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The 80th birth anniversary of late Boris Ieremievic
Verkin, Member of the Ukrainian Academy of Science
leading scientist and organizer falls on August 6, 1999.

A connoisseur and appraiser of various arts, he was h
self endowed with the great gift of creation. Together w
his irrepressible spirit and energy, Boris Ieremievich devo
this gift to the service of science. In addition to his ow
remarkable scientific publications, he made a significant c
tribution to science by paving the way for others to attain
heights of their scientific career. His lifetime ambition w
realized in the organization of a unique creative worksh
called the Institute for Low Temperature Physics and En
neering. Physicists and mathematicians, biologists and
tors, designers and production engineers have been wor
hand-in-hand for many years, supporting and enriching
another at this science- and-engineering complex with t
5711063-777X/99/25(8–9)/2/$15.00
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intellect, philosophy, experience, and the warmth of friend
relations. To carry out such a large-scale operation, it w
necessary to find an extraordinary personality devoted utt
to the cause of learning, who could start from a scrat
deprived of all kinds of government authority but having
clear idea of the aims, the strength of conviction and cha
He had no axe to grind for his personal ends, and did it o
for Science and service to the Motherland. This is the rea
behind the tremendous response and encouragement h
ceived for his efforts.

The Institute is proud to be named after its founder wh
in addition, was its Director for many years. He w
the brain, soul and heart of the Institute which served
the starting point for other scientific establishments. T
members of its staff are known and acknowledged in
world of science. The instruments and equipment produ
© 1999 American Institute of Physics
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at the Institute are being used in quest and acquisition
knowledge, production activity, food and health indust
They were also exploited successfully in terrestrial and sp
applications, and were deployed for exploration of oth
planets. The contribution made by B. I. Verkin in these
forts can be hardly overestimated. His colleagues and pu
are proud of having been his contemporaries and enthus
in a common cause.

It is about a decade since Academician Verkin left
heavenly abode. His legacy includes unique Institute, a la
number of pupils, the journal ‘‘Low Temperature Physics
which he founded, hundreds of scientific publications, mo
graphs, handbooks, and inventions. He continues to b
shining example of selfless and altruistic service of
Motherland for new generations of creators who will ce
tainly be called for by the country after the passage
present hard times.

I. V. Svechkarev
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This jubilee publication of the journal consists of tw
issues and is devoted to the 80th Birth Anniversary of B
Verkin, founder and permanent Chief Editor of the journ
‘‘Low Temperature Physics.’’ Most of the articles have be
contributed by close associates and pupils of Bo
Ieremievich, but even they fail to give a complete picture
the diversities of his scientific interests. The de Haa
van Alphen effect played a significant role both in the phy
ics of metals and in the life of B. I. Verkin who carried ou
pioneering investigations of this effect. The current trends
this effect in its application to superconductors have be
highlighted in the journal in the works of leading scientis

The Editorial Board of the journal is deeply indebted
the authors who sent their papers for inclusion in the Jub
issue, and apologizes for its inability to include all of them
this issue. The articles not included here will be published
the next issue with appropriate dedication.

Editorial Board
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The de Haas–van Alphen~dHvA! oscillation was observed clearly in both the normal and
superconducting mixed states in NbSe2, CeRu2, URu2Si2, and UPd2Al3. The dHvA frequency,
which is proportional to the extremal cross-sectional area of the Fermi surface, does not
change in magnitude between the normal and mixed states. For thef-electron superconductors,
the cyclotron effective mass is found to be reduced and the corresponding Dingle
temperature or scattering rate of the conduction electron increases in the mixed state. An
anisotropic energy gap with a line node for URu2Si2 and UPd2Al3 is discussed from the angular
dependence of the dHvA amplitude in the mixed state. ©1999 American Institute of
Physics.@S1063-777X~99!00208-X#
a
el

si
h
s

.
te
nd

fe
an
o
iu

fo
th
c

te

m
do
m
in
th

um
uc
o

Th

-

e

r-
vA

xed
the

ered
e.
of

e

m-

-
d
lo-
and
le
be-

on

ed
as
1. INTRODUCTION

Under a strong magnetic field the orbital motion of
conduction electron is quantized and forms Landau lev
The de Haas–van Alphen~dHvA! effect, which is caused
when the Landau levels cross the Fermi energy by increa
the magnetic field, is a powerful method for determining t
topology of the Fermi surface, the cyclotron effective ma
mc* and the scattering lifetimet of the conduction electron
This phenomenon was studied in the strongly correla
electron systems of the rare earth and uranium compou
or so-called heavy fermion compounds.1 In fact, the heavy
mass of about 100m0 ~m0 is the rest mass of an electron!
was detected by the dHvA effect in CeRu2Si2

2 and UPt3.
3,4

The heavy fermion state is based on the hybridization ef
between the conduction electrons with a wide energy b
and the almost localizedf-electrons. Especially, the Kond
effect is a basic phenomenon in the cerium and uran
compounds.

The many-body Kondo bound state is understood as
lows. For the simplest case of no orbital degeneracy,
localized spin↑( l ) is compensated by the conduction ele
tron spin polarization↓(c). Consequently the singlet sta
$↑( l )↓(c)1↓( l )↑(c)% is formed with the binding energy
kBTK relative to the magnetic state. Here, the Kondo te
peratureTK is the single energy scale in the simple Kon
problem. In other words, disappearance of the localized
ment is thought to be due to the formation of a sp
compensating cloud of the conduction electrons around
impurity moment.

The Kondo effect occurs independently at each ceri
site even in a lattice system of the cerium compound s
as CeCu6.

1 The ground-state properties of the Kond
lattice system are interesting with respect to magnetism.
5731063-777X/99/25(8–9)/19/$15.00
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electrical resistivityr follows a Fermi-liquid nature ofr
5r01AT2. The AA value is extremely large, which corre
lates with an enhanced Pauli susceptibilityx.x0 and a large
electronic specific heat coefficientg. In other words, the
magnetic specific heat of thef-electrons is changed into th
electronic specific heatgT at low temperatures.

The dHvA effect was studied to clarify the heavy fe
mion state, as mentioned above. To our surprise, the dH
oscillation was observed even in the superconducting mi
state of type II superconductors. The first measurement in
mixed state was done by Graebner and Robbins for a lay
compound NbSe2 by means of a magnetothermal techniqu5

Ōnuki et al.confirmed this oscillation by the measurement
the standard field modulationac susceptibility.6,7

Figure 1 shows the typical dHvA oscillation in both th
normal and mixed states for NbSe2. NbSe2 is a conventional
superconductor with a hexagonal structure. A transition te
peratureTc is 7.2 K and the upper critical fieldHc2 is highly
anisotropic; about 45 kOe for the field along the@0001# di-
rection and 145 kOe for the field perpendicular to@0001#. In

Fig. 1 the field is tilted by 18° from@101̄0# to @0001#, where
Hc2 is about 100 kOe. One dHvA oscillation with a fre
quency of 1.53106 Oe is clearly observed even in the mixe
state. The dHvA frequency, Dingle temperature and cyc
tron mass did not obviously change between the normal
mixed states,6,7 although, it was reported that only the Ding
temperature slightly increases with decreasing the field
low Hc2 .8

Recently we have clearly observed the dHvA oscillati
in f-electron superconductors CeRu2,

9,10 URu2Si2
11 and

UPd2Al3
12 in both the normal and superconducting mix

states. Till now, the dHvA oscillation in the mixed state h
been observed for several compounds such as V3Si,
© 1999 American Institute of Physics
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Nb3Sn,8,13 YNi2B2C
14–16 as well as NbSe2, CeRu2,

URu2Si2
17 and UPd2Al3 mentioned above.

The most important issue for heavy fermion superc
ductors such as UPt3, URu2Si2 and UPd2Al3 is that supercon-
ductivity is realized in the antiferromagnetic state.18 The su-
perconducting properties such as the specific heat and
spin-lattice relaxation rate do not follow the exponential d
pendence ofe2D kBT which is expected from the BCS
theory, but obey the power law ofTn. Here,D is the super-
conducting energy gap andn is an integer. These results a
based on the fact that quasiparticles with heavy masse
10– 100m0 are of an f-electron character, as mentione
above, which originates from the strong Coulomb repuls
between thef-electrons. These quasiparticles condense
Cooper pairs.

When we compare the phonon-mediated attractive in
action to the strong repulsive interaction among
f-electrons, it is theoretically difficult for the former intera
tion to overcome the latter. To avoid a large overlap of
wave functions of the paired particles, the heavy ferm
system would rather choose an anisotropic channel, lik
p-wave spin triplet or ad-wave spin singlet state to form
Cooper pairs. In fact, the heavy fermion superconductor
hibits antiferromagnetic ordering as mentioned abo

FIG. 1. De Haas–van Alphen oscillation in NbSe2.
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Recent neutron scattering experiments clearly indicated
dence for a close relationship between superconductivity
magnetic excitation in UPd2Al3.

19,20 A magnetic excitation
gap, which appears in the inelastic neutron profile belowTc ,
corresponds to the superconducting order parameter.

Figure 2 shows a schematic view of the superconduc
order parameter with thes-, p- andd-wave pairing. The order
parameterC„r … with even parity~s- andd-wave! is symmet-
ric with respect tor , where one electron with the up-spi
state of the Cooper-pair is simply considered to be locate
the center ofC~r !, r50 and the other electron with th
down-spin state is located atr . The width of C(r ) with
respect tor is called the coherence lengthj, as shown in Fig.
2a. UPd2Al3 is considered to be ad-wave superconducto
from the NMR experiments, which is applied to the case
Fig. 2c.21,22 On the other hand,C(r ) with odd parity ~p-
wave! is not symmetric with respect tor , where the parallel
spin state is shown in Fig. 2b. From the NMR and magn
zation experiments,23,24 UPt3 is considered to possess od
parity in symmetry. Parity in URu2Si2 is not clear because
almost all of the NMR-Knight shift was due to the orbit
part, while the contribution of the spin part of the conducti
electron was not detected.25

The dHvA voltageVosc is obtained by the method of 2v
detection of the field modulation;1

Vosc5A sinS 2p
F

H
1w D , ~1!

A}J2~x!TH21/2U]2S

]kH
2 U21/2exp~2amc* TD /H !

sinh~amc* T/H !

3cosS 1

2
pg

mc*

m0
D ,

x52p
Fh

H2 , a5
2p2ckB

e\
,

FIG. 2. Schematic view of the superconducting order parameter with thes-, p- andd-wave pairing.
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where J2(x) is the Bessel function, which depends on t
dHvA frequencyF, the modulation fieldh and the magnetic
field strengthH. The dHvA frequencyF@5(c\/2pe)SF# is
proportional to the extremal~maximum or minimum! cross-
sectional areaSF of the Fermi surface. The quantit
u]2S/]kH

2 u21/2 is the inverse square root of the curvature fa
tor ]2S/]kH

2 , where the rapid change of the cross-sectio
area around the extremal cross-sectional area along the
direction diminishes the dHvA amplitude for this extrem
area. We can determine the cyclotron massmc* from the
temperature dependence of the dHvA amplitudeA, namely,
from the slope of a plot of lnA@12exp(22amc*T/H)#/T vs T
at constantH andh by using a method of successive appro
mations, and we can obtain the Dingle temperatureTD

@5(\/2pkB)t21# or the scattering lifetimet from the field
dependence of the amplitude, namely, from the slope o
plot of ln@AH1/2sinh(amc*T/H)/J2(x)# vs H21 at constant tem-
perature. Here,g is the g-factor of the conduction electron
which is 2 for the free electron.

The dHvA oscillation is detected when the highfield co
dition is satisfied;vct/2p.1, and the spacing between th
Landau levels is larger than the thermal broadeningkBT;
\vc.kBT. If the magnetic fieldH is 100 kOe and the carrie
possesses a cyclotron mass of 10m0 , the following condi-
tions for the temperature and the scattering lifetime are
quired: T,1.3 K and t.3.6310211s or TD,0.03 K. A
temperature of 0.4 K can be attained in the3He-cryostat and
much lower temperatures are also obtainable in a dilu
refrigerator. The typical Dingle temperature of a high-qual
sample in thef-electron system is about 0.1 K, and thus fie
higher than 100 kOe are necessary to detect the dHvA
plitude of the heavy conduction electron.

We have continued growing high-quality single crysta
of f-electron superconductors such as CeRu2, URu2Si2 and
UPd2Al3, and extended our investigations on the dHvA e
periments. The dHvA oscillation for these compounds h
been observed in both the normal and superconduc
mixed states. The field dependence of the cyclotron mass
the Dingle temperature in the mixed state is clarified in t
paper. An anisotropic energy gap with a line node is a
discussed on the basis of the angular dependence of
dHvA amplitude in the mixed state.

2. THEORETICAL

Maki,26 Wasserman and Springford,27 Dukan and
Tešanović28 Vavilov and Mineev29 and Gor’kov and
Schrieffer30 have discussed theoretically the dHvA oscill
tion in the mixed state on the basis of the quasiparticles
magnetic fields. They claim that the dHvA frequency is u
changed from the normal state, but the amplitude is redu
by an additional quasiparticle scattering rate or the Din
temperature, depending on the field and temperature. T
characteristic features have been confirmed by the resul
experiments for those compounds mentioned above.

For example, we have confirmed for CeRu2, URu2Si2
and UPd2Al3 that the dHvA frequency is unchanged and t
following simple relation holds between the Dingle tempe
ture in the mixed stateT̃D and the one in the normal sta
-
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TD :T̃D5TD1DTD , where DTD is the additional Dingle
temperature in the mixed state.10 Moreover, the mass is
found to decrease with decreasing field belowHc2 . No re-
port on the change of the mass has been done for the o
superconductors. The change in the mass might be foun
the highly correlated electron systems because CeR2,
URu2Si2 and UPd2Al3 are f-electron superconductors wit
large effective masses. Experimentally, the dHvA oscillat
in the mixed state can be most likely detected for any sup
conductor if its upper critical fieldHc2 is large enough, for
example, more than about 30 kOe, and the single crysta
sample is of high quality. We shall explain briefly the reas
why the dHvA oscillation is observed in the mixed sta
considering a conventional superconductor of CeRu2 with a
cubic structure.

When the field is applied in a normal-state metal, t
quasi-continuum momentum energy of the conduction e
trons with up- and down-spin states is changed into the
crete energy levels, the so-called Landau levels. The dH
oscillation is caused when the Landau levels cross the Fe
energy by increasing the field. Two scenarios might exis
explain the dHvA effect in the mixed state, where the dHv
oscillation is caused either by quasiparticles or by
Cooper-pair electrons. It is not certain whether each elec
in the Cooper-pair could be quantized in energy by fiel
while remaining the Cooper-pair with (k,↑) and (2k,↓) at
0 K. On the other hand, the de-paired electrons due to m
netic fields, namely, the quasiparticles could be quanti
into Landau levels as in the usual normal-state metal.
shall discuss the latter case.10

There exist three reduction factors in the dHvA oscil
tion. One is an inhomogeneous field due to vortices. T
second is the electron scattering at the boundary between
normal region and the superconducting one, called the
dreev reflection. The last is the field dependence of the
rier concentration of the quasiparticles.

We shall examine the mixed state based on
Ginzburg–Landau~GL! theory. The order parameterC(r )
and the microscopic magnetic fieldh(r )5¹3A(r ) in the
mixed state are determined by solving the GL equations
C(r ) andA„r ….31 We rewrite the GL equations in terms o
c(r )5uC„r …u andh(r ) as

2j2¹2c~r !1
l2

2Ḣc
2
S ¹h~r !

c2~r !
D 2

c~r !2c~r !1c3~r !50,

~2!

2l2¹•S ¹h~r !

c2~r ! D1h~r !5F0(
n

d~r2rn!, ~3!

wherern is the position of the vortex center,Hc is the ther-
modynamic critical field,F0 is the fluxoid,j is the coher-
ence length,l is the penetration depth. Applying the boun
ary conditionc(rn)50 at the vortex center and the period
boundary condition at the boundary of the unit cell of t
vortex lattice, we solve Eqs.~2! and ~3! numerically for
k5l/j525, self-consistently by the relaxation method a
considering CeRu2.
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We show in Fig. 3 the spatial dependence of the or
parameterc(r ) or uC(r )u, wherej is the coherence length o
79 Å. At a low field of H/Hc250.1, the vortices are sepa
rated enough and the order parameter between vortice
near to unity. On the other hand, at a high field ofH/Hc2

50.7, vortices are numerous and the order parameter
creases almost by half. In the latter high field condition,
quasiparticles could circulate the cyclotron orbits in re
space. Figure 4 shows a schematic Abrikosov lattice of
vortices and the cyclotron orbits atH/Hc250.7. Each vortex
with a diameter of 2j(5158 Å) is separated by 255 Å a
H/Hc250.7. The corresponding cyclotron orbits in re
space are illustrated for branches«1,2,3, d anda with diam-
eters of 1720, 3950 and 9440 Å, respectively, for CeRu2.

FIG. 3. Spatial dependence of the order parameteruC(r )u at several fields.

FIG. 4. Schematic Abrikosov lattice of the vortices and the cyclotron or
at H/Hc250.7 in CeRu2.
r
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e-
e
l
e

The quasiparticles have to tunnel into the supercond
ing region in order to complete the cyclotron motion, whi
is prevented by the so-called Andreev reflection at a l
field of H/Hc250.1. The high field condition, for example
H/Hc2.0.1 is necessary to complete the cyclotron motio
as mentioned above. Experimentally, the lowest fields to
tect the dHvA oscillation in the mixed state are 0.6Hc2 for
V3Si,8 0.2Hc2 for YNi2B2C,14 0.4Hc2 for branch«1,2,3 for
CeRu2,

10 0.4Hc2 for URu2Si2
11 and 0.7Hc2 for UPd2Al3.

12

Next we discuss inhomogeneity of the magnetic fie
dh(r ) defined by dh(r )5h(r )2H. Figure 5 shows the
spatial inhomogeneity of the magnetic field in the superc
ductor at H/Hc250.3, 0.5, 0.7 and 0.9. Inhomogeneo
fields at H/Hc250.3, 0.5, 0.7 and 0.9 are 35, 23, 13 a
4 Oe, respectively. The fieldH is shown by a horizonta
dotted line in Fig. 5.

We note that a field interval for one cycle of the dHv
oscillation is 1880 Oe for branch«, 340 Oe ford and 60 Oe
for a at H50.7Hc2(537 kOe). If this inhomogeneous fiel
is directly related to the dHvA oscillation, the oscillation o
brancha will be reduced in amplitude. This inhomogeneo
field might not reduce the dHvA amplitude directly if th
vortices formed a regular lattice.

An additional effective scattering rate in the mixed sta
dt21 is estimated by the uncertainty principle ofdt21

'vFdkF , where dkF is variation in radius of the orbit
cutting the same flux andvF is Fermi velocity.13 The area of
the cyclotron orbitA is changed intoA1dA by the inhomo-
geneity of the fielddh:

A1dA5pS m* vFc

e~H1dh! D
2

5pS m* vFc

eH D 2

22pS m* vFc

eH D 2 dh

H
5pr 222pr 2

dh

H
, ~4!s

FIG. 5. Spatial variation of the magnetic field in CeRu2.
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where r is the radius of the cyclotron orbit. By usingdA
52prdr , we can get the following relation:

2pr 2dh

H
52prdr or dr 5r

dh

H
. ~5!

Therefore, the final relation is obtained from Eq.~5!.

dkF5S eH

c\ D dr'
redh

c\
. ~6!

From the calculated values ofdh mentioned above and Eq
~6!, dt21 for H/Hc250.7 is estimated to be of the order o
108 s21 for branchesa, d1 and«1,2,3. This value correspond
to a small value ofdTD , being of the order of 1022 K.
Inhomogeneity in the field is thus a minor reduction facto

Using Maki’s theory26, we shall explain the change i
the Dingle temperature and the mass in the mixed state.
Dingle temperature in the mixed stateT̃D was given as the
imaginary part of the self-energy for the quasiparticles in
mixed state close toHc2 :

T̃D5TD1DTD , ~7!

DTD5
D2~H,T!

ApkBa
, ~8!

a5vFA2e\H/c, ~9!

D2~H,T!5D2~T!~12H/Hc2!, ~10!

whereTD is the Dingle temperature in the normal state,DTD

is an additional one,vF is Fermi velocity which is given as
A2e\F/c/mc* , andD(T) is the temperature-dependent BC
energy gap in zero field.

The effective mass of the quasiparticles in the mix
statem̃c* was not given theoretically by Maki. We have ca
culated it by using the following formula:32

m̃c* 5mc* F12](R~j,v!/]v

11](R~j,v!/]j G
j50,v50

, ~11!

where (R(j,v) is the real part of the self-energy for th
quasiparticles in the mixed state, andj andmc* are the qua-
siparticle’s energy measured relative to the Fermi energy
the effective mass in the normal state, respectively. The
ergy v is also measured relative to the Fermi energy a
thereforev50 corresponds to the Fermi energy. Using t
self-energy derived by Brandtet al.,33

(~j,v!5D2~H,T!E
2`

` du

Ap

e2u2

v1 id1j2au
, ~12!

we obtain the cyclotron effective mass in the mixed statem̃c*
as

m̃c* 5mc*
122~D~H,T!/a!2

112~D~H,T!/a!2 .mc*
1

114~D~H,T!/a!2 .

~13!

A Maki’s theory is based on a mixed state self-ener
calculated by Brandtet al.33 They clarified the spatially av
eraged density of states of type II superconductors in fie
Figure 6 shows the energy dependence of the densit
he
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statesDs(v) in the pure limit, which was calculated b
Brandt et al. As mentioned above, the energy atv50 cor-
responds to the Fermi energy.Ds(v) in the energy range o
v/D050 to 1 is zero at zero field but increases with incre
ing the field, reaching anv-independent value ofD0 at Hc2 .

The density of states is found to vary from the ‘‘ga
less’’ state to the BCS type as the angleu changes fromp/2
to zero. Figure 7 shows the field dependence of the den
of states at the Fermi energy (v50) in the mixed state for
several angles. Here, the angleu is the polar angle of the
quasiparticle momentump with respect to the direction o

FIG. 6. Energy dependence of the density of statesDs(v)/D0 in the pure
limit.

FIG. 7. Field dependence of the density of states in the mixed state
several polar angles.
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FIG. 8. Schematic superconducting energy gap inH/Hc250 and 0.7.
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the magnetic field, as shown in an inset of Fig. 7. The Mak
theory corresponds to theu5p/2 case becausea in Eq. ~9!
is changed intoa5vF sinuA2e\H/c for the angleu. Ds(v)
in Fig. 6 is also the total density of states, namely, an aver
over the angleu of 0 to p/2.

Ds(v50,u) in fields possesses a finite value for a
angle exceptu50, corresponding to the gapless state m
tioned above. In particular,Ds(v50,u5p/2)/D0 is 0.85 at
0.7Hc2 or 37 kOe in CeRu2. The angleu5p/2 corresponds
to a maximum area of the spherical Fermi surfaceSF in the
dHvA oscillation, as schematically shown in Fig. 8. This
the reason why the dHvA oscillation can be detected in
mixed state.

Finally, we discuss the local density of states. The lo
density of states for the quasiparticles propagating in the
rection of vF5vF(sinu cosw,sinu sinw,cosu), where w is
the azimuthal angle in the plane perpendicular to the m
netic, field, is calculated by the formula

Ds~r ;u,w;v!52
1

p
D0(

i
E

2`

`

djp Im@Gv~p,K i !#e
iK i r,

~14!

whereGv(p,K i) are the quasiparticle Green’s functions c
culated from the Gor’kov equation andK i are the reciproca
lattice vectors of the vortex lattice. Assuming the Abrikos
solution for the order parameter, we can solve the Gor’k
equation numerically forGv(p,K i).

The density of states averaged, overr, u andw may be
calculated by using the Green’s function withK50 alone, as
done by Brandtet al. However, in order to calculate the sp
tial variation of the density of states in the mixed state, it
crucial to incorporate Green’s functions withKÞ0. Thus we
take into account the reciprocal lattice vectors ofK050 and
60 vectors (K1 ,...,K60) surroundingK0 and calculate the
Green’s functions with theK1’s.
s
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In relation with the dHvA effect, we are interested in th
quasiparticles propagating in the plane perpendicular
H(u5p/2), particularly along the line connecting the neig
boring vortices where the direction of the line is chosen to
w50. In Fig. 9 we show the local density of states at t
Fermi levelDs(r ;p,0;0) for H/Hc250.5, 0.7 and 0.9. The

FIG. 9. Local density of states for the quasiparticles along the direc
connecting the neighboring vortices.



579Low Temp. Phys. 25 (8–9), August–September 1999 Y. Inada and Y. Ōnuki
FIG. 10. Schematic superconducting energy gap with a nodal line~a! and ~b!. The nodal line exists along the equator~a! in the cross-section of~b!. In ~c!,
there exist two nodal line crossing poles.
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densities of states forH/Hc250.5, 0.7 and 0.9 are close t
the value in the normal state and their modulation is rat
small. Unexpectedly, in the intermediate fields ofH/Hc2

50.5 and 0.7, the density of states is enhanced comparin
that at 0 K in the normal state, indicating the suppression
Ds(r ;p/2,w;0) in other directions. This enhancement pe
sists down to;0.2Hc2 . This is the reason why the dHvA
effect is observed even at low fields of 0.2Hc2 as in
YNi2B2C.

As mentioned in Sec. 1, the NMR and specific heat
periments predict the anisotropic energy gap with a no
line in uranium-based heavy fermion superconductors s
as URu2Si2 and UPd2Al3. They are unconventional supe
conductors. Figure 10 shows an energy gap with a nodal
of a so-called polar type. As mentioned above,SF is the
extremal area of cross-section of the Fermi surface by pla
perpendicular to the field direction. IfSF corresponds to the
maximum cross-section with the nodal line~polar type!
shown in Fig. 10a and 10b, it is not easy to distinguish
perimentally the nodal line in the anisotropic energy g

FIG. 11. Crystal structure of CeRu2.
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from the gapless state based on the pair-breaking by appl
the magnetic fields. In this case, it is necessary to deviateSF

from the cross-section with the nodal line by tilting the fie
direction. It is thus a challenging study to detect the no
line in the anisotropic energy gap for URu2Si2 and UPd2Al3

via the dHvA oscillation in the mixed state.

3. EXPERIMENTAL RESULTS AND DISCUSSION

3.1. CeRu2

A single crystals of CeRu2 with the cubic Laves-phase
structure was grown by the Czochralski method in a tetra-
furnace. Figure 11 shows the crystal structure of CeRu2. An
as-grown ingot of 3–4 mm in diameter and 60 mm in leng
was annealed at 700–800 °C under vacuum of 10210Torr by
means of the electro-transport method. Figure 12 shows
temperature dependence of the electrical resistivity. T
residual resistivityr0 was estimated as 0.6mV•cm by using
a Fermi-liquid formula r5r01AT2 and the residual

FIG. 12. Electrical resistivity of CeRu2.
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TABLE I. Superconducting properties of CeRu2, URu2Si2 and UPd2Al3.

Tc ,K
Hc2 ,
kOe

Hc ,
kOe

Hc1 ,
kOe j, Å l, Å k

CeRu2 6.2 52.3 1.49 0.175 79.3 1980 25
URu2Si2 Hi@100# 1.3–1.5 130 0.8 0.033 64 4600 70

Hi@001# 30
UPd2Al3 Hi@0001# 2 37 0.49 0.1 85 4000 47

Hi@112̄0# 32
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resistivity ratio rRT /r0 was 270, indicating a high-quality
sample. Superconductivity occurred belowTc56.4 K.

CeRu2 is a conventional type II-superconductor becau
the coherence peak atTc is clearly observed in the NMR
experiment,34 and the spin-lattice relaxation rate in NMR an
the specific heat follow an exponential law in the tempe
ture dependence.35 The superconducting properties are su
marized in Table I. Values of the upper critical field
0 K Hc2(0), thermodynamic critical fieldHc(0) and lower
critical field Hc1(0) shown in Table I have been determin
directly from the specific heat and magnetization expe
ments.35 The other physical values are estimated from
conventional relationsHc25F0/2pj2, k5l/j and Hc2

5k&Hc .
Figure 13a shows the dHvA oscillation for the fie

along ^111& at 0.47 K. The dHvA oscillation is observed i
both the normal and superconducting mixed states; altho
it is not observed nearHc2 of about 50 kOe because of th
so-called peak effect.36 The fast Fourier transform~FFT!
spectra in Fig. 13b indicate that for two branches, denoted
«1,2,3 and d1 , the detected dHvA frequencies are the sa

FIG. 13. Typical dHvA oscillation of CeRu2 ~a! and the corresponding FFT
spectra in both the normal and superconducting mixed states~b!
e
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i-
e

gh
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e

between the normal and mixed states. The similar dHvA
cillations are obtained for any field direction. For examp
brancha is observed for the field alonĝ100& in both the
normal and mixed states.

Figure 14 shows the angular dependence of the dH
frequency. The data denoted by large circles indicate c
and large signals, while those denoted by small circles do
indicate harmonics or sums and differences of the fundam
tal dHvA frequencies but signals of small amplitudes. Th
solid lines are guidelines, while thick solid lines show t
corresponding result of band calculations. Figure 15 in
cates the Fermi surfaces based on the relativistic lin
augmented-plane-wave~RLAPW! calculations under the as
sumption that 4f electrons are itinerant. The dHvA data a
in good agreement with the result of band calculations.

Next we have determined the cyclotron massmc* from
the temperature dependence of the dHvA amplitude, nam
from a so-called mass plot. We show in Table II the dHv

FIG. 14. Angular dependence of dHvA branches in CeRu2. The data shown
with large circles possess large magnitudes in FFT spectra, while t
shown with small circles indicate small ones. Thin solid lines are guidelin
while thick solid lines are the result of band calculations.
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frequency and the corresponding mass for the typical fi
directions in the normal state.

We have also determined the cyclotron mass by
cycles of the dHvA oscillation in the mixed state. The fie
dependence of the cyclotron mass for branchesa, d1 and
«1,2,3 is shown in Fig. 16a. The cyclotron mass gradua
decreases belowHc2 . It is interesting that the ratio of the
cyclotron mass in the mixed statem̃c* to that in the normal
statemc* shows a similar field dependence in the mixed st
for three branches, as shown in Fig. 16b. Here the solid
indicates the theoretical curve of Eq.~13!, where 2D(T
50)/kBTc53.7 and Fermi velocityvF59.13106 cm/s are
used in calculations for the branch«1,2,3. The value of

FIG. 15. Fermi surfaces of 19th band-hole, 20th band-hole, 21st b
electron and 22nd band-electron in CeRu2.
ld

x

e
e

2D(T50)/kBTc53.7 was obtained from the specific he
measurement for the same sample.35 The theoretical curve is
highly different from the experimental data.

A similar field dependence is also observed for t
Dingle temperatureTD . TD in the normal state has bee
determined from the field dependence of the dHvA amp
tude at constant temperatures of 0.5 K and 30 mK, nam
from a so-called Dingle plot. Figure 17a shows the field d
pendence of the Dingle temperature for three branches.
differenceDTD5T̃D2TD between the Dingle temperatur
T̃D in the mixed state and the Dingle temperatureTD in the
normal state is also shown in Fig. 17b. Here we note that
‘‘Dingle plot’’ to determine TD is not valid for the presen
dHvA oscillation in the mixed state because bothmc* andTD

depend on the field in the mixed state. We have determi
the Dingle temperature so as to fit the dHvA amplitude f
lowing the Lifshitz–Kosevich formula under the assumpti
that the cyclotron mass in the mixed state decreases line
with decreasing the field as shown in Fig. 16a. As shown

d-

FIG. 16. Field dependence of the cyclotron mass for three branches:mc* ~a!
andm̃c* /mc* ~b! in CeRu2.
l field
TABLE II. The de Haas–van Alphen frequency and the corresponding cyclotron mass for the typica
direction in CeRu2. The angle of 42° means the field direction tilted by 42° from^100& to ^110& in ^110&.

Experimental Theoretical

Branch F, 106 Oe mc* ,m0 TD , K l, Å Band F, 106 Oe mb ,m0

Hi^100& b 65.8 7.61 20 64.6 0.22
a 22.6 2.64 0.57 2450 20 19.7 0.76

d1,2 6.38 4.39 20 6.38 1.97
«1,2 0.84 0.71 22 0.69 0.31
«3 0.63 0.55 22 0.46 0.20

^111& d1 3.97 1.56 0.5 1980 20 3.16 0.50
«1,2,3 0.75 0.61 0.45 2450 22 0.57 0.26

^110& d1,2 4.60 1.90 20 4.13 0.68
42° g 36.8 8.20 20 58.3 4.30
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Fig. 17b. DTD increases with decreasing the field belo
Hc2 .

We have measured the sample dependence of the D
temperature to study the additional damping term in
mixed state for branch«1,2,3, as shown in Fig. 18. Five
samples of different quality were used in the experimen
The Dingle temperature in the mixed stateT̃D depended on

FIG. 17. Field dependence of the Dingle temperature for three branchesTD

~a! andDTD ~b! in CeRu2.

FIG. 18. Field dependence of the Dingle temperature for branch«1,2,3 in five
different samples of CeRu2; TD ~a! andDTD ~b!.
le
e

s.

the magnetic field. A following simple relation holds be
tween the Dingle temperature in the mixed stateT̃D and that
in the normal TD ; T̃D5TD1DTD , where DTD is an
additional Dingle temperature in the mixed state. That is,
value ofDTD shows approximately the similar field depe
dence for five samples. The solid lines in Figs. 17b and 1
represent the theoretical result of Eq.~7! for branch«1,2,3.
The theoretical curve is approximately consistent with
experimental one.

3.2. URu2Si2

Among the uranium intermetallic compounds, URu2Si2
and UPd2Al3 are fascinating magnetic superconductors. Th
are classified as the heavy fermion compounds. Quasip
cles with a heavy mass of 10– 100m0 are of anf-electron
character, condensing into Cooper pairs. Superconduct
is realized in the antiferromagnetic state. The ordered sta
URu2Si2 is, however, anomalous because of an unusu
small moment of 0.03mB /U.37 On the other hand, UPd2Al3

has a relatively large moment of 0.85mB /U.38

In the Ce-based heavy fermion compound such
CeRu2Si2, the magnetic susceptibilityx increases with de-
creasing the temperature, following the Curie-Weiss l
with the effective moment of Ce31, and possesses a max
mum at a characteristic temperatureTx max. The magnetic
susceptibility becomes thus constant at lower temperatu
indicating enhanced Pauli paramagnetism, as shown in
19. This large susceptibility is correlated with the large ma
The temperatureTx max approximately corresponds to th
Kondo temperatureTK .

FIG. 19. Temperature dependence of the magnetic susceptibility for Ce
U compounds.
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A similar behavior is observed in URu2Si2
and UPd2Al3. The susceptibility for the field along@001#
in URu2Si2 and for @112̄0# in UPd2Al3 increases with
decreasing the temperature, following the Curie–Weiss l
and has a maximum atTx max.55 K in URu2Si2 and 35 K in
UPd2Al3. At lower temperatures both compounds order a
tiferromagnetically.

Figure 20 shows the tetragonal crystal structure
URu2Si2, where arrows indicate the directions of the antife
romagnetic moments. The phase diagrams is shown in
21. The metamagnetic transition occurs at about 400 k
This transition with three steps is sharp when observed
low the Néel temperatureTN517.5 K, and become broa
aboveTN , changing into one step in the metamagnetic tr
sition. The transition field slightly increases with increasi
the temperature.39 A temperature dependence of the Ne´el
temperature in the magnetic field is also shown by a do
line in Fig. 21.40 This phase boundary is not directly relate

FIG. 20. Crystal structure of URu2Si2. Arrows show the directions of the
antiferromagnetic moments.

FIG. 21. Phase diagram of URu2Si2.
,
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to the observed metamagnetic transition, although the m
magnetic transition itself is closely related to the antifer
magnetic ordering. In the phase diagram, S.C. denotes
superconducting state.

Transport, thermal and magnetic data indicate that
magnetic order below 17.5 K opens a gap on a large par
the Fermi surface. The corresponding electronic specific h
coefficientg is changed from 110 to 64 mJ/~K2

•mol! through
this transition, indicating that about 40% of the Fermi su
face is removed after this transition.41 Superconductivity oc-
curs below the critical temperatureTc51.4 K in the antifer-
romagnetic state.Hc2(0) at 0 K ishighly anisotropic, being
about 130 kOe for the field along@100# ~a-axis! and about 30
kOe for@001# ~c-axis!.42,43BelowTc the specific heat and th
spin-lattice relaxation rate followT2- and T3-dependences
respectively.43,44 These results claim a line node in the s
perconducting energy gap. Superconducting properties
summarized in Table I.43,45

A single crystal of URu2Si2 was grown by the
Czochralski method in a tetra-arc furnace. The starting m
terial of U was purified by the electro-transport method
high vacuum of 10210Torr. See the details in Ref. 46. A
ingot of 3–4 mm in diameter and 80 mm in length w
purified again by the electro-transport method in hi
vacuum of 1 – 10211Torr, for one week.

First we show in Fig. 22 the temperature dependence
the electrical resistivity in the currentJ along the @010#
direction. The resistivity has a peak at about 17 K, wh
corresponds to the Ne´el temperature, and decreases stee
with decreasing the temperature. The overall behavior of
temperature dependence of the resistivity is shown in an
set of Fig. 22. The resistivity increases with decreasing
temperature and shows a characteristic peak around 7
similar as that in heavy fermion compounds CeCu2Si2 and
CeCu6.

47

As shown in Fig. 22, the resistivity become zero belo

FIG. 22. Temperature dependence of the electrical resistivity in URu2Si2.
The inset shows the overall behavior of the resistivity.
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1.5 K. The residual resistivity extrapolated to 0 K,r0 and the
residual resistivity ratio~RRR!, rRT /r0 are 1.27mV•cm and
255, respectively. This sample is, as far as we know, the
sample.

Next we have determined the upper critical fieldHc2

from the electrical resistivity data in the magnetic fie
Figure 23 shows the angular dependence of the upper cri
field at 40 mK. The solid line is a theoretical curve based
the formula:43

Hc2~u!5
Hc2~Hi@100# !

~cos2 u1k2 sin2 u!1/2, ~15!

where Hc2(Hi@100#) is 130 kOe and k
@5Hc2(Hi@100#)/Hc2(Hi@001#)#54.5. Hc2 is highly an-
isotropic, which is due to the paramagnetic effect, reflect
the anisotropic magnetic susceptibility. We also show in F
24 the temperature dependence ofHc2 for fields along@100#
and @001#. These data are almost the same as the prev
results.43

We show in Fig. 25 the typical dHvA oscillation in bot
the normal and mixed states and the corresponding
spectra for a tilt angleu58.1° in the field range from 40 to
150 kOe at 35 mK. The magnetic field direction was tilted
u from @100# to @001#. One dHvA branch nameda is clearly
observed in both the normal and mixed states. In other di
tions, another branches namedb and g are detected in the
normal state, although their amplitudes are small.

Figure 26 shows the angular dependence of the dH
frequencyF. Brancha is almost constant as a function of th
field tilt angleu, indicating that the Fermi surface is sphe
cal. In the~001! plane, brancha is four-fold split. The reason
of this splitting is not clear. The Fermi surface might
corrugated, possessing maxima and minima in cross-sec

Branchesb and g are not observed in the whole fiel
angle. According to the previous report by Kelleret al.,48

FIG. 23. Angular dependence ofHc2 at 40 mK in URu2Si2.
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similar branches have been observed. Branchesb andg were
also observed by Kelleret al. at some field angles in the
~001! and~010! planes. From these dHvA and also the ma
netoresistance results,11 we conclude that three branches re
resent closed Fermi surfaces.

When we compare the dHvA result with the result
band calculations in an itinerant 5f -band model shown in
Fig. 27, branchesa, b and g might correspond to the ban
17-hole, 19-electron centered atX and 20-electron Fermi sur
faces, respectively, in magnitude, althoughg is different
from the theoretical one in the angular dependence. Th
Fermi surface are small in volume. Much larger Fermi s

FIG. 24. Temperature dependence ofHc2 for fields along@100# and@001# in
URu2Si2.

FIG. 25. DHvA oscillation and the corresponding FFT spectrum for a
angleu58.1° in URu2Si2.
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faces of bands 18-hole and 19-electron have not been
served experimentally. If we assume that these larger Fe
surfaces disappear completely below the ordering temp
ture, this change of the Fermi surface is inconsistent with
reduction of the electronic specific heat coefficient.41 There
should exist other remaining Fermi surfaces not observe
our experiment because URu2Si2 is a compensated meta
with equal numbers of electrons and holes from the resul
the magnetoresistance, and then the hole Fermi surfac
brancha does not compensate with the electron Fermi s
faces of branchesb andg in volume.

Next, we have determined the cyclotron mass from
temperature dependence of the dHvA amplitude, and
Dingle temperature from the field dependence of the dH
amplitude for the field along@001#. All branches are heavy
The cyclotron masses are 13m0 for brancha, 25m0 for b
and 8.2m0 for g. It is surprising that a small Fermi surface
branchb possesses such a large cyclotron mass. The Di
temperature is small, 0.035 K for brancha, 0.045 K for b
and 0.11 K forg, indicating a high-quality sample. We hav
determined the mean free pathl from the relation of
SF5pkF

2, \kF5mc* vF and l 5vFt, wherevF is Fermi ve-
locity and kF is half of the caliper dimension of the Ferm

FIG. 26. Angular dependence of the dHvA frequency in URu2Si2.
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surface. Thel-value is large. 5500 Å for brancha, 1400 Å
for b and 1200 Å forg. These values are by one order larg
than the coherence lengthj, indicating that superconductiv
ity is close to the pure limit. These Fermi surface propert
are summarized in Table III.

We show in Fig. 28a the typical dHvA oscillation for th
field along@001#. Hc2 is about 29 kOe. The dHvA oscillation
nameda is observed in the mixed state down to about
kOe. Figure 28b shows the field dependence of the cyclo
mass. We determined the mass from the temperature de
dence of the dHvA amplitude over seven cycles of the os
lation. The cyclotron mass is constant aboveHc2 , but de-
creases gradually with decreasing the field belowHc2 . The
mass is not correctly determined in the field range from 25
28 kOe because this is a region of the so-called peak eff

A similar field dependence is also observed for t
Dingle temperatureTD , as shown in Fig. 28c.TD was deter-
mined directly from the dHvA amplitude by using the ma
in Fig. 28b. The Dingle temperature in the mixed state
creases with decreasing field belowHc2 . Solid lines in

FIG. 27. Fermi surfaces for URu2Si2 in the paramagnetic state. The ban
17-hole centered at theZ point ~a!, the band 18-hole at theZ point ~b!, the
band 19-electrons at theG andX points ~c! and the band 20-electron at th
G point ~d!.
TABLE III. The de Haas–van Alphen frequencyF, the cyclotron effective massmc* , the band massmb . the
Dingle temperatureTD and the mean free pathl in URu2Si2.

Experimental Theoretical

Hi@001# F, 106 Oe mc* ,m0 TD , K l, Å F, 106 Oe mb ,m0

a 10.5 13 0.035 5500 band 17~Z! 18.5 1.62
band 18~Z! 36.8 2.72
band 19~G! 62.9 8.02

b 4.2 25 0.045 1400 band 19~X! 4.6 3.20
g 1.9 8.2 0.11 1200 band 20~G! 0.3 0.25



ca
n-
s

t

co
a
v

a
ne

ld

v
is

pl
d
6

le
th
to
pic
k

wn
8c.
w

o
e

wn
h
the

at-

ents
e

586 Low Temp. Phys. 25 (8–9), August–September 1999 Y. Inada and Y. Ōnuki
Fig. 28b and 28c are theoretical curves of Eqs.~13! and ~7!
for brancha, where a BCS relation of 2D/kBTc53.54 and
vF51.63106 cm/s were used in calculations. The theoreti
curve forTD is approximately consistent with the experime
tal one, while the theoretical field dependence of the mas
highly different from the experimental one, as in CeRu2.

An interesting point in URu2Si2 is an anisotropic energy
gap because the existence of the line node is clear from
specific heat43 and the nuclear spin-lattice relaxation rate44

experiments. It was discussed theoretically that the super
ducting gap disappears as a line node on the Fermi surf
for momenta perpendicular to the antiferromagnetic wa
vector parallel to the@001# direction, as shown in Fig. 10
and 10b.49 We have tried to determine the position of the li
node on the Fermi surface via the dHvA experiment.

Figure 29 shows the dHvA oscillation for several fie
directions. The tilt angleu is the field angle from@100# to
@001#, as defined above. No appreciable change of the dH
oscillation has been found for any field, when the field
tilted from @001# to @100#.

In Fig. 30 the angular dependences of the dHvA am
tudes in both the normal and mixed states are represente
circles and squares, respectively. Effective fields are 4
kOe in the normal state and 23.7 kOe (.0.8Hc2) in the
mixed state. The amplitude reduction for several field ang
is due to the zero spin-splitting. This is reflected even in
mixed state. This result shows clearly that it is difficult
distinguish experimentally the nodal line in the anisotro
energy gap from the gapless state based on the pair-brea

FIG. 28. DHvA oscillation at 29 mK for@001# ~a!, field dependences of the
cyclotron mass~b! and the Dingle temperature~c! in URu2Si2.
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in the magnetic field. The former effect schematically sho
in Fig. 10a and 10b is compared to the latter one in Fig.
If the dHvA oscillation is found in the mixed state far belo
Hc2 , the former should be distinguished from the latter.

The dHvA oscillation is observed in fields down t
30–40 kOe in the~001! plane. No appreciable change of th
dHvA oscillation for any field direction in the~001! plane
was found. This result also implies that a line node, as sho
in Fig. 10c, does not exist and/or it is difficult to distinguis
experimentally the line node with the gapless state, as in
~010! plane.

3.3. UPd2Al3

UPd2Al3 with the hexagonal structure is also a fascin
ing magnetic superconductor.50 Superconductivity with the
transition temperatureTc.2 K is realized in the antiferro-
magnetic state with the Ne´el temperatureTN514 K. Neutron
scattering measurements revealed that the magnetic mom
of 0.85mB /U are ferromagnetically oriented along th

FIG. 29. DHvA oscillations for several tilt angles in the~010! plane for
URu2Si2.
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@112̄0# direction but are coupled antiferromagnetically alo
the @0001# direction with the wave vectorQ5(0,0,0.5),38 as
shown in Fig. 31. Superconducting properties are sum
rized in Table I.

The high-field magnetization indicates a sharp metam
netic transition at about 180 kOe belowTN514 K. It be-
comes, however, broad aboveTN . This metamagnetic tran
sition occurs for the field parallel to the basal plan

FIG. 30. Angular dependence of the dHvA amplitude in both the nor
and mixed states for brancha in URu2Si2.

FIG. 31. Crystal structure of UPd2Al3. Arrows indicate the directions of the
antiferromagnetic moments.
a-

g-

,

indicating a XY-type in character, which is compared to
Ising type along@001# in URu2Si2.

Figure 32 shows the phase diagram. The metamagn
transition is found aboveTN , up to the characteristic tem
perature,Tx max535 K. This means that this transition is no
related to the antiferromagnetic ordering but to a change
the 5f -electron character as in URu2Si2. We note that the
ordered state, which is shown by a dotted line in Fig. 32
closely related to the sharpness of the metamagnetic tra
tion. In the phase diagram, S.C. denotes the supercondu
state.

Figure 33 shows the temperature dependence of the e

l

FIG. 32. Phase diagram of UPd2Al3.

FIG. 33. Temperature dependence of the electrical resistivity of UPd2Al3.
The inset shows the resistivity from room temperature to 1.5 K.
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trical resistivityr. Overall features are the same as the p
viously reported ones.50 As seen in an inset of Fig. 33, w
observed a Kondo-like logarithmic-temperature depende
from room temperature to about 100 K, a sharp decre
below TN514 K and finally a superconducting transition
Tc51.9 K. The residual resistivity extrapolated to 0 K,r0 ,
as shown by a dotted line in Fig. 33, and the residual re
tivity ratio rRT /r0 are 1.40mV•cm and 104, respectively
These are the best values as far as we know. The pre
single crystal was grown by the Czochralski method in
tetra-arc furnace, as described in Ref. 51 in detail.

Figure 34 shows the typical dHvA oscillation and th
corresponding FFT spectrum for the magnetic field along
@0001# direction. Magnetic fields used in the FFT spectra
in the ranges from 60 to 120 kOe in Fig. 34b and from 138
169 kOe in Fig. 34c. Figure 35 shows the angular dep
dence of the dHvA frequency.

Almost all of the branches labeleda, b, g, d and«3 are
the same as the previous dHvA results obtained by In
et al.52 According to the previous result of ban
calculations,53,54where 5f electrons were treated as itinera
electrons and brought about the antiferromagnetic momen
0.85mB /U, branches«2 , «3 , d and z are due to a
band•69&70-hole Fermi surface called ‘‘party hat,
branchesb andg correspond to the maximum and minimu
cross-sectional areas of a band 71&72-electron Fermi sur
called ‘‘column,’’ brancha is due to an ellipsoidal band
71&72-electron Fermi surface called ‘‘cigar’’ and branchh

FIG. 34. DHvA oscillation and the corresponding FFT spectra for the fi
along @0001# in UPd2Al3.
-

ce
se

s-

ent
a

e
e
o
-

a

of

ce

is due to a band 73&74-electron Fermi surface nam
‘‘egg,’’ as shown in Fig. 36. In the hexagonal symmetr
branches«2 and «3 have the same cross-section, but th
have different cross-sections, reflecting the magnetic m
ment oriented along@112̄0#.53,54

We have determined the values of the cyclotron m
and the Dingle temperature, as shown in Table IV. Th
values are almost the same as the previous results.52 We note
that branchz has a large mass of 65m0 . This is the largest
mass in UPd2Al3. The masses in the range from 6 to 65m0 in
Table IV are consistent with a largeg-value of 145
mJ/~K2

•mol!.50 TD of 0.20 K is small, reflecting a high
quality sample. Therefore, the mean free path is longer t
1000 Å.

As shown in Fig. 37a, the dHvA oscillation is clear
observed in both the normal and mixed states. The dH
oscillation, which is observed up to the upper critical fie
Hc2(539 kOe) with decreasing field, is due to brancha.
This branch is still seen in the mixed state at fields down
about 25 kOe. The dHvA oscillation is not observed in t
field range from 39 to 31 kOe, which is due to the pe
effect, as discussed before.51 The dHvA frequency of 2.64
3106 Oe for brancha is the same between the normal a
mixed states. We have determined the cyclotron massmc*
from the temperature dependence of the dHvA amplitu
over six cycles of the dHvA oscillation. As shown in Fig
37b, the mass decreases gradually with decreasing the
below Hc2 . The cyclotron mass at 24 kOe (50.62Hc2) is
3.8m0 , which is compared to the mass of 5.6m0 in the nor-
mal state.

A similar field dependence is also observed for t
Dingle temperatureTD , as shown in Fig. 37c. The Dingle
temperature in the mixed state increases steeply with
creasing field belowHc2 . The solid line in Fig 37c is a
theoretical curve of Eq.~7! for brancha, where the BCS
relation of 2D kBTc53.54 and Fermi velocityvF51.86

d

FIG. 35. Angular dependence of the dHvA frequency in UPd2Al3.



589Low Temp. Phys. 25 (8–9), August–September 1999 Y. Inada and Y. Ōnuki
FIG. 36. Band 69&70-hole~a!, band 71&72-electron~b! and band 73&74-electron Fermi surfaces~c! of UPd2Al3, cited from Ref. 54.
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3106 cm s are used in calculations. The Dingle temperat
in the mixed state in Fig. 37c is slightly smaller than t
theoretical curve. On the other hand, the cyclotron mas
reduced compared to the theoretical one, as shown in
37b. The mass reduction was not found in other non-f com-
pounds. It was found only for CeRu2, URu2Si2 and now for
UPd2Al3.

As mentioned above,SF is the extremal cross-section
area of the Fermi surface by planes perpendicular to the
direction. If SF corresponds to the maximum cross-sect
with the line node, it is not easy to distinguish the line no
in the anisotropic energy gap from the gapless state in m
netic fields, as in URu2Si2. We have also studied the angul
dependence of the dHvA oscillation, as shown in Fig.
Here, the field angleu is a tilt angle from@0001# to @101̄0#.
The angular dependence of the dHvA amplitude is a
shown in both the normal and mixed states. The dHvA a
plitudes were obtained from the FFT spectra in the fi
range from 55.5 to 62.5 kOe in the normal state and fr
25.0 to 26.5 kOe in the mixed state. The Fermi surface
brancha is approximately of an ellipsoid of revolution, a
shown in Fig. 36, following SF(u)56.943106/(sin2 u
1(2.6)2 cos2 u)t/2 Oe. The cyclotron mass in the normal sta
also shows the same angular dependence;mc* (u)
514.3/(sin2 u1(2.6)2 cos2 u)1/2m0 .
e

is
ig.

ld

e
g-

.

o
-

d

f

On the other hand, the Dingle temperature in the norm
state is nearly angle-independent up tou530°; TD

50.21 K. By using these data, we can calculate the dH
amplitude at 25.7 kOe (.0.65Hc2) which is an effective
field in the field range from 25.0 to 26.5 kOe. Thus, t
dotted line in Fig. 38 is the curve obtained at 25.7 kOe un
the assumption that values of the cyclotron mass and
Dingle temperature in the normal state are unchanged in
mixed state. The dHvA amplitude data at 25.7 kOe, sho
by squares in Fig. 38, are reduced roughly by one half, co
pared to the dotted line. If we fit the result calculated f
u50° (Hi@0001#) to the dHvA amplitude foru50° in the
mixed state, the dotted line is changed into a thick solid li
This solid line is in good agreement with the dHvA data
the mixed state. This result implies that a line node in
anisotropic energy gap, shown in Fig. 10a and 10b, does
exist and/or it is difficult to distinguish experimentally th
line node in the anisotropic energy gap from the gapless s
based on pair-breaking by applying a magnetic field. If t
dHvA oscillation is found in the mixed state far belowHc2 ,
the line node should be distinguished from the gapless s
in fields. That is, the dHvA data are expected to deviate fr
the thick solid line or to reduce steeply with increasing t
tilt angle.
rom

TABLE IV. The de Haas–van Alphen frequencyF, the cyclotron effective massmc* , the Dingle temperature
TD and the mean free pathl in UPd2Al3. The theoretical frequency in the paramagnetic state is cited f
Ref. 53.

Experimental Theoretical

Hi@0001# F, 107 Oe mc* ,m0 TD , K l Å F, 107 Oe

z 9.45 65 0.10 1190 band 69 & 70~G! 8.87
g 4.06 33 0.28 540 band 71 & 72~A! 3.82
b 3.06 19 0.15 1550 band 71 & 72~G! 3.07
«2 0.61 band 69 & 70~L! 1.50
«3 0.48
a 0.26 5.7 0.20 1200 band 71 & 72~H! 0.30
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4. CONCLUDING REMARKS

We have succeeded in growing high-quality single cr
tals of NbSe2, CeRu2, URu2Si2 and UPd2Al3 and observed
the dHvA oscillation in both the normal and superconduct
mixed states. Our experimental results can be summarize
follows:

1! The dHvA oscillation, which is observed nearHc2 in
the normal state, is also observed in the mixed state.

2! The dHvA frequency in the normal state remains u
changed in the mixed state.

FIG. 37. DHvA oscillation at 29 mK for@0001# ~a!, field dependences of the
cyclotron mass~b! and the Dingle temperature~c! in UPd2Al3.

FIG. 38. Angular dependence of the dHvA amplitude in UPd2Al3.
-

g
as

-

3! The cyclotron mass in the mixed state decreases
magnitude with decreasing the field. This is found only in t
f electron system, not observed in NbSe2 and the other non-f
electron superconductors. This can not be explained
Maki’s theory based on the density of states in magne
fields after Brandtet al.

4! The corresponding Dingle temperature is enhan
with increasing the field belowHc2 . This is approximately
explained by the Maki’s theory.

5! We searched for the anisotropic energy gap from
angular dependence of the dHvA oscillation in the mix
state. From the present result, it was difficult to distingu
the line node in the anisotropic gap from the gapless s
based on the pair-breaking in magnetic fields.

We suppose that the origin of the mass reduction be
Hc2 is related to the correlation effect between t
quasiparticles.55 In heavy fermion compounds, the magne
part of the specific heat is changed into the electronic spe
heat at low temperatures. For example, the 4f -levels of the
Ce ion are generally split into three doublets at high tempe
tures because the 4f -electrons in the Ce compounds are a
most localized in nature, following the Curie–Weiss law.
low temperatures, the magnetic entropy of the ground-s
doublet in the 4f -levels or the magnetic specific heatCm is
changed into the electronic specific heatgT via the many-
body Kondo effect as follows:

R ln 25E
0

TK Cm

T
dT, ~16!

Cm5gT. ~17!

The g-value can be obtained as

g5
R ln 2

TK
.

104

TK
mJ/~K2

•mol!. ~18!

In fact, the g-value in CeCu6 is 1600 mJ/~K2
•mol! for

TK55 K.47,56

The magnetic susceptibility in URu2Si2 and UPd2Al3 in-
creases with decreasing the temperature, following the Cu
Weiss law, and has a maximum at the characteristic temp
ture Tx max. Tx max for URu2Si2 and UPd2Al3 approximately
corresponds to the Kondo temperatureTK for CeRu2Si2 and
CeCu6 where almost localized 4f -electrons become itineran
below TK , forming the heavy fermion state with an ex
tremely largeg-value.

All energy bands in CeRu2, URu2Si2 and UPd2Al3 con-
tain thef-electron component and have flat dispersion, brin
ing about relatively large band masses. Nevertheless, the
clotron effective masses are considerably larger than
corresponding band masses, as shown in Tables II–IV.
mass enhancement is not included in the conventional b
calculations. It is caused by spin fluctuations, where the fr
dom of the charge transfer of thef-electrons appears in th
form of thef-itinerant band, but the freedom of spin fluctu
tions of the samef-electrons reveals an unusual magne
ordering, especially in URu2Si2 and enhances the effectiv
mass as in the many-body effect for CeCu6 and CeRu2Si2. In
the mixed state, the number of quasiparticles, which are p
duced on the basis of the pair-breaking in the magn
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fields, decreases with decreasing the field belowHc2 . This
might influence the correlation effect between the quasip
ticles, most likely bringing about the mass reduction bel
Hc2 .
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Growth and dissolution kinetics of 3He inclusions in phase-separated 3He–4He solid
mixtures
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Comprehensive experimental results on growth, dissolution, and melting kinetics of solid
inclusions of3He formed as a result of phase separation of solid mixtures of3He in 4He are
described. A new method developed for obtaining high- quality crystals by cycling the
temperature of a solid mixture within the separation region makes it possible to obtain reproducible
values of time constants for growth and dissolution of inclusions. Precise measurements of
pressure in the crystal at constant volume are used for obtaining data on effective mass diffusion
of 3He atoms in the crystal. It is shown that quantum diffusion is strongly suppressed at
low temperatures due to elastic fields induced near the boundaries of inclusions. Abnormally rapid
transport of matter of the threshold type is observed during dissolution of inclusions. The
observed effects can be explained qualitatively in the proposed model of multistage dissolution
of 3He inclusions. The data on the variation of pressure as a result of melting and
crystallization of3He inclusions are also obtained. It is proposed that a part of3He remains in
the liquid phase after crystallization. ©1999 American Institute of Physics.
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1. INTRODUCTION

Solid 3He–4He mixtures are systems in which quantu
effects are manifested in macroscopic properties. Such m
festations include isotopic phase separation of mixtu
which was observed for the first time by Edwardset al.1 and
was an important stage in the study of quantum cryst
Among other things, these investigations stimulated the
velopment of the theory of quantum diffusion by Andre
and Lifshits.2 In this phenomenon, peculiarities distinguis
ing quantum crystals from other solids are manifested m
clearly. It was proved2 that impurities and point defects i
quantum crystals at low temperatures must be transfor
into a sort of quasiparticles~impuritons and defectons! that
can move almost freely over the entire volume in a cert
energy band. The mobility of such quasiparticles is limit
by their mutual collisions as well as by collisions with oth
quasiparticles or defects in the crystal. This leads to temp
ture and concentration dependences of the diffusion co
cients that are quite unusual for solids. The diffusion coe
cient D in perfect crystals at comparatively hig
temperatures and low impurity concentrations, for which c
lisions of impurities with phonons are the main mechani
of scattering, increases with decreasingT according to
the law D}T29. In the region of low temperatures and/
higher concentrations, the interaction between impurities
comes decisive, and the diffusion coefficients becomes in
5921063-777X/99/25(8–9)/15/$15.00
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pendent of temperature and varies in inverse proportion
the concentration. Subsequent theoretical investigations
firmed the correctness of the basic concepts developed in
theory2 and made it possible to derive analytic relation
while the NMR experiments made simultaneously on3He
impurities in the hcp phase of4He revealed main regularitie
predicted by the theory and some peculiarities of spin dif
sion in the bcc phase of3He–4He mixtures~see, for example,
Refs. 3 and 4!.

Since the kinetics of phase transformations in solids
closely related to diffusion, it is natural to expect that
analysis of phase separation of solid mixtures of helium i
topes will provide additional information on diffusion effec
in quantum crystals. Such expectations are justified the m
so since diffusion processes occurring during phase sep
tion have a number of peculiarities which are not observed
self-diffusion studied by the NMR method in solid helium

~1! Since phase separation in3He–4He mixtures occurs a
low temperatures, we can disregard the interaction
3He with phonons even for very low concentrations a
take into account only the interaction of impuritons wi
one another and with imperfections in the crystal.

~2! Diffusion takes place for finite concentration gradien
and leveling out of concentrations is described by
mutual diffusion coefficient to which collisions betwee
impuritons contribute only due to probable U-process
© 1999 American Institute of Physics
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At the same time, the self-diffusion coefficient measur
by the NMR method takes into account all types of c
lisions.

~3! The molar volume of the concentrated phase formed
result of phase separation of dilute solutions of3He is
much larger than that of the initial solution. This give
rise to inhomogeneities and stressed state of the cry
so that diffusion of impurities occurs in the field of ela
tic forces.

~4! Nonuniformity of potential also leads to a difference b
tween energy levels of impuritons at adjacent crystal
tice sites; if such a mismatching in energy levels b
comes comparable to the width of the energy band o
impuriton, this reduces significantly the tunneling pro
ability, and hence the diffusion coefficient.

~5! In some cases, phase separation in the crystal can
rise to additional defects that can also affect diffusi
processes significantly.

These peculiarities enrich considerably the pattern
mass transfer and render the study of phase separation k
ics very promising. On the other hand, however, the res
of analysis of the phase-separation kinetics of3He–4He mix-
tures could not be systematized in any way for a long time
view of the difficulties encountered in this case~see, for
example, Refs. 5–7!, and attempts to establish correlatio
with the data on quantum diffusion led to contradictory
sults. For example, Iwasa and Suzuki5 concluded that mas
transport during phase separation cannot be describe
laws of quantum diffusion, while Shvartset al.8 observed a
qualitative agreement between analogous results.

In such a situation, systematic analysis of the pha
separation kinetic for solid mixtures is required to clarify t
influence of various factors on the type of mass transport
the present paper, we describe the results of experim
made by the method of pressure measurements in the sa
during cooling and heating in the region of two-phase sta
Special attention is paid to comparison of the obtained
rameters of mass transport with the results of quantum
fusion measurements. Preliminary results of these exp
ments were reported in Refs. 9–12.

Phase separation of an isotope mixture is a first-or
phase transition in which first derivatives of thermodynam
potential such as volume or pressure are known to exp
ence jumps. The excess volumeVE emerging during the for-
mation of a mixture with concentrationx for helium isotopes
was determined by Mullin:13

VE50.4x~12x!@cm3/mole#. ~1!

The correctness of this expression was confirmed
many experiments. If phase separation occurs at cons
volume, the corresponding change in pressure

PE5
VE

Vb
, ~2!

takes place, whereV andb are the molar volume and com
pressibility of the mixture.

For low concentrations, the value ofPE is proportional
to concentration to a fairly high degree of accuracy, and
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measurement of pressure can be used for unambiguous
termination of the change in concentration. Using the kno
value ofb for pure4He to estimate the sensitivity of such
method, we obtain

uDPu'106uDxu@Pa#. ~3!

This relation shows that pressure measurements en
sufficiently high sensitivity for concentration measureme
during phase separation of helium isotopes. The high se
tivity of the method and available reliable pressure gau
for the milikelvin temperature range have determined
choice of experimental technique used by us here.

2. MEASURING CELL AND SAMPLES

The cell for experiments on the kinetics of phase tran
tions in solid mixtures of helium isotopes involving preci
measurements of pressure at ultralow temperatures mus
sure above all reliable cooling of the sample with a sh
thermal relaxation time~as compared to the characterist
time of the phase transition!. Besides, the cell geometry mu
be chosen so that inhomogeneities appearing during sam
crystallization are minimized. We must also ensure a h
resolution of the detector of pressure variation in the crys
Taking into account all these requirements, we developed
construction of the experimental cell which is shown sch
matically in Fig. 1. The cell is in fact aStraty-Adams capaci-
tive gauge fixed directly to the plate of the dilution chamb
with the help of a conic junction. The efficiency of such
junction was investigated earlier.14 The diameter of the inne
cavity in which solid helium samples were grown was 9 m
and its height 1.5 mm. The cell was not supplied with a h
exchanger made of fritted silver powder, since a low- por
ity medium strongly changes the type of phase transition
solid mixtures of helium as compared to open geometry~see,
for example, Ref. 15!.

According to calculations, the time of stabilization o
thermal equilibrium associated with the thermal conductiv
of the crystal was;1 s for solid helium in such a geometr
at T5100– 200 mK. The thermal relaxation time determin
by the Kapitsa resistance between the helium crystal and
casing of the cell proved to be much longer. For the cho

FIG. 1. Schematic diagram of measuring cell: copper plate of mixing ch
ber ~1!, casing~2!, sample chamber~3!, movable electrode of capacitive
pressure gauge~4!, fixed electrode~5!, rf screen~6!, filling capillary ~7!,
resistance thermometer~8!, heater~9!, 3He melting curve thermometer~10!.
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constructions of the cell, this time was estimated by us
25–50 s in the entire temperature range in which meas
ments were made.

The kinetics of phase transition was studied on the b
of precise measurements of pressure in the sample, w
was recorded with the help of a General Radio capaci
bridge 1615-A. The pressure resolution was higher than 8
for all the samples. A crystallization thermometer w
mounted on the plate of the dilution chamber close to
experimental cell~see Fig. 1!. Using a digital~commercial!
capacity gauge E7-8, we could obtain temperature resolu
of 0.3 mK. The temperature was determined from the pr
sure corresponding to melting of3He using the polynomia
proposed by Schusteret al.16. Several resistance thermom
eters calibrated with the help of the crystallization thermo
eter were also mounted on the plate of the dilution cham
The resistance was recorded by using an ac bridge R 44
well as a specially developed a.c. digital bridge with a pow
lower than 10215W liberated in a resistance thermometer17

Temperature was stabilized by a heater mounted on the
lution chamber plate having a feedback with the digital
sistance gauge. All measurements of temperature and p
sure in the sample were automatic.

We studied the mixtures obtained as a result of deco
position of the initial mixture with the3He concentration
x0'2.05% in the gaseous phase, and crystalline sam
were grown using the capillary blocking technique. Wh
solid samples of helium isotope mixtures were crystalliz
the temperature was elevated, and the annealing of the c
tals was carried out for two days at a temperature close to
melting point. The sample quality was controlled by the
producibility of pressure after several cooling–heating cyc
in the one-phase region.18 We studied several different crys
tals in the pressure range 31.7–36 bar corresponding to
lar volume 20.54– 20.27 cm3/mole. Measurements wer
made in the temperature range 40–700 mK.

3. EXPERIMENTAL TECHNIQUE

In our experiments, we mainly studied the kinetics
two processes:

~1! the growth of a new phase containing almost pure3He
and formed as a result of phase separation of3He–4He
solid mixture upon cooling in the phase-separation
gion, and

~2! dissolution of formed solid inclusions of3He upon heat-
ing of the two-phase mixture.

In addition, we studied the kinetic of melting of3He
solid inclusions for some crystals. It should be noted that
the pressure range used by us here, the initial mixture and
dilute phase have hcp lattices, while the concentrated ph
is characterized by a bcc lattice.

The growth of the new phase during phase separatio
3He–4He solid mixtures was studied during step-wise co
ing of the samples as well as during single cooling fro
different temperatures to the same final temperature. Fig
2a gives the schematic diagram of experiments with a s
wise cooling of the samples. The change in temperatur
s
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one step was usually 10–15 mK. After each cooling,
sample temperature was stabilized with continuous record
of pressure. The next cooling was carried out after the tw
phase crystal attained equilibrium, and so on.

The schematic diagram of experiments in which samp
were cooled from different initial temperaturesTi to the
same final temperatureTf is presented in Fig. 2b. The
samples were cooled from the equilibrium state in differe
stepsDT5Ti2Tf . After the stabilization ofTf , the change
in pressure reflecting the kinetics of the growth of the n
phase was also recorded.

Figure 3 shows typical time dependences of press
variation during cooling of a two-phase sample by differe
stepsDT. Experiments proved that the decrease in tempe
ture causes an increase in pressure in the crystal whic
correctly described by the exponential dependence

P5Pf2~Pf2Pi !exp~2t/t!, ~4!

in the entire range of variation ofDT from 5 to 130 mK,
wheret is the characteristic time determining the kinetics
phase separation of3He–4He solid mixtures after cooling by
DT, Pi the initial pressure in the sample, andPf the final
equilibrium pressure for the given temperature.

Dissolution of solid3He inclusions in a two-phase crys
tal was also studied during step-wise heating of the sam
as well as during rapid heating from the same initial te
peratureTi to different final temperaturesTf . A schematic
diagram of such experiments is shown in Figs. 4a and 4b

FIG. 2. Diagram illustrating the experiment on the growth of new pha
inclusions: step—wise cooling~a! and single cooling~b!. The solid curve
corresponds to equilibrium phase separation.
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the case of step-wise heating@Fig. 4~a!#, the samples were
heated in a small step of 10–15 mK; then the tempera
was stabilized, and the kinetics of pressure drop in
sample as a result of an increase in the3He concentration in
the dilute phase with partially dissolved solid inclusions w
studied. After theP(t) dependence attained saturation~equi-
librium pressure!, the temperature was again elevated, and
on.

Figure 4b shows a schematic diagram of experime
with rapid heating of the samples from the same initial te
perature to different final temperatures. The temperature
crementDT5Tf2Ti varied in this case from 5 to 690 mK
After each heating and temperature stabilization, pressur
laxation in the sample was measured. Before the next m

FIG. 3. Thermogram and corresponding kinetics of pressure variation
ing cooling of a two-phase crystal:Ti5136 mK, Tf5121 mK ~a!; Ti

5230 mK, Tf5103 mK ~b!.
re
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re-
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surement, the samples were cooled to the initial temperat
and the next temperature step was made. The heating
was;1 s.

A typical P(t) dependence for a step-wise heating
presented in Fig. 5 illustrating the variation of pressure a
result of slight heating of the sample. In this case, the pr
sure variation is also described correctly by the exponen
dependence

P5Pf2~Pf2Pi !exp~2t/t* !, ~5!

r-

FIG. 4. Diagram illustrating the experiment on dissolution of new pha
inclusions for a step-wise heating of a two-phase crystal~a! and rapid heat-
ing ~b!. The solid curve corresponds to equilibrium phase separation.

FIG. 5. Kinetics of decrease in pressure of a two-phase crystal during
slight heating (Ti5118 mK,Tf5125 mK). Dashed curve is the approxima
tion by formula~5!.
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wheret* is the characteristic time determining the kineti
of dissolution of solid3He inclusions for small temperatur
increments, the remaining parameters being the same a
formula ~4!. As the value of the incrementDT increases, the
P(t) dependence becomes more complicated and will be
scribed in detail below.

4. TEMPERATURE CYCLING OF THE CRYSTALS UNDER
INVESTIGATION

In order to obtain reproducible results, the samples w
subjected to a special treatment before measurements
volving thermocycling at temperatures lower than the po
of phase separation of3He–4He solid mixtures with an initial
concentration of 2%. Such a thermocycling is illustrated
Fig. 6. The solid curve corresponds to the low-temperat
part of the phase diagram for separation of solid mixtures
helium isotopes. After annealing, the sample was cooled
maximum rate ensured by the cooling capacity of the ref
erator to a temperature below the phase-separation poin
the initial solution~normally to 100 mK!. After sample cool-
ing ~AB line!, the temperature was stabilized, and the so
mixture relaxed to its equilibrium state~BC line!. This was
accompanied by the formation and growth of solid3He in-
clusions, and concentration of3He in the matrix decreased
As the equilibrium state~C! was attained, the plate of th
mixing chamber was heated rapidly~in 1–2 s! to a tempera-
ture close to the phase-separation point~CD line! and was
stabilized at this temperature. Solid helium samples w
heated in this case during a time of 25–50 s determined
the Kapitsa resistance. After heating the solid mixture ten
to its equilibrium state~DA8 line!. Solid inclusions of3He
were partially dissolved in this process, and the3He concen-
tration in the matrix increased. When the equilibrium st
~A8! was reached, the pressure in the sample became
stant, and the sample was cooled again to the same tem
ture ~A8B8 line!. Such a cycling of temperature (A8B8CD)
was repeated 4–6 times for each sample. As a result of s
a treatment of the samples, we obtained the following t
important results.

~1! Growth and dissolution kinetics of inclusions becam
reproducible. The phase- separation time decreased
became constant for all the cycles starting from the th
~Fig. 7!. Temperature cycling also affects the dissoluti

FIG. 6. Temperature cycling in samples under investigation.
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kinetics of inclusions in the case of heating of a tw
phase crystal.

~2! After the cooling–heating cycles were completed, t
pressure in the crystal became lower than the initial pr
sure, indicating the improvement of the sample quality18

It should be noted that the decrease in pressure after
first cycle was larger than after subsequent cycles~Fig.
8!. Such a process is apparently more effective for elim
nating defects than traditional annealing which does
‘‘remove’’ completely all defects in the crystal.

It should be noted that the total time of phase separa
for 3He–4He solid mixtures is the sum of two time interval
the time of formation of stable nuclei of the new phase a
the time of growth of these nuclei due to the transport of3He
atoms from the surrounding dilute mixture. Since heating
above the phase-separation temperature was not usually
ried out in the experiments on growth kinetics, the numbe
nuclei remained unchanged; in the course of cooling or h
ing, the kinetics of growth or partial dissolution of a consta
number of solid3He inclusions was studied, and the pr
cesses associated with nucleation were immaterial in mos

FIG. 7. Effect of temperature cycling in the range 103–230 mK on the ti
constant for growth of inclusions for samples with different molar volum
V,cm3/mole: 20.27~h! and 20.44~s!.

FIG. 8. Dependence of pressure after a cooling-heating cycle on the c
number.
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the experiments. It should be noted that the number of nu
of the new phase at later stages of phase separation
decreases due to coalescence. According to estimates,19 how-
ever, the time of initiation of such a process in the given c
amounts to;107 s, and the experimentally established fa
that the value oft remains constant during several days co
firms the correctness of such an estimate.

5. GROWTH KINETICS OF 3He INCLUSIONS

After the processes of stabilization of sample quality d
scribed in the previous section, we studied the kinetics
inclusion growth using a step-wise decrease in temperat
Schematic thermogram and theP(t) dependences obtaine
in this case are presented in Fig. 9. It was mentioned ab
that the dependences determined within each step are

FIG. 9. Thermograms and corresponding pressure variation during step
cooling of samples with different molar volumesV,cm3/mole: 20.28~a! and
20.54~b!.
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cessfully described by exponentials of type~4!, which al-
lowed us to determine the corresponding characteristic t
t to within a few percent. Figure 10 shows the temperat
dependences oft for three samples investigated by us. T
most typical feature of thet(T) dependence for the samp
with V520.27 cm3/mole ~which was investigated most thor
oughly! is its clearly manifested nonmonotonicity and th
presence of a well-pronounced minimum near 100 mK.
similar tendency in the behavior oft is also observed for the
sample with a molar volume of 20.28 cm3/mole. For the
larger molar volume (20.54 cm3/mole), low-temperature
measurements were not made since, according to the p
diagram, solid inclusions for the given density must melt a
become liquid drops atT,90 mK.

It is natural to associate the obtained values oft with
peculiarities of diffusion under the given conditions. For th
purpose, we must first of all establish a correlation betweet
and the effective diffusion coefficient determining the cor
sponding mass transport. This will be done on the basis
simple model which is commonly used for solving problem
associated with diffusion-induced phase separation of m
tures ~see, for example, Ref. 20!. We shall assume that in
clusions of the new phase are spheres of the same radiuR1

distributed uniformly over the sample with a separation 2R2

ise

FIG. 10. Temperature dependence of characteristic time constantt associ-
ated with the growth of inclusions for samples with different molar volum
V,cm3/mole: 20.28~s!, 20.27~d!, and 20.54~h!.

FIG. 11. Diagram illustrating the model of uniformly distributed spheric
inclusions used for solving the diffusion problem.
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between their centers~Fig. 11!. The possibility of describing
the experimental dependencest(T) with the help of a single
exponential to within the error of measurements can be
garded to a certain extent as an indication of a small spr
in the values ofR1 andR2 .

In this case, the relation betweent and a certain effec-
tive diffusion coefficientDeff can be determined from th
solution of the conventional diffusion equation, which h
the following form in spherical coordinates:

]x

]t
5DeffS ]2x

]r 2 1
2

r

]x

]r D . ~6!

The boundary conditions for such a model can be written
the form

x~R1 ,t !5xf ,
]x

]r U
r 5R2

50, ~7!

and the initial condition is

x~r ,0!5xi , ~8!

wherexi is the initial concentration of the solution andxf its
concentration at the boundary of new-phase inclusions,
responding to the phase diagram at the temperatureTf . Here
we speak of the effective diffusion coefficient since it
known beforehand that the diffusion coefficient under
given conditions is a function of concentration, and stric
speaking, we must solve a nonlinear diffusion equati
However~see, for example, Ref. 21!, the new phase growth
rate in the case of concentration dependence ofD is the same
as that determined for a constant diffusion coefficient by
eraging according to the law

D5
1

xf2xi
E

xi

xf
D~x!dx, ~9!

and the solution of Eq.~6! with the conditions~7! and~8! has
the form1!

xi2x~r ,t !

xi2xf
5 (

n50

` 2R1 exp~2Deffln
2t !

ln@R2 sin2 ln~R22R1!2R1#

3
sin@ln~r 2R1!#

r
, ~10!

whereln are the roots of the transcendental equation

tanln~R22R1!5lnR2 . ~11!

The series~10! converges quite rapidly, and we can co
fine our analysis to the first term for not very smallt. Since
the measured values of pressure incrementDP are propor-
tional to Dx @see~3!#, a comparison of~4! and~10! leads to
the following expression for the diffusion coefficient

Deff5~l2t!21. ~12!

Solution ~10! was obtained under the conditionR1

5const. Lyubov20 gives the solution of the diffusion prob
lem obtained by taking into account the variation of the
dius of inclusions during their growth, which shows that t
form of time dependence does not change for large value
t, and the emerging corrections are insignificant under
e-
ad

n

r-

e

.

-

-

of
e

given conditions. This is true especially in the case when
size of inclusion changes insignificantly at each step. T
most significant refinement in the case of a considera
variation ofR1 is that the radius of an inclusion fort50 is
used instead ofR1 in ~11!.

In order to determine the value ofl from ~11!, we must
know the values ofR1 andR2 . The results of various experi
ments in which the size of bcc inclusions of3He were deter-
mined are considered in Ref. 11. In all of them the value
R1;1 – 2mm. We can expect that the values ofR1 are de-
termined by the initial concentrationx0 . However, such a
dependence has not been established as yet. In our opi
the most reliable results were obtained by Kingsleyet al.23

who obtained the valueR152.25mm from an analysis of the
observed effect of limited spin diffusion in bcc inclusion
We shall use this value for obtaining subsequent estima
The above value ofR1 was obtained at low temperature
when almost all of3He is contained in inclusions, i.e., co
responds to the maximum size of inclusionsR1m . Using the
law of conservation of3He, we can estimate the size of a
inclusion for an intermediate concentration of the hcp so
tion:

R1'R1mS 12
x

x0
D 1/3

, ~13!

as well as the mean distance between inclusions:

R2'R1mS V0

x0VD 1/3

, ~14!

wherex0 andV0 are the concentration and molar volume
the initial mixture, andV'V3 is the molar volume of the bcc
phase being formed. In the present case, it follows from~14!
that R2'7.8mm. The values ofDeff obtained from~12! for
two values of molar volume used by us are shown in Fig.
which also contains information on quantum diffusion
mixtures of appropriate concentrations2! calculated by using
the following relation describing diffusion of impuritons:25

Ds5a
a2J5/3

xU0
2/3 S 12

x

xc
D n

, ~15!

wherea and n are constants~the remaining parameters ar
functions of density!, a is the separation between neare
neighbors,J34 the exchange integral describing the exchan
of 3He and4He atoms in mixtures,U0 the amplitude of in-
teraction of3He impurities, andxc the critical percolation
concentration corresponding to the formation of a mac
scopic inclusion of immobile impurities. We have used t
values of parameters obtained from NMR experiments
described in Ref. 4. For each step, the values ofDs were
averaged in accordance with~9!.

