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The current status of theoretical understanding of the optical and magneto-optical~MO! spectra
of 3d, 4f and 5f compounds is reviewed. Energy band theory based upon the local spin-
density approximation~LSDA! describes the optical and MO spectra of transition metal
compounds reasonably well. Examples which we examine in detail are XPt3 compounds
~with X53d V, Cr, Mn, Fe, and Co! in the AuCu3 structure, ternary Heusler alloys NiMnSb,
PdMnSb, PtMnSb, and MnBi compound. The LSDA, which is capable of describing the
spectra of transition-metal alloys with high accuracy, does not suffice for lanthanide compounds
having a correlated 4f shell. A satisfactory description of the optical spectra could be
obtained by using a generalization of the LSDA, in which explicitlyf electron Coulomb
correlations are taken into account~LSDA1U approach!. As examples of this group we consider
CeSb and CeBi. For CeSb a record Kerr angle of 90° was very recently reported, 90° is the
absolute maximum value that can be measured. It is two orders of magnitude larger than the values
that are commonly measured for transition-metal compounds, and about one order of
magnitude larger than values maximally achieved for other lanthanide and actinide compounds.
A third group consist of uranium 5f compounds. In those compounds where the 5f
electrons are rather delocalized, the LSDA describes the MO spectra reasonably well. As
examples of this group we consider UAsSe and URhAl. Particular difficulties occur for the
uranium compounds where the 5f electrons are neither delocalized nor localized, but
more or less semilocalized. Typical examples are US, USe and UTe. The semilocalized 5f ’s are,
however, not inert, but their interaction with conduction electrons plays an important role.
Recently achieved improvements for describing such compounds are discussed. ©1999
American Institute of Physics.@S1063-777X~99!00106-1#
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INTRODUCTION

It was first observed in 1877 by J. Kerr1 that when lin-
early polarized light is reflected from a magnetic solid,
polarization plane becomes rotated over a small angle w
respect to that of the incident light. This discovery has
come known as the magneto-optical~MO! Kerr effect. The
Kerr effect is closely related to other anomalous spec
scopic effects, like the Faraday effect and the circular dich
ism. These effects all have in common that they are due
different interaction of left- and right-hand circularly pola
ized light with a magnetic solid. The Kerr effect has no
been known for more than a century, but it was only
recent times that it became the subject of intensive inve
gations. The reason for this recent development two-fo
first, the Kerr effect gained considerable interest due to m
ern data storage technology, because it can be used to «r
suitably stored magnetic information in an optical mann2

and second, the Kerr effect has rapidly developed into
appealing spectroscopic tool in materials research. The t
nological research on the Kerr effect was initially motivat
by the search for good magneto-optical materials that co
3871063-777X/99/25(6)/20/$15.00
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be used as information storage medium. In the sequenc
this research, the Kerr spectra of many ferromagnetic m
rials were investigated. Over the years the Kerr spectra
many ferromagnetic materials have been investigated.
overview of the experimental data collected on the Kerr
fect can be found in the review articles by Buschow,3 Reim
and Schoenes,4 and Schoenes.5 The quantum mechanical un
derstanding of the Kerr effect began as early as 1932 w
Hulme6 proposed that the Kerr effect could be attributed
spin-orbit ~SO! coupling ~see, also Kittel7!. The symmetry
between left- and right-hand circularly polarized light is br
ken due to the SO coupling in a magnetic solid. This leads
different refractive indices for the two kinds of circularl
polarized light, so that incident linearly polarized light
reflected with elliptical polarization, and the major elliptic
axis is rotated by the so called Kerr angle from the origin
axis of linear polarization. The first systematic study of t
frequency dependent Kerr and Faraday effects was de
oped by Argyres8 and later Cooper presented a more gene
theory using some simplifying assumptions.9 The very pow-
erful linear response techniques of Kubo11 gave general
© 1999 American Institute of Physics
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formulas for the conductivity tensor which are being wide
used now. A general theory of frequency dependent cond
tivity of ferromagnetic~FM! metals over a wide range o
frequencies and temperatures was developed in 1968
Kondorsky and Vediaev.12

The main problem afterward was the evaluation of
complicated formulas involving MO matrix elements usi
electronic states of the real FM system. With the tremend
increases in computational power and the concomi
progress in electronic structure methods the calculation
such matrix elements became possible, if not routine. Su
quently many earlier, simplified calculations have be
shown to be inadequate, and only calculations from ‘‘fir
principles’’ have provided, on the whole, a satisfactory d
scription of the experimental results.13 The existing difficul-
ties stem either from problems using the local spin den
approximation~LDA ! to describe the electronic structure
FM materials containing highly correlated electrons, or si
ply from the difficulty of dealing with very complex crysta
structures. For 15 years after the work of Wang a
Callaway13 there was a lull in MO calculations until MO
effects were found to be important for magnetic record
and the computational resources had advanced. Differen
liable numerical schemes for the calculation of optical ma
elements and the integration over the Brillouin zone ha
been implemented, giving essentially identical results.14 Pro-
totype studies have been performed using modern meth
of band theory for Fe, Co and Ni. Following the calculatio
for the elemental 3d ferromagnets, a number of groups ha
evaluated the MO spectra for more interesti
compounds15–33 and multilayers.34–40 While the calculations
showed there is good agreement between theory and ex
ment in case ofd-band magnetic materials, attempts to d
scribe MO properties of materials using the same formal
failed to create a consistent physical picture. This has b
attributed to the general failure of the LDA in describing t
electronic structure off-state materials~4 f especially!. To
overcome the LDA limitations to study MO spectra a
called E3 correction for correlations was implemented b
gave inconsistent results.30 The more consistent LDA1U
scheme has been used to describe the Kerr angle
CeSb.31,32 Since then several papers implementing
LDA1U scheme for MO calculations have been publish
with for 4f - and 5f -materials.20,28,30,32,33

With the above as background, we have performed
culations to evaluate the MO properties for a number of 3d,
4 f , and 5f FM materials. Besides the inherent interest in t
materials studied, the use of similar methods to study m
rials with different degrees of localized electronic sta
helps to establish the limitations of the LDA approach and
identify where techniques like the LDA1U method are
needed.

The paper is organized as follows. The theoreti
framework is explained in Sec. 1. Section 2 presents
electronic structure and MO spectra of 3d transition metal
compounds XPt3 ~X5V, Cr, Mn, Fe and Co!, Heusler alloys
~NiMnSb, PdMnSb and PtMnSb! and MnBi compound cal-
culated in the LDA. Section 3 devoted to MO properties a
electronic structure of 4f compounds~CeSb and CeBi!
c-
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calculated in LDA and LDA1U approximations. Section 4
considers uranium compounds UAsSe, URhAl, US, USe
UTe. Finally, we present a Summary.

1. THEORETICAL FRAMEWORK

Using straightforward symmetry considerations it can
shown that all MO phenomena are caused by the symm
reduction—compared to the paramagnetic state—cause
magnetic ordering.41 Concerning optical properties this sym
metry reduction only has consequences when SO couplin
considered in addition. To calculate MO properties o
therefore has to account for magnetism and SO couplin
the same time when dealing with the electronic structure
the material considered. Performing corresponding b
structure calculations it is normally sufficient to treat S
coupling in a perturbative way. A more rigorous schem
however, is obtained by starting from the Dirac equation
up in the framework of relativistic spin density function
theory42:

@ca•p1bmc21IV1Vspbsz#cnk5«nkcnk ~1!

with Vsp(r ) the spin-polarized part of the exchang
correlation potential corresponding to thez quantization axis.
All other parts of the potential are contained inV(r ). The
434 matricesa, b and I are defined by

a5S 0 s

s 0 D , b5S 1 0

0 21D , I 5S 1 0

0 1D , ~2!

with s the standard Pauli matrices, and 1 the 232 unit ma-
trix.

There are quite a few band structure methods availa
now that are based on the above Dirac equation.43 In the first
scheme the basis functions are derived from the proper s
tion to the Dirac equation for the various single-s
potentials.44,45 In the second one, the basis functions are o
tained initially by solving the Dirac equation without th
spin-dependent term46,47 and then this term is accounted fo
only in the variational step.17,44In spite of this approximation
used, the second scheme nevertheless gives results in
good agreement with the first one,43 while being very simple
implemented. We also mention the quite popular techniq
when SO coupling is added variationally46 after the scalar
relativistic magnetic Hamiltonian has been constructed.
this case only the Pauli equation with SO coupling is be
solved. All three techniques yield similar results.

In the polar geometry, where thez-axis is chosen to be
perpendicular to the solid surface, and parallel to the mag
tization direction, the expression for the Kerr angle can
obtained easily for small angles and is given by4

uK~v!1 i«K~v!5
2sxy~v!

sxx~v!@11~4p i /v!sxx~v!#1/2, ~3!

with uK the Kerr rotation and«K the so-called Kerr elliptic-
ity. sab (a,b[x,y,z) is the optical conductivity tensor
which is related to the dielectric tensor«ab through

«ab~v!5dab1
4p i

v
sab~v!. ~4!
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The optical conductivity tensor, or equivalently, the d
electric tensor is the important spectral quantity needed
the evaluation of the Kerr effect.5 The optical conductivity
can be computed from the energy band-structure by mean
the Kubo-Greenwood11 linear-response expression13:

sab~v!5
2 ie2

m2\Vuc

3(
k

(
nn8

f ~«nk!2 f ~«n8k!

vnn8~k!

Pn8n
a

~k!Pnn8
b

~k!

v2vnn8~k!1 ig
~5!

with f («nk) the Fermi function,\vnn8(k)[«nk2«n8k , the
energy difference of the Kohn-Sham energies«nk , andg is
the lifetime parameter, which is included to describe the
nite lifetime of excited Bloch electron states. ThePnn8

a are
the dipole optical transition matrix elements, which in a fu
relativistic description are given by49

Pnn8~k!5m^cnkucaucn8k& ~6!

with cnk the four-component Bloch electron wave-functio
Equation~5! for the conductivity contains a double su

over all energy bands, which naturally separates in the
called interband contribution, i.e.,nÞn8, and the intraband
contribution,n5n8. The intraband contribution to the diag
onal components ofs may be rewritten for zero temperatu
as

saa~v![
~vp,a!2

4p

i

v1 igD
, ~7!

with vp,a the components of the plasma frequency, wh
are given by

~vp,a!2[
4pe2

m2Vuc
(
nk

d~«nk2EF!uPnn
a u2, ~8!

andEF is the Fermi energy. For cubic symmetry, we furthe
more havevp

2[vp,x
2 5vp,y

2 5vp,z
2 . Equation~7! is identical

to the classical Drude result for the ac conductivity, w
gD51/tD , andtD the phenomenological Drude electron r
laxation time. The intraband relaxation time parametergD

may be different from the interband relaxation time para
eterg. The latter can be frequency dependent,48 and, because
excited states always have a finite lifetime, will be non-ze
whereasgD will approach zero for very pure materials. He
we adopt the perfect crystal approximation, i.e.,gD→0. For
the interband relaxation parameter, on the other hand,
shall use, unless stated otherwise,g50.2 eV. This value has
been found to be on average a good estimate of this phen
enological parameter. The contribution of interband tran
tions to the off-diagonal conductivity usually is not consi
ered. Also we did not study the influence of local fie
effects on the MO properties.

We mention, lastly, that the Kramers-Kronig transform
tion has been used to calculate the dispersive parts of
optical conductivity from the absorptive parts.

The application of standard LDA methods tof-shell sys-
tems meets with problems in most cases, because of the
related nature of thef electrons. To account better for th
on-sitef-electron correlations, we have adopted as a suita
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model Hamiltonian that of the LDA1U approach.50 The
main idea is the same as in the Anderson impurity mode51:
the separate treatment of localizedf-electrons for which the
Coulombf - f interaction is taken into account by a Hubbar
type term in the Hamiltonian1

2U( iÞ jninj ~nj are f-orbital
occupancies!, and delocalizeds,p,delectrons for which the
local density approximation for the Coulomb interaction
regarded as sufficient.

Let us consider thef ion as an open system with a fluc
tuating number off electrons. The formula for the Coulom
energy of f - f interactions as a function of the number off
electronsN given by the LDA isE5UN(N21)/2. If we
subtract this expression from the LDA total energy fun
tional, add a Hubbard-like term and take into account
exchange interaction we obtain the following functional50:

E5ELDA1
1

2
U (

m,m8,s

nmsnm82s1
1

2
~U2J!

3 (
mÞm8,m8,s

nmsnm8s2d.c., ~9!

where

d.c.5U
N~N21!

2
2

JN↑~N↑21!

2
2

JN↓~N↓21!

2
,

N is the total number of localizedf electrons;N↑ andN↓ are
the number off electrons with spin-up and spin-down, re
spectively;U is the screened Coulomb parameter;J is the
exchange parameter.

The orbital energies« i are derivatives of~9! with respect
to orbital occupationsni :

« i5
]E

]ni
5ELDA1~U2J!S 1

2
2ni D

5ELDA1UeffS 1

2
2ni D . ~10!

This simple formula gives the shift of the LDA orbita
energy2Ueff/2 for occupiedf orbitals (ni51) and1Ueff/2
for unoccupiedf orbitals (ni50). A similar formula is found
for the orbital dependent potentialVi(r )5dE/dni(r ), where
variation is taken not on the total charge densityr~r ! but on
the charge density of a particulari th orbital ni(r ):

Vi~r !5VLDA~r !1UeffS 1

2
2ni D . ~11!

The advantage of the LDA1U method is the ability to
treat simultaneouslydelocalized conduction band electron
and localized 4f -electrons in the same computation
scheme. With regard to these electronic structure calc
tions, we mention that the present approach is still essent
a single particle description, even though intraatom
4 f -Coulomb correlations are explicitly taken into account

The LDA1U method has proven to be a very efficie
and reliable tool in calculating the electronic structure
systems containing localized orbitals where the Coulomb
teraction is much larger than the band width. It works n
only for 4f orbitals of rare-earth ions, but also for suc
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systems as transition metal oxides, where localized 3d orbit-
als hybridize quite strongly with oxygen 2p orbitals ~see
review article Ref. 52!. The LDA1U method was recently
applied to heavy-fermion compounds YbPtBi53 and Yb4As3

54

and it has also to explain the nature of colossal polar K
rotation of the maximal possible rotation of 90° in CeS
~Ref. 33!.

We should also note that for large Kerr rotation, it is n
possible to use the approximate expression~3! for the polar
Kerr rotation. This equation is valid only for smalluK , «K ,
and u«xyu!u«xxu. Instead one must use the exact express

11tan«k

12tan«K
e2iuK5

11n1

12n1

12n2

11n2
~12!

with n65(«xx6 i«xy)
1/2, the complex indices of refraction

From Eq. 12 it can be seen that the maximal observableuK is
690°.

2. 3d -TRANSITION-METAL COMPOUNDS

Transition-metal alloys consisting of a ferromagneticd
elements have drawn attention over the last years becau
their good magneto-optical~MO! properties~see, e.g., Refs
55–57!. Especially multilayers of Co and Pt or Pd are
present intensively studied because of their potential ap
cation as optical storage material in MO storage devices58–60

In addition to this, it has recently been discovered that
compound MnPt3 exhibited a very large MO Kerr rotation
of about21.2° at 1 eV photon energy.61,62 This discovery
indicates that the whole group of transition-metal-platinu
alloys is exceptionally interesting within MO research, a
also that large Kerr effects might still be found in materia
which were previously not considered for their MO prope
ties.

With the aim of undertaking a systematic investigati
of the trends in transition-metal alloys, we study~in the
present work! theoretically the MO Kerr spectra of the seri
XPt3 compounds~with X5V, Cr, Mn, Fe, and Co!, Heusler
alloys ~PtMnSb, PdMnSb and NiMnSb! and MnBi.

2.1. XPt3 compounds „X5V, Cr, Mn, Fe, and Co …

The calculated polar Kerr spectra of VPt3, CrPt3, and
MnPt3 are shown in Fig. 1, and those of FePt3 and CoPt3 in
Fig. 2. All Kerr spectra given in Figs. 1 and 2 pertain to t
~001! magnetization direction, and are due to the interba
optical conductivity tensor only, i.e., no free-electron con
butions to the conductivity are considered. A Lorentzi
broadening with a half width at a half maximum of 0.4 e
taking account of the effects of finite lifetimes and of t
experimental resolution, has been applied to all optical c
ductivity spectra. In Fig. 1, the recently measured Kerr sp
tra of MnPt3 are also shown.61 As one can see from Figs.
and 2, the Kerr spectra of VPt3, CrPt3, and MnPt3 are very
similar, as are those of FePt3 and CoPt3. This is the reason
why we show the spectra in this combination together. T
theoretical Kerr rotations of VPt3, CoPt3, and MnPt3 have
their minimum at the same photon energy of 0.8 eV, f
lowed by a zero crossing at 2 eV. This similarity is partia
observed in the Kerr ellipticity too. The Kerr rotations
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FePt3 and CoPt3, however, are distinctly different, as the
have no zero crossing, and exhibit two minima, one sma
minimum at 1.3 eV, and a larger one at 4.7 eV. Noticea
further are the large Kerr rotations that are predicted
density-functional theory for these compounds. The larg
Kerr rotation is found for MnPt3 which reaches a value o
21.5° at 0.8 eV. But also the Kerr rotation of the CrPt3 alloy
as yet not investigated is surprisingly large, being with
peak value of20.9° at 0.8 eV larger than that of the trans
tion metals Fe and Co. Further the Kerr rotations predic
for FePt3 and CoPt3 are with peak values of21.0° to21.1°
at 4.7 eV also substantial.~The term «peak» is used for
maximal Kerr rotation, irrespective of whether it is of pos
tive or negative sign.! With respect to the magnitudes of th
Kerr rotations displayed in Figs. 1 and 2, there are th
points to be mentioned. First, the precise peak magnit
depends on the applied broadening parameter. A la
broadening than 0.4 eV would generally lead to sligh
smaller, but broader spectral peaks. However, so far it is
experience that the broadening parameter of 0.4 eV give

FIG. 1. Calculated polar Kerr rotation (uK) and Kerr ellipticity (eK) spectra
of VPt3, CrPt3, and MnPt3 in the AuCu3 crystal phase with~001! magneti-
zation orientation. The theoretical spectra are all calculated with
relaxation-time broadening of 0.4 eV and result from the interband opt
conductivity only. The experimental data shown are those of MnPt3 ~Ref.
61!.

FIG. 2. As Fig. 1, but for the theoretical polar Kerr spectra of FePt3 and
CoPt3.
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physically adequate description.21 Second, the neglect of a
intraband contribution to the optical conductivity can play
role for VPt3, CrPt3, and MnPt3. An intraband or free-
electron contribution to the optical conductivity can be
importance for the Kerr rotation spectrum at small pho
energies. As the main Kerr rotation peak of the compou
in Fig. 1 occurs at a small energy, the size of this peak w
become reduced when a large intraband contribution
present. For CoPt3 and FePt3, the intraband contribution is
less important, because these compounds already have a
tively small Kerr rotation at low energies~see Fig. 2!. Third,
it should be noted that theab initio Kerr spectra are essen
tially calculated for zero temperature. If the Kerr spectra
measured at room temperature, where the magnetizatio
smaller, then the over-all size of the thus measured K
rotation will be smaller too. In Fig. 1 also the recently me
sured Kerr spectra of ordered MnPt3 are shown.61,62 These
spectra were measured from an annealed thin film of Mn3

on a quartz substrate, but from the substrate side,
through quartz.61 This implies that these can be enhanc
over the Kerr spectra measured in air by a factor of about
and a half. Within the limitations concerning the size of t
Kerr rotation mentioned above, and the possible influenc
the quartz substrate on the Kerr spectra, it can only be c
cluded that the shape of the theoretical and experime
Kerr rotation and ellipticity spectra are in good agreemen
yet.

Density-functional theory predicts a large Kerr effect
the XPt3 alloys. Noticeably, the Kerr rotations predicted a
much larger than those calculated for, e.g., Fe, Co, or
where the same broadening parameter of 0.4 eV was u
An important issue is therefore to identify the origin of th
large Kerr effect in these compounds. To this end, we ex
ine the dependence of the MO spectra on the exchange s
ting, the SO interaction, and the optical transition mat
elements. As it can be expected that the Kerr effect in e
of these compounds is of the same origin, we do this only
one compound, CrPt3. The exchange splitting and the S
coupling are studied by scaling the corresponding term
the Hamiltonian artificially with a constant prefactor. This
done in a non-self-consistent way, i.e., after self-consiste
has been achieved, only one iteration is performed with
modified Hamiltonian~a self-consistent calculation woul
lead to a different band structure!. From the resulting band
structure the optical spectra are then computed. These m
fications can in addition be done atom dependent, i.e., wi
each atomic sphere, so that we can investigate the sep
effects of these quantities on Cr and on Pt. The outcome
these model calculations for the Kerr rotation of CrPt3 are
shown in Fig. 3. In the upper panel, the importance of
exchange splitting is illustrated. When the exchange splitt
on Pt is set to zero, the Kerr rotation remains as it is
when we do the same for the exchange splitting on Cr,
Kerr rotation totally vanishes. This implies that the exchan
splitting due to Cr is crucial for the sizeable Kerr rotatio
but that of Pt is unimportant. Furthermore, an enhancem
of the exchange splitting on Cr by a factor of two~dashed
line! leads to a much larger peak in the Kerr rotation. T
middle panel in Fig. 3 shows the dependence on the
f
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coupling. If we set the SO coupling on Cr to zero, the Ke
rotation practically doesn’t change~dotted line!. On the other
hand, when the SO coupling on Pt is zero, the Kerr rotat
almost disappears~dashed line!. Thus, the SO coupling of P
is equally responsible for the large Kerr rotation as is
exchange splitting of Cr. An intermediate scaling of the S
coupling of Pt by a factor of 0.5 leads to an approximate
half as large Kerr angle, thereby illustrating the almost line
dependence of the Kerr effect on the SO interaction of P
these compounds. The lower panel in Fig. 3, finally, displa
the importance of the site-dependent matrix elements. Wi
an atomic sphere about one of the atomic positions, the
tical transition matrix elements are set to zero. If this is do
for the matrix elements on Cr, the Kerr rotation does
change much. But if the matrix elements on Pt vanish
large impact on the Kerr rotation is found~dashed curve!.
This indicates that the matrix elements on the Pt site
more important for bringing about the large Kerr peak a
eV, than are those of Cr. Making the matrix elements z
gives only an impression of which site the main contributi
comes from. To obtain information about the bands that
responsible for the Kerr peak, it is instructive to exclude
particular transition matrix element. Due to the selecti
rules for optical transitions, these transitions can only ta
place between band states with an angular momentum di

FIG. 3. Study of the influence of the exchange splitting~M!, spin-orbit~SO!
coupling, and optical transition matrix elements~ME! on the Kerr rotation
of CrPt3. The upper panel shows the effect of multiplying the spin-polariz
part of the Dirac Hamiltonian with a constant factor, on the Cr site or on
Pt site. The middle panel shows the effect of multiplying the SO-coupl
part of the Hamiltonian on Cr or on Pt with a constant prefactor~see text!.
The lower panel depicts the effect of setting the matrix elements on Cr o
Pt to zero.
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ence of61. By excluding for instance thep-d transition
matrix element we can investigate the contribution of t
type of transitions. However, as the transition matrix must
Hermitian, we have to exclude also the conjugated transit
i.e., bothp-d andd-p transitions. The results of an invest
gation of the importance of the various transitions on Pt
shown in Fig. 4 for the real part of the diagonal optic
conductivity, Re@sxx#, the imaginary part of the off-diagona
conductivity, Im@sxy#, and the Kerr rotation. The upper an
middle panel in Fig. 4 show that both Re@sxx# and Im@sxy#
are strongly reduced when thep-d andd-p interband tran-
sitions are excluded, more than when thed- f and f -d tran-
sitions are excluded. Especially the off-diagonal conductiv
almost disappears in the energy region around 1 eV if
p-d andd-p transitions on the Pt sites are excluded. Beca
this peak in the off-diagonal conductivity at 1 eV is respo
sible for the peak in the Kerr rotation spectrum, this sho
that thed-p and p-d transition matrix elements on Pt ac
count for most of the Kerr effect in this frequency regio
The other transitions,s-p andd- f , also have a minor influ-
ence, but excluding these still gives approximately the sa
Kerr rotation~see Fig. 4, lower panel!. Thus, thed states of
Pt, being subject to the strong SO interaction on the Pt s
contribute most to the optical transitions that lead to a la
Kerr angle.

From these investigations the following picture of t
Kerr effect in these compounds emerges: Pt is the magn

FIG. 4. Influence of the exclusion of various optical matrix elements on
Pt site on the real part of the diagonal optical conductivity (@Reusxx#), the
imaginary part of the off-diagonal optical conductivity (Im@sxy#) and Kerr
rotation. The notationMEPt(p2d)50 means that on the Pt site thep-d
interband transitions and thed-p interband transitions are excluded from th
optical matrix element.
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optically active element, and creates the large Kerr rotat
through its large SO interaction. The important magne
optical transitions are thep-d andd-p transitions on Pt. The
3d elements are magneto-optically not very active. Th
role is to supply through their exchange splitting enou
hybridized spin-split energy bands. This understanding s
gests the following recipe for finding a material having
sizeable Kerr rotation: such material should contain eleme
with a large SO coupling, for instance Pt, Bi, or an actinid
Also should it contain an element having a sufficiently lar
magnetic moment, but this element needn’t have a strong
interaction, like for instance Mn. Also should there be a su
stantial hybridization between states of these two kinds
constituents. Elements having a large, but local atomic m
ment, like some of the 4f -elements, are in the latter respe
not suited, if the moment is due to unhybridized, localiz
4 f -states.

The behavior of the peak magnitude in the Kerr rotati
spectra with respect to the 3d element, as shown in Figs.
and 2, and also the dependence of the Kerr effect magni
on the magnetization, can furthermore be understood on
basis of the model calculations. The increase of the pea
the Kerr angle at about 1 eV when going from VPt3 to MnPt3
~see Fig. 1! is caused by the corresponding increase in
exchange splitting. This is most clearly demonstrated by
scaling of the peak in the Kerr rotation of CrPt3 with respect
to the scaling of the exchange splitting~Fig. 3, upper panel!.
Also it can be understood from this behavior that a reduct
of the magnetization at room temperature leads to a red
tion of the Kerr rotation. This dependence on the magnet
tion also explains why the Kerr rotation of FePt3 is larger
than that of CoPt3.

In concluding, we have further proven the important r
sult that the total density of states cannot be used to de
information about the shape or magnitude of the Kerr spe
thereof. The dependence of the Kerr spectra in the XPt3 com-
pounds on the crystallographic direction of the magnetizat
is found to be very small. This finding corroborates with t
high degree of isotropy of the AuCu3 crystal structure. The
agreement between theab initio calculated Kerr spectra an
the experimental result for MnPt3 ~Refs. 61 and 62! finally
looks very promising. Further measurements on these c
pounds are desirable and needed, in order to obtain a c
plete picture of the correspondence between experime
and first-principles Kerr spectra.

2.2. Heusler alloys

The Heusler alloys NiMnSb, PdMnSb, and PtMnSb ha
been the subject of intensive experimental and theoret
investigations since the early 1980’s.55,63–65The interest in
these compounds arose first from the experimental disco
of an extremely large magneto-optical Kerr rotation
21.27° in PtMnSb at room temperature.55 This value was for
many years the record Kerr rotation observed in a transi
metal compound at room temperature and therefore ca
‘‘gaint.’’ Kerr effect ~see, e.g., the recent surveys Refs. 3 a
5!. Almost simultaneously with the experimental discove
the theoretical finding of the so-called ‘‘half-metallic’’ na

e



-
n
ve
l
b
S

er
o
a
th
d

as
in

o

all

re
y
th

t
-
r

re
b

be
m
e

re
nd

h
r
O

he
o-
u
i

d
n
cy
tio
lu

te

a

en
c
th

ties
ere

of

r-
om
ve
e
or
tiv-

nds

d-
ese

are
nd
of

re
we

ists
en-

e
cept
h

ob-
aw
lcu-

mal
a
in a

Sb.
ies
and
a-

393Low Temp. Phys. 25 (6), June 1999 Antonov et al.
ture of PtMnSb was reported.65 Half-metallicity means that
according to~semirelativistic! bandstructure theory the ma
terial is metallic for majority, but insulating for minority spi
electrons.65 Such a gap for one spin type naturally may gi
rise to unusual magnetotransport and optical properties. A
the isoelectronic Heusler alloy NiMnSb was predicted to
half-metallic, whereas the isoelectronic compound PdMn
was predicted not to be half-metallic.65 The MO Kerr rota-
tions in both NiMnSb and PdMnSb on the other hand, w
experimentally found to be much smaller than that
PtMnSb, which resulted in a puzzling combination of fe
tures. Experimental efforts were undertaken to verify
proposed half-metallic character of NiMnSb an
PtMnSb,66–69which was subsequently established in the c
of NiMnSb.66,69Very recently, also experimental evidence
favor of half-metallicity in PtMnSb was reported.70

On the theoretical side, several model explanations
the MO spectra of the compounds were proposed.71–73 One
of those was based on a possible loss of the half-met
character due to spin-orbit~SO! coupling which was sug-
gested to lead to a symmetry breaking between the diffe
m states of the Sbp bands in the vicinity of the Fermi energ
EF .71 Another explanation was based on differences of
semirelativistic effects in NiMnSb and PtMnSb,73 and an-
other one on enhancement of the MO Kerr spectra near
plasma resonance.72 While the proposed models contain in
teresting physical mechanisms themselves, one of the
maining major stumbling blocks was to explain the measu
differences in the MO spectra of the isoelectronic NiMnS
PdMnSb, and PtMnSb.

Only owing to the development ofab initio calculations
of the MO spectra the detailed quantitative comparison
tween experiment and first-principles spectra beca
feasible.15–17,74,75 The Heusler compounds are, of cours
most attractive materials forab initio calculations of their
MO spectra on account of the mentioned unusual featu
Several first-principles calculations for these compou
were reported very recently.15,18,21,26,31The various calcu-
lated MO Kerr spectra, however, spread rather widely. T
origin of the differences in the spectra obtained in the va
ous calculations traces back, first, to the fact that the M
Kerr effect is in calculations a tiny quantity, related to t
difference of reflection of left- and right-hand circularly p
larized light.5 SO coupling in the presence of spontaneo
magnetization is responsible for the symmetry breaking
the reflection of left- and right-hand circularly polarize
light. Second, since the MO Kerr effect is only a tiny qua
tity in the first-principles calculations, numerical accura
and the influence of approximations made in the evalua
gain an appreciable importance. For this reason, the eva
tion of the MO Kerr spectra of the ferromagnetic 3d transi-
tion metals Fe, Co, and Ni have become bench mark
cases for MO calculation schemes.16,17,75–79Numerical accu-
racy plays normally not a decisive role if the physic
mechanism is to be sought. However, it has been shown
several groups16,75 that for theab initio calculation of MO
spectra an accurate evaluation of the dipole matrix elem
is essential for obtaining numerically reliable MO Kerr spe
tra. Moreover, in the particular case of the Heusler alloys,
so
e
b

e
f
-
e

e

f

ic

nt

e

he

e-
d
,

-
e
,

s.
s

e
i-

s
n

-

n
a-

st

l
by

ts
-
e

half-metallic band gap depends sensitively on technicali
of the band structure calculation, as, e.g., atomic sph
radii.21

In the present work we report a detailed investigation
the MO Kerr spectra of NiMnSb, PdMnSb, and PtMnSp.26

Figure 5 shows the spin projected, fully relativistic pa
tial densities of states of PtMnSb. As can be recognized fr
Fig. 5, the partial densities of states for minority spin ha
evidently a gap at the Fermi level. A similar behavior w
have found for NiMnSb, but, of course, not for PdMnSb. F
all three Heusler compounds we show the calculated rela
istic energy bands and total densities of state~DOS! in Fig.
6. In the case of PdMnSb, three spin-orbit split energy ba
are just above the Fermi level at theG-point, therefore half-
metallic behavior is not supported for PdMnSb by ban
structure theory. In the case of NiMnSb and PtMnSb, th
important bands are just belowEF , rendering the half-
metallicity in these compounds. Our bandstructure results
in agreement with recent experiments on NiMnSb a
PtMnSb, in which half-metallic behavior to a degree
nearly 100% was observed.66,69,70

After having verified the half-metallic bandstructu
property we turn to the magneto-optical spectra. In Fig. 7
show the calculated and experimental55,64 MO Kerr spectra
of the three isoelectronic Heusler compounds. There ex
apparently a rather good agreement between the experim
tal Kerr spectra and theab initio calculated ones. Overall, th
experimental features are reasonably well reproduced, ex
for the magnitude of the Kerr rotation of PdMnSb, for whic
theory predicts larger values than are experimentally
served. The first and important conclusion which we dr
from the correspondence between experimental and ca
lated Kerr spectra is:the anomalous behavior of the MO
Kerr spectra in these compounds is well described by nor
bandstructure theory. While the calculated MO Kerr spectr
of these three Heusler compounds were recently shown

FIG. 5. Spin-projected, partial densities of state calculated for PtMn
Majority spin densities are given by the full curves, minority spin densit
by the dotted curves. The half-metallic behavior can be seen from the b
gap at the Fermi level, which is present for minority spin, but not for m
jority spin.
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review paper,18 an explanation in detail of the origin of th
depicted spectra has not yet been given we shall give it in
following.

To investigate the origin of the Kerr spectra, we consid
the separate contributions of both the numerator of Eq.~3!,
i.e., sxy(v) and the denominator, D(v)5sxx(1
1sxx4p i /v)1/2. In Fig. 8 we show how the separate cont
butions of numerator and denominator bring about the K
angle of NiMnSb. The imaginary part of the inverse denom
nator ~times the photon frequency!, Im@vD#21, displays a
typical resonance structure at about 1 eV. The imaginary
of vsxy , i.e., vsxy

(2) displays a double peak structure. Th
double peak structure of the Kerr rotation results roughly
the product of Im@vD#21 and vsxy

(2) . The first peak in the
Kerr rotation at 1.5 eV is predominantly caused by a mi
mum of the denominator, whereas the second peak in
Kerr rotation at 4 eV is due to a maximum in the of
diagonal conductivity,vsxy

(2) . The nature of the peak in
Im@vD#21 can be understand from the top panel in Fig.
where the complex diagonal dielectric function is shown:
real part,«xx

(1) , becomes small at about 1 eV, and its ima
nary part,«xx

(2) , has a shallow minimum at 1 eV. The seco
peak in the Kerr rotation, stems from the maximum
vsxy

(2) , which in turn is known to be due to the interplay
SO coupling and spin polarization.8,18 Thus, the two similar
looking peaks in the Kerr rotation arise in fact from quite
different origin.

FIG. 6. Relativistic, spin polarized energy bandstructures and total dens
of state~DOS! of NiMnSb, PdMnSb, and PtMnSb.
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Next, we consider the spectra for the compou
PdMnSb in more detail, which are shown in Fig. 9. In th
compoundvsxy

(2) is larger than that of NiMnSb in the energ
range 1–4 eV. This is simply due to the larger SO interact
on Pd as compared to that on Ni. The inverse denomin
Im@vD#21, however, does not exhibit such a strong res
nance as it does for NiMnSb. The latter is related to
particular shape of the«xx

(1) and«xx
(2) spectra. The Kerr rota-

tion in effect displays the same shape asvsxy
(2) , being en-

hanced at 1–2 eV by the contribution from the denomina
In Fig. 10 we show the spectral quantities for PtMnS

The inverse denominator Im@vD#21 again displays for
PtMnSb a strong resonance at 1 eV, which is even lar
than that for NiMnSb. In addition, the off-diagonal condu
tivity vsxy

(2) is for PtMnSb again larger than that of PdMnS
in accordance with the larger SO coupling on Pt. The res
ing Kerr rotation has a «giant» peak of21.2° up to22.0°
depending on the applied lifetime parameter~see Fig. 10!.
These values are in good agreement with the available
perimental Kerr peak values for PtMnSb, which range fro
about21° to 22° depending on sample preparation and s
face quality.55,80–88 Careful investigations of the conse
quences of sample preparation have been performed by
kanashi et al.83 and Sato et al.87,88 These investigations
showed that annealing of the PtMnSb sample rises the K
angle to a maximum value of22°, whereas the nonanneale
Kerr angle is only21.2°. The off-diagonal conductivity

es

FIG. 7. Calculated and experimental Kerr rotation (uK) and Kerr ellipticity
(«K) spectra of the Heusler compounds NiMnSb, PdMnSb, and PtMn
The experimental data are those of Refs. 55 and 64.
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vsxy
(2) was found to be rather insensitive to annealing~see

Fig. 10!.87,88 The main impact of annealing thus evident
occurs in the denominator. The reason for the calcula
resonance in the inverse denominator lies again in the
quency dependence of the diagonal dielectric functi
which is shown in the top panel of Fig. 10. The calculat
«xx compares reasonably well with the experimental on88

except for the important first root frequency of«xx
(1) which is

shifted by about 0.5 eV. This difference leads to a shif
position in the resonance peak of Im@vD#21, which in turn
results in a shifted main Kerr rotation peak of just the sa
amount. The position of the maximum in Im@vD#21 thus
predominantly determines the position of the main Kerr
tation peak. We mention in addition that the second ma

FIG. 8. Decomposition of the Kerr rotation spectrum of NiMnSb in separ
contributions. Top panel: calculated real and imaginary part of the diag
dielectric function,«xx

(1) and«xx
(2) , respectively. Third panel from the top: th

imaginary part of@vD#21 which results from«xx
(1) and«xx

(2) . Bottom panel:
the Kerr rotation which results as a combination of Im@vD#21 and vsxy

(2)

~second panel from the top!. The experimental Kerr angle spectrum is aft
van Engenet al.55
d
e-
,

d

e
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mum in the calculatedvsxy
(2) at 4.4 eV~see Fig. 10! is also

present in the experimental spectrum, but at a higher ene
of 5.2 eV.88

The origin of the giant Kerr angle in PtMnSb as com
pared to the Kerr angles in NiMnSb and PdMnSb can co
pletely be understood from our calculations. First, in the
three compounds the off-diagonal conductivitiessxy(v) are
quite different, what is a direct result of the different relati
istic electronic structure. Although both NiMnSb an
PtMnSb are half-metallic, theirvsxy

(2) spectra are distinctly
different, while on the other hand thevsxy

(2) of PdMnSb and
PtMnsb have a similar structure, but not a similar magnitu
~see Figs. 8–10!. Second, there is the influence of the d
nominators as exemplified in Im@vD#21. These are similar in
shape and magnitude for NiMnSb and PtMnSb, but the m
nitude of Im@vD#21 in PdMnSb is about a factor of two
smaller. We find that this difference relates to the ha
metallic nature of both NiMnSb and PtMnSb, which is n
present for PdMnSb. From Fig. 6 it can be seen that for

e
al

FIG. 9. As Fig. 8, but for PdMnSb.
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half-metallic compounds there are three lesser bands atEF .
One consequence is therefore that the intraband contribu
to sxx will be smaller~see Eq.~8!!. In Fig. 11 we show the
impact of the half-metallic character of the bandstructure
the Kerr rotation of PtMnSb. The calculated plasma f
quency in PtMnSb is small,\vp54.45 eV. Experimentally a
somewhat bigger plasma frequency of (6.160.4) eV was
found for PtMnSb, and a smaller\vp5(4.960.2) eV for
NiMnSb.89 One should, however, not forget that the sam
purity can affect the plasma frequency through the posit
of EF . To investigate the influence of the half-metallicit
we can artificially shift the Fermi energy down, and calcula
the spectra for this position ofEF or we can leaveEF as it is
and model a non-half-metallic bandstructure by adoptin
larger vp . Both ways to mimic non-half-metallicity have
drastic impact on the resulting Kerr rotation, which becom

FIG. 10. As Fig. 8, but for PtMnSb. The experimental data are a
Ikekameet al.88 The data for annealed PtMnSb are denoted byn, and those
for non-annealed, polished PtMnSb bys. The calculated Kerr rotation spec
trum is shown for two interband lifetime parameters,g50.05 Ry and
g50.02 Ry.
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reduced by a factor 2! As can be seen from the top pane
Fig. 11, in the absence of half-metallicity the shape of«xx

(1)

changes and resembles closely that of PdMnSb~see Fig. 9!.
This is especially so for the model whereEF is shifted, since
this leads to the smaller Im@vD#21 and also to a reduction o
vsxy

(2) at photon energies below 2 eV. The later is due to
exclusion of optical transitions from the SO split bands ju
below EF . The consequence of both models for non-ha
metallic behavior is that the maximum in Im@vD#21 becomes
about two times smaller. The Kerr angles derived in the
models resemble now that of PdMnSb in shape, but are
ger, becausevsxy

(2) is larger than that of PdMnSb. Previous
we have shown that if the SO coupling on Pt in PtMnSb
artificially set to zero, the Kerr rotation peak in PtMnSb b
comes reduced by a factor of three.21 We mention with re-
spect to the influence of the denominator on the Kerr rotat

rFIG. 11. Model investigation of the influence of the half-metallic charac
of PtMnSb on the optical and MO spectra. A non-half-metallic bandstr
ture has been modeled in two ways: by artificially shiftingEF in PtMnSb
down, and by increasing the calculated plasma frequencyvF54.45 eV to
6.40 eV.
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in PtMnSb, that experiments in which the stoichiometry a
crystalline sample quality were varied also concluded t
the denominator contributed appreciably to the giant K
rotation.83,85–88

In conclusion, we find that the Kerr spectra of NiMnS
PdMnSb, and PtMnSb can be fully understood from th
electronic structure. The puzzling anomalies in the K
spectra of these compounds arise from an interplay of c
pound related differences in the SO interaction, in the h
metallic character, and also in relative positions of ene
bands.

