an actual struc-
ture are transformed into an equivalent parallel circuit
SEMICONDUCTORS      Vol. 36      No. 12      2002
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if the capacitance is measured by the bridge-based
method [6]. If the series resistance of the structure
exceeds a certain value, the amplitude of the DLTS sig-
nal decreases and the measured capacitance becomes
smaller than its true value. If the series resistance
increases further, so that the condition

(1)

becomes invalid, the phase of the measured signal
reverses. In condition (1), ω is the probing-signal fre-
quency (in our experiments ω = 2π × 840 kHz); and R,
r, and C are the structure parameters defined above.

As follows from the I–V characteristics, the ratio r/R
can always be disregarded in expression (1). In order to
reduce C in (1), we predominantly applied large biases
to the structure during DLTS measurements. The value
of ωrC varied from ~0.2 to 0.9 in the temperature range
from 150 to 110 K; as a result, sensitivity of the mea-
surements diminished. We also verified experimentally
that the reversal of the signal phase did not occur at
temperatures above 100 K under the chosen conditions
of measurements.

Four peaks corresponding to the capture of the
majority charge carriers (holes) (Figs. 2, 3) and two
peaks corresponding to the capture of electrons (Fig. 4)
were observed in the DLTS spectra. In the temperature
range where the H1 and H2 peaks were detected, the
sensitivity of the measuring bridge was about three
times lower than that for peaks H3 and H4. The activa-
tion energies Et – Ev and Ec – Et and the capture cross
sections σ for deep levels are listed in the table; the
cross sections were determined on the assumption that
they were independent of temperature. A field depen-
dence of the most intense peaks was not observed.

The presence of peaks with positive polarity (Fig. 4)
indicates that there is an inversion layer near the semi-
conductor surface beneath the Schottky contact. During

ωrC 1 r/R+<

0

–0.15

–0.30

–0.45

100 150 200 250

∆C, pF

H1 H2 H3

A2

A1

A1
A2

A 1

2

3

Temperature, K

Fig. 2. DLTS spectra of a Schottky structure at a bias Vb =
+6 V and the filling-pulse amplitudes Vp = (1) –4, (2) –6.5,
and (3) –7.5 V. The delayed gate times were t1 = 4 ms and
t2 = 8 ms.
SEMICONDUCTORS      Vol. 36      No. 12      2002
the time the filling pulse is applied, injection of elec-
trons from this layer into the p-type region of the struc-
ture is accompanied by their capture by deep electron
traps.

The activation energies and the capture cross sec-
tions of the levels were determined either by plotting
the Arrhenius law curve (H3), by adjusting the parame-
ters of the calculated spectrum to fit its shape and posi-
tion to the experimental spectrum (H1, H2, E2), or by
using both methods (E1, H4). Variations in the bridge
circuit sensitivity could be ignored in the temperature
ranges that corresponded to the recording of separate
peaks.

In addition to the aforementioned peaks, another peak
(A) with anomalous properties was observed (Fig. 2); the
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Fig. 3. DLTS spectra of a Schottky structure at a bias of Vb =
+6 V and the filling-pulse amplitude of Vp = –1 V (curve 1
represents the experimental data and curve 2 corresponds to
the results of calculations). The delayed gate times were
t1 = 320 ms and t2 = 640 ms.
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Fig. 4. DLTS spectra of a Schottky structure under the bias
Vb = +2 V and the filling-pulse amplitude Vp = –1 V (the
points are experimental and the solid line represents the
results of calculations). The delayed gate times were t1 =
4 ms and t2 = 8 ms.
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Parameters of deep levels

Et – Ev , eV σ, cm2 Ec – Et, eV σ, cm2

H1 0.24 ± 0.02 2 × 10–14 E1 0.17 ± 0.01 7 × 10–18

H2 0.26 ± 0.02 1.5 × 10–14 E2 0.34 ± 0.02 4 × 10–14

H3 0.45 ± 0.01 3 × 10–14

H4 0.86 ± 0.03 2.4 × 10–13
position and height of this peak depended heavily on
the conditions of measurements, primarily on the fill-
ing-pulse amplitude. As the latter increased, the peak
shifted from ~140 to ~220 K, split into two peaks in a
certain temperature range (peaks A1 and A2 in Figs. 2, 5),
and increased markedly in height. For a pulse of for-
ward bias exceeding the magnitude of reverse bias by
several volts, the capacitance-relaxation amplitude was
as high as approximately 20 pF, with the initial capaci-
tance of the structure being approximately equal to 50 pF.

Such relaxation can be attributed to the existence of
an inversion layer and the presence of a thin tunneling-
penetrable oxide layer between the metal and semicon-
ductor (it is well known that a detectable TeO2 oxide at
the CdTe surface is formed at room temperature when
CdTe is exposed to air for a mere 2 h [7]). In addition,
a potential barrier for the minority charge carriers is
formed not only by oxide but also by the image forces
[8]. As a result, the Schottky diode properties resemble
those typical of metal–insulator–semiconductor struc-
tures for which large-amplitude capacitance relaxation
is observed in the transition from the mode of profound
depletion to the equilibrium state with the formation of
an inversion layer. Furthermore, the relaxation curve
usually has a complicated nonexponential shape; as a
result, the recovery of the inversion layer in the case
under consideration occurs with two time constants
(peaks A1 and A2). As the filling-pulse amplitude

Temperature, K

H3

A2

1

–0.45

A1

2 3

4

5 (1 : 10)

–0.30

–0.15

0
∆C, pF

100 150 200 250

Fig. 5. DLTS spectra of a Schottky structure under a bias
Vb= +6 V and the filling-pulse amplitudes Vp = (1) –3,
(2) −4, (3) –6, and (4) –6.5 V; spectrum 5 corresponds to
Vb = +1 V and Vp = –5 V. The delayed gate times were
t1 = 4 ms and t2 = 8 ms.
increases, these anomalous peaks completely obscure
the peaks related to the electron capture. The observed
shift of the peak A position along the temperature axis
as the injecting-pulse amplitude increases is most prob-
ably related to the temperature-dependent tunneling of
minority charge carriers from the metal into the semi-
conductor [9, 10], since the rate of bulk generation of
charge carriers is very low at temperatures near 200 K.

The signal ∆C/C ≈ 0.1 was observed for peak H4 if
the filling-pulse amplitude was equal to the applied
reverse bias. Estimations of concentration NT of centers
H4 with allowance made for the probed depth showed
that NT is comparable with the majority-carrier concen-
tration N. If the value of NT/N is arbitrary and ∆C/C0 ! 1
(when the amplitude of the filling pulse is low), the fol-
lowing expression can be used to estimate NT:

(2)

Here, K = (1 – C0/Cb)(1 + C0/Cb – 2C0/Cλ), C0 is the
capacitance when a reverse bias is applied to the struc-
ture, Cb is the capacitance at the instant of application
of the filling-pulse, and Cλ is the capacitance of the
layer from the point where the trap level intersects the
Fermi level up to the electroneutrality region. It is also
assumed in (2) that NT and N are constant.

Estimations of concentrations of the H4 and H3 cen-
ters yield 2 × 1013 cm–3 in the probed-depth range of

NT/N 2 ∆C/C0( )/ K 2∆C/C0( ) 1 C0/Cλ–( )–[ ] .=

5

4

3

2

1

0
10–6 10–5 10–4 10–3

tp, s

∆C, arb. units

Fig. 6. The amplitude of the capacitance-relaxation signal
as a function of the filling-pulse duration. The Schottky
structure was biased with Vb = +6 V, and the filling-pulse
amplitude was Vp = –1 V.
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4.5–6.5 µm and 4 × 1010 cm–3 in the probed-depth range
of 6–12 µm. These estimations are difficult for other
centers because the estimates involve large errors. Mea-
surements of the spectra under various conditions show
that the distributions of the H3 and H4 centers within
the aforementioned ranges are almost uniform.

The following expression can be used to describe
the shape of the capacitance-relaxation curve if NT is
comparable to N and ∆C/C0 ! 1:

(3)

Here, B = (NT/N)(1 – C0/Cλ). Expression (3) transforms
into the following formula for t = 0:

(4)

In the case under consideration, the parameter B ≈
0.3 and the relaxation curve given by (3) is almost
exponential when τ ~ 15% is larger and the amplitude,
~20% smaller than the corresponding experimental val-
ues. The error in activation energy introduced by con-
ventional analysis of relaxation is much less than the
experimental error. The results of calculating the line
shape for peak H4 with the use of formula (3) are
shown in Fig. 3. The experimental DLTS line is appre-
ciably widened on the low-temperature side.

We measured the dependence of the capacitance-
relaxation amplitude for peak H4 on the filling-pulse
duration tp in the range of tp from 4 µs to 1 ms. The
results are shown in Fig. 6. It can be seen that the ampli-
tude ∆C(0) depends linearly on ln(tp). For short filling
pulses, we have NT/N ! 1; as a result, ∆C(t)/C0 ∝  NT/N,
so that NT/N also depends linearly on ln(tp).

3. DISCUSSION
When studying the deep levels and identifying

them, one should primarily take into account the condi-
tions of crystal growth, the concentrations of the donor
or acceptor impurities in the lattice of the compound,
and the presence of various types of extended defects
(dislocations, grain boundaries, and so on) in the crystal
bulk. As mentioned above, the textured polycrystals we
studied had low concentrations of intrinsic point
defects at the crystal-growth temperature (~1012 cm–3)
and of main background impurities (≤1015 cm–3), with
the dislocation density being lower than 103 cm–2; the
prevalent types of extended defects were grain bound-
aries and twins. Studies of the electrical properties of
such crystals have shown that only a small fraction of
background impurities occupy the lattice sites and are
electrically active. Apparently, the major portion of
background impurities are segregated in fields of elastic
stresses induced by extended defects, where the com-
plexes giving rise to deep levels are formed as a result
of interaction between impurities and between
extended defects and impurities. If the concentrations
of background impurities and intrinsic point defects are

∆C t( )/C0 0.5K NT/N( ) t/τ–( )exp=

× 1 B+( ) 1 B 1 t/τ–( )exp–[ ]+{ } .

∆C 0( )/C0 0.5K NT/N( )/ 1 B+( ).=
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low, as in the case under consideration, extended
defects can profoundly affect the electrical properties
of p-CdTe.

A large number (from 25 to 30) of deep levels have
previously been observed in the band gap of CdTe using
different methods [11, 12]. Often, the identification of
these levels with certain defects is either ambiguous or
lacking.

The electron traps that we observed, E1 and E2, with
their levels at Ec – 0.17 eV and Ec – 0.34 eV, have been
detected in both high-resistivity [12] and low-resistivity
[13, 14] n-CdTe crystals and have been identified with
CdI and VTe defects, respectively [14].

It is well known that the main background impuri-
ties in p-CdTe (Li, Na, and Cu) occupy the lattice sites
and introduce relatively shallow levels into the band
gap at a distance from its edges no larger than 0.15 eV.
The levels we detected are deeper and, thus, are not
directly related to substitutional background impurities.

It is rather difficult to compare (and draw an analogy
with) the published DLTS spectra of nominally
undoped p-CdTe samples obtained by different meth-
ods since there is a wide spread in the concentrations
and types of background impurities and also in the
degree of structural quality from crystal to crystal. In
spite of sharp distinctions between the growth of tex-
tured polycrystals and nominally undoped p-CdTe sin-
gle crystals, the DLTS spectra of both materials include
a number of deep levels whose energy positions and
capture cross sections are almost independent of crys-
tallinity. In particular, hole traps with levels close to H1
(Ev + 0.24 eV) and H2 (Ev + 0.26 eV) [11, 13] and to
H3 (Ev + 0.45 eV) [15–17] have been observed. A rela-
tion of the level at Ev + 0.45 eV to the generation of
β-type dislocations in p-CdTe was ascertained [16].
The corresponding line in the DLTS spectrum featured
Gaussian broadening, which was attributed to nonuni-
formity in the concentration of point defects produced
by the generation of dislocations [16].

The DLTS peaks corresponding to the levels whose
positions were near the midgap and close to that of the
H4 level (Ev + 0.86 eV) have been observed in high-
resistivity CdTe [11, 12] and, more rarely, in low-resis-
tivity p-CdTe [15]. Often, the aforementioned levels
were identified with native point defects, e.g., with VCd
centers or with complexes formed from VCd and an
impurity.

When considering a possible relation between the
observed levels and extended defects (dislocations,
grain boundaries), we should take into account that the
main features of DLTS peaks for extended defects are
the anomalous shape of these peaks, their broadening,
and the logarithmic dependence of the signal amplitude
on the filling-pulse duration [2, 3].

The shape of DLTS peaks for extended defects was
investigated theoretically by Schröter et al. [3]. The
corresponding theory [3] can be applied only to the
peak H4, which has a high intensity and is not distorted
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by the superposition of other closely spaced peaks in
the spectrum. The peak H4 (the level at Ev + 0.86 eV)
has special features (asymmetry, broadening, and loga-
rithmic dependence of the signal amplitude on the fill-
ing-pulse duration) that can be described using a model
of localized states of an extended defect surrounded
with clouds of point defects [3]. The concentration of
centers H4 is indicative of a high dislocation density
(apparently, in the vicinity of grain boundaries). Theo-
retically, a logarithmic dependence of the amplitude of
the capacitance-relaxation signal on the filling-pulse
duration and the broadening of the DLTS line can be
caused by variation in the potential-barrier height near
the extended defect after the latter captured a free
charge carrier and also by the existence of a band of lev-
els in the band gap. In this case, the position of the peak
in the spectrum does not change as the filling-pulse
duration increases. The broadening of the DLTS line
disappears if the cloud of point defects is spaced farther
than 1 nm from the extended defect.

A center with almost the same properties as H4 was
observed by Gelsdorf and Schröter [2] in low-resistiv-
ity n-CdTe, in which dislocations were generated using
plastic deformation. The line in the DLTS spectrum
corresponded to the level at Ec – 0.72 eV and featured a
gently sloping low-temperature wing. The peak ampli-
tude varied with the filling-pulse duration tp as ln(tp/t0).
Taking into account the band gap of CdTe, we may
assume that the levels at Ec – 0.72 eV and Ev + 0.86 eV
nearly coincide within the experimental error and, pos-
sibly, are related to the same center. On the basis of the-
oretical concepts, it is assumed [2] that the defect under
consideration is a cloud of point defects, which sur-
rounds the dislocation.

It is noteworthy that the defect H4 has a large cross
section for capturing holes and is apparently an accep-
tor. The presence of this defect, whose concentration is
comparable to the concentration of free charge carriers
in the material under investigation, indicates that this
defect (in addition to shallow acceptors) can play an
important role in the compensation of donor impurities.
Taking into account the low density of dislocations in a
grain, we may assume that the origin of the defect under
consideration is related to the grain boundaries. In addi-
tion, a level near the midgap typically affects quite pro-
foundly the lifetime of nonequilibrium charge carriers,
which is an important parameter of devices based on
CdTe.

Thus, among the levels we observed, the level H4
exhibits special features that can be described by the
model of localized states of an extended defect sur-
rounded by a cloud of point defects [3]; notably, the
concentration of corresponding centers is indicative of
the relatively high density of states most likely related
to the grain boundaries. Taking into account the avail-
able published data, we may also assume that the level
H3 is related to dislocations. The shape of the lines E1
and E2 is consistent with the results of calculations for
local levels that are characteristic of point defects
(Fig. 4). It is impossible to relate the levels H1, H2, and
H3 to any specific types of defects on the basis of cor-
responding line shapes since the relevant DLTS signals
have small amplitudes and are distorted by the superpo-
sition of the neighboring lines. In order to clarify the
origin of these levels in the band gap of textured poly-
crystals, additional investigations are required.
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ELECTRONIC
AND OPTICAL PROPERTIES

OF SEMICONDUCTORS
Electron Spin Resonance in Cd1 – xMnxTe
and Zn1 – xMnxTe Compounds

J. Partyka*, P. W. ukowski*, P. W gierek*, A. Rodzik*,
Yu. V. Sidorenko**, and Yu. A. Shostak**

* Lublin Technological University, 20-618 Lublin, Poland
e-mail: pawel@elektron.pol.lublin.pl

** Belarussian State University, ul. Leningradskaya 14, Minsk, 220050 Belarus
Submitted May 14, 2002; accepted for publication June 3, 2002

Abstract—Electron spin resonance in semimagnetic Cd1 – xMnxTe (0 < x < 0.7) and Zn1 – xMnxTe (0 < x < 0.53)
compounds was studied at temperatures of 77 and 300 K. It is found that two types of paramagnetic centers
exist in Zn1 – xMnxTe, one of which is related to Mn2+ ions and the other is attributed to structural defects in the
crystals. © 2002 MAIK “Nauka/Interperiodica”.
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1. INTRODUCTION

The II–Mn–VI compounds fall in the class of
diluted magnetic semiconductors, in which magnetic
Mn2+ ions are randomly distributed in the II–VI semi-
conductor host and replace Group II ions [1]. The fact
that the aforementioned compounds are ternary makes
it possible to vary the structure parameters and, conse-
quently, the relevant properties by varying the transi-
tion-metal content. Various applications of these com-
pounds in microelectronics and optoelectronics are
based on a number of interesting properties (especially,
magnetic and optical) of these compounds.

A combined ionic and covalent bonding is charac-
teristic of II–VI compounds [1]. Irrespective of the type
of bonds, the electron spins effecting the bonding are
paired and the resultant spin of electrons is equal to
zero. Therefore, a perfect (defect-free) II–VI com-
pound is diamagnetic. The introduction of a third (mag-
netic) component gives rise to paramagnetism in these
materials. The presence of localized magnetic ions in
these compounds gives rise to specific spin–spin inter-
actions between the sp band electrons and the d elec-
trons related to the Mn2+ ions and, consequently, to very
large Zeeman splittings of intrinsic and impurity elec-
tron levels and also of intraionic levels (between the Mn
d electrons). As a result, an appreciable broadening of
the electron-spin resonance (ESR) line is observed with
increasing Mn concentration.

The magnetic properties of the Cd1 – xMnxTe and
Zn1 – xMnxTe compounds have already been studied by
ESR. A single structureless line was observed for the
Cd1 – xMnxTe compound; this line broadened as the
transition-metal concentration increased and as the
temperature was lowered. This is caused by the spin–
spin coupling and by an increase in the internal-field
strength [2, 3]. In the ESR spectra of Zn1 – xMnxTe, a
1063-7826/02/3612- $22.00 © 21347
single line was observed for low Mn concentrations [4],
whereas two lines (a broad line and a superimposed nar-
row line) were observed for high Mn concentrations [5].

Various experimental methods indicate that there
are anomalies in the properties of Zn1 – xMnxTe com-
pounds in the region of low Mn concentrations. For
example, the shift of the cathodoluminescence line
related to the transition between the conduction and
valence bands sets in only at x > 0.1 [16].

Previous studies [7, 8] make it possible to establish
that the defects present at a high concentration in the
Cd1 – xMnxTe and Zn1 – xMnxTe compounds affect the
crystal’s macroscopic parameters such as the dielectric
constant and the band gap.

The presence of defects in crystals gives rise to
irregularities in the arrangement of neighboring atoms.
This irregularity can affect the spin pairing of bonding
electrons and, thus, give rise to paramagnetic properties
in an imperfect crystal.

The objective of this study was to determine the
influence of the defect subsystem on the paramagnetic
properties of Cd1 – xMnxTe and Zn1 – xMnxTe com-
pounds.

2. EXPERIMENTAL

The ESR spectra of Cd1 – xMnxTe and Zn1 – xMnxTe
compounds were studied using a Varian spectrometer at
a frequency of 9.3 GHz with a magnetic-field modula-
tion frequency of 100 kHz. We measured the ESR spec-
tra at temperatures of 77 and 300 K in single crystals of
Cd1 – xMnxTe (0 < x < 0.7) and Zn1 – xMnxTe (0 < x < 0.53)
grown by the Bridgman–Stockbarger method. We
recorded the first derivative of the ESR absorption line.
The absorbed energy is proportional to the total number
of unpaired electrons in the sample under investigation.
002 MAIK “Nauka/Interperiodica”
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Parameters of ESR lines for Cd1 – xMnxTe compounds at temperatures of 77 and 300 K

Sample no. x
∆H, G (300 K) ∆H, G (77 K)

Broad line Narrow line Broad line Narrow line

1 0.15 240 Not observed 350 Not observed

2 0.2 310 Not observed 520 Not observed

3 0.30 660 Not observed 2100 215

4 0.50 1410 Not observed 4975 525

5 0.51 1320 160 4425 250

6 0.52 1320 Not observed Measurements were not performed

7 0.7 2150 180 Measurements were not performed

8 0.7 2390 Not observed 6325 600

9 0.7 2275 165 Measurements were not performed

10 0.7 2300 Not observed Measurements were not performed
The concentration of paramagnetic electrons was cal-
culated by comparing the spectra of the investigated
and reference samples.

The resonance-line width ∆H was determined as the
spacing between the magnetic-field values for which
the first derivative of absorption attains its minimum
and maximum.

The value of the Lande g-factor was determined
from a comparison of the magnetic-field induction H0
that corresponded to the absorption line at its maximum
with the spectrum of the MgO:Mn reference sample.
The spectra of the semiconductor sample and the refer-
ence were recorded simultaneously.

1
2

3

4

5
1000 2000 3000 4000 5000 6000

H, G

Fig. 1. ESR spectra of Cd1 – xMnxTe: (1) for sample 5 (x =
0.51), (2) sample 6 (x = 0.52), (3) sample 7 (x = 0.7), and
(4) sample 8 (x = 0.7); spectrum 5 is for a Zn1 – xMnxTe
sample with x = 0.7.
3. RESULTS AND DISCUSSION

3.1. Cd1 – xMnxTe Compounds

The measured ESR spectra of the Cd1 – xMnxTe sam-
ples feature a broad line throughout the entire tempera-
ture and composition ranges; this line is related to spin
interactions between Mn ions. In some samples with an
Mn content of x ≥ 0.3, a narrow spectral line is
observed; this line is superimposed on the broad ESR
absorption line (henceforth, we will use the terms
“broad line” and “narrow line”; see Fig. 1). The narrow
line appears at the position that corresponds to g ≈ 2.
This line is completely separated from the broad line in
the spectra of the samples with a high Mn content (x ≥
0.5) and at low temperatures. It must be emphasized
that the narrow line is irregularly observed in the ESR
spectra of the samples with an equal or almost equal
content of Mn (see table). As can be seen from the table,
a narrow line is observed at room temperature in the
ESR spectra of one out of three samples with an Mn
content of about 0.50 and in the spectra of two out of
four samples with an Mn content of 0.70. A narrow line
is also observed in the spectra of samples 3 (x = 0.30),
4 (x = 0.50), and 8 (x = 0.70) at a temperature of 77 K,
in which case the width of the line related to Mn2+ ions
is much wider than that at room temperature. This
means that the concentration of centers responsible for
the narrow line in the ESR spectra of the aforemen-
tioned samples is much lower than in samples 5 (x =
0.51) and 7 and 9 (x = 0.70), the ESR spectra of which
feature a narrow line even at room temperature.