A comparison ofDeff andD̄s curves shows that the con
centration dependences almost coincide only at high t
peratures~concentrations!. Choosing appropriate values o
R1 andR2 , we can attain the coincidence of absolute valu
also. However, this is not essential since it was noted~see
Introduction! that the coefficient of mutual diffusion dete
mining the kinetics of phase separation of mixtures can di
from the self-diffusion coefficient measured by the NM



s

tio
d
-

fe
-
he
ns
ia

n

-

the
sion

r the
be

he
ng
he
es

-

,
e
lly

4 bar

n

co

al-
to

599Low Temp. Phys. 25 (8–9), August–September 1999 Gan’shin et al.
method due to the fact that the probability of U-processe
collisions of3He impuritons can differ from unity. At lower
temperatures~concentrations!, the value of Deff becomes
much smaller thanD̄s , and theDeff(x) and D̄(x) depen-
dences are found to differ qualitatively: as the concentra
~temperature! decreases,Deff attains its maximum value an
starts decreasing, while the value ofD̄s increases monotoni
cally according to the lawDs}x21.

The most probable reason behind the observed dif
ence in the behavior ofDeff and D̄s is apparently the varia
tion of the diffusion process by elastic fields induced in t
crystal during the formation and growth of bcc inclusio
with a molar volume noticeably larger than that of the init
mixture.

It is well known that the diffusive flux can be written i
the form ~see, for example, Ref. 20!

j 52
Dx

v S ¹x

x
1

¹U

kT D , ~16!

in the presence of a gradient“U of the elastic potential,
wherev is the atomic volume and¹x the concentration gra
dient.

FIG. 12. Concentration~temperature! dependence of the effective diffusio
coefficient corresponding to measured values of time constantt. Dashed line
corresponds to mean value of spin diffusion coefficient under relevant
ditions.V520.54 cm3/mole ~a! and 20.27 cm3/mole ~b!.
in

n

r-

l

It follows from ~16! that, in the case when¹x and¹U
have opposite signs and the first and second terms in
parentheses have comparable absolute values, the diffu
flux can decrease significantly. Since¹U in this case
emerges as a result of a natural process occurring unde
action of concentration gradient, the opposite signs can
due to the Le Chatelier principle. In order to estimate t
value of¹U quantitatively, we must solve the correspondi
problem in the theory of elasticity, taking into account t
anisotropy of the crystal since it is well known that the forc
acting between dilatation centers~in our case,3He impurities
to a high degree of accuracy! in an isotropic infinite medium
do not affect diffusive fluxes~see, for example, Ref. 26!.

Additional information in this field can be obtained from
experiments with different values of¹x. We studied the
growth kinetics of3He inclusions during cooling of a two
phase mixture from different initial temperaturesTi to the
same final temperatureTf;100 mK. Under these conditions
the second term in~16! could vary in view of the dependenc
of ¹U on the size of inclusions, which remained practica
unchanged in the low-temperature region~see Table I!. The
pressure in the sample before phase separation was 33.4
and the molar volume was 20.44 cm3/mole. The data ob-

n-

FIG. 13. Characteristic time constants of inclusion growth for different v
ues of supersaturation during cooling from different initial temperatures
103 mK.V520.44 cm3/mole.

TABLE I. Basic Parameters Characterizing the Growth of3He Inclusions
during Sample Cooling from Different Temperatures to 103 mK,P0

533.44 bar,V520.44 cm3/mole.

Ti ,
mK xi , % xf , % t, h

R1

mm
D̄s•109,
cm2/s

Deff•1010,
cm2/s

154 0.36 0.021 0.498 2.18 2.48 2.15
151 0.32 0.021 0.535 2.19 2.70 1.99
128 0.11 0.021 0.455 2.23 5.58 2.27
120 0.070 0.021 0.524 2.23 7.43 1.96
113 0.044 0.021 0.457 2.24 9.70 2.24
108 0.031 0.021 0.488 2.24 1.18 2.09
108 0.031 0.021 0.593 2.24 1.18 1.72



.

r

di
d

b

a
if

he
bl
e

f
gi
he
al
d
lly

no
n
flu
ie
ha
th
iv
e

e
an
e

nt
he

clu-
ects
-

ra-
of
ost
urs
ave
ven
the

re

eri-
vol-

und
the

ed

r-
c-

s

oth
o-
e-

tal
e-
dly

for

old
lue

me
of
ese

ure,
en-

of

ssure
t
-

nt.

600 Low Temp. Phys. 25 (8–9), August–September 1999 Gan’shin et al.
tained fort at various values ofDT are presented in Fig. 13
The observed independence oft on DT is quite unexpected
and requires the theoretical analysis mentioned above fo
interpretation.

Using the procedure described above, the correspon
values ofDeff and D̄s were determined from the obtaine
values oft. Figure 14 shows the dependence ofDeff /D̄s on
the quantity¹x/ x̄ averaged over time and distance. The o
served monotonic decrease in the value ofDeff /Ds with ¹x/ x̄
can be attributed, in accordance with~16! to the increasing
role of elastic forces for small concentration gradients. It w
mentioned above that a considerable decrease in the d
sion coefficient must take place under the conditions w
the terms in~16! having opposite signs become compara
in absolute value. Figure 14 shows that a sharp decreas
Deff /D̄s is observed for¹x/ x̄;103 cm21 Assuming that the
second term in the parentheses of~16! has the same order o
magnitude, we can estimate the difference in elastic ener
DU for impurity atoms which are nearest neighbors in t
hcp lattice as;4•1026 K. The presence of such potenti
gradients under the given conditions is quite feasible an
the same time sufficient for explaining the experimenta
observed difference betweenDeff andDs .

It should be noted that the estimated value ofDU is
much smaller that the energy band widthD3;1024 K for
impuritons in a hcp mixture and hence cannot lead to a
ticeable mismatching of the energy levels for impuritons a
a suppression of diffusion. Consequently, a noticeable in
ence of elastic potential gradients on the motion of impurit
due to direct action of forces must be manifested earlier t
the effect of a change in the tunneling frequency under
action of this potential. On the other hand, our estimates g
only the average value of the potential which is a pow
function of the distance, and the value ofDU in the imme-
diate vicinity of a bcc inclusion of3He can become as larg
as;D3 . In this case, the tunneling frequency and the qu
tum diffusion coefficient determined by this quantity can d
crease considerably. It should also be noted that pote
gradients obviously do not exceed the elastic limit of t

FIG. 14. Dependence ofDeff /D̄s on the averaged concentration gradie
V520.44 cm3/mole.
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crystal at least even at macroscopic distances from the in
sions, which is reflected in the absence of hysteresis eff
in these experiments~the opposite situation will be consid
ered in Sec. 7!.

6. PECULIARITIES OF DISSOLUTION KINETICS OF 3He
INCLUSIONS

Many authors investigating the kinetics of phase sepa
tion of 3He–4He solid mixtures noted the nonequivalence
growth and dissolution of bcc phase inclusions. In m
cases, it was found that the dissolution of inclusions occ
at a higher rate than the growth,. However, no attempts h
been made until recently to explain this phenomenon or e
to study it systematically. In this section, we describe
results of such investigations.

The results obtained for a rapid heating of the mixtu
after phase separation from the same initial temperatureTi

5103 mK to different final temperaturesTf5108– 690 mK
according to the diagram presented in Fig. 4b. The exp
ments were made on the sample whose average molar
ume was 20.44 cm3/mole. Some of theP(t) dependences
obtained in this case are presented in Fig. 15. It was fo
that the form of the dependences was determined by
value ofTf .

For a small increase in temperature, theP(t) depen-
dence can be described by a universal exponential~see Figs.
5 and 15a! as in most of our experiments and is characteriz
by a time constantt;103 s. For intermediate values ofTf

~127–230 mK!, theP(t) curve~see Fig. 15b! has two differ-
ent segments: the nearly vertical segment~the corresponding
time interval did not exceed the time of stabilization of the
mal equilibrium! and a nearly exponential segment chara
terized by the time constantteff that is almost the same a
that observed for lowerTf . The value ofteff indicated in
Fig. 15b is an effective quantity obtained when the smo
segment of theP(t) curve is described by the single exp
nential, while in fact this segment of the curve can be d
scribed only by two exponential to within the experimen
error. During sample heating~above the phase-separation r
gion!, complete relaxation of pressure occurs very rapi
~see Fig. 15c!.

Figure 16 shows the relative pressure jump observed
intermediate value ofDT as a function of the differenceTf

2Ti . It can be seen that this dependence is of the thresh
type: a finite pressure jump occurs at a certain critical va
DTc . It order to verify whether the obtained value ofDTc

'25 mK is dominant, we made two experiments on the sa
sample with heating from 150 and 230 mK. The results
one of these experiments are presented in Fig. 17. Th
experiments did not reveal a jump-wise change in press
and theP(t) dependence can be described by two expon
tials with the corresponding values oft1'85 s and t2

'390 s. Apparently, we cannot speak of the critical value
the chemical potential differenceDm in the initial and final
states as the reason behind the emergence of the pre
jump DP either since the value ofDm obtained in the lates
experiments~Fig. 17! is considerably higher than that ob
tained previously~see Fig. 15! for DT525 mK.
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The observed effects can be explained qualitatively
the basis of a model in which the process of dissolution
3He inclusions upon heating consists of several stages.
possibility of considerable suppression of quantum diffus
near the boundaries of inclusions under the action of ela
fields emerging due to the difference in the molar volumes
3He inclusions and the matrix noted in the previous sectio
also essential. Under such conditions, a rapid mass trans
is possible only if, a crystal layer near the inclusion with t
maximum gradient of potential is eliminated.

FIG. 15. Variation of pressure with time during dissolution of3He inclu-
sions for different final temperaturesTf ,mK: 110 ~a!, 150 ~b!, and 570~c!.
Dashed curves correspond to approximation by formula~5! with corre-
sponding time constants indicated on the figure.
n
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This can be done at the first stage of the dissolut
process@Fig. 18~a!#, when3He inclusions are saturated wit
4He atoms following the increase in temperature and
equilibrium concentration of4He. Diffusive penetration of
4He inside a3He inclusion treated as a sphere of radiusR
occurs during the characteristic time

t45
R2

p2D
, ~17!

where the corresponding diffusion coefficientD describes
the transport of4He atoms in solid3He through random tun-
nel jump. According to Andreev and Lifshitz,2 the diffusion
coefficientD can be written in the form

D}J43a
2, ~18!

wherea is the separation between nearest neighbors andJ43

the exchange integral characterizing the tunneling freque
for 4He atoms in the3He matrix. We can expect that th
value ofJ43 is close to the frequencyJ34 of tunneling of3He
in the 4He crystal, which was reliably established in expe

FIG. 16. Dependence of the relative pressure jump on the difference
tween the final and initial temperaturesDT5Tf2Ti .

FIG. 17. Time dependence of the pressure variation during dissolutio
3He inclusions during heating fromTi5150 mK to Tf5230 mK. Dashed
curve corresponds to approximation by the formulaDP(t)/(Pf2Pi)
50.0472e2t/t110.2619e2t/t2 with t1'85 s andt2'390 s.
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ments on quantum diffusion. Extrapolating the know
values4 of J34 to the molar volume typical of the inclusio
with V'24 cm3/mole, we find thatJ34'J43'23107 s21,
which givesD;1028 cm2/s. Substituting the obtained valu
of D into ~17! and considering thatR'2 mm, we obtaint4

;0.1 s.
Thus, the first stage of dissolution is quite rapid, but

change in pressureDP at this stage is very small. Th
change in the volume of inclusions will be determined by
changeDx4 in the 4He concentration in it, which is alway
smaller thanx0 if the system is within the phase-separati
region. The fraction of volume occupied by all inclusio
corresponds to the concentrationx0 , and hence the tota
change in the sample volume due to dissolution of4He is
proportional to the product of two small quantitiesDx4x0 ,
and the value ofDP determined according to~3! is smaller
than 2% of the change in pressure during phase separ
~to the extent to whichDx4 is smaller thanx0!.

Nevertheless, this stage can affect the dissolution of
clusions significantly since4He atoms leaving the stresse
boundary region around inclusions actually destroy it a
permit the free motion of impuritons, determining the seco
stage of the process@see Fig. 18~b!#. The characteristic time
of this stage is determined by the rate of emergence of3He
atoms from an inclusion, which can be estimated in anal
with the process of evaporation of liquid, for which the num
ber of atoms evaporating from unit surface per unit time c
be written in the form~see, for example, Ref. 27!

a;uN, ~19!

whereu is the average velocity of atoms in the vapor andN
their density. As applied to our case,u}aD3 ,2 ~D3 is the
energy band width for3He impuritons in the hcp mixture!,

FIG. 18. Schematic diagram of the multistage model of dissolution of3He
inclusions during heating: dissolution of4He from the stressed layer in th
inclusion ~a!, ‘‘evaporation’’ of 3He from inclusions~b!, and diffusive dis-
solution of inclusions~c!.
e

e

ion

-

d
d

y
-
n

and the role ofN is played by the densityN3 of 3He atoms in
the mixture, which is proportional to the concentrationx:

N35Nmx, ~20!

whereNm is the density of atoms in the mixture.
In this case, neglecting the difference in the molar v

umes of the inclusion and the mixture, we can find the ti
of evaporation of an inclusion of radiusR:

t.
R

3D3ax
, ~21!

SubstitutingR;1024 cm,D3;107 s21, and x51022% into
~21!, we obtaint ;1 s, i.e., this stage is also quite rapid.

This dissolution stage is followed by the formation of
spherical layer enriched in3He around the inclusion, the
thickness of this layer attaining several mean free pathsl3 of
3He impuritons in the solution. The value ofl3 amounts to
;102a for xi;1022%,28 and hence the thickness of suc
layers is;1025 cm, and their formation can ensure the e
perimentally observed value ofDPc . In view of a high prob-
ability of U-processes during collisions between impuriton
the propagation of3He over large distances must be of d
fusion type@Fig. 18~c!#, and the characteristic times of th
third dissolution stage are of the same order of magnitud
those observed during phase-separation of3He–4He solid
mixtures in other situations.

The threshold effect in the proposed model always ta
place when the stressed layer surrounding a3He inclusion
and preventing quantum diffusion is eliminated complet
after the first stage of dissolution of4He. Since the amount o
4He dissolved in this case is in one-to-one corresponde
with the difference in equilibrium concentrations at the fin
and initial temperatures, critical conditions correspond to
temperature differenceDTc for which the differenceDx en-
sures complete elimination of the stressed layer.

The difference in equilibrium concentrations of4He in
an inclusion at the final temperatureTf'130 mK corre-
sponding to the critical pressure jump and at the initial te
peratureTi'103 mK amounts approximately to 0.2%. T
ensure such a change in concentration, we must dissol
spherical layer of thickness dR'0.731023R'1.4
31027 cm in the inclusion. In other words, the critical valu
DTc corresponds to dissolution of 3–4 atomic layers, wh
is quite a reasonable value for the thickness of a laye
which quantum diffusion of impuritons can be hampere
Moreover, the process of dissolution of4He is associated
with a decrease in density, ensuring an additional remova
stresses.

The other necessary condition for observing a press
jump is a sufficiently long mean free path of impuritons
the mixture for the initial concentration~temperature!. This
follows from the result of the above-mentioned experime
with a sample heated from 150 mK. At this temperature,
equilibrium concentration of3He is more than an order o
magnitude higher than at 100 mK. Accordingly, the me
free path for impuritons is smaller by the same factor, a
‘‘evaporation’’ of inclusions cannot be responsible for a n
ticeable pressure jump. Nevertheless, this process appar
accelerates the dissolution of the inclusion significantly, th
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ensuring the effect comparable with the subsequent di
sion. As a result, theDP(t) dependence is the sum of tw
exponentials. Thus, the process of dissolution of inclusi
heated from the temperatureTi'100 mK to 125 mK,Tf

,230 mK can be regarded as a combination of three sta
~1!Dissolution of4He in bcc3He leading to dissolution of the
stressed layer around the inclusion;~2! the formation of a
layer enriched by3He around the inclusion, and~3! diffusive
dissolution of this layer. The first two stages take a time
the order of a few seconds, while the last stage occurs du
a time;103 s typical of diffusive mass transport.

For higher temperature increments corresponding to
exit beyond the phase-separation curve, the first stage o
process has no above-mentioned limitation on concentra
and can ensure a noticeable change in pressure, whic
reflected in experiments. In this case, the characteristic t
t is close to the time of stabilization of thermal equilibriu
@see Fig. 15~c!#.

In the model under consideration, the nonequivalence
growth and dissolution of inclusions noted in Ref. 9 appe
as quite natural since the former process includes only
slowest stage. In this case, quantum diffusion is limited d
to the formation of a stressed layer at the inclusion bound
~see above!. It is appropriate to note in this connection th
the absence of a sharp jump in pressure in the experim
on dissolution of inclusions illustrated by Fig. 6 in Ref. 9
associated with a much lower rate of sample heating~as
compared to that used by us here!.

The multistage nature of dissolution of3He inclusions
described above is manifested fully only for quite stro
supersaturation and at lower initial temperatures. For sm
temperature increments, dissolution must occur in the c
ventional way, which is in fact observed in experiments c
ried out in accordance with the schematic diagram show
@Fig. 4~a!#, in which the kinetics of dissolution of3He inclu-
sions was studied upon a step-wise increase in tempera
All the P(t) dependences determined in this case are
rectly described by exponentials~Fig. 19! with characteristic
timest* shown in Fig. 20, where thet( x̄) dependence ob
tained in experiments on the growth of inclusions in t
sample with the same density is also plotted for comparis
It can be seen that the behavior of characteristic times
dissolution is qualitatively the same as for the growth
inclusions: a minimum also exists~although it is slightly
displaced towards higher concentrations~temperatures!. The
values oft* are smaller thant over the entire region. The
relation between these quantities can be compared quan
tively only on the basis of a theoretical analysis of bo
processes.

Specific features of experiments on dissolution are
to the fact that diffusion occurs from the very outset in
elastic field which is formed during the growth of inclusio
and which can facilitate the removal of3He impurities from
the inclusion, i.e., accelerate diffusion during dissolutio
However, such an acceleration is observed only if the gra
ent¹U created during the growth is insufficient for a notic
able decrease in quantum diffusion due to mismatching
impuriton energy levels. Since the latter effect does not
pend on the sign of¹U, it decelerates the growth as well a
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dissolution of inclusions. However, the above-mention
processes at each stage are not very clearly manifested
occur simultaneously, so that these processes can be
scribed by a unified ‘‘effective’’ diffusion coefficient which
is noticeably larger thanDeff for phase separation. As regard
the effect of dissolution of4He in inclusions, this proces
gives a negligible contribution to the change in pressure
view of the small difference in concentrations at each st
the stressed layer near the boundary is gradually elimina
and disappears completely only when the concentration
the hcp mixture becomes high enough for the dissolution
3He inclusions to occur only through the diffusion mech
nism.

FIG. 19. Thermogram and time variation of pressure during step-wise h
ing of a two- phase crystal.V520.27 cm3/mole.

FIG. 20. Dependence of characteristic time constantst andt* for growth
~curve1! and dissolution~curve2! of 3He inclusions on average concentra
tion x̄. Solid curves connect experimental points.
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The experiments described in the present section pro
on the one hand, that the type of dissolution and growth
inclusions for small step-wise variations of temperature a
concentration is approximately the same, although diss
tion always occurs at a higher rate. On the other hand,
dissolution time decreases abruptly for considerable chan
in temperature, the dissolution apparently becomes a m
stage process. The available experimental data do not
tradict the proposed pattern of multistage process, altho
its correctness requires additional verification.

7. MELTING AND CRYSTALLIZATION OF 3He INCLUSIONS

The peculiarity of the phase diagram for3He allows us to
melt 3He inclusions formed during phase separation of
mixture by further cooling and to crystallize them in th
course of subsequent heating. It was interesting to trace
effect of these processes on the phase-separation kine
Such experiments were made on a sample with a molar
ume of 20.54 cm3/mole(P0531.7 bar). We measured th
time dependence of pressure during cooling at a rate of;10
mK/h followed by heating. The general dependenceP(t)
shown in~Fig. 21! has two clearly manifested segments
which the pressure increases, the first segment being as
ated with the phase separation of the mixture and the sec
with melting of 3He inclusions formed. The obtained depe
dence is similar qualitatively to that obtained by Shre
et al.7 for a mixture with 0.9%3He atP532 bar. As in most
of similar experiments, phase separation of the mixture
be described by an exponential of the type~4! with t
'1200 s. Melting is extended in time and occurs not ve
smoothly apparently due to a noticeable liberation of h
during melting ~it should be recalled thatdPm /dT,0 for
3He under these conditions!. After cooling toT'40 mK, the
sample was heated, which led to crystallization of3He inclu-
sions and corresponding decrease in pressure. The tem
ture dependence of pressure for melting and crystallizatio
the sample is shown in~Fig. 22!.

FIG. 21. Thermogram of crystal cooling and corresponding change in p
sure for the sample withV520.54 cm3/mole, illustrating phase separation
100 mK and melting of formed3He inclusions during subsequent cooling
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It is interesting to compare the amplitudes of press
variation DPs(m) during phase separation and melting.
both cases, the values ofDPs(m) are proportional to the
changeDVs(m) in the molar volume. In the case of phas
separation to quite low temperatures,DVs'0.4x0 cm3/mole
in accordance with~1! for xf!x0 , while in the case of melt-
ing DVm'x0(Vl2Vs) cm3/mole, whereVl andVs are molar
volumes of the liquid and the crystal on the melting curv
Considering thatVl2Vs'1.27 cm3/mole at low temperatures
~see, for example, Ref. 29!, we obtainDVm'3DVs . The
corresponding values ofDP must obey a similar regularity
which is in good agreement with experimental results. In o
opinion, this is an indication of the fact that the sample qu
ity remains quite good at the first stage of the experimen

In this connection, a comparison with the results of sim
lar experiments28 made on a sample in silver powder is re
resentative. It was observed28 that the measured variation o
pressure amounts to only 8% of the calculated value. In
opinion, this is an indication of a considerable inhomoge
ity of the sample, which is inevitable during its crystalliz
tion in virtually closed pores. It should also be noted that
values ofDPm obtained in Ref. 7 under similar condition
for samples grown in free volume are higher, but still notic
ably lower than the theoretical values (DPm /DPs'1).

A number of peculiarities emerging at the next stages
the experiments under consideration are worth noting. Fig
22 presenting the temperature dependence of pressure i
sample shows that the crystallization of molten inclusio
displays hysteresis effects, although the actual difference
tween the curves recorded during cooling and heating is
parently smaller that in Fig. 22 since the temperature laid
the ordinate axis is that of the thermometer, while the act
temperature of inclusions must be higher during cooling a
lower during heating of the sample in view of the heat
transition. Crystallization of an inclusion occurs at a const
volume and is accompanied by a pressure drop in the in
sion in view of the difference in the densities of the crys
and the liquid. As a result, its density and pressure in
crystallized layer are nonuniform.

A comparison of theP(T) curves recorded during cool

s-

FIG. 22. Temperature dependence of pressure during melting and su
quent crystallization of3He inclusions: cooling~curve1! and heating~curve
2!. V520.54 cm3/mole.
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ing and heating~see Fig. 22! shows that the final pressure
the sample after its crystallization is noticeably higher th
the initial pressure. A similar effect was observed by Ha
and Adams.30 The most natural explanation of this fact
based on the assumption that a part of inclusion rem
liquid. This is possible if the decrease in pressure of
inclusion during its crystallization is sufficient for the fin
pressure in it to become lower than the pressurePmin corre-
sponding to the minimum on the melting curve. Apparen
a difference in pressures of the sample and in the inclus
also appears during melting which probably also occurs
constant volume. This assumption is supported by the
that the pressure in the sample at the end of melting
T;50 mK is approximately lower by 0.5 atm than the val
of Pm for pure 3He at such a temperature, while the beg
ning of melting matches to the melting curve for3He. Natu-
rally, the pressure gradient during melting must be low
since it can emerge only in the adjacent layer of the matrix
view of the uniformity of pressure in the liquid. The expe
mentally observed difference between the initial and fi
pressure in the sample is due to the fact that approxima
20% of3He remain in the liquid state. It should be noted th
the pressure in the sample had increased additionally by
proximately 0.015 atm after the next crystallization.

The presence of high potential gradients that can s
press diffusion completely is an inevitable consequence
nonuniformity of density and pressure in the crystallized
clusion. The absence of a noticeable change in sample p
sure after crystallization upon further heating is the m
graphic indication of this effect~see Fig. 22!. High-quality
samples heated toT;150 mK display a very rapid drop o
pressure associated with dissolution of clusters~see the pre-
vious section!. Distortions caused by crystallization prove
to be so significant that they could not be eliminated
homogenization of the sample atT;300 mK for several
hours carried out before the next cooling. This is not surp
ing since a pressure drop of several atmospheres betwee
inclusion and adjacent layers of the matrix having a thi
ness of a few micrometers, which should be observed in
proposed model, must naturally be accompanied by pla
deformation whose consequences are difficult to elimina

Unfortunately, no attempts were made to reduce
emerging distortions by cyclic phase- separation proce
~see Sec. 2!. For this reason, the pressure in the sample
fore the second phase separation was noticeably hig
while the pressure measured after the second melting o
clusions~which was probably also incomplete as in Refs
and 30!, was 0.1 atm lower than after the first melting~Fig.
23!.

Thus, it was found from experiments with melting
3He inclusions that their melting is almost complete after
first cooling to a temperature belowTm , but the pressure in
the cluster at the end of melting is apparently higher~;0.5
atm! than the pressure recorded by the external gauge. C
tallization of molten inclusion is accompanied by strong d
tortions of the crystal, as a result of which a fraction of liqu
3He ~;20%! is preserved even at the temperature mu
higher thanTm . The deceleration of dissolution of the inclu
sion during its subsequent heating as well as incomp
n
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melting as a result of repeated cooling are also manife
tions of a strong distortion of the lattice near the inclusi
boundary. Subsequent crystallization leads to an increas
the fraction of uncrystallized liquid.

The experiments described in this section confirm on
again the assumption concerning a strong effect of sam
inhomogeneity on mass transport. The obtained results a
qualitative agreement with the model proposed by us he

8. CONCLUSIONS

Let us summarize the main results of this research.

~1! A new method of obtaining high-quality homogeneo
samples of solid mixtures of helium isotopes is propos
and implemented. Its essential element is several cy
of growth and dissolution of bcc inclusions3He carried
out in phase-separation region. Indications of the h
quality of the samples obtained in this case are
• a further decrease in the sample pressure as a resu

the cycling as compared to the traditional annealing
• obtaining of short and reproducible characteristic tim

of growth and dissolution of3He inclusions, which is
much shorter than in most other experiments;

• good coincidence of the values of phase-separa
temperature in the initial sample for cooling and he
ing ~the value ofDT does not exceed 10

• the closeness of the observed values of pressure v
tion during phase separation and first melting to t
theoretical values;

• proportionality of pressure variation and the conce
tration of the hcp mixture on the phase-separat
curve.

~2! It is shown that the characteristic time of the growth
3He inclusions has a nonmonotonic temperature dep
dence and increases at low temperatures. Such a be
ior apparently indicates a noticeable limitation of qua
tum diffusion due to fields of stresses emerging in t
crystal during phase separation.

FIG. 23. Kinetics of cooling and corresponding change in pressure du
repeated melting.V520.54 cm3/mole.
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~3! During the dissolution of3He inclusions, anomalously
rapid mass transport is observed in the crystal under
conditions of strong deviations from equilibrium, and
threshold nature is established.

~4! A model of multistage dissolution of3He inclusions,
which explains qualitatively its main peculiarities,
proposed. The model takes into account the presenc
a stressed layer near the boundary of inclusion, whic
formed due to the difference in the molar volumes of t
two phases, and its destruction during the dissolution
4He in 3He inclusions.

~5! The kinetics of melting and crystallization of3He inclu-
sions due to temperature variation is studied. It is fou
that repeated crystallization of molten inclusions giv
rise to a large pressure gradient near the boundar
inclusions, which suppresses quantum diffusion cons
erably and may lead to incomplete crystallization of
clusions.

This research was partly supported by grants Q
082169 and QSU 082048 of the International Program
Science and Education.
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Spin dynamics of 3He-B with dissipation for the general spin-orbital configurations
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The spatially homogeneous spin dynamics of the superfluid3He-B with dissipation is considered
for the general spin-orbital configurations. It is demonstrated that the possibility of new
coherent spin-precessing modes appears explicitly in the equations of motion describing the
relaxation of the spin variables towards various attractors~resonance states! found previously as
the stationary solutions and observed experimentally. ©1999 American Institute of
Physics.@S1063-777X~99!00408-9#
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1. The order parameter rigidity of the superfluid phas
of liquid 3He gives life to a number of the long-lived excita
tions at the background of the Cooper pair condens
Among them, a great importance, since the discovery
ultralow-temperature ordered states of3He, has been attrib
uted to the investigation of the coherent spin dynamics
crucial role here is played by a weak spin-orbital coupli
stemming from the dipole-dipole interaction between nucl
magnetic moments of3He atoms. In the ordered~superfluid!
states the dipole-dipole potentialUD lifts the spin-orbital de-
generacy and stabilizes the appropriate equilibrium or
namical spin-orbital configurations of3He-A and3He-B.

The spin dynamics of the superfluid phases of3He is a
coupled motion of the nuclear magnetizationM5gS and the
spin part of the order parameter. In the dissipationless
proach a starting point is the Leggett Hamiltonian~in what
follows we consider a spatially homogeneous spin dynam!

HL5
1

2x
M22M–H01UD5

g2

2x
S22v0Sz1UD , ~1!

wherex is the magnetic susceptibility, the external magne
field H052H0z and the Larmore frequencyv05gH0 . The
order parameter here enters through the dipole-dipole po
tial UD and introduces the characteristic features of sup
fluid phases. Below we concentrate on the properties of
spin-precessing modes of3He-B. For theB phase

UD5
2

15
xBS VB

g D 2S Tr R̂2
1

2D 2

, ~2!

whereVB is the frequency of the longitudinal NMR and th
orthogonal matrixR̂ is theB-phase order parameter descri
ing 3D relative rotations of the spin and orbital degrees
freedom. Introducing the triples of Euler angles (aS ,bS ,gS)
and (aL ,bL ,gL) describing 3D rotations in the spin and
orbital spaces, respectively, it can be shown that
6071063-777X/99/25(8–9)/4/$15.00
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Tr R̂5szl z1
1

2
~11sz!~11 l z!cos~a1g!

1
1

2
~12sz!~12 l z!cos~a2g!

1A~12sz
2!~12 l z

2!~cosa1cosg!, ~3!

wheresz5cosbS, l z5cosbL , a5aS2aL andg5gS2gL .
In the strong magnetic field case (v0@VB) the spin dy-

namics is governed by a set of the Hamiltonian equations
two pairs of the conjugate variables (Sz ,a) and (S,g) with S
being the magnitude ofS. According to Eq.~1! this set of
equations reads as

Ṡz52
]UD

]a
, ȧ52v01

]UD

]Sz
; ~4!

Ṡ52
]UD

]g
, ġ5~S/S0!v01

]UD

]S
; ~5!

whereS05xv0 /g2 ~the magnitude of equilibrium magnet
zationM05gS0).

The anglea is a fast variable in the sense thatuȧu
@VB and the same is true forg ~except the case withS
!S0 which we do not consider here!. On the other hand, the
combinationF5a1(S0 /S)g is a slow variable. The signifi-
cance of this resonance becomes clear when considering
structure of the dipole-dipole potentialUD . Inserting Eq.~3!
into Eq. ~2! we conclude that

UD /S0v05« f ~sz ,l z ,a,g!5«(
kl

f kl~sz ,l z!e
i ~ka1 lg!,

~6!

where«}(VB /v0)2.
Assuming that«51/10(VB /v0)2, it follows from Eqs.

~2! and ~3! that f kl5 f lk5 f 2 l 2k for the B phase and the
non-zero coefficients are given as:

f 005112sz
2l z

21~12sz
2!~12 l z

2!,

f 1052szl zA12sz
2A12 l z

2,
© 1999 American Institute of Physics
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f 205
1

2
~12sz

2!~12 l z
2!,

f 1615
1

3
~16sz!~16 l z!~172sz!~172l z!, ~7!

f 1625
1

3
~16sz!~16 l z!A12sz

2A12 l z
2,

f 2625
1

12
~16sz!

2~16 l z!
2.

It is easily verified that atl z51, which corresponds to an
equilibrium orbital states of3He-B ~the so called Leggett
configuration!, f kl are nonzero only fork5 l 50,61,62.
This means that for an orbital state withl z51 the dipole-
dipole potential depends only on the combinationF5a
1g and, as we have seen, it is a slow variable atS.S0 . This
well known resonance is operative even atl zÞ1 because all
other linear combinations ofa andg are fast variables atS
.S0 for the strong-field case («!1) and they disappear on
the average. The conventional spin dynamics atS.S0 has
been explored thoroughly in the past.1,2

On the other hand, atl zÞ1 ~non-Leggett orbital configu-
ration! an unconventional spin dynamics is also possib
since a new resonance regime can develop. Indeed, an
spection of the coefficientsf kl shows that a new combination
F5a12g appears in the expression forUD which turns out
to be a slow variable at a special value ofS5S0/2 ~another
resonance atS52S0 is also possible!. This has been noticed
in Ref. 3 ~for more details see Ref. 4! and the corresponding
experimental investigations were undertaken recently.5,6

The stationary solutions forsz ,l z and F corresponding
to the particular coherent spin-precessing modes at the fi
resonance values ofS are found by minimizing the time-
averaged dipole-dipole potentialŪD ~the Van der Pol pic-
ture!. On the other hand, in order to explore the time evol
tion of Sstarting from some initial value, and to find out th
routes leading to the mentioned resonance regimes, a
description of the spin dynamics, including the dissipatio
effects, is necessary. In what follows a theoretical bac
ground for the analysis of the relaxation processes in the s
dynamics of3He-B will be presented. It is a direct generali
zation of the approach adopted in Ref. 7 and allows us
consider the case of the non-Leggett orbital configurations
should be noted that using the computer simulation progra
~like a package elaborated by A. A. Leman! the spin dynam-
ics including the Leggett–Takagi dissipation mechanism c
be explored quite efficiently. At the same time, an analytic
approach has the merits of its own and gives, as we shall s
a transparent insight into the essence of the problem.

2. A standard procedure of incorporating the relaxatio
processes into the homogeneous spin dynamics is base
the introduction of a dissipative function

Fd5
1

2
k~Ṡ2gS3H0!25

1

2
kF S2

S22Sz
2 S Ṡ21Ṡz

2

22
Sz

S
ṠṠzD1~S22Sz

2!~ ȧ1v0!2G , ~8!
e
in-

ed
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to
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where k will be considered as a phenomenologic
coefficient.7

During the time intervaldt the energy of a dissipative
system changes by

dE522Fddt5kF S2

S22Sz
2 S ]UD

]g
2

Sz

S

]UD

]a D dS

1
S2

S22Sz
2 S ]UD

]a
2

Sz

S

]UD

]g D dSz

1~S22Sz
2!

1

v0
S ]UD

]Sz
D 2

daG . ~9!

This last relation allows to pass from the Hamiltonian Eq
~4! and ~5! to a set of equations for the spin dynamics w
dissipation~from now on the time is measured in units
1/v0 and (Sz ,S) in units of S0):

Ṡz5«Xz , ȧ5211«Ya , ~10!

Ṡ5«XS , ġ5S1«Ya , ~11!

where

Xz~Sz ,S,a,gu«!52
] f

]a
1«k~S22Sz

2!S ] f

]Sz
D 2

, ~12!

XS~Sz ,S,a,g!52
] f

]g
, ~13!

Ya~Sz ,S,a,g!5
] f

]Sz
2

kS2

S22Sz
2 S ] f

]a
2

Sz

S

] f

]g D , ~14!

Yg~Sz ,S,a,g!5
] f

]S
2

kS2

S22Sz
2 S ] f

]g
2

Sz

S

] f

]a D . ~15!

Since«!1 a well-known procedure of separating of th
slow (Sz ,S) and the fast~a, g! motions can be applied8 to
solve Eqs.~10! and ~11!. Although the main points are de
scribed in Ref. 7, here we show the principle steps for co
pleteness.

Passing to the new variablesS̄z , S̄, ā andḡ according to
the prescription

Sz5S̄z1«uz1«2vz1...,

S5S̄1«uS1«2vS1...,
~16!

a5ā1«ua1«2va1...,

g5ḡ1«ug1«2vg1...,

whereui5ui(S̄z ,S̄,ā,ḡ) andv i5v i(S̄z ,S̄,ā,ḡ), and assum-
ing that the new variables are subject to a set of equatio

Ṡ̄z5«Az1«2Bz1...,

Ṡ̄5«AS1«2BS1...,
~17!

ǡ5211«Aa1«2Ba1...,

ġ̄5S̄1«Ag1«2Bg1...,
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with Ai5Ai(S̄z ,S̄) andBi5Bi(S̄z ,S̄), we arrive at the equa
tions for yet unknown functionsui , andv i :

2
]ui

]ā
1S̄

]ui

]ḡ
5gi2Ai , ~18!

2
]v i

]ā
1S̄

]v i

]ḡ
5hi2Bi . ~19!

In Eq. ~18!, in describing the first order effects in«, the
functionsgi are given as follows:

gz5Xz~S̄z ,S̄,ā,ḡu0!,

gS5XS~S̄z ,S̄,ā,ḡ !,
~20!

ga5Ya~S̄z ,S̄,ā,ḡ !,

gg5Xg~S̄z ,S̄,ā,ḡ !1uS~S̄z ,S̄,ā,ḡ !.

The second order effects in« are governed by Eq.~19!
and the functionshi contain derivatives ofXi and Yi , with
respect toS̄z ,S̄,ā,ḡ and« ~calculated at«50). In particular

hz5
]Xz

]S̄z

uz1
]Xz

]S̄
uS1

]Xz

]ā
ua1

]Xz

]ḡ
ug1

]Xz

]«
u«

2S Az

]uz

]S̄z

1AS

]uz

]S̄
1Aa

]uz

]ā
1Ag

]uz

]ḡ D . ~21!

The otherhi have the similar structure. According to Eq
~12!–~15! and ~6! the functionsgi are periodic ina andg:

gi5(
kl

gkl
~ i !~S̄z ,S̄!ei ~kā1 l ḡ !, ~22!

and the bounded solutions of Eq.~18! are given as

ui5 i(
kl

8
gkl

~ i !

k2S̄l
ei ~kā1 l ḡ !,

~23!
Ai5g00

~ i !~S̄z ,S̄!,

where a prime in the summation overk and l excludes the
contribution ofk5 l 50. In a similar way can be found th
solutions of Eq.~19!.

Performing the above-mentioned procedure it can be
tablished that

Az5AS50, Aa5
] f 00

]S̄z

, Ag5
] f 00

]S̄
,

~24!
Bz5h00

~z! , BS5h00
~S! .

After having calculatedh00
(S) it can be shown that

Ṡ̄5«2BS5
«2k

12sz
2 (kl

l

k2S̄l
~k21 l 222szkl ! f kl

2 , ~25!

where only the dissipative contribution toBS is retained. In a
similar way it is concluded that
s-

Ṡ̄z5«2Bz5
«2k

12sz
2 (kl

k

k2S̄l
~k21 l 222szkl ! f kl

2

1«2k~12sz
2!(

kl
S ] f kl

]sz
D 2

. ~26!

In Ref. 7 the set of Eqs.~25! and ~26! has been used to
explore the dissipative processes in the superfluidA and B
phases for the special orbital states, the Leggett config
tions. For3He-B, which we consider here, this correspon
to l z51. At l z51 only the components withl 5k561,62
contribute to the r.h.s. of Eqs.~25! and ~26! and, as men-
tioned in Ref. 7, irrespective of the initial conditions,S̄ is
attracted to the resonance valueS̄51.

For a non-Leggett orbital configuration~with l zÞ1) the
new possibilities appear. For the general spin-orbital c
figurations Eq.~25! can be put in the following form:

Ṡ̄52
2«2k

12sz
2 F1

S̄
~ f 10

2 14 f 20
2 !12

12sz

S̄21
~ f 11

2 14 f 22
2 !

1S 524sz

S̄21/2
1

524sz

S̄22
D f 12

2 12
11sz

S̄11
~ f 121

2 14 f 222
2 !

1S 514sz

S̄11/2
1

514sz

S̄12
D f 122

2 G . ~27!

Here ~and below! sz5S̄z /S̄. By using Eq.~26! it can be
shown that

Ṡ̄z5«2kH 1

12sz
2 F2~ f 10

2 14 f 20
2 !24

12sz

S̄21
~ f 11

2 14 f 22
2 !

2S 524sz

S̄21/2
14

524sz

S̄22
D f 12

2 14
11sz

S̄11
~ f 121

2 14 f 222
2 !

1S 514sz

S̄11/2
14

514sz

S̄12
D f 122

2 G1~12sz
2!(

kl
S ] f kl

]sz
D 2J .

~28!

From the set of Eqs.~27! and ~28! it is seen that, along
with a conventional resonance atS̄51, the new resonances a
S̄5(1/2, 2) intervene for the case withf 12Þ0. It should be
kept in mind that, according to their derivation procedu
Eqs. ~27! and ~28! are applicable not too close to the me
tioned resonance values ofS, but the general tendencies o
the various relaxation scenarios, leading to the attractor
S̄5(1, 1/2, 2), can still be established.

As an illustration of the content of Eq.~27! we shall
consider a non-Leggett orbital state withl z50. One can fix
this orbital configuration by applying sufficiently strong s
perfluid counterflow in the transverse direction with resp
to the magnetic field. Such a possibility is realized, in p
ticular, in the rotating cryostat in the vortex-free region9
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From Eq.~27! it is found that atl z50 andsz→1S̄ is evolv-
ing according to the equation

Ṡ̄52
32

9
«2k

~S̄2S1!~S̄2S2!

~S̄21!~S̄21/2!~S̄22!
, ~29!

whereS65(196A73)/16. From Eq.~29! it is immediately
concluded thatS̄ is tending to its resonance valueS̄51 if
initially S̄ is confined to an intervalS2,S̄,S1 . On the
other hand,S̄ is attracted to 1/2 ifS̄,S2 , andS̄ approaches
2 for S̄.S1 . These conclusions, although rather qualitati
contain interesting hints. More detailed analysis of the so
tions of the set of Eqs.~27! and~28! will be given elsewhere.
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The problem of the robust de Haas–van Alphen oscillations seen experimentally in mixed
superconducting state is discussed. The new threshold mechanism is suggested to explain
persistence of the quantum oscillations deep in the superconducting state. ©1999
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I am very glad to be able to provide a paper for the iss
dedicated to the memory of Professor B. I. Verkin. His ow
contributions and his efforts to promote condensed ma
research in Kharkov to new highs were, indeed, impress
and successful. Currently, the Institute for Physics and Te
nology at Low Temperatures~FTINT! which he had helped
to organize from scratch enjoys a reputation of one of
main scientific centers in the field.

The Kharkov School is famous for its pioneering stud
of normal metals’ properties by various means and to
Thus, among others, observations of quantum oscillations
the most direct assessment of electronic spectra in metal
the famous Lifshitz-Kosevich formula for the de Haas–
Alphen ~dHvA! effect. Fermi surfaces~FS! of countless met-
als and intermetallic compounds have been determined
classified with the use of this method during the last fl
decades.

It is worthwhile to emphasize that the very concept of
is at the core of the Landau Fermi-liquid~FL! theory. With
the remarkable recent progress in synthesis of new mater
many of which reveal unexpected peculiarities in their phy
cal properties, the question arose whether the Landau
theory remains applicable in spite of the observed compl
tions, or electron-electron interactions, being strong enou
may breach the FL-theory. Studies of the dHvA effect wou
provide the most direct test of the FL-assertions.

Below we address the issue of existence of the dH
oscillations in the superconducting state. Whatever is
mechanism of interactions causing superconductivity, the
ter may usually be well understood in terms of the BC
microscopic theory. The truth is that it is far from being cle
whether the BCS scheme remains applicable, say, in
prates, heavy fermions~HF!, or borocarbides, to mention
few. However, the BCS theory is based upon the FL conc
If the dHvA-effect in superconducting state in these mate
als~see below! could be described in frameworks of the BC
scheme, it would become an indirect proof of FL for the
substances.

The dHvA effect in normal metals is nothing but th
6111063-777X/99/25(8–9)/3/$15.00
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WKB phenomena. An electron possessing large moment
pF;a21, its levels in magnetic field are equidistant near t
chemical potential,m ~m[EF , the Fermi energy!:

EN5vcS N1
1

2D ~1!

wherevc , the cyclotron frequency, is the characteristic of
effective electron mass in case of some arbitrary FS. A mi
variation in the field,B, such thatDB/B;vc /EF!1, may
push a level across the chemical potential causing ab
change in levels’ occupation numbers and, hence, the s
like change in magnetization.~For simplicity we consider a
two-dimensional~2D! case where this mechanism becom
most transparent!. In the quasiclassical approximation a
electron performs a closed-orbit motion~circular orbits, in an
isotropic model!, which may be equally well described as th
Larmor motion in real space, or as the electron motion in
momentum representation along a closed orbit encirclin
FS. Equation~1! is then nothing but the result of quantizatio
in accordance with the Bohr correspondence principle.

The dHvA effect in superconducting state is observed
the second-type superconductors when the magnetic fie
gradually decreased below the upper critical field,Hc2 . At
B,Hc2 , the mixed state superconductivity1 sets in. The
magnetic field in the sample remains practically homo
neous,B5B̄, while the superconducting order parameter p
riodically varies in space. AtB!Hc2 the gap structure cor
responds to a lattice of vortices~intervortex distance,d,
being larger thanj0 , the coherence length which defines t
vortex core size! separated by the ‘‘bulk’’ where the ampli
tude of the gap is saturated to a constant,DB :

D~r ,p!.DB~p!exp$ iw~r !% ~2!

@DB(p) depends onB̄, although in order of magnitude it is
close to the value of the gap in the absence of field#.

A challenge, and a theoretical puzzle, is that the dH
effect is observed in the well-developed superconduct
state, down toB;0.2Hc2 . This fact apparently contradict
our intuitive notion of the dHvA effect resulting from th
© 1999 American Institute of Physics
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mechanism of crossing the chemical potential by an ene
level. Indeed, although vortex cores produce some low
ergy excitation, these are known to be localized inside
core. The ‘‘bulk’’ of the superconductor, at distancesr;d
@j0 from the core is fully ‘‘gapped,’’ according to Eq.~2!.
The chemical potential being positioned in the middle of
gap, levels on the two branches of superconducting exc
tions ~even in the presence of the field,B̄) would never cross
the chemical potential, in particular, because

vc!D, Tc . ~3!

Equation~3! is a strong inequality, as follows from the m
croscopic theory, and may be rewritten in the form

B

Hc2~pFj0!
!1. ~4!

Therefore it is commonly accepted that well belowHc2 an
effective ‘‘Dingle’’ temperature

T* ;D ~5!

would result in the fast decay of the dHvA signa
Experiments2–4 strongly contradict the above arguments.

The field rangeB;0.2Hc2 which has been reached e
perimentally in Refs. 3 and 4 presents considerable diffic
ties for a theoretical analysis because the vortex lines are
yet well defined (d*j0). However, it is natural to wonde
about whether a specific and new mechanism lies behind
observed phenomenon of slow decay of the dHvA effect
low Hc2 , and whether such a mechanism may be consis
with the microscopic theory. In Refs. 5 and 7 we have c
sen to address the issue in the limit of:

B!Hc2 ; dL@d@j0 ~6!

to search for a new mechanism which may provide not
severe limitations on the dHvA amplitude, as is given by E
~5!. Such mechanism does exist, indeed, and is expla
below in some simple physical terms. A rigorous proof a
the mathematical details can be found in Refs. 5 and 7.

At first, it is worth our while to discuss briefly a temp
ing guess that the persistence of the dHvA effect belowHc2

may be caused by an unconventional symmetry of the su
conducting order parameter. Once we consider a 2D cas~a
cylindrical FS!, a natural suggestion is a ‘‘d-wave’’ pairing
often assumed to be the ground state in highTc cuprates. In
this model the gap disappears at the four points on the Fe
surface where the electron-like and the hole-like branches
excitations merge. It turned out,5 however, that although a
level always exists in the presence of the magnetic field
the very vicinity of the chemical potential, its position
fixed. It is not changed by variations of the magnetic field.
other words, although the gapless ‘‘d-wave’’ superconduc-
tivity significantly changes the structure of levels, wh
compared to the ‘‘s-wave’’ pairing, the mechanism of cross
ing the chemical potential by a level at a variation of t
magnetic field is again excluded.

The true mechanism which causes the dHvA oscillatio
in the superconducting state, at least in the limitB!Hc2 ,
Eq. ~6!, may be called the ‘‘threshold’’ mechanism~see Refs.
6 and 7!. There are two features in the superconduct
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energy spectrum that are responsible for its origin: an ani
ropy of the superconducting order parameter,D(p), and the
Doppler shift of the excitation energy by supercurrents flo
ing in the periodic vortex lattice,vs(r ). Consider them first
in the absence of quantizing effects of the magnetic field

If the gap,D(p), depends on the position ofp along the
Fermi surface, so thatDmin and Dmax are its minimal and
maximum values, correspondingly, there are no excitati
with the energy less thanDmin . Excitations with an energy
«(p).Dmax may propagate freely to infinity in the rea
space. However, excitations with an energy such thatDmin

,«(p),Dmax can perform an infinite motion only if the mo
mentum lies in the proper restricted angular cone.

Recall that excitations have no definite charges in
BCS-theory. Instead, there are two branches, one ‘‘electr
like’’ and one ‘‘hole-like.’’ The meaning of these definition
is that the full electron charge is restored only far enou
from the Fermi surface, while, say, the ‘‘electron-like’’ cha
acter of an excitation gradually diminishes by degrees as
energy tends toDmin .

An electron in the normal state placed in the magne
field performs the motion along a closed orbit under the L
entz force:

ṗ5
e

c
@vF~p!3B#. ~7!

Although Eq. ~7! is not applicable for excitations in a
superconductor since the excitation’s charge is not fixed
explained above, it helps to explain the origin of the ‘‘thres
old’’ mechanism in a qualitative way. In the absence of t
magnetic field excitations~the wave packets! move along
straight lines, the momentum being preserved. The magn
field bends the trajectories. While at an energyDmax the ex-
citation still can perform a closed motion~along the large
Larmor-like orbit,RL;vF /vc , in the real space, or along
trajectory encircling the Fermi surface, in the momentu
space!, this is not true for excitations with an energy le
thanDmax. Changing the direction of momentum in the ma
netic field brings it to the boundary of the angular cone b
yond which extended motion of the wave packet is imp
sible. The ‘‘electron-like’’ character gets lost, and th
excitation being rejected back~in the direction along FS!,
starts its motion as a ‘‘hole-like’’ particle. This process r
peats on the other side of the allowed directions. Excitati
with energies betweenDmin andDmax will form ‘‘localized’’
states. Thus, there exists the energy threshold,« th5Dmax,
which separates the localized states and the ‘‘extend
states. For the latter an excitation behaves basically in
same way as ordinary electrons~except, of course, that thei
effective charge at«*« th is reduced from the bare electro
charge and depends on energy!. At the field variation the
‘‘extended’’ energy levels cross the threshold, becoming
‘‘localized’’ ones.

The ‘‘threshold’’ effect caused by the anisotropy of th
order parameter only, would lead to a significant dHvA e
fect even in the extreme case of Eq.~6!:5

Mosc
s ;~vc /D!1/2Mosc

N . ~8!
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However, so far we have been neglecting the contribut
from the Doppler effect. The Doppler shift in energy of e
citations

«~p!→E~p!5«~p!1p•vs~r ! ~9!

is due to the presence of the periodic supercurrents w
flow even in the ‘‘bulk,’’ i.e., away from the vortex cores
The second term in~9! is smaller than the scale of the ga
Dmin;Dmax. Its role is two-fold. On the one side, the mech
nism ~9! may itself be the source of a threshold betwe
‘‘localized’’ and ‘‘extended’’ states. Indeed, consider a La
mor trajectory. Its radius,RL;vF /vc , is much larger thand,
the vortex lattice periodicity. Therefore, the quasiclassi
packet may be thought in the first approximation as mov
locally along a straight line, with somep. Along that line
vs(r ) varies but is limited in its value. Therefore,
E,Dmax1up•vs(r )umax, an excitation is bound again. Such
threshold effect exists even if the isotropic gap were chos7

Unfortunately, the mechanism~9! also plays a destruc
tive role on the dHvA effect. To understand this, recall th
the gap anisotropy had led to the threshold position exa
at «5Dmax. The termp•vs(r ), although being small itself in
the range of fields given by Eq.~6!, significantly smears ou
the sharpness of this threshold due to spatial distribution
the superfluid velocity,vs(r ). As a result, the amplitude o
the dHvA effect given by Eq.~8!, suffers a sharp decreas
becoming again exponentially small. However, the value
an effective Dingle temperature turns out to be considera
reduced compared to Eq.~5!:

Teff* ;D~j0 /d!!D. ~10!

Using other language,5–7 the destructive effect of the
Doppler shift may be interpreted as due to scattering of
electron moving along the Larmor orbit by the flux lines
the vortex lattice.
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Thus, it is shown that, at least in the regime of Eq.~6!,
there exists a specific new mechanism of the dHvA osci
tions in the developed superconducting mixed state that c
sists of crossing the threshold energy by levels of excitati
in the magnetic field, while in the normal phase the oscil
tions originate from crossing the chemical potential. The
gime of the magnetic field whereB&Hc2 is more difficult
for theoretical analysis. However, we expect that simi
threshold phenomena should take place even atd;j0 to ex-
plain the robustness of the dHvA effect in the supercondu
ing state.
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Equilibrium vortex configuration in conventional type II superconductors containing short-range
columnar defects is investigated theoretically. In the bulk superconductor near the upper
critical field Hc2 a single defect causes a strong local deformation of the vortex lattice which has
C3 or C6 point symmetry. The vortices can collapse onto attractive defects, while in the
case of repulsion the regions free of vortices appear near a defect. Increasing the applied magnetic
field results in an abrupt change of the configuration of vortices related to the formation of
multiquantum vortices and giving rise to reentering transitions between configurations withC3 or
C6 symmetry. In the case of a small concentration of defects these transitions manifest
themselves as jumps of magnetization and discontinuities of the magnetic susceptibility. Columnar
defects also influence significantly the magnetic properties of a mesoscopic superconducting
disc. They help the penetration of vortices into the sample, thereby decreasing the sample
magnetization and reducing its upper critical field. Even the presence of weak defects splits
a giant vortex state~usually appearing in a clean disc in the vicinity of the transition to a normal
state! into a number of vortices with smaller topological charges. In a disc with a sufficient
number of strong sufficently defects vortices are always placed onto defects. The presence of
defects lead to the appearance of additional magnetization jumps related to the redistribution
of vortices that are already present on the defects and not to the penetration of new vortices.
© 1999 American Institute of Physics.@S1063-777X~99!00608-8#
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1. INTRODUCTION

The magnetic properties of type II superconductors
mixed state or Shubnikov phase1 are mostly determined by
Abrikosov vortices penetrating into the sample.2 A single
vortex in a macroscopic superconductor with size much b
ger than the penetration lengthl(T) carries the supercon
ducting flux quantumf05p\c/e. Repulsive interaction be
tween vortices leads to formation of a triangular vort
lattice in a uniform sample. The lattice constant decrea
with the increasing of a magnetic field and near the up
critical field Hc2; for an infinite sample it is of orderj(T)
~the coherence length at temperatureT!. The magnetization
density also decreases, and atHc2 it vanishes, that is, the
superconductor becomes a normal state.

In a mesoscopic superconductor, with size much sma
than the penetration length, each vortex carries flux tha
less than the flux quantum. In a uniform disc with size
order of a few coherence lengths in a strong fieldHc2,H
,Hc3 , all the penetrated vortices are located at the d
center3–5 forming so-called giant vortex. Penetration of th
new vortices into the sample~as the applied magnetic fiel
increases! manifests itself as a sequence of jumps on
magnetization curve. These jumps were obser
experimentally6 and have been discussed in a series of th
retical works.4,5,7–9

Various kinds of defects, such as dislocations, groups
6141063-777X/99/25(8–9)/11/$15.00
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point defects, twinning boundaries or regions with differe
superconducting properties can pin the vortices, deform
the vortex lattice and increasing the critical current. T
most effective in this sense are the columnar defects app
ing after the heavy ion irradiation of superconducti
sample.10 These defects serve as strong pinning centers, e
of which is able to pin a single vortex as a whole. The rad
of the columnar defect could be much more or less than
coherence length~long-range or short-range defects, respe
tively!. Strong long-range columnar defects may lead to
formation of multiquantum vortices in high temperatu
superconductors.11,12 Such vortices were observed expe
mentally on submicron artificial holes in mutlilayer
Pb/Ge.13 Columnar defects, essentially influence magne
properties of the sample. In bulk high temperature superc
ductors they lead to important changes of the reversible m
netization curve.14

In this paper we show that short-range columnar defe
strongly affect the properties of conventional type II sup
conductors. In a bulk superconductor near the upper crit
field Hc2 these defects cause a strong local deformation
the vortex lattice. This deformation hasC3 or C6 point sym-
metry. If the vortex-defect interaction is attractive, the vor
ces can collapse onto defect, promoting the formation o
multiquantum vortex. Increasing the applied magnetic fi
results in reentering transitions between configurations w
C3 or C6 symmetry. In the case of a small concentrati
© 1999 American Institute of Physics
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of defects these transitions manifest themselves as ju
of magnetization and discontinuties of the magnetic susc
tibility.

On the other hand, in a mesoscopic superconducting
near the upper critical fieldHc3 even weak defects can de
stroy a giant vortex state splitting it into a number of vortic
with smaller topological charges. Columnar defects sho
also change significantly the magnetic properties of mes
copic superconductors. When the number of defects is of
order of the number of vortices one can expect that they
essentially suppress the magnetic response of the sampl
reduce the critical fieldHc3 . If the number of defects is
larger than the number of vortices and the defects are st
enough it seems plausible that all vortices could be pin
by defects. As the applied field changes the vortices
change their position on the defects. These rearrangem
should lead to increasing of the number of mesoscopic jum
of the magnetization curve as compared with that of a cl
sample. In the present paper we show that all these a
narios really take place in small enough superconduc
discs.

The paper is organized as follows. The rest of this s
tion contains basic notations and description of the mode
section 2 we consider bulk superconductor with small c
centration of columnar defects. The third section is devo
to the properties of mesoscopic superconducting disc c
taining a number of defects. In the last section the m
results are summarized.

Consider a type II superconductor containing colum
defects. The sample is subject to an applied magnetic fi
which is parallel to the defects. Therefore the problem
comes essentially a 2D one. Throughout the paper we
dimensionless variables, measuring magnetic field and ve
potential in units ofHc25F0/2pj2(T) andF0/2pj(T), re-
spectively. Any length appearing is measured in units of
temperature dependent coherence lengthj(T). In these units
the penetration length coincides with the Ginzburg–Land
parameterk. Then the density of the thermodynamic pote
tial and the order parameter are measured in unitsa0

2/b and
A2a0 /b, where a0,0 and b.0 are the standard
Ginzburg–Landau coefficients of the clean sample. In
presence of defects located at the pointsr j ~r being a 2D
vector! the coefficienta should be modified:

a~r !5a0@12da~r !#

and depends on position as

da~r !5(
j

da1~r2r j !.

In what follows we use the simplest model

da1~r !5a1 expS 2
r 2

2l 0
2D , ~1!

where l 0 is the dimensionless size of the defect. The mo
fication term is simply related to the critical temperatu
changedTc(r ) caused by defects:

da~r !5
dTc~r !

Tc2T
, ~2!
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whereTc is the critical temperature of a clean sample. Ge
erally speaking, the third Ginzburg–Landau coefficie
g(g051/2m) should also be modified as

g~r !5g0@11dg~r !#.

This modification term is described by analogous equati
wherea should be replaced byg. For a fixed temperature
close to the critical temperatureTc , the Ginzburg–Landau
densityg of the Gibbs potential16 of such a superconductor i
written as

g52uCu21
1

2
uCu41dg~r !uD2Cu21da~r !uCu2

1k2@b~r !2h#2.

The gauge invariant gradientD2 is given by

D2[2 i
d

dr
1a,

where a is the vector potential of the magnetic inductio
b~r !.

2. BULK SUPERCONDUCTOR

Consider a superconductor containing columnar defe
In the linear approximation with respect to small concent
tion of defects the problem is effectively reduced to a sin
defect problem.15 Near the upper critical fieldh51 of a uni-
form bulk superconductor, the behavior of a superconduc
can be derived within the lowest Landau level~LLL !
approximation17,18 by minimization of the density of the
Gibbs potential

g1~r ;@C#!5~12h!uCu21
1

2 S 12
1

2k2D uCu4

1da1~r !uCu21dg1~r !uD2
0 Cu2, ~3!

which depends only on the order parameter. Hereh stands
for a dimensionless external magnetic field andD2

0 is the
gauge invariant gradient of the vector potential of the ext
nal fieldH. In what follows we shall use the vector potenti
in the symmetric gauge.

To find the order parameter which realizes this minimu
one can expandC(r ) in terms of Landau functionsLm(r ) of
the lowest Landau level~m is the orbital momentum! substi-
tute this expansion into Eq.~3! and find the expansion coef
ficients from the minimum condition.19 Such an expansion
serves as a good approximation and one can neglect the
tribution of the highest Landau levels even at a field mu
less than upper critical field.20,21In the case of isotropic func
tions a1(r ) and g1(r ) the symmetry of the unperturbe
Abrikosov lattice enables us to consider only two cases c
responding either toC6 symmetry or toC3 symmetry. The
hexagonal symmetry corresponds to the distorted vortex
tice with one vortex placed on the defect. The trigonal o
corresponds to the lattice with the defect located in the ce
of the vortex triangle. In the hexagonal case the trial or
parameter can be written as



b
e
m
of
tr

he
e
gle

de
ri

o
n

t

e

n-

se-

ns
s
n

of
d
e

y

ua-

so-

x
of

e

e
effi-
d
the
he
the
ll

ly
n-
to

ven

616 Low Temp. Phys. 25 (8–9), August–September 1999 Braverman et al.
C6~r !5 i (
m50

`

@p21M6~m!1D~m!#Lm~r !. ~4!

Here D(m) are the variational parameters which are to
found. The case when allDm are equal to zero and only th
coefficientsM6(m) remain, corresponds to the order para
eterC6

A(r ) which describes the Abrikosov lattice with one
the vortices located at the origin and one of the symme
axes parallel to thex axis. The coefficientsM6(m) are real
and obey the selection rule19 m56M11, M50,1,2,... . In
the trigonal case the trial order parameter is written as

C3~r !5 (
m50

`

i 2m@p21M3~m!1D~m!#Lm~r !. ~5!

The case when allD(m) are equal to zero, corresponds to t
order parameterC3

A(r ) which describes the Abrikosov lattic
whose origin coincides with the center of the vortex trian
and one of the symmetry axes is parallel to thex axis.
The real coefficientsM3(m) obey the selection rulem
53M , M50,1,2,... .

To obtain the lattice deformation caused by a single
fect we have to find separately the extremal set of the va
tional parametersD(m) within each of the two symmetry
classes separately, and to choose the most preferable
from the two of them. Direct substitution of the test functio
C~r ! expressed in the forms~4! or ~5! into the expression for
the Gibbs potential density~3! and minimization with respec
to the variational parametersD(m) yields

2

31/4bA
H (

l ,m

~ l 1m!!

2l 1m11Ak! l !m! ~ l 1m2k!!

3@pD~ l !D~m!D* ~ l 1m2k!

1M ~ l 1m2k!D~ l !D~m!#

1(
l ,m

~k1m!! M ~k2 l 1m!

2k1mAk! l !m! ~k2 l 1m!!
D~ l !D* ~m!

1(
l

F2l ~k,l !D~ l !1A~k1 l !!

k! l !
J~k1 l !D* ~ l !G J

2D~k!1@p21M ~k!1D~k!#
wk

~11w!k

3$aw1g3@w21k~112w2!#%50. ~6!

Here

w5hl0
2, ~7!

ba51.1596,a and b are properly scaled strengths of th
defect:

a5
ã

12h
, g5

g̃h

12h
, ~8!

and

I ~k,l !5(
m

~ l 1m!!

Ak! l !m! ~ l 1m2k!!

M ~m!M ~ l 1m2k!

2l 1m11p
,

e

-

y

-
a-

ne

J~k!5(
m

S k!

m! ~k2m!! D
1/2M ~m!M ~k2m!

2k11p
.

Equations~6! were obtained by Ovchinnikov19 who used
their linearized version for studying possible structural tra
sitions. They are valid for both two symmetriesC6 andC3 .
In each of these cases one should take into account the
lection rules

M3~m!5dm,3MM3~3M !,

M6~m!5dm,6M11M6~6M11!, M50,1,2,... , ~9!

and use forM3.6(m) their corresponding~real! values.22 A
quite natural assumption~which is verified below! is that the
perturbed lattice conserves its initial symmetry. This mea
that the coefficients$D(m)% obey the same selection rule
that the initial coefficientsM (m) do. We use this assumptio
in our analysis below.

The qualitative information concerning the behavior
the coefficientsD(m) in a magnetic field can be obtaine
directly from Eqs.~6!. Consider, for example, an attractiv
defect witha1.0 andg150. In this case, if one is not too
close to the critical fieldh51, the hexagonal symmetr
should be realized and one starts from an analysis of theC6

solutions. Due to selection rules, the first nonvanishing eq
tion of the system~6! corresponds to the valuem51. This
equation depends strongly on the~scaled! defect parameters
a, g andw. But right in the next equation~which corresponds
to the valuem57! this term is proportional tow7 and due to
the short range nature of the defect (w<1) it is very small.
Therefore all the higher order equations~6! with m
513,19,... are practically homogeneous. As a result, the
lution of ~6! will give nonzero coefficientsD(m) only for
some small values ofm. Thus the deformation of a vorte
lattice happens mainly near the defect, at the distance
order of the Larmor radiusRm}mmax

1/2 corresponding to the
largest value ofm such thatD(mmax)Þ0, while the rest of the
lattice remains undistorted.

With raising of the applied magnetic field the effectiv
coupling constantsa andg increase drastically@see Eq.~8!#,
while the parameterw ~7! does not undergo any visibl
change. This leads to increasing values of the higher co
cientsD(m) in the expansion~4! of the order parameter an
as a result, to spreading of the deformation far from
defect. The further the growth of the magnetic field, t
larger the effective coupling constants. This implies that
last term in Eq.~6! for m51 becomes much larger than a
preceding terms. In this case the solution isD6(1)5
2p21M6(1), i.e., the first expansion coefficient practical
reaches its limiting value. This value completely compe
sates the contribution of the unperturbed Abrikosov lattice
the m51 expansion coefficient in Eq.~4!. In this region of
fields the expansion~4! begins fromm57. The order param-
eter in the nearest vicinity of the defect becomes

C}r 7e7iu.

This means that the six nearest vortices have~almost! col-
lapsed on the defect which pins the vortex containing se
flux quanta. One can see this effect in Fig. 1~a!.
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With further increasing of the applied field the next c
efficientsD6(7), D6(13), and so on will reach their limiting

FIG. 1. The square modulus of the order parameter forã50.5, g̃50, w/h
50.5 in the hexagonal case for the applied fieldh'0.93. Seven vortices
collapse on the defect~a! and for the applied fieldh50.85. Attractive defect
causes a comparatively weak vortex lattice deformation~b! the same in the
trigonal case for the applied fieldh50.85 and three vortices collapse on th
defect~c!.
compensation values2p21M6(7), 2p21M6(13),..., and
one could principally get a vortex containing thirteen, nin
teen, etc., flux quanta. However, numerical calculatio
show that for a realistic field range~not extremely close to
the upper critical field! only the first collapse can be realize

A similar behavior of the expansion coefficients$D(m)%
takes place in the trigonal caseC3 . Here in the case of at
traction the coefficientD3(0) is the first one that reaches i
compensation value2p21M3(0), which corresponds to the
three vortices collapse on the defect. Such a configuratio
displayed in Fig. 1~b!. With increasing magnetic field on
expects the appearance of six-, etc., multiquanta vortices
in the previous case, numerical analysis shows that only
first collapse occurs in a realistic range of field.

Note that for the same set of parameters the first colla
within the trigonal symmetry occurs at a weaker fieldh
'0.85) than in the hexagonal symmetry (h'0.93). The rea-
son is that in theC3 symmetry seven vortices must overcom
their mutual repulsion in order to fall on the defect, while
the C3 system only three vortices collapse. For the fieldh
'0.85, at which, in the symmetryC3 , three vortices are
already collapsed on the defect~Fig. 1b! in theC6 symmetry,
the lattice is distorted but still without any vortex collap
~Fig 1c!.

Up to now we analyzed the solutions of Eqs.~6! within
two symmetriesC6 andC3 separately. Now we can choos
the most preferable one from them and describe the typ
vortex lattice behavior in some interval of the magnetic fie
close to the upper critical field. We start from the same c
of attractive defectsa1.0 (g150) of a small concentration
of defects. If the applied field is not too close to the upp
critical field, then a deformation of the lattice near a sing
defect is small and the preferable local symmetry near e
defect isC6 . The defects are occupied by vortices and t
rest of the lattice is slightly deformed. With increasing of t
magnetic field the deformation near defects becomes st
ger~as shown in Fig. 1~c! and at some critical fieldh1 theC3

solution of Eqs.~6! corresponding to collapse of three vort
ces on the defect becomes preferable~see Fig. 1b!. As a
result, a local structural transitionC6→C3 occurs. With fur-
ther increasing of the field, one deals withC3 symmetry,
three vortices occupying the defect and the deformation
the nearest part of the vortex lattice~with respect to the de-
fect! is observed. But at some critical fieldh2 theC6 solution
of Eqs.~6! corresponding to collapse of seven vortices on
defect~see Fig. 1a! becomes preferable and a local structu
transition C3→C6 occurs and so on. Thus, one has a
quence of reentering first order phase transitionsC6→C3

→C6→... .
This qualitative analysis is supported by numerical so

tion of the infinite nonlinear system of Ovchinnikov equ
tions without any simplification in the general case whe
ãÞ0 andg̃Þ0. The results obtained confirm our symmet
assumption formulated above and enable us to constru
phase diagram in the~a, g! plane for a fixed scaled sizew(7)
of a defect. Part of such diagram is given in Fig. 2. Here
two solid curves separate the regions where the local s
metry is hexagonal (C6) or trigonal (C3). Near the upper
critical field w} l 0

2 and the diagram becomes universal. F
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each fixed defect parameters and for each value of the m
netic field the diagram enable us to determine the prefer
local symmetry of the system.

To explain how to extract this information from th
phase diagram consider a sample with some fixed param
a1 , g1 , and l 0 , and start from an initial applied fieldh0 .
This corresponds to a starting point (a5a0,g5g0) in the
diagram of Fig. 2, wherea0 andg0 are determined by Eqs
~8! with h5h0 . Further evolution of the parametersa andg
with growth of the magnetic field is described by the equ
tion

g5
g1

a1
~a2a0!1g0

and corresponds to some ray in the phase diagram, starti
the initial point (a0,g0) and directed out of the origin. Fou
such rays are displayed in Fig. 2. For all rays the start
field is h050.9 anda150.1. Increasing of the magnetic fiel
leads to alternation of the effective coupling constants~8!,
i.e., to the motion of a starting point along the ray. Th
movement in its turn results in a sequence of reentering t
sitions from one local symmetry to another.

The most interesting case is represented by a dashed
and corresponds to the valueg150.03. Here even in the
comparatively low fieldh'0.775,h0 ~the corresponding
point of the ray is not displayed in Fig. 2! the C62C3 sym-
metry transition occurs. In both the two lattice configuratio
below and above the transition the lattice deformation
small. The dashed ray on the diagram starts from the fi
h050.9 and for the first time crosses the lower solid curve
a field h'0.906, at which the lattice undergoes the nextC3

→C6 transition. No vortex collapse still happens at this fie
~see Fig. 1c! because the value ofD6(1) is still far from
its compensating value. However two next transitions ta
place because of vortex collapse. The second transition to

FIG. 2. Phase diagram in the~a, g! plane of a superconductor withā
50.1. The initial magnetic field ish050.9. Solid ray:g̃50.01. Dashed ray:
g̃50.03. Dotted ray:g̃50.06. Dashed-dotted ray:g̃520.01.
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symmetryC3 at a fieldh'0.94 happens when the coefficie
D3(0) in the symmetryC3 almost reaches its compensatin
valueD3(0)52p21M3(0) and therefore this transition cor
responds to the collapse of the three vortices at the de
~Fig. 1b!. Similarly the third transition to the symmetryC6 at
a fieldh'0.99 corresponds to the collapse of the seven v
tices at the defect~Fig. 1a!.

Note that the Figs. 1b and 1c already referred to abo
present the contour plots of the square modulus of the o
parameter near defect in the vicinity of theC6→C3 transi-
tion due to collapse of the three nearest vortices on the
fect. These plots correspond to the point~'4.0! on the ray
coinciding with the positivea-semiaxis on the phase dia
gram. At this point the order parameter exhibits a small
formation in the symmetryC6 as it is displayed in Fig. 1~c!,
while in the symmetryC3 it is strongly deformed due to the
collapse~see Fig. 1b!.

Until now we have dealt with a single defect proble
that corresponds to a linear approximation within the Gib
potential concentration expansion. To be sure that our res
are related to a macroscopic system with a small but fin
concentration~dimensionless density! of defects we have to
be sure that the next~second order! concentration correction
to the Gibbs potential is small. To estimate this correct
one has to solve the two defects problem exactly,15 which is
much more complicated. Therefore, we choose another w
Consider for simplicity an attractive case and magnetic fi
that is not too close toHc2 . Put the undistorted vortex lattic
on the plane where~point! defects are distributed and shi
one of the vortices nearest to each inhomogeneity to the
sition of that inhomogeneity. There are many similar ways
arrange the vortex lattice, but one has to choose such a
which leads to alternation of the regions where the lattice
compressed with ones where its rarefied. Finally, let us
tort the regions of the lattice close to inhomogeneities
cording to the results obtained within single defect appro
mation. This latter distortion is already taken into accou
exactly. So one has only to estimate the additional contri
tion to the thermodynamic potential from the intermedia
regions ~between inhomogeneities! whose deformation is
well described by elastic theory.

The number of extra vortices per region is of the order
unity. Therefore, the deformation tensor up to a numeri
factor of order unity equals the concentrationc of defects.
The correction to the thermodynamic potential will be
order Cc2, whereC is the elastic modulus. But the elast
part of the deformation has an alternating behavior with
characteristic wavelength of the order of the average dista
between inhomogeneities. As it was shown by Brandt,23 all
the elastic moduli are proportional to (12h2) if this distance
is much less than the penetration length divided by
2h)1/2. The latter inequality can be rewritten as 36kc@1
2h. In the region of parameters which we are mostly int
ested inc50.03, 12h50.06 and the inequalityk@1 is evi-
dently valid. This means that corresponding contribution
the thermodynamic potential is of the order of (12h)2c2.
This is exactly the second order concentration correct
which in the casec!1 is smaller than the contribution ac
counted for within the linear concentration expansion.
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Thus in the case of small concentration one can use
results obtained in the two previous sections and describe
thermodynamics of the system near the upper critical fie
All the local symmetry transitions described above manif
themselves as jumps of the magnetizationM or its dimen-
sionless version

m[24p~2k221!bA

M

Hc2

~see Fig. 3! and as discontinuities of the magnetic susce
bility

x5
]m

]h

~Fig. 4!. The most pronounced jumps occur at the two tra
sitions accompanied by vortex collapse, namely at the fie
h'0.94 andh'0.99.

3. MESOSCOPIC DISC

Consider now a type II superconducting disc with d
mensionless thicknessd and radiusr 0 containing columnar
defects of sizel 0 and subject to an applied magnetic fiel
which is parallel both to the defects and to the disc axis
this section we assume that defects change only
Ginzburg–Landau coefficienta. We assume that the disc
thin and smalld!r 0,k ~in all numeric calculations we us
the valuer 052.6!. All the dimensions of such a disc ar
smaller than the penetration depthk. Therefore as in the
previous case the problem becomes essentially 2D one, and,
moreover, it is possible to neglect the spatial variation of
magnetic inductionb inside the disc and replace it by it
average valuêb&5 ~here and below the brackets^..& mean
averaging over the sample area!. As a result one gets th
following expression for the Gibbs potential per unit area

FIG. 3. Dimensionless magnetization of a superconductor with param
ã50.1; g̃50.03 for the concentration valuesc50.03(D) and 0.05~s!.
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G5 K 2UCU21
1

2 UCU41UD2CU21da~r !UCU2L
1k2~^b&2h!2. ~10!

Here the vector potential entering to the expression of
gauge invariant gradientD2 is given bya5^b&r û/2.

According to the general approach of the Ginzbu
Landau theory one has to minimize the Gibbs potential d
sity ~10! with respect to the order parameterC with an av-
erage induction̂ b& fixed and then to minimize the resu
once more with respect tôb&. The first step results in a
nonlinear differential equation with a boundary condition

D2Cur 5r 0
50, ~11!

the solution of which is rather difficult even in the absence
defects. Therefore, we use the variational procedure ch
ing the trial function as a linear combination of the eige
functions of the operator (D2)2 with the boundary condition
~11!. The corresponding eigenfunctionsDn,m and eigenval-
uessn,m depend on the disc radiusr 0 . As in the previous
sectionm is an orbital number andn stands for the number o
the Landau level which this eigenvalue belongs to when
disc radiusr 0 tends to infinity. In strong enough magnet
field one can take into account onlyn50 states and therefor
the quantum numbern will be omitted in what follows. Such
an approximation is adequate when the strength of def
da(r ) is much smaller than the distance between then50
and 1 eigenvalues. Then, to describe states with a fixed n
berNv of vortices the maximal orbital number or topologic
charge which enters the trial function should be equal toNv .
Finally, our trial function can be written as

C5 (
m50

Nv

Cm exp~2 imu!Dm , ~12!

whereDm is given by

rs

FIG. 4. Magnetic susceptibility of a superconductor with parametersã
50.1; g̃50.03 for the concentration valuesc50.03(D) and 0.05~s!.
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Dm5A^b& expS 2
r 2

2
^b& DFS ^b&2sm

2^b&
, m11;

r 2

2
^b& D .

~13!

In Eq. ~12! the expansion coefficientsCm serve as varia-
tion parameters andF(a,c,x) in Eq. ~13! is the confluent
hypergeometric function.24

To proceed further one should substitute the trial fu
tion ~12! into the expression~10! for the thermodynamic
potential density and first minimize it with a respect to t
expansion coefficientsCm at fixed average induction̂b&. As
a result one obtains a system of a finite number of nonlin
equations for the coefficientsCm . This system is a finite
version of the Ovchinnikov19 Eqs.~6!. However in the pres-
ence of disordered set of defects the solution of these e
tions is very complicated. The point is that now no select
rule ~successfully used in the homogeneous case5,19,22can be
applied. Thus the problem needs another approach.

In what follows we consider a disc that containsNd

short-range defects of rangel !1 placed at the points
r1 ,r2 ,...,rNd

. The number of defectsNd is assumed to be
larger than the maximal possible number of vorticesNv . As
we could see below a small enough clean disc can accu
late vortices only in its center. The defects attract the vorti
and due to their short range can pin the latters exactly
their positions. Therefore, we consider only some spe
configurations of vortices such that they occupy only
positions of defects and the disc center. This choice of t
function implies the following procedure. Let us fix a defe
configuration$r j%, j 50,1,...,Nd , r050, a set of correspond
ing topological charges$p( j )%, an external magnetic fieldh
and an average induction̂b&. Each topological chargep( j )
is a non negative integer and the set$p( j )% satisfies the
condition

(
j 50

Nd

p~ j !5Nv . ~14!

Thus our procedure accounts for the existence of m
tiple vortices located on the disc center or on any def
position as well. The trial function~12! has zeros only a
points $r j% with multiplicities p( j ). The latter condition
completely defines all coefficients$Cm% (m50,1,..., Ni

21) up to a common multiplierCNv
, which we term as the

order parameter amplitude. Further, we need to minimize
thermodynamic potential with respect to this amplitude a
the average induction. The result has to be compared
those obtained for different total numbers of vortices a
different sets of ‘‘occupation numbers’’$p( j )%. Comparing
the obtained value of the thermodynamic potential with t
corresponding to a normal state one finally finds the pre
able state of the disc for a fixed value of external magn
field. Repeating this procedure for various values of the m
netic field one could describe magnetic properties of
sample in a wide range of the fields up to the upper criti
field Hc3 .