2.3. MnBi

Although the MO Kerr effect in MnBi was measure
already about twenty years ago, only very recently a th
ough investigation of the spectral dependency of the K
effect under variation of the Mn-Bi composition.90 These
experimental Kerr spectra obtained at 85 K as well as
calculated ones are shown in Fig. 12. First-principles the
predicts a very large Kerr rotation in MnBi of about21.17°
at 1.8 eV,24 which is even larger than the measured pe
value of21.6°.90 The lifetime broadening parameterg used
was 0.04 Ry~i.e., g is the half-width at half maximum of a
Lorentzian!. However, we wish to point out that a small
~but still reasonable! relaxation time broadening of 0.02 R
would already result in a theoretical peak value of22.22°.
Therefore, according to theory, a larger Kerr effect than m
sured as yet should be possible. Experiment shows a se
maximum in the Kerr angle at 3.4 eV, where theory on
gives a smaller shoulder. A tentative explanation of this d
ference might be the sample composition, which is in exp
ment Mn1.22Bi. 90,91 There is thus an excess of Mn in th
sample. To examine the changes caused by the excess o
we performed test calculations for a hypothetical Mn2Bi
compound in the HeuslerC1b structure ~i.e., MnMnBi!,
where each Mn atom is tetragonally surrounded by Bi. In
~111! direction this compound has a trigonal symmetry, li

FIG. 12. Calculated and experimental Kerr spectra of Mn–Bi compoun
The Kerr rotation is denoted byuK , and the Kerr ellipticity by«K . The
theoretical spectra are calculated for MnBi in the NiAs structure, for t
lifetime broadenings, and for hypothetical Mn2Bi in the HeuslerC1b struc-
ture. The experimental Kerr spectra were measured at 85 K on a Mn1.22Bi
film.90
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the~0001! NiAs phase. The calculated Kerr spectra of Mn2Bi
are also shown in Fig. 12~dotted curve!. In its Kerr rotation
there is a peak at about 4.3 eV and a smaller one at 2
which is at the same position as the main peak of MnBi.
Mn2Bi in this structure is only a hypothetical compound, w
have used a guessed lattice constant. The position of the
at about 4 eV is rather sensitive to the lattice constant va
Thus, if the stoichiometry shifts from MnBi to Mn2Bi there
appears to be a tendency to reduce the first peak at 1.8
and to enhance the peak at about 3.5 eV. This correspo
exactly to what is seen in the experimental Kerr spectrum
composition Mn1.22Bi. Other recent experiments on MnB
samples with an almost 2:1 Mn-Bi ratio confirm the trend
an increased Kerr rotation above 3 eV.92

A further feature of the experimental Kerr rotation is th
it exhibits a sign reversal at 0.9 eV. This sign reversal
actually also given by theory, but only for a smaller broa
ening parameter. This is consistent with the observation
experimentally it disappears in the room-temperature K
rotation.90,93 Lastly, we mention that there appears to be
substantial intraband contribution to the conductivity pres
in the sample. In the calculations shown in Fig. 12 we
counted for the intraband conductivity by adding a Drud
type conductivity to the calculated interband conductivi
For this Drude conductivity we used the calculated plas
frequency and an estimated Drude broadening param
~which is vp50.26 Ry andgD50.02 Ry for MnBi!. But, as
adding a Drude conductivity shifts especially the Kerr elli
ticity below 3 eV upwards, we would judge that in th
sample there is likely a larger intraband contribution to t
conductivity. This can be due to some disorder and
Mn-Bi stoichiometry.

The Kerr spectra depend on the MO conductivity spec
in an entangled way, so that it is difficult to assign features
the Kerr spectra to particular band transitions. The absorp
parts of the optical conductivity,sxx

(1) and sxy
(2) , however,

relate directly to the interband optical transitions, and p
vide therefore more physical insight. These absorptive p
of the conductivity tensor are shown for MnBi and Mn2Bi in
Fig. 13. The main peak in the Kerr rotation of MnBi is due
the maximum insxy

(2)(v) at 2 eV. Several kinds of dipola
optical transitions contribute to the broad structure insxx

(1) .
The main contributions originate fromp–d andd–p transi-
tions. The peak insxy

(2) is, however, mainly due to transition
from Bi p-like states.

As a first result, we conclude that first-principles ele
tronic structure calculations give a satisfactory description
the giant Kerr rotation in MnBi. The difference between t
experimental andab initio Kerr rotation at 3.4 eV is antici-
pated to be related to the stoichiometry of the sample.

From these investigations the following picture of th
Kerr effect in MnBi emerges: manganese has the requ
big magnetic moment of 3.71mB , while Bi has a small in-
duced moment of20.10mB . In an applied field the smal
moment on Bi shifts to Mn~with sign reversed!, so that then
the total calculated moment compares well with the mom
obtained from the saturation magnetization of (3.
60.03)mB .94 Thus, in the interplay of exchange splittin

s.
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and spin-orbit coupling leading to the record Kerr effect, M
brings in the exchange splitting and Bi the spin-or
coupling. The degree of hybridization between Mn and
furthermore, can be recognized from the partial densities
states, which are shown in Fig. 14. There is a strong hyb
ization between the Bi and Mnp-type states as well as B
and Mnd-type states, as can be seen from the identical sh
of the partial densities. The magneto-optically active tran
tions take place mainly on Bi, from occupiedp- to unoccu-
pied d-states, in the spin-down bands~dotted curves!. It is
worthwhile to consider also the partial densities of states
Mn2Bi, which are shown in Fig. 15. For this compound t
Bi p-states are shifted down and are higher in density,
the hybridization is also large. As a result, the Kerr rotat
at 4 eV becomes bigger. In contrast to MnBi, Mn2Bi has its
Fermi energy right at a maximum in the partial density
states, which suggests that this hypothetical compound
be unstable.

3. LOCALIZED f ELECTRONS: THE CASE OF CeSb AND
CeBi

Rare-earth compounds and alloys exhibit a great var
of unusual properties. Among them one finds heavy-ferm
systems, intermediate valence compounds, Kondo me
and Kondo insulators. To understand the physical proper
of these materials correctly, it is necessary to investig
their electronic structure in detail. In this light, optical an
MO spectroscopy has proven to be an extremely useful

FIG. 13. Calculated absorptive parts of the optical conductivity,sxx
(1) and

sxy
(2) , for MnBi and Mn2Bi.
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FIG. 14. Partial densities of states for MnBi, in units of states/~atom-eV!.

FIG. 15. As Fig. 14, but for Mn2Bi.
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for the study of thef states in rare-earth and actinid
compounds.4 Over last decade the MO properties of ra
earth compounds have attracted large interest,4 which
increased after the discovery of the maximal observable
tation of 90° in CeSb by Pittiniet al.96 The majority of MO
investigations deal with compounds and alloys of the lig
rare earth ions Ce31 and Nd31, the half-filled shell ion Eu21

and the heavy rare earths Tm21 and Yb31. As with most
lanthanides, cerium and neodymium form face centered
bic ~FCC! rock-salt type binary chalcogenides with the VI
elements of the periodic table of the elements~S, Se, Te! and
FCC poictides with the VA elements~N, P, As, Sb, Bi!.95

With the exception of the nitrides, all cerium and neod
mium chalcogenides and pnictides order antiferromagn
cally in zero magnetic field. CeN is disordered down to 1
K, while NdN orders ferromagnetically.4 The MO properties
of cerium chalcogenides are well investigat
experimentally,4,96,97and also theoretically.15,31,33

For CeSb a record Kerr angle of 90° was very recen
reported,96 90° is the absolute maximum value that can
measured. It is two orders of magnitude larger than the
ues that are commonly measured for transition-metal c
pounds, and about one order of magnitude larger than va
maximally achieved for other lanthanide and actini
compounds.4 To investigate the nature of a record polar Ke
rotation in CeSb, we have performedab initio calculations of
the optical spectra using the LDA and LDA1U approaches,
with U56 eV.33 In Fig. 16 we show theoretical and exper
mental results for the real part ofsxx for CeSb, CeTe and
CeSe. From Fig. 16 it can be seen that for CeSe and C
the inclusion of the Coulomb interactionU leads to a sub-
stantial improvement over the LDA result. The erroneo
peak at 1.5 eV in the LDA spectra, which is due to an u
physical 4f band resonance nearEF , disappears in LDA1U
spectra. Due to the Coulomb correlation, the occup
4 f 1-levels are placed about 3–4 eV belowEF . In Fig. 17 we
show the experimental98 and LDA1U results for Kerr spec-
tra of CeSe and CeTe. The results of the LDA approach
not shown here, but we mention that these do not by
reproduce the experimental data as good as LDA1U
approaches.33 The main peak in the Kerr rotation spectra
Fig. 17 is not found to be due to optical transitions stemm
directly from the nearly localized 4f 1-level. Instead, these
peaks are due to a plasma minimum in the denominato
Eq. ~3! and non-zerosxy , as will be discussed for CeS
below.

The LDA1U results for the Kerr spectra of CeSb a
shown in Fig. 18. There is a giant Kerr rotation of 60° whi
is less than the observed value of 90°. Pittiniet al.96 ob-
served that the maximum Kerr rotation depended on
magnetization and that therefore the intrinsic quantum s
played an important role. In addition, the record Kerr effe
occurs close to a plasma minimum. Both observations ag
with what we find in our calculations. The denominator
Eq. ~3! nearly vanishes due to the particular frequency
pendence ofsxx . A small denominator is not sufficient fo
obtaining a large Kerr rotation. Alsosxy , which relates to
the magnetic polarization, is important. The 4f 1-level in
CeSb is a completely spin and orbitally polarized sta
o-
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which has a large magnetic moment of about 2mB . The
4 f 1-level is, however, located 3.6 eV beneathEF in our cal-
culations, and therefore it cannot contribute directly to t
peak rotation. We find that the 4f 1-level plays nevertheless
crucial role, because, due to hybridization of valence sta
with the anisotropically polarized 4f 1-state, the valence
bands become anisotropically polarized. This anisotropic
larization leads to an asymmetrical coupling of the left- a

FIG. 16. Real part of diagonal optical conductivity,sxx
(1) , for CeSb, CeSe

and CeTe. LDA results are depicted by the solid curves, LDA1U results by
the dashed curves, and experimental results98 are depicted by the solid dots

FIG. 17. Theoretical and experimental98 Kerr angle (uK) and Kerr ellipticity
(«K) spectrum of CeSe and CeTe. The theoretical spectrum~solid curve!
was calculated using the LDA1U approach withU56 eV.
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right-hand circularly polarized light at small photon energi
The asymmetrical light coupling leads in turn to a relative
largesxy , which causes the huge Kerr rotation. To emph
size the importance of the anisotropic hybridization, we a
performed quasi-core calculations for the 4f 1-level. We ob-
tained a very similarsxx , but due to the lack of anisotropi
4 f -hybridization, sxy becomes nearly zero. Consequent
only a very small Kerr rotation is obtained in quasi-co
calculations.

The MO Kerr spectrum of CeBi has also a considera
interest. In most compounds the magnitude of the Kerr ef
is proportional to the spin-orbit~SO! coupling interaction.
The MO Kerr effect in MnBi is, for example, larger than th
in MnSb, because the SO coupling on Bi is larger than t
on Sb.24 One could thus expect that the Kerr angle in Ce
should be as large as, or even larger, than that of Ce
However, this is not found to be the case.98 In Fig. 19 we

FIG. 18. Theoretical Kerr spectra of CeSb as calculated with LDA1U ap-
proach withU56 eV.

FIG. 19. Theoretical and experimental98 Kerr angle (uK) and Kerr ellipticity
(«K) spectrum of CeBi. The theoretical spectrum~solid curve! was calcu-
lated using the LDA1U approach withU56 eV.
.
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show the experimental98 and theoretical Kerr spectra o
CeBi. The measured maximal Kerr rotation amounts only
29°, ten times less than that of CeSb. The LDA1U ap-
proach ~with U56 eV! explains the measured MO Ker
spectrum of CeBi fairly well. There is a small energy diffe
ence of 0.1 eV in the position of the rotation maximum, a
the calculated Kerr ellipticity deviates above 0.5 eV from t
experimental curve.

The fact that the Kerr rotation of CeBi is far less tha
that of CeSb is fully reproduced by our calculations,28,33 but
it is not consistent with our experience that the Kerr effec
proportional to the magnitude of SO coupling. The ima
nary part ofsxy is for CeBi as large as that of CeSb, but
we compare thesxx of CeBi to that of CeSb, then we find
that the denominator does not become as small for CeBi.
resulting Kerr angle of CeBi is therefore not as large as t
of CeSb.

We conclude that LDA1U approach provides an im
proved electronic structure for materials having deep-lyi
nearly localizedf’s. The optical and MO spectra compute
therefrom are in fair accord with experimental spectra. T
overall agreement of the calculated and experimental spe
however, emphasizes that improvements are still called

4. URANIUM COMPOUNDS

Intensive experimental and theoretical study over m
than two decades99–103 has revealed that 5f magnetism is
quite complex, because Coulomb, spin-orbit, crystalline fi
and exchange energies in 5f systems are the same order
magnitude. Today it is well established that many unus
physical properties of the light actinide metals are a refl
tion of the particular nature of the 5f electrons. Many years
ago Friedel104 proposed that the bonding in these materi
must involve the 5f electrons. The argument for 5f bonding
can be understood as a consequence of the extended n
of the 5f wave function relative to the rare-earth 4f wave
functions. This causes them to form in bandlike states.105

The itinerant nature of the 5f electrons in the light ac-
tinide metals are well known.99 Their electronic structure and
optical properties are well described by LDA band structu
calculations.106,107On the other hand, the decreasingf-band
width ~W! and the increasing intraatomic Coulomb ener
~U! results in a Mott localization in between plutonium an
americium100,108,109and the correlation effects are not pro
erly described in the local density approximation.102,110

Actinide compounds occupy an intermediate position
tween itinerant 3d and localized 4f systems111,112and one of
the fundamental questions concerning the actinide mate
is whether theirf states are localized or itinerant. This que
tion is most frequently answered by comparison between
perimental spectroscopies and the different theoretical
scriptions.

Optical spectroscopy provides a powerful, widely us
tool to investigate in detail the electronic structure of a
tinides. Traditionally, one distinguishes the various exist
kinds of spectroscopies according to the photon energy of
employed light, i.e., high-energy x-ray methods, and me
ods applying infrared, visible or medium-energy light (\v
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,10 eV). X-ray photoemission spectroscopy~XPS! has been
applied to determine the energy position of the 5f states
belowEF , and angle-resolved XPS has been used to map
the energy bands in the Brillouin zone~see, e.g., Ref. 113!.
Optical spectroscopy in the visible and infrared energy ra
has successfully been applied to many topics in the actin
research. Examples are the infrared absorption in the he
fermion state of URu2Si2

114 and UPd2Al3,
115 reflectivity

spectroscopy on intermediate valence and dense Ko
materials.116 A particular useful spectroscopic technique
MO Kerr spectroscopy.4 Reflectivity spectroscopy can b
used to determine relative energy level positions, but K
spectroscopy has the additional advantage that it couple
both the spin and orbital polarization of the electron state4

Kerr spectroscopy is therefore ideally suited for study
magnetic actinide compounds. On the other hand, actin
compounds are also excellent subjects for MO research.
participation of the 5f states in bonding is reflected i
strongly hybridized bands near the Fermi level, with a h
density of states and significantf→d oscillator strengths for
optical transitions. The 5f delocalization favors higher or
dering temperatures. In fact, many uranium compounds h
ordering temperatures which are one order of magnit
larger than those in similar lanthanide com
pounds.4,117 Regarding the magnitude of the MO effec
compared to rare-earth materials, an enhancement due t
larger spin-orbit energy can be expected and is in part
perimentally verified.4,117 For actinide compounds the figur
of merit R1/2(uK

2 1«K
2 )1/2, whereR is the optical reflectivity,

uK and«K are Kerr angle and Kerr ellipticity, respectively,
one order of magnitude larger than for the best transition
rare-earth compounds.4 Besides the issue of radioactivit
~minimal for depleted uranium! a hindrance for successfu
application of actinide compounds in storage devices is
the typical Curie temperature are below room temperat
This is not a fundamental problem, and can probably
overcome by suitable alloying.

As we mentioned above one of the most intriguing
pects of actinide compounds is the great variability in
localization degree of the 5f electrons. Varying from one
actinide compound to another, the 5f electrons may range
from being nearly localized to being practically itinerant.
this work we consider two groups of actinide compoun
The optical and MO spectra of the first group which conta
UAsSe and URhAl compounds can be properly descri
within density functional theory in the local-density approx
mation, but such an approximation totally failed in the ca
US, USe, and UTe. This result puts forward further eviden
for at least partly itinerant electron behavior in the first gro
compounds and at least partly localized one in the sec
group.

4.1. UAsSe and URhAl

UAsSe crystallizes in the tetragonal PbFCl crystal str
ture ~also called ZrSiS structure, P4/nmm space group! and
orders ferromagnetically belowTC5110 K.118,119 Magnetic
susceptibility measurements120 and photo-emission
experiments121 supplied evidence for localized 5f electrons
in UAsSe. On the other hand, reflectivity and MO spectr
ut
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copy revealed a pronounced spectral intensity at sm
photon energies~,2 eV! which was attributed to a 5f band
located at the Fermi energy.117 Also, the specific heat coef
ficient g541 mJ/Mol•K2 indicates a tendency to
itinerancy.122 These apparently contradicting observatio
show that the behavior of the 5f electrons and the relate
magnetic properties of UAsSe are not yet well understoo

As in other uranium compounds with non-cubic stru
tures such as, e.g., the ternaryUT2X2 compounds123 there is
the possibility of partially delocalized electrons in anoth
sense. These compounds with a preferredc-axis tend to have
the uranium atoms arranged in layers which leads to b
anisotropic bonding and magnetic properties due to hyb
ization of 5f andp or d states. It is quite possible that the 5f
electrons are delocalized in the planes but localized along
c-axis and we suspect that this may be the case in UAsSe
this compound the uranium planes are perpendicular to
axis of the polar Kerr measurements, so that the polar M
Kerr effect selectively probes these planes which is a p
sible explanation5 of why the response appears to be due
itinerant electrons.

A comparison of the theoretical and experimental sp
tra in Fig. 20 proves that there is a very good agreem
between the band theory and experimental data: Both
position and height of the main peak in the Kerr angle (uK)
at 3 eV are properly given by theory, with the usual~small!
dependence of the theoretical peak height on the broaden
Energy-band theory predicts also a smaller peak in the K
rotation at 1 eV, where there is only a shoulder seen in
measured Kerr angle. A Kramers-Kronig related peak str
ture is visible in the Kerr ellipticity («K) spectrum at 1.5 eV.
In this energy region there will of course be the influence
the not included intraband conductivity which may chan
the pure interband spectra.

URhAl has also a layer crystal structure with U-R
planes separated by Rh-Al planes. There are apparently
eral contradicting experimental observations on the natur
5 f -electron localization in URhAl. Inelastic neutron scatte
ing experiments on URhAl revealed a peak at 380 me
which could be the signature of an intermultipl
transition.124 The value of 380 meV is quite close to th
intermultiplet transition energy of 390 meV measured

FIG. 20. Theoretical and experimental polar Kerr rotation and Kerr ellip
ity spectra of UAsSe. The experimental data~j! are after Reim~Ref. 5!.



o

er

at

us
1
a
eo
is

t 5
el

nt
y-
al
it

n
-
e

of
A

t

02

na,
ese
m-
etic

ea-
n-

nt
op-
n
s of
be-
do

b-
ect
err
of

re-
pec-

d-
as
c-

he
-
de-
me
, if
and

r-
la-
5
ed:

se,
ct

ri-

uld
tal

ret-

nd

us

tal

e

402 Low Temp. Phys. 25 (6), June 1999 Antonov et al.
UPd3.
125 There are, however, several other properties

URhAl that would advocate rather delocalized 5f behavior
in URhAl. A small U moment of only 0.94mB was measured
which does corresponds to the magnetic moment of neith
5 f 2 nor a 5f 3 configuration.126 A significant amount of an-
isotropic 5f -ligand hybridization was reported.127 Also, the
measured specific heatg560 mJ•mol21

•K22 is not particu-
larly small.128 These contradictory observations demonstr
that the 5f behavior in URhAl is not yet understood.

In Fig. 21 we show the experimental Kerr spectrum129 of
URhAl together with the theoretical spectrum calculated
ing the itinerant LDA approach.28 The first spectral peak at
eV, and the second one at 2–3 eV in the Kerr angle
definitely reproduced in the theoretical spectrum. The th
retical Kerr rotation drops off between 4 and 5 eV, but it
yet not clear if this also occurs in the experimentaluK spec-
trum. It can, nevertheless, be concluded that the itineranf
model explains the measured Kerr spectrum fairly w
Clearly, this supports the picture of delocalized 5f electrons
in URhAl. The calculated electronic specific heat coefficie
g541 mJ•mol21

•K22, is quite reasonable since a man
body enhancement of 1.5 can be considered to be norm

With respect to the signified intermultiplet transition,
could be speculated that the 5f ’s in URhAl divide into two
groups, relatively delocalized, rather hybridized 5f ’s in the
U-Rh plane, and more localized 5f ’s perpendicular to this
plane, in accord with the observation of anisotropicf hybrid-
ization in URhAl.127 The possible intermultiplet transitio
might correspond to the localized 5f ’s, whereas Kerr spec
troscopy in the polar geometry probes the MO respons
the U-Rh plane.

In conclusion, we find that the MO Kerr spectra
UAsSe and URhAl can be excellently described by a LD
band-structure approach to the 5f electrons.

4.2. US, USe and UTe

The uranium compounds US, USe, and UTe belong
the class of uranium monochalcogenides that crystallize
the NaCl structure and order ferromagnetically~on the ura-
nium sublattice! at Curie temperatures of 178, 160, and 1

FIG. 21. Experimental129 and theoretical Kerr spectrum of URhAl. Th
theoretical spectrum is calculated with the itinerant LDA approach.
f
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K, respectively ~see, e.g., the review130!. These uranium
compounds exhibit several unusual physical phenome
which are the reason for an as yet ongoing interest in th
compounds. Despite their relatively simple and highly sy
metrical NaCl structure, it has been found that the magn
ordering on the uranium atoms is strongly anisotropic,131,132

with the uranium moment favoring a~111! alignment. The
magnetic anisotropy in US, e.g., is one of the largest m
sured in a cubic material, with a magnetic anisotropy co
stantK1 of more than 23108 erg/cm3.133 Also the magnetic
moment in itself is unusual, consisting of an orbital mome
that is about twice as large as the spin moment, and of
posite sign,134–136but it is not close to the atomic moment. I
addition to this, these materials show with increasing mas
the chalcogenide atom evidence of correlated-electron
havior, with UTe being considered as a dense Kon
system.137 Obviously, the uranium 5f -electrons are to be
held responsible for both features.

Schoenes and Reim,4,77,117,138,139 investigated the
magneto-optical~MO! spectra of these uranium salts and o
tained three rather similar Kerr spectra, as one would exp
from isochemical compounds. Besides, the measured K
rotation spectra are unusually large, with peak values
about 3 degrees. In a first interpretation of their measu
ments Reim and Schoenes gave an analysis of the Kerr s
tra in terms of optical transitions on uranium.117,139

It has already been shown that first-principles ban
structure theory using the local density approximation h
failed in giving a satisfactory description of the optical spe
tra of the uranium monochalcogenides.4,77 This failure was
thought to be due to an insufficient treatment of t
f-electron correlations by the LDA.4 These many-body cor
relation effects can already be important for the proper
scription of ground state properties, but they should beco
imperative for describing optical excitations. For example
a strong on-site Coulomb repulsion between electron
hole quasiparticles plays a dominating role.140 Therefore, if
the uranium 5f electrons are localized, then one would pa
ticularly expect to observe corresponding electron corre
tion effects in the optical spectra. The behavior of thef
electrons ranges from nearly delocalized to almost localiz
US is considered to be nearly itinerant,141 while UTe is con-
sidered to be quasilocalized.142 So the failure of LDA de-
scription of MO Kerr spectra in US comes as a surpri
because, if the 5f -electrons are itinerant, one would expe
the delocalized LDA approach to be applicable.

To find the appropriate description, we carried out va
ous model calculations of the optical and MO spectra.20,22

These included the orbital polarization143 and the LDA1U
approach, assuming 5f 2 and 5f 3 configurations for uranium
~with U52 eV!. However, using these approaches we co
not obtain satisfactory agreement with the experimen
spectra for all three compounds. In Fig. 22 we show theo
ical and experimental results for the real part ofsxx

(1) , for US,
USe and UTe. From Fig. 22 it can be seen that for US a
USe the inclusion of the Coulomb interactionU leads to a
substantial improvement over LDA result. The erroneo
peak at 3 eV in the LDA spectra disappears in LDA1U
spectra. In Fig. 23 we show theoretical and experimen
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FIG. 22. Real part of diagonal optical conductivity,sxx
(1) , for US, USe and

UTe in LDA, LDA1U approximations and with a screened hole in t
5 f 2-shell (LDA1U1hole). Theoretical results are depicted by the so
curves, and experimental results4 are depicted by the solid dots.

FIG. 23. As Fig. 22, but for imaginary part of offdiagonal optical condu
tivity, sxy

(2) .
results for the imaginary part of offdiagonal part of optic
conductivitysxy

(2) , for US, USe and UTe. It can be seen th
LDA calculations gives completely inappropriate resu
LDA1U calculations are greatly improve the agreement
tween theory and experiment in the case of USe and U
This finding appears to be consistent with the quasilocali
nature of the 5f -electrons in USe and UTe. As for US, th
dynamical process of the optical excitations may provid
clue for understanding what happens: the photoemission
5 f -electron creates a long-living hole in the 5f -shell, which
will be rapidly screened. This hole in the broad, semiloc
ized 5f -bands lies in the important spectral range. To test
influence of this process we performed LDA1U calculations
~with U52 eV! and with a screened hole in the 5f 2-shell.
The physically motivated correction leads to an improv
description of the optical conductivity~see Figs. 22 and 23!
and also Kerr spectrum for US, USe and UTe~Fig. 24!.

SUMMARY

Recent progress in first-principle calculations of optic
spectra illustrates that optical and MO spectra are develop
into a powerful tool for tracing the electronic structure
crystals. The density-functional theory in the local-dens
approximation gives a fully satisfactory explanation of t
MO Kerr spectra of transition metal compounds and alloys
most cases. Moreover, theory can help to understand the
ture of MO spectra and gives some recommendations ho
create compounds with appropriate MO properties.

As can be seen from the consideration of MO propert
of MnBi, XPt3 compounds and Heusler alloys, large Ke
effects can be anticipated when compounds fulfill the follo

FIG. 24. Experimental4 ~solid dots! and theoretical~solid line! Kerr spectra
of US, USe and UTe.



b
e,
en

e
po

he
al
e

ol

ai
b-
el
c

in
te
d
fo
d
n

be
e
s
on
e
ri
n
co

o-
ica

he

n
ro

b

t
n-
a
n

o

k
of

us
fo
Q

of

nd

-

g,
.

.

.

n.

-

d

ft,

nd

. B

f,

nd

nd

d

r,

ft,

N.

404 Low Temp. Phys. 25 (6), June 1999 Antonov et al.
ing conditions: one of the constituting elements must
heavy, but this element need not be magnetic, for instanc
or Bi. One of the other elements must have a large mom
but this element need not be heavy, for instance, Mn, Fe
Co. In addition should there be a good hybridization betwe
the states of the two kinds of atoms. Within such a com
sition, the large exchange splitting~i.e., a big magnetic mo-
ment! and the strong spin-orbit coupling lead through t
hybridized bands to a big Kerr rotation. However, not in
cases does this ‘‘rule of thumb’’ apply, because sometim
the influence of the band structure can be such that dip
transitions of different bands compensate each other.

In most of the 4f systems, thef electrons are localized
and form a Hund’s rule ground state. The application of pl
LDA calculations to 4f electron systems encounters pro
lems in most cases, because of the correlated nature of
trons in thef shell. To better account for strong on-site ele
tron correlations the LDA1U approach should be used,
which a model Hamiltonian explicitly including the on-si
Coulomb interaction,U, for localized states is combine
with the standard band structure calculation Hamiltonian
extended states. The LDA1U method provides a rather goo
description of the electronic structure and the optical a
MO properties of some lanthanide compounds.20,28,32

Actinide compounds occupy an intermediate position
tween itinerant 3d and localized 4f systems, and one of th
fundamental questions concerning the actinide material
whether theirf states are localized or itinerant. This questi
is most frequently answered by comparison between exp
mental spectroscopies and the different theoretical desc
tions. Optical and MO spectroscopy, like photoelectro
spectroscopy and bremsstrahlung isochromat spectros
supply direct information about the energy states~both occu-
pied and unoccupied! around the Fermi energy, and can pr
vide a means of discrimination between the two theoret
limits.

There are quite a few first-principle calculations of t
MO spectra of uranium compounds.9,19,20,22,144 The MO
spectra of such compounds as UAsSe,19 URhAl,28 U3P4

144,145

and U3As4
145 are well described in the LDA and we ca

conclude that they have at least partially itinerant elect
behavior. On the other hand, the MO spectra in UTe can
well described only in the LDA1U approximation20 support-
ing the localized description for their 5f electrons. The mos
difficult case is US which is commonly classified to be iti
erant. We find that a LDA1U approach supplemented with
screened hole in the 5f -shell gives a reasonable descriptio
of the Kerr spectra of US and USe.
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Nonlinear second sound in He-II under pressure
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The dependence of the nonlinearity coefficienta for the roton second sound in superfluid He-II
on pressureP is studied for the first time. It is found that as the value ofP increases
from saturated vapor pressure to 25 atm, the temperatureTa at which the coefficienta reverses
its sign decreases from 1.88 to 1.58 K, i.e., there exists a wide temperature interval below
Tl in He-II at all pressures, in which the nonlinearity coefficienta is negative, and a temperature
discontinuity~shock wave! is formed at the trailing edge of the second sound compression
wave. © 1999 American Institute of Physics.@S1063-777X~99!00206-6#
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In this communication, we present the results of expe
mental and theoretical studies of the temperature depend
of the nonlinearity coefficienta of the second sound wave
in superfluid helium~He-II!. Measurements were made
HeII at temperatures 1.6–2.15 K under different pressure
the experimental cell~from saturated vapor pressure~svp! to
P514 atm!. The dependencea(P,T) is calculated theoreti-
cally down to the minimum pressureP525 atm correspond
ing to solidification of the superfluid liquid.

The emergence of second sound in He-II
characterized1–3 by rather strong nonlinear properties. Th
leads to the formation of shock waves~temperature discon
tinuities! during propagation of a finite-amplitude wave
He-II at short distances from the source. The velocity o
travelling second sound wave depends on the amplitude
can be written in the first approximation in the followin
form:

c25c20~11adT!, ~1!

wheredT is the wave amplitude,c20 the velocity of second
sound of small amplitude, anda the coefficient of nonlinear-
ity of the second sound defined by the relation1,2

a5
]

]T
lnS c20

3 C

T D . ~2!

In the subsequent analysis, we shall assume that the am
tude of the second sound wave is not too large (udT
u,1022 K) so that we can neglect the processes of crea
of quantum vortices at the front of a travelling shock wa
during a theoretical analysis of the evolution of the shape
a short-duration solitary pulse with distance. For such am
tudes, the description of the nonlinear evolution of the sh
of the second sound wave can be confined to the
terms in the expansion of the velocity of soundc2 in dT, as
in Eq. ~1!.

It should be recalled that unlike the nonlinearity coef
cient of the ordinary~first! sound, the nonlinearity coefficien
4071063-777X/99/25(6)/3/$15.00
i-
ce

in
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li-
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f
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e

st

a of the second sound in He-II may be positive or negati
Under saturated vapor pressure in the region of the sec
roton sound~i.e., atT.1 K!, the nonlinearity coefficient is
positive (a.0) at temperaturesT,Ta51.88 K ~like the
nonlinearity coefficient of sound waves in ordinary medi!,
passes through zero atT5Ta , and becomes negative (a
,0) in the intervalTa,T,Tl , whereTl52.187 K is the
temperature of transition of the liquid to the normal sta
Hence during propagation (dT.0) of a plane ~one-
dimensional! second-sound compression wave in He-II, t
temperature discontinuity~shock wave! emerges at the fron
of the wave at temperatures 1 K,T,Ta and at the trailing
edge of the wave at temperaturesTa,T,Tl ~see, for ex-
ample, Ref. 4!. The emergence of a discontinuity at the tra
ing edge of the compression wave~or at the front of a rar-
efaction wave fordT,0! is a specific property of secon
sound in He-II, and is unknown in ordinary sound.2

All the numerical values mentioned above correspond
He-II under saturated vapor pressure. The characteristic
He-II, e.g., the heat capacityC of helium, the second soun
velocity c20, and the phase transition temperatureTl change
considerably upon an increase in pressure. Naturally
change in pressureP must also affect the magnitude an
temperature dependence of the nonlinearity coefficienta.
The dependencea(P,T) was not studied earlier.

While carrying out numerical computations of the coe
ficient a(T) under different pressures right down to th
minimum pressureP525 atm corresponding to solidifica
tion, we used the known dependences3 C(P,T) and
c20(P,T). Figure 1 shows the temperature dependen
a(T) calculated at the saturated vapor pressure, 5, 10,
and 25 atm~curves1–5!.

In order to analyze the experimental results, say,
studying the evolution of the form of the second sound wa
with an enhanced thermal flux densityQ in the wave,4,5 it is
convenient to present the dependence~1! in the form
© 1999 American Institute of Physics
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c25c20~11aQQ!. ~3!

Within the admissible error limits, the fluxQ in the wave can
be expressed in terms of the amplitudedT by proceeding
from the linearized fluid dynamics equations.1 Since the heat
capacity of He-II varies strongly with temperature and pr
sure, the dependencea(T) shown in Fig. 1 differs signifi-
cantly from the dependenceaQ(T) shown in the inset to
Fig. 1.

Experimental investigations of the pressure depende
of the nonlinearity coefficient in a superfluid liquid we
carried out in a cylindrical cell of diameter 3 mm and leng
30 mm placed in a high-pressure chamber. A film-ty
heater of area 232 mm and a superconductor rhenium b
lometer having a resistance6 R5130V attached to the end
faces of the cell were used for exciting and recording sec
sound waves. The sensitivity of the bolometer at tempe
tures 1.6–2 K was 6 V/K. The heater was attached t
generator of rectangular electric pulses. The durationt of the
exciting electric pulses varied in the interval 0.3–10ms. The
a.c. signal from the bolometer was amplified by a wideba
amplifier and then stored in the memory of a digital oscil
graph Tektronics TDS-340 for a subsequent digital analy
of the data.

The dependencesa(T) under a fixed pressure in the liq
uid can be reconstructed by studying the evolution of sh
of the second sound shock wave with a change in temp
ture T or the heat fluxQ under consideration, say, with th
help of the plots shown in Fig. 2. Here, the durationt of the
exciting pulse is 10 ms, the heat flux densityQ
510 W/cm2, and the pressureP in the cell is equal to 3 atm
Curves1–3 correspond toa.0 ~T51.744, 1.783 and 1.81
K!, while curves4–7 correspond toa,0 ~T51.968, 1.999,
2.044 and 2.071 K!.