By comparing the parameters ∆H (linewidth) and I
(the signal amplitude) measured for the narrow and
broad lines in the ESR spectrum of the Cd1 – xMnxTe
sample with x = 0.30, we can see that the concentration
of paramagnetic centers responsible for the broad line
of Mn2+ ions is much higher than the concentration of
other centers giving rise to the narrow line. For exam-
ple, in a sample with x = 0.30, the amplitudes of two
lines almost coincide at 77 K, whereas the resonance-
SEMICONDUCTORS      Vol. 36      No. 12      2002
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line widths differ appreciably and amount to 2100 and
215 G. This means that the concentration of unpaired
electrons of interacting Mn2+ ions is about two orders of
magnitude higher than the concentration of the centers
giving rise to the narrow absorption line; i.e., the con-
tent of these centers is about 0.003.

A cluster model has been suggested [5] in order
to account for the second (narrow) ESR line in the
Zn1 – xMnxTe compounds. According to this model,
fluctuations in the Mn content give rise to two types of
clusters; these are large clusters with an Mn content
close to x and small clusters with a lower Mn content.
The broad ESR line is related to the former, whereas the
narrow line is attributed to the latter. The same model
can also be applied to the Cd1 – xMnxTe compounds
studied by us. In our opinion, the irregular appearance
of the narrow line in ESR spectra and variation in the
line intensity from sample to sample for Cd1 – xMnxTe
crystals with the same or almost the same Mn content
suggest that small clusters are formed not only owing to
statistical fluctuations in the Mn content; otherwise, a
narrow line would be observed in the ESR spectra of all
samples with x = 0.20. The absence of this line in the
ESR spectra of some samples with x = 0.5 may be
caused by leveling of statistical fluctuations in the Mn
content in these crystals during their growth. Thus, the
absence of a narrow line in the ESR spectra of some
samples may indicate that these samples are more
homogeneous.

3.2. Zn1 – xMnxTe Compounds

The ESR spectra of Zn1 – xMnxTe (as well as
Cd1 – xMnxTe) samples feature a broad line throughout
the entire range of temperatures and Mn concentrations
under consideration. For x > 0.20, a second (narrow)
line appears in the ESR spectrum of Zn1 – xMnxTe; this
line is superimposed on the broad line (see Fig. 1).

Figures 2 and 3 display the following parameters,
which we determined from the ESR spectra: a g-factor,
a resonance-line width ∆H, and a relative concentration
of paramagnetic electrons N in relation to the Mn con-
tent in the Zn1 – xMnxTe samples under investigation.
Results of studying the Zn1 – xMnxTe ESR spectra have
also been reported previously [4, 5]. This study differs
from the previous investigations in three aspects. First,
we studied a large number of samples, which differed
in their Mn content; second, we determined the values
of the g-factor with high accuracy; and third, we deter-
mined the relative concentrations of paramagnetic elec-
trons in the studied samples. The values of ∆H were
previously determined [4, 5] with almost the same
accuracy as in this study. The published data on ∆H [4,
5] are shown in Fig. 3 together with the values deter-
mined by us. It can be seen that the values of ∆H for
four Mn content parameters x [4] and two values of x in
[5] are in good agreement with the dependence ∆H(x)
observed in this study.
SEMICONDUCTORS      Vol. 36      No. 12      2002
It follows from Figs. 2 and 3 that two different types
of behavior of the ESR spectra in relation to the Mn
content can be distinguished. The ESR spectra of sam-
ples with an Mn content x < 0.1 can be assigned to the
first type. For this group of samples, the main parame-
ters of the ESR signal are almost independent of x. For
the samples with x > 0.1, the g-factor, ∆H, and the con-
centration of paramagnetic electrons N vary consider-
ably as x increases. The key to gaining insight into the
paramagnetism of Zn1 – xMnxTe compounds is given by
the fact that the main characteristics of this phenome-
non, which were observed by us in the Mn content
region of x < 0.1, are virtually independent of x. As can
be seen from Fig. 2, the concentration of unpaired elec-

N
g

101

100

10–3 10–2 10–1 100

2.1

2.0

1.9

N, arb. units g, arb. units

x

Fig. 2. The values of the g-factor for the broad ESR line and
the relative concentration of paramagnetic centers N in
Zn1 – xMnxTe compounds in relation to the content of Mn x;
the ESR spectra were measured at a temperature of 300 K.
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101
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x

Fig. 3. The width of the ESR absorption line ∆H in
Zn1 – xMnxTe compounds as a function of the Mn content x;
the ESR spectra were measured at a temperature of 300 K.
Squares 1 represent experimental results obtained in this
study; and circles 2 and diamonds 3 represents the results
reported in [4] and [5], respectively. Dashed line 4 corre-
sponds to ∆H∞ calculated using formula (5) and dash-and-
dot line 5 corresponds to ∆H calculated using formula (6).
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trons increases linearly with an increasing Mn content
x for x ≥ 0.1. This can be readily explained if we take
into account that Mn is in the state of Mn2+ ions in the
Zn1 – xMnxTe compounds. Each Mn2+ ion contains a
paramagnetic electron, which is involved in ESR
absorption. If the Mn content x < 0.1 (Fig. 2), the con-
centration of paramagnetic electrons far exceeds that of
Mn2+ ions. This means that, in Zn1 – xMnxTe compounds
with x < 0.1, there are paramagnetic centers (in addition
to Mn2+ ions) unrelated to Mn ions.

The width of the resonance line related to the Mn2+

ions depends heavily on the sample temperature T and
the Mn contact in the sample. In this case, the tempera-
ture dependence of ∆H can be written as [4]

(1)

Here, ∆H∞ is the linewidth at T  ∞; and Θ = Θp +
Θd, where Θp is the Curie–Weiss temperature for a
paramagnet and Θd is the spin temperature.

The quantity ∆H∞ is defined in terms of the follow-
ing factors [4]:

(2)

Here, ∆  and ∆  are the contributions of the
Dzyaloshinski–Moriya (DM) and dipole interactions to
the line broadening at T  ∞; and δ(∆ ) and
δ(∆H∞) are the corrections for the linewidth when the
spin–orbit pairing of Mn ions and the anisotropy of sep-
arate ions are taken into account, respectively.

On the basis of the results of calculations reported

previously [4], we ignore the components ∆  and
δ(∆H∞), since these components only slightly affect the
final result (by less than 2% of the value of ∆H∞). The
remaining two components depend on the Mn content
x in the following way [4]:

(3)

and

(4)

Here, χ is the dielectric susceptibility, D1 is the aniso-
tropic exchange constant,  is an additional DM con-
stant of the spin–orbit pairing, and J1 is the isotropic
exchange constant.

It can be concluded from (3) and (4) that

(5)

where C = f1(D1, J1) + f2(χ, D1, , J1).

We then use (1) and (5) to derive the following for-
mula, which should describe (to within 2%) the depen-

∆H ∆H∞ 1 Θ/T+( ).=

∆H∞ ∆H∞
DM ∆H∞

dip δ ∆H∞'( ) δ ∆H∞( ).+ + +=

H∞
DM H∞

dip

H∞'

H∞
dip

∆H∞
DM f 1 D1; J1( ) x

x 0.1+
--------------------=

δ ∆H∞'( ) f 2 χ; D1; D1' ; J1( ) x

x 0.1+
--------------------.=

D1'

∆H∞ C
x

x 0.1+
--------------------,≈

D1'
dence of the width of the ESR line related to Mn2+ ions
on temperature and the Mn content:

(6)

The results of calculations (based on the model [4])
of the quantities ∆H∞ and ∆H(300 K, x) are shown in
Fig. 3. As can be seen from Fig. 3, the calculated val-
ues of these quantities are close to the experimental
values only for x ≥ 0.15. In the region of low Mn con-
centrations, the experimentally determined value of
∆H(300 K, x ) is constant.

The discrepancy between the values obtained in
our experiments and those calculated according to the
model [4] can be explained in the following way.
There are two types of paramagnetic centers in the
Zn1 – xMnxTe compounds under consideration. One of
these is related to the paramagnetism of Mn2+ ions. The
presence of Mn2+ ions gives rise to paramagnetic prop-
erties of Zn1 – xMnxTe compounds for x > 0.10; i.e., we
have a linear increase in the concentration of unpaired
electrons, an increase in the width ∆H of the broad
absorption band, and a decrease in the g-factor for this
line (Figs. 2, 3). A model of two types of clusters (see
[5]) can be used in this region of Mn concentrations:
large clusters give rise to the broad ESR line of Mn2+

ions, whereas small clusters are responsible for the
narrow line, which was observed both in this study
and in [5].

In our opinion, paramagnetic centers of the second
type are not directly related to the Mn2+ ions and govern
the magnetic properties of the crystals in the region of
x < 0.1. The most important evidence for the presence
of paramagnetic centers of this type in the samples is
provided by the fact that the concentration of unpaired
electrons at x < 0.1 far exceeds the concentration of
Mn2+ ions (Fig. 2) and the linewidth ∆H and the g-fac-
tor are independent of x (Figs. 2, 3).

4. CONCLUSION

A comparison of the results of studying the ESR
spectra for the Cd1 – xMnxTe and Zn1 – xMnxTe samples
has made it possible to infer that the paramagnetic
properties of Zn1 – xMnxTe compounds are determined
by two types of paramagnetic centers. The centers of
the first type are related to the presence of Mn2+ ions in
the compounds under consideration; these ions give
rise to broad and narrow lines in the ESR spectra at x =
0.20. The second type of paramagnetic centers gives
rise to a narrow ESR line at x < 0.10. We assume that
the centers of the second type are related to structural
defects in the compounds under consideration. The
presence of these defects also accounts for both the
experimentally observed fluctuations in the band gap in
Zn1 – xMnxTe compounds and the constant energy posi-
tion of the line that corresponds to a transition from the
conduction band to the valence band and which is

∆H C
x

x 0.1+
-------------------- 1 Θ/T+( ).≈
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observed in the cathodoluminescence spectra in the
region of small values of x [6, 8].
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Abstract—Deep-level transient spectroscopy was used to study the parameters of deep levels in the band gap
of epitaxial n-GaN layers after irradiaton of the Schottky barriers with 1-MeV protons to a dose of 1012 cm–2.
A deep level EP1 with an activation energy of 0.085 eV was introduced by irradiation into the upper half of the
GaN band gap. The introduction rate of the corresponding defect was found to depend on the bias voltage
applied to the Schottky barrier during irradiation. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

Rapid progress in the development of blue, green,
and ultraviolet (UV) light-emitting diodes; blue lasers;
UV detectors; and high-temperature high-power elec-
tronic devices based on GaN and its solid solutions has
aroused an active interest in the processes of defect for-
mation in III-nitride systems [1, 2]. Studies of radiation
effects in GaN contribute to the development of defect
engineering; at the same time, such studies have
already made it possible to improve the parameters of
high-speed switches and detectors [3, 4]. The study of
radiation defects by deep-level transient spectroscopy
(DLTS) is still in its early stage. The results of several
studies concerned with the effects of irradiation with
protons, fast electrons, gamma-ray photons, and helium
ions on the spectrum of deep levels in the band gap have
been reported [5–8]. There exist several methods that
make it possible to exert an additional effect on the
spectrum of introduced radiation defects; these meth-
ods include varying the temperature of the irradiated
sample, illuminating the sample, and passing an elec-
tric current through the sample. The objective of this
study is to gain insight into the influence of the bias
voltage applied to the Schottky barrier on the spectrum
of deep levels formed as a result of proton irradiation.

2. EXPERIMENTAL

Films of n-GaN doped lightly with Si were grown
on Al2O3 (0001) substrates using metal-organic chemi-
cal vapor deposition (MOCVD). A buffer GaN layer
with a thickness of ~20 nm was first deposited at 500°C;
an epitaxial GaN layer with a thickness of 3–4 µm was
then grown at 1040°C. The electron concentration in
1063-7826/02/3612- $22.00 © 21352
these layers was in the range from 6 × 1016 to 3 ×
1017 cm–3. The Schottky barriers and ohmic contacts
were formed by the sputter deposition of Ni/Au and
Ti/Al/Ni/Au, respectively. The Schottky barrier area
and height were 0.18 mm2 and 0.8 V, respectively. The
leakage currents were lower than 10 µA at a reverse
bias voltage of up to 20 V. The samples were irradiated
with 1-MeV protons using the cyclotron at the Ioffe
Physicotechnical Institute; the dose was 1 × 1012 cm–2.
Two Schottky barriers that had been formed on the
same substrate were irradiated simultaneously; one of
these barriers was unbiased, whereas a forward or
reverse bias voltage of ±13 V was applied to the other
barrier. In the course of irradiation with protons, we did
not observe an increase in the forward current; at the
same time, the reverse current increased by almost
three orders of magnitude.

Radiation defects were studied by DLTS using a DL
4600 spectrometer produced by BIO-RAD Polaron
Equipment; the probing frequency was 1 MHz, and the
emission-rate windows were 80, 200, 400, and 1000 s–1.
The samples were preliminarily heated to 450 K and
were then cooled to 80 K with a reverse bias voltage
applied; after that, the DLTS spectra were recorded in
the course of heating the samples. The duration of the
pulses that filled the levels with electrons during mea-
surements was 4 µs. The level parameters (the activa-
tion energy E and the cross section of electron capture
σ by the level) were determined from the Arrhenius
equation on the assumption that σ is temperature-inde-
pendent; i.e.,

(1)e/T2 bσ E/kT–( ),exp=
002 MAIK “Nauka/Interperiodica”
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where e is the rate of thermal emission of electrons
from the level to the conduction band, T is temperature,
b = 3.3 × 1020 cm–2 s–1 K–2 [6], and k is the Boltzmann
constant.

3. RESULTS AND DISCUSSION

Typical DLTS spectra of the samples irradiated with
protons for several bias voltages applied to the Schottky
barriers are shown in Fig. 1. The spectra were measured
with a reverse bias of –8 V applied to the Schottky bar-
rier. The levels were filled when the reverse voltage was
decreased to –0.5 V. Five deep levels EP1–EP5 are
observed; the shallowest level EP1 is formed only in
the Schottky barriers that were unbiased during the irra-
diation with protons (Fig. 1, spectrum c).

Dependences of the rates of electron thermal emis-
sion from the deep levels to the conduction band on the
reciprocal temperature are shown in Fig. 2 (circles).
The activation energies E of the levels and the cross
sections of electron capture σ by these levels as calcu-
lated from the Arrhenius equation (1) were found to be
equal to E1 = 0.085 eV, E2 = 0.16 eV, E3 = 0.48 eV, E4 =
0.56 eV, and E5 = 0.60 eV; and σ1 = 3.5 × 10–19 cm2,
σ2 = 3.8 × 10–18 cm2, σ3 = 3.5 × 10–16 cm2, σ4 = 5.3 ×
10–16 cm2, and σ5 = 4.3 × 10–17 cm2.

In order to identify the levels, we compared the tem-
perature dependences of the rates of electron thermal
emission from these levels with those for the levels in
the band gap of n-GaN irradiated with 2-MeV protons
to a dose of 3 × 1011 cm–2 [5], 5.4-MeV helium ions at
doses of (0.4–2.5) × 1011 cm–2 [8], 1-MeV electrons at
doses of 5 × 1014 and 1 × 1015 cm–2 [6], and 60Co gamma
quanta at a dose of 1.2 × 1019 cm–2 [7]. The experimen-
tal dependences of emission rates on reciprocal temper-
ature reported in publications [5–8] are shown in Fig. 2.
The deep levels observed in the corresponding studies
were denoted as EO1–EO5 and ER1–ER4 [5, 8];
E1−E4 [6]; and B, C, D, and E [7]. The temperature
dependences of emission rates for the levels EP2, EP3,
EP4, and EP5 in the band gap of our samples are almost
equal to those for the group (EO2, D, E1), (EO3, C),
(EO5, B, E2), and E3 of the four levels observed in
[5−8] after the Schottky barriers were formed before
irradiation.

The EP1 level was observed in the DLTS spectra of
our irradiated samples only if an external bias was not
applied to the Schottky barrier in the course of irradia-
tion. Typically, the formation of centers with deep lev-
els in III–V semiconductors irradiated with protons
with energies lower than several megaelectronvolts is
controlled by quasi-chemical reactions between point
intrinsic lattice defects and impurity atoms [9]. Nota-
bly, both neutral and charged point defects are involved
in these reactions. Application of an external electric
field affects the quasi-chemical reactions that proceed
with the participation of charged point defects. There-
fore, the absence of the EP1 level in the band gap of our
SEMICONDUCTORS      Vol. 36      No. 12      2002
samples, to which an external bias was applied during
irradiation, indicates that charged point defects play an
important role in the formation of the corresponding
center. In other words, the formation of the EP1 center
is controlled by a charge-sensitive quasi-chemical reac-
tion. It is highly probable that different physical mech-
anisms are responsible for suppression of the formation
of the EP1 center when forward- and reverse-bias volt-
ages are applied to the Schottky barrier [9].

In contrast to our samples, three deep levels (ER1,
ER2, and ER3) were observed by Auret et al. [5] in the
band gap of GaN irradiated with protons; the rates of
emission of electrons from these levels in the same tem-
perature range differ from those from the EP1 center
observed in this study by a factor of 2–10. At the same
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Fig. 1. DLTS spectra of proton-irradiated Schottky barriers;
the bias voltages applied to the barriers during irradiation
were (a) +13, (b) –13, and (c) 0 V.
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time, a single level designated as either E [6] or E4 [7]
was observed in the band gap of the samples irradiated
with electrons [6] and gamma quanta [7]; these levels
feature electron emission rates close to that of the EP1
level. Apparently, these results are related to the influ-
ence of extended growth defects and internal stresses in
the samples under investigation on the processes of
radiation-defect formation. It is well known that epitax-
ial GaN layers have a high concentration of defects
including dislocations with a density of 107–1010 cm–2,
a developed mosaic structure, and a high concentration
of impurity atoms (hydrogen, carbon, oxygen, and so
on). In the samples we studied, the dislocation density
was 108–109 cm–2. Often, the most profound influence
on the defect spectrum is exerted by the method of
growing the layers. Auret et al. [5] studied samples grown
using the gaseous-phase epitaxy from metal-organic
compounds (OMVPE), whereas layers obtained by
MOCVD were studied by us and in [6, 7]. Differences
in the values of the activation energies and electron-
capture cross sections calculated using the Arrhenius
curves between the levels EP1 and E (EE = 0.18 eV and
σE = 2.5 × 10–15 cm2) and EP1 and E4 (EE4 = 0.15 eV
and σE4 = 2 × 10–16 cm2) are apparently caused by the
influence of a number of technological factors (quality
of the substrates, growth conditions, purity of starting
materials, and so on) on the structural quality and inter-
nal local stresses in the MOCVD layers. The introduc-
tion rate for the EP1 defect detected after irradiation
with 1-MeV protons is about 50 cm–1. For comparison,
the introduction rates of defects produced by 2-MeV
protons were 30 cm–1 (for the ER1 defect), 400 cm–1

(for ER2), and 600 cm–1 (for ER3); notably, the intro-
duction rate of defects E as a result of irradiation with
1-MeV electrons was no higher than 0.2 cm–1. It is note-
worthy that the DLTS lines for the EP1, E, and E4
defects are somewhat broadened and are possibly
related to several levels. This possibility should be ana-
lyzed in further studies.
4. CONCLUSION

Five deep levels were observed in the band gap of
epitaxial n-GaN layers whose Schottky barriers were
irradiated with 1-MeV protons. The formation of a
level characterized by the thermal electron-emission
rate e = 3.5 × 10–19bT2exp(–0.085/kT) is caused by irra-
diation with protons and depends on the bias voltage
applied to the Schottky barrier during irradiation. The
introduction rate of this level is 50 cm–1 if the bias volt-
age is not applied in the course of irradiation.
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Abstract—Triple GaAs/GaAsN/InGaAs heterostructures were grown by MBE on GaAs substrates, and their
optical properties were studied. The band-edge line-up in GaAs/GaAsN and InGaAs/GaAsN heterostructures
was analyzed by correlating the experimental photoluminescence spectra with the known parameters of the
band diagram in (In,Ga)As compounds. It is shown that a GaAs/GaAsN heterojunction is type I, while an
InxGa1 – xAs/GaAsN heterojunction can be type I or type II, depending on the In content x. © 2002 MAIK
“Nauka/Interperiodica”.
1. INTRODUCTION

In recent years, (In,Ga)AsN compounds have been
a subject of intensive theoretical and experimental
studies. The interest in these semiconductors is due to
their potential applicability in the design of near-IR
(1.3–1.55 µm) lasers on GaAs substrates, and to the
dependence of their band gap on the composition of a
GaAsN solid solution, which is uncommon in III–V
compounds. In spite of evident progress in the develop-
ment of device structures with an InGaAsN active
region, several issues concerning the fundamental
properties of this material remain open. One of the
unresolved questions is the line-up of band edges in
GaAs/GaAsN and InGaAs/GaAsN heterojunctions.
Several theories have been developed [1–3] to describe
the behavior of the valence band edge in GaAsN com-
pounds (Fig. 1). According to [1], a type-II heterojunc-
tion is formed at the GaAs/GaAsN interface, while the
other mentioned models provide evidence in favor of a
type-I heterojunction.

In this communication, we present experimental
data indicating that GaAs/GaAsN is a type-I hetero-
junction and that an InxGa1 – xAs/GaAsN heterojunction
can be either type I or type II, depending on x.

2. EXPERIMENTAL RESULTS

Triple heterostructures were grown on (001) GaAs
substrates by MBE from solid-state sources. An RF
plasma source Unibulb EPL was used as a source of
nitrogen. The composition and thickness of the grown
layers were determined with an error of ±1% from the
photoluminescence (PL) and X-ray data. The sequence
1063-7826/02/3612- $22.00 © 21355
of layers in the heterostructures under study is shown in
Fig. 2.

The photoluminescence (PL) of the asymmetrical
triple heterostructures was recorded at temperatures of
300, 77, and 18 K. The PL was excited by an Ar-ion laser
with a 514-nm wavelength and with an excitation density
of 100 W cm–2. Two heterostructures were studied. Struc-
ture no. 1 was GaAs/GaAs0.98N0.02/In0.45Ga0.55As/GaAs.
The thickness of the GaAs0.98N0.02 and In0.45Ga0.55As
layers was 20 and 1.8 nm, respectively. Structure no. 2
was GaAs/GaAs0.98N0.02/In0.64Ga0.36As/GaAs, with a
GaAs0.98N0.02 and In0.64Ga0.36As layer thickness of

iii

ii

i

0.05

0

–0.05

–0.10

–0.15
0 1 2 3 4

[N], %

Energy, eV

Fig. 1. The position of the valence band edge in GaAsN vs.
the nitrogen content. Lines: calculated in terms of models:
(i) dielectric [1]; (ii) tight-binding [2]; (iii) LDA [3]. Sym-
bols: experimental data for a compound with 2% of nitro-
gen: (+) elastically strained GaAsN on GaAs; (s)
unstrained GaAsN.
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20 and 1.4 nm, respectively. The thicknesses of all the
layers constituting the structures did not exceed the
critical one.