To construct the trial function~12! one should first ob-
tain the eigenvaluessn,m and eigenfunctionsDm of the op-
erator (D2)2 with boundary condition~11!. This textbook
-

ar

a-
n

u-
s
n

al
e
l

t

l-
t

e
d
th
d

t
r-
ic
g-
e
l

problem was solved many times but we need the solution
various disc radii and various average induction valu
Therefore we tabulated some needed eigenvaluessn,m and
the corresponding eigenfunctionsDm for various quantum
numbersn50,1, m51,2,3,4,5 and disc radiusr 052.6. The
eigenvalues as functions of an average induction are sh
in the Fig. 5. These results are completely consistent w
e.g., those obtained earlier in Ref. 25. One can observe
the distance between the zeroth and the first Landau leve
of the order of unity. So we can indeed neglect in expans
~12! the contributions of higher ‘‘Landau levels’’ as long a
defects are not extremely strong,da(r ),1.

The results shown in Fig. 5 help us estimate how ma
vortices can enter the sample. Indeed, fors51 the eigen-
value equation for operator (D2)2 coincides with the linear-
ized Ginzburg–Landau equation. Therefore the maximal
erage induction̂b&m corresponding tosm51 can be treated
as the upper critical field for a given orbital numberm. The
highest of these fields is the genuine upper critical fieldhc3

and the corresponding value ofm gives the topological
charge of the giant vortex usually appearing in the vicinity
the clean disc phase transition point.3,4 In the caser 052.6
considered here the highest possible field at which super
ductivity still exists ishc351.98. This corresponds to th
intersection point of the curves4 and the dashed lines
51. Thus a clean superconducting disc of this radius at
phase transition point can accumulate only four vortic
since the curve forn50, m55 never reaches the lin
s51.

Substituting the test function~12! for the order param-
eter into the expression for the averaged Gibbs potential~10!
one obtains

G52 (
m50

Nv

uCmu2~12sm!I m

1
^b&
2 (

k,m,n50

Nv

Cm* Cn* CkCm1n2kJm,n,k1^dauCu2&

1k2@^b&2h#2, ~15!

FIG. 5. Eigenvaluessn,m for the disc of radiusr 052.6 as a function of the
applied fieldh.
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where the bracketŝ...& mean averaging over the sample are
I m[^Dm

2 &, Jm,n,k[^DmDnDkDm1n2k& and sm[s0,m . For
the state characterized by a topological chargeNv the coef-
ficient CNv

necessarily differs from zero. We choose it as
amplitude of the order parameter and introduce new exp
sion coefficientsDm and new order parameterc:

H Cm5CNv
Dm ,

DNv
51,

C5CNv
c.

~16!

Rewriting the thermodynamic potential~15! in terms of these
new variables and varying it with respect to the amplitu
CNv

we obtain the following expression for its extrem
valuew:

uwu25
(m50

Nv ~12sm)I m2^daucu2&

^b&(k,m,n50
Nv Dm* Dn* DkDm1n2kJm,n,k

. ~17!

The expansion coefficients of the order parameter~12!,
~16! are completely defined by the position of vortices on
defects. Let us choose some configuration of vortices$r j%. In
this set there are points occupied by a single vortex (p( j )
51) and points corresponding to multiple vortices with t
pological chargep( j ).1. Then the set of coefficients$Dm%
5$w21Cm% can be calculated from the following system
Nv linear equations:

(
m50

Nv21

Dm exp~2 imu j !Dm
@p~ j !#~r j !

5exp~2 iNvu j !DNv

@p~ j !#~r j !, ~18!

where the notationf (n)(x) is used for thenth derivative.
As in the previous section we choose the Gaussian f

~1! for the ‘‘defect term’’ proportional toda(r ) in Eq. ~10!.
In this case the ‘‘defect term’’ in~15! in the leading approxi-
mation with respect to our small parameterl 0 can be rewrit-
ten as

^daucu2&52a1

l 0
2

r 0
2 (

j 51

Nd

uc~r j !u2. ~19!

Substituting equations~16!, ~17! and ~19! into Eq. ~15! we
obtain the final expression for the averaged Gibbs poten
of the disc with defects:

G52

S (m50
Nv UDmU2@~12sm!I m#22a1

l 0
2

r 0
2 ( j 51

Nd Uc~r j !U2D 2

2^b&(k,m,n50
Nv Dm* Dn* DkDm1n2kJm,n,k

1k~^b&2h!2. ~20!

We solve the system~18! for each combination of vor-
tices on the defects in order to find the set of expans
coefficients$Dm% as a function of the average induction^b&.
The set of coefficients is then plugged into expression~20!
for the Gibbs potentialG at a fixed applied fieldh. Now we
can find the average magnetic induction^b& at which the
thermodynamic potential~20! has a minimal value at fixed
applied field and configuration of vortices. After that w
;

n
n-

e

e

m

al

n

must repeat this procedure for different configurations a
different values of the applied field. As a result, we obtain
number of data sets for the Gibbs potential as a function
the applied field for different configurations of vortices. Th
for each value of an applied field we should choose the p
erable vortex configuration which minimizes the thermod
namic potential. This enables us to obtain the disc magn
zation as a function of the applied magnetic field.

Let us start from the case of a clean disc with rad
r 052.6 andk53. Although this value ofk limits the condi-
tion k@r 0

2 , the chosen region of applied fields enables us
neglect the spatial variation of the magnetic induction.5 As
we already showed the maximal number of vortices in suc
disc equals four. Due to the sample geometry and sm
maximal number of vortices they can form only a number
symmetric configurations when some vortices occupy
disc center and the others are placed away from the cent
such a way that they form a regular polygon. All these co
figurations are presented in Fig. 6. In casesb, h; d, andg the
topological charge of the multiple vortex at the origin
equal to 2, 3, and 4, respectively. In casesc, e, f, h, i, j the
shifted vortices are place at a distancer from the origin.

For a given vortex configuration the expansion coe
cients $Dm% can be calculated from the system of line
equations~18!. For each possible vortex configuration w
substitute these coefficients into the expression for the t
modynamic potential of the clean disc

G52
~(m50

Nv uDmu2@~12sm!I m#2

2^b&(k,m,n50
Nv Dm* Dn* DkDm1n2kJm,n,k

1k~^b&2h!2

and minimize it with respect to the average induction^b&. We
repeat this procedure for all configurations and for vario
distances of vortices from the disc center inside each c
figuration. Thus the problem has three variational para
eters: the type of vortex configuration~Fig. 6!, the distancer
of vortices from the disc center and the average induct
^b&. We changed the distancer by step ofdr50.1r 0 . Nu-
merical calculation showed that because of the disc’s sm
size only configurations in whichr50 ~Fig. 6a, 6b, 6d, and
6g! gain the energy. So within the calculation accuracydr
50.26 we have only a multiple vortex at the disc center w
a possible topological chargep(0)51,2,3,4.

FIG. 6. Possible configurations of vortices inside clean disc of rad
r 052.6.
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The dimensionless magnetizationm5h2^b& of the
clean disc is presented in Fig. 7. Penetration of an additio
vortex inside the sample is manifested by magnetiza
jump. Each branch of the curve corresponds to the o
two-, three- and four-vortex states. This result is similar
that obtained by Palacios5 and Deoet al.7 for discs with
larger radii and it will be used further.

In the case of disc with defects, one should take i
account the defects configuration and minimize the Gi
potential~20!. We present below the results for a single co
figuration of the defects obtained with the help of a rand
number generator. We hope that it is rather typical~see Fig.
8!. In any case the results obtained, below for this confi
ration enable us to demonstrate all the new features cha
terizing the magnetic properties of a sample with defects
to confirm all the expectations formulated above in the
troduction.

We analyze the thermodynamic properties of the disc
various values of the scaled defect strengthã[a1l 0

2. This
constant can be easily varied experimentally by changing

FIG. 7. Magnetization curve of a clean superconducting disc of rad
r 052.6.

FIG. 8. Defects positions in the disc.
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sample temperature@see Eq.~2!#. To present the results mor
clearly we collect all configurations of vortices which will b
realized for values considered for the defect strengthã in
Table I. The left column of the Table contains the values
the coupling constants. The upper line enumerates the vo
configurations ordered with accordance to their appeara
with the growth of a magnetic field. The same numbers e
merate different regions of the magnetization curves in F
9. Note that the last configuration in each line appears
before the phase transition to the normal state at the up
critical field hc3 . Then, each configuration is described by
ordered sequence of six numbers. Thej th number is equal to
the topological charge located at the pointr j 21 . In other
words, the first number is the topological charge at the d
center, the second number is the topological charge at
first defect and so on. For example configuration$211000%
corresponds to a double vortex at the disc center an
single vortices placed at the first and the second defects

One can get fom the Table I that already atã50.08 near
the phase transition point the four-multiple vortex at the d
center is split: three-multiple vortex remains at the center
one more vortex occupies the first defect~configuration
$310000%!. More complicated splitting is observed in the ca
ã50.12 where two vortices remain at the disc center, o
occupies the first defect and another one occupies the se
defect ~configuration $211000%!. Further increasing of the
coupling constant leads to the appearance of additional
soscopic jumps related to the rearrangement of the vort
on the defects as the applied magnetic field changes. C
sider the caseã50.16. At small values of the applied fiel
one gets one- and two-vortex states at the disc center. H
ever, when the third vortex is allowed to penetrate the m
tiple vortex is destroyed and the vortices occupy the d
center, the second defect and the third defect~configuration
$101100%!. With further increase in the applied field the sy
tem turns again into the three-multiple vortex state at the d
center. So in the same sample two different vortex confi
rations with the same total topological charge are possi
When the fourth vortex penetrates the disc the three-mult

sFIG. 9. Magnetization curve of the superconducting disc of radiusr 052.6
and k53 in the presence of defects with an effective coupling const
ã50.3.
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TABLE I. Configurations of vortices.

ã 1 2 3 4 5 6

0.04 100000 200000 300000 40000 - -
0.08 100000 200000 300000 310000 - -
0.12 100000 200000 300000 211000 - -
0.16 100000 200000 101100 300000 101200 2110
0.30 000101 000110 000111 001110 000130 0012
c
co
c-
te

th
x
a
e
s
in
ag
th

ea
tio
p
e
-
im

te
th

ig
n
th
e

is
-
a
o

in
ra

n
al
t

as
o
io
o
be
m

tive

o

the
vortex state splits again into double vortex at the third defe
one vortex at the disc center and another one at the se
defect~configuration$101200%!. The appearance of the se
ond vortex on the third defect is a result of a very restric
space of the trial functions. Indeed, according to Eq.~20! any
defect that is already occupied by a vortex is put out of
game and one cannot gain energy adding one more vorte
the same defect. This means that in a wider variational sp
the configuration$101200% would be replaced by another on
which would be preferable. At the same time it will nece
sary lead to the corresponding magnetization jump. With
crease in the applied field we have a new jump of the m
netization curve, which is caused by rearrangement of
vortices into the configuration$211000% identical to that of
the four vortex state in the caseã50.12.

Thus one can see that the stronger defects are the gr
is the tendency of vortices to occupy defects. The destruc
of the giant vortex at the disc center begins near the up
critical field. Increasing the defect strength destroys the c
tered multiple vortices with lower multiplicity. The prefer
able arrangement of the vortices corresponds to the max
reduction of the square order parameter modulus.

At strong coupling constant one expects to get sta
where all vortices are placed onto defects for all values of
applied field. Consider the results of studying the caseã
50.3. The magnetization curve of such disc is shown in F
9. Penetration of vortices inside the disc with such stro
defects occurs at values of the applied field smaller than
of the previously considered discs with relatively weak d
fects. Because of that, already at a fieldh50.6 the disc ac-
cumulates two vortices. Their configuration is$000101% ~see
Fig. 10a!. As the applied field increases this configuration
changed by another one$000110% with the same total topo
logical charge. Three vortices appearing at higher fields
ways occupy three different defects. The corresponding c
figurations are$000111% and $001110%. Two configurations
with total topological charge four are realized. Both conta
a multiple vortex on one of the defects. The first configu
tion appearing in relatively low field is$000130%. Here one
has three-multiple vortex on the fourth defect. The seco
configuration$001210% preceding the transition to the norm
state athc3 contains a double vortex at the third defect. Plo
of the square modulus of the order parameter for these c
are shown in Figs. 10b and 10c. Thus in the case of a str
defectã50.3 considered here, the number of magnetizat
jumps within the same field region is twice the number
possible values of the total topological charge. We do
lieve that this number will increase in a disc of the sa
radius containing more defects.
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We have already noticed that the presence of attrac
defects reduces the upper critical fieldhc3 at which the Gibbs
potential of the superconductor~20! becomes equal to zer
~the Gibbs potential of the normal metal!. Figure 9 shows
that the larger the defect strengthã is, the lower is the tran-
sition field. The dependence of the upper critical field on
defect strengthã is shown in Fig. 11.

FIG. 10. Square modulus of the order parameter forã50.3 at an applied
field h50.71, the vortex configuration is$000101% ~a!, at h51.31, the vor-
tex configuration is$000130% ~b!, and ath51.55, the vortex configuration is
$001210% ~c!.
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SUMMARY

We have studied the equilibrium properties of conve
tional type II superconductor with randomly placed identic
short-range columnar defects.

The vortex lattice of the bulk superconductor with
small concentration of defects in the vicinity of the upp
critical field Hc2 undergoes a strong deformation with tw
possible local symmetries-hexagonal oneC6 and trigonal
oneC3 . The character of the deformation is determined
the vortex-defect interaction. The vortices can collapse o
attractive defects and the formation of multy-quanta vorti
becomes possible. Note that formation of the multiquant
vortices was predicted earlier,11 but in ‘‘twice’’ opposite lim-
iting case. We deal with a short-range defect and gain
energy because of softening of the Abrikosov lattice n
Hc2 , while in11 a very strong defect with a radius comp
rable with the penetration length was considered.

Increasing the external field gives rise to the reenter
transitions between the two possible types of symme
These transitions are described by a universal phase diag
They manifest themselves as jumps of the magnetization
peculiarities of the magnetic susceptibility. One of the w
to observe these equilibrium states nearHc2 is to cool a
sample subject to a magnetic field in the normal state, be
the critical temperature. Another possibility is to observe
the equilibrium state as a whole, but to visualize the lo
deformation of the vortex lattice near defects.

We have also studied magnetic properties of a mes
copic superconducting disc with such defects the numbe
which is assumed to be larger than the maximal poss
number of vortices accumulated by the disc. We obtained
magnetization curves for various strengths of defects i
wide region of the applied magnetic field. The results sh
that the defects help the penetration of vortices into
sample. They also reduce both the value of the magnetiza
and the upper critical field. Even the presence of weak
fects can split the giant vortex state at the disc center~usually
existing in a clean disc of small radius! into vortices with
smaller topological charges. This splitting occurs in the
cinity of the upper critical fieldhc3 . Strong enough defect

FIG. 11. The upper critical field as a function of the defect strength.
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always pin all vortices, splitting multiple vortex states at t
disc center in all field region. This leads to the appearanc
additional mesoscopic jumps in the magnetization curve
lated not to the penetration of new vortices into the sam
but to redistribution of vortices within the set of defects. T
number of these jumps increases with the number of defe
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Cooper instability in the occupation dependent hopping Hamiltonians
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A generic Hamiltonian, which incorporates the effect of the orbital contraction on the hopping
amplitude between nearest sites, is studied both analytically at the weak coupling limit
and numerically at the intermediate and strong coupling regimes for a finite atomic cluster. The
effect of the orbital contraction due to hole localization at atomic sites is specified with
two coupling parametersV andW ~multiplicative and additive contraction terms!. The singularity
of the vertex part of the two-particle Green’s function determines the critical temperatureTc

and the relaxation rateG(T) of the order parameter at temperature aboveTc . Unlike the case in
conventional BCS superconductors,G has a non-zero imaginary part which may influence
the fluctuation conductivity of the superconductor aboveTc . We compute the ground state energy
as a function of the particle number and magnetic flux through the cluster, and show the
existence of the parity gapD appearing at the range of system parameters consistent with the
appearance of the Cooper instability. Numeric calculation of the Hubbard model~with
U.0! at arbitrary occupation does not show any sign of superconductivity in a small cluster.
© 1999 American Institute of Physics.@S1063-777X~99!00708-2#
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1. FORMULATION OF THE MODEL

High temperature superconductivity in lanthanum1

yttrium2 and related copper-oxide compounds remains
subject of intensive investigation and controversy. It w
suggested that the electron-phonon interaction mechan
which is very successful in understanding conventio
~‘‘low temperature’’! superconductors within the Bardeen
Cooper–Schrieffer scheme,3 may not be adequate for high
Tc cuprates, and even the conventional Fermi liquid mo
of the metallic state may require reconsideration. This op
an area for investigation of mechanisms of electron-elec
interaction which can be relevant in understanding the pe
liarities of superconducting, as well as normal state, prop
ties of cuprates. Specific to all of them is the existence
oxide orbitals. Band calculations4,5 suggest that hopping be
tween the oxygenpx , py orbitals and between the copp
dx22y2 orbitals may be of comparable magnitude. On t
experimental side, spectroscopic studies6,7 clearly show that
the oxygen band appears in the same region of oxygen
centration in which superconductivity in cuprates is t
strongest. Therefore there exists the possibility that spe
features of oxide compounds may be related to oxyg
oxygen hopping, or to the interaction between the copper
the rotationalpx2py collective modes. If the oxygen hop
ping is significant, then it immediately follows that the in
trinsic oxygen carriers~px ,py oxygen holes! should be dif-
ferent from the more familiar generics-orbital derived
itinerant carriers. The difference is related to low atom
number of oxygen such that removing or adding of o
6251063-777X/99/25(8–9)/10/$15.00
e
s
m,
l

l
s
n
u-
r-
f

e

n-

c
-
d

e

electron to the atom induces a substantial change in the C
lomb field near the remaining ion and therefore results i
change of the effective radius of atomic orbitals near the i
This will strongly influence the hopping amplitude betwe
this atom and the atoms in its neighborhood. Such an ‘‘
bital contraction’’ effect represents a source of strong int
action which does not simply reduce to the Coulomb~or
phonon! repulsion~or attraction! between the charge carrier
It was suggested by Hirsch and coauthors,8–10 and by the
present authors11–14 that the occupation dependent hoppi
can have relevance to the appearance of superconductivi
high-temperature oxide compounds. In the present paper
investigate the generic occupation-dependent hopp
Hamiltonians with respect to peculiarities of the norm
state, and to the range of existence of the superconduc
state. Theoretical investigation of the Cooper instability
supplemented by numeric study of pairing and diamagn
currents in finite atomic clusters. We study the effect of Co
per pairing between the carriers and show that at cer
values and magnitudes of the appropriate coupling par
eters, the system is actually superconducting. The prope
of such superconducting state are in fact only slightly diff
ent from the properties of conventional~low-Tc! supercon-
ductors. Among those we so far can only mention the cha
in the fluctuation conductivity above or near the critical te
peratureTc . Relaxation of the pairing parameter to equili
rium acquires a small real part due to the asymmetry
contraction-derived interaction between the quasi-partic
above and below the Fermi energy.
© 1999 American Institute of Physics
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Oxygen atoms in the copper-oxygen layers of t
cuprates~Fig. 1! have a simple quadratic lattice. We assum
that pz orbitals of oxygen~z is the direction perpendicular t
the cuprate plane! are bound to the near cuprate laye
whereas carriers at thepx , py orbitals may hop between th
oxygen ions in the plane.

Let t1 be the hopping amplitude ofpx(py) and t2 the
hopping amplitude ofpy(px) oxygen orbitals between th
nearest lattice sites in thex(y) direction in a square lattice
with a lattice parametera. Then the non-interacting Hamil
tonian is

H052t1(
^ i j &x

ai
1aj2t2(

^ i j &y

ai
1aj

2t1(
^ i j &y

bi
1bj2t2(

^ i j &x

bi
1bj ~1!

whereai
1(ai) is the creation~annihilation! operator forpx

and correspondinglybi
1(bi) for py orbitals. The interaction

Hamiltonian includes the terms

H15(̂
i j &

ai
1aj@Vmimj1W~mi1mj !#

1(̂
i j &

bi
1bj@Vninj1W~ni1nj !# ~2!

whereni5ai
1ai ; mi5bi

1bi . This corresponds to the depe
dence of the hopping amplitude on the occupation numb
ni , mi of the form

~ t̂ i j !ai→aj
5t0~12mi !~12mj !1t1@~12mi !mj

1mi~12mj !#1t2mimj ~3!

and correspondingly (t̂ i j )bi→bj
of the same form withmi

replaced withni . The amplitudest0 , t1 , t2 correspond to
the transitions between the ionic configurations of oxyge

t0 :Oi
21Oj

22→Oi
221Oj

2 ,

t1 :Oi1Oj
22→Oi

221Oj , ~4!

t2 ;Oi1Oj
2→Oi

21Oj .

FIG. 1. Site configuration in the CuO2 plane of cuprates. Dotted line repre
sents the effect of orbital contraction/expansion due to the localizat
delocalization of an extra hole at a specific site. The enlarged orbital at
the larger value of the hopping amplitude to the nearest sites.
e

rs

O corresponds to the neutral oxygen ion whereas O2 to the
single charged and O22 to the double charged negative ion
Since oxygen atom has 1s22p42s2 configuration in its
ground state, filling of thep shell to the full occupied con-
figuration 2p6 is the most favorable. AmplitudesV and W
relate to the parametert0 , t1 , t2 according to

V5t022t11t2 , W5t12t2 . ~5!

Assuming t15t25t and replacingai ,bi with ai with the
pseudo-spin indicess5↓,↑ we write the Hamiltonian Eq.
~1! in the form

H52t (
^ i j &s

ais
1 aj s1HU1HV1HW ~6!

where

HU5U(
i

ni↑ni↓ ; ~7!

HV5V (
^ i j &s

ais
1 aj sni s̄nj ,s̄ ; ~8!

HW5W(
^ i j &s

ais
1 aj s~ni ,s̄1nj ,s̄! ~9!

where we also included the in-site Coulomb interaction~U!
between the dissimilar orbitals at the same site.s can also be
considered as a real spin projection of electrons at the site
that case, the pairing will originate between the spin-up a
spin-down orbitals, rather than betweenpx and py orbitals.
More complex mixed spin- and orbital-pairing configuratio
can also be possible within the same idea of orbital contr
tion ~or expansion! at hole localization but are not considere
in this paper. The following discussion does not distingu
between the real spin and the pseudo-spin pairing.
Hamiltonian, Eq.~6!, is a model one which cannot refer t
the reliable values of the parameters appropriate to the o
materials. The purpose of our study is rather to investig
the properties of superconducting transition specific to
model chosen and to find the range of theU, V, W values
which may correspond to superconductivity. This will b
done along the lines of the standard BCS model15 in the
weak coupling limit,U, V, W→0, and by an exact diagona
ization of the Hamiltonian for a finite atomic cluster at larg
and intermediate coupling.

In the momentum representation, the Hamiltonian b
comesH5H01H11H2 with

H05(
ps

jpaps
1 aps , ~10!

H15
1

4 (
p1p2p3p4 ,abgd

ap1a
1 ap2b

3Gabgd
0 ~p1 ,p2 ,p3 ,p4!ap4dap3g ~11!

where

jp52tsp2m, sp52~cospxa1cospya!, ~12!

andm is the chemical potential.Gabgd
0 is the zero order ver-

tex part, defined as

n/
ns



t

ur
de

ns

own

e-

p-

wo
th

ms.

his
ces
e
-

be

627Low Temp. Phys. 25 (8–9), August–September 1999 H. Boyaci and I. O. Kulik
Gabgd
0 ~p1 ,p2 ,p3 ,p4!5FU1S W1

1

2
vVD ~sp1

1sp2

1sp3
1sp4

!Gtab
x tgd

x ~dagdbd

2daddbg!dp11p2•p31p4
~13!

wheretab
x is the Pauli matrix

S 0 1

1 0D .

For reasons which will be clear later, we separatedHV and
put some part of it into theH1 term, while the remaining par
is included in theH2 term, thus giving

H25V (
^ i j &s

ais
1 aj s~ai s̄

1 ai s̄2v/2!~aj s̄
1 aj s̄2v/2! ~14!

with v5^ni& being the average occupation of the site.

2. THE COOPER INSTABILITY IN THE
OCCUPATION-DEPENDENT HOPPING HAMILTONIANS

The Cooper instability is realized at certain temperat
T5Tc as a singularity in a two-particle scattering amplitu
at zero total momentum. We introduce a function

G~p1 ,p2 ,t2t8!5^Ttap1↑~t!a2p1↓~t!ā2p2↓~t8!āp2↑~t8!&
~15!

where āpa(t)5exp(Ht)apa
1 exp(2Ht), apa5exp(Ht)apa

3exp(2Ht) are the imaginary time~t! creation and annihi-
lation operators. Atp152p2 , p352p4 , the kernel of
Gabgd is proportional toGab

x Ggd
x ~G is the one-electron

Green’s function!. We keep the notationG(p,p8) for such a
reduced Green’s function specifying only momentap5p1

52p2 and p85p352p4 . By assuming temporarilyV50,
this Hamiltonian results in an equation for the Fourier tra
form G(p,p8,V)

G~p,p8,V!5G0~p,p8!2T

3(
v

(
k

G0~p,k!Gv~k!G2v1V~2k!

3G~k,p8,V! ~16!
e

-

corresponding to summation of the Feynmann graphs sh
in Fig. 2. In the above formulas,v5(2n11)pT and V
52pmT ~n, m integers! are the discrete odd and even fr
quencies of the thermodynamic perturbation theory15.
G(k,v) is a one-particle Green’s function in the Fourier re
resentation

G~k,v!5
1

jk2 iv
. ~17!

Diagrams of Fig. 2 are singular since equal momenta of t
parallel running lines bring together singularities of bo
Green’s functionsG(k,v) andG(2k,v).

The 6-vertex interaction, Eq.~8!, is not generally consid-
ered in the theories of strongly-correlated fermionic syste
Such interaction also results in singular diagrams forp→
2p scattering shown in Fig. 3. Since a closed loop in t
figure does not carry any momentum to the vertex, it redu
to the average value ofḠ which in turn is the average of th
number operator,̂a1a&. Taking such diagrams into consid
eration is equivalent to replacing one of theni ’s in Eq. ~8! to
its thermodynamical averagev5^ais

1 ais&. Then theV term
can be added to the renormalized value ofW,

W→W1
1

2
vV.

We shall check to what extent such an approximation may
justified by numeric analysis in Sec. 3.

Solution of Eq.~16! can be obtained by putting

G~p,p8,V!5A~V!1B1~V!sp1B2~V!sp8

1C~V!spsp8 . ~18!

Substituting this expression into Eq.~16! and introducing the
quantities

Sn~V!5T (
v

(
k

sk
nGv~k!G2v1V~2k! ~19!

we obtain a system of coupled equations forA, B1 , B2 , C

FIG. 2. Feynmann diagrams for 4-vertex interactions,U andW.
S 11US01W̃S1 US11W̃S2 0 0

W̃S0 11W̃1 0 0

0 0 11US01W̃S1 US11W̃S2

0 0 W̃S0 11W̃S1

D S A
B1

B2

C
D 5S U

W̃

W̃
0

D ~20!
whereW̃5W1(1/2)vV, which are solved to give

A5
U2W̃2S2

D
,

B15B25
W̃~11W̃S1!

D
, C52

W̃2S0

D
~21!

whereD is a determinant
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D5U11US01W̃S1 US11W̃S2

WS0 11WS1
U. ~22!

The determinant becomes zero at some tempera
which means an instability in the two-particle scattering a
plitude (G→`). This temperature is the superconducti
transition temperatureTc . At Tc , Eq. ~16! is singular, which
means that two-particle scattering amplitude becomes
nite. BelowTc , the finite value ofG is established by includ
ing the non-zero thermal averages~the order parameters!,
^ap

1a2p
1 &, ^apa2p&. We first analyze the case of non

retarded, non-contraction interactionU, and after that will
consider the effect of the occupation-dependent hopp
terms,V andW.

2.1. Direct non-retarded interaction

Neglecting contraction parametersV, W, the solution of
Eq. ~16! reduces to

2
1

U
5T (

v
(

k

1

jk
21v2 ~23!

which, after the summation over the discrete frequenc
reduces to the conventional BCS equation~at negativeU!

1

uUu
5(

k

122nk

2jk
, ~24!

with nk5@exp(bjk)11#21. At finite frequencyV, Eq. ~23!
reduces to

ln
T

Tc
5T (

v
E

2E1

E2
dj

2 iV

~j21v2!~j1 iv1 iV!
~25!

where, for simplicity, we replaced an integration over t
Brillouin zone *d3k by the integration over the energy a
suming that the density of states near the Fermi energym is
flat. 2E1 andE2 are the lower and upper limits of integra
tion equal to24t2m and 4t2m, respectively. Such an ap
proximation is not very bad since most singular contributio
to integral comes from the pointjp50 where the integrand
is the largest.

Above Tc , Eq. ~25! determines the frequency of the o
der parameter relaxation.16–18There is a small change in thi
frequency compared to the BCS model in which limits of t
integration (2E1 ,E2) are symmetric with respect to th
Fermi energy, and small in comparison to«F ; therefore we
shall briefly discuss it now.

FIG. 3. Feynmann diagram for 6-vertex interaction,V.
re
-

fi-

g

s,

s

To receive a real-time relaxation frequency, Eq.~25!
needs to be analytically continued to a real frequency dom
from the discrete imaginary frequencie
ivn5(2n11)p iT.15 Using the identity

T (
v

1

~v1 i j1!~v1 i j2!...~v1 i jn!

5~2 i !n(
i 51

n

)
iÞ j

n~j i !

j i2j j
~26!

wheren(j) is a Fermi functionn(j)5@exp(bj)11#21 gives

ln
T

Tc
5

iV

2 E
2E1

E2 tanh~j/2T!

j~2j1 iV!
dj ~27!

where

Tc5
2g

p
AE1E2 expS 2

1

N~«F!uUu D , ln g5C50.577,

~28!

C is the Euler constant. Analytic continuation is now simp
we changeV, to i (v2 id), d510, to receive a function
which will be analytic in the upper half plane of complexv,
Im v.0. The order parameter relaxation equation becom

S ln
T

Tc
2

v

4 E
2E1

E2 tanh~j/2T!

j~j2v/21 id!
dj DD50. ~29!

At v!Tc and T2Tc!Tc , the real and imaginary parts o
Eq. ~29! are easily evaluated to give

S T2Tc2
p iv

8Tc
1v

E12E2

4E1E2
DD50. ~30!

Thus, the order parameter relaxation equation atT.Tc be-
comes

~11 il!
]D

]t
1GD50 ~31!

where

G5
8

p
~T2Tc!, l5

2~E12E2!

pE1E2
Tc . ~32!

In comparison to the BCS theory in whichE15E25vD ~vD

is the Debye frequency! and thereforel50, we obtain a
relaxation which has a non-zero ‘‘inductive’’ componen
2 ilG. Typically, E1;E2;«F and thereforeulu is a small
quantity. It increases however near the low (v!1) or near
the maximal (v.2) occupation whereE1 or E2 become
small. Such mode of relaxation is specific to a non-retard
~non-phonon! interaction which is not symmetric near«F

and spans over the large volume of thek-space rather than is
restricted to a narrow energyvD!«F near the Fermi energy

2.2. Occupation-dependent hopping instability and
relaxation

Neglecting direct interaction, we putU50 in Eq. ~22!
and obtain



d

-

st

e-

-

y

g

le
in

the
und

the
ux

tem

ube
ith
6,

e

e

y

629Low Temp. Phys. 25 (8–9), August–September 1999 H. Boyaci and I. O. Kulik
2
1

W̃
5S1~v!6AS0~v!S2~v! ~33!

where at finite frequencyv

Sn~v!5N~«F!T(
v

E
2E1

E2 S j1m

2t D n tanh~j/2T!

2j2v1 id
dj. ~34!

Puttingv50 we obtain a transition temperatureTc from Eq.
~33!. The equation has a solution atW̃,0, m,0, or at W̃
.0, m.0 ~we assume thatt.0!. The plus or minus sign is
chosen to obtain the maximal value ofTc ~the second solu-
tion corresponding to smallerT, then, has to be disregarde
since the order parameter will be finite atT,Tc and there-
fore Eqs.~20!–~22! do not apply!. This gives us an expres
sion for Tc

Tc5
2g

p
AE1E2 expFE12E2

2umut ~ t2umu!1
E2

22E1
2

8m2 G
3expS 2

t

2uW̃uN~«F!
D ~35!

wherem,0, W̃,0 ~second exponent is dominating the fir
one in the weak coupling limitW̃→0!. Real and imaginary
parts ofSn(v) are calculated atv!Tc

Im Sn~v!.2
pv

8Tc
S 2

m

t D n

N~«F!. ~36!

ReSn~v!5
v

4
N~«F!S 2

m

t D n

35
E22E1

E1E2
, n50,

E22E1

E1E2
1

2

m
ln

gAE1E2

Tc
, n51,

E22E1

E1E2
1

E12E2

m2 1
2

m
ln

gAE1E2

Tc
, n52.

~37!

Equation forl is received with a value larger than the pr
vious one@Eq. ~32!#

l.
Tc

m S 3 ln
2gAE1E2

pTc
1

2m~E22E1!

E1E2
1

E12E2

2m D .

~38!

The eigenvalue equation gives thep-dependence of the two
particle correlatorG(p,p8)5^ap↑

1 a2p↓
1 a2p8↓ap8↑& nearTc

G~p,p8!5C@S22S1~sp1sp8!1S0spsp8#. ~39!

SinceC diverges atTc , this determines that the order param
eter becomes macroscopic atT,Tc . Then, the pair creation
operator,ap

1a2p
1 , will almost be a number, i.e., we ma

decompose Eq.~39! into a product

Dp* Dp5^ap↑
1 a2p↓

1 &^a2p8↓ap8↑& ~40!

and, to be consistent with thep, p8 dependences, by puttin
jp5jp8 we obtain
Dp5C1@exp~ iu/2!AS2~0!

1exp~2 iu/2!AS0~0!#exp~ iw! ~41!

where

cosu52S1~0!/AS0~0!S2~0! ~42!

and w is an overall phase which is irrelevant for a sing
superconductor but is important for calculating currents
multiple or weakly coupled superconductors. Therefore,
system undergoes a pairing transition at a temperature fo
from Eq.~35!. Since the pairs are charged, the state belowTc

cannot be non-superconducting.
We have not calculated the Meissner response but in

following section we present a numerical calculation of fl
quantization which supports the above statement.

3. EXACT DIAGONALIZATION OF THE OCCUPATION-
DEPENDENT HOPPING HAMILTONIANS IN A
FINITE CLUSTER

We calculate the ground state energy of a cubic sys
as shown in Fig. 4. A magnetic fluxF is produced by a
solenoid passing through the cube. The corners of the c
are the lattice sites that can be occupied by electrons. W
the inclusion of the magnetic flux, model Hamiltonian, Eq.
becomes

H52t (
^ i j &s

ais
1 aj s exp~ ia i j !1h.c.1U(

i
ni↑ni↓

1 (
^ i j &s

ais
1 aj s@Vni s̄nj s̄1W~ni s̄1nj s̄!#

3exp~ ia i j !1h.c. ~43!

where

a i j 5~2p/F0!E
r i

r j
A•dl ~44!

andF05hc/e is the magnetic flux quantum. Throughout th
calculations we taket51.

We start with constructing the model Hamiltonian. In th
Hilbert space of one electron

a5S 0 1

0 0D , a15S 0 0

1 0D , ~45!

FIG. 4. Sample configuration. The fluxF through the cube is produced b
a solenoid.
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with a basis specified asc05(0,1) for the ground state (n
50) andc15(1,0) for the excited state (n51). In case ofN
states, the operator of annihilationan takes the form

an5vn21
^ a^ uN2n ~46!

whereu is the unit matrix andv is unitary matrix

u5S 1 0

0 1D , v5S 1 0

0 21D ~47!

and ^ stands for the Kronecker matrix multiplication. Ex
plicitly, we have

a15a^ u^ u^ u...^ u

a25v ^ a^ u^ u...^ u

...............................

aN5v ^ v ^ v...^ v ^ a

Thus, for example, for two states

a15S 0 1 0 0

0 0 0 0

0 0 0 1

0 0 0 0

D , a25S 0 0 1 0

0 0 0 21

0 0 0 0

0 0 0 0

D . ~48!

These matrices, which are annihilation operators, and
corresponding Hermitian conjugate matrices, which are
creation operators, satisfy the Fermi anti-commutation re
tion. These operators are sparse matrices with onlyN/2 non-
zero elements, which are equal to61. Next we solve the
Schrödinger equationHc5Ec . We implemented a novel al
gorithm for solving such sparse systems, which will be d
scribed elsewhere.

The cubic cluster within the Hubbard Hamiltonian a
no external flux applied to the system was studied previou
by Callawayet al.19 Quantum Monte Carlo methods app
cable to large systems within the Hubbard model~both at-
tractive and repulsive!, but not the occupation-depende
hopping Hamiltonians, are reviewed in a paper of Dagotto20

3.1. The number parity effect

Superconductivity reveals itself in the lowering of th
ground state energy as electrons get paired. Therefore
energy needs to be minimal for an even number of electr
n and will attain a larger value whenn is odd. We consider a
‘‘gap’’ parameter21

D l5E2l 112
1

2
~E2l1E2l 12! ~49!

as a possible ‘‘signature’’ of superconductivity~where Em

corresponds to the ground state energy form fermions!. For
all interaction parameters set to zero (U5V5W50), no
sign of pairing is observed. To check our analytic results
Sec. 2.2 and the argument following Eq.~34!, we calculated
D above and below the half-filling~n58 in the case of cubic
cluster!. Below the half-filling chemical potential is negativ
(m,0) and above the half-filling it is positive (m.0). We
first checked that theW→01, W→02 and V→01, V
e
e
-

-

ly

he
s

f

→02 calculation is consistent with an exact solution ava
able for a non-interacting system ofn electrons.

We then test our program for the case of negativeU
Hubbard Hamiltonian~U,0, V50, W50! which is known
to be superconducting~e.g., Refs. 22 and 23!. Positive-U
Hubbard model does not show any sign of superconductiv
in disagreement with some statements in the literature.24 Our
calculations cannot disprove the~possible! non-pairing
mechanisms of superconductivity but these seem to be
likely models for the problem of superconductivity in oxide
which clearly shows pairing of electrons~holes! in the
Josephson effect and in the Abrikosov vortices. The relat
2eV5\v is justified in the first case25 and flux quantum of
a vortex ishc/2e in the second,26 both with the value of the
charge equal to twice the electronic charge,e.

Figure 5 shows the dependence of the ground state
ergy upon the number of particles in case of negative-U and
positive-U Hubbard models assumingV50 andW50. Such
dependences are typical for any value ofuUu. There clearly is
the pairing effect whenU,0 and there is no sign of pairing
at U.0.

Tests for pairing in the contractionV,W-models~VÞ0,
U5W50 andWÞ0, U85V50, respectively! are shown in
Figs. 6 and 7. The results are in agreement with our per

FIG. 5. Dependence of the ground state energy upon the number of par
with UÞ0 andV5W50. Energy, as well asU, is in units of t. ~a! For U
,0, the pairing effect is clearly seen.~b! For U.0, there is no pairing.
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bative calculation of Sec. 2 and with its extension for t
intermediate and strong coupling limitsuVu*t, uWu*t.
Since the chemical potential is negative below the half-filli
and positive above the half-filling, there is no pairing in t
former case (W̃→01) and there is a sign of pairing in th
latter case (W̃.0), in accord with the value of the effectiv
coupling constantW̃5W1(1/2)vV. Similarly, for W̃→02

below the half-filling there is a sign of pairing (DÞ0) while
above the half-filling there is no pairing. These results
summarized in Table I.

For larger values of the interaction parameters, the p
turbative results do not remain applicable anymore. Fig
8b shows the dependence of the parity gapD on the strength
of the interaction. From Fig. 8, it is understood that theW
interaction introduces a ‘‘signature’’ of pairing in a simila
way as the negative-U interaction does. The possibility o
‘‘contraction’’ pairing has been investigated previously
the papers.10,13

3.2. Flux quantization

Flux quantization is another signature of superconduc
ity which is a consequence of the Meissner effect. W
also tested for the periodicity of the energy versus fl

FIG. 6. Dependence of the ground state energy upon the number of par
with VÞ0 andU5W50. Energy, as well asV, is in units oft. ~a!, ~b! Both
for V.0 andV,0, around the half-filling, there is a small pairing effect
e

r-
e

-
e
x

dependence with the periodF15hc/2e as compared to the
periodF05hc/e in the non-interacting system.27,28Unfortu-
nately, the even harmonics ofF0-periodic dependence of th
ground state energy~and related to it, the harmonics of th
persistent currentJ52]E/]F27,28! may simulate the pairing
in a non-superconductive system. A small-size~mesoscopic!
system can mask the superconducting behavior.20 Flux quan-
tization in Hubbard Hamiltonians was studied formerly
Refs. 29–31.

les
FIG. 7. Dependence of the ground state energy upon the number of par
with WÞ0 andU5V50. Energy, as well asW, is in units oft. ~a!, ~b! Both
for W.0 andW,0, there is a more pronounced pairing effect below t
half-filling.

TABLE I. Pairing effect for arbitrarily small values ofV andW, computed
by exact diagonalization of the Hamiltonian. The results presented here
in complete agreement with the perturbative calculations.

U5W50 U5V50

V→01 V→02 W→01 W→02

below
half-filling
(m,0)

D50
~no pairing!

DÞ0
~pairing!

D50
~no pairing!

DÞ0
~pairing!

above
half-filling
(m.0)

DÞ0
~pairing!

D50
~no pairing!

DÞ0
~pairing!

D50
~no pairing!
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We first demonstrate the behavior of the ground st
energy with respect to flux, Fig. 9. A characteristic feature
a mesoscopic system suggests that addition of one extra
ticle to the system changes the sign of the derivative of
ground state energy with respect to magnetic flux atF50.
That is, depending on the parity of the number of partic
and on the number of sites, system can change from p
magnetic to diamagnetic state or vice versa. But this beh
ior is not always observed for the cubic geometry studi
Except the sign change fromn52 to n53 and fromn57 to

FIG. 8. Dependence of the parameterD uponU for various values ofW and
V below the half-filling.~D, U, V andW is in units of t!.
e
f
ar-
e

s
ra-
v-
.

n58, no such behavior is seen. As mentioned above, h
ever, theF1-periodic component of theE(F) dependence
begins to appear at the higher value ofn ~Fig. 9c!. For both
contraction parameters equal to zero, i.e.,W5V50, we ob-
serve the appearance of thehc/2e-periodic component for
some values ofU ~Fig. 10!. Even for positive~repulsive!
values ofU, it is possible to see a local minimum appeari
at F5hc/2e ~Fig. 10b!. This is in agreement with the au
thors’ previous works.13,29 But this minimum, which does
not lead to an exact periodicity of the ground state ene

FIG. 9. Dependence of the ground state energy~in units of t! upon magnetic
flux. All three interaction parameters are zero, i.e.,U5W5V50.
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with a periodF0/2, should not be attributed to supercondu
tivity, this is rather a characteristic behavior in mesosco
systems.

For U,0 ~while W5V50!, the expected mesoscop
behavior, that is, the change of the sign of the slope
ground state energy atF50, starts to reveal itself~Fig. 11!.
But this happens at sufficiently large absolute values
~negative! U. For other values ofU, however, there is no
such change.

More pronouncedhc/2e-periodic components are ob
served with the introduction of non-zero interaction para
eters. The role ofW in the ground state energy, when bothU
andV are zero, is shown in Fig. 12. Meanwhile setting bo
U andW to zero and observing the effect of the non-zeroV
shows thatV does not play a role as significant as the oth
two interaction parameters do. There is not much differe
in the behavior of the ground state energy upon magn
flux between the zero and non-zeroV ~for exampleV521!
cases.

CONCLUSIONS

We studied the peculiarity of electron conduction in sy
tems in which conduction band is derived from the atom

FIG. 10. Dependence of the ground state energy upon magnetic flux.
traction parameters are both zero, i.e.,W5V50, only the on-site interaction
parameterU is nonzero. Energy, as well asU, is in units oft.
-
c

f

f

-

r
e
ic

-
c

shells with a small number of electrons (Ne) in an atom.
Such materials may include oxygen (Ne58) in the oxides,
carbon (Ne56) in borocarbides~e.g., LuNi2B2C!, hydrogen
(Ne51) in some metals~e.g., Pd–H!. Some materials of this
kind are superconductors. It was argued that the Coulo
effects within the atoms strongly influence the inter-ato
wave function overlap between the atomic sites and there
the electron hopping amplitude between the sites. The p
nomenology of such conduction mechanism results in
novel addition, to the conventional solid state theory, i.
Hamiltonians called the occupation-dependent-hopping~or
contraction! Hamiltonians, specified with the two couplin
parametersV, W. We then attempted a study of superco
ductivity in such systems within the BCS-type approach
suming Cooper pairing of electrons. The weak-coupling lim
allows the determination of the range of parametersV, W
values and also of the in-site Coulomb interactionU value
which show the Cooper instability. The strong-coupling lim
was addressed by a numeric calculation on finite clus
using a novel algorithm~of non-Lanczos type! for eigenval-
ues of large sparse matrices. One of the results of

n-FIG. 11. Dependence of the ground state energy upon magnetic flux. C
paring~a! with Figure 9b clearly shows that the change in the parity of t
number of particles for the case of negativeU values introduces a sign
change in the slope ofE(F) at F50. Energy, as well asU, is in units oft.
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numeric calculation was that the positive-U Hubbard model,
sometimes believed to be a candidate for high-Tc supercon-
ductivity, does not comply with the goal.
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FIG. 12. Dependence of the ground state energy upon the magnetic
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are zero. All plots correspond to the non-zero interaction parameterW5
21. Energy, as well asW, is in units oft.
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We report the results of the superconducting and kinetic parameter measurements~transition
temperatureTc , parallel and perpendicular critical fieldsHc2 , resistivity in the normal state! on a
set of Mo/Si superconducting superlattices with a constant metal layer thicknessdMo522 Å
and variable semiconducting onedSi(14– 44 Å). Our data show a monotonic dependence of all
measured parameters ondSi . It is found that the Josephson interlayer coupling energy
depends exponentially on the spacer thickness. The data obtained allowed us to determine the
characteristic electron tunneling length for amorphous silicon with high precision. It is
equal to 3.9 Å. Enhancement of interlayer coupling leads to the Mo. Si multilayer transition
temperature increasing, in agreement with Horovitz theory and with the experimental data on high-
Tc materials. ©1999 American Institute of Physics.@S1063-777X~99!00808-7#
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INTRODUCTION

Artificial superconducting superlattices have been of
during interest for a long time as a perfect model system
the study of layered superconductor physics. Their tunabi
i.e., the possibility of changing independently and in an
bitrary way the thicknesses of the superconducting lay
and nonsuperconducting interlayers~spacers! and of using a
wide spectrum of constituting materials, makes artific
multilayers very attractive objects for the investigation
many fundamental properties. The dimensionality effe
the role of the intrinsic anisotropy and its influence onTc ,
the thermal and quantum fluctuation effects, etc., belong
such properties. It is especially important that for these s
tems the fine control over the interlayer Josephson coup
strength, which has a most profound influence on the beh
ior of layered superconductors, may be achieved.1,2 In spite
of an obvious importance of direct investigations of Jose
son coupling, such studies are very scarce because o
necessity of preparing a large set of the variable layer th
ness superlattices with a big number of bilayersN, very high
regularity of the layering and with extremely small ‘‘steps
in the spacer thickness between neighboring samples in
set. The latter circumstance is associated with the expe
exponential dependence of the interlayer coupling param
on the insulating or semiconducting spacer thickness.1 Such
6351063-777X/99/25(8–9)/6/$15.00
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a dependence, consistent with the picture of quantu
mechanical tunneling of the charge carriers through a bar
follows from obvious physical considerations. In Ref. 1 t
experimental data on the coupling parameter obtained
Nb/Ge superlattices were interpreted in such a way,
though, unfortunately, the spread of the experimental d
points was very large.

However, it has been found out recently that such
simple description of the interlayer coupling based on
usual tunneling mechanism is not applicable for all repres
tatives of theS/I multilayer class~S is a superconductor,I is
a semiconductor!. The anomalous oscillatory behavior of th
superconducting and kinetic characteristics has been dis
ered on Mo/Si multilayers with a constant Si layer thickne
(dSi525 Å) and variable Mo layer thickness (dMo

58 – 200 Å).3,4 The periodicity of all the oscillations wa
DdMo535 Å. The most nontrivial effect among all observe
phenomena is the oscillating behavior of the interlayer c
pling strength at the constant thickness of the Si layers.5 The
background normal conductivity and superconducting tran
tion temperatureTc dependencies ondMo for these samples
are reasonably explained in terms of quantum interfere
effects in quasi-independent disordered films.6

In spite of obviously similar features in the oscillato
behavior on Mo/Si superlattices and on simple films of
and semimetals.7–9 the explanation of the oscillations foun
© 1999 American Institute of Physics
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on superlattices in terms of the usual quantum size effect10,11

appeared to be rather doubtful because of the quite s
longitudinal transport mean free path of the electrons~about
several interatomic distances! in the system under study.3 It
means that in the case of the usual quantum size effec
smearing of the quantum levels connected with the cha
carrier scattering on the crystal lattice imperfections may
ceed the distance between the energy levels, and the os
tions have to become practically indiscernible. The results
the investigations of theTc dependence ondMo for single
molybdenum film series with silicon underlayers and ov
layers did confirm these expectations: in contrast to multil
ered samples, the molybdenum films have revealed a m
tonic Tc increase withdMo ~Ref. 12!.1! Thus, the oscillatory
behavior found is the property inherent only in the layer
system.

Recently, a new type of quantum size effect in met
semiconductor superlattices has been predicted.13 Giant os-
cillations of the tunnel current and the superlattice transve
conductivity should appear if size quantization of the el
tron spectrum in the metal layers occurs. This effect res
from a sharp dependence of the probability of electron t
neling through a semiconducting interlayer on the incide
angle of the electrons moving to the interface. Due to t
fact, it is expected that the effect of the size-quantizati
controlled oscillations of the transverse conductivity may
sult. Spikes of transverse conductivity are bound to app
when the quantized electron levels pass through the Fe
level at the thickness of metal layerdm variation. One of the
most interesting features of the theory considered is the
diction as to the possibility of observing quantum oscil
tions of the transverse conductivity even in the case of ra
disordered systems, provided that the electrons in the m
layers undergo soft~low-angle! scattering on the imperfec
tions. It was shown13 that a lifetimets for the size-quantized
states giving the main contribution to the tunnel current
dm /a times greater than a typicalt value determining the
in-plane transport~a is the interatomic distance!. This fact is
due to the structure of the size-quantized spectrum in
individual metal film. While the typical distance betwee
quantized electron terms at a given energy is of the orde
\/dm , the distance between the neighboring terms determ
ing the tunnel probability is of the order ofpF(a/dm)1/2, i.e.,
noticeably larger. Under low-angle scattering conditio
when the changes in the electron longitudinal momentum
rather small, the electron transitions between these la
states are hampered, and, therefore, the lifetime is sig
cantly enhanced.

It is clear that the predicted oscillations of the tunn
probability may at least lead to interlayer Josephson coup
strength oscillations. The conspicuous correlations betw
the oscillations of different physical characteristics are fou
on Mo/Si superlattices,3,5 and it allows one to believe tha
experimentally observed oscillation effects are close in
origin to the phenomenon considered theoretically.

It follows from the theory13 that the oscillations arise a
dm variation, while the thickness of the semiconductor lay
ds influences only the oscillation amplitude. Thus, one c
expect that all multilayer parameters should depend mo
all
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tonically onds in a set of superlattices with a variable valu
of ds and a fixed value ofdm .

Here we report the results of the measurements of
netic and superconducting parameters on such a set of M
superlattices.

SAMPLE PREPARATION AND EXPERIMENTAL METHODS

The superlattices were prepared by dc-magnetron s
tering onto optical quality glass substrates kept at 100
The number of bilayers in all the set of superlattices was
The initial pressure in the deposition chamber was no wo
than 1026 Torr. Argon with the pressure 331023 Torr was
used as a sputtering gas. A time of exposition of the sam
holder in the zone of every source and its displacemen
another zone was regulated with a precise time contro
The thicknesses of the two layers in the bilayer were de
mined by the deposition rates of both Mo and Si and by
time of exposition. In order to ensure the constant deposi
rates, the stabilized power supplies for molybdenum and
con sources and a precise gas admission system were
~with an accuracy to within 0.1% for both the gas press
and the applied power!. The deposition rates were 2–3 Å/s

X-ray diffractometry was used for structural characte
ization of the superlattices. The low-angle diffractometry
lowed us to determine the multilayer periods with the ac
racy of 0.1 Å. For Mo/Si superlattices with the wavelengt
exceeding 100 Å, which have been prepared under the s
conditions, the number of satellites on the diffractogra
was about 10. For the short-period superlattices investiga
here, this number was 4–5. These data as well as the s
width of satellite lines testify to the high regularity of th
layering. The separation between satellites and their posi
confirm the layer spacing expected from fabrication proce
The relative difference of the Mo layer thickness for all t
samples did not exceed 0.3 Å.

The recordedu22u diffraction patterns for superlattice
revealed that molybdenum layers consist of small crystall
~with the size of 25–30 Å!, while silicon ones are amor
phous.

The low temperature measurements were carried out
4He cryostat equipped with a 5 Tsuperconducting coil. The
temperature was measured with a carbon-glass thermom
calibrated against a Ge thermometer in a zero field. Temp
ture was controlled within 1.4–10 K with the accuracy
1 mK. Due to a small magnetoresistance a maximum de
tion of temperature was about 10 mK in a magnetic field
5 T as compared to the temperature at zero magnetic fi
The resistivity measurements were performed with an
bridge using the conventional four-probe method. Both
Tc and theHc2 were defined as the midpoints of theR(T)
andR(H) transitions.

EXPERIMENTAL RESULTS AND DISCUSSION

The typical dependencies of the resistanceR on the tem-
perature in a range 4–100 K for Mo/Si multilayers are p
sented in Fig. 1. A negative temperature coefficient of re
tivity was observed for all samples investigated betwe
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300 K and a temperature where the resistance starts to
crease due to the approach to the superconducting trans
A similar R(T) behavior was previously observed on Mo/
multilayer series withdSi5const525 Å and a variabledMo

in thedMo range 13–90 Å.14 Analysis of these dependencie
as well as of the data on the magnetoresistance in mag
fields perpendicular to the layers has revealed that la
quantum corrections to the conductivity are essential in
Mo/si system with disordered metal layers.14 As the data
obtained show, the same is true for the set of superlatt
investigated here.

The dependence of the resistance ratioR300/Rm on the
thickness of silicon layerdSi is shown in Fig. 2a~Rm is the
maximum resistance before the superconducting transiti!.
There is an obvious tendency towards diminishing
R300/Rm with dSi increase which suggests that the magnitu
of the quantum interference corrections to the resistivity
the multilayers with the better separated metal layers are
hanced.

Figures 2b and 2c demonstrate the transition tempera
Tc and the derivative of the perpendicular critical magne
field dHc' /dTuTc

as a function ofdSi . While dHc' /dT does
not in practice depend ondSi ,Tc noticeably diminishes with
dSi increase. TheTc vs dSi dependence shows a tendency
saturation at largedSi values. Only the derivative of the pa
allel critical magnetic field and, correspondingly, the anis
ropy parameter g5(M /m)1/25(dHci /dT)/(dHc' /dT)uTc

exhibits a very pronounced dependence on the spacer th
ness~M /m is an effective mass ratio!.

In Fig. 3 the magnetic critical field dependencies on te
perature are shown for the samples with differentdSi . For
the case of a field orthogonal to the layer planes the dep
denciesHc'(T) are linear. Parallel critical fieldsHci for the
multilayers with the smallest values ofdSi are also linear
with temperature in all accessible range of magnetic fie
For samples withdSi>34 Å the change in the temperatu
dependence ofHci is observed at low temperatures whic
points to the dimensional 3D-2D crossover. The anisotrop
becomes larger with increase in the spacerthickness, ag

FIG. 1. The resistance ratio as a function of temperature for some of M
samples~1—dSi539 Å; 2—dSi543 Å; 3—dSi534 Å).
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amounts to the value of 23 atdSi543 Å. The anisotropy
parameterg as a function ofdSi is presented in Fig. 4.

The theory of the critical magnetic fields for layered sy
tems with the Josephson coupling between the supercond
ing layers is highly developed.2,15–18 Using the effective-
mass model of Lawrence and Doniach,19 which is a good
approximation for the weak field range, one can estimate
Josephson coupling energy by the formula15

hJ5
\2

2ms2g2 . ~1!

Here,s5dm1ds is a superlattice period.
Using the experimentalg values~Fig. 4! one can deter-

mine the Josephson coupling parameterhJ . The coupling
parameter as a function ofdSi is shown in Fig. 5. As follows
from the experimental data, thehJ decreases exponentiall
with an increase in the silicon layer thickness according
the relation:

Si

FIG. 2. The dependencies of multilayer parameters on silicon spacer th
nessdSi : resistance ratioR300/Rm ~see text! ~a!; transition temperatureTc

~b!; derivative of the perpendicular critical magnetic field (dHc' /dT)Tc
~c!.
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hJ5hJ0 exp~2dSi /d0!. ~2!

As it was mentioned in the Introduction, Ruggier
Barbee and Beasley1 have found the same type of relatio
ship between the interlayer coupling energy and the sp
thickness on Nb/Ge superlattices. From the observed e
nential relationship betweenhJ anddSi ~Fig. 5! we obtain the
d0 value of 3.9 Å which may be considered as a charac
istic tunnel length for amorphous silicon. For amorphous
the valued058 Å was derived.1 In the latter case, the accu
racy of d0 evaluation was not very high because, of lar
spread of the data points. This spread in the experim
mentioned was, probably, inevitable because, asdGe varied,
the thickness of Nb layers did not remain constant as in
experiments~dNb was varied in a range 30–65 Å!. It is pos-
sible that the variation ofg with dm at a constantds value,

FIG. 3. Critical magnetic fieldsHc2(T) as a function of the reduced tem
perature t5T/Tc for two Mo/Si samples (dSi534 Å: d—Hci(t);
.—Hc'(t), dSi518 Å; j—Hci(t); m—Hc'(t)). Inset: dSi

518 Å,Hci(t).

FIG. 4. The anisotropy parameterg5(M /m)1/2 as a function ofdSi for
multilayers investigated.
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observed on Mo/Si superlattices, cannot be excluded forS/I
multilayers having different constituent materials. It may
the reason for large spread of the points.

All the above results provide a clear answer to the i
portant issue arising in the context of the observation of
oscillation effects found on a series of Mo/Si samples w
variabledm . The issue is whether the semiconductor int
layer thickness variation leads to the appearance of the
cillation effects, just as it occurs whendm varies at constan
ds . All dependencies of kinetic and superconducting para
eters onds , if any, appeared to be monotonic. Simult
neously fair evidence for the exponential dependence of c
pling energy on the spacer thickness is obtained for the
time.

It should be mentioned that there are experiments
V/C layered system 20,21 where the oscillations of
Tc ,dHc' /dT and normal resistivity were observed with th
variation of the carbon spacer thickness. These oscilla
effects were explained by Kagan and Dubovskii,22 who as-
sumed that the oscillations in the metal-semiconductor s
tem are mainly associated not with the quantization of tra
verse motion of electrons in metal films, but with a change
the boundary conditions at the interface between a metal
semiconductor layers. These conditions depend on a sp
thickness. Such an effect should be expected in the cas
the crystalline semiconductor interlayer. Our experimen
results indicate that such effects are absent in a case of M
layered system with amorphous silicon spacers.

Another interesting question that is widely di
cussed23–28concerns the nature of the superconducting ph
transition in the layered superconductors with the Joseph
type coupling and the influence of the interlayer coupling
the transition temperatureTc . According to the mean field
theory,29 the Tc of S/I multilayers should coincide with tha
of the separate superconducting layers. When the fluc
tions are taken into account the situation changes essent
The most extensive study of this issue was performed in
works of Horovitz.24–26It was shown that at a finite couplin

FIG. 5. Josephson coupling energyhJ as a function ofdSi for the Mo/Si
sample series investigated.
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the layered system should exhibit at the critical tempera
the three-dimensional phase transition. TheTc value differs
from that for noncoupled individual films. In the system
coupled layers theTc is determined by the competing influ
ence of two types of the topological excitations~the ther-
mally excited vortices and antivortices piercing the sup
conducting layers which should appear in a two-dimensio
superconductor in the vicinity of the Berezinsky–Kosterlitz
Thouless transition30–32 and the vortex loops proliferating
between superconducting layers23!. It is predicted that in-
creased coupling should lead to the enhancement ofTc . As
the data of Figs. 2 and 5 show, namely, such a type of
pendence ofTc on the interlayer coupling is observed in o
experiments. The data on Mo/Si sample series with the v
abledm anddSi5const5 confirm such an observation as we
The minima on the oscillatingTc vs dm dependence corre
spond to thedm values where the anisotropy parameter is
largest ~i.e., the coupling parameter has its minimum!. As
with the multilayer set investigated here, relatively smallTc

variation is observed whereas thehJ changes almost by a
order of magnitude.

The data, which are qualitatively similar to those r
ported in this work, were obtained on Nb/Ge multilayer1

There is the same trend toTc enhancement when the G
spacer thickness decreases. However, the latter data d
permit estimating the role of the interlayer coupling due
the interfering effect of inhomogeneities in the metal laye
The inner structure of Nb films consisting of layers wi
essentially different conductivity allows the authors to p
vide another explanation for theTc vs dGe dependence in
terms of the proximity effect. Nevertheless, according to
recent concepts of the layered superconductor physics
alternative interpretation of the experiments1 cannot be ex-
cluded either.

The considerably stronger effect of coupling onTc is
observed on the multilayers including high-Tc materials.33–35

When superconducting layers of YBa2Cu3O7 are separated
by the insulating layers of PrBa2Cu3O7, theTc of the super-
lattices diminishes drastically with the an increase in the
sulating layer thickness, reaching the saturation at 10–2
for the spacer thickness of 6–10 unit cells
PrBa2Cu3O7.

33–35There are other ways to control the aniso
ropy parameterg in high temperature compounds: interca
tion, variations of the oxygen concentration, doping w
some specific impurities.35–37 In all above mentioned case
the superconducting transition temperature decreases
the coupling weakening, but for YBa2Cu3O7 the dependence
of Tc on g is not universal; it is different for chain dopin
and for the plane doping.37 While the relativeTc change in
YBa2Cu3O7 is quite noticeable with the variation of the oxy
gen deficiency, its change at plane doping~the variation of
Zn concentration! is far greater. All existing experimenta
data are in good qualitative agreement with the prediction
the theory,24–26 but a more detailed comparison with theo
will be interesting. For the present set of Mo/Si superlattic
it is difficult to make such a comparison because the ne
sary conditions of the constant normal resistivity through
the set of the samples were not fulfilled.
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CONCLUSIONS

1. The exponential dependence of the Josephson
pling energy on the silicon spacer thickness is found
Mo/Si superlattices with the constant thickness of molyb
num layers and variabledSi . The characteristic electron tun
neling length for amorphous silicon determined from the e
perimental data is equal to 3.9 Å.

2. All the dependencies of superconducting and kine
parameters on the Si interlayer thickness~if any! are mono-
tonic according to the expectations based on the theory.13

3. The diminishing of the Josephson coupling parame
leads to a decrease in the superconducting transition t
perature, in agreement with the theory of Horovitz24–26 and
with the experimental data on high temperature materials
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Low-temperature magnetic properties and stress effects in glassy Fe-B alloys:
the eutectic region
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The magnetic properties of glassy Fe1002xBx (x514,16,17,20) alloys under a low mechanical
stress~up to 68 MPa! at temperatures 10–300 K, in magnetic fields up to 40 Oe, have
been studied. Low temperature anomalies of magnetic susceptibility, as well as substantial
differences in the effects of stresses on the low field magnetic characteristics of alloys with various
boron contents, have been revealed. The eutectic alloy Fe83B17 was found to be the least
sensitive to applied stresses, magnetic fields, and temperature changes: it possesses the lowest
magnetic induction in the reversibility fields region and the highest local anisotropy
fluctuations. The hypoeutectic Fe84B16 alloy is the most sensitive to applied stresses at room
temperature, but its sensitivity substantially reduces with increasing load, as well as with
decreasing temperature. The results obtained reflect the special character of the alloys
electronic structure at the eutectic point. ©1999 American Institute of Physics.
@S1063-777X~99!00908-1#
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The amorphous alloys Fe1002xBx are soft magnetic ma
terials with a wide field of applications.1–3 In particular,
much attention has focused on the alloys in the region ox
517 ~the eutectic composition!, due to the possibility of spe
cial interatomic interactions in these alloys4,5. We have used
the effect of stress on the magnetic properties to study
nature of differences of the alloys properties.

EXPERIMENTAL PROCEDURE

The studied samples Fe1002xBx (x514,16,17,20) were
prepared from 30mm thick and 6 mm wide amorphous rib
bons, obtained by the planar flow casting technique.

The effect of tension as well as pressure on the magn
induction B, was measured. The pulse-induction techniq
was used, with longitudinal magnetic fields 0<H<40 Oe,
temperatures 300 and 77 K, and tension stressess near 22
and 63 MPa in the 1st kind experiments, as well as
SQUID magnetometer, normal to the ribbon’s surface ex
nal magnetic field 20 Oe~the effective field in the sample
was substantially reduced by the demagnetization factoN
;10), temperatures 10 K<T<230 K, and the normal to the
ribbons surface uniaxial pressure of about 20 MPa in the
kind experiments.

RESULTS AND DISCUSSION

Magnetic characteristics

Longitudinal field. It was revealed that the eutectic allo
Fe83B17 possesses the lowest value ofB in fields above 5 Oe
at all studied temperatures and stresses. This is in agree
6411063-777X/99/25(8–9)/4/$15.00
e
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with the opinion that fluctuations of the local anisotropy fie
in this alloy are the highest in the considered system6. The
B(H) curves~Fig. 1! suggest that the Fe83B17 alloy has the
smallest saturation induction. This result corresponds to
saturation magnetization measurements of Benguset al.4

At 300 K the hypoeutectic alloy Fe84B16 possesses the
highest magnetic permeabilitym, and the lowest coercivity
Hc and magnetic remanenceBr ~Table I!. At 77 K the dif-
ference between them of Fe84B16 and other alloys decrease

Transverse field.The effective magnetic susceptibility o
the samplesxeff measured in the 2nd experiment slowly d
creased with decreasing temperature over almost the w
temperature range. There was a steep slope at about 2
which was evidently connected with a magnetic phase tr
sition to the disordered asperomagnetic phase.7 The xeff

curve of the eutectic alloy Fe83B17 was substantially lower
than that of the other alloys. This may be considered as
evidence of the highest local magnetic anisotropy in the
loy.

Local anisotropy.The analysis of the field dependenc
of magnetizationM5(B2H)/4p in the region approaching
saturation is carried out in the framework of the local anis
ropy model. The parametersAi of the equation

M5(
i 50

6

AiH
20.5i ~1!

in the region of longitudinal magnetic fields 16 Oe<H
<40 Oe were evaluated by the least squares method.
validity was analyzed of the sum~1! as a whole, as well as o
© 1999 American Institute of Physics
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its separate components. It was found that the best app
mation of experimental data corresponds to the equation

M5M`@12~DM` /H !0.5#, ~2!

describing the zero-dimensional violations of the translat
symmetry8 of the system. The parameterD in Eq. ~2! char-
acterizes the local magnetic anisotropy fluctuations value

As one can see in Fig. 2, the concentration depende
of parameterD shows a singularity at the eutectic pointx
517, which correlates well with the analogous singularity
the low temperature high field magnetizationMs from.4

The results obtained agree with work by Iskhak
et al.,6 who reported that the eutectic alloy had the maxim
value of mean square fluctuations of local magnetic ani
ropy.

Tension effects

Applied tensile stress leads to a growth in magnetic
ductionB, magnetic permeabilitym and remanenceBr , and
to a decrease inHc ~but noHc decrease for Fe84B16).

Permeability. The increase of magnetic induction
mainly seen in fields up to about 30 Oe. At both room a
liquid nitrogen temperatures, the growth of the maximu
value of magnetic permeabilitymmax of all the studied alloys

FIG. 1. The magnetic induction field dependences of Fe1002xBx (x
514,16,17,20) amorphous alloys under zero load at 77 K.

TABLE I. The maximum magnetic permeabilitymmax, coercivity Hc, and
magnetic remanenceBr of glassy Fe-B alloys at nitrogen~77 K! and room
~300 K! temperatures.

Alloy

mmax Br , Gs Hc , Oe

77 K 300 K 77 K 300 K 77 K 300 K

Fe86B14 2957 7228 980 1358 0.495 0.231
Fe84B16 4600 12651 303 756 0.165 0.132
Fe83B17 3235 7478 419 1496 0.341 0.264
Fe80B20 3802 8357 1566 1804 0.418 0.308
xi-

n

ce

f

t-

-

d

under load is very sharp and range up to 1.5–3 times at a
63 MPa. This can be seen at Fig. 3, where the load effec
shown for the alloy Fe84B16.

At 300 K the smallest value ofDmmax/Ds is exhibited
by the eutectic alloy Fe83B17. When the temperature is low
ered to 77 K,mmax decreases about 2 times. The small
value ofDmmax/Ds at 77 K is for the Fe84B16 alloy.

Magnetic remanence.The applied loads lead to 1.6–3.
times growth in remanence; the change in remanence
unit stressDBr /Ds, is nearly equal for all studied alloys an
temperatures, except for the hypoeutectic alloy Fe84B16. This
alloy exhibits the smallest remanence without load at b
studied temperatures, the largest value ofDBr /Ds at 300 K
and the smallest at 77 K~Fig. 4!.

Coercivity.The coercivityHc of all the alloys decreased
with increasing applied load, except for Fe84B16, which in-
creased. But its coercivity remains the smallest at

FIG. 2. The parameterD(s) from Eq. ~2!, reflecting the local magnetic
anisotropy fluctuations in the amorphous alloys Fe1002xBx under zero load at
77 K, and saturation magnetization~d! 4 at 4.2 K versusx.

FIG. 3. Magnetic permeabilitym of amorphous Fe84B16 alloy at liquid ni-
trogen temperature under the various tensile loads~22 and 61 MPa! versus
magnetic fieldH.
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the studied temperatures and loads. At the same time
coercivity of the eutectic alloy Fe83B17 is nearly independen
of the applied load, itsDHc /Ds value is rather small.

The obtained data show that the eutectic alloy Fe83B17 is
the least sensitive to changes in temperature and app
load: the changes per unit stress of its coercivityDHc /Ds,
remanenceDBr /Ds and permeabilityDmmax/Ds are com-
paratively small at both studied temperatures. The thresh
~i.e. separating the unchanged and changed electronic s
tures! Fe84B16 alloy is the most sensitive to applied load
room temperature, and its properties are the most sensitiv
temperature as well. When the temperature decreases its
sitiveness to the load drops sharply.

Uniaxial pressure effects

The data obtained in the uniaxial pressure and the ten
experiments are in a good agreement. The magnetic sus
tibility drops under pressure at all the temperatures stud
but the temperature dependence is not monotonic.

When lowering the temperature all the alloys showed
increasing value ofx21d ln x/dP in the range 230–150 K
~for alloy Fe84B16 the increase was only small!, a maximum
at 110–140 K, a decrease at 110–30 K, and an abrupt gro
at temperatures lower than 30 K~Fig. 5!. The x21d ln x/dP
value was chosen for the analysis, because it is indepen
of the demagnetization factor:x21d ln x/dP5xeff

21d ln xeff /
dP. The main features of the temperature behavior of t
value are determined by the behavior ofdxeff /dP, because
xeff depends comparatively slightly on the temperature.

Since the interatomic distances weakly change with te
perature~the studied alloys possess invar-type properties9!,
the presence ofx21d ln x/dP maxima means a change
electronic structure. The growth ofx21d ln x/dP at tempera-
tures lower than 30 K is evidently connected with the form
tion of an asperomagnetic structure in this temperat
region.7

FIG. 4. The average derivativeDBr /Ds of amorphous Fe-B alloys at tem
peratures 77 and 300 K under tension stresses of 10 and 40 MPa.
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The smallest value ofx21d ln x/dP corresponds to the
eutectic composition (x517). This is in a good agreemen
with the concentration dependence of the failure stress of
studied alloys,4 as well as with our data on tension stre
effects.

CONCLUSION

The results obtained confirm that the eutectic all
Fe83B17 possesses a special and most stable atomic and
tronic structure with the highest local anisotropy. It has t
lowest magnetic induction and permeability, and it is t
least sensitive to applied load and decreasing tempera
The results are in good agreement with the idea of an
tremely disordered structure of intercluster boundaries of
tectic alloy Fe83B17, in which the clusters are supposed
have a quasicrystal structure.4

The hypoeutectic Fe84B16 alloy exhibits the highest
value of magnetic permeability and the lowest remane
and coercivity. It is the most sensitive to the applied loads
room temperature, and its properties are also the most se
tive to changes in temperature. Therefore, it possesses
smallest local magnetic anisotropy and the least stable e
tronic structure.
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Raman scattering and phase transitions in mixed crystals K 12x„NH4…xH2PO4
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Spectral parameters of the Raman scattering band corresponding to intrinsic vibrationn2(A1) of
the PO4 tetrahedron in mixed crystals of K12xAxDP with various ammonium concentrations
are studied in the temperature range 4.2–300 K. Abrupt changes in frequency and half-width of the
band are observed during transitions to ordered ferroelectric (x50.00, 0.02, 0.04, 0.08) or
antiferroelectric (x50.74,0.82) phases. The decrease in the band half-width during ordering
indicates the participation of excitations responsible for the corresponding states in
relaxation processes. The transition to the structural glass phase (x50.22, 0.32, 0.53) is not
accompanied with sharp changes in the band parameters, but the band half-width at low
temperatures is smaller than the expected value for totally disordered paraelectric phase.
© 1999 American Institute of Physics.@S1063-777X~99!01008-7#
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INTRODUCTION

Crystals belonging to the KDP family are classical o
jects for investigating phase transitions to the ferroelec
~FE! or antiferroelectric~AFE! state.1 In actual practice, this
large class includes crystals with the general form
AH2BO4 ~and their deuterized analogs!, where A5K, Rb,
Cs, Tl, or NH4 and B5P or As. Antiferroelectric properties
are observed only for ammonium-based crystals, while
remaining compounds experience transition to the FE s
upon cooling.

Most compounds at room temperature possess the s
tetragonal symmetryD2d

12 with two structural units in a unit
cell, and lattice parameters for different compounds h
close values. For this reason, we can obtain mixed~including
FE–AFE! crystals in the entire concentration range. Diffe
ent types of ordering in initial pure compounds leads to fr
tration for mixed crystals at low temperatures. Thus, all p
mises for the formation of a new ‘‘phase’’ referred to
dipole, or structural, or proton~deuteron! glass are created
We write the word ‘‘phase’’ in inverted comas since th
corresponding state is nonergodic and does not obey the
of equilibrium thermodynamics.

However, we can introduce the order parameter for
glass state also, for example, the Edvards–Anderson pa
eterqEA5^^Si&T

2&C ,2 where the first averaging is of the the
modynamic type, while the second is the configuration av
aging, and the role of spinSi at a lattice site of mixed
crystals belonging to the KDP family can be played by t
‘‘up’’ or ‘‘down’’ displacement of protons from the centra
position. The glass state is studied best of all for magn
systems~see, for example, the review by Korenblit an
Shender3 and the literature cited therein!, but it remains un-
clear even for spin glasses whether the state is a phase i
conventional sense and whether a phase transition to
6451063-777X/99/25(8–9)/5/$15.00
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state exists. For this reason, any new result obtained for
glass phase is of considerable interest.

In the case of mixed crystals belonging to the KDP fa
ily, the glass state was observed for several systems.1! The
system K12x(NH4)xH2PO4 ~KADP! has been studied mos
intensely in recent years.10–12The phase diagram of this sys
tem includes the ferroelectric phase existing in the amm
nium concentration rangex50 –0.2 as well as the antiferro
electric phase (x50.72–1.00! and the glass phase formed
the intermediate concentration range. Raman scattering s
tra proved that a transition to the glass state occurs in
stages: at first the position of ammonium ions is fixed
Tm'120 K, and the formation of the phase is complet
with ordering of protons atTg'70 K.12–15

Here we report on new data for the K12x(NH4)xH2PO4,
which convincingly illustrate the presence of transitions
the FE and AFE phases and the structural glass~SG! phase.

DISCUSSION OF EXPERIMENTAL RESULTS

Experimental Technique

Experiments were made by using the Raman scatte
technique, involving the excitation by 4880 Å line emitte
by a 100-mW argon laser in the 90° scattering geometry.
used a refined spectrometer DFS-24, photon counting te
nique, and automated system of control, data recording
processing. Details of sample preparation and classifica
and the features of the experimental setup were repo
earlier.12 Measurements were made in the temperature ra
4.2–300 K.

In our experiments, we studied in detail the behavior
the n2(A1) vibrational mode of the PO4 group~according to
the Shur classification!,16 belonging to the frequency rang
of the order of 350 cm21. The corresponding line is quite
intense and is observed, in accordance with the selec
© 1999 American Institute of Physics
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rules, in the polarizationsxx,yy, andzz. We shall describe
here only the results obtained in they(xx)z geometry.

Transition to Ferroelectric Phase

After the transition to the ferroelectric phase, the crys
symmetry is lowered from the tetragonal symmetryD2d

12 to
the orthorhombic symmetryC2v

19 , and thex- and y-axes are
rotated approximately through 45°. In our experiments,
studied samples with four concentrations (x50.00,
0.02, 0.04, and 0.08! in which a transition to the FE stat
takes place. The results are perfectly identical for all
samples, the only difference being that the temperatureTc of
the transition to the FE phase decreases with increasing
monium concentration, and the temperature range in wh
strong changes in spectral parameters occur becomes
extended.

Figure 1 shows the Raman spectra for a pure KDP c
tal in the range of low- frequency vibrational modes of t
PO4 group at several temperatures. The temperatureTc for
KDP is 122 K. Bands with frequencies near 350, 385, a
480 cm21 correspond to the vibrational mode
n2(A1),n2(B2), andn4(B1) of the PO4 tetrahedron.16,17 The
emergence of the moden2(B2) ~which must be observed in
the spectra with thexy polarization! upon cooling and its
enhancement belowTc is associated with the rotation of th
x- andy- axes~see above!.

The temperature dependence of the spectral positio
the n2(A1) band, which is presented in Fig. 2 for sampl
with two concentrations, is quite interesting and peculiar
similar l-shaped dependence was also obtained for sam
with other concentrations, the temperatureTc corresponding
to the minimum on these curves in all cases. To our kno
edge, no such dependences have been detected earlier fo
band in the Raman spectra of crystals of the KDP fam
although a similar behavior was observed for other co
pounds. For example, the spectral position of a numbe

FIG. 1. Raman spectra for a pure KDP crystal in they(xx)z polarization at
several temperatures.TC5122 K. Spectral resolution is 2.5 cm21.
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low-frequency bands in the Raman spectrum of the amm
nium fluoroberyllate crystal (NH4)2BeF4 also has a mini-
mum at the ferroelectric phase transition.18

The ‘‘softening’’ of the n2(A1) mode observed by us
during the FE transition cannot be attributed to electrost
tion since other modes@e.g.,n1(A1)] should also exhibit a
similar dependence, but the change in its frequency upon
transition is step-wise~see Fig. 4 in Ref. 12!.

Hattori et al.,19 who also investigated then2(A1) line in
the x(zz)y polarization in the RADP system~which is very
close to KADP in its properties!, observed a complex varia
tion of the shape of the line in the phase-transition regi
They explained some of the obtained results by the coex
ence of FE, AFE, and paraelectric modes with different sp
tral positions and different temperature dependences. U
such a decomposition of then2(A1) line, we can explain the
formation of a doublet during the AFE phase transitio
which was observed by us~see below!. However, we did not
observe any change in the shape of the line for crystals
dergoing a transition to the FE phase. While analyzing
spectra, we assumed that the line has a symmetric Lorent
shape~see Fig. 1!.

The temperature dependence of the half-width of the l
under investigation for a pure KDP crystal is shown in F
3. Similar temperature dependences were also observed
samples with ammonium concentrationx50.02,0.04, and
0.08: the half-width of the line decreases abruptly during
transition to the ferroelectric phase. This points to a con
bution to the linewidth from excitations responsible for t
ordered FE state. In our case, these are soft phonon mod
should be noted that a similar strong increase in the
half-width was observed, for example, in optical absorpt
spectra of antiferromagnetic compounds during ordering~see
Fig. 3 in Ref. 20! and served as a proof of the participation
magnons in the formation of the spectra. In magnetica
ordered crystals, the role of ‘‘soft’’ excitations condens
during a transition is played just by magnons.

FIG. 2. Temperature dependence of frequency~position of the peak! for the
n2(A1) Raman band for samples undergoing a phase transition to the fe
electric state. Arrows indicate the corresponding Curie temperatures.
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Transition to Antiferroelectric Phase

A transition to the AFE state in pure NH4H2PO4 ~ADP!
crystals occurs atTN5148 K. This first-order phase trans
tion is accompanied by strong electrostriction, and belowTN

the monocrystalline samples disintegrate into a powd
which makes it impossible to carry out high-quality polariz
tion studies of Raman spectra in the AFE phase. Addition
15–25% of potassium preserves the AFE transition, wh
electrostriction is suppressed significantly, and the sam
are not destroyed down to helium temperatures. In our
periments, we studied two such samples with the ammon
concentration 0.74 and 0.82.