According to the results of our experiments, the es
mates ofa(P,T) are in accord with the results of theoretic
calculations shown in Fig. 1.

Figure 3 shows the pressure dependence of the temp
ture Ta corresponding to the passage of the second so

FIG. 1. Theoretical dependence of the second sound nonlinearity coeffi
a on temperature under various pressures in the liquid. Curve1 corresponds
to the saturated vapor pressure, while curves2–5 correspond to the pres
sures 5, 10, 15 and 25 atm respectively. The inset shows the depen
aQ(T) for the same pressures.
-

ce

e
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ra-
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nonlinearity coefficient in He-II through zero. The dotte
curve corresponds to the theory, while the circles show
results of processing of the experimental data. Within
limits of the computational error, the experimental data
in good accord with the predictions of the theory. The so
curve in Fig. 3 was constructed from the data available in
literature,3 and describes the variation in the temperatu
Tl(P) of transition of the liquid to the normal state upon a
increase in pressure.

It follows from Fig. 3 that under all pressures right up
the value corresponding to the solidification of He-II, the
exists a fairly wide temperature range in which the seco
sound nonlinearity coefficienta is negative. This is quite
important since the thermal excitation of a second sou
spherical wave of quite large amplitude in a superfluid liqu
in the casea,0 leads to the formation of abipolar pulse of
constant durationdetermined by the durationt of the excit-
ing heat pulsewith a temperature discontinuity at the cent
of the travelling wave.5 The use of bipolar pulses propaga
ing in a long waveguide7 may turn out to be important in the
investigation of nonlinear and dissipative processes in

nt

nce

FIG. 2. Evolution of the shape of a quasi-one-dimensional second-so
wave in a cylindrical ampoule upon a change in temperatureT, K; 1.744
~1!; 1.783 ~2!; 1.81 ~3!; 1.968 ~4!; 1.999 ~5!; 2.044 ~6!; 2.071 ~7! pressure
P53 atm, Q510 W/cm2, t510ms.

FIG. 3. Dependence of the temperatureTa on pressure: the dashed curv
corresponds to the theory while the circles describe the experimental re
The solid curves show the temperature dependence of the pressure of s
fication of liquid helium and the variation of phase transition temperatureTl

with pressure.
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vicinity of Tl ,8–10 since the width of the one-dimension
shock pulse in the case of monopolar pulses normally
ployed in such experiments increases rapidly~as uau1/2! as
the critical temperature is approached, thus making it d
cult to register the pulses.

The authors are obliged to A. A. Levchenko and A.
Lokhov for their help on numerical computations and expe
ments, and also to A. F. G. Wyatt for fruitful remarks. Th
research was supported by the grant INTAS-93-3645-EX
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Lower critical fields of texturized high- Tc superconductors. II On the possibility
of studying the anisotropy of Hc1

V. A. Finkel’
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~Submitted August 4, 1998; revised January 26, 1999!
Fiz. Nizk. Temp.25, 554–558~June 1999!

The concepts about the possibility of studying the anisotropy of lower critical fields of HTSC are
developed by measuring the values ofHc1 in texturized samples for different angles of
rotation of the investigated sample relative to the axis perpendicular to the external magnetic
field H. © 1999 American Institute of Physics.@S1063-777X~99!00306-0#
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Information about the lower (Hc1) and upper (Hc2)
critical fields of high-temperature superconductors~HTSC!
is vital for constructing the electrodynamics of this class
materials and for determining the origin of high-temperat
superconductivity. Obviously, it should be interesting
measure not the averaged values ofHc1 andHc2 for a poly-
crystalline object, but rather the values of the critical fie
along the principal axes of complex~tetragonal or rhombic!
lattices which are characteristic of HTSC. The values of
critical fields along the principal axes (Hc1

c ,Hc2
c ) and at right

angles to it (Hc1
ab,Hc2

ab) are directly related to the values o
fundamental parameters of superconductivity, viz., the
herence lengthj and the penetration depthl in the same
directions1,2:

Hc1
c /Hc1

ab5Hc2
ab/Hc2

c 5jab/jc5lc/lab5~mc/mab!1/2,
~1!

wheremc andmab are the ‘‘effective mass tensor’’ compo
nents of an electron along the principal axis and at ri
angles to it respectively in the Ginzburg–Landau anisotro
theory.

It should be borne in mind that although the values
critical HTSC fields depend~very strongly!! on direction, the
critical fields themselves are not tensors, and the stan
procedure of ‘‘reducing the tensor to principal axes’’3 is not
applicable in this case. Special studies must be carried o
determine the character of the orientational dependence
Hc1 and Hc2 . In the framework of the modern theoretic
models concerning magnetic properties of type II anisotro
superconductors, which were developed even before the
covery of high-temperature superconductivity4,5 and were
applied successfully to HTSC~see, for example, Refs
6–10!, the following expressions were obtained for the d
pendence of lower and upper critical fields on the anglg
between the magnetic anisotropy axis and the external m
netic fieldH:

Hc1~g!5Hc1
c @cos2 g1~mc/mab!sin2 g#21/2, ~2!

Hc2~g!5Hc2
c @sin2 g1~mc/mab!cos2 g#21/2. ~3!
4101063-777X/99/25(6)/4/$15.00
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It would seem that measurements on single crystals
different orientations provides the only real possibility
studying experimentally the anisotropy of critical fields f
HTSC. Unfortunately, this possibility cannot be realized
all cases since many HTSC cannot be obtained in the form
single crystals~for example, the synthesis of single crysta
with substitution of elements, e.g., in YBa2Cu32xMxO72d ,
where M is an element replacing copper in the lattice,
practically impossible!. Moreover, the size and shape
single crystals are often unsuitable for fairly accurate m
surements ofHc1 , and the more so ofHc2 .

Earlier, we proposed11 that the anisotropy of lower criti-
cal fields of HTSC should be determined by measuringHc1

in three mutually orthogonal directions in texturize
samples, i.e., in objects displaying anisotropy of their el
tromagnetic properties. In this case, it was not necessar
describe quantitatively the texture of the investigated ob
~i.e., to construct pole figures and to reconstruct the orien
tion distribution functions for grains, etc.!. The real textur-
ized sample was put in correspondence with a certain sin
crystal with the same critical fieldsHc1

ab andHc1
c and with its

magnetic anisotropy axisc forming anglesa, b, andg with
the laboratory reference frameXYZ, such that the values o
Hc1 along theX-, Y-, andZ-axes coincide with the critica
fields for the sample along the same directions. This analy
which was confirmed experimentally in Ref. 11, provid
information about the critical fieldsHc1

ab and Hc1
c and the

Euler angles of the magnetic anisotropy axis of the HT
crystal in the reference frame of the crystal as a function
the ratio mc/mab of effective masses. The available da
~three values ofHc1 and the orthogonality condition cos2 a
1cos2 b1cos2 g51 are insufficient for determining the abso
lute values of the five unknown quantitiesHc1

ab, Hc1
c , a, b,

andg.
The aim of the present paper is to work out an algorith

for studying the lower critical fields of high-temperature s
perconductors, which would make it possible to determ
the orientational dependence ofHc1 from the results of mea-
surements on texturized samples. The approach used
© 1999 American Institute of Physics



to
-
te

x

le

e

or

n

le

the
ic
a
ne

ial

g a

st

411Low Temp. Phys. 25 (6), June 1999 V. A. Finkel’
studying the anisotropy of the critical fields boils down
finding the quantitiesHc1

ab andHc1
c from the results of mea

surements for different orientations of the investiga
sample relative to the external magnetic field vectorH real-
ized by rotating the texturized sample around one of the a
of the laboratory reference frame.

Suppose that the magnetic anisotropy axis~c-axis for
HTSC! of a texturized sample~to be more precise, of the
‘‘virtual’’ crystal put in correspondence with the real samp
see above! forms anglesa, b, and g with the axes of the
laboratory reference frameXYZ, and the magnetic fieldH is
applied along theZ-axis. The direction in whichHc1 is mea-
sured also coincides initially with this axis~Fig. 1!. The ini-
tial value of the lower critical fieldHc1

0 (g) ~for HiZ! is
defined by Eq.~2! written for the sake of convenience in th
form

Hc1
0 5Hc1

c @m1~12m!cos2 g#21/2, ~4!

wherem5mc/mab.
Rotation of the crystal through an anglew i relative to the

Y-axis of the laboratory reference frame transforms the
entation anglesa, b, andg to their new values~a i , b i , and
g i! in accordance with the following familiar relations i
crystal physics~see, for example, Ref. 12!:

S cosa i

cosb i

cosg i

D 5S cosa
cosb
cosg

D S cosw i 0 sinw i

0 1 0

2sinw i 0 cosw i

D
5S cosa cosw i1cosg sinw i

cosb
2cosa sinw i1cosg cosw i

D . ~5!

Naturally, the value of the critical field along the samp
axis must also change in this case:

Hc1
i ~g i !5Hc1

c @m1~12m!~2cosa sinw i

1cosg cosw i !
2#21/2. ~6!

We introduce the notation

FIG. 1. Transformation of coordinate axes upon a rotation of the inve
gated sample about theY-axis through an anglew.
d

es

,

i-

hi5@Hc1
0 ~g!/Hc1

i ~g i !#
25@m1~12m!~2cosa sinw i

1cosg cosw i !
2#/@m1~12m!cos2 g#.

Obviously, we have

m5
~2cosa sinw i1cosg cosw i !

22hi cos2 g

hi~12cos2 g!211~2cosa sinw i1cosg cosw i !
2 .

~7!

It can be proved easily that the elimination ofm from
two equations of type~7! for i 51,2 ~i.e., for a rotation of the
sample through anglesw1 and w2 relative to theY-axis!
leads to the equation

@~h221!sin2 w12~h121!sin2 w2#cos2 a12@~h1

21!sinw2cosw22~h2

21!sinw1 cosw1#cosa@gcosg1~h221!cos2 w1

2~h121!cos2 w21h12h2#cos2 g50. ~8!

Using the notation

A125~h221!sin2 w12~h121!sin2 w2 ,

B125~h121!sinw2 cosw22~h221!sinw1 cosw1 ,

C125~h221!cos2 w12~h121!cos2 w21h12h2 ,

we can reduce Eq.~8! to a quadratic equation in cosa:

A12cos2 a12B12cosg cosa1C12cos2 g50, ~9!

whose solution is given by

cosa5@2B126~B12
2 2A12C12!

1/2#
cosg

C12
5D12cosg,

~10!

whereD125@2B126(B12
2 2A12C12)

1/2#/C12.
Substituting the value of cosa from ~10! and repeating

the procedure of eliminatingm for i 52,3 (w i5w2 ,w3), we
arrive at an equation linear in cos2 g and having a solution in
the form

cos2 g5$h2~2D12sinw31cosw3!22h3~2D12sinw2

1cosw2!21@~2D12sinw21cosw2!22

~2D12sinw31cosw3!2#1h32h2%

3@~2D12sinw21cosw2!42~2D12sinw3

1cosw3!4#21. ~11!

Obviously, the case of conic texture,13 for which a cer-
tain crystallographic direction~^001&, i.e., the c-axis for
HTSC! forms a conic surface around a sample axis with
half-cone angleg is more significant than the rather exot
case of an arbitrary texture. The ‘‘limiting’’ case for such
texture is a two-dimensional texture for which, say, the pla
ab is parallel to the sample surface.~By the way, the actual
situation in which HTSC ceramics are obtained by uniax
compression of powders is quite close to this case.14 More
complex textures are obtained, for example, by applyin
magnetic field to HTSC powders.15! Obviously, in this case
a5b and

i-
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cosa5
1

&
cosb sing, ~12!

while the equation for the angular dependence of the crit
field ~6! is simplified considerably:

Hc1
i ~g!5Hc1

c Fm1~12m!S 2
1

&
sing sinw i

1cosg cosw i D 2G21/2

. ~13!

This equation describes the surfaceHc1(g,w) in the
‘‘experimental space’’ (g,w,Hc1). By way of an illustration,
Fig. 2 shows the surfacesHc1(g,w) for a high-temperature
superconductor withHc1

c 5900 Oe and with the effective
mass ratiosmc/mab equal to 5, 15, 50. The rotation of th
object of investigation around theY-axis of the laboratory
reference frame corresponds to the motion over this sur
along the plane curveg5const.

Without going into details of calculations, we write th
final result. Denoting

FIG. 2. Dependence of the lower critical fieldHc1 on the angleg between
the direction of the magnetic fieldH and the HTSC magnetic anisotrop
axisc, as well as on the anglew i of rotation of the crystal about theY-axis
for various values of the parametermc/mab. The dashed curve was obtaine
as a result of scanning forg5const in the interval 0,w,90°. The dark
circles correspond to the values ofHc1(w i) for which
a,b,g,Hc1

c ,Hc1
ab ,mc/mab were calculated~see text!.
al

ce

A125~h221!S cos2 w12
1

2
sin2 w1D2~h121!S cos2 w2

2
1

2
sin2 w2D1h12h2 ,

B125@~h221!sin2 w12~h121!sin2 w2#/2,

C125&@~h221!sinw1 cosw12~h121!sinw2 cosw2#,

we obtain the following equation in one unknown~g!

A12cos2 g1B125C12sing cosg, ~14!

which can be reduced to a simple biquadratic equation.
final solution has the form

cos2 g5$2~A12B122C12
2 !6@~A12B122C12

2 !22~A12
2

1C12
2 !B12

2 #1/2%/~A121C12!. ~15!

Thus, the measurement of the lower critical field for
texturized sample or nonoriented HTSC single crystal
four values of the angle of rotation (w i50,w1 ,w2 ,w3) of the
sample around an axis in the laboratory reference frame
an arbitrary texture, or for three values~w i50, w1 , w2! for a
conic structure, allows us to determine the lower critic
fieldsHc1

c along the principal axis andHc1
ab at right angles to

it, as well as angles characterizing the orientation of the m
netic anisotropy axisc in the sample.

The results of mathematical simulation confirm the v
lidity of the concepts developed here about the possibility
studying the anisotropy of lower critical fields of HTSC fro
the data on the critical fields for several angles of rotation
a statistically anisotropic~texturized! sample relative to an
axis in the laboratory reference frame.1!

In conclusion, we can make the following remarks th
are important in our opinion.

1. Apparently, the measurement of critical currents
texturized samples exposed to a magnetic field a
oriented at different anglesw i relative to the sample
axes is the optimal approach for realizing the ide
developed here for studying the anisotropy of low
critical fields for HTSC.11

2. The approach developed for studying the anisotro
of Hc1 requires a meticulous consideration of the d
magnetization factor~it is assumed that the sample
are close in shape to ellipsoids of revolution!, i.e., a
recalculation of all applied magnetic fields to ‘‘effec
tive’’ fields Heff according to the familiar relation

Heff5H/~12D!, ~16!

whereD is the demagnetization factor whose valu
are well known for ellipsoids.16 For the case of rota-
tion of an HTSC sample through an anglew around
the Y-axis of the laboratory reference frame cons
e red by us~see Fig. 1!, the quantityDw is defined as17
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Dw5DZ cos2 w1DX sin2 w, ~17!

whereDZ and DX are the values ofD along Z- and
X-axes respectively.2!

3. Obviously, the accuracy with which the quantitiesHc1
c

andHc1
ab are determined depends on how strongly

statistical anisotropy~texture! is manifested in the ob
ject under investigation.

4. For any value ofmc/mab, the strongest angular depe
dence of critical fields must be observed for a fie
orientation close toHic ~this can be seen clearly i
Fig. 2!.

5. Although we considered only the texture of HTS
samples, the values ofHc1 are determined in actua
practice by the type of surface texture for any me
suring technique, which is much more perfect as
rule than the texture of the sample as a whole.18

At the present time, we are studying experimentally
anisotropy of lower critical fields on texturized HTS
samples of various compositions.

This research was carried out under the support of In
national Research Foundation~MNOP! Grant No.
QSU082209!.

*E-mail: vasil@kipt.kharkov.ua~to:finkel!
1!Thus, an analysis of three ‘‘experimental’’ points on the surfacemc/mab

5const~see Fig. 2! for the simpler case of a conic structure~the magnetic
anisotropy axisc deviates by an angleg from theZ-axis along which the
magnetic fieldH was initially directed! based on the above formulas lead
to the following initial values:a5b569.3°, g530°, Hc1

c 5900 Oe,Hc1
ab

5402 Oe,mc/mab55.
e

-
a

e

r-

2!Naturally, formula~17! is valid only when the applied field slightly ex
ceedsHc1 , i.e., when the sample is in the Meissner region~except the
surface layer of thicknessd;l.
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On the ground state of the Hubbard model with strong repulsion
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The exact result is obtained for a square~cubic! Hubbard lattice with an infinitely large repulsion
energyU: the ferromagnetic state with the maximum spin is not the ground state of the
system if the number of holes is equal to two. ©1999 American Institute of Physics.
@S1063-777X~99!00406-5#
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INTRODUCTION

The Hubbard model that was initially introduced for e
plaining ferromagnetism is the simplest model describ
compounds with a strong correlation coupling. The Hubb
Hamiltonian is usually written in the form

Ĥ52t (
^ i , j &,s

~ ĉi ,s
1 ĉ j ,s1 ĉ j ,s

1 ĉi ,s!1U(
i

~ni↑ni↓!,

whereci ,s
(1)(ci ,s) are the operators of electron creation~an-

nihilation! at a lattice sitei with a spin projections, nis is
the number of electrons at sitei with spin s, and the sum-
mation over̂ i , j & is carried out over pairs of nearest neig
bors. The presence of only two parameters~hoppingt to an
nearest site and the Coulomb repulsion energyU per site!
makes the model extremely attractive for analysis.

The two-dimensional Hubbard model with infinite repu
sion can be regarded as the zeroth approximation for
description of a large class of compounds with anomal
magnetic and electric properties, including high-temperat
superconductors. For this reason, the origin of the gro
state in this model is of utmost importance for understand
the mechanism of high-temperature superconductivity. T
available data from the literature contain contradictory sta
ments. All numerical investigations of cluster systems~see,
for example, Refs. 1 and 2! give the same result: the groun
state energyE0 for a system with a fixed total spinS of
particles is a monotonic function ofS. In the case of a single
hole, the ground state of the system corresponds to the m
mum spin~saturated ferromagnetism! in the following cases:
~1! free boundary;~2! even number of particles in each d
rection, and~3! positive hopping energy (t.0). In this case,
the ground-state energy is a monotonically decreasing fu
tion of S. If all the three conditions do not hold, the groun
state corresponds to the minimum possible spin of partic
the value ofE0(S) increasing withS. If the number of holes
in the system is greater than unity, the ground state of
system corresponds to the minimum spin~S50 or 1/2!, and
the ground-state energy is a monotonically increasing fu
tion of S. Nagaoka3 considered a simple cubic~square! lat-
tice only with periodic boundary conditions and even nu
4141063-777X/99/25(6)/6/$15.00
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ber of particles in each direction. He obtained an exact pro3

of the maximum value of spin for the ground state energy
this case. The contents of the remaining part of Nagaok
paper3 is usually interpreted as follows: the ground state o
cubic lattice with a low concentration of holes is charact
ized by the maximum lattice spin~the state of saturated fer
romagnetism! for all U,Umax. According to Nagaoka,3 the
limiting value Umax decreases upon an increase in the h
concentration. In fact, Nagaoka himself formulated his res
in a somewhat different form: the ground state for a sim
cubic lattice with a single hole andU5` corresponds to the
maximum spin; for finite values ofU and the number of
holesn, the ferromagnetic state with the maximum total sp
is not the ground state ifan/N,t/U ~N is the number of
sites in the lattice!, wherea is a numerical parameter of th
order of unity. This result was obtained by Nagaoka in t
gas approximation for a low, but macroscopic hole conc
tration n/N. Formally, the case of two holes was not an
lyzed by him.3

In the present paper, the upper estimate of the differe
D5E0(Smax21)2E0(Smax) between the ground-state energ
with a spin differing from the maximum spin by unity an
the energy of the Nagaoka state is obtained for a periodicD
(2D) lattice with an even number of sites in each directio
The estimate is obtained by the variational method. T
value of D̃5^C,(H2E0(Smax))C&/^C,C& is calculated, and
the following results are obtained:D<2240p2/227N2 for
the 2D case andD̃<2120p2/689N5/3 for a 3D lattice.

Thus, the spin of the ground state for a cubic~square!
lattice does not have the maximum value if the number
holes is two.

BASIC EQUATIONS

We consider a rectangularNx3Ny lattice and denoted
by N5NxNy the number of sites, byâ1(â) the creation
~annihilation! operator of a particle with spin up at thei th
site and byb̂i

1(b̂i) the creation~annihilation! operator of a
particle with spin down at thei th site. We assume that th
system possesses translational invariance and consider s
with a given quasimomentuma5(ax ,ay ,az):
© 1999 American Institute of Physics
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ax5
2p

Nx
i , i 50,1,...,Nx21;

ay5
2p

Ny
i , i 50,1,...,Ny21;

az5
2p

Nz
i , i 50,1,...,Nz21.

For such states, we can indicate the complete set

F i j 5
1

N1/2@11exp~ iax!K̂x exp~2iax!K̂x
21...

1exp~ iNx21ax!K̂x
Nx21#@1

1exp~ iay!K̂y exp~2iay!K̂y
21...

1exp~ iNy21ay!K̂y
Ny21#@1

1exp~ iaz!K̂z exp~2iaz!K̂z
21...

1exp~ iNz21az!K̂z
Nz21#âi â jF0 ~1!

or

F i j 5
1

N1/2 (
j x51

Nx

exp~ i j xax!K̂x
j x (

j y51

Ny

exp~ i j yay!K̂y
j y

3 (
j z51

Nz

exp~ i j zaz!K̂z
j zâi â jF0 , ~1a!

whereK̂x(K̂y ,K̂z) is the operator of translational shift by
site alongx(y,z); F05b̂1

1â2
1 ...âN

1u& being the empty state
The functionF i j describes a translation-invariant state w
fixed distances between the flipped spin and each hole~equal
to the separations between the first and thei th or j th lattice
sites respectively!. The translational shift operator
K̂x(K̂y ,K̂z) are defined as

K̂xF5exp~2 iax!F; K̂yF5exp~2 iay!F;

K̂zF5exp~2 iaz!F. ~2!

The functionsF i j satisfy the following normalization
conditions:

^F i j ,F lm&5d i l d jm2d imd j l . ~3!

We choose as base functions

Vk1 ,k2
5

1

N (
i , j

F i j exp~ ik1r i !exp~ ik2r j !, ~4!

where the setk5(kx ,ky) coincides with the set of quasimo
mentaa5(ax ,ay ,az) except forkx5ky5kz50. The vector
k can be treated as the momentum of a hole in the syste
which the flipped spin is at rest.

The functionsVk1 ,k2
are obviously antisymmetric in th

indicesk1 ,k2 :

Vk1 ,k2
52Vk1 ,k2

. ~5!
in

Thus, the obvious requirement is satisfied: for a giv
quasimomentuma, we have (N21)(N22)/2 independent
functionsVk1 ,k2

.
The following relations are worth noting:

(
k1

Vk1 ,k2
52

1

N (
i , j

F i j exp~ ik2r j ! ~6!

and similarly

(
k2

Vk1 ,k2
52

1

N (
i , j

F i j exp~ ik1r j !, ~7!

where the sum overk is taken over theN21 quantities
indicated above.

The functionsV i j satisfy the following normalization
conditions:

^Vk1 ,k2
,Vp1 ,p2

&5~dk1 ,p1
dk2 ,p1

2dk1 ,p2
dk2 ,p1

!

2
1

N
~dk1 ,p1

1dk2 ,p2
2dk1 ,p2

2dk2 ,p1
!.

~8!

Besides, we can write

^Vk1 ,k2
,F r1 ,r2

&5
1

N
@exp~2 ik1r12 ik2r2!

2exp~2 ik1r22 ik2r1!#. ~9!

Thus, the functionsF i j can be expressed in terms ofVk1 ,k2

as follows:

F i j 5
1

N (
k1 ,k2

Vk1 ,k2
@exp~2 ik1r i !21#

3@exp~2 ik2r i !21#. ~10!

The energy spectrumE is defined by the solution of the
Schrödinger equation

ĤC5EC, ~11!

whereĤ is the Hubbard Hamiltonian forU5`:

Ĥ5t(
i , j

@~ âi
1â j1â j

1âi !~12b̂i
1b̂i !~12b̂ j

1b̂ j !1~ b̂i
1b̂ j

1b̂ j
1b̂i !~12âi

1âi !~12â j
1â j !# ~12!

or

Ĥ5t (
i , j ,s

X̂i
s0X̂j

0s , ~12a!

where X̂i
s0(X̂i

0s) are Hubbard operators. Summation
~12! and ~12a! is carried out over nearest neighbors. In t
subsequent analysis, we take the quantityt as the energy
unit, i.e., we assume in~12! that t51.

We write the wave functionC in the form of an expan-
sion in the setVk1 ,k2

:

C5 (
k1 ,k2

ck1 ,k2
Vk1 ,k2

. ~13!



e

o
il

m

l-

y

ee
f

416 Low Temp. Phys. 25 (6), June 1999 Ju. V. Mikhailova
For the action of the operatorĤ on the functionsVk1 ,k2
we

have

Gk1 ,k2
5ĤVk1 ,k2

;

Gk1k2
52«k1 ,k2

Vk1 ,k2
1Dk1 ,k2

, ~14!

Dk1 ,k2
5

2

N (
p

~Vk1p1Vpk2
!$@cospx2gx cos~ax2k1x

2k2x2px!211gx cos~ax2k1x2k2x!#

1@cospy2gy cos~ay2k1y2k2y2py!21

1gy cos~ay2k1y2k2y!#1@cospz2gz cos~az

2k1z2k2z2pz!211gz cos~az2k1z2k2z!#%.

~15!

Here

«k1 ,k2
5«k1

1«k2
, «k52~coskx1cosky!. ~16!

VARIATIONAL ESTIMATES

If trial wave functions are used in the form~13!, it is
more convenient to obtain an estimate for the maximum
genvalue of Hamiltonian~12!.

In view of periodicity of the lattice and the evenness
the number of lattice sites in the given direction, the Ham
tonian of the system reverses its sign (Ĥ↔2Ĥ) upon the
substitution âi

1↔âi
1(21)i , âi↔âi(21)i and b̂i

1↔b̂i
1

(21)i , b̂i↔b̂i(21)i . This means than the energy spectru
E does not depend on the choice oft. Consequently, the
proof of the fact that the maximum eigenvalueEmax is larger
than a certain quantityL automatically leads to the inequa
ity Emin,2L.

Let us consider trial wave functions for whichck1 ,k2

differ from zero only if one of the vectorsk1 or k2 is equal to
p05(px ,py ,pz)5(p,p,p), while the other is equal to an
of the possible six vectors:

p15~p,p,p12p/L !, p25~p,p,p22p/L !,

p35~p,p12p/L,p!, p45~p,p22p/L,p!,

p55~p12p/L,p,p!, p65~p22p/L,p,p!,

where L5N1/3. ~17!

The vectorspi are chosen so that the energy of two fr
quasiparticles for anypi is equal to the maximum energy o
N22 particles with the total spinS5Smax:

«052«p0 ,pi
51012 cos

2p

L
>12S 12

p2

3N2/3D . ~18!

Consequently, the following coefficientsck1 ,k2
have nonzero

values:

cp1 ,p0
5g1 , cp2 ,p0

5g2 , cp3 ,p0
5d1 ,

cp4 ,p0
5d2 , cp5 ,p0

5l1 , cp6 ,p0
5l2 ,
i-

f
-

cp0 ,p1
52g1 , cp0 ,p2

52g2 , cp0 ,p3
52d1 ,

cp0 ,p4
52d2 , cp0 ,p5

52l1 , cp0 ,p6
52l2 . ~19!

We shall treat the coefficientsg i , d i , andl i as varia-
tional parameters. According to formula~A14! from Appen-
dix, the quantity D5^C,(H2E0(Smax))C&/^C,C& can be
calculated in terms of the quantitiesf i(p). For X

5^C,ĤC&, we have

X2«0^C,C&5
8

N
u f 0~p0!u2F32S 12cos

2p

L D G
1

8

N
@ u f 2~p0!u1u f 4~p0!u21u f 6~p0!u2#

1
16

N
Ref 0~p0!@ f 2* ~p0!1 f 4* ~p0!

1 f 2* ~p0!#2
8

N (
k1

u f 2~k1!u2@cos~k1x

2ax!11#2
8

N (
k1

u f 4~k1!u2@cos~k1y

2ay!11#2
8

N (
k1

u f 6~k1!u2@cos~k1z

2az!11#1
16

N
Ref 2* ~p0! f 1~p0!sinax

1
16

N
Ref 4* ~p0! f 3~p0!sinay

1
16

N
Ref 6* ~p0! f 5~p0!sinaz

2
8

N
u f 1~p0!u2 cosax

2
8

N
u f 3~p0!u2 cosay

2
8

N
u f 5~p0!u2 cosaz . ~20!

Denoting D5X2«0^C,C&, b52p/L, we obtain the fol-
lowing expression correct toO(1/N5/3):

D52
4

N
u f 0~p0!u2@b21ax

21ay
21az

2#2
4

N
u f 0~p1!u2@ax

2

1ay
21~b2az!

2#2
4

N
u f 0~p2!u2@ax

21ay
21~b

1az!
2#2

4

N
u f 0~p3!u2@ax

21az
21~b2ay!2#

2
4

N
u f 0~p4!u2@ax

21az
21~b1ay!#2

4

N
u f 0~p5!u2@ay

2

1az
21~b2ax!

2#2
4

N
u f 0~p6!u2@ay

21az
21~b
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1ax!
2#2

16

N
Ref 0* ~p0!$@ f 0~p5!2 f 0~p6!#ax

1@ f 0~p3!2 f 0~p4!#ay1@ f 0~p1!2 f 0~p2!#az%

2
8b2

N
$@ f 0~p1!2 f 0~p2!#21@ f 0~p3!2 f 0~p4!#2

1@ f 0~p5!2 f 0~p6!#2%. ~21!

For ax52b anday5az50, we have

D52
20b2

N
$u f 0~p0!u21u f 0~p1!u21u f 0~p2!u21u f 0~p3!u2

1u f 0~p4!u2%2
4b2

N
u f 0~p5!u22

36b2

N
u f 0~p6!u2

2
32b2

N
Ref 0* ~p0!@ f 0~p5!2 f 0~p6!#2

8b2

N
$@ f 0~p1!

2 f 0~p2!#21@ f 0~p3!2 f 0~p4!#21@ f 0~p5!

2 f 0~p6!#2%. ~22!

Let us suppose that f 0(p1)5 f 0(p2)5 f 0(p3)5 f 0(p4),
f 0(p6)50. This gives

D52
20b2

N
$u f 0~p0!u214u f 0~p1!u2%2

4b2

N
u f 0~p5!u2

2
32b2

N
Ref 0* ~p0! f 0~p5!2

8b2

N
u f 0~p5!u2. ~23!

We denote

f 0~p0!52x; f 0~p5!5y; f 0~p1!5
x2y

4
, ~24!

so that

X2«0^C,C&52
25a2

N S x2
21

25
yD 2

1
16a2

25N
y2. ~25!

The maximum value of the quantityD̃5max@(X
2«0^C,C&)/^C,C&# is attained for x221/25y'4/625y
and is equal to

max
X2«0^C,C&

^C,C&
'

100b2

629N
. ~26!

to a high degree of accuracy. Consequently, the maxim
value of energy exceeds«0 by a quantity larger than

D«>
400p2

629N5/3. ~27!

This means that a system with two holes is characteri
by the energy levelE1 such that

E1>«01
400p2

629N5/3. ~28!

In view of the symmetry of the energy spectrum relative
the sign reversal oft from ~28! mentioned above, a system
with two holes also has an energy levelE2 such that
m

d

E2<2«02
400p2

629N5/3. ~29!

Similar calculations in the 2D case lead to

D̃5
^C,@Ĥ2E0~Smax!#C&

^C,C&
<2

240p2

227N2 . ~30!

CONCLUSION

In accordance with inequalities~29! and~30!, the ground
state of a system with two holes corresponds to the t
particle spinS smaller than the maximum possible value.
this paper, we choose trial functions withS5Smax21. Even
in this case, the ground state is smaller than the Naga
state. For states with smaller values ofS the estimates~29!
and ~30! can probably be enhanced.

The results of this research prove that the state of s
rated ferromagnetism is not the ground state for a sys
with two holes.

This conclusion does not at all contradict the results
tained by Nagaoka.3 It should be emphasized in this conne
tion that Nagaoka proved that the ground state of a sys
with U5` and a single hole, which corresponds to satura
ferromagnetism, is characterized by a smallerS for a larger
number of holes and forU,U0 . Thus, Nagaoka3 proved the
absence of saturated ferromagnetism. His proof was base
the assumption concerning the structure of the wave fu
tion, which is not necessarily correct

in the case when the ground state of a system with
maximum spin and a preset total value of spin projection
degenerate. Thus, Nagaoka formulated the sufficientU
,U0) but not necessary condition for the absence of sa
rated ferromagnetism; the wave function under the condit
of nondegeneracy of the ground state of a system with
maximum value of spin is sought in a quite definite form.
the case of two holes, the ground state of the system with
maximum spin is degenerate, and hence the wave functio
the ground state can differ from that obtained by Nagao
This concerns the 2D as well as 3D cases. The trial function
used by us here can be obtained as a solution of the se
equation for the zeroth-approximation function in the expa
sion in low density~in 1/N in the given case!.

This research was supported by the Russian Founda
of Fundamental Studies and carried out under the project
98-02-17388.

APPENDIX

In order to calculate the quantity

D5^C,ĤC&/^C,C&, ~A1!

we obtain expressions for the normalization^C,C& and X

5^C,ĤC& in terms of the coefficientsck1 ,k2
in the expan-

sion of the wave function~11!.
Taking into account~6! and~7!, we obtain the following

expression for the normalization of the wave function^C,C&:
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^C,C&52 (
k1 ,k2

uck1 ,k2
u22

4

N (
k1

U(
kp

ck1kpU2

. ~A2!

Denoting

«~k!522~coskx1cosky!, ~A3!

f 0~k!5(
p

ckp ; f 2~k!5(
p

ckp cospx ;

f 4~k!5(
p

ckp cospy ; f 6~k!5(
p

ckp cospz , ~A4!

f 1~k1!5(
p

ck1p sinpx ; f 3~k1!5(
p

ck1p sinpy ;

f 5~k1!5(
p

ck1p sinpz , ~A5!

we obtain

^C,C&52(
k1k2

uck1k2
u22

4

N (
k1

u f 0~k1!u2. ~A6!

Similarly, for X5^C,ĤC& we obtain

X5X11X2 ,

X152 (
k1k2p1p2

cp1p2
* ck1k2

«k1k2
^Vp2p2

,Vk1k2
&

522(
k1k2

«k1k2
uck1k2

u22
4

N (
k1k2p1

«k1k2
ck1p1
* ck1k2

,

X25 (
k1k2p1p2

cp1p2
* ck1k2

^Vp1p2
,Dk1k2

&. ~A7!

Substituting expression~15! for Dk1 ,k2
, we get

X25
2

N (
k1 ,k2 ,p1 ,p2 ,p

cp1p2
* ck1k2

^Vp1p2
,Vk1p1Vpk2

&

3@cospx1cospy1cospz232gx cos~ax2k1x

2k2x2px!2gy cos~ay2k1y2k2y2py!

2gz cos~az2k1z2k2z2pz!1gx cos~ax2k1x

2k2x!1gy cos~ay2k1y2k2y!1gz cos~az2k1z

2k2z#

or, using antisymmetry of the coefficientsck1 ,k2
and the

functionsVk1 ,k2
as well as the symmetry of the expression

the brackets relative to the substitutionk1↔k2 , we obtain

X25
4

N (
k1 ,k2 ,p1 ,p2 ,p

cp1p2
* ck1k2

^Vp1p2
,Vk1p&@cospx

1cospy1cospz232gx cos~ax2k1x2k2x2px!

2gy cos~ay2k1y2k2y2py!2gz cos~az2k1z2k2z

2pz!1gx cos~ax2k1x2k2x!1gy cos~ay2k1y

2k2y!1gz cos~az2k1z2k2z!#. ~A8!
Taking into account the normalization condition~6!, we ob-
tain

X25X2
11X2

2, ~A9!

where

X2
15

8

N (
k1 ,k2 ,p

ck1p* ck1k2
@cospx1cospy1cospz23

2gx cos~ax2k1x2k2x2px!2gy cos~ay2k1y

2k2y2py!2gz cos~az2k1z2k2z2pz!1gx cos~ax

2k1x2k2x!1gy cos~ay2k1y2k2y!1gz cos~az

2k1z2k2z!#,

X2
252

8

N2 (
k1 ,k2 ,p2 ,p

ck1p2
* ck1k2

@cospx1cospy1cospz

232gx cos~ax2k1x2k2xpx!2gy cos~ay2k1y

2k2y2py!2gz cos~az2k1z2k2z2pz!1gx cos~ax

2k1x2k2x!1gy cos~ay2k1y2k2y!1gz cos~az

2k1z2k2z!# ~A10!

or, carrying out summation overp for X2
2, obtain

X2
25

8

N (
k1 ,k2 ,p2

ck1p2
* ck1k2

@32gx cos~ax2k1x2k2x!

2gy cos~ay2k1y2k2y!2gz cos~az2k1z2k2z!#.

~A11!

Consequently, we have

X25
8

N (
k1 ,k2 ,p

ck1p* ck1k2
@cospx2gx cos~ax2k1x2k2x

2px!1cospy2gy cos~ay2k1y2k2y2py!1cospz

2gz cos~az2k1z2k2z2pz!#. ~A12!

The quantityX2 can be expressed in terms of the quantit
f i(k j ) as follows:

X25
8

N (
k1

~ f 2* ~k1!1 f 4* ~k1!1 f 6* ~k1!! f 0~k1!

2
8gx

N (
k1

u f 2~k1!u2 cos~ax2k1x!

2
8gy

N (
k1

u f 4~k1!u2 cos~ayx2k1y!

2
8gz

N (
k1

u f 6~k1!u2 cos~az2k1z!

2
16gx

N
Re(

k1

f 2* ~k1! f 1~k1!sin~ax2k1x!

2
16gy

N
Re(

k1

f 4* ~k1! f 3~k1!sin~ay2k1y!
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2
16gz

N
Re(

k1

f 6* ~k1! f 5~k1!sin~az2k1z!