Figure 3 presents the PL spectra of heterostructure
no. 1. At room temperature, the dominating peak is A1;
it arises from the transitions between the valence and
conduction bands of the GaAsN layer (this correspon-
dence was established based on the PL spectra of
0.2-µm-thick GaAsN layers grown on GaAs). Another
peak observed is B1 (it forms a shoulder at the low-
energy edge of the spectrum), which can be related to
the emission of the InGaAs layer. At the liquid nitrogen
temperature, the B1 peak dominates. Thus, the PL
emission peak shifts to lower energies as the tempera-
ture decreases, in contrast to standard PL behavior
which is defined by an increase of the band gap as the
temperature decreases. At an even lower temperature
(18 K), the PL spectra exhibit two peaks (see upper part
of Fig. 3): peak B1, which is related to the emission
from InGaAs, and peak C1, which has a lower energy.
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Fig. 2. Band diagram of GaAs/GaAsN/InGaAs heterostructures. (a)
Heterostructure no. 1: GaAs/GaAs0.98N0.02/In0.45Ga0.55As/GaAs;
the thickness of the GaAs0.98N0.02 and In0.45Ga0.55As layers
is 20 and 1.8 nm, respectively. (b) Structure no. 2:
GaAs/GaAs0.98N0.02/In0.64Ga0.36As/GaAs; the thickness of
the GaAs0.98N0.02 and In0.64Ga0.36As layers is 20 and 1.4 nm,
respectively. Ee1, Eh1 are the quantum-well levels for electrons
and holes. The position of the valence band edge in strained
GaAsN is defined by the light hole energy, Elh [5]. The split-off
level Ehh is the heavy hole energy [5].
The energy difference between peaks B1 and C1 was
34 ± 2 meV. With the excitation density increasing, the
PL spectrum at 18 K broadened and the peak shifted to
higher energies. A shoulder appeared at the high-
energy edge of the spectrum, with the energy corre-
sponding to the emission of the GaAsN layer. We
believe, therefore, that, at cryogenic temperatures, we
observed the radiative recombination of carriers local-
ized in the InGaAs layer, as well as radiative transitions
whose energy was lower than the energy of radiative
transitions in the InGaAs layer. At room temperature,
the carriers are delocalized from the InGaAs layer and
the recombination in the GaAsN layer dominates.

Figure 4 shows the PL spectra of heterostructure
no. 2. At room temperature, two peaks of comparable
intensity are clearly visible. A more prominent peak A2
corresponds to the emission of the GaAsN layer, we
assign the other peak B2 to the emission from the
InGaAs layer. A single symmetrical peak B2 is
observed at 77 K, which is presumably related to the
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Fig. 3. PL spectra of heterostructure no. 1,
GaAs/GaAs0.98N0.02/In0.45Ga0.55As/GaAs. Temperatures:
(a) 300 and 77 K; (b) 18 K. The thickness of the
GaAs0.98N0.02 and In0.45Ga0.55As layers is 20 and 1.8 nm,
respectively. Dashed lines demonstrate the decomposition
of spectrum into components.
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InGaAs layer. A single symmetrical peak B2 is also
observed at low temperature (18 K). When the excita-
tion density is considerably enhanced, an A2 shoulder
is observed at 18 K on the high-energy edge of the PL
spectrum; it corresponds to the emission of the GaAsN
layer. With the exception of the steady shift of the PL
peak to higher energies, no other modifications of the
spectrum were observed under these conditions. Thus,
at cryogenic temperatures, the carriers are completely
localized in the layer with a smaller band gap, i.e.,
InGaAs. At room temperature, the thermal broadening
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Fig. 4. PL spectra of heterostructure no. 2,
GaAs/GaAs0.98N0.02/In0.64Ga0.36As/GaAs. Temperatures: (a)
300 and 77 K; (b) 18 K. The thickness of the GaAs0.98N0.02
and In0.64Ga0.36As layers is 20 and 1.4 nm, respectively.
Dashed lines demonstrate the decomposition of spectrum into
components.
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of the Fermi level leads to the population of states in
GaAsN layer. An important difference between the PL
spectra of heterostructures nos. 1 and 2 is as follows:
only in heterostructure no. 1 do we observe a peak with
an energy below the possible energy of spatially direct
transitions in the constituent layers. The only signifi-
cant difference in the design of the studied heterostruc-
tures is the composition of the InGaAs layer. The In
content was 45% in one structure and 64% in the other.

Figure 5 demonstrates temperature dependences of
the energy of peaks forming the PL spectra. The energy
values of the radiative transitions are presented in the
table. A detailed analysis of the PL spectra and their
resolution into peaks related to specific radiative transi-
tions reveals regular trends in the temperature depen-
dences of the transition energies: these energies
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Fig. 5. Temperature dependences of the radiative transition
energy for heterostructure nos. 1 and 2. A1 and A2: spatially
direct transitions between the valence and conduction bands
of GaAsN layer in structure nos. 1 and 2, respectively. B1:
spatially direct transition between holes localized at the
quantum-well level of the InGaAs layer and electrons local-
ized in the InGaAs conduction band, structure no. 1. B2:
spatially direct transition between holes and electrons local-
ized at the quantum-well level of the InGaAs layer, struc-
ture no. 2. C1: spatially indirect transition between holes
localized at the quantum-well level of the InGaAs layer and
electrons localized in the GaAsN conduction band, struc-
ture no. 1.
Radiative transition energies in heterostructure nos. 1 and 2

Temperature of 
experiment, K A1, eV B1, eV C1, eV A2, eV B2, eV

18 1.170 1.103 1.069 1.170 1.06

77 1.167 1.098 1.066 1.167 1.057

300 1.102 1.051 1.102 1.008
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increase as the temperature decreases, following the
increase of the band gaps in the compounds forming the
heterostructure.

3. DISCUSSION

The obtained experimental data will be discussed on
the basis of the band diagram of the heterostructures
grown; this diagram is presented in Fig. 2, and it reflects
the situation at the temperature of 18 K. The starting
point of its construction is the GaAs band gap, 1.514 eV.
The band gaps of InGaAs are determined as 1.008 and
0.838 eV for the compounds with 45 and 64% In con-
tent, respectively. The conduction band offsets are set
as 58.2 and 54.5% of the difference between the band
gap values for the compounds with an In content of 45
and 64%, respectively [4]. The spacings between the
quantum-well levels in InGaAs layers and the band gap
of GaAsN (1.170 eV) are determined from the PL spec-
tra. The position of the conduction band edge in GaAsN
is the most important feature of the diagram. For het-
erostructure no. 1, this position, with respect to the con-
duction band edge in InGaAs, is determined based on
the following experimental data.

(i) The observed energy of the transition identified
as the transition in the InGaAs layer of the heterostruc-
tures under study is substantially lower than that of
GaAs/InGaAs/GaAs heterostructures. A correspon-
dence can be established if we observe the transitions
between the quantum-well level of holes and the
InGaAs conduction band edge (B1). We believe that, in
both heterostructures under study, the position of the
quantum-well level of holes coincides with the level of
holes in a GaAs/InGaAs/GaAs quantum well (QW),
owing to an insignificant change of the potential barrier
when the GaAs layer is replaced with GaAsN on one
side of the structure (see Fig. 1).

(ii) The most probable reason for the appearance of
the low-energy transition observed at cryogenic tem-
peratures, with an energy lower than the band gap of
GaAsN or InGaAs (defined as the distance between the
conduction-band edge and the first quantum-well level
for holes), is spatially indirect transitions involving
electrons localized in the GaAsN layer and holes local-
ized at the quantum-well level of holes in the InGaAs
layer.

(iii) The shift of the PL peak to higher energies when
the temperature is elevated to 300 K can be assigned to
the dominating recombination of nonequilibrium carri-
ers across the GaAsN layer, which is due to the exist-
ence of a type-II heterojunction on the GaAsN/InGaAs
interface in heterostructure no. 1.

Thus, the energy difference between the spatially
direct transitions (B1, between the quantum-well levels
for holes and the conduction band edge in the InGaAs
layer) and spatially indirect transitions (between the
quantum-well level for holes in the InGaAs layer and
the conduction-band edge in the GaAsN layer) is
34 meV, and it defines the line-up of the conduction-
band edges of both compounds.

The position of the valence band edge in GaAsN is
now determined by subtracting its band gap value from
the position of the conduction band edge. In hetero-
structure no. 2, the In content in the InGaAs layer was
raised to 64%. Due to the higher In concentration, the
band gap of the compound decreased and the conduc-
tion band edge lowered. In turn, this changed the type
of the heterojunction at the GaAsN/InGaAs interface.
Heterostructure no. 2 contains a type-I heterojunction
with a low localization energy for electrons in the
region of the InGaAs QW. This gives rise to distinct B2
peaks in the PL spectrum at room temperature (Fig. 4).
For heterostructure no. 2, the lowest energy transitions
are the spatially direct transitions between the quan-
tum-well levels in the InGaAs QW. The position of the
quantum-well level for electrons coincides with the
conduction band edge of GaAsN, owing to the small
depth and width of the formed QW. The quantum-well
level for holes is the same as in the first case.

At cryogenic temperatures, when there is no tem-
perature broadening of the Fermi level, all the carriers
are localized at the InGaAs QW and the PL spectrum
is symmetrical. No specific features pointing to the
occurrence of spatially indirect transitions are
observed.

It is necessary to note that the band diagrams pre-
sented in Fig. 2 are based on the entire body of experi-
mental data observed in the study of heterostructures
nos. 1 and 2. An exact correlation between the transi-
tion energies and the line-up of band edges of the com-
pounds shown in Fig. 2 is observed only with the
above-listed values of the conduction-band offset in an
InGaAs/GaAs heterojunction, which is the second cru-
cial point in the construction of the diagram. The unam-
biguous identification of all the energies cannot be
achieved with other values of the conduction-band off-
set in an InGaAs/GaAs heterojunction.

4. CONCLUSION

A comparison of the experimentally observed PL
spectra with the known parameters of the band diagram
of (In,Ga)As compounds allowed us to determine the
line-up of the band edges in GaAs/GaAsN and
InGaAs/GaAsN heterostructures. It is shown that
GaAs/GaAsN is a type-I heterojunction, while the
InxGa1 – xAs/GaAsN heterojunction may be type I or
type II, depending on the value of x. It is established
from the experiment that the valence band edge of
GaAs0.98N0.02 grown on GaAs lies at 15 ± 5 meV above
the valence band edge of GaAs (see Fig. 1). Without
SEMICONDUCTORS      Vol. 36      No. 12      2002
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mechanical stress, the difference between the valence
band edges of GaAs and GaAs0.98N0.02 is almost zero
(0 ± 5 meV) if the effect of stress on the position of the
valence band edge in GaAsN is taken into consideration
according to [5].
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Abstract—Formulas for the effective momentum-relaxation time and mobility of quasi-two-dimensional elec-
trons of a superlattice with consideration of inelastic scattering by acoustic phonons and the dispersion of the
miniband energy spectrum as a function of the longitudinal wave vector have been obtained. Numerical calcu-
lation was performed for a nondegenerate gas of quasi-2D electrons in a symmetrical GaAs/Al0.36Ga0.64As
superlattice with a quantum well width of 5 nm at T = 77 K. It was shown that consideration of the elasticity of
scattering and the dispersion of the miniband energy spectrum gives rise to a significant increase in the electron
mobility. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As is well known, many specific properties of super-
lattices (SLs) manifest themselves at low temperatures
at which the electron scattering by phonons is inelastic.
Inelasticity of this scattering is especially important for
a SL with quasi-two-dimensional (quasi-2D) electron
gas as it is related to the large uncertainty of the longi-
tudinal phonon wave vector parallel to the SL axis. In
addition to the inelasticity of scattering, the nonequilib-
rium function of the electron distribution should signif-
icantly depend on the width of the miniband at low tem-
peratures, which in this case becomes comparable with
the energy k0T.

There are only a few publications in which the prob-
lem of electron scattering by acoustic phonons in an SL
have been considered. Notably, quasi-elastic deforma-
tion-potential scattering by acoustical phonons with
regard to the dispersion of the energy spectrum of the
miniband was considered by Fridman [1]. Only in one
paper [2] was inelastic scattering by acoustical phonons
for the transport of quasi-2D electron gas in the direc-
tion perpendicular to the SL symmetry axis considered.
Studies which consider the simultaneous influence of
the dispersion of the miniband energy spectrum and the
inelasticity of scattering by acoustic phonons on the
longitudinal and in-plane components of the electron
mobility are not widely known.

In this study, the formulas for relaxation time for the
transport perpendicular to the SL axis (in-plane trans-
port) and an integral equation for the effective relax-
ation time for longitudinal transport (along the SL axis)
have been calculated taking into account inelastic elec-
tron scattering by acoustical phonons and the disper-
sion of the electron energy as a function of the longitu-
1063-7826/02/3612- $22.00 © 21360
dinal wave vector. Numerical analysis of the depen-
dences of in-plane and longitudinal components of the
effective momentum relaxation time on the energy dis-
persion in the plane of a layer (in-plane energy) and the
longitudinal electron wave vector in a GaAs/AlxGa1 – xAs
SL at T = 77 K was performed. A comparative analysis
of longitudinal and in-plane components of the mobil-
ity, calculated using various approximations, has been
carried out. It is shown that consideration of the finite
width of the miniband for the acoustical phonon scat-
tering results in a significant increase in the mobility of
quasi-2D electrons in an SL at the liquid nitrogen tem-
perature.

2. BASIC FORMULAS

It is well known that the probability of the intramini-
band electron transition with the wave vector k into the
state with k' due to the scattering by longitudinal acous-
tic phonons in III–V semiconductors can be expressed
in a tight-binding approximation for the envelope of the
electron wave function of an SL consisting of quantum
wells (QWs) with infinitely high potential barriers and
in an approximation of the phonon spectrum for bulk
material as

(1)

wkk'
± πD2

ρνLV
------------- qnS2 aqnz

2
---------- 
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where

Nz is the number of SL periods, which is considered to
be infinite; D is the deformation potential constant for
longitudinal acoustical phonons; ρ is the mass density;

νL =  is the velocity of longitudinal acoustic

phonons; cL = c11 + (c12 + 2c44 – c11) is an angle-aver-

aged elasticity modulus of longitudinal acoustical
phonons; ∆ is the width of the main (lower) miniband;
a is the QW width; d is the SL period; and ez is the unit
vector directed along the SL axis.

We write the nonequilibrium addition to the electron
distribution function in the standard form; i.e.,

(2)

where Ei are components of the electric field strength,
v(k) = ∇ kε/" is the electron velocity, and f0(ε) is the
equilibrium Fermi–Dirac function. We refer to τi(k)
functions as the effective relaxation time by analogy
with the solution of the linearized Boltzmann equation
for elastic mechanisms of scattering in the approxima-
tion of the parabolic charge-carrier dispersion law.

As follows from formula (1), it is possible to ignore
the transverse components of the phonon wave vector
qn in comparison with the longitudinal component. In
this case, the probability of scattering is an even func-
tion relative to the in-plane component of the wave vec-
tor of the final electron state . This circumstance
makes it possible to derive the following formula for
the in-plane relaxation time as a function of both the in-
plane electron energy ε⊥  and the component of the lon-
gitudinal wave vector kz:

(3)
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where

θ(ε) is a theta function which is nonzero and equal to
unity for a positive argument, and indices l and m take
the values of +1 and –1.

According to formula (3), the transverse relaxation
time is isotropic in the plane of a layer in a QW and
anisotropic in the plane parallel to the SL axis. For-
mula (3) transforms into the formula obtained in [2] for
∆ = 0, in which case the electron distribution over the
energy spectrum is taken into account:

(4)

where ε = ε⊥ . The well-known expression for the isotro-
pic and energy-independent relaxation time, which fol-
lows from formula (4) for nondegenerate electron gas,
in the approximation of elastic scattering for

is given by

(5)

In the case of longitudinal electron transport, the
effective relaxation time τ||(ε⊥ , ϕ) is the solution to the
integral equation which follows from the linearized
Boltzmann equation. Taking into account formulas (1)
and (3), we can write

(6)

where (ε) is the derivative of the equilibrium distri-
bution function.

Taking into account formula (1) for the dispersion
law of the electron energy spectrum and formula (2) for
the nonequilibrium addition to the distribution func-
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tion, the longitudinal and in-plane electron mobilities
can be expressed in a conventional way in terms of the
average effective relaxation time:

(7)

where

(8)

(9)

(10)

is the average value of the longitudinal electron effec-
tive mass. The formulas (7)–(9) are simplified for non-
degenerate electron gas. Considering that, in this case,

(11)

and

(12)
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Fig. 1. The dependences of the electron-momentum relax-
ation time τ⊥ (ε⊥ , ϕ) on the in-plane electron energy ε⊥  and
the angle ϕ: (1) 0, (2) –π/4, (3) 3π/8, and (4) π.
where 

the relaxation times are given by

(13)

(14)

3. NUMERICAL ANALYSIS OF THE RESULTS
OF CALCULATION

The effect of inelasticity of scattering by acoustical
phonons, as well as the dispersion of the electron
energy along the SL axis, on the effective momentum-
relaxation time and electron mobility was studied in the
GaAs/Al0.36Ga0.64As superlattice with nondegenerate
electron gas at T = 77 K. A symmetrical SL with the
parameters a = 5 nm and d = 10 nm was considered.
The miniband width ∆ = 7.2 meV was calculated using
the Kronig–Penney model [3]. The basic parameters of
GaAs [4],

were used for the calculation of the QW parameters.
Numerical calculation of τ⊥  from formula (3) and τ||

from Eq. (6), using the iteration method, showed that
these functions are approximately equal at T = 77 K,
i.e., τ⊥  ≈ τ||. The dependences of τ⊥ (ε⊥ , ϕ) on the energy
dispersion in the layer plane for different angles ϕ = kzd
are shown in Fig. 1. According to the plots presented in
Fig. 1, one can see a pronounced dispersion of the
relaxation time in the region of small longitudinal wave
vectors, which is caused by the dispersion of the mini-
band energy spectrum.

The dependences of the effective relaxation times,
averaged over the angle ϕ, on the in-plane electron
energy calculated taking the inelasticity of scattering
and dispersion of the miniband energy spectrum into
account are illustrated in Fig. 2. As one can see, there is
a significant dispersion of τ||(x) and τ⊥ (x) for ε⊥  < ∆,
where x = ε⊥ /k0T, as a function of the in-plane energy.
This fact is related to the difference in the averaging of
these quantities according to formulas (13) and (14).

x ε⊥ /k0T , δ ∆/2k0T ,= =

τ⊥ x( )

e
δ ϕcos τ⊥ x ϕ,( ) ϕd

0

π

∫

e
δ ϕcos ϕd

0

π

∫
-------------------------------------------,=

τ|| x( )

e
δ ϕcos τ|| x ϕ,( ) ϕ ϕdsin

2

0

π

∫

e
δ ϕcos ϕ ϕdsin

2

0

π

∫
--------------------------------------------------------.=

m⊥ 0.067m0, ρ 5.3 g/cm3,= =

cL 14.4 1010 H/m2, D× 17.5 eV,= =
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The functions τ||(x) and τ⊥ (x), which were calcu-
lated using various approximations for the angle of the
inelasticity of scattering (νL ≠ 0) and the dispersion of
the miniband energy spectrum (∆ ≠ 0), are shown in
Fig. 3. According to these dependences, consideration
of the dispersion of the miniband energy spectrum is far
more important than that of the inelasticity of scattering
in an SL with the above-mentioned parameters at the
liquid-nitrogen temperature. The reason is that the aver-
age energy of the longitudinal acoustical phonon
involved in the electron scattering hνL/d ≈ 2 meV is
considerably less than the miniband width.

The values of the effective momentum-relaxation
times (averaged over the wave vector) and the mobili-
ties calculated by various approximations according to
formulas (7)–(9) with the longitudinal effective mass
averaged according to formula (12) 〈m||〉  = 0.81m0 are
listed in the table. According to these data, consider-
ation of the energy spectrum dispersion significantly

1

2

τ⊥ , ps

0 0.2 0.4 0.6 0.8 1.0 1.2
ε⊥ /k0T

12

10

8

6

4

2

0

Fig. 2. The dependences of the effective electron momen-
tum-relaxation times averaged over the angle ϕ on the in-
plane electron energy: (1) τ⊥ , (2) τ||.

The electron mobilities and the effective momentum-relaxation
times averaged over the wave vector for a GaAs/Al0.36Ga0.64As
superlattice calculated for the acoustical phonon scattering at
T = 77 K

Calculated 
quantities

Approximation

∆ = 0
νL = 0

∆ = 0
νL ≠ 0

∆ ≠ 0
νL = 0

∆ ≠ 0
νL ≠ 0

〈τ ⊥ 〉 , ps 1.11 1.12 1.77 1.69

〈τ ||〉 , ps 1.11 1.36 2.87 2.72

µ⊥ , m2/(V s) 2.93 2.95 4.64 4.45

µ||, m
2/(V s) 0.25 0.31 0.62 0.59
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increases the mobility, whereas inelasticity of scatter-
ing can be neglected at the temperature under consider-
ation. It should be noted that the relative increase in the
longitudinal mobility due to consideration of the energy
dispersion along the SL axis exceeds the increase in the
in-plane mobility by a factor of 1.6.

From the preceding, one can expect that the inelas-
ticity of the charge-carrier scattering by the acoustical
phonons in a superlattice may be significant if

(15)

i. e., for quasi-2D electron gas at low temperatures.
Condition (15) is satisfied in the SL under study at T ≤
23 K and ∆ ≤ 2 meV.
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Abstract—A quantum kinetic equation describing damping of the Bloch oscillations in ideal quantum-dot (QD)
superlattices of various dimensionalities (1D, 2D, 3D) has been derived using the density matrix formalism. The
possibility of suppressing completely single-phonon scattering by optical phonons and considerably suppressing
the acoustic-phonon scattering in the QD superlattice by effectively controlling the spectrum by varying the DC
electric field magnitude and orientation is demonstrated. Conditions ensuring that the only photon-scattering
mechanism responsible for damping of the Bloch oscillations is scattering by acoustic phonons within transverse
minibands of the Stark carrier-state ladder are obtained. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

The experimental observation of Bloch oscillations
(BO) is known to be extremely difficult because of the
necessity to satisfy the very rigid conditions for the
weakness of carrier scattering during the oscillation
period:

(1)

Here, τeff is the effective scattering time, and fBO is the
BO frequency proportional to the electric field value F
and to the spatial period a in the field direction. The first
observations of BO, theoretically predicted as early as
1928 in Bloch’s fundamental work [1], were made only
in the early 1990s on perfect quantum well superlattices
(QWSL) on the basis of III–V compounds [2, 3]. The
superlattice period exceeds interatomic distances by
tens, and condition (1) can be satisfied at electric field
magnitudes of about a few tens of kV/cm; in this case,
the BO frequency is about one terahertz [4, 5]. This
explains the large practical interest of the BO phenom-
enon in superlattices in that it is related to the possibil-
ity of developing sources and detectors of radiation in
the terahertz frequency band.

However, in both QWSL and bulk semiconductors,
an unavoidable strong scattering of carriers by the lat-
tice oscillations leading to fast damping of BOs is
present at all magnitudes of the electric field. Even at
very low temperatures of T ≈ 10 K, the BO lifetime
amounts to a few tens of oscillation periods [2, 3, 6–8].

In this paper, we theoretically analyze the processes
leading to damping of the BO in the quantum dot super-
lattice (QDSL). The system under consideration is a
spatially periodic array of weakly coupled identical
quantum dots (QD) forming an ideal superlattice of
QDs with arbitrary symmetry and dimensionalities

τeff
1– f BO eFa/h.≡<
1063-7826/02/3612- $22.00 © 21364
(1D, 2D, 3D). We show that, unlike the QWSL, the
QDSL enables us to effectively suppress scattering of
carriers through controlling the electronic spectrum by
means of changing the direction and magnitude of the
electric field.