Figure 4 shows Raman spectra of the crystal w
x50.74 in the region of the vibrational moden2 of the PO4

FIG. 3. Temperature dependence of half-width~width at half-height! of the
n2(A1) band for a pure KDP crystal.

FIG. 4. Raman spectra for a K0.26A0.74DP crystal in they(xx)z polarization
at several temperatures.TN568.5 K. Spectral resolution is 2.5 cm21.
r,
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f

e
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tetrahedron. It can be seen that then2(A1) line has the dou-
blet structure in the immediate vicinity of the transitio
(TN568.5 K in this sample!, although it is correctly de-
scribed by a solitary line of the Lorentzian shape away fr
the transition~on the high and low temperature sides!. It was
mentioned above that the doublet structure is probably a
ciated with the coexistence of two~paraelectric and antifer
roelectric! modes with several differing frequencies in a na
row temperature range~3–4 K!. The temperature
dependence of frequency and half-width of this mode
shown in Fig. 5. It can be seen that the band parame
change jump-wise as a result of the transition. As in the c
of transition to the FE state, an abrupt change of the h
width from 25 to 10 cm21 is observed in a narrow tempera
ture interval during the transition to the AFE phase.

Transition to the Structural Glass Phase

In the intermediate concentration range (0.2,x,0.72
for KADP! in which the structural glass~SG! phase is
formed, the lattice symmetry apparently remains tetrago
(D2d

12) even at helium temperatures. Quite reliable x-ray d
fraction data for such crystals were obtained for the RA
system.21 Sketchy information obtained for KADP only in
dicate the anomalies in the behavior of the latti
parameters.22

An analysis of Raman spectra~for samples of three con
centrationsx50.22, 0.32 and 0.53 from the intermedia
range! shows that the general form of the spectra does
change in the temperature range 300-4.2 K. Three lines w
frequencies of the order of 350, 395, and 480 cm21, which
are preserved down to 4.2 K, can be observed in the
quency range under investigation even at room tempera
~Fig. 6!. The intensity ratio for these lines does not chan
upon cooling. The emergence of then2(A2) band with fre-
quency 395 cm21 is apparently associated with breaking
translational invariance in impurity crystals.

FIG. 5. Temperature dependence of frequency~j! and half-width~s! of
the n2(A1) line for a K0.26A0.74DP crystal.
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The temperature dependences of frequency and h
width of the n2(A1) line for the K0.68A0.32DP crystal are
shown in Fig. 7. It can be seen that there are no features
phase transition atTm or at Tg , although a considerable de
crease in the half-width of the line is observed upon cooli

The existence of the glass phase is visually illustrated
Fig. 8 showing the concentration dependences of freque
and half-width of then2(A1) band at room temperature an
at liquid helium temperature. The clearly manifested line
change in the spectral position of the band atT5296 K can
serve as a test for a control of the component concentrat
in the crystal~a similar behavior was also observed for t
n1(A1) band with a frequency close to 920 cm21 ~see Fig. 3
in Ref. 12!. The half-width of the band at room temperatu

FIG. 6. Raman spectra for a K0.68A0.32DP crystal in they(xx)z polarization
at several temperatures.Tm5120 K,Tg570 K. Spectral resolution is
2.5 cm21.

FIG. 7. Temperature dependence of frequency~j! and half-width~s! of
the n2(A1) band for a K0.68A0.32DP crystal.
lf-

f a

.
n
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ns

is also almost independent of concentration and amounts
proximately to 30– 35 cm21.

A different situation takes place atT54.2 K. It can be
seen that the frequencies of the bands and their half-wid
have ‘‘jumps’’ at the interfaces between ferroelectric a
structural glass and antiferroelectric–structural glass. T
fact that a phase other than the paraelectric phase is for
in the intermediate range of concentrations follows from
values of half-widths of the bands. Indeed, for a complet
disordered phase like the paraelectric phase, we could ex
the value obtained from the extrapolation of half-widths
the bands from the high-temperature range for samples
dergoing FE and AFE phase transitions. It can be seen f
Figs. 3 and 5~light circles! that such an extrapolation give
Dn'2461.5 cm21 ~the same result was obtained fo
samples with other ammonium concentrations:x50.02,0.04,
and 0.08 for FE andx50.82 for AFE!, while the value of
half-width for the samples with intermediate values
x50.22,0.32, and 0.53 does not exceed 20 cm21 at
T54.2 K. This difference is much larger than the error

FIG. 8. Concentration dependence of frequency~a! and half-width~b! of the
n2(A1) band for mixed K0.68A0.32DP crystals at two temperatures.
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determining the half-width~this error is;1 cm21 at 4.2 K!,
which points to the existence of ordering in the glass pha

CONCLUSION

We studied the temperature dependence of the spe
position and half-width of the Raman scattering line cor
sponding to then2(A1) vibrational mode of PO4 tetrahedron
with a frequency near 350 cm21 in the y(xx)z scattering
geometry. Experiments were made of samples belongin
the K12x(NH4)xH2PO4 system with ammonium concentra
tions x50.00, 0.02, 0.04, and 0.08 in which the ferroelect
phase is formed at low temperatures. Samples withx50.74
and 0.82 undergoing the antiferroelectric phase transit
and three samples with intermediate concentrationsx
50.22,0.32, and 0.53 in which the structural glass phas
formed. Strong changes in frequencies and half-widths of
lines are observed in transitions to the FE and AFE pha
As we approach the phase-transition temperatures from
low, an abrupt broadening of the lines by 15– 20 cm21 is
observed, indicating the emergence of additional scatte
mechanisms associated just with structural disordering.
‘‘soft’’ phonon mode whose frequency tends to zero in t
transition region is responsible for the PT in ferroelect
crystals. Thus, the soft phonon mode is a parameter of
transition and must be completely symmetric in the lo
temperature phase.23 Consequently, its interaction with th
mode under investigation having theA1 symmetry is justi-
fied. A similar temperature dependence of the line half-wi
was also observed for then1(A1) band with a frequency
close to 920 cm21 in the spectrum of KADP crystals unde
going the ferroelectric phase transition~see curves1 and2 in
Fig. 7 in Ref. 12!. It should be noted that a strongly ove
damped soft mode is present in samples of mixed KA
crystals in the entire concentration range,13 its frequency
having the minimum value in the region of temperatures c
responding to transitions to the low-temperature phases.

No sharp anomalies in the spectral parameters of
n2(A1) band as well as the entire Raman spectrum are
served for samples with concentrations from the intermed
region, which confirms the invariability of the tetragon
symmetry of mixed crystals down to helium temperatur
However, temperature dependences of frequency and e
cially the half-width of then2(A1) band show that the phas
formed at low temperatures differs from the paraelec
phase. This follows from the half-width of the band at 4.2
which is smaller than should be expected from the extra
lation of the corresponding curves to zero temperature
samples in the entire concentration range. Our ear
experiments13–15proved that the structural glass phase is h
erogeneous and includes FE as well as AFE clusters.
results obtained by us here show that the size of th
e.

ral
-

to

n,

is
e
s.
e-

g
e

e
-

h

P

r-

e
b-
te

.
pe-

c
,
-
r
r

t-
he
se

clusters is not large, otherwise the half-width of the ba
under investigation would be much larger that observed
experiments even at low temperatures~especially in the in-
termediate concentration range!. The last statement is con
firmed by the concentration dependences of the spectral
sitions of the band.

This paper is dedicated to the blessed memory of B
Verkin, who was a remarkable scientist and organizer. O
of the authors~Yu. A. Popkov! was among first post-
graduate students of Boris Ieremievich at the Institute
Low Temperature Physics and Engineering and was fo
nate to take first lessons of science from this outstand
teacher.
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Nonquantum oscillations associated with the dynamics of an electron in superlattice
A. M. Kosevich
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Oscillations associated with the classical motion of a Bloch electron in a spatially periodic
structure whose period considerably exceeds the atomic spacing are discussed. Such phenomena
include the so-called Bloch oscillations, i.e., the vibrational motion of an electron in a
constant uniform magnetic field, and the oscillatory dependence of magnetoresistance on a constant
magnetic field, associated with the geometrical resonance at which the electron orbit
diameter in the magnetic field is commensurate with the superlattice period. ©1999 American
Institute of Physics.@S1063-777X~99!01108-1#
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INTRODUCTION

Experimental investigations of the de Haas–van Alph
effect carried out by B. I. Verkin laid the foundation of th
modern theory of quantum oscillations in metals. His wo
are widely cited in scientific publications and are highly a
claimed in the monograph by Shoenberg.1 One of the re-
markable results of his investigations concerns the dep
dence of the quantum oscillations periods on the shape o
Fermi surface. It is well known that the shape of the Fer
surface is determined by the dispersion relation of an e
tron in a metal and reflects the periodicity of the crys
lattice.2 On the other hand, since quantum magnetic osci
tions in metals are usually described in the semiclass
longwave approximation, the spatial periodicity of the cry
tal lattice is not manifested strongly in the motion of ele
trons in the coordinate space.

However, periodic semiconducting structures have b
created recently with a period considerably exceeding
crystal lattice period~atomic spacing!. Such conducting su
perlattices serve as a platform for studying the peculiari
of the classical motion of electrons in the coordinate spac
periodic structures.3 Hence the problem of electron dynami
acquires significance under conditions when the cyclot
orbit diameter becomes commensurate with the superla
period. This also imparted a new look to the seemingly
stract and old academic problem of Bloch oscillations of
electron in a constant uniform magnetic field.

We shall discuss these two different problems which
connected only through the common term ‘‘oscillations.’’

The paper begins with a discussion of the latter probl
as the simplest one in formal notation of mathematical re
tions illustrating the laws governing the Bloch oscillations
an electron, as well as the less thoroughly studied oscilla
dependence of thermodynamic and kinetic characteristic
6501063-777X/99/25(8–9)/6/$15.00
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an electron gas on magnetic field, which come to mind at
mention of magnetic oscillations. The phenomenon of Blo
oscillations is associated with the dynamics of an individ
electron and is due entirely to the specific nature of the d
persion relation for an electron in a metal or semiconduc
i.e., the periodic dependence of the energy and velocity o
electron on its quasimomentum. If the electron moment
increases monotonically with time under the action of
external electric field~this may happen over an interval o
time much shorter than the relaxation time for an elect
moving in the crystal!, its velocity changes sign periodicall
and the ‘‘classical’’ motion of the electron~disregarding in-
terband transitions! becomes oscillatory.2 In the absence of a
magnetic field, the vibrational frequency, which must
much larger than the reciprocal of the relaxation time,
proportional to the electric field and spatial period of t
conducting structure under consideration.

Although the frequency of Bloch oscillations depends
the spatial period, the periodicity of layered structures
taken into account only implicitly in calculations, i.e
through the formulation of the specific dispersion relatio
Since the nonmonotonicity of the electron energy dep
dence on momentum is the principal factor in the descript
of the effect under consideration, we would like to take
into account not only in estimates, but also in actual com
tations and in the form of final formulas. In this connectio
we shall confine ourselves to the simplest but frequently
countered form of the periodic dependence, viz., the si
soidal dependence of energy on quasimomentum.

In crossed electric and magnetic fields, Bloch oscil
tions may compete with the cyclotron motion of an electr
in a uniform magnetic field. The ‘‘competition’’ betwee
two types of oscillatory motion is described by an equat
equivalent to the equation for the oscillations of a ma
© 1999 American Institute of Physics
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ematical pendulum which can be analyzed easily in the l
iting cases. In particular, it is found that in quite strong ma
netic fields and weak electric fields, the Bloch oscillations
an electron are practically not observed against the ba
ground of its cyclotron motion.

In the second part of this communication, we shall co
sider only the cyclotron motion of electrons in a strong ma
netic field under the assumption that the conducting med
has a layered periodic structure with a macroscopic per
Under conditions corresponding to the experimental real
tion of such a situation, the periodic perturbation with a m
roscopic period is superimposed on the periodic crystal fi
with atomic period. In this case, the unperturbed motion
an electron is governed as a rule by some complex disper
relation in the general case. In the dynamics of an elec
with an arbitrary dispersion relation, it is a complicated ta
to take perturbation into account, and we shall not tackle
problem here. We shall proceed from the fact that if t
macroscopic period is much larger than the atomic spac
we can separately deal with the problems of determining
role of the peculiarities of the ‘‘initial’’ arbitrary dispersion
relation and the additional macroscopic spatial periodic
Hence we assume that the unperturbed motion of an elec
obeys an isotropic quadratic dispersion relation, and pay
cial attention to the effect of periodic potential with a ma
roscopic period on the properties of the electron gas. In o
to obtain the results in an explicit form, we again confin
our analysis to the motion of an electron in a spatially pe
odic potential with a small amplitude, where the use of
perturbation theory leads to the derivation of simple form
las.

We determined the energy spectrum of an electron w
a quadratic dispersion relation in the presence of a unifo
magnetic field and a weak periodic potential with a on
dimensional periodicity in the direction perpendicular to t
applied magnetic field. In other words, we have derived
semiclassical dispersion relation for an electron in a perio
structure with a one-dimensional periodicity in a unifor
magnetic field.

In the concluding section of this paper, we calculate
electric conductivity of an electron gas with the obtain
dispersion relation in the relaxation time approximation a
describe the classical oscillations of magnetoresistance
varying magnetic field. As in Shubnikov–de Haas effe
these oscillations can be observed only at low temperatu
However, the parameter defining the amplitude decre
with temperature in the ratiod/a in the obtained formulas~d
is the lattice period anda is the atomic spacing! is smaller
than in the Shubnikov–de Haas effect, and hence the p
nomenon described here can be observed at higher tem
tures.

1. BLOCH OSCILLATIONS OF AN ELECTRON IN A
SUPERLATTICE

The peculiarities of the dynamics of an electron in
superlattice are associated with the specific energy feat
during its motion in a periodic field. The state of an electr
in a periodic structure is determined by its quasimoment
-
-
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p, and its energy«(p) is a periodic function of the quasimo
mentum~for brevity, we shall use the term ‘‘momentum’’ in
the following!. Such a dependence of the electron energy
essentially quantum-mechanical.2 Without going into details
concerning the justification of the procedure and confin
ourselves to the semiclassical approximation, we shall foll
the effective Hamiltonian technique and treat«(p) as the
kinetic energy of a free particle to formulate the electr
mechanics in analogy with classical mechanics. According
classical mechanics, the Hamiltonian of an electron in
plied electric and magnetic fields has the form

H5«S p2
e

c
A~r ! D2ew~r !, ~1!

where p is the canonical momentum of the electron,p5p
2(e/c)A its kinematic momentum,A and w are the vector
and scalar potentials of the applied fields. The equation
free electron motion has the conventional form

dp

dt
5eE1

e

c
@v3H#, ~2!

whereE andH are the electric and magnetic field strength
We shall confine ourselves to the most interesting c

of a layered structure, assuming its superlattice propertie
be one-dimensional. Let thex-axis be directed at right angle
to the layers. In the simplest~strong bond! approximation,
the dispersion relation for the electron in the absence o
magnetic field has the form

«~p!5
p'

2

2m0
1D sin2

pxd

2\
, ~3!

wherep'
2 5py

21pz
2; m0 is the effective mass in the plane o

the superlattice layers,d the superlattice period, andD the
width of the energy band associated with the motion alo
the x-axis.

According to Eq.~3!, we have

v'5
P'

m0
; vx5A sin

pxd

\
;A5

1

2

D

\
d5const. ~4!

Suppose that a constant electric fieldE is applied along the
x-axis and that no magnetic field is applied. In this ca
taking into account the dissipative processes~caused by the
collisions of the electron with other quasiparticles or imp
rities in the metal!, the effective equation for the electro
motion, which describes the situation qualitatively, can
presented in the form

dp'

dt
52

1

t0
p' ,

dpx

dt
5eE2

px

t
, ~5!

wheret is the relaxation time. It follows from Eq.~5! that,
for the initial conditionpx50(t50), we havep'50, while
px can be defined by the equation

dpx

dt
1

px

t
5eE. ~6!

In conventional conductors~without a superstructure, fo
d;a!, as well as in superlattices with smalld, eEdt,\ in
electric fields below the breakdown value, and hence Eq.~6!
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has a steady-state solutionpx5p05eEt for t@t corre-
sponding to the motion of an electron at a constant velo
vx5A sin(eEdt/\).

For eEdt!\, such a solution defines the convention
electron mobility in a semiconductor

vx

E
5eAtd5

et

m*
. ~7!

For eEdt@\, however, we obtain for small values oft!t

px5eEt, ~8!

and the electron velocity is defined in the main approxim
tion in the small parameter\/(eEtd) as follows:

vx5A sin vbt, ~9!

wherevb5eEd/\ is the Bloch frequency~also known as the
Stark frequency! characterizing the electron oscillations in
superlattice in a constant electric field. These oscillations
called the Bloch oscillations.

For an electron moving in crossed electric and magn
fields, the Bloch oscillations compete with the cyclotron o
cillatory motion of the electron. Although this question h
been discussed in the literature~see, for example, Ref. 3!, we
shall consider it here in the simplest form, assuming that
cyclotron and Bloch oscillations periods are much sma
than the relaxation time~i.e. formally putt5`!. Assuming
that the magnetic fieldB is directed along thez-axis, we can
write Eqs.~4!–~6! in the form

dpx

dt
5

eB

c
vy1eE; vx5A sin

pxd

\
;

dpy

dt
52

eB

c
vx ; vy5

py

m
. ~10!

This system of equations can be reduced to a sin
second-order differential equation

d2px

dt2
1mAvc

2 sin
dpx

\
50 ~11!

with the initial condition~for t50!

px50,
dpx

dt
5eE1mvcV0 , ~12!

wherevc5eB/mc, andV0 is the initial velocity of the elec-
tron along they-axis. The constantA is associated with the
effective massm* of an electron moving with a small mo
mentum along thex-axis: m* 5\/(Ad).

We introduce the dimensionless variablez5pxd/\. In
this case,

d2z

dt2
1V0

2 sin z50, ~13!

where

V0
25S mAd

\ Dvc
25

m

m*
vc

25
1

mm* S eB

c D 2

. ~14!

The solution of Eq.~13! for a mathematical pendulum
has a form that depends on the magnitude of the first inte
y

l

-

re

ic
-

e
r

le

al

J5
1

2 S dz

dt D
2

1V0
2~12cosz!. ~15!

The critical boundary valueJ5J0[2V0
2 divides the elec-

tron trajectories into two groups:

~1! For J,J0 , the electron oscillates along thex-axis with
a frequencyv5pV0 /@2K (k)#, whereK (k) is the to-
tal elliptic integral of the first kind and the paramet
k5AJ/J0. In the limit J!J0 , the electron performs
cyclotron oscillations with a frequencyv5V0 .

~2! For J.J0 , the motion of the electron along thex-axis
remains finite, but it oscillates with a frequencyv
5pV0 /@kK (k)#, where k5AJ0 /J. In the limit
J@J0 , the electron performs Bloch oscillations with
frequencyv5vB[eEd/\.

2. CLASSICAL MAGNETORESISTANCE OSCILLATIONS IN A
PERIODIC POTENTIAL

The new spurt of interest towards magnetic oscillatio
in metals can be attributed to the emergence of new obj
in experimental physics, i.e., two-dimensional electron s
tems. These systems display a new type of oscillatory ef
that is typical of a two-dimensional electron gas modula
periodically in space.4,5 The observed phenomenon diffe
from the Shubnikov–de Haas effect and has the form o
geometric resonance, reflecting the commensurability of
diameter of the cyclotron orbit of an electron in a magne
field with the period of spatial modulation of the crystal fiel
In this connection, it is expedient to speak of the analo
between the observed effect and the geometric reson
during absorption of ultrasound in metals in a magnetic fie
An acoustic wave in the sample creates spatial modula
whose period is commensurate with the electron orbit dia
eter, and this leads to resonance effects~see, for example,
Ref. 6!.

We shall present below a theory for such an effect in
three-dimensional electron gas modulated by a periodic
tential that depends only on one coordinate at right angle
the applied magnetic field. Such a modulation may
achieved by creating a superlattice with a submicrometer
riod. This kind of magnetic oscillations in a superlattice we
apparently observed for the first time by Changet al.7 as per
observations made by Shekhteret al.8

Let us consider an ideal electron gas in an external
riodic potential field that depends on only one spatial co
dinate. For example, this may be a superlattice of the laye
structure type with a periodd much larger than the atomi
spacinga. If the external magnetic fieldB is parallel to the
layers, the unperturbed electron motion occurs along a
jectory whose projection on a plane perpendicular toB has
the form of a closed orbit~a circle in the simplest case!. It is
assumed that the diameterD of the cyclotron orbit corre-
sponding to the Fermi energy may be larger thand. Since the
diameter of the electron orbit is inversely proportional to t
magnetic field (D;1/B), a variation in the value of 1/B by
an amount corresponding to the incrementdD5d must lead
to a resonant variation of the kinetic characteristics of
electron gas. Naturally, oscillations with a variation of 1B
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will be observed under the condition that the electron m
free path l exceeds the length of the cyclotron orbitl
.pD). Moreover, the temperature must be quite low as
the Shubnikov–de Haas effect. It turns out, however, that
temperature dependence is determined in this case by
parameter (T/\vc)(\pFd) which is smaller than the corre
sponding parameter in the Shubnikov–de Haas effect by
factor \pFd ~here,vc is the cyclotron frequency andpF the
Fermi momentum of the electron gas!.

Since the oscillations attenuate upon an increase in
value of the above parameter, the effect is observed at c
paratively higher temperatures. This is due to the fact tha
is a classical effect and has nothing to do with the quant
tion of energy levels in a magnetic field.

2.1. Electron Energy Spectrum

In order to obtain explicit quantitative relations an
simple dependences, we consider the simplest form of
periodic potential:

V~x!5V0 cosS 2x
x

dD ~16!

and assume that the periodd is much larger than the atomi
spacing, i.e.,d@a0 .

Let the magnetic field vector be parallel to the super
tice layers and directed along thez- axis. We use an appro
priate calibration for the vector-potentialA(0,Bx,0) and
write the Hamiltonian function for an electron in magne
field B and in the field of the periodic potential~16!:

H5
px

2

2m
1

pz
2

2m
1

1

2
mvc

2~x2x0!21V~x!, ~17!

where vc5eB/mc is the cyclotron frequency, andx0

52cpy /eB is the center of the electron orbit forpy

5const. Obviously, the electron moves under the condit
pz5const and is described by the equations

d2x

dt2
1vc

2~x2x0!52
1

m

dV

dx
[

2pV0

md
sin 2p

x

d
, ~18!

dy

dt
5vc~x2x0!. ~19!

The solution of these equations in the absence of a p
odic potential (V(x)[0) can be presented in the form

x5x01R sin vc~ t2t0!, ~20!

x05const, t05const,

whereR is the cyclotron radius of the electron orbit which
connected with the energyE0 of an electron moving in thexy
plane through the relation

E0[
px

2

2m
1

1

2
mvc

2~x2x0!25
1

2
mvc

2R2. ~21!

Expression~20! can be used to make the limiting trans
tion to the electron dynamics in the absence of a magn
field (B→0), when

x5x01R0 sin vc~ t2t0!→x11v0t,
n

n
e
he

e

e
m-
it
-

e

-

n

ri-

ic

wherev05A2E0 /m5const, x15x02v0 t05const. Assuming
the periodic potential to be small, we use the perturbat
theory, defining the order of approximation by the power
the amplitude of potentialV0 . In this case, the total electro
energy in the first order of the perturbation theory can
written in the form

E5
px

2

2m
1E01^V~x01R sin f!&, ~22!

where the phasef5vc(t2t0), and the angle bracket
^ . . . & indicate time averaging over the period 2p/vc .

Simple calculations described in detail in Ref.~9! lead to
the following final expression for the energy of an electr
moving in thexy-plane:

E'[E2
pz

2

2m
5E01V0J0S 2p

R

d D cosS 2p
x0

d D , ~23!

whereJn(x) is annth order Bessel function of the first kind
and the expression~21!, viz., R5(2E0 /mvc

2)1/2, should be
used on the right-hand side.

Note that the notation of the last term in~23! differs
from the quantum expression of Gerhardtset al.5 for the en-
ergy of two-dimensional motion of an electron in a magne
field and in one-dimensional periodic potential, althou
both expressions should describe the same electron en
spectrum under the condition 2pR@d. The apparent dis-
crepancy vanishes if we consider that the asymptotic fo
for large arguments can be written as

Ln~x!5ex/2J0~A2nx!, x→`, ~24!

whereLn(x) is a Laguerre polynomial of degreen. It is also
obvious that semiclassical quantization of the energy o
harmonic oscillator leads to the expression

E0[
1

2
mv2R25n\v, n@1.

Thus, the degeneracy in the position of the center of the o
is removed for an electron moving in a periodic field:

E5
pz

2

2m
1E'~E0 ,x0!. ~25!

It is quite significant that, in the state with fixed value
of E0 ,pz andx0 , the electron in an external periodic pote
tial field has a velocity component

vy5
]E

]py
52

1

mvc

]E

]x0

5
2pV0

mvcd
J0S 2p

R

d D sinS 2p
x0

d D . ~26!

Since the periodic potentialV(x) depends on the
x-coordinate, it generates a force acting on the electron al
the y-axis. Hence the velocity~26! is an analog of the Hall
drift velocity in crossed electric and magnetic fields.

Let us calculate the density of states corresponding
the spectrum~22! and~23!. The number of electron states p
unit volume corresponding to energies lower thanE is given
by
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N~E!5
2

~2p\!3 E dxdpxdpydpz

5
2~2m!3/2

~2p\!2\d E AE2E'dE0dx0 , ~27!

where integration with respect tox0 must be carried out ove
the periodd of the external potential. Taking formula~23!
into consideration and separating the term linear inV0 in the
integrand of~27!, we obtain

N~E!5
2~2m!3/2

~2p\!2\d H E
2V0

E
AE2E0 dE0E dx0

2
1

2
V0E

0

E J0~2pR/d!

AE2E0

dE0E
0

d

cos~2px0 /d!dx0J .

~28!

It can be seen that the last term on the right-hand sid
this expression vanishes on account of the cosine inte
over a complete period. Thus, the approximation used by
does not contain any dependence of the number of st
N(E) on the periodic potential, and hence on the magn
field:

N~E!5N0~E!5
8p~2mE!3/2

3~2p\!3 , ~29!

whereN0(E) is the number of electron states of a free ele
tron gas.

It follows hence that thermodynamic properties of
electron gas in the superlattice under investigation are
independent of the magnetic field. It should be emphasi
that we have analyzed the classical motion of an electro
a periodic potential in the presence of a magnetic fie
Hence the obtained results naturally in accord with the g
eral physical conclusion that the dependence of thermo
namic properties of matter on magnetic field is a pur
quantum effect.

However, the magnetic field dependence emerges du
calculation of the kinetic characteristics of the electron g
which involves the probability of transition between vario
electron states~in particular, between states with differe
x0!.

2.2. Transverse Magnetoresistance Oscillations of an
Electron Gas in a Superlattice

Let us now calculate the low-temperature electric co
ductivity of an ideal gas of electrons with dispersion relati
~25! which are scattered by impurities. Since our aim is
find qualitative features of the magnetic field dependence
electric conductivity, we confine ourselves to the relaxat
time approximation~known as thet-approximation!. Disre-
garding the weak periodic potentialV(x), we obtain in this
approximation the following transverse components of
electric conductivity tensor:

sxx
0 5syy

0 5s0 /@11~vct!2#,

sxy
0 5syx

0 5tvcsxx
0 , s05e2tN0 /m,
of
al
s
es
ic

-

so
d

in
.
-

y-
y

ng
s,

-

of
n

e

whereN0 is the total number of conduction electrons per u
volume.

Let us now take into consideration the weak period
potential V(x). The existence of the steady-state veloc
~26! leads to the following additional contribution to th
electric conductivity component forvct@1:

]syy522eE tvy
2 d f

dE

dxd3p

d~2p\!3

2
e2~2m!3/2

~2p\!2\d E tvy
2 d f

dE

dEdE0dx0

AE2E0

, ~30!

where f (E) is the Fermi distribution function, and integra
tion with respect tox0 is carried out over a single periodd.

It should be observed in the first place that sin
d f /dE,0, the correction to electric conductivity is alway
positive.

Assuming that the relaxation time depends on the to
electron energy (t5t(E)) and taking formula~26! into con-
sideration, we can present Eq.~30! in the form

dsyy52
pe2~2m!3/2

~2p\!3 S 2pcV0

edB D 2E
0

`

t~E!F~E!
d f

dE
dE,

~31!

where

F~E!5E
0

E

J0
2S 2p

R~E!

d D dE0

AE2E0

. ~32!

Let us analyze properties of the function~32! separately
by taking formula~21! into consideration. A trivial change o
variables gives

F~E!5AEE
0

1

J0
2S 2p

R~E!

d
Aj D dj

A12j
. ~33!

It can be seen that for 2pR!d,

F~E!5AEE
0

1 dj

A12j
5A2E, E→0. ~34!

However, the most interesting process for us is the
posite limiting case 2pR@d for which the following rela-
tions are automatically satisfied:

F~E!;
2dAE

p2R~E!
E

0

1 dx

A12x2
cos2S 2p

R~E!

d
x2

x

4D
;

dAE

p2R~E! F11
1

2
Ad/D sinS 2p

D

d
2

x

4D G , ~35!

whereD52R(E).
Let us now turn to formula~31!. At low temperatures,

the derivative of the Fermi function does not differ mu
from the delta function. Hence in the main approximatio
we can write for 2pR@d
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dsyy5
e2n~z!t~z!

m2vc
2R~z!d

V0F12
1

2 S d

D~z! D
1/2E

0

` d f

dE

3sinS 2p
D~E!

d
2

x

4DdEG , ~36!

where z is the Fermi energy that does not differ from th
chemical potential of the electron gas at low temperatu
and n(z) is the density of electron states with the Fer
energy:

n~z!5
4p~2m!3/2

~2p\!3 Az.

Finally let us verify that forD(z)@d, the last term in~36!
describes the oscillatory dependence ofsyy on magnetic
field. Indeed,

2E
0

` d f

dE
sinS 2p

D~E!

d
2

p

4 DdE

'sinS 2p
D~j!

d
2

p

4 DCS p2T
D~z!

dz D , ~37!

where T is the electron gas temperature, andC(z)
5z/sinhz. Thus,

dsyy'
e2n~z!t~z!

m2vc
2R~z!d

V0
2F11

1

2 S d

D~z! D
1/2

CS p2T
D~z!

dz D
3sinS 2p

D~z!

d D G . ~38!

SinceD(z)52cA2mz/(eB), Eq. ~38! describes the os
cillatory dependence of electric conductivity on magne
field. Like Shubnikov–de Haas oscillations, these osci
tions have a constant period in 1/B corresponding to a mag
netic field variation for which the electron orbit diamet
D(z) changes by an amount equal to the period of the ex
nal potentialV(x). Hence the oscillations under conside
ation are not associated with the quantum motion of an e
tron in a magnetic field and can be treated as
manifestation of the geometrical resonance of the same
that lead to Pippard’s effect during absorption of ultrasou
in a metal in the presence of a magnetic field~see, for ex-
ample, Ref. 6!. The temperature dependence of the class
oscillations~38! is defined by the same functionC(z) as in
the Shubnikov–de Haas effect~see Ref. 10!. However, while
this dependence is determined in the Shubnikov–de H
effect by the dimensionless parameterT/(\vc) whose in-
crease leads to an attenuation of oscillations, this param
in formula ~38! has the form
s,
i

-

r-

c-
e
pe
d

al

as

ter

~T/\vc!~\dpF!;~T/\vc!~a/d!, ~39!

wherepF is the Fermi momentum anda the mean separation
between electrons in the gas. Since the separationa is a
microscopic parameter and the parameterd a macroscopic
parameter, we should puta!d. In this case, the classica
oscillations~38! attenuate to a smaller extent with increasi
temperature than the Shubnikov–de Haas oscillations~and
can be treated as a relatively ‘‘high-temperature’’ effec!.
However, the situation may alter in semiconductors or se
metals, wherea;d. The experiments described by Chan
et al.7 were carried out for\/dpF.1026 cm.

The amplitude of oscillations is small and is determin
by the smallness of the ratio (V0 /z)2:

dsyy /s0;~V0 /z!2.

The value of the parameter~39! depends significantly on the
samples used. For example, Changet al.7 used the value
V0.0.1z.
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Coupling of electromagnetic and acoustic modes in metals
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The results of a detailed theoretical analysis of coupling of weakly damped electromagnetic and
acoustic waves in metals are presented. The main difference between the natures of
coupling of modes propagating in the same~helicon–phonon resonance! or opposite~doppleron–
phonon resonance! directions is established. The dispersion curves are split in the former
case and bound in the latter case. As a result, a gap appears in the spectrum of coupled modes in
the collisionless limit, both modes being soundlike. It is shown that in the case of
doppleron–phonon resonance, inductive as well as deformative interaction of electrons with the
lattice must be taken into account. ©1999 American Institute of Physics.
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INTRODUCTION

The problem of propagation and coupling of collecti
excitations in condensed media, including metals, is one
the most important and interesting problems in solid st
physics. Two typical cases can be singled out in an exha
tive analysis of this problem. The first case involves the c
pling of collective modes, viz., excitations of various su
systems in the metal. It should be observed, however,
the system of coupled modes is common for all coup
subsystems in a metal. Hence the appurtenance of any m
to a particular subsystem is, in general, arbitrary. The id
tification of modes may become quite impossible in the
cinity of the points of their degeneracy. By the term ‘‘mode
we mean a certain excitation characterized by a wave ve
k. The effects considered in this publications can serve a
example of such a coupling. The specific aim of our inve
gations is to study the nature of the interaction of ultraso
and propagating electromagnetic modes in normal me
subjected to an applied magnetic fieldH. Although the term
‘‘mode interaction’’ is used frequently, it is obvious that it
not the modes that interact, but rather the subsystems o
metal, like the ionic and electron subsystems in the pres
case. This can be illustrated graphically by exciting osci
tions in one of the subsystems of the metal. As a resul
interaction, oscillations are generated inevitably in t
coupled subsystem also. In this work, we shall not disc
this aspect of the problem, but confine ourselves to an an
sis of the dispersion relation for coupled ultrasonic and e
tromagnetic waves, without going into the aspects conce
ing the excitation of these waves in the metal. The sec
case concerns coupling of modes which are collective e
tations of the same subsystem in the metal. Naturally, i
meaningless to speak of any interaction in this case. H
ever, irrespective of the type of coupled modes, both ca
are covered by the same laws governing the coupling p
lem as a whole. This can be seen clearly from a compara
analysis carried out by us for the system of modes forme
6561063-777X/99/25(8–9)/10/$15.00
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a result of coupling of electromagnetic and acoustic mod
or of electromagnetic modes with one another.

For the range of frequencies and fields in which we
interested and which are confined by the inequalities

v<n!vc , ~1!

two types of weakly attenuating electromagnetic waves
propagate in metals, viz, helicons which exist only in no
compensated metals,1–3 and dopplerons which have been d
tected in many compensated and noncompensated meta4–8

In ~1!, v is the frequency of the wave,n the electron relax-
ation frequency, andvc5eH/mc the cyclotron frequency.

Helicons and dopplerons are relatively ‘‘slow’’ wave
and their spectra may intersect the spectra of transv
acoustic modes in fields and frequency intervals attainabl
real experiments. The helicon–phonon resonance~HPhR!
predicted in Refs. 9 and 10~see also Ref. 11! and observed
experimentally in Ref. 12 was analyzed subsequently
various groups~see, for example, Refs. 13 and 14!, as well as
the reviews by Kaner and~Skobov15 and Mertsching16!.
Naturally, one and the same dispersion equation descr
the spectrum and damping of coupled modes in the cas
HPhR as well as doppleron–phonon resonance~DPhR!.
However, this equation can be simplified considerably
the case of HPhR. This is due to the fact that the helico
phonon interaction is described quite correctly in the lo
limit. As a result, the nature of helicon–phonon coupling
practically independent of details of electron energy sp
trum and is determined mainly by inductive interaction
electrons with the lattice.14 In view of the simplicity of the
HPhR theory, it is hard to obtain from the experiment a
basically new information except that it confirms the valid
of the theory. Apparently, this is one of the reasons beh
the small number of publications devoted to the experime
investigation of the effect. Apart from the work of Grime
and Buchsbaum,12 we can mention the magnetoacous
© 1999 American Institute of Physics
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studies of HPhR in potassium17,18 and indium.19 The second
reason is associated with the imposition of a lower limit
resonance fields associated with Doppler-shifted cyclot
resonance~DSCR!. As a result, this region is found to b
unattainable in real experiments. This is especially true
metals with relatively large velocities of sound and diffe
ence in electron and hole concentrations.20

The existence of dopplerons is associated with the Fe
degeneracy of conduction electrons in metals and DS
which leads to a strong spatial dispersion of the metal c
ductivity. Nonlocal effects cannot be disregarded any long
and hence the deformation interaction of electrons with
lattice cannot be neglected either. All this complicates
coupling analysis in the case of DPhR.

Doppleron–phonon resonance, which was predicted
detected for the first time in cadmium,21 was later observed
in other metals also~see, for example, Ref 22 and the liter
ture cited therein!. However, the obtained experimental r
sults were used mainly for constructing doppleron spe
and for calculating nonlocal conductivity of metals. How
ever, the peculiarities of the interaction itself have not be
studied extensively. Mention can be made only of the pu
cation by Medvedevet al.23 who attempted to analyze DPh
in cadmium theoretically, and of our publication20 in which
we studied the amplitude–frequency dependence of DPh
tungsten. However, the results obtained in these works
not of general nature. For example, the authors of Ref.
used a highly simplified model of the metal and confin
their analysis of the interaction to just a strong coupling
dopplerons with sound. As a result of such a simplificati
the calculated magnetic field dependence of the acoustic
sorption coefficient is not even in qualitative agreement w
the results obtained in experiments.21,22 In Ref. 20, the dis-
persion equation was solved only for a weak coupling
dopplerons with sound, although a justification was provid
for such an approach.

According to their properties, dopplerons can be divid
into two basically different groups. The first group contai
dopplerons whose phase velocityvph and group velocityvgr

are collinear. Dopplerons belonging to the second gro
have opposite directions of velocitiesvph and vgr . We
studied24 the coupling of the second type of doppleron mo
with a helicon and found that the spectrum of coupled mo
in such a case differs radically from the spectrum obtain
e.g., for HPhR. In the present work, we shall also consi
the coupling of a doppleron mode and an acoustic m
propagating towards each other. The main aim of our
search is to establish the general laws governing this typ
coupling and to carry out a comparative qualitative a
quantitative analysis of the spectra of coupled modes
DPhR and HPhR. We used a simple but realistic model o
uncompensated metal. The dispersion equation for cou
modes was solved numerically with the help of Muller
method~generalized secant method! with deflation.25 In or-
der to find the physical meaning of the obtained results,
used an approximate but quite precise solution of this eq
tion.
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DISPERSION EQUATION AND THE MODEL OF A METAL

1. The equations in the theory of elasticity and Ma
well’s equations, together with material relations, form
complete system of equations describing elastic and elec
magnetic oscillations in metals~see, for example, Refs. 14
26 as well as the review articles in Refs. 15, 16, and 27!. For
monochromatic plane waves~u, E}exp(ik•r2 ivt); u is the
lattice displacement vector andE the electric field!, these
equations have the form

(
b,g,d

labgd kbkgud2rv2ua5 f a , ~2!

2k3k3E5~4p iv/c2!j , ~3!

f5ĜE1L̂u, j5ŝE1ĝu. ~4!

Here k is the wave vector,r the density of the material
l̂abgd the elastic constant tensor, andf the volume density of
the force exerted by electrons on the lattice,j the total cur-
rent density,Ĝ, L̂, ŝ andĝ are material tensors, whilea,b,g,
andd correspond tox, y, andz. Equations~2!–~4! have been
written without taking into consideration the Stewar
Tolman effect whose role in a strong magnetic fieldH is
negligible.

We shall confine our analysis to coupling in the geo
etry kiHi ẑ, where ẑ is the symmetry axis of at least thir
order. In this case, we can separate longitudinal and tra
verse oscillations in Eqs.~2!–~4!. For circularly polarized
transverse components,c65cx6 icy ~here,6 is the polar-
ization andc5u,E), and the dispersion relation for couple
ultrasonic and electromagnetic waves has the form

~k2c224p ivs6!~k2vs
22v22L6 /r!5~4p iv/r!g6G6 .

~5!

For w5s, L, g, G; w65wxx6 iwyx ; vs5(lxzzx/r)1/2 is the
velocity of the transverse acoustic wave. It can be seen f
Eqs.~2!–~5! that the nature of interaction of electromagne
and acoustic waves is determined by tensorsĝ andĜ. If the
interaction is excluded, i.e., forg6G6→0, we obtain from
~5! the familiar equations

k2c254p ivs6~k!, ~6!

k2vs
25v21L6~k!/r, ~7!

describing the spectrum of electromagnetic waves and
acoustic spectrum normalized by the electron–phonon in
action.

Material tensorsĝ, Ĝ and L̂ are linear combinations o
eletroacoustic coefficients whose exact expressions were
tained by Kontorovich.27,28In the following, we shall assume
that the Fermi surface~FM! of the metal is axially symmetric
relative to theẑ-axis. Neglecting the Stewart–Tolman effec
we obtain in this case

s65e2^v6v6* &, ~8!

g657
ve2H

c K v6* S v66
ck

eH
L6D L , ~9!
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G657 i

e2H

c K S v66
ck

eH
L6D *

v6L , ~10!

L65 ivFeH

c G2K Uv66
ck

eH
L6U2L . ~11!

Herev is the electron velocity (v65vx6 ivy), L̂ is the de-
formation potential tensor (L65Lxz6 iLyz), the asterisk
~* ! indicates complex conjugation, and the angle brack
indicate integration over the Fermi surface~FS!:

^c&5 i
2p

~2p\!3 E
FS

cumudpz

v1 in6vc2kvz
. ~12!

2. Let us specify the form of the deformation potent
tensor. In contrast to the unperturbed dispersion rela
which has been studied in detail for most metals, preci
little is known at present about this characteristic of el
trons. This is mainly due to the complexity of the micr
scopic theory of deformation interaction. Hence the most
ceptable solution consists of the approximation of the ten
by models which can describe the experimental results q
correctly. Such a model must be ‘‘physical’’ on the one ha
and relatively simple on the other hand since the main aim
our analysis is to compute the integrals~8!–~11! and to solve
Eq. ~5!. To a certain extent, these requirements are met b
tensor corresponding to isotropic dispersion relation:

Lab5l0mS 1

3
v2dab2vavbD . ~13!

For free electrons,l051. Hencel0 is a parameter whos
magnitude determines the departure from the quadratic
persion relation.

Substituting~13! into Eqs.~9!–~11!, we obtain

g6~k!2 ivG6~k!57
vH

c
@~12l!s6~k!1ls6~0!#,

~14!

L6~k!5 ivFH

c G2

@~12l!2s6~k!1l~22l!s6~0!#.

~15!

Herel5l0(16 ig), whereg5(n2 iv)/vc . Formulas~14!
and ~15! were derived under the assumption that the cyc
tron massm and its sign, as well asn andl0 are constant for
all carriers.

3. Let us approximate the FS of a one-sheet elect
surface of the type ‘‘corrugated cylinder,’’6,20,24 which is
axially symmetric relative to theẑ-axis:

S~pz!5S01S1 cos~ppz /p0!, upzu<p0 , ~16!

where S(pz) is the area of cross-section of the FS by t
planepz5const,S0 , S1<S0 , andp0.0 are the parameter
of the model. In view of v6v6* 5S(pz)/pm2 and vz

52(]S/]pz)/2pm we obtain from~8!

s656 i ~Nec/H !@~16 ig!22~kvm /vc!
2#21/2. ~17!

Here vm5u]S/]pzum/2pm, where u]S/]pzum is the maxi-
mum value of the derivative]S/]pz , andN is the electron
concentration defined by the relation
ts

l
n
s
-

c-
or
te
d
f

a

is-

-

n

N5
2

~2p\!3 E
FS

S~pz!dpz . ~18!

For convenience of analysis, w introduce the dimensionl
parameters

q5kvm /vc , j35vc
3c2/vp

2vvm
2 , ~19!

where vp5(4pNe2/m)1/2 is the plasma frequency. Let u
now transform Eq.~5! with coefficients~14! and ~15!, and
present it with the help of parameters~17! in the form

@q2j36F6~q!#@q22qs
21a2~q!#5a1~q!, ~20!

where

a1~q!5a0qs@~12l!q2j37l0#2, ~21!

a2~q!5a0qs@~12l!2q2j36ll0#, ~22!

a05(Nm/r)(vm /vs), F6(q) is a nonlocal factor in the con
ductivity ~s656 i (Nec/H)F6! and qs5quk5ks

(ks

5v/vs).

APPROXIMATE SOLUTION OF THE DISPERSION
EQUATION FOR COUPLED MODES

1. Let us first consider briefly the spectrum of electr
magnetic modes in the absence of interaction between
electrons and the lattice. We present Eq.~6! in the form

7q2j35F6~q!. ~23!

The analytic and graphic solutions of this equation in t
polarization ‘‘2,’’ obtained in the limit g→0 (F0

5F6ug50 are presented in Fig. 1. The spectrum of elect
magnetic modes is defined in universal coordinatesz
}k/v1/3 (z[qj), j}H/v1/3 In this case, these coordinate
are preferable to other universal coordinatesq}k/vc, j23

}v/vc
3. For j.jm (jm5(27/4)1/6) the solutions of Eq.

~23! are purely real since the functionF0 is also real-valued
for q2,1. Forq2.1, the functionF0(q) is imaginary due to
collisionless attenuation of electromagnetic modes as a re
of DSCR. Collisions lead to a blurring of the edge of col
sionless attenuation, the functionF6(q) becomes complex
for q2,1, and hence helicon and doppleron modes will
tenuate. Suppose that the inequalitiesugu!1, uq9/q8u!1(q
5q81 iq9) are satisfied. In this case, using the express
for conductivity, we obtain as a result of simple transform
tions of ~23! the following approximate equations describin
the spectrum and damping of weakly attenuating electrom
netic modes fornÞ020:

q82j3>F0~q8!, ~24!

2q8q9>F29 ~q8!/@j32]F0 /]~q82!#, ~25!

where

F29 ~q8!>
n

vc
@F0~q8!12q82]F0 /]~q82!#.

It can be seen from the inset to Fig. 1 and from formu
~25! that ]F0 /](q2).j3 for the doppleron mode and th
quantityq8q9 is negative. The minus sign appears due to
fact that for such a model of the FS, the doppleron gro
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velocity vgr5dv/dk and the phase velocityvph5v/k are
directed opposite to each other. Indeed, in the limitg→0, we
can easily obtain from~23! a relation connecting these qua
tities:

vgr /vph52@j32]F0 /]~q2!#/j3. ~26!

As in Eq. ~25!, the sign of the right-hand side of~26! and
hence the mutual orientation of the vectorsvgr and vph is
determined by the difference@j32]F0 /](q2)#. Note that
Eq. ~26! is an exact equality unlike~25!.

2. Under conditions of weak coupling of both~ionic and
electron! subsystems of the metal, the ‘‘acoustic’’ solution
Eq. ~20! can be presented in the form

q2.qs
21F2a2~qs!1

a1~qs!

qs
2j36F6~qs!

G . ~27!

Resonant interaction of electromagnetic modes w
sound is associated with the denominator of the last term
the right-hand side of~27!: resonance occurs as Re@qs

2j3

2F2(qs)#→0. However, the resonance condition is no long
satisfied at quite high frequencies since in this case, un
relations ~24! and ~25! written for electromagnetic modes
we must take into account the finite value of the functi
uF6u as a result of collisions. This question was studied
greater details in Ref. 20. Forqs

2j3@uF6u, the interaction of

FIG. 1. Spectrum of electromagnetic modes in polarization ‘‘2’’ in metals
with conductivity ~17!, z5qj. The horizontal straight lines Ph~z5zs ; zs

5zuk5ks
! describe the spectrum of sound in the absence of interactio

electrons with the lattice. The points of interaction of the spectra corresp
to the helicon–phonon (zs50.75) and doppleron–phonon (zs52) reso-
nances. TheV-axis (V25zs

3) defines the acoustic frequency. The ins
shows the graphic solution of~23! and~28!, F05F6ug50 . The straight lines
a andb correspond to the left-hand side of~23! in the polarization ‘‘2’’ for
successively increasing values ofj. Curvesc,d and e reflect the left-hand
side of ~28! for successively large values ofV. The straight linea corre-
sponds to the valuej5jm (jm5(27/4)1/6). and curved to the valueV
5Vm(Vm

4 52). G and D are the helicon and doppleron solutions resp
tively.
h
n

r
e

n

collective electromagnetic modes with sound can be dis
garded completely. If, however, the inequalityu(12l)
qs

2j3u@l0 is also satisfied, formula~27! is transformed into
~7! with k5ks on the right-hand side. Equation~7! describes
the one-particle resonance interaction of electrons w
sound due to DSCR. Such an interaction~magnetoacoustic
resonance!, which is of deformation type, was considere
earlier by Kaneret al.29 For our model of FS in a relatively
clean metal (n;109 s21) with typical parameters, the in
equalityqs

2j3@uF6u is valid at frequencies in the hyperson
range (v.1010– 1011s21). As the frequency decreases, vo
tex fields begin to play a significant role,30,31 and the induc-
tive mechanism of electron interaction with sound will dom
nate over the deformation mechanism~the expression
‘‘screening of electron–phonon interaction by vortex field
was used by Grishinet al.30!. Naturally, we shall be inter-
ested in this frequency range in the present work.

3. Renormalization of the acoustic spectrum caused
electron–phonon interaction is rather insignificant. Hence
position of resonance~helicon–phonon or doppleron–
phonon! is defined with a fairly high degree of precision b
the point of intersection of the spectrum of propagating el
tromagnetic modes with the straight linez5zs ~Fig. 1!. The
position of this point on the plane (v,H) is defined by Eq.
~24! which assumes the following form forq85qs :

V2/qs5F0~qs!. ~28!

Here V2[zs
3; V5v/v0(v0

25vp
2vs

3/c2vm). The planeV }
v, V/qs } H corresponds to the plane (v, H).20 For the
model considered by us, we obtain from Eq.~28! qs

2

.V4/(11V4). The graphic solution of this equation is pre
sented in the inset to Fig. 1. The valuesj5jm andq252/3
correspond to the straight linea and curved. Hence, in ac-
cordance with~28!, HPhR will be observed at frequencie
satisfying the inequalityV4,Vm

4 52, while DPhR will be
observed at frequenciesV.Vm .

For typical values of parameters of a metal

N51022 cm23;

vs533105 cm/s;

u]S/]pzum/2p\51.1 Å21 ~29!

the quantityv0/2p, which determines the scale along theV
axis in Fig. 1, is;460 MHz.

The solution~27!, obtained in the weak coupling limit, is
used frequently for analyzing magnetoacoustic resona
~see, for example, Refs. 11 and 30 as well as the review
Mertsching16!. However, the correctness of the solution f
resonance of the interaction of collective electromagne
modes with sound must be justified. Hence we shall deriv
more precise solution of the dispersion equation. Let us fi
approximate Eq.~20! to a simpler one. We shall seek th
solution in the ‘‘2’’ polarization in the formq5qs1Dq,
whereuDqu!qs . Using the expansion of the functionF2(q)
in the small parameter (q22qs

2) and confining the expansio
to the first two terms, we putq5qs in the expressions fora1

anda2 . In this case. Eq.~20! assumes the following form

@q22qs
21a3~qs!#@q22qs

21a2~qs!#5qs
4h~qs!, ~30!
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where

a35@qs
2j32F2~qs!#/@j32]F0 /]~qs

2!#;

h5a1~qs!/qs
4@j32]F0 /]~qs

2!#.

The quantityh is called the constant of coupling of electr
magnetic modes with sound. Substituting into~30! the ap-
proximate relationq22qs

2>2qsDq and solving it forDq,
we obtain

Dq1,2>
1

4qs
$2@a3~qs!1a2~qs!#

6A@a3~qs!2a2~qs!#
214qs

4h~qs!%. ~31!

This is the approximate form of the solution~20! with exter-
nal parameterszs ~i.e., V, qs5zs /j! andj. In the limit

ua32a2u2@4qs
4uhu ~32!

the solution~31! can be presented in the form of the appro
mate relations

Dq1>
1

2qs
S 2a2~qs!1

qs
4h~qs!

a3~qs!2a2~qs!
D , ~33!

Dq2>
1

2qs
S 2a3~qs!2

qs
4h~qs!

a3~qs!2a2~qs!
D . ~34!

For reasonable values of the frequency and model
rameters for the metal,ua2u2!4qs

4uhu. In this case, if the
condition~32! is satisfied, the inequalityua3u@ua2u holds. It
can be seen now that the relation~33! is an ‘‘acoustic’’ so-
lution of the dispersion equation, which practically coincid
with ~27!. Hence the inequality~32! is the condition for veri-
fying the correctness of the weak coupling approximati
Depending on the magnitude ofzs , solution~34! is a ‘‘heli-
con’’ or ‘‘doppleron’’ solution. However, unlike~33!, this
solution is valid only in the vicinity of the resonance sin
the initial inequalityuDq2u!qs is violated away from reso
nance.

It can be seen from~34! that inequality~32! is equivalent
to the condition of smallness~in magnitude! of the second
term on the right-hand side of~34! in comparison with the
first term. At resonance,qs

2j35F28 (qs), and this condition
can be presented in the formukG,D9 u@ukcoupl9 u. Here,kG,D9 is
the damping coefficient for electromagnetic modes~helicons
and dopplerons! in the absence of coupling~see the expres
sion for a3 and ~25!!, kcoupl9 is the damping coefficient fo
these modes associated with coupling. The value ofkcoupl9 is
determined by the second term on the right-hand side
~33! and ~34!. The following distinguishing feature of th
resonant interactions is worth noting:j3.]F0 /](qs

2) in the
case of HPhR and the helicon–phonon coupling increa
the sound attenuation coefficient bykcoupl9 , while the helicon
attenuation coefficientkG9 decreases by the same amount.
the case of DPhR, the attenuation of both coupled mo
increases.

In the case of strong coupling of electromagnetic mo
with sound, i.e., in the limit opposite to the limit~32!, for-
mula ~31! can be presented in the form
a-

s

.

of

es

es

s

Dq1,2>
1

2qs
S 2

a3~qs!1a2~qs!

2
6qs

2Ah~qs!

6
@a3~qs!2a2~qs!#

2

8qs
2Ah~qs!

D . ~35!

Away from resonance, the strong coupling condition is v
lated due to an increase in the quantityua3u. Hence the so-
lutions ~35! are valid only in the immediate vicinity of the
resonance.

ANALYSIS OF THE SPECTRA OF COUPLED
ELECTROMAGNETIC AND ULTRASONIC MODES

In this section, we shall present graphically the nume
cal solutions of the dispersion equation~20! in the vicinity of
HPhR and DPhR. Estimates for the values of frequenc
resonance fieldsHr and damping coefficientsk9 of coupled
modes were obtained for the model of a metal with para
eters ~29!, r510 cm23 and m50.9310227g. Frequencies,
i.e., the values ofzs , were chosen in such a way that th
inequality j3@]F0 /](qs

2) is satisfied in the case of HPhR
(zs50.75) and the opposite inequality holds for DPhR (zs

52). For the chosen values ofzs , we obtain v/2p
>346 MHz, Hr>160 kOe(j r>2.016) and v/2p
>920 MHz, Hr>180 kOe(j r>1.916), respectively. The
large value of resonance fields is due to the specific nat
coupling of electromagnetic and ultrasonic modes in unco
pensated metals.20 Moreover, we studied the dependence
the damping coefficientk9 for coupled modes on frequenc
v and the deformation potential constantl0 .

1. Let us consider an interesting limiting caseg→0. In
the absence of coupling and in the vicinity of resonance,
attenuation of all three~helicon, doppleron and acoustic!
modes is equal to zero in this case, and hence the st
coupling condition is satisfied.

The solutions of~20! in the vicinity of HPhR are shown
in Fig. 2. It can be seen from Fig. 2 and Eq.~31! that, in the
collisionless limit, both coupled modes are nonattenuati
and the dispersion curves do not intersect at the poin
degeneration of modes, but are split by an amountD(Rez).
According to~35!, the relative splittingD(Rez)/zs>h1/2. At
very low frequencies like the ones considered in the pres
case,j3@]F0 /](qs

2), qs
2j35F0>1 ~local limit!, the value

of h is practically independent ofl0 (a1>a0qs) and h
>h0 , where h0[a0qsj

35Hr
2/4prvs

2 is the known
helicon–phonon coupling constant. Obviously, this const
describes the coupling only in the local limit. At higher fre
quencies, we must take into consideration nonlocal effe
which lead, among other things, to a dependence ofh on l0 .

Figure 3 shows the solutions of~20! in the vicinity of
DPhR. It can be seen from Figs. 2 and 3 that the spectra
HPhR and DPhR differ radically from one another. T
doppleron and acoustic modes are hybridized, and he
both solutions of the dispersion equation become comple
a certain range of the values ofj in the vicinity of resonance.
The main features of the spectrum of coupled modes~see
Fig. 3! are described in the limitg→0 by the relation
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D~Re z!Ph

zs
>2

~ Im z!Ph

zs
>

1

2

Dj

j r
>uhu1/2. ~36!

In the case of DPhR at relatively high frequencies,qs

>1,zs
3>j3 ~see~28!! at resonance, and the expression for

coupling constant can be presented in the form

h>2h0

@~12l!zs
31l0#2

zs
3]F0 /]~qs

2!
. ~37!

It can be seen that in contrast to the HPhR, the value ofh in
DPhR depends on the shape of the FS as well as the d
mation potential constant, and may turn out to be mu
smaller thanh0 in magnitude. In particular, for our model o
FS, ]F0 /](qs

2)>zs
9/2 andh>20.531023h0 for zs52 and

l051. at resonance. Hence in the cases considered by
DPhR is manifested ‘‘more weakly’’ than HPhR, althoug
the value ofHr ~and hence ofh0! was larger in the former
case. In order to verify this it is sufficient to compare t
scales of the coordinate axes in Figs. 2 and 3.

Another peculiarity of the obtained results is worth no
ing. It can be seen from Fig. 3~a! that the dispersion depen
dences for ‘‘acoustic’’ modes are displaced upwards rela
to the straight linez5zs which is the sound spectrum in th
absence of interaction between electrons and the lattice.
displacement is due to renormalization of the acoustic sp
trum as a result of one-particle electron–phonon interac
which is described by the coefficienta2 in ~20!. For DPhR

FIG. 2. Helicon–phonon resonance: spectrum of coupled helicon~G! and
acoustic~Ph! modes~zs5qj; see Fig. 1! in the vicinity of resonance, ob-
tained for different values ofn/n0 ~numerical solution of~20!, zs50.75,
l051, n05109 s21!; for n/n050 – 5, the dispersion curves almost coincid
~a! for n50, the damping of both modes is equal to zero~b!.
e

or-
h

us,

e

is
c-
n

(zs52,l051),a2j r /2qs>331024 in formula ~33!. This
value is in good accord with the position of the ‘‘resonanc
point relative to the straight linez5zs .

2. The most distinguishing feature of the doppleron
phonon coupling is the emergence of a ‘‘gap,’’ i.e., region
values ofj in which the solutions of the dispersion equatio
become complex even in the collisionless limit~see Fig. 3!.
The gap emerges both in fieldH ~for v5const! and in fre-
quencyv ~for H5const!. It can be seen from relations~31!
and ~35! that the emergence of the gap is associated w
negative values of the coupling constanth in the case of
DPhR. The sign of Reh as well as that of the right-han
sides of~25! and ~26! is determined by the sign of the dif
ferencej32]F0 /](qs

2) which is negative for the dopplero
mode considered by us. Hence the emergence of a ga
basically due to coupling of the acoustic and doppler
modes which propagate towards each other. In the cas
HPhR, both modes propagate in the same direction and
h.0. Note that doppleron modes can exist with collinearvgr

andvph ~see, for example, Ref. 32!.
Earlier, we studied the coupling of a doppleron mo

with a helicon,24 which also leads to the emergence of a g
in the spectrum of electromagnetic modes. Indeed, it can
seen from Fig. 1 that the helicon mode is hybridized with t
doppleron mode in the vicinity ofj5jm . As a result, the
solutions of the dispersion equation become essentially c
plex for j,jm and describe the anomalous skin-effect in
magnetic field. In another classical example, such a coup

FIG. 3. Doppleron–phonon resonance: spectrum of coupled doppleron~D!
and acoustic~Ph! modes~zs5qj; see Fig. 1! in the vicinity of resonance,
obtained for different values ofn/n0 ~numerical solution of~20!, zs52,
l051, n05109 s21! ~a!; for n50, the damping coefficients of both mode
are equal~solid curve! ~b!.
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occurs in a linear chain of atoms with two different altern
ing masses~see, for example, Ref. 33!. Such a chain can be
presented in the form of two strongly coupled~‘‘light’’ and
‘‘heavy’’ ! atomic subsystems. As a result, a gap in freque
v separating the acoustic and optical branches appears i
vibrational spectrum of atoms. This example is interesting
the sense that, like the doppleron mode considered by us
group and phase velocities of the optical phonons in
region are directed against each other. Hence it can be
sumed that the formation of a gap in frequencyv is generally
a characteristic feature of coupling of modes propaga
against each other.

3. An inequality opposite to the inequality~32! is the
condition for strong coupling of electromagnetic modes w
sound. Sinceua2u2!4qs

4uhu, the necessary and sufficien
condition for the validity of this inequality isua3u2

!4qs
4uhu, According to~25!, this inequality at resonance ca

be presented in the form

~kG,D9 /ks!
2!uhu. ~38!

Here, as before,kG,D9 is the damping coefficient for electro
magnetic modes in the absence of coupling@see~25!#.

In the collisionless limit, the condition~39! is satisfied
automatically (kG,D9 50). It can be seen from~31! and Fig.
~2! that a consideration of HPhR in collisions leads to
decrease in the splittingD Rez of coupled modes as well a
to their attenuation. The damping coefficient of both mod
at resonance isk9>kG9 /2. This is illustrated in Fig. 4. A
comparison of~38! and the dependences presented in Fig
shows that the condition~38! is satisfied quite well in the
frequency rangen<231010s21. This estimate can be ob
tained directly by substituting into~38! the values of the
metal parameters used by us:zs

6(n/n0)2!103 (n0

5109 s21). The opposite inequality, i.e., the condition
weak coupling of helicons with sound, is satisfied forzs

50.75 only in very ‘‘dirty’’ metals (n>231011s21).

FIG. 4. Helicon–phonon resonance: dependence of the splittingD(Rez)
and damping Imz ~see Fig. 2! of coupled modes at resonance on electr
relaxation frequency (zs50.75,l051,n05109 s21); for n/n0>74.7, the
value of Imz corresponds to the maximum value for acoustic~Ph! and
minimum for helicon~G! modes. The straight linekG9 is the damping coef-
ficient for a helicon in the absence of coupling.
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Hence, in typical metals with a quite high degree of pur
(n<1010s21), the approximation of strong coupling of hel
cons with sound is quite correct at HPhR.

In the case of DPhR, the electron relaxation leads t
blurring of the gap which is manifested clearly forn50.
With increasingn, the damping of ‘‘acoustic’’ and ‘‘dopple-
ron’’ modes resulting from their coupling decreases~Fig. 3!.
The nonresonance contribution to the doppleron damping
creases in this case~straight line in Fig. 5!. For the model of
the metal considered by us and forl51, the strong coupling
condition ~38! in the case of DPhR can be presented in
form zs

6(n/n0)2!500. Forzs52, this condition is satisfied
only in quite pure metals (n<109 s21). The approximation
of weak coupling of dopplerons with sound is valid in dirtie
but still adequately clean metals withn>53109 s21. Hence,
in the case of DPhR in metals with typical values ofn
;109– 1010s21!, we cannot prefer one coupling mode ov
the other.

4. It can be seen from Fig. 2~a! that while the dispersion
curves do not intersect in the case of HPhR, the helicon
acoustic branches of the spectrum combine into a single
tem at resonance and are smoothly transformed into e
other. Hence in the vicinity of resonance we cannot iden
any coupled mode as a ‘‘helicon’’ or ‘‘acoustic’’ mode. Suc
a situation persists as long as the dispersion curves are
For the case considered by us, splitting vanishes atn574.7
3109 s21. For higher values ofn, the coupled modes can b
identified as ‘‘helicon’’ or ‘‘acoustic’’ modes~Fig. 4!. How-
ever, we continue to use inverted commas since the m
identification in the vicinity of resonance remains cond
tional.

The appurtenance of any coupled mode to a metal s
system is determined by the ratio of the intensities of ult
sonic and electromagnetic oscillation energies:

I u

I E
5

1

h0
UHu2

cE2
U2

5
1

h0
U q2j32F2~q!

~12l!F2~q!1l0
U2

, ~39!

whereq is the solution of the dispersion equation~20!. Fig-
ure 6 shows the dependence ofI u /I E obtained in the vicinity

FIG. 5. Doppleron–phonon resonance: dependence ofD(Rez)Ph and damp-
ing (Im z)Ph and (Imz)D ~see Fig. 3! of coupled modes at resonance o
electron relaxation frequency (zs52,l051,n05109 s21); the straight line
kD9 is the damping coefficient for a doppleron in the absence of couplin
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of HPhR for different values ofn. It can be seen that forn
,74.7•109 s21, I u /I E>1 for both modes in the vicinity of
resonance. Hence in this range of frequenciesn, the coupled
modes belong almost equally to both subsystems of the m
and none of them can be defined as heliconlike or sound
mode. Such a definition becomes possible only for relativ
large values ofn, to be more precise, upon a transition to t
regime of weak coupling between helicons and sound.

It can be seen from Figs. 3 and 5 that, in contrast
helicon–phonon coupling, the coupled modes in DPhR
be identified as ‘‘doppleron’’ and ‘‘acoustic’’ modes for in
definitely small values ofn ~for doppleron mode, Rez,0 for
Im z.0). Hence the nature of the obtainedI u /I E depen-
dences~Fig. 7! may appear at first glance as quite une
pected and in contradiction to such a unique definitenes
mode identification. Astonishingly, both modes in the vic
ity of resonance are found to be soundlike modes in
vicinity of resonance in a quite pure metal. Even forn55
3109 s21, when the approximation of weak coupling o

FIG. 6. Helicon–phonon resonance: the ratio of intensities of ultrasonic
electromagnetic oscillations in the vicinity of resonance, obtained for dif
ent values ofn/n0 (zs50.75,l051,n05109 s21).

FIG. 7. Doppleron–phonon resonance: the ratio of intensities of ultras
and electromagnetic oscillations in the vicinity of resonance, obtained
different values ofn/n0 (zs52,l051,n05109 s21).
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dopplerons with sound is valid,I u /I E'3 and the ‘‘dopple-
ron’’ mode still cannot be called doppleronlike.

In order to understand the origin of such a ‘‘phenom
enon,’’ let us analyze in greater detail formula~39!. We shall
confine our analysis to the most interesting caseg→0
~strong coupling regime!. Substituting the approximate rela
tions q2>q212qsDq and F2(q)>F2(qs)12qsdq
3@]F0 /](qs

2)# @where 2qsDq>6qs
2h1/2~35!# into ~39!, we

obtain at resonance

I u

I E
>

uj32]F0 /]~qs
2!u

j3 U16~12l0!
]F0

]~qs
2!

3S h0

j3@j32]F0 /]~qs
2!# D

1/2U22

. ~40!

In the case of HPhR,j3@]F0 /](qs
2) and I u /I E>1 for

l051 at relatively low frequencies. In turn,]F0 /](qs
2)

@j3 at relatively high frequencies in the case of DPhR, a
hence the quantityI u /I E will be much larger than unity
~I u /I E>@]F0 /](qs

2)#/j3 for l051! and both modes are
soundlike. For our model of FS,]F0 /](qs

2)>zs
9/2(qs>1,j3

>zs
3) and I u /I E>zs

6/2. at resonance. Forzs52, the ratio
I u /I E>32. This value is in good agreement with that o
tained from a numerical solution of the dispersion equati
i.e., I u /I E531.3~Fig. 7,n50!. Finally, it should be observed
that since the coefficienth0 is small (h0;1023 for H
;105 Oe), the ratioI u /I E ~40! for reasonable values of th
parametersv and l0 depends weakly on the value of th
constantl0 .

5. We have considered two cases, viz., HPhR and DP
without taking into consideration the dependence of th
effects on frequencyv and the deformation potential con
stantl0 . Naturally, this dependence is determined to a c
siderable extent by the dependence of the coupling cons
h on v andl0 . It can be seen from the expression forh that
the frequency dependence ofh is considerably influenced by
the quantityl0 , the direction in whichl0 deviates from the
value l051 being quite important. We shall consider th
question in greater detail by taking the frequency dep
dence of the damping coefficient for coupled modes as
example.

For the model of FS considered by us,qs
2j35F0>1

2qs
2/2 ~see the graphic solution of Eq.~28! in Fig. 1! at the

resonance at quite low frequenciesV,Vm ~HPhR!. Since
the value ofqs

2 is relatively small in this case, we can writ
h}12l0qs

2 except for negligibly small terms. If the con
stantl0 is not too large, the dependence ofh on l0 will be
weak. In particular,qs

2.0.15 in the case considered by u
(zs50.75). Upon a transition to the local limit (F0→1) at
lower frequencies, this dependence can be disregarded c
pletely. Consequently, in quite strong magnetic fields~the
magnitude of resonance field increases with decreasing
quency!, the coupling of helicons with sound is mainly du
to inductive interaction of electrons with the lattice.14 Such a
conclusion can also be drawn without specifying the ex
form of FS and deformation potential tensor, and by us
only the symmetry properties of electroacoustic coefficien
These coefficients are even functions27,28 and can be written
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in the form of expansions in even powers ofq2 for q2,1.
However, in contrast to the conductivitye2,vv* ., the co-
efficients containing components of the tensorL̂ are equal to
zero forq50. For small values ofq2, it is sufficient to retain
only the first terms in the expansions. Consequently the r
of the ‘‘inductive’’ and ‘‘deformation’’ forces will be deter-
mined by the square of nonlocalization parameter, i.e., by
quantityq2 ~and notq as mentioned in Ref. 14!.

According to Eq. ~28!, qs
2j3511V4 at resonance

Henceqs
2j3.3 for DPhR (V@Vm ), and the coupling con-

stanth will depend strongly onl0 . Figure 8 shows the fre
quency dependences of the damping constant for the ‘‘ac
tic’’ mode (V>Vm) and coupled modes (V<Vm) at
resonance for different values of the constantl0 . Since cou-
pling of various branches of the spectrum leads to its ren
malization, the frequencyVm indicated in the figure tenta
tively separates the frequency regions corresponding
HPhR and DPhR. It can be seen that forV,Vm , the damp-
ing coefficient of coupled modes depends significantly onl0

only in a narrow frequency interval. This is due to the fa
that in the case of HPhR, the damping of coupled mo
under strong coupling conditions is determined mainly
the coefficienta3 on the right-hand side of~35!, which does
not depend onl0 at all. The contribution dependent onl0

becomes significant only in the vicinity ofVm . The situation
is quite different forV.Vm , when even a slight departur
of the quantityl0 on either side of the valuel051 leads to
a quantitative as well as qualitative variation of the fr
quency dependence of damping coefficient for the ‘‘aco
tic’’ mode. This points towards the significant role of th
deformation interaction in the case of DPhR. Finally, let
consider an interesting peculiarity of the dependences sh
in Fig. 8. For l051.3, the damping coefficient of th
‘‘acoustic’’ mode is very small in a certain frequency inte
val in the vicinity of V>2. This is due to the fact that fo
qs

2j35l0 /(12l0) (l0.1) the coupling constantuhu in the
polarization ‘‘2’’ is also very small on account of mutua
suppression of the inductive and deformation interactions
dopplerons with sound.

6. Note that parameterb or, to be more precise, th

FIG. 8. Frequency dependence of the damping coefficient of ‘‘acous
~Im z5(Im z)Ph for V>Vm ; see Fig. 3! and coupled modes~for V<Vm ;
see Fig. 2! at resonance, obtained for different values ofl0 (n5109 s21).
The point zs52,l051 corresponds to the DPhR case considered ab
~Fig. 3!.
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difference@j32]F0 /](qs
2)#, appears in the expression forh

upon a transition from Eq.~20! to ~30! as a result of trans-
formation of the expression in the first brackets on the rig
hand side of~20!. Hence the above-mentioned properties
this parameter are determined only by the functional dep
denceF0(q) ~i.e., conductivity of the metal! and peculiarities
of solutions of the dispersion equation for electromagne
modes. It may seem that the coupling constanth is indepen-
dent of peculiarities of the acoustic spectrum associated w
the electron–phonon interaction. However, such a dep
dence exists, even though it is quite weak. Indeed, wh
going over from Eq.~20! to ~30!, we need not putq5qs in
the expression for the coefficienta2(q), but expand this ex-
pression~as well asF(q)! in small parameterq22qs

2 . Con-
sequently, the denominator of the expression forh acquires a
factor 11]a2 /](qs

2) which can be neglected since it is a
ways positive and practically does not differ from unity f
reasonable values ofv and l0 . It should also be observe
that the limit g6G6→0 in Eq. ~5! is not equivalent to the
limit a1→0 in ~20!, since the coefficienta1 is a complex
combination of the coefficientss6 , q6 , G6 and L6 .
Hence the expression forh takes into account to a certai
extent the interaction of collective electromagnetic mod
with sound, as well as the electron–phonon interaction.

CONCLUSION

In this work, we have analyzed the peculiarities of co
pling of propagating electromagnetic modes of helicons a
dopplerons with ultrasonic waves. Although helicon–phon
interaction has been studied in detail by now, our analysis
this effect here is quite relevant as it allows a comparat
analysis of two basically different cases of coupling, vi
coupling of modes propagating towards each other~DPhR!
and modes propagating in the same direction~HPhR!.

We have shown that the cardinal difference in the sp
tra of coupled modes in the cases under consideration is
sociated with the ratio of the quantities]F0 /](qs

2) and j3.
This ratio has the formb5q2@]F0 /](qs

2)#/F0(qs). For
b.1, a doppleron mode is associated with the acoustic wa
its phase and group velocities being directed against e
other, its spectrum acquiring a ‘‘gap’’ in the limitg→0. The
value of the parameterb is also significant. At quite high
frequencies,b@1 ~DPhR! and both coupled modes in pur
metals are soundlike in the vicinity of resonance. At lo
frequencies,b!1 ~HPhR! and I u /I E>1 for both modes.
Such properties of the parameterb are associated with the
nature of roots of the dispersion equation~23!. Nonlocal ef-
fects in conductivity lead to a resonant increase in cond
tivity for q2→1 ~see inset to Fig. 1! and to the emergence o
a doppleron solution of the dispersion equation. The deri
tive ]F0 /](qs

2) increases even more sharply. Consequen
b→` for q2→1. In the region of helicon solutions of Eq
~23!, nonlocal effects are manifested less sharply, the der
tive ]F0 /](qs

2) is finite, andb→0 (F0→1) for q2→0. This
conclusion is practically independent of the specific form
FS.
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Wave processes in layered organic conductors in strong magnetic fields are investigated
theoretically at low temperatures when the de Haas–van Alphen effect is manifested strongly.
The spectrum and amplitude of weakly attenuating waves are determined in the vicinity
of the electron phase transition where the formation of diamagnetic domains takes place. ©1999
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The class of conductors having metal-type conductiv
has been considerably broadened in recent years follow
the synthesis of organic layered structures. Their elec
conductivity is strongly anisotropic, i.e., the conductivi
along layers is much higher than its value at right angles
the layers.

The energy of charge carriers in layered conductors

«~p!5 (
n50

`

«n~px ,py!cosS anpz

\ D ~1!

depends weakly on the momentum componentpz5p–n
along the normaln to the layers, while the function
«(px ,py) decrease sharply with increasingn. Formula ~1!
corresponds to the strong-coupling approximation in wh
overlapping of the wave functions of electrons belonging
different layers is small, and the separationa between them
is much larger than the intralayer atomic separation.

The low-dimensional electron energy spectrum of su
conductors, which are frequently called synthetic metals,
cilitates the manifestation of Shubnikov–de Haas1 and de
Haas– van Alphen2 quantum oscillations in them in a mag
netic fieldH.

The oscillatory dependences of magnetoresistance1 and
magnetization of bismuth2 discovered in Leiden were treate
for a long time as anomalies in bismuth along with its oth
unusual properties, until the investigations carried out
Verkin et al.3 in Kharkov and Shoenberget al.4 in Cam-
bridge led to the conclusion that the oscillatory depende
of the physical characteristics of metals on inverse magn
field at low temperatures is a common feature of met
These oscillations can be observed only in quite strong m
netic fields, such that the separationD«5\V between Lan-
dau levels exceeds their width\/t and the temperature blur
ring of the Fermi distribution functionf 0(«) of charge
carriers.5–8 While these quantum oscillations in metals a
caused only by a small fraction of charge carriers of
order of (\V/«F)1/2 for which the areaS of cross section of
6661063-777X/99/25(8–9)/4/$15.00
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the Fermi surface«(p)5«F by the planepH5p–H/H is
close to the extremal cross-sectional areaSext, nearly all con-
duction electrons with Fermi energy«F are involved in the
formation of oscillatory effects in layered quasi-two
dimensional conductors. As a result, the amplitude of os
lations of magnetizationM is found to be quite large, and th
magnetic susceptibility componentsx i j 5]Mi /]Bj may be-
come comparable with unity. In this case, we cannot dis
gard the difference between the magnetic inductionB5B0

1B(r ,t) and the magnetic fieldH5B24pM „B…. If one of
the diagonal components of the magnetic susceptibilityx
exceeds 1/4p, the homogeneous state becomes unstable9–11

and is replaced by an inhomogeneous state with alterna
domains having different values of magnetic induction.9,10 If
the dissipative effects are insignificant, i.e.Vt is quite large,
the formation of a stationary domain structure may be
companied by weakly attenuating oscillations of the elect
magnetic field.12,13 We shall use the following standard no
tation: B0 is the homogeneous part of magnetic inductio
B„r ,t) the magnetic field of the wave,V5eB0 /m* c the
rotational frequency of an electron in the magnetic fie
e,m* , and t are its charge, effective cyclotron mass, a
mean free time respectively,c is the velocity of light in
vacuum, and\ the Planck’s constant.

The experimental observation of Shubnikov–de Ha
quantum oscillations of magnetoresistance of organic me
(BEDT-TTF!2X with different elements or complexes X a
liquid helium temperatures in magnetic fields of the order
10 T ~see Refs. 14 and 15 and the literature cited in
review article Ref. 16! allows us to assume that the conditio
Vt @1 is clearly satisfied in the investigated samples, a
the formation of a domain structure in layered organic co
ductors is quite possible.

1. Let us consider wave processes in layered conduc
for the case whenx,1/4p, and the homogeneous partB0 of
the magnetic induction is directed along the normal to
layers, i.e.,B05(0,0,B0), and has a quite large value so th
© 1999 American Institute of Physics
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Vt@1. Without any loss of generality during the solution
the problem, we confine ourselves to just the first two ter
in expression~1! for «(p), assuming that«1(px ,py) is a
constant quantity equal tohv0\/a, wherev0 is the charac-
teristic Fermi velocity of charge carriers along the layers, a
the parameter of quasi-two-dimensionality of the electron
ergy spectrumh !1.

In the vicinity of the electron phase transition with th
formation of diamagnetic domains fork25u124pxu!1 in
the Maxwell equations

c curlH54p j1]E/]t; c curlE52]B/]t; div B50 ~2!

the linear term (124px)Bz(r ,t) in the expansion of the
function H„r ,t) in the magnetic fieldBz(r ,t) of the wave
turns out to be of the same order as the nonlinear terms,
the wave process becomes essentially nonlinear even
small amplitudes ofB„r ,t) and of the electric fieldE„r ,t) of
the wave.12,13

If the magnetic susceptibilityx5xzz is not too close to
1/4p, i.e.,k2Bz(r ,t) is much larger than the nonlinear term
in the expansion ofH„r ,t) for quite small wave amplitudes
we can confine ourselves to the linear approximation wh
solving Maxwell’s equations.

The current densityj is connected with the electric fiel
of a wave through an integral relation in the case of a str
spatial dispersion:

j i~r ,t !5E dt8d3r 8s i j ~ t82t,r 82r !Ej~ t8,r 8!5ŝ i j Ej . ~3!

Using the Fourier representations for the electric a
magnetic fields of the wave

E~r ,t !5E d3kE~k!exp@ i ~k–r2vt !#, ~4!

B~r ,t !5E d3kB~k!exp@ i ~k–r2vt !#, ~5!

we arrive at the following dispersion equation for determ
ing the spectrumv(k) of intrinsic vibrational modes:

DetUsxx2j~ky
2k21kz

2!

syx

szx

sxy

syy2jkz
2

szy2jkykz

sxz

syz1jkykz

szz2jky
2
U50,

~6!

where the Fourier components of the electric conductiv
tensor have the following form in the semiclassical appro
mation (\V!«Fh):

s i j ~k!5E 2e2

~2p\!3 d«d~«~p!2«F!E 2pm* V21dpz

3E
0

2p

dwv i~w!E
2`

0

dw8v j~w8!