2
8gx

N (
k1

u f 1~k1!u2 sin~ax2k1x!

2
8gx

N (
k1

u f 3~k1!u2 sin~ay2k1y!

2
8gy

N (
k1

u f 1~k1!u2 cos~ay2k1y!. ~A13!

Consequently, for the quantityX5^C,ĤC& we have

X522(
k1k2

«k1k2
uck1k2

u21
8

N (
k1

~cosk1x1cosk1y

1cosk1z!u f 0~k1!u21
16

N (
k1

Ref 0~k1!@ f 2* ~k1!

1 f 4* ~k1!1 f 6* ~k1!#2
8gx

N (
k1

u f 2~k1!u2 cos~k1x

2ax!2
8gy

N (
k1

u f 4~k1!u2 cos~k1y2ay!

2
8gz

N (
k1

u f 6~k1!u2 cos~k1z2az!

1
16gx

N
Re(

k1

f 2* ~k1! f 1~k1!sin~k1x2ax!

1
16gy

N
Re(

k1

f 4* ~k1! f 3~k1!sin~k1y2ay!

1
16gz

N
Re(

k1

f 6* ~k1! f 5~k1!sin~k1z2az!

1
8gx

N (
k1

u f 1~k1!u2 cos~k1x2ax!

1
8gy

N (
k1

u f 3~k1!u2 cos~k1y2ay!

1
8gz

N (
k1

u f 5~k1!u2 cos~k1z2az!. ~A14!

It is worth noting the case when the expansion~11! of
the wave functionC contain only terms with hole moment
p1 andp2 , i.e.,
ck1k2
5dk1p1

dk2p2
2dk1p2

dk2p1
. ~A15!

In this case, we have

f 0~p1!51; f 0~p2!521; f 2~p1!5cosp2x ;

f 2~p2!52cosp1x ; f 4~p1!5cosp2y ;

f 4~p2!52cosp1y ; f 6~p1!5cosp2x ;

f 6~p2!52cosp1x ; f 1~p1!5sinp2x ;

f 1~p2!52sinp2x ;

f 3(p1)5sinp2y ; f 3(p2)52sinp2y ;

f 5~p1!5sinp2z ; f 5~p2!52sinp1z, ~A16!

and, hence,̂C,C&5428/N; consequently,

X524«p1p2
1

8

N
~cosp1x1cosp1y1cosp1z1cosp2x

1cosp2y1cosp2z!1
16

N
~cosp1x1cosp1y1cosp1z

1cosp2x1cosp2y1cosp2z!2
8gx

N
~cos~2p2x1p1x

2ax!1cos~2p1x1p2x2ax!!2
8gy

N S cos~2p2y

1p1y2ay!1cos~2p1y1p2y2ay!2
8gz

N
~cos~2p2z

1p1z2ax!1cos~2p1z1p2z2az!!. ~A17!

If gx5gy5gz51 ~even number of lattice sites in eac
direction!, p2x1p1x5ax and p2y1p1y5ay , which corre-
sponds to the wave function of states withS5Smax, we have
X524(122/N)«p1p2

or ^C,C&5428/N, X52(«p1

1«p2
)^C,C& since ^C,C&5428/N. This should be ex-

pected since in this case we use the exact wave function
the eigenvalueE52(«p1

1«p2
) of the Hamiltonian.
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Long-period incommensurate structures in crystals with triangular arrangement
of magnetic ions
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The possibility of formation of a long-period structure in crystals with triangular arrangement of
magnetic atoms is considered. It is shown that two cycloid and one spiral structures are
formed. The influence of a magnetic field and second-order magnetic crystallographic anisotropy
is studied. Superstructures can be transformed into one another by turning the plane of
irreducible vectors for which ‘‘anticentrifugal’’ effect takes place, and an intermediate structure
called a ‘‘rotating skew spiral’’ (RS˜S̃) is formed. It is also shown that ‘‘domains’’ over
whose length irreducible vectors turn through an angle ofp/2 can emerge in the system. These
‘‘domains’’ can form structures with a jump in the phase of irreducible vectors at the
boundary. ©1999 American Institute of Physics.@S1063-777X~99!00506-X#
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INTRODUCTION

The emergence of long-period structures in crystals
explained by the presence of invariants in the nonequilibri
potential, which contain first spatial derivatives of the ord
parameter to the first1 and second2 power. Such terms appea
in the Hamiltonian due to inhomogeneities of the exchan3

and exchange–relativistic4,5 interactions. The rich materia
that can be used for an analysis of long-period structu
in specific crystals is systematized in the reviews in Refs
and 7.

It is well known8 that the compound (Fe12xMnx)2P con-
tains under certain conditions an incommensurate sp
structure with the vector of propagation in the@110# direc-
tion. The aim of the present paper is to determine the reas
behind the formation of such a structure and also to find
possible superstructures for a crystal of the given type. U
ally, superstructures considered in uniaxial crystals pro
gate along the principal axis of the crystal. In this case,
solution of the problem is simplified if we direct the pol
axis along the principal axis of the crystal and analyze
variation of only one of the two spherical angles. In the ca
under investigation, the propagation vector is directed
right angles to this axis, and the polar axis in the spher
system of coordinates is chosen as in the previous case.
complicates the solution of the problem, but allows us
analyze different types of superstructures and their supe
sition. Taking into account the variation of both spheric
angles, we can consider the spiral and cycloidal structure
two limiting cases of a rotating skew spiral (RS˜S̃). The cor-
relation between the structures is determined by the cha
in the rotation of the plane of rotation of irreducible vecto

CYCLOIDAL AND SPIRAL STRUCTURE

Gufan et al.9 proved that compounds of the Fe2P type
possessing theD3h symmetry are characterized by the thr
4201063-777X/99/25(6)/6/$15.00
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irreducible vectors:F5S11S21S3 , L15(A6)21(2S12S2

2S3), L25(&)21(S22S3). The first~FM! vector is trans-
formed according to a completely symmetric irreducible re
resentation, whileL1 and L2 are transformed according t
the same representation asx andy, thez-axis being directed
along the third-order axis. It follows hence that we can co
pose an invariant of the Dzyaloshinskii type, after which t
potential density assumes the form10

F5d1F21d2L1
21DS F

]L1

]x
2L1

]F

]x
1F

]L2

]y
2L2

]F

]y D
1a1S ]F

]x D 2

1a2S ]L1

]x D 2

1b1Fz
21b2L1z

2 1a3S ]F

]y D 2

1a4S ]L2

]y D 2

1b3L2z
2 2FH, ~1!

wherea i ( i 51,2,3,4),D are the nonuniform exchange inte
action constants in the basal plane,d150.5(T2TC) andd2

50.5(T2TN) are the coefficients depending on the Cu
(TC) and Neel (TN) temperatures,b1 , b2 , andb3 are the
constants of magnetic crystallographic anisotropy, andH the
magnetic field strength. We introduce the spherical system
coordinates, considering modulations along thex-direction
and assuming that the magnitudes of irreducible vectors
not depend on the variablex. This leads to the following
expression for the density of the nonequilibrium potentia

F5d1F21d2L1
21DFL1$u1,x8 @2cosu3 sinu1

1sinu3 cosu1 cos~w12w3!#1u3x8 @cosu1 sinu3

2sinu1 cosu3 cos~w12w3!#1~w1x8

2w3x8 !sinu1 sinu3 sin~w32w1!%1F2a1$~u3x8 !2

1~w3x8 !2 sin2 u3%1L1
2a2$~u1x8 !21~w1x8 !2 sin2 u1%
© 1999 American Institute of Physics
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1b1F2 cos2 u31b2L1
2 cos2 u12FH, ~2!

whereu andw are the polar and azimuthal angles, the indic
‘‘1’’ and ‘‘3’’ correspond to the vectorsL1 and F,ux8
[]u/]x, and wx8[]w/]x. Here we assume thatHiz. The
variation of such a functional has solutions in two limitin
cases.

In the first case, forDw5w32w156p/2, u15u35u,
w1x8 5w2x8 5wx8 the Euler equations have the form

2~F2a11L1
2a2!ux91sinu$@2b1F212b2L1

224DFL1wx8

22~F2a11L1
2a2!~wx!

2#cosu2FH50;

~F2a11L1
2a2!wx9 sinu12u8 cosu@wx8~F2a11L1

2a2!

1DFL1#50. ~3!

These equations have the same structure as those in
11. This set of equations is satisfied by functions of the ty
w(x)5k1x,u5const describing forH50 a double cycloidal
structure with the propagation vectork1 directed along the
x-axis. In this case, we obtain for its modulus

k15
DFL1

F2a11L1
2a2

;

cosu5
FH~F2a11L1

2a2!

2@~b1F21b2L1
2!~F2a11L1

2a2!1D2F2L1
2#

.

~4!

If H50,u5p/2, and the vectorsF andL1 rotate in thex0y
plane~a structure of theSStype according to Izyumov6!. For
HÞ0, a structure of theFS type is formed. However, in ou
casek1iOX and lies in the plane perpendicular to the co
axis. For the valueHc of the field determined from the con
dition cosu51 ~4!, the cycloid collapses, i.e., we have
‘‘continuous’’ phase transition to the FM state.

In a similar way, we can study the superstructure form
along they-axis. The formulas obtained in this case are sim
lar to ~1!–~4! in which the following substitution is made
L1→L2 and k1→k2 . While solving problem of combining
cycloidal structures, we must write the equation for the d
sity of potential with derivatives along thex- and y-axes.
Substitutingwx5k1x,wy5k2y into this equation and mini-
mizing it in k1 andk2 , we obtain

k152
DFL1

F2a11a2~L1
21L2

2!
;

k252
DFL2

F2a11a2~L1
21L2

2!
. ~5!

It follows from ~5! thatk15k2 only for L15L2 . In this case,
the resultant vector of propagationk forms equal angles with
thex- andy-axes. IfL1ÞL2 , thenk1Þk2 , and the value of
k can be determined from the equation

@d21a2k2#@~d11a1k2!~d21a2k2!2D2k2#50, ~6!

where k25k1
21k2

2. This equation has three solution
namely,
s

ef.
e

d
-

-

k~1!
2 52

d2

2a2
; ~7a!

k~2,3!
2 52

a1d21a2d12D2

2a1a2

6
1

2a1a2
A~a1d21a2d12D2!224d1d2a1a2.

~7b!

It can be seen that the sign ofD is immaterial for the forma-
tion of an incommensurate structure. The solutionk(1)

2 takes
place under the conditiona2.0,d2,0, i.e., we require that
T,TN . In this case,F50 and L15lL2 , where l5
2k1 /k2 (k1Þ0,k2Þ0), i.e., k1 and k2 have different signs.
However, such a relation is ruled out, andk1 and k2 must
have the same sign, i.e., solution~7a! is deprived of physical
meaning. Relation~7b! has two solutions. Let us consider th
conditions for the existence of each solution in different te
perature intervals.

We assume thatTC.TN . In this case, it can be see
from ~7b! that at T5TC (d150,d25a2(TC2TN)), one of
the solutions (k2

2) on the PT line, for which the second term
has the ‘‘1’’ sign, is positive forD2>a1a2(TC2TN). This
is a sufficient condition for the formation of a superstructu
through a first-order phase transition in temperature from
paraphase.7 Such a transition is impossible forD2

,a1a2(TC2TN), andk(2)
2 50 on the PT line. IfT,TC , i.e.,

d1,0 andd2.0, we havek2
2.0, and a continuous PT from

the paraphase to an incommensurate structure occurs
when the sufficient condition is not satisfied. The soluti
k(3)

2 is negative everywhere and has no physical meaning
A different situation takes place forT5TN . In this case,

we have

k~2!
2 50; k~3!

2 5
D21a2a1~TC2TN!

a1a2
. ~8!

The solutionk(2)
2 describes a continuous PT from an incom

mensurate to an FM structure, whilek(3)
2 describes a first-

order PT from FM to a superstructure with a jump ink
irrespective of the relation betweenD and (TC2TN), and the
sufficient condition can be disregarded.

For d150, we obtain

U F

L1,2
U5U Dk1,2

2a1k2U@1, ~9!

i.e., F@L1 , and we have an FM cycloidal structure with
‘‘latent’’ transverse AFM. IfL15L250, we haveS1iS2iS3 .
For smallL1 andL2 perpendicular toF, deviation from col-
linearity is required. Similarly, it follows from the condition
d250 that F!L1 . This gives an AFM cycloid with a ‘‘la-
tent’’ transverse FM. ForF50, a triangular 120° AFM or-
dering appears. A weak transverse FM appears when s
deviate from the basal plane.

In the second case, we haveDw5w32w150; 6p;
w1x8 5w3x8 50; w150; 6p/2. The variation of the functiona
gives the set of Euler equations

L1
2a2u1x9 6DFL1u3x8 cos~u37u1!52 1

2b2L1
2 sin 2u1 ,
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F2a1u3x9 7DFL1u1x9 cos~u37u1!52
1

2
b1F2 sin2 2u3

1
1

2
FH sinu3 . ~10!

Here and below, the upper sign corresponds toDw50,
while the lower sign toDw56p. In the absence of anisot
ropy and forH50, the solution of system~10! is a function
of the typeu356kx, describing a cycloidal structure fo
w150 with rotation of vectorsF andL1 in thez0x plane and
a spiral structure forw156p/2 with rotation of vectorsF
andL1 in the Z0Y plane. The quantityu37u15c turns out
to be constant. In this case,

~1! if D.0, c52p/2 for u3x8 6u1x8 .0 and

c5p/2 for u3x8 6u1x8 ,0;

~2! if D,0, c5p/2 for u3x8 6u1x8 . and

c52p/2 for u3x8 6u1x8 ,0.

It follows hence that the vectorL1 always leads the vec
tor F for any direction of rotation and forD.0. If D,0, the
vectorF leads the vectorL1 . Since the Euler anglesu1 and
u2 vary from 0 top, the total period of the incommensura
structure described here has to be ‘‘glued’’ from quarte
For D,0, we have the following relations for findingF in
I–IV quadrants: u11u35p/2, u32u152p/2, u11u3

53p/2, u32u15p/2 respectively. ForD,0, we have the
following relations: u32u152p/2, u31u15p/2, u32u1

5p/2, u11u353p/2 respectively. The anglesu1 andu3 are
measured from thez-axis, the upper left quarter plays th
role of the first quadrant, and the remaining quadrants
counted in the counterclockwise direction. The solutions
system~10! are a sort of ‘‘domain’’ structures formed from
1/4 of the total period of the superstructure. A ‘‘domain’’
this case is a region in the crystal, in which irreducible ve
tors turn through an angle ofp/2. Clearly, the solutions for
which the phase of the vectorsF andL1 do not coincide at
domain walls, i.e., the anglesu1 and u3 change jumpwise,
can be ‘‘glued.’’ In this case, we must be sure that the c
ditions of leading are observed. Forming various combi
tions of ‘‘domains,’’ we can obtain a number of magne
structures:

~a! two ‘‘domains’’ ensuring the rotation of the long
period structure throughp are ‘‘glued’’ together. After this,
the vectorsF andL1 return jumpwise to their initial positions
~Fig. 1a!;

~b! two ‘‘domains’’ each of which ensures the rotatio
of irreducible vectors throughp/2 in opposite directions are
‘‘glued’’ together; in this case, one of the vectorsF or L1

undergoes a jump through an anglep at the boundary of
these ‘‘domains’’~Fig. 1b!.

When a field is applied~b15b250 as before!, the fol-
lowing relations are used for finding the solutions:u35kx
1c3 , u36u15p/21np6c1 , where c1;H and c3;H.
In this case, the quantitiesu1 andu3 have the form~rotation
in the counterclockwise direction!
.

re
f

-

-
-

u35 f 1~kx!2R1 sin~kx!, u15 f 2~kx!2R1 sin~kx!,
~11!

where

R15
H~ka2L12DF !

2k2@a1a2L1Fk2D~F2a11L1
2a2!#

;

R25
DHF

2k2@a1a2FL1k2D~a2L1
21a1F2!#

,

and we obtain the following expressions for determiningF in
quadrants I–IV:

I. f 1~kx!5kx; f 2~kx!5p/22kx;

II. f 1~kx!5kx; f 2~kx!52p/21kx; R2→2R2 ,

III. f 1~kx!52p2kx; f 2~kx!52p/21kx;

R1→2R1 , R2→2R2 ;

IV. f 1~kx!52p2kx; f 2~kx!55p/22kx;

R1→2R1 . ~12!

The value ofkx in ~11! and~12! varies from 0 to 2p. It
should be noted that in an applied fieldH, the vectorsF and
L1 are orthogonal only for values ofx corresponding to
sin(kx)50. It can be seen from~12! that the extent of small-
ness of H is determined from the relationsuR1u!1 and
uR2u!1. In this case, the approximationF5const, L
5const is still valid, and the hodographs ofF and L1 are
circles. Owing to the presence of terms in~11! proportional
to H and responsible for the emergence of harmonics,
vectorsF and L1 do not rotate uniformly any longer for 0
<kx<2p. It follows from ~11! that the vector component
Fz ,Fy ,L1z , andL1y for HÞ0 have a peculiar spatial modu
lation during which harmonics appear. In the correspond
expansions, all harmonics are taken into account, but onlyFz

and L1y contain terms independent ofkx and ensuring a
permanent shift. This leads to a distortion of the unifo
distribution of the vectorF over the circle. The curves de
scribing the dependencesFz(kx) and Fy(kx) for R1.0
~which is observed for rather large values ofuDu! are shown
in Fig. 2a. It can be seen that the minimum ofFz(kx) in the
vicinity of the pointkx5p becomes sharper, while the max
mum atx50 becomes flatter than for an ordinary sinuso
At the same time, the extrema ofFy(kx) become sharper an

FIG. 1. Structures composed from fragments of superstructures ensurin
rotation of long-period structures through an anglep ~a! or the rotation of
irreducible vectors throughp/2 in opposite directions~b!. Arrows show the
direction of rotation.



i-
a

k-

o

e
e

an
f

i-

t-

no
ants

e
f

f

-

nd

c-

ase

ns
im-

423Low Temp. Phys. 25 (6), June 1999 Yu. D. Zavorotnev and L. I. Medvedeva
are displaced to the pointkx5p. All this indicates the pre-
dominant direction ofkx52pn, i.e., along the field. The
distribution of the vectorL1 is also distorted. ForR2,0, the
shape of theL1y(kx) coincides withFz and L1z with Fy .
Consequently, the vectorL1 ‘‘sticks’’ in the basal plane syn-
chronously withF in the direction determined by the cond
tion of leading. IfR2.0, the AFM vector, as before, has
predominant direction in the basal plane, but now forkx
5p. The extrema ofL1z are displaced to the pointskx
52pn. Consequently, in this case the directions of ‘‘stic
ing’’ between the vectorsF andL are not synchronized.

We obtain the following dependence of the vector
propagation on magnetic field:

k5k1H 12
3

4

F2a1R1
21L1

2a2R2
2

F2a11L2a2
2

1

16
~R11R2!2

2
3

8
R1R2J , ~13!

wherek1 is defined by formula~5!. SinceR1 andR2 depend
on the field linearly, the magnitude of the wave vector d
creases with increasingH. However, an example when th
vector of propagation increases withH is also known.7 An
expression similar to~13! in which L1 is replaced byL2 and
k1 by k2 can also be obtained for a superstructure withki0Y.

In the case when field is equal to zero, but a weak
isotropy takes place~b1 and b2 are of the same order o
smallness!, the solutions for the anglesu1 andu3 are sought
in the same form as forHÞ0, but c1;b1 ,c3;b1 . In this
case, we obtain~for the rotation in the counterclockwise d
rection!

u35 f 1~kx!1R1 sin 2kx; u15 f 2~kx!1R2 sin 2kx,
~14!

where

R15
1

8k2a1
Fb11

DL1
2~a2b11a1b2!

4ka1a2FL12D~F2a11L1
2a2!G ;

R25
1

8k2a1
Fb11

L1~a2b11a1b2!~DL124Fa1k!

4ka1a2FL16D~F2a11L1
2a2! G

FIG. 2. DependencesFz(kx) and Fy(kx) ~a! and Lz(kx), Ly(kx) ~b! in a
weak field.
f

-

-

and f 1(kx), f 2(kx), and the signs ofR1 and R2 are deter-
mined by relations~12!. The extent of weakness of aniso
ropy is defined by the inequalitiesuR1u!1,uR2u!1; in this
case, the approximationF5const,L15const is also valid.

The expansion of the functionsFz ,Fy ,L1z ,L1y into a
Fourier series taking into account~14! contains, in addition
to the fundamental harmonic, only even harmonics and
shear terms. Depending on the signs of anisotropy const
b1 and b2 , we have either an ‘‘easy’’ axis (R1,0), or an
‘‘easy’’ plane (R1.0). In the presence of anisotropy of th
‘‘easy’’ plane type,Fy(kx) has a plateau in the vicinity o
the points kx5p/2,3p/2, and the dependenceFz(kx) is
characterized by narrow sharp extrema~Fig. 3!. This indi-
cates the ‘‘sticking’’ of the vectorF in the basal plane on
both sides of thez-axis. The sign reversal ofR1 for invari-
able signs ofb1 and b2 leads to the change in the type o
anisotropy. In this case, theFz(kx) curve acquires two pla-
teaus atkx50 andp, while Fy(kx) has sharp extrema. Con
sequently, forR1,0 the ‘‘sticking’’ occurs along thez-axis.
If R1 and R2 have the same sign, the behavior of FM a
AFM vectors is synchronized~solid curves in Fig. 3b!, i.e.,
the AFM vector has a predominant distribution in the dire
tion perpendicular toF. For opposite signs ofR1 and R2 ,
synchronization vanishes~dashed curves in Fig. 3b!, and
both vectors are ‘‘stuck’’ in identical directions.

The dependence of the modulusk of the propagation
vector on anisotropy is defined by the formula

k5k1H 122
F2a1R1

21L1
2a2R2

2

F2a11L2a2
2

1

16
~R11R2!2

2
15

4
R1R2J , ~15!

which shows that increase in anisotropy leads to a decre
in k.

ROTATION OF THE ROTATION PLANE FOR IRREDUCIBLE
VECTORS

Let us consider the possibility of mutual transformatio
of the spiral and cycloidal structures. For the sake of s

FIG. 3. DependencesFz(kx) andFy(kx) ~a! andLz(kx), Ly(kx) ~b! for a
weak anisotropy.
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plicity, we consider the rotation of the plane of rotation
the vectorsF and L1 around thez-axis. In this case,w1

5w36pn andw185w38 .
The variation of the functional gives the following set

Euler equations in the absence of anisotropy in zero field

wx9@F2a1 sin 2u31L1
2a1 sin 2u1#1wx8@u38F

2a1 sin 2u3

1u18L1
2a1 sin 2u1#50;

F2a1u3x9 6DFL1u1x8 cos~u36u1!

5
1

2
F2a1~wx8!2 sin 2u3 ;

L1
2a1u1x9 7DFL1u3x8 cos~u36u1!

5
1

2
L1

2a2~wx8!2 sin 2u1 . ~16!

The solution of this system can be found assuming t
the value ofwx8 is small in the form~for the fourth quadrant!

u5kx1c3 ;

u15u32
p

2
1c15kx2p/21c31c1 , ~17!

wherec1;(wx8)
2 andc3;(wx8)

2. In this case, the first inte
gral of the first equation in~16! for F2a1ÞL1

2a2 has the
form

wx85C@~F2a12L1
2a2!sin2 kx1L1

2a2#21, ~18!

whereC is the integration constant which remains indefin
since the initial conditions are not specified. The extent
smallness ofwx8 can be determined from the condition

uCu!u~F2a12L1
2a2!sin2 kx1L1

2a2u. ~19!

Inequality ~19! shows thatwx8 never vanishes and its sign
determined by the sign ofC. For F2a15L1

2a2 , the quantity
wx8 is constant, i.e., the plane of rotation of the vectorsF and
L1 rotates uniformly around thez-axis. Otherwise, the veloc
ity of rotation is an oscillating function ofx. Oscillations of
wx8(x) occur either above or below the straight lineC/L1

2a2

~Fig. 4a!. Subsequent integration of~18! under the assump
tion uF2a12L1

2a2u,uL1
2a2u gives

FIG. 4. Dependencesw8(kx) ~a! andw(kx) ~b!. Solid curves correspond to
F2a12L1

2a2.0 and dashed curves toF2a12L1
2a2,0.
t

f

w~x!5
C

kAF2L2a1a2

arctanH S F2a1

L1
2a2

D 1/2

tan~kx!J 1w0 ,

~20!

wherew050 since this constant defines the reference po
The curves describing the dependencesw(x) for various re-
lations betweenF2a1 and L1

2a2 are shown in Fig. 4b. For
F2a15L1

2a2 , the w(x) dependence is linear, i.e.,w(x)
5px, where the integration constantp plays the role of the
vector of propagation of a new incommensurate struct
formed by the rotation of the plane of rotation of the vecto
F andL1 .

If we assume thatuF2a12L1
2a2u!uL1

2a2u, the right-
hand sides of the second and third equations in~16! can be
expanded into a power series in (F2a12L1

2a2). Confining
the analysis to the first two terms of the expansion, we ob
additional terms containing sin(4kx) as a factor. This is
equivalent to the emergence of the fourth-order anisotro
The solution of system~16! in this case assumes the form

u35 f 1~kx!2R1 sin~2kx!2R2 sin~4kx!,

u15 f 2~kx!2R3 sin~2kx!1R4 sin~4kx!, ~21!

where

R15
C2

8L1
6a2

3k2 ~F2a123L1
2a2!F211

2DkL1

Fa1~q214k2!G ;
R25

C2~F2a12L1
2a2!

64L1
6a2

3k2 F11
4DkL1

Fa1~q2116k2!G ;
R35

C2

8L1
6a2

3k2 ~F2a123L1
2a2!F21

1
2k~4kFa12DL1!

Fa1~q2116k2! G ;
R45

C2~F2a12L1
2a2!

64L1
6a2

3k2 F11
4k~DL1216kFa1!

Fa1~q2116k2! G ;
q252

kD

Fa1L1a2
~F2a11L1

2a2!.

For the quadrants, we have

I. f 1~kx!5kx; f 2~kx!5p/22kx;

II. f 1~kx!5kx; f 2~kx!5kx2p/2;

R3→2R3 ; R4→2R4 ;

III. f 1~kx!52p2kx; f 2~kx!5kx2p/2;

Ri→2Ri ~ i 51,2,3,4!;

IV. f 1~kx!52p2kx; f 2~kx!55p/22kx;

R1→2R1 ; R2→2R2 .

The expansion ofFz , Fy , L1z , andL1y into a Fourier
series contain no shear terms and only odd harmonics.
corresponding expressions are cumbersome and are
given here.
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Thus, we obtain a structure with irreducible vectorsF
and L1 rotating in a plane that in turn rotates around t
principal axis of the crystal. We refer to this structure as
‘‘rotating skew spiral’’ (RS̃S̃) in analogy with the S˜S̃ struc-
ture in Ref. 6.

In the case of a uniform rotation in the rotation plan
i.e., for F2a15L1

2a2 andwx85const, the right-hand sides o
the second and third equations of system~16! describe a
second-order anisotropy of the ‘‘easy’’ axis type. The cor
sponding solutions are given by formulas~21! in which we
must putR25R450. In this case,u35 f (x)2uRusin(2kx) and
the rotation of the plane of rotation of the vectorsF andL1

must lead to ‘‘sticking’’ of the vectorF in the directions
u35pn (n50,1), i.e., the rotational axisz. This phenom-
enon was called by us the ‘‘anticentrifugal’’ effect.

In the general case, whenF2a1ÞL1
2a2 , a fourth-order

anisotropy must appear in accordance with~21!. Owing to
this term, a relatively weak ‘‘sticking’’ of the vectorF oc-
curs foru350, p/2,p irrespective of the sign ofR2 .

CONCLUSION

It is proved that spiral and cycloidal structures are li
iting cases. The RS˜S̃ structure~rotating skew spiral! pre-
dicted by us is an intermediate structure around which
plane of rotation of irreducible vectors rotates, thus ensur
a smooth transition from the spiral to the cycloidal structu
and vice versa. Such a possibility leads to the emergenc
a

,

-

-

e
g
e
of

anisotropy of the ‘‘easy’’ axis type. This phenomenon
known as the ‘‘anticentrifugal’’ effect. Besides, it was foun
that ‘‘domains’’ over whose length irreducible vectors a
turned throughp/2 can exist. These ‘‘domains’’ can b
‘‘glued’’ together, i.e., structures with a phase jump of irr
ducible vectors at the boundary can be created.

*E-mail: zavarot@host.dipt.donetsk.ua
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Using continued fractions we examine the density of states, transverse magnetization and static
transverse linear susceptibility of a few periodic nonuniform spin-1/2XX chains in a
random Lorentzian transverse field. ©1999 American Institute of Physics.
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The one-dimensional spin-1/2XY model was introduced
in the early 60s by a number of authors.1 They recognized
that several statistical mechanics calculations for that s
model could be performed exactly because it can be rew
ten as a model of noninteracting spinless fermions with
help of the Jordan-Wigner transformation. Evidently, the f
mulation of the spin-1/2XY chain in terms of fermions al
lows one to give a magnetic interpretation to the results
rived for one-dimensional tight-binding spinless fermion
As an example of where this relationship has been explo
one can cite the papers on the Lloyd model2,3 and corre-
sponding papers on the spin-1/2XX chain in a random
Lorentzian transverse field.4,5 The work reported in the
present paper has been inspired by some results on
dimensional tight-binding Hamiltonians for periodical
modulated lattices6,7 and spinless Falicov-Kimball model.8,9

Combining the approach developed in those papers and
treatment of the Lloyd model presented in Refs. 2 and 3
shall calculate exactly the random-averaged one-ferm
Green’s functions~that yield the density of states and ther
fore the thermodynamics! for the periodic nonuniform spin
1/2XX chain in a random Lorentzian transverse field. W
shall treat a few particular chains in order to discuss
changes in the density of states and magnetic propertie
duced by periodic nonuniformity and diagonal disorder.
should be noted, in passing, that the periodic nonunifo
spin-1/2XX chain was considered in several papers dea
with a spin-1/2XX chain with two and more sublattices10,11

and the spin-Peierls instability in a spin-1/2XX chain12 ~see
also Refs. 13–18!. However, the latter papers concentrat
mainly on the influence of the structural degrees of freed
upon the magnetic ones, rather than on the properties
magnetic chain with regularly alternating exchange c
plings. One should also mention a study of a spin-1/2XX
model on a one-dimensional superlattice19 ~such a model can
be viewed as a nonuniform chain with periodically varyi
exchange coupling! but consideration was restricted to th
excitation spectrum. Our communication is also related
the work in Ref. 20 and may be viewed as a further study
the effects of periodic nonuniformity and randomness
magnetic properties of spin-1/2 chains.
4261063-777X/99/25(6)/6/$15.00
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Let us consider a cyclic nonuniformXX chain of
N→` spins 1/2 in a transverse field described by the Ham
tonian

H5 (
n51

N

Vnsn
z12(

n51

N

I n~sn
xsn11

x 1sn
ysn11

y !

5 (
n51

N

VnS sn
1sn

22
1

2D1 (
n51

N

I n~sn
1sn11

2 1sn
2sn11

1 !.

~1!

HereVn is the transverse field at the siten, and is assumed to
be a random variable with the Lorentzian probability dist
bution

p~Vn!5
1

p

Gn

~Vn2V0n!21Gn
2 , ~2!

V0n is the mean value of the transverse field at the siten, and
Gn is the width of its distribution. 2I n is the exchange cou
pling between the sitesn andn11. After making use of the
Jordan-Wigner transformation the model is recasted int
chain of spinless fermions governed by the Hamiltonian

H5 (
n51

N

VnS cn
1cn2

1

2D1 (
n51

N

I n~cn
1cn112cncn11

1 ! ~3!

~the boundary term that is non-essential for the calculation
thermodynamic quantities has been omitted!. Note, that for
the non-random case (Gn50) assuming the transverse fie
in ~3! to be uniform one arises at the Hamiltonian conside
in Ref. 6. In addition, after substitutionVn→Uwn , I n→
2t, Eq. ~3! transforms into the Hamiltonian of a one
dimensional spinless Falicov-Kimball model in the notatio
used in Refs. 8 and 9. In model~3!, considered here, not onl
the transverse fields that are independent random Lorent
variables having the mean values and widths of their dis
bution, but also the exchange couplings between neighbo
spins, vary from site to site.

Let us introduce the temperature double-time Gree
functionsGnm

7 (t)57 iu(6t)^$cn(t),cm
1(0)%&,
© 1999 American Institute of Physics
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Gnm
7 5

1

2p E
2`

`

dv exp~2 ivt !Gnm
7 ~v6 i«!,«→10,

where the angular brackets denote the thermodynamic a
age. Utilizing a set of equations forGnm

7 [Gnm
7 (v6 i«), and

performing random averaging using contour integral,2–5 one
finds the following set of equations for the random-averag
Green’s functions

~v6 iGn2V0n!Gnm
7 2I n21Gn21,m

7 2I nGn11,m
7 5dnm .

~4!

Here(...)[ *
2`

`

dV1p(V1)... *
2`

`

dVNp(VN)(...). Our task is

to evaluate the diagonal random-averaged Green’s funct
Gnm

7 , the imaginary parts of which give the random-averag
density of statesr(v)

r~v!57
1

pN (
n51

N

Im Gnn
6 , ~5!

that in its turn, yields thermodynamic properties of sp
model ~1!. It is a simple matter to obtain from Eq.~4! the
following representation forGnn

7

Gnn
7 5

1

v6 iGn2V0n2Dn
22Dn

1 ,

Dn
25

I n21
2

v6 iGn212V0,n212
I n22

2

v6 iGn222V0,n22
�

,

Dn
15

I n
2

v6 iGn112V0,n112
I n11

2

v6 iGn122V0,n122�

.

~6!

Eqs.~5! and~6! are extremely useful for examining therm
dynamic properties of periodic nonuniform spin-1/2XX chain
in a random Lorentzian transverse field when periodic c
tinued fractions emerge. It should be emphasized that
continued fraction representation of the one-particle Gree
functions for the model of tight-binding electrons is we
known in solid state theory. As an example let us refer h
to a number of original and review papers.21 In what follows
we shall calculate the relevant continued fractions exactly~it
becomes possible since they are periodic! that will permit us
to reveal the effects of regular nonuniformity on the magn
band structure.

Consider, at first, a non-random case. For a regular
ternating chainV1I 1V2I 2V3I 3V1I 1V2I 2V3I 3 ... one gener-
ates periodic continued fractions having a period 3, and a
some calculations we obtain

r~v!

5H 0, if v,c6 ,c5,v,c4 ,c3,v,c2 ,c1,v,

1

3p

uX~v!u

AC~v!
, if c6,v,c5 ,c4,v,c3 ,c2,v,c1 ;
er-

d

ns
d

-
e

’s

e

n

l-

er

X~v!5I 1
21I 2

21I 3
22~v2V1!~v2V2!

2~v2V1!~v2V3!2~v2V2!~v2V3!,

C~v!54I 1
2I 2

2I 3
22@ I 1

2~v2V3!1I 2
2~v2V1!1I 3

2~v2V2!

2~v2V1!~v2V2!~v2V3!#2

52)
j 51

6

~v2cj !. ~7!

Herec1>...>c6 denote six roots of the equationC(v)50
that can be found by solving two cubic equations. For
regular alternating chain

V1I 1V2I 2V3I 3V4I 4V1I 1V2I 2V3I 3V4I 4 ...

periodic continued fractions having period 4 emerge, a
after some calculations we find

r~v!

55
0, if v,d8 ,d7,v,d6 ,d5,v,d4 ,

d3,v,d2 ,d1,v,

1

4p

uW~v!u

AD~v!
, if d8,v,d7 ,d6,v,d5 ,

d4,v,d3 ,d2,v,d1 ;

W~v!5I 1
2~2v2V32V4!1I 2

2~2v2V12V4!

1I 3
2~2v2V12V2!1I 4

2~2v2V22V3!

2~v2V1!~v2V2!~v2V3!2~v2V1!

3~v2V2!~v2V4!2~v2V1!~v2V3!

3~v2V4!2~v2V2!~v2V3!~v2V4!,

D~v!54I 1
2I 2

2I 3
2I 4

22@~v2V1!~v2V2!~v2V3!

3~v2V4!2I 1
2~v2V3!~v2V4!2I 2

2~v2V1!~v

2V4!2I 3
2~v2V1!~v2V2!2I 4

2~v2V2!~v2V3!

1I 1
2I 3

21I 2
2I 4

2#252)
j 51

8

~v2dj !. ~8!

Here,d1>...>d8 are the eight roots of the equationD(v)
50 that can be found by solving two equations of 4th ord
Let us note that allcj and dj are real since they can b
viewed as eigenvalues of symmetric matrices.6

The simplest periodic nonuniform spin-1/2XX
chain in a random Lorentzian transverse fie
V01G1I 1V02G2I 2V01G1I 1V02G2I 2 ... requires a calculation
of periodic continued fractions with period 2. The random
averaged density of states for this case becomes

r~v!5
1

2p

uY~v!u
B~v!

;

Y~v!5~G11G2!AB~v!1B8~v!

2
2sgnB9~v!~2v

2V012V02!AB~v!2B8~v!

2
,
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B~v!5A~B8~v!!21~B9~v!!2,

B8~v!5@~v2V01!~v2V02!2G1G22I 1
22I 2

2#22@~v

2V01!G21~v2V02!G1#224I 1
2I 2

2,

B9~v!52@~v2V01!~v2V02!2G1G22I 1
22I 2

2#@~v

2V01!G21~v2V02!G1#. ~9!

In principal, there are no difficulties in considering mo
complicated periodic nonuniform chains apart from the f
that the calculations become somewhat cumbersome.

Let us turn to a discussion of the results obtained for
density of states. First, note that in the limit of a unifor
transverse field and exchange coupling, Eqs.~7! and ~8!
reproduce the well-known result for the uniform spin-1/2XX
chain in a transverse field:r(v)51/pA4I 22(v2V)2

if 4 I 22(v2V)2.0 and r(v)50, otherwise. This
result for the uniform chain also follows from~9! if
V015V025V, G15G250, I 15I 25I . The density of states
~9! contains the result for uniform spin-1/2XX chain in
a random Lorentzian transverse field4 r(v)57(1/p)
3Im@1/A(v6 iG2V0)224I 2# if V015V025V0 , G15G2

5G, I 15I 25I . In addition, the density of states~9!, in the
non-random limitG15G250, coincides with the density o
states~8! with V15V3 , V25V4 , I 15I 3 , I 25I 4 , i.e., for a
regular alternating chainV1I 1V2I 2V1I 1V2I 2 ... as should
be expected.