Fast damping of BO in QWSLs based on III–V or
II–VI compounds is known to be due mainly to optical
phonon–assisted transitions between electronic states
[7, 8]. Our study of the electron spectrum and the wave
functions has indicated [10] that scattering by optical
phonons in a QDSL can be completely suppressed by
the proper choice of the electric field magnitude and
orientation relative to the crystallographic axes. At the
same time, the scattering by acoustic phonons in a
QDSL must become stronger than in a QWSL, since
electrons in QDs are localized in all of the three direc-
tions and the electronic density of states is enhanced
considerably. In this work, we show that effective con-
trol of the QDSL spectrum by means of changing the
magnitude and direction of the electric field allows us
to effectively suppress scattering by acoustic phonons
as well.

The conditions necessary for the intraminiband (the
transverse carrier motion minibands are formed at any
level of the Stark ladder of states in a QDSL placed in
an electric field) scattering by acoustic phonons to be
the principal scattering channel in an ideal QDSL are
derived. It is far from obvious that such scattering nec-
essarily leads to damping of BO. Therefore, in order to
estimate the BO damping rate due to scattering within
the transverse minibands, calculating the probabilities
of transitions is not sufficient. A more rigorous and con-
sistent theory is necessary.

The BOs in the Stark representation (a representa-
tion of carrier eigenfunctions for a QDSL at the electric
002 MAIK “Nauka/Interperiodica”
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field) are, in fact, quantum beats between the Stark lad-
der states. BOs appear when a coherent superposition
of the Stark states is created. Then BO damping results
from decoherence between the Stark states due to car-
rier scattering; that is why the density matrix formalism
is the most natural way to describe the BO damping.

A quantum kinetic equation describing BO damping
has been derived in this work from a general equation
for the density matrix. This theory is valid for any
means of BO excitation in the isolated miniband of an
ideal QDSL of any symmetry at the electric field of any
given value and direction.

2. BLOCH OSCILLATIONS IN THE ABSENCE 
OF SCATTERING

As follows from the Bloch theorem, the superlattice
(SL) electronic spectrum is a set of minibands formed
due to an additional SL periodic potential modulating
the conduction band bottom of the material used for
growing the SL [4, 5]. Houston has shown [11] that a
condition necessary in order for the miniband to be
“isolated,” i.e., a condition for the absence of transi-
tions between the minibands under the action of the dc
electric field, can be written as

(2)

where m is the effective electron mass for the SL mate-
rial, W is the energy gap between the minibands, and F
is the electric field value. The electric field and the res-
onance integrals between the QDs are assumed to be so
small that condition (2) is fulfilled and, therefore, the
one-miniband approximation is valid. The miniband
spectrum, being a periodic function, can always be pre-
sented in the form of a Fourier expansion over the
QDSL vectors R = ai, where ai are the crystallo-
graphic basis vectors of the QDSL:

(3)

Here, K is a wave vector located in the first Brillouin
zone of the QDSL, and the values ∆R/4 represent tight-
binding approximation resonance integrals between the
QDs separated by a QDSL lattice vector R. The reso-
nance integral magnitude ∆R/4 exponentially decreases
as the distance |R| between the QDs increases [10].

Bloch oscillations appear in such a system after an
electric field is switched on instantaneously in the
absence of scattering. Here, we present two equivalent
ways of describing them, and these will be used below.

2.1. Bloch Oscillations in the Houston Representation

The Houston representation is the most natural way
to describe Bloch oscillations that appear in a periodic

4eF"
2

mW2a
--------------- ! 1,

ni∑

% K( )
∆R

4
------ iK R⋅( ).exp

R

∑=
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potential after the instantaneous switching on of the
field in the absence of scattering and transitions
between the allowed bands for carriers. Let us desig-
nate as ΨK(r) the Bloch functions of the chosen mini-

band described by the Hamiltonian (" , r). It is
convenient to expand the Bloch wave functions in the
Fourier series

(4)

where φ(r) is the Wannier function [12, 13], which is
defined by the relation

(5)

(1 is the number of QDSL sites in the normalization
volume) and coincides with the electronic wave func-
tion in an isolated QD.

Let the electric field F be switched on at the time t = 0;
we introduce it into the Hamiltonian via the vector
potential

(6)

Houston has shown [11] that, for an isolated mini-
band (2), the following functions are the solutions to
the time-dependent Schrödinger equation with the

Hamiltonian :

(7)

The electron moves in the K space at a constant
velocity which is determined by the electric field,
"K(t ) = "K + eFt, and undergoes Bragg reflections at
the Brillouin zone boundary of the QDSL. The elec-
tron motion is a superposition of oscillations with sev-
eral fundamental frequencies ΩR ≡ (e/")(F · R) =

(e/") (F · ai) = Ωi. Such motion is periodic if
all ratios Ωi/Ωk are rational and is quasi-periodic if at
least one of these ratios is irrational (since one can
always approximate it by the nearest rational number).

The electronic oscillations are accompanied by
oscillations of the current. In the case when the electric
field is instantaneously switched on, the electrons are
initially distributed over the Bloch states of a miniband
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 ≡ Ĥ0 "K̂ eFt+ r,( ).=

ĤF
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in accordance with the equilibrium distribution func-
tion. In this case, the current j(t) is uniformly distrib-
uted and can be accurately described within a quasi-
classical approximation. Applying the equations of
classical dynamics

(8)

and taking (3) into account, we obtain

(9)

where ne is the electron density, f(K) is the initial elec-
tron distribution function normalized to a single elec-
tron, and v is the electron group velocity; the angle
brackets denote averaging with the distribution func-
tion.

From (7) and (9), one can see the considerable
advantage of using the Bloch oscillations over SLs
formed from QWs for practical applications. Oscilla-
tions in a QWSL occur at one frequency Ω = eFa/",
where a is the SL period and F is the electric field com-
ponent along the axis of the QWSL. The QDSL oscilla-
tion spectrum contains two (2D QDSL) or three (3D
QDSL) fundamental frequencies Ωi [14] (resonance
integrals ∆R/4 exponentially decrease as the distance
between the QWs |R| increases; therefore, amplitudes
of other harmonics are exponentially small in compari-
son with the basic ones). Changing the electric field
direction relative to the QDSL basis vectors and its
magnitude, we can change the fundamental frequencies
independently.

2.2. Stark Electron States in QD Superlattices

Another way to describe the BOs is based on the

Stark representation of the QDSL Hamiltonian 
eigenfunctions at the dc electric field [10]. Here, we

"v K( ) ∇ K% K( ),
∂
∂t
----- "K( ) eF,= =

j t( ) ene Kv K eFt/"+( ) f K( )d∫=

=  
ene∆RR

2"
------------------- K R⋅( )cos〈 〉 Ω Rt( ),sin

R

∑

ĤF

Fr || [5, 1]

Firr

Fr || [1, 1]

Fr || [0, 1]

Fig. 1. Rational (Fr) and irrational (Firr) field directions in a
2D QDSL.
present the main results [10] necessary for further anal-
ysis. Let us seek the wave functions in the form of an
expansion in Wannier functions (5):

(10)

where r are the QDSL vectors. Then, the equation for
the coefficients Cr reads

(11)

The solutions to (11) are different for the two classes
of electric field orientations relative to the QDSL basis
vectors.

If all ratios of the electric field components along
the QDSL basis vectors (F · ai)/(F · ak) = Ωi/Ωk are irra-
tional numbers (irrational field directions), the electric
potentials of all QDSL sites are different (Fig. 1). The
spectrum is discrete and forms a 1D, 2D, or 3D Stark
ladder, depending on the QDSL dimensionality:

(12)

The electron in such states is localized in all directions.
If at least one of the ratios Ωi/Ωk becomes rational

(rational field directions), chains (or planes) of QDs are
formed in the direction perpendicular to the field whose
electric potential is the same (Fig. 1). Lifting of the
degeneracy given by (12) for such field orientations is
shown in [10] to be possible only when resonance inte-
grals that couple QDs in the transverse chains (planes)
are taken into account. Then, a transverse miniband is
formed at each step of the Stark ladder and the spec-
trum takes the form

(13)

Since the distances between QDs in the transverse
chains (planes) are different for different rational field
directions (Fig. 1) and the resonance integrals exponen-
tially decrease with increasing distance between QDs,
the transverse miniband width in (13) exponentially
depends on the field direction as well (Fig. 2). A general
exact expression for the spectrum (13) that takes into
consideration the exponential dependence of the reso-
nance integral on the distance between QDs for every
rational field direction can be presented in the form

(14)

where a k ≡ K⊥  notation, used in what follows, is intro-
duced for the transverse motion wave vector; Ω =
eFa||/" is the minimum Stark frequency related to the
electrostatic potential difference between the neighbor-
ing transverse chains of QDs (Fig. 1) (all other eigen-
frequencies are whole multiples of Ω); a|| is the distance
between the transverse chains [it is noteworthy that it
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does not coincide with the QDSL period in the electric
field direction (Fig. 1)]; a⊥  is the distance between QDs
in the transverse chains; and ∆⊥ /4 are resonance inte-
grals between the nearest QDs in the chain, so that ∆⊥
is the transverse miniband width.

In addition, the electronic wave functions in the
states (13) were found in [10] for an arbitrary electric
field orientation in the form of an expansion (10) in
Wannier functions (5), |r〉  = φ(r – r). In the case of
rational field directions (14),

(15)

Here, we shall not present general expressions for

the coefficients , which are rather complicated, but
expressions will be given for the case where the electric
field F is directed along one of the principal axes of the
rectangular 2D QDSL. The tight-binding approxima-
tion is valid for the description of a QDSL in this case;

the spectrum and the eigenfunctions of  read [10]

(16)

Hereinafter, all values related to the electric field direc-
tion have the index ||, while the values related to the
transverse motion direction have the index ⊥ ; |n||, n⊥ 〉  =
|r〉  = φ(r – r) are the Wannier functions of the miniband
under consideration (5) and are centered at the QDSL
sites with the coordinates r = n||a|| + n⊥ a⊥ , where a|| and
a⊥  are, respectively, the QDSL periods in the longitudi-
nal and transverse directions relative to the electric
field; k is the wave vector magnitude for the electron
motion in the chain (perpendicular to the field direc-
tion) of QDs in the 2D QDSL; Ω = eFa||/" is the Stark
frequency; ∆⊥ /4 is the resonance integral between
neighboring QDs in transverse chains and determines
the transverse miniband width; ∆||/4 is the resonance
integral between neighboring QDs in the field direc-
tion; and Jn is a Bessel function of the first kind.

The single essential distinction of (16) from the
spectrum and wave functions of the Stark ladder in a
QWSL is the narrowness of the transverse minibands,
which are formed here due to the resonance tunneling
of electrons in the transverse QD chains. Similarly to a
QWSL, the electron localization length Lloc at the elec-
tric field is determined by the ratio of the resonance
integral in the field direction and the electric potential
difference between the nearest QDs, λ = ∆||/"Ω: at λ @ 1,
Lloc = λa||; if λ ! 1, the electron is localized mainly
within a single QD perpendicular to the electric field
and the wave function amplitude at the neighboring
chains is then proportional to λ.
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2.3. Bloch Oscillations in the Stark Representation

Using the solution to the time-independent
Schrödinger equation (16), we can easily consider the
electron dynamics under various initial conditions in
the absence of scattering. We shall demonstrate later on
that, in this representation, the Bloch oscillations are
quantum beats between the Stark ladder states.

Let the initial electron wave function form a coher-
ent superposition of the Stark states (16):

(17)

The time evolution of the Stark states (16) is known,
and we can write a solution to the time-dependent
Schrödinger equation in the form

(18)

In particular, if the initial conditions can be factorized,

 = αNβk, we can obtain 

(19)

for the probability of finding an electron in the layer
with number n.
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Fig. 2. Dependence of the transverse-miniband width on the
electric field orientation relative to the 2D QDSL crystallo-
graphic axes (the ray lengths indicate the transverse mini-
band widths on the logarithmic scale for a given electric
field direction).
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From this it is seen that the electron density oscil-
lates in each QD with the Stark frequency as a result of
the quantum beats. The electronic oscillations are
accompanied by current oscillations in the field direc-
tion

(20)

Let us consider a few of the ways in which the
coherent superposition of the Stark states can be cre-
ated.

2.3.1. Instantaneous switching-on of a field. When
the electric field is instantaneously switched on, elec-
trons are initially distributed in equilibrium over the

Bloch states of the QDSL miniband. The function  =

exp(iN a||)  corresponds in the Stark representa-

tion to the Bloch state with the wave vector K0. Sum-
ming in expression (20) for the current with subsequent
averaging over the initial wave vectors with the distri-
bution function gives

(21)

which coincides with the earlier result obtained in (9)
within the quasi-classical approximation for an arbi-
trary electric field.

2.3.2. Instantaneous drop of field. Let the electron
be localized initially in the plane r · F = 0, which may

occur at a very high field eFa|| @ ∆||. Then  =
JN(∆||/2"Ω)βk (as we determined in (19), the depen-
dence on the transverse wave vector is not important in
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Fig. 3. QWSL spectrum in an electric field. Channels of
inelastic (in) and elastic (el) scattering in the QWSL are
indicated.
the case of factorized initial conditions) and the so-
called “breathing” mode is formed:

(22)

The current is antisymmetric in this case: jn = –j–n – 1, the
electron density centroid remains in the plane r · F = 0,
and a dipole moment is absent. After spreading over the
localization region Lloc = a||(∆||/"Ω), the electron
becomes localized again after a time T = 2π/Ω in the
plane r · F = 0.

3. SCATTERING CHANNELS IN QD
AND LAYERED SUPERLATTICES

Let us compare the possibility of suppressing scat-
tering in layered SLs and QDSLs. It is seen from Fig. 3
that in the QD superlattices scattering remains strong at
any electric field value owing to the wide transverse
spectrum at any electric field magnitude. An energy
overlap of states on different steps of the Stark ladder
makes both elastic scattering and that assisted by opti-
cal and acoustic phonons possible.

The situation fundamentally changes in QD super-
lattices. Here, there exists a possibility of changing the
transverse miniband width by varying the electric field
orientation relative to the QDSL axes and, thus, of con-
trolling the QDSL spectrum at the electric field and,
therefore, the scattering.

In actuality, it is seen from Fig. 4 that single-phonon
scattering processes involving the optical phonons
within the transverse miniband are impossible if the
transverse miniband width ∆⊥  becomes less than the
optical phonon energy:

(23)
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Fig. 4. Two-dimensional QDSL spectrum in an electric
field. Channels of inelastic (in) and elastic (el) scattering in
the 2D QDSL are indicated.
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Let the transverse minibands now be energetically
nonoverlapping and the condition

(24)

be fulfilled for all natural numbers n. Here, "Ω = eFa||
is the distance between neighboring Stark ladder steps,
and ∆⊥  is the transverse miniband width. Then, inter-
miniband single-phonon scattering by optical phonons
is completely suppressed as well (Fig. 4).

Moreover, inter-miniband scattering processes
assisted by acoustic phonons can also be suppressed to
any extent desired. Certain features of the interaction
with acoustic phonons in a QDSL must be considered
in order to ensure this.

3.1. Interaction with Acoustic Phonons in QD 
Superlattices

The Hamiltonian taking the deformation interaction
with acoustic phonons into account reads

(25)

where  and bq are the creation and annihilation oper-
ators of a phonon with a wave vector q; Aq =

qG , where G is the deformation potential
constant; and v 0 and ρa are the unit cell volume and the
mass density of the SL material, respectively. For sim-
plicity, we consider an interaction with the bulk longi-
tudinal deformation oscillations of the QDSL material;
i.e., we disregard the effect of differences in the materi-
als inside and outside the QD on the phonon spectrum.
That is why it is convenient to use the phonon wave
vectors defined within the Brillouin zone of the QDSL
material. Thus, ωq = sq, q < 2π/a0 within the linear iso-
tropic spectrum approximation (Debye model), where s
and a0 are the speed of sound and the lattice constant of
the QDSL material, respectively.

Matrix elements of the electron–phonon interaction
in the Stark representation |N, k〉  for the electrons (15)
and the occupation number representation |{νq}〉  for
phonons read

(26)

nΩ
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2"
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where summation over l takes the Umklapp processes
in the transverse minibands into account, and

(27)

is the form factor describing the fine structure of the
wave functions (15) constructed from the Wannier
functions of the QDSL miniband |r〉  = φ(r – r) (5). Cal-

culation of  in the case where the electric field is
directed along the 2D rectangular QDSL basis vector
gives

(28)

Let us calculate the integral

(29)

which is necessary in order to obtain the form factor
Q(q). The tight-binding Wannier functions related to
different QDSL sites weakly overlap, and the diagonal
elements (29) are essentially larger than the off-diago-
nal ones. In actuality, when there are small phonon
wave vectors q ! q* = π/RD, where RD is the QD size,
orthonormality yields 〈r|eiq · r|r'〉  ≈ eeq · rδr, r' and the
integral (29) rapidly decreases with q at q @ q*, while
the off-diagonal elements r ≠ r' additionally contain
the tunneling-small parameter. Thus,

(30)

For instance, the Q(q) dependence can be calculated
analytically for a spherical QD of radius RD with infi-
nitely high walls and has the form

(31)

where Si(x) = sin(y)/y]dy is the integral sine.

In the case of a spherical well with finite walls and
equal effective masses inside and outside the QD,

(32)

where U0 is the QD potential well depth, and m is the
effective electron mass of the QDSL material.
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One can show for the general case of a QD with an
arbitrary shape that the exponent in (30) β = 4 if |φ(r)|2
exponentially falls outside the QD and has no first
derivative discontinuity. If the effective electron masses
are different inside and outside the QD and a first deriv-
ative discontinuity appears, oscillations induced by it
yield β = 3.

Such a rapid decrease of the form factor with
increasing phonon wave vector allows us to suppress
significantly the scattering by acoustic phonons
between the transverse minibands of the Stark ladder
(Fig. 4). In actuality, it follows from (30) that if the
energy gap between the transverse minibands exceeds
the actual acoustic phonon energy "ω* ≡ "sπ/RD,
which is determined by the form factor

(33)

then the probability of an acoustic-phonon-assisted
transition between the minibands, which is propor-
tional to Q2(q), falls as ("Ω – ∆⊥ )–2β, β ≥ 3.

When conditions (23), (24), and (33) are satisfied,
acoustic-phonon scattering within the transverse mini-
bands becomes the dominant scattering channel. Gen-
erally speaking, it is not apparent that such scattering
leads to the damping of oscillations, since BOs occur
along the electric field direction, while only the trans-
verse momentum of carriers is scattered. That is why it
does not suffice to calculate transition probabilities in
order to estimate the BO damping rate due to the scat-
tering within the miniband: a more rigorous and consis-
tent theory is necessary. Since BOs can be regarded in
the Stark representation as quantum beats between the
Stark ladder states, the BO damping is, in this represen-
tation, a consequence of the decoherence between these
states due to electron transitions with the emission of a
photon or phonon. Then a natural way to describe the
BO damping is to use the formalism of the density
matrix whose off-diagonal elements describe the
degree of coherence of the states.

4. QUANTUM RELAXATION EQUATION

In deriving the quantum relaxation equation, we fol-
low the procedure developed by Kohn and Luttinger
[15], which was then applied to the analysis of the car-
rier kinetics in layered SLs [16–19]. We assume that the
effective BO damping time significantly exceeds the
oscillation period:

(34)

Let us demonstrate how this condition allows us to
derive the quantum relaxation equation. After the
Laplace transform, the equation for the density matrix
(DM) for the system with the Hamiltonian (25)

(35)

"Ω ∆⊥ "> ω*,–

τeff @ Ω 1– .

i"
dρ̂
dt
------ Ĥ ρ̂,[ ] ,=
written in the Stark representation (15) for electrons
|Nk〉  and the occupation number representation for
phonons |{ηq}|, takes the form

(36)

where s is the Laplace transform variable; ∆  =  –

 (15); and, on the right-hand side of the equation,
summing over the intermediate indices and phonon
wave vectors, as well as summing of terms with “+” and
“–” signs, is assumed.

This equation relates the DM elements with the
phonon occupation numbers differing by unity. Let us
substitute expressions for the DM off-diagonal ele-
ments into the right-hand side of the equation for diag-
onal elements. Only the DM elements that are diagonal
in phonon occupation numbers and whose occupation
numbers differ by 2 remain after this. Terms related to
a change of the phonon number by 2 must be dropped
if we take into account only single-phonon processes
[18, 19]. This gives

(37)

Then, assuming the thermalization rate of the
phonon subsystem to be higher than the collision fre-

quency ρ{Nk, ηq|N'k', ηq} = Z–1  and
averaging the equation over the phonon degrees of
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freedom, we obtain the following equation for the
reduced DM:

(38)

where νq = (  – 1)–1. We have also neglected on the
right-hand side of this equation the DM elements that
are off-diagonal in transverse momenta; these elements
are significantly less diagonal than in the case of weak
scattering [15].

In the absence of scattering,  = exp[–i(N –
N ')Ωt] is a solution to (38). In the weak scattering case

 ! Ω, the singularities of  are located near the
pole s = –iΩ(N – N '). Therefore, only the terms with

DM elements of the form  are important on

the right-hand side. If, in addition,  is less than the
actual phonon frequencies, we can pass to the limit s +
iΩ(N – N ')  0 on the right-hand side of (38):

(39)

Here, we neglect the principal-value integrals related to
the oscillation frequency shift, since scattering by
acoustic lattice vibrations with a wide spectrum is
assumed. The equation takes the form

(40)
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Equation (40) describes a loss of coherence between
the states |N, k〉  and |N ', k〉  due to electron transitions
with the absorption or emission of phonons; the first
and second terms are related, respectively, to the loss of
an electron from these states and to the arrival of an
electron from the states with other Stark indices and
wave vectors of transverse motion.

The structure and the physical nature of the loss
term are absolutely clear: it contains a half-sum of
probabilities of the electron loss from the states |N, k〉
and |N ', k〉  and the decoherence process occurs due to a
decrease in the amount of electrons forming the coher-
ent superposition; a phase factor is absent.

The structure of the arrival term is essentially
more complicated. It follows from (26) that

 = exp[iq||a||(N – N')]| |2. We see
that transitions in the arrival term can lead both to
weakening or enhancement of coherence between the
states N and N', depending on the phase shift between

 and  and the tapering of the phonon
phase q||a(N – N') across the distance between the cor-
responding QDSL sites (the form of the phase factor
will be explained below). As rigorously proven in [20],
the presence of the phase factor in the electron arrival
term ensures a predominance of escape over arrival,
which leads to damping of BOs in the course of time.

It should be noted that, in deriving the quantum
kinetic equation (40), we have assumed that a coherent
superposition of the Stark states is formed at zero time
and, therefore, owing to (34), the amplitude of the cur-
rent of Bloch oscillations is essentially larger than the
dc current. The latter can exist due to scattering only
and is disregarded in the obtained equation. However,
with BO damping, the dc current becomes comparable
with the BO current amplitude. At long intervals of
time, when the coherence between the Stark states is
completely destroyed, the diagonal elements of DM
become dominant on the right-hand side of (38), while
the off-diagonal ones are nonzero only if the charge
carriers are scattered. Therefore, the procedure that we
used here is invalid for calculating the dc current. The
procedure for deriving equations for DM at large times
and calculating the dc current is described in detail in
[19]. This procedure can also be successfully used to
calculate the static current–voltage characteristic of a
QDSL.

The equations (40) are sufficiently complex for
analysis under arbitrary initial conditions; that is why,
for the remainder of this paper, we confine our consid-
eration to an analysis of the spatially uniform initial
state of the system.