3exp$gw81k•@r ~w81w!2r ~w!#%. ~7!

Here g 5 1 /Vt 2 iv / V; r (w) 5 V21*0
wv(w8)dw8;

j5c2/(4p iv) the x-axis is directed at right angles to th
wave vectork and to the vectorB0 so thatk5(0, k sinu,
s

d
-

nd
for

e

g

d

-

y
-

kcosu), and the dependence of the electron velocity on
dimensionless variablew should be found with the help o
the equation of motion for the charge

]p

]w
5~m* v3e3!; e35~0,0,1!. ~8!

For u50, the exponent in formula~7! depends linearly
on w8. Integrating with respect tow and w8, we obtain the
following expression fors i j (k):

s i j ~k!5E 2e2

~2p\!3 d«d@«~p!2«F#

3(
n

\

a E
0

2p

2pm* da
v i

2n~a!v j
n~a!

gnV1 ikv0h sina
, ~9!

wheregn5g1 in,a5apz /\, and

v j9~a!5
1

2p E
0

p

dw v j~w,a!exp$2 inw%. ~10!

As a result of simple computations, we arrive at the f
lowing expression fors i j (k):

s i j ~k!5vp
2 (

n
Ci j

(n)@~kv0h!21~gnV!2#21/2, ~11!

wherevp is the frequency of plasma oscillations in the sy
tem of conduction electrons, andCi j

(n) are numerical factors
of the order of unity. Fori 5 j , all of them are real and
positive, while in nondissipative Hall components they a
imaginary as a rule and change sign upon inversion ofi and
j, and hence a helicoidal wave is generated in a quite str
magnetic field forV@kv0h and attenuates at distancesl hel

5d0(Vt)3/2, whered05c/@vp(vt)1/2#.
If the wave vector deviates from the normal to the laye

by an angleu>arctanh, the spectrum of weakly attenuatin
waves is transformed considerably. A helicoidal wave can
generated only for tan2 u<h2/g05h2Vt, when the dissipative
part rzzsin2 u of resistivity in the plane orthogonal to th
vectork is much smaller than the Hall components.

For g0>h2k2 and h2!tan2 u!h2/g0 the attenuation
wavelength ish2/g0 tan2 u times larger than the wavelengt
and is equal to

l hel5d0~Vt!3/2h2 cosu cot1/2u. ~12!

In extremely strong magnetic fields, wheng0!h2k2,
the attenuation length of the helicoidal wave has the form

l hel5d0~Vt!3/2h2~k21tan2 u!3/4cosu cot2 u. ~13!

For tan2 u>h2/g0, the imaginary part ofk is larger than,
or comparable with, the real part and the wave process d
not occur. Numerical factors of the order of unity, whic
depend on the specific form of the function«0(px ,py), have
been omitted in formulas~12! and ~13!.

2. Analysis of the transient processes under condition
the existence of the domain structure, whenx.1/4p, is
much more complicated. We shall consider only the case
weak time and space dispersion of electromagnetic wave

vt!1, kr0!1, hkzv0t!1, ~14!
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wherer 0 is the radius of curvature of the electron orbit in t
field B05(0,0,B0). This enables us to present the integ
expression~3! for conduction current and magnetization cu
rent j 85c curlM induced by an external magnetic field in
localized form, i.e., in the form of an expansion in powers
E, B and their derivatives. Eliminating the electric fieldE
from the Maxwell equations~2!, we obtain the following
equation for the transient fieldB(y,z,t):

4p
]B

]t
52c2curl@ r̂ curl~B24pM …#, ~15!

where @ r̂ curl(B24pM )# i5r i j @curl(B24pM )# j and the
components of the static resistivity tensorr i j 5(ŝ21) i j also
contain, in addition to the semiclassical expression, sm
quantum corrections in parameter (\V/h«F)1/2. Introduction
of these corrections does not lead to a qualitative variatio
the spectrum of weakly attenuating waves, and it is suffici
to consider the classical expression~9! for s i j for k50.

The induced current densityj 8 is defined mainly by the
magnetization componentMz

j x85c]Mz /]y5cx~B0!]Bz]y1a c r0
2]3Bz /]y3

2cz]Bz
3/]y, ~16!

wherez5(b/B0
2)(«F /\V)2;a and b are numerical factors

of the order of unity.
In the case of an isotropic dispersion relation for cha

carriers in the layer plane, whenrxx5ryy5rzzh
25r0

54p/vp
2t we obtain after simple transformations the fo

lowing expression forBz(y,z,t):

S vp
2

c2V D 2 ]2Bz

]t2 1
]2

]z2 S ]2Hz

]y2 1
]2Bz

]z2 D
5

vp
2

c2V2t
D1

]Bz

]t
1S vp

2

c2V2t

]

]t
2

1

~Vt!2 D1D
3S ]2Hz

]y2 1
]2Bz

]z2 D , ~17!

where the operatorD1 has the form

D15
]2

h2]y2 1
]2

]z2 . ~18!

The time-independent solution of Eq.~17!, i.e.,

B1~y!5b0m~11m2!21/2 snS y

d~11m2!1/2, m D ~19!

defines a periodic domain structure with a periodD54d(1
1m2)1/2K(m) and domain wall thicknessd5(4pa)1/2

r 0 /x.
Hereb05(k2/2pz)1/25kB0(\V/«F), the modulusm of

the elliptic functionsn is defined uniquely by the integratio

constant, andK(m)5*0
p/2

dw(12m2 sin2 w)21/2 is a total el-

liptic integral of the first kind.
We shall seek the time-dependent solution of Eq.~17! in

the form

Bz~y,z,t !5B1~y!1b~y!exp~2 ivt1 ikzz!. ~20!
l

f

ll

of
t

e

Linearizing Eq. ~17! in b(y) and disregarding smal
terms proportional tog0

2, we arrive at the following linear
equation inb(y):

Fkz
22 ig0vS vp

2

c2V D GFk2
]b~y!

]y2 212pz
]2

]y2 @b~y!B1
2~y!#

14par 0
2 ]4b~y!

]y4 G1 i
g0

v

h2 S vp
2

c2V D ]2b~y!

]y2 5lb~y!,

~21!

where

l5F S vp
2

c2V D 2

v22kz
412ig0vkz

2S vp
2

c2V D G .
Admissible values of the parameterl for which the function
b(y) does not contain secular terms determine the poss
wave spectrum. The casel50 corresponds to a wave propa
gating along the normal to the layers, and its frequency
defined as follows with an error not exceeding terms prop
tional to g0

2:

v5
k2c2V

vp
2 ~12 ig0!. ~22!

For l50, Eq. ~21! is transformed into a Lame´ equation
which can be integrated in known transcendental functio
In the limiting caseg!k2h2, the amplitude ofb(y) is ex-
pressed in terms of Jacobi’s elliptic functions

b~y1!5Acn~y1 ,m!dn~y1 ,m!, ~23!

whereA is a constant andy15y/@d(11m2)1/2#.
Knowing Bz(y,z,t), we can easily obtain the remainin

components of the electromagnetic field. In zeroth appro
mation in g0 , i.e., without taking dissipation into conside
ation, we obtain

Bx~y,z,t !52kzd~11m2!1/2A sn~y1 ,m!

3exp~2 ivt1 ikzz!;

By~y,z,t !52 ikzd~11m2!1/2A sn~y1 ,m!

3exp~2 ivt1 ikzz!;

E52
cV

vp
2 @e33curlH„B…#. ~24!

If the domain size is large in comparison withd, the
function b(y) differs considerably from zero only near th
transient layer, i.e., in the vicinity of the pointsy1

52nK(m), wheren is an integer.
Thus, in the case of a periodic domain structure,

amplitude of a helicoidal wave depends considerably on
size of the domains and the thicknessd of the periodic layer.

* !E-mail: vpeschansky@ilt.kharkov.ua
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The Fermi surface and cyclotron masses of the ErGa3 compound are studied by means of the
de Haas–van Alphen technique under pressure. Concurrently, the electronic structure is
calculatedab initio for the ferromagnetic phase of ErGa3. The experimental data have been
analyzed on the basis of the calculated volume-dependent band structure and compared with
available results for isostructural TmGa3 and LuGa3 compounds. ©1999 American
Institute of Physics.@S1063-777X~99!01408-5#
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1. INTRODUCTION

The objective of the present work is a study of the pr
sure effect on the Fermi surface~FS! and cyclotron masses o
the ErGa3 compound by means of the de Haas–van Alph
~dHvA! effect. The pressure derivatives of dHvA frequenc
and cyclotron masses are of particular interest due to t
assumed sensitivity to details of the exchange interaction
many-body effects. Therefore, the present investigation
provide a critical test for recently developed methods
ab initio calculations of electronic and magnetic structur
and to stimulate the formulation of improved theories
rare-earths~RE!.

This work represents an extension of our rec
studies1–3 of the FS and electronic structure in the cub
REGa3 compounds at ambient pressure. There are very l
data available on the physical properties of ErGa3. The com-
pound crystallizes in the AuCu3-type cubic structure and or
ders antiferromagnetically atTN52.8 K by means of a con
tinuous transition, and the corresponding magnetic struc
is presumably the incommensurate modulated one.4 It can be
expected that at low temperatures ErGa3 reveals large and
field-dependent magnetization, in the same manner as is
case of TmGa3.

2 This provides a number of complications
the Fourier analysis of dHvA oscillations. Specifically, t
dHvA effect has to be studied in sufficiently strong magne
fields where magnetization is almost saturated. These fi
are expected to be higher than the critical field destroying
antiferromagnetic order. By this means the dHvA effect c
6701063-777X/99/25(8–9)/7/$15.00
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be investigated in a paramagnetic phase of ErGa3, in which
magnetic field leads to a quasi-ferromagnetic configurat
of magnetic moments.

In the present work the experimental study of the dH
effect under pressure is complemented byab initio calcula-
tions of the spin-polarized electronic structure of ErG3

when the atomic volume is varied through a small ran
around the equilibrium value. Basically, the dHvA da
supplemented by results of the calculations provide a po
bility to estimate the volume dependencies of the FS a
exchange interaction parameters, as well as the many-b
enhancement of band cyclotron masses. A comparison o
data of the pressure effect and the calculated volume de
dent band structure can be especially useful in testing
adequacy of theoretical models employed for rare-earth c
pounds. The evaluated parameters of the electronic struc
of ErGa3 are also compared with corresponding results
tained for the isostructural compounds TmGa3 and LuGa3 at
ambient pressure.1,2

2. EXPERIMENTAL TECHNIQUES

Single crystals of ErGa3 were grown by the flux method
from the melt of the nominal composition 90% at. Ga a
10% at. Er. The purity of starting metals was 6N for Ga a
4N for Er. The feed placed in a alumina crucible and sea
in a quartz tube in argon atmosphere under pressure
150 Torr at room temperature, was heated in a resista
furnace up to 920 °C, held at this temperature for 48 h a
© 1999 American Institute of Physics
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then slowly cooled down at the rate 0.8 K/h. The synthe
was stopped at about 350 °C and then sample was co
rapidly down to room temperature for avoiding the formati
of ErGa6 in peritetic reaction.5 The resulting crystals o
ErGa3 were immersed in an excess of Ga which is easy
remove. The obtained crystals had the form of cubes w
maximum dimensions 53535 mm. According to thex-ray
examination the quality of single crystals was very good.

The dHvA effect measurements were performed on
spherical sample~diameter 2.5 mm! by using a standard field
modulation technique at temperatures down to 1.5 K and
magnetic fields up to 15 T applied along principal crystal
graphic axes. Large amplitudes of the observed dHvA os
lations can be considered as another prove of the high qu
of ErGa3 single crystals. A standard Cu–Be clamp was us
for the pressure effect study with an extracted benzine
vent as the medium transmitting pressure to the sample.
maximum pressure employed was 6.4 kbar at 4.2 K. A sm
manganin coil with resistance about 60V was placed nea
the sample to measure the applied pressure. Preliminary
coil has been trained to cooling-pressure and then calibr
by measuring the superconducting transition temperatur
Sn.6 A deviation of the manganin coil resistance due to
residual magnetic field of the superconducting magnet
been also taken into account. The sample, the pick-up c
and the manganin coil, all were placed in a teflon cell, fill
with the extracted benzine solvent, and then the cell was
in the pressure clamp. A deviation from hydrostatic press
and its effect on the measurements are estimated to be
ligible by observing that the superconducting transiti
width of Sn does not change noticeably and amplitudes
the dHvA oscillations do not decrease substantially un
pressures used in this work.

Since the pressure clamp is heated with the modula
field, there is a difference in temperatures between the
lium bath and the sample in the pressure clamp. The mo
lation amplitude and frequency used in measurements w
40 G and 38.5 Hz, respectively. These amplitude and
quency were chosen to produce a large enough dHvA sig
and, at the same time, to reduce the heating power, w
leads to a temperature difference not exceeding 0.02 K.

In a magnetic material, the dHvA oscillations are pe
odic in B21, whereB is the magnetic induction. For a spher
cal sample as we have usedB5Happl1(8p/3)M , where
Happl is the applied field andM is the magnetization
Complementary magnetization measurements were
formed by a home made vibrating sample magnetome
The field dependence of the magnetization along the pri
pal crystallographic axes is shown in Fig. 1. This depende
can be reproduced by a fitting calculation in the molecu
field approximation. The Hamiltonian employed contains
crystal field ~CF!, the exchange and Zeeman terms. T
molecular-field exchange parameter was estimated, base
the value of the paramagnetic Curie temperature,Up

5210 K. Then the best fit to the experimental data w
obtained for the CF parametersx andW ~in the usual nota-
tions of Ref. 7! equal to 0.22 and 0.25 K, respectively. Th
gives theG7 doublet as the CF ground state, and the fi
excited state appeared to be theG8

(1) quartet at about 30 K
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The total CF splitting is about 120 K. These parameters p
vided a possibility for evaluating the angular dependence
the magnetization.3

The applied pressure modifies a magnitude and field
pendence of the magnetization due to a pressure influenc
the CF splitting, as well as on the exchange interaction. I
well known, that CF of metallic rare-earth compounds co
tains contributions from charges of surrounding ligands
well as from the direct Coulomb and exchange interactio
of the rare-earth ion with conduction electrons. In order
estimate the influence of the pressure on the CF we h
restricted ourselves to the contribution from surround
ligands within the point charge model. The applied press
P brings about the volume dilatationdV/V52P/cB , were
cB-bulk modulus. Under pressure of 10 kbardV/V is esti-
mated to be20.013, when we assume for ErGa3 the bulk
modulus of TmGa3, equal tocB5765 kbar.8 The change of
CF due to this dilatation causes a variation of the magn
induction at 1.7 K in the applied field of 15 T not larger tha
20 G. One can estimate also a change of the magnetizatio
ErGa3 due to a variation of the exchange interaction para
eter under pressure by making use of appropriate data
tained for the isostructural REIn3 compounds.9,10 The corre-
sponding variation of the magnetic induction with th
applied pressure of 10 kbar is about210 G at 1.7 K in the
field of 15 T. Therefore, the total change of the magne
induction reaches only 10 G, giving the relative variation
the dHvA frequencydF/F.2.1024 kbar21, which may be
neglected in the Fourier analysis of the dHvA oscillations

The dHvA effect measurements were carried out in m
netic fields higher than 8 T where the magnetization does n
change appreciably and the Fourier analysis of the dH
oscillations can be performed. In another case a dHvA
quency would change its value following the strength of e
ternal magnetic field. It turns out that for this intensity ran
ErGa3 is in the paramagnetic state, and the measurem
were carried out in this phase well above the antifer
paramagnetic transition. Actually, along all principal cryst

FIG. 1. Magnetization of ErGa3 at 1.7 K in the magnetic field applied alon
^100& ~h!, ^110& ~s!, and^111& ~n! axes.
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lographic axes,̂001&, ^011&, and^111& the critical field of the
antiferromagnetic-paramagnetic transition does not exc
3 T. This is evident from a sketch of the magnetic pha
diagram in Fig. 2, where the curve represents a transi
between an antiferromagnetic state and the paramagnetic
for the fields applied alonĝ100& axes. Actually, the mag
netic phase diagram of ErGa3 is more complex, and its ful
description, together with neutron diffraction data and the
scheme examination, will be published elsewhere.11

The magnetization in magnetic fields higher than 8
tends to saturate and magnetic moments settle into a q
ferromagnetic configuration. Moreover, the magnetizat
along all directions in a magnetic field higher than 8 T ap-
peared to be almost temperature independent in the ra
1.7–4.2 K. Therefore, the evaluated values of the magn
zation along the principal crystallographic axes were use
the Fourier analysis of dHvA oscillations. It should b
pointed out that for the field induced quasi-ferromagne
configuration the dHvA spectrum of ErGa3 can be compared
with results of band structure calculations for the correspo
ing spin-polarized state.

3. DETAILS OF CALCULATIONS

At present it is commonly believed12–14 that, within the
local spin-density, approximation~LSDA!, a strict band
treatment of the 4f states is inadequate for heavy rare eart
In the corresponding spin-polarized calculations thef-shell is
not filled and the 4f bands, which act as a sink for electron
always cut the Fermi level (EF) leading to absurd values o
specific heat coefficients12 and wrong 4f occupancies, close
to the divalent~i.e., atomic! configuration.15

According to the photoemission data,15–17 the 4f spec-
tral density for Er and Er-based compounds was obser
about 5 eV belowEF . Therefore, for the present purpos
which is mainly to describe the band structure for the grou

FIG. 2. Sketch of the magnetic phase diagram of ErGa3 in the magnetic field
applied along thê100&-axis. The curve is a line of phase transitions betwe
an antiferromagnetic state and the paramagnetic one.
ed
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state nearEF , it seems reasonable to treat 4f states in ErGa3
as semilocalized core states, in line with Refs. 10, 13, 14
18.

In fact, the standard rare-earth model12 is employed in
this work in the limit of the large Hubbard repulsionU
within the ab initio LSDA scheme19 for the exchange-
correlation effects. The localizedf-states of Er were treate
as spin-polarized outer-core wave functions, contributing
the total spin density. Consequently, the spin occupa
numbers were fixed by applying the Russel–Saunders c
pling scheme to the 4f shell, which was not allowed to hy
bridize with conduction electrons.

The self-consistent band structure calculations were
ried out for the paramagnetic configuration phase of ErG3

by using the linear muffin-tin orbital method~LMTO! in the
atomic sphere approximation~ASA! with combined correc-
tions to ASA included.20,21 In the framework of the LSDA,
the spin density of the 4f states polarizes the ‘‘spin-up’’ and
‘‘spin-down’’ conduction electron states through the loc
exchange interaction. The exchange split conduction elec
states interact with the localizedf states at other sites, ap
pearing as the medium for the indirectf - f interaction.10,18

In order to calculate FS orbits, the charge densities w
obtained by including spin-orbit coupling at each variation
step, as suggested in Refs. 12 and 13. In this case the sp
no longer a good quantum number, and it is not possible
evaluate the electronic structure for ‘‘spin-up’’ and ‘‘spin
down’’ bands separately. Also, we have employed the
proximation, which has been extremely successful
rare-earths,12 namely, to omit spin-orbit coupling in spin
polarized band structure calculations for ErGa3. It gives the
possibility of elucidating the role of the spin-orbit couplin
and also of presenting ‘‘spin-up’’ and ‘‘spin-down’’ band
for field-induced ferromagnetic phase of ErGa3, where the
exchange splitting is much larger than the spin-orbit co
pling.

The band structure calculations were performed s
consistently on a uniform mesh of 455 points in the irredu
ible wedge of the cubic Brillouin zone for a number of lattic
parameters close to the experimental one. The individ
atomic radii of the components were chosen following t
method outlined in Ref. 22.

The results obtained with the LMTO-ASA method we
verified and supplemented by carrying outab initio relativ-
istic full-potential LMTO calculations of the electronic struc
ture of ErGa3 in an external magnetic field with the Zeema
term included~details of this method have been describ
elsewhere23!. The calculated density of states~DOS! and
band structure along selected high symmetry lines appe
to be similar in the two types of calculations.

The calculated partial densities of states for the fer
magnetic phase of ErGa3 are presented in Fig. 3. Two fairly
broad peaks, associated with bonding and antibonding st
originate due to hybridization of 5d-states of Er and
4p-states of Ga. As can be seen in Fig. 3, thesep-states give
substantial contribution to the total DOS at the Fermi ener
On the other hand, the exchange splitting is more p
nounced for the 5d-states of Er~about 20 mRy! due to the
local exchange interaction. For hybridized electronic state
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EF the exchange splitting takes smaller values, reducing
about 1 mRy for the purep-states.

4. RESULTS AND DISCUSSION

The Fourier spectra of dHvA oscillations in ErGa3 ob-
served alonĝ100& axis at different pressures are presented
Fig. 4, and the pressure effect on the corresponding dH
frequencies is exhibited in Fig. 5. For all the principal cry
tallographic axes,̂100&, ^110&, and^111&, the dHvA frequen-
cies at ambient pressure and their pressure derivat
d ln F/dP are listed in Table I.

FIG. 3. Partial densities of states as a function of energy~relative to the
Fermi energyEF! for the ferromagnetic phase of ErGa3. Solid lines stand
for p-states of Ga, and dashed lines representd-states of Er.

FIG. 4. Fourier spectra of dHvA oscillations observed at 2.1 K for magn
fields directed along@100# axis at ambient pressure, 3.6 kbar, and 6.2 kb
to

n
A
-

es

For reference, the angular dependence of dHvA frequ
cies in the~100! and~110! planes, obtained at ambient pre
sure in Ref. 3, is shown in Fig. 6. The intersections of t
calculated FS of ErGa3 with planes of the cubic Brillouin
zone~Fig. 7! reveal the ‘‘spin-split’’ almost spherical elec
tron FS centered atR-point and the complicated multiply
connected hole FS centered atG-and X-points. As can be
seen in Fig. 6, the agreement between the calculated FS
the experimental data is quite good in the range of the h
dHvA frequencies~brancha which arise from the FS sheet a
R-point, and branchd, associated with the largest sheet of t
hole FS centered atG-point!, as well as the medium one
~branchb, related to the hole FS sheet atX-point!. Instead of
the calculated branchj, which arise from a ‘‘neck’’ at the
symmetry lineGR, a branch with a different angular fiel
dependence has been observed in the range of low dH
frequencies. It is analogous to the branch previously foun
LuGa3,

1 and labeledh in Fig. 6.
Basically, the dHvA spectrum of ErGa3 in the field-

induced ferromagnetic configuration appeared to be clos
the spectrum of LuGa3,

1 except for the presence of add
tional branchd8 that is just below thed branch and located in
the vicinity of the^100& axis. It should be pointed out that i
a ferromagnetic configuration phase of the isostructu
TmGa3 compound the dHvA spectrum contains seve
h-like branches in the low frequency range and
d8-branch.2

The dHvA oscillations originating from the ‘‘spin-split’’
subbands were observed only for thea branch. This splitting
is seen in Fig. 4 and Fig. 5, but not resolved in Fig. 6 owi
to the scale chosen. Based upon the calculated partial DO
Fig. 3, one can expect the more easily observed dHvA os
lations related to the majority states, having lower DOS a
correspondingly, lower band masses. In fact, the frequen
calculated for ‘‘spin-up’’ bands ~which are actually

c
.

FIG. 5. Fractional changes of the dHvA frequencies,DF/F(0), as a func-
tion of pressure for the@100# magnetic field direction at 2.1 K. The frequen
cies are labeled according to Ref. 3 and Fig. 6. Thea~up! anda~down! refer
to the oscillations originating from the ‘‘spin-up’’ and ‘‘spin-down’’ sub
bands of thea branch, respectively. The solid lines are guides for the ey
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TABLE I. DHvA frequencies at ambient pressure, their pressure derivatives, and cyclotron effective ma
ambient pressure ErGa3 .

Field
F, MG d ln F/dp, 103 kbar21 mc* ,m0

direction experiment experiment theory experiment

^100& 98.71 2.360.3 1.3 0.9660.02
97.81 1.460.4 1.1 -
41.07 1.760.2 2.0 0.9160.02
30.27 0.3660.02 - 0.9260.03
12.66 22.760.1 22.8 0.4460.02
4.35 - - 0.5560.02

^110& 96.03 1.260.2 1.2 0.8960.02
95.17 1.060.3 1.1 -
15.80 21.260.1 - -
15.14 21.160.1 - 0.5760.02
11.95 22.460.2 22.0 0.8460.04
3.37 24.560.3 - 0.2860.02

^111& 88.30 2.560.3 1.4 0.8060.02
87.58 1.760.1 1.2 -
35.47 2.360.2 1.9 0.7060.02
4.21 - - 0.5160.02
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presented in Fig. 6! appeared to be in better agreement w
the experimentally observed ones.

The experimental pressure derivativesd ln F/dP, pre-
sented in Table I, are rather large in comparison with fr
electron scaling prediction, which gives two-thirds the v
ume compressibility or 0.8731023 kbar21, provided the
available bulk modulus of TmGa3

8 is accepted for ErGa3.
Basically, there is a qualitative agreement between the
perimental and calculatedd ln F/dP derivatives~again, the
bulk modulus of TmGa3 was used to convert the calculate
volume derivatives to the pressure ones, listed in Table!.
The main discrepancy between these derivatives can be
for the a branch, where the average exchange splitting
given by

DE52mBDF~m0 /mc
b!,

FIG. 6. Angular dependence of the dHvA frequencies in ErGa3, taken from
Ref. 3. Circles stand for the experimental data, solid lines show calcul
results.
-
-

x-

en
is

wheremc
b is the calculated band cyclotron mass andm0 is the

free-electron mass. Taking into account the small value
this exchange splitting for thea branch~about 1 mRy!, the
difference between experimental pressure derivatives for
corresponding ‘‘spin-split’’ subbands can be considered
surprisingly large.

It was originally suggested in Ref. 24, that there are t
contributions in ferromagnetic metals to the pressure der
tive of dHvA frequency. The first ‘‘potential’’ contribution
comes from an atomic volume effect on the crystal potent
and also from a scaling effect due to the change of the B
louin zone size. It can be approximated by the correspond
derivative for a non-magnetic reference compound with
close value of the compressibility~in our case it can be
LuGa3!. The second ‘‘magnetic’’ contribution originate
from the redistribution of conduction electrons between sp
split subbands with pressure and the corresponding cha
of volume enclosed by FS sheets. Within the Stone
Wohlfarth model this contribution for ferromagnet
3d-metals was described qualitatively by considering

dFIG. 7. Intersection of the Fermi surface for ErGa3 with the Brillouin zone
planes.
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TABLE II. Cyclotron masses~experimental,mc* , and calculated,mc
b , in units of free-electron mass! and the corresponding mass enhancement factorl in

REGa3 compounds at ambient pressure. For ErGa3, two effective masses measured at 4 kbar are also presented.

Branch
and
orientation

ErGa3 TmGa3
a LuGa3

a

mc* mc* , 4 kbar mc
b l mc* mc

b l mc* mc
b l

a, ^100& 0.9660.02 - 0.40 1.4 1.2060.02 0.41 1.93 0.7460.02 0.38 0.95
a, ^110& 0.8960.02 - 0.37 1.4 1.0260.03 0.38 1.68 0.7360.02 0.36 1.03
a, ^111& 0.8060.02 0.9460.03 0.37 1.16 0.7760.02 0.38 1.03 0.5760.02 0.36 0.58
d, ^100& 0.9160.02 - 0.46 0.98 1.3060.02 0.46 1.83 0.6360.02 0.48 0.31
d, ^111& 0.7060.02 0.9260.03 0.40 0.75 0.9060.02 0.42 1.14 0.5360.02 0.39 0.36

aTaken from Ref. 2
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pressure effect on the exchange splittingD.24 According to
the present calculations, Fermi surfaces of ErGa3 do not
change uniformly because of a strongk-dependentp-d mix-
ing effect on the exchange-split conduction band. As a res
the difference between pressure derivatives of the spin-
FS cross-sectional areas is inconsistent with prediction ba
on the Stoner–Wohlfarth model.

At this point, it is difficult to explain the discrepanc
between the experimental and calculated derivatives
dHvA frequencies for the spin-splita branch in ErGa3. A
detailed consideration of this problem should obtain furt
arguments in future planned experiments, which are aime
reveal exchange-splitting for other FS sheets, as well as t
pressure dependence. Also, a study of the dHvA effect un
pressure in the reference nonmagnetic compound LuGa3 will
provide a possibility to evaluate the ‘‘potential’’ contribu
tions to the pressure derivatives for corresponding FS cr
sections of ErGa3. In addition, spin-polarized calculations o
the volume-dependent FS with full-potential LMTO meth
will be helpful to clarify this problem. Compared to th
LMTO-ASA method used for this purpose, a full-potenti
technique provides better description of electronic density
the interstitial region and, accordingly, more realisticp-like
andp-d hybridized conduction electron states.

Cyclotron massesmc* have been determined at ambie
pressure for all dHvA frequencies in the field applied alo
the ^100&, ^110& and ^111& axes, and appeared to be smal
than free electron mass~see Table I!. Also, the cyclotron
masses measured at a pressure of 4 kbar for branchesa andd
in the field applied along thê111& axis are presented in
Table II. Band cyclotron massesmc

b have been calculated fo
a andd branches, and are also given in Table II.

The mass enhancement factorl, which is defined by
relation mc* 5mc

b(11l), presents a measure of interactio
strength of conduction electrons with low energy excitatio
The l-factors for electrons ona and d orbits in ErGa3,
TmGa3,

2 and LuGa3
1,2 are listed in Table II. In non-magneti

LuGa3 the l-factor is presumably a measure of electro
phonon interactions, whereas in ErGa3 and TmGa3 this factor
also contains contribution~s! coming from magnetic excita
tions. As seen in Table II in LuGa3 the l factor ranges from
lt,
lit
ed

of

r
to
eir
er

s-

n

r

.

-

0.3 ~d branch! to about 1~a branch!. Assuming that values o
le– ph in REGa3 are close to the corresponding ones
LuGa3, one can estimate magnetic contributionslmag in
ErGa3 to be 0.4–0.6 and 0.4–0.7 fora andd orbits, respec-
tively. In TmGa3 the corresponding values oflmag are larger
and more anisotropic, namely 0.5–1 and 0.8–1.5.

The hybridization of conduction electrons with 4f states
could contribute to the large cyclotron masses observed
ErGa3 ~and TmGa3!, and affect the shape of FS as well. F
heavy rare-earths these hybridization effects are commo
overestimated within LSDA, and corresponding calculatio
would lead to substantial reduction of the conduction ba
width in REGa3 and, therefore, to remarkably different bu
properties in comparison to LuGa3. In accord with the lattice
parameters behavior, which decrease slightly in a linear fa
ion in the series ErGa3, TmGa3, and LuGa3 due to the lan-
thanide contraction, it can be expected, however, that c
duction band widths are close in REGa3, and band cyclotron
masses should be also close. At the present stage even
culations performed within LSDA1U or a Hubbard-like
scheme would not be of decisive importance,14 and more
elaborated analysis is necessary to estimate a scale o
hybridization effects.

One may assume that the distinctions between effec
masses of TmGa3 and ErGa3 are most likely due to the dif-
ferent ground states3H6 and 4I 15/2 multiplets of Tm31 and
Er31 ions in the CF of TmGa3 and ErGa3, respectively. The
CF scheme of TmGa3 provides the tripletG5

(1) as the ground
state with intrinsic magnetic and quadrupolar momen8

Therefore, in TmGa3 the enhancement factorl presumably
contains a contribution from coupled magnetic-quadrupo
excitations. Also, in the quasi-ferromagnetic configuration
magnetic moments, the exchange splitting of conduct
bands can vary in ErGa3 and TmGa3 due to the difference in
corresponding 4f -shell spin occupation numbers. At the m
ment one cannot attribute the differences in cyclotron mas
~and angular dependencies of dHvA frequencies as well! in
an unambiguous way in ErGa3 and TmGa3 either to the con-
duction band splitting or the magnetostriction.

In addition, one more mechanism can govern these
ferences. Namely, it was shown in Ref. 25 that virtual ma
netic excitations can contribute substantially to the effect
mass of the conduction electrons in rare-earth systems. T
excitations are magnetic excitons in a paramagnetic sys
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~e.g., praseodymium!, and spin waves in magnetically o
dered rare-earths. The mass enhancement appeared
large, magnetic field dependent and proportional to the st
susceptibility of magnetic system. According to estimatio
of the electronic specific-heat coefficients, performed in R
25, the corresponding effective masses increase in the s
of heavy rare-earth metals. This trend correlates with
observed cyclotron masses in ErGa3 and TmGa3, but consid-
erable work is needed to employ the theory developed
Ref. 25 for a quantitative description of cyclotron masses
magnetic REGa3 compounds. In this connection the results26

of the dHvA effect studies at ambient pressure in isostr
tural REIn3 compounds, which possess similar FS’s, sho
be taken into consideration as well.

SUMMARY

As a whole, the calculated pressure derivatives of
dHvA frequencies in ErGa3 appeared to be in agreement wi
the experimental ones although the nature of some disc
ancies is not clear. In particular, the difference between p
sure derivatives of the spin-split FS cross-sectional area
inconsistent with estimations based on the Stoner–Wohlf
model, as well as with the results ofab initio LSDA calcu-
lations. Also, a surprisingly large and intriguing pressure
fect on cyclotron masses has been observed in ErGa3, which
cannot be explained within the standard rare-earth mo
employed. It has to be emphasized that different interacti
~exchange splitting, CF and magnetic-quadrupolar exc
tions, spin waves! have to be taken into account in a furth
theoretical analysis of the revealed pressure effects on th
and cyclotron masses. In addition, more experimental d
on the pressure dependence of the dHvA frequencies
cyclotron masses in REGa3 and REIn3 compounds are much
needed to elucidate the nature of these effects.

The authors dedicate this work to the 80th anniversary
B. I. Verkin, who was a pioneer of the dHvA effect studi
under pressure.27

We are grateful to J. Klamut, I. V. Svechkarev a
B. Johansson for their kind support.
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‘‘High-temperature’’ oscillations of bismuth conductivity in the ultra-quantum limit
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The results of joint studies of Shubnikov–de Haas oscillations and ‘‘high-temperature’’
oscillations~HTO! of diagonal and nondiagonal components of the magnetoresistance tensor for
pure bismuth in magnetic fields up to 20 T are presented. The oscillations are measured
for magnetic field directions close to trigonal and binary crystallographic axes at temperatures
4–43 K. A comparison of the variation of energy spectrum parameters for bismuth in
ultra-quantum limit with peculiarities of ‘‘high-temperature’’ oscillations leads to the conclusion
confirming the correspondence between HTO periods to the width of the energy band
overlapping region. In the case when light electrons in two ellipsoids are in the ultra-quantum
limit, a correlation between the exit of the last Landau level of heavy electrons~i.e.,
complete closure of the third electron ellipsoid! and the vanishing of HTO periods is observed in
high magnetic fields. This experimental fact can play a key role in the theoretical description
of the nature of HTO. ©1999 American Institute of Physics.@S1063-777X~99!01508-X#
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INTRODUCTION

A new type of quantum oscillations of static conducti
ity of bismuth in a magnetic field was discovered by one
the authors~VBK ! and Yu. A. Bogod in 1973.1,2 The new
oscillations are periodic in reciprocal magnetic field and
characterized by a frequency higher than that
Shubnikov–de Haas~SdH! oscillations. In contrast to SdH
oscillations observed atT<4 K, the new oscillations were
detected in the temperature range 8–65 K and were refe
to as ‘‘high-temperature’’ oscillations~HTO!.3,4 At high tem-
peratures, HTO are observed forT.\Vc (Vc is the charac-
teristic cyclotron frequency!, when SdH oscillations are ex
ponentially small. HTO differ basically from SdH
oscillations in a peculiar temperature dependence: The H

amplitude r̃ rapidly attains its peak value atT'10 K and
then decreases slowly upon heating.4 At T.10 K, the deriva-

tive (]/]T)ln r̃ is independent of cyclotron frequency. It wa
found5 that the HTO amplitude in bismuth and semi-metal
bismuth–antimony alloys is correctly described by the fu
tion @(t l

m)211(tep
m )21#exp(2aT), where (tep

m )21}
3@exp(um/T)21#21; um5\sqm /kB537 K; s is the velocity
of sound,a50.22 deg21, qm is the wave vector of phonons
that corresponds to the separation between the characte
points6 of the electron and hole spectral branches, a
(t i

m)21 and (tep
m )21 are the probabilities of elastic and in

elastic interband scattering of charge carriers.
The correlation between the HTO frequencyF and the

concentrationn of charge carriers (F}n2/3) was established
in experiments carried out with bismuth and compensa
semi-metallic bismuth-based alloys.7 In the more genera
6771063-777X/99/25(8–9)/5/$15.00
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case of semimetallic alloys of bismuth with different num
bers of electrons and holes, it was found8 that F}«F

e1«F
h

5E0 («F
e and «F

h are the Fermi energies of electrons a
holes andE0 is the width of the energy band overlappin
region!. Thus, the characteristic feature of HTO distinguis
ing them from other quantum oscillations in a magnetic fie
is the independence of the HTO frequency of the Fermi
ergy. This formed the basis of the hypothesis6 according to
which the HTO of kinetic coefficients in semimetals are a
sociated with quantum oscillations of the probability of i
tervalley quasi-elastic scattering of charge carriers at
band edges. In other words, HTO are due to ‘‘deep’’ states
the electron~hole! spectral branches of a semimetal wi
energies close to the boundary energy for the hole~electron!
branch. Subsequently, the idea put forth in Ref. 6 was c
sidered theoretically by Bogodet al.,9 and a general ap
proach to the HTO problem was developed.

It turned out, however, that while the oscillation mech
nism described above explains a number of properties
HTO, it does not lead to a complete solution of the problem9

In Refs. 10–12, a model alternative to that in Refs. 6 a
9 was proposed for explaining the HTO origin. According
this model, conductivity oscillations are results of electro
hole transitions near the Fermi level rather than at the ene
band boundaries. The necessary condition for generatio
HTO in such a model is the multiplicity of effective mass
of electrons and holes. Unfortunately, the analysis carr
out in Ref. 5 revealed fundamental contradictions betwe
the model10–12and experimental results, that cannot be elim
nated simply by improving the model.

The facts described above lead to the conclusion that
© 1999 American Institute of Physics
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origin of HTO can probably be determined with the help
experiments in which the energy spectrum parameters~Fermi
energy, the energy widthE0 of overlapping of the conduc
tion and valence bands, and charge carrier concentration! can
be varied over a wide range. Such experiments for bism
should be carried out in strong~up to 20 T and higher! mag-
netic field, in which energy parameters depend on the m
netic field considerably. The information concerning t
variations in the energy spectrum can be obtained fr
oscillatory effects of the de Haas–van Alphen
Shubnikov–de Haas type with the help of an appropri
theoretical model of energy spectrum. It should be reca
that bismuth is a semimetal in which the relative ene
differenceE0 between the top of the hole band (T45) at the
T-point and the bottom of the electron band (Ls) at the
L-point of the Brillouin band is quite small (;30–40 meV).
Since the gapEg between the conduction bandLs and the
valence bandLa lying below it is also small (;15 meV), the
effective masses of electrons in three equivalent valleys
small. As a result, the values ofEg andE0 change radically
in high magnetic field, which in turn leads to a strong dep
dence of the charge carrier concentration and the Fermi
ergy on the magnetic field.

In this paper, we report on the results of joint measu
ments of SdH oscillations and HTO of the nondiagonal (ryx

and rzx) and diagonal (rxx) components of the magnetore
sistance tensor, which were made on a monocrystalline
muth sample at temperatures 4–43 K in magnetic fields u
20 T. These experiments were aimed at obtaining new in
mation on the HTO origin from a comparison of changes
the energy spectrum of Bi in the ultra-quantum limit wi
peculiarities of HTO.

EXPERIMENTAL RESULTS

The measurements of SdH oscillations and HTO w
made in stationary magnetic fields up to 20 T on a p
bismuth sample under the conditions whenI iXiC1 , H'C1

(C3iZ, C2iY and C1 are the trigonal, binary, and bisecto
crystallographic axes, respectively andI is the current den-
sity vector!. Since the HTO amplitude does not norma
exceed 0.1–1% of the monotonic magnetoresistance com
nent, we used in our measurements the following pecu
property of the nondiagonal componentryx of the magne-
toresistance tensor,13 which allowed us to improve conside
ably the sensitivity, and hence the resolution of measu
ments: the monotonic component of the even part ofryx

vanishes in view of symmetry for exact orientationHiC3 ,
while the oscillating component remains unchanged. T
nondiagonal magnetoresistance tensor componentrzx was
measured for the orientationHiC2 . In this case, the mono
tonic component of the even part ofrzx does not vanish, bu
during the recording ofrzx , the ratio of the oscillating and
monotonic components increases significantly in contras
the diagonal componentrxx . For this reason, SdH and HTO
oscillations were measured in the angular interval610°
relative to the directionHiC3 and in the vicinity of the di-
rectionHiC2 . In the temperature range 4–15 K, SdH osc
lations prevail in
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the dependencesr ik(H), while HTO, which were detected in
our experiments starting from 4 K up to 43 K, dominate
above 15 K.

Figure 1 shows the dependencerzx(H) ~curve 1! mea-
sured at 4 K in a magnetic field parallel to the binary axisC2

and the second derivativerzx9 5]2rzx /dH2 ~curve 2! ob-
tained as a result of computer processing of therzx(H) sig-
nal. The values of magnetic fields corresponding to mini
of SdH oscillations obtained by us are close to those
tained in Refs. 14–17. For the given orientation of the m
netic field, oscillations from two electron ellipsoids wit
equal small cyclotron masses, an electron ellipsoid w
heavy masses, and a hole ellipsoid with heavy masses
observed. The form of therzx(H) dependence in weak mag
netic field is determined by the passage of the Landau le
of light electrons through the Fermi level~the resonance
number is determined by the value of the quantum num
j 50,1,2, . . . ) for which the quantum limit takes place ne
H'1.5 T, i.e., when the levelj 51 intersects the Ferm
level. The structure of oscillations in magnetic fields strong
than 1.5 T is determined by the Landau levels of heavy ho
~quantum numberk50,1,2, . . . ) andheavy electrons.

The experimental dependencerzx(H) measured at 20 K
for HiC2 is shown by curve3 in Fig. 1. ‘‘High-temperature’’
oscillations can be detected reliably on the second deriva
rzx9 obtained as a result of computer processing of the co
sponding curverzx(H). A fragment of the dependenc
rzx9 (H21) is shown in Fig. 2~curve 1!. Fourier analysis of
oscillations on curve1 indicates the presence of HTO per
ods corresponding to holes and equal to 0.16531021 T21

and 0.20531021 T21. As is usually the case with bismuth
HTO are observed as a superposition of two frequencies
fering by a factor of 1.22.4 The frequency spectrum of osci
lation ~inset to Fig. 2! also displays second harmonics
fundamental frequencies.

FIG. 1. Dependences ofrzx andrzx9 on magnetic fieldHiC2 : curves1 and
3 correspond torzx at T54 and 20 K, respectively, and curve2 to rzx9 ~in
arbitrary units! at T54 K.
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Figure 3 shows by way of an example the depende
ryx(H

21) ~curve 1! measured at 4 K for a direction ofH
close to the trigonal axisC3 (/H,C3'9°). Thesecond de-
rivative ryx9 (H21) ~curve2! was obtained as a result of com
puter processing of the dependenceryx(H

21). Fourier
analysis of these curves reveals the presence of period
SdH oscillations for electronsP1

e52.631021 T21 and P2
e

50.9531021 T21 and holes (Ph51.5231021 T21) as well
as HTO periodsP1

HTO50.4831021 T21 and P2
HTO50.6

31021 T21 attributed to holes~see the frequency spectru
in the inset to Fig. 3!. Simultaneous observation of SdH o

FIG. 2. ‘‘High-temperature’’ oscillations of resistivityrzx9 in bismuth for
HiC2 , T520 K. Curve1 corresponds to the experiment, and curve2 is the
result of computer simulation. The inset shows the frequency spectrum
oscillations.

FIG. 3. Dependences ofryx andryx9 on the reciprocal magnetic field,HiC3 ,
T54 K: curve1 corresponds toryx and curve2 to ryx9 ~in arbitrary units!.
The inset shows the frequency spectrum of oscillations. SdH frequen
F1

e (1),Fh (2), andF2
e (3); HTO frequencies:F2

HTO (4) andF1
HTO (5).
e

of

cillations and HTO in pure Bi at 4 K was carried out for the
first time and has become possible owing to the applica
of strong magnetic fields, measurements of nondiago
magnetoresistance tensor componentryx ~signal recording
with a high-sensitivity amplifier!, and high accuracy of mea
surements of the voltage drop across the sample. The for
the ryx(H) dependence in magnetic fields up to'5 T ~see
Fig. 3! is determined by the passage through the Fermi le
of the Landau levels for electrons with the cyclotron ma
mc

e'0.03m0 , which attain quantum limit~emergence of the
level 01) nearH'5 T. Starting from fields;4 T, oscilla-
tions of holes (mc

h'0.06m0) are observed, which attain
quantum limit nearH'10 T ~emergence of the level 12),
while oscillations of heavy electrons (mc

e'0.1m0) take place
aboveH'12 T.

Figure 4 shows theryx(H
21) dependence measured

20 K in a magnetic field whose direction is close to t
trigonal axis (/H,C357°) and second derivative
ryx9 (H21) (/H,C354.5 and 7°. In fields up to;4 T, the
HTO fundamental frequenciesF1

HTO520.83 T and F2
HTO

516.66 T are observed~the corresponding periods ar
P1

HTO50.4831021 T21 andP2
HTO50.631021 T21), which

increase in proportion to 2r (r 51,2,3,4, . . . ) upon a further
increase inH, the multiplicity being determined by/H,C3 .
For example, the HTO frequency is doubled and increa
four-fold for /H,C354.5 and 7° respectively in high mag
netic fields~see Fig. 4!. At the same time, the main period
of HTO for /H,C351° are observed up to 20 T, the form
of oscillations differing strongly from the sinusoid. On th
whole the HTO pattern is quite complex. Fourier analysis
the frequency spectrum of oscillations reveals primarily
fundamental HTO frequencies which are usually manifes
as a superposition of two frequencies differing by a factor
1.22,4 as well as combination and multiple frequencies. Lo
frequency components of the signal can be suppressed a
high frequency multiple to one of the fundamental freque

of

s:

FIG. 4. Dependences ofryx and ryx9 on the reciprocal magnetic field,T
520 K: ryx ,/H,C357° ~curve1!, andryx9 , /H,C357° and 4.5°~curves
2 and3, respectively!.
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cies can be singled out with the help of the derivatives of
signal with respect to magnetic field of an order higher th
the second. For example, the eighth derivative of the dep
denceryx(H

21) for /H,C353° corresponds to the fre
quency 333.28 T which is higher than the fundamental f
quency 20.83 T by a factor of 16.

DISCUSSION OF RESULTS

We analyzed the experimental data pertaining to the S
effect by using the results obtained in Refs. 14–17, in wh
the variation of the position of the Fermi level and char
carrier concentration in bismuth in strong magnetic fie
were calculated from the resonance values of magnetic fi
for which the energies of Landau levels are equal to
energy of the Fermi level. The position of the Fermi level
determined by the conditionsnl1nh5p, wherenl , nh , and
p are the concentrations of light electrons, heavy electro
and holes, respectively. When the magnetic field is orien
along the binary axisC2 and its magnitudeH.1.5 T, all
light electrons lie at the levelj 50. The concentration o
charge carriers in this case increases with magnetic field
two reasons:~1! due to linear dependence of the density
states at the levelj 50 on the magnetic field, and~2! due to
the downward displacement of this level on the energy sc
since the spin mass of light electrons is smaller than
orbital mass~the ratio of spin and orbital splitting isg
5(H21)s/(H21)orb51.1 for light electrons!.18 Experiments
on magnetic reflection15 proved that after convergence to th
minimum distance for a certainHc'10 T, the bandsLs and
La diverge due to interband interaction. Consequently,
dispersion relation for the lower (j 50) Landau level for
light electrons plays an important role in determining t
theoretical values of the fields corresponding to oscillat
minima. The corresponding theoretical model, which w
proposed for the first time by Smithet al.14 and modified
later by Vecchiet al.,15 has made it possible to interpret r
sults on magnetooptical reflection in high magnetic field15

as well as on the SdH effect.16,17 The position of the Ferm
level in strong magnetic field depends only onnl andp since
nl is much larger thannh , i.e., nl'p. Spin splitting for
heavy electrons is stronger than the orbital splitti
(g50.25),18 and the corresponding lower Landau lev
moves upwards along the energy scale upon an increas
H, intersecting the Fermi level atH'12 T. After the disap-
pearance of heavy electrons, the equalitynl5p holds. Ac-
cording to Hiruma and Miura,17 the value of Fermi level«F

e

for electrons decreases from 26.5 meV (H50) to
;12 meV (H520 T), while the Fermi level«F

h for holes in-
creases from 11 meV (H50) to ;25 meV (H520 T). The
charge carrier concentration increases by a factor larger
three and is equal to 331017cm23 (H50) and 13
31017cm23 (H520 T). Spin splitting for heavy holes
(HiC2) is small (g50.05),18 and the upper Landau levelk
50 for holes moves downwards on the energy scale upo
increase inH, which leads together with a similar displac
ment of the lower energy levelj 50 for light electrons
~in the caseH<20 T we are interested in! to a quite small
change in the energy of band overlappin
e
n
n-

-

H
h

s
ds
e

s,
d

or
f

le
e

e
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l
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E0537.5 meV (H50) and E0'35 meV (H520 T).15 It
should be noted that the last result (E0(H)'E0(0)) is quite
justified: since the electron energy associated with cyclot
motion, say, in a magnetic field of 20 T amounts to less th
0.2 eV, the additional energy is also low (;2
31026 eV/atom), i.e., the changes in the band structure
insignificant.

The period of SdH oscillations for holes for the directio
of HiC2 in fields H.1.5 T is 0.7231021 T21 and is twice
as large as the corresponding value in the preultraquan
range of magnetic fields, which is due to monotonic incre
in the value of«F

h with H. At T520 K, the amplitude of the
SdH oscillations for holes is suppressed considerably,
these oscillations are still observed in fields exceeding;3 T,
for which the condition\Vc

h.kT holds~the cyclotron mass
for heavy holes ismc

h50.21m0).18 Peculiarities associate
with the variation of the spectrum, e.g., transition to u
traquantum limit for light electrons for;1.5 T and the emer-
gence of the levelj 50 for heavy electrons for;12 T, are
clearly pronounced on the dependencerzx(H) measured at
20 K against the background of small amplitude of Sd
oscillations for holes~curve3 in Fig. 1!. On the other hand
the HTO periods do not experience changes and remain
same in the preultraquantum and the ultraquantum range
magnetic fields in spite of considerable changes in the va
of «F

e , «F
h , and charge carrier concentration. It is natura

hence to put HTO in correspondence with the spectral
rameter remaining unchanged in the given experimental s
ation, i.e., the widthE0 of the region of band overlapping.

One more singularity of HTO presented in Fig. 2
worth noting. This singularity becomes more visual if w
compare the experimental dependencerzx9 (H21) with a simi-
lar oscillatory curve simulated on a computer with the he
of a band frequency filter whose limits are determined
measured HTO frequencies. It can be clearly seen that
experimental curve1 coincides with the calculated curve2
only to the valueH21'0.09 T21 at which the last oscilla-
tion minimum ~marked by the arrow in the figure! is ob-
served for HTO, since the next maximum and minimum b
long to SdH oscillations for holes and accordingly a
characterized by a larger period. It is natural to put in cor
spondence the vanishing of HTO in the given field with t
exit of the last energy levelj 50 for heavy electrons forH
;12 T. This experiment can play basically a key role in t
theoretical description of the HTO origin. In our opinio
however, additional measurements in strong magnetic fie
or in alloys BiSb and BiTe with an appropriate direction
H are required for a reliable confirmation of this fact.

In the case when the magnetic field is oriented close
the trigonal crystallographic axis, the magnetic field dep
dence of energy parameters is more complicated than
HiC2 . For HiC3 , the spin mass for electrons is larger th
the orbital mass (g50.53),18 and henceEg increases with
the magnetic field, i.e., the Landau level 02 for electrons
moves upwards on the energy scale. Similarly, the ene
corresponding to the edge of the hole band~level 02) in-
creases withH since the spin mass of holes is more th
twice as large as the orbital mass (g52.15).18 As a result,
the quantityE0 depending on the velocities of relative mo
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tion of the bottom of the conduction band and the top of
valence band remains almost unchanged forH<20 T. On
the other hand, the Fermi energy«F

e for electrons in fields
H.5 T starts increasing and becomes higher by 30%
H'20 T.14,16 A comparison of changes occurring in the e
ergy spectrum of bismuth in strong magnetic fields w
HTO singularities does not reveal any obvious correlatio
However, the very fact of observation of fundamental HT
periods for some directions ofH near C3 , which remain
unchanged up to 20 T, can be naturally put in corresp
dence with the invariability ofE0 . At the present time, it is
difficult to explain why the fundamental frequencies of HT
are suppressed by their harmonics~or new multiple frequen-
cies! for certain directions of the magnetic field close to t
trigonal axis in strong magnetic fields.

The conclusion that HTO frequencies are determined
the energy intervalE0 coincides with the results obtained
Refs. 3, 7, 8, and 19, where the value ofE0 was varied by
one way or another. An analysis of the results of our exp
ments together with those obtained in Refs. 3, 7, 8, and
leads to the following conclusion. HTO periods vary in a
experiments in which the energy parameters of the spect
andE0 change simultaneously~BiSb alloys,7 axial compres-
sion of crystals,19 and temperature deformation of th
lattice3! and remain unchanged in experiments in which
energy parameters of the spectrum change for an invari
value of E0 ~uncompensated alloys BiTe, BiSbTe, a
BiSbSn,8 and measurements in the ultraquantum limit as
our experiments!.

Thus, we have analyzed the experimental results of jo
studies of SdH oscillations and HTO in bismuth in magne
fields up to 20 T. Oscillations were measured in the tempe
ture range 4–43 K in magnetic field directions close to
trigonal and binary crystallographic axes. It was found t
for certain directions of strong magnetic field close to t
trigonal axis the fundamental frequencies of HTO are s
pressed by their harmonics or, probably, by new frequen
multiple to the fundamental frequencies. The fact that H
disappear forH'12 T for the directionHiC2 is attributed to
the exit of the last Landau level for heavy electrons. T
general pattern of variation of the structure of the ene
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spectrum for bismuth in the ultraquantum limit determin
from the results of measurements of SdH oscillations is co
pared with peculiarities of HTO. It is concluded that HT
periods are related to the width of the regions of energy b
overlapping for bismuth.
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Effects of alloying and pressure on magnetic properties of itinerant intermetallic
compound UFe 2
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The ferromagnetic state of the itinerant compound UFe2 correlated with a peak in the density of
states at the Fermi level is well known to be strongly suppressed by replacing Fe with
other 3d elements. To separate the effect of change in filling of the band from that of its
deformation under alloying, the magnetic susceptibility of both quasi-binary alloys U~Fe12xMex)2

(Me5Mn, Co) with a varying number of valence electrons and isoelectronic quasi-ternary
alloys U~Fe12xTx)2 , U~Fe0.92xMn0.1Tx)2 and U~Fe0.92xCo0.1Tx)2 (T5Mn0.5Co0.5! was studied in
the temperature range 4.2 K<T<300 K. Both effects were found to play important roles in
suppression of the ferromagnetic state in UFe2-based alloys. In addition, the magnetic susceptibility
of U~Fe12xMnx)2 and U~Fe12xTx)2 alloys and UCo2 compound have been studied under
pressure up to 4 kbar atT578 and 293 K. The volume dependence of the exchange enhancement
in spin paramagnetism of the UFe2 compound and its alloys has been derived from analysis
of the pressure effects in the framework of the Stoner model. ©1999 American Institute of
Physics.@S1063-777X~99!01608-4#
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1. INTRODUCTION

In the series of the cubic C15-type Laves phase co
pounds UMe2 ~Me5Mn, Fe, Co, Ni! only UFe2 is known to
be ferromagnetic withTC5160 K ~see for example1! in
which the magnetic moment resides mainly on the Fe sit2

The extensive magnetization studies of UFe2
3 show that the

temperature dependence of the spontaneous moment c
fitted well by the sum of spin-wave and Stoner-excitati
contributions. The resulted spin-wave and Stoner parame
and the critical exponents near the magnetic phase trans
as well are close to values reported for pure 3d ferromagnet-
ics. These facts, along with the large electronic specific h
value,4 strongly suggest the itinerant character of magnet
in the UFe2 compound.

To explain tentatively the origin of magnetism in th
UMe2 compounds the simple band approach has b
suggested5 which assumes the transfer of 5f (6d) valence
electron of uranium into the 3d states of transition metal
Then the magnetism of UNi2 is mainly due to the partially
occupied states of 5f band, whereas the magnetic mome
on Fe atom in UFe2 is caused by the unfilled 3d band. In this
context, a rather weak spin paramagnetism of UCo2 can eas-
ily be explained by the minimum in the density of stat
between 3d and 5f bands. Self-consistent band structu
studies of the UMn2-UNi2 cubic Laves phase systems6–8

have shown that the situation is more complicated due
strong hybridization between 3d and 5f (6d) bands. The cal-
culated density of states~DOS! contains the partial contribu
tion of 3d state which to some extent reminds one of a rig
6821063-777X/99/25(8–9)/8/$15.00
-
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band and becomes progressively filled as we go from UM2

to UNi2. In addition, there is the uranium 5f band which is
also relatively rigid but stays pinned at the Fermi level
such a way that its occupation number is kept almost c
stant ~nf;2.7 electrons per U atom7,8!. As a consequence
the 5f contribution to the density of states~DOS! at the
Fermi level appears to be rather high and roughly constan
magnitude for all mentioned compounds.

For UFe2, the calculated ground state was found to
ferromagnetic with iron spin moment of 0:7mB .7 This value
is in quite good agreement with the experimental o
(0.59mB

2!. However, the spin moment on uranium appears
be 20.5mB and antiparallel to the iron moment, which co
tradicts the experimentally observed small value~0.06mB

2!.
The reason for this discrepancy is a substantial cancella
of the 5f spin moment by the orbital contribution which
due to spin-orbit coupling.9–11

As can be seen from the example of UFe2, the available
band structure calculations are in reasonable agreement
experiments, therefore, supporting an itinerant descrip
for both 3d and 5f electrons in the mentioned system
However, many of the details of quantitative agreement
tween theory and experimental data have yet to be wor
out. Thus, for UMn2 the calculated Stoner criterion for fer
romagnetism was found to be just fulfilled,6,7 that is in rather
poor agreement with the experiments in which the only m
erately enhanced paramagnetic state and no evidence
magnetic ordering have been observed.12,13 In addition, the
inherent fine structure of calculated DOS at the Fermi le
© 1999 American Institute of Physics
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along with large enhancement factor favors the strong t
perature dependence of the magnetic susceptibility~as in the
case of strongly enhanced paramagnetics such as Pd, T2,
Ni3Ga, and so on!. In fact, this dependence for UMn2 was
found to be weak.12,14

The experimental studies of the magnetic properties
pseudobinary U~Fe12xMex)2 alloys show that the ferromag
netic state of UFe2 is strongly suppressed by substitution
iron with other 3d elements.1 In order to estimate a critica
concentration for disappearance of the ferromagnetic sta
U~Fe12xMex)2 alloys the calculation were made8 using
simulation of the electronic structure of selected disorde
alloys by that of ordered stoichiometric compounds with
same number of valence electrons, namely U2Fe3Mn and
UFeMn. Based on a quite reasonable agreement of calc
tion with experimental data, the authors of8 concluded that
influence of a disorder in the 3d metal sublattice is of rela
tively minor importance. In addition, for these systems
validity of the rigid-band was found to be good which
favored by a very similar shape and extension of thed
wave function of iron and manganese in these types
pseudobinary alloys. On the other hand, the experime
data for U~Mn12xCox)2 alloys14 exhibit a well-defined maxi-
mum of the magnetic susceptibility atx50.5 that corre-
sponds to the same number of valence electrons as for U2

compound. However, some difference in the magnetic pr
erties of U~Mn0.5Co0.5!2 alloy and UFe2 reveals that the
simple rigid-band model fails to some extent to descr
these properties.

The high pressure experimental4,15 and theoretical7,9

studies of the magnetic properties of UFe2 show that its fer-
romagnetic state is strongly pressure dependent. Thus
calculated spin magnetism disappears for a pressure bet
400 and 500 kbar. With a linear extrapolation of the expe
mental value of pressure derivative for the Curie tempe
ture,dTC /dP520.52 K/kbar,4 the critical pressure appea
to be of about 300 kbar that is somewhat below the theo
ical estimate. There is the same degree of agreement bet
the calculated pressure dependence of the magnetic mom
d ln m/dP523.0 Mbar,9 and the experimental one
d ln m/dP524.8 Mbar.4 In addition, the rhombohedrical dis
tortion of UFe2 is reported to occur just below the Cur
temperature1 that supports a large magnetoelastic effects
this compound.

As is evident from the foregoing, the electronic structu
and magnetic properties of UFe2 and related compounds ar
rather complicated and in order to gain a better understa
ing these properties further theoretical and experime
studies are required.

In the present work we give results of the magnetic s
ceptibility measurements for quasi-ternary U~Fe12xTx)2 ,
U~Fe0.92xMn0.1Tx)2 and U~Fe0.92xCo0.1Tx)2 (T5Mn0.5Co0.5!
alloys and quasi-binary U~Fe12xMex)2 ~Me5Mn, Co! alloys
in the temperature range 4.2 K<T<300 K. The experimen-
tal data on the concentration dependence of the magn
properties for both isoelectronic quasi-ternary alloys a
quasi-binary alloys with a varying number of valence ele
trons were used to separate the effect of the chang
occupation of the band from that of its deformation und
-
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alloying. To estimate the role of the chemical pressu
caused by a change in a lattice parameter, the pressur
fects on the magnetic susceptibility of U~Fe12xMnx)2 and
U~Fe12xTx)2 alloys and UCo2 compound have been studie
at T578 and 293 K and pressure up to 4 kbar. From analy
of the experimental data in the framework of the Ston
model, volume dependence of the exchange enhanceme
spin paramagnetism of the UFe2 compound and its alloys ha
been derived.

2. EXPERIMENTAL TECHNIQUE AND RESULTS

The polycrystalline samples were prepared by melt
high purity metals in an induction furnace under an arg
atmosphere. The cubic Laves phase structure was confir
by x-ray study. The composition of the samples was de
mined by chemical analysis.

A Faraday microbalance was used for susceptibi
measurements in the temperature range 4.2–300 K in m
netic fields up to 10 kG. To eliminate small ferromagne
contributions, which are probably due to the presence
some phases with higherTC or unreacted transition metals
the corrected values of the magnetic susceptibilityx were
determined by extrapolation of the measuredx(H21) depen-
dence toH2150. The examples of the temperature depe
dence of reciprocal susceptibility for quasi-ternary allo
U~Fe12xTx)2 (T5Mn0.5Co0.5! are shown in Fig. 1. It can be
seen that forT>50 K the x(T) values obey the modified
Curie–Weiss law

x~T!5x01C/~T2Q!, ~1!

FIG. 1. Temperature dependences of the magnetic susceptibility for ter
isoelectronic alloys U~Fe12xTx)2 (T5Mn0.5Co0.5!. Full lines correspond to
fitting by Eq. ~1!.
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wherex0 is the temperature independent contribution~at T
,50 K for some alloys the 1/T contribution, which is pre-
sumably of parasitic superparamagnetism nature, manif
itself!. In Fig. 2 we plotted the Curie–Weiss parameters
concentration, obtained from experimental data atT>50 K
for U~Fe12xTx)2 , U~Fe0.92xMn0.1Tx)2 and
U~Fe0.92xCo0.1Tx)2 alloys. It is evident from Fig. 2 that only
the Curie temperatureQ is strongly affected by alloying
whereas the Curie constantC and contributionx0 vary only
slightly. It should be noted that the observed essential s
pression of the ferromagnetic state in isoelectronic all
cannot be explained by the simple rigid-band model.

For binary alloys studied, U~Fe12xMnx)2 (x
50.1, 0.25, 0.5, 1.0) and U~Fe12xCox)2 (x50.1, 0.2), the
x(T) dependences are similar to those of Refs. 12, 14,
and Refs. 17 and 18, respectively, and are not shown he

The study of the magnetic susceptibility under unifo
pressures up to 4 kbar at liquid nitrogen and room temp
tures was carried out by two methods: the Faraday met
with the pendulum magnetometer placed directly into
high-pressure chamber,19 and the levitation method.20 The
relative error did not exceed 0.05% in either case. As
example, thex(P) dependence for UFe2 at different tem-
peratures is given in Fig. 3. It shows the magnitude of
pressure effect and its linear behavior, yielding values
d ln x/dP. The d ln x/dP data for U~Fe12xMnx)2 and
U~Fe12xTx)2 (T5Mn0.5Co0.5! alloys and UCo2 compound

FIG. 2. Concentration dependences of the Curie–Weiss parameters fo
nary UFe2-based alloys: U~Fe12xTx)2 (T5Mn0.5Co0.5! ~s!;
U~Fe0.92xMn0.1Tx)2 ~d!: U~Fe0.92xCo0.1Tx)2 ~h!.
sts
.

p-
s

6
.

a-
d

e

n

e
r

are summarized in Table I. Preliminary report on part of t
results obtained was given in Ref. 21.

3. DISCUSSION

In the Stoner theory of itinerant electron magnetis
electron-electron interactions manifest themselves thro
the enhancement of the Pauli spin susceptibilityxP by the
Stoner factorS:

er-

FIG. 3. Pressure dependence of the magnetic susceptibility for UFe2 at two
different temperatures normalized to its value atP50.

TABLE I. Experimental values of the pressure derivatived ln x/dP and the
magnetic susceptibilityx itself at different temperatures for U~Fe12xMex)2

alloys ~Me5Mn, Co and Mn0.5Co0.5).

Compound
2d ln x/dP,

Mbar21
x ,

1023 emu/mol T, K

U~Fe12xMnx)2

x50.1 8.360.5 8.32 293
0.25 7.560.5 5.97 ’’
0.3 7.160.4 5.45 ’’
0.5 5.260.4 4.05 ’’
0.75 4.060.3 2.96 ’’
1.0 3.660.3 2.38 ’’

0.25 26.061.0 37.9 78
0.3 17.260.5 20.8 ’’
0.5 7.160.5 6.8 ’’

U@Fe12x(Mn0.5Co0.5)x] 2

x50.25 6.760.5 6.16 293
0.5 6.260.4 4.53 ’’
0.75 4.960.4 3.48 ’’
1.0 4.660.3 2.74 ’’

UFe2 10.160.5 10.7 300
10.560.5 11.3 293
21.261.0 33.1 210

UCo2 2.2560.3 1.11 300
2.160.3 1.18 78
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x5SxP5
xP

12axP
, ~2!

wherexP52mB
2N(EF), N(EF) is the density of states at th

Fermi level; the molecular field constanta5(1/2mB
2)I , I is a

parameter of the exchange-correlation interaction betw
the conduction electrons. For finite temperature,xP(T) is
determined by the effective density of states at the Fe
level, N(m,T)[N, given by

N~m,T!5E
0

`

N~E!@2] f ~E,m,T!/]E#dE. ~3!

Here f (E,m,T) is the Fermi–Dirac distribution function
wherein the chemical potentialm(T) is determined by as
suming the number of band electrons in the system to
constant. In the caseIN.1 ~for strong itinerant paramagne
or weak ferromagnets atT>TC! the enhanced spin parama
netism is a dominant contribution to the magnetic susce
bility. Equation ~2! will be considered to be appropriate fo
UFe2 and its alloys studied to analyze the changes of th
magnetic properties on alloying and under pressure.

3.1. Effects of alloying

In order to discuss the concentration dependence of
magnetic susceptibility, Eq.~2! is conveniently represente
by

1/x~T!51/xP~T!2a. ~4!

Then the experimental values of 1/x for U~Fe12xTx)2 ~see
Fig. 1! plotted against concentrationx appear to be an almos
linear function ofx with ](1/x)/]x being roughly tempera
ture independent. From Eq.~4! it follows that

]~1/x!/]x5]~1/xP!/]x2]a/]x ~5!

and the effect of alloying is evidently due to changes in b
the density of states at the Fermi level and the molec
field constanta. There are no strong grounds for believin
thata has a detectable concentration dependence. Its ma
tude resulted from calculated values ofI ~9.3, 9.5 and 11.3
mRy •cell for UMn2, UFe2 and UCo2, respectively9,22!
shows only a weak growing as we go from UMn2 to UCo2.
Thus, as a preliminary, we can neglect this effect by ass
ing a to be constant. It should also be noted that thea value
averaged over composition is unchanged with substitutio
Mn0.5Co0.5 for Fe atoms in UFe2 and related alloys provided
that we admit a to be changing linearly along th
UMn2–UCo2 series. Hence, the change in the magnetic pr
erties of the isoelectronic alloys is assumed to be ma
caused by a change in the density of statesN under alloying.

One mechanism of this change is the electron scatte
on the disorder in the 3d sublattice due to the random occ
pation by impurity of theB sites in theAB2 Laves system.
The simplified description of the scattering effect can
given in terms of the effective temperatureT* 23,24

T* 5bx, ~6!

where, in the general case, the coefficientb depends on the
type of doping impurity. This assumption is demonstrated
en
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Fig. 1 where the most pronounced effect of alloying can
imagined as the temperature shift in 1/x(T) dependences ac
cording to

1/x~T!.~1/C!~T1T* 2Q!. ~7!

Then the coefficientb in Eq. ~6! can be estimated from
the experimental data at any particular temperature as
ratio

b5
]~1/x!/]x

]~1/x!/]T
. ~8!

With the data at room temperature we obtainb54.3
60.5 K per at. % of Mn0.5Co0.5 which is the average of the
results for U~Fe12xTx)2 , U~Fe0.92xMn0.1Tx)2 and
U~Fe0.92xCo0.1Tx)2 alloys. The similar estimate follows di
rectly from the concentration dependence of the param
netic Curie temperature~Fig. 2!, namely,b53.760.5 K per
at. % of Mn0.5Co0.5. Thus the value ofb may be considered
to be temperature independent and equal to

b54.060.5 K/at.%Mn or Co ~9!

assuming a similarity in the scattering properties of Mn a
Co dopants in UFe2 and related alloys.

As evident from the estimate obtained, the scattering
fect plays an important role in suppression of the ferrom
netic state in UFe2 based alloys. Thus, for the experiment
value of the critical concentrationx.0.3 for disappearance
of ferromagnetism in U~Fe12xMnx)2 and U~Fe12xCox)2

alloys,1 the reduction in the Curie temperatureTC5160 K
resulted only from the scattering is estimated to be close
120 K. Therefore the rigid band model for UFe2-based alloys
has to be modified to account for this effect.

With the simplified description of scattering effect
terms of the effective temperature, the magnetic suscept
ity as a function of the electron number can be derived fr
the experimental data onx(T,x) in U~Fe12xMnx)2 and
U~Fe12xCox)2 alloys by introducing a corresponding subs
tution of (T2T* ) for argumentT in the x(T) dependence
where for concentrated alloysT* 5bx(12x) is used instead
of ~6!.

In Fig. 4 is shown the resulting dependencex vs. number
of valence electrons per 3d atom,n, measured from that for
UFe2 at T5250 K which points to the essential effect o
scattering in the magnetic susceptibility of the alloys studi

Notice that the temperature and concentration indep
dent contributionx0 in Eq. ~1! becomes the dominant part o
the magnetic susceptibility outside the range of20.7<n
<0.6. Its value in UFe2 and UFe2-based alloys~see Fig. 2! is
close to the magnetic susceptibility of UCo2 at T54.2 K
which equals 1.3531023 emu/mol.4 A comparison of this
value with the estimate of the exchange-enhanced spin
ceptibility in UCo2, 1.2831023 emu/mol,9 shows that it is
reasonable to suggest the contributionx0 to be also of the
spin nature. Therefore, for all alloys under consideration
magnetic susceptibility as a whole may be treated as be
enhanced spin paramagnetism, that proves the use of the
ceptibility data to recover the DOS curve for UFe2 through
the estimation of the Pauli spin susceptibility,xP(T)
}N(EF ,T), in framework of Eq.~2!.



e

Fe

fo

ri-
cep-

me

es.
of

rge

f

e

for

t

is
ters

ted
de-

red

in
s

ion
lu

bility

686 Low Temp. Phys. 25 (8–9), August–September 1999 Panfilov et al.
Figure 5 shows thexP(n) dependence for the rang
21.0<n<1.0 andT5250 K which has been obtained from
the x(n) data of Fig. 4 by using Eq.~2! with calculated for
UFe2 valuea54.03103 mol/emu~I 50.0095 Ry9!. As seen,
this dependence, and hence the dependenceN(n), takes the
form of a peak and its maximum corresponds to the U2
compound. In addition, some asymmetry inxP(n) aboutn
50 decreases noticeably after applying the corrections

FIG. 4. Magnetic susceptibility of binary alloys U~Fe12xMex)2

(Me5Mn, Co) atT5250 K as a function of the electron number measu
from that of UFe2 ~full line!: our data~h!; Refs. 3~3!; 12 ~d!; 14 ~n!; 17,
18 ~s!. The dashed curve is the same dependence obtained by taking
account the scattering effect in terms of the effective temperature. Bar
the curve correspond to errors in estimation of the magnitude ofb @see
Eq. ~9!#.

FIG. 5. The Pauli susceptibility atT5250 K as a function of the electron
number measured from that of UFe2: the curve marked by~d! corresponds
to the experimental data in binary alloys, the solid line includes correct
for the scattering and the dashed line is the same for the constant vo
conditions. Inset: a sketch of the model density of state curve.
r

the volume changes on alloying obtained with the expe
mental data for pressure dependence of the magnetic sus
tibility ~see Table I and discussion of the magnetovolu
effects! and for the lattice parameters in alloys.17,18 As is
clear from Fig. 5, the corrections ofxP(n) for both scattering
and volume change in alloys are rather small in themselv
Nevertheless, their effects on the magnetic properties
UFe2 based alloys appear to be important because of la
exchange enhancement resulted from conditionaxP;1.

Following Fig. 5, the density of states curve for UFe2 at
the vicinity of the Fermi level can be imagined as a peakh in
height andD in width which is placed on the background o
heightN0 with h/N0!1 ~see the insert in Fig. 5!. The esti-
mate N0.92 (spin•Ry•cell)21 follows from the valuexP

0

.2.231024 emu/mol, corresponding approximately to th
peak pedestal. The valueh.18~spin•Ry•cell!21 results from
the estimate of the total density of state at the Fermi level
UFe2, N[N01h.110~spin•Ry•cell!21, obtained from Eq.
~4! by extrapolation of the experimental 1/x(T) dependence
for UFe2 in the paramagnetic region toT50 K ~see Fig. 6,
dashed line! that yieldsxP(0).2.631024 emu/mol. As is
evident from Fig. 5, thexP(n) peak forT5250 K hasdn
.1.5 electrons per 3d atom in width and contains of abou

S;dn~xP
max2xp

0!/~xP
0 1xP

max!.0.15 states/cell. ~10!

With the S and h values mentioned above the estimateD
.0.017 Ry can be obtained if for simplicity the peak form
taken to be a triangle. Thus, the set of the model parame
is

N0.92~spin•Ry•cell!21,
~11!

h.18~spin•Ry•cell!21, D.0.017 Ry.

To check the validity of the model parameters estima
~11! we have applied them to describe the temperature
pendence of the magnetic susceptibility for UFe2 by using

to
on

s
me

FIG. 6. Temperature dependence of the reciprocal magnetic suscepti
for UFe2. The model descriptions of Eq.~12! ~curve 1! and Eq.~16! with
l50.2~K•emu/mol!21 ~curve2!.
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Eqs. ~2! and ~3!. With a linearized approximation for th
Fermi–Dirac distribution function25 the x(T) is given by

1

x~T!
.

1

xP~0!
1gT2a ~12!

with

g5
5.55hkB

4mB
2~N01h!2D

5
5.55kB

4mB
2S S h

N01hD 2

. ~13!

As a consequence, the temperature dependence of the
netic susceptibility obeys the Curie–Weiss law~see Fig. 6!
with parameters

C5g21, Q5
C

xP~0!
@axP~0!21#. ~14!

The resulted estimates,C.1.6 K•emu/mol andQ.250 K,
are in reasonable agreement with the experimental va
C51.2– 1.4 K•emu/mol andQ.170 K3,12,17 if we keep in
mind the simplified character of thex(T) description.

The approach used gives only the general features o
electronic structure and its relation to the magnetic proper
in UFe2. To get a more rigorous treatment of the experime
tal data some refinements of the analysis would be in
duced. Thus, along with the electron scattering, the chan
in the density of states for isoelectronic UFe2 based alloys
may be due to deviation from the rigid band behavior cau
by formation under alloying of the impurity subbands. In th
case the DOS of alloy is represented as a superposition o
DOS for individual compounds in the ratio determined
their concentration. For U~Fe12xTx)2 alloys, a rough esti-
mate of this effect givesDN/N;20.07 for x51 provided
that we neglect the scattering. A moderateDN/N value ob-
tained suggests that DOS of UMn2 and UCo2 are not differ-
ent essentially from that of UFe2. So, the rigid band model is
rather good approximation for these systems~see also8!.

It should be noted that estimated value for the density
states at the Fermi level in UFe2, N(EF)
.110~spin•Ry•cell!21, is found to be somewhat less tha
the calculated one, 143~spin•Ry•cell!21 @Refs. 7 and 9#. To
eliminate this discrepancy a more appropriate value ofa in
Eq. ~4! should be chosen.

Furthermore, on closer examination of the magnetic s
ceptibility, we have to take into account for a substan
cancellation of the 5f spin moments on the uranium atom
by the orbital contribution.9–11 As a result, the magnitude o
N derived from the measured susceptibility appears to
underestimated.

In addition, the refined version of the Stoner model~4! is
required as well. In particular, the spin-fluctuation mech
nism~SF! could be taken into account. In the simplified for
SF leads to an additional term in the molecular field para
etera26,27

a~T!.a~0!2lT, ~15!

where l is a constant determined by the band struct
parameters.26 Substitution of Eq.~15! into Eq. ~12! gives

1

x~T!
.

1

xP~0!
2a~0!1~g1l!T. ~16!
ag-
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As a result, the modified Curie–Weiss parameters are
fined as

C* 5
1

g1l
, Q* 5

C*

xP~0!
@a~0!xP~0!21#. ~17!

For UFe2, the upper limit l.0.8~K•emu/mol!21 follows
from the experimental value of the Curie constant provid
the latter is completely determined by SF mechanism. U
fortunately, at present we have no direct quantitative e
mate of the real role of SF in the magnetic properties in UF2

and related alloys. It is notable that the better agreem
between the model description~12! and experimentalx(T)
dependence in UFe2 ~Fig. 6! can be obtained by taking S
into account. In addition, becauseC is approximately con-
stant in UFe2-based alloys~see, for example,12!, the SF pa-
rameterl can be assumed not to be critically dependent
concentration. From this fact combined with a small val
lT in itself @(lT/a)!1 for the temperature range und
consideration# one may speculate that SF does not play
important role in the behavior of the magnetic susceptibi
of UFe2 system under alloying.

3.2. Pressure effects

A phenomenological treatment of the experimental v
ues ofd ln x/dP can be given in the framework of the Curie
Weiss law~1! as

d ln x

dP
5

x0

x

d ln x0

dP
1

x2x0

x S d ln C

dP
1

1

T2Q

dQ

dPD .

~18!

Since for UFe2-based alloysx0 /x!1, a rough estimate
d ln x0 /dP'd ln x~UCo2!/dP.22 Mbar21 is assumed to be
reasonable. Thus, the derivativesd ln C/dP anddQ/dP can
be evaluated from Eq.~18! by using the available experimen
tal data ford ln x/dP at two different temperatures~Table I!.
For UFe2 and U~Fe12xMnx)2 alloys with x50.1, 0.25 and
0.3, these values appear to be weakly dependent on the
centration and equal to

d ln C/dP52661 Mbar21,

dQ/dP526207100 K•Mbar21. ~19!

Notice that the estimate fordQ/dP agrees closely with value
dTC /dP.20.5 K/kbar resulted for UFe2

4,15 and
U~Fe12xMnx)2

28 alloys. As to the pressure derivative of th
Curie constant, its magnitude appears to be surprisely la
At least such value is not resulted from simple band
proach~13!, ~14! which predictsd ln C/dP;0 provided the
uniform deformation of the band is assumed. It seems lik
that large pressure dependence ofC is a peculiar feature of
UFe2-based alloys. The origin of this peculiarity is not clea

In the context of the Stoner model, Eq.~4!, the pressure
effect,d ln x/dP, is given by

d ln x

dP
5

d ln xP

dP
1axS d ln xP

dP
1

d ln a

dP D
[

d ln N

dP
1axS d ln N

dP
1

d ln I

dP D . ~20!
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It follows from Eq. ~20! that the value ofd ln x/dP for dif-
ferent temperatures and/or compositions of alloys can be
proximated by a linear function of the magnetic suscepti
ity provided that the parametersd ln N/dP, d ln I/dP and a
(}I ) are weakly dependent on temperature and composit
The experimental values ofd ln x/dP for U~Fe12xMnx)2 and
U~Fe12xTx)2 alloys are plotted against susceptibility
Fig. 7. In accordance with Eq.~20!, this dependence is clos
to a linear one, described by the following relation betwe
the parameters:

d ln N

dP
1

d ln I

dP
520.1660.03 Mbar21, ~21!

d ln N

dP
'23 Mbar21. ~22!