In Figs. 1–3 we display the density of states, toget
with both the dependences of the transverse magnetizat

mz52
1

2 E
2`

`

dEr~E! tanh
E

2kT
~10!

on the transverse field at zero temperature, and the s
transverse linear susceptibility

xzz52
1

kT E
2`

`

dEr~E!
1

4 cosh2~E/2kT!
~11!

on temperature, for the few particular chains considered.
tially, let us discuss a non-random case. The main resu
introducing the nonuniformity is a splitting of the initia
magnon band with the edgesV22uI u, V12uI u into several
subbands. The edges of the subbands are determined b
roots of equationsC(v)50, D(v)50. The quantityr~v! is
positive inside the subbands, tends to infinity inversely p
portionally to the square root ofv when v approaches the
subbands edges, and is equal to zero outside the subb
For special values of parameters, the roots of the equat
that determine the subbands edges may become multiple
zeros in denominator and numerator in the expression for
density of states cancel each other, and as a result one
serves a smaller number of subbands. In Figs. 1a and 2a
show r~v! for some periodic nonuniform chains havin
periods 3 and 4 to demonstrate the energy band schem
the presence of nonuniformity. Note that the splitting cau
by periodic nonuniformity is not surprising, since the pe
odic nonuniform chain can be viewed as a uniform ch
with a crystalline unit cell containing several sites of t
initial lattice. On the other hand, one expects several s
t
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bands for a crystal having several atoms per unit cell~see for
example Ref. 22!. We now turn to the density of states give
by ~9!. First, note that in the non-random case one finds t
magnon subbands the edges of which are given by

FIG. 1. Density of states~a!, transverse magnetization versus transve
field V at T50 ~b!, and static transverse linear susceptibility versus te
perature atV50 ~c!, for the nonuniform chainVI 1VI 2VI 3VI 1VI 2VI 3 ...,
I 150.5, I 250.5, I 350.5 ~solid lines!: I 250.5, I 351 ~dashed lines!; I 2

50.25, I 351 ~dotted lines!.
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$b1 ,b2 ,b3 ,b4%5H 1

2
@V11V2

6A~V12V2!214~ uI 1u6uI 2u!2#J ~12!

~Fig. 3a!. Introduction of the uniform diagonal Lorentzia
disorderG15G25G results in smearing out of the edges
the subbands~Fig. 3b!. For extremely nonuniform diagona

FIG. 2. Density of states~a!, transverse magnetization versus transve
field V at T50 ~b!, and static transverse linear susceptibility versus te
perature at V50 ~c!, for the nonuniform chain
VI 1VI 2VI 3VI 4VI 1VI 2VI 3VI 4 ..., I 150.5, I 250.5, I 350.5, I 450.5
~solid lines!; I 250.5, I 350.5, I 451 ~dashed lines!; I 250.5, I 350.25, I 4

51 ~dotted lines!; I 251, I 350.25, I 451 ~dash-dotted lines!.
Lorentzian disorderG150, G2Þ0 the changes in ther(v)
with increasing of the strength of disorder are more com
cated~Fig. 3c!. In the case whenV01ÞV02 one may find that
for a small strength of disorder only one subband is mai
smoothed, but with increases in the strength of disorder b
subbands become smeared out.

The described dependences of the density of mag
states on introduction of periodic nonuniformity and disord
affects the behavior of thermodynamic quantities of the s
model. For example, the temperature dependence of

specific heat c̄5 *
2`

`

dEr(E)(E/2kT)2/cosh2(E/2kT) for a

nonrandom periodic chain may exhibit a two-peak struct
consisting of low-temperature and high-temperature pea
Let us comment in some detail on the magnetic propertie
the spin chains considered. The splitting of the magnon b
into subbands caused by nonuniformity has interesting c
sequences for those properties. Consider for example
transverse magnetization~10!. Since forT→0, tanh(E/2kT)
tends either to21 if E,0, or to 1 if E.0, one immediately
finds because of the appearance of subbands that the
temperature dependence ofmz againstV in the non-random
case must be composed of sharply increasing parts~when,
with increasingV, E50 moves inside each subband from
top to its bottom! separated by horizontal parts~when, with
increasing ofV, E50 moves inside the gaps!. Evidently a
number of plateaus in the low-temperature dependence o
transverse magnetization on the transverse field is de
mined by a number of subbands. Moreover, the larger
gap in the density of states, the longer is the correspond
plateau. Every cusp in the the dependence of the transv
magnetization onV induces a singularity in the dependen
of the static transverse linear susceptibility~11! on V. One
can easily show that the dependence2xzz againstV, at
T50, is the same as the dependence ofr(v) againstV
2v. The latter dependence can be derived from the dens
of states depicted in Figs. 1–3. The value of2xzz at T50 in
the temperature dependence ofxzz at V50 is determined by
the value ofr(0). Therefore, the nonuniformity and random
ness may essentially affect this value as well as the temp
ture dependence of the static transverse linear susceptib
In different temperature regions one may find both an
hancement~and even a divergence!, or suppressing of the
curves2xzz versusT. This can be seen nicely in Figs. 1
2c, 3g, 3h, and 3i.

To summarize, using continued fractions we have o
tained rigorously the density of magnon states for perio
nonuniform spin-1/2XX chain in a random Lorentzian trans
verse field. Continued fraction representation of the solut
of Eq. ~4! is extremely useful for calculation of the density
magnon states. The attractive features of this approach
be seen even for the uniform chain. In this case one om
performing twice the Fourier transformation while solvin
Eq. ~4! in a standard manner and evaluates the desiredr(v)
straightforwardly. The advantages of the continued fract
approach becomes clear while treating periodic chains
ready with the smallest period of 2. Periodic nonuniform

e
-
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FIG. 3. Density of states~a, b, c! transverse magnetization versus transverse fieldV at T50 ~d, e, f! and static transverse linear susceptibility vers
temperature atV50 ~g, h, i! for the nonuniform random chainV01G1I 1V02G2I 2V01G1I 1V02V2I 2 ..., I 150.5, V015V025V. a, d, g: non-random case
G15G250, I 250.25~solid lines!, I 250.5 ~dashed lines!, I 251 ~dotted lines! b, e, h uniform disorderI 250.25,G15G250 ~solid lines!, G15G250.5 ~dashed
lines!, G15G251 ~dotted lines!; c, f, i nonuniform disorderI 250.25,G150, G250 ~solid lines!, G250.5 ~dashed lines!, G251 ~dotted lines!.
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leads to a splitting of the magnon band into subbands tha
its turn leads to the appearance of new cusps and singu
ties in the low-temperature dependences of the transv
magnetization and the static transverse linear susceptib
on transverse field, respectively. In the random case the s
tacular changes in these dependences are smoothed. Pe
nonuniformity and randomness may either enhance or s
press the temperature dependence of2xzz. Changing the
degree of periodic nonuniformity one may to some ext
influence the detailed shapesmz or xzz againstV, or xzz

againstT. The described approach may be of considera
use for examining simple models of spin-Peierls instabiliti
in
ri-
se
ty
ec-
odic
p-

t

le
,

especially in the presence of disorder. Analysis of t
thermodynamic properties of non-random and rand
Lorentzian periodic nonuniform spin-1/2XX chains in a
transverse field and their stability with respect to a latt
distortion will be given in a separate paper.

The author is grateful to O. Zaburannyi for discussio
and J. W. Tucker for critical reading of the manuscript a
useful comments. He acknowledges the financial suppor
the Research Assistance Foundation~L’viv !. He is also in-
debted to Mr. Joseph Kocowsky for continuous financ
support.
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Effect of pressure on magnetic properties of the compound MnSi
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Magnetic susceptibility of the weak itinerant-electron ferromagnet MnSi (TC.30 K) is studied in
the paramagnetic state under hydrostatic pressure up to 2 kbar in the temperature interval
78–300 K. An analysis of the experimental data using the Stoner model modified to account for
the spin fluctuations leads to the estimate for the volume derivative of effective
electron–electron interaction parameterd ln J/d ln V521.460.1 and of the density of electron
states at the Fermi leveld ln N(EF)/d ln V5260.5. A noticeable volume dependence ofJ
points towards a significant role of electron correlations in the magnetism of this compound.
© 1999 American Institute of Physics.@S1063-777X~99!00706-9#
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1. INTRODUCTION

Intermetallic compound MnSi~having a cubic crysta
structure of the type B20! is a metal in which magnetic or
dering occurs at temperatures belowTC.30 K.1,2 In zero
magnetic field, the magnetically ordered state is charac
ized by a helicoidal spin structure with a wavelength 180
along the direction@111#, and by the spontaneous magne
momentM050.4mB per Mn atom at zero temperature.
comparatively weak magnetic fields~H>Hc.0.6 T at
T54.2 K!, the helicoidal ordering is replaced by ferroma
netic ordering with quite large values of susceptibility of t
paraprocess~xh f.2.931023 emu/mole.3!

At T.Tc , the temperature dependence of the magn
susceptibility of MnSi can be described quite well by t
Curie–Weiss law up to 300 K, and noticeable departu
from this dependence are observed only at hig
temperature.4 The corresponding value of the effective m
ment per Mn atomMeff.2.2mB is much larger than the
spontaneous moment, which is typical of itinerant ferrom
nets.

Calculations of the electron structure of the param
netic state5–7 show that MnSi has a high density of states
the Fermi level and a large value of the exchange-enhan
spin paramagnetism, but the Stoner criterion for an itinera
electron ferromagnet is not fulfilled in this compound. Ho
ever, spin-polarized computations indicate6 that the ground
state is magnetically ordered. On the other hand, the Fe
level of the paramagnetic phase lies near the minimum of
density of states curveN(E). For a dominating role of the
single-particle excitations, this should lead to an increas
the magnetic susceptibilityx upon an increase in
temperature.6,7 However, such a behavior seems contrary
the experiments. A detailed analysis of calculations of
paramagnetic density of states shows8 that a slight displace-
ment of the Fermi level (.22 mRyd) results not only in a
qualitatively correct form of the dependencex(T), but also
in the fulfillment of Stoner’s criterion due to a significa
increase in the density of states at the Fermi level. Howe
4321063-777X/99/25(6)/4/$15.00
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it has not been possible so far to provide a consistent des
tion of the magnetic properties of MnSi at finite temperatu
using Stoner’s standard model.

In an attempt to interpret the data on paramagnetic
fusive scattering of neutrons as well as the depende
x(T), Edwards9 went farther than the hypotheses of Stone
model and proposed that slowly fluctuating magnetic m
ments ~having an amplitude;1mB! arise in Mn atoms in
MnSi upon an increase in temperature. These induced
ments were later presented10 as thermal excitations of spin
fluctuations~SF! in the Stoner continuum. Such a modific
tion of Stoner’s model taking SF into account considera
improves the agreement between this model and experim
tal results for MnSi, especially for the dependencex(T) and
the quantityTC .10,11Hence it can be assumed that SF play
significant role in the temperature dependence of the m
netic properties of the compound under consideration.

Another distinguishing feature of MnSi is that its ma
netic characteristics are highly sensitive to pressure. Thu
pressureP;15 kbar completely suppresses the magnetica
ordered state.12,13 The high experimental values of th
volume derivatives of Curie temperature (d ln TC /d ln V
;50)3,13,14 and spontaneous magnetic mome
(d ln M0 /d ln V516)3 confirm the itinerant nature of magne
tism of MnSi, and at the same time emphasize the signific
role of the fine structure ofN(E) near the Fermi level in
determining the peculiarities of its magnetic properties.3

Lerch and Jarlborg6 calculated the spin-polarized state
MnSi as a function of the lattice parametera in the local
spin-density approximation~LSDA!. The resulting estimates
of the spontaneous magnetic moment~M0.0.85mB per Mn
atom! and its volume derivative (d ln M0 /d ln V.3) corre-
sponding to the experimental valuea58.60 a.u. differ sig-
nificantly from the above experimental data. This discre
ancy points towards the problem typical of the LSD
technique and concerning the description of the sp
polarized state~in particular, the dependence of its properti
on volume!. Thus, the weak dependence of the effect
exchange-correlation interaction parameter for electrons
© 1999 American Institute of Physics
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transition metals and their compounds on the atomic spa
predicted by the LSDA6,15,16contradicts the available resul
of studies of the magnetic susceptibility of exchang
enhanced spin paramagnets17 and magnetovolume effect i
itinerant-electron ferromagnets18 under pressure. Additiona
experimental data for a wider range of investigated mater
are required for determining the applicability of the LSD
method and the approximations used therein for describ
the magnetic properties of transition metals.

In the present work, we study the effect of pressure
the magnetic susceptibility of MnSi in the paramagne
state. The experimental data were analyzed by using
Stoner model taking SF into consideration. The obtained
timates of the volume derivative of the density of states
the Fermi level and of the exchange-correlation electron
teraction parameter are compared with those obtained t
retically for MnSi. Preliminary results of investigations we
published in Ref. 7.

2. EXPERIMENTAL TECHNIQUE AND RESULTS

The magnetic susceptibilityx of the MnSi single crystal
was studied under hydrostatic pressure up to 2 kbar at fi
temperatures 77.5, 115.4 and 300 K. Measurements w
made in a magnetic fieldH.1.5 T by using a pendulum
magnetometer placed directly in the high-pressure cell.19 The
pressure was created by gaseous helium with the help
membrane compressor.20 The relative error of measuremen
did not exceed 0.05%. The obtained experimental dep
dencesx(P) ~Fig. 1! are linear within this error limit. Table
I contains the values of the corresponding derivativ
d ln x/dP. Bulk moduli B from Ref. 21 were used for con
verting these derivatives into volume derivatives.

In the framework of the Curie–Weiss law, a pheno
enological description of the volume effects in the magne
susceptibility of MnSi at various temperatures can be giv
in terms of volume derivatives of the Curie constantC and
the paramagnetic Curie temperatureQ:

FIG. 1. Pressure dependence of magnetic susceptibility at various tem
tures, normalized to the value of the susceptibility atP50.
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d ln x~T!

d ln V
5

d ln C

d ln V
1

1

T2Q

dQ

d ln V
[

d ln C

d ln V

1
x~T!Q

C

d ln Q

d ln Q
. ~1!

It can be seen from Fig. 2 that in accordance with t
above formula, the experimental values ofd ln x/d ln V are a
linear function of susceptibility defining the parameters

d ln C

d ln V
5260.5,

d ln Q

d ln V
54565. ~2!

The last parameter was estimated by using the valueC
.0.63 K•emu/mole andQ.28 K, corresponding to our dat
and close to those obtained by Ishikawaet al.2 The values of
d ln Q/d ln V obtained above are in good agreement with
valuesd ln TC /d ln V.53 and 60 obtained from magnetiza
tion studies under pressure,3 as well as electrical resistanc
and differential magnetic susceptibility studies.14

Note that the values ofd ln x/d ln V obtained by us from
direct measurements of the susceptibility of MnSi und
pressure are in accord with the magnetostriction data foT
.TC obtained by Fawcettet al.,22 which in turn are about
half the analogous values obtained by Matsunagaet al.23 The
values of the magnetovolume constant CV

5] ln V(T,H)/]M2(T,H) for para- and ferromagnetic state
also differ by a factor of about two:CV50.56
310210(emu/mole)22 at T577.5 K ~our results! and 0.93

ra-

TABLE I. Experimental values of magnetic susceptibility, its pressure a
volume derivatives, and bulk modulus for MnSi at various temperature

T, K
104x

emu/mol
d ln x/dP,
1/Mbar

B,
Mbar d ln x/d ln V

77.5 128.1 220.461.0 1.355 27.761.5
115.4 70.6 212.160.7 1.350 16.461.0
300.0 23.4 25.060.4 1.325 6.660.5

FIG. 2. The derivatived ln x/d ln V as a function of the magnetic suscept
bility.
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310210(emu/mole)22 at T54.2 K ~magnetostriction data
for H>Hc!.

23 The origin of these discrepancies is not know
so far.

3. DISCUSSION OF RESULTS

The simplified version of the modification of Stoner
model taking into account the temperature-induced spin fl
tuations leads to the following expression for the volum
enhanced spin-susceptibilityx:24–26

1

x~T!
5

1

xP
2J1l0T, ~3!

wherexP5mB
2N(EF) is the unperturbed Pauli spin suscep

bility which depends weakly on temperature,N(EF)[N the
density of states at the Fermi level,J the effective exchange
correlated parameter of interaction between band electr
and l0T the SF contribution in which the constantl0 is
determined by the properties of the band structure.26 In this
case, the temperature dependence of susceptibility, assu
to be related with the SF term, is characterized by the Cur
Weiss law with the parameters

C5l0
21, Q5

C

xP
~JxP21!. ~4!

Differentiating Eq.~3! with respect to volume, we obtain fo
the magnetovolume effectd ln x/d ln V the expression

d ln x~T!

d ln V
5

d ln N

d ln V
1Jx~T!Fd ln N

d ln V
1

d ln J

d ln V

2
l0T

J S d ln l0

d ln V
1

d ln N

d ln VD G . ~5!

This expression is assumed to be valid for the compo
MnSi. Indeed, the observed linear dependence of the exp
mental values ofd ln x/d ln V on x ~Fig. 2! is in accord with
Eq. ~5! if we treat the parametersd ln N/d ln V,J and
d ln J/d ln V appearing in it as constants and disregard
contribution (l0T/J)(d ln l0 /d ln V1d ln N/d ln V) associated
with the SF mechanism. The smallness of this contribution
MnSi is due to two reasons. The first reason is the smalln
of the factorl0T/J in the investigated temperature interva
Assuming thatx(T) is determined mainly by the SF effec
~see Eqs.~3! and ~4!! and using the value of the Curie con
stant C50.63 K•emu/mole and the theoretical valueJ
51.053104 mole/emu,7 we obtain l0T/J<0.05!1 for T
<300 K. Moreover, in view of the closeness of the quantit
d ln C/d ln V and d ln N/d ln V following from a comparison
of Eqs. ~1! and ~5! for x50, we obtain d ln l0 /d ln V
1d ln N/d ln V.0. Thus, the final expression for the magn
tovolume effect in MnSi assumes the form

d ln x~T!

d ln V
.

d ln N

d ln V
1Jx~T!S d ln N

d ln V
1

d ln J

d ln VD . ~6!

This expression does not contain explicitly specific mec
nisms of thermal excitations determining the quantityx(T)
appearing in it, and is valid for all types of excitations und
the condition that their temperature-dependent correction
Stoner productJxP are comparatively small.
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Fitting of parameters~6! to the experimental data~Fig.
2! gives

d ln N

d ln V
1

d ln J

d ln V
50.1960.05, ~7!

d ln N

d ln V
5260.5. ~8!

The theoretical valueJ51.053104 mole/emu7 used here is
in accord with the data obtained by other authors~1.14
3104 mole/emu,27 and 1.373104 mole/emu6!.

The estimate obtained for the volume derivative of t
density of states~8! coincides with the theoretical value
d ln N/d ln V51.606 and 1.667 within the error in determining
the former. The mean value 1.6360.03 of the latter, which is
more precise estimate ford ln N/d ln V in comparison with
~8!, was used in~7! for determining the volume derivative o
the interaction parameter

d ln J

d ln V
521.460.1. ~9!

This quantity is in good agreement with the valu
21.360.1 obtained28 in analogous investigations for th
system Fe12xCoxSi of alloys related to MnSi, thus confirm
ing its reliability. At the same time, it differs considerab
from the value.20.1 calculated for MnSi in the LSDA
method.6 This is yet another evidence of inapplicability o
local approximation of the spin density functional for d
scribing the magnetic properties of systems with a large s
tial inhomogeneity of the electron density, e.g.,d-metals and
their compounds.

It is assumed that correlation effects, which are p
sented more appropriately by the Hubbard model,29,30 play a
significant role in systems with narrow bands. In this mod
the relation between the interaction parameterJ and the
width W of thed-band is determined by the balance betwe
the gain in potential energyU of intraatomic Coulomb re-
pulsion and the loss in their kinetic~band! energy, and the
volume dependence ofJ is determined by the expression29,30

d ln J

d ln V
5

d ln W

d ln V
f ~U/W,Q!. ~10!

Here, the coefficientf (<1) depends on the ratioU/W, oc-
cupancyQ of the d-band, and the type of the crystal stru
ture, while the intraatomic potential energyU is assumed to
be independent of the volume. It follows from Eq.~10! that
dependence ofJ on volume is determined by the width of th
d-band. ForU@W, it becomes the only energy paramet
with which the behavior ofJ correlates.32 This determines
the lower limit of the values ofd ln J/d ln V>d ln W/d ln V5
25/3.33

The value ofd ln J/d ln V.21.4 obtained in the presen
work for MnSi confirms the noticeable volume dependen
of J predicted by the Hubbard model. This indicates a s
nificant role of electron correlations in the magnetism
MnSi and supports the applicability of the model for tran
tion metals. At the same time, only a qualitative agreem
has been obtained34 between the experimental data on t
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volume dependence ofJ in specificd-metals and their com
pounds and the available theoretical results obtained by
ing the Hubbard model.29–31It should be certainly interesting
to carry out further experimental and theoretical studies
the properties of electron–electron interactions for such s
tems.

The author is indebted to A. A. Frolov for kindly sup
plying the monocrystalline MnSi sample, and to Prof. I.
Svechkarev for his fruitful remarks during a discussion of
results.

*E-mail: panfilov@ilt.kharkov.ua

1H. J. Williams, J. H. Wernick, R. C. Sherwood, and G. K. Wertheim,
Appl. Phys.37, 1256~1966!.

2Y. Ishikawa, K. Tajima, D. Bloch, and M. Roth, Solid State Commun.19,
525 ~1976!.

3D. Bloch, J. Voiron, V. Jaccarino, and J. H. Wernick, Phys. Lett.51A, 259
~1975!.

4H. Yasuoka, V. Jaccarino, R. C. Sherwood, and J. H. Wernick, J. P
Soc. Jpn.44, 842 ~1978!.

5O. Nakanishi, A. Yanase, and A. Hasegawa, J. Magn. Magn. Mater.15-
18, 879 ~1980!.

6P. Lerch and T. Jarlborg, J. Magn. Magn. Mater.131, 321 ~1994!.
7G. E. Grechnev, A. S. Panfilov, and I. V. Svechkarev, J. Magn. Ma
Mater.157-158, 711 ~1996!.

8G. E. Grechnev, to be published.
9D. M. Edwards, J. Phys. F12, 1789~1982!.

10S. N. Evangelou and D. M. Edwards, J. Phys. C16, 2121~1983!.
11G. G. Lonzarich and E. Taillefer, J. Phys. C18, 4339~1985!.
12J. D. Thompson, Z. Fisk, and G. G. Lonzarich, Physica B161, 317~1989!.
s-

f
s-

e

.

s.

.

13C. Pfleiderer, R. H. Friend, G. G. Lonzarichet al., in Proceedings Int.
Conf. Phys. Transition Metals, Darmstadt, Germany~1992!, @ed. by P. M.
Oppeneer and J. Ku¨bler#, World Scientific, Singapore~1993!.

14C. Pfleiderer, G. J. McMullan, S. R. Julian, and G. G. Lonzarich, Ph
Rev. B13, 8330~1997!.

15O. K. Andersen, J. Madsen, U. K. Poulsenet al., Physica B & C 86–88,
249 ~1977!.

16Y. Ohta and M. Shimizu, J. Phys. F13, L123 ~1983!.
17A. S. Panfilov and I. V. Svechkarev, inProceedings Int. Conf. Phys

Transition Metals, Darmstadt, Germany~1992!, @ed. by P. M. Oppeneer
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Anomalies in microwave absorption in quasi-one-dimensional CsMnCl 3–2H2O
in a pulsed magnetic field

A. G. Anders and M. I. Kobets

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences
of the Ukraine, 310164 Kharkov, Ukraine*
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Intense microwave absorption is observed in quasi-one-dimensional antiferromagnet
CsMnCl3•2H2O in the frequency range below the gap in the spin-wave spectrum. The absorption
is observed for the polarizationhiH in a pulsed external field directed along the ‘‘hard’’
anisotropy axis. It is proposed that the absorption is associated with the frustration of the interchain
magnetic order due to a pulse of the applied field. ©1999 American Institute of Physics.
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Low-dimensional magnets exhibiting a strong spatial
isotropy of exchange interactions are characterized by a c
plex microwave energy absorption spectrum. The quasi-o
dimensional biaxial antiferromagnet CsMnCl3•2H2O with
the Neel temperatureTN54.89 K is an example of such
spectrum.1,2 In addition to uniform antiferromagnetic reso
nance~AFMR! bands corresponding to excitation of ma
nons with the wave vectork50, it displays a magnetic
dipole subthreshold two-magnon absorption which is lin
in power and associated with simultaneous excitation of
spin waves withk152k2 as a result of decay of a micro
wave field quantum. The behavior of this spectrum for d
ferent orientations of the applied field and its transformat
upon a change in frequency and temperature were anal
in detail in Refs. 1 and 2 A fragment of the frequency–fiel
dependence of absorption bands in the case when the ap
field H is oriented along ‘‘hard’’ anisotropy axisa is pre-
sented in Fig. 1. In experiments,1,2 these dependences we
obtained by the traditional radiospectroscopic method us
a slow field scanning at fixed frequencies of microwave
citation.

Our experiments in pulsed external fields revealed a n
peculiar type of microwave energy absorption. Addition
absorption is observed for the applied field orientationHia
in the frequency range lying below the gapn1 in the spin-
wave spectrum of the system. The experiments were car
out on a radiospectrometer with a reflecting resonator~wave
of the H10n type! at the output microwave generator pow
level P,10 mW in the frequency rangen0518– 35 GHz,
the duration of magnetic field pulse wast520 ms for the
sinusoidal pulse, the temperature range of observations
1.6–2 K, and the absorption signal was detected by an o
lograph.

The main features of this absorption are as follows. T
absorption is observed only at frequenciesn0,n1 for the
polarizationhiHia of the magnetic component of the micro
wave field. The absorption spectrum contains two ba
whose peak intensity is comparable with the peak inten
of the uniform resonance line. The shape of the band
4361063-777X/99/25(6)/4/$15.00
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symmetric, the left slope sometimes displaying a struct
with a low resolution. The absorption has peculiar time ch
acteristics depicted schematically in Fig. 2. The delay ti
t1 of the first band relative to the beginning of the field pul
depends explicitly on the amplitude, and hence on the ste
ness of the field pulse front since the field pulse durat
remained unchanged under the experimental conditions.
a constant field pulse amplitude, the value oft1 increases
with decreasing working frequency. For a small amplitu
~case 3 in Fig. 2!, the delay time can exceed the field pul
duration:t1.t.

The delay timet1 for the second band exceedst1 con-
siderably~by a factor of 10 and more! and decreases with th
field pulse amplitude. Finally, it was found that the seco
absorption band is observed even in the case of a delay in
feeding of microwave radiation to the sample by the tim
tdel.0.1 s, which is considerably longer thant1 and the field
pulse durationt.

Thus, the absorption being detected is a result of ac
of the magnetic field pulse, while the microwave illumin
tion of the sample plays the role of a tool for detecting t
consequences of such a pulse. We can assume that su
action causes a renormalization of the magnon spectrum
the system, which is similar to that observed during crys
heating and leading to a decrease in the value of the en
gap in the spectrum ton1,n0 . This must cause the eme
gence of absorption at the working frequencyn0 since it
corresponds to the excitation of a uniform AFMR mode w
k50 for the field directionHia. In this case, the absorptio
corresponds to the first of the observed bands separated
the beginning of the pulse by the timet1 , longer delay times
corresponding to lower frequencies of the working range

The rate of subsequent cooling of the magnon s
system, which is associated with the removal of heat to
helium bath through the phonon subsystem of the crysta
determined by specific features of experimental techniq
i.e., the method of fixation of the sample to the resona
wall, the pressure of the heat-exchange gas, and so on.
process is accompanied by an increase in the natural reso
© 1999 American Institute of Physics
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frequency of the magnon subsystem and repeated reso
absorption at the instantt2 at the same working frequenc
n0 , which naturally occurs after a time period much long
thant1 .

It should be noted, however, that the heating of the cr
tal must be quite strong in this case. According to the res
of investigation of temperature dependences of the gap
the AFMR spectrum of CsMnCl3•2H2O,3 a decrease in the

FIG. 1. Frequency-field diagram of microwave absorption bands
CsMnCl3•2H2O for the applied field orientationHia at T52 K. Solid lines
1 and2 correspond to uniform AFMR bands~excitations withk50!. Band
3 is the difference process of the subthreshold two-magnon absorptio
magnons from branches1 and2 ~excitations withk152k2!. Absorption4 is
observed under pulsed scanning of the field; straight line5 describes the
frequency–field dependence of resonant absorption of the standard sa
DPPH ~diphenyl pipicrylhydrosil!.

FIG. 2. Transformation of the absorption band with intensityI 0 observed at
a fixed frequency upon a change in the magnetic field pulse amplitudeH0 ;
HDPPH is the value of the field corresponding to the EPR absorption in
standard sample.
ant

r

-
ts
in

value of n1 to the working frequency rangen0 must corre-
spond to an increase in the temperature of the magnon
system of the sample from the initial temperature
;1.5– 2 K.

At the same time, we must eliminate the effect of t
trivial source of heating due to eddy currents induced by
field pulse in the resonator. In order to prevent a poss
heat transfer from the resonator walls to the sample, the la
was coated in some experiments with a heat-proof para
coating, which did not lead to any noticeable change in
observed effects. Besides, when the sample without a h
proof coating was turned through an angle of 90°, so that
applied fieldH was oriented along the easy axisb, the uni-
form AFMR line observed in the working frequency range
fields H;10– 15 kOe does not change the value of reson
field. This indicates the constancy of the sample tempera
for moderate values of the field pulse amplitudeH0 used
by us.

The increase in spin temperature mentioned above
responds to an increase in the magnetic energy of the cry
due to the interaction of the external field pulse with t
induced magnetic moment of the sample, formed due to
tilting of magnetic sublattices in the direction of the fie
perpendicular to the ‘‘easy’’ axis:

EM5M•H5NgSmBE
0

t

~H0
2/He!sin~pt/t!dt.

Here N is the number of Mn21 ions with the effective
g-factor g52 and spinS55/2 in the sample,mB Bohr’s
magneton, andHe the exchange field amounting to 230 kO
in CsMnCl3•2H2O. Since the contribution of the phono
subsystem to the heat capacity of this crystal is virtually z
at temperaturesT<2 K,4 the increment of the spin tempera
ture for a sample with typical size 53230.5 mm3 at T
51.5 K and the specific heatC50.5 J/mole•K amounts to
DTs.1.5 K.

According to estimates obtained in Ref. 5, the spin–s
relaxation timets in this case is rather short and amounts
;1028 s for the exchange parameterJ53 K in chains of
Mn21 ions. Fort.ts , the spin subsystem must go over
the quasi-equilibrium state for the given temperature inc
ment. However, the spin–phonon relaxation time

tsl
215

Qc

\

T

ra2s2 S T

Qc
D 5/2

exp~2QD
2 /4QcT!

turns out to be considerably longer and amounts totsl

51022 s ~which is comparable with the duration of the fie
pulse! for values of the exchange parametersQc530 K, the
average velocity of sounds52 km/s, the density of the sub
stance r52.84 g/cm3, and the Debye temperatureQD

556 K for T52 K.
Thus, the magnon subsystem of the crystal should

play heating and subsequent cooling for such relations
time periods, i.e., we should expect the approximate equa
t1'ts andt2'tsl . In the time intervalt12t2 , the system
must be under conditions close to adiabatic. Besides, a s
lar overheating of the magnon subsystem must also
observed for the field direction along the ‘‘intermediate
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axis c. However, the experimental results indicate that, fi
the values of the parameterst1 andt2 differ noticeably from
these estimates, and second,Hia is the predominant direc
tion of the field for the observation of the effect. Cons
quently, it would be interesting to study the processes
system excitation at the beginning of the field pulse, wh
we can expect that the regime remains adiabatic, as we
the state of the system in the intervalt12t2 , where adiaba-
ticity is apparently violated. It should be borne in mind th
the magnon subsystem in such a noticeably overheated
must be essentially nonlinear.

The initial process of excitation can be associated w
the generation of stationary nonlinear states of the type
solitons or domain walls, which can exist in CsMnCl3•2H2O
for the given orientation of the external and rf magne
fields.4 The possibility of impact excitation of solitons b
spatially homogeneous as well as spatially localized pul
magnetic field was investigated in Refs. 5 and 6 where
magnetic system was regarded as essentially nonlinear
tem. In this case, the time of relaxation of soliton excitatio
to the magnon subsystem of the crystal can be evaluate
the basis of the results obtained by Kivshar’ and Malame7

This time for CsMnCl3•2H2O is quite short and amounts t
tsol-s5E0 /hc2.1028 s ~E0 andc are the energy and limit
ing velocity of a domain wall, andh the viscosity param-
eter!, which is comparable with the timets of stabilization of
the quasi-equilibrium distribution inside the magnetic su
system, which is determined by exchange scattering of m
nons. In this case, the efficiency of generation of station
nonlinear states might prove to be quite high. According
estimates, an overheating by 2 K of themagnon system for a
sample of the size indicated above may result in the form
tion of ;1018 kinks in chains of Mn21 ions, which amounts
to ;5% of the total number of magnetic sites in the cryst
However, the formation of nonlinear states along interch
directions with a weak exchange coupling is many tim
more advantageous from the energy point of view, and th
realization must naturally lead to the suppression of in
chain correlations.

At the same time, the interaction of the pulsed field w
the magnetic subsystem in CsMnCl3•2H2O can have an ori-
gin differing basically from that of nonlinear states asso
ated with peculiarities of its magnetic structure. It should
recalled that an orthorhombic unit cell of a crystal with t
space groupPcca contains four magnetic ions Mn21 occupy-
ing pairwise equivalent positions.10 Magnetic ions occupying
inequivalent sites in a unit cell along thea direction are
coupled through a strong antiferromagnetic exchange in
actionJ53 K and form chains that are the basis of the qua
one-dimensional magnetic structure of this crystal. Weak
change interactionJ1 and J2 between chains along th
directionsb and c are also antiferromagnetic, their value
beingJ1 /J;1022 andJ2 /J;1024. A magnetic unit cell of
CsMnCl3•2H2O is formed due to doubling of the paramet
b, and hence this crystal is an eight-sublattice antiferrom
net, although it is regarded as a two-sublattice antiferrom
net in most of publications devoted to an analysis of m
netic and resonant properties.

Neighboring ions in a chain can be coupled though
t,
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antisymmetric exchange interaction of the typeD jl @Sj

3Sl #, and the spin Hamiltonian of the form

HD5(
j

D j~Sj
zSj 11

x 2Sj
xSj 11

z !, ~1!

where thex-, y-, and z-axes are parallel to the a, b and
direction in the cell respectively, was taken into account
Nagata and Hirosawa11 who analyzed the EPR linewidth fo
this compound. An interaction of type~1! in the magnetically
ordered state leads to tilting of magnetic moments of ad
cent cites of a chain and to the formation of the ferroma
netic moment of the chain as a whole, which is direct
along the axisa. It is compensated by the opposite mome
in a neighboring chain, and hence the magnetic unit cell
zero spontaneous ferromagnetic moment.

The value of the parameterD j can be estimated proceed
ing from the results obtained in Ref. 11 concerning the c
tribution of antisymmetric exchange to the EPR linewidth.
amounts to;531010s21, which leads to the valueMF

5(D j /2J)gSmB'0.05mB of the ferromagnetic moment o
the chain in the ground state~per site!.

Since the interchain coupling corresponds to t
‘‘weak’’ exchange field He152J1SkB /gmB.500 Oe, the
external field of the orientationHia for H>He1 must cause
a phase transition associated with a reorientation of fe
magnetic moments for half the chains. This can lead to
additional heating of the sample byDT.0.25 K provided
that the entire energyEM5MFH liberated in such a transi
tion is transformed into heat.

In this case, the observed effects should be explained
taking into account the peculiarities o the magnetically
dered state of the quasi-one-dimensional magnetic sys
As a matter of fact, the equilibrium magnetic structure flu
tuates quite strongly along links between chains virtually
the entire temperature range of the antiferromagnetic stat
CsMnCl3•2H2O except the millikelvin region. For this rea
son, the temperature dependence of the magnon spectru
the system~including its gaps! essentially reflects just the
extent of increase in these fluctuations, and hence the
namics of interchain disordering, which attain maximum v
ues at the Neel temperatureTN54.89 K, while the short-
range antiferromagnetic order in the chain is preserved u
T.30 K.

The phase transition induced by the applied field ine
tably generates phase separation of the system, as a res
which the interchain correlation radius characterizing qu
titatively the extent of interchain ordering, decreas
abruptly and becomes apparently smaller than the size o
sample in the direction of weak exchange. The tempera
of the phonon reservoir remains unchanged during the ac
of the field pulse, and hence the magnon subsystem of
crystal turns out to be overheated and more disorde
against its background than the equilibrium structure for
given temperature, which must be manifested in the co
sponding decrease in the values of energy gaps in the m
non spectrum. It should be noted that the limiting case
interchain disordering and vanishing of the interchain cor
lation radius corresponds to the Mermin–Wagner theore12
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concerning the absence of a long-range magnetic order,
naturally to the disappearance of energy gaps in the spec
of a one-dimensional magnet.

In this case, the value of the delay parametert1 deter-
mined by the rate of interchain disordering must depend
the steepness of the field pulse since~see above! the process
of disordering itself starts from the phase transition forH
>He1 . The parametert2 is determined by the rate of recon
struction of interchain correlations, during which the inver
phase transition to the pure antiferromagnetic phase m
occur. The time characteristics of these processes can d
apparently in view of the presence of the external field in
former and its absence in the latter case. However, it sho
be borne in mind in any case that processes of domain tr
formations accompanying the phase separation during p
transitions are of the long-period diffusive type as a ru
Since the thermodynamic potentials of the correspond
phases differ insignificantly in our case, we must expec
considerable relaxation time of nonequilibrium structur
These periods of time must be increased additionally du
natural defects in the crystal.

Thus, the main qualitative characteristics of the mic
wave absorption observed in CsMnCl3•2H2O in pulsed mag-
netic fields can be explained by the dynamics of violat
and restoration of the long-range magnetic order in in
chain directions in the crystal.