4.1. Spatially Uniform Case

The equations (40) are significantly simplified for
the case of a spatially uniform initial distribution:

V Nk N nk'+,
01 V N' nk+ N'k',

10 Vn
q

ρN N'
kk ρN n+ N' n+,

k'k'
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. (41)

The set of equations relating the DM elements with the

form  with different n is reduced to a set of
independent closed equations.

Moreover, when the electric field is directed along
one of the basis directions of a rectangular 2D QDSL
(or tetragonal 3D QDSL), the nearest neighbor tight
binding approximation is valid and it suffices to solve
one of these equations in order to describe the BO.
Indeed, expressing the current density in the Wannier
site representation (20) in terms of the DM in the Stark
representation

(42)

and using the orthogonality of the Stark states, we find
that, under condition (41), the current density within
the nearest neighbor approximation can be expressed in

terms of a single DM element  describing
coherent transitions between neighboring Stark states:

(43)

The uniformity (41) occurs, in particular, when the
electric field is switched on instantaneously. For a non-
degenerate electron gas, this gives 

(44)

where I0 and I1 are modified Bessel functions; F(K0),
f(k) are the Boltzmann distributions in the total energy
in the QDSL miniband (3) and in the transverse motion
energy, respectively.

Let us now suppose that (t ) ≡

exp( iΩt )〈cos( a||)〉gk(t ). Then, (40) gives, with
account of (26) and (41) for the slowly varying ampli-
tude gk(t), the following closed equation:
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(45)

where summing over l ensures that the Umklapp pro-
cesses in the transverse minibands are taken into
account; q varies within the Brillouin zone of the QDSL
material; and the transverse electron motion wave vec-
tor k varies, within the first Brillouin zone of the trans-
verse chain of QDs in the 2D QDSL (or transverse
plane of QDs in the 3D QDSL).

This is the basic equation of the theory which will be
used in the second part of the study (see [20]) for calcu-
lating BO damping in QDSLs of different dimensional-
ities. The equation obtained is useful when there is a
high electric field, i.e., when the electron is localized on
a small number of QDs in the electric field direction:
Lloc = ∆||/eF ≈ a||. Equation (45) becomes inconvenient
because of the necessity to sum over a large number of
transitions n in the case of a weak electric field, when
the localization length becomes large: Lloc @ a||. Mean-
while, summing over n can be done analytically using
the Fourier representation for the delta function and
expression (26) for the interaction matrix elements.
Then, we obtain in a natural way the equation (see [19])
describing the BO damping in the Houston representa-
tion (7):

(46)

Here, K is the total electron wave vector in the QDSL
miniband; %(K) = (∆||/2)cos(K||a||) + (∆⊥ /2)cos(ka⊥ )
describes the QDSL miniband spectrum (3); iAqQ(q) is
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the electron–phonon interaction matrix element calcu-
lated with the use of the miniband of the Bloch wave
functions [see (4) and (26)]. The values W(K, K') in
(46) are the conventional probabilities of a transition
between the states Kt and  in the Houston represen-
tation (7) [see (19)]; the temporal exponential exactly
accounts for the electric field effect on the electron–
phonon collisions.

If we formally pass in (46) to the limit F  0, then
the temporal exponential gives a delta function of
energy and we obtain

(47)

The physical meaning of the phase factor cos[(K|| –

)a||] = cos(q||a||) becomes clear, with respect to the
electron arrival term, from (46, 47). Indeed, the phase
of the function gk(t) does not depend on the wave vector
of transverse motion, since it is a diagonal in k DM ele-

ment  (44). The element

(48)

is related to an electron in the Bloch state with the wave
vector K, and the wave vector itself varies in the pres-
ence of a field as "Kt = "K0 + eFt, which is in accor-
dance with (7). After averaging over the initial wave
vectors, we see that the function gk(t) =

exp(iΩt)〈cos( a||)〉–1 (t) is real at the initial
moment of time; i.e., its phase is the same for all the
states of the transverse spectrum with different values
of k.

The function gk decreases upon electron transitions
from the states |N, k〉 , |N + 1, k〉  to any other states sim-
ply because of a decrease of the number of electrons
with the transverse wave vector k and which are
involved in the coherent superposition. That is why no
phase factor is present in the escape term (46), (47). On
the contrary, the phase acquired by electrons via inter-
action with a phonon in transitions to the states |N, k〉 ,
|N + 1, k〉  is important. The arrival of electrons corre-
sponds to a decrease or increase of coherence between
the states |N, k〉 , |N + 1, k〉 , depending on the longitudi-
nal momentum "(K|| – ) lost (acquired) during the
emission (absorption) of a phonon. Taking into account

Kt'

∂
∂t
-----gk t( )– gk 0( )+ K || K'd∫d∫=

× Wcl K K',( )gk t( ) K || K ||'–( )a||[ ] Wcl K' K,( )gk' t( )cos–[ ] ,

Wcl K K',( ) νq 1+( )wcl
+ K K',( ) νqwcl

– K K',( ),+=

wcl
± K K',( ) 2

"
--- Aq

2Q2 q( )δ ε K ε K'( ) "ωq±–([ ]
l q,
∑=

× δ K K' ql––( ).

K ||
'

ρN N 1+,
kk

ρN N 1+,
kk iK ||a|| N N 1+( )–[ ]{ }exp=

=  iK||a||–( )exp

K ||
0 ρN N 1+,

kk

K ||'
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(48) and the fact that the phase gk is the same for all k
prior to the interaction, we obtain the phase factor
exp(±iq||a||) in the arrival term (the imaginary, antisym-
metric part of the exponential does not contribute to the
integral over q|| and can be dropped).

One can pass to the limit F  0 in (46) only under

the condition  ! Ω ! ∆||/". Then, the condition for
the weak scattering of oscillations, used in deriving the
equation, is satisfied and, at the same time, the electron
is weakly localized by the electric field, which allows
us to neglect the effect of the field upon the electron–
phonon collisions.

5. CONCLUSION

The kinetic equation (40) that describes BO damp-
ing was derived from the general equation for the den-
sity matrix. The theory is valid for the arbitrary excita-
tion of BO in the miniband of a QDSL of any symmetry
in an electric field with an arbitrary magnitude and
direction.

It is shown that, by varying the magnitude and direc-
tion of the electric field relative to the QDSL axes, one
can completely suppress single-phonon scattering by
optical phonons [conditions (24) and (23)], which is the
main reason for the rapid damping of BO in layered
superlattices based on III–V or II–VI compounds. Con-
trol of the QDSL spectrum by the electric field is shown
to allow significant suppression of scattering by acous-
tic phonons between different states of the Stark ladder
[condition (33)]. Then, the only remaining scattering
channel for carriers in an ideal 2D or 3D QDSL is scat-
tering by acoustic phonons within the transverse mini-
bands of the Stark ladder.

A detailed analysis of Eqs. (45)–(47) for QDSLs of
various dimensionalities is conducted in our next paper,
which was published in this issue of the journal [20];
we would now like to draw attention to the most essen-
tial property of these equations which distinguishes
them from the usual kinetic equations and indicates
specific features of phase scattering.

Let us assume that the spatial nonuniformity scale of
the scattering potential (in our case, it is the phonon
wavelength) in the electric field direction significantly
exceeds the QDSL period. Then, the longitudinal wave
vector of the electron remains virtually unchanged dur-
ing scattering and the phase factor cos[(K|| – )a||] =
cos(q||a||) in Eqs. (45)–(47) is close to unity. Recalling
now that the oscillation current (43) is proportional to
the integral of the function gk over the transverse
quasimomenta and integrating both sides of any of
Eqs. (45)–(47) over k under the condition q|| = 0, we
find that the integral of the right-hand sides of these
equations becomes identically zero: there is no damp-
ing of the BO current under these conditions. This
reflects a specific feature of the phase scattering: a loss
of coherence between the Stark states does not occur if

τeff
1–

K ||'
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the perturbation affects both states similarly. In partic-
ular, BO damping is absent only if the electron wave
vector that is transverse relative to the electric field
direction changes during scattering, while K|| –  =
q|| = 0. Thus, the BO damping rate is close in its physi-
cal meaning to the scattering rate of the electron longi-
tudinal quasimomentum.

Such a concept, however, may lead to misunder-
standing. The electron motion along a strong electric
field is quantized, and the longitudinal quasimomentum
makes no physical sense. However, it seems to follow
from the aforesaid that scattering within transverse
bands of the Stark ladder in the absence of transitions
between them must not lead to BO damping, since this
is the perturbation of the transverse motion of carriers.
However, this conclusion is wrong. The longitudinal
momentum component of a phonon emitted or
absorbed by an electron can take arbitrary values (q|| ≠
0) during transitions within the transverse miniband.
The conservation law of the longitudinal momentum
component is satisfied as before, but the recoil momen-
tum is acquired by the SL as a whole, not by the field-
localized electron. Thus, cos[(K|| – )a||] = cos(q||a||) ≠ 1
in scattering within transverse minibands and such scat-
tering leads to BO damping. In addition, when condi-
tions (23), (24), and (33) are satisfied, this scattering
channel in an ideal QDSL becomes the principal one
and the BO damping is completely determined from
scattering by acoustic phonons within the transverse
minibands of the Stark ladder. An analysis of the possi-
ble ways to reduce the BO damping rate during elec-
tron transitions within the transverse minibands is the
subject of our next work [20]. A general analysis of
Eqs. (45)–(47) for QDSLs of various dimensionalities
and the numerical calculation of the BO damping rate
will also be carried out.
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Abstract—In the preceding paper by the same authors, the density-matrix formalism was used to derive a quan-
tum kinetic equation describing the damping of Bloch oscillations (BOs) in perfect one-, two-, and three-dimen-
sional quantum-dot superlattices (QDSLs) and the conditions were determined under which the only process
of the charge-carrier scattering by phonons in 2D and 3D QDSLs that contributes to the BO damping is the
acoustic-phonon scattering within the transverse minibands of the Stark ladder of the carrier states. In this
paper, the possibilities of suppressing this remaining scattering channel are analyzed. It is shown that the BO
damping time in 2D and 3D QDSLs at room temperature may exceed the oscillation period by a factor of several
hundreds and the conditions necessary for such strong suppression of the scattering are revealed. This makes a
considerable difference between the QDSLs and the quantum-well superlattices, where, in reality, the BOs
damping over a single oscillation period at room temperature. © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

In the authors’ preceding paper [1], the density-
matrix formalism was used to derive a quantum kinetic
equation describing the damping of Bloch oscillations
(BOs) in superlattices (SLs) composed of quantum dots
(QDs). It was shown that, varying the strength of the
electric field and its orientation with respect to the axes
of the quantum-dot SL (QDSL), it is possible to sup-
press completely the optical-phonon scattering of the
charge carriers, which is largely responsible for the fast
damping of BOs in layered SLs composed of quantum
wells (QWSLs). It was also shown that the acoustic-
phonon scattering between the different levels of the
Stark ladder formed by the carrier states in a QDSL
under an applied electric field can be very strongly sup-
pressed by the field as well. Thus, conditions were
revealed under which a single channel of the charge-
carrier scattering remains: the acoustic-phonon scatter-
ing between the states of transverse motion within a
Stark-ladder level.

In this study, we use the quantum equation for relax-
ation obtained in [1] to investigate the possibility of
suppressing the scattering in this channel and, corre-
spondingly, of increasing considerably the BO damp-
ing time for a chain of QDs (a one-dimensional QDSL)
and for two- and three-dimensional QDSLs. We exam-
ine the dependences of the BO damping rate on the
QDSL parameters and on the strength and orientation
of the electric field, as well as its temporal dependence.
We also show that the possibility of effectively control-
ling the spectrum of 2D and 3D QDSLs by the electric
field enables one to suppress considerably the acoustic-
phonon scattering within the transverse minibands of
1063-7826/02/3612- $22.00 © 21375
the Stark ladder. The numerical calculations carried out
in this study demonstrate that the BO damping time in
2D and 3D QDSLs at room temperature may exceed the
oscillation period by several hundred times. This makes
a considerable difference between QDSLs and QWSLs:
in the latter case, at room temperature, the BOs actually
damping over a single oscillation period [2].

For 2D and 3D QDSLs, Eqs. (45) and (47) of [1] are
quite complicated due to the existence of a transverse
spectrum. Thus, for the purpose of illustration, we first
analyze the BO damping in a 1D chain of QDs and
demonstrate in a simple way that the BO damping rate
(which is, in fact, the rate of the phase scattering upon
electron transitions between the Stark-ladder states)
differs from the conventional rate of electron–phonon
collisions.

2. ONE-DIMENSIONAL QUANTUM-DOT 
SUPERLATTICE

Consider a 1D chain with a period a composed of
QDs the coupling between which is characterized by
resonance integrals ∆||/4. Equations (45) and (47) of [1],
which describe the damping of the BOs that takes place
after the field is instantaneously switched on, take the
following simple form:

(1)

∂/∂t γ+( )g t( ) 0,=

γ π
"

2
-----

v 0d3q

2π( )3
--------------- 2νq 1+( )∫

n
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× V N 1+ N 1 n+ +,
q V N N n+,

q–
2
δ nΩ ωq–( ),
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One can see that, in the spatially uniform case, the BOs
in 1D QDSLs experience exponential damping with the
decrement γ. The value of the decrement depends on
the difference between the interaction matrix elements
in the neighboring Stark states (it is the loss of coher-
ence between these states that is described by Eq. (1)).
In this situation, the phase of the Stark electron in the
phonon field becomes important:

(2)

Thus, the expression for γ differs from the conventional
expression for the probability of an electron transition
with the emission or absorption of a phonon by the
phase factor [1 – cos(q||a||)]. This is representative of
phase scattering: the coherence between the states N
and N + 1 is not lost if the action of the scattering poten-
tial on both states is identical. In particular, this is the
case for scattering by phonons whose wavelengths are
much longer than the SL period.

In the limiting case of a weak electric field (  !
Ω ! ∆||/"), the expression for the damping constant γ
takes the following form, according to Eq. (47) of [1]:

(3)
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--------,= =
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q 2
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π
"

2
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2π
----------

v 0d3q

2π( )3
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0.5

0 1

1.0

1.5

2.0

2 3 4
∆||/"ω*

γcl(∆||), 1012 s–1

Fig. 1. Dependence of the BO damping constant in the
quasi-classical limit on the miniband width in the 1D
QDSL.
where ε(K) = ∆||/2"cos(Ka) describes the miniband
spectrum of the QD chain in the absence of an electric
field.

The dependence γcl(∆||) is shown in Fig. 1.1 Let us
comment on the shape of this curve.

(a) For ∆||a/2" < s, the electron group velocity in the
miniband is always smaller than the sound velocity and
the one-phonon scattering processes are forbidden by
the energy and momentum conservation laws.

(b) For ∆||a/2" > s, phonons of increasingly high
energy become involved in the scattering as the mini-
band width increases. In the vicinity of ∆||a/" = s, the

damping constant grows as ; then, the growth
becomes linear, while the energy of participating
phonons is now limited by the miniband width.

(c) Finally, for ∆|| ≥ "ω*, the form factor Q(q) given
by formula (27) of [1] comes into play, which leads to a
suppression of the processes with the participation of
the short-wavelength phonons, and the scattering
becomes quasi-elastic. Meanwhile, the density of elec-

tron states falls as  with an increase in the miniband
width; for ∆|| @ "ω*, this results in a similar dependence

for the oscillation damping constant: γcl(∆||) ∝  .

Next, let us consider the field dependence of the
damping constant. Integration of Eq. (1) with (2) taken
into account yields

(4)

1 In the numerical calculations throughout this paper, we consider
only the case of high temperatures, which is the most interesting
for practical applications of BOs, and assume that T = 300 K. The
material parameters of GaAs are used to describe the electron–
phonon interaction: sound velocity s = 5.22 × 105 cm/s, deforma-
tion potential constant G = 6 eV, and mass density ρa = 5.3 g/cm3.
Neglecting the difference between the material constants inside
and outside the QDs, we assume the phonon spectrum to be linear
and isotropic: ωq = sq. In the calculations, we assume that the QD
diameter is smaller than the QDSL period by a factor of 2 (|ai | =
a = 4RD = 100 Å) and disregard the existing relation between the
QD size RD, the QDSL periods |ai |, and the resonance integrals

 that characterize the coupling between the QDs in the corre-

sponding directions. The last approximation has virtually no
effect on the calculation results since the resonance integrals
depend exponentially on the QD spacing, and their values change
considerably with a logarithmically small variation in |ai | or RD.
In the calculations, we use formula (31) of [1] for the form factor
Q(q) for the well with infinitely high walls. For the QDSL param-
eters listed above, the energy of significant phonons, determined
by the form factor, is equal to "ω* = "sπ/RD = 4.3 meV ! T
(where T = 300 K is the lattice temperature); thus, the phonon
occupation numbers can be calculated by the asymptotic relation
(νq + 1/2) ≈ T/"ωq. The wavelength of significant phonons
greatly exceeds the maximum wave vector of the electron in the
QDSL Brillouin zone q* = π/RD @ π/a; consequently, the
Umklapp processes are of significance.
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Here, qF = Ωa/s = eFa2/"s and λ = ∆||/"Ω determines the
size of the electron localization region in the electric
field.

Figure 2 represents the dependence of the damping
constant γ(Ω, ∆||/"ω*). At weak fields, γ approaches its
classical limit (3). With increasing electric field, the
interval between the Stark levels increases and the tran-
sitions between the Stark states separated by a large
number of chain periods (which are described by large
n in (4)) become suppressed due to the field-induced
localization and the decrease of the form factor. In
weak fields (Ω < ω*) in QDSLs with narrow minibands
(∆|| < "ω*), the transitions with n @ 1 are suppressed
mainly due to the electron localization by the electric
field; in QDSLs with wide minibands (∆|| > "ω*), only
the form factor limits the values of n that are significant.

For the chosen set of QDSL parameters, ω* = 6.3 ×
1012 s–1. From Fig. 2, one can easily determine where
the damping constant becomes smaller than the Stark
frequency and, thus, the minimum field strength
required in order to observe BOs in the QDSL of a
given miniband width ∆||.

When Ω > ω*, the reduction in the form factor leads
to the suppression of the transitions between the neigh-
boring Stark levels, which results in a rapid decrease in
γ for any value of ∆. It was established in [1] that the
asymptotic behavior of the form factor for the short-
wavelength phonons is expressed by Q(q > q*) ∝  q–β,
β ≥ 3 (see (30) in [1]). Thus, it follows from (4) that, if
in the fields F exceeding "ω*/ea the electrons are
already strongly localized (i.e., λ ! 1), then γ ∝  F–2β; if
λ > 1, then γ ∝  F2 – 2β. By increasing the field strength,
one can obtain arbitrarily long BO damping times. In
the actual experimental conditions, this would mean
that the damping of the BOs at Ω @ ω* will be deter-
mined by the degree of imperfection of the real QDSL
structure, while the damping originating from the
phonon scattering can be suppressed as strongly as is
wished.

3. TWO- AND THREE-DIMENSIONAL 
QUANTUM-DOT SUPERLATTICES

In 2D and 3D QDSLs, the charge carriers can move
in the direction perpendicular to the electric field,
which leads to significant complication of their behav-
ior. The damping of the BOs is no longer exponential.
The time-dependent damping rate is still determined by
γ(k); the mathematical structure and physical meaning
of this quantity are similar to those of the damping con-
stant γ for the BOs in 1D QDSLs (see Eq. (1)), but now
it depends on the wave vector k characterizing the elec-
tron motion in the transverse miniband. However, along
with γ(k), the quantum equation for relaxation in 2D
and 3D QDSLs contains terms describing specific mix-
ing processes in the transverse minibands, which will
be considered below. It will be seen that the mixing
itself does not result in BO damping, but it appears to
SEMICONDUCTORS      Vol. 36      No. 12      2002
have a significant effect on the form of the temporal
dependence of the oscillation damping.

In the case of 2D QDSLs, Eq. (45) of [1] for gk(t) ≡
eiΩt〈cos( a||〉–1 , describing the loss of coher-
ence between the states |N, k〉  and |N + 1, k〉 , can be writ-
ten as

(5)
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Fig. 2. Dependence of the BO damping constant in the 1D
QDSL on the electric field strength Ω/ω* = eFa/("sπ/RD)
and the miniband width ∆||/"ω*.
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Here, the wave vector q varies within the first Brillouin
zone of the constituent material of the QDSL, and the
wave vector k of the electron transverse motion varies
within the first Brillouin zone of the transverse chain of
QDs. The spectrum of the transverse miniband is given
by the expression ε(k) = ∆⊥ /2cos(ka⊥ ). The Umklapp
processes are taken into account by the summation

over l. The matrix elements  are determined by for-
mulas (26) and (28) of [1].

According to (43) of [1], the BO current is
expressed in terms of gk(t) as

(6)

Here, j0(t) is the BO current in the absence of scatter-

ing, and (t) describes the damping of the BO current
amplitude.

The structure of the operator  in (5) implies that, in
contrast to the case of 1D QDSLs, the BO damping in the
presence of the continuous spectrum of the transverse
motion is not, in general, exponential. Thus, it is conve-
nient to introduce the time-dependent damping rate as

(7)

The damping rate at the instant when the electric
field is switched on (t = 0) can be easily calculated ana-
lytically. Substituting the initial conditions gk(t = 0) into
the right-hand side of (5), we obtain

(8)

To gain some insight into the temporal dependence
of the BO damping rate Γj(t), it is useful to express for-
mally the solution to the equation set (5) in the follow-
ing form:

(9)

Here, ηi are the eigenvalues of the operator . One can
see from (9) that, in general, the temporal dependence
of the current amplitude is not monotonic; in particular,
it can change sign, which corresponds to the shift of the
oscillation phase by π. Since the matrix Jkk' is not sym-
metric, the eigenvalues and the expansion coefficients
are complex quantities.
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It can be strictly demonstrated that the amplitude of
the oscillations calculated by solving Eq. (5) cannot
grow at infinity; i.e., the real parts Re{ηi} of all eigen-
values of the matrix Jkk' are positive. This can be proven
with the use of the following theorem (Gershgorin,
1931) [3, 4].

Theorem. Any eigenvalue ν of an arbitrary complex
n × n matrix ||aij|| lies within one of the circles

(10)

Applying this theorem to Eq. (5), one finds that, due
to the presence of the phase factor cos(q||a||) in the terms
describing electron influx, the sum of the absolute val-

ues of the nondiagonal elements  in any row (any
column) of the matrix Jkk does not exceed the value of

the diagonal element ; i.e.,

(11)

Then, it follows from the above theorem that the real
parts of all eigenvalues Re{ηi} are nonnegative and the
oscillation amplitude does not grow with time:

(12)

Note that the equality sign appears in (11) and (12) only
when all elements in some row of the matrix Jkk' equal
zero, i.e., when there is no scattering in a certain energy
range of the transverse motion.

It will be seen below that the quantity Λ from (12)
can be a good estimate for the asymptotic value of the
damping rate Γj(t) at t  ∞, although, strictly speak-
ing, it does not follow from the expansion (9) that the
damping rate at long periods of time approaches the
smallest of Re{ηi}.

Thus, without solving the equation set, one can
obtain an analytic expression for the initial damping
rate Γj(0) of the BO current and estimate the value Γj(∞)
of the damping rate at long periods of time. The above
reasoning is valid in the general case as well (see (40)
in [1]), regardless of how a coherent mixture of the
Stark states is formed and what the field orientation is
with respect to the QDSL axes.