As seen from Eq.~21!, a nearly full compensation for th
pressure effects in the density of statesN and interaction
parameterI is found. In such a situation, the total effe
d ln N/dP1d ln I/dP appears to be strongly dependent on
details of the behavior of both components under alloy
and with the temperature change. Probably, the latter
reason for a strongerd ln x/dP vs.x dependence at the origi
of the coordinates~see inset in Fig. 7! which contains the
room temperature data. The inclusion of the termsg
1l)T of Eq. ~16! into consideration leads to an addition
contribution into the initial sumd ln N/dP1d ln I/dP in Eq.
~20!:

2
~g1l!T

a S d ln~g1l!

dP
1

d ln N

dP D . ~23!

A rough evaluation of this term forT5293 K can be made
by using the experimental data forg1l.C21

.0.8~K•emu/mol!21 @see Eq. ~17!#, d ln(g1l)/dP

.2d ln C/dP;6 Mbar21 and d ln N/dP;23 Mbar21 which
gives

2
~g1l!T

a S d ln~g1l!

dP
1

d ln N

dP D.20.15 Mbar21.

~24!

FIG. 7. Dependence ofd ln x/dP on x in U~Fe12xMex)2 alloys. Me5Mn,
(Mn0.5Co0.5!, Co. Inset: the data atT5293 K, the initial slope of the depen
dence is given by dashed line.
p-
-

n.

n

e
g
a

With estimate obtained the resulted slope ofd ln x/dP vs. x
dependence appears to be nearly twice as large as the i
one that is in a reasonable agreement with experimental
~inset in Fig. 7!.

It should be noted that the corrections~24! do not de-
pend obviously on a specific mechanism for the tempera
dependence of the magnetic susceptibility and can be q
titatively included in an extended analysis of the press
effects. In any case such inclusion remains the conclus
about a nearly complete compensation of pressure effec
N and I unchanged. Thus, on account of their small mag
tude, the corrections mentioned above can be incorpor
into the error bar for the total effect:

d ln N/dP1d ln I /dP520.1660.15 Mbar21. ~25!

Substitution of the bulk modulus valueB.1.4 Mbar, ob-
tained from the sound velocity study in a UFe2 single
crystal,29 into Eq. ~25! gives

d ln N/d ln V1d ln I /d ln V50.2260.2. ~26!

It should be noted that thed ln x/dP data in Fig. 7 cor-
respond to alloys with different derivative ofx with respect
to a number of conduction electrons per atomn ~see Fig. 4!.
Thus the lack of noticeable deviations of these data from
general linear run indicates that for UFe2 and its alloys ef-
fects of electron transfer under pressure are likely to
small. The conclusion obtained is confirmed by theoreti
estimate for this effect.7

In order to extract the change ofI with volume from Eq.
~26!, the valued ln N/d ln V have to be known. As a first step
the estimated ln N/d ln V.2 obtained from the experimenta
data in the inset of Fig. 7 can be appropriate, which agr
closely with value calculated for UFe2 in paramagnetic
state22

d ln N/d ln V51.85. ~27!

The latter is assumed to be more realistic and has been
to obtain

d ln I /d ln V521.660.2. ~28!

This evaluated derivative is close to that obtained
strong itinerant paramagnets-vanadium,20 palladium alloys30

~Fe-Co!Si alloys,31 Ni3Al and TlCo compounds,32 for which
the d ln I/d ln V values fall in the range from20.7 to 21.3.
On the other hand, these values differ essentially from
results of the LSDA calculations for UFe2 ~20.17,22! and for
a number of d-metals and their compounds~from 0 to
20.233!. Thus, it may be suggested that the LSDA metho
employing the exchange-correlation potential of a unifo
electron gas, is not well suited for an explanation of t
volume dependence ofI in the systems with narrow band
such asd- and f-metals. For these systems, the Hubbard
proach, which takes into account the energy of the int
atomic Coulomb repulsionU, is more appropriate descrip
tion. In the context of this approach34,35 the relation between
interaction parameterI and the band widthW is given by

d ln I

d ln V
5

d ln W

d ln V
f ~W/U,n!. ~29!
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Here, the coefficientf <1 depending on the ratioW/U, the
band filling n and the crystal structure type. ForU5`, f
appears to be unity and the band width becomes the
energy parameter yieldingud ln I/d ln Vu<ud ln W/d ln Vu.
Typical estimates ofd ln I/d ln V for d-metals within the
Hubbard model33,36 are in agreement with the experime
confirming the predominant role of short-range correlatio
in electron interaction ford-metals and their compounds, in
cluding UFe2.

4. SUMMARY

The study performed makes it possible to conclude:
—Effects of deformation of the band under alloyin

caused by i! the electron scattering, ii! the assumed non
rigidity resulted from formation of the impurity subband
and iii! chemical pressure are comparable in their influe
on the magnetic phase diagram with the band filling chan

—The Fermi level of UFe2 is found to be located just a
the top of a small and narrowN(E) peak. This peak is the
only peculiarity in the density of states detected in t
U~Mn–Fe–Co!2 system. The quantitative estimates for t
peak parameters are obtained.

—The temperature and pressure dependence of the m
netic susceptibility in the U~Mn–Fe–Co!2 system is satisfac
torily described by the enhanced Pauli spin contribut
within the band model. Probably, the uranium spin and
bital contributions are roughly canceled at all these con
tions considering their functional dependence on the b
structure parameters to be the same.

—There is no noticeable pressure effect on the Fe
level caused by the relative shift of bands with different sy
metry and the corresponding electron transfer between th

—Nearly full compensation for the pressure effects
the density of statesN and interaction parameterI is found.

—Value for volume derivatived ln I/d ln V confirms the
predominant role of the short-range correlations in the e
tron interaction in the compounds considered.

Some numerical discrepancy between the band mo
used and the experimental data for the magnetic suscep
ity can be attributed to neglecting of the orbital contributi
as well as the spin fluctuations effect.
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Cooper pairing of two-dimensional electrons in a quantizing magnetic field and the
fractional quantum Hall effect
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A brief review of the current state of the theory of fractional quantum Hall effect~FQHE! is
given along with the assumption of possible connection between the experimentally observed
features of the Hall resistanceRH of a two-dimensional (2D) electron system in a strong
quantizing magnetic field for a fractional filling factor of the lowest Landau leveln5q/(2n11)
with q>2, which cannot be described by the Laughlin wave function antisymmetric
relative to pair transpositions, and the Cooper pairing of 2D electrons. It is assumed that the
electron–electron attraction essential for Cooper pairing can be due to the interaction of 2D
electrons with the surface acoustic waves (2D phonons! and the surface 2D plasmons
localized near the crystal interfaces~heterojunctions! in the vicinity of inversion layers in the
metal–insulator–semiconductor~MIS! structures and heterostructures. The coexistence
of coupled electron pairs and unpaired electrons under the FQHE conditions must lead to
peculiarities ofRH for values ofn described by the Halperin relation following from the symmetry
properties of the ‘‘mixed’’ wave function of pairs~bosons! and electrons~fermions!. This
relation makes it possible in principle to describe all experimental data on FQHE. The summation
of ‘‘ladder’’ diagrams diverging according to a power law forT→0 leads to a
Bethe–Salpeter-type equation for the vertex part of the electron–electron interaction for a 2D
system in a quantizing magnetic field taking into account electron–electron and
electron–hole pairing in the Cooper and zero-sound channels. This equation is used to calculate
the critical temperatureTc of the phase transition to the state with coupled Cooper pairs
and to prove that the value ofTc in the ultra-quantum limit is independent of the effective mass
of electrons, i.e., on the 2D density of states. The phase diagram of the 2D system is
constructed for the variable electron concentration and magnetic field. It is shown that the region
of Cooper pairing of 2D electrons in the case of strong attraction almost coincides with the
FQHE region forn,1, while the region of electron-hole pairing with the formation of charge-
density waves~CDW! is expelled to the region withn.1, which is in accord with the
experimental data concerning the CDW-induced features of the longitudinal resistanceRxx for
n5(2n11)/2 with n>2. © 1999 American Institute of Physics.@S1063-777X~99!01708-9#
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1. INTRODUCTION

In 1998, the Nobel prize in physics was awarded to T
and Sto¨rmer1 for experimental observation of the fraction
quantum Hall effect~FQHE! in two-dimensional (2D) elec-
tron systems in a quantizing magnetic field~QMF! and to
Laughlin2 for the theoretical explanation of this effec
Laughlin’s theory2 based on the Justrow-type3 variational
wave function antisymmetric relative to pair transposition
particles~fermions! explained the existence of singularitie
~plateau! in the Hall resistanceRH in the case when the fill-
ing factorn5NS /NL ~whereNS is the number of 2D elec-
trons andNL the degeneracy of the Landau level~LL ! per
unit area! of the Lowest LL assumes fractional value
n51/m with odd denominatorsm52n11 (n51,2,3,...) or
n5(121/m) in view of the electron–hole symmetry of th
excitation spectrum.
6901063-777X/99/25(8–9)/12/$15.00
i

f

It should be noted that the multielectron wave functi
C of the ground state of a 2D system in the ultra-quantum
limit, containing products of uniformm-degree polynomials
of differences of complex 2D coordinateszj andzk for elec-
trons, which was used by Laughlin2 had been constructed fo
the first time by Bychkov, Iordanskii, and Eliashberg4 before
the FQHE was discovered.

Laughlin’s contribution was not only that he construct
independently the polynomial variational functio
C;P j ,k(zj2zk)

m for describing an ‘‘incompressible’’
quantum fluid of 2D electrons in a QMF, but primarily tha
he noted a remarkable analogy between the square of
modulus of C and the partition function of a classica
charged 2D plasma against a uniform compensating ba
ground with a logarithmic law describing the Coulomb inte
action of particles with a ‘‘charge’’Q5m. Proceeding from
this formal analogy, Laughlin2 proved that the adiabatic in
© 1999 American Institute of Physics
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clusion of an additional magnetic flux quantumw05hc/e is
equivalent to the emergence of a fictitious unit ‘‘charge’’ th
must be screened completely due to a redistribution
plasma particles with ‘‘charge’’m. However, since real par
ticles ~electrons! in a 2D system possess the chargee, this
means that each flux quantum is ‘‘screened’’ by a quasip
ticles ~quasi-hole! with the fractional effective charge
e* 5e/m. The size of quasiparticles is determined by t
screening radius which has the same order of magnitud
the magnetic quantum lengthl H5A\c/eH in the ultra-
quantum limit, while their effective chargee* is connected
with the Hall conductivitysH[sxy through the gauge in
variance condition2 leading to fractional values o
sH5e* e/h5e2/hm in the plateau region, where the long
tudinal components of the conductivity and resistance t
sorssxx andRxx vanish.1

Laughlin’s wave function2 describes the ground state
a system of strongly interacting 2D electrons, in which each
electron corresponds tom magnetic flux quanta. This follows
directly from the expression for the filling factor of the low
est LL if we assume thatNL51/2p l H

2 5H/w0 so that
n5NSw0 /H[Ne /NF , whereNe5NSS is the total number
of electrons andNF5HS/w0 the total number of flux quanta
in a 2D system of areaS.

However, subsequent experiments5–7 proved that singu-
larities in sH and RH are also observed for filling factor
n5q/m with q>2. In this connection, Halperin8 proposed
that the fractionsn52/m andn5(122/m) can be a result of
formation of quite compact coupled electron pairs in the 2D

system and constructed a Laughlin-type wave functionC̃
symmetric relative to transpositions of such pairs~bosons!,
but preserved its antisymmetry to transpositions of electr
within each pair. If all the electrons in the 2D system are
coupled into pairs, singularities inRH andsH must be mani-
fested for n54/p, where p is an arbitrary even number
p52(2n11) or p54(n11). Along with fractional values
of the filling factor n52/(2n11) with odd denominators
prime fractionsn51/(n11) appear in this case with arb
trary ~including even! denominators. In subseque
publications,9,10 a more detailed analysis of the structure a
energy of the ground state of a 2D system was carried ou
for the values ofn52/3, 2/5, and 2/7 as well as for a hal
integral value of the filling factor for the lowest LL fo
n51/2.

Halperin8 also proved that singularities inRH andsH of
a 2D system containing simultaneously coupled elect
pairs and uncoupled electrons must be manifested for fil
factors

n5
4m1p24r

mp2r 2 . ~1!

Here, as in Ref. 2, the exponentm of the polynomial
(zk2zj )

m determining exchange correlations between
paired electrons is odd, while the indexp responsible for
correlation between coupled electron pairs is even, and
index r responsible for correlations of the electron–pair ty
can have any parity. Expression~1! contains a wide range o
rational fractions and provides in principle a description
t
f

r-

as

-

s

n
g

-

he

r

all the experimentally observed features ofRH under the
FQHE conditions as well as the singularities ofRH such as
fractions with even denominators 2n which have not been
observed as yet.

Moreover, it was noted8 that if 2D electrons form
coupled many-particle complexes (n-multiplets!, the wave
function of the Laughlin type leads to singularities ofRH for
filling factors n5n2/k, where the numbersn and k must
have the same parity, which corresponds to any rational f
tion in the general case. However, a specific dynamic mec
nism of formation of coupled pairs orn-multiplets in 2D
systems in QMF was not considered in Refs. 8 and 9.

The FQHE theory was developed subsequently in s
eral different directions associated with fundamental to
logical properties of 2D space and electron–electron inte
actions in 2D systems. These trends include, for examp
the anyon FQHE model based on the permutation relati
PjkC5exp(ipa)C with an arbitrary fractional statistical pa
rametera ~instead of the integral valuesa50 for bosons and
a51 for fermions!. This corresponds to the so-called inte
mediate statistics for special 2D quasiparticles~anyons!,11,12

the values ofa51/m leading directly to fractional filling
factorsn51/m. However, the fractionsn5q/m with q.1
can be explained only by introducing a special ‘‘hierarchi
theory which presumes that excitations with another fr
tional value of a are formed over the gas of excitation
~anyons! with one fractional statistical parameter.

It should be noted that the anyon model is also treated
a version of the theory of high-temperature superconduc
ity ~HTSC!,11 but the extent of two-dimensionality of th
electron spectrum in layered crystals of cuprate metal ox
compounds~MOC! exhibiting HTSC13,14 is apparently insuf-
ficient for the existence of anyons. Besides, the FQHE w
also explained on the basis of field-theoretical 2D models of
compound fermions15 and skirmions.16 However, all these
theories are characterized by a somewhat formal appro
and rather complicated mathematical apparatus masking
physical meaning of the FQHE.

At the same time, a number of features of the FQH
~such as the emergence of fractional values ofn5q/m with
q.1) can be explained on the basis of comparatively sim
concepts similar to those used in the standard theory of
perconductivity~e.g., Cooper pairing of electrons, magne
flux quantization, and dynamics of Abrikosov vortices
type II superconductors!.

In this connection, let us consider briefly the superco
ductivity in strong magnetic fields. The problem on Coop
pairing of electrons in layered metals and 2D electron sys-
tems due to the electron–phonon interaction~EPI! in strong
QMF was analyzed by us18 even before the FQHE1 and the
integral quantum Hall effect~IQHE!18 had been discovered
It was proved18 that in the self-consistent field approxima
tion, the superconducting transition temperatureTc as a func-
tion of the magnetic field strengthH must experience gian
oscillations with the periodDH5H/N, whereN is the num-
ber of the upper filled LL, and with sharp drops inTc almost
to zero at the points of intersection of the Fermi level w
the next LL. A similar result was obtained by Manivet al.19

in the semi-classical approximation in the range of ult
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strong QMF (H.120 T) for the magnitude of the superco
ducting order parameterD0(H) for layered crystals of high-
temperature superconductors. This type ofTc(H) oscilla-
tions, which are similar to de Haas–Van Alphen oscillatio
in normal metals, were considered theoretically earlier20–22

for isotropic three-dimensional (3D) type II superconductors
near the upper critical fieldHc2 and later23–25 for strongly
anisotropic quasi-one-dimensional superconductors with
open Fermi surface. Graber and Robins26 observed the de
Haas–Van Alphen effect experimentally in the layered
perconductor NbSe2 above and belowHc2(T). After the dis-
covery of IQHE and FQHE, the Cooper pairing of electro
in 2D systems was considered by Haldane and Rezayi.27

Simonyanet al.28 reported recently on possible observ
tion of superconductivity atT,1 K in Si-based metal–
insulator–semiconductor~MIS! structure with an anoma
lously high mobility of 2D electrons. Phillips et al.29

proposed a plasmon mechanism of such a superconduc
based on Cooper pairing of 2D electrons due to their inter
action with intrinsic 2D plasmons which have an acousti
type dispersion relation30 vq;q for q→0 and have the roo
spectrumvq5(2pe2NSq/me* «0)1/2 for qÞ0 ~whereme* is
the effective electron mass and«0 the permittivity of the
lattice!. However, such a mechanism is hardly probable si
the phase velocity of 2D plasmons is anomalously high fo
q→0, vq /q5c/A«0 ~where c is the velocity of light in
vacuum! and exceeds considerably the Fermi velocity
electronsvF5\kF /me ~where kF5A2pNS). Moreover, a
wide region of strong quantum Landau damping exists
q>kF andv<vq due to the decomposition of plasmons in
electron–hole pairs in which electron–electron Coulomb
pulsion prevails.

On the other hand, it was proved by us earlier31 that
weakly damped surface 2D plasmons with a root dispersio
relation and a relatively low frequency can exist near
interface ~heterojunction! between semiconductors wit
‘‘light’’ electrons and ‘‘heavy’’ holes~as, for example, in
GaAs/AlGaAs heterostructure!. The interaction between
such plasmons can lead to Cooper pairing of degenerateD
electrons. In addition, in layered semiconducting systems
must take into account the existence of surface 2D phonons
localized at the interfaces between crystals~see below!.

In this paper, we consider the possible effect of Coo
pairing of 2D electrons in a strong QMF on the peculiariti
of the FQHE. Since the EPI between degenerate 2D elec-
trons in the surface inversion layers and the bulk acou
and optical phonons in semiconducting crystals is wea
than the Coulomb repulsion, we assume here that the st
electron– electron attraction required for Cooper pairing
2D electrons can be due to the effective EPI with surfaceD
phonons at the interface between the semiconducting~Si!
crystals and the insulator (SiO2) in a MIS structure or at the
heterojunction between pure and doped semiconduc
crystals in heterostructures of the GaAs/AlxGa12xAs type. In
the latter case, an additional mechanism of attraction ca
the interaction of ‘‘light’’ 2D electrons in the GaAs crysta
with surface 2D plasmons31 whose existence is associate
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with collective ~plasma! oscillations of ‘‘heavy’’ holes in
AlGaAs.

We shall use the equation for the vertex compon
~four-pole! Gee of the electron–electron interaction, which
similar to the Bethe-Salpeter equation and was obtained
the summation of ‘‘ladder’’ diagrams diverging according
a power law forT→0 taking into account the processes
electron–electron and electron–hole pairing in the Coo
and zero-sound channels to calculate the critical tempera
Tc of the transition of the 2D system to a state with couple
triplet Cooper pairs of electrons with parallel spins at t
lowest LL. It will be proved that in the ultra-quantum limi
the value ofTc is independent of the effective mass of 2D
electrons~i.e., the 2D density of states~DS! in the parabolic
regiong2D5me* /2p\2) so that Cooper pairing is possible i
principle even forme* !m0 ~wherem0 is the mass of a free
electron!, and the size of Cooper pairs is of the order of t
magnetic lengthl H and is smaller than the average distan
between particles forn5kF

2 l H
2 ,1.

We shall construct the phase diagram of a 2D system for
varying concentrationNS of 2D electrons and magnetic fiel
strengthH and prove that the region of Cooper pairing
electrons with a strong attraction virtually coincides with t
region of the FQHE forn,1, while the region of electron–
hole pairing with the formation of charge-density wav
~CDW!32 is expelled to the sector of the FQHE withn.1,
which is in qualitative agreement with experimental dat33

on observation ofRxx singularities due to CDW34–36 for n
5(2n11)/2 with n>2.

According to Halperin,8 the coexistence of coupled Coo
per pairs and unpaired electrons belowTc must lead toRH

and sH singularities for the values of the filling factorn
determined by the Halperin equation~1!. This relation allows
us to explain the features of the FQHE forn5q/(2n11)
with q>25–7 that cannot be explained on the basis of t
Laughlin theory.2 We shall discuss a significant differenc
between a state with local Cooper pairs in 2D systems in a
QMF for n,1 and the superconducting state of tradition
superconductors with strongly overlapping Cooper pairs.37

2. COOPER PAIRING OF ELECTRONS IN 2 D
SUPERCONDUCTORS IN A QUANTIZING MAGNETIC FIELD

It was noted in Introduction that the problem on Coop
pairing of electrons in two-dimensional superconductors
the type of layered dichalcogenides of transition metals
in 2D electron systems~MIS structures! due to the EPI in
strong QMF was considered earlier18 under the condition tha
the cyclotron frequencyvc5eH/me* c of electrons satisfies
the conditions

kBTc!\vc!\v̄ph, ~2!

wherev̄ph is the average~Debye! frequency of the phonon
spectrum andkB the Boltzmann’s constant. Since the Ferm
energy for metals isEF@\v̄ph, the number of filled quan-
tum LL is large,N'EF /\vc@1. For this reason, we used i
Ref. 18 the self-consistent field approximation in which t
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integral equation linearized for the spatially nonuniform s
perconducting order parameterD(r ) for T→Tc has the
form37

D~r !5E d2r 8K~r,r 8!D~r 8!. ~3!

Herer,r 8 are the longitudinal coordinates in the plane of t
layers (x,y), and K is the kernel of the nonlocalize
electron–electron interaction:

K~r, r 8!5
1

2
~V̄ph2V̄C!

3 (
n,n8

tanh~jn/2kBTc!1tanh~jn8/2kBTc!

jn1jn8

3 (
ky,ky8

Cnky
* ~r !Cn8k

y8
* ~r !Cnky

~r 8!Cn8k
y8
~r 8!,

~4!

whereV̄ph and V̄C are the matrix electrons of the electron
electron interaction~due to the EPI! and the screened Cou
lomb repulsion averaged over the transverse momentumqz

being transferred,jn is the energy of an electron at thenth
LL measured from the Fermi level, andCnky

(r ) the wave
function of a 2D electron in the Landau calibration:38

Cnky
~r !5

1

ALy

exp~ ikyy!Fn~x2kyl H
2 !, ~5!

which corresponds to the LL with the energy

En
~6 !5~n11/2!\vc61/2gmBH.

HereLy is the size of the 2D system along they-axis,g the
gyromagnetic ratio,mB Bohr’s magneton, andFn are the
eigenfunctions of the linear oscillator.

For kBTc!\vc , the main contribution to the sum ove
n andn8 in ~4! comes from the upper LL, i.e. from the term
with n5n85N. Consequently, we can assume to with
small terms of the order ofkBTc /\vc that jn5jn8
5dm(Tc) in ~4!, wheredm(T) is the shift of the level of
chemical potentialm(T) relative to the upper LL forTÞ0.
The quantitydm(T) is determined to an exponential acc
racy by the relation

dNS5NL@exp$dm~T!/kBT%11#21. ~6!

Here dNS is the number of 2D electrons at the upper LL
Introducing the filling factor for the upper level in the form
nN5dNS /NL , we obtain from~6! the relation

dm~T!52kBT lnS 12nN

nN
D , ~7!

which is valid forudmu,\vc/2 in the region 0,nN,1. As a
result, taking into account~4! and ~7! for Ly→`, we can
write Eq. ~3! in the form18
-

D~x!5NL~V̄ph2V̄C!

tanhS 1

2
lnu121/nNu D

kBTc lnu121/nNu

3E
2Lx/2

Lx/2
dx8D~x8! f N~x,x8!, ~8!

where

f N~x,x8!5E
2`

`

dx0FN~x81x0!FN~x82x0!3FN~x1x0!

3FN~x2x0!FN~x2x0!; ~9!

x05kyl H
2 , and Lx is the size of the 2D system along the

x-axis (Lx@ l H). Since the filling factornN changes periodi-
cally ~from 0 to 1! with the period

DH5H/N5H\vc /EF~N@1!. ~10!

with the filling ~or depletion! of the succeeding LL upon a
change inH, the value ofTc , in accordance with~8!, is also
an oscillating function ofH and exhibits deep depression
almost to zero at the pointsnN50 andnN51 at which the
Fermi level intersects LL, while the quantityTc as a function
of nN had broad peaks at the pointsnN51/2, when the upper
LL is half-filled. The width of the peaks depends on th
numberN of the upper filled LL and increases with decrea
ing N, i.e., upon an increase inH.

A similar result was obtained by Manivet al.19 in the
semi-classical approximation for the modulus of the sup
conducting order parameterD0(H) in the region of ultras-
trong QMF (H.120 T) for layered HTSC crystals. Oscilla
tions of Tc(H) and D0(H) in 2D superconductors in QMF
are similar to de Haas–Van Alphen oscillations observ
experimentally in layered crystals of NbSe2

27 and in cuprate
compounds YBaCuO.39,40

The following two important circumstance are wor
noting. First, according to~8!, the value ofTc for a 2D
system in a QMF does not depend on the electron densit
states~DS! in contrast to traditional superconductors.37,41

This means that forV̄ph.V̄C , Cooper pairing of 2D elec-
trons in a QMF is possible even forme* !m0 , when the
ultra-quantum limit\vc>EF is reached in really attainabl
magnetic fieldH>10 T, i.e., the conditions for the FQHE
are realized forn52EF /\vc,1. Second, Eq.~8! implies
that ‘‘ladder’’ diagrams in the Cooper channel of th
electron–electron interaction in 2D systems in QMF for
T→0 diverge according to a power law~in proportion to
1/Tn) in contrast to the logarithmic divergence typical
isotropic 3D superconductors41 ~see below!.

If we go over to the ultra-quantum limit, whenN50 and
n05n5NS /NL , the integrals with respect tox0 andx8 in ~9!
for the electron wave functionsF0(x)51/(p1/4Al H)exp
(2x2/2l H

2 ) for the lowest LL can be evaluated explicitly, an
the value ofTc is given by

Tc5NL~V̄ph2V̄C!/2kB . ~11!

In this case, the nonuniform order parameterD(x) depends
on x according to the exponential~Gaussian! law D(x)
5D0 exp(2x2/lH

2 ). It follows hence that the typical size o
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coupled electron pairs is equal tol H and is smaller than the
average distance between pairsr̄>(NS/2)21/2 for n5kF

2 l H
2

,1. For this reason, a macroscopic coherent condensa
Cooper pairs existing in the superconducting state of tra
tional superconductors41 is not formed in the 2D system for
T,Tc in the present case. If the Zeeman splittingDE
5gmBH>kBTc , the triplet Cooper pairing of 2D electrons
with parallel spins at the lowest LL is advantageous from
energy point of view.

It should be borne in mind, however, that the transiti
to the ultra-quantum limit is strictly speaking incorrect in t
self-consistent field approximation since 2D electrons form a
strongly correlated incompressible quantum liquid.2 In this
case, Cooper pairing can be described with the help of
Schrieffer variational function41

uC̃S&;)
k

exp$gkBk
1%uCL&5)

k
~11gkBk

1!uCL&,

whereBk
1 is the creation operator for a Cooper pair,gk the

Fourier component of the wave function for virtual phonon
anduCL& the Laughlin wave function2 describing the ground
state of the 2D system.

3. CONDITIONS FOR COOPER PAIRING OF ELECTRONS IN
SEMICONDUCTING 2D SYSTEMS

It is well known that the necessary condition for Coop
pairing of electrons due to the EPI is that the attraction
sociated with the exchange of virtual phonons must be st
ger than the screened Coulomb repulsion. The fulfillmen
this condition for metals withEF@\vph is facilitated due to
additional suppression of repulsion in view of the emerge
of a large Bogoliubov–Tolmachev logarithm lnEF /\vph in
the Morel–Anderson Coulomb ‘‘pseudopotential.’’41 Semi-
conducting 2D systems withEF5p\2NS /me* <\v̄ph do not
exhibit such a suppression and the conditionV̄ph.V̄C is
rather stringent.

In the longwave limit~taking into account the smallnes
of the electron Fermi momentumkF!p/a), the expression
for the matrix elementV̄ph describing the retarded attractio
between 2D electrons due to the exchange of virtual bu
acoustic and optical phonons and averaged over the tr
verse momentumqz being transferred can be written in th
form ~see Ref. 42!

V̄>
a2d

2L
@Da

2/MaS21g0
2/M̄av0

2#, ~12!

wherea is the lattice constant,d the average width of the
region of localization of 2D electrons in the inversion layer
L the crystal thickness,Ma andM̄a are the total and reduce
masses of atoms in the unit cell,Da is the deformation po-
tential for acoustic phonons with the phase~acoustic! veloc-
ity s, andg0 the deformation constant for nonpolar optic
phonons with frequencyv0 . Since the typical values o
d5(30– 50) Å ~see Ref. 43! is much smaller that
L'3000– 5000 Å, the effective attraction between 2D elec-
of
i-

e

e

,

r
-

n-
f

e

s-

trons and bulk phonons due to the EPI is weak and can
exceed the Coulomb repulsion whose averaged matrix
ment has the form

V̄C>2pe2/«0~ q̄i1ke!, ~13!

where \q̄i is the average longitudinal momentum bein
transferred (q̄i'kF), andke the reciprocal electron screen
ing length which is equal to 2/ae* for H50 ~where
ae* 5«0\2/me* e2 is the effective Bohr radius of electron; se
Ref. 30!, while in the ultra-quantum limitke5LH ~see Ref.
2!. Indeed, substituting into~12! the optical constant
g05D0/2a, whereD0 is the optical deformation potentia
which is abnormally large for GaAs crystals
D0'(42– 48) eV,44,45 and using the values of longi
tudinal and transverse optical phonon frequenc
v0'(270– 290) cm21 as well as the masses of Ga and A
atoms, for«0'13, me* '0.068m0 , andkF<2•106 cm21 un-
der the assumption that the contributions of all optical a
acoustic branches are approximately the same, and u
~13!, we obtain an estimate for the ratioV̄ph/V̄C<1022,
which apparently rules out completely the Cooper pairing
2D electrons due to the EPI.

However, we have disregarded the fact that a MIS str
ture must contain surface acoustic waves~SAW! and optical
‘‘interfacial’’ phonons of various types at the interface b
tween media, including the heterojunction between a p
GaAs crystal and doped semiconductor AlxGa12xAs or the
interface between the semiconductor Si and the insul
SiO2.

46,47 The interaction of 2D electrons with such SAW
~2D phonons! can be much more effective than with bu
phonons. Indeed, if the depthl of SAW penetration to the
bulk of the crystal is of the order of or larger than the wid
d of localization of 2D electrons in the surface inversio
layers and the phase velocitys̃ of SAW along the surface is
much smaller than the velocity of sounds in the bulk of the
crystal, the order of magnitude of the matrix element of t
EPI due to the exchange of virtual SAW can be estimated

ṼS>
a2Da

2

2Mas̃2 ~14!

and can be much higher thanV̄ph in ~12! if Da>D0 , d@a,
and s2@ s̃2. For example, the phase velocity and the rec
rocal penetration depth of a shear SAW at the interface
tween two crystals with different shear modulim1.m2 and
densitiesr1.r2 are given by

s̃5A~m1
22m2

2!/~m1r12m2r2!;

l i
215q1A12 s̃2/sti

2 , ~15!

wheresti5Am i /r i is the transverse sound velocity in thei th
crystal (i 51,2). It follows hence thats̃2!sti

2 if the quantities
Dm5(m12m2) andDr5(r12r2) satisfy the conditions

Dm!m i ; Dm/Dr!m i /r i ~ i 51,2!, ~16!

and l i>d if qi>kF<2•106 cm21. Thus, the conditions
V̄S@V̄ph and V̄S.V̄C can be satisfied in principle.

An indirect evidence of the existence of a strong EPI
Si–MIS structure can be the observation28 of superconduc-
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tivity suppressed by a longitudinal magnetic field. An ad
tional mechanism of electron–electron attraction~besides
SAW! in GaAs/AlxGa12xAs heterostructure can be the e
change of virtual surface plasmons which can exist due
the difference in the effective masses of electro
(me* 50.068m0) and holes (mh* 50.6m0) localized on differ-
ent sides of the heterojunction. It was proved in Ref. 31 t
the frequency of such plasmons for the same permittivity
the crystals is given by

vq5Vh~11A11ke
2/qi

2!21/2, ~17!

whereVh is the plasma frequency of ‘‘heavy’’ holes, so th
for qi,ke we obtainṽq5VhAqi /ke. The exchange of sur
face plasmons together with slow SAW can ensure in p
ciple the condition (ṼS1Ṽpl).ṼC , whereṼpl is the matrix
element of the electron–plasmon interaction, required
Cooper pairing of ‘‘light’’ electrons.

However, the abnormally small effective mass of deg
erate 2D electrons in GaAs, and hence the low D
g2D5me* /2p\ practically rules out the superconductivity fo
H50 in a GaAs/AlGaAs heterostructure in contrast to a S
MIS structure in which the effective electron mass in Si
much larger (me* '(0.19– 0.96)m0). Besides, the silicon
crystal has a multivalley band structure, which also fac
tates the enhancement of the mechanism of Cooper pa
due to an effective increase in the DS and an increase in
coupling constant.48,49

The situation changes radically in a strong QMF since
this case~see above and Ref. 18! the superconducting tran
sition temperature is determined by a combination of para
eters which is independent ofme* :Tc;NL[g2D\ve . For
this reason, Cooper pairing is possible in principle even
‘‘light’’ 2 D electrons withme* !m0 in GaAs ~see below!.

4. COMPETITION BETWEEN COOPER AND
ELECTRON–HOLE PAIRING IN 2 D SYSTEMS IN A
QUANTIZING MAGNETIC FIELD

It was proved in Ref. 18 in the self-consistent fie
approximation37 which in fact corresponds to summation
‘‘ladder’’ diagrams in the Cooper channel50 that the high
superconducting transition temperatureTc in 2D systems in
QMF is a linear function of the electron–electron interacti
constant and does not depend on the density of states
effective mass of 2D electrons@see~8! and ~11!#.

A similar result was obtained by Fukuyamaet al.32 in
the Hartree–Fock approximation for the electron–hole p
ing under the action of the Coulomb attraction in a 2D sys-
tem in the ultra-quantum limit. The critical temperature f
type II phase transition in a state with coupled electron–h
pairs ~excitons! and with a quantum CDW with the
wave vector Q051.568/l H ~i.e., with the spatial period
L052p/Q0'4l H) is independent of the electron DS and
given by

TCDW50,557n~12n!e2/«0l HkB . ~18!

In an arbitrary QMF, this problem can be solved by summ
up the ‘‘ladder’’ diagrams in the zero-sound channe50
-
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whose simplest element is the polarization operator forD
electrons, which is defined in the random-phase approxi
tion as18

Pe~x,x8;qy ,v!52(
n,n8

f ~En8!2 f ~En!

\v2En1En8

3E
2`

1` dky

2p
Fn~x2x0!Fn~x82x0!

3Fn8~x82x01y0!Fn8~x2x01y0!

3ei ~2x02y0!~x2x8!/ l H
2
, ~19!

where f (En) is the Fermi distribution function and
y05qyl H

2 . In the statistical limit (v→0) for the upper LL
(n5n85N), expression~19! assumes the form

Pe~x,x8;qy,0!522NL

nN~12nN!

kBT
FN~x,x8,y0!, ~20!

where

FN~x,x8,y0!5E
2`

1`

dx0FN~x2x0!FN~x82x0!

3FN~x82x01y0!FN~x2x01y0!

3cos@~2x02y0!~x2x8!/ l H
2 #. ~21!

It follows from ~20! that the ‘‘ladder’’ diagrams from the
perturbation theory for the vertex componentGeh of the
electron–hole interaction diverge according to a power l
(;1/Tn) for T→0 as in the Cooper channel. The summati
of these diagrams leads to a Bethe–Salpeter equation51 for
Geh ~Fig. 1!, whole pole component determines the critic
temperatureTCDW of the transition to a spatially inhomoge
neous state with a quantum CDW. Such an equation
analyzed by Moessner and Chalker35 for a large number of
filled LL ( N@1). In the ultra-quantum limit, all the integral
with respect tox, x0 , andx8 in ~20! and ~21! can be evalu-
ated explicitly. Taking into account the Coulomb interacti
as well as the EPI, we ultimately obtain

TCDW>0.681NL~V̄C1V̄ph!
n~12n!

kB
expS 2

Q1
2l H

2

2 D .

~22!

where the wave vectorQ1 and the periodL152p/Q1 for a
quadratic quantum CDW are determined from the condit
L1

252p l H
2 ~see Ref. 52!.

It follows from ~18!, ~20!, and ~22! that the maximum
value of TCDW as a function of the total filling factor
n5NS /NL is attained at the pointsn5(2n11)/2. This is in
good accord with the predictions of singularities of the tra
port resistanceRxx ~and probably the Hall resistanc

FIG. 1. Bethe–Salpeter equation for the vertex part of the electron–elec
interaction.



n
S

h

n

e
rr

s

o
-

-
a

nd

e
-

lle

f

r’’
rri
e

io
ch
ou
in

–
nd

t of
um

it

-

-
he
f
rre-

in
e
n

696 Low Temp. Phys. 25 (8–9), August–September 1999 E. A. Pashitski 
Rxy5RH) at these points34–36~see also Ref. 53!, which were
observed recently.33 It should be noted that a singularity i
RH for n55/2 was observed earlier for a GaSb–InAs–Ga
quantum well.54

It should be emphasized that expression~18! leads to a
too high estimate of TCDW'20 K for H'10 T and
NS;1011cm22,31 while theRxx singularities associated wit
CDW were actually observed by Lilly et al.33 at
T,0.15 K. This also refers to expression~22! and is appar-
ently due to the fact that strong many-particle correlatio
between electrons and holes in a Laughlin2 2D ‘‘incom-
pressible’’ quantum liquid are disregarded in the Hartre
Fock and self-consistent field approximations. These co
lations lead to breaking of electron-hole pairs~excitons! at
higher values ofT ~it will be proved below that this concern
the Cooper pairing also!.

Electron–hole pairing in 2D systems in QMF takes
place only when the screened Coulomb interaction is str
ger than the EPI (V̄C.V̄ph). If, however, the resultant attrac
tion between electrons (ṼS1Ṽpl) considered in Sec. 3 is
stronger than the screened Coulomb repulsionV̄C ~which
decreases with increasing magnetic field sinceke' l H

21

;H) due to the interaction of 2D electrons with slow SAW
and/or with the surface 2D plasmons, we must simulta
neously take into account the Cooper and electron–hole p
ing. In this respect, the situation for 2D systems in QMF, for
which the ‘‘ladder’’ diagrams in the Cooper and zero-sou
interaction channels have the same~power-type! divergence
for T→0, strongly resembles the situation in quasi-on
dimensional~chain! metals in which the corresponding dia
grams display the same~logarithmic! divergence. It is well
known that this necessitates the application of the so-ca
‘‘parquet’’ approximation.55–58

However, we can use here~in view of the discreetness o
the electrons spectrum of a 2D system in a QMF! a simpler
approach based on a Bethe–Salpeter type equation51 for the
vertex component~four-pole! Gee of the electron–electron
interaction, in which independent summation of ‘‘ladde
diagrams in the Cooper and zero-sound channels is ca
out ~Fig. 2!. The pole component of this equation determin
the critical temperatureTc of the transition to a state with
coupled Cooper pairs taking into account the competit
between electron–electron and electron–hole pairing me
nisms. Confining our analysis to the point-like instantane
interaction independent of spins for the sake of simplicity,
which the expression

G~0!~xl ,x2 ,x3 ,x4!5Vd~x12x2!d~x12x3!d~x12x4!, ~23!

FIG. 2. Equation for the vertex part of the electron–electron interaction
2D system in QMF with a discrete electron spectrum, obtained by indep
dent summation of ladder diagrams in the Cooper and zero-sound chan
b

s

–
e-

n-

ir-
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d

ed
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n
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holds50 for the initial vorticesGee
(0) and Geh

(0) , we can write
the equation shown graphically in Fig. 2~in the mixed
coordinate–momentum representation! and taking into ac-
count only the pole componentGee in the following form:

E
2`

1`

dxGee~qy ,x!5
NL

kBTc
E

2`

1`

dx8Gee~qy ,x8!H f̃ N~x8!

3@W̃ee2ṼC~0!#

tanhS 1

2
lnu121/nNu D

lnu121/nNu

2nN~12nN!F̃N~x8,y0!

3@W̃ee1ṼC~qy!#J . ~24!

Here, the functionsf̃ N(x8) and F̃N(x8,y0) are defined as
integrals with respect tox of expressions~9! and~21!, while
the quantity W̃ee.0 stands for the resultant electron
electron attraction due to the interaction with slow SAW a
with surface 2D optical phonons and 2D plasmons~in the
latter case, we should probably take into account the effec
the strong magnetic field on the plasma oscillation spectr
for ‘‘heavy’’ holes!. It follows from ~24! thatTc has a mini-
mum at pointsnN51/2 as a function ofnN, and is equal to
zero for nN50 or 1. Going over to the ultra-quantum lim

(N50) and assuming thatGee(x);e2x2/ l H
2

~in analogy with

D(x);e2x2/ l H
2
), we obtain the following approximate ex

pression forTc :

Tc>T0hF S b2
1

Ah
D tanhS 1

2
lnu12hu D

lnu12hu

;
0.681

h S 12
1

hDe22/hS b1
1

21Ah
D G . ~25!

where

T05e2kF/2«0kB ; b5«0kFW̃ee/2pe2;

h51/n5H/H0 , H05w0NS .

Hence, it follows thatTc.0 if b.1/Ah ~the necessary con
dition! and if the first term in the square brackets on t
right-hand side of~25!, which described the contribution o
the Cooper channel, is larger than the second term co
sponding to the contribution of the zero-sound channel~suf-
ficient condition!.

Figure 3 shows the dependences ofTc /T0 on the dimen-
sionless magnetic fieldh5H/H0 , calculated by formula~25!
for various values of the parameterb characterizing the re-
lation between the effective attractionW̄ee ~due to the EPI!
and the average unscreened Coulomb repulsion 2pe2/«0kF

between degenerate 2D electrons.

a
n-
els.
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It can be seen that forb>1, a transition to the state with
Cooper pairing in a 2D system is possible forH>H0 if
T,Tc , while such a transition forb,0.85 is possible only
in the region of fieldsH>2H0(h>2).

It should be noted thatT0>65 K and the fieldH0>4 T
for a GaAs crystal with«'13 for NS>1011cm22 and
kF5A2pNS>106 cm21. This apparently corresponds t
strongly exaggerated absolute values ofTc>20 K ~for h>3
and b>1), which appear due to the fact that stro
electron–electron correlations facilitating the breaking
Cooper pairs are not taken into account in the self-consis
field approximation. However, we can expect that the re
tive mutual effect of the Cooper and electron–hole pairing
take into account quite consistently since these processe
considered here in the same approximation.

The right-hand sides of Figs. 4~a!, 4~b!, and 4~c! show
the regions of Cooper pairing (Tc.0) in coordinates mag
netic field strengthH vs. 2D-electron concentrationNS ~in
the units of the fieldH05NSw0) for various values of the
dimensionless parametera connected withb through the re-
lation

a5bAH0 min/H0; H0 min5NS minw0 , ~26!

whereNS min'1011cm22 andH0 min'4 T. It can be seen tha
the region of Cooper pairing expands with increasinga and
fills almost the entire sectorH.H0 for a>0.75, while for
a<0.38 this region is expelled to the sectorH,H0,2H for
H<40 T ~i.e., to the region 1,h,2). This means that Coo
per pairing of 2D electrons is possible only in the interv
1/2,n,1, while the state withn51/2 is not realized~states
with n,1/2, however, can be realized in view of th
electron–hole symmetry!.

FIG. 3. Dependence ofTc on the magnetic fieldh5H/H0 for various values
of the parameterb: 0.7 ~curve1!, 0.85~curve2!, 1.0~curve3!, 1.5~curve4!,
and 2.0~curve5!.
f
nt
-
s
are

FIG. 4. Phase diagram on theH –H0 plane for a 2D system in the ultra-
quantum limit for various values of the parametera: 0.38 ~a!, 0.50~b!, and
0.75 ~c!. The state withn51/2 for a<3.8 can be formed only due to th
electron–hole pairing in the regionb,An(H<25 T).
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The left-hand sides in Figs. 4~vertical hatching! also
show the range ofb<1/Ah in which the electron–hole pair
ing involving the generation of CDW is possible fo
T,TCDW . It can be seen that with increasinga this region
shrinks rapidly and is expelled almost completely to the s
tor H,H0 for a>0.75@see Fig. 4~c!#. In view of the relation
h51/n, the latter is in qualitative agreement with the sing
larities of the transport resistanceRxx observed in 2D sys-
tems forn5(2n11)/2 with n>2,32 which are attributed to a
quantum CDW34–36having aTCDW peak at half the filling of
the upper LL.

5. COOPER PAIRING AND FQHE

The phase diagram in Fig. 4 shows that the region
Cooper pairing for 2D electrons virtually coincides with the
FQHE region in the case of a strong electron–electron att
tion, when the parametera;1.

It should be emphasized, however, that the state of aD
system belowTc in the ultra-quantum limit (n,1), when
the average distance between Cooper pairs R.̄A2/NS is
much longer than the diameterl H of a pair, differs signifi-
cantly from a macroscopically coherent superconduct
state in traditional superconductors with strongly overla
ping wave functions of Cooper pairs37,41 which display infi-
nitely large conductivity (s→`) and undamped Meissne
currents below the thermodynamic (Hc(T)) or the lower
critical @Hc1(T)# magnetic fields for type I or type II super
conductors, respectively.

Local triplet Cooper pairs in a 2D system atT,Tc un-
der the conditions of the FQHE do not overlap and behav
spin-independent transport phenomena almost in the s
way as unpaired ‘‘magnetized’’ electrons. This explains z
values of the diagonal components of the magnetoresist
(Rxx50) and conductivity (sxx50) tensors in the absenc
of scattering at defects in the regions ofH andNS , where the
Hall ~nondiagonal! component of the resistance (Rxy5RH)
and conductivity (sxy5sH) have a plateau corresponding
discrete quantum valuessH51/RH5e2n/2p\.

Thus, coupled Cooper pairs can coexist with uncoup
electrons in 2D systems atT,Tc if the electron–electron
attraction~due to the interaction with SAW and surface 2D
plasmons! is strong enough (a>1,b>1). For such a state
Halperin8 constructed a mixed wave functionC of the
Laughlin type,2 which is antisymmetric relative to permuta
tions of unpaired electrons and electron within each pair
symmetric relative to permutations of pairs. Such a mu
electron wave function of the ground state leads to singul
ties inRH andsH for filling factorsn satisfying the Halperin
relation ~1!.

If a 2D system containsNp coupled electron pairs an
Ne uncoupled electrons~for the total number of electron
NS52Np1Ne per unit area!, the requirement that the elec
trons and pairs must occupy the same region of 2D space
leads to the following relation8 betweenNp andNe :

Np

Ne
5

2m2r

p22r
, ~27!
-

-

f

c-

g
-

in
e

o
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d

d
-
i-

wherem is odd andp is even, while the numberr may have
any parity.

For T→0, when all electrons are coupled into Coop
pairs andNe50, relation ~27! implies that p52r so that
n52/r if rÞ2m in accordance with~1!. For odd values of
r 5(2n11), this corresponds to the results of numerous
periments on observation of the FQHE5–7 for the following
values of filling factor taking into account the electron–ho
symmetry of the perturbation spectrum:

n5
2

2n11
; n5

2n21

2n11
~n51,2,3,...!. ~28!

Even values ofr 54n, which rule out the case whe
r 52(2n11), correspond to simple fractionsn51/2n with
even denominators that have not been observed as yet~see
Ref. 10!.

On the contrary, atT→Tc , when the number of coupled
Cooper pairsNp→0, it follows from ~27! that r 52m
[2(2n11). In this case, the filling factor~1! for any ~even!
values ofp is equal ton51/m[1/(2n11), i.e., it is reduced
to simple Laughlin fractions with odd denominators
expected.2

However, not all values ofn from ~1! can be realized in
the case of Cooper pairing of 2D electrons since the relativ
numbers of free and coupled electrons

ne[
Ne

Ne12Np
5

p22r

4m1p24r
;

np[
2Np

Ne12Np
5

2~2m2r !

4m1p24r
~29!

in the temperature range 0<T<Tc depend onT and vary
from ne50 and np51 at T50 to ne51 and np50 at
T5Tc , the total number of particles being conserved (ne

1np51), which imposes certain limitations on the indic
m, p, andr .

For example, all values ofr 5p/2 ~exceptr 52m) cor-
respond to the valuesne50 andnp51 which are realized
only for T→0. According to Eq.~1!, n52/r 54/p can con-
tain in this case fractions with even denominators (n51/2
for p52r 58, n51/4 for p52r 516, and so on!. On the
contrary, the values ofr 52m ~but rÞp/2) correspond to
ne51 andnp50 at T>Tc . But since the values ofn, ne ,
andnp must be positive atT. ~but T,Tc), we must confine
our analysis, in accordance with~1! and~29!, to the values of
r andp ~for a fixedm) which satisfy the inequalities

r ,p/2; r ,2m; r ,m1p/4; r ,Amp. ~30!

For example, form53 at T50, whenne50 andnp51, we
find from ~1! that n52/3 for p52r 56, n51/2 for p52r
58, andn52/5 for p52r 510, while at the pointT5Tc ,
whenne51 andnp50, we obtainn51/3 for r 56 for anyp
~except p512). If we take into account the fact that th
relative numbernp of paired electrons, which can be re
garded as an ‘‘order parameter,’’ decreases monotonic
with increasingT ~probably, according to a law close to th
temperature dependence of the gap width in the B
theory!,41 we can construct the following hierarchy of frac
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tional values ofn for m53 for various values ofT at which
the relevant singularities inRH must be observed, startin
from low values ofT:

np55/6 ~ne51/6!: n52/11 for r 51 and p54;

np54/5 ~ne51/5!: n55/7 for r 52 and p56;

np52/3 ~ne51/3!: n53/5 for r 52 and p58 or

n53/7 for r 54 and p510;

np51/2 ~ne51/2!: n54/7 for r 51 and p512,

n51/2 for r 52 and p512,

n54/9 for r 53 and p512,

n55/9 for r 54 and p512 or

n54/11 for r 54 and p520

or for r 55 and p512.

Similarly, we can obtain the sets ofn for different values
of np ~i.e., different values ofT) for other values ofm also.
For example, form55 at T50, when np51(ne50) and
r 5p/2, we obtain, in addition to the fractions listed abo
~n52/3, 1/2 and 2/5!, the fractional valuesn51/3 for
p52r 512, n52/7 for p52r 514, n51/4 for p52r 516,
and n52/9 for p52r 518. At T5Tc , when np50 (ne

51), we obtain n51/5 for r 510 for any p ~except p
520).

For intermediate temperatures (0,T,Tc) for m55, we
obtain from~1! and ~29! @together with~30!# the following
hierarchy:

np54/5 ~ne51/5!: n55/9 for r 52 and p58;

np53/4 ~ne51/4!: n52/9 for r 52 andp520 or

n54/11 for r 54 and p512;

np52/3 ~ne51/3!: n53/5 for r 50 andp510 or

n53/7 for r 52 and p512;

np51/2 ~ne51/2!: n54/11 for r 51 and p520,

n52/9 for r 58 and p520 or

n52/5 for r 50 and p520.

For m57 atT50, whennp51(ne50), we obtain the addi-
tional fractionsn52/11 for p52r 522, n51/6 for p52r
524, andn52/13 for p52r 526, while atT5Tc , when
np50 (ne51), we obtainn51/7 for r 514 and anyp ~ex-
ceptp528).

In the temperature range 0,T,Tc , for m57 we ob-
tain, in accordance with~1!, ~29!, and~30!,

np54/5 ~ne51/5!: n55/11 for r 52 and p510;

np53/4 ~ne51/4!: n52/7 for r 58 and p520;

np52/3 ~ne51/3!: n52/5 for r 52 and p512,

n51/3 for r 52 and p516,

n53/11 for r 54 and p518 or
n51/5 for r 58 and p522;

np51/2 ~ne51/2!: n51/4 for r 52 and p528,

n52/9 for r 54 and p528,

n51/5 for r 56 and p528 or

n51/6 for r 510 and p528.

If we carry out additional antisymmetrization of th
Halperin wave function8 for a system of coupled electro
pairs relative to transpositions of electrons from differe
pairs and take into account the fact that transposition of e
trons within a pair are immaterial in the calculation of th
ground-state energy, we can exclude the fractional value
n with even denominators, which are not observed in exp
ments. In this case, the indexp determining the double num
ber of flux quanta per pair is given by

p52~2s1u1w!, ~31!

wheres andw are odd numbers corresponding to exchan
correlations for all possible transpositions of electrons,u is
an arbitrary integer (u>0), and the even number 2u corre-
sponds to the symmetric of the wave function under trans
sitions of the centers of mass of the pairs.

If we assume that the energy minimum corresponds
the minimum value ofu50 ~see Ref. 8!, so that transposi-
tions of pairs are unimportant, the admissible value of
index p are

p52@2~2l 11!1~2k11!#; l ,k50,1,2,3,..., ~32!

or p52(2n11)56,10,14,...~for n51,2,3,...). In this case,
relation ~1! leads to fractional values of filling factor with
odd denominators only:n5q/(2n11), q>1.

6. CONCLUSION

Thus, the hypothesis on possible Cooper pairing of 2D
electrons in strong QMF due to the EPI~which is indepen-
dent of the effective massme* and the density of states!,
which was formulated in Ref. 18, allows us to explain virt
ally all experimentally observed singularities of the Hall r
sistanceRH in semiconducting heterostructures under t
FQHE conditions1,5–7,43,59on the basis of the ‘‘mixed’’ wave
function of coupled electron pairs and unpaired electrons
the ultra-quantum limit proposed by Halperin.8

The necessary condition for Cooper pairing is a stro
attraction between electrons, that is capable of overcom
the screened Coulomb repulsion. Such an attraction ca
be ensured by deformation-type EPI with bulk acoustic a
optical phonons in semiconducting GaAs and Si crystals.44,45

For this reason, the effect of Cooper pairing was in fa
disregarded and was not taken into account in an analys
the properties of 2D semiconducting systems in QMF and
the new Laughlin quantum 2D liquid2,60 ~except in Refs. 27
and 61!.

However, the fact that SAW (2D phonons!46,47 and sur-
face plasmons31 whose interaction with 2D electrons in sur-
face layers can be much more effective than with bulk 3D
phonons can exist at the interfaces~heterojunction! in
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layered MIS systems and heterojuctions has not been ta
into consideration by any author. The existence of such
face phonon modes in semiconducting 2D systems is con-
firmed in optical experiments on Raman scattering~see, for
example, Refs. 62–64!. Here we assumed that the interacti
with these ‘‘interfacial’’ modes ensures a strong attract
and Cooper pairing of electrons in 2D systems; an indirec
evidence of this effect is the superconductivity observed
Si–MIS structure atT,1 K.28

The size of coupled Cooper pairs formed under the c
dition n5kF

2 l H
2 ,1 is of the order of the magnetic lengthl H

and is smaller than the average distancer̄ .kF
21 between

pairs. As a result, a macroscopic coherent quantum super
ducting condensate cannot be formed in a 2D system under
the FQHE conditions in contrast to traditional supercondu
ors with strongly overlapping wave functions of Coop
pairs.41 Local pairs behave in transport processes l
‘‘magnetized’’ electrons with the wave function
C0(x)}exp(2x2/2l H

2 ), determining the zero values of th
longitudinal conductivity componentssxx5s0 /(11vc

2t2),
where s05e2NSt/me* , as well as of the resistivityrxx

5sxx /(sxx
2 1sH

2 ) for infinitely long relaxation time (t
→`) and forsH51/RH5e2n/2p\ in contrast to the super
conducting state withs→`.

A transition to the superconducting state can occur
weaker magnetic fields whenn5kF

2 l H
2 .4p so that each flux

quantum corresponds to a large number of electrons, and
size of Cooper pairs (; l H) becomes larger than the avera
distance between them (r̄'A2/NS for T→0), i.e., a coheren
superconducting condensate of Cooper pairs can be form

Finally, the magnetic flux quanta screened by Meiss
superconducting currents of a macroscopically large num
of Cooper pairs in the limitn→` are transformed into 2D
Abrikosov vortices carrying a half-integral magnetic flu
quantumws5w0/2.

Integral values of Hall conductivitysH5ca0n ~where
a05e2/2p\c.1/137 is the fine-structure constant! under
the IQHE conditions17 are due to a finite degeneracy of La
dau levels in 2D systems (NL5(1/2)p l H

2 5H/w0) so that the
filling ~depletion! of the succeeding LL upon a change inH
or NS starts forT→` only after the previous LL is filled
~depleted! completely. Such almost idealRH51/sH steps
were observed by Laughlin65 at T58 K.

On the other hand, fractional values ofsH5ca0 /m un-
der the FQHE conditions1 are due to the ‘‘rigidity’’ of the
Laughlin wave function2 describing a strongly correlated in
compressible 2D liquid. The numberm is magnetic flux
quanta in such a ‘‘structurized’’ liquid per electron in th
ground state is strictly fixed and remains constant until
increasing~decreasing! magnetic fieldH attains a ‘‘critical’’
value for which the total magnetic fluxF5HS through the
2D system corresponds to the numberw0 of quanta per elec-
tron that has increased~decreased! by two. It can be stated
that a ‘‘potential barrier’’ preventing a change in the numb
of flux quanta in the ground state exists in the region
intermediate fields. It was proved by Laughlin,2 however,
that excited states corresponding to the creation or annih
tion of solitary quantaw0 can be formed, which is accompa
en
r-

a

-

n-

t-

e

n

he

d.
r

er

e

r
f

a-

nied by a spatial redistribution of electron density cor
sponding to the emergence of an additional fractional cha
e* 5e/m ~i.e., a quasiparticle or quasi-hole with the effecti
charge6e* ) in a region of size of the order ofl H . For
example, dissipative Hall current~for zero transport curren
in the limit vct→`) generates additional magnetic flu
quanta~entering! at one end of the 2D system, which drift in
the crossed electricE and magneticH fields ~together with
‘‘screening’’ quasiparticles having a fractional chargee* ) to
the opposite end, where they are annihilated. It should
noted that Abrikosov quantum vortices in the resistive st
of ideal type II superconductors in the absence of pinn
centers in magnetic fieldsHc1,H,Hc2 propagate in a simi-
lar way.37

Thus, there is no basic difference between fractional a
integral quantum Hall effects in 2D systems and type II su
perconductors in view of the universal gauge invariance
quantum-mechanical systems which was pointed out
Laughlin66 and Halperin67 even prior to the discovery of the
FQHE.

According to Halperin’s relation~1!, RH singularities
can be observed in principle atT,Tc for values of the filling
factor n51/2n and n5121/2n (n51,2,3,...) along with
singularities of RH and sH for fractional values of
n5q/(2n11) with odd denominators and withq>1 but
with q,(2n11) under the conditions when Cooper pairin
in the 2D system dominates over the exciton pairing, f
example, due to the suppression of screened Coulomb re
sion upon an increase in the magnetic fieldH in the ultra-
quantum limit5–7 ~see Figs. 3 and 4!. However, the condition
of symmetrization of the wave function for Cooper pairs
lows us to exclude fractions with even denominators. On
whole, the assumption on Cooper pairing of 2D electrons in
combination with the superposition of coupled electron pa
and free electrons, which is described by the Halperin va
tional wave function,8 makes it possible to obtain a richer s
of quantum singularities of the Hall resistanceRH and con-
ductivity sH than other models of the FQHE.11,12,15,59,60
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of semiconductors of the GaAs and Si type, to A.
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~Cooper pairing! in low-dimensional systems.
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The ground state of the ‘‘frozen’’ electron phase in two-dimensional narrow-band
conductors with a long-range interelectron repulsion. Stripe formation and effective
lowering of dimension

A. A. Slutskin, V. V. Slavin, and H. A. Kovtun
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In narrow-band conductors a weakly screened Coulomb interelectron repulsion can supress narrow-
band electrons’ hopping, resulting in formation of a ‘‘frozen’’ electron phase which differs
principally from any known macroscopic self-localized electron state including the Wigner crystal.
In a zero-band-width limit the ‘‘frozen’’ electron phase is a classical lattice system with a
long-range interparticle repulsion. The ground state of such systems has been considered in the
case oftwo dimensions for anisotropic pair potential of the mutual particle repulsion. It
has been shown that particle ordering into stripes and effective lowering of dimension resides
universally in the ground state for any physically reasonable pair potential and for any
geometry of the conductor lattice. On the basis of this fact a rigorous general procedure for
describing the ground state fully has been formulated. Arguments have been adduced that charge
ordering into stripes in high-Tc superconductors testifies to the presence of a ‘‘frozen’’
electron phase in these systems. ©1999 American Institute of Physics.
@S1063-777X~99!01808-3#
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1. INTRODUCTION

High-Tc superconductors studies have caused a surg
interest in the properties of narrow-band layered and tw
dimensional~2D! conductors. An important consequence
the layerness is substantial weakening of the screening
Coulomb interaction between the charge carriers.~The
screening radius cannot, under any circumstances, be
than the interlayer distance!. In addition, in layered conduc
tors it is possible to well separate the charge carriers~for
definiteness, we consider them electrons! from the donors, so
that the mean energy,uee, of the long-range interelectro
repulsion prevails over the energy of an electron attractio
the donors. Under these conditions it is the mutual repuls
of narrow-band electrons that can suppress their tunne
between the equivalent orbits of the conductor lattice, res
ing in formation of a ‘‘frozen’’ electron phase~FEP! which
differs principally from any known macroscopic sel
localized electron state including the Wigner crystal.1 The
FEP occurs when the electron bandwidth,t, is less thandu
5(a/r ee)uee, wheredu is the typical change in the narrow
band electron Coulomb energy in electron hopping,a is the
range of hopping,r ee is the mean electron separation. T
high-Tc cuprates, grain boundaries of polycrystal electro
ramic materials,2 as well as some art 2D conductors3–5 ap-
pear to be most favorable for 2D FEP coming to existen

The macroscopic behavior of the 2D FEP is rather
conventional. Its distinctive features are rooted in proper
of its ground state~GS! at t!du. In the limit t/du→0 the
GS of the 2D FEP is much the same as that of other
lattice systems with a long-range interparticle repulsion.~An
example is an ensemble of adsorbed atoms strongly inte
ing with their substrate and mutually repelling each othe6!.
7021063-777X/99/25(8–9)/6/$15.00
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As far as we know, neither the thermodynamics nor the
of such systems have been studied adequately. Here we
a unified approach to the description of the GS of the
zero-bandwidth FEP~and similar lattice systems! with an
isotropicpair potential of the interelectron repulsion,v(r ) ~r
is the distance between interacting electrons!. The key point
of our consideration is a new phenomenon—azero-
temperature effective lowering of dimension~LOD!—which
we have revealed to underlie~despite the pair potential isot
ropy! the main GS properties of the 2D FEP for: i! arbitrary
arrangement of the sites which can be occupied by elect
provided that the sites constitute a primitive lattice~it is
called the host lattice below!; ii ! any filling factor,r5N/N ~
N→` andN→` are the total numbers of the electrons a
the host-lattice sites, respectively!; iii ! any physically reason-
ablev(r ).0. We take the term LOD to mean that the GS
the 2D FEP is a set of different effective 1D FEP who
‘‘particles’’ are periodic stripes on the lattice of the 2D co
ductor. For each 1D system of the set there is its ownr
interval where this 1D FEP represents the 2D one, the wh
range, 0<r<1, comprising all the intervals. The LOD en
ables us to offer a rigorous analytical procedure for the
FEP GS description, using the exact results of the gen
theory of the 1D lattice systems with a long-range interp
ticle repulsion.7–9

2. HAMILTONIAN. SIMPLE CRYSTALS

The Hamiltonian,H, of the system under consideratio
has the form

H$n~r !%5
1

2 (
rÞr8

v~ ur2r 8u!n~r !n~r 8!, ~1!
© 1999 American Institute of Physics
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wherer5m1a11m2a2 are radius vectors of the host-lattic
sites,m1,2 are integers,a1,2 are host-lattice primitive transla
tion vectors~PTVs!; the occupation numbers of the hos
latice sites,n(r )50 or 1, are microscopic variables;1! the
sum is taken over the whole host lattice. The pair potentia
assumed to be an everywhere convex function of the fo
v(r )5 ṽ(r )/r , where the functionṽ(r ) depends on the char
acter of the screening medium and its position with resp
to the 2D FEP. In any caseṽ(r ) tends to zero asr 22 or faster
when r→`; ṽ(0)5e2/k ~e is the electron charge,k is the
dielectric permittivity!. Otherwise,ṽ(r ) can be reckoned a
arbitrary: as will be shown below, its specific form is imm
terial to our approach.

Among the GS configurations$n(r )% with differentr the
simplest ones are 2D crystals with one electron per c
~‘‘S-crystals’’!.2! Their inverser values make up an infinite
set of integersQj5udet$mkl

j (a1 ,a2)%u, where j indexes
S-crystals, the integersmkl

j (k,l51,2) are components o
S-crystal PTVs in theal basis; Qj is the j th S-crystal
elementary-cell area measured in units of that of the h
lattice,s05ua13a2u.

Our strategy is to derive the full description of the G
for anya1,2, starting with consideration of small vicinities o
r51/Qj . Since specificmkl

j values are irrelevant to thi
reasoning, we drop the indexj at Q and at other characteris
tics of the S-crystals for a while.

Due to the discreteness of the system with the Ham
tonian ~1! a macroscopically small change,dr, in r ~dr
→0, N1/2udru→` when N→`! produces onlyisolated de-
fectsin an S-crystal, the space structure of the defects es
tially depending on whether they result from an increase o
decrease inr. This fact is expressed by the identity

Eg~N6udNu,N6udNu!2Eg~N,N!

56m6udNu7P6udNu, ~2!

whereEg is the GS energy,dN anddN are changes inN and
N producing dr. The proportionality coefficients,m2

,m1 ,P2,P1 , are the values of the chemical potential,m,
and the pressure,P, which are the endpoints of them andP
intervals of S-crystal existence. They are determined by
energies of formation of corresponding defects. Thus, i
certain vicinity of r51/Q the GS is bound to be a supe
structure of the defects. Our next step is to find them.

3. ZERO-DIMENSIONAL DEFECTS AND THEIR
COALESCENCE

Adding one electron to or removing from an S-crys
results in the formation of a zero-dimensional defe
‘‘ 1defecton’’ or ‘‘2defecton’’, respectively. One can be in
clined to think thatdN should be identified exactly with th
total number of6defectons spatially separated,6m6 being
simply the energy of6defecton formation,e6 . However,
this seemingly evident statement is actually incorrect due
a coalescenceof defectons of the same ‘‘sign’’. In othe
words, if the number,unu, of S-crystal electrons removed (n
,0) or added (n.0) is more than 1, abound stateof unu
6defectons arises whose energy is less thanunue6 . We have
revealed the coalescence by computation, using a ‘‘dipo
is
m
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description of the GS withn561,62,..., which we have
specially worked out for this purpose. The dipole approa
offers a clear view of how the defectons’ bound state ari
despite the fact that the defectons of the same sign repel
other, being widely spaced.

At nÞ0 a perturbed S-crystal is formed where, in ad
tion to electrons, placed at host-lattice sites in the intersti
of the S-crystal (n.0) or empty S-crystal sites, ‘‘holes,’
(n,0), there are generally a certain number of S-crys
electrons shifted from their native S-crystal sites. The la
can be considered as ‘‘antiparticles’’ whose charge is eq
to the electron one in magnitude but is opposite in sign
pair ‘‘an electron shifted by a vectorj1, its antiparticle lo-
cated at an S-crystal siter ’’ being the ‘‘r , j-dipole.’’ Thus,
the perturbation of theS-crystal can be envisioned as an e
semble consisting of several dipoles andunu interstitial
particles/holes~IP/Hs!. The dipoles interact with the IP/H
and with each other. The energy of interaction between
IP/H ~at r50! and r , j-dipole is uj(r )5sign n(v(ur2ju)
2v(ur u))[sign nD̂jv(ur u); the energy of interaction be
tween r , j, and r 8,j8-dipole is uj,j8(r2r 8)5D̂jD̂j8v(ur
2r 8u). The IP/Hs, in turn, undergo a mutual repulsion a
are exposed to an ‘‘external’’ field,u(r ), which is equal to
22u0 for holes~here and further onuee of the S-crystal is
denoted byu0!, and for IPs it is the field produced at a poi
r by all electrons of the S-crystal. In these terms the cha
in the GS energy at a givenn, UGS(n), takes the form

UGS~n!5min~Vrep1Ud1Uexc1U !. ~3!

Here Vrep5 (
a,b

v(urabu) is the energy of the mutual repu

sion of the IP/Hs;Ud5 (
a,i

uj i
(ra i) is the energy of their in-

teraction with the dipoles;Uexc5(
i
duj i

1 (
i ,k

uj i ,jk
(r ik).0 is

the excitation energy of an S-crystal withnd dipoles atn
50; duj;u0uju2/r ee

2 .0 is the energy of formation of one
dipole;U5S

a
u(ra) is the energy of the IP/Hs in the extern

field mentioned; the indicesa51,...,unu and i 51,...,nd enu-
merate the IP/H radius-vectors and dipoles, respectivelynd

is the total number of the dipoles;rab[ra2rb . The mini-
mum is taken with respect tond , the dipole variables,r i , j i ,
and ra . Therefore, the dipole approach allows to work wi
only a few discrete variables. This facilitates considera
the Monte-Carlo computer simulation of the6defectons
(UGS(61)56e6) and their coalescence atunu.1.

The mechanism of the coalescence can be elucidate
the following heuristic arguments. The GS total dipole e
ergy, Ed(n)5Uexc(n)1Ud(n), is negative, so that for any
unu the GS space structure is determined by an interplay
tween negativeUd and positiveUexc, Vrep. The IP/H-dipole
interaction gives the maximal gain in energy wheneachIP/H
is embedded in a shell of four dipoles that are attracted to
the dipoles’ antiparticles forming a parallelogram of a s
;r ee;Q1,2 ~Fig. 1!. The shells of neighboring IP/Hs ar
bound to share some of their dipoles forUexc ~and hencend!
to be as small as possible. This requirement can be fulfi
only when all IP/Hs arealigned in a row, the near-neighbor
IP/Hs being shifted relative to one another by the sa
S-crystal PTV with the modulus;r ee ~Fig. 1!. In such a case
uEd(n)u is more than the magnitude of the dipole energy
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unu infinitely separated defectons,Ed
`5unuEd(61). The coa-

lescence arises when the energy gain,D5uEd(n)u2uEd
`u, ex-

ceeds Vrep of the IP/Hs aligned in the row. SinceD
;unuy(r ee) this condition is met ify(r ) decreases not too
slowly, or, more exactly, if

g5E
r ee

`

y~r !dr/r eey~r ee!<1. ~4!

The computer simulation carried out with the model pote
tial y(r )}r 2b exp(2r/R) over a wide range of the param
eters,b, R, has confirmed that the condition~4! is really the
criterion of the coalescence for anyunu ~and anya1,2!.

Criterion~4! is for the most part fulfilled. It holds for any
ỹ(r ) ~Sec. 2! such thatỹ(0)2 ỹ(r ee);ỹ(0). This case will
be the focus of our attention from here on. The parameteg
becomes@1 if ỹ(r ) decreases substantially only forr which
are exponentially large ing. In this limit the mutual repul-
sion of the IP/Hs disrupts their row, and there is no coal
cence, at least for sufficiently largeunu. However, in Sec. 8 it
is outlined that the LOD governs the GS in this rather spe
case also.

FIG. 1. The coalescence for square (a,Q'9) and triangular (b,Q516)
host lattices (n525). Here s denotes host-lattice sites,d—particles;
s—antiparticles;^—holes; → —dipoles; solid boxes mark off a single
defecton. The shells of dipoles surrounding holes are marked off by
dash-dotted parallelograms. The dotted lines show nucleation of the ele
tary stripes enumerated by 1,2,... . In the case~a! boundary effects dominate
the mutual repulsion of the unfinished2stripes; in the case~b! the tendency
to 2stripes divergence is seen. Both configurations refer to the pair po
tials which meet the conditiong;1.
-

-

l

4. THE LOWERING OF DIMENSION

The elementary stripes in the2D ‘‘frozen’’ electron
phase

As follows from the aforesaid, the bound state ofunu
defectons is transformed into a periodicstripe-likestructure
with an infinite increase inunu ~Fig. 1!. It consists of elemen-
tary 1D defects which, as will be shown below, repel ea
other. Therefore, it isthe simplest1D defectsthat are ex-
pected to form the GS superstructure. An arbitrary 1D def
of such a type is a stripe of rarefaction or compression t
arises when an S-crystal part adjacent to a line of electr
with some PTV,d, is shifted as a whole relative to the oth
one by a host-lattice translation vector,j. Formation of one
stripe of lengthLs changesN by dN56sLs ~s5ud3ju, Ls

is measured in units ofudu!. The corresponding change i
energy,dE, is proportional todN:

dE/udNu5«~d,j!5s21(
n51

`

(
r

8 uj~r2nf !. ~5!

Here (8
r

means summation over the S-crystal semipla
r5kd1 l f (2`,k,`,2`, l<0); f is any S-crystal PTV
other thand. The GS is realized by the stripes withd5d6

andj5j6 which minimize«(d,j) at a given sign of2dN
~2 or 1 symbolizes rarefaction or compression, resp
tively!. We shall call these stripes ‘‘2stripes’’ or ‘‘
1stripes.’’

The energies«65u«(d6 ,j6)u are the quantitiesP6

@see ~2!# associated with6stripes formation. The corre
spondingm6 , as follows from general thermodynamic co
siderations, are

«̃65u01Q«6 . ~6!

Lest there be any contradiction with the fact of the coal
cence, energies«̃6 ande6 are bound to satisfy inequalities

e2, «̃2, «̃1,e1 . ~7!

When Q@1 and y(r ) goes to zero over distancesR!r ee

;Q1/2, they follow from simple estimates. Taking into a
count that uj6u;a0 , and, correspondingly,ud63j6u
;Q1/2s0 , from Eq. ~5! we obtain:«6;(a0Q1/2/R)u0 . On
the other hand,ue2u;u0;y(r ee), and hence,«̃2@ue2u. In
the case under consideratione1;y(r min), wherer min is the
least of the distances between the IP and the S-crystal s
This energy is much more than«1 asR!r ee.

To make sure that the inequalities~7! hold for othery(r )
and R/r ee we have computed«6 @basing ourselves on Eq
~5! and Eq.~6!# in parallel with Monte-Carlo computer stud
ies of the coalescence. They have confirmed that the
equalities are really the case for ally(r ) under consideration
and for allQ, maybe exceptQ52.

Together with the mutual repulsion of6stripes of the
same sign the inequalities~7! lead to the conclusion tha
1stripes or2stripes do constitute the GS superstructure
the vicinity of 1/Q. The position of each6 stripe—a con-
stituent of the superstructure—is determined by the str
‘‘coordinate,’’ l, which is the total number of particle line
~with the PTV d6! between this stripe and some fixed o

e
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( l 50). A set of these coordinates uniquely determines
2D FEP space structure. Therein lies the LOD.

The ground state superstructure of stripes
The GS arrangement of the6stripes is governed by th

pair potential of the stripe-stripe interaction,

Vss
6~ l !5 (

n5 l 11

`

(
r

8 uj68 2j6
~r2nf62j6! ~8!

where inter-stripe ‘‘distance’’l 51,2,...; f6 is an S-crystal
PTV other thand6 ,(8

r
means the same as in Eq.~5!

(d,f5d6 ,f6). For all y(r ) under consideration(8
r

(n).0,

and(8
r

(n).(8
r

(n11). Hence,Vss( l ).0 is a convex func-

tion of l. This enables us to describe the6stripes superstruc
ture atu2QÞ0 (u51/r) on the basis of the universal 1D
algorithm,7–9 considering the stripes as the ‘‘particles’’ of a
effective 1D FEP:

l m5@m/c6#; c65uu2Qu/s6 , s65ud63j6u ~9!

where@...# is the integral part of a number,m enumerates the
6stripes; integerl m is the coordinate ofmth stripe, which is
a pair of neighboring lines of electronsrm,1(k)5kd6

1 l mf61mj6 and rm,2(k)5rm,1(k)1f61j6 (k50,61,...).
The superstructure described by Eq.~9! is thus a mixture of
2stripes (u2Q.0) or 1stripes (u2Q,0) and unper-
turbed stripes of the S-crystal which are parallel tod6 , so
that c65Ns /Ns is the concentration of the6stripes;Ns is
their number;Ns is the total number of the6stripes and the
S-crystal ones. The number of unperturbed stripes betw
mth andm11th 6stripes equalsl m112 l m21.

An algorithm for arrangement of electrons’ lines
Simple crystals withf65q6j6 , whereq65Q/s6 is an

integer, are of frequent occurrence. Particularly, this occ
of necessity for a triangular host lattice~Sec. 7!, and also for
s65s0 , as is typical of S-crystals on a host lattice of
lower symmetry. In such a case the above-mentioned e
tron lines of both types,rm,1(k) and rm,2(k), fall into the
class of electron lineskd61 l j6 ~k50,61,...; l is an inte-
ger!, which can be considered as 1D ‘‘particles’’ with ‘‘co
ordinates’’ l. Their arrangment, as follows from Eq.~9!,
obeys the algorithm:

l m5@sm#, s5q67.c6 ,

wherel m is the ‘‘coordinate’’ of themth line, s is the mean
line separation measured in units ofuj6u.

5. DEVIL STAIRCASE

The dependence ofc6 ~or r! on m, much the same to the
1D FEP,7–9 is a well-developed fractal structure, a dev
staircase whose steps occur at allrational c65M /L<1 ~M,
L are coprime integers!. At given M, L the GS configuration
of the 2D FEP is thus a ‘‘FEP crystal’’ withL electrons per
cell and with PTV’sd6 , Lf61Mj6 .

In the commonly occurring case thatf6 is a multiple of
j6 ~Sec. 4! the steps’ widths,Dm5Dm(M /L), can be found
by direct application of the 1D theory,8,9 considering the en-
ergy of the line-line repulsion,
e

en

rs

c-

V~ l !5 (
k52`

`

y~ ukd61 l j6u!

~l is the distance between interacting lines!, as the 1D pair
potential. This produces

Dm5L (
m51

`

m@V~Lm21!22V~Lm!1V~Lm11!#,

whereL5q6L7M is the period of the lines’ pattern. Th
expression in the brackets is positive, sinceV( l ) is a convex
function in the case under consideration. Genera
Dm(M /L) are expressed in terms ofVss

6( l ) by a slight modi-
fication of the 1D theory.

6. J-BRANCHES AND FIRST-ORDER TRANSITIONS IN THE
GROUND STATE OF THE 2D ‘‘FROZEN’’ ELECTRON
PHASE

The algorithm~9! can be extended over the wholec6

range, 0,c6,1, provided the crystal with one particle pe
cell ~‘‘S 8-crystal’’ with PTVs d6 , f61j6! which arises at
c651 (u5Q6s6) is stable~i.e., it is another S-crystal! or
metastable. This follows from the fact that i/ owing to th
coalscence of defectons macroscopically small variation
u generate, at anyc6 , 1D defects only; ii/ these 1D defects
according to our computer calculations, have the same P
d6 , for all c6 .

Moreover, due to~meta!stability of the S8-crystal the
algorithm ~9! holds over au range adjacent to the interva
uQ2s2 ,Q1s1u. In such a case Eq.~9! determines a mix-
ture of stripes of new geometry which are characterized b
new triple of vectors, d68 , f68 , j68 , the analogues of
d6 , f6 , j6 , and the 6stripes concentrationc68 5uu2Q
6s6u/ud68 3j68 u. Transition from one geometry to another
continuous inu sincec68 goes to zero whenu→Q1s6 .

Continuously extending the algorithm~9! in the manner
shown above, we obtain the ‘‘j-branch’’ ~we introduce the
index j again! which comprises all~meta!stable structures
Eq. ~9! connected in continuity with the starting S-crysta
The corresponding energy,Ej (u), can easily be found in
terms ofVss

6( l ), using Eq.~9!. As a rule, there exist differen
S-crystals belonging to the samej-branch. On the other hand
as we have computed, intersections of differentEj (u), and
hence,zero-temperature first-order transitions in variablesm
or P ~a type of polymorphism!, are universally present in th
2D FEP.~See example in Sec. 7!. The dependence ofEg on
u is the function which comprises all stable portions of
Ej (u).