It should be noted in conclusion that the decrease in
gap widths in the energy spectrum of CsMnCl3•2H2O in an
external pulsed magnetic field was also observed~but not
interpreted! in Ref. 13. An analysis of the exciton–magno
absorption spectrum in this crystal revealed a consider
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~approximately by a factor of 1.5 and more! decrease in the
gap widths measured in the pulsed field as compared to t
value in static fields.

The authors are grateful to M. M. Bogdan for fruitfu
discussions of the obtained results.
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Peculiarities of thermodynamics of 2 D Heisenberg magnets on a triangular lattice
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Ukraine, 310164 Kharkov, Ukraine*
~Submitted February 5, 1999!
Fiz. Nizk. Temp.25, 592–599~June 1999!

Thermodynamic and magnetic properties of 2D Heisenberg ferro- and antiferromagnets with a
spin of 1/2 on a triangular lattice are investigated theoretically. The formalism of two-
time Green’s functions and the decoupling procedure explicitly taking into account the presence
of a short-range order and not requiring the existence of a long-range order in the system
are used. The energy, heat capacity, and susceptibility of magnets are expressed in terms of
correlation functions for which a self-consistent system of equations is obtained. The
system is solved numerically in the entire temperature range. Analytic asymptotic forms of the
above quantities are constructed in the limits of high and low temperatures. The results
of analysis are compared with analogous data for square lattices as well as with the high-
temperature expansions available in literature. ©1999 American Institute of Physics.
@S1063-777X~99!00906-8#
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1. INTRODUCTION

At the present time, the theory of low-dimensional ma
netic systems is an extensive and thoroughly investiga
branch of solid-state physics.1,2 Nevertheless, theoretical in
vestigations in this field continue to be important in view
a number of unsolved basic problems and the appearanc
new experimental results on the thermodynamics of s
systems. In most cases of practical importance, the obse
physical patterns can be successfully described on the b
of the traditional Heisenberg model. The one-dimensio
case has been investigated most comprehensively~see, for
example, Ref. 2!. In an analysis of two-dimensional (2D)
systems, main attention was paid to square lattices1–5 in con-
nection with the description of the properties of high-Tc su-
perconductors which are 2D antiferromagnetic insulators in
the undoped state. The thermodynamics of 2D magnets on a
triangular lattice has been studied less extensively. Howe
the interest in such systems has increased in recent year
to intense experimental studies of3He films on graphite,6–10

whose physical properties in the millikelvin temperatu
range are completely determined by the dynamics of
nuclear spin subsystem on a triangular lattice.

A correct interpretation of the experimental results me
tioned above requires the knowledge of thermodyna
functions of a magnet in the entire temperature range. At
same time, only high-temperature expansions for ferro-
antiferromagnets11 and asymptotic forms for the ferromag
netic case forT→0 are known for spin systems on a tria
gular lattice.5 Thus, it is important to obtain theoretical re
sults describing the behavior of the systems un
consideration in the entire temperature range by using a
fied approach.

In this paper, the heat capacity and magnetic suscept
ity of 2D spin ferro- and antiferromagnetic~FM and AFM!
systems with a spin 1/2 on a triangular lattice are calcula
4401063-777X/99/25(6)/6/$15.00
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theoretically by using the Heisenberg model. Analy
asymptotic forms are constructed for internal energy, h
capacity, and magnetic susceptibility in the limits of low a
high temperatures. The obtained results are compared
similar data obtained for square lattices.

2. FORMULATION OF THE PROBLEM AND BASIC
EQUATIONS

Let us consider a Heisenberg system with spinS51/2,
whose Hamiltonian has the form

H52
J

2 (
f,d

SfSf1d , ~1!

whereJ is the exchange constant~J.0 in the ferromagnetic
and J,0 in the antiferromagnetic case!, Sf the operator of
spin at sitef, and d the vector defining the coordinates o
nearest neighbors. A distinguishing feature of lo
dimensional isotropic magnetic systems is that they do
have a long-range order at any finite temperature~the
Mermin–Wagner theorem12! so that the thermodynamic av
eragê Sz&50. Thus, the theory must be constructed in ter
of the quantities describing the short-range order, i.e.,
rerms of the correlation functions. Such a method of cal
lation was proposed by Kondo and Yamaji13 for 1D systems
and generalized to the case of 2D magnets on square lattice
in Ref. 3. We shall follow this procedure here for analyzi
the Heisenberg system on a triangular lattice.

The method of calculations is based on the formalism
two-time Green’s functions14 and can be described as fo
lows. The equation of motion for Fourier time transform
^^Sf

zuSf8
z &&v of Green’s function is
© 1999 American Institute of Physics
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v^^Sf
zuSf8

z &&v5 iJ(
d

~^^Sf
xSf1d

y uSf8
z &&v

2^^Sf
ySf1d

x uSf8
z &&v!. ~2!

The equations for̂ ^Sf
xuSf8

x &&v and ^^Sf
yuSf8

y &&v can be ob-
tained from~2! by cyclic permutation. Then we must writ
equations for the functions appearing on the right-hand s
of ~2! ~for the sake of brevity, we give here only one equ
tion!:

v^^Sf
xSf1d

y uSf8
z &&v5

i

2p
~D f1d,f8^Sf

xSf1d
x &

2D f,f8^Sf
ySf1d

y &!

1 iJ(
d8

~^^Sf
ySf1d8

z Sf1d
y uSf8

z &&v

2^^Sf
zSf1d8

y Sf1d
y uSf8

z &&v

1^^Sf
xSf1d

z Sf1d1d8
x uSf8

z &&v

2^^Sf
xSf1d

x Sf1d1d8
z uSf8

z &&v! ~3!

~D f,f8 is the Kronecker symbol!. On the second step, we car
out decoupling of higher functions on the right-hand side
~3!. In order to illustrate the procedure of decoupling, w
consider, for example, the first term in the sum overd8. We
write this term in an identical form

^^Sf
ySf1d8

z Sf1d
y uSf8

z &&v5Dd,d8^^Sf
ySf1d

z Sf1d
y uSf8

z &&v1~1

2Dd,d8!^^Sf
ySf1d

z Sf1d8
y uSf8

z &&v ,

~4!

separating explicitly its terms for coinciding (d5d8) and
different (dÞd8) values ofd andd8. Since the spin of 1/2
satisfies the equalitySzSy52( i /2)Sx, the first term on the
right-hand side of~4! has the form

Dd,d8^^Sf
ySf1d

z Sf1d
y uSf8

z &&v52
i

2
Dd,d8^^Sf

ySf1d
x uSf8

z &&v

~5!

and hence can be reduced to a function of the same typ
the function on the left-hand side of~3!. In the second term
on the right-hand side of~4!, the order of Green’s function
can be reduced only as a result of decoupling. Following
method proposed by Kondo and Yamaji,13 we carry out de-
coupling according to the algorithm

^^Sf
ySf1d

z Sf1d8
y uSf8

z &&v→a^Sf
ySf1d8

y &^^Sf1d
z uSf8

z &&v . ~6!

Here, in contrast to the standard method of decoupling,
introduce the coefficienta which is chosen in such a wa
that the kinematic relation

^S2&5S~S11!53/4 ~7!

is satisfied.
It is interesting to note that this original decoupling pr

cedure is quite effective as compared to the generally
cepted method in whicha[1. In particular, the fulfillment
of condition ~7! automatically leads to coincident temper
e
-

f

as

e

e

c-

ture dependences of correlation functions3,13 with the corre-
sponding expressions derived from direct high-tempera
expansions.

Applying the above procedure of decoupling to a
higher-order Green’s functions appearing on the right-ha
side of ~3!, we obtain a complete system of equations co
taining correlators~n runs through the valuesx,y,z!

c154^Sf
nSf1d

n &; ~8!

c254^Sf
nSf1d1d8

n &; dÞ2d8. ~9!

According to definition~8!, the functionc1 takes into ac-
count spin correlations at sitef with the neighbors located on
the first coordination sphere. The second correlation func
c2 describes correlations between spins separated by
steps along the translation vectorsd. Starting from this mo-
ment, the type of the lattice under investigation plays
fundamental role. For example, the conditiondÞ2d8 for a
square lattice is a necessary and sufficient condition for
fining the correlator~9! unambiguously since in this case w
necessarily leave the limits of the first coordination sphere
this lattice after two steps. In the case of a triangular latti
however, there are ways consisting of two steps and lead
to a spin on the first coordination sphere, which correspo
to correlations between nearest neighbors that have alre
been taken into account while writingc1 . Thus, while defin-
ing c2 on a triangular lattice, we must require that the fo
lowing condition hold in addition to~9!:

d1d8Þd9. ~10!

It should be noted that in the case of a square as well a
triangular lattice, the function~9! describes correlations with
all neighbors lying on the second as well as the third co
dination spheres. Condition~10! must be taken into accoun
correctly in the evaluation of the corresponding sums overd8
appearing on the right-hand side of~3! after decoupling.

We carry out the Fourier coordinate transformation
^^Sf

zuSf8
z &&v and determine Fourier transforms of Green

function:

G~v,k!5(
f

^^Sf
zuSf8

z &&v exp~ ikf !. ~11!

As a result of solution of the set of equations for Gree
functions, we obtain

G~v,k!5
Jzc1

4p

12gk

v22vk
2 . ~12!

Here

gk5
1

z (
d

exp~ ikd! ~13!

~z is the coordination number;z56 for a triangular andz
54 for a square lattice!,

vk
25

J2z

2
~12gk!@D1 c̃1z~12gk!#, ~14!

D5125c̃113c̃2 , ~15!
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and c̃i5aci ( i 51,2). Using spectral relations for Green
functions,14 we arrive at the following set of equations d
fining the functionsa, c̃1 , and c̃2 :

a5
Jzc̃1

N (
k

g~k!; ~16!

15
Jz

N (
k

gkg~k!; ~17!

c̃25
Jzc̃1

3N (
k

f ~gk!g~k!, ~18!

whereN is the total number of lattice sites,

g~k!5
12gk

vk
coth

vk

2T
; ~19!

and the functionf (gk) for a triangular lattice has the form

f ~gk!56gk
222gk21. ~20!

For a 2D magnet on a triangular lattice, the set of equ
tions~16!–~18! has the same structure as the equations foa,
c̃1 , and c̃2 in the case of a square lattice.3 However, this
similarity is only formal. The basic difference between the
two systems lies not only in different values of the coor
nation numbers, but first of all in the type of the structu
factor gk as well as the form of the functionf (gk) which in
the case of a square lattice is defined as3

f ~gk!54gk
221. ~21!

It will be proved below that these differences lead
notably different behaviors of thermodynamic functions
lattices of the two types.

3. ASYMPTOTIC BEHAVIOR OF CORRELATION FUNCTIONS
IN THE LIMITS OF HIGH AND LOW TEMPERATURES

The set of equations~16!–~18! for the functionsa, c̃1 ,
and c̃2 looks formally identical for the FM and the AFM
case, but an analysis of these equations is determined e
tially by the sign of the correlation constantJ. In particular,
the sign ofJ determines the sign of the correlation functio
c̃1 . The solution of this system for arbitrary temperatures c
be obtained only numerically. In the limit of high and lo
temperatures, the set of equations~16!–~18! can be solved
analytically. Below, we shall obtain the asymptotic forms
solutions forT@uJu andT→0 for both types of lattices. It is
convenient to introduce the parameteru5T/J that can be
positive or negative depending on the sign ofJ.

In the range of high temperatures (uuu@1), the system
of equations is solved by expansion in reciprocal powers
the parameteru. In this case, all calculations are identical f
both types of lattices as well as for FM and AFM. Confinin
the analysis to terms of the order ofu22, we arrive at the
following result:

a511
A

u
; c̃15

1

4u S 11
2A

u D ; c̃25
5

48u2 , ~22!

where we have introduced the notation
-

e
-
l

r

en-

n

f

f

A5
z25

4
. ~23!

It can be seen from~22! that expressions for FM and AFM
differ in the sign of the exchange constantJ, while the re-
sults obtained for triangular and square lattices in this
proximation differ in the value of the parameterA containing
the coordination numberz.

In contrast to the high-temperature limit, an analysis
asymptotic forms in the low-temperature limit is more com
plicated and has peculiarities for FM or AFM systems
well as for triangular and square lattices. For this reas
each of the cases listed above should be analyzed separ

First of all, we consider the functiong(k) appearing in
all the equations of the system~16!–~18!, which is a Fourier
transform of the correlator̂S0

zSf
z& accurate to within a factor

^Sk
zS2k

z &5
Jzc1

4
g~k!. ~24!

As in Ref. 3, we can prove that the functiong(k) for T
→0 and for vectorsk close tok0 assumes the Ornstein
Zernike form

g~k!.
26T

~Jz!2uc̃1u
1

~k02k!21j22 , ~25!

where the parameterj plays the role of correlation length. In
each of the cases listed below, the parameters appearin
relation ~25! are defined as

k050; j5Azc̃1/4D, ~26!

for FM on a square or a triangular lattice, whereD is defined
by relation~15!,

k05~p,p!; j5Auc̃1u/D1; D15123uc̃1u13c̃2 ~27!

for AFM on a square lattice, and finally

k05~0,2p/3!; j5A3uc̃1u/4D2; D25124uc̃1u13c̃2
~28!

for AFM on a triangular lattice.
Let us return to the system of equations~16!–~18!. Ob-

viously, the last two equations~~17! and ~18!! form a com-
plete system for the correlation functionsc̃1 and c̃2 . Having
defined these functions, we can determine the parameta
with the help of Eq.~16!. In order to construct asymptoti
forms for T→0 and to carry out subsequent numerical c
culations for arbitrary temperatures, it is convenient to use
the system of equations~16!–~18! the functionsD, D1 , or D2

instead of the functionc̃2 in each of the cases~26!–~28!.
Let us first consider a ferromagnet (J.0). The calcula-

tions presented below are valid for both types of lattic
After we go over from the variablec̃2 to the quantityD, Eqs.
~16! and ~17! remain unchanged, and Eq.~18! taking into
account definition~15! is transformed into

D5122c̃12
Jzc̃1

N (
k

~zgk11!~12gk!g~k!. ~29!

For our subsequent analysis, it is convenient to introduce
density of states
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w~x!5
1

N (
k

d~x2gk!, ~30!

with the help of which the system of equations~17! and~29!
is transformed to

y52E
21

1

dxxw~x!
12x

V~x!
coth

V~x!

l
, ~31!

hy2z512y22yE
21

1

dxw~x!
~12x!2~zx11!

V~x!

3coth
V~x!

l
. ~32!

Here, we have introduced the following new variablesy and
h ~instead ofc̃1 andD!:

y5A2c̃1; h5D/y2z, ~33!

as well as the following notation:

V~x!5A~12x!~12x12h!; l5
4u

zy
. ~34!

An analysis shows that the functiony for T→0 remains
finite (y→1), while h→0. Since the integrand in~32! has
no singularities forh→0, we can puth50 on both sides of
Eq. ~32!, which is converted into an equation fory:

12y25yE
21

1

dxw~x!~12x!~zx11!coth
~12x!

l
. ~35!

After a number of transformations, this equation in the lo
est approximation inu is transformed to

12y25yl2~11z!w~1!E
0

`

duu~cothu21!.

Evaluating the integral and taking into account the first re
tion in ~33!, we obtain the following expression forc̃1 :

c̃1.
1

2
2

2p2

3

11z

z2 w~1!u2. ~36!

Using Eqs.~16! and ~31! and the second relation from~33!,
we obtain the following expressions fora andD:

a.
3

2
2

4p2

3z
w~1!u2, ~37!

D.u expS 2
z

8w~1!u D . ~38!

Expressions~36!–~38! are valid both for a square and for
triangular lattice and differ only in the values of the para
etersz and w(1) ~z54 andw(1)51/p for a square lattice
andz56, w(1)5)/2p for a triangular lattice!.

Let us go over to the construction of low-temperatu
asymptotic forms for antiferromagnets~J,0, u,0!. In this
case, the correlation functionc̃1 is negative, and we sha
henceforth consideruc̃1u for convenience. Besides, it wa
mentioned above that instead of the functionc̃2 in Eq. ~18!,
we must introduce the functionsD1 ~for a square lattice! and
D2 ~for a triangular lattice! defining the temperature depe
-

-

-

dence of the correlation length~see~27! and ~28!!. In con-
trast to FM, square and triangular lattices should be analy
separately for AFM. This is primarily due to a considerab
difference in the temperature dependences ofD1 and D2 .
Indeed,D1→0 asT→0 for a square lattice, while the valu
of D2 for a triangular lattice remains finite at any temper
ture. The calculation of the low-temperature asympto
forms of uc̃1u andD1 on a square lattice is generally simila
to that used in an analysis of FM, although initial equatio
in this case turn out to be more complicated. In the fi
nonvanishing approximation inu, the final result has the
form

uc̃1u.
1

2a1
22

z~3!

p
uuu3, ~39!

a.11
1

2a1
22

z~3!

p
uuu3, ~40!

D1.
u2

2
expS 2p

122a1a2

2a1
2uuu D . ~41!

Here

a15E
21

1

dxw~x!A12x2.0.842;

a25E
21

1

dxw~x!
x2

A12x2
.0.551, ~42!

andz(3).1.202 is a particular value of the zeta-function
In an analysis of AFM on a triangular lattice, it is con

venient to write the system of equations~17! and ~18! by
using the equality coth (x/2)5112n(x), where n(x)5(ex

21)21 is the Bose distribution function. This gives

uc̃1u52
6uJuuc̃1u

N (
k

gk~12gk!

vk
F11nS vk

T D G , ~43!

D2511
6uJuuc̃1u

N (
k

~6gk
212gk21!

12gk

vk
F1

1nS vk

T D G . ~44!

SinceD2 remains finite at all temperatures, the term conta
ing n(vk /T) vanishes forT→0. The system of transcenden
tal equations obtained in this case definesuc̃1u andD2 in the
zeroth approximation and can be solved only numerica
The leading term from the addends containingn(vk /T) is
found to be of the order ofuuu3. Indeed, these terms can b
written in the form

Q[
12uJuuc̃1u

N (
k

F~gk!
12gk

vk
nS vk

T D , ~45!

whereF(gk)52gk for ~43! and F(gk)56gk
212gk21 for

~44!. Using expression~30! for density of states, we go ove
in ~45! from the sum overk to the integral with respect tox.
After a sequence of transformations, we obtain
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Q.
8z~3!uc̃1uF~1!

p)~D219uc̃1u!2
uuu3. ~46!

Substituting ~46! into ~43! (F(1)521) and into ~44!
(F(1)57) and solving the obtained system of equations
the perturbation theory, we find that

uc̃1u.0.28910.194uuu3, ~47!

a.1.34710.986uuu3, ~48!

D2.0.10220.168uuu3. ~49!

It should be noted that the range of applicability
asymptotic forms~47!–~49! for 2D antiferromagnets is
rather narrow as in the one-dimensional case.13

On the basis of the low-temperature asymptotic for
presented here, we can conclude that the behavior ofD
Heisenberg systems is basically determined by the type
the lattice on which these systems are considered. F
square lattice atT50, the correlation lengthj→` for both
FM and AFM, and accordingly the long-range order alwa
exists in the system irrespective of the sign ofJ. At the same
time, for a triangular lattice, there is no long-range order
AFM at T50 (j5const) in contrast to the case of FM.

4. HEAT CAPACITY AND SUSCEPTIBILITY OF 2 D MAGNETS

The thermodynamic functions of the system we are
terested in can be expressed in terms ofc̃1 , c̃2 , anda. All
the extensive quantities are given per lattice site. The inte
energyE is the average value of Hamiltonian~1!:

E.2
3

8
Jzc1 , ~50!

and heat capacityC at constant volume is given by

C5
]E

]T
, ~51!

while the magnetic susceptibility of the system is defined

x.
1

T
lim
k→0

^Sk
zS2k

z &5
c1

JD
. ~52!

Before analyzing the results of numerical calculatio
we write the asymptotic expressions for internal energy, h
capacity, and susceptibility of 2D Heisenberg magnets. I
the limit of high temperatures, expressions for these qua
ties are formally the same for FM and AFM on triangul
and square lattices and differ only in the sign ofJ and the
value ofz. Taking into account~22!, we obtain

E.2
3Jz

32u S 11
A

u D , ~53!

C.
3z

32u2 S 112
A

u D , ~54!

x.
1

4T~12z/4u!
. ~55!

Expressions~53!–~55! exactly coincide with the correspond
ing results obtained by direct high-temperature expans
n

s

of
a

s

-

al

s

,
at

ti-

n

~see, for example, Refs. 11 and 15!. Taking into account
expressions~36!–~38!, we obtain for FM with both types of
lattices at low temperatures

E.2
Jz

8 F12
4p2~z13!

9z2 w~1!u2G , ~56!

C.
p2~z13!

9z
w~1!u, ~57!

x.
1

3T
expS z

8uw~1! D . ~58!

It should be noted that expression~57! coincides with the
similar formula in Ref. 5. Thus, the heat capacity of ferr
magnets forT→0 is a linear function of temperature, whic
is in accord with the theory of spin waves.

For AFM on a square lattice forT→0, we have

E.2
3

2
uJuS 12A12

z~3!

p
A1

2uuu3D , ~59!

C.
9

2p
z~3!A1

2u2, ~60!

xuJu.
A1

8 S 11
z~3!

p
A1uuu3D . ~61!

HereA152a1
2/(112a1

2).0.586, anda1 is defined in accor-
dance with~43!.

Finally, taking into account~47!–~49!, we obtain for
AFM on a triangular lattice

E.20.48210.029uuu3, ~62!

C.0.087u2, ~63!

xuJu.0.079420.052uuu3. ~64!

The asymptotic forms given above make it possible
find certain qualitative peculiarities in the temperature d
pendences of thermodynamic parameters of 2D magnets on

FIG. 1. Heat capacities of FM and AFM on a triangular lattice. The dot
curves correspond to relevant high-temperature expansions.
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various lattices. For example, for a triangular lattice, the h
capacity of FM at low as well as high temperatures must
higher than the heat capacity of AFM, while the oppos
relation is observed for a square lattice.

In order to obtain quantitative temperature dependen
of the thermodynamic functionsE, C, andx over the entire
temperature range, we must solve numerically the system
transcendental equations~16!–~18! and determine the quan
tities c̃1 , c̃2 , and a as functions of temperature. Then w

FIG. 2. Magnetic susceptibilities for FM~a! and AFM ~b! on a triangular
lattice. The dotted curves correspond to relevant high-tempera
expansions.11
at
e

es

of

must calculate the internal energy, heat capacity and sus
tibility of the magnet using formulas~50!–~52!.

Figure 1 shows temperature dependences of the hea
pacity for FM and AFM on a triangular lattice. The dotte
curves show the results obtained by high-temperat
expansions.11 It can be seen that the heat capacity of FM
the entire temperature range lies above the heat capaci
AFM. The temperature behavior of magnetic susceptibi
for FM and AFM on a triangular lattice is illustrated in Fig
2 which also shows the corresponding curves obtained on
basis of high-temperature expansion.11

In conclusion, note that the advantage of the used
proach is that it enables us to calculate from a common p
of view the thermodynamics of two-dimensional isotrop
Heisenberg magnets in the entire temperature range. M
over, the results of calculations are in excellent agreem
with the predictions of high-temperature expansions.
should also be noted that Siqueiraet al.7 presented the result
of experimental measurements of heat capacity for3He films
at various coverages corresponding to ferro- and antife
magnetic exchange in the spin subsystem. It was found
the value ofC at the heat capacity peak is twice as high f
FM as for AFM. Figure 1 shows that the proposed theo
leads to the same relation. Thus, we can conclude that
obtained results correctly describe the physical pattern of
phenomena under consideration.
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Deceleration of charged particles in a two-dimensional electron gas with impurity states
of electrons

A. M. Ermolaev and Babak Haghighi
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Differential cross-section of inelastic scattering and loss function of fast charged particles in a two-
dimensional electron gas are calculated at low temperatures, taking into account the
localization of electrons at impurity atoms. The contribution of one-particle and collective
excitations of the electron gas to the scattering cross-section and loss function is considered. One-
particle excitations are manifested in the existence of a threshold of scattering cross-section
and loss function, associated with a transition of localized electrons to the conduction band.
Localization of electrons leads to a decrease in the frequency of two-dimensional plasmons.
Consequently, the plasma loss lines in the energy spectrum of electrons passing through a two-
dimensional electron gas are displaced towards lower frequencies and are broadened.
Numerical estimates are obtained for the inversion layer at the boundary between silicon and
silicon dioxide. © 1999 American Institute of Physics.@S1063-777X~99!01006-3#
y

e
s

th
o

ct

li
ive
ule
e
n
xc
e
,

o
e
f
n
s
T
o
1
ic

sin

The
nal
idth

by
as

a
n–
the
r
that
on-
is

his
nal

r-
pu-
s.
n-
. In
rity
nd
ha-
za-
ses
the

in
of

xci-
and
al
INTRODUCTION

Characteristic losses of energy of fast electrons occup
significant place among the mechanisms of deceleration
charged particles in matter. The method of characteristic
ergy losses is used successfully for studying the propertie
plasma,1 solids,2,3 and quantum liquids.4 This method was
also used to prove the collective nature of narrow lines in
energy spectrum of electrons passing through a thin film
metal or reflected at its surface.4,5 This led to the discovery
of plasma waves in metals whose existence was predi
earlier by Pines and Bohm.3,6

The advantage of the method of characteristic losses
in that it can be used to obtain information about collect
as well as single-particle excitations in conductors. As a r
the loss spectrum of the electron energy contains two lin
viz., a broad line associated with the excitation of electro
hole pairs, and a narrow line connected with plasmon e
tation. The resolution of these lines is hampered by the
citation of surface plasmons,7 transitions between bands2

and other factors responsible for electron deceleration
matter.

In view of the enhanced interest to the physics of tw
dimensional electron systems,8 it seems expedient to use th
characteristic loss method for studying the properties o
two-dimensional electron gas. As in the three-dimensio
case, it is important to distinguish between the plasma los
and the losses associated with one-particle excitations.
theory of plasma losses of particle energy in a tw
dimensional electron gas was developed in Refs. 9 and
The three-dimensional scattering of electrons by the class
two-dimensional electron gas was considered by Fetter9 who
showed that the energy spectrum of electrons pas
4461063-777X/99/25(6)/7/$15.00
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through an electron layer contains a narrow plasma line.
position of this line defines the spectrum of two-dimensio
plasmons in a nondegenerate electron gas, while its w
describes the Landau damping. The theory developed
Fetter9 is used for electrons at the surface of liquid helium,
well as for other classical systems.

Bret and Deutsch10 considered the deceleration of
charged particle moving in an electron layer. The electro
electron interaction in the layer was taken into account in
random phase approximation.3 The results were obtained fo
any degree of degeneracy of electrons. It was mentioned
in contrast to the three-dimensional case, the plasmon c
tribution to the loss function in the two-dimensional case
smaller than the contribution of one-particle excitations. T
is due to the activationless spectrum of two-dimensio
longwave plasmons.

The influence of impurity atoms on deceleration of pa
ticles was not considered in Refs. 9 and 10. However, im
rities do not play a trivial role in two-dimensional system
Impurity atoms not only restrict the mean free path of co
duction electrons, but also change their energy spectrum
the two-dimensional case, even an extremely weak impu
attractive potential can lead to the formation of a bou
state.11 This leads to the emergence of an additional mec
nism of deceleration of particles associated with the ioni
tion of impurity atoms. Moreover, the bound state cau
deformation of the plasmon spectrum, which must affect
characteristic loss spectrum.

In this work, we consider the effect of impurity states
a two-dimensional electron gas on the deceleration
charged particles caused by one-particle and collective e
tations. The general formulas for scattering cross-section
loss function for a charged particle in a two-dimension
© 1999 American Institute of Physics
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electron gas are given in Sec. 1. Section 2 is devoted to
losses of particle energy caused by one-particle excitation
electrons localized at impurities, while characteristic los
are described in Sec. 3. The results of computations are
scribed briefly in Conclusion.

1. SCATTERING CROSS-SECTION AND STOPPING POWER
OF A TWO-DIMENSIONAL ELECTRON GAS

Let us consider a two-dimensional electron gas in
planez50 separating half-spaces with permittivities«1 and
«2 . We assume that a particle of massM and chargeZe
moves in the plane of the electron layer.10 The Hamiltonian
of Coulomb interaction of the particle with the two
dimensional electron gas is defined as1,9

V5Zē2E d2r E d2r 8
N~r !n~r 8!

ur2r 8u
, ~1!

wherer andr 8 are two-dimensional radius-vectors,N(r ) and
n(r ) are density operators of the particle and the elect
gas, and

ē5eS 2

«11«2
D 1/2

.

Going over to Fourier components in Eq.~1!, we obtain

V5Zē2E d2q

2p

n~q!

q
eiqr, ~2!

where n(q) and 2p/q are the Fourier components of th
functionsn(r ) and r 21 respectively. We use the symbolua&
to denote the stationary state of a two-dimensional elec
gas with energyEa , while p ands stand for the momentum
and spin quantum number of the particle incident on
electron gas. The matrix element of the operator~2! between
statesuaps& and ua8p8s8& is defined as

^a8p8s8uVuaps&52pZē2up2p8u21^a8un~p8

2p!ua&ds8s . ~3!

The area occupied by the electron gas and the quantum
stant are assumed to be equal to unity.

The probability of transitionp→p8 in unit time in the
Born approximation inV can be presented in the form3,9

W~q,v!5~2p!3Z2ē4neq
22S~q,v!, ~4!

where q5p2p8 and v5Ep2Ep8 describe the momentum
and energy losses for the incident particle as a result of s
tering,ne is the surface density of electrons,

S~q,v!5
1

ne
(
aa8

wau^a8un~2q!ua&u2d~v2Ea81Ea!

~5!

is the dynamic structural factor for a two-dimensional ele
tron gas,3,4,9 andwa is the Gibbs’ distribution function.

The double differential two-dimensional scatterin
cross-section of particles in the interval of anglesdw with
energy loss in the intervaldv is defined as

d2s

dvdw
5

2pne

p S MZ
ē2

q D 2

S~q,v!, ~6!
he
of
s
e-

e

n

n

e

n-

at-

-

where

q254M H E2
v

2
2@E~E2v!#1/2coswJ , ~7!

E5Ep is the particle energy, andw is the scattering angle
The dynamic structural factor appearing in Eq.~6! is con-
nected with the retarding polarization operatorP through the
relation9,12

S~q,v!52
1

pne
~nv11!Im P~q,v!, ~8!

wherenv5(ebv21)21 is Planck’s distribution function and
b the reciprocal temperature. The probability of transition~4!
is associated with the imaginary part of the polarization o
erator:

W~q,v!58p2Z2ē4q22~nv11!@2Im P~q,v!#. ~9!

In the random phase approximation, the polarization oper
is presented as the sum of ‘‘loop’’ diagrams12 and is equal to

P~q,v!5
P~q,v!

12nqP~q,v!
, ~10!

whereP corresponds to a simple loop in which Green’s ele
tron functions are calculated by taking impurity scatteri
into account, andnq5(2pē2)/q is the Fourier component o
the Coulomb interaction energy for two-dimensional ele
trons. In the linear approximation in concentration of imp
rity atoms,P5P01dP, whereP0 is the polarization opera
tor for the free electron gas, and the contributiondP is due to
the electron localization in the field of impurity atoms.13 The
function P0 was evaluated by Stern14 for a degenerate elec
tron gas and by Platzman and Tzoar15 for a nondegenerate
gas. The same function was calculated by Bret and Deuts10

for any degree of degeneracy of electrons. The contribu
dP is defined as13

dP~q,v!52E d2k

~2p!2 E
2`

1`

d«dr~k1q,«!@ f ~«!

2 f ~«k!#S 1

«2«k1v1 i0
1

1

«2«k2v2 i0D ,

~11!

where«k is the energy of an electron with momentumk, f is
the Fermi distribution function, and

dr~k,«!5un0uni~«2«k!
22d@12n0F~«!# ~12!

describes the contribution of localized electrons to the sp
tral density of Green’s function averaged over the config
ration of impurity atoms. Heren0 is a constant characterizin
the intensity of short-range impurity potential,ni the number
density of impurity atoms, andF(«) the function appearing
in I. M. Lifshitz’ equation for local levels

12n0F~«!50. ~13!

This function is connected with the electron density of sta
g through the Hilbert transformation
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F~«!5
«

2`

1`

d«8
g~«8!

«2«8
.

If the energy spectrum of two-dimensional electro
contains only one local level« l52u« l u, the real and imagi-
nary parts of the polarization operator~11! can be defined as

RedP~q,v!52
mrni

p «
0

`

d«@ f ~« l !2 f ~«!#

3
«2« l1«q

@~«2« l1«q!224««q#3/2~«2« l2v!

1~v→2v!, ~14!

Im dP~q,v!52mrni@ f ~« l !2 f ~« l1v!#u~v

2vg!v1@v1
2 24«q~v1« l #

23/2

2~v→2v!, ~15!

wherem is the electron mass,

r 5UFdF

d« G
«5« l

U21

is the residue of the amplitude of electron scattering by
impurity atom at the pole« l , vg5u« l u is the threshold acti-
vation frequency for a localized electron,v65v6«q , u is
the Heaviside function, and (v→2v) denotes a term which
differs from the preceding term only in the sign of the fr
quency. It can be seen from formulas~14! and ~15! that
«q /u« l u is the parameter determining the role of spatial d
persiondP of the polarization operator. If this parameter
small, we can confine the analysis to the longwave appr
mation. In this case, we obtain from~14! the following ex-
pression for degenerate electrons:

RedP5
mrni

pv2 lnU12S v

«F2« l
D 2U, ~16!

where«F is the Fermi energy for a two-dimensional electr
gas.

The energy lost by a charged particle in unit time
given by1

dE

dt
5E d2p8

~2p!2 vW~q,v!. ~17!

It is associated with the imaginary part of the polarizati
operator through the relation

dE

dt
52Z2ē4E d2p8

v

q2 ~nv11!@2Im P~q,v!#. ~18!

While calculating this quantity, we must take into accou
the contribution~11! due to localization of two-dimensiona
electrons at impurity atoms.

It can be seen from formulas~10! and~18! that the stop-
ping power of a two-dimensional electron gas is due to o
particle as well as collective excitations. The contribution
one-particle excitations determines the peculiarities of
n

-

i-

t

-
f
e

numerator in~10!, while the contribution of collective exci-
tations determines the zeros in the denominator. We s
consider these contributions separately.

2. CONTRIBUTION OF ONE-PARTICLE EXCITATIONS
TO THE STOPPING POWER OF A TWO-DIMENSIONAL
ELECTRON GAS

2.1. Two-dimensional scattering

The Coulomb interaction of two-dimensional electro
can be disregarded while calculating the contribution of o
particle excitations to the energy loss for a test particle.
this case, the transition probability~9! can be presented a
follows in the linear approximation in the concentration
impurity atoms

W5W01dW, ~19!

whereW0 is the probability of transition in a free electro
gas,9 and dW is the contribution of localized electrons.
follows from formulas~9! and ~15! that this contribution is
defined as

dW~q,v!58p2mZ2ē4rniq
22~nv11!$@ f ~« l !2 f ~« l

1v!#u~v2vg!3v1@v1
2 24«q~v

1« l !#
23/22~v→2v!%. ~20!

The first term on the right-hand side of Eq.~20! is associated
with transitions of electrons localized at impurity atoms
the two-dimensional conduction band. Such transitions
accompanied by a decrease in the particle energy. The
ond term describes induced transitions of band electron
the local level. Sincen2v1152nv , this contribution van-
ishes at zero temperature. It follows from formula~20! that
dW as a function of the energy lossv of the particle has a
threshold for the activation energyvg of a localized electron.
As the temperature tends to zero, the difference in Fe
functions in ~20! displaces the threshold to the pointvg

1«F in accordance with Pauli’s exclusion principle. For«q

!vg , we obtain the following expression from~20! for the
probability of transition of delocalized electrons to the co
duction band:

dW~q,v!5
8p2mZ2ē4rni

q2v2 u~v2vg!~nv11!@ f ~« l !

2 f ~« l1v!#. ~21!

In this case, the cross-section of inelastic two-dimensio
scattering of electrons is defined as

d2s

dvdw
5

2m~MZē2!2rni

pq2v2 u~v2vg!~nv11!@ f ~« l !

2 f ~« l1v!#. ~22!

The lossq of the particle momentum appearing in formul
~21! and~22! is connected with the energy lossv through the
relation~7!. If v is fixed, the cross-section~22! as a function
of scattering angle attains its maximum value forw50 and
decreases forw→6p. As the scattering angle varies from
to p, the cross-section~22! decreases by a factor of
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F11~12v/E!1/2

12~12v/E!1/2G2

For w50, the cross-section~22! as a function ofv has a
threshold atv5vg . With increasingv, the cross-section
passes through a peak and then decreases.

If the velocity of the incident particle exceeds the Fer
velocity of electrons, the particle momentum loss is small
this case, we can use the longwave approximation for
polarization operator. Hence formulas~17! and ~21! lead to
the following expression for the particle energy loss in u
time due to ionization of impurity atoms:

d

dt
dE52mZ2ē4rniE d2p8

nv11

vq2 $u~v2vg!@ f ~« l !

2 f ~« l1v!#2~v→2v!%. ~23!

Integration with respect to the scattering anglew can be car-
ried out quite easily:

E
0

2p dw

c2cosw
5

2p sinc

~c221!1/2, ucu.1.

This gives

d

dT
dE52pmZ2ē4rniE

0

E dv

v2 ~nv11!@ f ~« l !2 f ~« l

1v!#12pmZ2ē4rniE
2E

0 dv

v2 nv@ f ~« l !2 f ~« l

1v!#. ~24!

The first term in this formula is associated with transitions
localized electrons to the band, while the second term
connected with transitions of band electrons to the lo
level. At zero temperature, we obtain from~24! the relation

d

dt
dE5

2pmZ2ē4rni

E
u~E2«F2vg!S E

«F1vg
21D .

~25!

The stopping power~25! of a two-dimensional gas has
threshold at the pointE05«F1vg . The value of (d/dt)dE
increases withE and attains saturation forE@E0 . The ratio
of the maximum value of~25! to the stopping power of free
two-dimensional electron gas10 is

A5
mr

p«F

ni

ne
S 11

vg

«F
D 21

.