Here, we shall restrict our consideration to a
detailed analysis of the most simple situation—which
is, at the same time, most interesting from the practical
point of view—where only the transitions within the
transverse minibands of the Stark ladder with the par-
ticipation of acoustic phonons are possible, with all
other scattering mechanisms being strongly sup-
pressed.
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3.1. The damping of Bloch Oscillations 
due to Scattering within the Transverse Minibands

The conditions necessary for the full suppression of
optical-phonon scattering were obtained in [1] as nΩ +
∆⊥ /2" < ω0 < (n + 1)Ω – ∆⊥ /2" and "ω0 > ∆⊥ . Let us
suppose that they are satisfied and that the acoustic-
phonon interminiband scattering is also strongly sup-
pressed: "Ω – ∆⊥  > "ω* = "sπ/RD. Then, the set of
equations (5) takes the following form:

(13)

Here, a part of the term (5) describing the electron out-
flow was introduced into the left-hand side in such a
way that the integral on the right-hand side over the
transverse momentum k equals zero. The expression for
γk differs from that for the BO damping constant in 1D
QDSLs (see Eq. (1)) only by the appearance of the
transverse-motion energy in the arguments of δ func-
tions that account for the energy conservation law. It
can be easily demonstrated that, in the presence of
transverse motion, the BO damping is still mainly gov-
erned by the function γk, which depends on the differ-
ence between the interaction matrix elements in the
neighboring Stark states. Integrating Eq. (13) over the
transverse-motion wave vectors, we obtain

Taking into account the relationship  = gk(t) (see

(6)), we arrive at the conclusion that, if γk = const(k) ≡
γ, the BO amplitude dampings with the decrement γ.
However, since γk actually exhibits some dispersion, it
determines only the initial value Γj(0) of the time-
dependent BO-current damping rate. Indeed, substitu-
tion of the initial distribution gk(0) = fk into the right-
hand side of the equation yields zero, and we have

(14)
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Due to the nonzero dispersion of γk, the function gk(t)
starts to deviate from the equilibrium one as time
passes; thus, the right-hand side of the equation, which
describes mixing within the transverse miniband,
begins to contribute significantly to the oscillation
damping rate. This manifests itself most clearly in the
limiting case when the lattice temperature is high with
respect to the energy of significant acoustic phonons
and the width of the transverse miniband.

3.1.1. The damping of the Bloch oscillations for
T @ "w*, D^. When T @ "ω*, the phonon occupation
numbers can be approximated as νq + 1/2 ≈ T/"ωq @ 1
and the contribution of the processes with spontaneous
phonon emission may be neglected. The set of equa-
tions (13) takes the following form:

(15)

In contrast to the general case (see (5)), the matrix

 in (15) and, consequently, the operators  and 

are symmetric. Then, all eigenvalues of  ηi are real

and the eigenvectors  are real and orthogonal,

 = δk, k'. Taking into account the second
assumption T > ∆⊥ , the initial conditions can be written

as gk(0) ≡ f = const(k), where  = 1, and the formal
solution (9) becomes simplified considerably:

(16)

It can be seen that, in contrast to the general case (9),
in the limiting case of high temperatures and in the
absence of transitions between the transverse mini-
bands, the amplitude of the BO current is always posi-
tive and the rate of its damping Γj(t) decreases steadily,
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approaching over a long period of time the minimum

eigenvalue of the operator .

Now, let us consider the influence of the mixing

described by operator  in (15) on the oscillation
damping rate. One can see that this operator represents
nonlocal diffusion in the transverse miniband. Indeed,
in the case of quasi-elastic scattering, i.e., when the
transverse miniband energy considerably exceeds the

energy of the significant phonons (∆⊥  > "ω*),  is
reduced to the conventional differential operator of dif-
fusion over the transverse-motion energy:

(17)

where 5(ε) is the density of states in the transverse
miniband.

In contrast to the conventional diffusion operator,

operator  is nonlocal and the values  are not
necessarily positive, since they describe phase relax-
ation rather than the probability of transition. The dif-
fusion coefficient may become negative. Let us con-
sider the two cases separately.

1.  > 0 for all k and k'.

In this case, the estimation of the minimum eigen-

value ηmin of the operator  (see (12)) resulting from
the Gershgorin theorem yields

(18)

Next, in the case under consideration, the following
statement is quite evident: if any of the matrix elements

 > 0 from (15) is increased while γk is kept con-
stant, this will lead to a narrowing of the spectrum of

the operator  and to an increase in ηmin. Indeed, for
γk ≠ const, the effect of the first term on the right-hand
side of (15) causes gk(t) to depend on the wave vector k
as time passes. The effect of the diffusion term, how-
ever, reduces the dispersion of gk(t), since it results in
the transport from the regions of the transverse mini-
band with lower γk to the “depletion” regions where γk

exceeds the average. Thus, the diffusion actually nar-

rows the spectrum of the operator . It is useful to con-
sider the two limiting cases.
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(a) If there is no diffusion (  = 0), then the matrix

 is diagonal, with its eigenvalues being γk; this leads to

(19)

(b) For a given γk and   ∞, the diffusion term
results in the rapid equalization of gk(t) over the trans-
verse miniband. However, gk(t) = const corresponds to
Γj = 〈γ〉. It can be seen that, in the limiting case of an
infinitely large mixing rate, the current dampings with
a constant decrement Γj(t) = 〈γ〉.

2.  < 0 for all k and k'.

This case corresponds to a negative diffusion coeffi-

cient. The action of the operator  transfers electrons
from the regions of the miniband with larger γk to those
with smaller γk, thus, actually widening the spectrum of

. The current amplitude still remains finite due to the
Gershgorin theorem, but the current damping rate over
a long period of time becomes lower than γmin:

(20)

3.1.2. Dependence of the Bloch oscillation damp-
ing Rate on the width of the transverse minibands
and the strength of the electric field. We established
in the previous section that the damping rate of the BO
current in 2D and 3D QDSLs is time-dependent. In the
case of interest (i.e., when the intraminiband scattering
is dominant and the temperature is high), this rate
steadily decreases with time. At the initial moment, the
damping rate Γj(0) = 〈γ〉 (see (14)). After long periods
of time have elapsed, it approaches the smallest eigen-

value of the operator ; this value cannot be calculated
analytically, but an estimate (12), following from the
Gershgorin theorem, is valid: 〈γ〉 > Γj(∞) = ηmin ≥ Λ.

Calculating these quantities for a QDSL, whose
basic parameters were listed at the beginning of the
paper, and assuming T = 300 K, we find that all of them
depend on two variables: the ratio λ = ∆||/(eFa||), which
determines the length of electron localization in the
electric field, and the width of the transverse miniband
∆⊥ ; it is convenient to measure ∆⊥  in units of the energy
of significant phonons, "ω* = "sπ/RD, determined by
the form factor (27) from [1].

The dependences of Γj(0) and Γj(∞) on λ and ∆⊥  are
plotted in Figs. 3 and 4. One can see that the damping
rate depends heavily on both parameters, which makes
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it possible to effectively control the BO damping time
by varying the strength and orientation of the electric
field. The plot of Λ/Γj(∞), presented in Fig. 5, indicates
that the value of Λ may serve as a good estimate for
Γj(∞) for any combination of the parameters.

To explain the shape of these dependences, it is nec-
essary to analyze in more detail the quantities that enter
Eq. (15). Integrating over the phonon wave vectors, we
obtain

(21)

with "sq = |εk – εk'|, q⊥  = k' – k + 2πl/a, and p =

.

Here, p has the meaning of the maximum value of
the longitudinal component of the phonon wave vector
that is possible for given k, k', and l. The transverse
component of the phonon wave vector q⊥  cannot exceed
the wave vector magnitude q, which is accounted for by
the unit-step function θ(p).

The structure of the integrals in (21) enables one to
make certain important conclusions. First of all, it can
be noted that both the phase factor and the Bessel func-
tion in (21) are periodic functions of the quantity q||a =
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Fig. 3. The initial damping rate of the BOs (the highest
damping rate).
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pasinϕ. If the transverse miniband is wide (∆⊥  > "ω*),
the magnitude of the significant phonon wave vectors,
q* = π/RD, considerably exceeds the period π/a of the

phase factor and the function [λ sin{pasin(ϕ/2)}].
Then, the integrals can be approximated by their aver-
age values, which yields

(22)

Dependences of the BO damping rate on the degree of
electron localization in the electric field. The plots of
〈Φout(λ)〉 , 〈Φin(λ)〉 , and 〈Φγ(λ)〉  = 〈Φout(λ)〉 – 〈Φin(λ)〉 vs.
λ = ∆||/eFa||, shown in Fig. 6, reflect the dependence of
the collision rate, the efficiency of the diffusive mixing

described by the operator  in (15), and the initial
damping rate of the oscillations, respectively, on the
degree of electron localization in the electric field. For
strongly localized electrons (λ ! 1), the scattering

probability  is the highest: the Bessel function in
(22) equals unity. At the same time, averaging the
cosine yields zero and, correspondingly, the effect of
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Fig. 4. The damping rate of the BOs over long times (the
lowest damping rate).
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the diffusive mixing of the oscillation damping rate is
negligibly small: expression (19) is valid for the ampli-
tude of the current oscillations, with γk being identical

to . With a decrease in the field strength (i.e., with
an increase in λ), the wavelength of significant phonons
becomes smaller than the localization length Lloc = λa
and scattering probability falls off rapidly. Meanwhile,
〈Φin(λ)〉  increase with λ, and the effect of the diffusive
mixing on the BO damping rate becomes important.

At λ ≈ 2.8, the dependence 〈Φγ(λ)〉  has a minimum.
At this point, the oscillation damping rate has become

three times lower than the collision rate  and one
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Fig. 6. Dependence of the values (a) 〈Φout(λ)〉 , (b) 〈Φγ(λ)〉 ,
and (c) 〈Φin(λ)〉 , describing the collision frequency, the BO
damping rate, and the efficiency of the diffusive mixing in
the transverse miniband, respectively, on the length of elec-
tron localization in the electric field measured in units of the
SL period, λ = Lloc/a.
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Fig. 5. The ratio of the estimate for the minimum BO damp-
ing rate obtained from the Gershgorin theorem to the actual
damping rate over long times.
order of magnitude smaller than its value at λ = 0.
Comparing the dependence of Γj(0) and Γj(∞) on λ
(Figs. 3, 4) with the function 〈Φγ(λ)〉 , one can see that
the latter adequately describes the general behavior of
the oscillation damping rate both for QDSLs with wide
and narrow transverse minibands.

For λ ≥ 1.6, the integral (λ) in (21) is always
positive for all values of p and the conclusions made in

the previous section regarding the case  > 0 can be
applied; in particular, the inequality Γj(∞) > γmin is
valid.

For λ ≤ 1.6, the matrix elements  can be either
positive or negative. As we have shown (see Fig. 6), in
the case of wide minibands for λ ≤ 1, they nearly equal
zero and the diffusive mixing can be neglected. How-
ever, if the transverse minibands are sufficiently nar-
row, the energy of significant phonons is determined by
the miniband width rather than the form factor and the
influence of the diffusive mixing can be significant.

Dependence of the oscillation damping rate on the
width of the transverse miniband. The general run of
this dependence is governed by the ratio of the trans-
verse miniband width and the maximum energy of
phonons "ω* involved in the transitions; this energy is
determined by the form factor. As an example, we plot
in Fig. 7 the dependence of Γj(0), Γj(∞), and Λ on the
transverse miniband width for the fixed parameter λ =
2.8 (this value corresponds to the first minimum in
Φγ(λ). Let us comment on the shape of this dependence.

In the case of a narrow transverse miniband (∆⊥  =
"ω*), the energy of significant phonons is lower than
the miniband width and the scattering is quasi-elastic;
thus, the decrement of the damping, along with the den-
sity of states, decreases inversely proportional to the
miniband width.
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Fig. 7. Dependence of the BO damping rate on the width
of the transverse miniband in the 2D QDSL for λ = 2.8 at
T = 300 K: (a) initial damping rate of the BOs Γj(0), (b)
damping rate of the BOs over long times Γj(∞), and (c) esti-
mate for the lowest BO damping rate obtained from the Ger-
shgorin theorem, Λ = min{γk}.
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The increase in the damping rate at ∆⊥  ≤ "ω* is
related to the fact that, in this case, the energy of impor-
tant phonons is determined by the miniband width,
rather than the form factor, and increases with the
former.

Finally, in the case of very narrow minibands, ∆⊥  <
2"s/a, the group velocity of electrons is lower than the
velocity of sound, and it becomes impossible to satisfy
simultaneously the energy and the transverse quasi-
momentum conservation laws; thus, one-phonon scat-
tering is absent. In this case, allowance for strongly
suppressed scattering between the transverse mini-
bands (we assume that "Ω – ∆⊥  > "ω*) should be made.
Taking into consideration that the transverse minibands
are narrow (∆⊥  < "s/a ! "ω*), we find that this case is
equivalent to the case of 1D QDSLs.

One can see from Fig. 7 that the long damping rate
Γj(∞) considerably exceeds the estimate given by Λ =
min{γk} and is very close to Γj(0) = 〈γ〉. This is due to
the fact that, for λ = 2.8, the diffusive mixing is pro-
nounced, 〈Φin(2.8)〉  ≈ 3〈Φγ(2.8)〉 . Thus, our arguments
about the role of diffusive mixing are corroborated.

In the case of sufficiently wide transverse mini-
bands, ∆⊥  ≥ T, which corresponds to the region ∆⊥ /"ω* ≥
6 in Fig. 7, the assumption about the uniform initial dis-
tribution of electrons in the transverse miniband (fk =
const) becomes incorrect, which should be taken into
account in the calculation of Γj(0) = 〈γ〉. However, it
appears that the corrections to be made are small pro-
vided there is no scattering by optical phonons within
the transverse miniband; i.e., ∆⊥  should be smaller than
"ω0, which corresponds to ∆⊥ /"ω* < 8.

The condition necessary for the absence of scatter-
ing by acoustic phonons between the transverse mini-
bands, "Ω – ∆⊥  > "ω*, limits the BO frequency from
below by the value fBO = ω*/2π = 1012 Hz. Thus, one
can see that the BO damping time in 2D QDSLs at
room temperature may be as long as several hundred
oscillation periods (Fig. 7), while in QWSLs at room
temperature the BOs damping drastically over a single
oscillation period [2].

The BO damping rate can be made even lower than
1010 Hz by increasing the size of the QDs that compose
the SL. Indeed, the wave vectors of the phonons
involved in the scattering are limited by the value q* =
π/RD determined by the form factor. Thus, the scatter-
ing rate (in the case of wide transverse minibands, ∆⊥  >
"ω*) is inversely proportional to the third power of the
linear dimension of a QD. Certainly, a restriction on the
increase in the QD size is imposed by condition (2) of
[1], which implies that the miniband originating from
the ground state of quantum confinement in the dots is
isolated from the other ones.

The main features of the physical pattern developed
above for 2D QDSLs hold true in the 3D case as well.
Both the dependence of the damping rate on the degree
of electron localization in the electric field and the gen-
SEMICONDUCTORS      Vol. 36      No. 12      2002
eral behavior of the dependence on the transverse mini-
band width remain the same. To account for the specific
features of 3D QDSLs, the damping rate derived in the
2D case should be multiplied by a geometrical factor
describing the change in the density of electron states
upon the transition from a 1D to a 2D transverse mini-
band. It can be seen from Fig. 8 that, for the chosen
QDSL parameters and the assumed dependence of the
form factor Q on the phonon wave vector q, this geo-
metrical factor is approximately equal to 4.

4. CONCLUSION

In this study, we analyzed qualitatively and quanti-
tatively the dependence of the BO damping rate on the
QDSL parameters and the strength and orientation of
the electric field; the analysis was carried out on the
basis of a quantum kinetic equation that describes the
damping of BOs and which was derived in our preced-
ing paper [1]. The temporal dependence of the BO
damping rate was studied. We obtained analytic expres-
sions for the initial value of the BO damping rate (i.e.,
at the instant when the BOs are excited) and the asymp-
totic value of the damping rate over long periods of
time. We demonstrated that the BO damping rate is pro-
portional to the square of the absolute value of the dif-
ference between the scattering-potential matrix ele-
ments calculated using the wave functions of neighbor-
ing Stark states. This dependence reflects the specific
features of the phase scattering, and, in particular, this
implies that long-wavelength excitations do not result
in a loss of coherence between the Stark states or in BO
damping. Due to this dependence of the damping rate
on the difference between the matrix elements, this rate
may be significantly lower than the reciprocal scatter-
ing time. In particular, for the case of intraminiband
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Fig. 8. Dependence of the BO damping rate on the width of
the transverse miniband in the 3D QDSL for λ = 2.8 at T = 300
K: (a) initial damping rate of the BOs Γj(0), (b) damping
rate of the BOs over long times Γj(∞), and (c) estimate for
the lowest BO damping rate obtained from the Gershgorin
theorem, Λ = min{γk}.
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scattering, the BO damping rate becomes three times
lower than the collision rate when the length of electron
localization in the electric field is equal to three QDSL
periods.

Thus, in our preceding publication [1] and in this
paper, we have demonstrated the possibility of sup-
pressing all phonon-scattering channels in 2D and 3D
QDSLs. Due to the exponential dependence of the
width of the transverse-motion spectrum in QDSLs on
the orientation of the electric field, the following results
can be attained by varying the strength and direction of
the electric field.

(i) Single-optical-phonon scattering, which is the
main scattering mechanism in QWSLs and leads to a
rapid damping of the BOs there, can be suppressed
completely.

(ii) Scattering by acoustic phonons between the
transverse minibands of the Stark ladder can be sup-
pressed almost completely.

(iii) The BO damping rate due to the scattering by
acoustic phonons within the transverse minibands can
be reduced by at least two orders of magnitude.

It should be stressed once again that the density of
states in a QD system is considerably higher than that
in QWs and even more so in bulk semiconductors (in
GaAs, the rate of collisions with acoustical phonons at
room temperature is 1011 s–1). Correspondingly, the
scattering probability in the absence of an electric field
is higher. Nevertheless, effective control over the spec-
trum of QDSLs by varying the strength and orientation
of the electric field makes it possible to reduce the
damping rate of the BOs in QDSLs at room temperature
to ~1010 s–1 when the oscillation frequency fBO exceeds
1012 Hz. This makes a considerable difference between
QDSLs and QWSLs with similar parameters: in the lat-
ter case, the damping rate of the BOs at room tempera-
ture is 1013 s–1 [2] and the scattering cannot be sup-
pressed significantly by varying the SL parameters and
the strength of the electric field.

To summarize, we have shown that, in periodic
quantum-dot structures of sufficiently high quality, the
scattering of the charge carriers by lattice vibrations
can be effectively suppressed by choosing an appropri-
ate strength and orientation of the applied electric field.
This is a significant advantage of QDSLs over layered
SLs, as the former can be used to develop radiation
emitters and detectors operating in the THz frequency
range.
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Abstract—Heterostructures with a single InAs1 – xSbx/AlSb1 – yAsy quantum well (QW) on (001) GaSb sub-
strates have been grown by MBE and studied using X-ray diffraction, transmission electron microscopy, and
photoluminescence (PL) spectroscopy. High-intensity PL was observed at a temperature of 80 K, with a peak
half-width of 30–50 meV and a peak wavelength in the range from 2 to 4.5 µm, depending on the QW width,
which varied between 4 and 20 nm, respectively. The fundamental absorption edge of such QWs was calculated
for a wide range of alloy compositions, x and y. Good correlation between the experimental and calculated
dependences of the band gap on the InAsSb/AlSbAs QW thickness was obtained. © 2002 MAIK “Nauka/Inter-
periodica”.
1. INTRODUCTION

The semiconductor system InAsSb/AlSbAs offers
promise for the design of mid-IR lasers (of 2–5 µm
wavelength) [1, 2], because it combines the narrow
(<0.4 eV) band gap of an InAsSb solid solution with
the large conduction band offset at the interface. Fur-
ther, when the content of Sb in InAsSb and As in AlS-
bAs is high enough, these solid solutions form a type-I
heterojunction, in contrast to the binary compounds
InAs and AlSb, forming a type-II heterojunction [3].
Varying the InAsSb and AlSbAs composition, it is pos-
sible to grow pseudomorphic quantum-confinement
structures on both GaSb and InAs substrates.

This report is devoted to a systematic study of the
morphology and photoluminescence (PL) of structures
with a single InAs1 – xSbx/AlSb1 – yAsy quantum well
(QW) in a wide range of compositions x and y and
MBE-grown on (001) GaSb substrates. The fundamen-
tal absorption edge of a QW has been calculated in the
effective mass approximation, using the Van de Walle
method [4] to account for the elastic stresses in the lay-
ers. The calculated results correlate well with the PL
data.

2. MBE GROWING

The samples were grown in a Riber 32P MBE
machine with a standard As source supplying a flow of
As4 molecules and a cracking Sb source equipped with
an additional high-temperature zone to allow the
decomposition of Sb4 molecules and produce a flow
1063-7826/02/3612- $22.00 © 21385
with a predominance of Sb2 molecules. To diminish the
defect density in the active region of a structure, a
0.5-µm-thick GaSb buffer layer containing a
10-period superlattice in its middle, 10 × [Al0.5Ga0.5Sb
(5 nm)/GaSb (5 nm)], was initially grown at the sub-
strate temperature TS = 500°C. An InAs(Sb) QW con-
fined between the top and bottom AlSbAs barriers of 23
and 38 nm thickness, respectively, and also a capping
5-nm thick GaSb layer were grown at a lower tempera-
ture (420°C), which is the optimal temperature for the
fabrication of InAs and InAsSb layers with high lumi-
nescent properties [5]. The QW thickness was varied in
the range of 4–20 nm. All the epitaxial layers were
nominally undoped.

Previously, we found an effect from the uninten-
tional incorporation of Sb atoms into InAs layers (with
the Sb-source maintained at the operation temperature,
but with its shutter closed). This effect is typical of the
employed configuration of sources of volatile compo-
nents and is presumably due to the essentially higher
incorporation factor of Sb2 molecules as compared with
As4 [6]. It was also shown that the Sb content in the
formed InAs1 – xSbx solid solution is x = 0.05 for TS =
480°C. To estimate the Sb content in a QW, in the
present study, a test structure of two InAs layers was
grown on (001) InAs substrate. In this structure, a
0.25-µm-thick buffer layer was grown at TS = 480°C
and another 0.15-µm-thick InAs layer, at 420°C. The
X-ray diffraction (XRD) rocking curve and the PL
spectrum of this structure are presented in Figs. 1a and
1b, respectively. Along with the substrate peak (θ = 0),
002 MAIK “Nauka/Interperiodica”
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the XRD rocking curve exhibits two peaks near the
angles θ1 = –1000'' and θ2 = –250'', which is related to
the diffraction from In  and In
layers grown at TS = 420 and 480°C, respectively.
Assuming that the layers are completely relaxed, the
simulation of XRD curves yields x1 = 0.122 and x2 =
0.033. The PL spectrum (Fig. 1b) also shows the sub-
strate peak (a photon energy EPL = 0.403 eV) and two
peaks with energies EPL1 = 0.324 eV and EPL2 =
0.382 eV. The Sb content in InAs layers estimated from
the PL, with due account taken for the band bending
(the bending parameter C = 0.67 eV [7]), is x1 = 0.114
and x2 = 0.035, which correlates well with the analysis
of XRD data.