Thus, owing to the LOD described above the GS of t
2D FEP is fully determined by the S-crystals PTVs,mkl

j , the
‘‘directors’’, d6

j , and the displacement vectors,j6
j , together

with the set ofEj (u) intersection points which are the onl
GS characteristics changing on small variations iny(r ). All
these quantities can be computed on the basis of Eq.~5! and
Eq. ~9! by a self-consistent procedure, finding the S-cryst
together with thej-branches. We have found the GS for tr
angular and square host lattices as well as for a numbe
those with central symmetry only. The computation has
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revealed principal differences between GS properties of
FEP with different geometry of host lattices, at least
those which are not significantly anisotropic.

7. EXAMPLE

Here we illustrate the above general results with a tri
gular host lattice~THL!. All triangular lattices on the THL
are necessarily S-crystals. This follows from the fact that i
the triangular lattice that realizes theabsoluteenergy mini-
mum of the system whose electrons are free to move. S
S-crystals are ‘‘p, q-crystals’’ with PTVs pa11qa2 , pa2

1qa3 andu5p21q22pq ~p, q are arbitrary integers,a1,2,3

is a triple of THL PTVs which are equal in the modulus a
form an angle of 120° with each other!. Using the procedure
discussed in Sec. 6, we have found that all 0,q-crystals be-
long to the samej-branch~the main branch!, which covers
the range 4<u,`. The S8-crystals of the 0,q-ones are
S-crystals too. They occur atu5q(q11)(2<q,`) and
have PTV’sqak , (q11)al ~k, l51,2,3; kÞl!. The stripe
structures~9! have the same PTV,qak , for all u of the in-
terval @q(q21), q̇(q11)#, their j6 being6al(kÞl).

When p,qÞ0, j-branches of differentp,q-crystals are
distinct. They do not have mutual intersections, but all int
sect the main branch, the intersections occurring at ra
small concentrations of thep, q-crystals’ 6stripes. In other
words, the intervals ofp, q-crystals stability (p,qÞ0), and
correspondingly main-branch metastability, turn out to
narrow.

8. THE LIMIT OF g@1

So far, the more frequent case ofg&1 ~Sec. 3! has been
discussed. Here we outline the limiting caseg@1. It is real-
ized when the Coulomb interelectron forces are screene
conductors that are at distances@r ee from the 2D FEP.
Modeling such a situation by the potentialy(r )}r 21 exp
(2r/R) with R@r ee, we have computed that the energi
e6 ,«6 satisfy the inequalities«2,e2,e1,«1 , which are
opposite to those of Eq.~7!. Due to this fact it should be
expected that the GS forr21/Q!1/Q is a superstructure o
separated S-crystalzero-dimensionaldefects, but not one
dimensional ones~stripes!. We have revealed that these zer
dimensional defects are ‘‘bidefectons,’’ which are complex
consisting of two bound defections. Well-separated bidef
tons can be considered as new particles on the S-cryst
the host lattice, the mean bidefecton separation,r d , being
equal to;u2(r21/Q)u21/2. The effective pair potential of a
mutual bidefecton repulsion is characterized by the sa
space parameter,R, as y(r ). If r d*R, the bidefectons, ac
cording to the general results of Secs. 3 and 4, are boun
be ordered into stripes arranged by the algorithm~9!. Exten-
tion of this reasoning to the case ofR@r d leads to new
stripe-like superstructures consisting of zero-dimensional
fects of ‘‘new’’ S-crystals, and so on. Eventually a we
developed fractal arises. Though details of its structure
still to be determined, it is safe to say now that the LOD do
take place forg@1, too.
D
r

-

s

ch

-
er

e

by

-
s
c-
as

e

to

e-

re
s

9. SUMMARY

The above consideration shows that the electron ord
ing into stripes and the effective lowering of dimension r
side universally in the 2D FEP. In essence, a combination
discreteness of electrons’ positions with a long-ranged in
electron repulsion is the only factor which gives rise to th
phenomenon. For this reason it is also bound to arise with
external disorder present, the stripes being fractured
pinned by the disorder. Thus, stripe formation in 2D a
layered narrow-band conductors can be considered to be
principal signature of a 2D FEP.

The charge ordering in cuprates as a manifestation o
2D ‘‘frozen’’ electron phase

From the above standpoint the charge ordering in Cu2

planes of high-temperature superconductors~cuprates!11

~neutron scattering!,12 ~channeling! is of especial interest
The fact that it takes place even with very low doping12

suggests that a 2D FEP might be present in these sys
primordially. One can envision that formation of ionize
oxygen molecules, O2

22 , in oxygen planes gives a certai
energy gain even in cuprates of thestoichiometric
composition.3! In consequence, a part of electrons leaves
oxygen planes fors-orbits of Cu21 ions in CuO2 planes, re-
sulting in formation of a number of Cu1 ions. Since the
amplitude of electron hopping Cu1↔Cu21 is relatively
small, the Cu1 ensemble should be expected to be a 2D FE
the concentration of the Cu1 and, correspondingly, of the
O2

22 being determined by thermodynamic equilibrium b
tween the 2D FEP and the ensemble of the O2

22 . It is evident
that stripe formation in the 2D FEP of Cu1 ions inevitably
brings to existence O2 superstructures in CuO2 planes. Their
PTVs are likely to be the same as that of the Cu1 FEP.

In the connection with the aforesaid it should be not
that a simple explanation of the high-temperature superc
ductivity can be offered in terms of the 2D FEP, taking in
account the finiteness of the bandwidth.1 It lies in the fact
that a virtual exchange of 2D FEP elementary excitatio
between oxygen holes~which are known to be free charg
carriers in the doped cuprates! leads inevitably to a mutua
effective attraction of the holes and thereby to supercond
tivity ~of purely Coulomb origin! with high Tc . Our prelimi-
nary studies have shown that the lowest-energy elemen
excitations in the cuprate 2D FEP are kinks on the disord
fractured stripes.

Some expectable features of the2D ‘‘frozen’’ electron
phase thermodynamics and conductivity as a consequen
the stripe formation

Our preliminary studies have shown that the effect
lowering of dimension in the ground state of the 2D FE
accounts for a fairly interesting and unusual low-temperat
thermodynamics. It is characterized by first-order transitio
in theT, m-plane~T is the temperature! from the FEP crystals
~Sec. 5! slightly perturbed by an ideal gas of separate def
tons ~they are zero-dimensional defects which arise due
thermal activation! to a strongly correlated liquid of ther
mally fractured stripes~‘‘FEP liquid’’ ! where there is no
long-range order. The melting temperature as the function
m turns out to be reduced to zero at the endpoints of
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intervals of the devil staircase. Therefore, at anyTÞ0 there
is a set of alternatingm intervals which correspond to th
FEP crystals or the FEP liquid.

Conduction in the 2D FEP liquid is expected to be
movement of kinks of the fractured stripes, each kink car
ing a fractal charge~measured in units ofe!. That in the FEP
crystals is of the common Drude type, the charge carr
being6defectons with the charge6e. With a change inm
~at a fixedT ! these conduction mechanisms alternate, res
ing in pronounced 2D FEP resistivity oscillations which r
flect the ground-state devil-staircase dependence or
on m: the oscillations’ peaks are bound to occur close to
rational filling factors of the FEP crystals which survive at
givenT. This phenomenon is yet another distinctive mark
the 2D FEP. We have found it to be very similar to t
resistivity oscillations of a conductive sheet in a syst
metal–n-type semiconductor–p-type semiconductor,3 which
still remain to be explained. We are going to publish t
results concerning this issue in the near future.

It is remarkable that an artificially created external p
turbation localized within a small region can block up co
duction over all FEP liquid, pinning only one stripe. Th
most appropriate systems to test this experimentally are
haps granular thin films like those described in Ref. 4.
similar phenomenon was reported in Ref. 5. Yet granu
films used in the experiments5 were highly disordered, and i
is unclear now whether the above theory works in suc
situation.
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1!The r values are assumed not to be too close tor51, so that we can

neglect the configurations withn(r )52 in ~1! and take no account of the
spin variables.

2!As was shown in Ref. 10, ify(r ) were box-like, it would not be the cas
due to a clusterization of the particles.

3!A point in favor of this fact is a noticeable disorder~;20%! in arrange-
ment of O2 alongc-axis of La22xSrxCuO4 which was revealed~by chan-
neling method13! even for lowx.
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Influence of an orthodeuterium impurity on the thermal conductivity
of solid parahydrogen

O. A. Korolyuk B. Ya. Gorodilov A. I. Krivchikov, and V. G. Manzhelii

B. Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of
Ukraine, 47, Lenin Ave., 310164, Kharkov, Ukraine*
~Submitted February 23, 1999!
Fiz. Nizk. Temp.25, 944–949~August–September 1999!

The thermal conductivity of solid parahydrogen with orthodeuterium impurity at an impurity
concentration from 0.01 to 1% has been studied in the temperature range from 1.8 to
9 K. The nonlinear concentration dependence of the thermal resistivity of the investigated samples
is explained by the fact that the intensity of normal three-phonon scattering processes is
comparable to that of resistive processes. The analysis of the experimental results has been made
in the framework of the Callaway model by using different models for the impurity phonon
scattering. It has been found that the intensity of phonon impurity scattering in parahydrogen with
orthodeuterium impurity is essentially higher than classical theory predicts and it is close to
analogous scattering in solutions of helium isotopes with the equal reduced molar volume given. It
is considered that additional impurity scattering of phonons is connected with the change of
force constants and lattice distortion in the vicinity of impurity molecules. The quantitative
estimation of the mentioned effects has been made. ©1999 American Institute of Physics.
@S1063-777X~99!01908-8#
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INTRODUCTION

The mechanism of the influence of isotopic impurities
the thermal conductivity of quantum crystals should be m
complicated than in a case of classical crystals. An isoto
impurity disturbs the zero vibrations of a quantum cryst
which leads to the appearance of lattice distortion and
change of force constants in the vicinity of an isotopic po
defect.1–3 Therefore, when describing phonon scattering
isotopic point defects in quantum crystals, one needs to
into account not only the difference in the masses of
impurity and matrix molecules but also the two other effe
mentioned. If molecules of the solution have rotational d
grees of freedom, then one has also to take account of s
tering by excitations of rotational motion of molecules. S
multaneous action of several mechanisms of pho
scattering impedes the interpretation of results of ther
conductivity studies. To make easier the extraction of con
butions of the distortion and the change of force constant
thermal resistivity it is appropriate to study solutions w
central interaction; such molecules have no rotational
grees of freedom. To such solutions one can refer3He–4He
and solid solutions of spin-nuclear modifications of hyd
gens, which molecules are in the ground rotational state w
J50 ~parahydrogen and orthodeuterium!. The thermal con-
ductivity of solid solutions3He–4He have been studied ex
perimentally in.4–9 Quantum effects in solid hydrogens a
less defined than in solid helium isotopes. However, so
hydrogens have higher ratio of molecular weights of is
topes. As we know, the influence of isotopic impurities
7081063-777X/99/25(8–9)/5/$15.00
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thermal conductivity of solid hydrogen has not previous
been studied experimentally. The influence of Ne impur
on the thermal conductivity of solid parahydrogen was st
ied in Ref. 10. The closeness of the Lennard-Jones pote
parameters of hydrogen and neon permits one to cons
neon impurities in parahydrogen as quasi-isotopic on
However, the analysis of data on the thermal conductivity
solid p-H2 with Ne impurity did not result in finding the
effects due to distortion and the change of force constant
the background of a very high mass effect (MNe/
MH2

510).
The given work represents a study of the thermal c

ductivity of solid parahydrogen with orthodeuterium impu
ties with the aim of finding and analyzing the contribution
distortion and the change of force constants to phonon s
tering.

THEORETICAL MODELS

Phonon scattering by isotopic impurities was first stu
ied theoretically by Pomeranchuk in 1942.11 At present vari-
ous versions of the Klemens model~review12!, the resonance
scattering model~review,13! and the Antsygina–Slyusare
model14 are used to describe phonon scattering by point
fects. In the longwave limit when an impurity molecule an
its vicinity vibrate as a unit, all the scattering mechanis
are of a Rayleigh character.

The Klemens model is most widely used to descr
phonon scattering by point defects. In addition to the m
defect, this model takes a local change of force constants
© 1999 American Institute of Physics
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the field of lattice distortions around an impurity into a
count. Matrix and impurity atoms vibrate as a unit with t
same vibration amplitudes. The rate of phonon relaxatio
proportional to the fourth power of frequency and has
form

t imp
215

cGV

4ps3 v4, ~1!

wherec is the impurity concentration;V is the molar volume
of matrix; s is the sound velocity in the matrix;v is the
phonon frequency; andG is a parameter characterizing th
intensity of impurity scattering. The parameterG expressed
through the mass defect«5DM /M , the local change of
force constantsDw/w, and the relative radial distortion
Dd/d has the form15

G5«212~Dw/w26.4gDd/d!2, ~2!

whereg is the Grüneisen constant. The Klemens model
used only in the case of longwave acoustic phonons. T
condition is fulfilled for quantum crystals whose meltin
temperatures are essentially lower than the Debye temp
tureUD . So,Tm513.81 K, UD(T→0)5118.5 K16 for solid
parahydrogen in equilibrium with vapor.

Another approach is used in the model by Antsygina a
Slyusarev~hereafter AS!. It is based on the successive sol
tion of kinetic equation for scattering by a heavy impurity
a rigid lattice taking account of local change of force co
stants. The rate of phonon relaxation is described by
expression

t imp
2152cvFg11g2

2
1g1g2P~v!G2

R2~v!

3H F11
g11g2

2
2@P~v!2R1~v!#

2g1g2P~v!R1~v!G2

1Fg11g2

2
1g1g2P~v!G2

R2
2~v!J 21

, ~3!

whereg1 andg2 are the parameters of the model; the fun
tionsP(v), R1(v) andR2(v) are determined by the phono
spectrum of the matrix. The parametersg152«/(«11),
where« is the mass defectDM /M5(Mi2M )/M , Mi andM
are the masses of impurity and matrix molecules, resp
tively. The local changes of force constants are taken
account by the parameterg25Misi

2/Ms221, wheresi ands
are the sound velocities for pure components. In the De
approximation the functionsP(v), R1(v) andR2(v) have a
form

P~v!5121.5v/vD13~v/vD!223~v/vD!3

3 ln~11vD /v!,

R1~v!52121.5v/vD23~v/vD!223~v/vD!3

3 lnu12vD /vu,

R2~v!53p~v/vD!3,
is
e
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wherevD is the Debye frequency.
At g250 the expression~3! transforms into an expres

sion characteristic of resonance phonon scattering by an
topic impurity. According to~3!, the frequency dependenc
of the phonon relaxation rate is rather complicated and
form depends on the relationship betweeng1 andg2 . In the
general case the relaxation rate decreases sharply and
to zero near the Debye frequency.

In Ref. 17 it has been shown that impurity scattering
phonons in solid solution of Ar in parahydrogen is mu
better described by the AS model than by the models
Klemens and resonance scattering of phonons.

EXPERIMENTAL TECHNIQUE

The thermal conductivity of solid solutions of orthode
terium in parahydrogen was measured by the steady-s
method. The sample was grown in a stainless steel tube
an inner diameter of 4.5 mm and length of 38.5 mm. Tw
carbon resistance thermometers TRC-2~VINIIFTRI ! were
fixed on the external surface of the tube. One of the th
mometers served as a gauge for temperature stabilization
second served for measuring a temperature difference a
the sample.

Hydrogen preliminarily purified by a palladium filte
with the content of chemical impurities not more than 1027

and deuterium of chemical purity 99.67% were used to p
pare solutions. Parahydrogen with 0.21% of orthohydrog
and orthodeuterium with 2% of paradeuterium were obtain
by conversion of liquid hydrogen and deuterium as a res
of contact with Fe~OH!3 at T520 K. Gaseous mixtures wer
prepared in a glass vessel at room temperature. An erro
the measurement of deuterium concentration in the mixt
was less than 15% of the indication.

The crystals were grown from a gaseous mixture unde
pressure of 50 Torr~somewhat lower than pressure at t
triple point of pure parahydrogen! with the rate 0.13 mm/
min. During the growth of the crystals the temperature
bottom of the cell decreased linearly with time and the d
ference in temperatures between the top and bottom of
cell was kept up equal to 7 K. After crystallization th
sample was annealed. The temperature along the sample
equalized over a period of two hours, fixed equal to 12.5
and kept constant for two hours as well. Further, when pa
ing from one measurement to another the sample temp
ture changed so that the maximum temperature differe
along the crystal should not exceed 0.3 K. The proced
described above made it possible to obtain good-qua
samples and avoid the influence of anisotropy ofhcp lattice
of parahydrogen on thermal conductivity of samples.18

EXPERIMENTAL RESULTS AND DISCUSSION

Thermal conductivity of three samples ofp-H2 and five
solutions (p-H2)12c(o-D2)c at deuterium concentrations~c!
0.01%; 0.05%; 0.1%; 0.5%; 1% were measured.

Thermal conductivity of purep-H2 agrees well with the
literature data obtained for polycrystals with grain siz
about 1 mm. The data on the thermal conductivity ofp-H2
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crystals made it possible to conclude that the samples
pared by the technique described above are polycrys
without a selected crystallographic direction.

Figure 1 presents the experimental data obtained in
given work for pure parahydrogen andp-H2-o-D2 solutions.
The thermal resistivity of the samples depends nonline
on the concentration. As shown in19, the nonlinear concen
tration dependence of thermal resistivity arises due to in
ference of normal three-phonon scattering processes and
purity scattering. In the temperature range below 4 K the
thermal conductivity curves for different concentrations ha
various slopes. This shows that in addition to impurity sc
tering it is also necessary in this temperature range to
into account the scattering on the boundaries of crystal
grains, which intensity changes from sample to sample.
form of temperature dependences of thermal conducti
corresponds to the analogous dependences obtained fo3He
with 4He.9

The analysis of the experimental data was made in
framework of the Callaway model, taking account of norm
phonon-phonon scattering processes~N processes! in the ap-
proximation of a Debye phonon spectrum. The thermal c
ductivity was calculated by the formula

K~T!5GT3~ I 11I 2
2/I 3!, ~4!

where

I 15E
0

U/T

tC~x,T! f ~x!dx; I 25E
0

U/T tC~x,T!

tN~x,T!
f ~x!dx;

I 35E
0

U/T tC~x,T!

tN~x,T!tR~x,T!
f ~x!dx;

FIG. 1. Temperature dependence of thermal conductivity
(p-H2)12c(o-D2)c for different concentrations ofo-D2 c, %: 0 ~solid line,
purep-H2!; 0.01 ~h!; 0.05 ~n!; 0.1 ~L!; 1 ~1!.
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G5kB
2/~2p2\3s!; f ~x!5x4ex/~ex21!2;

x5\v/kBT;

U is the Debye temperature,tR(x,T) is the relaxation time
of resistive scattering processes;tN(x,T) is the relaxation
time of normal phonon-phonon processes, andtC(x,T) is the
combined relaxation time:

tC
21~x,T!5tR

21~x,T!1tN
21~x,T!.

In the solutions (p-H2)12c(o-D2)c the resistive processe
are formed by phonon-phonon processes~U processes!
@tU(x,T)#, scattering by the boundaries of crystalline grai
@tB(x,T)#, scattering by molecules ofo-D2@t I(x,T)#:

tR
21~x,T!5tU

21~x,T!1tB
21~x,T!1t I

21~x,T!. ~5!

The characteristics of three-phononU and N processes are
determined only by the properties of the crystallinehcp lat-
tice of hydrogen and practically do not depend on the pr
ence of impurity molecules at a small impurity concent
tion:

tU
21~x,T!5AUx2T3e2E/T, tN

21~x,T!5ANx2T5.

The boundary scattering depends on an average size of
talline grainsL and sound velocitys:

tB
215s/L.

The intensity ofN processes is taken from the data
Ref. 19 (AN56.73104 s21

•K25!, and the parameters ofU
processes are obtained from the data on thermal conduct
of pure parahydrogen ~AU55.69•107 s21

•K23,
E536.57 K!.18 It is worth noting that to describe the therm
conductivity of samples without impurities it was necessa
to introduce an additional mechanism corresponding to
purity scattering at the deuterium concentrationc50.01%.
Later it was taken into account when analyzing thermal c
ductivity of impurity crystals. Note that the natural conte
of deuterium atoms in hydrogen changes with
(1.39– 1.56)31024.20

The analysis of the experimental data was made se
rately for the impurity scattering models of Klemens a
Antsygina-Slyusarev by using dependences~1! or ~3!, re-
spectively.

To fit the calculated curves to the experimental data
used a mean free path of phonons at boundary scattering~L!
and the parameters characterizing the intensity of impu
scattering («eff ,G) as the fitting parameters. A parameterg2

in the AS model was calculated using the average so
velocities for purep-H2 ando-D2 obtained from the data on
Debye temperatures of these substances. Forp-H2 U
5118.5 K16 and sH2

51342.34 m/s, foro-D2 U5111.5 K16

andsD2
51202.8 m/s, andg250.606. For each of the impu

rity scattering versions the calculated thermal conductiv
curves agree satisfactorily with the experimental ones. F
ure 2 gives the experimental data for deuterium concen
tion c50.1% and the calculated dependences of ther
conductivity versus temperature for two models of impur
scattering. The table presents the optimal fitting parame
as a function of the deuterium concentration.

f
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At deuterium concentrationc<0.1% the parametersG
and«eff do not depend on concentration within the limits
the experimental error. This means that the deuterium m
ecules can be considered as independent scattering cent
this concentration range. Atc.0.1% G and «eff decrease
with increasing concentration.

When treating the results of the thermal conductiv
study of solid solutions3He–4He,4–9 the authors practically
used only the Klemens model. This model makes it poss
to compare the increase of intensity of phonon scattering
impurities (a5G/(DM /M )2) due to the quantum effects fo
the cases of solid isotopic solutions of helium and hydrog
In our opinion, the most accurate thermal conductivity m
surements of solutions3He–4He were made in Refs. 8,9
According to Ref. 9, at molar volumeV520.56 cm3/mole
and 3He concentration from 0.05 to 0.5% the values ofa
changed within 3–3.4. According to Table I, for solutions
equilibrium pressure of vapor and low deuterium concen
tionsa51.64~a5G, asDM /M51!. Thus, at low pressure
the quantum isotopic effect in helium is twice as gre
though the mass defect is four times less. It should be no
however, that the magnitudea characterizing the quantum

FIG. 2. Temperature dependence of thermal conductivity of solid solutio
c50.1%: the experimental data~L!, according to the Klemens model~1!
and to the AS model~2!.
l-
s in

le
y
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t
-

,
d,

effect decreases from 3 to 1, approaching the classical v
with decreasing molar volume from 21.56 to 11.5 cm3/mole.
It is interesting to comparea of crystalline hydrogen and
helium at equal reduced volumesV* 5V/(Ns3), wheres is
the gas-kinetic diameter of molecules,N is Avogadro’s num-
ber. If one takess52.62 Å for 4He and 2.96 Å for H2 and
D2,

16 then the molar volume of helium V(4He)

515.95 cm3/mole corresponds to the molar volume of h
drogen at equilibrium vapor pressure and helium tempe
tures (V523.16 cm3/mole). On the basis of the dependen
of a on molar volume of solid helium,5,7 we have obtained
a51.5 for solid 3He–4He solutions atV515.95 cm3/mole
that is somewhat less than the valuea51.64 for solutions
D2–H2 at equal reduced volume.

Let us now estimate the relative change of the fo
constantDw/w and the relative radial distortion of a lattic
Dd/d in the vicinity of the impurity molecule D2 in solid H2.
In the framework of Klemens model@see formula~2!# these
effects cannot be determined independently. The magnit
Dw/w can be calculated independently from the data on h
capacity of solutions of orthodeuterium in parahydrogen21

According to Ref. 21,Dw/w50.3. If one uses this value an
formula ~2!, then we obtain the valueDd/d given in Table I.
The last value can be compared withDd/d evaluated by the
formula

Dd

d
5

~Vo2D2
!1/32~Vp2H2

!1/3

~Vp2H2
!1/3 .

Using the following values of molar volumesVo-D2

519.9 cm3/mole and Vp-H2
523.16 cm3/mole we obtain

Dd/d520.049. Since both methods of determining the re
tive radial distortion are rough approximations, the agr
ment of the valuesDd/d obtained by these methods can
considered as satisfactory.

The analysis of the experimental results has shown
the deviations from classical scattering of phonons by
isotopic impurity are observed in crystals of parahydrog
with orthodeuterium impurity. At the same time both th
simple and physically rather clear Klemens model and
more consistent AS model describe satisfactorily the im
rity contribution to thermal resistivity of a crystal. Both mod
els show the deviation in the behavior of impurity scatteri
from the classical case. However, the Klemens model~unlike
the AS model! permits one to estimate the distortion and t
change of force constants in the vicinity of an impurity mo
ecule. The main result of the present work is the discov

at
ary
TABLE I. Fitting parameters of impurity scatteringG, «eff and averaged mean free path of phonon at bound
scatteringL, obtained from the experimental data onK(T) for (p2H2)12c(o-D2)c .

c, %

Klemens model AS model

G Dd/d L, m m «eff L, m m

0.01 1.64 20.021 0.879 2.14 1.08
0.05 1.64 20.021 2.50 1.98 2.68
0.10 1.69 20.022 0.464 2.03 0.698
0.50 1.49 20.015 0.276 1.95 0.436
1.00 1.19 20.001 2.18 1.72 2.68
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and the quantitative estimation of the influence of quant
effects on impurity scattering of phonons in solid hydroge

The observed concentration dependences for impu
and boundary scattering give grounds for assuming that
periments with analogous objects made in the lower te
peratures range~where the thermal conductivity is mainl
determined by a defect structure of crystal! will make it pos-
sible to study not only the behavior of isotopic impurity b
finer effects as well, related to the influence of impurity
the defect structure of crystal. Note that it is impossible
draw conclusions on the influence of impurities on a def
structure in a sample on the basis of data on the tempera
dependence of thermal conductivity in a phonon maxim
region. No dependence of boundary scattering paramete
concentration of D2 is observed in the solution. To obtai
extra information on the influence of macroscopic defects
thermal resistance in H2 it is necessary to widen the region o
studying to the side of temperatures lower than 1.7 K.

The authors are indebted to T. N. Antsygina and K.
Chishko for useful consultations and fruitful discussions
the experimental results.

The authors dedicate this paper to academician B
Verkin on the occasion of his 80th birthday. Owing to h
perspicacity and initiative the studies of cryocrystals beca
possible in our Institute.

*E-mail: korolyuk@ilt.kharkov.ua
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Specific features of exciton states in neon are analyzed in the approximation of a rigid lattice,
taking into account its easy deformability. Regular alteration of atomic and molecular
states upon a transition from heavy inert elements to light elements leading to the emergence of
a number of typical distinctions of band excitations in neon is considered. Dynamic
parameters of electrons, holes, and excitons associated with resonant energy transfer in the
crystal and with self-trapping of quasiparticles are specified. It is shown that the strong coupling
of the lowest exciton state with local vibrations of the surrounding lattice results in mixing
of free and self-trapped excitations and in a considerable decrease in the mobility of excitons. A
comparison of experimental and theoretical absorption spectra of mixed states makes it
possible to refine the parameters of the exciton–phonon interaction for the singlet and triplet
components of the exciton. ©1999 American Institute of Physics.@S1063-777X~99!02008-3#
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INTRODUCTION

The physics and spectroscopy of cryocrystals of in
element or rare gas solids~RGS! were chosen as a bas
trend from the very outset of investigations in the low te
perature physics in Kharkov. At the beginning of the thirtie
I. V. Obreimov, the founder of the first physicotechnical i
stitute in the Ukraine, was interested in the problem of lig
absorption in the condensed phase and attracted attentio
Ya. I. Frenkel to the astonishing~at that time! emergence of
discrete~narrow! absorption bands and luminescence in
spectrum of solids during their cooling to low temperatur
This formed the basis of the concept of excitons in the cr
tal lattice. The basic model in the Frenkel theory of excito
was the atomic argon crystal.1 However, experiments on
RGS spectroscopy were impossible at that time since t
required the development of special technique for
vacuum ultraviolet region in the energy rangeE>10 eV con-
taining the lowest excited states of Ne, Ar, Kr, and X
atomic cryocrystals.

Thirty years later, outstanding theoretical, experimen
and technical achievements of scientists in the field of lo
temperature physics stimulated the creation of a new spe
Institute of Low Temperature Physics and Engineering
Kharkov. The organizer and inspirer of behind the found
tion of this institute was Boris Ierimievich Verkin. At tha
time, one of the author of this paper~I. Ya. Fugol! put forth
the idea of low-temperature experiments aimed at study
excitons in atomic cryocrystals. Boris Ierimievich show
his interest in this idea and supported it since it natura
matched with his plans for the development of cryocrys
physics at the Institute for Low temperature Physics and
gineering. During all subsequent periods of time, B. I. V
kin facilitated the establishment and evolution of this tre
which has become a leading direction in the departmen
7131063-777X/99/25(8–9)/11/$15.00
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spectroscopy of condensed media at the Institute. After
other 20 years, the results of scientific achievements in
field were summarized in the monograph ‘‘Cryocrystals.2

Three of the four parts of this book are devoted to the ph
ics of cryocrystals grown at the Institute. This trend w
recognized all over the world and still retains its scienti
priority.

Since the 1970’s, when it became possible to study
perimentally the excited states of RGS cryocrystals, rich s
entific information has been accumulated, which is reflec
in the well- known books and reviews.3–8 Nevertheless, the
experimental results do not agree with the theoretical mod
used for describing excited electron states of solid neon~as
well as solid helium! and various approaches exist for the
description. This paper is the first of two articles devoted
the authors to the memory of respected Boris Ierimiev
Verkin. In the present paper, we touch upon the central pr
lems of the structure and dynamics of excitons and electr
in the Ne lattice on the basis of new concepts developed
the basis of experimental results and theoretical invest
tions carried out at B. Verkin Institute for Low Temperatu
Physics and Engineering in recent years.

If we consider a series of classical cryocrystals of ra
gases~with the exception of the Ne quantum crystal!, solid
Ne occupies the extreme position in view of the simplicity
its structure and the smallness of the forces of interac
between atoms in the crystal lattice. Neon behaves as a
ginal crystal in some aspects of lattice dynamics~for ex-
ample, as regards the applicability of the theory of elastic!
and band structure~for example, the correctness of excito
model is doubtful in view of the smallness of the dielect
constant!.

It is still unclear whether the energy structure of excit
exciton states of the Ne crystal can be connected with th
for an individual atom or molecule!. The answer to this ques
© 1999 American Institute of Physics
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tion for the ground state of the crystal is almost obvious. I
well known that the approximation of paired molecular p
tentials of Ne2, taking into account small corrections for
many-particle system, can serve as the basis crystal pote
and provides a correct description for most effects in latt
dynamics. Generally speaking, the approximation of ato
or molecular excitations is not indisputable for the band a
exciton states of Ne cryocrystals. On the one hand, it is g
erally accepted that the effective mass approximation~EMA!
presuming a weak coupling between an excited electron
a hole ~exciton! in a medium with dielectric screening i
valid for describing excitons in the liquid and solid phases
heavy inert elements such as Xe, Kr, and Ar. On the ot
hand, it was proposed recently that the exciton model is
applicable altogether for describing excitations in conden
helium, and that the best agreement with experimental res
is attained in terms of trapped excitations of the molecu
type.9 For this reason, a detailed analysis of situation in
cryocrystals is undoubtedly essential. In addition, recent
perimental investigations of relaxation of excitations and
ergy transfer to impurity centers and crystal boundaries10,11

necessitate a more exact determination of the dynamic
rameters of electrons, holes, and excitons~such as the posi
tion of band and local energy levels and band width! as well
their transport properties associated with the electro
phonon interaction for a correct interpretation of experim
tal data.

In Sec. 1, the relation of atomic and molecular exci
tions with crystal excitations is established on the basis
their description with the help of Rydberg series with a qu
tum defect. New estimates of exciton band widths as wel
effective masses of electrons, holes, and excitons are
tained. The effect of mixing of the lowest states of free a
self-trapped excitations due to strong coupling between
citons and the local deformation of the neon lattice is inv
tigated in Sec. 2. The theoretical absorption spectrum and
experimental spectrum are compared to obtain the value
the exciton–phonon coupling parameters for the singlet
triplet components of the exciton transition.

1. MOLECULAR POTENTIALS, BAND MODEL, AND
STRUCTURE OF EXCITON STATES

Let us analyze the evolution of electron excitations
the transition of Ne from atom and molecule to the solid st
and consider possible alternative approaches to the des
tion of the energy structure. We shall first consider an ide
ized model in a rigid lattice without taking into account th
electron–phonon interaction and easy deformability of
cryocrystals. We start from atomic and molecular elect
excitations in Ne in the free state.

A Ne atom in the ground state1S0 has a closed configu
ration of 10 electrons: 1s22s22p6. The lowest excitations
transfer one of 2p-electrons to the next (21n)s-orbitals (n
51,2,3,...) forming a defective Rydbergs-series whose eac
term splits into two components due to the spin–orbit~SO!
interaction with the total angular momentaj 53/2 and
j 51/2 of the hole core of the atom. The seri
(21n)s3/2,1/2 are limited by the ionization potentialsI (3/2)
s
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521.56 eV andI (1/2)521.657 eV so that their SO splitting
amounts toDSO50.097 eV. The lowermost excitation o
2p53s corresponds to the terms3P0,1,2( j 53/2) and1P1( j
51/2), the oscillator force of (1P1–1S0) transition (F
50.16) for free atoms being an order of magnitude high
than for (3P0,1,2–

1S0) transitions; from the latter three tran
sitions, we will be interested only in the observable transit
3P1–1S0 . The energy position of energy levels withn>1 in
the gas is determined by the interaction of an electron
cated at a large distance from the atomic core with the ef
tive charge of the nucleusZ* . If the radiusr 0 of the atomic
core is much smaller than the radiusr n of the excited state,
we can assume that the charge is point-like and that the p
lem is similar to that for a hydrogen atom. In other word
we assume that the quantization of energy levelsEn(n) oc-
curs in accordance with the quantization of the radiusr n

5n2a0 of the electron orbit (a0 is the Bohr radius!. The
influence ofZ* differing from unity can be effectively taken
into account by introducing the correction to the quantu
number ~quantum defectd! in the expression for energ
terms as well as in the expression for radii. If the radius
the atomic core cannot be neglected, the familiar simple
pendenceEn(n) and/or r n(n) is violated. Bearing in mind
that we subsequently compare the result with the exc
series~the indexn labels excited states!, we describe the
defective Rydberg atomic series as follows:

En5I 2
R~Z* !2

~n11!2 [I 2
R

~n112dn!2 , n51,2,3,..., ~1!

where I is the ionization potential,R5m0e4/2\2513.6 eV
the Rydberg constant,m0 ande are the mass and charge of
free electron, anddn is the correction to the quantum numb
n85n11 (dn,0.33 for inert atoms!, which has a tendency
to a noticeable decrease with increasing atomic numbe
the inert element and to a slight decrease with increasinn
for each inert atom. For the singlet series of the Ne ato
d150.32 andd550.31, the former value describing the p
sition of absorption band of the entire series to within 0.
eV. The parametersdn for the triplet series virtually coincide
with those for the singlet series. The first terms of atom
series correspond toE1(3/2)516.67 eV and E1(1/2)
516.84 eV. For calculating the series, we used the data
atomic spectra from Ref. 12. In order to outline the peculia
ties in the structure of the Ne atom leading to inapplicabil
of the Wannier model for the lowest excitons in the cryst
we compare them with the corresponding excitations in
for which the model mentioned above was used successf
For example,d150.08 andd450.01 for the triplet series of
the Xe atom. The application of description~1! for electron
transitions together with corresponding quantization of
orbit radius is substantiated by the requirement of weak c
pling between an excited electron with the atomic core, i

Wn5
R

~n112d!2 !R; r 0!r n . ~2!

The terms withn.1 for all inert atoms undoubtedly satisf
this requirement, and the radii of electron states can be
termined from the formula
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r n5~n112dn!2a0 , a050.53 Å, ~3!

Let us now consider the lowermost excitations for whi
condition ~2! is not satisfied exactly. We haveW15R/2.8
54.85 eV for the neon atom andW15R/3.753.67 eV for
the xenon atom. Estimating the radii by using formula~3!,
we obtain (r 05^r & from Ref. 13: calculations are made
accordance with values ofI ):

Ne: r 0>0.51 Å, r 1>1.49 Å, r 2>3.85 Å,
r 1

r 0
52.92;

Xe: r 0>1.24 Å, r 1>1.95 Å, r 2>4.51 Å,
r 1

r 0
51.57.

~4!

The ratior 1 /r 0 is small and is larger significantly in the cas
of Ne. The mechanism of the influence of the atomic core
excited states typical of light atoms~He and Ne! is associated
with a considerable part of the nuclear charge uncomp
sated by shells lying deeper than the valence shell~there are
four electrons in all!, which is manifested in the Coulom
potential through an increase in the effective nuclear cha
Z* ~the potential is pulled downwards!. In the case of Ne,
this leads to a very large potentialI and a relatively large
defectdn in the terms of excited states. The first requirem
in ~2! is not satisfied exactly. On the contrary, condition~2!
for radii holds much better since uncompensated cha
compresses the valence shell to the size of the hydro
atom ~by the way, He has the same radiusr 0 and exhibits a
similar effect for an even larger potentialI ), and the estimate
~3! taking into account the quantum defect can be regar
as reliable to a certain extent. The mechanism typical
heavy atoms~Kr and Xe! is associated with the presence o
large number of electrons in deeper shells of the atom.
the one hand, they create a very high electron density aro
the nucleus (Z1554e for Xe! and screen it to the value o
Z* ;1 even for electrons of the valence shell. The ionizat
potentialI (3/2)512.13 eV for the Xe atom is close toR ~we
can formally compare it with the casen851), while the first
excited state is close to the position of the electron ene
level in the hydrogen atom with the principal quantum nu
ber n852, i.e., we obtain a smalld in the positions of terms
and better fulfillment of the energy requirement in~2!. On
the other hand, five electron shells of the atom occup
large volume in view of orthogonality of wave function
with different quantum numbers. A correction to the pote
tial appearing in the form of repulsion from the atomic co
shifts the peak of the density of the excited electron to
region of larger 1.r 0 . In this case,r 0.2a0 ~which contra-
dicts the value ofI ), and the estimate of the radiusr 1 ob-
tained by formula ~3! is very rough. Thus, the ‘‘non-
Rydberg’’ nature of the lowermost excitations is manifes
in one way or another for all rare gases; for these reas
such excitations should be classified as states of interme
coupling with the atomic core. In the formation of the co
densed phase, this peculiarity is manifested in the obvi
genetic relation between excited and atomic states an
unconditional predominance of the contribution from near
neighbors to the interaction of an excitation with the lattic
n

n-

e

t

e
en

d
f

n
nd

n

y
-

a

-

e

d
s,
te

s
in
t
.

In the case of spherically symmetric excited states,
effect of the environment can be taken into account in
first approximation by using pair potentials for an isolat
excited molecule. In Fig. 1, the potential curves of the N2

molecule are shown in three fragments: in the ground s
@Fig. 1~a!#, lower states of excited Ne2* molecule@Fig. 1~b!#,
and potential curves for the molecular ion Ne2

1 @Fig. 1~c!#.
The curves in Fig. 1 are plotted according to the results
ab initio calculations14 which were subsequently confirme
in experiments. The vertical straight line crossing all the p
tentials is drawn at the atomic spacingd53.15 Å in the crys-
tal. It should be noted that the curves contain no contribut
from long-range forces, viz., dipole–dipole interaction a
polarization attraction, that give a relatively small contrib
tion to potentials. In the framework of our analysis, the
results demonstrate the effect of the most short-range c
ponent of atomic interaction due to the overlapping of t
electron wave functions of two atoms approaching ea

FIG. 1. Potential of the neon molecule in the ground state~a!, for lowermost
excited levels~b! and for a positive ion~c!. Only antisymmetric state (u)
making contributions to the band states in the crystal are presented. Da
curves denote doubly degenerate energy levels.
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other. According to calculations,15 the potential curve of the
ground1Sg

1 state of Ne2 has a shallow well with the disso
ciation energyD050.0036 eV forr 053.102 Å. Much more
stable molecules can be formed as a result of interaction
normal and an excited atom.

Figure 1~b! shows the part of lowest molecular stat
which dissociate to the atomic energy levels Ne(1S0)
1Ne(3s;1,3P) and correlate with the fcc symmetry of the N
crystal lattice with a single atom in the unit cell. This cond
tion preserves only oddu terms~nondegenerate 0u

1 and dou-
bly degenerate 1u) which form together theF1u crystalline
states with the weight contributionF1u5(1/3)0u1(2/3)1u .
It can be seen from@Fig. 1~b!# that along with a large numbe
of repulsive terms~all the p-terms!, there exist strongly
coupled states with the dissociation limit to the triplet3P1,2

states and a deep wellD* '0.5 eV for r e* 51.79 Å. For the
singlet terms 0u

1 , a shallow well is formed forr e* 52.7 Å. A
distinguishing feature of the lowest molecular states of N2*
as compared to heavy rare gases is the presence of pot
maxima~humps! at distancesr H52.9 Å.r e . According to
estimates,14 the height of these humps in Ne2* is of the order
of 0.07 eV forr H , while the repulsion whose magnitude
0u

1 and 1u is 10.04 eV still dominates in the regionr'd.
The long-range repulsion peaks of this type emerge as a
sult of quantum symmetry effects in view of the Pauli exc
sion principle. The origin and the height of far-lying hum
on the interaction potentials of the normal and excited
lium atoms were discussed in Ref. 16. It was found that
height of the hump for helium is;0.14 eV for r H

52.65 Å, and its origin is connected with the predominan
of the positive contribution to energy in the case of simul
neous exchange of an excited electron and the nucleu
antisymmetric states.

According to Cohen and Schneider,14 the resonant at-
traction cannot compete with repulsion having a longer ra
when two neon atoms approach each other to a dista
r'd. In this case, the excitation preserves the spherical s
metry relative to the ion, although the resonant coupling
tween valence electrons at shorter distances leads to the
mation of a deep molecular state with the symmetryD`h .
Generally speaking, the magnitude of resonant attractio
an important parameter determining one of the contributi
to the exciton band width~it determines the nondiagona
matrix elementTnm of excitation transfer between neighbo
ing sitesn and m in the lattice!. Unfortunately, Cohen and
Schneider14 did not separate this contribution for the excit
state. Its magnitude can be estimated indirectly from the m
lecular ion potentials responsible for the formation of t
hole band of the crystal.

Figure 1~c! shows the potential curves for the Ne2
1 mo-

lecular ion formed as a result of interaction of a normal
atom (1S0) and an atomic ion taking into account its S
splitting Ne1 (2p5; 2P3/2, and2P1/2). The ion with j 53/2
corresponds to a deep well withD1'1.2 eV for r 1

'1.75 Å, whose depth is twice as large as that for an exc
Ne2* molecule. The ion withj 51/2 has a weakly coupled
state for r e52.7 Å. Since all interactions are construct
only with the participation of valence electrons, the upp
repulsion potentials are of the same type as for the gro
a

tial

e-
-

-
e

e
-
in

e
ce
-
-

or-

is
s

o-

d

r
d

state, and a very weak attraction dominates for the lo
range (r'd) interactions~repulsion humps are absent!. It
should be noted that the potential curves for Ne2

1~1/2! for
r'd almost coincide with the ionization limitI (1/2) of the
atom, indicating a small width of the hole band for the s
glet.

The long-range polarization interaction plays a lead
role in the formation of energy structure of RGS. In th
series of inert elements, Ne has the smallest polarizability~it
is an order of magnitude smaller than for Xe in the grou
state!, and hence a small permittivity«51.24. For this rea-
son, the Coulomb potential for electron excitations in t
crystal is slightly ‘‘compressed.’’ This effect, in turn, is com
pensated by the above-mentioned increase in the excita
energy due to repulsion from nearest atoms, and as a re
the dielectric gapEg in Ne almost coincides with the ioniza
tion potential of the atom. At the same time, the ionizati
energy in Xe crystal («52.18) decreases significantly (Eg

59.33 eV), as a result of which the excitations beco
weakly coupled. Figure 2 shows the band diagram of sta
in the k-space for the high-symmetry pointsG, L, andX in
the Brillouin zone. The dispersion along~D! or ~L! direc-

FIG. 2. Energy band diagram for Ne cryocrystals: hole bands~bottom!,
conduction bands~top!, and exciton bands~below, in the region of dielectric
gap!.
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tions determines the widthDEh of the hole band including
the SO splitting which changes in the crystal insignifican
as compared to the gas (DSO'0.1 eV). The series of exciton
bands (n51,2,3,...) lying above the hole band converges
the bottom of the conduction band at the pointG1 . The low-
est conduction band is plotted ons-wave orbitals and has a
isotropic dispersion relation in the lower part. The availa
results of calculations of the band structure of Ne exhib
spread of a few electron-volts in the value of conduct
band width,17–19 but most of authors admit that the dispe
sion in a considerable part of the band resembles aston
ingly the dispersion of a free electron with a purely parabo
dispersion relation, i.e., the electron massme in the band is
close to the massm0 of a free electron. It is well known tha
electrons in Ne relax rapidly to the upper part of the ba
and only low-energy particles are observed in experime
on photoemission during the scanning of the entire cond
tion band even for quite thin samples.4 For this reason, it is
sufficient to estimate the transport properties of electron
the region of quadratic dispersion relation in order to anal
the recombination of charges and their trapping. The m
point of the band in theG—X direction corresponds to th
value ofk5p/a for which we obtainEc(p/a)'2 eV from
the data obtained by Rossler.17 In this case, in the effective
mass approximation~EMA! we can equate

1

2
DEc

X5
\2p2

2mea
2 '2 eV, ~5!

which givesme'm0 .
The hole band widthDEh also exhibits a considerabl

spread in the values obtained by using different theoret
models. According to the results obtained in Refs. 17–
the total width of the overall hole band in the absence of
splitting amounts to 0.5 eV, while the value calculated tak
into account the SO splitting for subbands withj 53/2 and
j 51/2 does not exceed 0.4 eV. On the other hand, the
periments on energy distribution of electrons in Ne in extr
sic photoeffect make it possible to determine the density
states in the hole bands and give the value;1 eV for the
total width of both 2P bands in Ne.4 On the basis of experi
mental data, we find that the maximum half-width of an
dividual subband isDEh/2.0.4 eV, which is twice as large
as the corresponding half-width obtained from theoreti
analysis. The corresponding effective mass of a hole~calcu-
lated in analogy with~5!! is found to bemh54.7m0 .

A discrepancy also exists between theoretical and
perimental results concerning the exciton bands in Ne. E
ton states are classified according to the parameterj5r n /d
into cases of strong and weak coupling, i.e., we have twic
stringent criterion as criterion~2! for atoms. As a rough es
timate, we use the radii of atomic excitations in Ne given
~3! and ~4!. The first excited state corresponds toj1

51.49/3.15'0.5, the second toj2'1.2, and the condition
jn@1 of weak coupling is satisfied rigorously only startin
from the third term in series~1!. It can be seen that th
approximation of weak coupling describes correctly the h
excited states (n>2) and is naturally valid for an analysis o
the conduction band itself.
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The weak coupling approximation is based on Blo
functions describing an additional electron in the conduct
band and a hole in the valence band, which are separate
the gap Eg and interact with the effective chargeeeff

5e/A«0. The remaining valence electron and atomic co
are taken into account by introducing the crystal poten
determining effective masses of an electronme and a hole
mh in corresponding bands. In this effective mass appro
mation, the motion of an electron and a hole relative to th
common center of mass is characterized by the reduced m
m, while the motion of their center of mass is characteriz
by the sum of effective masses (me1mh). The expression
for exciton band energyEn(k) ~Wannier–Mott exciton se-
ries! and general relations between parameters can be wr
in the form typical of rare-radius excitons:

En~k!5Eg2
G

n2 1
\2k2

2~mh1me!
, n51,2,3,..., ~6!

G5R
m

«0
2 •5

m0e4

2\2

m

«0
2 ,

1

m
5

1

me
1

1

mh
, ~7!

weren is the number of the exciton band andG the binding
energy for exciton~an analog of the Rydberg energy in th
solid phase!, and m is expressed in the units ofm0 . The
second term in~6! determines the position of the bottom o
the nth exciton band with the width described by the thi
term in ~6!. The binding energy can be determined in acc
dance with the values of masses obtained above for Ne:

G5R
m

«0
2 58.83m57.24 eV ~8!

for me'm0 , mh54.7 m0 , andm50.82 m0 .
The absorption spectrum for solid Ne indeed conta

two series of bands with a blue matrix shift relative to t
gas, which converge virtually to the ionization limit fo
atom. All exciton bands are in one-to-one corresponde
with atomic lines. Figure 3 shows absorption bands for a
cryocrystals atT58 K according to Saile and Koch,21 while
the top of the figure shows the energy levels for gas and
ionization limits I (3/2) and I (1/2). We tried to select a
hydrogen-like series for the seriesG(1/2) which would de-
scribe the experimental positions of bands withn52,3,4,
have the binding energyG57.25 eV, and converge to th
limit Eg(1/2)'I (1/2). These requirements are met only fo
series with a quantum defect~correction to an integral value
of n) having the form

En~k!5Eg2
G

~n1dn!2 , dn[d50.32, n51,2,3,...

~9!

In Fig. 4, we choose the denominator of~9! as the ab-
scissa in order to demonstrate the coincidence of the de
dence~9! ~dashed curve! with experimental positions of ex
citon bands ~solid curve!. A similar series can be also
proposed for describingG(3/2) excitons taking into accoun
the fact that the series must converge to the limitEg(3/2).
The corresponding exciton radii can be estimated from
formulas
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FIG. 3. Absorption~dashed curve! and
luminescence~solid curve! spectra for
solid Ne; absorption bands for isolate
atoms in the gas are shown on the to
The inset shows the repulsion of th
nearest neighbors in the lattice by an e
cited atom for one-center self-trapping.
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m
~n1d!2a0 , ~10!

r 151.39 Å, r 254.30 Å, r 358.82 Å, r 4514.92 Å.

The use of a defective hydrogen-like series of the type~9!
naturally makes the descriptions of solid-state and ato
absorption alike@cf. formulas~1! and~9! as well as the lower
dot-and-dash curve in Fig. 4 corresponding to experime
energies of atomic absorption bands and the upper stra
line#. It should be noted that using the reliable theoretical a
experimental estimates of effective masses of electron
hole, we had to write the exciton series in the form~9! with
a positive correction to the quantum number (n1d). The
necessity of introduction of a quantum correction to t
Wannier–Mott exciton series for cryocrystals was cons
ered by some authors22,23 from a general point of view, bu
the pragmatic argumentation~choice of parameters! required
for its unambiguous application was missing. A few ser
with a quantum defect were proposed4,22,23for solid Ne with
different initial approximations. It should be noted that a
cording to Restaet al.,23 one of these series was charact
ized by the same parametersm, G, andEg which were un-
ambiguously chosen by us in~8! as the most reliable
parameters.

In the weak coupling approximation, the kinetic ener
of exciton is determined by its massmex5(me1mh), and
hence the half-width of the exciton band along t
G-direction for excitons withn>2 can be estimated as

mex5m014.7m055.7m0 ,

Bex
EMA5

\2p2

2mexa
2 50.3 eV. ~11!

The described model of excitons disregards their low
excitation state withn51. A rigorous criterion for the appli-
cability of the EMA involves the estimation of the ratio o
the Fourier transform of the wave functionA(k) for exciton
at the center of the Brillouin zone~with k50) and at its
boundary (k5qD), where qD is the radius of the Debye
sphere in thek-space, whose volume is equal to the volum
of the Brillouin zone (qD56.2/a for an fcc lattice2!. The
ratio of these functions is defined as24
ic

al
ht
d
nd

-

s

-
-

st

A~qD!

A~0!
5

1

@11~qDr ex!
2#2 . ~12!

Its smallness determines the accuracy of the EMA. For
exciton withn51 in Ne @r 1 is given by~10!#, we have

A~qD!

A~0!
50.04 for qD51.4 Å21. ~13!

For comparison, we note that the ratio~12! for typical semi-
conductors has the smallness 1024. According to~13!, exci-
tons withn51 in Ne correspond to the intermediate case

The fact that the state withn51 is correctly described
by relation~9! ~see Fig. 4! can be explained by the above
mentioned effect, when the repulsion of an excited elect
from the nearest surroundings plays the same role as a
crease in the effective charge of the nucleus, and this effe
taken into account just by permittivity. At the same time, f
d50.32 we obtain a good agreement for the exciton ra
with the lowest atomic excitation forn51 @cf. formula ~3!#,
which is natural to expect forr 1,d. In other words, it ap-
pears that the model with a quantum defect is applicable
certain sense for the lowermost exciton state also. It sho

FIG. 4. Rydberg series forG(1/2) excitons~solid line! and for an atom in
the singlet state~dot-and-dash curve!. The dashed line corresponds to d
pendence~9!.
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be noted that Andreoniet al.25 managed to obtain a satisfa
tory coincidence of the theoretical position of the lowest e
citon band with experimental data for a certain modificat
of the EMA; however, they did not analyze the dispersion
exciton states.

In accordance with the general principles formulated
Knox,26 a number of theoretical calculations of the width a
position of the exciton withn51 in Ne were made in the
strong coupling approximation.27,28 Using orthogonalized
atomic wave functions as the basis, Sribnayaet al.28 esti-
mated the width of the lowest exciton band as 2B50.4 eV.
However, difficulties were encountered in explaining the p
sition of the bottom of the exciton band withn51. In this
respect,a priori calculations made by Bourseyet al.29 who
used potential curves of excited Ne2* molecules for inter-
atomic distancesr 5d proved to be more successful. Th
energy of transition to the exciton state withn51 was cal-
culated according to the algorithm typical of Frenkel~small-
radius! exciton in the form

Ef~k!5E0 f1D f1L f~k!, ~14!

whereE0 f is the energy of the 0 –f transition in a free atom
D f is the displacement of the transition energy due to
interaction of the excited atom with all the surrounding
oms in the crystal~matrix shift!, and L f(k) is the resonant
contribution due to dipole–dipole translation of the exci
tion over the lattice. The value ofD f was calculated from the
data on repulsive molecular potentials forr 5d according to
Cohen and Schneider14 @see Fig. 1~b!# and using the theoret
ical crystal potential of polarization attraction taking into a
count the Van der Waals termsR26 and R28. Using the
results obtained in Ref. 29, we can estimate the matrix sh
and positions of matrix levels~i.e., the midpoints of exciton
bandsEmid5E0 f1D f) for the lowest atomic transitions with
j 53/2(3P1) and j 51/2(1P1):

D f~
3P121S0!50.916 eV; D f~

1P121S0!50.881 eV; ~15!

~E0 f1D f !3/2517.587 eV; ~E0 f1D f !1/2517.729 eV. ~16!

It should be recalled that the resonant contribution wh
was not separated in potentials was included by us in~15!.
The exciton band width was estimated in Ref. 29 taking i
account only the contribution from the long-range dipol
dipole interaction. In this case, the oscillator forceF in solid
Ne was assumed to be equal toF50.11 for the two exciton
transitionsG(3/2) andG(1/2), which corresponds to com
plete mixing of singlet and triplet states in the solid phase
is well known that exciton states experience crystal splitt
in the cubic lattice into transverse and longitudinal excito
depending on the mutual orientation of the exciton wa
vector k and the dipole momentp of the optical transition.
Transverse excitons (p'k) lying below the matrix level and
having a dispersion relation with a positive effective ma
are manifested in absorption. The decrease in energy
transverse excitons to the bottom of the band as a resu
dipole– dipole energy transfer is given by26

L'5
4p

3

P2

V0
5

8p

3

e2\2F

a3m0ET«0
, p25

e2\2F

a3m0ET«0
, ~17!
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whereV05a3/4 is the volume of a unit lattice andET is the
energy of the transition. The energy~17! corresponds to the
band width of transverse excitons to within the coefficient
the order of 0.5 depending on the crystallograph
direction.26 According to the estimated obtained in Ref. 2
this value for solid Ne amounts to

L'~3/2!50.087 eV andL'~1/2!50.097 eV. ~18!

The position of excitonsG(3/2) and~1/2! was determined for
ET(3/2)517.5 eV andET(1/2)517.63 eV taking into ac-
count~14! and~16!. The discrepancy between these data a
experimental results21 ~with a blue sift! amounts to 0.15 and
0.13 eV, respectively.

It should be recalled that the matrix elementTnm ~and
hence the exciton band width! contains the contribution no
only from the long-range dipole-dipole interaction, but al
from the exchange energy responsible for the formation
the hole band, which is not negligibly small. In this conne
tion, we shall mention one more version of the modifi
strong coupling approximation developed by Ratner a
Tarasova,30 in which the band width must be determined b
the sum of the contribution due to the dipole–dipole inter
tion and the contribution from the hole band~under the as-
sumption thatDEh!I ). The result can be written in the form

B5L'1gDEh/2, g;exp@20.48~d/r n!3/2#. ~19!

If we use in this formulas the values ofr 1 and DEh deter-
mined above, we obtain the following expression for estim
tion the half-width of the exciton band withn51 in Ne:

g50.23, gDEh/250.09 eV andB'0.2 eV. ~20!

Thus, the contribution to the total half-width of the ban
from the dipole–dipole and exchange interactions are alm
identical, which sharply distinguishes the situation with N
from that for heavier RGS in which the first contribution
negligibly small.

2. MIXING OF STATES OF FREE AND SELF-TRAPPED
EXCITONS IN EASILY DEFORMABLE Ne LATTICE

Since the lowest states of excitons withn51 in Ne are
characterized by an intermediate radius, they can be
scribed taking into account the interaction of an excited at
only with the nearest neighbors in the lattice. This peculiar
also determined the choice of the approach to the descrip
of the exciton–phonon interaction which is put in correspo
dence in this case to the potentials of interaction of the
cited atom with the surrounding atoms in the ground state
the lattice@see Fig. 1~b!# and is mainly determined by th
electron– electron repulsion. The exciton–phonon inter
tion is manifested in the exciton–phonon scattering ensu
the energy relaxation of excitons in the band as well as in
intensity of interaction between excitons with a local defo
mation of the lattice, leading to self-trapping of an excito
Self-trapping of excitons is a very important factor determ
ing the dynamics of excited states, the distribution of rela
ation channels among intrinsic, impurity, and defecti
states, as well as the transport of excitation energy in
crystal.
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It should be recalled that Ne displays intense lumin
cence of one-center self-trapped excitons~of the quasi-
atomic type, denoted byA in Fig. 3!,11 and much weaker
luminescence of two-center excitons~of the quasi-molecule
type, denoted byM ).31 The formation of quasi-atomic cen
ters is accompanied by the repulsion of nearest neighbo
the lattice by the excited atom~see the inset to Fig. 3!. Figure
5 shows schematically the process of self-trapping accom
nied with the formation of a quasi-atomic center in the mo
of configuration coordinates. The state of an excited atom
the crystal corresponds to the local crystal excitation le
Emid in the undeformed lattice in the absence of excitat
energy transfer to a neighboring atom (Tnm50). The reso-
nant coupling lowers the energy of band quasiparticles r
tive to the local energy level byB50.2 eV. Self-trapping is a
competing process lowering the energy of a local excitati
The ground-state potential determines the amplitude
atomic vibrations in the lattice, and the quantityD charac-
terizes the corresponding fluctuation of electron energy d
ing the time \/v̄ of lattice vibration and determines th
width of absorption spectrum of a local center.2–7 The depth
ELR of the potential of the self-trapped state in the appro
mation linear in deformation and in the elastic approximat
for the lattice is connected with the exciton-phonon coupl
parameterD through the relation

D5~vELR!1/2, ~21!

wherev is the characteristic energy of phonons in the latti
A band exciton stays at a lattice site for a short time\/B
!\/v ~adiabaticity condition!, and the extent of its scatter
ing at the local potential is determined by the nonadiabati
parameter

l5D2/B2. ~22!

It should be recalled that the fulfillment of the conditio
l!1 corresponds to a weak exciton–phonon scatte
G(E)/E!1, whereG(E) is the probability of one-phonon
scattering for an exciton with the kinetic energyE. In this
case, coherent nature of notion of a band exciton is m

FIG. 5. Diagram of coupling of the states of free and self-trapped exci
in the space of configurational coordinates. The corresponding absor
and luminescence spectra are shown schematically on the right.
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fested in dynamic narrowing of the absorption line~as com-
pared to the local center! and its displacement to the regio
of the bottom of the band,ET5Emid2B(E50). If ELR.B
~condition of strong coupling!, we must also take into ac
count simultaneously the probability of exciton transition
the self-trapped state,GST(E). In this case, the coherenc
condition for the exciton has the form@G(E)1GST(E)#/E
!1.

In order to characterize the intensity of the exciton
phonon interaction, the experimentally observed Stokes
minescence shiftS5ELR2B is normally used. Knowing the
valueB, we can determine the value ofELR and then find the
value ofD using formula~21!. The probability of a transition
to the self-trapped state can be estimated on the basis o
formula

GST~E!5A2p
~E2Emid!

2

D
expF2

~E2Emid!
2

2D2 G , ~23!

which is valid for uE2Emidu@D.32

For a one-center self-trapping of an exciton withn51 in
Ne, we have the following parameters:S50.65 eV, ELR

50.85 eV, v50.0075 eV,D50.08 eV, andl50.21. Thus,
in accordance with the chosen approximation, we observ
Ne the situation with a relatively weak exciton–phonon sc
tering and strong coupling with a local deformation:

v!D&B,ELR . ~24!

The calculations ofGST(E) made in Ref. 33 proved tha
the following relation holds for any values of exciton ener
in the band withn51 in Ne:

GST~E!@E.G~E!;lE, ~25!

and hence the situation in Ne can be classified accordin
the intensity of the exciton– phonon interaction as an exc
tionally strong coupling~as compared to heavier cryocrysta
of inert elements! leading to a considerable mixing of th
states of free and self-trapped excitons.34 In this connection,
several problems appear simultaneously in the descriptio
properties of excitations withn51: ~1! the problem of the
energy spectrum for quasiparticles;~2! the description of the
absorption spectrum and analysis of its peculiarities as c
pared to the spectrum of conventional excitons, and~3! the
applicability of the approximation linear in deformation fo
determining the constantD.

The only source of information on exciton states in N
prior to relaxation to the self-trapped state is the absorp
spectrum since luminescence spectrum does not display
states. The absorption spectrum~dashed curve in Fig. 3! has
a very large widthDE;0.3 eV and an asymmetric shap
with a long blue tail. Such a shape can be described nei
by a Lorentzian with a typical one-phonon dampingG
~which corresponds to the spectra of free excitons!, nor by a
Gaussian with the characteristic dampingD ~which is used
for local centers!. The description based on an asymmet
Lorentzian with the overall dampingGST(E)1G(E) used by
us in Ref. 33 can be regarded only as an estimate since
applicable only when the band properties of excitons are p
served. Thus, it remains for us only to analyze the the p
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sibility of describing the absorption spectrum by calculati
the dispersion relation for mixed states of free~F! and self-
trapped~ST! excitations.

The idea of configurational mixing is based on t
quantum-mechanical analysis of motion of atoms in the
tice. The states of free excitons as well as the energy le
of vibrational excitations of a self-trapped type~see Fig. 5!,
which differ in the configuration of nuclear wave function
the more significantly, the stronger the lattice deformat
around a local excitation, lie above the bottom of the ba
The process of self-trapping in the nonadiabatic approxim
tion can be regarded as the transformation of the kinetic
ergy of a band exciton to the kinetic energy of local vibr
tions of atoms around the excitation. The application of su
an approach leads to a renormalization of one-site excit
vibrational ~for brevity, vibron! energy levels of ST state
~which are equidistant in accordance with the linear appro
mation for the exciton–phonon interaction and the harmo
approximation for the lattice! to a set of narrow bands with
peculiar dispersion relation. The equation describing the
persion relationE(k) for mixed exciton–vibron narrow-ban
states has the form34

(
s

j k

E~k!2es
5

1

«~k!
, ~26!

j s5
\v̄

2p
expF2

~es2emid!
2

2D2 G .
Here es is the energy of thes vibrational level of the self-
trapped state,«(k) corresponds to the dispersion branch
an exciton in a rigid lattice, measured from the lattice-s
level emid (es andemid are measured from the bottom of th
self-trapped state!, and j s corresponds to the Frank–Condo
factor for a local center.

Here we calculate the energy spectrum correspondin
Eq. ~26! with D50.145 eV. The results of calculation a
presented in @Fig. 6~a!#. At the middle of the band

FIG. 6. Dispersion curves for mixed states of free excitons and high-en
vibrons of self-trapped excitations~a!. The absorption spectrum correspon
ing to mixed states is shown in~b!.
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E5Emid , the parameterj s has the maximum value;\v̄/D,
and the effect of mixing of states is manifested mo
strongly. The width of the energy region with a relative
strong mixing in the band is of the order ofD ~see Fig. 5!,
which embraces almost the entire band in the case un
investigation. As a result, the branches of exciton–vibr
states in Ne have a gentler slope than in Ar.33 The dashed
curve marks the region of strongest variation of the shape
the curves, which corresponds to the dispersion relation«(k)
for F excitons, which is stretched in the downward directio
The absorption spectrum calculated taking into account
contribution from each branch fork50 by the formula

A~Ei !5
1

B2 F(
s

j s

~Ei2es!
2G21

~27!

is shown in Fig 6~b!. The envelope of the spectrum is cha
acterized by a large width, long blue tail, and the shift of t
peak to the red part of the spectrum byDEF2L relative to the
position of the bottomET of the band for F excitons in a
rigid lattice.

Naturally, it is important to describe numerically the a
tual absorption spectrum~see dashed curve in Fig. 4!. An
analysis of the spectrum carried out using the value ofD
estimated by formula~21! led to an inadequately narrow ab
sorption band. In this connection, we must consider a pe
liar feature of the Ne lattice, viz., its easy deformability a
sociated with a small value of binding energy per atom,Eb

50.02 eV. At the initial stage of self-trapping, the deform
tion ~i.e., expansion of the cavity around an excitation! oc-
curs with preserved point symmetry of the crystal~coordi-
nateq1 in Fig. 5!. The metastable state corresponding to
elastic limit of the lattice emits radiation in the form of th
A2 band. As a result of a high probability that the value
energy decreases with a change in the coordination num
of the surrounding~configurational coordinateq18 in Fig. 5!,6

a state is formed which emits radiation in the form of theA1

band shifted to the red region by 0.1 eV (!ELR

50.85 eV). In view of the small value ofEb , the two bands
are close to the emission line from an isolated atom.11 Re-
turning to the potentials of an excited molecule@see Fig.
1~b!#, we see that the energy of the electron–electron rep
sion decreases nonlinearly with increasing distance to
position of isolated atoms. The value ofELR used by us for
determining the value ofD has a contribution from the av
eraged value of deformation potential, while the contributi
to the absorption spectrum comes from the maximum va
of the deformation potential, which can be noticeably high
than its average value.

Thus, in order to describe the experimental absorpt
spectrum, we must vary the value ofD. Figure 7 shows the
spectra corresponding to the position ofEmid of the exciton
singletG(1/2) with the different values of the parameterD.
The asymmetric broadening of the absorption band an
noticeable increase in the shiftDEF2L with increasingD is
observed. Each spectrum is normalized to unity in the sum
the contributions from narrow bands.
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In Fig. 8, the experimental absorption spectrum~solid
curve! is compared with the sum of two theoretical spec
~dashed curve! for the triplet with the parameterD
50.145 eV and the singlet with the parameterD50.2 eV
~the individual contributions from these states are shown
dot-and-dash curves!. The coincidence can be regarded
satisfactory except two singularities. A low-intensity line (S)
observed on the red side of the triplet peak~denoted by ‘‘3’’!
is reliably identified as absorption of surface excitons~this
line is not considered by us here!. Another (L) band ob-
served on the blue side is separated approximately by 0.3
from the singlet peak~‘‘1’’ ! is attributed by some authors t
the emergence of longitudinal excitons.4–6,21It should be re-
called that polariton effects in active optical transitions in t
presence of a considerable spatial dispersion~the criteria of
this effect can be found, for example, in Ref. 6! are mani-
fested in the broadening of transmission and reflection sp
tra to the magnitudeDLT of transverse–longitudinal splitting

FIG. 7. Calculated absorption spectra for the singlet withn51 in Ne for
different values of the exciton–phonon coupling parameterD, eV: 0.09
~curve1!, 0.12~curve2!, 0.15~curve3!, and 0.20~curve4!; B50.2 eV and
Emid517.82 eV.

FIG. 8. Comparison of the experimental~solid curve! and theoretical
~dashed curve! absorption spectra for excitons withn51 in Ne. Dot-and-
dash curves describe the contributions from the triplet~3! and singlet~1!
states.
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These effects were used to explain not only the width
spectra for xenon, but also the doublet structure of abso
tion spectra for Kr and Ar with a clearly manifested add
tional peak at the frequency corresponding to longitudi
excitons just for the singlet transition. For this reason, it w
natural to propose a similar interpretation for a high-intens
exciton singlet transition in Ne also. Calculations made
different authors35 lead to values ofDLT;0.25– 03 eV,
which formed the basis of such an interpretation.

Here we propose an alternative explanation of the abn
mally large width of the absorption band, which appears
more logical in the case of exceptionally strong excito
phonon interaction. It was proved above that the effect
masses of exciton–vibron states of all narrow bands in
case are very large, and the spectrum is quasi-linear. Co
quently, the possibility of observation of polariton effects
the basis of spatial dispersion becomes problematic in
situation and obviously requires additional detailed analy

In order to explain the fact that the singlet transitio
corresponds to the larger value ofD, we recall that the sin-
glet 1P1 forms only repulsive terms with a normal atom, b
the triplet 3P1 forms a very deep bound state 0u

2 due to
resonant coupling, which modifies the shape of the poten
curve for the crystal.

In accordance with the decomposition of the absorpt
band into the contributions from the triplet and singlet sta
~see Fig. 8!, a comparison of the corresponding integral i
tensities leads to the following ratio of oscillator forces f
excitations in solid Ne:

I 1 :I 35F1 :F355:1. ~28!

It should be recalled that the corresponding ratio for a
is 10:1, and its value for a solid according to experimenta
based estimates35 must vary from 5 to 10~the contributions
of the bands in the spectrum cannot be separated accura!.
We obtained the minimum ratio due to the fact that the b
tail of the triplet band calculated by us makes a signific
contribution to the observed peak of the singlet band.
leveling out of band intensities due to the mixing of sta
in the solid phase is typical for cryocrystals of inert eleme
~mostly for heavier atoms!.35 Theoretical estimates obtaine
for Ne differ by an order of magnitude in publication
which appear most realistic as regards the positions of
bands~from the ratio 1:1 in Ref. 29 to 50:1 in Refs. 24 an
25!.

The values of transition energies corresponding to
local energy levelEmid were also determined by fitting th
theoretical spectrum to the experimental one~cf. the values
given in ~16!!: (E0 f1D f)3/2517.60 eV; (E0 f1D f)1/2

517.82 eV. The following values were obtained for add
tional shifts of the bandsDEFL ~see Figs. 6 and 7!:
DEF2L(3/2)50.05 eV,DEF2L(1/2)50.12 eV.

Thus, the effect of the exciton–phonon interaction on
position of the peak of the absorption band is compara
with the values of both contributions to the exciton ba
width, which were considered in the previous section@see
formulas~18!–~20!#.
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Analysis of thermodynamic properties of fullerite C 60
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The thermal expansion coefficients of pure fullerite are determined on the basis of powder x-ray
studies in the temperature range 30–293 K. The obtained results are in good agreement
with dilatometric and neutron-scattering data. The data on thermal expansion are used to analyze
the heat capacity at constant volumeCV . The intramolecular component ofCV is analyzed
consistently and accurately taking into account the complete set of temperature-dependent
intramolecular eigenfrequencies. The rotational component of heat capacity is obtained by
subtracting the intramolecular and phonon contributions from the totalCV . The phonon component
is evaluated on the basis of the Debye model using the Debye temperature (QD

(0)555.4 K)
calculated from the known sound velocities. The general and partial Gru¨neisen parameters are
calculated as functions of temperature. The results obtained for the high-temperature
phase indicate that rotations of C60 molecules are strongly hindered and intercorrelated. ©1999
American Institute of Physics.@S1063-777X~99!02108-8#
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INTRODUCTION

The peculiarities observed in the physical properties
fullerite C60 are determined to a considerable extent by va
tions in the orientational subsystem. A deeper understan
of the origin of these peculiarities necessitates a deta
analysis of the structural and thermodynamic properties
fullerite crystals and requires information on its rotation
and vibrational spectra. Peculiarities in the physical prop
ties of C60 appearing as a result of variation of the rotation
state of the molecules in the order–disorder phase trans
region (Tc5260 K) and at lower temperatures were stud
in detail by many authors who used various methods incl
ing x-ray1–9 and neutron diffraction,10–12 nuclear magnetic
resonance,13–17calorimetry18–30Raman and infrared spectro
scopy,30–33 inelastic neutron scattering,34–38 electron diffrac-
tion,39–41 and dilatometry.42–44

It was found that in the high-temperature phase C60 mol-
ecules are orientationally disordered. A decrease in temp
ture leads to consecutive freezing of rotations and to
formation of a number of phase states differing in the type
rotational motion of molecules. At 260 K, a phase transit
to the orientationally ordered phase takes place, in which
molecules with the third-order axes are oriented along f
spatial diagonals (^111& directions! of the cubic lattice. Dur-
ing their rotation about̂111& axes, molecules consecutive
occupy six orientational wells which are quite deep~the
height of the barrier separating them is approximately 2
meV! and differ in depth approximately by 10 meV.44 These
states correspond to two different energy minima for the m
tual orientation of neighboring molecules: the global mi
mum when one of the fifth-order axes of a molecule is
rected to the midpoint of one of the double bonds of
7241063-777X/99/25(8–9)/8/$15.00
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neighboring molecule~pentagon molecular configurations!
and the local minimum when the third-order axis of a m
ecule is directed to the midpoint of the double bond o
neighboring molecule~hexagonal configurations!. As the
temperature decreases, the frequency of molecular rotat
becomes lower, and the concentration ratio for these
orientational states changes in favor of the former state.
retardation of rotational motion of molecules affecting s
nificantly the form of temperature dependences of a num
of physical parameters~lattice constants, intensity of reflec
tions, thermal expansion coefficients, and so on! starts being
manifested even atT<160 K. Below 90 K, molecular rota-
tions are frozen completely, and the orientational glass s
is formed.

A number of aspects, however, remained not quite cle
For example, is was not proved completely whether mole
lar rotation above 260 K is noticeably retarded or complet
free. It has not been established unambiguously whether
nomena observed near 90 K correspond to a thermodyn
cally equilibrium structural phase transition, or the observ
peculiarities reflect kinetic phenomena, or are features o
‘‘glass’’ transition. In addition, the data on thermal expa
sion, which are often used for an analysis of the physi
properties of crystals, were obtained in a wide temperat
range only by the scanning dilatometry method,42 and it was
interesting to compare them with the results obtained
other methods.

In this paper, we present the thermal expansion coe
cients obtained by x-ray dilatometry and carry out an ana
sis of thermodynamic properties~heat capacity and the Gru¨n-
eisen parameter! of fullerite C60 in the temperature rang
30–300 K. We used the experimental data on the cry
structure of fullerite C60, temperature dependence of lattic
© 1999 American Institute of Physics
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parameters, molar volumes, and density which were obta
by us earlier45–48 as well as the available data on the me
surements of heat capacity at constant pressure, comp
ibility, sound velocities, and other thermodynamic para
eters. As a result of our calculations, we singled out a
analyzed the contributions to thermodynamic properties
C60 due to thermal excitations of the translational and ro
tional subsystems. Our conclusions are compared with
conclusions drawn by other authors from independent c
siderations.

THERMAL EXPANSION

In our previous publications,45–48 we reported on x-ray
studies of polycrystalline samples of pure (99.98%) fuller
C60 in the temperature range 5–293 K. We obtained a
tailed ~with a step 2–5 K! temperature dependence of th
cubic lattice parametera ~shown graphically in Fig. 2 in Ref
45! for the low-temperature orientationally ordered (T
,260 K, symmetryPa3) and high-temperature orientation
ally disordered (T.260 K, symmetryFm3m) phases. The
error in determining the lattice parameters was60.02%.
The temperature dependencea(T) was plotted on the basi
of experimental data obtained for several samples subje
to heating and cooling. The large body of experimental d
obtained for lattice parameters enabled us to carry out a
liable statistical processing by the least squares met
~LSM! and to reconstruct the temperature dependencea
from the average values in the entire temperature range
der investigation. The absolute value of the lattice param
at room temperature and its temperature variation45 within
the above-mentioned error are in good agreement with
available data obtained by x-ray and neutron diffract
methods on polycrystalline samples1,10,11,49 and single
crystals2,8,50 of fullerite C60. Here we report on the numer
cal values of lattice parameters, molar volumes, density,
thermal expansion coefficients~Table I!. The latter were de-
termined by differentiating the averaged temperature dep
dence of lattice parameters with an error65% for the major
part of the temperature interval, and up to610% in the
immediate vicinity of phase transitions due to an increase
the spread in lattice parameters in these regions. Figu
shows the x-ray linear thermal expansion coefficientsa
5(Da/a)DT obtained by us for polycrystalline samples t
gether with dilatometric values ofa obtained by Gugen-
berger et al.42 for single crystals. It can be seen that o
results are in good agreement with dilatometric values in
major part of the temperature interval. Some discrepanc
observed only in the immediate vicinity of the temperatu
Tc corresponding to the orientational phase transition,Tg

corresponding to the end of formation of glass state, an
low temperaturesT,50 K. The difference in the therma
expansion coefficients in these regions can be attribute
different microstructural states of the samples~polycrystals
and single crystals! as well as to experimental difficulties i
the study of anomalous behavior of thermodynamic qua
ties near critical points and different sensitivities of the x-r
and dilatometric methods to crystal lattice defects.

We also analyzed the results of neutron diffracti
ed
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studies10 of the temperature dependence of the lattice para
eter for a polycrystalline sample of fullerite C60. The ob-
tained values of linear thermal expansion coefficient of C60

are in accord~to within possible error in their determination!
with our results and with the results of dilatometric measu
ments~see Fig. 1!.

It follows from Refs. 10, 45, 46, and 51 that the tem
perature dependence of lattice parameters near 155 K h
typical kink corresponding to an insignificant singularity o
the temperature dependence of the temperature depend
of the linear thermal expansion coefficient~see Fig. 1!. It is

TABLE I. Lattice parametera, molar volumeV, X-ray densityr, volume
coefficients of thermal expansionb, velocities of longitudinalv l and trans-
versev t sound of ultrapure fullerite C60.

T,
K

a,
Å

V,
cm3/mole

r,
g/cm3

b, 1025

K21
v l , 105

cm/s
v t , 105

cm/s

30 14.043 416.93 1.7285 - 3.04 1.46
40 14.044 416.98 1.7283 1.50 3.03 1.46
50 14.045 417.07 1.7279 2.16 3.02 1.45
60 14.046 417.13 1.7277 2.88 3.01 1.45
70 14.047 417.32 1.7269 3.69 3.01 1.44
80 14.050 417.55 1.7259 5.10 3.00 1.44
90 14.053 417.85 1.7247 - 2.99 1.44

100 14.058 418.30 1.7229 1.05 2.98 1.43
110 14.059 418.34 1.7228 1.29 2.98 1.43
120 14.060 418.40 1.7224 1.65 2.97 1.43
130 14.061 418.49 1.7221 2.10 2.96 1.42
140 14.062 418.61 1.7216 2.85 2.94 1.41
150 14.063 418.74 1.7210 3.45 2.90 1.39
160 14.065 418.94 1.7203 4.22 2.86 1.37
170 14.068 419.12 1.7195 4.50 2.82 1.36
180 14.070 419.34 1.7186 5.31 2.81 1.35
190 14.073 419.59 1.7176 6.09 2.80 1.34
200 14.076 419.87 1.7164 6.84 2.78 1.33
210 14.079 420.17 1.7152 7.51 2.76 1.33
220 14.083 420.51 1.7138 8.25 2.74 1.32
230 14.087 420.88 1.7123 9.00 2.72 1.31
240 14.092 421.28 1.7107 9.75 2.70 1.30
250 14.097 421.71 1.7089 10.50 2.68 1.29
255 14.099 421.95 1.7079 - 2.68 1.28
265 14.154 426.92 1.6881 4.56 2.55 1.22
270 14.155 427.02 1.6877 4.65 2.55 1.22
280 14.158 427.24 1.6868 5.22 2.54 1.22
290 14.161 427.49 1.6858 5.76 2.50 1.20

FIG. 1. Temperature dependence of x-ray linear thermal expansion co
cients for pure fullerite C60 in comparison with the dilatometric data42 and
the results of processing of neutron diffraction data10 for lattice parameters.
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assumed16,26,51 that the anomaly atT0'155 K is associated
with freezing of molecular rotations, leading to the formati
of glass state in C60. It should be noted that the beginning
glass formation is manifested more clearly on the tempe
ture dependences of elastic properties and sound absorpt52

as well as in photoconductivity.53 Besides, superstructura
reflexes forbidden for thePa3 symmetry are observed atT
,160 K.6 It was proved by us earlier45 that structural dif-
fraction lines are broadened in this temperature region, in
cating the emergence of a nonuniform local deformation
the lattice.