Using the value

r 5
2pu« l u

m
,

for the residuer calculated for a shallow donor (mun0

u!1),16 we obtain

A52
ni

ne

vg

«F
S 11

vg

«F
D 21

. ~26!
i
n
e

t

f
is
l

2.2. Three-dimensional scattering

The scattering of electrons incident at any angle on
two-dimensional electron gas was considered by Fetter,9 who
showed that for a beam of electrons that has crossed
electron layer, the cross-section of differential scattering i
solid angledO with energy loss in the intervaldv is defined
as

d2s

dvdO
5ne

k8

k
@a~k2k8!2#22S~q,v!, ~27!

wherek and k8 are the electron momenta before and af
scattering,q is the projection of the vectork2k8 on the
plane occupied by the electron gas,v5«k2«k8 , and a
5(2mē2)21 is the effective Bohr radius. The dynamic stru
tural factor appearing in formula~27! is connected with the
imaginary part of the polarization operator of a tw
dimensional electron gas through the relation~8!. Using for-
mula ~15!, we obtain the contribution of the local state of a
electron to the scattering cross-section~27!:

d2s

dvdO
5

mrnik8

pk
@a~k2k8!2#22~nv11!$@ f ~« l !2 f ~« l

1v!#u~v2vg!v1@v1
2 24«q~v1« l !#

23/2

2~v→2v!%. ~28!

As in the case of two-dimensional scattering, this cro
section at finite temperatures has a threshold at the poinv
5vg . At zero temperature, the threshold is located at
point «F1vg .

3. CHARACTERISTIC ELECTRON ENERGY LOSSES
IN A TWO-DIMENSIONAL ELECTRON GAS

The electron energy losses caused by the excitation
plasma waves in a two-dimensional electron gas were ta
into account by the zeros in the denominator of formula~10!.
The positions of the zeros can be determined from the
persion equation for plasmons:

12nqP~q,v!50. ~29!

The solution of this equation has the formv5vq2 igq ,
wherevq is the plasmon spectrum andgq is the damping
decrement. Forgq!vq , the imaginary part of the polariza
tion operator near the root of the dispersion equation~29! has
the form

Im P~q,v!52
p

nq
2 UF ]

]v
ReP~q,v!G

v5vq

U21

@d~v2vq!

1d~v1vq!#. ~30!

Taking into account the finite magnitude ofgq , we can re-
place thed-functions in the above equation by Lorentzia
curves.

Outside the region of collisionless attenuation of plas
waves, the real part of the polarization operator of a deg
erate two-dimensional electron gas in the absence of im
rity atoms is defined as8,14,17
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ReP0~q,v!52
m

p
1

m2

pq2 $@~v1V1!~v2V2!#1/2

2@~v2V1!~v1V2!#1/2%, ~31!

where V65qnF6«q , nF is the Fermi velocity, andv
>V1 . Taking into account Eq.~31!, we can present the
solution of the dispersion equation~29! in the form17

vq5S 2pē2neq

m D 1/2

~11aq!S 11
aq

2 D 21/2

3F11
aq3

2kF
2 S 11

aq

2 D G1/2

, ~32!

where kF is the Fermi momentum. In the longwave lim
aq!1 andq!kF , we obtain from formula~32!

vq5S 2pē2neq

m D 1/2

. ~33!

This expression is a solution of Eq.~29! if we use the long-
wave approximation for the polarization operator:

P0~q,v!5
q2ne

m~v1 in!2 . ~34!

Heren is the frequency of collisions of electrons with imp
rity atoms associated only with potential scattering. T
damping decrement of longwave plasmons in a degene
electron gas is equal to the collision frequencyn.

For q5k2k8, the cross-section of three-dimension
electron scattering by a strongly degenerate two-dimensi
electron gas near the root~33! of the dispersion equation i
given by

d2s

dvdO
5

ne
1/2k8

2p3/2~aq!3/2kq
~nvq

11!
gq

~v2vq!21gq
2 .

~35!

The first term in this equation, which is proportional tonvq
,

describes induced emission of plasmons by electrons, w
the second term describes spontaneous emission.

A consideration of electron localization in the field
impurity atoms changes the plasmon spectrum and the da
ing decrement.13 Taking into account formulas~16! and~34!
in the dispersion equation~29!, we obtain the plasmon spec
trum taking the local level into consideration:

Q5
1

2
x2H 11F12

b

x4 lnU12x2UG1/2J , ~36!

where

Q5q
2pē2ne

m
~«F1vg!22,

x5
v

«F1vg
, b5

8

p

1

a2ne

ni

ne

vg

«F
S 11

vg

«F
D 24

. ~37!

In the absence of electron localization, we obtain from f
mula ~36! the dispersion relation~33!:

Q05x2. ~38!

The dependence~36! is plotted in Fig. 1~curve1! for the
e
te

l
al

ile

p-

-

following values of the parameters of inversion layer at t
boundary between silicon and silicon dioxide8: m510228g,
ne51012cm22, ni /ne51023, vg /«F51, «11«2515.
Curve2 corresponds to the dispersion relation~38! for long-
wave plasmons. It can be seen from Fig. 1 that electron
calization leads to a decrease in the frequency of longw
plasmons. Such a decrease for low electron densities
observed experimentally18 and attributed to the drag of th
effective mass of the conduction electrons in~33!. It can be
seen from formula~36! that the decrease in the plasmon fr
quency may also be due to a decrease in the threshold
quencyv85vg1«F in samples with a low electron density
If v8 decreases, the separation between dispersion curv1
and2 in Fig. 1 increases in conformity with the experiment
observations.18

If we take into account the finite width of the local lev
n0 , the logarithmic singularity in Eq.~36! is blurred. At the
point v8, the argument of the logarithm is found to be equ
to

2
v0

v8
@11~n0/2v8!2#1/2.

For n0 /vg50.1 and the above values the parameters,
obtain n0 /v850.05, Q851.003 being the value of the di
mensionless plasmon wavenumber~37! at the pointv8. In
this case,q852.053106 cm21 andv856.2831013s21.

The damping decrement of plasmons with spectrum~36!
is equal to

g5n1dj, ~39!

where

FIG. 1. Plasmon dispersion relation~36! taking local level into consider-
ation ~curve1! and disregarding localization~curve2!.
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dg

n
5

p3/2

~aqm!1/2

ni

ne

vg

n

ne
1/2

qm
y23/2u~y21!

3H 1

11exp@2b«F~11vg /«F!#

2
1

11exp@2b«F~11vg«F~12y1/2!!#J . ~40!

Here

y5
q

qm
, aqm5

1

2 S akF

vg

«F
D 2

50.08.

The dependence of the decrement~40! on y is plotted in Fig.
2, where we have used the above values of the param
and assumed thatvg /n510. Curve1 is obtained forb«F

5100 and curve2 for b«F510.
The cross section of electron scattering by plasm

with spectrum~36! coincides with formula~35! in which vq

is the spectrum~36! andgq is the damping decrement~39!.
Taking the local level into account, the maximum value
the cross-section~35! at the pointq8 can be presented in th
form

S d2s

dvdOD
m

5
1

2p3

k8

k

~mv8!3

neq84gq8
. ~41!

Substituting into this equation the above values of the par
eters andv8/«50.1, the ratio of the maximum values of th
cross-sections at the pointq8 taking local level into consid-
eration and disregarding it can be presented in the follow
form:

1

Q84 S 11
dgq8

n D 21

54.5831022.

In this case,gq853.2931012s21. The decrease in the cros
section due to the electron localization effect is caused b
sharp increase in momentum transfer at the threshold
quency.

FIG. 2. Contribution~40! of local electron states to the damping decrem
of plasmons. Curve1 corresponds tob«F5100, and curve2 to b«F510.
ers

s

f

-

g

a
e-

The energy loss for a charged particle as a result
spontaneous and induced emission of two-dimensional p
mons can be obtained from formulas~18! and ~30!:

dE

dt
5

Z2

2p E d2p8v~nv11!

3UF ]

]v
ReP~q,v!G

v5vq

U21

d~v2vq!. ~42!

Going over to integration with respect tov andw, we obtain

dE

dt
5

MZ2

2p E
0

2p

dwvq~nvq
11!U ]

]vq
ReP~q,vq!U21

,

~43!

whereq is equal to the value given by~7! in which we must
put v5vq . In the absence of electron localization and for
incident particle velocity exceeding the Fermi velocity, w
can use the longwave approximation~34! for the polarization
operator. In this case, formula~43! leads to the following
expression for the degenerate electrons:

dE

dt
5

2p2MZ2ē4ne

m
, ~44!

This expression was derived by Bret and Deutsch.10 In view
of the electron localization, we must take~16! and ~36! into
account in formula~43!. The resulting integral~43! can be
evaluated only numerically.

CONCLUSION

We have studied the effect of local states of electrons
the field of isolated impurity atoms on the stopping power
a degenerate two-dimensional electron gas. The importa
of this problem stems from the fact that impurity atom
cause a significant alteration of the energy spectrum of t
dimensional systems. Even an insignificant attractive im
rity detaches from the lower edge of the conduction ba
local levels which must be taken into account while calc
lating the energy loss for charged particles in tw
dimensional conductors. Localization of electrons is ma
fested in the spectrum of energy losses in charged parti
caused by one-particle as well as collective excitations. F
low concentration of impurity atoms, the loss function co
tains a term associated with the transitions of electrons lo
ized at impurities to the conduction band. The stopp
power of a system as a loss function of the particle ene
has a threshold at the activation energy of the localized e
tron. By observing this singularity, we obtain the bindin
energy of impurity electrons in the two-dimensional case

Electron localization lowers the frequency of two
dimensional plasmons, as was actually observed in exp
ments. This effect is manifested in the displacement of
characteristic electron energy loss line to the low-freque
region and to its additional broadening. Measurement of
position and width of this line enables us to obtain the sp
trum and damping decrement of plasmons in imperfect tw
dimensional conductors.

t
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Dynamics of formation of soliton conductivity in a 2 D-array of linear chains containing
commensurate charge density waves near the contact with a normal metal

Yurij V. Pershin and Alexander S. Rozhavsky

B. Verkin Institute for Low Temperature Physics and Engineering, 47 Lenin Avenue, 310164, Kharkov,
Ukraine*
~Submitted January 18, 1999; revised February 4, 1999!
Fiz. Nizk. Temp.25, 609–615~June 1999!

We make a numerical study of the conversion of conduction electrons into charge density wave
~CDW! topological solitons at the interface between a normal metal and a 2D-array of the
CDW-carrying linear chains. The interplay of commensurability potential, interchain interaction,
and electric field on the dynamics of soliton formation is studied. When the interchain
interaction exceeds the commensurability energy, the dynamic mechanism of creation of
fractionally charged solitons near the contact is suppressed and specific contact nonlinearity in
transport current is not observed. ©1999 American Institute of Physics.
@S1063-777X~99!01106-8#
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INTRODUCTION

Some quasi-one-dimensional metallic alloys unde
phase transition to the Peierls dielectric~PD! state at low
temperatures~see, e.g.,1–3!. PD is characterized by a com
plex order parameterD exp(iw), where D is the gap in a
single-electron spectrum and phase gradients define the
lective charge transfer: CDW conductivity. Topological
stable nonlinear phase excitations, in particular, solitons
antisolitons, serve as the elementary CDW charge carr
The soliton description is more or less successful in exp
nation of the nonlinear bulk transport~see, e.g., the Review
1 and 2!. However, one principal aspect of CDW-physic
viz, the problem of interaction of the current-carrying CDW
phase deformations with conduction electrons, in particu
the nature of CDW/metal electrode interface phenomena
not yet entirely understood and controversial explanati
still arises.

To describe the process of charge transformation at
CDW/normal metal interface, the ideology of phase slip c
ters ~PCS! which exploits the analogy between the PSC a
dislocations had been put forward~see, e.g., Refs. 4–7!. The
physics behind the PSC is the strongly pronounced pola
effect:3 i.e., conduction electrons imbedded in the conduct
band of a quasi-one-dimensional semi-conductor are
stable against self-trapping and subsequent absorption b
valence band where they are finally converted into CD
phase solitons.9 Interchain interaction provides aggregatio
of solitons into dislocation-like loops: PSCs. Charge tra
formation takes place near the contact with a normal me
In the cited publications4–7 ~see also references therein!, the
PSCs were treated as the static objects.

Dynamics of conversion was studied in a series of p
neer papers.8–10 It was shown that prior to formation of PS
conduction solitons manifest highly nontrivial individual b
havior, and the proper hierarchy of time scales which g
erns the charge transformation was established. Self-trap
is connected with local gap deformations in conduct
4531063-777X/99/25(6)/6/$15.00
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chains. The potential barrier for the self-trapping is;D, and
during the time;\/D the quasiparticles spectrum is match
to a local valueD(r ,t); the time of the gap deformation is o
order of v̄21 ~v̄ is the frequency of the Peierls phonon
which is of the order of the Debye frequency2,3!, the inter-
chain interaction being of orderTc ~Tc is the temperature o
the Peierls transition!, it defines the time\/Tc of the inter-
chain phase coherence onset. In a weakly coupled arra
highly conducting chains, whenTc!\v̄!D, the self-
trapping of electrons occurs in individual chain
independently3,4 and the charge transformations proceeds
two steps, each characterized by its own time: transfer
conduction electrons into the valence band in a single ch
at tD;v̄21, and formation of a collective charge carrier
this chain attw@tD . The timetw is the intrinsic scale of the
CDW-phase Hamiltonian,2–4 at t,tw individual charge car-
riers obey the Lagrange equations supplemented by
boundary conditions. The latters are formed during the ti
t,tD ;7 the initial phase perturbation is localized near t
interface over the distance of the order ofVFtD;j0

5\VF /D; where j0 is the amplitude coherence length
PD. The jumpdw of the initial phase profilew(t50) is de-
fined by the charge conservation law in the process of s
trapping. Indeed, the collective CDW charge densityr in a
single chain is related to phase gradient via the Fro¨hlich re-
lation:

r5
e

p

]w

]x
. ~1!

When q electrons are converted into the CDW
condensate, the phase acquires a local deformation with
net phase shift:

dw5w~x5`!2w~x52`!5qp. ~2!

It was shown in9 that during the elementary act of sel
trapping at the metal/PD interface the charge 2e is trans-
formed into a CDW in a single chain, i.e. two electrons w
© 1999 American Institute of Physics
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opposite spins are self localized during the timev̄21. This
process resembles the Andreev reflection in superconduc
Thus, the initial condition to the phase equations of mot
leads toq522 in Eq.~2!. As the scalej0 is much less than
any intrinsic length in the phase Hamiltonian,2–4 we can for-
mulate the initial condition as a point-like step function wi
the height equal to22p.7

In our previous publications8,10 we have studied the evo
lution of the initial CDW profile both analytically and nu
merically in two models, when self-trapping occurs:

1! in a central chain which belongs to a cluster of near
chains containing an incommensurate CDW. The elec
field was not taken into account;8

2! in an isolated chain containing commensurate CD
in the presence of a dc-electric field.10

It was shown that the initial condition always transform
into stable topological Sine-Gordon~SG! solitons. In the
model of nearest chains cluster each soliton has chargee,
and the role of the bulk term in the SG equation plays
role of interaction between chains of the type sin(w02w1),
wherew0 and w1 are the phases in the central and near
chains. In a commensurate CDW we have observed the
fect of a charge fractionalization~see, e.g., Refs. 1 and 2!
when the initial profile decays intoM fractionally charged
solitons~an integerM.2 is an index of commensurability!
each carrying charge:

qs52e/M . ~3!

It was shown in Ref. 10 that soliton-antisoliton pairs wi
charges6qs ~3! are created in a dc-electric field from a
initial CDW profile, thus giving rise to an additional conta
non-linearity in the CDW-conductivity.

It is certainly interesting to study the evolution of initia
CDW profile and interaction of phases in different chains
a more general 2D model, which takes into account the e
fects of commensurability, inter-chain interaction and el
tric field. This problem is not integrable; it is solved nume
cally in this paper.

MODEL

Consider the 2D-array of the CDW-containing chain
which occupy the semi-axisx>0. The Lagrangian of the
system is~see, e.g., Ref. 2!:

L5
1

p\VF
(

i
FD2

v̄2 S ]w i

]t D 2

2
\2VF

2

4 S ]w i

]x D 2

1
D2

v̄2

2

M2 v0
2 cosMw i12Tc

2 cos~w i2w i 21!

1
e

p
\VFE~w i2w̃ !G , ~4!

wherew i denotes the phase in thei -th chain,v0 is the com-
mensurability frequency, andw̃ is the phase atx→1`.
Such form of the last term in Eq.~4! takes into account the
renormalization of the phase in each chain in the presenc
an electric field.
rs.
n

t
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e
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f-

-

of

The equation of motion for the Lagrangian~4! has the
form:

]2x i

]t2 2
]2x i

]y2 1A sinM ~x i1w̃ !1B sin~x i2x i 21!

1B sin~x i2x i 11!5«, ~5!

where

y5
2D

\VFv̄
x, «5

e

2p
\VF

v̄2

D2 E,

A5
v0

2

M
, B5

v̄2

D2 Tc
2, and x i5w i2w̃. ~6!

In a nonzero fieldE the ground state is:

w̃5arcsin~«!. ~7!

Equation ~7! implies the restriction on the electric fiel
whereby the stable phase configuration exists:

U«AU,1. ~8!

Only the fields that obey the condition~8! are considered
further.

Equation~5! is supplemented by the initial and bounda
conditions which describe conversion of the pair of electro
into a CDW-profile in a central chain (i 50) ~see the above
discussion of the hierarchy of times in this problem!:

]x i

]t U
t50

50, ~9a!

x i~ t50!522pu~j̄02y!d i0 , ~9b!

x i~y50!522pd i0 , ~9c!

where d i j 51, i 5 j and d i j 50, iÞ j ; j̄0 is the coherence
length j05\VF /D in units ~6!, j̄0!1; and u(y) is the
Heavyside step function.

In what follows, we solve Eq.~5! with the conditions~9!
numerically by means of the method of finite difference
The difference equation corresponding to Eq.~5! has the
form

x i ,k11,l1x i ,k21,l22x i ,k,l

~Dt !2 2
x i ,k,l 111x i ,k,l 2122x i ,k,l

~Dy!2

1A sinM ~x i ,k,l1w0!1B sin~x i ,k,l2x i 11,k,l !

1B sin~x i ,k,l2x i 21,k,l !5«, ~10!

whereDt is the time step,Dy is coordinate step, andx i ,k,l

5x i(Dtk,Dyl). Equation~10! is solved for different values
of parameters and at different envelope functions in~9b!.
The results presented are obtained for max(k)51000~max(k)
is the number of sites!. It is found in particular that neithe
changing the shape of the initial perturbation~9b! ~rectangu-
lar or triangular step! nor increasing the number of sites pr
vides any significant effect on the solution of Eq.~10!.
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FIG. 1. Dynamics of conversion of the electrons to the commensurate one-dimensional CDW.A51: a—accelerating field:«50.05; b—decelerating field:
«520.05; c—accelerating field:«50.2. The mechanism of the pair creation is observed: d—decelerating field:«520.2. The mechanism of the pair creatio
is observed.
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CONVERSION IN A SINGLE CHAIN

Dynamics of conversion of conduction electrons into
one-dimensional CDW was studied in.10 The system is de-
scribed by the reduced equation~5!:

]2x

]t2 2
]2x

]y2 1A sinM ~x1w̃ !5«. ~11!

In weak decelerating and accelerating fields (u«/Au
,0.1) the dynamics of phase develops along conventio
lines. In an accelerating field the initial profile propaga
along the chain keeping safe its ‘‘«step-like»’’ form~9b!
~Fig. 1a!. In a weakly decelerating field~Fig. 1b!, the initial
profile loses its stability after some time and splits into co
mensurability solitons~3!, which reverse their direction o
motion, and eventually collect nearx50. The radiation
propagating with the maximum velocity is clearly observe

The picture changes drastically whenu«/Au exceeds a
threshold field«T . In this case the charge creation during t
evolution of the initial profile is observed both in acceler
ing ~Fig. 1c! and decelerating fields~Fig. 1d!. The reversal of
the sign of created charges with the change of the fi
al
s

-

.

-

ld

direction unambiguously indicates that the mechanism of
charge formation is the polarization of a CDW vacuum:
«.0, the soliton~s! and antisoliton (s̄) move pro- and contra
the electric field correspondingly; at«,0 soliton and anti-
soliton change their positions. Such a mechanism of
charge creation is responsible for the specific nonlinearity
the contact conductivity:10

j ;
EAE2ET

B1AE2ET

. ~12!

Note that the threshold fieldET , which defines the onset o
the nonlinear contact conductivity~12!, is different from the
one normally observed in bulk transport.1,2 The latter is of
electrostatic origin and of course cannot appear in numer
simulation of Eq.~11!. The microscopic origin of the thresh
old ~11! is the concurrence between the energy of solito
antisoliton confinement in a moving phase profile and
electric field, which tends to dissolve thess̄-bound state.10
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FIG. 2. Dynamics of conversion of the electrons to the cluster of the nearest chains.N52, B51: a—incommensurate chains:«50, A50. The initial
condition transforms to a 2p-kink surrounded by dipoles; b—commensurate chains, accelerating field:«50.4, A51. The mechanism of the pair creation
observed; c—commensurate chains, decelerating field:«520.2, A51. The mechanism of the pair creation is observed; d—commensurate chains, de
ating field:«520.3, A51. The mechanism of the pair creation is observed.
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CONVERSION IN A 2D-CLUSTER OF NEAREST CHAINS

In this model we consider the conversion in a cent
chain which is surrounded byN symmetrically arranged
nearest chains. The symmetry of the problem allows us
describe the dynamics of conversion by the following tw
equations:

]2x0

]t2 2
]2x0

]y2 1A sinM ~x01w̃ !1NB sin~x02x1!5«,

~13a!

]2x1

]t2 2
]2x1

]y2 1A sinM ~x11w̃ !1B sin~x12x0!5«,

~13b!

wherex0 is the phase in the central chain andx1 in neigh-
boring ones. Equations~13! are supplemented by the cond
tions ~9!. Equations~13! differ from Eq. ~11! by the inter-
chain interaction termB sin(x02x1).

The oversimplified problem~without the electric field
and commensurability potential! was solved analytically in
Ref. 8. It was shown in Ref. 8 that pair of self-trapped co
duction electrons transforms into a charged 2p-kink local-
ized in a central chain and surrounded by dipoles in nei
boring chains. The result of a numerical study of sa
problem is plotted in Fig. 2a. There are two distinctions b
tween the results obtained analytically and numerically. F
l

to

-

-
e
-
t

is the existence of the radiation~Fig. 2a! which has been
dropped in.8 Second, decrease of the velocity of the 2p-kink
~Fig. 2a!, which is the typical feature of the soliton-type s
lutions in the discrete Sine-Gordon equation.11,12 The inclu-
sion of the commensurability@AÞ0 in Eq. ~13!# results in
suppression of the charged dipoles.

Taking into account the electric field in the r.h.s. of Eq
~13! leads to various pictures, which depend on the equa
parameters. As in the model of a single chain, the thresh
field is observed, which is higher that in the one-dimensio
model and which depends on the number of neighbor
chains N, the parametersA and B, and sign of the field.
Increasing the number of chains leads to increasing
threshold field. In weak accelerating fields («/A,0.3)
charged 2p-kink moves in the central chain and only th
radiation is observed in the neighboring chains. In high
accelerating fields («/A.0.3) fractional charge creation i
observed~Fig. 2b!; it occurs in the central and in neighborin
chains simultaneously, which explains the enhancemen
the threshold field.

Figures 2c and 2d show the solutions of Eqs.~13! in
decelerating fields. The dynamics in weak decelerating fie
(u«/Au,0.15) is analogous to the corresponding result fo
single chain. The initial profile, which moves opposite t
field, loses its velocity after some time and localizes n
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FIG. 3. Dynamics of conversion of the electrons to the 2D-array of chains.B51: a—incommensurate chains:«50, A50. The initial condition transforms
to a 2p-kink surrounded by dipoles; b—commensurate chains:«50, A51. Commensurability leads to the suppression of the dipoles; c—commens
chains, decelerating field:«520.5,A51. The initial condition transforms to a 2p-kink decelerating by the field; d—commensurate chains, accelerating fi
«50.5, A51. The initial condition transforms to a 2p-kink accelerating by the field.
s
e

n
.
d
i

s

tr
e

ig
is
in

ad

2

nal
ld
r

s
is

g-
2
ed
x50. In higher fields (u«/Au.0.15) the charge creation i
observed~Figs. 2c and 2d!. The charge creation occurs in th
neighboring chains only~Fig. 2c! or in the central and in the
neighboring chains simultaneously~Fig. 2d!, but always soli-
tons and antisolitons in the neighboring chains form bou
states with solitons and antisolitons in the central chain
must be emphasized that the value of the threshold field
pends on the sign of the applied field. In our opinion, this
artifact of the model; actually, in real experiment one ha
symmetric system with two metal/CDW interfaces, andET is
independent on the sign of«.

BEYOND THE CLUSTER APPROXIMATION

Consider the finite number of chains arranged symme
cally relative to the central chain. We start from the mod
without electric field and commensurability term~Fig. 3a!.
The picture obtained is in its common features similar to F
2a. The charged 2p-kink moves in the central chain and
surrounded by dipoles and radiation in the array of cha
d
It
e-
s
a

i-
l

.

s.

With increase in the size of array, the dipoles will be spre
in the direction perpendicular tox. The amplitude of radia-
tion is approximately the same in all the chains.

Figure 3b shows the solutions of Eq.~5! at «50. The
commensurability suppresses the charged dipoles. Thep-
kink moves in the central chain, losing its velocity.

In the presence of an electric field~Figs. 3c and 3d!,
effects of the soliton-antisoliton pairs creation and fractio
charge solitons~3! are not observed. In the decelerating fie
~Fig. 3c! the 2p-kink looses velocity and localizes nea
x50. In the accelerating field~Fig. 3d!, the 2p-kink accom-
panied by radiation moves into the bulk.

In Fig. 4 the soliton-soliton interaction for the soliton
located in the neighboring chains is studied. This problem
interesting in the context of the problem of the solitons a
gregation into the macroscopic phase-slip centers. Thep-
kink localized in the center of the first chain is prepar
in the following way: the initial condition for this chain is
chosen in the form:
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w1~ t50!522puS l

2
2yD , ~14!

wherel is the length of the chain. Then, after some time,
condition ~14! decays into the stable 2p-kink accompanied
by the radiation, which spreads in both directions in all t
chains. The velocity of this kink is zero due to the symme
cal initial condition~14! contrary to the initial condition~9b!
which produces the kink with a nonzero velocity. Before t
collision we put the radiation equal to zero. Hence, we h
the static 2p-kink in the first chain and the moving 2p-kink
in the zero chain. From Fig. 1b we see that the velocity of
kinks does not change after collision. The collision resu
only in the small space shift of the kinks, which means t
the aggregation of such solitons into macroscopic phase
centers does not occur in this model.

CONCLUSIONS

In this paper we have studied several models describ
the dynamics of conversion of conduction electrons into
pological solitons of the commensurate charge density wa

FIG. 4. Interaction between the solitons in the neighboring chains.«50,
A5B51. The soliton-soliton interaction leads only to small phase shift
the solitons.
e
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In an incommensurate CDW, in the absence of elec
field, the initial condition transforms into the 2p-kink local-
ized in the central chain and surrounded by charged dip
in the other chains. The commensurability leads to supp
sion of such dipoles. In the presence of electric field wh
B/A!1 and the field being sufficiently large, the mechanis
of topological charge creation is observed. IfB/A,1 ~which
is more realistic! the fractional charge conductivity and cre
ation of the soliton-antisoliton pairs are suppressed. Thep-
kink is localized in the central chain and is surrounded by
radiation in the other chains. The soliton velocity depends
the field.

In the framework of this model the soliton-soliton inte
action does not lead to the aggregation of the solitons
macroscopic phase-slip centers.

*E-mail: pershin@hotmail.com
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Immiscibility of crystal systems with Jahn–Teller~JT! ions is studied at low temperatures. Phase
transformations under which concentrated JT systems are separated into phases with a high
and low concentration of JT ions with structural JT transformations are analyzed. A dependence
of the phase diagram topology on the ratio between the cooperative interaction energy in
the JT subsystem and the intensity of random crystal fields acting on the JT ions is established.
The possibility of low-temperature three-phase equilibrium of two cubic and a tetragonal
phase with different concentrations of JT centers is demonstrated for a high degree of
substitutional-type disorder. ©1999 American Institute of Physics.@S1063-777X~99!01206-2#
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INTRODUCTION

In the present communication, we analyze the origin
immiscibility ~or rather weak miscibility! of different com-
ponents in crystals with the cooperative Jahn–Teller~JT!
effect. The substitution of orbitally nondegenerate ions
JT ions in such systems can lead to a separation into ph
with a higher and lower concentrations of JT ions at lo
temperatures similar to that in some doped magnetic ma
als ~see, for example, Ref. 1!. Structural phase transforma
tions of the displacement type are related to a certain ex
to phase transitions of separation type due to the fact tha
both cases the system has a tendency to lower its free en
as a result of maximum possible splitting of degener
states. This also applies to JT crystals with cooperative st
tural phase transition of the first and second order. Pecul
ties of the phenomena under consideration is associated
considerable extent with random crystal fields which are
ways present in disordered systems. Like cooperative in
actions between JT ions, such random fields can serve a
main mechanism of splitting of degenerate states, and he
can considerably affect the phase equilibrium in binary m
tures under investigation.

Structural phase transformations~PT! and other proper-
ties of JT systems in random crystal fields were investiga
by many authors~see, for example, Refs. 2 and 3!. It was
proved that such fields reduce the transition temperature
the order parameter and can suppress the PT complete
the case of quite high intensities. Obviously, random cry
fields must also affect the position of the boundaries of
miscibility regions in systems with structural PT. Beside
such fields themselves can lead to thermodynamic instab
of some phase states. The interest to the influence of ran
4591063-777X/99/25(6)/7/$15.00
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crystal fields on the thermodynamic properties and ph
transformations in JT systems is considerably stimulated
the advances in experimental investigations of crystals w
anomalous magnetoresistance, doped fullerites, HTSC
ides, etc., i.e., the materials in which centers with a deg
erate or pseudo-degenerate ground state strongly affect
properties.

We shall analyze phase diagrams of quasi-binary s
tems with the substitution of an ion with a nondegener
ground state for a JT ion. For the sake of definiteness,
consider crystals in which JT structural transformations
the ‘‘ferro’’-type occur ~main attention will be paid to sys
tems with second-order structural PT!. It will be proved that
the form of a phase diagram is determined to a consider
extent by the scale of variation of dispersion of random cr
tal fields upon the replacement of JT ions.

1. MODEL OF STRUCTURAL PT ASSOCIATED
WITH THE COOPERATIVE JT EFFECT

Let us consider for simplicity structural transformatio
of the ‘‘ferro’’-type in cubic crystals with doubly degenera
JT ions. The Hamiltonian of the JT subsystem in t
molecular-field approximation can be written in the form

H5(
s

@~ls1hsz!ssz1hsxssx#,

ssz5S 21 0

0 1D , ssx5S 0 1

1 0D , ~1!

wherel is the parameter of the cooperative interaction b
tween JT ions,hsz andhsx are the components of 2D random
crystal field at thesth JT ion,ssz andssx the orbital opera-
© 1999 American Institute of Physics
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tors defined in the space of wave functions of an orb
doublet, and s denotes the quantum-statistical avera
(^ . . . &T) and the average over the configuration of rand
fields (̂ . . . &c) of the operatorsz(s[^^sz&T&c). In Hamil-
tonian~1!, we have omitted the terms describing unharmo
interactions at a JT ion.4 We assume that these terms a
much smaller than the energyl of cooperative interaction
As a result, the structural phase transformations are sec
order PT.5 A nonzero order parameters in the model under
investigation corresponds to the emergence of tetragona
formation of the latticeezz2(exx1eyy)/2.

The order parameters is defined by the following equa
tion:

s5 K $~ls1hz!/E~s,h!%tanh
E~s,h!

T L
c

,

E~s,h!5A~ls1hz!
21hx

2. ~2!

Here and below, we use for configuration averaging
random-field distribution functionf (h)[ f (hz ,hx) of the
Gaussian type3:

f ~h!5
1

pD2 expH 2
hz

21hx
2

D2 J , ~3!

whereD is the dispersion of random crystal fields.
An analysis of the dependences of the order paramets

and the temperatureTD of the structural phase transform
tion from the ‘‘para’’- to the ‘‘ferro’’-phase on the dispersio
D can be carried out using the expressions6

s52 expF2S ls

D D 2G E
0

`

y

3exp~2y2!I 1S 2yls

D D tanhS yD

T Ddy, ~4!

2
l

D E
0

`

y2 exp~2y2!tanhS yD

TD
Ddy51, ~5!

whereI 1(x) is a Bessel function of the imaginary argume
In the absence of random fields, whenD→0, the struc-

tural phase transformation temperatureTD is equal tol. In
the region of critical values ofD for which the PT disappear
in the system (TD(D)→0), the solutions of Eqs.~4! and~5!
can be written in the form

S TD

D D 3

5
2Ap

3z~3! S 12
D

D0
D , D05

Ap

2
l, ~6!

s25S D

l D 3F S 2l

D D J1S T

D D21GF2J1S T

D D2J2S T

D D G21

5S 2D

l D 2S 12
D

D0
D F12S T

TD
D 3G , ~7!

J1S T

D D5E
0

`

y2 exp~2y2!tanhS yD

T Ddy,

J2S T

D D5E
0

`

y4 exp~2y2!tanhS yD

T Ddy, ~8!
l
e

c

d-

e-

e

.

where z(y) is the Riemann zeta-function, and expressio
for J1(T/D) and J2(T/D) in the asymptotic limitT/D!1
have the form

J1S T

D D5
Ap

4
2

3

8
z~3!S T

D D 3

,

J2S T

D D5
3Ap

8
2

45

32
z~5!S T

D D 5

. ~9!

Phase transformation in the JT system is completely s
pressed by random crystal fields whenD.D05(Ap/2)l,
i.e., when their dispersion becomes larger than the energ
the cooperative interaction between degenerate centers.

Typical temperature dependences of the order param
s for various values of dispersionD are presented in Fig. 1
It can be seen that an increase in dispersion of random fi
reduces the order parameters ~Fig. 1a! as well as the phase
transformation temperatureTD ~Fig. 1b!.

The above expressions allow us to analyze the ph
states of systems with JT ions for various types of subst
tions in the crystal lattice, including the substitution of orb
ally nondegenerate ions for JT centers. We must only spe
the dependences of the molecular field parameters
random-field dispersion on the concentration of the repla
centers.

2. MODEL OF THE MIXTURE

Let us consider the model of a mixture in which the fr
energy is determined by the splitting of degenerate cent
and the configuration entropy corresponds to a random
tribution of JT ions in the mixture. In this case, the fre
energy of a quasi-binary system in the mean-field appro
mation per structural unit can be written in the form

F5cJTFJT1Fid ,

FJT5
ls2

2
2TK lnH 2 coshS E~s,h!

T D J L
c

5
ls2

2
22T expH 2S ls

D D 2J E
0

`

y

3exp~2y2!I 0S 2yls

D D lnH 2 coshS yD

T D J dy,

Fid5T@cJT ln cJT1~12cJT!ln~12cJT!#, ~10!

where the parametersl, D, ands depend on the concentra
tion cJT of the JT centers.

Expressions~10! allow us to calculate the chemical po
tentialsma ~of components with JT ions!, mb ~of component
with orbitally nondegenerate ions!, and the exchange chem
cal potential m of the quasi-binary system unde
investigation7–9:

m5
]F

]cJT
[ma2mb5FJT1cJT

]FJT

]cJT
1T lnS cJT

12cJT
D ,

~11!
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FIG. 1. Effect of random fields on temperature dependence of the order parameters ~a! and the structural transition temperatureTD ~b!. Curves1, 2 and3
correspond to the values 0, 0.5, and 0.75 respectively of the parameterD/l.
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ma5F1~12cJT!m5FJT1cJT~12cJT!
]FJT

]cJT

1T ln cJT . ~12!

We disregard the effects associated with a change in
volume as a result of doping.

Expressions~11! and ~12! make it possible to calculat
binodals, i.e., temperature dependences of concentratio
components in two equilibrium phases~with the same values
of m andma!.

The boundaries of the region of absolute instability
the solution to phase separation are determined by
condition10

]2F

]cJT
2 5

]m

]cJT
50. ~13!

In the case of phase separation, Eq.~13! defines the spin-
odal curveTs(cJT). The peak of this dependence is attain
at the critical pointTcrit , i.e., at coinciding peaks of the spin
odal and binodal~phase-separationdomes!.7

Let us first consider the phase states of the system in
absence of random fields. In this case, the expressions~11!
and ~12! for chemical potentials and~13! for the concentra-
tion dependence of spinodal can be transformed to

m5
s2

2 Fl2cJT

]l

]cJT
G2T lnH 2 coshS ls

T D J
1T lnS cJT

12cJT
D , ~14!

ma5
s2

2 Fl2cJT~12cJT!
]l

]cJT
G2T lnH 2 coshS ls

T D J
1T ln cJT , ~15!
e

of

f
e

he

Ts~cJT!5cJT~12cJT!H s2S ]l

]cJT
1

1

2
cJT

]2l

]cJT
2 D

1cJTS ]l

]cJT
D 2 12s2

Ts~cJT!2l~12s2!J . ~16!

If we assume that

l5l0cJT , ~17!

the equation for the spinodal curve~16! can be simplified
considerably:

Ts~cJT!5l0cJT~12cJTs2!, ~18!

and the temperature of the structural PT is found to beTD

5l0cJT . In this case, the peak of the phase-separation do
Tcrit is at the point of intersection of the spinodal with th
straight lineT(cJT)50.5l0(12cJT). It can also be easily
verified that the critical point of mixing in this case isTcrit

'0.322l0 , while the critical concentrationccrit.0.355, i.e.,
TD(ccrit.Tcrit . The corresponding equilibrium phase di
gram~binodal! and the spinodal curve are shown in Fig. 2.
should be noted that the spinodal curve is always within
region of existence of the ‘‘ferro’’-phase. As a result, the li
of structural transformationsTD(cJT) intersects the binoda
at a point lying on the left ofccrit and belowTcrit . Conse-
quently, ordered JT ‘‘ferro’’-phases with different order p
rameters practically coexist near the top of the pha
separation dome. In other words, different values of unifo
JT deformations are observed in these phases at a given
perature. In the entire remaining temperature range~below
the point of intersection of theTD(cJT) curve with the bin-
odal!, phase separation into the ‘‘para’’-phase deplete in
ions and a more concentrated ‘‘ferro’’-phase takes place
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3. PHASE-SEPARATION OF JT SYSTEM IN RANDOM
CRYSTAL FIELDS

In order to analyze the influence of random fields on
in crystals with JT ions, we must specify explicitly the co
centration dependence of dispersion of these fields.
choose for this quantity the following approximation leadi

FIG. 2. Phase diagram of solid solution in the absence of random fields.
outer curve corresponds to binodal and the inner curve to the absolut
stability boundary~spinodal!. The straight line (TD) shows the boundary of
the low-symmetry phase for a random distribution of the components t
mixed.
e

to known concentration dependences in asymptotic limits
low concentrations of the sources of random field~cJT!1 or
(12cJT)!1!:

D~cJT!5d@cJT~12cJT!#1/2. ~19!