Thus, the presented results allow for the conclusion
that InAs(Sb) QWs grown at TS = 420°C contain ~12%
Sb. It is necessary to note that the InAs1 – xSbx solid
solution is completely lattice-matched with GaSb at
x ≈ 0.09. Therefore, the lattice parameter of the QW
material is larger, and the QW is subjected to compres-
sive stress. As is known, effective compensation of
elastic stresses in a structure as a whole is possible in
multilayer structures by means of the alternate growing
of layers with opposite stresses (compressive and ten-
sile) [8]. In our case, such compensation is possible if
AlSb is replaced in barriers by a ternary AlSb1 – yAsy
solid solution, where the lattice parameter decreases as
the As content rises. It is noteworthy that this solid solu-

As1 x1– Sbx1
As1 x2– Sbx2

(a)

(b)

InAs substrate

InAs0.967Sb0.033

InAs0.878Sb0.122
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Fig. 1. (a) XRD double-crystal (θ – 2θ) rocking curve and
(b) PL spectrum at T = 77 K for a structure containing two
InAsSb layers.
tion becomes completely lattice-matched with GaSb at
y ≈ 0.08. An addition of As to AlSb also enhances the
band offsets at the QW interfaces and gradually trans-
forms the InAsSb/AlSbAs heterojunction from type II
to type I, as already mentioned above. To study the
influence of the As content in barrier layers on the
energy of optical emission from QWs experimentally,
we have grown structures in which the AlSb1 – yAsy
composition varied in the range y = 0.02–0.35. To mod-
ify the composition of the solid solution, only the Sb
flux was varied under constant Al, Ga, and As fluxes
and growth temperature [6]. Assuming the absence of
any relaxation of elastic stresses in the epitaxial layers,
the average value of y was estimated from the angular
position of the related peak of the XRD rocking curve.

3. STRUCTURAL STUDIES

A series of structures differing in their QW thick-
ness were studied via cross-sectional transmission elec-
tron microscopy (TEM) using a Philips EM-420 setup
with 100 kV accelerating voltage. As is known, (200)
diffraction reflections are sensitive to variations in the
chemical composition of materials with a face-centered
cubic lattice and can be effectively used to visualize
spatial fluctuations of the composition [9]. Figure 2
shows dark-field TEM images of samples with different
QW thicknesses, which demonstrates the high quality
and planarity of the layers.

4. OPTICAL STUDIES

Photoluminescence of the structures was measured
at a temperature of 80 K. The PL was excited with a
InGaAs diode laser operating in the CW mode at a
1.05-µm wavelength, and also with the 514-nm line of
an Ar-ion laser. The pumping power density incident on
the sample was ~2 W cm–2. The PL signal was detected
with a cooled InSb detector. High-intensity PL was
observed during excitation with an Ar-ion laser, with
the energy of quanta above the edge of the Γ band in the
AlSbAs barriers (Fig. 3). The PL spectra contain two
relatively narrow peaks, one of which (about 0.78 eV)
corresponds to the edge PL in GaSb. The position of the
second peak, with a half-width of 30–50 meV, varied in
the wavelength range of 2–4.5 µm, depending on the
QW thickness. It is necessary to note that the intensity
of the PL peak related to the emission from the QW
decreased drastically as a result of pumping with a laser
of 1.05 µm wavelength; this indicates a subbarrier exci-
tation mode, that is, the direct pumping of a thin QW.

Simultaneously with the experimental study, we per-
formed calculations of the band gap value for
InAsSb/AlSbAs QWs in a wide range of QW and barrier
compositions and QW thicknesses. The calculations
were performed via the effective mass approximation
using a two-band model. The influence of elastic stresses
on the band structure of solid solutions was taken into
account in terms of the van de Walle theory [4].
SEMICONDUCTORS      Vol. 36      No. 12      2002
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According to the calculations, the offset of the con-
duction band at the interface exceeds 1.5 eV in the
entire range of compositions under study [7]. The situ-
ation with the valence band is more complicated,
because the valence band offset is considerably smaller,
and the value and even the sign of this offset depend on
the composition of both compounds (InAs1 – xSbx and
AlSb1 – yAsy). Figure 4 presents the energies of the top
of heavy and light hole bands (solid and dashed lines,
respectively) versus y for the AlSb1 – yAsy solid solution.
The pseudomorphic growth of a structure on GaSb sub-
strate was assumed in the calculation. In the same fig-
ure, the corresponding data for InAs0.88Sb0.12 are
shown. As seen in the figure, the type of the band struc-
ture changes at y ≈ 0.05–0.06. At y > 0.06, an

GaSb

AlSbAsAlSbAs

GaSb

50 nm(a)

50 nm

50 nm(b)

(c)

AlSbAsAlSbAs In
A

sS
b

Fig. 2. Dark-field cross-sectional TEM images of structures
containing an InAsSb QW of the thickness: (a) 4.8, (b) 6.2,
and (c) 10 nm. The bright spotlike defects are artifacts
formed during the ionic etching at the time of sample prep-
aration.
SEMICONDUCTORS      Vol. 36      No. 12      2002
PL
 in

te
ns

ity
, a

rb
. u

ni
ts

Energy, eV

×10

GaSb

a

b

c
×10

5 4 3 2

0.3 0.4 0.5 0.6 0.7 0.8 0.9

Wavelength, µm

Fig. 3. PL spectra of InAs0.88Sb0.12/AlSb1 – yAsy QW struc-
tures with well thickness and As content y in the barrier of,
respectively, (a) 4.2 nm, 0.3; (b) 6.2 nm, 0.2; and (c) 14 nm,
0.03.
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izontal lines indicate the corresponding values for
InAs0.88Sb0.12. Stresses lift the degeneracy in the valence
band of AlSb1 – yAsy, except for the case of matched lattices
at y ≈ 0.08.
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InAs0.88Sb0.12/AlSb1 – yAsy QW exhibits a type-I band
diagram; that is, electrons and holes are spatially local-
ized in the same InAs0.88Sb0.12 layer. At y < 0.05, the
valence band offset reverses its sign and the QW
becomes type II. In this case, electrons are localized in
the InAs0.88Sb0.12 layer, and holes, in the neighboring
AlSb1 – yAsy layers. It is necessary to note that, in both
cases, the material with a higher energy of the valence
band top (AlSb1 – yAsy at y < 0.05 or InAs0.88Sb0.12 at
y > 0.06) experiences compressive elastic stresses and,
consequently, the heavy hole band becomes the lower
state.

Figure 5 shows calculated dependences of the band
gap (Eg) as a function of the thickness of the
InAs0.88Sb0.12/AlSb1 – yAsy QW for the extreme compo-
sitions of AlSb1 – yAsy barriers: y = 0.02 (type-II hetero-
junction, dashed line) and y = 0.3 (type-I, solid line). It
was established that, in spite of the band structure trans-
formation from type II to type I and the slight improve-
ment of the hole confinement as the As content in the
AlSb1 – yAsy barriers rises, the related shift of the optical
transition energy is less than the experimentally
observed half-width of the PL peak. The experimental
values of the band gap in the QW were estimated from
the PL data using the approach described in [10], where
a semi-empirical relation Eg = EPL + 0.6∆EPL was
obtained (here, EPL and ∆EPL are the spectral position
and half-width of the PL peak, respectively). Thus, the
obtained Eg values are also shown in Fig. 5 as squares
for structures with a low (0.02 < y < 0.04) arsenic con-
tent and as circles for structures with a high (0.2 < y <
0.3) arsenic content in the barriers. On the whole, these

Energy, eV
0.8

0.7

0.6

0.5

0.4

0.3

0 5 10 15 20 25 30
QW width, nm

Fig. 5. Band gap of a single InAs0.88Sb0.12/AlSb1 – yAsy
QW vs. the well thickness: (lines) calculated and (points)
experiment. Calculations for y of 0.02 (dashed line) and 0.3
(solid line). Experimental data: (squares) samples with low
(0.02 < y < 0.04) As content in the barriers and (circles)
those with high As content (0.2 < y < 0.3).
data correlate well with the calculated dependences,
showing somewhat lower Eg values for the samples
with small y. It is also necessary to note that the PL
intensity in the samples with a higher As content in the
barriers was on average 3 times greater than that in the
samples with small y. The results obtained show that the
PL observed in these structures arises from interband
optical transitions in the InAs0.88Sb0.12/AlSb1 – yAsy
QW, and they also validate the proposed model of the
band structure and transformation of the heterojunction
type in the heterostructures under study.

5. CONCLUSION

The results of structural and optical studies of
InAs1 – xSbx/AlSb1 – yAsy QW heterostructures grown by
MBE on (001) GaSb substrates have been presented.
The structures exhibit intense photoluminescence in
the range of 2–4.5 µm, depending on the QW thick-
ness. The calculation of the band offset at the
InAs1 − xSbx/AlSb1 – yAsy interface reveals a heterojunc-
tion transformation from type II to type I as the As con-
tent in the barriers rises, which is indirectly confirmed
by the PL experimental data.
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Abstract—Low-field quantum magnetoresistance of two-dimensional electron gas at the In0.53Ga0.47As/InP
interface was studied in the persistent photoconductivity state. The sign-alternating property of the dependences
of the magnetoresistance on the magnetic field indicates that the spin–orbit interaction affects the quantum well
conductivity. The mechanism caused by the electric field built in at the interface was shown to contribute dom-
inantly to the spin–orbit scattering frequency 1/τso. This is the Rashba mechanism, which is linear in the elec-
tron wave vector. These data allowed us to estimate the parameters of spin–orbit splitting of the energy spectrum
as α = (84 ± 10) Å2 (by the Rashba mechanism) and γ = (73 ± 5) eV Å3 (by the Dyakonov–Perel and Dresselhaus
mechanisms). © 2002 MAIK “Nauka/Interperiodica”.
1. INTRODUCTION

As is known, classical (Lorentzian) magnetoresis-
tance is absent in semiconductors and semiconductor
structures with two-dimensional electron gas (2DEG)
at a low (liquid-helium) temperature. The magnetore-
sistance exponentially increasing with the magnetic
field is observed instead of classical magnetoresistance
at the insulator side of the metal–insulator transition in
the region of low temperatures. This magnetoresistance
is caused by spin transformation of the Hubbard bands
[1] or by contraction of electron wave functions [2].
The absence of the Lorentzian magnetoresistance at the
metal side of the transition is caused by electron gas
degeneracy [3]. Instead of this, the quantum negative
magnetoresistance (NMR) is observed in a weak mag-
netic field at ωcτ ! 1, where ωc is the cyclotron fre-
quency and τ is the transport time (time of the electron
momentum relaxation). This is caused by suppression
of the weak localization effect by the magnetic field and
a corresponding increase in the conductivity [4]. The
positive quantum magnetoresistance caused by another
type of quantum corrections to the conductivity mani-
fests itself in a stronger magnetic field. These correc-
tions are related to the modified electron–electron inter-
action characteristic of conductors with disordered
electron gas [4–7]. At ωcτ @ 1, Shubnikov–de Haas
oscillations set in.

The conductivity decrease in the absence of a mag-
netic field (weak localization) is caused by the interfer-
ence of wave functions of electrons that passed the
same path in forward and backward directions. This
interference depends on the total spin J of two electron
1063-7826/02/3612- $22.00 © 21389
waves. During spin–orbit (SO) interaction, only inter-
ference of the waves with J = 1 in the triplet state yields
the weak localization effect and thus reduces the con-
ductivity. The singlet state of interfering waves with the
total number J = 0 causes an increase in the conductiv-
ity (the antilocalization effect). Hence, suppression of
interference of waves with J = 1 and 0 by the magnetic
field increases the negative-magnetoresistance effect
and decreases the conductivity, respectively. In the lat-
ter case, weak antilocalization is suppressed, which
results in positive magnetoresistance.

In the first studies concerned with the theory of
weak localization and antilocalization, the times τϕ and
τso of the dephasing of an electron wave function were
considered as the parameters defining the dependences
of the magnetoresistance on the magnetic field. The
former time (τϕ) corresponds to the dephasing due to
inelastic scattering related to the electron–electron or
electron–phonon interactions. The latter time (τso) cor-
responds to the dephasing due to SO scattering of elec-
trons. It was assumed that τso is controlled only by the
SO interaction mechanism. As the process controlling
τso, the Elliot–Yafet spin relaxation mechanism [8] or
the Dyakonov–Perel mechanism (often referred to as
the Dresselhaus mechanism) arising in semiconductors
without a center of inversion [4, 9] were considered.
Later on, several theoretical studies showed that, if
there are several SO interaction mechanisms, they have
different effects on the dependence of the 2DEG con-
ductivity on the magnetic field [10, 11]. A new type of
dependence was suggested in order to take into account
these different effects. As a result, an analysis of the
002 MAIK “Nauka/Interperiodica”
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experimental dependences allowed for a separate esti-
mation of the contributions of different SO scattering
mechanisms.

In this paper, we report the results of studying 2DEG
magnetoresistance at the In0.53Ga0.47As/InP heter-
oboundary in the case when one subband of size quan-
tization is populated in the persistent conductivity state
and compare these results with theory [10, 11]. Previ-
ously, such an experimental study was carried out for
2DEG at the GaAs/In0.15Ga0.85As heteroboundary using
samples in the equilibrium state (in the dark) [11].

2. THEORETICAL PREMISES

The theory of quantum corrections is valid for a
weakly disordered electron gas if the following condi-
tion is met:

(1)

Here, kF is the wave vector of an electron at the Fermi
level and l is the free path length. The theoretical depen-
dences of the magnetoconductivity on the magnetic
field are valid only up to the magnetic field correspond-
ing to the inequality

(1a)

where LB = ("c/2eB)1/2 is the magnetic length.

The sign-alternating dependence of the quantum
magnetoresistance may be illustrated using the theoret-
ical dependence of the 2DEG magnetoconductivity on
the magnetic field (see [8])

(2)

where B is the magnetic field, G0 = e2/2π", and β is the
coefficient defining the Mackey–Thompson correction
(see [12]),

(3)

the function f2(x) is defined by the diagram function
Ψ(z):

The parameter Hϕ is related to the SO dephasing time as
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the parameter Hs is related to the relaxation time τso of
SO interactions as

(5)

If the frequency 1/τso of SO scattering is much lower
than the frequency 1/τϕ, we have 2/Hs + Hϕ ≈ Hϕ and,
summing the terms on the right-hand side of (2), we
arrive at

i.e., the quantum correction to the conductivity is posi-
tive and negative magnetoresistance is observed, con-
trolled by the dephasing time.

Hereafter, as in most of the theoretical [10, 11] and
experimental studies, we neglect the Mackey–Thomp-
son correction (3), assuming that β  0.

For semiconductors with a strong SO interaction of
electrons, e.g., p-type IV and III–V semiconductors, as
well as for quantum wells (QWs) based on hole con-
duction, the inverse inequality 1/τso @ 1/τϕ is valid, i.e.,

(6)

and a dominant role is played by the last term on the
right-hand side of (2). The quantum correction to the
conductivity becomes negative; i.e., positive magne-
toresistance is observed. This effect, as well as negative
magnetoresistance, is defined only by the value and
temperature dependence of τϕ,

(7)

If the frequencies 1/τso and 1/τϕ are comparable in mag-
nitude, we have

(8)

and the last term on the right-hand side of (2) with a
larger argument also plays a dominant role in the weak
magnetic field, maintaining the positive magnetoresis-
tance. As the magnetic field increases and as this depen-
dence is flattened, the first terms begin to prevail and
the magnetoconductivity changes its sign, while the
magnetoresistance becomes negative. This sign-alter-
nating magnetoresistance can be observed in the
III−V-based structures with 2DEG (see, e.g., [9, 11,
13]). It manifests itself as a peak of the positive magne-
toresistance in the region of a weak magnetic field with
a sign reversal and a transition to the negative magne-
toresistance.

As was shown in [10], dependence (2) should be
changed if the Hamiltonian

(9)
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for spin splitting of the conduction band includes linear
(with respect to k) terms describing the SO interaction
(the heteroboundary plane [100] in III–V was consid-

ered). In Eq. (9), " = 1, k2 =  + , s = (σx, σy), W =
(Ωx, Ωy) are the two-dimensional vectors with compo-
nents in the QW plane, and σi are elements of the Pauli
matrix. The vector 2W/" has a physical meaning of the
precession vector: its length is equal to the spin preces-
sion frequency, and its direction defines the precession
axis. The spin-related energy splitting is 2Ω.

In the case under consideration, the spin relaxation
time is calculated as

(10)

where

(11)

is the term linear with respect to the wave vector (the

Dyakonov–Perel mechanism) [14]. Here, 〈 〉  is the
mean squared wave vector in the direction perpendicu-
lar to the 2DEG plane.

(12)

is a cubic term with respect to the wave vector in the
heteroboundary plane (the Dresselhaus mechanism).
Hereafter, we designate the transport relaxation time as
τ1 = τ. It is noteworthy that magnetoconductivity
expression (2) is valid only if Ω3 contributes to SO scat-
tering.

Furthermore, in the case of an asymmetric QW, an
additional term suggested by Rashba [15] arises in the
Hamiltonian,

(13)

(F is the electric field at the heteroboundary); this term
is also linear with respect to the electron wave vector.
The coefficients α and γ are the constants characteriz-
ing the energy spectrum of a semiconductor with a
2DEG layer.

Theoretical analysis [10] showed that it is incorrect
to employ merely the total time for the spin relaxation
in expression (2) in order to take into account the linear
terms related to weak localization when calculating the

kx
2 ky
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1
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quantum corrections. In [10], the magnetoconductivity
expression was written as

(14)

where aa = n +  +  +  and C is the Euler con-

stant. In contrast to (2), formula (14) incorporates two
characteristic magnetic fields to describe the SO scat-
tering: apart from Hs, defined by the total relaxation
time τso (10) of the spin,

(15)

an additional parameter Hs1 arises, defined by the larg-
est term of (11) or (13), which are linear with respect to
the wave vector

(16)

The condition (1a) for the applicability of all the
theoretical dependences of the magnetoconductivity on
the magnetic field for 2DEG may be written as

(16a)

3. EXPERIMENTAL
Selectively doped In0.53Ga0.47As/InP heterostruc-

tures were produced by liquid-phase epitaxy [16].
A p-type Sm-doped InP buffer layer (with a hole con-
centration p ≈ 1015 cm–3 at room temperature) about
1.5 µm thick was grown on a substrate of semi-insu-
lating Fe-doped InP. Then, an Si-doped (NSi ≈ (2–3) ×
1017 cm–3) n-InP layer 0.5–0.6 µm thick was grown (as
an electron source in the QW), as was a p-type
In0.53Ga0.47As solid-solution layer 4–5 µm thick with a
hole concentration p ≈ 1015 cm–3. These structures were
used to produce (by photolithography) samples shaped
as double Hall crosses with six contacts and intended
for galvanomagnetic measurements. Indium drops
were fused onto contact pads of the samples in vacuum
at 450°C to ensure an ohmic contact with the 2DEG
layer. The electron concentration in the samples was
varied by light pulses of a GaAs light-emitting diode
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Table 1.  Parameters of the samples in the equilibrium state at T = 1.8 K

Sample R, Ω ns, 1011 cm–2 µ, 104 cm2(V s)–1 τ, ps Htr, G kFl

1 552 2.93 3.86 0.90 28 47

2 649 4.06 2.37 0.55 53 40

3 717 3.38 2.573 0.60 54 36

Note: R is the resistance per film area, ns and µ are the Hall concentration and mobility of electrons, τ is the elastic-scattering time, Htr is
parameter (16a), and kFl is parameter (1).
(LED) using the persistent photoconductivity effect
(nonequilibrium, but a quasi-steady process), which is
accompanied by charge redistribution and a decrease in
the built-in electric field at the heteroboundary [17].
The chemical potential εF was located in the first sub-
band of size quantization in the range of concentration
variation in the samples.

The measurements were carried out in the range T =
1.8–4.2 K using samples with an initial 2DEG concen-
tration from ns = 2.9 × 1011 to ns = 4.1 × 1011 cm–2. The
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Fig. 1. Dependences of the magnetoresistance ∆R/R0 on the
magnetic field B for samples 3 (a) and 1 (b) (see Table 1) at
(a) the temperatures T = 4.21 (1), 3.74 (2), 3.27 (3), 2.78 (4),
2.45 (5), 1.99 (6), and 1.81 (7) K and (b) the electron
densities ns (1011 cm–3) = 2.93 (1), 3.08 (2), 3.103 (3), and
3.202 (4).
technique used for taking galvanomagnetic measure-
ments was described elsewhere [18]. The 2DEG param-
eters at T = 1.8 K are listed in Table 1.

4. RESULTS AND ANALYSIS

The dependences of the sign-alternating magnetore-
sistance on the magnetic field B were measured in weak
magnetic fields for all the sample states (both in the
dark and under illumination); positive magnetoresis-
tance was observed at B < 50 G and had a maximum.
Figure 1 displays examples of such dependences of the
magnetoresistance [R(B) – R(0)]/R(0) = ∆R/R0 on the
magnetic field. The dependence ∆R/R0 = f(B) was
recalculated into the dependence of the magnetocon-
ductivity on the magnetic field, [σ(B) – σ(0)] = ∆σ(B),
which was normalized to the value G0 = e2/2π" in the
following way:

Here,

and µ is the Hall mobility. It was assumed that (µH)2 !
1 in a weak magnetic field, but it can be comparable in
magnitude to the values ∆R(B)/R0. The dependences
obtained in such a manner (see Fig. 2) were compared
to the theoretical one (14) to determine the parameters
Hϕ (4), Hs (15), and Hs1 (16).

Figure 1a displays the data for one of the samples in
the initial state as the temperature varies; Fig. 1b and
Fig. 2 show the data for different 2DEG concentrations
varied by illuminating the sample with pulses of the
GaAs LED. Figure 2 (solid lines) also displays the the-
oretical dependences (14) that best fit the experimental
data.

The obtained values of Hϕ were used to determine
the dephasing time τϕ according to relation (4). The dif-
fusivity was calculated as
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where ν is the density of 2DEG states. The experimen-
tal dephasing frequencies 1/τϕ are shown by points in
the temperature (Fig. 3) and electron-density (Fig. 4)
dependences of 1/τϕ.

Before comparing these results with theoretical
data, we note that, as was shown in our previous papers
(e.g., [19]), the relaxation of the wave function phase in
the main band of III–V-based heterostructures at the
liquid-helium temperature is controlled by electron–
electron interaction. The first type of such an interac-
tion, characteristic of weakly disordered conductors, is
defined by the so-called Nyquist time [20]

(17)

The other interaction type is characteristic of a perfect
Fermi liquid. For 2DEG, the corresponding time is
given by (see [21])

With the constraint T < "/τ, we have TM = "/τ. Then,

(18)

The sum frequency of the electron–electron interaction
is calculated on the basis of the measured sample con-
ductivities σ and electron densities ns as

(19)

Figures 3 and 4 also show the theoretical depen-
dences of the times 1/τee (17)–(19) on the temperature
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Fig. 2. Dependences of the magnetoconductivity ∆σ/G0 on
the magnetic field B for sample 1 (see Table 1) at the elec-
tron density ns (1011 cm–3) = 3.14 (1) and 3.20 (2). Solid
lines are the fitted theoretical dependences (14).
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and electron density. One can see that there is qualita-

tive agreement between the calculated 1/  and exper-
imental 1/τϕ dependences on ns and T. The quantitative
disagreement of theory with the numerical values τϕ
(within 50%) in the case under consideration (see
dashed curves 4 in Figs. 3 and 4) is observed rather fre-
quently when comparing experimental and calculated
values (see [6], Subsection 4.2).