In addition to x-ray thermal expansion coefficients o
tained by us here and the results of dilatometric meas
ments on single crystals,42 thermal expansion of thin films o
fullerite C60 was studied recently by the electron-diffractio
method,39 while high-sensitivity dilatometry was applied fo
powder samples compacted under a pressure up to 1 G43

The average value 2.531025 K21 of the linear thermal ex-
pansion coefficient obtained for films having a thickness o
nm in the temperature range 80–273 K was found to
higher than for bulk poly- and monocrystalline samples. T
measurements of linear thermal expansion of compa
samples43 were made in the temperature range 2–9 K. T
results obtained at 5–9 K are in good agreement with
data obtained for single crystals.42 It should be noted tha
even before the experimental data43 were reported, the as
sumption concerning the presence of anomaly in the ther
expansion of C60 near 0 K and probably the emergence
negative coefficient could be made on the basis of an an
sis of the low-temperature part of thea(T) dependence ob
tained in Ref. 42~strong tendency of the value ofa to zero in
Fig. 1 of Ref. 42 away fromT50 K). Indeed, Aleksan-
drovskii et al.43 subsequently proved experimentally th
thermal expansion coefficients become negative even aT
,3.4 K. The negative volume expansion of crystals is a r
phenomenon which can be due43 to tunnel transitions in the
rotational subsystem of the crystal.54–57

HEAT CAPACITY

An analysis of thermodynamic parameters of fuller
C60 ~including its heat capacity! was carried out earlier by
many authors~see Refs. 23,26,33,58–63!. In view of the
absence of sufficient experimental data, various theore
models23,26,33,60,63were often used to single out heat capac
components corresponding to different degrees of freed
The most comprehensive analysis of heat capacity com
nents was carried out recently by Tewariet al.23 on the basis
of models containing cubic and planar collective and loc
ized modes that reflect correctly the dynamics of the d
mond and graphite lattices. However, none of these aut
took into account extensively the anharmonism and corr
tions of rotations and vibrations of molecules near the pha
transition temperatures, consist or separated the heat cap
component associated with pure rotation of molecules in
entationally ordered and disordered phases on the bas
experimental data, which is an important problem in
analysis of lattice dynamics and phase transitions.
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In order to analyze heat capacity and separate contr
tions of various types, we shall require the values of ad
batic xS and isothermalxT compressibilities. Low-disperse
samples can be regarded as isotropic, and hence we ca
the following relation:

xS5r~v l
224/3v t

2!21. ~1!

We calculated the value ofxS on the basis of our results o
the densityr of fullerite C60 as well as the results of mea
surements of the longitudinalv l and transversev t sound
velocities,52,64–66 The absolute values of the velocities
sound were determined in Refs. 64 and 66 for polycrystall
samples and are given only for one temperature~290 K!
where v l5(2.4960.02)•105 cm/s and v t5(1.2060.01)
•105 cm/s. The relative variation of the sound velocities w
temperaturev(T)/v(300 K) at T,290 K was measured by
the ultrasound method on polycrystals in Refs. 52,65–68,
results of measurements being very close. Using the ab
values of sound velocities at room temperature and th
variation upon cooling from Refs. 52, 67, 68, we reco
structed the absolute values ofv l andv t in the temperature
range 30–300 K~see Table I!. The values of compressibili
ties xS calculated on the basis of Eq.~1! ~with an error not
exceeding65%) for polycrystalline samples are given
Table II. Recently, the sound velocities for single cryst
were determined by Soifer and Kobelev.69 The estimates of

TABLE II. Temperature dependence of heat capacities at constant pre
CP and constant volumeCV , intramolecular heat capacityCin , adiabatic
compressibilityxS , characteristic Debye temperatureQD

(0) heat capacity
Crot of the rotational subsystem, and Gru¨neisen parameterg lat .

T,
K

CP CV Cin
xS , 10211

cm2/dyne
QD

(0) ,
K

Crot ,
cal/~mol•k! g latcal/~mol•k!

30 9.55 - 0.4 0.904 55.2 - -
40 10.75 10.73 1.6 0.909 55.1 3.47 1.81

50 11.70 11.22 2.2 0.914 54.9 3.42 2.47

60 12.18 12.13 3.3 0.921 54.7 3.34 3.51

70 13.37 13.36 4.4 0.924 54.6 3.26 4.43

80 16.48 16.26 7.3 0.929 54.5 3.20 5.97

90 19.91 19.12 10.3 0.935 54.3 3.06 -
100 20.30 20.29 12.2 0.941 54.1 2.18 1.38

110 23.88 23.86 16.1 0.946 54.0 2.01 1.73

120 28.66 28.63 20.0 0.951 53.9 2.74 2.00

130 32.48 32.43 23.7 0.957 53.7 2.81 2.51

140 37.02 36.90 27.9 0.971 53.3 3.05 3.23

150 41.80 41.62 32.3 0.996 52.6 3.40 3.72

160 46.58 46.30 36.8 1.029 51.8 3.57 3.86

170 52.55 52.22 41.6 1.053 51.2 4.69 4.03

180 58.04 57.56 46.3 1.063 50.9 5.29 4.28

190 65.68 65.03 51.5 1.074 50.7 7.56 4.02

200 71.65 70.80 55.7 1.088 50.4 9.16 4.17

210 78.82 77.79 60.8 1.104 50.0 11.01 3.79

220 89.09 87.76 65.2 1.120 49.7 16.56 3.10

230 101.51 99.89 70.4 1.137 49.3 23.54 2.70

240 132.56 130.60 75.5 1.155 48.9 49.15 1.54

250 179.13 177.30 80.8 1.177 48.5 90.55 -
265 105.57 105.15 89.0 1.320 45.9 10.20 2.34

270 107.48 107.04 90.9 1.323 45.8 10.19 2.23

280 112.26 111.80 96.4 1.325 45.7 9.45 2.61

290 117.03 116.32 101.3 1.370 45.0 9.07 2.86

Remark: xS is calculated for polycrystalline samples.
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the macroscopic bulk compression modulus given in Ref.
for polycrystal proved to be 25% higher than the values
tained from measurements of sound velocities on polyc
talline samples. It should also be noted that the values of
bulk compression modulus are in good agreement with di
measurements of compressibility of polycrystals.70,71 Since
the data for single crystals69 were obtained only at room
temperature, we could not use them for an analysis of
temperature dependence of thermodynamic parameters
are aware of the fact that the absolute values ofxS given in
Table II for polycrystals can differ significantly from tru
values. However, this does not affect considerably the e
mates that will be obtained by us below.

An extensive analysis of heat capacity and separatio
different types of contributions to thermodynamic propert
were carried out by us on the basis of the most relia
data17,18 on heat capacity at constant pressureCP , which
were used to calculate the heat capacity at constant vol
CV :

CV5CP2b2VT/xT , ~2!

whereb is volume thermal expansion coefficient,V the mo-
lar volume, andxT the isothermal compressibility defined a

xT5xS1b2VT/CP . ~3!

It can be easily verified thatDx5xT2xS varies in the entire
temperature range form 0.8%~at 40 K! to 0.6% ~at 290 K!,
which allow us to use in~2! any compressibility almost with
out increasing the error in the calculation ofCV . The values
of constant-volume heat capacity calculated according to
mula ~2! are presented in Table II and in Fig. 2. It can
seen that the differenceDC5CP2CV is comparable to the
error in the calculation ofCV and is much smaller than th
absolute values of heat capacityCP ~or CV) and hence does
not affect the results of separation of the contributions
heat capacity. It should be noted that in contrast to class
simplest molecular crystals, the difference (CP2CV) ob-
tained for fullerite C60 is small even at high temperatures, b
exceeds the error of its determination by a factor of sev
units. The main reason behind the smallness of (CP2CV) is
the value of thermal expansion coefficients which are at le
an order of magnitude smaller than the values typical of m
lecular cryocrystals.72

FIG. 2. Temperature variation of intramolecularCin , rotationalCrot , and
translationalCtr contributions to heat capacity at constant volumeCV for
fullerite C60 .
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In the temperature range under investigation, the h
capacity at constant volume under the assumption that
contributions are additive can be presented in the form

CV5Crot1Ctr1Cin , ~4!

where the individual terms on the right-hand side corresp
to rotational, translational, and intramolecular degrees
freedom respectively. The rotational heat capacityCrot was
obtained by separating the well-defined translationalCtr and
intramolecularCin contributions from the total heat capaci
CV . According to the results obtained by Yuet al.,60 the
lattice and intramolecular modes are separated by a large
~of the order of 22 meV!, which enabled them to use th
approximation of rigid molecules for calculating the low
temperature thermodynamic parameters of C60 crystals.

A detailed analysis of heat capacity of C60 at low tem-
peratures was carried out for the first time by Beyerma
et al.20 who proved that the heat capacity in the temperat
range 1.4–20 K can be described correctly by the sum
three types of contributions associated with translatio
~Debye model! and librational~Einstein model! vibrations of
C60 molecules as well as the linear contribution emerg
due to the presence of two-level states in the crystals, wh
are similar to those observed in glasses. The phonon com
nent of the heat capacity of C60 was described in differen
versions using two (QD1549 K and QD2567 K) or one
characteristic Debye temperature (QD574 K).20 The value
of QD550 K was obtained by Atakeet al.18,19 from an
analysis of heat capacity. However, some other authors
port on much higher values of the characteristic Debye te
perature. For example, according to Olsonet al.,21 QD

580 K. The estimates obtained on the basis of the result
investigation of elastic properties of single crystals by t
ultrasound method at room temperature giveQD566 K69

and 100 K73.1! Such a large spread in the data on the ch
acteristic phonon temperature is primarily not due to err
in the measurements of heat capacity, but due to indete
nacy in the choice of the temperature interval for separa
the dependenceAT3 from the total heat capacityCP , and
hence considerable errors in the separation of the ‘‘gla
and phonon contributions. Besides, a possible reason be
the large spread in the values ofQD can be the difference in
the purity of experimental samples. It is well known74 that
admixtures of C70 molecules considerably affect the phas
transition temperatureTc in C60, decreasing it linearly with
an intensity of 5 K per percent of impurity. In our opinion
the high values ofQD obtained by Greveiet al.25 are due to
the presence of C70 impurity in the samples. According to
Olsonet al.,21 the cubic temperature dependence of heat
pacity for pure fullerite C60 is manifested most clearly atT
,1 K, while an analysis of the phonon heat capacity w
carried out by many authors at temperatures above 4.2 K

In order to separate the phonon heat capacity of fulle
C60, we calculated the Debye temperature from the data
longitudinal and transverse sound velocities and molar v
umes by using the well-known relation for the zero-po
Debye temperature75:
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QD
(0)5

h

k
~9N/4pV!1/3~v l

2312v t
23!21/3, ~5!

whereh andk are the Planck and Boltzmann constants a
N is the Avogadro constant. In our calculations, we used
values of sound velocities and molar volume given in Ta
I. The limiting value of the zero-point Debye temperature~at
T50 K) was found to beQD

(0)555.4 K.
The variation ofQD

(0) with temperature~Table I! was
taken into account for calculating the lattice contributionCtr

to heat capacity, associated with translational vibrations
C60 molecules. The obtained results show that the pho
component of heat capacity atT.30 K varies with tempera-
ture only slightly and amount to 5.62 cal/~mole•K! at 30 K
and 5.94 cal/~mole•K! at room temperature. Consequent
the lattice heat capacity of fullerite C60 attains its high-
temperature limitCtr53R (R is the gas constant! even at
quite low temperatures.

In the temperature range under investigation~especially
in its high-temperature part!, the contributionCin of intramo-
lecular vibrations to heat capacity can be significant for s
stances formed by large molecules of the fullerene type.
spectrum of intramolecular vibrations of C60 contains a large
number~174! of optical frequencies.76–78 In an analysis of
Cin , we used the values of the lowermost frequencies~in
cm21) experimentally observed in the Raman and infra
spectra at 40 K~the degeneracy is indicated in the parenth
ses!: 272 ~5!, 433~5!, 496~1!, 533~3!, 567~3!, 709~5!, 772
~5!, 1099~5!, 1252~5!, 1425~5! and 1575~5!. These values
make a noticeable contribution~at least 0.5 cal/~mole•K! to
the heat capacityCin . The temperature variation of the fre
quencies and the jumps observed for some of their va
during the phase transition at 260 K were taken into acco
using the data obtained in Ref. 78, while for the remain
frequencies we used the average statistical values of the
perature gradient and the jump at the transition. It is wo
noting that intramolecular modes are characterized by h
harmonicity~Raman frequencies coincide to a high degree
accuracy with the sum of corresponding fundamental
quencies! and a weak coupling with the lattice~weak tem-
perature dependence!. The values ofCin were calculated in
the Einstein approximation taking into account the deg
eracy for each of the optical modes listed above. The res
of calculations are presented in Table II and in Fig. 2.
expected, the temperature dependence of the heat cap
componentCin does not experience noticeable changes in
region of orientation phase transition. Pay attention to
fact that intramolecular vibrations make a noticeable con
bution to the total heat capacity, which increases almost
early above 100 K and becomes predominant in the h
temperature phase. At the same time, the rotatio
componentCrot of heat capacity increases noticeably as
approach the phase-transition point, and then decre
abruptly in the high-temperature phase. The rapid increas
Crot at temperatures above;200 K is associated with inten
sification of orientational disordering of molecules. Oth
molecular crystals also display a similar behavior of the
tations heat capacity in the region of orientational ph
transitions.72,79
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Most of the authors investigating the lattice dynamics
fullerite C60 emphasize that above the high-temperat
phase transition point, C60 molecules become orientationall
disordered and rotate freely. In such a situation, we sho
expect thatCrot , must be smaller than or equal to 3R/2
(;3 cal/~mole•K)), which is the classical limit for a three
dimensional rotator. However, the results of our analysis
heat capacity indicate that the rotational motion of fullere
C60 molecules in the fcc phase is retarded considerably.
rotational heat capacity atT.Tc is noticeably smaller than
3R and decreases from 10.2 to 8.9 cal/~mole•K! in the tem-
perature range 260–300 K. These results indicate the p
ence of collective pre-transition phenomena and consider
correlation of molecular rotations in fullerite. It should b
noted in this connection that a similar results~without a de-
tailed analysis! was actually obtained by Akateet al.19 who
described the temperature dependence of (CP2Cin). The
values obtained for the high-temperature phase correspon
our values of (Ctr1Crot) to within the error of their measure
ments. The conclusion about strong retardation of rotatio
motion of molecules in the high-temperature phase of C60 is
also supported by the results of investigation of IR spectr33

indicating that some of low-frequency librational modes a
preserved in samples heated above the orientation ph
transition temperatureTc up to 300 K. Evidences of strong
correlation of rotational motion ofC60 molecules in the fcc
phase were also obtained in experiments on inelastic sca
ing of x-rays.5

GRÜNEISEN PARAMETERS

An analysis of the lattice dynamics in the harmonic a
proximation shows that vibrations of particles at the botto
of a parabolic potential well do not affect the values of for
constants of the crystal and the vibration frequencyv i of the
particles. In this case, thermal expansion of the solid mus
equal to zero. In actual practice, however, vibrations are
harmonic. The anharmonism of lattice vibrations and its
hancement with increasing temperature lead to a notice
dependence of force constants~and vibrational frequencies!
on the separation between particles~crystal volume!. A mea-
sure of anharmonicity of lattice vibrations can be the Gru¨n-
eisen parameter defined as

g i52d ln v i /d ln V, ~6!

wherev i is the frequency of thei th mode.
In thermodynamics, the Gru¨neisen parameter connec

the basic thermodynamic characteristics of a substance
can be calculated on the basis of experimental data from
formula

g5bV/xTCV . ~7!

For atomic cryocrystals~crystals of inert gases! whose lattice
dynamics is determined only by phonon vibrations, the va
of the Grüneisen parameterg is constant in a wide tempera
ture range and is equal to 2.760.3 on the average.80 Close
values ofg52.2– 2.9 are also observed for most simple m
lecular cryocrystals72,79 at low temperatures and away from
phase transitions, where the influence of the librational s
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system and correlation effects is weak. The values ofg libr

characterizing the anharmonism of librational vibrations
slightly lower for simplest molecular crystals like nitroge
thang trans and vary from 1.6 to 1.9 for different substance
The determination ofg libr is normally based on relation~6!
using direct experimental data on the temperature dep
dence of librational frequencies.

The Grüneisen parameter for fullerite C60 crystals was
determined earlier in Refs. 43,70,81, and 82. Further,
values ofg for intramolecular vibrations were estimated o
the basis of Raman and IR investigations83,84 leading to quite
small values of the order of 0.04–0.09 indicating a high h
monicity of intramolecular vibrations of C60 molecules dur-
ing the excitation of first levels for all low-lying frequencie

The most detailed analysis of Gru¨neisen parameters an
their temperature dependences was carried out by W
et al.82 who calculated consistently the total Gru¨neisen pa-
rameterg characterizing all the three types of vibratio
~translational, librational, and intramolecular!, the parameter
g lat corresponding to translational and librational modes, a
finally g tr . The calculations made in Ref. 82 were based
a not quite correct assumption concerning the smallnes
the contribution of the librational subsystem to thermal e
pansion of C60. Such an assumption is completely corre
only for low temperatures (T,30 K) but not at all for high
temperatures, when this contribution can constitute a not
able part of the contribution from the translational subsyst
or even exceed it. For this reason, we shall disregard in
subsequent analysis the results obtained by Whiteet al.82 the
data on the temperature dependence of the total coefficieg
were also obtained by us for fullerite C60 samples with dif-
ferent purity.85 It should be noted, however, that the valu
of g obtained in Refs. 82 and 85 do not correspond to
Grüneisen parameter characterizing the anharmonism of
tice vibrations especially in the temperature range where
contribution of intramolecular vibrations to heat capacityCV

becomes significant~the heat capacity componentCin , see
Fig. 2!. In this temperature range, the values ofg calculated
from the experimental data onb,V,CV , andxT give values
much lower than those typical of monatomic crystals sin
the contribution of intramolecular vibrations to the latti
volume and thermal expansion is practically equal to ze
while the contribution to heat capacity is quite large a
increases with temperature. Consequently, purely lat
characteristics should be used for determining the Gru¨neisen
parameter corresponding to translational vibrations alone

In accordance with formula~7!, we calculated the effec
tive Grüneisen parameterg lat determined only by frequencie
of phonon and rotational vibrations of molecules in the te
perature range 30–300 K. We used the values of the the
expansion coefficientb, x-ray densityr, molar volumesV,
isothermal compressibilityxT , and heat capacityCV for pure
fullerite C60, which are given in Tables I and II. While ca
culating g lat , we took into account only the component
heat capacityCV associated with the phonon and rotation
subsystems of fullerite C60 ~see Table II and Fig. 2!.

The results of calculation of the Gru¨neisen parameterg lat

are presented in Table II and in Fig. 3, where these data
given together with the total parameterg. The same figure
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shows for comparison the results obtained in Refs. 70
82. It can be seen that the values ofg andg lat obtained by us
are close in the temperature rangeT,70 K, where the con-
tribution to heat capacity from intramolecular vibrations
still small, but in contrast to Ref. 82, the values of the
parameters decrease almost linearly with temperature.
circumstance can be explained by the difference in the th
mal expansion coefficients and the form of their temperat
dependence obtained by us and by Gugenbergeret al.42 since
White et al.82 used in their calculations the results obtain
in Ref. 42. ForT.100 K, the difference between the value
of g andg lat is large in the wide temperature range 120–2
K. The values of the total parameterg in this range are close
to 1.0 and are almost independent of temperature, whileg lat

attains values'4.0. In the high-temperature phase, the to
parameterg is small (,0.5) and practically constant up t
300 K, while g lat exhibits a weak temperature dependen
and is equal to 2.86 at room temperature. This value is c
to the upper boundary of the values ofg typical of disordered
phases of simple molecular crystals~the dispersion ofg is
described above!. Figure 3 shows that our results forg and
g lat in the temperature range 100–300 K are close to
values obtained in Refs. 70 and 82.

While calculating the values ofg lat in the region of ori-
entational ordered phase above the glass-formation temp
ture (Tg,T,Tc), we must bear in mind that the change
the volume of a fullerite C60 crystal is determined~see Ref.
82! not only by the anharmonism of translational and libr
tional vibrations of molecules, but also by the variation
the composition of pentagonal and hexagonal configurati
of molecules. An increase in the content of hexagonal co
ponent having a smaller volume upon heating of the cry
leads to lower values of actual thermal expansion coe
cients, and hence lower values ofg lat . White et al.82 believe
that this effect is responsible for noticeably higher values
the dilatometric thermal expansion coefficient42 in the region
of orientational glass with a ‘‘frozen’’ concentration of th
hexagonal component than at temperatures aboveTg ~glass
formation point!. Knowing the temperature dependence
the composition of orientational configurations, we could
to separate the corresponding contribution to the volume
thermal expansion of fullerite. However, this does notco

FIG. 3. Effect of temperature of the total~g! and lattice (g lat) Grüneisen
parameters for fullerite C60 according to our results and the results of ana
sis carried out in Refs. 70 and 82.
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plete the solution of the problem on determining the Gru¨n-
eisen parameters since the variation of composition of or
tational configurations in crystals apparently also affects
compressibility and heat capacity. This leads to the con
sion that the sign of the expected variation ofg lat and its
temperature behavior cannot be predicted even qualitati
without a detailed analysis and complete account of all
above-mentioned factors. In other words, we must take
consideration the thermodynamic parameters determ
only by translational and rotational motion in calculations

It should be noted that the temperature dependence
g lat obtained by Whiteet al.82 and by us in the temperatur
rangeTg,T,Tc are different~see Fig. 3!. In our opinion,
the continuous increase ing lat observed by Whiteet al.82 can
be explained by the fact that they used the values of r
tional heat capacity calculated on the basis of the Eins
model for a three-dimensional oscillator with the charact
istic temperatureQE546 K without taking into account dis
ordering and correlation effects. The value ofClib deter-
mined in this way attains its high-temperature constant va
3R in the temperature range under consideration, while
temperature variation ofg lat is mainly determined by the
continuous increase in the crystal volume and its ther
expansion coefficients. For this reason, the values ofg lat ob-
tained by us here appear as more realistic.

Dilatometric measurements of thermal expansion43 have
made it possible to trace the tendency in the variation of
Grüneisen parameter forT→0 K. It was proved on the basi
of calculations that the parameterg above the helium tem
perature have almost a constant value close to those obta
by White et al.82 and equal to 3.4 on the average. ForT
,4.2 K, a catastrophic drop ing takes place, rendingg to
the range of large negative values~of several tens! at tem-
peratures below 3.4 K. Aleksandrovskiiet al.43 attribute this
effect, as well as the negative thermal expansion of the c
tal, to the presence of tunnel energy levels in the ene
spectrum of the crystal, whose nature is not completely c
as yet.

CONCLUSION

Reliable experimental data on lattice parameters, d
sity, and molar volumes obtained in a wide temperat
range enabled us to determine the x-ray thermal expan
coefficients of pure fullerite C60 to a high degree of preci
sion. The obtained results are in good agreement with
results of dilatometric42 and neutron diffraction10 measure-
ments of thermal expansion of C60 single crystals in the ma
jor part of the investigated temperature interval except n
row regions adjoining phase-transition points. The therm
expansion data were used to analyze virtually the entire
gregate of thermodynamic parameters: heat capacity at
stant volumeCV , compressibilityxS , Debye temperature
QD

(0) , and the total (g) and lattice (g lat) Grüneisen param-
eters. A consistent and most comprehensive analysis o
tramolecular heat capacityCin is carried out for the first time
taking into account the complete set of temperatu
dependent intramolecular eigenfrequencies whose contr
tion to heat capacity at room temperature amounts to at l
n-
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0.5 cal/~mole•K!. It is proved that intramolecular vibration
affect significantly the total heat capacityCV even at T
'100 K, and their contribution is decisive in the high
temperature phase. Under the assumption of additive co
butions to heat capacityCV , we separated the phononCtr

and rotationalCrot heat capacity components reliably. Th
phonon heat capacity was calculated in the Debye mo
using the zero-point Debye temperature determined fr
sound velocities and found to beQD

(0)555.4 K. It turned out
that the value ofCtr is virtually constant in the entire tem
perature range under investigation~30–293 K! and corre-
sponds to its high-temperature limit 3R(R being the gas con-
stant!. It should be noted that the total Gru¨neisen parameterg
in the high-temperature phase is constant, while its par
componentg lat exhibits a weak temperature dependence a
is equal to 2.86 at room temperature. This value is in go
agreement with the values of Gru¨neisen parameter typical o
completely disordered phases of simple molecular crysta

The analysis of the rotational component of heat cap
ity clarified the origin of the orientationally disordered st
tistically, phase of fullerite C60. The obtained results indicat
that C60 molecules in the high-temperature phase are ori
tationally disordered statistically, but their rotation is cons
erably retarded~especially in the vicinity of the order–
disorder phase transition!. This conclusion is confirmed by
the experimental observation of librational bands at ro
temperature.33

The possibility of describing the thermodynamic prope
ties of orientationally ordered and disordered phases of60

crystals on the basis of the model of additive contributio
from translational and rotational subsystems demonstra
by us here indicates that the deformation of the lattice sp
trum of fullerite due to the libron–phonon interaction
small below the room temperature~at least for thermody-
namic parameters!. This conclusion corresponds to the r
sults of theoretical analysis of fullerite C60 spectra60 and is
also valid for most simple molecular crystals.

The authors are grateful to R. S. Ruoff who presen
ultrapure fullerite for our experiments and to V.D. Natsik f
fruitful discussions.
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Localization of vibrations near impurity atoms in semi-infinite and infinite linear chains
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Exact analytic expressions for local densities of atoms of the system as functions of the distance
to a defect as well as defect parameters~variations of mass and force constants! are
derived for an semi-infinite linear chain with an impurity at the end as well as for an infinite
linear chain with an interstitial or substitutional impurity~a triatomic defect cluster in
the general case!. The dependences of the conditions of formation and frequencies of local
vibrations and of the amplitudes of vibrations of these frequencies~i.e., the form of their damping!
on defect parameters are determined for different atoms of the system. Exact analytic
expressions determining the threshold values of the defect parameters as functions of the distance
between and impurity atom and the end of the chain are derived and analyzed. ©1999
American Institute of Physics.@S1063-777X~99!02208-2#
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The most common method of obtaining compounds w
preset thermodynamic, optical, and electron properties is
introduction of various impurities to the crystal matrix.1–3

For this reason, the derivation of exact expressions desc
ing analytically various aspects of the effect of impurities
quasiparticle spectra of excitations in the crystal lattice is
important problem even if the model used is extrem
simple. The interest in quasi-one-dimensional systems~vari-
ous chain, microscopic, and nanostructures, linear ma
molecules, etc.! is due to advances in the technology
growing perfect low-dimensional single crystals.4–6 The
quasi-low-dimensional behavior of electron and phonon
rameters is a distinguishing feature of HTSC systems as
as many traditional superconductors7 due to the presence o
chain elements in their structure. This necessitates the d
vation of exact analytic expressions for vibrational para
eters of one-dimensional chains with local violation of pe
odicity in the arrangement of atoms. A simple type of suc
violation is the presence of local substitutional or interstit
impurities in the chain.

In this paper, we obtain exact analytic expressio
for local densities of vibrations using the method
J-matrices8–10 and the amplitudes of vibrations of impurit
atoms as well as atoms located near a substitutional or in
stitial impurity in a linear~semi-infinite or infinite! chain
with a monatomic unit cell are analyzed. An impurity diffe
from an atom in the matrix lattice in the mass and for
constants of interaction with nearest neighbors.

Among other things, situations are considered when
amplitude of vibrations of atoms adjacent to an impurity c
be larger than the amplitude of vibrations of an impur
atom at the local frequency are considered. A more gen
case of an impurity separated from the end of a chain by
arbitrary number of atomic spacings is also analyzed, and
dependence of threshold values of defect parameters on
location of the impurity atoms is derived.
7321063-777X/99/25(8–9)/8/$15.00
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GREEN’S FUNCTION FOR A SEMI-INFINITE LINEAR CHAIN
WITH AN IMPURITY AT THE END

Let us consider a semi-infinite monatomic chain who
extreme~‘‘surface’’! atom is replaced by an impurity differ
ing from the matrix atoms in mass as well as constant
coupling with a neighboring atom~Fig. 1a!. The operator of
perturbations describing such a defect has the form

Ls~n,n8!52L ~n,n8!Q~2n!Q~2n8!

1
lm

4

h11

«11
dn,0dn8,02

lm

4 F 11h

A2~11«!
21G

3~dn,0dn8,11dn8,0dn,1!. ~1!

Here n50,1,2,... ,«5(m82m)/m ~mass defect, wherem8
and m are the mass of impurity and matrix atom, respe
tively!, h5(a82a)/a ~defect of force interaction, wherea8
anda are constants of force interaction between an impu
atom and matrix atoms, and between matrix atoms!, andL0

is the operator describing vibrations of atoms in a perf
chain:

L0~r ,r 8!5L0~r2r 8!5
lm

4 H 21,
2,
0,

ur2r 8u5a;
ur2r 8u50;
ur2r 8u.a

~2!

(lm54a/m is the square of maximum frequency of vibr
tions of the perfect linear chain!.

The Green’s function of such a system, i.e., the fi
diagonal element of the operatorG[(lI2L2Ls)21 ~l is
the square of the frequency! can be easily determined by th
method ofJ-matrices~see, for example, Refs. 8–10!. Similar
calculations for one-dimensional systems are described
detail in Refs. 11–14!.

The operatorsL and Ls are presented in the form o
J-matrices of the formaid ik1bi(d i ,k111d i ,k21) in the basis
$hn%n50

` 5$(21)nunu1&%n50
` , where the indexn labels atoms

starting from the surface. The rank of the matrix of the o
© 1999 American Institute of Physics
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eratorLs is equal to two, and all the matrix elements of t
J-matrix of the operatorL ~whose rank is equal to infinity!
excepta0 are equal to the limiting values of matrix elemen
of theJ-matrix of the operator, whose spectrum has no g
and lies in the@0,lm# band, i.e.,a5lm/2 andb5lm/4.

If the matrix elements of theJ-matrix starting from a
certain numbern are equal to their limiting values, th
Green’s function in Ref. 9 satisfies the following relation:

G00~l!5~h0 ,Gh0!5
Qn~l!2bn21Qn21~l!K`~l!

Pn~l!2bn21Pn21~l!K`~l!
. ~3!

The orthogonal polynomials$P,Q%m(l,h,«) appearing in
this expression under the initial conditionsP21(x)[0;
P0(x)[1; Q0(x)[0; Q1(x)5b0

21 satisfy the following re-
currence relations:

bm$P,Q%m11~x!5~x2am!$P,Q%m~x!

2bm21$P,Q%m21~x! ~4!

while the functionK`(l) is determined by the form of lim-
iting values of the elements of theJ-matrix, i.e.,

K`~l!54lm
22@2l2lm12Z~l!Alul2lmu#; ~5!

Z~l!5 iQ~l!Q~lm2l!2Q~l2lm!, ~6!

FIG. 1. Schematic diagram of the systems under investigation: semi-infi
chain with a substitutional impurity at the free end~a!, infinite chain with
substitutional~b! and interstitial~c! impurity, and semi-infinite chain with a
substitutional impurity separated byk atomic spacings from the free end~d!.
s

in our case, andQ(x) is the HeavisideQ-function.
For the system under investigation,n52 and

G00
s ~l,h,«!5

1

Rs~l,h,«! H 2lFlh

2
lm

8

h11

«11
@h~2e13!1~2e11!#G

1Z~l!
lm

8

~h11!2

«11
Aul~lm2l!uJ , ~7!

where

Rs~l,h,«!5lH 2l2h1l
lm

4

h11

«11

3@~h11!~«12!22#1
lm

2

16 S h11

«11 D 2J .

~8!

The functionG00
s (l,h,«) has poles at the points

l l1,l2
s 5

lm

8h S h11

«11 D $~h11!~«12!22

6A~h11!@~h11!~«12!224~«11!#. ~9!

The polel l1
s [l l

s corresponding to the plus sign of the rad
cal in ~9! coincides with the upper boundary of the contin
ous spectrum band forh l

s5(2«11)/(2«13):

l l
s~h l

s!5lm

and increases in proportion to the coupling constanta8 and
to the massm8 ~i.e., « and h! if the inequality h>(2«
11)/(2«13) holds. Consequently,l l

s defines the square o
local frequency emerging in the given system. The intens
of this local vibration is determined by the residue at th
pole and is given by

m l
s5F12

~h11!~«11!

A~h11!@~h11!~«12!224~«11!#
G

3QS h2
2«11

2«13D . ~10!

The local phonon density of vibrations of an impuri
atom at the end of the chain as a function of squared
quency and parameters of local distortion of coupling a
mass has the form

te
gs~l,h,«!5
1

p
Im G00

s ~l,h,«!1m ld~l2l l !

5
~lm/8!@~h11!2/~«11!#A~lm2l!/l

2l2h1l~lm/4!@~h11!/~«11!#@~h11!~«12!22#1~lm
2 /16!@~h11!/~«11!#2 1m ld~l2l l !. ~11!
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It should be noted thath5h l corresponds to the emergen
of root singularity in the local densityrs(lm ,h,«)}(lm

2l)21/2→` at the upper boundary of the continuous sp
trum band.

The local density of vibrations of an atom in the cha
separated byn atomic spacings from the free end is give
by12

gn
s~l,h,«!5gs~l,h,«!P̃n

2~l,h,«!, ~12!

where P̃n(l,h,«) are orthogonal polynomials generated
the J-matrix of the operatorL1Ls ~4!.

A comparison of formulas~9!, ~10!, and ~11! with ex-
pressions for the square of frequency and intensity of a lo
vibration as well as the local density of vibrations of
impurity atom derived in Ref. 11 for an infinite linear cha
with a substitutional impurity shows that they are tran
formed into one another under the substitution 2«11→« in
formulas~9!, ~10!, and ~11!, i.e., local parameters of vibra
tions of an impurity at the free end correspond to simi
parameters of a substitutional impurity with a mass twice
large in an infinite chain. For this reason, we shall anal
these parameters for both these systems simultaneously

LOCAL VIBRATIONS IN SEMI-INFINITE AND INFINITE
CHAINS

We analyze the behavior of local vibrational densities
a monatomic linear chain with interactions between nea
neighbors, which contains a substitutional or interstitial i
purity ~the only difference between these types of impurit
is that direct interaction between the nearest neighbors o
impurity atom is preserved in the case of interstitial impuri
Fig. 1b and c respectively!. It can be easily seen that a sem
infinite chain can contain only a substitutional impurity. W
shall assume that an impurity atom is located at the origin
coordinates.

Nearest neighbors of an impurity are also defect ato
and form with the impurity a defect cluster~triatomic in an
infinite chain and diatomic in a semi-infinite one!.

An impurity atom in an infinite chain is a symmetr
center for the system under investigation, and the spaceH of
atomic displacements can be presented as a direct su
subspaces of symmetric and antisymmetric displacement
variant relative to the operatorsL andL1L.

The subspace of symmetric~antiphase! displacements is
a linear envelope stretched aver the vectors

hn
~61!5

~21!n

&
U n11
2n21U 1

21L . ~13!

An impurity atom located at the symmetry center is at res
the given subspace.

The subspace of antisymmetric~synphase! displace-
ments is a linear envelope stretched over the vectors

h0
~0!5u0u1&; hn

~0!5
~21!

&
U n
2nU11L . ~14!
-
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In each of these subspaces, the operatorL induces the opera
tors L (0) and L (61) respectively, which have the form o
J-matrices whose matrix elements can be calculated easi11

The first diagonal matrix elements of operators induc
by Green’s operator in each of the invariant subspa
~Green’s function! can be written in the form

G00
~0!~l,h,«!

5
24lh1lm@~11h!/~11«!#@~11h!~21«!22#

R~0!~l,h,«!

1lm

~11h!2

11«
Au~l2lm!/lu

Z~l!

R~0!~l,h,«!
, ~15!

where

R~0!~l,h,«!524l2h1llmS 11h

11« D @~11h!~31«!24#

1lm
2 S 11h

11« D 2

,

~after the substitution«→2«11, this expression is trans
formed into~7!!, and

G00
6 ~l,h!5

4

lm

@2l2lm~11h!12Z~l!Alul2lmu#
R~61!~l,h!

,

~16!

where

R~61!~l,h!524lh1lm~11h!2.

The quantityZ(l) is defined in~6!.
Proceeding from the form of basis vectors~13! and~14!,

we can easily verify that the Green’s functionG 00
(0)(l,h,«) is

the same for substitutional and interstitial impurities, wh
the functionG 00

(61)(l,h,b) for an interstitial impurity can be
obtained from~16! through the substitutionh→h1b/a.

The roots of the functionsR(0)(l,h,«) andR(61)(l,h)
(l l

(0) and l l
(61), respectively! lie beyond the continuous

spectrum band

l l
~0!5

lm

8 S 11h

11« D H 31«2
12«

h
1

31«

h S ~11h!

3F S 12«

31« D 2

1hG D 1/2J .lm ; ~17!

l l
~61!5lm

~11h!2

4h
.lm . ~18!

These roots determine the squares of the frequencies of
vibrations, while residues at these points determine the in
sity of these vibrations (m0

(0) andm0
(61), respectively!:

résl5l
l
~0!G00

0 ~l,h,«![m0
~0!uS h2

«

21« D , ~19!

m0
~0!5m0

~0!~h,«!512~11«!F 11h

h~31«!21~12«!2G1/2

,

résl5l
l
~61!G00

~61!~l,h!5m0
~61!u~h21!5

h221

h2 u~h21!.

~20!
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The range of values ofh and« for which the intensity differs
from zero is the range of local vibrations with the frequen
Al l

( i ). In other words, local vibrations are formed in th
subspaceH (61) for

h.1; ~21!

and in the subspaceH (0) for

h.
«

21«
~22!

~Fig. 2!. It should be noted that forh.1, two mutually or-
thogonal local vibrations are formed in the system un
investigation irrespective of the mass of impurity.

A root singularity emerges forl5lm at ‘‘threshold’’
values of parameters of the defecth51 in the subspace
H (61) andh.«/(21«) in the subspaceH (0) for the corre-
sponding values of spectral density~Fig. 3!.

It was proved in Refs. 12–14 that the intensity of a loc
vibration varies with increasing atomic numbern according
to the law

mn5m0Pn
2~l,h,«!. ~23!

It is well known ~see, for example, Ref. 8! that the con-
tribution from local frequency to the root-mean-square d
placement of an atom is proportional to the intensity of
local vibration, and hence the amplitude of the local vib
tion attenuates with increasing distance from the defec
proportion toPn(l,h,«).

An impurity atom does not participate in motion occu
ring the cycling subspaceH (61), and hence the ratio of vi
brational amplitudes at the local frequencyAl l

(61) of atoms
with numbersm andn is

um

un
5UPm21

~61!~l l
~61! ,h!

Pn2
~61!~l l

~61! ,h!
U.

It can easily be verified that the valuesPn
(61)(l l

(61) ,h)
51/hn, i.e., form an infinite decreasing geometric progre

FIG. 2. Region of existence of local vibrations in the cyclic spaceH (0)

generated by a displacement of an impurity atom (h.«/(21«)) and its
division into regions of predominant localization of these vibrations at
impurity itself (A) and at its nearest neighbors (B). The region withh
.1 containing local vibrations in the cyclic subspaceH (61) generated by
antiphase displacement of nearest neighbors of the impurity atom is
shown~the impurity is at rest in this subspace!.
r

l

-
e
-
in

-

sion in the region of existence of local vibrations for th
cyclic subspaceH (61) ~for h.1), and the amplitude of loca
vibrations in this space attenuates exponentially with incre
ing distance from the defect. The sum of intensities of lo
vibrations at all atoms is given by

(
n50

`

mn
~6 !~h!51, ~24!

which is in accord with the familiar formulas for the varia
tion of the total phonon spectrum of the crystal due to
impurity in the presence of local vibrations~see, for ex-
ample, Refs. 8,15–20!.

Similarly, we can write the change in the amplitude
vibrations of atoms withn>0 at the local frequencyAl l

(0) in
the cyclic spaceH (0) generated by a displacement of th
impurity atom itself in the form

um

un
5UPm

~0!~l l
~0! ,h!

Pn
~0!~l l

~0! ,h!
U.

e

so

FIG. 3. Local and spectral densities characterizing vibrations of defect c
ter atoms for values of defect parameters corresponding to the formatio
local vibrations in various subspaces: the functionsg0(l)[r0

(0)(l) ~solid
curves! and the functionsr1

(0)(l) ~dashed curves! ~a!, the functionsg1(l)
~solid curves! and the functionsr0

(61) ~dashed curves! ~b!. Curves1–3 cor-
respond to threshold values for the formation of a local vibration in
subspaceH (0)@h5«/(21«)#:h521/3, «520.5 ~curves 1!, h5«50
~curves2!, h50.2, «50.5 ~curves3! andh5«51 ~curves4! correspond
to the threshold value for the emergence of a local vibration in the subs
H (61)(h51).
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Using the method of mathematical induction, we c
prove that starting fromn51, the values of the polynomial
@Pn

(0)(l l
(0) ,h,«)#2 form a geometric progression. We sha

prove that

(
n50

`

mn
~0!~h,«![m0

~0!~h,«! (
n50

`

@Pn
~0!~l l

~0! ,h,«!#251,

~25!

which gives, among other things, the common ratio of
progression@P2

(0)(l l
(0) ,h,«)/P1

(0)(l l
(0) ,h,«)#2,1.

We transform the left-hand side of~25! as

m0
~0!~h,«!H 11 (

n51

`

@Pn
~0!~l l

~0! ,h,«!#2J
5m0

~0!~h,«!

3H 11
@P1

~0!~l l
~0! ,h,«!#4

@P1
~0!~l l

~0! ,h,«!#22@P2
~0!~l l

~0! ,h,«!#2J ,

use the identity

@P1
~0!~l l

~0! ,h,«!#2

[
P1

~0!~l l
~0! ,h,«!1P2

~0!~l l
~0!,h,«!

2
A2~11«!,

whose validity can be verified easily by substituting~17! into
the recurrence relations~4!, and write~25! in the form

m0
~0!~m,«!@P1

~0!~l l
~0! ,h,«!#2A2~11«!52@12m0

~0!

3~h,«!#@P1
~0!~l l

~0! ,h,«!2P2
~0!~l l

~0! ,h,«!#. ~26!

The validity of this expression can be verified easily with t
help of ~4!, ~17!, and~20!.

Thus, the amplitudes of both local vibrations attenu
exponentially with increasingn beyond a defect cluster
Within this cluster, the ratio of the amplitudesu0(l l

(0) ,T)
and ul(l l

(0) ,T) depends on the defect parameters. The a
plitude of local vibrations of an impurity atom exceeds th
of similar vibrations of its nearest neighbor if

@P1
~0!~l l

~0! ,h,«!#2,
2

11«
, ~27!

i.e.,

2
~11h!~12«!24h

h
,

1

h
A~11h!@h~31«!21~12«!2#

,
~11h!~12«!14h

h
.

The left part of this inequality holds identically, while it
right part holds if the following two conditions

H h>
«21

52«
,

h.
«

12«
,

are satisfied simultaneously, or for
e

e

-
t

h,
«21

52«

~naturally, we speak only of the values of defect parame
for which the local vibration exists in the cyclic spaceH (0),
i.e., h.«/(21«)).

These conditions are satisfied for regionA in Fig. 2.
In regionB in the same figure, we have

0,
«

21«
,h,

«

12«
,

i.e., the local vibration in the cyclic subspaceH (0) generated
by a displacement of the impurity is localized mainly at ne
est neighbors.

It should be recalled that substituting 2«11 for « in the
subspaceH (0) leads to relevant results for a semi-infini
chain with an impurity at its free end, while the substitutio
of h1b/a for h in the spaceH (61) leads to the results fo
an interstitial impurity.

IMPURITY RESONANT LEVELS IN CONTINUOUS
SPECTRUM BAND FOR A LINEAR CHAIN

It is well known ~see, for example Refs. 16 and 17! that
an isotopic impurity cannot be responsible for the format
of a linear chain of sharp resonant peaks in the continu
spectrum band for the density of states~quasi-local vibra-
tions!. However, such states quasi-localized at an impu
atom can be formed in the presence of an impurity in
chain differing from the matrix atoms not only in mass, b
also in the force interaction with nearest neighbors~light and
weakly coupled impurity!. The possibility of such a localiza
tion was pointed out, for example, by Skripnik,21 while a
detailed analysis of the evolution of local density for an im
purity atom during the formation of such sharp reson
peaks was carried out in Ref. 11. However, the behavio
local densities and other spectral parameters of neighbo
atoms, especially nearest neighbors forming a defect clu
together with the impurity, in the vicinity of such a quas
local frequency is also of considerable interest.

Let us consider the frequency distribution of vibratio
in the continuous spectrum band for the system under inv
tigation. The spectral densitiesr (0)(l,h,«) andr (61)(l,h)
are defined on the interval@0,lm# and are given by

r~0!~l,h,«!5
lm

4p

@~11h!2/~11«!#A~lm2l!/l

R~0!~l,h,«!
;

~28!

r~61!~l,h!5
8

plm

Al~lm2l!

R~61!~l,h!
. ~29!

Local densitiesgn(l,h,«) can now be obtained easil
with the help of the formula

gn~l,h,«!5Fr~0!~l,h,«!1m0
~0!uS h2

«

21« D d~l2l l
~0!!G

6@Pn
~0!#2~l,h,«!1@r~61!~l,h!1m0

~61!u

3~h21!d~l2l l
~61!!#@Pn21

~61!#2~l,h!. ~30!
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For example, we can easily verify and prove rigorously w
the help of mathematical induction that for anyn

gn~l,0,0!5r~0!~l,0,0!5
rn

~0!~l,0,0,!1rn21
~61!~l,0!

2

5
1

p

1

Al~lm2l!
,

i.e., is equal to the density of states for an perfect lin
chain.

Figure 4 shows the evolution of local densities and
spectral densities for atoms in the impurity cluster appea
in them upon a change in the defect parameters. For all
curves, h5«,0, and a localized vibration is graduall
formed at the impurity atom. The squared frequencyl* of
this vibration is approximately at the midpoint of the ba
corresponding to allowed values ofl.

Figure 4a shows local densitiesg0(l,h,«)[r0
(0)

3(l,h,«) of an impurity atom~solid curves! and the spec-
tral densitiesr1

(0)(l,h,«) ~dashed curves!. It can be seen tha
as a sharp resonant peak with a half-widthDl,l* is

FIG. 4. Local and spectral densities characterizing vibrations of defect c
ter atoms for values of defect parameters corresponding to the formatio
vibrations localized at a light weakly coupled impurity with frequenc
lying in the continuous spectrum band of a linear chain: the functi
g0(l)[r0

(0)(l) ~solid curves! and the functionsr1
(0)(l) ~dashed curves! ~a!,

the functionsg1(l) ~solid curves! and the functionsr0
(61)(l) ~dashed

curves! ~b!; h5«520.9 ~curves 1!, h5«520.8 ~curves 2!, h5«5
20.5 ~curves3! andh5«520.2 ~curves4!.
r

e
g

he

formed, the spectral density noder1
(0)(l,h,«) (l* 5a0

(0) is
the root of the polynomialP1

(0)(l,h,«) or, according to~4!,
the square of the Einstein frequency in the given cyclic s
space! falls in this half-width. This can be easily graspe
since the quasi-local frequency approaches the Einstein
quency upon enhancement of localization. Consequently
brations of nearest neighbors of an impurity virtually do n
interact with vibrations of the impurity atom forlP@l*
2Dl,l* 1Dl#. This leads to localization of vibrations a
frequencies for which not only the total phonon density
an ideal system, but the spectral density in the correspon
invariant subspace is not small at all. The local densit
g1(l,h,«) of nearest neighbors~solid curves in Fig. 4b! are
mainly determined by vibrations from the cyclic spaceH (61)

orthogonal to displacements of the impurity~the correspond-
ing spectral densitiesr0

(61)(l,h) are shown by dashed
curves in the same figure!.

DEPENDENCE OF THRESHOLD VALUES OF DEFECT
PARAMETERS ON THE SEPARATION BETWEEN IMPURITY
AND THE END ATOM IN THE CHAIN

It was proved in the previous sections that only a lo
frequency~9! can be formed in a semi-infinite chain with
substitutional impurity at the free end, while the presence
the same impurity ‘‘in the bulk’’ of the chain generates tw
local frequencies~17! and ~18!. This important fact reflects
the difference in the number and types of independent vib
tions which can involve an impurity atom under the surfa
and on it~in other words, we are speaking of the number
possible orthogonal displacements within a defect clus
which generate different subspaces of displacement!. For ex-
ample, independent vibrations of atoms in an infinite cha
which are affected by the presence of an impurity, cor
spond to the general scheme of splitting into the subspa
~13! and~14!. One of the subspaces corresponds to displa
ments of the impurity and subsequently to synphase
placements of its nearest neighbors, while the other subs
corresponds to antiphase displacements of the nearest n
bors of the fixed impurity atom. Obviously, the situatio
must not change radically until the impurity becomes a s
face atom with only one neighbor. In this case, the numbe
independent~orthogonal! types of vibrations involving the
impurity atom decreases to one. This type of vibrations
determined by the displacement of the impurity itself a
corresponds to the generating vectorh0

s5u0u1& in the sub-
spaceHs.

The confirmation of these arguments by calculations a
the derivation of exact analytic expressions for vibration
parameters in the model of a two-parametric substitutio
impurity separated from the chain ‘‘surface’’ by an arbitra
number of atomic spacings~following the general algorithm
of application of the method ofJ-matrices described in the
previous section! generally encounters unsurmountable dif
culties of computational nature. This is due to the need
taking into account the mutual arrangement of lattice defe
separated by large distances, i.e., with an arbitrary large r
of the perturbation matrix. However, a certain modificati
of this algorithm allows us to derive analytically the exa

s-
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dependence of the threshold values of parameters descr
the defect on the ‘‘depth’’ of the given impurity under th
surface. It will be shown that the behavior of this depende
is in good agreement with the above conclusions.

Let us consider a semi-infinite monatomic chain with
substitutional impurity differing from the matrix atoms i
mass and interaction with nearest neighbors. We assume
the impurity is separated from the surface byk matrix atoms
~see Fig. 1d!. We obtain the complete system of basis vect
in the only subspace for the semi-infinite chain by choos
the displacement of the end atom as a generating vector.
Jacobi matrix of the dynamic operator for the given syst
has the following elements:

~L1L! ik53
a/2
b
...
...
...
...
...

b 0
a b

... ...
... b
... b
... ...
... ...

0
0
...
a

D̃k* ~h,«!

b
...

0 0 ...
0 0 ...

... ... ...
b ... ...
b ... ...
a b ...

... ... ...

4 , ~31!

wherea andb are the limiting values to which the elemen
an andbn of the Jacobi matrix tend upon an increase in
numbern ~in our case,a5lm/2 andb5lm/4). The Jacobi
matrix whose elements correspond to distortion of mass
force constants at the distancek from the end of the chain is
denoted by

D̃k~h,«!5F ãk21~h!

b̃k~h,«!

0

b̃k~h,«!

ãk~h,«!

b̃k11~h,«!

0

b̃k11~h,«!

ãk11~h!
G , ~32!

where

ãk21~h!5ãk11~h!5aS 11
h

2 D ,

b̃k21~h,«!5b̃k~h,«!5b
11h

A11«
, ~33!

ãk~h,«!5aS 11h

11« D .

Using the expression for Green’s function of system~3! in
accordance with the mechanism of detachment of disc
states from the continuous spectrum band, we can write
equation for the threshold combinations of the values of
fect parameters$h,«%d :

R̃~lm![ P̃k11~lm* ,h,«!2b̃k~h,«!P̃k~lm ,h,«!K`~lm!50.
~34!

In the lattice region unaffected by direct interaction with t
defect, the polynomialsPn(l) at the upper boundary of th
continuous spectrum of the chain have the simple form

Pn~lm!52n11,

where n50,1,...,k21. However, starting fromn5k, the
functions Pn(lm) become dependent on the defect para
eters and acquire a cumbersome form:
ing

e

hat

s
g
he

e

d

te
he
-

-

P̃k~lm ,h,«!5
A«11

h11
@2k~12h!1~11h!#;

P̃k11~lm ,h,«!5
2

~h11!2 ~2«112h!@2k~12h!1~1

1h!#2~2k21!;

P̃k12~lm ,h,«!5
2

~h11!2 $~22h!~2«112h!

3@2k~12h!1~11h!#%

22k~322h!1~122h!. ~35!

Consequently, expression~34! is simplified as follows:

R̃~lm!5 P̃n12~lm!2 P̃n11~lm!. ~36!

Substituting ~35! into ~36!, we can obtain the depen
dence of the threshold value of the coupling parameter of
defect on the separation between the impurity and the ‘‘s
face,’’ i.e., the extreme atom of the chain corresponding
n50, in the form of the solution of the equation

h2@4k~«12!2~2«13!#22h@4k~«11!11#

1@4k«1~2«11!#50. ~37!

Thus, we finally obtain

h1,2~k,«!5
4k~«11!1162A4k21~«11!2

4k~«12!2~2«13!
. ~38!

Analyzing the limiting cases of the problem, i.e., an impur
in the form of a surface atom (k→0) and an impurity in an
infinite chain (k→`), i.e.,

lim
k→0

h1,2~k,«!5H 21

112«

2«13

~39!

and

lim
k→`

h1,2~k,«!5H 1

«

«12

~40!

respectively, we can easily see that the replacement of
extreme atom of the chain by an impurity is the only ca
when only one local frequency exists in the entire range
variation of $h,«%. The solutionh521 corresponds to a
nonphysical region of negative force coupling constanth,
21(a8,0), which allows us to disregard this value as a re
‘‘threshold’’ ensuring the formation of a discrete state.

Figure 5 shows the evolution of the threshold values
the parameterh1,2(k,«) with increasing distance from th
impurity atom to the ‘‘surface.’’ It turns out that in the lim
iting case~40!, the threshold curves tend asymptotically
the dependences typical of an impurity in an infinite chai

The coincidence between~39!, ~40! and analogous rela
tions obtained for subspacesH (0),H (61), and Hs confirms
the correctness of the above analysis.

Thus, we have used the method ofJ-matrices to demon-
strate that the exactly solvable model proposed here for
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terstitial ~substitutional! impurities in a linear chain exhibits
a variety of peculiarities~‘‘threshold’’ localization of vibra-
tions beyond the continuous spectrum, formation of qua
local resonant peaks of vibrational density in the range
allowed frequencies, the effect of ‘‘redistribution’’ of vibra
tional amplitude at discrete frequencies among the atoms
defect cluster, etc.! typical of high-dimensional crystals. In
the latter case, however, the computation of analogous c
acteristics involves considerable difficulties which can
overcome only through numerical count.

Theoretical and experimental analysis of low
dimensional systems as well as the effect of distortions
crystal regularity on the physical properties of solids alwa
occupied an outstanding place among the topics of inve
gations at the Institute for Low Temperature Physics a
Engineering. More than 30 years ago, V. I. Peresada of
Institite proposed the method of Jacobi matrices whose e
lution demonstrated its exceptional efficiency for theoreti
analysis of system with violated crystallographic regulariti
These subjects formed the sphere of scientific interest of
B. I. Verkin, who headed the Institute and supported activ
the creation and development of new methods of invest
tion. Many of such perfect and original methods were dev
oped at theInstitute.

FIG. 5. Evolution of threshold values of the parameterh1,2(k,«) with in-
creasing separation of the impurity atom from the ‘‘surface.’’
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For this reason, the authors are pleased to dedicate
research to the memory of Academician Boris Ieremiev
Verkin, the founder ofILTPE.
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19H. Böttger,Principles of The Theory of Lattice Dynamics, Physik-Verlag,

Weinheim, 1983.
20A. P. Zhernov, N. A. Chernoplekov, and E. Morsan,Metals with Nonmag-

netic Impurity Atoms@in Russian#, Energoatomizdat, Moscow~1992!.
21Yu. V. Skripnik, Ph. D. thesis, Kiev~1992!.

Translated by R. S. Wadhwa



LOW TEMPERATURE PHYSICS VOLUME 25, NUMBER 8–9 AUGUST–SEPTEMBER 1999
LOW-TEMPERATURE PHYSICS OF PLASTICITY AND STRENGTH

Empirical evaluation of electron and phonon drag coefficients for dislocations in Pb-
and Al-based alloys

N. V. Isaev, V. D. Natsik, and V. S. Fomenko
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Ukraine, 310164 Kharkov, Ukraine*
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The impurity concentration dependence of the temperature threshold of low-temperature
anomalies of plasticity associated with the influence of inertial effects on the dislocation mobility
is analyzed using the experimental data on the kinetics of plastic flow in five lead- and
aluminum-based fcc solid solutions. It is shown that the results of such an analysis can be used
for evaluating the electron and phonon drag coefficients for dislocations in these metals
and to derive an empirical expression for the temperature dependence of phonon drag in the low-
temperature range. ©1999 American Institute of Physics.@S1063-777X~99!02308-7#
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1. Experimentally detected regularities of plastic defo
mation in solid solutions in the range of moderately lo
temperatures are in good agreement with the ideas on
moactivated motion of dislocations through impurity barrie
~stoppers!. However, peculiarities~anomalies! of plasticity
observed in the range of hydrogen–helium temperatu
could be explained only on the basis of several new hypo
eses~see Refs. 1–3!. It was proposed that one of the ma
reasons behind the anomalies is the effect of inertial pro
ties of dislocations on the dynamics of their motion throu
impurity barriers.4 As the temperatureT is lowered, the av-
erage lengthL of a dislocation segment and the dynam
drag coefficientB decrease, and the dislocation segment
comes undamped. Under these conditions, collisions of
locations with impurity atoms is accompanied by a dynam
increase in the average values of the angle of attack, lea
to a sharp increase in the probability of overcoming of i
purity barriers by a dislocation and to a considerable cha
in the kinetic of plastic flow of the alloy.

The most consistent analysis of the influence of iner
effects on the thermoactivated mobility of dislocations in
alloy was proposed in Ref. 5. The analysis is based o
statistical description of motion of dislocations through
random array of point barriers taking into account the d
namic increase in the angle of attack for a dislocation l
approaching a barrier. This makes it possible to use the c
puter simulation method for calculating the average veloc
of a dislocation over distance considerably longer than
mean distance between impurities and to describe typ
features of manifestation of inertial effects, that can be
served in a macroscopic experiment. They include~1! the
emergence of an anomaly on the temperature dependen
the yield stresst0(T) below a certain threshold temperatu
Ti depending on the impurity concentrationC, ~2! a sharp
increase in the strain-rate sensitivity of deforming stress
the vicinity of the temperatureTi(C), and~3! a jump in the
7401063-777X/99/25(8–9)/4/$15.00
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deforming stress upon transition in a superconducting al
emerging due to inertial effects during plastic flow, who
magnitude exhibits a peculiar dependence on tempera
and concentration.

A typical form of anomaly int0(T) that can be obtained
on the basis of the thermoinertial theory is a curve with
peak located belowTi , the value ofTi increasing with the
impurity concentration. Other types of experimentally o
served anomalies, e.g., the low-temperature plateau, are
dicted by this theory only when special assumptions
made concerning the dependence ofB on temperature and
concentration of stoppers. The possibility of a transition fro
thermoinertial to quantum-inertial form of motion of dislo
cations through impurity barriers at low temperatures sho
also be taken into consideration.2,3 In all cases, however, the
conditions of undamped dislocation segment should be
isfied for manifestation of inertial effects. These conditio
can be written in the form of two inequalities:

t* ~T,C!5t02t i.0.5tc ,
~1!

B~T!L~t* ,C!,2p~MEL!1/2.

Heret0 is the deforming stress~yield stress!, andt* ,t i , and
tc are the effective, internal, and critical stress of activatio
less motion of dislocations;EL andM are the linear densities
of intrinsic energy and mass of dislocations.

In order to prove that nondamping conditions can
satisfied for a specific crystal, we must determine the te
perature and concentration dependences of quantities ap
ing in ~1!. For this purpose, we can use the rigorous pro
dure of thermoactivation analysis,2,6,7 which makes it
possible to determine thet* (T,C) dependence appearing i
~1!, to calculate the value oftc(C), to determine the type o
statistics of the impurity barrier distribution along a disloc
tion, and to establish the dependenceL(t* ,C). A compari-
son of theoretical and experimental temperature depende
© 1999 American Institute of Physics
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TABLE I. Plasticity parameters for some alloys.

Alloy C
t,

MPa
k,

MPa Ti , K
a•103,
Pa•s

h•103,
Pa•s

B•105,
Pa•s

0.001 0.30 12
0.005 0.37 15

Pb–Bi 0.01 0.57 5 17 0.7 9 1.6
0.03 0.99 22
0.06 1.35 25

0.01 0.89 22
Pb–Sn 0.02 1.26 11 26 0.8 3 4.4

0.03 1.50 30

0.004 1.62 18
Pb–Sb 0.007 1.87 16 20 1.0 3 4.2

0.015 2.51 28

Al–Li 0.038 12.70 90 34 0.9 200 2.8

0.07 19.90 39

Al–Mg 0.0062 8.70 110 21 1.0 280 1.8
0.0152 15.40 27
0.0197 15.60 28
0.0380 18.10 31

Notation: C is the impurity concentration,tc the critical stress of the activationless motion of dislocations,k the
proportionality factor in~6!, Ti the threshold temperature of anomalous plasticity,a the coefficient defined by
~7!, h the constant in~4!, andB the electron drag coefficient for dislocations.
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of plasticity parameters makes it possible to determine t
fairly high degree of accuracy the value of the thresh
temperatureTi(C) below which inertial effects influence th
motion of dislocations through impurity barriers conside
ably.

The main mechanisms of dynamic drag for dislocatio
in metals in the low-temperature region are electron and p
non viscosity:8–10

B~T!5Bph~T!1Be . ~2!

The temperature dependence of the drag coefficient in
expression is determined by its phonon componentBph(T),
and Be is the athermal contribution of conduction electro
to dislocation drag. Special experimental methods review
in Refs. 9 and 10 are used for measuring the phonon d
coefficientB. Two methods that are used more often are
recording of tracks of individual dislocations or slip line
under impact loading and the measurement of internal f
tion and separation of the contribution of dislocation se
ments trapped by impurities in it.

Reliable experimental data on the values of the elect
and phonon components of the coefficientB(T) have been
obtained by the above-mentioned traditional methods o
for a narrow range of crystals. In this connection, a n
method for obtaining empirical estimates of low-temperat
values of the phonon drag coefficientBph(T) and the electron
drag coefficientBe in solid solutions was proposed in Re
11. This method does not require special experimental te
niques and is based only on the results of a detailed ther
activation analysis of macroscopic parameters characteri
the plastic flow of alloys in the region where inertial effec
are manifested.
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It would be interesting to study the microscopic mech
nism of motion of dislocations by using the scheme of e
pirical evaluation ofB(T) proposed in Ref. 11 in a wide
range of alloys.

2. In this communication, we analyze the concentrati
dependence of the threshold temperatureTi(C) of the low-
temperature anomaly for a number of Pb- and Al-based
solid solutions. For this purpose, we use the data on
kinetics of low-temperature plasticity of polycrystals an
single crystals of solid solutions, which were reported in e
lier publications: Pb–Sn,2,3 Pb–Sb,3 Pb–Bi,12 Al–Li, 13 and
Al– Mg.14 The empirical values of some plasticity param
eters for these alloys that are required for subsequent ca
lations are given in Table I. Unfortunately, the error of me
surements of these parameters for Al-based alloys
considerably larger than for Pb-based alloys: for Al–L
these parameters were estimated on the basis of the da
low-temperature plasticity only for polycrystalline sample
for Al–Mg, we had no data sufficient for a rigorous therm
activation analysis.

It can be seen from the table that the critical stresstc for
activationless motion of dislocations and the threshold te
peratureTi corresponding to the beginning of manifestati
of anomalous plasticity increase with the impurity concent
tion. According to the results of thermoinertial theory, t
Ti(C) dependence fort* (T,C).0.5tc can be determined
from the solution of the equation

@Be1Bph~T!#L~t* ,C!52p~MEL!1/2. ~3!

Theoretical analysis of phonon drag for dislocatio
proved9,10 that at low temperaturesT!Q (Q is the Debye
temperature of the crystal!, the Bph(T) dependence is cor
rectly approximated by a power function of the form
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Bph~T!'h~T/Q!n. ~4!

Here h is a constant, and the value of the exponentn is
determined by the process of interaction of dislocations w
phonons: if the dominating mechanism of dislocation drag
phonon wind~elastic scattering of phonons by the deform
tion field of dislocations!, we haven55, while in the case
when the flutter effect~inelastic scattering of phonons by a
elastic dislocation line! dominates, a weaker temperature d
pendence of the drag coefficient withn53 is observed.

Thermoactivation analysis of the low-temperature pl
ticity parameters for fcc alloys proved that in the range
intermediate impurity concentrationsC;1023– 1021 and
the effective stressest* .(0.1– 0.5)tc , the impurity barrier
distribution along a dislocation line is correctly described
the Friedel statistics.15 In this statistics, the following rela
tions hold:

L5~2ELb/t* C!1/3, ~5!

tc5kC1/2. ~6!

The curves illustrating the validity of approximation~6!
in the concentration range under investigation are given
Fig. 1, and the corresponding values of the constantk de-
pending on the strength of impurity barriers are given
Table I. Unfortunately, the error in determining the empiric
values of the parameterk in some cases is quite large in vie
of the absence of detailed information on the dependen
tc(C) ~as in the case of Al–Li alloys!.

Assuming that the value of effective stress in the vicin
of the threshold temperaturet* (Ti)'0.5tc for all alloys and
substituting~4! and ~5! into ~3!, we obtain the following
relations:

h~Ti /Q!n5aC1/22Be ,
~7!

a52p~MEL!1/2~k/2ELb!1/3.

FIG. 1. Concentration dependences of critical stresstc for activationless
motion of dislocations through impurity barriers in solid solutions: Pb-ba
alloys ~a! and Al-based alloys~b!.
h
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In order to obtain numerical values of the parametera,
we used the values of the parameterk from Table I, the
estimatesM50.5rb2 andEL50.5Gb2 obtained on the basis
of the continual theory of dislocations in the isotropic m
dium approximation, the values of shear modulusGPb

51010Pa andGAl52.731010Pa typical of pure Pb and Al
the densityrPb5104 kg/m3 and rAl50.273104 kg/m3, the
magnitudes of the Burgers vectorbPb53.50310210m and
bAl52.86310210m, and the Debye temperaturesQPb

598 K and QAl5390 K. The results of calculations ar
given in Table I.

The experimental values ofTi(C) for all the alloys in-
vestigated by us indeed satisfy relation~7! if we choose the
value of the parametern53. Figure 2 illustrates the linea
approximation of relation~7! in appropriate coordinates, an
the geometrical parameters of the straight lines in the fig
allow us to obtain the values of the parametersh andBe ~see
Table I!. This result leads to the conclusion that the tempe
ture dependenceB(T) for Pb and Al atT<40 K is deter-
mined by inelastic scattering of thermal phonons by dislo
tion lines ~flutter effect!.

The values ofBph andBe obtained by us are of the sam
order of magnitude as the empirical values of the dynam
drag coefficient for pure lead and aluminum obtained
other experimental methods~Fig. 3!. A detailed analysis of
the data presented in Refs. 9 and 10 indicates a wide sp
of experimental estimates ofB, which are as a rule one o
two orders of magnitude higher than the theoretical e
mates. The reasons behind such a discrepancy remain
clear. The spread in the values ofBe and the coefficienth
obtained by us can be partially due to a large spread typ
of the measured values of low-temperature plasticity para
eters and a large error in determining the threshold temp
ture Ti .

3. The analysis of the parameters of low-temperat
plasticity for five fcc solid solutions carried out by us he
confirmed the efficiency of the method for empirical eva
ation of the dynamic drag coefficient for dislocations in t
low-temperature region proposed in Ref. 11. The method
based on macroscopic data on the kinetics of thermoa

d

FIG. 2. Concentration dependences of the threshold temperatureTi of the
anomaly, illustrating the validity of relation~7! for n53: Pb-based alloys
~a! and Al-based alloys~b!.
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vated plastic flow of alloys in a wide range of temperatu
and impurity concentration and on an analysis of the conc
tration dependence of the threshold temperature corresp
ing to manifestation of inertial properties of dislocations. T
obtained values of the electron and phonon drag coeffici
for dislocations are of the same order of magnitude as
estimates of these parameters obtained earlier on the ba
different methods.

This research was carried out under the support of
Ukrainian Foundation of Fundamental Studies~Project No.
2.4/156 ‘‘Bion-2’’!.

We dedicate this work to the blessed memory of Bo
Ieremievich Verkin. Owing to his prowess in organizatio

FIG. 3. Temperature dependences of the dynamic drag coefficientB(T) for
dislocations in logB vs. T coordinates: symbols correspond to low
temperature values ofB for Pb and Al, obtained earlier by using speci
experimental methods,9,10 solid curves describe the dependenceB(T)
5h(Ti /Q)31Be for corresponding values of the parametersh andBe from
Table I.
n-
d-

ts
e
of

e

s

and planning, the study of physical and mechanical prop
ties of a wide class of materials under deep cooling has
come one of the major topics of research in the Instit
created by him. Permanent assistance and personal parti
tion of Boris Ieremievich in these studies led to importa
scientific results in the field of fundamental physics of pla
ticity, superconductor and space material science, thus
evating B. Verkin Institute for Low Temperature Physics a
Engineering to a leading position in the development
modern trends in low-temperature physical material scien
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Visualization of the antiferromagnetic insulator–ferromagnetic metal phase transition
in manganite Nd 0.5Sr0.5MnO3
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It is found that the first-order phase transition from a nonmetallic antiferromagnetic~AFM! state
to a metallic ferromagnetic~FM! state in manganite Nd0.5Sr0.5MnO3 is accompanied by a
significant change in the reflectivity of the visible light. This effect is used for visualizing the
AFM–FM phase transition in Nd0.5Sr0.5MnO3. The coexistence of AFM and FM phases
was observed visually during spontaneous and field-induced AFM–FM transitions. In both cases,
the transition occurs through nucleation and expansion of domains of the phase that is
favorable from the energy point of view. However, the periodic domain structure of the
intermediate magnetic state was not formed during the phase transition. A striped domain structure
was formed in the AFM state while the FM phase had a uniform structure. ©1999
American Institute of Physics.@S1063-777X~99!02408-1#
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Over the last decade, manganites, viz., oxides of man
nese with the perovskite structure R12xAxMnO3, where
R5La31, Nd31, Pr31, Eu31...; A5Ca21, Sr21, Ba21,
Pb21,... have aroused considerable interest following the
tection of giant magnetoresistance in these compounds.1 This
effect, which is observed in manganites in the vicinity of t
Curie temperatureTC , is important not only for studying the
origin of the phenomenon and its practical applications,
also because manganites are fascinating objects of inves
tion in view of a number of interesting properties, e.
charge and orbital ordering, Jahn–Teller effect, as well
spontaneous and induced phase transitions~PT!. Some man-
ganites exhibit spontaneous and magnetic field-induced
from nonmetallic AFM state to metallic FM state. Amon
others, the Nd0.5Sr0.5MnO3 crystal undergoes this PT.2–4 A
decrease in temperature toTC.255 K leads to FM ordering
in Nd0.5Sr0.5MnO3, while a spontaneous first-order PT m
tallic FM–insulating AFM is observed at a temperatu
TM2I close to 160 K. The FM–AFM transition in this crysta
coincides with charge ordering,2 i.e., the emergence of a spa
tial ordering of holes, and hence of Mn31 and Mn41 ions.
Note that the transition temperatureTM2I in manganites
does not always coincide with the charge ordering temp
ture Tco . For example,TM2I,Tco in Nd12xCaxMnO3 and
Pr12xCaxMnO3 TM2I,Tc0 .5 At temperaturesT,TM2I , the
7441063-777X/99/25(8–9)/3/$15.00
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magnetic field causes a dissolution of charge ordering
Nd0.5Sr0.5MnO3 and induces a transition to the metallic F
state.

The metallic FM-insulating AFM transition in
Nd0.5Sr0.5MnO3 was studied earlier through conductivity an
magnetization measurements,2,3 radiographic methods,2 and
neutron diffraction technique.4 It was found that the
Nd0.5Sr0.5MnO3 crystal in both states has an orthorhomb
structure~space groupPnma).1,4 The conductivity varies by
more than two orders of magnitude upon PT while the m
netization changes by about 2.5mB /Mn.2,3 The crystal lattice
parameters also change significantly (;1023– 1022) during
PT.2,4 Upon a transition to the AFM state, the volume of th
magnetic unit cell increases and a CE type AFM struct
is established.2,4,6 It is reported in the present work tha
the intensity of the visible light reflected from th
Nd0.5Sr0.5MnO3 crystal decreases considerably upon a
from the metallic FM state to the insulating AFM state. Th
effect was used for visualizing and studying the two-pha
state formed during the PT.

Crystals of Nd0.5Sr0.5MnO3 were obtained by the zon
melting technique and had cylindrical form. Samples we
cut in the form of plates at right angles to the cylinder ax
The plates had an average size of about 3 mm and t
thickness varied from 0.5 to 2 mm. X-ray investigatio
showed that the samples were not monocrystalline. Howe
they were highly textured with preferred orientations~100!
© 1999 American Institute of Physics
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and~010! of the crystallite axes inPnmaspace group at an
angle of 15° to the cylinder axis. The mutual disorientati
of the crystallite axes did not exceed a few degrees.
lattice parameters measured at room temperature coinc
with those obtained in Ref. 4 for Nd0.5Sr0.5MnO3 up to third
decimal place. The surface of the plates was polished
chanically to mirrorlike reflection state. The stresses eme
ing in the crystal as a result of mechanical polishing w
removed by annealing the polished samples in air at a t
perature of 950 °C for 20 hours. The metallic FM – insul
ing AFM transition in Nd0.5Sr0.5MnO3 was studied by mea
suring the intensity of light reflected from the polishe
surface of the plate and visual observation of the two-ph
state formed during PT. Samples were placed in an opt
helium cryostat with a superconducting solenoid. The sam
temperature could be varied in the interval 10 K,T,300 K
and was measured with the help of a copper–constantan
mocouple. The optical circuit for measuring the intensity
the reflected light consisted of a He–Ne laser, a light int
sity modulator, and a photoelectric multiplier. The light fro
laser with l5633 nm was reflected from the plate, mod
lated in intensity, and supplied to the photoelectric mu
plier. The angle of incidence of light on the sample w
;10°, and the signal from the PEM was detected by a s
chronous amplifier. Visual observation of the domain str
ture was carried out in visible light with the help of a micr
scope. The image of the sample with a domain structure
observed and recorded by a video camera with a monitor
a VCR. The obtained image was also subjected to comp
processing.

Figure 1 shows the temperature and field dependen
I (T) andI (H) of the intensity of light reflected in the vicin
ity of the first-order phase transition metallic FM – insula
ing AFM. Figure 1a shows the dependenceI (T) measured in
zero magnetic field. The phase transition corresponds
jump in the intensity of the reflected light. In the insulatin
AFM state, the value ofI is about half that in the metallic
FM state. The transition occurred atT'154 K during cool-
ing and atT'162 K during heating. In other words, it dis
played a temperature hysteresis having a width of about 8
The intensity of the reflected light also changed abruptly
the field-induced phase transition metallic FM – insulati
AFM at T,154 K. The dependenceI (H) measured atT
5144 K is shown in Fig. 1b. It can be seen that the transit
is accompanied by a variation ofI by a factor of more than
two, and a field hysteresis of width around 16 kOe. The in
to Fig. 1 shows a fragment of theH –T phase diagram for
Nd0.5Sr0.5MnO3 reconstructed from optical measuremen
Note that the results of investigation of the phase transi
insulating AFM-metallic FM in Nd0.5Sr0.5MnO3 obtained by
measuring the reflected light are in good accord with
results of transport and magnetic measurements data
tained by Kuwaharaet al.2

The observed effect of variation of the intensity of r
flected light was used for visualizing first-order PT from i
sulating AFM state to metallic FM state in the mangan
Nd0.5Sr0.5MnO3. Visual observation of the two-phase sta
under phase transition was carried out in reflected white l
with the help of a microscope. The first-order phase tran
e
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tion insulating AFM – metallic FM in Nd0.5Sr0.5MnO3 oc-
curred through nucleation and expansion of domains in
energetically advantageous phase. The expansion of suc
mains was accompanied by a decrease in the concentr
of the energetically disadvantageous phase whose dom
eventually disappeared and the sample was transfor
completely into the energetically advantageous phase.
mains were formed in different parts of the sample, and
emerging two-phase domain structure was not reprodu
completely during repeated observations of the transition
der identical conditions. In other words, the domain struct
was not defined uniquely by inhomogeneities of the sam
temperature or field. However, no periodic domain ba
structure of the magnetic intermediate state~IS! was ob-
served during the transition. The existence of AFM and F
phases was observed at temperatures around 2 K in thefield
interval 5–7 kOe.

Visual observations also revealed that the insulat
AFM phase is inhomogeneous. The band domain struc
observed in the AFM state remained unchanged in a m
netic field right up to the field corresponding to the transiti
to the FM state. In the FM state, the sample was practic
homogeneous but revealed in some cases weakly contra
traces of the domain structure prevailing in the AFM pha
before the onset of the transition to the FM state. The dom

FIG. 1. Temperature (H50) and field (T5144 K) dependences of the in
tensity of reflected light. Discontinuities on the dependences correspon
the insulating AFM–metallic FM phase transition. The inset shows a fr
ment of theH –T phase diagram of Nd0.5Sr0.5MnO3 obtained from optical
measurements. Dark circles correspond to the transition induced by inc
ing field or temperature, and light circles to the same transition in decrea
field or temperature.
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structure in the AFM state was not repeated in numer
observations of the transition from the FM to the AF
phase, but the orientation of domain walls in the sample w
preserved. In some cases, the transition from the FM to A
state was accompanied by the formation of a homogene
AFM phase, i.e., the transition to one of the two possi
AFM states was realized. Different values ofI on the hyster-
esis loop for the AFM state~Fig. 1! are associated with dif
ferent concentrations of two types of AFM domains.

Figure 2 shows a sample segment in which domains
the AFM ~black and white! and FM ~gray! phases can be
seen. An increase in the magnetic field leads to an increa
the volume of the FM phase at the expense of the black
white domains of the AFM phase. The dashed line in
figure indicates the boundary region between the FM
AFM phases which is displaced upon an increase in the fi

The formation of a domain structure in the AFM sta
of Pr0.5Sr0.5MnO3 was observed by electron microscop
technique.7 In this manganite, the crystalline domain stru
ture is formed as a result of structural phase transition wi

FIG. 2. Domain structure observed in Nd0.5Sr0.5MnO3 during insulating
AFM–metallic FM phase transition. The black and white domains co
spond to the AFM phase and the gray one to the FM phase. The dashe
shows the interface between AFM and FM states, which is displace
increasing field. The sample temperatureT5152 K, and the applied mag
netic fieldH'14 kOe~a! and 16 kOe~b!.
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decrease in symmetry fromI4/mcm to Fmmmaccompany-
ing the PT from metallic FM state to insulating AFM stat
However, a transition to the AFM state in Nd0.5Sr0.5MnO3 is
not accompanied by symmetry variations, although the
rameters of the rhombic cell change significantly.2 Moreover,
the investigated samples are not monocrystalline. Hence
formation of a band domain structure in such samples w
boundaries passing through the entire sample can be a
uted to long-range interaction. There are no demagnetiza
fields in the AFM phase. The formation of the domain stru
ture in the AFM phase is probably due to elastic stres
emerging in the crystal during PT as a result of strong va
tions in the crystal lattice parameters.

The absence of a magnetic intermediate state
Nd0.5Sr0.5MnO3 during the FM–AFM phase transition in
magnetic field also requires an explanation. This transitio
accompanied by a magnetization jump of about 400 G. A
cordingly, the field interval corresponding to the interme
ate state in thin films of Nd0.5Sr0.5MnO3 must have a width
of about 5 kOe. This value is comparable with the expe
mentally observed field interval corresponding to the ex
tence of a two-phase state in the investigated samples. H
the absence of the intermediate state cannot be attribute
sample inhomogeneities. In Nd0.5Sr0.5MnO3, the intermedi-
ate state may not be formed during PT on account of
extremely large value of the interface walls energy asso
ated with elastic stresses emerging at the boundary as a r
of variations (;1022) of the crystal lattice parameters du
ing the phase transition.

Finally, it should be noted that the variation of the r
flectivity observed by us during the metallic FM – insulatin
AFM phase transition in Nd0.5Sr0.5MnO3 made it possible to
visualize the two-phase state, determine the nature of
phase transition and the main properties of the two-ph
domain structure. A domain structure was observed in
AFM phase. However, the origin of this domain structu
and the reasons behind the absence of a magnetic interm
ate state during phase transition remain unexplained and
quire further investigation.
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