The origin and the value of parameterd are associated eithe
with the difference in the sizes of the substituting ion and
ion being replaced, or with the difference in their charges3

It can be seen from formulas~6! and~16! that the struc-
tural phase transformation in a system with a random dis
bution of JT ions for the given concentration dependence
dispersion occurs only for concentrationscJT.c0 , where
c05@11pl0

2/(4d2)#21. Consequently, the boundaries
the region of absolute instability of the mixture consider
above ~the region of spinodal phase separation in t
‘‘ferro’’-phase! must also be displaced towards higher valu
of cJT . The corresponding concentration dependences of
structural phase transition temperature are shown by do
curves in Fig. 3a.

It is significant that a mixture with a random distributio
of the two types of ions in the concentration rangecJT

,c0 , i.e., in the ‘‘para’’-phase also, is unstable to spinod
phase separation of a different type~additional segment with
]m/]cJT<0!. This segment of the spinodal is approximate
described by the equation

Ts
~1!5

3Ap

8
d@cJT~12cJT!#1/2S 124cJT1

8

3
cJT

2 D . ~20!

Thus, the quasi-binary system under investigation
thermodynamically unstable in the entire low-concentrat
range at low temperatures, i.e., it is advantageous from
energy point of view for a system with JT ions in rando

he
in-

e

FIG. 3. ~a! Configurations of the regions of spinodal decompositions of the ‘‘para’’-‘‘para’’ (Ts
(1)) and ‘‘ferro’’-‘‘para’’ ( Ts

(2)) types in systems with different
intensities of random fields. Dotted curves show the boundaries of structural PT for a random distribution of components being mixed in crystals.~b! Effect
of random fields on concentration dependences of exchange potential forT/l050.1. Curves1, 2and3 correspond to values of the parameterd/l050.5, 0.72,
and 1 respectively. Ford/l051, Maxwell’s construction is carried out for two immiscibility regions.
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FIG. 4. Phase diagrams of solid solutions for various intensities of random fields (d/l050.5 ~a! and 1~b!.
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crystal fields to undergo phase separation~at TÞ0 K! into
phases with relatively high and low concentrations of deg
erate centers. The difference from a similar tendency for s
tems with cooperative JT effect lies in the fact that bo
states mentioned above are highly symmetric, i.e., ‘‘par
phases~cI andcII in Fig. 3b!. It should be noted that such
behavior of dilute JT systems in random crystal fields
rather universal and is apparently not confined to approxi
tions ~3! and ~19! used here.

The top of the dome of absolute immiscibility for a lim
ited solubility of these ‘‘para’’-phases is attained forccrit

(1)

50,11,Tcrit
(1)50,14d (Tcrit

(1)/d5(3Ap/8)Accrit
(1)(123,5ccrit

(1))).
Typical concentration dependences of spinodals~Ts

(1)

and Ts
(2)! in the entire range of variation ofcJT in Fig. 3a.

The curve describing the concentration dependence
chemical potential~Fig. 3b! indicates the position of the
spinodal and binodal instability boundaries of the mixture
a fixed temperature. It can be seen that as the parameterd/l0

increases, the region of absolute instability of the solution
divided into two regions corresponding to the spinodal ph
separation of the ‘‘para’’-‘‘para’’ type (Ts

(1)) and of the
‘‘para’’-‘‘ferro’’ type ( Ts

(2)). It should be noted that the up
per boundary of the value ofd in the adopted model is th
quantity dmax'1.02l0 . This limitation corresponds to th
condition for the minimum value of chemical potential
the components for the stoichiometric composition wh
T→0 K.

The results of analysis of the equilibrium phase diagr
of the system under consideration~the boundaries of binoda
phase separation! are presented in Fig. 4. It can be seen t
a noticeable change in the phase diagram topology du
random fields occurs for values ofd comparable with the
cooperative interaction parameterl0 . For d/l0,0.72, the
-
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t
to

boundary of the immiscibility region for equilibrium
‘‘ferro’’- and ‘‘para’’-phases lies above the miscibility ga
for two ‘‘para’’-phases~Fig. 4a!. Ford/l050.72, the bound-
ary touches the peakTcrit

(1) , and a triple point appears on th
phase diagram ford/l0.0.72 ~Fig. 4b!. The position of this
point of three-phase equilibrium on the diagram chan
upon an increase in the parameterd/l0 as follows: it coin-
cides with Tcrit

(1) ,ccrit
(1) for d50.72l0 and is displaced to the

valuesT50 K and cJT.0.32 for d→dmax. The asymptotic
description of the corresponding phase boundaries in the
gion cJT,c0 is given by the formula

T~1!~cJT!5H 2
3Ap

4
d@cJT~12cJT!#1/2S 12

2

3
cJTD

1
l0

2 J 1

ln cJT
. ~21!

Noticeable variations of phase diagram due to rand
fields can also be noted in the regioncJT.c0 . As the value
of d/l0 increases, the one-phase region of existence of
‘‘ferro’’-phase becomes narrower, which is accompanied
an increase in the corresponding values ofTcrit

(2) andccrit
(2) . In

this case, the region in which the mixture undergoes
separation into two ‘‘ferro’’-phases expands to a certain
tent. It should be noted that in the absence of random fie
the values ofTcrit and ccrit lie near the line of second-orde
phase transformations for a crystal with a random distri
tion of ions to be mixed. Such a topology of phase boun
aries leads to a change in the type of critical behavior
phase separation.10,11 As a result~Fig. 5!, the temperature
dependence of the concentration differenceDc for two co-
existing ‘‘ferro’’ phases near the critical temperatureTcrit is
described by the function (12T/Tcrit)

b with the exponent
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b.1 instead of the valueb50.5 typical of the mean-field
theory.11 Such a topology of phase boundaries is respons
for ‘‘crossover’’ near Lifshitz multicritical points even in th
absence of critical fluctuations and leads to a change in
critical behavior of phase separation. Figure 5 shows that
are dealing with a situation similar to that observed fo
mixture of liquid isotopes4He–3He, where the curve of tran
sitions to the superfluid state for solutions enriched by3He
terminates at the critical point of mixing. Random fields d
place the point of phase separation from the second-orde
curve, thus restoring the mean-field shape of the limited m
cibility dome.

Let us now consider possible reasons behind the cha
in the structure of phase diagrams under investigation fro
different point of view. We primarily take into account th
possibility of other~not JT! mechanisms of formation of fre
energy of the mixture. Such an analysis with an additio
contribution of the typeDF5WcJT(12cJT) to the energy of
mixing was carried out by us for JT systems with relative
weak random crystal fields (d!l0) in order to separate th
corresponding effects.

Figure 6 shows the transformation of the phase diag
in the presence of additional contributions to the mixing e
ergy of the solution, which are not associated with splitti
of degenerate levels. It can be seen that the variations o
phase diagram due to an increase in the energyW are similar
to a certain extent to those considered earlier for JT ion
random fields with increasing parameterd. The most pro-
nounced difference is associated with the reduction effe
for the cooperative JT transition~TD ,s, etc.! in random
fields. Thermodynamic parameters~such as heat capacit
which is peculiar for random fields!12 in one-phase region
will also display considerably different behavior.

A similar behavior is also observed for a wide class
JT systems with a structural first-order PT~see, for example
Ref. 13!. In contrast to the system considered above, s
systems display the coincidence of the critical point of m

FIG. 5. Temperature dependences of the concentration differenceDc for JT
ions in coexisting phases in random fields~d/l051 corresponds to the solid
curve! and in the absence of such fields~s!.
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ing with the PT temperature in a pure compound with
ions.

CONCLUSION

The analysis carried out by us here proved that limi
miscibility is manifested to a certain extent in partially o
dered crystal systems with Jahn–Teller ions. The variety
its possible manifestations must reflect different origin
degenerate or pseudo-degenerate states and according
mechanisms of their splitting~orbital magnetism, spin–orbi
interaction, etc.!. Random crystal fields in systems with d
generate centers change significantly the shape of phase
grams of the phase-separation type and lead to a numb
other consequences. In this case, the same mechanism
ates for all types of PT. It is associated with the tendency
JT ions at low temperatures to be in the phase with the m
mum possible splitting of degenerate levels.

The results of analysis of possible instability regions
one-phase states makes it possible to predict anomalou
havior of some parameters of crystal systems, in which
equilibrium state of the JT subsystem~with cooperative in-
teractions or random crystal fields at JT ions! is not realized
in the low-temperature region in view of kinetic limitation
This primarily refers to the formation of thermodynam
properties typical of glass-like states~spin glass, Jahn–Telle
glass,12,14 etc.!. The genesis of the corresponding region

FIG. 6. Phase diagram of a JT system in the presence of an addit
contribution to the free energy of the solution~W520.3, 0, 0.5, 1, 1.5,
and 2!.
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the diagram of metastable phase states with phase sepa
~or spinodal decomposition! regions on the equilibrium
phase diagram can be traced.
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Interaction of nonuniform elastic waves with two-dimensional electrons
in AlGaAs–GaAs–AlGaAs heterostructures

D. V. Fil’
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The interaction of a double-layer electron system in a AlGaAs–GaAs–AlGaAs heterostructure
with nonuniform elastic modes localized in the GaAs layer is considered. The dependence
of the interaction constant on the ratio between the thickness of the GaAs layer and the wavelength
is calculated in a system with interfaces parallel to the~001! plane for waves with the wave
vector directed along the@110# axis, the polarization vector lying in the (110̄) plane. It is shown
that the interaction constant attains its maximum value for the wavelength of the order of
the thickness of the GaAs layer. The renormalization of the velocity of elastic waves is found for
the case when the electron system is under the conditions of the fractional quantum Hall
effect. It is shown that for some modes, the dependence of the velocity renormalization on the
wave vector is modified qualitatively upon a transition of the electron system to a state
corresponding to the Halperin wave function. ©1999 American Institute of Physics.
@S1063-777X~99!01306-7#
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The method of surface acoustic waves~SAW! has been
widely used recently for an analysis of dynamic parame
of two-dimensional electron layers in AlGaA
heterostructures.1,2 Since AlGaAs possesses piezoelect
properties, SAW generate an alternating electric field. T
interaction of this field with two-dimensional electrons lea
to a renormalization of the velocity and attenuation of SA
Measurements of these quantities can be used for obtai
the frequency and momentum dependence of the condu
ity of the electron subsystem. The method is especially
fective for an analysis of quantum Hall systems for whi
the conductivity depends considerably on the applied m
netic field.

The two-dimensional electron layer lies at a certain d
tanced0 from the sample surface, and hence the interac
of SAW with electrons depends on the parameterqd0 ~q is
the wave vector of an elastic wave!. As the value of this
parameter increases, the matrix elements of interaction
crease exponentially, i.e., the method is ineffective for
analysis of dynamic characteristics of the electron system
large q. In this case, a nonuniform elastic wave which
localized near the electron layer due to acoustic inhomo
neity of the heterostructure can be an alternative to SAW

We consider the heterostructure AlxGa12x

As–GaAs–AlxGa12xAs in which electron layers lie at th
interfaces AlGaAs–GaAs as the system in which a locali
tion of elastic wave is possible. Heterostructures of this ty
are used for studying quantum Hall effect in double-lay
systems.3,4 Elastic waves localized in the central layer~the
wave amplitudes in the banks decreases exponentially
increasing distance from the interface! can propagate in the
structure under investigation. This system was used by
earlier5 to study the interaction of 2D electrons with a non-
uniform transverse elastic wave with a displacement ve
4661063-777X/99/25(6)/6/$15.00
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parallel to the interface. Here we continue the investigatio
started in Ref. 5 and consider nonuniform elastic waves
which the displacement vector lies in the plane determin
by the wave vector and the normal to the interfaces~like
SAW, these waves are polarized elliptically!. It follows from
the results obtained here that the interaction of such wa
with electrons can be considerably stronger that for wa
considered in Ref. 5.

1. MODEL GEOMETRY AND DISPERSION EQUATIONS

Let us consider a system in which a GaAs layer of thic
ness 2a is bounded by two Al0.3Ga0.7As with thicknesses
much larger than the wavelength of elastic modes.
choose interfaces parallel to the~001! plane. We direct the
wave vector of the elastic mode along the@110# axis and
make use of the fact that elastic modulicik weakly depend
on the Al concentration~we assume that their values are t
same for the two media!. Acoustic inhomogeneity of the sys
tem is determined by the difference in densities~r1

55.3 g/cm3 for GaAs andr254.8 g/cm3 for Al0.3Ga0.7As!.
We consider an elastic mode with the displacement v

tor component

ui~r ,z,t !5ui~z!exp~ iqr2 ivqt !, ~1!

where wq5vq,v is the velocity of the elastic mode,i
5x,z, the x-axis is chosen along the@110# direction, the
z-axis is chosen along the@001# direction, and the vectorr
lies in the~001! plane. We write the wave equations for th
componentsui(z) in the form

~c44]z
22c118 q21rav2!ux1 iq~c121c44!]zuz50,

iq~c121c44!]zux1~c11]z
22c44q

21rav2!uz50, ~2!
© 1999 American Institute of Physics
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wherec118 50.5(c111c1212c44); a51,2 corresponds to the
number of the medium. The solution of system~2! has the
form

ui
a~z!5(

k
Aik

a exp~2yk
azq!, ~3!

whereyk
a are the roots of the characteristic equation

y412bay21ca50 ~4!

with

ba5
1

2c11c44
@~c121c44!

21c11~rav22c118 !

1c44~rav22c44!#,

ca5
1

c11c44
~rav22c118 !~rav22c44!. ~5!

If we take into account the equality of elastic moduli
the two media, the boundary conditions are reduced to
continuity of ui and ]zui at the interfaces. The localize
mode corresponds to the solution vanishing forz→6`. The
structure of the localized solution at the banks is similar
the structure of SAW at the surface of a cubic crystal~see,
for example, Ref. 6!. Such a solution appears if Eq.~4! for
a52 has no purely imaginary roots. If elastic moduli satis
the inequality

~c121c44!
22c11~c118 2c44!,0, ~6!

a localized solution appears forv,c44/r2 . If the opposite
inequality holds, the velocity of the localized mode isv
,vm2 , where vm2 is the root of the equationD2(v)5b2

2

2c250 (vm2,c44/r2). In the system under investigatio
~the values of elastic moduli will be given below!, the second
case is realized. Forv,vm2 , Eq. ~4! with a52 gives

y56~l6 iw!, ~7!

where

l5@~Ac22b2!/2#1/2, w5@~Ac21b2!/2#1/2. ~8!

For medium 1, the solution of Eq.~2! satisfying the
boundary conditions corresponds to cases when Eq.~4! has
either two real and two imaginary roots, or the four ima
nary roots

y1,256k56~AD12b1!1/2,

y3,456 i j56 i ~AD11b1!1/2, ~9!

where D15b1
22c1 . ~The quantityk is real-valued forv

.c44/r1 and imaginary forvm1,v,c44/r1 , wherevm1 is
the root of the equationD1(v)50.!

Taking into account the symmetry inz, we have two
types of solutions of wave equations with the given bound
conditions~we denote them as I and II!

ux
p~z!5Cpf x

p~z!, uz
p~z!5 iCpf x

p~z!, ~10!

whereCp is the normalization factor,p5I,II. For mode I,
f x

I (z) is an odd function ofz and f z
I (z) is an even function.

For mode II, f x
II(z) is odd, andf z

II(z) is an even function.
e

o

-

y

The dispersion equation forv is determined from the
equality to zero of the determinant of the system of line
equations for the coefficientsAik

a . The equations follow from
the wave equations~2! and the boundary conditions. Fo
mode I, the dispersion equation has the form

R1 tanhkqa tanjqa1R2 tanhkqa

1R3 tanjqa1R450, ~11!

For mode II, we have

R1 cothkqa cotjqa2R2 cothkqa

1R3 cotjqa2R450, ~12!

where

R15~kmk1jmj!~wml2lmw!;

R25mwmj~l21w2!2wj~mw
21ml

2!

2kmk~jmw2wmj!;

R352mwmk~l21w2!1wk~mw
21ml

2!b f1jmj~wmk

2kmw!;

R4~kmj2jmk!~wml1lmw!;

mk5
k~c121c44!

c11k
22c441r1v2 ; mj5

j~c121c44!

2c11j
22c441r1v2 ;

ml5
lc44~R21!

c121c44
; mw5

wc44~R11!

c121c44
;

R5S c11~r2v22c228 !

c44~r2v22c44!
D 1/2

.

The result of numerical solution of Eqs.~11! and~12! for
the parametersc11512.3,c1255.7, c4456.0 ~all of them in
the units of 1011dyne/cm2! are presented in Fig. 1 as a fun
tion of the ratio of the central layer thickness (d52a) and
the wavelengthl of the elastic mode. The curves in the figu
show that the system is characterized by two activation
modes~of types I and II!. A decrease in the wavelength give

FIG. 1. Dependence of the velocities of elastic modes on the ratio of
thicknessd of the central layer and the wavelengthl . Solid curves corre-
spond to type I modes and dashed curves to type II modes.
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rise to additional modes whose frequencies lie above
gapless modes. We shall consider below only the results
activationless modes. The quantitiesf i

p(z) are written in the
form of simple analytic functions ofz, whose coefficients
have a cumbersome dependence onq andv. We do not write
here their explicit expressions. By way of illustration, Fig.
shows the plots of the functionsux(z) and uz(z) for
d/ l 51.

2. PIEZOELECTRIC INTERACTION CONSTANTS

Let us calculate the renormalization of velocity of th
nonuniform elastic mode determined by the interaction w
the double-layer electron system with the coordinatesz1(2)

56a of the layers. We shall use the approach similar to t
developed by Kna¨bchenet al.7 We write the Hamiltonian of
elastic oscillations in terms of the creation and annihilat
operators for phonons (b1,b):

Hu5(
q

vq~bq
1bq1 1

2!. ~13!

We choose the Hamiltonian of interaction between electr
and phonons in the form

FIG. 2. Dependence of the displacement vector component~in relative
units! on z ~in the units of wavelength! for d/ l 51 for type I mode~a! and
type II mode~b!.
e
or

h

t

n

s

H int5
1

AS
(
q,m

E d2rgqmC rm
1 C rmeiqr~bq1b2q

1 !, ~14!

whereC1(C) are the creation~annihilation! operators for
electrons,m the number of the electron layer, andS the area
of the layers.

In order to find the matrix elementsgqm , we write the
interaction of an elastic wave with electrons in the form

H5(
m

E d2rew rmC rm
1 C rm , ~15!

wherew rm is the scalar potential of the electric field gene
ated by the elastic mode in the layerm. The value ofw is
determined by the solution of the Poisson equation

Dw52~4p/«!b i , jk] iujk , ~16!

where« is the dielectric constant,b i , jk is the piezoelectric
tensor, andujk the strain tensor. If we choose the coordina
axes along the directions@100#, @010#, @001#, the tensorb̂ for
the system under investigation has nonzero compon
~having the same value denoted byb! for iÞ j Þk. The sub-
stitution of ~10! into ~16! ~taking into account a transition to
a rotated system of coordinates! gives the following equation
for the Fourier component of electric potential:

~]z
22q2!wq~z!5 i ~4pb/«!Cpgp~z!, ~17!

where

gp~z!5q2f z
p~z!22q] f x

p~z!. ~18!

We assume that the constants« andb are the same for
the entire system. In this case, the boundary conditions
reduced to the requirement of continuity ofwq(z) and
]zwq(z) at the interfaces. The solution of Eq.~17! taking into
account the boundary conditions has the form

wq~z!5 i ~4pb/«!Cpxp~z!, ~19!

wherex I(z) is an even function andx II(z) an odd function.
We omit cumbersome analytic expressions for the funct
xp(z). By way of illustration, Fig. 3 shows the dependenc

FIG. 3. Dependence of the electric potential~in relative units! on z ~in the
units of wavelength! for d/ l 51 for type I mode~curve1! and type II mode
~curve2!.
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wq(z) for d/ l 51 ~we used the values of the constantsCp

calculated below!.
In order to determine the normalization constant,

write the displacement components in the form

ui~r ,z,t !5(
q

Cpf i
p~z!eiqr~bq1b2q

1 ! ~20!

and substitute expansion~20! into the expression for elasti
energy. Equating the result and Eq.~13!, we obtain the fol-
lowing expression for the quantityCp:

Cp~SvI p!21/2, ~21!

where

I p54qE
0

`

dzr~z!~ u f x
p~z!u21u f z

p~z!u2!. ~22!

Note that the dependence onq in the expression forI p ~and
hence forCp! can be reduced to the dependence on the
rameterqa.

Going over in~19! to operatorsb and substituting the
obtained expression into Eq.~15!, we obtain the following
expression for matrix elements in~14!:

gqm5 i ~4pbe/«AvI p!xp~zm!. ~23!

The renormalization of the velocityDv of the elastic mode
and the damping factorG determined by interaction~14! sat-
isfy the equation

Dv
v

2 i
G

q
5

1

vq
gmq* Dmm8~q,vq!gm8q , ~24!

where Dmm8 is the density-density response function f
electrons. In the random-phase approximation, the quant
D are defined as

D̂~q,v!5@ Î 2D̂ ~0!~q,v!V̂~q!#21D̂ ~0!~q,v!, ~25!

where

Vmm8~q!5
2pe2

«q
@dmm81~12dmm8!e

2qd# ~26!

are the Fourier components of Coulomb interaction andD (0)

is the density–density response function for the system w
out the Coulomb interaction. The quantitiesD (0) are con-
nected with the longitudinal electron conductivity throu
the relation

Dmm8
0

~q,v!52
iq2

ve2 sxx
mm8~q,v!, ~27!

were s115s22 and s125s21 are the conductivity compo
nents diagonal and nondiagonal in the layers. Here and
low, we consider the case of two equivalent layers. It sho
be noted that in the case of electron gas, the nondiag
components in the layers vanish in the random-phase
proximation. For a composite fermion gas that will be co
sidered in the next section, these quantities may have n
zero values due to statistical interaction between layers.

Substituting expressions~23!, ~25!–~27! into ~24!, we
obtain
e

a-

es

-

e-
d
al
p-
-
n-

Dv
v

2 i
G

q
5a1

2 isxx
1 ~q,vq!/sM

1

11 isxx
1 ~q,vq!/sM

1

1a2

2 isxx
2 ~q,vq!/sM

2

11 isxx
2 ~q,vq!/sM

2 , ~28!

wheresxx
6 5sxx

116sxx
12 , sM

65v«/2p@16exp(2d)#, and

a65
4pb2

«v2I p

uxp~a!6xp~2a!u2

16exp~2qd!
. ~29!

The functionsa6 are analogs of the constants of piez
electric coupling introduced in an analysis of interaction
SAW with two-dimensional electrons. It can be seen fro
formula ~29! that only the coefficienta1 differs from zero
for a mode of type I and only the coefficienta2 for type II.

Figure 4 shows the dependences ofa1 for mode I and
a2 for mode II on the ratiod/ l . We used the parametersb
54.53104 dyne1/2/cm and«512.5. For the sake of compar
son, Fig. 4 also shows the dependence ofa2 on d/ l for the
case analyzed in Ref. 5~transverse mode polarized in th
plane~001!!. It can be seen from the plots that the interacti
of electrons with elastic modes polarized elliptically in
plane defined by the wave vector and a normal to the in
faces is much stronger than the interaction with the tra
verse mode. It should be noted, however, that the case
sidered in Ref. 5 has the advantage that only one locali
mode exists~if the thickness of the central layer is not to
large as compared to the wavelength!, its frequency being
lower than that of the bulk modes.~For the case considere
here, bulk transverse modes with the displacement ve
directed along@110# have a frequency lower than the fre
quencies of modes I and II.!

3. RENORMALIZATION OF THE VELOCITY OF ELASTIC
MODE UNDER PHASE TRANSITIONS IN THE ELECTRON
SYSTEM WITH FRACTIONAL QUANTUM HALL EFFECT

We apply the results obtained in the previous section
analyze the possibility of observing phase transitions
double-layer electron systems under the conditions of

FIG. 4. Dependence of the piezoelectric coupling constant on the param
d/ l . Curve1 corresponds toa1 for type I mode, curve2 to a2 for type II
mode, and curve3 to a2 for the transverse mode.5
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fractional quantum Hall effect. We shall describe the H
system by using the model of composite fermions~the cor-
responding model for a double-layer system was develo
by Lopez and Fradkin!.8 In this model, the Hall system is
described as a system of composite Fermi particles carr
a fictitious statistical charge and the flux of statistical gau
field. In the case of a double-layer system, we introduce
types of statistical charges corresponding to two layers
two types of gauge fields. In the general case, a compo
quasiparticle carries field fluxes of two types, namely,
even numberc of field flux quanta corresponding to its st
tistical charge, and an integral numbers of field flux quanta
corresponding to statistical charges of quasiparticles in
adjacent layers. ForsÞ0, such a model corresponds to sta
described by the Halperin wave function.9 In the framework
of the approach developed by Lopez and Fradkin,8, the state
with sÞ0 can be interpreted as a phase with statistical in
action between the layers.

In the mean field approximation, statistical fields pa
tially screen the external magnetic fieldB. The effective
magnetic field is defined as

Beff5B@12n~c1s!#, ~30!

wheren is the filling factor per layer. The fractional quantu
Hall effect corresponds to filling factors for which the valu
of Beff corresponds to the integral numberN of filled Landau
levels:

n5
N

N~c1s!61
, ~31!

where the upper sign corresponds toBeff.0 and the lower
sign toBeff,0. It can be seen from formula~31! that a fixed
filling factor can correspond to different sets of the para
etersc ands ~for different phases!.

In an analysis of incompressible states~corresponding to
filling factors ~31!!, it is convenient to expresssxx in terms
of the components of polarization tensorP̂:

sxx
1~2 !52

i

v
Pxx

1~2 !52
iv

q2 P00
1~2 ! , ~32!

where P1(2)5P116P12; P11, P12 are the diagonal and
nondiagonal components of polarization tensor in layers.
ing the approach developed in Ref. 5, we obtain the follo
ing expression for the quantitiesP00

1(2) :

P00
1~2 !52

e2q2

2pvc

S0

D1~2 ! , ~33!

where

S05S02
m* 2mb

m* N
@S0~S21N!2S1

2#, ~34!

D1~2 !5@12~c6s!S1#22~c6s!2S0~S21N!

2
m* 2mb

m* N
F, ~35!

F5S21N1~v/vc!
2S0 , ~36!
l

d

g
e
o
d

ite
n

e
s

r-

-

-

s-
-

S j5@sin~beff!#
je2x

3 (
n50

N21

(
m5N

`
n!

m!

xm2n21~m2n!

~v/vc!
22~m2n!2 @Ln

m2n~x!#22 j

3F ~m2n2x!Ln
m2n~x!12x

dLn
m2n~x!

dx G j

. ~37!

In formulas~33!–~37!, vc52pn0 /m* N is the effective cy-
clotron frequency,x5(qleff)

2/2, whereleff5(N/2pn0)1/2 is
the effective magnetic lengthLn

m2n(x) is the generalized La-
guerre polynomial,m* the effective mass of composite fe
mions,mb the band mass of electrons, andn0 is the average
number density for electrons. Substituting~32! and~33! into
~28!, we obtain

Dv
v

5a1

Eq
1S0

D12Eq
1S0

1a2

Eq
2S0

D22Eq
2S0

, ~38!

whereEq
1(2)5(e2q/«vc)@16exp(2qd)# ~the damping fac-

tor G is equal to zero in this case!.
Let us consider by way of an example the filling fact

n51/5. In the absence of statistical interaction between l
ers, the filling corresponds to the parametersc54, s50, and
N51. As the layers become closer to one another, a tra
tion to the phase withc52, s52, andN51 becomes pos-
sible. It can be seen from formulas~34!–~37! that in this case
the first term in formula~38! does not change. Consequent
the quantityDv for type I mode is conserved under such
transition. On the contrary, for type II mode a jump in pha
velocity is observed since in this case the dependence onD2

which is a function of the differencec2s is preserved in
formula ~38!. The jump must be observed upon a change
the separation between layers, which is apparently difficul
realize in experiments. However, the effect can be obser
indirectly while measuring the dependence ofDv on the
wave vector. If we use the value of velocity for the fillin
factor n51 as the bare value~the value ofDv for n51 is
also determined by formula~38! for m* 5mb , c5s50, N
51!, the above dependence differs qualitatively fors50 and
sÞ0. This is illustrated in Fig. 5 which shows the depe
dence ofDv/v ~measured from the velocity value forn51!
on reciprocal wavelength. We used for calculations the
rameters n051011cm22, d5500 Å, mb50.07me , m*
54mb ~me is the electron mass!.

It can be seen from formula~31! that a situation is pos-
sible when a phase transition occurs with sign reversa
Beff . For example, forn52/7, the phase without statistica
interaction between the layers corresponds toc54, s50,
N52 (Beff,0), while in the presence of such an interaction
phase withc52, s51, N52 (Beff.0) is possible. In this
case, the jump in phase velocity takes place for a mode
type I as well as a mode of type II. However, the qualitati
dependenceDv(q) changes insignificantly under such
phase transition. The plots illustrating the last statement
not given here.

The type-I mode for which the peak of interaction lies
a region corresponding to longer waves than for a type
mode can be used for indirect observation of the depende
of effective magnetic length on filling factor. Figure 6 show
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the dependencesDv(d/ l ) ~the value ofDv is measured from
the value of velocity forn51! for s50 for filling factors
n51/3,2/5,3/7~c52 andN51,2,3 respectively!. It can be
seen from Fig. 6 that the quantityDv oscillates as a function
of 1/l . The decrease in the period of oscillations asn ap-
proaches 1/2 reflects the increase in effective magn
length for such a sequence of filling factors.

FIG. 5. Dependence of the velocity renormalization on reciprocal wa
length for type II mode for the filling factorn51/5. Curve1 corresponds to
the phasec54, s50 and curve2 to the phasec52, s52.

FIG. 6. Dependence of the velocity renormalization on reciprocal wa
length for type I mode: Curve1 corresponds ton51/3, curve 2 to n
52/5, and curve3 to n53/7.
tic

Thus, we have analyzed theoretically the interaction
double-layer electron system formed at the edges of a w
quantum well in the AlGaAs–GaAs–AlGaAs heterostructu
with nonuniform elastic modes localized in the central lay
of the heterostructure and having the elliptic polarization
the plane determined by the direction of the wave vector o
wave and the normal to the interface. The dependence o
coupling constant determined by the piezoelectric mec
nism on the ratio of the width of the quantum well and t
wavelength is found. It is shown that the coupling const
increases with decreasing wavelength and attains its m
mum value for a wavelength coinciding in order of magn
tude with the width of the GaAs layer. The position of th
peak is determined by the type of the nonuniform mode. T
effect considered here can be used for studying dynamic
rameters of two-dimensional electron systems for large w
vectors, i.e., in the case when the interaction with the surf
acoustic wave is suppressed exponentially due to the fi
depth of the electron layer in the heterostructure. The ren
malization of the phase velocity of nonuniform elastic mod
is calculated for a double-layer electron system under
conditions of the fractional quantum Hall effect. It is show
that the dependence of the velocity renormalization on
wave vector may change qualitatively upon a transition
the Hall system to a state described by the Halperin w
function.
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Thermal conductivityl(T) and resistivityr(T) of the HTSC compound Ag–Bi2223~Tc

.107 K; DTc.2 K! produced by the Intermagnetics General Corporation~USA! were measured
in the temperature intervals 4.2–300 K andTc–300 K respectively. Away from the SC
transition, the values ofl(T) andr(T) are determined by the silver content. ForT.60 K,
irregular thermal conductivity oscillations are observed in the vicinity of the superconducting
transition against the background of the dependencel(T) typical of silver. The position
and amplitude of the oscillations are not affected by temperature cycling. A sharp minimum on
the l(T) dependence, whose depth is much larger than the estimated contribution of
thermal conductivity of Bi2223 to the thermal conductivity of the system, is observed atTc .
© 1999 American Institute of Physics.@S1063-777X~99!01406-1#
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Temperature dependences of thermal conductivityl and
resistivity r of the superconducting composite material Ag
HTSC are studied.

The investigated material was in the form of a ribbon
cross-section 3.6830.206 mm2 produced by the Intermagne
ics General Corporation~USA!. A mixture of silver powder
and the HTSC compound Bi2223 having volume fractions
70 and 30% respectively were packed in a silver casing.
initial purity of silver was 99.95%. The sample was abou
cm long. The resistivityr(T) was measured by the four
probe method, while the thermal conductivityl(T) was
measured by using thesteady axial heatflow technique. The
charge and thermal fluxes were directed along the ribb
The thermometers were attached to the sample forl(T)
measurement at the same points as the potential lead
r(T) measurement, and hence the geometrical factors c
cide in both cases. The temperature dependence ofr was
measured in the interval betweenTc and 300 K with an
average error not exceeding 0.5%. The dependencel(T)
was measured in the interval 4.2–300 K with an avera
error 2%.

The superconducting transition temperatureTc , deter-
mined from the position of thedr/dT peak, was found to be
107 K with a transition width of about 2 K. Ther(T) de-
pendence of the composite is a linear function of tempera
in the interval 108–300 K, andr(300 K)53.8731028

V•m, which is about twice as large as the data available
literature for pure silver.1
4721063-777X/99/25(6)/3/$15.00
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The l(T) dependence of the composite in the inves
gated temperature range is typical for the thermal conduc
ity of pure silver~Fig. 1!. The thermal conductivity peak lie
at 15 K, which is in accord with the data obtained in Refs
and 3, but the thermal conductivity at the peak is about h
the value given in these works. Above 100 K, the therm
conductivity of the composite depends weakly on tempe
ture and amounts to about 210 W/~m•K!. In this region, the
thermal conductivity of silver samples with different degre
of purity is close to 430 W/~m•K! ~see, for example, Ref. 4!,
which is almost double the value obtained by us. Thus,
characteristic values of 1/r and l are about half the value
given in the literature for pure silver. The measured values
conductivity indicate that the outer silver shell occupi
about half the cross-sectional area of the ribbon. The rem
ing silver is in the form of interlayers between HTSC pa
ticles.

The obtained results can be discussed conveniently
using the Lorentz function

L~T!5l~T!r~T!/T. ~1!

Figure 2 shows the values ofL(T) for silver having
various degrees of purity, calculated by using the data p
sented in Refs. 1–4, as well as for the composite mate
studied in this work. It can be seen that theL(T) curves for
silver with different degrees of purity are close to each ot
and tend to the Sommerfeld valueL052.4531028 WV/K2

upon an increase in temperature, which is typical of meta
© 1999 American Institute of Physics
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conductivity at temperatures higher than the Debye temp
ture. For the composite,L(T).L0 , and increases with tem
perature. This is probably due to the additional contribut
to r(T) ~1! associated with the presence of two compone
especially with the scattering at interfaces.

At low temperatures, the thermal conductivity of qui
pure metals is described by the Wilson formula5

T/l~T!5r0 /L0aT3, ~2!

which is also applicable to the composite investigated by
in the temperature range 4.2–46 K. Here,r0 is the residual
resistivity of the composite anda is a constant. The value o
r0 in formula~2! is equal to 1.1431010V•m. Thus, the ratio
r~300 K!/r~4.2 K! characterizing the purity of the silver ma
trix is close to 300.

At T.60 K, irregular oscillations of thermal conductiv
ity of the composite are observed against the backgroun
the l(T) dependence typical of pure metals in this tempe
ture range~Fig. 3!. The oscillation amplitude is about 10% o
the thermal conductivity in this temperature range, i.e., s
eral times larger than the characteristic values of the ther
conductivity of bismuth-based HTSC~see, for example
Refs. 6 and 7!. Multiple temperature cycling~from 4.2 to 300
K! does not affect the obtained results.

FIG. 1. Temperature dependence of the thermal conductivity of the c
posite Ag–Bi2223.

FIG. 2. Temperature dependence of the Lorentz function of composite
Bi2223 ~curve1! and silver of different purities~curves2, 3!.1,3
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It can be assumed that such a behavior of thermal c
ductivity is associated with the emergence of the effect
Andreev reflection of quasiparticles in a mesoscopic sys
of nonsuperconductor–superconductor junctions in the
vestigated heterophase system.

On the temperature scale, the deepest and sharpest
mal conductivity minimum coincides withTc . Such a sharp
decrease in thermal conductivity and electrical resistivity
dicates the elimination of superconducting electrons from
heat transport process. Such a behavior ofl(T) andr(T) in
the vicinity of Tc was indicated by us earlier.8

Analogous behavior of some physical characteristics w
also observed in several superconducting composites, inc
ing HTSC. In Refs. 9 and 10, such a behavior of heat cap
ity, linear expansion coefficient, and thermal conductivity
Y-based HTSC was attributed by the authors to lattice ins
bility caused by migration of superstoichiometric oxyge
For the superconducting composite Nb–Cu, such a beha
of thermal conductivity was observed at 50–60 K,11 i.e., far
from the superconducting transition (Tc59.1 K). Simulta-
neously, a decrease in the internal friction and a splitting
the natural frequency of flexural vibrations of the sample in
three components was observed upon a decrease in tem
ture.

Apparently, such structural instabilities are characteris
of spatially inhomogeneous materials including hig
temperature superconductors and composites, and ma
manifested near the superconducting transition or away f
it.

Note that the thermal expansion of Bi-based HTSC ha
considerable anisotropy12,13 while the thermal expansion co
efficient is about half its value for silver. The data presen
in Refs. 12–15 can provide a very rough estimate of
stresses emerging in the composite sample upon coo
from 300 to 100 K. Such an estimate leads to a value of
order of 108 Pa. Such anisotropic stresses may stimulate
emergence of structural instabilities in the investigated tw
phase composite, which may also lead to the observed n
monotonic behavior of thermal conductivity.

-

–

FIG. 3. Thermal conductivity~curve1! and electric resistivity~curve2! of
the composite Ag–Bi2223 in the vicinity of the superconducting transiti
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