The dephasing of the electron wave function can
also be caused by inelastic electron–phonon scattering.
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Fig. 3. Temperature dependences of the dephasing frequency
1/τϕ for sample 3 in the equilibrium state. The experimental
data (points) were obtained by comparison of the dependences
∆σ(B)/G0 with expression (14). The theoretical dependences

of 1/  (1), 1/  (2), and 1/  (3) correspond to (18), (17),

and (19), respectively; curve 4 is for 1.5/ .
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Fig. 5. Parameters of the spin–orbit interaction versus the
2DEG concentration in the persistent-conductivity state for
samples 1 (a) and 2 (b) (see Table 1). The experimental val-
ues ((1) Hs (15) and (2) Hs1 (16)) were obtained by compar-
ison of the dependences ∆σ(B)/G0 with expression (14).
Dashed curves are plotted by estimation through the exper-
imental points. The theoretical dependences correspond to
(3) Hs3D (23), (4) Hs1D (20), (5) Hs1D + Hs3D + Hs1R,

(6)  (25), and (7) Hs1D + Hs3D + .Hs1R
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Fig. 6. Parameters of the spin–orbit interaction versus the
temperature for sample 3 in the equilibrium state. The same
notation as in Fig. 5 is used.
To estimate theoretically the corresponding frequency,
we used the relaxation time of the average electron
energy in the case of scattering under the deformation
(DA) and piezoelectric (PA) potential of acoustical
phonons. The corresponding equations (based on the
Karpus theory [22]) are presented, e.g., in [23] (Subsec-
tion 4.3.2). As a result, it turns out that the frequency of
electron–phonon interactions when there is DA scatter-
ing varies from ~0.004 ps–1 at T = 1.8 K to ~0.01 ps–1 at
T = 4.2 for all the samples. The frequency of the PA
electron–phonon interaction is even lower (by an order
of magnitude). Hence, these mechanisms of inelastic
scattering are virtually unimportant in the course of
dephasing in the temperature and electron density
ranges under consideration.

Thus, as the lower subband of size quantization is
populated in the persistent photoconductivity state
(under exposure to light pulses), the dephasing time τϕ
is controlled, as in the steady state (Fig. 3), by the elec-
tron–electron interaction time (19).

Figures 5 and 6 (points 1 and 2) show the values of
Hs(ns), Hs(T ) and Hs1(ns), Hs1(T ) determined from
comparison of the experimental dependences of the
magnetoconductivity on the magnetic field with
expression (14).

The concentration dependences of these parameters
in the persistent conductivity state (Fig. 5) are qualita-
tively similar to those observed in [18, 24] for the val-
ues Hs. However, we emphasize that the data of [18, 24]
on the dependences Hs(ns) and Hϕ(ns) in the first sub-
band of size quantization are qualitative since they were
processed using theoretical dependence (2), which is,
in general, valid only for the mechanism of SO scatter-
ing (12). More comprehensive measurements and an
analysis carried out in this study on the basis of the the-
ory in (14) show that the SO-interaction parameters Hs
and Hs1 do not decrease immediately as the electron
density increases: when they are first exposed to light,
these parameters continue to increase slightly with ns
and then decrease.

The temperature dependences (see Fig. 6) were
measured using a sample in the equilibrium state. As
expected, the parameters Hs and Hs1 characterizing SO
scattering are independent of temperature (to within the
experimental error).

As is evident from Figs. 5 and 6, the experimental
values of Hs1 are close in magnitude to the values of Hs.
This means that the last term in sum (15) has a domi-
nant role; i.e., the experimental values of Hs1 (16) are
defined by the Rashba mechanism,

Hs1

2τΩ1R
2

4"eD
---------------.=
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For comparison with the theory, the parameters Hs

(15) and Hs1 (16) were calculated as follows. The value

〈 〉  was determined as (see [25])

In the calculations, the dielectric constant, effective
electron mass, and the residual-impurity concentration
were taken as χ = 14.1, m* = 0.0141m0, and N0 = 5 ×
1010 cm–2, respectively. As a result, we obtain the fol-

lowing expression for Hs1D, defined by  (11):

(20)

Hereinafter, the substitution k = kF = (2πns)1/2 is used,
the unit of concentration is cm–2, and the coefficient γ is
expressed in Å3 eV.

Another term which is linear with respect to k,

defined by  (13) and characteristic of an asymmet-
ric QW, is written as

(21)

The coefficient α is expressed in Å2. Here, we used the
following expression for the mean electric field of the
QW (see [25]):

(22)

The Dresselhaus term, which is cubic with respect to

the wave vector k and is defined by  (12), yields the
following expression for the SO scattering parameter:

(23)

Hereafter, we assume that τ3/τ = 1.
The parameters calculated using (20) and (21) are

shown in Figs. 5 and 6 by curves 3 and 4, respectively.
Curves 5 correspond to the calculated dependences
Hs = Hs1D + Hs3D + Hs1R (15) on the concentration ns.
The constants γ = (73 ± 5) Å3 eV and α = (84 ± 10) Å2

were used in these calculations.
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Figure 5 also displays the parameters Hs1R calcu-

lated for the nonequilibrium mode ( ). The persis-
tent photoconductivity in the structures under study is
caused by separation of carriers by the built-in electric
field F, hole capture by residual ionized acceptors in the
In0.35Ga0.46As narrow-gap layer, and capture by surface
states if the upper layer is thin [17]. This means that, if
the value ns is increased by ∆ns when the system is
exposed to interband-absorption light, the concentra-
tion N0 simultaneously decreases by the same value.
Therefore, the mean field in the persistent-photocon-
ductivity state can be written as

(24)

and the parameter of SO scattering according to the
Rashba mechanism in the persistent-photoconductivity
state is given by

(25)

where F0 and ns0 are the built-in field (22) of the hetero-
structure and the electron density in the initial state, and
ns is the electron density in the persistent-conductivity

state. The concentration dependences of  calcu-

lated by (25) and of the sums Hs1D + Hs3D +  are
shown in Fig. 5 by curves 6 and 7, respectively. Such a

calculation of  allows only a qualitative explana-
tion of the run of the experimentally determined param-

eters Hs1 =  and Hs1 ≈  in relation to the elec-
tron density, which increases with the number of illumi-
nation pulses (cf. points 2 with curves 6 and points 1
with curves 7 in Fig. 5).

The constants α and γ may be rather roughly esti-
mated by linear extrapolation of the parameters (see
[11]) of the three-band k · p model of energy bands for
InxGa1 – xAs compounds at x = 0, 0.15, and 1 to deter-
mine the values at x = 0.53 (see Table 2), as well as the
k · p-model formulas (see [11]); i.e.,
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Table 2.  Band structure parameters of GaAs, InAs, In0.15Ga0.85As, and In0.53Ga0.47As determined experimentally and calcu-
lated according to the k · p model

Band structure 
parameters

Data of [11] This study

k · p Experiment k · p Experiment

GaAs InAs In0.15Ga0.85As In0.53Ga0.47As

Eg, eV 1.519 0.42 1.35 0.8215
∆, eV 0.341 0.38 0.347 0.362

, eV 2.97 3.97 3.12' 3.49

∆', eV 0.171 0.24 0.181 0.207
P, eV Å 10.49 9.2' 10.29 9.81
P ', eV Å 4.78 0.87' 4.20 2.80
Q, eV Å –8.16 –8.33 –8.18 –8.24
γ, eV Å3 27.5 26.9 27.7 24 36 73 ± 5
α, Å2 5.33 116.74 7.2 7.2 25 84 ± 8

Eg'
The three-band k · p model allows for the states of the
conduction band Γ6 with the Bloch functions S; valence
band Γ8 + Γ7 with functions X, Y, Z; and the higher band
Γ8c + Γ7c with functions X', Y', Z'. These states at k = 0
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Fig. 7. Dependences Eg(x) (a), γ(x) (b), and α(x) (c) on the
In concentration (x) in the InxGa1 – xAs solid solution
according to the data of [11] and their linear extrapolation
(unshaded squares). The same dependences, but with the
use of the value Eg = 0.8215 eV known for x = 0.53 [26]
(shaded squares).
correspond to  = 0,  = –Eg,  = –(Eg + ∆),

 = – ,  = –  + ∆', P = (i"/m0)〈S|pz|Z〉 , P' =

(i"/m0)〈S|pz|Z'〉 , and Q = (i"/m0)〈X|pz|Z'〉  (interband
matrix elements); p = –i"∇ .

The linear extrapolation of the dependence Eg(x)
yields the value Eg = 0.94 eV (Fig. 7a, unshaded
squares). However, the experimental value Eg =
0.8215 eV was determined to a high accuracy in [26]
(Fig. 7a, shaded squares). Such a moderate “sag” of the
dependence Eg(x ) causes a significant increase in the
coefficient γ for the In0.53Ga0.47As solid solution
(Fig. 7b). The parameters determined for In0.53Ga0.47As
are listed in Table 2 together with the data of [11].

As a result, we obtain theoretical estimates of γ ≈
36 Å3 eV and α ≈ 25 Å2 for x = 0.53. These values dif-
fer from those determined by fitting dependence (14) to
the experimental data by a factor of 2–3 (see Table 2).
However, it is known that other parameters of the band
structure, except for Eg, can nonlinearly depend on the
solid solution composition at the center of the interval
x = 0–1.

The linear extrapolation is much more accurate at
the beginning of this interval (x = 0.15). Therefore, it is
not surprising that the calculated and experimental data
for γ and α in [11] virtually coincide. Furthermore, the
band parameters near the GaAs/In0.15Ga0.85As heter-
oboundary (studied in [11]) and near the
InP/In0.53Ga0.46As heteroboundary can differ due to dif-
ferent lattice constants on either side of the heter-
oboundary. Finally, it is most probable that the heter-
oboundary defect structure was significantly modified,
as well as the lattice strain, after repeated cooling-illu-
mination–heating cycles, to which the samples were
exposed. As a result, the energy band parameters, on
which the coefficients γ and α depend, could also
change.

EΓ6
EΓ8

EΓ7

EΓ7c
Eg' EΓ8c

Eg'
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5. CONCLUSION
The quantum magnetoresistance of two-dimen-

sional electron gas at the In0.53Ga0.47As/InP heter-
oboundary was studied in the persistent photoconduc-
tivity state. The sign-alternating magnetoresistance in a
weak (100 G) magnetic field is indicative of the influ-
ence of the spin–orbit interaction on the quantum well
conductivity.

It was shown that a major contribution to the spin–
orbit scattering frequency 1/τso is made by the mecha-
nism controlled by the electric field built in at the het-
eroboundary; i.e., the Rashba mechanism linear with
respect to the electron wave vector. The data obtained
allowed us to estimate the parameters of the spin–orbit
splitting of the energy spectrum on the basis of avail-
able theories as α = (84 ± 4) Å2 (according to the
Rashba mechanism) and γ = (73 ± 3) eV Å3 (according
to the Dyakonov–Perel and Dresselhaus mechanisms).
The dephasing frequency of the electron wave function
is defined by the sum of electron–electron interaction
frequencies characteristic of perfect and disordered
two-dimensional Fermi liquids.
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Abstract—Vapor-phase epitaxy was used to grow Si layers enriched to 99.96% with 28Si isotope. Secondary-
ion mass spectrometry and Raman spectroscopy were used to demonstrate the high quality of the epitaxial
material obtained. © 2002 MAIK “Nauka/Interperiodica”.
Natural silicon is a mixture of three stable isotopes
with atomic masses of 28 amu (content 92.21%),
29 amu (4.70%), and 30 amu (3.09%). The use of iso-
tope-pure silicon opens up additional opportunities for
the development of new silicon-based semiconductor
devices and the improvement of properties of already
existing devices. This is due to the higher heat conduc-
tivity of isotope-pure silicon [1, 2]; to the possibility of
achieving a uniform dopant distribution with abrupt
boundaries of the doped region by neutron transmuta-
tion doping [3, 4], which rules out diffusion-related
redistribution of the impurity introduced, characteristic
of conventional technologies; and to prospects for the
development of components for a quantum computer
based on solid-state isotope heterostructures [5, 6].

The aim of this study was to develop a technology
for the deposition of epitaxial layers of isotope-pure sil-
icon using vapor-phase epitaxy. The silicon isotopes
were separated by centrifuging [7]. The silicon tetraflu-
oride employed in isotope separation was processed
into silane via nucleophilic substitution [7].

The epitaxial growth was carried out in a vertical
water-cooled glass reactor with induction heating. Sub-
strates were placed on the lateral faces of a graphite
pyramid.

Epilayers were grown in an atmosphere of purified
hydrogen at 1100°C from a mixture of 4% silane
(28SiH4) and 96% argon from the reaction SiH4  Si +
2H2. Single-crystal wafers of KEF-20 silicon 350 µm
thick (n-type Si with resistivity of 20 Ω cm) with [100]
orientation served us substrates.

The distribution of concentrations of various silicon
isotopes across the thickness of a grown layer was
determined using secondary-ion mass spectrometry
(SIMS) with a CAMECA IMS4f secondary-ion micro-
probe. The secondary emission of analytical ions of the
1063-7826/02/3612- $22.00 © 21398
isotopes, Si–, was excited by bombarding an epilayer
with 14.5 keV Cs+ ions. The measurements were made
in the high-mass-resolution mode (M/∆M = 3500),
which ensured that the analytical signal of secondary
Si– ions was reliably distinguished from SiH– clusters
with a similar mass.

Figure 1 shows concentration profiles of 28Si, 29Si,
and 30Si isotopes across a 2.6-µm-thick layer grown
from a crystalline substrate of natural unenriched sili-
con. The relative concentrations of the silicon isotopes
in the substrate correspond to those in natural silicon.
The content of 29Si and 30Si isotopes in the epilayer is
more than 2 orders of magnitude lower: the epilayer

28Si
29Si
30Si

1023

1022

1021

1020

1019

Concentration, cm–3

0 1000 2000 3000
Depth, nm

Fig. 1. Concentration profile of 28Si, 29Si, and 30Si silicon
isotopes in an isotope-enriched layer grown on a substrate
with natural isotopic composition.
002 MAIK “Nauka/Interperiodica”
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contains 99.96% 28Si (which is presently the world
record [8]) and 0.02% of both 29Si and 30Si.

Figure 2 presents Raman spectra obtained for an iso-
tope-pure 28Si layer and, for comparison, that of a sin-
gle-crystal substrate with natural isotopic composition.
The Raman spectra were measured using an automated
spectral installation based on a DFS-24 double-grating
monochromator. The spectral width of the slit was
1 cm–1. All the spectra were recorded in the backscat-
tering mode at room temperature. The spectra were
excited by the 488-nm line of an argon-ion laser with an
incident power of 30 mW in a 50-µm spot.

It can be seen that the line of the isotope-pure 28Si is
shifted relative to that of natural silicon to higher fre-
quencies. Such behavior is in agreement with the depen-
dence of the phonon frequency on the mass, ω(k) ∝

Ne
28Si epitaxial

Si substrate

ω = 521.4 cm–1

ω = 520.6 cm–1

FWHM = 3.4 cm–1

FWHM = 3.4 cm–1In
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ns
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Raman shift, cm–1

Fig. 2. Raman spectra of an isotope-enriched layer, sample
Z1. The spectrum of a substrate with natural isotopic com-
position is given for comparison. T = 300 K.
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, and with the fact that natural silicon is a mixture
of three stable isotopes with atomic masses of 28, 29,
and 30 amu.

Thus, isotope-pure 28Si layers with a record-break-
ing isotopic purity of 99.96% and high crystal perfec-
tion were obtained.
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Abstract—Molecular-beam epitaxy with a solid source was used to grow silicon layers enriched with 28Si
and 30Si isotopes to 99.93 and 99.34%, respectively. Secondary-ion mass spectrometry and Raman scattering
spectroscopy were applied to demonstrate the high isotopic purity and crystal perfection of the layers
obtained. © 2002 MAIK “Nauka/Interperiodica”.
Natural silicon is a mixture of three stable isotopes:
28Si (92.23%), 29Si (4.67%), and 30Si (3.10%). The use
of silicon with a monoisotopic composition allows for
the solution of a number of important technological
problems, such as heat removal in semiconductor
devices [1] and fabrication of heavily doped n-type sub-
strates with uniform impurity distribution [2]. Hetero-
structures with isotopes can be used as a basis for the
development of a prototype quantum computer [3].
Recently, layers of isotope-pure silicon have been
obtained by vapor-phase epitaxy [4, 5] and molecular-
beam epitaxy (MBE) with a gaseous source [6]. The
present study is concerned with the further develop-
ment of the technology for the growth of isotope-pure
silicon layers by MBE with a solid source.

Silicon isotopes were separated via centrifuge tech-
nology using silicon tetrafluoride [7]. Then, isotope-
enriched silicon tetrafluoride was processed into silane
by nucleophilic substitution [7]. Polycrystalline silicon
was produced by pyrolysis of silane and charged into
the sources in an MBE machine.

The MBE growth was carried out on a Riber Supra-
32MBE machine whose growth chamber was equipped
with three electron-beam evaporators (one of these had
three crucibles for different materials) and four effusion
sources. The analytical part of the growth chamber
includes a quadrupole mass spectrometer, a Bayard–
Alpert pressure gauge, and a device for measuring
reflection high-energy electron diffraction (RHEED).
The machine includes an analytical chamber equipped
with an apparatus for Auger and X-ray photoelectron
(XPS) spectroscopies and a transporting system for
sample motion between the chambers without impair-
ing the ultrahigh vacuum conditions. The residual pres-
sure in the growth chamber did not exceed 3 × 10–10 Torr,
1063-7826/02/3612- $22.00 © 21400
and during deposition of epitaxial silicon layers the
pressure increased to about 1 × 10–8 Torr.

The structures studied were grown on n-type
(100)Si substrates with a dopant concentration of 2 ×
1015 cm–3. The substrates were subjected to chemical
pretreatment using the Shiraki method [8]. Immedi-
ately after the chemical pretreatment was complete, the
substrates were charged into the lock chamber of the
machine, which was evacuated to ultrahigh vacuum.
The pre-epitaxial treatment of the substrates in the
growth chamber consisted of their stepwise degassing
at 450 and 750°C and the subsequent sublimation of a
thin (~10–15 Å) protective layer of silicon oxides under
a weak flux of Si atoms (~1013 atom cm–2 s–1) at 750°C.
After the oxide removal, a streaky RHEED pattern was
observed, which indicated that a clean, atomically
smooth silicon surface had been obtained. The lack of
contamination and microscopic roughness in the case
of such substrate pretreatment was confirmed by study-
ing the surface of control samples using XPS in situ and
scanning electron microscopy ex situ.

Monoisotopic 28Si and 30Si films were grown by
electron-beam evaporation of polycrystalline 28Si and
30Si ingots placed in molybdenum crucibles of the
three-section electron-beam evaporator. The growth
rate of an epitaxial film was 0.2 Å/s; the epitaxial
growth took place at a substrate temperature of 620°C
and was monitored with an Ircon-V IR pyrometer and a
standard W–Re thermocouple. Figure 1 presents a typ-
ical RHEED pattern observed during growth. The two-
dimensional (2D) nature of the diffraction pattern and
the presence of superstructural reflections suggest a 2D
nature of the epitaxial growth of monoisotopic silicon
and indicate that the films obtained have an atomically
smooth and atomically clean surface.
002 MAIK “Nauka/Interperiodica”
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The concentration distribution of silicon isotopes
across the layers grown was studied by secondary-ion
mass spectrometry with a CAMECA IMS4f secondary-
ion microprobe. The secondary emission of analytical
ions of silicon isotopes, Si–, was excited by bombarding
an epilayer with 14.5 keV Cs+ ions. The high-mass-res-
olution mode was employed (M/∆M = 3500), which
ensured that the analytical signals of secondary Si– ions
were reliably distinguished from those of SiH– clusters
with approximately the same mass.

Figure 2a presents concentration profiles of the sili-
con isotopes across a film enriched with the 30Si isotope
and which was grown on a crystalline silicon substrate
with a natural isotopic composition. The thickness of the
layer is 270 nm, and its 30Si isotopic purity, 99.30 at. %.
The content of the 29Si isotope is a factor of 10 lower
and constituted 0.52 at. %; that of the 28Si isotope is a
factor of 500 lower (0.18 at. %) as compared with its
natural content.

Figure 2b presents concentration profiles of silicon
isotopes across a layer enriched with the 28Si isotope
and that was grown on a crystalline silicon substrate
with a natural isotopic composition (i.e., with the rela-
tive content of the silicon isotopes in the substrate cor-
responding to that in natural silicon). The figure reveals
a distinct boundary between the layer with a thickness
of about 370 nm and the substrate. The isotopic purity
of the 28Si layer is 99.93 at. %. The content of 29Si and
30Si isotopes is more than a factor of 100 lower than in
the natural case—0.04 and 0.03 at. %, respectively.

Figure 3 shows Raman spectra of isotope-pure 28Si
and 30Si layers and, for comparison, the spectrum of a
single-crystal substrate with a natural isotopic compo-
sition. The Raman spectra were measured using an
automated spectral installation based on a DFS-24 dou-
ble-grating monochromator. The spectral width of the
slit was 1 cm–1. All the spectra were recorded in the
backscattering mode at room temperature. Excitation
was performed with the 488-nm line of an argon-ion
laser, with an incident power of 30 mW in a 50-µn spot.

For silicon with natural isotopic composition,
which is a mixture of three stable isotopes with atomic
masses of 28, 29, and 30 amu and an average atomic
mass of 28.086 amu, the optical phonon frequency is
520.6 cm–1, as shown in Fig. 3. The dependence of the
phonon frequency on the average mass of atoms in a

crystal must have the form ω(k) ∝  . The spectrum
obtained by studying a 30Si epilayer shows two lines.
One of these has a frequency of 520.6 cm–1, which cor-
responds to Raman scattering in a single-crystal silicon
substrate with natural isotopic composition. The other
line, which shifted to lower frequencies (503.8 cm–1),
corresponds to the 30Si epilayer. The widths of both
lines are 3.3 cm–1, which confirms the high crystal per-
fection of the epilayer. The phonon line of the 28Si layer

M
1/2–
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is shifted to higher frequencies relative to that of natural
silicon and has a frequency of 521.1 cm–1. It should be
noted that the influence exerted by the substrate on the
spectrum observed is weaker when the layer is thicker
and when the frequency of the exciting radiation is
higher; this is accounted for by the absorption of light
in the layer.

Fig. 1. RHEED pattern observed during epitaxial growth of
monoisotopic silicon films. Direction of electron beam inci-
dence: [011]; energy of electrons in the beam: 10 keV.
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Fig. 2. Concentration profiles of 28Si, 29Si, and 30Si silicon
isotopes in isotope-enriched layers of (a) 30Si and (b) 28Si
grown on silicon substrates with natural isotopic composi-
tion. Isotopic composition of epilayers: (a) 28Si 0.18, 29Si
0.52, and 30Si 99.30 at. %; (b) 28Si 99.93, 29Si 0.04, and
30Si 0.03.
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To conclude, the MBE technique with a solid source
was successfully employed to obtain isotope-pure 28Si
and 30Si epilayers with an isotopic purity of 99.96 and
99.34%, respectively, and high crystal perfection.
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Fig. 3. Raman spectra of 28Si and 30Si epilayers. The spec-
tral feature denoted by the asterisk corresponds to the emis-
sion of the neon Heusler lamp used to calibrate the mono-
chromator. T = 300 K.
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